
A Multivariate Spline Approach to the Maxwell Equations

by

Clayton Mersmann

(Under the direction of Dr. Ming-Jun Lai)

Abstract

We investigate the application of multivariate splines (2D and 3D) to the Maxwell

equations. Basic properties of spline functions and various traditional finite element

formulations of the Maxwell equations for numerical analysis are reviewed. We find

that a Helmholtz-type formulation is well suited for traditional node-based spline anal-

ysis. Consequently, we study multivariate spline solutions to the Helmholtz equation

with high wave number, a setting that poses numerical challenges which are well met

by a new implementation of multivariate spline code.

We extend this study to solve Maxwell boundary value problems in both poten-

tial and Helmholtz-type formulations. We modify the traditional spline smoothness

conditions to deal with domain inhomogeneities in a novel way. Our spline implemen-

tation with arbitrary degree and modified smoothness conditions has the potential to

address a variety of difficulties left unsolved by traditional nodal-based finite element

methods.

Index words: Numerical, splines, partial differential equations, Helmholtz,
Maxwell



A Multivariate Spline Approach to the Maxwell Equations

by

Clayton Mersmann

B.A., University of Georgia, 2013

M.A.M.S., University of Georgia, 2016

A Dissertation Submitted to the Graduate Faculty

of The University of Georgia in Partial Fulfillment

of the

Requirements for the Degree

Doctor of Philosophy

Athens, Georgia

2019



c©2019

Clayton Mersmann

All Rights Reserved



A Multivariate Spline Approach to the Maxwell Equations

by

Clayton Mersmann

Approved:

Major Professor: Ming-Jun Lai

Committee: Malcolm Adams
Edward Azoff
Juan Gutierrez

Electronic Version Approved:

Suzanne Barbour
Dean of the Graduate School
The University of Georgia
August 2019



Acknowledgments

I am grateful to Dr. Ming-Jun Lai for his guidance and throughout this process; to

my family for their unconditional support and encouragement; to my wife Laura for

her patience and love; to my friends in the UGA math department who have helped

me many times and in many ways; and to all my teachers who have taught me well

over the years.

iv



Contents

Acknowledgments iv

1 Introduction 1

1.1 Motivation of Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Opportunities for a Multivariate Spline Approach . . . . . . . . . . . 3

2 Mulitvariate Splines and Their Properties 10

2.1 Bivariate Splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Trivariate Splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 The Maxwell Equations 29

3.1 A Brief History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Modern Formulation of Maxwell’s Equations . . . . . . . . . . . . . . 34

3.3 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 The Mathematics of the Maxwell Equations . . . . . . . . . . . . . . 45

4 The Helmholtz Equation 56

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 The Well-Posedness of the Helmholtz BVP . . . . . . . . . . . . . . . 61

4.3 On Spline Weak Solution to Helmholtz Equation . . . . . . . . . . . . 78

4.4 Convergence of Spline Weak Solutions . . . . . . . . . . . . . . . . . . 84

4.5 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

v



5 Numerical Solutions of the Helmholtz Equation 94

5.1 Introduction to Numerical Results . . . . . . . . . . . . . . . . . . . . 94

5.2 Reporting Basic Results . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3 Numerical Investigation of Dispersion Error . . . . . . . . . . . . . . 108

6 Numerical Solutions of the Maxwell Equations 116

6.1 Shielded Microstrip . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.2 Coaxial Join . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.3 A Bivariate Spline Analysis of the TEM mode of a Parallel Plate

Waveguide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.4 Wave Equation with Time-Periodic Source Terms . . . . . . . . . . . 153

References 157

vi



List of Figures

1.1 Flux lines resulting from inductively coupled wire coils . . . . . . . . 2

3.1 Gaussian box for boundary conditions . . . . . . . . . . . . . . . . . . 41

3.2 Amperian loop for boundary conditions . . . . . . . . . . . . . . . . . 43

5.1 Real and imaginary part of the spline solution us ∈ S1
9 with wave

number 100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.2 Spline solution s ∈ S1
5 to non-convex Helmholtz problem with exact

solution u = Jξ(kr) cos(ξθ), with ξ = 1 . . . . . . . . . . . . . . . . . 102

5.3 Spline solution s ∈ S1
5 to non-convex Helmholtz problem with exact

solution u = Jξ(kr) cos(ξθ), with ξ = 3/2. . . . . . . . . . . . . . . . . 103

5.4 Spline solution s ∈ S1
5 to non-convex Helmholtz problem with exact

solution u = Jξ(kr) cos(ξθ), with ξ = 2/3 . . . . . . . . . . . . . . . . 103

5.5 Spline solution s ∈ S1
10 to the non-convex Helmholtz problem with

large wave number . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.6 2D versus 3D matrix density comparison . . . . . . . . . . . . . . . . 105

5.7 2D versus 3D error versus degrees of freedom . . . . . . . . . . . . . . 107

5.8 The pollution effect for bivariate splines of low degree . . . . . . . . . 110

5.9 The pollution effect for bivariate splines of high degree . . . . . . . . 111

5.10 The pollution effect for trivariate splines of various degree . . . . . . 112

5.11 Comparison of bivariate spline solutions to Poisson and Helmholtz BVP113

vii



5.12 Relative H1 seminorm errors for C1 and C0 spline solutions in Sr6 to

the Helmholtz BVP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.13 Relative H1 seminorm errors for C2,C1 and C0 spline solutions in Sr9

to the Helmholtz BVP . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.1 A schematic of a shielded microstrip wavequide . . . . . . . . . . . . 117

6.2 Shielded Microstrip: A contour plot of the electric potential and its

underlying triangulation . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.3 Shielded Microstrip: A contour plot of the electric potential and its

underlying triangulation over the full cross-section . . . . . . . . . . . 121

6.4 Shielded Microstrip: Computed Electric Field . . . . . . . . . . . . . 121

6.5 Shielded Microstrip: Averaged Electric Field . . . . . . . . . . . . . . 122

6.6 Coaxial Join: Triangulation of region of interest . . . . . . . . . . . . 123

6.7 Plots of numerical solution to BVP with exact solution u = y sin(π
3
x)

and error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.8 Coaxial Join: Contour plot of equipotential lines, top, and computed

electric field, bottom . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.9 Schematic of a parallel plate waveguide with a material discontinuity 127

6.10 A schematic and triangulation of the waveguide considered in 6.3.32

from Jin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.11 Contour plots of the real and imaginary part of the spline solution to

boundary value problem 6.3.32 with εr = 1 . . . . . . . . . . . . . . . 138

6.12 The finite element solutions to 6.3.32 from Jin . . . . . . . . . . . . . 140

6.13 Contour plots of the real and imaginary parts of the spline solution

s ∈ S1
5 to 6.3.32 for ε2 = 4 . . . . . . . . . . . . . . . . . . . . . . . . 141

6.14 Contour plots of the real and imaginary parts of the spline solution

s ∈ S1
5 to 6.3.32 for ε2 = 4− 1i . . . . . . . . . . . . . . . . . . . . . . 141

viii



6.15 Contour plots of the real and imaginary parts of the spline solution

s ∈ S1
5 to 6.3.32 for ε2 = 4− 10i . . . . . . . . . . . . . . . . . . . . . 141

6.16 Comparison of the plots of |R| and |T | from the spline solution s ∈ S1∗
5

and the plots from Jin. . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.17 The plots of the |R| and |T | computed from the spline solutions in S1∗
5

as the wavenumber k varies from 0.2 to 0.9 with εr = 4. . . . . . . . . 145

6.18 The plots of the |R| and |T | computed from the spline solutions in S1∗
5

as the wavenumber k varies from 0.2 to 0.9 with lossy dielectrics. . . . 146

6.19 Triangulations of waveguide with dielectric obstructions of different

geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.20 The plots of |R| and |T | calculated as the height of the strip dielectrics

varies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.21 The plots of |R| and |T | calculated as the height of the triangular

dielectric varies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.22 Triangulation of waveguide with a complicated, multilayer dielectric

obstruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.23 A closeup view of the multilayer dielectric . . . . . . . . . . . . . . . 151

6.24 Time evolution of the height of the center point of the wave and snap-

shot of wave at t = 1.64 . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.25 Time evolution of time-periodic wave for exact and spline solution gen-

erated by various sampling frequencies. . . . . . . . . . . . . . . . . . 156

ix



List of Tables

1.1 Build times for bivariate spline matrices: S0
1 . . . . . . . . . . . . . . 7

1.2 Build times for bivariate spline matrices: S1
5 . . . . . . . . . . . . . . 8

1.3 Build times for trivariate spline matrices: S0
1 . . . . . . . . . . . . . . 9

1.4 Build times for trivariate spline matrices: S1
9 . . . . . . . . . . . . . . 9

3.1 Table summarizing the quantities involved in Maxwell’s original ex-

pression of his equations . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.1 Relative and maximum L2 and H1 seminorm errors for C1 spline so-

lutions of various degrees to the Helmholz BVP with wave number

k=200 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2 Accuracy of spline solutions in S1
12 to the Helmholtz equation with

wave number k = 500 . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.3 Accuracy of spline solution in S1
10 for various large wave numbers . . 100

5.4 Accuracy of spline solution in S1
12 for various large wave numbers . . 100

5.5 Comparison of the accuracy of spline method with piecewise constant

weak Galerkin method . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.6 Comparison of the accuracy of spline solution with piecewise constant

linear weak Galerkin method . . . . . . . . . . . . . . . . . . . . . . 101

5.7 Numerical results of spline approximation ∈ S1
5 over nonconvex domain

with ξ = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

x



5.8 Numerical results of spline approximation s ∈ S1
5 over nonconvex do-

main with ξ = 3/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.9 Numerical results of spline approximation s ∈ S1
5 over nonconvex do-

main with ξ = 2/3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.10 2D error results for fixed kh
p

. . . . . . . . . . . . . . . . . . . . . . . 105

5.11 Relative and maximum errors for C1 spline solutions of various degrees

to the 3D Helmholz BVP with wave number k=25 . . . . . . . . . . . 107

5.12 3D error results for fixed kh
p

. . . . . . . . . . . . . . . . . . . . . . . 108

6.1 Comparison of the accuracy of the interface condition enforced explic-

itly via modified spline smoothness conditions and variationally . . . 142

6.2 Absolute error in relation 6.3.34 for the reflection and transmission

coefficients |R| and |T | calculated from the spline solutions to 6.3.32 . 145

6.3 The results of 6.3.35 as the heights of the dielectric obstructions seen

in Fig. 6.19 vary from 0 to 3.5 . . . . . . . . . . . . . . . . . . . . . . 149

6.4 Error in the spline solutions’ satisfaction of the interface condition

6.3.27 for various dielectric geometries . . . . . . . . . . . . . . . . . 150

6.5 Error in relation 6.3.34 for R and T computed from the spline solution

in S1∗
5 (4) with dielectric εr = 4 . . . . . . . . . . . . . . . . . . . . . 151

6.6 Comparison of the spline modified smoothness condition to variational

enforcement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.7 Spline solutions to time-periodic wave equation based on FFT. . . . 155

xi



Chapter 1

Introduction

1.1 Motivation of Study

The importance of Maxwell’s equations is hard to overstate. Groundbreaking physi-

cist Richard Feynman has this to say:

“From a long view of the history of mankind–seen from, say, ten thousand years

from now–there can be little doubt that the most significant event of the 19th century

will be judged as Maxwell’s discovery of the laws of electrodynamics."

The equations have proved invaluable since their discovery, and have helped en-

gineers make great improvements in circuit design and efficiency, the invention and

performance of electric generators, in understanding and use of electromagnetic waves

for communication, and more. Their contribution is not finished, either; even today,

engineers rely on numerical models of full field solutions of Maxwell’s equations to

aid in the design of a new generation of electromagnetic devices.[66]

One exciting example is the goal of designing devices that will enable wireless

energy transfer. The applications of such a device would be nearly endless. Electric
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vehicles could be charged while they sit in a parking spot, without the hassle of

plugging them in; or if such a device could be implanted into a road, cars could charge

while they wait at a busy intersection. Medical patients with electronic implants could

recharge them wirelessly while they sit comfortably, avoiding the need to design such

devices around many of the current constraints of modern batteries.

Figure 1.1: Flux lines resulting from inductively coupled wire coils. Calculated by
ANSYS Maxwell[1].

Some short-distance wireless energy transfer already exists today[65], enabled by

various strategies and technologies arising from the Maxwell equations. One approach

is inductive coupling[44]. Here, power is transmitted though the coupling of two wire

coils (transmitter and receiver) via an induced magnetic field. Roughly, an oscillating

current is fed into the “transmitter" coil; this changing current distribution induces

a magnetic field, which in turn produces an electrical force on the “receiver" coil. If

the receiver coil is part of an electrical circuit, the force on the receiver coil can cause

current to flow, allowing a device to be powered or a battery to be charged.

The performance of such a device depends almost entirely on the mutual induc-

tance between the two coils, which can vary substantially depending on circuit design,

the magnetic core materials used, and the geometry of the coils themselves. As such,

accurate computer models are absolutely necessary for faster, cost-effective advance-

ment in this field. Indeed, proprietary software packages like ANSYS Maxwell that

offer full field finite element solutions of Maxwell’s equations (integrated with circuitry

models) are widely used in industry applications[1].
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Wireless energy transfer is just one example that demonstrates that computa-

tional electromagnetics (CEM) remains an active area of research. The work of this

dissertation does not yet address such exciting applications, but is rather a new and

fundamental approach to the the challenges of CEM. This work might have better

been done 20 years ago, before or alongside the establishment of edge elements in

the community. But,we hope it may still make a contribution today as a simple and

effective approach to numerical solutions of the Maxwell equations.

1.2 Opportunities for a Multivariate Spline Approach

Solving Maxwell’s equations with bivariate and trivariate splines offers potential ad-

vantages over the existing finite element framework:

(i) Inherent and favorable numerical properties. Most of these properties

are laid out in detail in [2]. The spline subspaces we implement numerically

have stable local bases, which afford them full approximation power[39]. Exact

formulas for inner products and triple products of spline functions are known;

there is no need for quadrature in our numerical scheme. The degree of the

basis functions used by our code is easily adjustable for problems where more

or fewer degrees of freedom are required. In short, multivariate splines may be

successfully implemented in any application where hp-FEM is. The Maxwell

equations, then, are due for a look through the spline lens.

(ii) Continuous or smooth approximations of field quantities arising from

the potential formulation of Maxwell’s equations. As detailed in the

following, the introduction of scalar and vector potentials for the field quantities

in Maxwell’s equations can lead to a simpler, decoupled system of PDEs. In the

electrostatic and magnetostatic cases, they reduce to well-understood Poisson

3



equations with Dirichlet or mixed boundary conditions. Because our spline

functions allow us to specify global smoothness of arbitrary order, we expect

greater retention of accuracy after differentiation of the potential functions to

obtain the electric and magnetic fields. Many common finite element schemes

use linear or quadratic elements that are only C0, so their approximations of

the field quantities in question may not even be continuous.

Certain specially constructed C1 finite elements[29][5] may offer the same ad-

vantage as a particular spline space like S1
5(4) or S1

9( ), but the spline imple-

mentation is flexible. We can require C1 smoothness (and higher) simply by

changing one or two parameters in our code. There is obvious utility in being

able to apply the same numerical formulation to solve boundary value problems

in different contexts, and some contexts may particularly benefit from approx-

imation by Cr elements for r ≥ 1. After all, the field quantities E and H are

infinitely differentiable in homogeneous regions.

(iii) Simple and explicit enforcement of interface conditions for problems

with inhomogeneous domains. Electromagnetic fields satisfy certain con-

tinuity conditions along the junctions of materials with different electrical and

magnetic properties. These conditions must be accounted for, then, in a numer-

ical analysis of the Maxwell equations in an inhomogeneous region. Traditional

nodal finite elements implement different strategies to take these constraints

into account. For specificity, let us suppose that there is an an inhomogeneity

in the electric permittivity of materials filling the computational domain of a

boundary value problem. Then, the laws of physics require that components of

the electric field normal to that material interface suffer a discontinuity related

to the ratio of permittivities. If an edge or face of the underlying triangula-

tion or tetrahedral partition is positioned along the material interface, nodal

elements can allow the necessary discontinuity to occur by introducing multiple

4



nodes on either side of the interface[53]. Spline functions have the flexibility to

take this approach, too (e.g., using in the formulation in [2], we could simply

not impose a continuity condition along the interface) but have the flexibil-

ity to impose the required discontinuity explicitly by modifying the standard

C0 condition accordingly. Similarly, if the problem is in potential formula-

tion, then in the normal derivative of the scalar potential across the material

interface experiences a jump. Here again, using multivariate splines, we can

explicitly enforce the appropriate discontinuity in the normal derivative of the

unknown using modified C1 smoothness conditions. (The same holds true in

problems where the BVP unknown is transverse to the material interface, like

in waveguide analysis.) Traditional nodal finite elements do not have this con-

trol; these conditions are satisfied only naturally in via the standard variational

formulations[33]. This is problematic, and can lead to spurious, non-physical

finite element solutions[33][31]. To our knowledge, the explicit enforcement of

these interface conditions via modified smoothness constraints like Equation

2.1.29 is original to this work.

(iv) A better response to the problem of spurious solutions? The problem of

non-physical solutions in finite element solutions to Maxwell problems has been

a source of difficulty and disagreement[55] for more than 40 years. In his first

paper on edge elements, Nédélec wrote[30] of his hope that these new elements

would have great utility in “approximating Maxwell’s equations while exactly

verifying one of the physical laws." Twenty years later, there was still funda-

mental disagreement about the root cause of the spurious solutions[32][55][33],

and whether the vector edge elements effectively addressed this cause or not.

In [54], Mur demonstrates that edge elements do allow spurious solutions, and,

moreover explained other problems with edge elements, noting that they are less

efficient than nodal elements and inflexible in their deployment. Other, more

5



recent works concur with these assessments[5][34], and yet edge elements have

become entrenched in the computational finite element community, appearing

ubiquitously in standard texts[36].

