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Abstract

Stochastic optimization is an optimization method which involves probabilistic ingredi-

ents, such that there is random noise in the problem objectives or constrains, and/or there

is randomness in the algorithm when making choice in the search direction. Due to the

unpredictable nature of financial markets, stochastic optimization has been drawing gradu-

ally greater attention in the field. This dissertation presents stochastic optimization methods

from different approaches on two common models in financial markets, namely mean rever-

sion model and regime-switching model.

When the price of an asset is governed by mean reversion model, the objective of an

investor is to find the threshold buy and sell prices such that the overall return (with slippage

cost imposed) is maximized. This work provides those threshold prices that allows buying,

selling and short selling of an asset. A dynamic programming approach is employed to ensure

the optimality in the first part of the dissertation. It shows that the solution of the original

optimal stopping problem can be achieved by solving four algebraic equations. In the last

part of the dissertation, a stochastic approximation approach is implementated on the same

problem for comparison. A recursive algorithm is designed to determine the threshold prices.

In both aproaches, numerical examples such as Monte Carlo simulations and real market

data are given for demonstration.



Considering trend-following trading strategies that are widely used in the investment

world, the second part of this work provides a set of sufficient conditions that determine

the optimality of the traditional trend-following strategies when the trends are completely

observable. Again, a dynamic programming approach is used to verify the optimality under

these conditions. The value functions are shown to be either linear functions or infinity

depending on the parameter values. The results even reveal some counter-intuitive facts.

Index words: Optimal stopping, Stochastic control, Stochastic Approximation,
quasi-variational inequalities, trend following, regime-switching,
mean-reverting asset
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Chapter 1

Preliminaries

For the previous forty years, theory of finance has been emergencing to a new scientific

discipline. Since the Black-Scholes [2] model was published in 1973, mathematical finance

has become a branch of applied mathematics concerned with financial markets. The original

model that Black and Scholes used to discribe the behavior of asset price was called the

geometric Brownian motion (GBM) which can be represented by a stochastic differential

equation

dXt = µXtdt+ σXtdWt, (1.1)

where Xt is the price of an asset under consideration, µ is the expected return of the asset, σ

is the volatility of the asset price and Wt is a standard Brownian motion. In the terminology

of stochastic analysis, the term with dt is called the drift term and the term with dWt is

called the diffusion term.

Due to the complexity of the financial market, the GBM is not sufficient to capture the

market behaviors. As a result, various models have been developed for the past few decades.

This dissertation is concerned with optimal trading on two different models, namely mean

reversion model and regime-switch model. The goal is to find the best strategy that maximize

the overall profit. We begin by an introduction to those models.

1.1 Mean Reversion Model

A mean reversion model, also known as Ornstein−Uhlenbeck model, is often used in financial

and energy markets to capture price movements that have the tendency to move towards an

“equilibrium” level. It is one of the serval approaches used to model the stochastic behavior

1
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of interest rates, currency exchange rates, and commodity prices. The behavior of the model

can be described by a stochastic differential equation

dXt = a(L−Xt)dt+ σdWt (1.2)

where Xt is log of the price of an asset St; a is the reversion rate and L is the equilibrium

level, σ andWt are the volatility and standard Browian motion respectively as in GBM (1.1).

From (1.1), it is clear that the sign of the drift term is independent of the process. In

contrast to the GBM, the drift term of mean reversion model can have different signs depend

on the current value of the process. If the current value of the process Xt is less than the

equilibrium level L, the drift is positive; if the current value of Xt is greater than L, the drift

is negative. In other words, the value of the process Xt has a tendency to increase when it

is below L and decrease when it is above. Furthermore, the farther the value of XT from

the equilibrium level, the higher the tendency to move back to the equilibrium level. This is

one of the reason that mean reversion model is popular on modeling commodity prices and

interest rates. When the demand is high, the price is high, but the high price suppress the

demand and thus lower the price. As a reult, the price cannot be too far from the equilibrium

level.

Nonetheless, there is a deficiency on modeling prices or interest rates. From the stochastic

differential equation (1.2), it is not hard to see that the value of XT could be negative, which

is inappropriate in practice. Therefore, a modified version of mean reversion model is offen

used. In our model (1.2), we let XT = ln(ST ) on (1.2) to ensure that the price ST of an asset

at time T is non-negative. For interest rate models such as Cox-Ingersoll-Ross [9] model

(CIR model), they describe the instantaneous interest rate rt by the following stochastic

differential equation,

drt = a(L− rt)dt+ σ
√
rtdWt.

The diffusion term contains σ
√
rt that avoids the possibility of negative interest rates.
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The stochastic differential equation (1.2) of the mean reversion model is solved by

applying the following crucial theorem independently by Kiyoshi Ito [25] and Wolfgang

Doeblin.

Theorem 1.1.1 (Ito-Doeblin Formula)

Let Xt be an Ito process given by

dXt = u(t,Xt)dt+ v(t,Xt)dWt.

Let f(t, x) ∈ C2([0,∞)×R). Then

df(t,Xt) =
∂f

∂t
dt+

∂f

∂Xt

dXt +
1

2

∂2f

∂X2
t

(dXt)
2

where (dXt)
2 = (dXt) · (dXt) is computed according to the quadratic variations of t and Wt,

dt · dt = dt · dWt = dWt · dt = 0, dWt · dWt = dt.

We proceed to solve (1.2). Let f(x, t) = xeat. By Ito-Doeblin formula,

dXte
at = eatdXt + aXte

atdt

= eat(a(L−Xt)dt+ σdWt) + aXte
atdt

= eataLdt+ σeatdWt.

Integrate from t to T on both sides,

XT e
aT −Xte

at = L(eaT − eat) + σ

∫ T

t

easdWs

XT = Xte
a(t−T ) + L(1− ea(t−T )) + σ

∫ T

t

ea(s−T )dWs.

If t = 0, then

XT = X0e
−aT + L(1− e−aT ) + σ

∫ T

0

e−a(s−T )dWs. (1.3)

Thus, the expectation of XT is given by

E(XT ) = x0e
−aT + L(1− e−aT ),
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where X0 = x0 is a constant. Moreover, we can calculate the covariance of Xs and Xt by Ito

isometry,

Cov(Xs, Xt) = E[(Xs − E[Xs])(Xt − E[Xt])]

= E

[
(σ

∫ s

0

ea(u−s)dWu)(σ

∫ t

0

ea(v−t)dWv)

]

= σ2e−a(s+t)E

[∫ s

0

eaudWu

∫ t

0

eavdWv

]

= σ2e−a(s+t)
∫ min(s,t)

0

E[e2az]dz

=
σ2

2a
e−a(s+t)(e2amin(s,t) − 1).

It follows that

Var(Xt) =
σ2

2a
(1− e−2at).

By (1.3), it is clear that a mean reversion process XT is normally distributed. Therefore,

XT ∼ N

(
x0e

−aT + L(1− e−aT ),
σ2

2a
(1− e−2at)

)
. (1.4)

Since the mean reversion model (1.2) has a closed form solution, we can simulate the process

with arbitrary time steps. From (1.4), the process can be simulated by

Xt+∆t = Xte
−a∆t + L(1− e−a∆t) +

(
σ

√
1− e−2a∆t

2a

)
z,

where z ∼ N(0, 1) and ∆t is the step size.

Figure 1.1 shows the sample path of a mean-reverting process with a = 0.8, L = 2 and

σ = 0.5, where the number sample points is 10000 and step size is
1

252
= 0.003968. As stated

in (1.2), Xt = ln(St). The actual prices St can be calculated by St = eXt , as shown in figure

1.2. It simulates the prices of a mean-reveting asset for about 40 years with 252 trading days

per year.
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For calibration of the parameters of a mean reversion model, we implement the discretized

version of (1.3),

Xi+1 = Xie
−a∆t + L(1− e−a∆t) +

(
σ

√
1− e−2a∆t

2a

)
z, (1.5)

where {Xi} are the observation points such as the stock price on each trading day and ∆t

is a time step such as one trading day. It is clear that the relation between consecutive

observations Xi and Xi+1 is linear with IID normal random error z, which can be discribed

by a first order autoregression,

Xi+1 = β0 + β1Xi + ε, (1.6)

where β0 = L(1 − e−a∆t), β1 = e−a∆t and ε ∼ N

(
0, σ21− e−2a∆t

2a

)
. With a collection of

observations {Xi}, β0 and β1 can be estimated by linear regression and the model parameters

can be calculated by

a =
− ln β1
∆t

,

L =
β0

1− β1
,

σ = sd(ε)

√
−2 ln β1

∆t(1− β2
1)
,

(1.7)

where sd(ε) is the standard derivation of ε.

Although mean reversion model is mainly employed in commodity prices and interest

rates, it is not uncommon to find mean reversion in stock markets. Figure 1.3 shows the stock

prices of Advanced Micro Devices, Inc. Co (NYSE: AMD) in the period 1983 - May 2010

and figure 1.4 shows the corresponding prices in log scale. Both demonstrate resemblance of

mean reversion.
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Figure 1.3: AMD stock prices 1983 - May 2010 (Courtesy of Yahoo Finance)

Figure 1.4: AMD stock prices in log-scale 1983 - May 2010 (Courtesy of Yahoo Finance)
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1.2 Regime-Switching Model

Since the introduction of the celebrated Black-Scholes model, which assumes geometric Brow-

nian motion (1.1) on stock prices, there is an explosive growth in derivatives trading on

financial markets. Nevertheless, soon enough people realized that the geometrix Brownian

motion fail to capture the changes and complexities of the markets due to the assumption

of constant parameters. As a result, the Black-Scholes model has been extended in various

directions.

Regime-switching model (or Markov regime-switching model) is one of the common gen-

eralization of the geometric Brownian motion. The idea was first introduced by Hamilton

[23] in 1989. The model he was considering is a first order autoregression. He suggested

that the parameters of the model should vary according to market events such as financial

crisis or abrupt changes in government policies. To do this, the events and changes can be

represented by a finite state Markov chain which is independent from the stock prices, and

the parameters take values according to the Markov chain.

The idea of Markov regime-switching can be applied to different models. For an Ito

process,

dXt = u(t,Xt)dt+ v(t,Xt)dWt,

we can couple the process Xt with a finite state Markov chain so that u and v depend on the

Markov chain as well. Let α(t) be a finite states Markovian chain with states {α1, α2, ..., αn}

and the generator Q = {qij}n×n is given by

P(α(t+ δ) = j | α(t) = i) =

 qijδ +O(δ),

1 + qiiδ +O(δ),

where δ > 0. Here qij is the transition rate from i to j if i 6= j while

qii = −
∑
j 6=i

qij.

The Ito process with Markov chain α(t) is given by

dXt = u(t,Xt, α(t))dt+ v(t,Xt, α(t))dWt.
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The Ito-Doeblin formula for an Ito process Xt shows that for a function f ∈ C2([0,∞)×R),

f(t,Xt) is also an Ito process. Likewise, for an Ito process Xt with Markov chain α(t),

f(t,Xt, α(t)) is an Ito process. The corresponding Ito-Doeblin formula with Markovian

switching is the following.

Theorem 1.2.1 (Generalized Ito-Doeblin Formula)

Let α(t) be a Markov chain with states {α1, α2, ..., αn} and generator Q = {qij}n×n. Let Xt

be an Ito process with Markov chain α(t) given by

dXt = u(t,Xt, α(t))dt+ v(t,Xt, α(t))dWt.

Let f(t, x, ·) ∈ C2([0,∞)×R). Then

df(t,Xt) =
∂f

∂t
dt+

∂f

∂Xt

dXt +
1

2

∂2f

∂X2
t

(dXt)
2 +Qf(t,Xt, ·)(α(t)) (1.8)

where

Qf(t,Xt, ·)(αi) =
∑
j 6=i

qii(f(t,Xt, αj)− f(t,Xt, αi)),

and (dXt)
2 = (dXt) · (dXt) is computed according to the quadratic variations of t and Wt,

dt · dt = dt · dWt = dWt · dt = 0, dWt · dWt = dt.

In this dissertation, we focus on a geometric Brownian motion with Markovian switching.

The parameters in (1.1) are no longer assumed to be constant. Instead, their values rely on

a two-states continuous time Markov chain.

Let Xt be a regime-switching geometric Brownian motion governed by

dXt = Xt(µ(αt)dt+ σ(αt)dWt), (1.9)

where αt ∈ {1, 2} is a two-state Markov chain with generator given by

Q =

 −λ1 λ1

λ2 −λ2

 ,
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µ(1) = µ1, µ(2) = µ2 are the expected return rates, σ(1) = σ1 and σ(2) = σ2 are the

volatilities, and Wt is a standard Brownian motion. We can solve (1.9) by the generalized

Ito-Doeblin formula (1.2.1).

Let f(t, x, ·) = ln(x). By the generalized Ito-Doeblin formula,

d ln(Xt) =
1

Xt

dXt +
1

2

(
−1

X2
t

)
σ2(αt)X

2
t dt+Q ln(Xt)

=
1

Xt

(Xt(µ(αt)dt+ σ(αt)dWt))−
1

2
σ2(αt)dt+Q ln(Xt)

= µ(αt)dt+ σ(αt)dWt −
1

2
σ2(αt)dt+Q ln(Xt)

=

(
µ(αt)−

1

2
σ2(αt)

)
dt+ σ(αt)dWt,

as Q ln(Xt) = 0. Integrate from t to T on both sides,

ln(XT )− ln(Xt) = (µ(αs)−
1

2
σ2(αs))(T − t) + σ(αs)(WT −Wt)

ln(XT ) = ln(Xt) + (µ(αs)−
1

2
σ2(αs))(T − t) + σ(αs)(WT −Wt)

XT = Xte

(
µ(αs)−

1

2
σ2(αs)

)
(T − t) + σ(αs)(WT −Wt)

.

(1.10)

If t = 0, then

XT = X0e

(
µ(αs)−

1

2
σ2(αs)

)
T + σ(αs)WT

, (1.11)

i.e.

XT =


X0e

(
µ1 −

1

2
σ2
1

)
T + σ1WT

if αs = 1,

X0e

(
µ2 −

1

2
σ2
2

)
T + σ2WT

if αs = 2.
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From (1.10), we can see that ln(Xt) is normally distributed,

ln(Xt) ∼ N

(
ln(X0) + µ(αs)−

1

2
σ2(αs)t, σ

2(αs)t

)
.

Hence Xt is log-normally distributed. For a log-normally distributed random variable Y = eZ

with Z ∼ N(µ, σ2), the mean E(Y ) = e
µ+

1

2
σ2

and the variance Var(Y ) = (eσ
2 − 1)e2µ+σ

2
.

Therefore, the mean and variance of a geometric Brownian motion Xt with Markov chain αt

are

E(Xt) = X0e
µ(αt),

Var(Xt) = X2
0e

2µ(αt)t(eσ
2(αt)t−1).

By the closed form solution in (1.11), we can simulate the process by

Xt+∆t = Xte

(
µ(αs)−

1

2
σ2(αs)

)
∆t+ σ(αs)z∆t

where z ∼ N(0, 1) and ∆t is the time step.

Figure 1.5 shows the sample path of a regime-switching geometric Brownion motion

with µ1 = 0.7, µ2 = −0.4, σ1 = 0.2, σ2 = 0.6, λ1 = 2, λ2 = 3, where the time step is

1

252
= 0.003968. It simulates the prices of a regime-switching asset for over 30 years with

252 trading days per year. Clearly, model in (1.9) and mean reversion model are different.

However, if we consider a case of regime-switching geometric Brownian motion with the same

volatilities σ’s and transition rate λ’s (hence same duration of regimes), and same magnitude

of µ’s but opposite signs on both regimes, it represents an asset price that goes up and

down alternatively which is also the behavior of mean-reversion. Figure 1.6 demonstrates

the sample path of such a case and reveals significant difference from mean reversion. The

reason is that a regime-switching asset has no tendency to the equilibrium level, so the prices

can flustrate dramatically.