Do multivariate splines offer a straightforward way to eliminate the appearance

of non-physical solutions in nodal-based numerical analysis of Maxwell prob-

lems? Of course, there is agreement that a “correct” numerical formulation

must be used[55][32], but it seems that the modified spline smoothness condi-

tions original to this work may be able to rectify more traditional formulations

without the need for a new element framework. Indeed, this proposed solution

would satisfy the conditions required by Mur and Lager in [55]: i) the discretized

field should be expanded by functions that can ensure the continuity of the

field inside interface-free subdomains, and ii)“the expansions functions should

explicitly satisfy the interface conditions” and boundary conditions. Similarly,

modified smoothness conditions would address what Jin claims is the root cause

of spurious modes in an inhomogeneous waveguide problem in[33]. So, while we

certainly have more numerical work to do to verify that the spline method elim-

inates spurious solutions in various contexts and formulations, there is reason

to feel optimistic about the chances for success.

Of course, there have been many other approaches ([5][34], etc.) to address the

problem of spurious solutions, but none seem to have caught on as widely as

the edge elements. We do not try to give an exhaustive accounting of these

approaches, but instead concern ourselves with developing the theoretical un-

derpinnings and numerical tools for multivariate spline functions.

In the view of the author, the main contributions of this work are twofold.

(a) Improving and expanding the Matlab implementation of multivariate

spline code and extending the scope of application In 2007, Ming-Jun
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Table 1.1: Build times for the generation of matrices associated with bivariate spline
solutions in S0

1 to Helmholtz boundary value problems

Refinement Level Matrix Size Mass Time Stiffness Time Smoothness Time
6 24576 0.03 0.13 0.10
7 98304 0.01 0.43 0.39
8 393216 0.06 1.80 1.63
9 1572864 0.26 8.46 7.54
10 6291456 1.19 40.04 45.16

Lai, G. Awanou, and P. Wenston copyrighted a Matlab package for splines of

arbitrary degree and smoothness over arbitrary triangulations for applications

to data fitting and numerical solutions of PDEs[2]. Since that time, many of Dr.

Lai’s students have used this package in their research, making modifications

and improvements as needed[14][13][27][48][24]. In particular, G. Slavov wrote

code to generate a C0 bivariate spline basis over an arbitrary triangulation for

use with his time-stepping application in [63]. His ideas helped me to refine

my own vectorized implementation of code that generates a C0 basis for bi-

or trivariate splines, and that is applicable to boundary value problems with

Dirichlet, Neumann, Robin, or mixed boundary conditions.

Additionally, I implemented a new vectorized conceptualization of spline code

for data fitting and solutions to PDEs. This includes vectorized generation of

mass, stiffness, and even smoothness matrices in the 2D and 3D setting. The

vectorized implementation scales well with refinement, up to the limits of the

computer’s RAM, and is generalized in that a spline of arbitrary degree and

smoothness may be produced simply by changing the appropriate parameters.

The result is a far more efficient Matlab implementation, whose runtimes com-

pare favorably with some vectorized finite element implementations found in

the literature (e.g. [60]). For sake of comparison, we include a few tables of

7



Table 1.2: Build times for the generation of matrices associated with bivariate spline
solutions in S1

5 to Helmholtz boundary value problems

Refinement Level Matrix Size Mass Time Stiffness Time Smoothness Time
4 10752 0.03 0.08 0.02
5 43008 0.01 0.14 0.06
6 172032 0.04 0.59 0.24
7 688128 0.16 2.44 1.07
8 2752512 0.67 18.27 4.26

runtimes (Tables 1.1 - Tables 1.4). There, the “Matrix Size” column refers to the

number of columns in the matrices. The data were collected on a 2017 Macbook

Air with 8GB RAM and a 2.2GHz processor, running MATLAB 2019a.

The new implementation extends the scope of multivariate spline functions to

new, more numerically challenging settings, like solving the (indefinite) Helmholtz

equation with high wavenumber (Chapter 4), and enables splines to be applied

competitively in other settings where other finite elements are already estab-

lished.

(b) Bringing multivariate splines to the Maxwell Equations and the Maxwell

equations to multivariate splines It is the opinion of the author that the

application of spline functions to the Maxwell equations is a step forward both

for splines and for the study of problems arising from the equations. The poten-

tial for multivariate spline functions to address some of the challenges that arise

when solving the Maxwell equations numerically has been mentioned above, and

will be discussed in more detail in Chapter 3. On the other hand, the potential

utility that the spline modified conditions offer a mathematical scientist gives

a convincing reason for the world to care about multivariate splines over any

other finite element.
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Table 1.3: Build times for the generation of matrices associated with trivariate spline
solutions in S0

1 to Helmholtz boundary value problems

Refinement Level Matrix Size Mass Time Stiffness Time Smoothness Time
1 192 0.00 0.01 0.00
2 1536 0.00 0.01 0.01
3 12288 0.00 0.08 0.07
4 98304 0.01 0.61 0.54
5 786432 0.12 5.72 4.56

Table 1.4: Build times for the generation of matrices associated with trivariate spline
solutions in S1

9 to Helmholtz boundary value problems

Refinement Level Matrix Size Mass Time Stiffness Time Smoothness Time
0 1320 0.10 0.14 0.02
1 10560 0.06 0.43 0.04
2 84480 0.21 3.85 0.12
3 675840 1.62 146.04 1.42
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Chapter 2

Mulitvariate Splines and Their

Properties

2.1 Bivariate Splines

2.1.1 Barycentric Coordinates in R2 and the Bernstein Basis

Consider a triangle T = [v1, v2, v3], vi ∈ R2. We define the barycentric coordinates

(b1, b2, b3) of a point (xo, yo) ∈ R2. These coordinates are the solution to the following

system of equations

b1 + b2 + b3 = 1 (2.1.1)

b1v1,x + b2v2,x + b3v3,x = xo (2.1.2)

b1v1,y + b2v2,y + b3v3,y = yo, (2.1.3)

and are nonnegative if (xo, yo) lies in the interior of T . The barycentric coordinates are

then used to define the Bernstein basis polynomials of degree d. These polynomials
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arise from the terms in the expansion

1 = (b1 + b2 + b3)d (2.1.4)

and take the form

Bd
i,j,k(x, y) :=

d!

i!j!k!
bi1(x, y)bj2(x, y)bk3(x, y), i+ j + k = d. (2.1.5)

In light of 2.1.4, it is clear that the Bd
ijk form a partition of unity. Associated with

each basis function is a special point ξijk in triangle T where Bd
ijk finds its maximum.

These points are called domain points

Dd,T := {ξijk :=
iv1 + jv2 + kv3

d
}i+j+k=d. (2.1.6)

Each BT
ijk is a polynomial of degree d, and collectively, they form a basis for the

space Pd of polynomials of degree d over T . Therefore we can represent all P ∈ Pd

in B-form:

P =
∑

i+j+k=d

pijkBijk, (2.1.7)

where the B-coefficients pijk are uniquely determined by P . The basis formed by Bd
ijk

is stable in that ||PT ||∞ is “comparable” [39] to the infinity norm of the coefficient

vector {pijk} of PT :

Theorem 2.1.1. Let PT be a polynomial written in B-form 2.1.7 with coefficient

vector p. Then

||p||∞
K

≤ ||p||T ≤ ||p||∞, (2.1.8)

where K is a constant depending only on d.
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The constant K is easily computable given d. This stability leads to desirable

numerical properties, and important approximation results like 2.1.33.

2.1.2 Bivariate Splines on Triangulations

Given a polygonal region Ω ⊂ R2, a collection ∆ := {T1, ..., Tn} of triangles is an

ordinary triangulation of Ω if Ω = ∪ni=1Ti and if any two triangles Ti, Tj intersect at

most at a common vertex or a common edge.

We are now ready to define the spline space

S0
d := {s ∈ C0(Ω) : s|Ti ∈ Pd}, (2.1.9)

where Ti is a triangle in a triangulation 4 of Ω, and give a parametrization for s ∈ S0
d

using the concept of domain points.

The set of domain points over 4 is

Dd,4 :=
⋃
T∈4

Dd,T , (2.1.10)

where points on vertices and edges shared by adjacent triangles are included only

once. Each spline s ∈ S0
d is uniquely associated with its set of coefficients {cξ}ξ∈Dd,4

s|T =
∑
ξ∈Dd,T

cξB
T,d
ξ , (2.1.11)

where the superscript T indicates that Bd
ξ is generated from triangle T .

By specifying an order to the set of triangles and domain points, we can think of

this coefficent set as a vector. The rule for ordering domain points is different in this

dissertation than in [39], which uses lexicographical order. Our rule to get the “next"

domain point after ξijk is to decrement i while incrementing j; if this is not possible,

increment k while resetting i to d-k and j to 0. For example, the domain points and
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coefficients for d = 3 are ordered thusly:

c300, c210, c120, c030, c201, c111, c021, c102, c012, c003. (2.1.12)

We use the continuous spline space 2.1.9 to define

Srd(4) := Cr(Ω) ∩ S0
d(4), (2.1.13)

the spline space of degree d and smoothness r ≥ 0 over triangulation 4. Spline

functions in Srd(4) are expressible in B-form as in 2.1.11, but their coefficients cξ are

subject to additional relations. We include more detailed information about spline

smoothness here because of its relevance to the dissertation in dealing with inhomoge-

neous domains, particularly at the junction of materials with different electromagnetic

properties.

The de Casteljau algorithm is helpful for computing the derivatives of polynomials

in B-form, and for understanding how to enforce continuity in the derivative of a

piecewise polynomial across a shared triangle edge. Consider a polynomial P in

B-form: P (x, y) =
∑

i+j+k=d cijkB
d
ijk(x, y). We then define the recurrence relation

Bd
ijk = b1B

d−l
i−1,j,k + b2B

d−l
i,j−1,k + b3B

d−l
i,j,k−1, for all i+ j + k = d, (2.1.14)

where all term with negative subscripts are taken to be 0, and

c
(0)
ijk := cijk. (2.1.15)

Then, for ` = 1, ..., d, we have

c
(`)
ijk(b1, b2, b3) = b1c

(`−1)
i+1,j,k + b2c

(`−1)
i,j+1,k + b3c

(`−1)
i,j,k+1. (2.1.16)
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Letting u = (x, y), we can finally write

P (u) =
∑

i+j+k=d−`

c
(`)
ijkB

d−`
ijk (u). (2.1.17)

Suppressed in the notation here and in [39], but crucial for application, is the fact that

the c(`)
ijk expressed in 2.1.15 are functions of the vector (b1, b2, b3), whose components

themselves are functions of position (x, y).

Let u, v ∈ R2 be represented in barycentric coordinates by (α1, α2, α3) and (β1, β2, β3)

respectively. Then the vector a = u − v is given in barycentric coordinates by

ai = αi − βi, and the derivative in that direction is given by

DaB
d
ijk = d

(
a1B

d−l
i−1,j,k + a2B

d−l
i,j−1,k + a3B

d−l
i,j,k−1

)
(2.1.18)

for any i+ j + k = d. A straightforward proof is in [39]. It follows immediately that

DaP = d
∑

i+j+k=d−1

(
c

(1)
ijk(a)Bd−1

ijk

)
. (2.1.19)

Theorem 2.1.2 gives linear conditions for two Bernstein polynomials to join smoothly

across the edge between two adjacent triangles. It is taken almost verbatim from [39]

which also contains an elegant proof and using ideas from the de Castlejau algorithm.

We formulate the following corollary here, which is utilized to generate the numerical

results in the following.

Theorem 2.1.2. Let T1 := [v1, v2, v3] and T2 := [v2, v1, v4] be triangles sharing the

edge e = [v1, v2]. Let

P :=
∑

i+j+k=d

cijkB
d
ijk (2.1.20)
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and

Q :=
∑

i+j+k=d

rijkR
d
ijk (2.1.21)

be the degree d polynomials defined over each triangle and Bijk and Rijk be the Bern-

stein basis polynomials defined over T1 and T2 respectively. Suppose a is any direction

not parallel to e and n = 0, ..., r ≤ d. Then

D(n)
a P (v) = D(n)

a Q(v), ∀v ∈ e (2.1.22)

if and only if

rijn =
∑

ν+µ+κ=n

cj+ν,i+µ,κB
n
νµκ, j + k = d− n (2.1.23)

Corollary 2.1.3. Let α := (α1, α2, α3) be the point v4 expressed in in the barycentric

coordinates of T1. Then the function S formed by the joining of P and Q across e

will be C0 if and only if

rij0 = cji0, i+ j = d (2.1.24)

and C1 if and only if 2.1.24 holds and

rij1 = α1cj+1,i,0 + α2cj,i+1,0 + α3cj,i,1, i+ j = d− 1. (2.1.25)

The C1 condition has a beautiful geometric interpretation. Take the points formed

by considering cijk as a graph over ξijk. Then 2.1.25 is equivalent to requiring these

(3-dimensional) points to be coplanar.

For use in solving the Maxwell equations over inhomogeneous domains, we formu-

late here a new, modified smoothness condition which guarantees a specific disconti-
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nuity (e.g. ε1 ∂u1

∂n
= ε2

∂u2

∂n
for nonzero quantities) in the normal derivative of a spline

function across an edge:

Theorem 2.1.4 (Modified Smoothness Condition). Let T1 := [v1, v2, v3] and T2 :=

[v2, v1, v4] be triangles sharing the edge e = [v1, v2]. Let

P :=
∑

i+j+k=d

pijkB
d
ijk (2.1.26)

and

Q :=
∑

i+j+k=d

qijkR
d
ijk (2.1.27)

be the degree d polynomials defined over each triangle and Bijk and Rijk be the Bern-

stein basis polynomials defined over T1 and T2 respectively. Suppose n is the unit

vector normal to e and pointing from T2 into T1 whose barycentric coordinates with

respect to T1 and T2 are α = (α1, α2, α3) and β = (β1, β2, β3). Then P and Q join

continuously along e with

ε1
∂P (v)

∂n
= ε2

∂Q(v)

∂n
, ∀v ∈ e (2.1.28)

if and only if

pij0 = qji0, i+ j = d

ε1α3pij1 = (ε2β1 − ε1α2)qj+1,i,0 + (ε2β2 − ε1α1)qj,i+1,0 + β3qji1, i+ j = d− 1

(2.1.29)

Proof. The proof is straightforward and constructive. As is proved in [39], 2.1.29 en-

sures the continuity of the spline function across e and the continuity of the directional
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derivative along e. Then, making use of 2.1.19, 2.1.28 implies

∑
i+j=d−1

ε1
(
p̃

(1)
ij0(α)Bd−1

ij0

)
=

∑
i+j+0=d−1

ε2
(
q̃

(1)
ij0(β)Rd−1

ij0

)
, (2.1.30)

where p̃(0)
ijk = pijk and p̃(1)(α) are the de Castlejau iterates as in Equations 2.1.15 and

2.1.16 (likewise for q̃). It is clear from 2.1.5 that Bd−1
ij0 = Rd−1

ji0 , and so it follows that

ε1p̃
(1)
ij0(α) = ε2q̃

(1)
ji0(β). (2.1.31)

Expanding according to 2.1.16, we have

ε1 (α1pi+1,j,0 + α2pi,j+1,0 + α3pi,j,1) = ε2 (β1qj+1,i,0 + β2qj,i+1,0 + β3qj,i,1) ;

utilizing 2.1.29 then yields the desired result:

ε1α3pi,j,1 = (ε2β1 − ε1α2)qj+1,i,0 + (ε2β2 − ε1α1)qj,i+1,0 + β3qj,i,1.

As is apparent in 2.1.23, smoothness conditions across a given edge for any r are

linear constraints. Thus, for a matrix A whose rows are determined by the linear

constraints arising from 2.1.24 and 2.1.25, a spline s with coefficient vector c over

triangulation 4 which satisfies a set of smoothness conditions T belongs to the set

STd = {s ∈ S0
d(4) : Ac = 0}. (2.1.32)

This matrix representation of smoothness conditions is used repeatedly in our numer-

ical experiments.
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For applications to PDEs, we also need information about the approximation

properties of spline functions. The following is Theorem 5.19 in [39].

Theorem 2.1.5. Suppose that 4 is a regular triangulation of a polygonal domain Ω.

For every u ∈ Wm+1
2 (Ω), there exists a quasi-interpolatory spline function Qd(u) ∈

S0
d(4) such that

‖Dα
xD

β
y (u−Qd(u))‖q,Ω ≤ K|4|m+1−α−β|u|m+1,q,Ω (2.1.33)

for 0 ≤ α + β ≤ m ≤ d, where K is a positive constant dependent only on d, the

domain Ω, and the triangulation.

The constant K depends on the triangulation in two ways: 1) via the minimum

angle of the triangulation and 2) through the integer constant ` which describes how

much a change in a coefficient in one triangle propagates throughout the triangula-

tion. Details can be found in Chapter 5 of [39]. The theorem 4.3.1 shows that the

space S0
d(4) has full approximation power in the q-norm as there exists a constant C

depending only on the triangulation 4 such that

infs∈S0
d
‖f − s‖q ≤ Cinfp∈PPd

‖f − p‖q, (2.1.34)

where PPd is the space of piecewise polynomials of degree d on 4.

The proof of Theorem 4.3.1 relies on the concept of a stable minimal determining

set, or MDS. For C0 splines, the domain points Dd,4 determine a stable MDS. It is not

the case that all splines with d > r have optimal approximation power (and therefore

do not have stable MDS ), but in Chapter 10 of [39], Lai and Schumaker construct a

stable MDS for a superspline subspace of Srd(4) for d ≥ 3r + 2. This shows that S1
d

has full approximation power when d ≥ 5, a fact important to the majority of the

numerical experiments that follow.
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The dimension of the C0 spline space is equal to the cardinality of the MDS. This

can easily be counted for a given triangulation by counting vertex domain points,

edge domain points which are not vertices, and then interior domain points. The

following finding is given in [39]:

Theorem 2.1.6. For any triangulation 4,

dimS0
d(4) = #(V ) + (d− 1)#(E) +

(
d− 1

2

)
#T, (2.1.35)

where V , E, and T are the vertices, edges, and triangles of 4 and #(·) denotes the

cardinality of the set.

Determining the dimension of spline spaces Srd(4) for r > 0 and d ≥ 3r + 2 is

more complicated, as the count depends on properties of the triangulation. We start

by defining σv by

σv :=
d−r∑
j=1

max(r + j + 1− jmv, 0), (2.1.36)

where mv denotes the number of different slopes of edges that meet at vertex v. Then

for σ :=
∑
σv summed over all interior vertices, we have the following theorem from

[39] for shellable triangulations–i.e. regular triangulations with no holes.

Theorem 2.1.7. Suppose 4 is a shellable triangluation. Then for all d ≥ 3r+ 2, we

have

dimSrd(4) =
d2 + r2 − r + d− 2rd

2
VB + (d− r)(d− 2r)VI+

−2d2 + 6rd− 3r2 + 3r + 2

2
+ σ. (2.1.37)
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As solutions to the Helmholtz equation with impedance boundary condition are

often complex, let us define a complex spline space by

Srd(4) = {s = sr + isi, si, sr ∈ Srd(4)}. (2.1.38)

This definition is equivalent to letting the B-coefficients pijk as in 2.1.7 be complex.

2.2 Trivariate Splines

2.2.1 Barycentric Coordinates in R3 and the Bernstein Basis

For a tetrahedron T ⊂ R3, T = [v1, v2, v3, v4], we define the barycentric coordinates

(b1, b2, b3, b4) of a point (xo, yo, zo) ∈ R3. These coordinates are the solution to the

following system of equations

b1 + b2 + b3 + b4 = 1

b1v1,x + b2v2,x + b3v3,x + b4v4,x = xo

b1v1,y + b2v2,y + b3v3,y + b4v4,y = yo

b1v1,z + b2v2,z + b3v3,z + b4v4,z = zo,

and are nonnegative if (xo, yo, zo) is in T . The barycentric coordinates are then used

to define the Bernstein polynomials of degree d at v = (x, y, z):

BT
i,j,k,l(v) :=

d!

i!j!k!l!
bi1(v)bj2(v)bk3(v)bl4(v), i+ j + k + l = d. (2.2.1)

which are again a partition of unity as in 2.1.5. They also form a stable basis for the

space Pd of trivariate polynomials of degree d. Therefore we can represent all P ∈ Pd
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in B-form:

PT =
∑

i+j+k+l=d

pijklB
T
ijkl, (2.2.2)

where the B-coefficients pijk are uniquely determined by P . The stability of the

B-form is expressible by a theorem analogous to Theorem 2.1.1.

2.2.2 Trivariate Splines on Tetrahedral Partitions

Given a polyhedral region Ω, a collection4 := T1, ..., Tn of tetrahedra is a tetrahedral

partition of Ω if Ω = ∪ni=1Ti, and if any two tetrahedra Ti, Tj intersect at a common

vertex, edge, or face. (We acknowledge the overloading of some notation 4, Ti, but

the meaning should be clear in context.)

As above, we define the spline space S0
d := {s ∈ C0(Ω) : s|Ti ∈ Pd}, where Ti is a

tetrahedron in a triangulation 4 of Ω, and then

Srd := Cr(Ω) ∩ S0
d(4), (2.2.3)

the spline space of degree d and smoothness r ≥ 0 over tetrahedral partition 4. The

domain points

Dd,T := {ξijkl := (iv1 + jv2 + kv3 + lv4)/d}i+j+k+l=d. (2.2.4)

play an analogous role here, and we define the three dimensional barycentric coordi-

nates (b1, b2, b3, b4) as the solution to the obvious generalization of system 2.1.1. We

can represent any trivariate spline in B-form as in 2.1.11, where the terms arise from

the expansion of (b1 + b2 + b3 + b4 = 1)d.

As in Section 2.1, we do not use lexicographical order in this dissertation, but,

given the mth domain point ξijkl, the multi-index for the m + 1st domain point is

given by incrementing j: (i− 1, j+ 1, k, l); or if i− 1 < 0, then increment k: (d− k−
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l − 1, 0, k + 1, l); or if (k + 1) + l > d, then increment l: (d − l − 1, 0, 0, l + 1). For

example, the domain points and coefficients for d=2 are ordered

(c2000, c1100, c0200, c1010, c0110, c0020), (c1001, c0101, c0011), (c0002).

The grouping shows that, for a fixed l (say l = a), the ordering for Cijka is consistent

with the bivariate indexing for (ijk).

The de Casteljau algorithm again plays a role in [39] in establishing the smooth-

ness relations necessary to ensure that a trivariate spline is Cr. With 4 barycentric

coordinates, the recurrence relation takes the form

Bd
ijk = b1B

d−l
i−1,j,k,l + b2B

d−l
i,j−1,k,l + b3B

d−l
i,j,k−1,l + b4B

d−1
i,j,k,l+1, for all i+ j + k = d.

(2.2.5)

We define c(0)
ijkl := pijkl Then for ` = 1, ..., d, we have

c
(`)
ijkl = b1c

(`−1)
i+1,j,k,l + b2c

(`−1)
i,j+1,k,l + b3c

(`−1)
i,j,k+1,l + b4c

(`−1)
i,j,k,l+1,

so, letting v = (x, y, z), we can write

P (v) =
∑

i+j+k+l=d−`

c
(`)
ijklB

d−`
ijkl (v).

As in the bivariate case, we can write the directional derivative of a Bernstein basis

function by expressing the direction vector in barycentric coordinates

DaB
d
ijkl = d

(
a1B

d−l
i−1,j,k,l + a2B

d−l
i,j−1,k,l + a3B

d−l
i,j,k−1,l + a4B

d−l
i,j,k,l−1

)
, (2.2.6)

and thus can compactly represent DaP using the de Casteljau algorithm.
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In the following chapters we are interested in the smoothness (or not) of trivariate

spline functions across a common face of two adjoining tetrahedra. We report the

general result from [39] and then formulate a corollary which is germane to later

numerical results. There is no proof of the theorem 2.2.1 in [39], although it follows

from the bivariate case; here we prove the corollary directly using only the properties

of the basis functions.

Theorem 2.2.1. Let T1 := [v1, v2, v3, v4] and T2 := [v1, v2, v3, v5] be tetrahedra sharing

the face f = [v1, v2, v3]. Let

P :=
∑

i+j+k+l=d

cijklB
d
ijkl (2.2.7)

and

Q :=
∑

i+j+k+l=d

rijklR
d
ijkl (2.2.8)

be the degree d polynomials defined over each tetrahedron and Bijkl and Rijkl be the

trivariate Bernstein basis polynomials defined over T1 and T2 respectively. Suppose a

is any direction not in the plane of f and n = 0, ..., r ≤ d. Then

D(n)
a P (v) = D(n)

a Q(v), ∀v ∈ f (2.2.9)

if and only if

rijkn =
∑

ν+µ+κ+δ=n

cj+ν,i+µ,k+κ,δB
n
νµκδ, j + k + l = d− n. (2.2.10)

Corollary 2.2.2. Let α := (α1, α2, α3, α4) be the point v5 expressed in in the barycen-

tric coordinates of T1. Then the function S formed by the joining of P and Q across

23



f will be C1 if and only if

rijk0 = cijk0 (2.2.11)

and

rijk1 = α1ci+1,j,k,0 + α2ci,j+1,k,0 + α3ci,j,k+1,0 + α4cjik1. (2.2.12)

Proof. Let v be a point on edge f . Then for any Bernstein basis function with l > 0

we have

Bd
ijkl(v) = Rd

ijkl(v) = 0, (2.2.13)

since the fourth barycentric coordinate for each tetrahedron is identically zero on f .

Then continuity P (v) = Q(v) requires

P =
∑

i+j+k=d

cijk0B
d
ijk0 =

∑
i+j+k=d

rijk0R
d
ijk0 = Q. (2.2.14)

But, v is necessarily expressible as some weighted average of v1, v2, and v3; the

barycentric coordinates for v with respect to either tetrahedron are those weights.

Thus, on f ,

Bijk0 = Rijk0, (2.2.15)

so requiring 2.2.11 is sufficient (and necessary) for continuity across the face.

Thus we see that S|f is a bivariate polynomial of degree d, and so the directional

derivative of S in any direction in the span of {v2− v1, v3− v1} exists. To enforce C1

smoothness across this interface, we need only require

DaP (v) = DaQ(v) (2.2.16)
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for a direction a with some (nonzero) component normal to f . Then, appropriate

linear combinations of the directional derivatives yield the partials Sx, Sy, and Sz

which are continuous on a neighborhood of any point v in f .

Drawing from [39], we choose a in the direction v5 − v1. In T1’s coordinates, this

is (α1− 1, α2, α3, α4); in T2’s, it’s simply (−1, 0, 0, 1). We apply formula 2.2.6 and set

the directional derivative of Q and P equal

∑
i+j+k+l=d

rijkl
(
− 1(Rd−1

i−1,j,k,l) + 0(Rd−1
i,j−1,k,l) + 0(Rd−1

i,j,k−1,l) + 1(Rd−1
i,j,k,l−1)

)
=

(2.2.17)∑
i+j+k+l=d

cijkl
(
(α1 − 1)(Bd−1

i−1,j,k,l) + α2(Bd−1
i,j−1,k,l) + α3(Bd−1

i,j,k−1,l) + α4(Bd−1
i,j,k,l−1)

)
.

We again use the fact that, on f , the only nonzero basis functions are those with for

k = 0. Thus the sums may be grouped as

−
∑

i+j+k=d

rijk0R
d
i−1,j,k,0 +

∑
i+j+k=d−1

rijk1R
d
ijk0 = (2.2.18)

∑
i+j+k=d

cijk0[(α1 − 1)Bd
i−1,j,k,0 + α2B

d
i,j−1,k,0 + α3B

d
i,j,k−1,0] + α4

∑
i+j+k=d−1

cijk1B
d
ijk0

Making use of 2.2.11 and 2.2.15, we simplify

∑
i+j+k=d−1

rijk1B
d
ijk0 =α1

∑
i+j+k=d

cijk0B
d
i−1,j,k,0 + α2

∑
i+j+k=d

cijk0B
d
i,j−1,k0 (2.2.19)

+α3

∑
i+j+k=d

cijk0B
d
i,j,k−1,0 + α4

∑
i+j+k=d−1

cijk1B
d
ijk0.

Reindexing yields

∑
i+j+k=d−1

rijk1B
d
ijk0 =

∑
i+j+k=d−1

(
α1ci+1,j,k,0 + α2ci,j+1,k,0 + α3ci,j,k+1,0 + α4cijk1

)
Bd
ijk0,

(2.2.20)

25



from which 2.2.12 follows.

There is geometric interpretation of 2.2.12, too–it is the requirement that the (4-

dimensional) points formed by the domain points and the corresponding coefficient

value lie in the same hyperplane.

As in the bivariate setting, when solving 3D Maxwell boundary value problems

over inhomogeneous domains, it is often necessary for the solution function to suffer

a particular discontinuity in its first derivative across a material interface. Therefore

we formulate a trivariate modified smoothness condition as in 2.1.4:

Theorem 2.2.3 (Trivariate Modified Smoothness Condition). Let T1 := [v1, v2, v3, v4]

and T2 := [v1, v2, v3, v5] be tetrahedra sharing the face f = [v1, v2, v3]. Let

P :=
∑

i+j+k+l=d

pijklB
d
ijkl (2.2.21)

and

Q :=
∑

i+j+k+l=d

qijklR
d
ijkl (2.2.22)

be the degree d polynomials defined over each tetrahedron and Bijkl and Rijkl be the

trivariate Bernstein basis polynomials defined over T1 and T2 respectively. Suppose

tbn is the unit vector normal to face f whose barycentric coordinates with respect to

T1 and T2 are α = (a1, a2, a3, a4) and β = (b1, b2, b3, b4). Then P joins Q continuously

along f with

ε1
∂P (v)

∂n
= ε2

∂Q(v)

∂n
, ∀v ∈ f (2.2.23)
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if and only if

pijk0 = qijk0, i+ j + k = d (2.2.24)

ε1α4pijk1 = (ε2β1 − ε1α1)qi+1,j,k,0 + (ε2β2 − ε1β1)qi,j+1,k,0

+(ε2β3 − ε1α3)qi,j,k+1,0 + ε2β4qijk1, i+ j + k = d− 1.

(2.2.25)

The proof proceeds in the same way as in Section 2.1, so we omit it here.

We also report approximation results for trivariate splines. Like the bivariate case,

proving that a spline space has full approximation power relies on the ability to define

a stable MDS. The set of domain points is such a determining set for S0
d(4), which

therefore has the best approximation order, but [39] does not contain a general result

for d ≥ f(r). Still, for the trivariate spline subspace

S1(4) := {s ∈ S1
9(4) : s ∈ C2(e) and s ∈ C4(v),∀e, v ∈ 4}, (2.2.26)

a construction for a stable local minimal determining set is given. Thus, S1 has

optimal approximation power, as does S1
d for any d >= 9.

Theorem 2.2.4. For all u in Wm+1
q (Ω) with 1 ≤ q ≤ ∞, there exists a spline s in

S1(4) such that

‖Dα(u− s)‖q,Ω ≤ K|4|m+1−|α||u|m+1,q,Ω, (2.2.27)

for all 0 ≤ |α| ≤ m ≤ 9. The constant K depends only on d and the tetrahedral

partition.

As in the bivariate case, the dimension of the C0 spline space is equal to the

cardinality of the MDS. This dimension can be counted for a given triangulation

by counting vertex domain points, edge domain points which are not vertices, face
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domain points which do not belong to edges, and lastly interior domain points. That

count is given in the following:

Theorem 2.2.5. Let 4 be an arbitrary tetrahedral partition. Then the dimension of

S0
d(4) is given by

dimS0
d(4) = #(V ) + (d− 1)#(E) +

(
d− 1

2

)
#(F ) +

(
d− 1

3

)
#(T ), (2.2.28)

where V , E, F , and T are the sets of vertices, edges, faces, and tetrahedra of 4, and

#(·) denotes the cardinality of the set.

In the trivariate setting, determining the dimension of Srd(4) for r > 0 and d ≥

8r + 1 for a general tetrahedral partition is quite difficult. However, for a generic

partition (see Theorem 17.33 in [39] p for details) and r = 1, d >= 8, we have

dimS1
d(4) =

d(d− 1)(d− 5)

6
#(T ) + 3(d− 1)#(VI) + d(d− 1)#(VB)− 2d2 + 5d+ 1,

(2.2.29)

where VI and VB are interior and boundary vertices, respectively.

Finally, we remark that the definition of the two dimensional complex spline space

4.3.3 also holds in the trivariate setting. More details about the properties of spline

functions can be found in [39] and [61].
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Chapter 3

The Maxwell Equations

3.1 A Brief History

The groundwork for the theory of electrodynamics was begun in 1819 when Danish

scientist Hans Christain Ørsted performed an experiment in which he held a com-

pass near a wire. When he ran current through the wire, the compass needle moved,

revealing a previously undiscovered relationship between electrical and magnetic phe-

nomena. After hearing about Ørsted’s findings in 1820, it took the Frenchman André

Ampère just one week to hypothesize a mathematical theory to describe them. He

predicted that the usual orientation of a compass’s needle could be explained by elec-

trical currents within the earth, and hypothesized and later verified attractive and

repulsive forces between current carrying wires. He published his work in 1821, and

the equation therein would eventually become the fourth of the Maxwell equations.

The primary contributions of Ørsted and Ampère occurred a decade before the

birth of James Maxwell in 1831. From this time until Maxwell’s work began in the

1850s, most of the progress in the field was made by chemist Michael Faraday. He

performed an astounding number of careful experiments, and although he never trans-

lated his findings into mathematical models, he was incredibly productive. Faraday
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discovered the principle of electromagnetic induction and used the idea to build the

first generator, the first transformer, and the first electric motor.

There were two key experiments that led to the most important parts of Faraday’s

work. One experiment involved wrapping coils of wire around an iron ring. The wires

were electrically insulated from one another, and yet, when a current was passed

through one of the wires, a current in the other was briefly detected. This investigation

was later extended; a current could also be induced in the wires by passing a magnet

through the center of the iron ring. In a second consequential experiment, Faraday

discovered that he could generate current in a closed circuit simply by varying the

distance between the circuit and a magnet. This evidence of a relationship between

a changing a magnetic field and electrical phenomena eventually led to the third of

Maxwell’s equations–Faraday’s Law.

Because he was not mathematically sophisticated (though Maxwell himself be-

lieved that Faraday was still a “mathematician of a very high order”[19]) , Faraday’s

discoveries were largely ignored by the physics community at the time. Clerk Maxwell

successfully converted Faraday’s work into mathematical theory. He was born in 1931,

educated at Edinburhg Univeristy (1847-50) and Cambridge University (1850-1854),

and became a Fellow of the Royal Society of Edinburugh in 1856. His first contri-

bution after earning his graduate degree was a detailed explanation of an idea from

Faraday’s work. It was published in 1855, entitled On Fararday’s Lines of Force. He

and Faraday hypothesized that electrical and magnetic phenomena did not arise from

“action at a distance" (this was the accepted notion at the time, developed at least

in part by Weber, Neumann, Riemann, and Lorentz, and referred to as the German

Theory), but instead were propogations of electromagnetic disturbances traveling at

the speed of light. In 1862, he published On Physical Lines of Force, and commented

on the similarity between the speed of electromagnetic “undulations” and the speed

of light as measured in Fizeau’s contemporary optical experiments.
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This text contained what was perhaps Maxwell’s most important contribution

to electrodynamics—the so-called “displacement current” addition to Ampère’s Law

3.1.1. In fact, Maxwell’s motivation for the addition of the ∂D
∂t

term was based on

a model of ether rather than on sound physical principles, but it remains today an

essential component of the equations. Along the continuity equation which specifies

the conservation of charge in a system (Eq. 3.1.8), the displacement current guaran-

tees that both sides of Eq. 3.1.3 are divergence free, even for a time-varying electric

field. It is also allows for the derivation of the electromagnetic wave equations from

Maxwell’s laws.

Maxwell hypothesized that light was itself an electromagnetic disturbance in his

1865 publication A Dynamical Theory of the Electromagnetic Field, in which the

famous Maxwell system appeared for the first time. Collectively, they consist of 20

equations and 20 variables. Table 3.1 summarizes the quantities involved [62].