Assets with regime-switching geometric Brownian motion are ubiquitous in financial mar-

kets. Figure 1.7 shows an example, Golden Sachs in the period 1999 - May 2010.
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Figure 1.5: Sample path of a regime-switching process Xt with µ1 = 0.7, µ2 = −0.4, σ1 =
0.2, σ2 = 0.6, λ1 = 2, λ2 = 3
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Figure 1.7: Goldman Sachs 1999 - May 2010 (Courtesy of Yahoo Finance)
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1.3 Outline

We present the dissertation in the following order.

In chapter 2, we reveal an optimal trading rule that allows buying, selling and short selling

of an asset when its price is governed by mean-reverting model. The goal is to find the buy

and sell prices such that the overall return (with slippage cost imposed) is maximized. This

chapter shows that the solution of the original optimal stopping problem can be achieved by

solving four algebraic equations. Numerical examples are given for demonstration.

In chapter 3, we investigate a trading strategy under regime-switching model, namely

trend following strategy. This chapter provides a set of sufficient conditions that determine

the optimality of the traditional trend following strategies when the trends are completely

observable. The value functions are shown to be either linear functions or infinity depending

on the parameter values. The results reveal two counter intutive facts: (a) trend following

may not lead to optimal reward in some cases even the investor knows exactly when a

trend change occurs; (b) stock volatility is not relevant in trend following when trends are

observable.

In chapter 4, a stochastic approximation algorithm is developed to estimate the buy and

sell prices. The model under consideration and the objective are the same as those in chapter

2. However, instead of the theoretical approach, a recursive approach is presented. Numerical

examples in chapter 2 are re-calculated in this chapter by the stochastic approximation

algorithm for comparison. Moreover, real market data are experimented for demonstration.

The algorithm indicates a weaker model requirement and faster computation compare to the

method in chapter 2.



Chapter 2

An Optimal Trading Rule of a Mean-Reverting Asset

2.1 Introduction

In this chapter we study the optimal trading rule of an asset with random fluctuation in its

price. In particular, we consider the trading rule which involves three aspects: buying, selling

and shorting. Shorting or short selling is the practice of selling financial securities the seller

does not then own, in the hope of repurchasing them later at a lower price. A typical trading

strategy in financial markets is to buy low then sell high, or sell high then buy low if one

is selling short. However, identifying these buy and sell prices poses a great challenge. Our

objective is to determine those threshold price levels when the behavior of the asset price

follows a mean-reversion model.

Mean-reversion model is frequently employed in financial and commodity markets to

characterize price movements that have inclination to move towards a median line. A decent

amount of studies has been done in this model (e.g. Fama and French [18], Gallagher and

Taylor [20]). It is also used to model interest rate and energy price (see Blanco and Soronow

[3] and Jong and Huisman [16]). Apart from that, there are some results in option pricing

for mean-reverting asset (see Bos, Ware and Pavlov [5]).

A significant volume of literature was concerned with trading rules in financial markets;

see for instance, Zhang [41] and Guo and Zhang [22]. Treating a mean-reverting asset, Zhang

and Zhang [43] was devoted to optimum trading strategy. It established two threshold prices

(buy and sell) that maximize overall discounted return if one trades at those prices. Nonethe-

less, the net positions of its formulation are limited to either flat or long. In other words,

short selling, a common operation in stock market, was not included in their studies. In

16
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addition to the results obtained in [43] along this line of research, an investment capacity

expansion/reduction problem is considered in Merhi and Zervos [33]. Under a geometric

Brownian motion market model, the authors used the dynamic programming approach and

obtained an explicit solution to the singular control problem. A more general diffusion market

model is treated by Løkka and Zervos [31] in connection with an optimal investment capacity

adjustment problem. More recently, Johnson and Zervos [26] studied an optimal timing of

investment problem under a general diffusion market model. The objective is to maximize the

expected cash flow by choosing when to enter an investment and when to exit the investment.

An explicit analytic solution is obtained in [26]. Other related literature in connection with

taxes of capital gains can be found, for example, in Cadenillas and Pliska [7], Constantinides

[10], Dammon and Spatt [15], and references therein.

In order to obtain a more realistic trading rule, short selling is taken into account in our

formulation. In addition, we allow either one share long, or flat, or one share short at any

given time. One is allowed to choose between shorting and buying when one has no share

in holding. In this chapter, we also consider slippage costs associated with each transaction

because it becomes noteworthy in frequent transactions. In our formulation, a fixed rate of

slippage cost is incurred in each transaction. The objective is to buy, sell or short so as to

maximizing a discounted reward function. We follow a dynamic programming approach to

resolve the problem. We obtain the corresponding Hamilton-Jacobi-Bellman (HJB) equation

for the value functions. Using these HJB equations, we solve the optimal stopping problem

by determining four threshold levels corresponding to buying and selling points. These levels

are then used to convert the HJB equations into quasi-algebraic equations via a smooth-fit

technique. We also provide a verification theorem to assure the optimality of our trading rule.

The behavior of these buy and sell prices is investigated by varying different parameters in

numerical examples.

We present the results in the following order. In §2.2, problem setup is constructed. In

§2.3, the associated HJB equations and their solutions are studied. In §2.4, a verification
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theorem withAn Optimal Trading Rule of a Mean- sufficient conditions is proved. Finally,

numerical examples are given in §2.5.

2.2 Problem Setup

Let St denote the price of the asset under consideration at time t and let Xt = log(St) be

the mean-reverting process governed by

dXt = a(L−Xt)dt+ σdWt, X0 = x, (2.1)

where a > 0 is the rate of reversion, L is the equilibrium level, σ > 0 is the volatility, and

Wt is a standard Brownian motion.

Remark 2.2.1 Traditionally, a geometric Brownian motion is used to capture equity price

movements in finance literature. This hypothesis is validated by the long bull market from

the early 80’s to the 00’s. However, if one examines the Dow Jones Industry Average from

the 60’s to 80’s instead, it is easy to notice that the index is trapped in a so-called trading

range and the market follows a mean reverting model.

In this chapter, we allow to buy or sell at most one share at a time. Three net positions

are allowed in this setup. It can be either short (with one share of stock on loan), flat (no

stock holding) or long (with one share of stock holding).

Let

0 ≤ ψ1 ≤ τ1 ≤ ψ2 ≤ τ2 ≤ . . .

denote a sequence of stopping times. Selection from either buying or selling a share is allowed

at ψi. If one chooses to buy at ψi, then only selling is allowed at a later time τi. Alternatively,

if selling is chosen at ψi, then one can only buy at τi. Either buying or selling at τi sets the

net position back to flat.
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Let kt denote the net position with

kt =


−1, short one share,

0, flat,

1, long one share.

We define the sequence of stopping times for each initial net position k0 as follows:

Λ0
−1 = (τ0, ψ1, τ1, ψ2, τ2, . . .)

Λ0
0 = (ψ1, τ1, ψ2, τ2, . . .)

Λ0
1 = (τ0, ψ1, τ1, ψ2, τ2, . . .)

If initially the net position is flat (k0 = 0), then one can either buy or sell a share. Recall

that one is limited to no more than one share either long or short. Therefore, if the initial

net position is short (k0 = −1), then one can only buy a share at τ0. Likewise, one can only

sell a share at τ0 if the initial net position is long (k0 = 1). Note that Λ0
−1 can be regarded

as a buy at τ0 followed by Λ0
0, and Λ0

1 can be regarded as a sell at τ0 followed by Λ0
0. At time

ψi, for i ≥ 1, we have a choice of either going long or short. At time τi, we have to go long

if shorted at ψi or go short if bought at ψi.

In this chapter, we focus on a threshold type problem. Intuitively, under the mean-

reversion model, one should buy if the price is low and sell if it is high. In terminology of

stochastic control theory, we look for a control function u(x, k) of the following form:

u(x, k) =



1, if k = −1 and x ≤ b1,

1, if k = 0 and x ≤ b0,

−1, if k = 0 and x ≥ s0,

−1, if k = 1 and x ≥ s1,

(2.2)

where b1 is the buy price when the net position is short one share, b0 and s0 are the respec-

tively buy and sell prices when the net position is flat and s1 is the sell price when the

net position is long one share. u(x, k) = 1 represents buying one share and u(x, k) = −1

represents selling or short selling one share.
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Let ρ be the discount rate and K be the percentage slippage rate. (Here K can also be

used to account for transaction commission in percentage.) Recall that one only has choice

of buying or selling at time ψi. Let ui = u(Xψi
, kψi

). If ui = 1, buy one share and subtract

e−ρψiSψi
(1 +K) from payoff. If ui = −1, sell one share and add e−ρψiSψi

(1−K) to payoff.

Given the initial state X0 = x and initial net position k0 = −1, 0, 1, and

Λ−1 = (τ0, (ψ1, u1), τ1, (ψ2, u2), τ2, . . .)

Λ0 = ((ψ1, u1), τ1, (ψ2, u2), τ2, . . .)

Λ1 = (τ0, (ψ1, u1), τ1, (ψ2, u2), τ2, . . .),

the reward functions of decision sequences, Λk0 , are given as follows:

Jk0(x,Λk0) =



E{−e−ρτ0Sτ0(1 +K) +
∞∑
i=1

{[e−ρτiSτi(1−K)− e−ρψiSψi
(1 +K)]11{ui=1}

+[e−ρψiSψi
(1−K)− e−ρτiSτi(1 +K)]11{ui=−1}}}, if k0 = −1,

E
∞∑
i=1

{[e−ρτiSτi(1−K)− e−ρψiSψi
(1 +K)]11{ui=1}

+[e−ρψiSψi
(1−K)− e−ρτiSτi(1 +K)]11{ui=−1}}, if k0 = 0,

E{e−ρτ0Sτ0(1−K) +
∞∑
i=1

{[e−ρτiSτi(1−K)− e−ρψiSψi
(1 +K)]11{ui=1}

+[e−ρψiSψi
(1−K)− e−ρτiSτi(1 +K)]11{ui=−1}}}, if k0 = 1.

The term E
∑∞

n=1 ξn for random variables ξn is interpreted as

lim sup
N→∞

E
N∑
n=1

ξn.

For k0 = −1, 0, 1, let Vk0(x) denote the value functions with the initial state X0 = x and

initial net positions k0 = −1, 0, 1. That is,

Vk0(x) = sup
{Λk0

}
Jk0(x,Λk0). (2.3)

Remark 2.2.2 In this chapter, the optimal trading rule is formulated as an impulse control

problem. Such approach is also used often in studying portfolio selection problems with
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transaction costs. In these studies, a typical model consists of geometric Brownian motion

price and investment/consumption utility function. We refer the reader to Fleming and Soner

[19] and references therein for related results.

2.3 HJB Equations

In this section, the corresponding HJB equation will be presented and the smooth-fit method

will be used to solve the optimal stopping problem.

Let A denote the generator of Xt, i.e.,

A = a(L− x)
∂

∂x
+
σ2

2

∂2

∂x2
.

Formally, the associated HJB equations should have the form:
min{ρv−1 − Av−1, v−1 − v0 + ex(1 +K)} = 0,

min{ρv0 − Av0, v0 − v1 + ex(1 +K), v0 − v−1 − ex(1−K)} = 0,

min{ρv1 − Av1, v1 − v0 − ex(1−K)} = 0.

(2.4)

Naturally, a buy decision should be made when the price is low (b0, b1 in (2.2)) and a

sell decision is made when the price is high (s0, s1 in (2.2)). Moreover, one would be more

willing to buy when the net position is short than it is flat, because one has to bear risk in

loaning a share. Similarly, one would be more willing to sell when the net position is long

than it is flat, as one has to bear risk in holding a share. As a result, the b0, b1, s0, s1 in

(2.2) should satisfy the following inequalities,

b0 ≤ b1 ≤ s1 ≤ s0.

Moreover, in view of the bounds obtained in [43] for value functions, we solve (2.4) for

functions v−1, v0, and v1 that satisfying the following conditions:

−ex(1 +K) ≤ v−1(x) < K0 and

0 ≤ v1(x) ≤ K1e
x +K2

(2.5)

for some constants K0, K1, and K2.
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-
b1

v−1(x)=v0(x)−ex(1+K) ρv−1(x)−Av−1(x) = 0

-
b0 s0

v0(x) = v1(x)−ex(1+K) ρv0(x)−Av0(x) = 0 v0(x) = v−1(x)+ex(1−K)

-
s1

ρv1(x)−Av1(x) = 0 v1(x)=v0(x)+ex(1−K)

Figure 2.1: Continuation Regions (darkened intervals)

Then the continuation region when k = −1 should be (b1,∞) on which ρv−1(x) −

Av−1(x) = 0. For x < b1, one should have v−1(x) = v0(x) − ex(1 + K). Similarly, the

continuation region when k = 1 should be (−∞, s1) on which ρv1(x) − Av1(x) = 0, and

for x > s1, v1(x) = v0(x) + ex(1 − K). When k = 0, the continuation region is (b0, s0)

on which ρv0(x) − Av0(x) = 0. For x < b0, v0(x) = v−1(x) − ex(1 + K) and for x > s0,

v0(x) = v−1(x) + ex(1 − K). These continuation regions are marked by darkened lines in

Figure 1.An Optimal Trading Rule of a Mean-

Next we solve the equations ρvk(x) − Avk(x) = 0 with k = −1, 0, 1. Let κ =
√
2a/σ,

λ = ρ/a, and η(t) = tλ−1 exp (−t2/2). Then the general solution of ρvi(x) − Avi(x) = 0 is

given by (details can be found in Eloe et al. [17])

F1

∫ ∞

0

η(t)eκ(L−x)tdt+ F2

∫ ∞

0

η(t)e−κ(L−x)tdt,

for some constants F1 and F2.

By the condition (2.5), v−1(∞) should be bounded which implies F2 = 0. Thus,

v−1(x) = F1

∫ ∞

0

η(t)eκ(L−x)tdt.

Similarly, the condition on boundedness of v1(−∞) implies F1 = 0. Therefore,

v1(x) = F2

∫ ∞

0

η(t)e−κ(L−x)tdt.

It is clear that both v−1 and v1 are C2 functions on (b1,∞) and (−∞, s1), respectively.
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The smooth-fit conditions (continuous differentiability) at b1, b0, s0 and s1 require

v−1(b1) = v0(b1)− eb1(1 +K),

dv−1(b1)

dx
=
dv0(b1)

dx
− eb1(1 +K),

v0(b0) = v1(b0)− eb0(1 +K),

dv0(b0)

dx
=
dv1(b0)

dx
− eb0(1 +K),

v0(s0) = v−1(s0) + es0(1−K),

dv0(s0)

dx
=
dv−1(s0)

dx
+ es0(1 +K),

v1(s1) = v0(s1) + es1(1−K),

dv1(s1)

dx
=
dv0(s1)

dx
+ es1(1−K).

For simplicity in notation, define

y1(x) =

∫ ∞

0

η(t)eκ(L−x)tdt,

y2(x) =

∫ ∞

0

η(t)e−κ(L−x)tdt.

Write v−1, v0, and v1 in terms of these two functions

v−1(x) = C1y1(x),

v0(x) = C2y2(x) + C3y1(x),

v1(x) = C4y2(x),
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for constants Ci, i = 1, 2, 3, 4. The smooth-fit conditions have the following form: −C1y1(b1) + C2y2(b1) + C3y1(b1)

−C1y
′
1(b1) + C2y

′
2(b1) + C3y

′
1(b1)

 =

 eb1(1 +K)

eb1(1 +K)

 ,

 −C2y2(b0)− C3y1(b0) + C4y2(b0)

−C2y
′
2(b0)− C3y

′
1(b0) + C4y

′
2(b0)

 =

 eb0(1 +K)

eb0(1 +K)

 ,

 −C1y1(s0) + C2y2(s0) + C3y1(s0)

−C1y
′
1(s0) + C2y

′
2(s0) + C3y

′
1(s0)

 =

 es0(1−K)

es0(1−K)

 ,

 −C2y2(s1)− C3y1(s1) + C4y2(s1)

−C2y
′
2(s1)− C3y

′
1(s1) + C4y

′
2(s1)

 =

 es1(1−K)

es1(1−K)

 .