Taking advantage of the vector notation, we can represent Maxwell’s original 20

equations more compactly. Below are six vector equations (each made up of three

component equations)

JT = J +
∂D
∂t

(3.1.1)

µH = ∇×A (3.1.2)

∇×H = 4πJT (3.1.3)

E = µv×H− ∂A
∂t
−∇ψ (3.1.4)

E = kD (3.1.5)

E = ρ′J, (3.1.6)

where v is the velocity of a conductor moving in an isotropic medium, µ is what

Maxwell called the coefficient of magnetic induction (we now refer to this quantity

31



Table 3.1: Table summarizing the quantities involved in Maxwell’s original expression
of his equations

Maxwell Variable
Name Maxwell Symbol Modern Variable

Name Modern Symbol

Electromagnetic
Momentum F,G,H

Magnetic Vector
Potential A

Magnetic Force α, β, γ
Magnetic Field

Intensity H

Electromotive Force P,Q,R
Electric Field

Intensity E

Current Due to True
Conduction p, q, r

Conduction Current
Density J

Electric Displacement f, g, h Electric Flux Density D
Total Current

Including Variation of
Displacement

pl = p+ df
dt

ql = q + dg
dt

rl = r + dh
dt

Conduction plus
Displacement Current

Density
JT

Quantity of Free
Electricity e

Volume Density of
Electric Charge ρ

Electric Potential ψ
Electric Scalar

Potential ψ

as the permeability of the medium, and set the flux density vector B = µH), k is

the coefficient of electric elasticity (related to what is now the permittivity of the

medium), and ρ′ is the resistivity of the medium. The remaining two equations are

the scalar equations

∇ ·D = ρ (3.1.7)

∇ · J = −∂ρ
∂t
. (3.1.8)

Decades later, in the 1880s, Heinrich Hertz and Oliver Heaviside each indepen-

dently reformulated these into a set of four equations involving the field vectors E, B,

D, H. One reason for the delay in the advancement of the theory was Maxwell’s use

of quaternions in his original work, a concept which was unfamiliar to most physicists
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of the time[43]. Below are the modern forms of Maxwell’s equations in a vacuum:

∇ · E =
1

ε0
ρ Gauss’ Law (3.1.9)

∇× E = −∂B
∂t

Faraday’s Law of Induction (3.1.10)

∇ ·B = 0 Gauss’ Law for Magnetism (3.1.11)

∇×B = µ0J + µ0ε0
∂E
∂t

Ampère’s Law. (3.1.12)

In the time since their conception, Maxwell’s field equations have had a profound

impact, not just in the development of electromagnetic theory, but also in the design

of electromagnetic devices. In the late 1800s, device makers based their designs only

on circuit theory, and although they were aware of some additional interference from

electromagnetic fields, they disregarded these contributions, as 1) their devices were

low frequency and the field effects were minimal, and 2) the device manufacturing was

not precise enough to correct or counteract these effects. As device manufacturing

improved and more powerful electric machines were built, efforts were made to calcu-

late the effect of electromagnetic fields in important regions of the device. Maxwell’s

equations applied to the specific geometries of the machines in question were far too

difficult to solve analytically. Engineers had to resort to hand-plotting techniques to

solve a simplified version of the problem; they converted Maxwell’s equations into

uncoupled Poisson equations, and estimated fluxes in specific regions of the machines

in question.

In the early 1900s, as demand for improved electronic devices increased, engineers

began to use idealized models for parts of their machines, and solved analytically for

the fields in those regions. It also became common practice to use other methods like

fluid flow systems or resistive networks to model the electromagnetic effects. Methods

like these have since become known as classical design method, and were largely ad

hoc ways of dealing with the field interference.
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New devices invented in the mid 1900s like linear induction motors, axial flux ma-

chines, internal permanent magnet machines (IPM) involved strong magnetic fields

which rendered the classical design methods obsolete. Advances in the theory hap-

pened too, however. In 1959 Hammond presented algebraic methods for solving for

field distributions in simple electric machines; in 1960, Carpenter published a paper

on calculating forces on magnetized iron components of machines using the Maxwell

stress tensor; and perhaps most importantly, the development of computer-based

methods grew to allow for full field solutions of Maxwell’s equations. By the late

1970s, computation power allowed for solutions of simple 2D magnetostatic approxi-

mations in complex geometries. As computers improved, so did solutions; fewer and

fewer approximations were needed until about 2004, when it was possible to solve a

fully coupled, dynamical Maxwell system. Today, the ability to model the full fields

is used to perform virtual experiments aimed to identify flaws in design[43].

3.2 Modern Formulation of Maxwell’s Equations

The equations (3.2.3-3.2.6) are the Maxwell equations in matter. They are written

in the traditional way, emphasizing the curl and divergence of the field quantities

on the left-hand side. It is important to remember that the source terms in the

equations above are the free charge density ρf and the free current density Jf . Certain

relations hold between the field quantities E and B and the auxillary fields D and

H, respectively, depending on what type of medium the fields are passing through.

In linear media, for example, we have the constitutive relations

D = εE (3.2.1)

H =
1

µ
B (3.2.2)
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where ε = ε0(1 + χe) = ε0εr is the permittivity of the material and µ = µ0(1 +

χm) = µ0µr is its permeability. Roughly, the permittivity of a material describes its

susceptibility to (electrical) polarization, and the permeability describes a material’s

magnetic susceptibility. In a vacuum, ε = ε0 ≈= 8.854× 10−12 farads per meter and

µ0 ≈ 4π × 10−7 henries per meter (no longer defined to be this constant as of May,

2019). The difference in the magnitudes of these constants points towards the fact

that electric forces are typically much larger than magnetic forces[22]. In general,

the materials involved in electrodynamic computations may be inhomogenous and

anisotropic. In the following, we restrict our attention to isotropic materials.

If we are working in a dielectric or polarizable medium,it is convenient to distin-

guish between bound charge ρb and free charge ρf and between bound, polarization,

or free current densities Jb, Jp, Jf . Then the Maxwell equations can be written in

the following form:

∇ ·D = ρf Gauss’ Law (3.2.3)

∇× E = −∂B
∂t

Faraday’s Law of Induction (3.2.4)

∇ ·B = 0 Gauss’ Law for Magnetism (3.2.5)

∇×H = Jf +
∂D
∂t

Ampère’s Law (3.2.6)

Perhaps the most basic forms of Maxwell’s equations are the equations for electro-

and magnetostatics. The electrostatic equations describe the curl and divergence of

a stationary electric field–that is, the field arising from a collection of stationary

charges. In a vacuum, static electric fields (∂D
∂t

= 0), lack of free current (Jf = 0),

and Theorem 3.4.1 implies B = 0. Then the Maxwell equations take the form
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∇ · E =
1

ε0
ρ (3.2.7)

∇× E = 0 (3.2.8)

where ε0 is the electric permittivity of free space and ρ is the source charge dis-

tribution. With the condition that E → 0 as the distance from the source charge

distribution, r→∞, the above equations determine the electric field, given ρ[22].

Similarly, the magnetostatic equations arise from physical situations involving a

constant flow of current, J, or ∂J
∂t

= 0. Then the system of equations decouples, and

with the condition that B → 0 as the distance from the currents grows to infinity,

the equations

∇ ·B = 0 (3.2.9)

∇×B = µ0J. (3.2.10)

determine the magnetic field.

The physical content of these static equations is clear; electric fields diverge away

from stationary point charges, while magnetic fields curl around the flow of a steady

current.

Another important formulation of the Maxwell system comes from the the time-

harmonic regime. These can be derived via Fourier transform (assuming the fields

admit the integration) or by assuming the fields behave periodically (with the same

frequency ω) in time, or because we simply wish to study the field behavior at a

particular frequency [50]. In any case, we assume the field quantities in question take
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the form

E(x, t) = Re
(
e−iωtÊ(x)

)
(3.2.11)

(similarly for H , D, and B), and that the source terms ρ and J can likewise be

written

ρ(x, t) = Re
(
eiωtρ̂(x)

)
(3.2.12)

J(x, t) = Re
(
eiωtĴ (x)

)
. (3.2.13)

Then the time-harmonic Maxwell equations are given by

∇ · D̂ = ρ̂ (3.2.14)

∇× Ê − iωB̂ = 0 (3.2.15)

∇ ·B = 0 (3.2.16)

∇× Ĥ − iωD̂ = Ĵ . (3.2.17)

Notably, the electromagnetic wave equation can be easily derived from the Maxwell

equations in a vacuum. Taking the curl of Faraday’s Law, and applying the vector

identity

∇× (∇×A) = ∇(∇ ·A)−∇2A, (3.2.18)

we have

∇× (∇×E) = ∇ (∇ ·E)−∇2E = ∇× (−∂B
∂t

). (3.2.19)
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Gauss’ Law means ∇ · E = 0, and, interchanging the order of differentiation to

substitute Ampère’s Law on the right-hand side, we have

−∆E = − ∂

∂t

(
µ0ε0

∂E

∂t

)
(3.2.20)

=⇒ −∆E + µ0ε0
∂2E

∂t2
= 0. (3.2.21)

A similar analysis for the B field yields an analogous equation. Evidently, electro-

magnetic phenomenon move as waves through space at a speed

c =
1

√
ε0µ0

≈ 3× 108 m/s. (3.2.22)

Of course, if the waves propagate at a single frequency ω, the wave equation may be

reduced to the Helmholtz equation with wavenumber k =
√
µ0ε0ω = ω

c
.

Consideration of the Maxwell equations in potential form also leads to a Helmholtz-

type equation. If B = ∇×A for some vector field A, then ∇ ·B = ∇ · (∇×A) = 0;

it is also true (using the Helmholtz decomposition) that if ∇ · B = 0 with B ∈ C2

and B→ 0 "fast enough"[64] then we indeed have B = ∇×A. Substituting this into

Equation 3.2.4 we have

∇× E = −∂(∇×A)

∂t
=⇒ ∇× (E +

∂A
∂t

) = 0

With the same limiting assumptions on E+ ∂A
∂t

as above, this implies that for some

scalar function −φ, we have −∇φ = (E + ∂A
∂t

). This means that E = −∇φ− ∂A
∂t
, so

from Equation 3.2.3 we have

∇ · (−∇φ− ∂A
∂t

) =
1

ε0
ρ

∆φ+
∂

∂t
(∇ ·A) = − 1

ε0
ρ. (3.2.23)
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Similarly, substituting into Eq. 3.1.12 and making use of the identity 3.2.18 again,

we get

∇× (∇×A) = µ0J + µ0ε0
∂

∂t
(−∇φ− ∂A

∂t
) =⇒

−µ0J =

(
∇2A− µ0ε0

∂2A
∂t2

)
−∇

(
∇ ·A + µ0ε0

∂φ

∂t

)
(3.2.24)

At this point, we have succeeded in rewriting Equations 3.1.9-3.1.12 in terms of

the potential functions A and φ. We can now take advantage of the opportunity to

impose extra conditions on the scalar potential φ and the vector potential A. This

is referred to as gauge freedom, and it refers to the fact that there might be multiple

potential functions which correspond to the same electric and magnetic fields. Let

A′ and φ′ be such functions, with A′ −A = a and φ′ − φ = p. Then we must have

∇× a = 0, so a = ∇a; similarly,

−∇p = −∇(φ′ − φ) = (E +
∂A′

∂t
)− (E +

∂A
∂t

) =
∂a
∂t
. (3.2.25)

This implies ∇(p + ∂a
∂t

) = 0, so we conclude p + ∂a
∂t

is a function of time only.

We can call this function k(t), and absorb it into the arbitrary potential difference

p. Then we have p(t) = −∂a
∂t
, so we discover that we can add a gradient of some

scalar function a to A as long as we subtract ∂a
∂t

from φ. These changes are called

gauge transformations, and the widely used Lorentz gauge

∇ ·A = −µ0ε0
∂φ

∂t
(3.2.26)

allows us to recast equations (3.2.23) and (3.2.24). The rightmost term in (3.2.24)

vanishes, and we have
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∆φ− µ0ε0
∂2φ

∂t2
= − 1

ε0
ρ (3.2.27)

∆A− µ0ε0
∂2A
∂t2

= −µ0J (3.2.28)

Using this gauge allows us to solve for the vector and scalar potential in the same

way; both are acted on by the same differential operator. Now both equations are in

the form 22u = −f , and, assuming the quantities involved admit a Fourier transform

in time, the problem to be solved takes Helmholtz form. This fact motivates much of

the work in Chapter 4.

∆û+ k2û = −f̂ .

In the following, we are particularly interested in boundary value problems of the

time-harmonic Maxwell equations (most of our numerical examples arise from this

setting). For exterior domain problems, see [35]

3.3 Boundary Conditions

Solving the Maxwell equations in a domain of interest amounts to solving a boundary

value problem. Here we explore the boundary conditions that arise in many practical

electromagnetic problems involving interfaces between conducting and nonconducting

materials.[22]
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3.3.1 Interface Conditions Arising from the Divergence Equa-

tions

We can derive conditions on the field quantities E and H at interfaces between

materials by considering the integral form of equations 3.2.3 and 3.2.5:

∮
S

D · da = Qfenc Gauss’ Law in Integral Form∮
S

B · da = 0 Gauss’ Law for Magnetism in Integral Form

where the integrals in question may be done over any closed surface S, enclosing total

charge Qfenc . At an interface between two surfaces, we imagine S to be the surface

of a thin box whose thickness just barely allows it to extend into both materials–see

Figure 3.1 from [22]. The top and bottom of the box have non-negligible surface area,

but in the limit that the thickness of the box goes to 0, the sides contribute nothing

to the integral.

Figure 3.1: A Gaussian box for understanding boundary conditions arising from the
divergence equations.

At the same time, however, the surface charge cσf contained within the box, at

the interface itself, does not change. For a box which is small enough so that the

fields Di and normal n of the interface are approximately constant, we have

∮
S

D · da = a(D1 · n−D2 · n) = σfa (3.3.1)

41



which leads to the boundary condition

D⊥1 −D⊥2 = σf . (3.3.2)

This condition tells us that at an interface between two materials the normal com-

ponent of the electric displacement is discontinuous if there is any surface charge

present. For linear media the boundary condition takes the form ε1E
⊥
1 − ε2E⊥2 = σf .

If, as is often the case, there is no charge present at the interface, we have

ε1E1 · n = ε2E2 · n, (3.3.3)

where n points from material 2 into material 1.

For the same reason, we see that the perpendicular component of B is continuous

across an interface:

B⊥1 −B⊥2 = 0. (3.3.4)

3.3.2 Interface Conditions Arising from the Curl Equations

We first consider the integral form of the curl equations:

∮
P

E · dl = − d

dt

∫
S

B · da Faraday’s Law of Induction∮
P

H · dl = Ifenc +
d

dt

∫
S

D · da Ampere’s Law,

Since the integrals in question are now line integrals, we consider a narrow rect-

angular loop (Amperian loop) P , much broader than tall, which extends into the

materials forming the interface–see Figure 3.2 from [22]. As the height of this loop

approaches zero, the integral on the left is dominated by the segments which run

parallel, rather than through, the interface.
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Figure 3.2: An Amperian box for understanding boundary conditions arising from
the curl equations.

This suggests

E1 · l−E2 · l = − d

dt

∫
S

B · da. (3.3.5)

But, as the height of the loop goes to zero, so too does its cross sectional area S

and the flux of the the magnetic field through S. Therefore we have the boundary

condition

E
||
1 −E

||
2 = 0. (3.3.6)

Similarly, for
∫
S
Jf ·da = Ifenc where Jf is the free surface current and Ifenc is the

current flowing through the loop, we have

H1 · l−H1 · l = Ifenc . (3.3.7)

For the vector n × l perpendicular to the loop and free surface current density Kf ,

we have

Ifenc = Kf · (n× l) = (Kf × n) · l (3.3.8)
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The interface condition on H follows:

H
||
1 −H

||
2 = Kf × n; (3.3.9)

for linear media, this amounts to

1

µ1

B
||
1 −

1

µ2

B
||
2 = Kf × n; (3.3.10)

if there is no surface current, then the condition is

1

µ1

B1 × n =
1

µ2

B2 × n. (3.3.11)

3.3.3 Conductors

Conducting materials, utilized in a variety of electronic applications, are often of in-

terest in electrodynamic boundary value problems. In a conductor, electrons are free

to travel throughout the material. In practice, conductors are idealized as perfect

conductors; we suppose there are an unlimited supply of electrons in the material

that can flow around in reaction to electric forces. This physical property leads to

the following conditions on electrostatic electric fields and charges in and near a con-

ductor. The conditions detailed below are summarized from [22].

1)E = 0 inside a conductor.

If (momentarily), there is a nonzero electric field within a conductor, the free elec-

trons within the conductor migrate in response to the force that they experience. The

result is an accumulation of net charge at the surface of the conductor, arranged in a

way that creates an electric field within the conductor that is exactly counter to the

external field.
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2)E is perpendicular to the surface just outside the surface of a con-

ductor.

Suppose this weren’t true; then the electric field would have a tangential component

at some point on the surface. This field would cause electrons to flow along the sur-

face of the conductor until they no longer experienced a net force, canceling out the

tangential component. In actuality, the charge on the surface (if there is any) spreads

out “evenly" along the surface; it can be shown that this configuration is the minimal

energy configuration of a net charge on a conductor.

3)A conductor is an equipotential surface.

This follows from 2); we have V (b)− V (a) = −
∫
L
E · dl, but since L is a path along

the surface of the conductor, E · dl = 0 everywhere. Thus, for two points a, b on the

surface, we must have V (a) = V (b).

3.4 The Mathematics of the Maxwell Equations

Let Ω ⊂ R3 be a bounded open domain with piecewise smooth boundary Γ. Recall

the Lp(Ω) norm given by

||u||Lp(Ω) =

(∫
Ω

|u|pdΩ

)1/p

(3.4.1)

defines a Hilbert space when p = 2 equipped with inner product (u, v) =
∫

Ω
uvdΩ for

all u, v ∈ L2(Ω). Because of its ubiquity, we use the notation

||u|| := ||u||L2(Ω) =

(∫
Ω

|u|2dΩ

)1/2
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We say a locally integrable function f (integrable over all compact K ⊂ Ω) has a

weak derivative Dα
w if there exists a locally integrable function g such that

∫
Ω

g(x)φ(x)dx = (−1)|α|
∫

Ω

f(x)φ(α)(x)dx (3.4.2)

for all φ ∈ C∞0 , where α; = (α1, ..., αn) is a multi-index and φ(α) = ( ∂
∂x1

)α1 ...( ∂
∂xn

)αnφ.