(2.6)

Combine the first four equations of (2.6) in matrix form to obtain

−y1(b1) y2(b1) y1(b1) 0

−y′1(b1) y′2(b1) y′1(b1) 0

0 −y2(b0) −y1(b0) y2(b0)

0 −y′2(b0) −y′1(b0) y′2(b0)





C1

C2

C3

C4


=



eb1(1 +K)

eb1(1 +K)

eb0(1 +K)

eb0(1 +K)


. (2.7)

Similarly, combining the last four equations of (2.6) in matrix form, we have

−y1(s0) y2(s0) y1(s0) 0

−y′1(s0) y′2(s0) y′1(s0) 0

0 −y2(s1) −y1(s1) y2(s1)

0 −y′2(s1) −y′1(s1) y′2(s1)





C1

C2

C3

C4


=



es0(1−K)

es0(1−K)

es1(1−K)

es1(1−K)


. (2.8)
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Eliminating (C1, C2, C3, C4) by (2.7) and (2.8), we have

−y1(b1) y2(b1) y1(b1) 0

−y′1(b1) y′2(b1) y′1(b1) 0

0 −y2(b0) −y1(b0) y2(b0)

0 −y′2(b0) −y′1(b0) y′2(b0)



−1

eb1(1 +K)

eb1(1 +K)

eb0(1 +K)

eb0(1 +K)



=



−y1(s0) y2(s0) y1(s0) 0

−y′1(s0) y′2(s0) y′1(s0) 0

0 −y2(s1) −y1(s1) y2(s1)

0 −y′2(s1) −y′1(s1) y′2(s1)



−1

es0(1−K)

es0(1−K)

es1(1−K)

es1(1−K)


.

(2.9)

Note that this is a set of four quasi-algebraic equations for (b1, b0, s0, s1).

An additional requirement for b0, b1, s1 and s0 is that the difference between buy and sell

prices should offset the slippage rates K in order to make profit. Since b0 ≤ b1 ≤ s1 ≤ s0,

only b1 and s1 need to be considered. The following inequality would be expected

es1(1−K) > eb1(1 +K)

which is equivalent to

s1 − b1 > log

(
1 +K

1−K

)
. (2.10)
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Furthermore, vk(x) has to satisfy the following conditions to qualify for being solutions

to the HJB equations (2.4):

v−1(x) ≥ v0(x)− ex(1 +K) on (b1,∞),

v0(x) ≥ v1(x)− ex(1 +K) on (b0,∞),

v0(x) ≥ v−1(x) + ex(1−K) on (−∞, s0),

v1(x) ≥ v0(x) + ex(1−K) on (−∞, s1),

(ρ−A)(v0(x)− ex(1 +K)) ≥ 0 on (−∞, b1),

(ρ−A)(v1(x)− ex(1 +K)) ≥ 0 on (−∞, b0).

(ρ−A)(v−1(x) + ex(1−K)) ≥ 0 on (s0,∞).

(ρ−A)(v0(x) + ex(1−K)) ≥ 0 on (s1,∞).

(2.11)

Note that on (s0,∞), the inequality v−1(x) ≥ v0(x)− ex(1+K) is automatically satisfied

because v0(x) = v−1(x) + ex(1 −K). Therefore, the first inequality in (2.11) only needs to

hold on (b1, s0). Similarly, the forth inequality in (2.11) only needs to hold on (b0, s1).

Note also that on (s1,∞), the inequality v0(x) ≥ v1(x) − ex(1 + K) is automatically

satisfied because v1(x) = v0(x) + ex(1−K). Therefore, the second inequality in (2.11) only

needs to hold on (b0, s1). For similar reason, the third inequality in (2.11) only needs to hold

on (b1, s0).

Moreover, from (2.11) we require (ρ−A)(v0(x)− ex(1 +K)) ≥ 0 on (−∞, b1). We next

show that this inequality is equivalent to

(ρ−A)ex ≤ 0 on (−∞, b1). (2.12)

Write (−∞, b1) = (−∞, b0]
⋃
[b0, b1). Note that

(ρ−A)v0(x) = 0 on [b0, b1). (2.13)

Thus (ρ−A)(v0(x)− ex(1 +K)) ≥ 0 on [b0, b1) implies

(ρ−A)ex ≤ 0 on [b0, b1). (2.14)
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Note also that (see Figure 2.1)), on the interval (−∞, b0],

(ρ−A)v1(x) = 0 on (−∞, b0] and v0(x) = v1(x)− ex(1 +K).

It follows that

(ρ−A)(v0(x)− ex(1 +K)) = (ρ−A)(v1(x)− 2ex(1 +K))

= −2(ρ−A)ex(1 +K).

Therefore, (ρ−A)(v0(x)− ex(1 +K)) ≥ 0 on [−∞, b0) leads to

(ρ−A)ex ≤ 0 on (−∞, b0].

Together with (2.14), we obtain (2.12).

Similarly, for (ρ−A)(v0(x)+ e
x(1−K)) ≥ 0 on (s1,∞), write (s1,∞) = (s1, s0]

⋃
[s0,∞)

and note that

(ρ−A)v0(x) = 0 on (s1, s0] and (ρ−A)v−1(x) = 0 on [s0,∞).

Consequently,

(ρ−A)ex ≥ 0 on (s1, s0]

and

(ρ−A)(v0(x)+e
x(1+K)) = (ρ−A)(v−1(x)+2ex(1−K)) = (ρ−A)2ex(1−K) ≥ 0 on [s0,∞),

which implies that

(ρ−A)ex ≥ 0 on [s0,∞).

As a result, we have

(ρ−A)ex ≥ 0 on (s1,∞).

These imply that

b0 ≤ b1 ≤
1

a

[
σ2

2
+ aL− ρ

]
and s0 ≥ s1 ≥

1

a

[
σ2

2
+ aL− ρ

]
.

Indeed, these two inequalities are equivalent to the last four inequalities on (2.11). In the

next section, we show that the quadruple (b0, b1, s1, s0) satisfying these conditions leads to

the optimal stopping times.
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2.4 A Verification Theorem

We give a verification theorem to show that the solution vk0(x), k0 = −1, 0, 1, of equation

(2.4) are equal to the value functions Vk0(x), k0 = −1, 0, 1, respectively, and sequences of

optimal stopping times can be constructed by using (b0, b1, s1, s0).

Theorem 2.4.1. Let (b0, b1, s1, s0) be a solution to (2.9) satisfying

b0 ≤ b1 ≤
1

a

(
σ2

2
+ aL− ρ

)
≤ s1 ≤ s0

and

s1 − b1 > log

(
1 +K

1−K

)
.

Let

v−1(x) =


C1y1(x), if x ≥ b1,

C2y2(x) + C3y1(x)− ex(1 +K), if b0 ≤ x ≤ b1,

C4y2(x)− 2ex(1 +K), if x ≤ b0,

v0(x) =


C4y2(x)− ex(1 +K), if x ≤ b0,

C2y2(x) + C3y1(x), if b0 ≤ x ≤ b1,

C1y1(x) + ex(1−K), if x ≥ s0,

v1(x) =


C4y2(x), if x ≤ s1,

C2y2(x) + C3y1(x) + ex(1−K), if s1 ≤ x ≤ s0,

C1y1(x) + 2ex(1−K), if x ≥ s1,

with 

C1

C2

C3

C4


=



−y1(b1) y2(b1) y1(b1) 0

−y′1(b1) y′2(b1) y′1(b1) 0

0 −y2(b0) −y1(b0) y2(b0)

0 −y′2(b0) −y′1(b0) y′2(b0)



−1

eb1(1 +K)

eb1(1 +K)

eb0(1 +K)

eb0(1 +K)


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and

y1(x) =

∫ ∞

0

η(t)eκ(L−x)tdt,

y2(x) =

∫ ∞

0

η(t)e−κ(L−x)tdt.

If on the interval (b1, s0) the following inequalities hold v−1(x) ≥ v0(x)− ex(1 +K),

v0(x) ≥ v−1(x) + ex(1−K),

and on the interval (b0, s1) the following inequalities hold v0(x) ≥ v1(x)− ex(1 +K),

v1(x) ≥ v0(x) + ex(1−K),

then,

vk0(x) = Vk0(x), k0 = −1, 0, 1.

In addition, when k0 = 0, let τ ∗0 = 0 and

Λ∗
0 = ((ψ∗

1, u
∗
1), τ

∗
1 , (ψ

∗
2, u

∗
2), τ

∗
2 , . . .)

where, for i = 1, 2, . . ., ψ∗
i = inf{t ≥ τ ∗i−1 : Xt /∈ (b0, s0)}; if Xψ∗

i
≤ b0, u

∗
i = 1, then

τ ∗i = inf{t ≥ ψ∗
i : Xt ≥ s1}; if Xψ∗

i
≥ s0, u

∗
i = −1, then τ ∗i = inf{t ≥ ψ∗

i : Xt ≤ b1}.

When k0 = −1, let τ ∗0 = inf{t ≥ 0 : Xt ≤ b1} and Λ∗
−1 = (τ ∗0 ,Λ

∗
0). When k0 = 1, let

τ ∗0 = inf{t ≥ 0 : Xt ≥ s1} and Λ∗
1 = (τ ∗0 ,Λ

∗
0).

Then Λ∗
−1, Λ

∗
0 and Λ∗

1 are optimal.

To prove the theorem, we need the following lemma which was proved in Zhang and

Zhang [43]

Lemma 2.4.1. Given z1 and z2, let θ1 = inf{t : Xt ≥ z1} and θ2 = inf{t : Xt ≤ z2}. Then

P (θ1 <∞) = P (θ2 <∞) = 1.
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Proof of Theorem 2.4.1. The proof is divided into two steps. In the first step, we show that

vk0(x) ≥ Jk0(x,Λk0) for all Λk0 . Then in the second step, we show that vk0(x) = Jk0(x,Λ
∗
k0
).

Therefore, vk0(x) = Vk0(x) and Λ∗
k0

is optimal.

Using ρvk0(x) − Avk0(x) ≥ 0, Dynkin’s formula and Fatou’s lemma as in Øksendal [35,

p.226], and the choice of ui, we have, for any stopping times 0 ≤ θ1 ≤ θ2, a.s.,

Ee−ρθ1vk0(Xθ1) ≥ Ee−ρθ2vk0(Xθ2).

and

Ee−ρψivk0(Xψi
)11{ui=±1} ≥ Ee−ρτivk0(Xτi)11{ui=±1},

for k0 = −1, 0, 1. We have

v0(x) ≥ Ee−ρψ1v0(Xψ1)

≥ Ee−ρψ1 [11{u1=1}(v1(Xψ1)− Sψ1(1 +K)) + 11{u1=−1}(v−1(Xψ1) + Sψ1(1−K))]

= Ee−ρψ1v1(Xψ1)11{u1=1} + Ee−ρψ1v−1(Xψ1)11{u1=−1}

+Ee−ρψ1Sψ1(1−K)11{u1=−1} − Ee−ρψ1Sψ1(1 +K)11{u1=1}

≥ Ee−ρτ1v1(Xτ1)11{u1=1} + Ee−ρτ1v−1(Xτ1)11{u1=−1}

+E[e−ρψ1Sψ1(1−K)11{u1=−1} − e−ρψ1Sψ1(1 +K)11{u1=1}]

≥ Ee−ρτ1 [v0(Xτ1) + Sτ1(1−K)]11{u1=1} + Ee−ρτ1 [v0(Xτ1)− Sτ1(1 +K)]11{u1=−1}

+E[e−ρψ1Sψ1(1−K)11{u1=−1} − e−ρψ1Sψ1(1 +K)11{u1=1}]

= Ee−ρτ1v0(Xτ1) + E{[e−ρτ1Sτ1(1−K)− e−ρψ1Sψ1(1 +K)]11{u1=1}

+[e−ρψ1Sψ1(1−K)− e−ρτ1Sτ1(1 +K)]11{u1=−1}}

≥ Ee−ρψ2v0(Xψ2) + E{[e−ρτ1Sτ1(1−K)− e−ρψ1Sψ1(1 +K)]11{u1=1}

+[e−ρψ1Sψ1(1−K)− e−ρτ1Sτ1(1 +K)]11{u1=−1}}
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Continuing this way, we get

v0(x) ≥ E
∑N

i=1{[e−ρτiSτi(1−K)− e−ρψiSψi
(1 +K)]11{ui=1}

+[e−ρψiSψi
(1−K)− e−ρτiSτi(1 +K)]11{ui=−1}}.

Sending N → ∞, we have v0(x) ≥ J0(x,Λ0) for all Λ0. This implies that v0(x) ≥ V0(x).

Similarly, we can show that v−1(x) ≥ V1(x) and v1(x) ≥ V1(x).

Now we establish the equalities. In view of Lemma 2.4.1, τ ∗i < ∞ and ψ∗
i < ∞, a.s.

Therefore, we have

v0(x) = Ee−ρψ
∗
1v0(Xψ∗

1
)

= Ee−ρψ
∗
1 [11{u∗1=1}(v1(Xψ∗

1
)− Sψ∗

1
(1 +K)) + 11{u∗1=−1}(v−1(Xψ∗

1
) + Sψ∗

1
(1−K))]

= Ee−ρτ
∗
1 v1(Xτ∗1

)11{u∗1=1} + Ee−ρτ
∗
1 v−1(Xτ∗1

)I{u∗1=−1}

+E[e−ρψ
∗
1Sψ∗

1
(1−K)11{u∗1=−1} − e−ρψ

∗
1Sψ∗

1
(1 +K)11{u∗1=1}]

= Ee−ρτ
∗
1 [v0(Xτ∗1

) + Sτ∗1 (1−K)]11{u∗1=1} + Ee−ρτ
∗
1 [v0(Xτ∗1

)− Sτ∗1 (1 +K)]11{u∗1=−1}

+E[e−ρψ
∗
1Sψ∗

1
(1−K)11{u∗1=−1} − e−ρψ

∗
1Sψ∗

1
(1 +K)I{u∗1=1}]

= Ee−ρτ
∗
1 v0(Xτ∗1

) + E{[e−ρτ∗1Sτ∗1 (1−K)− e−ρψ
∗
1Sψ∗

1
(1 +K)]11{u∗1=1}

+[e−ρψ
∗
1Sψ∗

1
(1−K)− e−ρτ

∗
1Sτ∗1 (1 +K)]11{u∗1=−1}}.

Continuing this way, we obtain

v0(x) = Ee−ρτ
∗
Nv0(Xτ∗N

) + E
N∑
i=1

{[e−ρτ∗i Sτ∗i (1−K)− e−ρψ
∗
i Sψ∗

i
(1 +K)]11{u∗i=1}

+[e−ρψ
∗
i Sψ∗

i
(1−K)− e−ρτ

∗
i Sτ∗i (1 +K)]11{u∗i=−1}}.

(2.15)

Similarly, we have

v−1(x) = Ee−ρτ
∗
Nv0(Xτ∗N

) + E[−e−ρτ0Sτ0(1 +K)]

+E
N∑
i=1

{[e−ρτ∗i Sτ∗i (1−K)− e−ρψ
∗
i Sψ∗

i
(1 +K)]11{u∗i=1}

+[e−ρψ
∗
i Sψ∗

i
(1−K)− e−ρτ

∗
i Sτ∗i (1 +K)]11{u∗i=−1}},
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and

v1(x) = Ee−ρτ
∗
Nv0(Xτ∗N

) + E[e−ρτ0Sτ0(1−K)]

+E
N∑
i=1

{[e−ρτ∗i Sτ∗i (1−K)− e−ρψ
∗
i Sψ∗

i
(1 +K)]11{u∗i=1}

+[e−ρψ
∗
i Sψ∗

i
(1−K)− e−ρτ

∗
i Sτ∗i (1 +K)]11{u∗i=−1}}.

Finally, it remains to show that Ee−ρτ
∗
Nv0(Xτ∗N

) → 0 as N → ∞. Note that Xτ∗N
is either

b1 or s1, so v0(Xτ∗N
) is either v0(b1) or v0(s1). It suffices to show that Ee−ρτ

∗
N → 0.

Note that τ ∗n is monotone increasing and ψ∗
n ≤ τ ∗n ≤ ψ∗

n+1, a.s. Let A = lim
n→∞

e−ρτ
∗
n . Then,

lim
n→∞

e−ρψ
∗
n = A and A ≥ 0, a.s.

We next show that EA = 0, which implies Ee−ρτ
∗
n → 0. Note that u∗i = 1 leads to

Sψ∗
i
= eb0 and subsequently Sτ∗i = es1 ; similarly, u∗i = −1 leads to Sψ∗

i
= es0 and Sτ∗i = eb1 .

Using (2.15), we have

v0(x) = Ee−ρτ
∗
Nv0(Xτ∗N

) + E
N∑
i=1

{[e−ρτ∗i es1(1−K)− e−ρψ
∗
i eb0(1 +K)]11{u∗i=1}

+[e−ρψ
∗
i es0(1−K)− e−ρτ

∗
i eb1(1 +K)]11{u∗i=−1}}.

Recall that b0 < b1 < s1 < s0. It follows that

v0(x) ≥ Ee−ρτ
∗
Nv0(Xτ∗N

) + E
N∑
i=1

{[e−ρτ∗i es1(1−K)− e−ρψ
∗
i eb1(1 +K)]11{u∗i=1}

+[e−ρψ
∗
i es1(1−K)− e−ρτ

∗
i eb1(1 +K)]11{u∗i=−1}}.

Dividing both sides by N and sending N → ∞, we have

lim
N→∞

1

N
E

N∑
i=1

{[e−ρτ∗i es1(1−K)− e−ρψ
∗
i eb1(1 +K)]11{u∗i=1}

+[e−ρψ
∗
i es1(1−K)− e−ρτ

∗
i eb1(1 +K)]11{u∗i=−1}}

≤ 0.
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Note also that ∣∣∣ 1NE∑N
i=1{[(e−ρτ

∗
i − A)es1(1−K)− (e−ρψ

∗
i − A)eb1(1 +K)]11{u∗i=1}

+[(e−ρψ
∗
i − A)es1(1−K)− (e−ρτ

∗
i − A)eb1(1 +K)]11{u∗i=−1}}

∣∣∣
≤ 1

N
E

N∑
i=1

{|(e−ρτ∗i − A)es1(1−K)|+ |(e−ρψ∗
i − A)eb1(1 +K)|

+|(e−ρψ∗
i − A)es1(1−K)|+ |(e−ρτ∗i − A)eb1(1 +K)|}

→ 0.

It follows that

lim
N→∞

1

N
E

N∑
i=1

{[e−ρτ∗i es1(1−K)− e−ρψ
∗
i eb1(1 +K)]11{u∗i=1}

+[e−ρψ
∗
i es1(1−K)− e−ρτ

∗
i eb1(1 +K)]11{u∗i=−1}}

= (es1(1−K)− eb1(1 +K))EA

≤ 0.

The condition s1−b1 > log((1 +K)/(1−K)) implies the positivity of (es(1−K)−eb(1+K)).

Therefore, EA = 0. Necessarily, Ee−ρτ
∗
N → 0. This completes the proof.

2.5 A Numerical Example

In this section, we consider a numerical example with the following specifications:

a = 0.8, L = 2, σ = 0.5, ρ = 0.5, K = 0.01.

We solve the quasi-algebraic equations (2.9) by a simulated annealing algorithm 1 which

gives

(b0, b1, s1, s0) = (1.4053, 1.4065, 1.6052, 1.6079).

1See Appendix A.
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Figure 2.2: Value Functions V−1(x), V0(x) and V1(x).

In this example, all threshold levels in the quadruple (b0, b1, s1, s0) are below the equi-

librium L = 2. This equilibrium serves as a pulling force that lifts the trajectory Xt from

anywhere below L = 2. Two main factors affect the overall return: (i) the probability for Xt

to go from between these threshold levels; (ii) the frequency for Xt to travel between them.

The corresponding value functions V−1(x),V0(x) and V1(x) are plotted in Figure 2.2.
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Table 2.1: (b0, b1, s1, s0) with varying L.
L 1 1.5 2 2.5 3

b0 0.3441 0.7934 1.4053 1.4123 2.2470

b1 0.4047 0.7975 1.4065 1.9381 2.2471

s1 0.6416 1.1864 1.6052 2.2977 2.6838

s0 0.6419 1.2155) 1.6079 2.2977 2.7791

V−1(1) 0.0450 0.1558 1.3348 2.7619 6.5644

V0(1) 2.7361 2.8469 4.0803 5.5073 9.3099

V1(1) 5.4272 5.5645 6.8258 8.2528 12.0553

We next vary one of the parameters at a time and examine the dependence of the

threshold levels.

First we compute the threshold levels associated with varying L. Intuitively, larger L

would result larger rewards and higher threshold levels (b0, b1, s1, s0). These are confirmed by

the results given in Table 2.1. It can be seen that the quadruple (b0, b1, s1, s0) is monotonically

increasing in L. In addition, we listed the values (V−1, V0, V1) at x = 1 in Table 2.1. These

values also show clear monotonicity in L.

Next, we vary a. A larger a implies larger convergence rate for Xt to reach the equilibrium

level L which would result larger reward in short time. It shows in Table 2.2 that both the

quadruple (b0, b1, s1, s0) and the values at x = 1 are monotonically increasing in a.

In Table 2.3, we vary the volatility σ. Larger σ implies greater range for the stock price

St = exp(Xt) which is associated with larger reward functions. Table 2.3 shows again that

both the quadruple (b0, b1, s1, s0) and the values at x = 1 are increasing in σ.
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Table 2.2: (b0, b1, s1, s0) with varying a.
a 0.6 0.7 0.8 0.9 1

b0 1.2014 1.3833 1.4053 1.4399 1.4843

b1, 1.2074 1.3845 1.4065 1.4399 1.4934

s1 1.4793 1.4832 1.6052 1.6789 1.7128

s0 1.4794 1.4858 1.6079 1.6790 1.7303

V−1(1) 0.6607 1.0586 1.3348 1.6121 1.9141

V0(1) 3.4062 3.8040 4.0803 4.3576 4.6595

V1(1) 6.1516 6.5495 6.8258 7.1031 7.4050

Table 2.3: (b0, b1, s1, s0) with varying σ.
σ 0.3 0.4 0.5 0.6 0.7

b0 1.2189 1.3115 1.4053 1.4111 1.4289

b1, 1.2189 1.3119 1.4065 1.4112 1.4293

s1 1.5726 1.5745 1.6052 1.7413 1.8673

s0 1.5726 1.5746 1.6079 1.7413 1.8953

V−1(1) 0.5724 0.9088 1.3348 1.7234 2.1877

V0(1) 3.3179 3.6543 4.0803 4.4688 4.9332

V1(1) 6.0634 6.3998 6.8258 7.2143 7.6787
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Table 2.4: (b0, b1, s1, s0) with varying ρ.
ρ 0.3 0.4 0.5 0.6 0.7

b0 1.5540 1.4755 1.4053 1.2387 1.0159

b1 1.5540 1.4772 1.4065 1.2387 1.0160

s1 1.9386 1.7908 1.6052 1.5082 1.4737

s0 1.9704 1.7927 1.6079 1.5082 1.4743

V−1(1) 3.4650 2.1385 1.3348 0.7169 0.2446

V0(1) 6.2105 4.8840 4.0803 3.4624 2.9901

V1(1) 8.9559 7.6294 6.8258 6.2079 5.7356

Finally, we vary the discount rate ρ. Larger ρ means smaller reward functions and smaller

(b0, b1, s1, s0). These are confirmed in Table 2.4.

Remark 2.5.1 We select different slippage rates K. The resulting values for the quadruple

(b0, b1, s1, s0) in Table 2.5 suggest that x1 is decreasing slightly in K and x2 stays flat. This

is because larger K discourages stock transactions and has to be compensated by smaller x1.

The corresponding values at x = 1 seem getting smaller when K goes from 0.001 to 0.02 but

shows no clear cut monotonicity in between.

2.6 Concluding Remarks

This chapter presents an optimal trading rule which allows one to buy, sell, or sell short

the underlying asset. The optimal trading rule can be determined by four threshold levels

that correspond to buy and sell points. These threshold levels can be found by solving

quasi-algebraic equations. This result can be used as a guide to trading in a mean-reverting
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Table 2.5: (b0, b1, s1, s0) with varying K.
K 0.001 0.005 0.01 0.015 0.02

b0 1.3979 1.4170 1.4053 1.3185 1.3619

b1 1.4179 1.4170 1.4065 1.3259 1.3620

s1 1.6088 1.6150 1.6052 1.6675 1.6124

s0 1.6557 1.6153 1.6079 1.6743 1.6124

V−1(1) 1.3249 1.3413 1.3348 1.2120 1.2860

V0(1) 4.0460 4.0731 4.0803 3.9710 4.0587

V1(1) 6.7670 6.8050 6.8258 6.7301 6.8313

asset. To implement the result in practice, one needs to calibrate the model. Traditionally,

the least squares method is used to estimate the system parameters. An alternative is to

use the stochastic approximation method to compute the threshold levels directly from the

underlying prices, which is discussed in chapter 4. Related literature can be found in Yin,

Liu and Zhang [40].



Chapter 3

A Trend Following Strategy: Conditions for Optimality

3.1 Introduction

Active market participants can be classified into two groups according to their trading strate-

gies: Those who trade contra-trend and those who follow the trend. In this chapter, we focus

on the trend following (TF) trading strategies. The basic premise underlying the trend fol-

lowing rules is that the market can be regarded either as a bull market or a bear market at

a given time. Trend following strategies are concerned with trading rules that trade with the

market, i.e., go long if in a bull market or go short if in a bear market. One way to capture

the market trends is to use the geometric Brownian motions with regime switching.

A standard geometric Brownian motion (GBM) model involves two parameters, the

expected rate of return and the volatility, both assumed to be deterministic constants. In

a model with regime switching, these key parameters are allowed to be market trend (or

regime) dependent. The regime-switching model was first introduced by Hamilton [23] to

describe a regime-switching time series. It is extensively studied in connection with option

pricing; see Di Masi et al. [32], Bollen [4], Buffington and Elliott [6], Yao et al. [39], references

there in.

Stock trading rules have been studied under various diffusion models for many years.

For example, Øksendal [35, Examples 10.2.2-4] considered optimal exit strategy for stocks

whose price dynamics were modeled by a geometric Brownian motion. Stock selling rules

under regime switching models have gained increasing attention. For example, Zhang [41]

considered a selling rule determined by two threshold levels, a target price and a stop-loss

limit. Under the regime switching model, optimal threshold levels were obtained by solving a

39
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set of two-point boundary value problems. In Guo and Zhang [22], the results of Øksendal [35]

were extended to incorporate a model with regime switching. In addition to these analytical

results, various mathematical tools have been developed to compute these threshold levels.

For example, a stochastic approximation technique was used in Yin et al. [40]; a linear

programming approach was developed in Helmes [24]; and the fast Fourier transform was

used in Liu et al. [30]. Furthermore, consideration of capital gain taxes and transaction costs

in connection with selling can be found in Cadenillas and Pliska [7], Constantinides [10], and

Dammon and Spatt [15] among others.

Recently, there has been an increasing volume of literature concerning with trading rules

that involved both buying and selling. For instance, Zhang and Zhang [43] studied the

optimal trading strategy in a mean reverting market, which validated a well known contra-

trend trading method. In particular, they established two threshold prices (buy and sell)

that maximized overall discounted return if one traded at those prices. These results are

extended to allow short sales in chapter 2. In addition to the results obtained in [43] along

this line of research, an investment capacity expansion/reduction problem was considered

in Merhi and Zervos [33]. Under a geometric Brownian motion market model, the authors

used the dynamic programming approach and obtained an explicit solution to the singular

control problem. A more general diffusion market model was treated by Løkka and Zervos

[31] in connection with an optimal investment capacity adjustment problem. More recently,

Johnson and Zervos [26] studied an optimal timing of investment problem under a general

diffusion market model. The objective was to maximize the expected cash flow by choosing

when to enter an investment and when to exit the investment. An explicit analytic solution

was obtained in [26].

In this chapter, we consider a regime switching model for the stock price dynamics. In

this model the price of the stock follows a geometric Brownian motion whose drift switches

between two different regimes representing the up trend (bull market) and down trend (bear

market), respectively. We model the switching as a Markov chain. In addition, we assume
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trading one share with a fixed percentage slippage cost. As in Zhang and Zhang [43] we

introduce optimal value functions that correspond to starting net position being either flat

or long.

In this chapter, we focus on a fundamental issue in TF trading. Under the framework

of a regime switching market, we pose the following question: If the investor has the full

knowledge of market trends, i.e., s/he knows exactly when the market turns from bull to

bear (or bear to bull), will s/he always be profitable? We address this best case scenario.

In particular, we aim at classifing of parameter regions so that the optimal trading

strategy varies on each of these regions. We use a dynamic programming approach, and

derive a system of two variational inequalities, which can be casted into the form of HJB

equations. We find solutions to these equations and construct the corresponding trading

rules. We also provide verification theorems to justify the optimality of these trading rules.

The results reveal two counter intutive facts: (a) trend following may not lead to optimal

reward in some cases even the investor knows exactly when a trend change occurs; (b) stock

volatility is not relvant in trend following when trends are observable.

We present the results in the following order. In §3.2, problem setup is constructed. In

§3.3, classification of parameter regions are provided so that the optimal trading rules have

the same structure on each of these regions. In §3.4, the associated HJB equations and their

solutions are studied. Closed-form solutions are obtained. In §3.5, verification theorems with

sufficient conditions are given. Finally, §3.6 concludes the chapter with further remarkd.

3.2 Problem Setup

Let Xt denote the price of the asset under consideration at time t. We consider the case

when Xt is a regime swtching geometric Brownian motion governed by

dXt = Xt(µ(αt)dt+ σ(αt)dWt), (3.1)

where αt ∈ {1, 2} is a two-state Markov chain, µ(1) = µ1, µ(2) = µ2 are the expected return

rates, σ(1) = σ1 and σ(2) = σ2 are the volatilities, and Wt is a standard Brownian motion.
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In this chapter, αt = 1 indicates a bull market and αt = 2 a bear market, i.e., µ1 > 0 and

µ2 < 0.

Assume αt is observable and its generator is given by

Q =

 −λ1 λ1

λ2 −λ2

 ,

for some λ1 > 0 and λ2 > 0. We also assume that {αt} and {Wt} are independent.

Remark 3.2.1 Assuming the observability of αt is not based on realistic considerations. It

is imposed mainly to simplify the matter to the extend that we can extract useful information

without undue technical difficulties. It allows us to see through the issue in more depth and is

helpful to figure out optimality conditions that are hard to see otherwise. In addition, under

the best case scenario, we can identify market condtions to avoid potentially trades that

deemed to be unprofitable even under the best market information. Finally, the corresponding

value functions will provide an upper bound for trading performance which can be used as

a general guide to rule out unrealistic expectations.

In this chapter, we allow to buy or sell at most one share at a time. Moreover, We consider

the case that the net position at any time can be either flat (no stock holding) or long (with

one share of stock holding).

Let

0 ≤ b1 ≤ s1 ≤ b2 ≤ s2 ≤ . . .

denote a sequence of stopping times. A buying decision is made at bn and a selling decision

is made at sn, for n = 1, 2, . . ..

Let kt denote the net position with

kt =

 0, flat,

1, long one share.

If the initial net position is long (k = 1), then one should sell the stock before acquiring

any share. Similary, if the initial net position is flat (k = 0), then one should first buy a
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share before a subsequent selling. We define the sequence of stopping times for each initial

position k as follows:

Λ0 = (b1, s1, b2, s2, . . .) if k = 0,

Λ1 = (s0, b1, s1, b2, s2, . . .) if k = 1.

Let ρ > 0 be the discount rate and K be the percentage slippage rate. Given the initial

states X0 = x, α0 = α, and initial net position k = 0, 1, the reward functions of decision

sequences, Λk, are given as follows:

Jk(x, α,Λk) =



E
∞∑
i=1

[e−ρsiXsi(1−K)− e−ρbiXbi(1 +K)], if k = 0,

E{e−ρs0Xs0(1−K)

+
∞∑
i=1

(e−ρsiXsi(1−K)− e−ρbiXbi(1 +K))}, if k = 1.