This in turn allows us to define the Sobolev space Hk(Ω) for all k ∈ N by

Hk(Ω) = {u ∈ L2(Ω) : Dαu ∈ L2(Ω) for |α| ≤ k} (3.4.3)

with norm

||u||k =

||u||2 +
∑
|α|≤k

||D|α|u||2
1/2

. (3.4.4)

This norm can be defined via an inner product, so it’s clear that Hk(Ω) is a Hilbert

space.

Letting Γ be the boundary of Ω ∂Ω, we have particular interest in a subspace

of H1(Ω), H1
0 (Ω) = {u ∈ H1(Ω) : u = 0 on Γ}. This subspace inherits the norm

mentioned above, and we define the seminorm on H1(Ω) by

|u|1 =

(
3∑
i=1

|| ∂u
∂xi
||2
)1/2

. (3.4.5)

Well-Determinedness and Well-Posedness of a Div-Curl System

The Maxwell equations are a coupled system of div-curl equations. In [31], Jiang

demonstrates that such a system is well-determined and well-posed. Here we reca-

pitulate the argument using the simplified case of a single div-curl system. In the

static case, the full Maxwell system reduces to two uncoupled div-curl systems, each

of which is elliptic. The following argument applies to these cases directly. In the

time-harmonic regime, the coupling of the system is through zero-order terms, and
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so the whole system is elliptic. The same reasoning applies to a time discretization

of the general transient case. In general, the full Maxwell system is hyperbolic, but

is not over-determined. A proper formulation of a Maxwell boundary value problem

requires consideration of both divergence equations.

Theorem 3.4.1. (The Div-Curl Theorem)Let Ω be a bounded and simply connected

subset of R3 with ∂Ω := Γ1 ∪ Γ2. Then if u ∈ H1(Ω)3 satisfies,

∇ · u =0 in Ω

∇× u =0 in Ω

n · u =0 on Γ1

n× u =0 on Γ2, (3.4.6)

then u ≡ 0.

Consider the system

∇ · u = g (3.4.7)

∇× u = h

on a bounded, simply connected domain Ω with Lipschitz boundary. The electrostatic

regime corresponds to the case g = 0, e.g.

At first, it might seem that the system 3.4.6 is overdetermined; there are 4 equa-

tions involving only 3 variables–the components of u. For ease of notation, let us
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assume that u = (u, v, w)T . Then, componentwise, the system can 3.4.7 be written

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= g

∂w

∂y
− ∂v

∂z
= hx

∂u

∂z
− ∂w

∂x
= hy

∂v

∂x
− ∂u

∂y
= hz

or as

A1
∂u

∂x
+ A2

∂u

∂y
+ A3

∂u

∂z
+ A4u = f

where Ai is a 4× 3 matrix and f = (g, hx, hy, hz)
T . For specificity, we mention

A1 =



1 0 0

0 0 0

0 0 1

0 1 0


and A4 = [0].

We will show that 3.4.7 is in fact properly determined by introducing the gradient

of a dummy variable r into the curl equation. Again, let ∂Ω = Γ1 ∪ Γ2 such that not

both Γ1, Γ2 are empty, and Γ1 ∩Γ2 = 0. Then we can show that the modified system
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(with boundary conditions)

∇ · u = g in Ω

∇r +∇× u = h in Ω (3.4.8)

r = 0 on Γ1

n · u = 0 on Γ1

n× u = 0 on Γ2

is properly determined and elliptic, and equivalent to system 3.4.7 augmented with

boundary conditions

n · u = 0 on Γ1 (3.4.9)

n× u = 0 on Γ2. (3.4.10)

To prove this, we make use of the following “solvability" conditions

∇ · h = 0 in Ω (3.4.11)

n · h = 0 on Γ2, (3.4.12)

Theorem 3.4.1, and the following lemma whose proof follows from Stokes’ Theorem.

Lemma 3.4.1. If u ∈ H1(Ω)3 and n× u = 0 on Γ2, then n · ∇ × u = 0 on Γ2.
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We first show that the modification seen in 3.4.8 has not actually altered the

system 3.4.7. We consider the curl equation and subtract the source function h:

∇× (∇r +∇× u− h) = 0 in Ω (3.4.13)

∇ · (∇r +∇× u− h) = 0 in Ω (3.4.14)

n× (∇r +∇× u− h) = 0 on Γ1 (3.4.15)

n · (∇r +∇× u− h) = 0 on Γ2. (3.4.16)

By Theorem 3.4.1 this system is equivalent to the system containing 3.4.8. Making

use of 3.4.11 and the vector identity ∇ · ∇ × (a) = 0, the divergence equation above

yields

∇ · ∇r = ∆r = 0 in Ω. (3.4.17)

Condition 3.4.12 applied to 3.4.6 along with Lemma 3.4.1 yield

n · ∇r = 0 on Γ2 (3.4.18)

These two conditions with r = 0 on Γ mean that r ≡ 0 on Ω by the uniqueness of the

solution to the Poisson equation.

Thus we can conclude that the modified system 3.4.8 is equivalent to the original

div-curl problem posed in 3.4.7 with appropriate boundary conditions, so any deter-

minancy or characterization arguments made for 3.4.8 hold for the original system.
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We consider 3.4.8 componentwise and write

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= g

∂r

∂x
+
∂w

∂y
− ∂v

∂z
= hx

∂r

∂y
+
∂u

∂z
− ∂w

∂x
= hy

∂r

∂z
+
∂v

∂x
− ∂u

∂y
= hz

or as

A1
∂p

∂x
+ A2

∂p

∂y
+ A3

∂p

∂z
+ A4p = f

where p = (u, v, w, r)T for

A1 =



1 0 0 0

0 0 0 1

0 0 −1 0

0 1 0 0


A4 = [0] .

A2 =



0 1 0 0

0 0 1 0

0 0 0 1

−1 0 0 0


A3 =



0 0 1 0

0 −1 0 0

1 0 0 0

0 0 0 1


.
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We use principal symbols[59][7] to compute T = αA1 +βA2 +γA3 +ψA4 and det(T ):

det



α β γ 0

0 −γ β α

γ 0 −α β

−β α 0 γ


= (α2 + β2 + γ2)2

Since (α2+β2+γ2)2 = 0 has no real solutions, we conclude that the system is properly

determined and elliptic.

The coercivity (lower bound) of the differential operator A

Au := [∇ · u, (∇× u)x , (∇× u)y , (∇× u)z]
T , (3.4.19)

follows from what is referred to in the literature as Friedrichs’ second-inequality[37].

Theorem 3.4.2 (Friedrichs’ Div-Curl Inequality). Let Ω be a simply connected,

bounded domain in R3 with ∂Ω := Γ1 ∪ Γ2. Then every function u of [H1(Ω)]3

with n · u = 0 and n× u = 0 on Γ1,Γ2, respectively satisfies

‖u‖2
1 ≤ C(‖∇ · u‖2

0 + ‖∇ × u‖2
0) (3.4.20)

where C depends only on Ω[31].

The stability of the operator follows from the definitions of A and u ∈ H1(Ω)3.

Formulations for Numerical Analysis

The standard (c.f. [33][31][36][50][53][54]) FEM approach to the Maxwell Equations

begins with a derivation of the second-order Maxwell equations by taking the curl of
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the curl equations. This decouples the EM fields, and leaves for the H field

∇× (∇×H) + εµ
∂2

∂t2
H = ∇× J

∇ ·H = 0,

and for the E field

∇× (∇×E) + εµ
∂2

∂t2
E = −µ

(
∇× ∂

∂t
J

)
∇ · εE = ρ,

Because it is difficult to enforce the first-order divergence condition on H over Ω

via the traditional Galerkin formulation, the FEM community turned to "divergence-

free" Nédélec edge elements to approximate H . However, spurious solutions to

Maxwell boundary value problems (especially eigenvalue probelms) are not elimi-

nated by the use of these edge elements[53][54][31][33]. Moreover, edge elements have

their drawbacks. The elements are less efficient in terms of approximation power per

degrees of freedom, computation time, and storage[54]. Most general edge elements

are divergence free (over a given element); application to problems with more gen-

eral divergence conditions requires another approach[54]. And, even if the field to

be approximated is divergence free (e.g. B), edge elements allow nonzero divergence

between elements, and so a numerical formulation without divergence constraint may

produce a field with nonzero divergence globally[53]. Edge elements are potentially

useful for approximating fields in inhomogeneous domains, as they allow jumps in the

normal direction across interfaces[53], but with the modified smoothness conditions

explained in this work, multivariate splines can control these jumps explicitly, and

without the drawbacks mentioned previously.
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The challenge for finite element schemes is to incorporate the first order divergence

equations

∇ · εE = ρ (3.4.21)

∇ ·B = 0 (3.4.22)

to avoid “spurious solutions" widely reported across the literature. The div-curl for-

mulation provides an opportunity for spline solutions.

∇× (∇× E) = −µ ∂
∂t

(
J − ∂

∂t
εE

)
∇ (∇ ·E)−∆E = −µ ∂

∂t
J − µε∂

2E

∂t2

and so the gradient of the divergence condition appears. If we substitute 1
ε
ρ for ∇·E,

we see that the Helmholtz-type equation

−∆E + µε
∂2E

∂t2
= −µ∂J

∂t
− 1

ε0
∇ρ (3.4.23)

implicitly satisfies the gradient of the divergence condition

∇(∇ · εE − ρ) = 0 in Ω. (3.4.24)

If we also impose

∇ · εE − ρ = 0 on Γ1, (3.4.25)

then the following theorem asserts that divergence condition is satisfied everywhere[31]
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Theorem 3.4.3 (The Gradient Theorem). If g ∈ H1(Ω) satisfies

∇g =0 in Ω,

g =0 on Γ1 6= 0

then g ≡ 0 in Ω.

Finally, because we can explicitly control the derivative of our spline solution at

domain points, we can satisfy boundary condition 3.4.25 explicitly.
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Chapter 4

The Helmholtz Equation

4.1 Introduction

The following partial differential equation, referred to as Helmholtz equation or re-

duced wave equation is well known:


−∆u− k2u = f, in Ω

n · ∇u+ iku = g in ∂Ω,

(4.1.1)

where Ω ⊂ Rd for d = 2, 3, is a bounded domain with Lipschitz boundary, i =
√
−1 denotes the imaginary unit, n is the unit normal to ∂Ω, and k is the wave

number. This Helmholtz problem arises from many areas including applications in

electromagnetics arising from the Maxwell equations. Over many years, the finite

element method, discontinuous Galerkin methods, weak-Galerkin methods, and their

variants have been used to tackle the numerical solution of the Helmholtz equation

(4.1.1) when wave number k is large. See literature in [46], [16], [17], and [12], e.g.

Theoretical study on the existence, uniqueness, stability of the Helmholtz problem

(4.1.1) has been carried out extensively. See existence and uniqueness of the weak

solution of (4.1.1) in [28] (in one dimension) or in [49]. See [8] and [26] for the stability
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of the weak solution under the assumption that the domain is strictly star-shaped.

In addition, theoretical analysis and numerical computation of solutions to (4.1.1)

remains challenging when the wave number k is large relative to the mesh size h.

In [28], authors Ihlenburg and Babuska specify that the so-called “preasymptotic"

regime defines the case where kh is small, while asymptotic means that k2h is small.

They show that the relative H1 seminorm error of a finite element solution to 4.1.1

satisfies

|u− ufe|1 ≤ C1kh+ C2k
2h(kh). (4.1.2)

Note that for any wave number k > 1, we have that k2h > kh. So, if the mesh is

sufficiently refined so that k2h is “small", then so is kh. However, if only the quantity

kh is controlled, as if would be if the goal were to keep the number of degrees of

freedom per wavelength constant, then the preasymptotic term C2k
2h(kh) blows up

with increasing k. This observation has motivated the search for error bounds that

are explicit in their dependence on k. Recent work in [9, 10, 11, 52, 67] demonstrates

a continued interest in this area.

We present a quick review of the study of finite element method, discontinuous

Galerkin method, weak Galerkin method and their variations in [9, 10, 11, 12, 16, 17,

52, 67] for numerical solutions to (4.1.1). In most references mentioned above, the

theory is developed with the assumption that the underlying domain Ω is a strictly

star-shaped domain , which means that there exist a point x0 ∈ Ω and a positive

constant γΩ depending only on Ω such that

(x− x0) · n ≥ γΩ > 0, ∀x ∈ ∂Ω. (4.1.3)

If γΩ = 0, Ω is said to be star-shaped domain. Nevertheless, all the computational

methods work well for non-convex domains as well as domains which are not strictly
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star-shaped. Mathematically, it is interesting to have a theory for more general do-

mains.

The convergence analysis of many existing numerical methods has been carried

out in the literature. To explain the analysis, we shall use the following norm over a

complex-valued Sobolev space H1(Ω) over Ω in the paper:

|||u|||1,k,Ω := (‖∇u‖2
L2(Ω) + k2‖u‖2

L2(Ω))
1/2. (4.1.4)

This is equivalent to the standard H1-norm on H1(Ω) with constants dependent on

k. In [46], Melenk established the following result.

Theorem 4.1.1 (Proposition 8.2.7 in [46]). Let Ω be a bounded star-shaped domain

with smooth boundary (or a bounded convex domain). Let Sh ⊂ H1(Ω) be the finite

element space. Then there exists a positive constant C0 dependent on Ω such that if

k2h ≤ C, (4.1.5)

|||u− uFE|||1,k,Ω ≤ C0 inf
s∈Sh

|||u− s|||1,k,Ω. (4.1.6)

This result was improved several times in [45, 47] and recently in [9]. That is,

letting Sh ⊂ H1(Ω) be the higher order finite element space of degree p over triangu-

lation 4 with size h = |4|, a subspace of complex-valued Sobolev space H1(Ω), Du

and Wu proved the following result in [9]:

Theorem 4.1.2 (Theorem 5.1 in [9]). Let u and uh be the weak solutions satisfying

(4.1.1) and (4.3.4), respectively. Then there exists a constant C independent of k and

h such that if

k(kh)2p ≤ C (4.1.7)
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then the following estimate holds:

|||u− uh|||1,k,Ω ≤ (1 + k(kh)p) inf
s∈Sh

|||u− s|||1,k,Ω. (4.1.8)

For the internal penalty discontinuous Galerkin (IPDG) method using the spline

S−1
p (4) of discontinuous piecewise polynomials of degree p over triangulation 4 with

an internal penalty, Du and Zhu in [11] obtained a similar result.

In [12], bounds are established for high order finite elements where the degree

d of the element is chosen according to a given wave number k and mesh size h.

Under certain mesh conditions (geometric refinement around corner singularities),

the authors show that the hp-FEM is stable and quasi-optimal provided

kh

p
≤ C1 and p ≥ C2 log(k), (4.1.9)

where C1 is sufficiently small and C2 sufficiently large. This finding has direct nu-

merical consequences for a numerical scheme of arbitrary degree like the multivariate

spline method, where we can indeed choose a degree and mesh that satisfies the above

inequalities for some choice of constants. Thus we know that for any k, there is a

triangulation and a choice of d such that the spline method is quasi-optimal; i.e. does

not suffer from the preasypmtotic, or “pollution" error. Nonetheless, the constants C1,

C2 which determine d and h are not known a priori, and there remain computational

limits due to available computing power.

We address these questions in Chapter 5. There we will present a large amount of

numerical evidence to demonstrate the convergence of our multivariate spline methods

and that our spline method is an efficient and effective way to find numerical solutions

of Helmholtz equations with wave numbers as large as k = 1500 in the bivariate case.

Little to no pollution phenomenon is observed in our computational experiments for

d large enough. Numerical results show that bivariate spline method compares well
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with the weak-Galerkin(WG) method in [52] and hybridized DG and WG methods

in [51], [67] in the sense that we are able to achieve high accuracy and for larger wave

numbers. More numerical examples of spline solution to Helmholtz-type equations

over inhomogeneous media and Maxwell equations with time harmonic source term

will be reported in Chapter 6.

The contributions of this work to the study of the Helmholtz equation are as

follows: 1) we shall provide a new way to establish the existence, uniqueness and

stability of the weak solution to the Helmholtz equation under a new assumption–for

a given wave number k, that k2 is not a Dirichlet eigenvalue of the Laplace operator

over Ω; 2) we pursue new convergence analysis under this assumption, and establish

a coercivity constant which does not go to 0 as the wave number k increases to

infinity. More precisely, under the assumption that k2 is not a Dirichlet eigenvalue,

we are able to establish the coercivity of the sesquilinear form B(u, v) and use the

Lax-Milgram theorem to establish the existence and uniqueness of the weak solution

to the Helmholtz equation in (4.1.1). The study leads to the new stability estimate of

the weak solution which does not require the classic assumption of strictly star-shaped

domains. The new stability estimate enables us to give a new convergence analysis.

Although we are not able to find out how the coercivity constant depends on k, we

are able to show that the coercivity constant will not go to zero when k → ∞ and

hence the desired approximation order will be achieved when kh ≤ C <∞. This is a

feature not shared by the constants in the literature; refer for example to the inf-sup

condition Proposition 8.2.7 in [46] which leads to Theorem 4.1.1.
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4.2 The Well-Posedness of the Helmholtz BVP

4.2.1 Mathematical Preliminaries

We introduce the following sesquilinear form:

a(u, v) =

∫
Ω

∇u · ∇vdxdy, u, v ∈ H1(Ω),

where u stands for the complex conjugate of the complex-valued function u. Also we

need two different inner products. let

〈u, v〉Ω =

∫
Ω

uvdxdy ∀u, v ∈ L2(Ω) and 〈u, v〉Γ =

∫
Γ

uvdΓ, ∀u, v ∈ L2(Γ),

be the standard inner products in L2(Ω) and in L2(Γ), respectively, where Γ = ∂Ω.