The term E
∑∞

i=1 ξi for random variables ξi is interpreted as

lim sup
N→∞

E
N∑
i=1

ξi.

Given initial position k, let Vk(x, α) denote the value functions with the initial states

X0 = x and α0 = α. That is

Vk(x, α) = sup
Λk

Jk(x, α,Λk). (3.2)

Let 0 ≤ b∗1 ≤ s∗1 ≤ b∗2 ≤ s∗2 ≤ . . . denote the corresponding jump times of αt, i.e.,

b∗1 = inf{t ≥ 0 : αt = 1}, s∗i = inf{t ≥ b∗i : αt = 2}, and b∗i+1 = inf{t ≥ s∗i : αt = 1} for

i = 1, 2, . . .. In the rest of this chapter, we focus on the trend following rule: Buy at b∗n and

sell at s∗n. In the next section, we find regions for (λ1, λ2) so that the trend following strategy

is optimal.
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3.3 Classification of (λ1, λ2)-Regions and Assumptions

Frist we note that if ρ ≥ µ1 then “no trading is optimal.” Actually, it is easy to see that, for

any given Λ0,

Ee−ρsiXsi − Ee−ρbiXbi = E

∫ si

bi

e−ρtXt(−ρ+ µ(αt))dt.

Note that (−ρ+ µ(αt)) ≤ 0 under ρ ≥ µ1 > 0 and µ2 < 0. This implies that

E[e−ρsiXsi(1−K)− e−ρbiXbi(1 +K)] ≤ 0.

It follows that

J0(x, α,Λ0) ≤ 0.

Therefore, V0(x, α) = 0. Similarly, V1(x, α) = (1 −K)x, i.e., one has to sell the share right

away at t = 0.

Assumptions. In this chapter, we assume µ1 > ρ > 0 and µ2 < 0.

Next we determine necessary conditions that guarantee the optimality of trend following

trading rules.

Let β1 > β2 denote the roots of (ρ + λ1 − µ1)(ρ + λ2 − µ2) − λ1λ2 = 0. In view of [22,

Lemma 1], we have

lim
s1→∞

Ee−ρs1Xs1 = ∞,

when β2 < ρ < β1 which is equivalent to

(ρ+ λ1 − µ1)(ρ+ λ2 − µ2)− λ1λ2 < 0. (3.3)

In this case, the buy (b1 = 0) and hold (s1 = ∞) strategy is optimal and the corresponding

payoff J = ∞.

Under our trading rule, i.e., buy at b∗n and sell at s∗n, in order to generate nonnegative

returns, we expect

E[e−ρs
∗
iXs∗i

(1−K)− e−ρb
∗
iXb∗i

(1 +K)] ≥ 0, i = 1, 2, . . . .
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In particular, if i = 1 and b1 = 0, we can show, by writing Xs∗1
in terms of αt andWt (detailed

development is developed later in this chapter in Lemma 3.5.1), that

Ee−ρs
∗
1Xs∗1

=
λ1x

ρ+ λ1 − µ1

.

Note that ρ+ λ1 − µ1 > 0 when (ρ+ λ1 − µ1)(ρ+ λ2 − µ2)− λ1λ2 > 0. It suffices to require

that

λ1
ρ+ λ1 − µ1

>
1 +K

1−K
.

For notational simplicity, define

H1 =
λ1

ρ+ λ1 − µ1

and H2 =
λ2

ρ+ λ2 − µ2

.

Using this notation, we construct the following parameter regions.

I = {(λ1, λ2) > 0 : H1H2 < 1, H1 > (1 +K)/(1−K)},

II = {(λ1, λ2) > 0 : H1H2 ≤ 1, H1 ≤ (1 +K)/(1−K)},

III = {(λ1, λ2) > 0 : H1H2 ≥ 1, H1 > (1 +K)/(1−K)},

IV = {(λ1, λ2) > 0 : H1H2 > 1, H1 ≤ (1 +K)/(1−K)}.

It is easy to see that these four regions consist of a partition of {(λ1, λ2) : λ1 > 0, λ2 > 0},

as shown on figure 3.1.

We will show in the subsequent sections the following

• On Region I: Trend following gives the optimal strategies with finite optimal payoff;

• On Region II: No trade is optimal if there is no initial position; otherwise, hold the

position till the first time entering a bear market;

• On Region III: Trend following is optimal with infinite optimal payoff. In this case, the

buy and hold strategy is also optimal.

• Finally, on Region IV: The buy and hold strategy is optimal. Trend following on the

other hand is not optimal.

In the next few sections, we focus on the optimality of trend following strategies on

Region I. Then we discuss the results on other regions.
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II

IV

I

III

µ1 − ρ (µ1−ρ)(1+K)
2K

λ2

λ1

λ2 = ρ−µ2
µ1−ρ

λ1 − (ρ− µ2)

Figure 3.1: The graph of λ2 against λ1 with the feasible region (I) of λ1 and λ2 for optimality.
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3.4 HJB Equations

In this section, we study the corresponding HJB equations. Let A denote the generator of

(Xt, α) given by

Af(x, α) = x2σ2(α)

2

∂2

∂x2
f(x, α) + xµ(α)

∂

∂x
f(x, α) +Qf(x, ·)(α)

where

Qf(x, ·)(α) =

 λ1(f(x, 2)− f(x, 1)), if α = 1,

λ2(f(x, 1)− f(x, 2)), if α = 2.
(3.4)

Formally, the associated HJB equations should have the form: min{ρv0(x, α)−Av0(x, α), v0(x, α)− v1(x, α) + x(1 +K)} = 0,

min{ρv1(x, α)−Av1(x, α), v1(x, α)− v0(x, α)− x(1−K)} = 0.
(3.5)

Our trend following rule says that one should buy at the switching times of bear-to-bull

and sell at the switching times of bull-to-bear. In terms of the market trend αt and net

position kt, we have the following strategies.

When αt = 1,

if kt = 0, buy one share,

if kt = 1, hold the share.

When αt = 2,

if kt = 0, stay flat,

if kt = 1, sell one share.

Therefore, vk(x, α) has to satisfy the following conditions to qualify for being solutions

to the HJB equations (3.5):
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

ρv1(x, 1)−Av1(x, 1) = 0,

ρv0(x, 2)−Av0(x, 2) = 0,

v0(x, 1)− v1(x, 1) + x(1 +K) = 0,

v1(x, 2)− v0(x, 2)− x(1−K) = 0,

ρv0(x, 1)−Av0(x, 1) > 0,

ρv1(x, 2)−Av1(x, 2) > 0,

v1(x, 1)− v0(x, 1)− x(1−K) > 0,

v0(x, 2)− v1(x, 2) + x(1 +K) > 0.

(3.6)

From the first two equations of (3.6), we have


ρv1(x, 1) =

x2σ2
1

2

∂2

∂x2
v1(x, 1) + xµ1

∂

∂x
v1(x, 1) + λ1(v1(x, 2)− v1(x, 1)),

ρv0(x, 2) =
x2σ2

2

2

∂2

∂x2
v0(x, 2) + xµ2

∂

∂x
v0(x, 2) + λ2(v0(x, 1)− v0(x, 2)).

(3.7)

Consider the case when the value functions are linear functions of the initial state x, i.e. v1(x, 1) = A1x,

v0(x, 2) = A2x,
(3.8)

for some A1, A2 ≥ 0. Then by the third and forth equations of (3.6), we obtain v0(x, 1) = [A1 − (1 +K)]x,

v1(x, 2) = [A2 + (1−K)]x.
(3.9)

Substitute (3.8) and (3.9) into (3.7) to get
A1 =

λ1[(ρ+ λ2 − µ2)(1−K)− λ2(1 +K)]

(ρ+ λ1 − µ1)(ρ+ λ2 − µ2)− λ1λ2
,

A2 =
λ2[λ1(1−K)− (ρ+ λ1 − µ1)(1 +K)]

(ρ+ λ1 − µ1)(ρ+ λ2 − µ2)− λ1λ2
.

It is not difficult to see that these two constants are positive on Region I. Actually, for

λ1, λ2) ∈ I, we have

(ρ+ λ1 − µ1)(ρ+ λ2 − µ2)− λ1λ2 > 0, (3.10)
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λ1(1−K)− (ρ+ λ1 − µ1)(1 +K) > 0. (3.11)

Note that ρ+ λ2 − µ2 > 0 as µ2 < 0, so (3.10) implies that ρ+ λ1 − µ1 > 0. Consequantly,

(ρ+ λ1 − µ1)[(ρ+ λ2 − µ2)(1−K)− λ2(1 +K)]

= (ρ+ λ1 − µ1)(ρ+ λ2 − µ2)(1−K)− (ρ+ λ1 − µ1)λ2(1 +K)

> λ1λ2(1−K)− (ρ+ λ1 − µ1)λ2(1 +K) (By (3.10))

= λ2[λ1(1−K)− (ρ+ λ1 − µ2)(1 +K)]

> 0 (By (3.11)).

In view of this, we have the following inequality

(ρ+ λ2 − µ2)(1−K)− λ2(1 +K) > 0 (3.12)

Therefore, vk(x, α) ≥ 0 on Region I.

Remark 3.4.1 The conditions (3.11) and (3.12) can be proved without assuming the lin-

earity of the value functions, indeed it does not require any specific form on the value

functions. We discuss the proof in Appendix B.

Next we show that the value functions vk(x, α) defined in (3.8) and (3.9) satisfy the HJB

eequations. It suffices to check the last four inequalities of (3.6). Indeed,

ρv0(x, 1)−Av0(x, 1) = [λ1(1−K)− (ρ+ λ1 − µ1)(1 +K)]x > 0,

ρv1(x, 2)−Av1(x, 2) = [(ρ+ λ2 − µ2)(1−K)− λ2(1 +K)]x > 0,

v1(x, 1)− v0(x, 1)− x(1−K) = 2Kx > 0,

v0(x, 2)− v1(x, 2) + x(1 +K) = 2Kx > 0,

by (3.10) and (3.11).

3.5 A Verification Theorem

We give a verification theorem to show that the solution vk(x, α) of the HJB equations (3.5)

are equal to the value functions Vk(x, α), and sequences of optimal stopping times can be

constructed accordingly.
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We need the following lemma in the proof of the verification theorem. Recall the jump

times of αt defined as b∗1 = inf{t ≥ 0 : αt = 1}, s∗i = inf{t ≥ b∗i : αt = 2}, and b∗i+1 = inf{t ≥

s∗i : αt = 1} for i = 1, 2, . . .. Recall that

H1 =
λ1

ρ+ λ1 − µ1

and H2 =
λ2

ρ+ λ2 − µ2

.

Lemma 3.5.1. For each n = 1, 2, . . ., we have

Ee−ρsnXsn =

 (H1H2)
n−1H1x if α0 = 1,

(H1H2)
nx if α0 = 2,

Ee−ρbnXbn =

 (H1H2)
n−1x if α0 = 1,

(H1H2)
n−1H2x if α0 = 2.

Proof. Note that

Xsn = Xbn exp

(∫ sn

bn

(
µ1 −

σ2
1

2

)
dt+

∫ sn

bn

σ1dWt

)
,

Xbn+1 = Xsn exp

(∫ bn+1

sn

(
µ2 −

σ2
2

2

)
dt+

∫ bn+1

sn

σ2dWt

)
.

We first consider the case when α0 = 1. In this case, b1 = 0. Recall that s1 is an exponential

random variable with parameter λ1. Note also that, for each u,

exp

(∫ u

0

−σ
2
1

2
dt+

∫ u

0

σ1dwt

)
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is a martingale and is independent of s1. It follows that, by conditioning on s1,

Ee−ρs
∗
1Xs∗1

= xE exp

(∫ s∗1

0

(
−ρ+ µ1 −

σ2
1

2

)
dt+

∫ s∗1

0

σ1 dwt

)

= x

∫ ∞

0

E

[
exp

(∫ u

0

(
−ρ+ µ1 −

σ2
1

2

)
dt+

∫ u

0

σ1dwt

) ∣∣∣s1 = u

]
λ1e

−λ1udu

= x

∫ ∞

0

e(−ρ+µ1)uλ1e
−λ1udu

=
λ1x

ρ+ λ1 − µ1

= H1x.

Similarly, we have

Ee−ρb
∗
2Xb∗2

= E

[
e−ρs

∗
1Xs∗1

exp

(∫ b∗2

s∗1

(
−ρ+ µ2 −

σ2
2

2

)
dt+

∫ b∗2

s∗1

σ2 dwt

)]

= E

{
e−ρs

∗
1Xs∗1

E

[
exp

(∫ b∗2

s∗1

(
−ρ+ µ2 −

σ2
2

2

)
dt+

∫ b∗2

s∗1

σ2 dwt

)] ∣∣∣s1}

= E
[
e−ρs

∗
1Xs∗1

]( λ2
ρ+ λ2 − µ2

)

=
λ1λ2x

(ρ+ λ2 − µ2)(ρ+ λ1 − µ1)

= H1H2x.

Continuing this way, we have Ee−ρsnXsn = (H1H2)
n−1H1x,

Ee−ρbnXbn = (H1H2)
n−1x.
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Similarly, if α0 = 2, we can show Ee−ρsnXsn = (H1H2)
nx

Ee−ρbnXbn = (H1H2)
n−1H2x.

The proof is complete.

Theorem 3.5.1. Let (λ1, λ2) ∈ I and

v1(x, 1) = A1x,

v0(x, 2) = A2x,

v0(x, 1) = [A1 − (1 +K)]x,

v1(x, 2) = [A2 + (1−K)]x,

(3.13)

with 
A1 =

λ1[(ρ+ λ2 − µ2)(1−K)− λ2(1 +K)]

(ρ+ λ1 − µ1)(ρ+ λ2 − µ2)− λ1λ2
,

A2 =
λ2[λ1(1−K)− (ρ+ λ1 − µ1)(1 +K)]

(ρ+ λ1 − µ1)(ρ+ λ2 − µ2)− λ1λ2
.

Then,

vk(x, α) = Vk(x, α),

for k = 0, 1 and α = 1, 2.

In addition, when k = 0, let Λ∗
0 = (b∗1, s

∗
1, b

∗
2, s

∗
2, . . .), where the stopping times b∗1 = inf{t ≥

0 : αt = 1}, s∗i = inf{t ≥ b∗i : αt = 2}, and b∗i+1 = inf{t ≥ s∗i : αt = 1} for i = 1, 2, . . .. When

k = 1, let Λ∗
1 = (s∗0,Λ

∗
0) with s

∗
0 = inf{t ≥ 0 : αt = 2}. Then Λ∗

0 and Λ∗
1 are optimal.

Proof. The proof is divided into two steps. In the first step, we show that vk(x, α) ≥

Jk(x,Λk,α) for all Λk,α. Then in the second step, we show that vk(x, α) = Jk(x,Λ
∗
k,α). There-

fore, vk(x, α) = Vk(x, α) and Λ∗
k,α is optimal.

It is clear that vk(x, α) satisfy the HJB equations (3.5). Using ρvk(x, α)−Avk(x, α) ≥ 0

and Dynkin’s formula, we have, for any stopping times 0 ≤ θ1 ≤ θ2, a.s.,

Ee−ρθ1vk(Xθ1 , αθ1) ≥ Ee−ρθ2vk(Xθ2 , αθ2),
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for k = 0, 1.

Recall that v0 ≥ v1 − x(1 +K) and v1 ≥ v0 + x(1−K). Given Λk,α = (b1, s1, b2, s2, . . .), we

have

v0(x, α0) ≥ Ee−ρb1v0(Xb1 , αb1)

≥ Ee−ρb1(v1(Xb1 , αb1)−Xb1(1 +K))

= Ee−ρb1v1(Xb1 , αb1)− Ee−ρb1Xb1(1 +K)

≥ Ee−ρs1v1(Xs1 , αs1)− Ee−ρb1Xb1(1 +K)

≥ Ee−ρs1(v0(Xs1 , αs1) +Xs1(1−K))− Ee−ρb1Xb1(1 +K)

= Ee−ρs1v0(Xs1 , αs1) + Ee−ρs1Xs1(1−K)− Ee−ρb1Xb1(1 +K)

≥ Ee−ρb2v0(Xb2 , αb2) + Ee−ρs1Xs1(1−K)− Ee−ρb1Xb1(1 +K).

Continuing this way and using the fact that vk ≥ 0, we get

v0(x, α) ≥ E
N∑
i=1

{e−ρsiXsi(1−K)− e−ρbiXbi(1 +K)}.

Sending N → ∞, we have v0(x, α) ≥ J0(x,Λ0) for all Λ0. This implies that v0(x, α) ≥

V0(x, α). Similarly, we can show that v1(x, α) ≥ V1(x, α).

Now we establish the equalities. It is easy to see that s∗i < ∞ and b∗i < ∞, a.s. Recall

that v0(x, 1) = v1(x, 1)− x(1 +K) and v1(x, 2) = v0(x, 2) + x(1−K). We have

v0(x, α) = Ee−ρb
∗
1v0(Xb∗1

, αb∗1)

= Ee−ρb
∗
1(v1(Xb∗1

, αb∗1)−Xb∗1
(1 +K))

= Ee−ρb
∗
1v1(Xb∗1

, αb∗1)− Ee−ρb
∗
1Xb∗1

(1 +K)

= Ee−ρs
∗
1v1(Xs∗1

, αs∗1)− Ee−ρb
∗
1Xb∗1

(1 +K)

= Ee−ρs
∗
1 [v0(Xs∗1

, αs∗1) +Xs∗1
(1−K)]− Ee−ρb

∗
1Xb∗1

(1 +K)

= Ee−ρs
∗
1v0(Xs∗1

, αs∗1) + E[e−ρs
∗
1Xs∗1

(1−K)− e−ρb
∗
1Xb∗1

(1 +K)].

Continuing this way, we obtain

v0(x, α) = Ee−ρs
∗
Nv0(Xs∗N

, αs∗N ) + E
N∑
i=1

[e−ρs
∗
iXs∗i

(1−K)− e−ρb
∗
iXb∗i

(1 +K)]. (3.14)

Similarly, we have
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v1(x, α) = Ee−ρs
∗
Nv0(Xs∗N

, αs∗N ) + E[e−ρs0Xs0(1−K)]

+E
N∑
i=1

[e−ρs
∗
iXs∗i

(1−K)− e−ρb
∗
iXb∗i

(1 +K)].

Finally, it remains to show that Ee−ρs
∗
Nv0(Xs∗N

, αs∗N ) → 0 as N → ∞. This follows from

v0(Xs∗N
, αs∗N ) = A1Xs∗N

and Lemma 3.5.1 under the condition (ρ+λ1−µ1)(ρ+λ2−µ2) > λ1λ2.

This completes the proof.

Region II:

We show in this subsection that the trend following is not optimal on Region II. This is

mainly because λ1 is too large which lead to the short lived subsequent bull markets. Let

v0(x, 1) = 0;

v0(x, 2) = 0;

v1(x, 1) =
λ1(1−K)

ρ+ λ1 − µ1

x;

v1(x, 2) = (1−K)x.

It is direct to show that these functions solve the HJB equations (3.5). Moreover, it can

be shown similarly as in Theorem 3.5.1 that

vk(x, α) ≥ Vk(x, α).

Furthermore, we consider the following strategies: If there is no existing position, do not

trade; If the initial holding is one share, then sell it right away in a bear market and, if in

a bull market, hold it till the end of the bull market and then sell it. It is easy to see that

the corresponding payoff is given by vk(x, α). Therefore, they are indeed the value functions

and the above strategy is optimal.
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Region III:

Note that on this region, H1H2 ≥ 1 and H1(1 −K) − (1 +K) > 0. It follows that, in view

of Lemma 3.5.1,

J0(x, 1,Λ
∗
0) =

∞∑
i=1

[
Ee−ρs

∗
iXs∗i

(1−K)− Ee−ρb
∗
iXb∗i

(1 +K)
]

=
∞∑
i=1

[
(H1H2)

i−1H1(1−K)x− (H1H2)
i−1(1 +K)x

]

=
∞∑
i=1

(H1H2)
i−1 [H1(1−K)− (1 +K)]x

= ∞.

(3.15)

Similarly,

J0(x, 2,Λ
∗
0) =

∞∑
i=1

[
(H1H2)

i(1−K)x− (H1H2)
i−1H2(1 +K)x

]

=
∞∑
i=1

(H1H2)
i−1H2 [H1(1−K)− (1 +K)]x

= ∞.

Note also that Λ∗
1 = (s∗0,Λ

∗
0). Therefore, we have

J1(x, α,Λ
∗
1) ≥ J0(x, α,Λ

∗
0) = ∞.

It follows that the trend following strategies are optimal and

Vk(x, α) = ∞.

Also, the buy and hold strategy is optimal as noted in §3.3 when H1H2 < 1. In this case the

value function V = ∞.
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Region IV:

It is clear that the buy and hold is optimal on this region and the corresponding payoff

J = ∞, which in turn implies V = ∞.

We next show that the trending following is not optimal. Note that on this region,

H1H2 > 1 and H1(1−K)− (1 +K) ≤ 0. Using (3.15), we have

J0(x, 1,Λ
∗
0) =

∞∑
i=1

(H1H2)
i−1 [H1(1−K)− (1 +K)]x ≤ 0.

Similarly,

J0(x, 2,Λ
∗
0) ≤ 0.

Moreover, the trend following strategy gives

J1(x, 1,Λ
∗
1) = Ee−ρs

∗
0Xs∗0

(1−K) =
λ1x

ρ+ λ1 − µ1

<∞,

J1(x, 2,Λ
∗
1) = x(1−K).

3.6 Concluding Remarks

This chapter presents sufficient conditions for optimal trend following strategies when the

switching times between bear and bull markets are observable. The works in §3.3 shows that

the optimality can be achieved by satisfying two inequalities in (3.10) and (3.11). Evidently,

the possibility of optimality is a compromise between switching rate (λ1, λ2) and slippage

cost (K). If we rewrite the conditions, we have
λ2 <

ρ− µ2

µ1 − ρ
λ1 − (ρ− µ2),

λ1 ≤
(µ1 − ρ)(1 +K)

2K
.

These two inequalities define the feasible region of λ1 and λ2 for optimality, as shown in

Figure 3.1.

Large λ1 implies high switching frequency which accumulates significant cost of trans-

actions. On the other hand, small λ1 means prolonged period of bull market that causes
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the investment produces infinite return. Note that if the slippage cost K approaches 0, then

(µ1 − ρ)(1 +K)

2K
tends to infinity which gives no boundaries for the switching rates λ1 and

λ2. In other words, one can trade as frequent as possible since there is no cost on transactions.



Chapter 4

Stochastic Approximation on Trading Mean-Reverting Assets

4.1 Introduction

Stochastic approximation method is a category of recursive stochastic optimization algo-

rithms that approximate quantities based on functions which are observed through noise.

The idea was first introduced in an original work of Robbins and Monro [36] in 1951. It was

motivated by the problem of finding a root of a continuous function which is not known

but the experimenter is able to obtain noise corrupted measurements of the function at

any desired values. One year later, Kiefer and Wolfowitz [27] provided an algorithm that

estimates the extrema of such functions when pathwise differetiation is not possible. They

proposed a finite difference form of the gradient estimate as an alternative.

The basic paradigm is a stochastic difference equation of the form θn+1 = θn+εZn, where

θn belongs to some Euclidean space, Zn is a random variable, and the step size εn > 0 goes to

zero as n→ ∞. In this form, θ is a parameter of a system that we attempt to approximate,

and Zn could be a noised function when the parameter is set to θn. The parameter θn is

recursively adjusted to meet the objective asymptotically.

Finding roots of a non-linear function is an exceedingly common problem in science and

engineering. If the function is known and continuously differentiabile, it becomes a classical

problem in numerical analysis and the Newton-Raphson method can be used to solve. The

challenge in Robbins and Monro [36] is that the objective function f(θ) is not known or

interfered by noise, then the Newton-Raphson method fails. They proposed the following

recursive algorithm to approximate the root,

θn+1 = θn + εnYn

58



59

where Yn is the noisy estimate of f(θn). Robbins and Monro claim that if the step sizes εn go

to zero in a befitting way, there is an implicit averaging that annihilates the effect of noise

in the long run. The convergence of the algorithm can be obtained with some conditions on

the function f .

In addition to finding roots of a function, optimization is another essential problem in

various areas. It is indeed a kind of roots finding problem since the goal is to estimate roots

of the derivative or gradient of a function. If the gradient of a function is observable with

or without noise, Newton-Raphson method or the Robbins and Monro algorithm can solve

the problem respectively. Nonetheless, what if the gradient of a function is impossible to

obtain? Kiefer and Wolfowitz [27] introduced an iterative algorithm in 1952 to overcome this

challenge. Let f̃(θ) be the noisy estimate of f(θ) and

∇̃f̃(θn, ξn) =
f̃(θn + δn)− f̃(θn − δn)

2δn

be the gradient estimate of f̃ where δn is a finite difference sequence such that δn → 0 as

n → 0 and ξn is a sequence of collective noise. f̃(θn) is the corrupted value of f(θn) with

noise ξn. The algorithm suggested by Kiefer and Wolfowitz is

θn+1 = θn + εn∇̃f̃(θn, ξn)

where εn is a step sizes sequence satisfying εn ≥ 0, εn → 0 as n→ ∞. Parallel to the Robbins

and Monro algorithm, convergence of the Kiefer and Wolfowitz algorithm can be obtain with

some requirements on the function f .

Since the initial work, there has been a steady increase in the investigations of applications

in many diverse areas, such as queueing networks, wireless communications, manufacturing

systems, problems learning, repeated games and neural nets. Yin, Liu and Zhang [40] even

suggested a pioneer application in finance. They developed a class of iterative algorithms to

determine the optimal timing of stock liquidation. In this chapter, we present an application

of such recursive algorithm in assets trading.
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In chapter 2, we give a theoretical analysis of an optimal trading rule on mean-reverting

assets. The threshold buy and sell prices are obtained by using dynamic programming

approach and the associated HJB equations for the value functions. The analysis assumes

that the parameters of the model are known and accurate. Nevertheless, if we want to apply

the method in chapter 2 on real financial market, it is not practial simply because accurate

parameters are difficult to determine. Therefore, we propose a stochastic approximation algo-

rithm to solve the same problem without assuming a specific model. In order words, model

calibration is not needed. We just require a sample path with mean-reverting property. In

fact, applying stochastic approximation on mean-reverting asset is not a new approach. Song,

Yin and Zhang [38] suggested a stochastic approximation algorithm to estimate the optimal

buy and sell prices that maximizes the profit of one trade. In this chapter, we design an

algorithm to determine the optimal threshold prices that maximizes the profit of multiple

trades with short selling being allowed. This is an improvement of the solution in chapter 2

for real market data.

4.2 Problem Formulation and Algorithm Design

Recall the mean reversion model in (2.1) of chapter 2,

dXt = a(L−Xt)dt+ σdWt, X0 = x, (4.1)

where a > 0 is the rate of reversion, L is the equilibrium level, σ > 0 is the volatility, and Wt

is a standard Brownian motion. Then the observable asset price S(t) is given by S(t) = eX(t).

In our setup, we do not assume the asset prices follow the form (4.1) above or any specific

form. We only require the asset prices have a tendancy to go back to the equilibrium. Let

0 < K < 1 be the slippage rate for each transaction and ρ > 0 be the discount rate. The

goal is to maximize the reward function
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J(θ) = J(b∗0, b
∗
1, s

∗
1, s

∗
0)

= E
∑∞

i=1{[e−ρτiSτi(1−K)− e−ρψiSψi
(1 +K)]11{ui=1}

+[e−ρψiSψi
(1−K)− e−ρτiSτi(1 +K)]11{ui=−1}}

(4.2)

where τ0 = 0 and

ψi = inf{t ≥ τi−1 : Xt /∈ (b∗0, s
∗
0)};

if Xψi
≤ b∗0, ui = 1, then τi = inf{t ≥ ψi : Xt ≥ s∗1};

if Xψi
≥ s∗0, ui = −1, then τi = inf{t ≥ ψi : Xt ≤ b∗1}.

Similar to the notations in chapter 2, ψi and τi are the stopping time for trading, and b∗0, b
∗
1,

s∗1 and s∗0 are the threshold prices.

The idea of stochastic approximation method can be explained as follows. Clearly, J(θ)

is not observable as it involves expectation. Nonetheless, we can certainly observe J(θ) with

noise. As a result, we can consider a general form of noised observation of J(θ) to be J̃(θ, ξ),

where ξ is the noise. In other words, complex nonlinear function form is allowed in our setup.

We proceed to elaborate the stochastic approximation procedure.

1. Initialization: Choose initial threshold estimate θ0 = (b00, b
0
1, s

0
1, s

0
0).

2. Iteration: For n > 0, use stochastic approximation to find θn+1 from θn. Let ei be the

standard unit vector for i = 1, 2, 3, 4, kn =
1

n
1
6

and ξ±n,i be noise sequences.

(a) Calculate J̃(θn + knei, ξ
+
n,i) for i = 1, 2, 3, 4.

(b) Calculate J̃(θn − knei, ξ
−
n,i) for i = 1, 2, 3, 4.

(c) Compute the gradient estimate ∇̃J̃(θn, ξn) = (∇̃iJ̃(θn, ξn)) by

∇̃iJ̃(θn, ξn) =
1

2kn
[J̃(θn + knei, ξ

+
n,i)− J̃(θn − knei, ξ

−
n,i)]

for i = 1, 2, 3, 4.
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(d) Update θn+1 from θn by the stochastic approximation algorithm:

θn+1 = θn + εn∇̃iJ̃(θn, ξn)

where εn is the step size sequence satisfying εn ≥ 0, εn → 0 as n → ∞, and∑
n ε = ∞. In our design, we choose εn = 1

n
, i.e.

θn+1 = θn +
1

n
∇̃iJ̃(θn, ξn) (4.3)

where θn = (bn0 , b
n
1 , s

n
1 , s

n
0 ).

3. Repeat the iterations until the change is less than a certain tolerence level Tol, i.e.

|θn+1 − θn| < Tol, or the iterations n reaches a number N where N is large enough.

We present an analysis of the algorithm in the next section.

4.3 Analysis of Convergence

We proceed to examine the asymptotic properties of the proposed algorithm in this section.

The technique of the analysis was developed in Kushner and Yin [29]. We show that the

recursive equation (4.3) is closely related to an ordinary differential equation, while the

stationary points are the optimal threshold prices of our strategy.

Let

tn =
n∑
j=1

1

j
,

m(t) = max{n : tn ≤ t},

∀n θ0(t) = θn for t ∈ [tn, tn+1) and

θn(t) = θ0(t+ tn).

(4.4)
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From the definition above, θ0(t) is the piecewise constant interpolation of θn on the interval

[tn, tn+1). To proceed, we define for i = 1, 2, 3, 4,

βin =
J(θn + knei)− J(θn − knei)

2kn
− ∂J(θn)

∂θi
,

χin = [J̃(θn + knei, ξ
+
n,i)− J̃(θn − knei, ξ

−
n,i)]

−En[J̃(θn + knei, ξ
+
n,i)− J̃(θn − knei, ξ

−
n,i)],

ωin = [EnJ̃(θn + knei, ξ
+
n,i)− J(θn + knei)]− [EnJ̃(θn − knei, ξ

−
n,i)− J(θn − knei)],

(4.5)

where En is the conditional expectation with respect to the σ-algebra of {ξ±j : j < n}, and

define

βn = (β1
n, β

2
n, β

3
n, β

4
n),

χn = (χ1
n, χ

2
n, χ

3
n, χ

4
n),

ωn = (ω1
n, ω

2
n, ω

3
n, ω

4
n).