The variational formulation to the Helmholtz problem (4.1.1) is to find u ∈ H1(Ω)

such that

a(u, v)− k2〈u, v〉Ω + ik〈u, v〉Γ = 〈f, v〉Ω + 〈g, v〉Γ, ∀v ∈ H1(Ω) (4.2.1)

which is the weak formulation of (4.1.1). If a function u ∈ H1(Ω) satisfies the above

equation, u is called the weak solution.

4.2.2 Continuity of Sesquilinear Form

We now wish to show that the sesquilinear form arising from the weak form of the

Helmholtz problem 4.1.1 is continuous (i.e. bounded). We define the sesquilinear

form:

B(u, v) = a(u, v)− k2〈u, v〉Ω + ik〈u, v〉Γ. (4.2.2)
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Also, we define

|||u|||1,k,Ω :=
(
‖∇u‖2

L2(Ω) + k2‖u‖2
L2(Ω)

)1/2

.

It is easy to see ||| · |||1,k,Ω is a norm on H1(Ω). Associated with this norm, we let

〈u, v〉A = a(u, v) + k2〈u, v〉Γ be the inner product on H1(Ω) in the rest of the paper.

The following continuity condition of the sesquilinear form B(u, v) is known; for

convenience, we modify details from Lemma 8.1.6 of Melenk [46] and Corollary 3.2 of

[45] to give a complete proof here.

Lemma 4.2.1. Let Ω be a bounded Lipschitz domain. Then

|B(u, v)| ≤ CB|||u|||1,k,Ω |||v|||1,k,Ω, (4.2.3)

where CB is a positive constant dependent on Ω only.

Proof. Since B(u, v) ≤ 〈u, v〉A and 〈·, ·〉A is an inner product associated with norm

||| · |||1,k,Ω, Cauchy-Schwarz gives

|a(u, v)− k2〈u, v〉| ≤ |||u|||1,k,Ω|||v|||1,k,Ω

Furthermore, we have |ik〈u, v〉Γ| = k|〈u, v〉Γ| ≤ k‖u‖L2(Γ)‖v‖L2(Ω). Then we use

Sobolev trace inequality to have

‖u‖2
L2(Γ) ≤ CΩ‖u‖L2(Ω)‖∇u‖L2(Ω).

Thus, using ab =
√
ka · b√

k
≤ k

2
a2 + 1

2k
b2, we have

k‖u‖L2(Γ)‖v‖L2(Ω) ≤ CΩ(k‖u‖L2(Ω)‖∇u‖L2(Ω))
1/2(k‖v‖L2(Ω)‖∇v‖L2(Ω))

1/2

≤ CΩ

2
|||u|||1,k,Ω|||v|||1,k,Ω (4.2.4)

Combining the above two estimates, we have (4.2.3) with CB = 1 + CΩ/2.

62



Theorem 4.2.1. Let Ω ⊂ R2 be a bounded and convex or star-shaped with smooth

boundary, then. Then there exists C > 0 (independent of k) such that

inf
v∈H1(Ω)

sup
u∈H1(Ω)

Re(B(u, v))

|||u|||1,k,Ω |||v|||1,k,Ω
≥ C

k
. (4.2.5)

For convenience, we explicitly write down all the detail of a proof based on a

standard approach for establishing the inf-sup condition in (4.2.5). That is, let us

first prove the following

Lemma 4.2.2. For each v ∈ H1(Ω), there exists a wv ∈ H1(Ω) such that

Re(B(wv, v)) ≥ α|||v|||21,k,Ω and |||wv|||1,k,Ω ≤ β|||v|||1,k,Ω (4.2.6)

for positive constants α and β independent of v, wv.

Once we have the result in (4.2.6), we can establish the inf-sup condition (4.2.5).

Indeed,

Proof of Theorem 4.2.1. It follows from (4.2.6) we have

Re(B(wv, v)) ≥ α|||v|||1,k,Ω |||wv|||1,k,Ω/β

or

sup
u∈H1(Ω)

Re(B(u, v))

|||u|||1,k,Ω|||v|||1,k,Ω
≥ Re(B(wv, v))

|||wv|||1,k,Ω |||v|||1,k,Ω
≥ α

β
.

Taking the inf both sides of the inequality above, we conclude the proof of (4.2.5).

We now spend some time to prove Lemma 4.2.2.

Proof of Lemma 4.2.2. By Theorem 4.2.3, for each v ∈ H1(Ω), let zv ∈ H1(Ω) be the

solution to the Helmholtz equation (4.1.1) with f = 2k2v and g = 0 satisfying

B(zv, u) = 2k2〈v, u〉, ∀u ∈ H1(Ω).
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We let wv = v + zv ∈ H1(Ω). To see the first inequality in (4.2.6), we have

Re(B(wv, v)) = Re(B(v, v)) + Re(B(zv, v)) = a(v, v)− k2〈v, v〉+ 2k2〈v, v〉 = |||v|||21,k,Ω.

That is, the first inequality in (4.2.6) holds with α = 1.

Next by using the stability in [8], i.e. |||zv|||1,k,Ω ≤ C2k2‖v‖ for a positive constant

C independent of k when k ≥ 1, we have

|||wv|||1,k,Ω ≤ |||v|||1,k,Ω + |||zv|||1,k,Ω ≤ |||v|||1,k,Ω + Ck2‖v‖ ≤ C(1 + k)|||v|||1,k,Ω

which is the second inequality in (4.2.6) with β = C(1 + k).

4.2.3 Unique Existence

The existence of a weak solution follows from the Fredholm Alternative:

Theorem 4.2.2 (Fredholm Alternative Theorem). Consider the following two second

order partial differential equations


∆u+ λu = 0, in Ω

n · ∇u+ iku = 0, in ∂Ω,

(4.2.7)

and 
∆u+ λu = f, in Ω

n · ∇u+ iku = 0, in ∂Ω,

(4.2.8)

where λ > 0 is a constant, f ∈ L2(Ω). Fix λ > 0. Precisely one of the following

two statements holds: Either (4.2.7) has a nonzero weak solution u ∈ H1(Ω) or there

exists a unique weak solution uf ∈ H1(Ω) satisfying (4.2.8).
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We refer to [15] for a proof for the case with Dirichlet boundary condition. A

similar argument works for Theorem 4.2.2; details are left to the interested reader.

The following existence and uniqueness is well-known (cf. e.g. [46]). For clarity and

convenience, we present another proof.

Theorem 4.2.3. Let Ω be a bounded Lipschitz domain in R2. Then there exists a

unique weak solution u ∈ H1(Ω) to (4.1.1) in the sense that it satisfies (4.2.1).

Proof. By Fredholm Alternative Theorem 4.2.2, let us show that k2 is not an eigen-

value of (4.2.7). Otherwise, if there exists a nonzero eigenfunction uk2 ∈ H1(Ω)

satisfying (4.2.7) with λ = k2, then the weak formulation of (4.2.7), i.e.

a(uk2 , v)− k2〈uk2 , v〉Ω + ik〈uk2 , v〉Γ = 0,∀v ∈ H1(Ω),

shows that uk2 = 0 on Γ by using v = uk2 and considering the imaginary part. This

implies that uk2 is a Dirichlet eigenfunction of the Laplacian.

It then also follows from the boundary condition (4.2.7) that n · ∇uk2 = 0 on Γ.

That is, uk2 is also an eigenfunction of Laplacian operator over Ω associated with

Neumann boundary condition. The following Lemma 4.2.3 then gives uk2 ≡ 0 as

uk2 ∈ H1
0 (Ω). This is a contradiction and hence, k2 is not an eigenvalue of (4.2.7).

Fredholm Alternative theorem implies that (4.2.8) has a unique solution.

In the proof above, we have used the result of Lemma 4.2.3. Let us introduce

some notation. We first recall that the standard eigenvalue problem associated with

Laplacian operator ∆: 
−∆u− λu = 0, in Ω

u = 0, in ∂Ω.

(4.2.9)

If (4.2.9) has a nonzero solution, λ is called a Dirichlet eigenvalue of the Laplace

operator ∆ over the underlying domain Ω. It is known that all such eigenvalues are
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positive, that there are infinitely many, and that they increase to infinity. Let us write

λi, i = 1, · · · ,∞ for the eigenvalues and φi for a normalized eigenfunction associated

with λi. Similarly, let vν ∈ H1(Ω) be an eigenfunction associated with Neumann

eigenvalue ν, i.e. vν satisfies the following


−∆u− νu = 0, in Ω

n · ∇u = 0, on ∂Ω.

(4.2.10)

For convenience, let us write ker(−∆−νI) be the eigenspace associated with Neumann

eigenvalue ν, i.e. the collection of all eigenfunction vν ∈ H1(Ω) satisfying (4.2.10). It

is known that the sequence of the Neumann eigenvalues is unbounded, nonnegative,

and countably infinite. We are now ready to prove the following

Lemma 4.2.3 (Filonov, 2004 [18]). For each Neumann eigenvalue ν > 0 over Ω,

H1
0 (Ω) ∩ ker(−∆− νI) = {0},

where I is the identity operator.

Proof. The proof is short and we include it here for convenience. Let vν ∈ H1(Ω) be

an eigenfunction associated with Neumann eigenvalue ν, i.e. vν ∈ ker(−∆ − νI). If

vν ∈ H1
0 (Ω), we extend vν by zero outside Ω and call it w. Then w ∈ H1

0 (R2) and we

have

∫
R2

∇w∇u =

∫
Ω

∇vν∇u = −ν
∫

Ω

vνu = −ν
∫
R2

wu

for all u ∈ H1
0 (R2). That is, w is an eigenfunction of the Laplacian operator over R2

and hence, w ≡ 0.

This is essentially an application of the unique continuation principle from Leis

[42] used in [46], etc., but we enjoy this particular framing of the existence proof.
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4.2.4 An Alternate Assumption

Recall φi is a H1-normalized eigenfunction associated with Dirichlet eigenvalue λi, i =

1, · · · ,∞. Write Yi = span{φ1, · · · , φi} ⊂ H1
0 (Ω). For convenience, we shall use

λ0 = 0 in the following, although λ0 is not a Dirichlet eigenvalue. Using Rayleigh-

Ritz approximation, it is known (cf. [15]) that

λi+1 = min{‖∇w‖
2

‖w‖2
: w ∈ Y ⊥i }, (4.2.11)

where Y ⊥i is the orthogonal complement of Yi in H1
0 (Ω) under the inner product∫

Ω

∇w · ∇v.

We must point out the basic fact that B(u, v) is not coercive when k2 is a Dirichlet

eigenvalue. Indeed, let u = φi be an eigenfunction associated with Dirichlet eigenvalue

λi. If k2 = λi, we will have B(u, v) = 0 for all v ∈ H1
0(Ω) while u 6= 0. In particular,

B(φi, φi) = 0 if k2 = λi. Thus, in the rest of the paper, we shall often make an

assumption that k2 is not a Dirichlet eigenvalue, and establish the coercivity of B(·, ·)

under this assumption.

Note that over H1
0 (Ω), the inner product 〈w, v〉A is equivalent to

∫
Ω

∇w · ∇v if

k2 is not an eigenvalue. Indeed for any v ∈ Yi, say v = φj for some 1 ≤ j ≤ i and

w ∈ Y ⊥i , ∫
Ω

∇w · ∇v̄ = −
∫

Ω

w∆v̄ = −λj
∫

Ω

wv̄.

Thus, 〈v, w〉A = (1 − k2/λj)
∫

Ω
∇w · ∇v̄. Furthermore, let X⊥i be the orthogonal

complement of Yi in H1(Ω). We note that H1
0(Ω) is not dense in H1(Ω). Otherwise,

the testing space in (4.2.1) could be replaced by H1
0(Ω). Then when k2 = λi, we have

a(φi, v)− k2(φi, v) + i〈φi, v〉Γ = 0. Thus φi could be added to any solution of (4.2.1),

violating Theorem 4.2.3. Therefore, X⊥i 6= Y ⊥i .

Theorem 4.2.4. Let Ω be a domain with Lipschitz boundary. Suppose that k2 is

not an eigenvalue of the Laplace operator satisfying (4.2.9). Let λi+1 be the first
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eigenvalue of the Laplacian operator over Ω such that k2 < λi+1. Then there exists a

lower bound C1 > 0 such that

|B(u, u)| ≥ C1|||u|||21,k,Ω, ∀u ∈ X⊥i . (4.2.12)

Furthermore, L does not go to 0 as k →∞.

Proof. If (4.2.12) is not true, then there exists a sequence un ∈ X⊥i such that

|||un|||21,k,Ω = 1 and |B(un, un)| ≤ 1/n for n ≥ 1. The boundedness of un in X⊥i ⊂

H1(Ω) implies that there exists a u∗ ∈ H1(Ω) such that a subsequence, say the whole

sequence {un, n ≥ 1} converges to u∗ in L2(Ω) norm and converges to u∗ weakly in

H1(Ω) semi-norm by Rellich-Kondrachov Theorem (cf. [15]). Indeed, the bounded-

ness of un ∈ H1(Ω) implies that there exists a subsequence which is weakly convergent

to u∗ ∈ H1(Ω) and then the subsequence contains a subsequence which is strongly

convergent to u∗ in L2 norm by Rellich-Kondrachov Theorem. It follows that

a(un, u
∗)− k2〈un, u∗〉 −→ a(u∗, u∗)− k2〈u∗, u∗〉,

‖∇un‖ → ‖∇u∗‖, and 〈un, u∗〉Γ → 〈u∗, u∗〉Γ by using the Sobolev trace theorem.

That is,

|B(u∗, u∗)| = 0

In other words, the real and imaginary parts of B(u∗, u∗) implies that ‖∇u∗‖2
L2(Ω) =

k2‖u∗‖2
L2(Ω) and

∫
Γ
|u∗|2dΓ = 0. Thus, u∗ ∈ H1

0(Ω). Furthermore, since un is orthog-

onal to Yi, so is u∗. It follows that u∗ ∈ Y ⊥i . If u∗ 6= 0, the inequality in (4.2.11)

implies λi+1 ≤
‖∇u∗‖2

‖u∗‖2
= k2 < λi+1 which is a contradiction. Thus, we have u∗ ≡ 0.

On the other hand, |||u∗|||1,k,Ω = 1 because of |||un|||1,k,Ω = 1. We get a contradiction

again. Therefore, there exists a positive number C1 > 0 satisfying (4.2.12).
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Next we claim that C1 6→ 0 as k →∞. For convenience, let ck > 0 be the largest

constant on the right-hand side of (4.2.12) for each k. Since ck > 0, there exists a

uk ∈ H1(Ω) with |||uk|||1,k,Ω = 1 such that

|B(uk, uk)| ≤ 2ck.

Since |||uk|||1,1,Ω ≤ |||uk|||1,k,Ω = 1, we know there exists u∗ ∈ H1(Ω) and a subsequence

which is weakly convergent to u∗ in H1(Ω) and strongly convergent to u∗ in L2 norm

by using Rellich-Kondrachov Theorem. As ‖uk‖L2(Ω) ≤ 1/k2, we see that ‖u∗‖ = 0

and hence, u∗ = 0 almost everywhere. Thus, u|Γ = 0 and ∇u∗ = 0. Note that

‖∇uk‖ → ‖∇u∗‖ = 0 as k → ∞. Now if ck → 0, we would have |B(uk, uk)| → 0 or

|‖∇uk‖ − k2‖uk‖| → 0. It follows that k2‖uk‖ → 0 which together with ‖∇uk‖ → 0

proved above contradicts to the fact that |||uk|||1,k,Ω = 1.

We are now ready to establish the following existence and uniqueness result by

using the Lax-Milgram theorem.

Theorem 4.2.5. Let Ω be a bounded Lipschitz domain in R2. Then there exists a

unique weak solution u ∈ H1(Ω) to (4.1.1) satisfying (4.2.1).

Proof. We decompose H1(Ω) = X⊥i ⊕ Yi, where X⊥i is the orthogonal complement of

Yi in H1(Ω) for each i ≥ 0 with Y0 = H1
0(Ω) and X0 = H1(Ω). Suppose that for an

integer i, λi < k2 ≤ λi+1, where λ0 = 0 although it is not an eigenvalue. We first

project the solution onto Yi which can be done as follows. We compute the projection

of f onto Yi, i.e.

fi =
i∑

j=0

〈f, φj〉φj. (4.2.13)

Then we can choose ui ∈ H1
0(Ω) by

ui = −
i∑

j=1

1

−λj + k2
〈f, φj〉φj. (4.2.14)
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Then it is easy to see that ui satisfies ∆ui + k2ui = −fi.

Next we consider v ∈ X⊥i to be the solution


−∆v − k2v = f − fi, in Ω ⊂ R2

n · ∇v + ikv = g − n · ∇ui on ∂Ω.

(4.2.15)

Consider its weak formulation and it is easy to see that the right-hand side of the

weak formulation is a continuous linear functional. The continuity of B(u, v) and

the coercivity (4.2.12) proved above enable us to use the Lax-Milgram theorem and

conclude the existence and uniqueness of the weak solution v of (4.2.15). Now we can

easily check u = v + ui is the solution of (4.1.1) satisfying (4.2.1). Indeed, for any

w ∈ H1(4),

B(u,w) = B(ui, w) +B(v, w) = 〈∇ui,∇w〉 − k2〈ui, w〉+B(v, w)

= −〈∆ui + k2ui, w〉+ 〈n · ∇ui, w〉Γ + 〈f − fi, w〉+ 〈g − n · ∇ui, w〉Γ

=
i∑

j=0

〈f, φj〉
−λj + k2

〈(−λj + k2)φj, w〉+ 〈f − fi, w〉+ 〈g, w〉Γ = 〈f, w〉+ 〈g, w〉Γ.

That is, u ∈ H1
p(Ω) is the weak solution. The argument of the proof of Theorem 4.2.3

can be used to establish the uniqueness of this solution by using Lemma 4.2.3.

Furthermore, the weak solution is stable in the following sense.

Theorem 4.2.6. Suppose that Ω has a C1,1 smooth boundary or Ω is convex. Suppose

that k2 is not a Dirichlet eigenvalue of the Laplacian operator over Ω; that is, λi <

k2 ≤ λi+1 for some i ≥ 0. Let u ∈ H1(Ω) be the unique weak solution to (4.1.1) as

explained above. Then there exists a constant C > 0 independent of f, g such that

|||u|||1,k,Ω ≤ C(‖f‖+ ‖g‖Γ) (4.2.16)
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for k ≥ 1, where C is dependent on
1

1− λi/k2
and the constant Cc which is the lower

bound in (4.2.12). Furthermore, suppose Ω is convex and g ∈ H3/2(Γ). Then

|u|2,2,Ω ≤ C(1 + k)
(
‖f‖L2(Ω) + ‖g‖L2(Γ)

)
+ ‖∇Tg‖L2(Γ) (4.2.17)

for any k ≥ 0, where ∇T stands for the tangential derivative on Γ.

Proof. By using the proof of Theorem 4.2.5, we use the orthonormality of φi to have

‖∇ui‖2
L2(Ω) =

i∑
j=1

(
λj

k2 − λj

)2

|〈f, φj〉|2 and k2‖ui‖2
L2(Ω) =

i∑
j=1

(
k

k2 − λj

)2

|〈f, φj〉|2.

Hence, we have

|||ui|||1,k,Ω ≤ C2‖f‖, (4.2.18)

where C2 > 0 is a constant dependent on

max{ k + λj
k2 − λj

, j = 1, · · · , i} ≤ k + k2

k2(1− λi/k2)
≤ 2

1− λi/k2

as k ≥ 1 and φj are orthogonal to each other, and we have used the Bessel inequality∑i
j=1 |〈f, φi〉|2 = ‖fi‖2 ≤ ‖f‖2. For convenience, let C1 =

2

1− λi/k2
which will be

referred a few times later.

Since v is a weak solution satisfying (4.2.15) in its weak formulation, we have

B(v, v) = 〈f − fi, v〉+ 〈g − n · ∇ui, v〉Γ.
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The right-hand side of the above equality can be bounded as follows: letting ĝ =

g − n · ∇ui,

|〈f − fi, v〉|+ |〈ĝ, v〉| ≤ ‖f − fi‖‖v‖+ ‖ĝ‖Γ‖v‖Γ

≤ 1

2εk2
‖f − fi‖2 +

ε

2
k2‖v‖2 +

1

2εk
‖ĝ‖2

Γ +
ε

2
k‖v‖2

Γ

≤ 1

2εk2
‖f − fi‖2 +

ε

2
|||v|||21,k,Ω +

1

2εk
‖ĝ‖2

Γ +
ε

2
CΩk‖v‖L2(Ω) · ‖∇v‖L2(Ω)

≤ 1

2εk2
‖f − fi‖2 +

1

2εk
‖ĝ‖2

Γ + ε1|||v|||21,k,Ω

for ε > 0 with ε1 = ε/2 + CΩε/2, where we have used the Sobolev trace theorem (cf.

Lemma 1.5.1.9 in [23]). Now we use the lower bound in (4.2.12) to have the inequality

in (4.2.19) by choosing ε1 = m/2 and ‖fi‖ ≤ ‖f‖ by the Bessel inequality.

|||v|||1,k,Ω ≤
C

k
‖f‖+

C√
k
‖ĝ‖Γ (4.2.19)

for k ≥ 1.

Next ‖ĝ‖2
Γ ≤ 2‖g‖2

Γ + 2‖∇ui‖2
Γ and although ui = 0 over Γ, we have to estimate

∇ui over Γ. Let us first use Sobolev trace inequality to have

‖∇ui‖2
Γ ≤ CΩ‖∇ui‖L2(Ω) |∇ui|1,2,Ω = CΩ‖∇ui‖L2(Ω) |ui|2,2,Ω (4.2.20)

for a positive constant CΩ dependent on Ω, where | · |`,2,Ω is the `th semi-norm for

H`(Ω) for ` = 1, 2. As estimated above, ‖∇ui‖L2(Ω) ≤ |||ui|||1,k,Ω ≤ C1‖f‖. So let us

concentrate on an estimate for |ui|2,2,Ω. When Ω has C1,1 smooth boundary or Ω is

convex, we know that each eigenfunction φj is in H2(Ω) and |φj|2,2,Ω ≤ CΩ‖∆φj‖ =

CΩλj‖φj‖ for a positive constant CΩ dependent only on Ω. For simplicity, we write
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ui =
∑i

j=1 cjφj to have

|ui|2,2,Ω ≤
i∑

j=1

|cj||φj|2,2,Ω ≤ CΩ

i∑
j=1

|cj|‖∆φj‖L2(Ω)

≤ CΩ

i∑
j=1

|cj|λj‖φj‖L2(Ω) = CΩ

i∑
j=1

|cj|λj. (4.2.21)

As above, cj =
1

k2 − λj
〈f, φj〉 and thus,

i∑
j=1

|cj|λj ≤
1

1− λi/k2

i∑
j=1

λj
k2
|〈f, φj〉| ≤

1

1− λi/k2
‖fi‖

(
i∑

j=1

λ2
j

k4

)1/2

.

Let C2 =
√∑i

j=1 λ
2
j/k

4 which can be estimated by using the so-called Weyl law on

the number of Dirichlet eigenvalues over polygonal domain. Indeed, let N(a) be the

number of eigenvalues counting the multiplicities less or equal to a > 0. The Weyl

law says that

N(a) =
AΩ

4π
a+O(

√
a) (4.2.22)

(cf. e.g. [4]), where AΩ stands for the area of Ω. Then C2
2 =

1

k4

∑i
j=1 λ

2
j ≤

1

k4
λ2
iN(k2) = Bλ2

i /k
2 ≤ Bk2 for another positive constant B. That is, C2 ≤

√
Bk.

Hence, we have

|ui|2,2,Ω ≤ C1

√
Bk‖fi‖ ≤ C1

√
Bk‖f‖ (4.2.23)

and together with (4.2.18), the terms on the right-hand side of (4.2.20) can be sim-

plified to be

‖∇ui‖2
Γ ≤ C2

ΩC1‖f‖C1

√
Bk‖fi‖ ≤ C2

ΩC
2
1

√
B‖f‖2k (4.2.24)
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and hence from (4.2.19),

|||v|||1,k,Ω ≤
C

k
‖f‖+

C√
k
‖g‖Γ + C1CΩB

1/4‖f‖. (4.2.25)

Therefore, we summarize the discussion above to have

|||u|||1,k,Ω ≤ |||v|||1,k,Ω + |||ui|||1,k,Ω ≤
C

k
‖f‖+

C√
k
‖g‖Γ + CΩC1‖f‖B1/4

= C3(‖f‖+
1√
k
‖g‖Γ)

for a positive constant C3 dependent on 2/(1− λi/k2) and the lower bound L.

Finally, to establish (4.2.17) we follow the standard approach and apply the for-

mula in Chapter 3, [23] to v. That is, for any u ∈ H2(Ω), we use v = ∇u in Theorem

3.1.1.1. in [23] to have

2∑
i,j=1

∫
Ω

(∂iju)2 =

∫
Ω

(∆u)2dx + 2

∫
∂Ω

∇Tu · ∇T (∇u · n)dσ+∫
∂Ω

[
B(∇Tu,∇Tu) + tr(B)(∇u · n)2

]
dσ, (4.2.26)

where T and n stand for the tangential and normal direction of Γ, B is the bilinear

form, i.e. the Hessian matrix and tr is the trace operator. Due to the convexity, the

last two terms involving the Hessian of the boundary Γ are negative. For our solution

v, the first term on the right-hand side above can be estimated as follows: by using
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the Helmholtz equation,

∫
Ω

|∆v|2dx =

∫
Ω

|f − ui − k2v|2dx ≤ 2‖f − ui‖2 + 2k4‖v‖2

≤ C(‖f‖2 + ‖ui‖2) + 2k2|||v|||21,k,Ω

≤ C(‖f‖2 + ‖f‖2/k2) + 2k2(‖f‖2/k2 + ‖g‖2
Γ/k +

√
B‖f‖2)

≤ Ck2(‖f‖2 + ‖g‖2
Γ)

for a positive constant C, where we have used (4.2.18) and (4.2.19). Next, by using

the Robin boundary condition, the second term on the right-hand side of (4.2.26) is

estimated as follows:

|
∫
∂Ω

∇Tv · ∇T (∇v · n)dσ| ≤ ‖∇Tv‖2
Γ + |

∫
Γ

∇Tv∇Tgdσ| ≤
3

2
‖∇v‖2

Γ +
1

2
‖∇Tg‖2

Γ.

Furthermore, by using Sobolev trace inequality, the first term above on the right-hand

side can be estimated by

‖∇v‖2
Γ ≤ CΩ‖∇v‖2 +

1

2
|v|22,2,Ω ≤ CΩ|||v|||21,k,Ω +

1

2
|v|22,2,Ω.

Therefore, it follows from (4.2.26) that

1

2
|v|22,2,Ω ≤ Ck2(‖f‖2 + ‖g‖2

Γ) +
3CΩ

2
|||v|||21,k,Ω +

1

2
‖∇g‖2

Γ

Together with (4.2.23) and (4.2.25), we have obtained (4.2.17).

Note that there are two different stability conditions in Theorem 4.2.6, and two

different stability constants: one is dependent on 1/(1− λi/k2) as well as Cc and the

other is dependent on (1 + k). It is interesting to know if the lower bound Cc in

(4.2.12) is dependent on k or not. To this end, we decompose a weak solution u into
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three parts: u = ui + vi + w with ui ∈ Yi, vi = Y ⊥i and w ∈ (H1
0(Ω))⊥. Let us begin

with the following

Lemma 4.2.4. There exists a positive constant c such that

|B(u, u)| ≥ c|||u|||21,k,Ω, ∀u ∈ (H1
0 (Ω))⊥. (4.2.27)

Proof. Suppose that we do not have c > 0 for (4.2.27). For each n > 1, we have

un ∈ (H1
0 (Ω))⊥ with |||un|||1,k,Ω = 1 such that |B(un, un)| ≤ 1/n. First of all, the

boundedness of uk in H1(Ω) implies that there is a function u∗ ∈ H1(Ω) and a con-

vergent subsequence, say the whole sequence which converges weakly to u∗ in H1(Ω)

and |||un|||1,k,Ω → |||u∗|||1,k,Ω. By Rellich-Kontrachov’s theorem, without loss of gener-

ality, let us say uk → u∗ in L2(Ω) strongly. It follows that |B(u∗, u∗)| = 0. Thus,

〈u∗, u∗〉Γ = 0, i.e. u∗ ∈ H1
0 (Ω). However, un ∈ (H1

0 (Ω))⊥ implies that u∗ ∈ (H1
0 (Ω))⊥.

That is, u∗ ∈ H1
0 (Ω) ∩ (H1

0 (Ω))⊥ = {0} which contradicts to the fact |||u∗|||1,k,Ω = 1.

Therefore, we have c > 0 for (4.2.27).

Lemma 4.2.5. Suppose that k2 is not a Dirichlet eigenvalue of −∆ over Ω. Let us

say λi < k2 < λi+1 for some i ≥ 0. Then there exists a positive constant c > 0 such

that

|B(u, u)| ≥ c|||u|||21,k,Ω, ∀u ∈ Yi. (4.2.28)

Proof. To prove (4.2.28), we assume otherwise. There exists a nonzero u∗ ∈ Yi such

that B(u∗, u∗) = 0. It follows that ‖∇u∗‖2 = k2‖u∗‖2. Let us write u∗ =
∑i

j=1 cjφj ∈

Yi. Then we have ‖u∗‖2 =
∑i

j=1 |cj|2 by using the orthonormality of φj’s and similarly,

‖∇u∗‖2 =
∑i

j=1 |cj|2λj. Since λj < k2 for j = 1, · · · , i, we have ‖∇u∗‖2 < k2‖u∗‖2

which is a contradiction to the eigenvalue property: k2‖u∗‖2 = ‖∇u∗‖2.
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In fact, c can be found as follows. For any u =
i∑

j=1

cjφj ∈ Yi, we have

|B(u, u)| = |‖∇u‖2 − k2‖u‖2| =
i∑

j=1

|cj|2(k2 − λj) ≥
k2 − λi
k2 + λi

i∑
j=1

(k2 + λj)|cj|2

= c(‖∇u‖2 + k2‖u‖2)

with c =
k2 − λi
k2 + λi

=
1− λi/k2

1 + λi/k2
.

Finally, we have

Lemma 4.2.6. Suppose that k2 is not a Dirichlet eigenvalue of −∆ over Ω. Let us

say λi < k2 < λi+1 for some i ≥ 0. Then there exists a positive constant c > 0 such

that

B(u, u) ≥ c|||u|||21,k,Ω, ∀u ∈ Y ⊥i . (4.2.29)

Proof. For u ∈ Y ⊥i , we have

|||u|||21,k,Ω = B(u, u) + 2k2‖u‖2
L2(Ω) ≤ B(u, u) + 2k2‖u‖L2(Ω)‖∇u‖L2(Ω

‖w‖L2(Ω)

‖∇u‖L2(Ω)

≤ B(u, u) + k|||u|||21,k,Ω
1√
λi+1

by using the Cauchy-Schwarz inequality and the Rayleigh-Ritz approximation of the

eigenvalues. It follows that

(1− k√
λi+1

)|||u|||21,k,Ω ≤ B(u, u), (4.2.30)

so the lemma holds with c = 1− k√
λi+1

> 0.

However, the question remains how Cc in (4.2.12) is dependent on k2. We shall

explain in the following that it is dependent on 1−k/
√
λi+1. Nevertheless, these two
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estimates provide a new approach to study the existence and uniqueness of the weak

solution to Helmholtz equation (4.1.1).

4.3 On Spline Weak Solution to Helmholtz Equation

In this section, we mainly explain bivariate spline spaces which will be useful in the

study later. We refer to [39] and [3] for detail. Given a polygonal region Ω, a collection

4 := {T1, ..., Tn} of triangles is an ordinary triangulation of Ω if Ω = ∪ni=1Ti and if

any two triangles Ti, Tj intersect at most at a common vertex or a common edge.

We also assume that triangulation 4 is quasi-uniform, that is, there exists a positive

constant γ > 0 such that

sup
T∈4

|T |
ρT
≤ γ <∞ (4.3.1)

where |T | stands for the minimal diameter of the circle containing triangle T and ρT

the largest radius of the circle contained inside T . E.g. a triangulation 4 which is

the nth uniform refinement of a fixed triangulation 40 of Ω is quasi-uniform. Also,

|4| is the largest of diameters of triangles T ∈ 4. For r ≥ 0 and d > r, let

Srp(4) = {s ∈ Cr(4) : s|T ∈ Pp,∀T ∈ 4} (4.3.2)

be the spline space of degree p and smoothness r ≥ 0 over triangulation 4.

As solutions to the Helmholtz equation will be a complex solution, let us use a

complex spline space in this paper defined by

Srp(4) = {s = sr + isi, si, sr ∈ Srp(4)}. (4.3.3)
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A spline solution u4 ∈ Srp(4) with r ≥ 1 is a weak solution of (4.1.1) if u4 ∈ Srp(4)

satisfies

a(u4, v)− k2〈u4, v〉+ ik〈u4, v〉∂Ω = 〈f, v〉Ω + 〈g, v〉Γ, ∀v ∈ Srp(4) (4.3.4)

which consists with a standard finite element formulation for r ≥ 0.

The spline space Srp(4) has the similar approximation properties as the standard

real-valued spline space Srp(4). The following theorem can be established by the

same constructional techniques (cf. [38] or [39] for spline space Srp(4) for real valued

functions):

Theorem 4.3.1. Suppose that 4 is a γ-quasi-uniform triangulation of polygonal

domain Ω. Let p ≥ 3r+2 be the degree of spline space Srp(4). For every u ∈ Hm+1(Ω),

there exists a quasi-interpolatory spline function Qp(u) ∈ Srp(4) such that

∑
T∈4

‖Dα
xD

β
y (u−Qp(u))‖2

2,T ≤ C|4|2(m+1−s)|u|22,m+1,Ω (4.3.5)

for α + β = s, 0 ≤ s ≤ m + 1, where 0 ≤ m ≤ p, C is a positive constant dependent

only on γ, Ω, and p.

We can show the existence and uniqueness of spline weak solution.

Theorem 4.3.2. Let Ω be a polygonal domain and 4 be a triangulation of Ω. Let

Srp(4) with p ≥ 3r+ 2 be a complex-valued spline space of degree d and smoothness 1

over 4. Then the spline weak solution to (4.1.1), i.e. satisfying (4.3.4) exists and is

unique.

Proof. Let us consider a spline solution u ∈ S1
p(4) ⊂ H1(Ω) which satisfies the weak

formulation (4.3.4) with r = 1 for all v ∈ S1
p(4). Indeed, since v ∈ S1

p(4), i.e., v is

continuously differentiable over Ω. In particular, the inward normal derivative −n·∇v

is well defined along the boundary of Ω which will be converted to the desired outward
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normal derivative in the obvious way. Then it leads to a system of linear equations

due to the finite dimensionality of S1
p(4). To see the linear system of equations has a

unique solution, we need to show that the solution u has to be zero if the right-hand

side is zero, i.e., f = 0 = g. That is, we need to show that the solution u ∈ S1
p(4)

satisfying the following

∫
Ω

∇u · ∇vdxdy − k2

∫
Ω

u vdxdy + ik

∫
Γ

uvdΓ = 0, ∀v ∈ S1
p(4) (4.3.6)

has to be zero. Let v = u in the above equation to have

∫
Ω

|∇u|2dxdy − k2

∫
Ω

|u|2dxdy + ik

∫
Γ

|u|2dΓ = 0.

We conclude that
∫

Γ
|u|2dΓ = 0 and hence, u ≡ 0 on Γ = ∂Ω. Hence, it follows from

(4.3.6) that ∫
Ω

∇u · ∇vdxdy − k2

∫
Ω

u vdxdy = 0, ∀v ∈ S1
p(4). (4.3.7)

That is, if u 6= 0, u is an eigenfunction in S1
p(4) corresponding to eigenvalue k2.