Then the recursive algorithm (4.3) can be written as

θn+1 = θn +
1

n
∇J(θn) +

1

n

ωn
2kn

+
1

n

χn
2kn

+
1

n
βn.

Note that ωn is the noise term and βn is the bias term. Before we proceed to the analysis of

the algorithm, we need to define some terminology, namely weak convergence, tightness and

truncation.

Definition 4.3.1 Let {Yn} and Y be Rr valued random variables. Yn is defined to be weakly

convergent to Y if

Ef(Yn) → Ef(Y ) as n→ ∞,

for any bounded and continuous function f(·).

Definition 4.3.2 A sequence of random variables {Yn} is defined to be tight if for each

ζ > 0, there is a compact set Cζ such that

P(Yn ∈ Cζ) ≥ 1− ζ for all n.
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Definition 4.3.3 Let Sv denote a v-sphere, i.e. Sv = {x ∈ Rr : |x| < v}. Given a sequence

of processes Y n(·), Y n,v(·) are defined to be the v-truncation of Y n(·) if Y n,v(·) = Y n(·) up

until the first exit from Sv and satisfy

lim
B→∞

lim sup
n

P

{
sup
t≤T

|Y n,v(t)| ≥ B

}
= 0 for each T <∞.

We can now proceed to the theorem that confirm the convergence and optimality of the

algorithm.

Theorem 4.3.1 Suppose the following conditions (A1) to (A5) are satified,

(A1) The second derivative of J(θ) is continuous.

(A2) The sequences {ξ±n } are bounded.

(A3) J̃(·, ξ) is continuous for each ξ.

(A4) For each 0 < M < ∞ and each 0 < T < ∞, the set

{
sup
|θ|≤M

|J̃(θ, ξn)| : n ≤ m(T )

}
is

uniformly integrable.

(A5) For each θ in a bounded set and for each T <∞,

sup
n

m(T+tn)−1∑
j=n

1

j

√
E

∣∣∣∣Ejωj(θ, ξj)2kj

∣∣∣∣ <∞, and

lim
n

sup
0≤p≤m(T+tn)

E|νnp | = 0,

where

νnp = (n+p)

m(T+tn)+p−1∑
j=n+p

1

2jkj
En+p[ωj(θn+p+1, ξj)−ωj(θn+p, ξj)], for 0 ≤ p ≤ m(T + tn).

Then θn(·) converges weakly to θ(·) and is a solution of the ordinary differential equation

θ̇ = ∇J(θ),

provided that the equation has a unique solution for each initial condition.
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To prove the theorem, we need the following lemma which was proved in Song, Yin and

Zhang [38].

Lemma 4.3.1. Let qv(·) be a smooth function such that

qv(θ) =

 1 if θ ∈ Sv,

0 if θ ∈ Rr − Sv+1.

Then under the conditions (A1) to (A5),

E

∣∣∣∣∣∣
m(t+s+tn)−1∑
j=m(t+tn)

1

j

ωj
2kj

qv(θvj )

∣∣∣∣∣∣
2

→ 0 as n→ ∞, (4.6)

E

∣∣∣∣∣∣
m(t+s+tn)−1∑
j=m(t+tn)

1

j

χj
2kj

qv(θvj )

∣∣∣∣∣∣
2

→ 0 as n→ ∞, (4.7)

and
m(t+s+tn)−1∑
j=m(t+tn)

1

j

[
ωj
2kj

+
χj
2kj

]
qv(θvj ) → 0 (4.8)

with probability one as n→ ∞ and the convergence is uniform in t.

Proof of Theorem 4.3.1. The idea of the proof is to first show that the theorem holds for

a v-truncation of θn(·), and then let v → ∞ to prove that θn(·) also hold.

Consider the truncated sequence of θn,

θvn+1 = θvn +

[
1

n
∇J(θn) +

1

n

ωn
2kn

+
1

n

χn
2kn

+
1

n
βn

]
qv(θvn). (4.9)

Then, similar to (4.4), the interpolation of θvn are

θ0,v(t) = θvn for t ∈ [tn, tn+1),

θn,v(t) = θ0,v(t+ tn).

The proof of the theorem for θn,v(t) is divided into two parts. First, we show the tightness

of θn,v(t). Second, we show that the limit of θn,v(t) is a solution of the martingale problem

with a certain operator.
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Consider the separation of noise and bias of θn,v(t),

θn,v(t) = θ̃n,v(t) +

m(t+tn)−1∑
j=1

1

j

[
ωj
2kj

+
χj
2kj

]
qv(θvj ),

where

θ̃n,v(t) =

m(t+tn)−1∑
j=1

1

j
[∇J(θvj ) + βj]q

v(θvj ).

Let t, s ≥ 0 with 0 ≤ s ≤ ζ, for any ζ > 0. We have

E|θ̃n,v(t+ s)− θ̃n,v|2 ≤ KE

∣∣∣∣∣∣
m(t+s+tn)−1∑
j=m(t+tn)

1

j
[∇J(θvj ) + βj]q

v(θvj )

∣∣∣∣∣∣
2

. (4.10)

By the boundedness of {θvj }, we obtain

E

∣∣∣∣∣∣
m(t+s+tn)−1∑
j=m(t+tn)

1

j
∇J(θvj )qv(θvj )

∣∣∣∣∣∣
2

≤ K[(t+ s+ tn)− (t+ tn)]
2

≤ Ks2

≤ Kζ2.

(4.11)

Similarily,

E

∣∣∣∣∣∣
m(t+s+tn)−1∑
j=m(t+tn)

1

j
βjq

v(θvj )

∣∣∣∣∣∣
2

≤ Ks2 ≤ Kζ2. (4.12)

By (4.6) and (4.7) in Lemma 4.3.1, it is clear that

lim sup
n→∞

E|θn,v(t+ s)− θn,v(t)|2 = E|θ̃n,v(t+ s)− θ̃n,v(t)|2.

Using (4.10), (4.11) and (4.12) followed by letting ζ → 0, we get

lim
ζ→0

lim sup
n→∞

E|θn,v(t+ s)− θn,v(t)|2 = 0. (4.13)

Along with (4.8) in Lemma 4.3.1, {θn,v(·)} is tight by the criterion of tightness in p. 47 of

Kushner [28].

We now proceed to the second part of the proof for θn,v(·).
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On a complete separable metric space, tightness and sequential compactness are equiva-

lent thanks to Prohorov’s theorem. Since the sequence {θn,v(·)} is tight, there exist a weakly

convergent subsequence. Without loss of generality, we re-index the weakly convergent sub-

sequence as {θn,v(·)} with limit θv(·).

By Lemma 4.3.1, we have for each t, s ≥ 0,

θn,v(t+ s)− θn,v(t) =

m(t+s+tn)−1∑
j=m(t+tn)

1

j
[∇J(θvj ) + βj]q

v(θvj ) + o(1), (4.14)

where o(1) → 0 in probability uniformly in t. In addition, by the condition (A1) and a

truncated Taylor of βn, it can be shown that

βnq
v(θvn) = O(

k2n
kn

) = O(kn).

Therefore,

E

∣∣∣∣∣∣
m(t+s+tn)−1∑
j=m(t+tn)

1

j
βjq

v(θvj )

∣∣∣∣∣∣→ 0

as n→ ∞ and the convergence is uniform in t. Hence,

m(t+s+tn)−1∑
j=m(t+tn)

1

j
βjq

v(θvj ) → 0 (4.15)

in probability and uniformly in t as n→ ∞.

From the definition of tn and m(t) in (4.4), there exist an increasing sequence of positive

integer {bp} and a decreasing sequence of positive real numbers {αp} depends on n such that

m(t+ tn) ≤ bp ≤ bp+1 ≤ m(t+ tn + s)− 1 for any t, s > 0 and that

1

αp

bp+1−1∑
j=bp

1

j
→ 1 as n→ ∞. (4.16)



68

Let Γ denotes the set {p : m(t+ tn) ≤ bp ≤ bp+1 ≤ m(t+ s+ tn)}. Then

m(t+s+tn)−1∑
j=m(t+tn)

1

j
∇J(θvj )qv(θvj )

=
∑
Γ

bp+1−1∑
j=bp

1

j
∇J(θvj )qv(θvj )

=
∑
Γ

bp+1−1∑
j=bp

1

j
∇J(θvbp)q

v(θvbp) + o(1)

=
∑
Γ

∇J(θvbp)q
v(θvbp)αp

1

αp

bp+1−1∑
j=bp

1

j
+ o(1)

=
∑
Γ

∇J(θvbp)q
v(θvbp)αp + o(1)

(4.17)

by (4.16).

Combining (4.14), (4.15), (4.17) and Skorohod representation, for any bounded and con-

tinuous function g(·), continuously differentiable function h(·), any positive integer ι, any

ti ≤ t with i ≤ ι, it can be show that there is a sequence ε̃n of real numbers such that ε̃n → 0

as n→ ∞ and that

Eg(θn,v(ti) : i ≤ ι)[h(θn,v(t+ s))− h(θn,v(t))]

= Eg(θn,v(ti) : i ≤ ι)

[∑
Γ

αp∇h′(θvbp)q
v(θvbp)

]
+ ε̃n

→ Eg(θn,v(ti) : i ≤ ι)

∫ t+s

t

∇h′(θv(z))∇J(θv(z))qv(θv(z))dz

(4.18)

as n→ ∞. Moreover, the weak convergence and the Skorohod implies that

Eg(θn,v(ti) : i ≤ ι)[h(θn,v(t+ s))− h(θn,v(t))]

→ Eg(θv(ti) : i ≤ ι)[h(θv(t+ s))− h(θv(t))]
(4.19)
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as n→ ∞.

As a result, (4.18) and (4.19) lead to that θv(·) is a solution of the martingale problem

with operator given by

Lvh(θv) = ∇h′(θv)∇J(θv)qv(θv).

In other words, θv(·) is the solution of the truncated ordinary differential equation

θ̇v = ∇J(θv)qv(θv).

This finishes the proof of the theorem for {θn,v(·)} on arbitrary v. We can then let v → ∞,

and employ the technique developed on p. 284 of Kushner and Yin [29] to conclude the proof.

4.4 Numerical Examples

In this section, we investiage the numerical performance of our algorithm. In §4.4.1, we

simulate the sample paths with the same paramaters as those in the numerical examples

on chapter 2, then we apply the proposed algorithm on the sample paths to estimate the

threshold prices. This way, we can compare the results from our algorithm with those from

the theorethical approach in chapter 2. Subsequently, we generate sample paths with various

parameters, follow by applying the algorithm to see how the threshold prices change. In

§4.4.2, we demontrate the performance of our algorithm using real market data. A couple of

stocks that resemble mean reversion are considered.

4.4.1 Comparison to the Theoretical Results

We consider the same numerical example as in chapter 2. The example has the following

specifications,

a = 0.8, L = 2, σ = 0.5, ρ = 0.5, K = 0.01. (4.20)

Hence, the corrsponding mean reversion stochastic differential equation is represented by

dX(t) = 0.8(2−X(t))dt+ 0.5dWt. (4.21)
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We set X(0) = 2 and simulate 5000 sample trajectories for the solution of (4.21) by finite

different method of 10080 steps with step size
1

252
. This setup simulates 40 years of stock

prices with 252 trading days per year. Then we apply the stochastic approximation procedure

with 300 iterations to obtain the threshold prices (b∗0, b
∗
1, s

∗
1, s

∗
0) for each trajectory. We take

the sample mean of the 5000 sets of threshold prices and compare with the theoretical results

in chapter 2.

The theoretical results in chapter 2 are

(b0, b1, s1, s0) = (1.4053, 1.4065, 1.6052, 1.6079).

Since the asset price is given by S(t) = eX(t), the actual threshold prices are

(b0, b1, s1, s0) = (4.0767, 4.0816, 4.9789, 4.9923).

Compare with the results of the stochastic approximation proceduce on 5000 Monte Carlo

simulations,

(b∗0, b
∗
1, s

∗
1, s

∗
0) = (4.0017, 4.0758, 4.9957, 5.0949),

we can see that the results from those two approaches are quite close.

In what follows, we vary one of the parameters in (4.20) at a time and examine the

dependence of the threshold prices.

First we compute the threshold levels associated with varying L. Intuitively, larger L

would result higher threshold levels (b∗0, b
∗
1, s

∗
1, s

∗
0). These are confirmed by the results given

in Table 4.1. It can be seen that the quadruple (b∗0, b
∗
1, s

∗
1, s

∗
0) is monotonically increasing in

L. In addition, we listed the theoretical results (b0, b1, s1, s0) from chapter 2 for comparison.

Next, we vary a. A larger a implies larger convergence rate for Xt to reach the equilibrium

level L. It shows in Table 4.2 that the quadruple (b∗0, b
∗
1, s

∗
1, s

∗
0) is monotonically increasing in

a. Theoretical results (b0, b1, s1, s0) are also listed.
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Table 4.1: (b∗0, b
∗
1, s

∗
1, s

∗
0) with varying L.

L 1 1.5 2 2.5 3

b0 1.4107 2.2109 4.0767 4.1054 9.4593

b1 1.4988 2.22, 4.0816 6.9455, 9.4603

s1 1.8995 3.2752 4.9789 9.9513 14.6406

s0 1.9 3.372 4.9923 9.9513 16.1045

b∗0 1.1722 2.0244 4.0017 4.6783 8.9144

b∗1 1.2511 2.5577 4.0758 5.9718 11.5879

s∗1 1.6349 3.5478 4.9957 8.213 16.6667

s∗0 1.9096 4.0392 5.0949 10.1178 19.4266

Table 4.2: (b∗0, b
∗
1, s

∗
1, s

∗
0) with varying a.

a 0.6 0.7 0.8 0.9 1

b0 3.3248 3.988 4.0767 4.2203 4.4119

b1 3.3448 3.9928 4.0816 4.2203 4.4522

s1 4.3898 4.407 4.9789 5.3597 5.5445

s0 4.3903 4.4185 4.9923 5.3602 5.6423

b∗0 3.0288 3.3316 4.0017 4.3014 4.4994

b∗1, 3.2454 3.5244 4.0758 4.3492 4.5047

s∗1 3.7653 4.1168 4.9957 5.3913 5.6335

s∗0 3.9967 3275 5.0949 5.4374 5.6437
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Table 4.3: (b∗0, b
∗
1, s

∗
1, s

∗
0) with varying σ.

σ 0.3 0.4 0.5 0.6 0.7

b0 3.3835 3.7117 4.0767 4.1005 4.1741

b1 3.3835 3.7132 4.0816 4.1009 4.1758

s1 4.8192 4.8283 4.9789 5.7048 6.4708

s0) 4.8192 4.8288 4.9923 5.7048 6.6545

b∗0 3.3049 3.6562 4.0017 3.9806 4.1942

b∗1 3.6237 3.937 4.0758 4.2633 4.4473

s∗1 4.5033 4.6862 4.9957 5.367 6.0556

s∗0 4.8032 4.9592 5.0949 5.7218 6.3758

In Table 4.3, we vary the volatility σ. Larger σ implies greater range for the stock price.

Table 4.3 shows again that the quadruple (b∗0, b
∗
1, s

∗
1, s

∗
0) is increasing in σ. (b0, b1, s1, s0) are

the theorethical results from chapter 2.

Finally, we vary the discount rate ρ. The results in Table 2.4 show that (b∗0, b
∗
1, s

∗
1, s

∗
0)

decrease in ρ. (b0, b1, s1, s0) are listed for comparison.

After the comparisons of the results from the stochastic approximation proceduce with

those in chapter 2, it is clear that they have a great deal of resemblance. First, the dependence

of the threshold prices on parameters from both approaches match. They both change in the

same direction as the paramaters vary. Second, the value of the thredhold prices from both

approaches are very near.
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Table 4.4: (b∗0, b
∗
1, s

∗
1, s

∗
0) with varying ρ.

ρ 0.3 0.4 0.5 0.6 0.7

b0 4.7304 4.3732 4.0767 3.4511 2.7618

b1 4.7304 4.3807 4.0816 3.4511 2.7621

s1 6.949 5.9942 4.9789 4.5186 4.3654

s0 7.1735 6.0056 4.9923 4.5186 4.368

b∗0 4.9703 4.4956 4.0017 3.7101 3.0145

b∗1 4.8818 4.6552 4.0758 3.8498 3.2617

s∗1 6.6615 6.0917 4.9957 4.522 3.6625

s∗0 6.492 6.2817 5.0949 4.7104 3.9385

4.4.2 Results from Real Market Data

The major advantage of stochastic approximation algorithm over the theoretical approach in

chapter 2 is the unnecessity of model calibration and the computation time. Given the prices

of a stock in a period, if we want to find the threshold prices, we first need to calibrate the

model by using (1.7). Followed by the simulated annealing algorithm in appendix A to solve

a system of integral equations in (2.9). A result from this approach takes about two hours

to compute which is extremely unrealistic in practice. On the other hand, for stochastic

approximation algorithm, all we need is a sequence of historic prices, and the results can be

computed within 30 seconds. Moreover, the algorithm is simple and easy to implement, so

it is a much better choice on trading desks.

To demonstrate the performance of the algorithm, we search stock and time period that

the prices rememble mean reversion. Then we collect the daily closing prices of a qualify

stock within an eligible time period. We treat the first half of the data as a historic data,
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which are used to run the algorithm, and the last half of the data as a future data, which

are used to run the trading strategy base on the threshold prices from the algorithm. Since

the strategy assume an investor start with flat (holding no share), we have to make sure the

investor holds no share as well on the last trading day when we calculate the payoff. In other

words, if the net position is long one share on the last, one has to sell the share; if the net

position is short one share on the last day, one has to buy one share.

4.4.2.1 Example: Wal-Mart Stores, Inc.

In this example, we apply the proposed stochastic approximation algorithm on the stock

prices of Wal-Mart Stores, Inc. (WMT). Figure 4.1 shows the closing prices of each trading

day from Jan 3,2005 to Feb 29, 2008.

The experiment is carried out as follow. We first compute the optimal trading prices by

using stock prices of first 398 trading days (historic data). After the threshold prices are

obtained, we simulate the trading strategy on the stock prices of the remaining 397 trading

days (future data).

1. Based on the historic data in the first 398 trading days Jan 3, 2005 - Aug 1, 2006, we

run the algorithm with 600 iterations. The results for the optimal threshold prices are

b∗0 = 42.8648, b∗1 = 45.2162, s∗1 = 50.2103, s∗0 = 48.1956.

2. Using the trading prices above, we practice the trading strategy on the future 398

trading days Aug 2, 2006 - Feb 29, 2008. The total reward in the period is 12.0069.

Table 4.5 records the trading dates and prices.

4.4.2.2 Example: Aloca, Inc.

This example considers the stock prices of Alcoa, Inc. (AA) from Jan 4, 1999 to Oct 15,

2002. We apply the same algorithm to determine the threshold prices. Figure 4.2 shows the

closing prices of each trading day from Jan 4,1999 to Oct 15, 2002.
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Figure 4.1: Wal-Mart Jan 3, 2005 to Feb 29, 2008 (Courtesy of Yahoo Finance)

Table 4.5: Trading record of WMT stock from Aug 2, 2006 to Feb 29, 2008
Action Date Price

Sell 2006-09-14 48.37

Buy 2007-08-14 43.82

Buy 2007-09-05 42.45

Sell 2008-01-31 50.74

Sell 2008-02-01 51.18

Buy 2008-02-29 49.59
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Figure 4.2: Alcoa, Inc. Jan 4, 1999 to Oct 15, 2002 (Courtesy of Google Finance)
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Similar to Example 4.4.2.1, we compute the optimal trading prices by using stock prices

of first 475 trading days (historic data). After the threshold prices are obtained, we simulate

the trading strategy on the stock prices of the remaining 476 trading days (future data).

1. Based on the historic data in the first 475 trading days Jan 4, 1999 - Nov 16, 2000, we

run the algorithm with 600 iterations. The results for the optimal threshold prices are

b∗0 = 29.6517, b∗1 = 29.4765, s∗1 = 33.4387, s∗0 = 38.743.

2. Using the trading prices above, we practice the trading strategy on the future 476

trading days Nov 17, 2000 - Oct 15, 2002. The total reward in the period is 22.5896.

Table 4.6 records the trading dates and prices.

4.5 Concluding Remarks

The proposed stochastic approximation algorithm is meant to be an improvement of chapter

2. Compare to the solution of the theoretical method, the proximity of the results in the

numerical examples of this chapter indicates that stochastic approximation algorithm does

produce reliable estimation on finding optimal trading prices. In addition, it requires a lot less

effort (such as model calibration) and computation time. All it needs is historic prices. Most

importantly, the implementation is very simple. It is a great choice for automatic trading.

From the performance on the real market data, it shows that our algorithm is able to provide

reasonable guideline in a short period of time.

The algorithm is developed for mean reversion model. Although it does not required a

specific model, it does demand the price of the underlying stock to revert to an equilibrium

level. Otherwise, the results come from this algorithm would not be useful. Another caution

of using this algorithm is the initial guess. Once a sequence of historic prices is obtained,

one needs to observe the trajectory and make a reasonable initial guess. If the initial guess

is too much out of line, the algorithm does not give reasonable threshold prices. Since if the
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Table 4.6: Trading record of AA stock from Jan 4, 1999 to Oct 15, 2002
Action Date Price

Buy 17-Nov-00 27

Sell 19-Dec-00 33.5

Sell 7-Mar-01 39.29

Buy 20-Sep-01 28.61

Buy 21-Sep-01 28.3

Sell 23-Oct-01 33.75

Sell 23-Nov-01 38.8

Buy 15-Jul-02 29.2

Buy 16-Jul-02 28.76

Sell 15-Oct-02 21.65
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trajectory does not pass the initial guess prices, the algorithm cannot compute the pay off,

and thus the iteration cannot update the result.



Appendix A

Simulated Annealing Algorithm

Simulated annealing is a probabilistic optimization method used for locating global optimum

of a given objective function in an enormous search space. The concept comes from annealing

in material science, a process involving heating and controled cooling of a material in order

to harvest crystals with larger size and fewer defects.

The heat stimulates the atoms in the material and detaches them from their initial posi-

tion with local minimal internal energy. Then the atoms have a chance to ramble randomly

to higher energy states. The controled cooling allows the atoms to recrystalize. If the cooling

is slow enough, the nature can find a configuration of atoms with lower internal energy than

the initial one. The idea was first introduced in Metropolis et al. [34] and gradually become

popular on solving optimization problems such as the traveling saleman problem [8].

By analogy with this natural process, each iteration of the simulated annealing algorithm

generates a new point randomly. The distance of the new point from the current point

is based on a probability distribution with a scale proportional to the temperature. The

algorithm accept all new points that decrease the objective function, however it also accept

the new points that increase, with a determined probability. This is the reason that the

algorithm is suitable for global optimization. The algorithm avoids being trapped in a local

minima by accepting new points that raise the objective function. As the algorithm proceed,

an annealing schedule is defined to control the temperature drop until the algorithm is

terminated by some stopping conditions. In the next section, we describe the algorithm that

was used to solve (2.9) in chapter 2.

80
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A.1 Outline of the Algorithm

To solve the system of integral equations in (2.9) numerically, we find the point that mini-

mizes the `2 norm of the difference of the left and the right hand sides.

Let

L =



−y1(b1) y2(b1) y1(b1) 0

−y′1(b1) y′2(b1) y′1(b1) 0

0 −y2(b0) −y1(b0) y2(b0)

0 −y′2(b0) −y′1(b0) y′2(b0)



−1

eb1(1 +K)

eb1(1 +K)

eb0(1 +K)

eb0(1 +K)


,

R =



−y1(s0) y2(s0) y1(s0) 0

−y′1(s0) y′2(s0) y′1(s0) 0

0 −y2(s1) −y1(s1) y2(s1)

0 −y′2(s1) −y′1(s1) y′2(s1)



−1

es0(1−K)

es0(1−K)

es1(1−K)

es1(1−K)


and

θ = (b0, b1, s1, s0).

Then the objective function is

f(θ) = ‖L−R‖2 (A.1)

The following are the steps of the algorithm:

1. Choose an initial guess of the estimates θ0 and compute f(θ0). Initial temperature

t0 = (100, 100, 100, 100). Initial temperature parameter k0 = (1, 1, 1, 1). Reanneal

interval R = 100. Upper bound of the search space UB = (UB1, UB2, UB3, UB4).

Lower bound of the search space LB = (LB1, LB2, LB3, LB4).

2. Generates a point using Student’s t distribution generates a point based on the current

point and the current temperature using Student’s t distribution.

Let tn = (tn1 , t
n
2 , t

n
3 , t

n
4 ) be the current (nth iteration) temperature, θn = (θn1 , θ

n
2 , θ

n
3 , θ

n
4 )

and Y = (y1, y2, y3, y4) be a random vecter with yi ∼ N(0, 1). Then Ŷ = Y
‖Y‖2 is the
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unit vector of Y and

θn+1 = θn + tn ∗ Ŷ,

where ∗ is an entry-wise multiplication. If f(θn+1) < f(θn), θn+1 is accepted as the next

point. Otherwise, θn+1 can still be accepted by the following acceptance probability -

Boltzmann probability density.

Let u ∼ Uniform(0, 1) and ∆f = f(θn+1)− f(θn), if

B =
1

1 + e

∆f

max{tn}

> u,

then θn+1 is accepted, otherwise it is rejected.

3. After a new point is accepted, the algorithm lower the temperature by first increase

the temperature parameter. Let kn = (kn1 , k
n
2 , k

n
3 , k

n
4 ), hence kn+1 = kn + 1 = (kn1 +

1, kn2 + 1, kn3 + 1, kn4 + 1). Then we decrease the temperature by the following formula,

tn+1 = t0 ∗ 0.95kn+1 , (A.2)

again ∗ and the power operation are both entry-wise. The algorithm also stores the

best solution at this step.

4. Reannealing is performed after the number of points accepted by the algorithm reaches

R which is defined in step 1. This is another way to guarantee that the algorithm is not

trapped in a local minima. It raise temperature vector on each entry by first re-define

kn+1. Let

si = (UBi − LBi)
∂f(θ)

∂θi

∣∣∣∣
θi=θni

kn+1
i =

∣∣∣∣ln | t0itni max{s}
si

|
∣∣∣∣

where tni and θni are the ith entry of the current temperature parameter and point

respectively, for i = 1, 2, 3, 4. If
t0i
tni

max{s}
si

is so small that it is less than the tolerance

Tol (which is discussed in the stopping conditions part) of the algorithm, then kn+1
i =

| ln(Tol)|. Hence, the temperature vector can be re-defined by (A.2).
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5. The algorithm stops when one of the following stopping conditions is met:

• The average change in value of the objective function in 500 × number of variables

= 2000 iterations is less than Tol = 10−6.

• The number of function evaluations exceeds 3000 × number of variables = 12000.



Appendix B

Alternative Proof of conditions (3.11) and (3.12)

Let Xt = eYt . Then v0(Xt, 1) = v0(Yt, 1) and Yt = ln(Xt). By the generalized Ito-Doeblin

formula (1.8),

dYt = (µ(αt)− 1
2
σ2(αt))dt+ σ(αt)dWt +Q ln(Xt)

= (µ(αt)− 1
2
σ2(αt))dt+ σ(αt)dWt,

since Q ln(Xt) = 0. Then the generator G of Yt is given by

Gf(y, α) = 1

2
σ2(α)

∂2f

∂y2
dt+ (µ(α)− 1

2
σ2(α))

∂f

∂y
+Qf(x, ·)(α),

where Qf(x, ·)(α) is the same as that in (3.4). The HJB conditions in (3.6) becomes



ρv1(y, 1)− Gv1(y, 1) = 0,

ρv0(y, 2)− Gv0(y, 2) = 0,

v0(y, 1)− v1(y, 1) + ey(1 +K) = 0,

v1(y, 2)− v0(y, 2)− ey(1−K) = 0,

ρv0(y, 1)− Gv0(y, 1) > 0,

ρv1(y, 2)− Gv1(y, 2) > 0,

v1(y, 1)− v0(y, 1)− ey(1−K) > 0,

v0(y, 2)− v1(y, 2) + ey(1 +K) > 0.

(B.1)

From the first two equations of (B.1), we get

ρv1(y, 1) =
σ2
1

2

∂2

∂y2
v1(y, 1) + (µ1 −

σ2
1

2
)
∂

∂y
v1(y, 1) + λ1(v1(y, 2)− v1(y, 1)) (B.2)

and

ρv0(y, 2) =
σ2
2

2

∂2

∂y2
v0(y, 2) + (µ2 −

σ2
2

2
)
∂

∂y
v0(y, 2) + λ2(v0(y, 1)− v0(y, 2)). (B.3)

84
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Substitute the forth equation of (B.1) into (B.2) and the thirth equation of (B.1) into (B.3),

we obtain

(ρ+ λ1)v1(y, 1) =
σ2
1

2

∂2

∂y2
v1(y, 1) + (µ1 −

σ2
1

2
)
∂

∂y
v1(y, 1) + λ1(v0(y, 2) + ey(1−K))

and

(ρ+ λ2)v0(y, 2) =
σ2
2

2

∂2

∂y2
v0(y, 2) + (µ2 −

σ2
2

2
)
∂

∂y
v0(y, 2) + λ2(v1(y, 1)− ey(1 +K)).

As a result,

v0(y, 2)

=
1

λ1

(
(ρ+ λ1)v1(y, 1)−

σ2
1

2

∂2

∂y2
v1(y, 1)− (µ1 −

σ2
1

2
)
∂

∂y
v1(y, 1)− λ1e

y(1−K)

) (B.4)

and

v1(y, 1)

=
1

λ2

(
(ρ+ λ1)v0(y, 2)−

σ2
2

2

∂2

∂y2
v0(y, 2)− (µ2 −

σ2
2

2
)
∂

∂y
v0(y, 2)− λ2e

y(1 +K)

)
.

(B.5)
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Next, we want to find the conditions for ρv0(y, 1)−Gv0(y, 1) > 0 and ρv1(y, 2)−Gv1(y, 2) >

0 which lead to (3.11) and (3.12). By (B.4), we have

ρv0(y, 1)− Gv0(y, 1)

= −σ
2
1

2

∂2

∂y2
v0(y, 1) + (

σ2
1

2
− µ1)

∂

∂y
v0(y, 1) + (λ1 + ρ)v0(y, 1)− λ1v0(y, 2)

= −σ
2
1

2

∂2

∂y2
v0(y, 1) + (

σ2
1

2
− µ1)

∂

∂y
v0(y, 1) + (λ1 + ρ)v0(y, 1)

−
(
(ρ+ λ1)v1(y, 1)−

σ2
1

2

∂2

∂y2
v1(y, 1) + (µ1 −

σ2
1

2
)
∂

∂y
v1(y, 1) + λ1e

y(1−K)

)

=
σ2
1

2
(
∂2

∂y2
v1(y, 1)−

∂2

∂y2
v0(y, 1)) + (

σ2
1

2
− µ1)(

∂

∂y
v0(y, 1)−

∂2

∂y2
v1(y, 1))

+(λ1 + ρ)(v0(y, 1)− v1(y, 1)) + λ1e
y(1−K)

=
σ2
1

2
ey(1 +K) + (

σ2
1

2
− µ1)(−ey(1 +K)) + (λ1 + ρ)(−ey(1 +K)) + λ1e

y(1−K)

= ey((µ1 − ρ)(1 +K)− 2λ1K).

Therefore, ρv0(y, 1)− Gv0(y, 1) > 0 implies that

(µ1 − ρ)(1 +K)− 2λ1K > 0

which is condition (3.11).

Similarly, by (B.3), we can show that

ρv1(y, 2)− Gv1(y, 2) = ey((ρ− µ2)(1−K)− 2λ2K).

In addition, ρv1(y, 2) − Gv1(y, 2) > 0 implies that (ρ − µ2)(1 − K) − 2λ2K > 0 which is

condition (3.12). This completes the proof.
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