Furthermore, n · ∇u ≡ 0 along Γ by the Robin boundary condition due to g ≡ 0

and u ≡ 0 on Γ. Without loss of generality, we may assume that Ω contains 0. Let

α ∈ (0, 1) and Ω ⊂ Ωα as in Lemma 4.3.1. In addition, let 4α be a triangulation of

Ωα by adding triangles to the existing 4. Then the zero boundary conditions of u

enable us to extend u outside of Ω by zero and hence, u ∈ S1
p(4α) because both u ≡ 0

and n · ∇u ≡ 0 along Γ . Hence, u is also an eigenfunction in S1
p(4α) with eigenvalue

k2. By Lemma 4.3.1, k2 = α2λi for some λi ∈ Λ1, the collection of all eigenvalues

of Laplacian operator over spline space S1
p(4). Λ1 has countably many eigenvalues;

however, the possibilities for α ∈ (0, 1) are uncountable. Because different α imply

different λi, this is a contradiction. Therefore, we conclude that u ≡ 0 and hence,

there exists a unique solution to the spline weak equation (4.3.4).
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In the proof above, we have used the following

Lemma 4.3.1. Let Ω ⊂ R2 be a domain with Lipschitz boundary. Without loss

of generality, we may assume 0 ∈ Ω. For each α ∈ (0, 1), we let Ωα = {(x, y) :

(αx, αy) ∈ Ω}. Let

Λ1 = {0 < λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · · } (4.3.8)

be the collection of all eigenvalues of Laplace operator −∆ over Ω. Similarly, let

Λα = {0 < λ1(α) ≤ λ2(α) ≤ · · · ≤ λn(α) ≤ · · · } (4.3.9)

be the collection of all eigenvalues of −∆ on Ωα. Then each eigenvalue λi(α) ∈ Λα is

equal to

λi(α) = α2λi, i = 1, 2, · · · , n, · · · . (4.3.10)

Proof. For any function u ∈ H1
0 (Ω), let uα(x, y) = u(αx, αy) which is a function in

H1
0 (Ωα). If u is an eigenfunction of −∆ over Ω with eigenvalue λ ∈ Λ1, we have

−∆u = λu. Thus,

−∆uα(x, y) = −α2∆u(αx, αy) = α2λu(αx.αy) = α2uα(x, y).

Thus, α2λ ∈ Λα with eigenfunction uα. Similarly, we can show each eigenvalue

λα ∈ Λα, λα/α2 ∈ Λ1. This completes the proof.

Next we need to show that the spline weak solution u4 are bounded independent

of 4. Following the proof of Theorem 4.2.4 in the previous section, we have

Theorem 4.3.3. Let Ω be a convex domain with Lipschitz boundary satisfying λi <

k2 < λi+1. Let u4 ∈ S1
p(4) be the spline weak solution satisfying (4.3.4) and suppose
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that u4 ∈ X⊥i ∩ S1
p(4). Then there exists a constant M independent of 4 such that

|||u4|||1,k,Ω ≤M(‖f‖+ ‖g‖Γ). (4.3.11)

Proof. We simply use the proof of Theorem 4.2.4 to have

L|||u4|||21,k,Ω ≤ |B(u4, u4)|.

Since B(u4, u4) = 〈f, u4〉+ 〈g, u4〉Γ, we use Cauchy-Schwarz inequality to obtain

|B(u4, u4)| ≤ 1

2kε
‖f‖2 +

ε

2
|||u4|||21,k,Ω +

1

2kε
‖g‖2

Γ +
ε

2
k‖u4‖2

≤ 1

2kε
‖f‖2 +

1

2kε
‖g‖2

Γ + (
ε

2
+
CΩε

2
)|||u4|||21,k,Ω.

By choosing ε > 0 small enough, e.g., ( ε
2

+ CΩε
2

) ≤ L/2, we have (4.3.11) with

M = 2/L.

Similarly, we can show that u4 is bounded when u4 ∈ S1
p(4) ∩ Yi by using

Lemma 4.2.5. We leave it to the interested reader. Following the same arguments of

Theorem 4.2.6, we can construct a spline solution u4 based on spline approximations

of eigenfunctions φi’s and then due to the C1 smoothness of the spline solution u4,

we can prove the similar result to that of Theorem 4.2.6. That is, we have

Theorem 4.3.4. Suppose that Ω has a C1,1 smooth boundary or Ω is convex. Suppose

that k2 is not a Dirichlet eigenvalue of the Laplacian operator over Ω. Let us say

λi < k2 < λi+1 for some i ≥ 0. Let u4 ∈ S1
p(4) ∩H1(Ω) be a spline weak solution to

(4.1.1) according to the construction in the proof of Theorem 4.2.6. Then there exists

a constant C > 0 independent of f, g such that

|||u4|||1,k,Ω ≤ C(‖f‖+ ‖g‖Γ) (4.3.12)

82



for k ≥ 1, where C is dependent on
1

1− λi/k2
and the constant Cc which is the low

bound in (4.2.12). Furthermore, suppose Ω is convex and g ∈ H3/2(Γ). Then

|u4|2,2,Ω ≤ C(1 + k)
(
‖f‖L2(Ω) + ‖g‖L2(Γ)

)
+ ‖∇Tg‖L2(Γ). (4.3.13)

where ∇T stands for the tangential derivative on Γ.

Proof. For convenience, let us give an outline of proof. Let φj,4 ∈ S1
p(4) be the

spline approximation of φj, j = 1, · · · , i and λj,4 be the numerical approximation of

λj. It is known that λj,4 approximates λj very well for j ≤ i when |4| → 0. We

project the right-hand side f to Yi ∩ S1
p(4) to have

fi,4 =
i∑

j=0

〈f, φj,4〉φj,4.

Let ui,4 = −
i∑

j=0

〈f, φj,4〉
−λj,4 + k2

φj,4. It is easy to see −(∆ui+k2ui) = fi. Let vi,4 be the

weak solution in S1
p(4) satisfying (4.2.15) with fi and ui replaced by fi,4 and ui,4,

respectively.

Let us write u4 = ui,4 + vi,4. Then for any w ∈ S1
p(4),

B(u4, w) = B(ui,4, w) +B(vi,4, w)

= 〈∇ui,4,∇w〉 − k2〈ui,4, w〉+B(vi,4, w)

= −〈∆ui,4 + k2ui,4, w〉+ 〈n · ∇ui,4, w〉Γ + 〈f − fi,4, w〉+ 〈g − n · ∇ui,4, w〉Γ

=
i∑

j=0

〈f, φj,4〉
−λj,4 + k2

〈(−λj,4 + k2)φj,4, w〉+ 〈f − fi, w〉+ 〈g, w〉Γ = 〈f, w〉+ 〈g, w〉Γ.

That is, u4 ∈ S1
p(4) is the weak solution.
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Now we can use the proof of Theorem 4.2.6 to conclude (4.3.12). In the same

fashion of the proof of Theorem 4.2.6, we can establish (4.3.13). The detail is left to

the interested reader.

4.4 Convergence of Spline Weak Solutions

In this section, we first use the coercivity in Theorem 4.2.4 to establish

Lemma 4.4.1. Let Ω ⊂ R2 be a bounded domain with Lipschitz boundary. Let u be

the unique weak solution in H1(Ω) satisfying (4.2.1) and u4 ∈ Srp(4), p ≥ 3r + 2 be

the spline weak solution to (4.1.1) satisfying (4.3.4). Suppose that u ∈ (H1
0 (Ω))⊥ and

u4 ∈ (H1
0 (Ω))⊥ ∩ S1

p(4). Then if u ∈ Hs(Ω) with 1 ≤ s ≤ p, there exists C > 0

independent of k such that

|||u− u4|||1,k,Ω ≤ C(1 + k|4|)|4|s−1|u|s,2,Ω, (4.4.1)

where |u|s,2,Ω is the semi-norm in Hs(Ω).

Proof. We use Lemma 4.2.4 to have

c|||u− u4|||21,k,Ω ≤ |B(u− u4, u− u4)|.

It follows from (4.2.1) and (4.3.4) the orthogonality condition:

a(u− u4, w)− k2〈u− u4, w〉+ i〈u− u4, w〉∂Ω = 0, ∀w ∈ Srp(4). (4.4.2)

That is, B(u − u4, w) = 0 for all w ∈ Srp(4). By choosing w = Qp(u), the quasi-

interpolatory spline of u as in the previous section, we have

|B(u− u4, u− u4) = |B(u− u4, u−Qp(u)〉)| ≤ CB|||u− u4|||1,k,Ω|||u−Qp(u)|||1,k,Ω.
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In other words,

|||u− u4|||1,k,Ω ≤
CB
c
|||u−Qp(u)|||1,k,Ω. (4.4.3)

Finally, we use the approximation property of spline space Srp(4), i.e. (4.3.5). For

u ∈ Hs(Ω) with 1 ≤ s ≤ p, we use the quasi-interpolatory operator Qp(u) of u to

have

|||u−Qp(u)|||1,k,Ω ≤ C(1 + k|4|)|4|s−1|u|s,2,Ω

for a constant C dependent on Ω, p and the smallest angle of 4 only. Therefore, the

combination of (4.4.3) and the estimate above yields (4.4.1).

Similarly, if u ∈ H1
0 (Ω), we can find spline approximation u4 satisfying (4.3.4) for

v ∈ S1
p(4) ∩H1

0 (Ω). Using Lemma 4.2.6, we have

Lemma 4.4.2. Let Ω ⊂ R2 be a bounded domain with Lipschitz boundary. Suppose

that Ω is a domain such that k2 is not a Dirichlet eigenvalue of the Laplacian over

Ω, say λi < k2 < λi+1 for some i ≥ 0. Let u be the unique weak solution in H1(Ω)

satisfying (4.2.1) and u4 ∈ Srp(4), p ≥ 3r + 2 be the spline weak solution to (4.1.1)

satisfying (4.3.4). Suppose that u ∈ Y ⊥i and u4 ∈ Y ⊥i ∩ S1
p(4). Then if u ∈ Hs(Ω)

with 1 ≤ s < p, there exists C > 0 dependent on 1− k/
√
λi+1 such that

|||u− u4|||1,k,Ω ≤ C(1 + k|4|)|4|s−1|u|s,2,Ω. (4.4.4)

In general, we do not know if the solution u is in H1
0 (Ω) or in (H1

0 (Ω))⊥. However,

it is possible to check (numerically) if k2 is an eigenvalue or not.

Theorem 4.4.1. Let Ω ⊂ R2 be a bounded convex domain or a bounded domain with

C1,1 boundary. Suppose that Ω is a domain such that k2 is not a Dirichlet eigenvalue

of the Laplacian over Ω. Let u be the unique weak solution in H1(Ω) satisfying (4.2.1)

and u4 ∈ Srp(4), p ≥ 3r + 2 be the spline weak solution to (4.1.1) satisfying (4.3.4).

Then if u ∈ Hs(Ω) with 1 ≤ s ≤ p, there exists C > 0 independent of |4|, f and g
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such that

|||u− u4|||1,k,Ω ≤ C(1 + k|4|)|4|s−1(|u|s,2,Ω + |ui|s,2,Ω), (4.4.5)

where ui is the projection of u in Yi.

Proof. We simply decompose u to be v+ui, where ui ∈ Yi and v ∈ X⊥i . As the domain

Ω is convex or has a C1,1 boundary, the regularity theory of Poisson’s equation implies

that each eigenfunction φj is very smooth and so is ui. Thus, v has the same regularity

as that of u. For v, we use the coercive condition, i.e. Theorem 4.2.4 to have

L|||v − v4|||21,k,Ω ≤ |B(v − v4, v − v4)|,

where v4 is the spline weak solution to v. Similar to the proof of Theorem 4.4.1, we

have

|||v − v4|||1,k,Ω ≤ C(1 + k|4|)|4|s−1|v|s,2,Ω ≤ C(1 + k|4|)|4|s−1(|u|s,2,Ω + |ui|s,2,Ω)

(4.4.6)

for another positive constant C dependent on Cc in (4.2.12).

Next we discuss the spline approximation ui,4 of ui. The classic theory (cf. [56]

and [57]) says that letting φj,4 ∈ S1
p(4) be the spline approximation of eigenfunction

φj using Rayleigh-Ritz approximation method, φj,4 → φj very well for each j =

1, · · · , i in the sense that for 0 ≤ ` ≤ s,

|φj − φj,4|`,2,Ω ≤ C|4|s−`|φj|s,2,Ω (4.4.7)

for a positive constant C independent of 4, since the spline space S1
p(4) has the

desired approximation power required in the proof of (4.4.7) (cf. [57]). It follows that
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ui,4 → ui and

|||ui,4 − ui|||1,k,Ω ≤ C|4|s−1(1 + k|4|)‖f‖. (4.4.8)

Indeed, we recall the Weyl law on the number N(k2) of Dirichlet eigenvalues less or

equal to k2 from [4] and use the formula for ui in (4.2.14) to have

‖ui − ui,4‖ ≤
i∑

j=1

‖f‖
k2 − λj

‖φj − φj,4‖

≤ 1

k2
C1N(k2)C|4|s max

j=1,··· ,i
|φj|s,2,Ω ≤ B1|4|s max

j=1,··· ,i
|φj|s,2,Ω

for a positive constant B1 dependent on 1− λi/k2. Similarly, we have

‖∇(ui − ui,4)‖ ≤
i∑

j=1

‖f‖
k2 − λj

|φj − φj,4|1,2,Ω

≤ 1

k2
C1N(k2)C|4|s−1 max

j=1,··· ,i
|φj|s,2,Ω ≤ B1|4|s−1 max

j=1,··· ,i
|φj|s,2,Ω

which leads to (4.4.8). Combining (4.4.6) and (4.4.8) completes the proof of Theo-

rem 4.4.1.

Let us point out that more detail on computation of eigenvalues and eigenfunctions

of −∆ by using bivariate splines can be found in [40]. Mainly we can show that φi,4

is a spline weak solution to the eigenfunction equation.

In addition to the lower bound we have established in Theorem 4.2.4, we can also

find an estimate for the inf-sup condition. That is, we estimate the following inf-sup

condition of B(u, v). The following result was well-known. See, e.g. [12] for the

domain which is strictly star-shaped.

It is interesting to know the estimate for the inf-sup condition when domain Ω is

not a strictly star-shaped domain. Using the Dirichlet eigenvalue assumption, we can

establish the following
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Theorem 4.4.2. Let Ω ⊂ R2 be a bounded Lipschitz domain. Suppose that k2 is not

a Dirichlet eigenvalue of −∆ over Ω. Then there exists α > 0 such that

inf
v∈H1(Ω)

sup
u∈H1(Ω)

Re(B(u, v))

|||u|||1,k,Ω |||v|||1,k,Ω
≥ α. (4.4.9)

Furthermore, α does not go to zero when k →∞.

Proof. Suppose (4.4.9) does not hold. Then there exists vn ∈ H1(Ω) such that

|||vn|||1,k,Ω = 1 and

sup
u∈H1(Ω)

Re(B(u, vn))

|||u|||1,k,Ω
≤ 1

n

for n = 1, · · · ,∞. The boundedness of vn in H1(Ω) implies that there exists a

weakly convergent subsequence (in the Hilbert space H1(Ω). By the boundedness

of the weakly convergent subsequence, we can find another subsequence which is

convergent strongly in L2 norm by the Rellich-Kondrachov Theorem. Without loss

of generality we may assume that vn → v∗ in L2(Ω) norm and in the semi-norm on

H1(Ω) with |||v∗|||1,k,Ω = 1. It follows that for each u ∈ H1(Ω) with |||u|||1,k,Ω = 1,

Re(B(u, vn)) → 0. Hence, Re(B(u, v∗)) = 0. By using u = −iv∗, we see that

Re(B(u, v∗)) = 〈v∗, v∗〉Γ = 0. So v∗ = 0 on Γ. That is, v∗ ∈ H1
0(Ω). It follows that

Re(B(u, v∗)) = 0 for all u ∈ H1
0(Ω). So v∗ is an eigenfunction with eigenvalue k2

which contradicts to the assumption. Hence, we have α > 0 in (4.4.9).

Next let us show that α 6→ 0 as k →∞. As α is dependent on k, let us write the

lower bound as ck > 0 for convenience. Then we can find vk with |||vk|||1,k,Ω = 1 such

that

sup
u∈H1(Ω)

Re(B(u, vk))

|||u|||1,k,Ω
≤ 2ck. (4.4.10)

That is, Re(B(vk, vk)) ≤ 2ck. Since |||vk|||1,k,Ω = 1, we use Rellich-Kondrachov Theo-

rem again to conclude that there exists a u∗ ∈ H1(Ω) such that vk → u∗ in L2 norm

and ‖∇vk‖ → ‖∇u∗‖ without loss of generality. As k2‖vk‖2 ≤ 1, i.e. ‖vk‖ ≤ 1/k, we
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have ‖u∗‖ ≤ 2/k for k > 0 large enough. It follows that u∗ ≡ 0. That is, ∇u∗ ≡ 0

and hence, ‖∇vk‖ → 0.

If ck → 0, we use (4.4.10) have |‖∇vk‖2 − k2‖vk‖2| = |Re((B(vk, vk))| → 0. Since

‖∇vk‖ → 0 mentioned above, it follows that k2‖vk‖2 → 0. However, since |||vk|||1,k,Ω =

1, we should have k2‖vk‖2 → 1. That is, we got a contradiction. Therefore, ck does

not go to zero when k →∞.

Next we need one more critical estimate.

Lemma 4.4.3. Let Ω be a bounded Lipschitz domain. Suppose that k2 is not a

Dirichlet eigenvalue of −∆ over Ω. Let u be the unique weak solution in H1(Ω)

satisfying (4.2.1) and u4 ∈ Srp(4), p ≥ 3r + 2, r ≥ 1 be the spline weak solution to

(4.1.1) satisfying (4.3.4). Then there exists a positive constant β > 0 such that

|||u− u4|||1,k,Ω ≤ β|||u|||1,k,Ω, (4.4.11)

where β is independent of u and will not go to ∞ as k →∞.

Proof. Recall that Yi is the finite dimensional subspace of H1
0 (Ω) spanned by eigen-

functions associated with eigenvalues λj < k2, j = 1, · · · , i. X⊥i is the orthogonal

complement of Yi in H1(Ω). We first decompose u = u1 + u2 with u1 ∈ Yi, u2 ∈ X⊥i .

Similarly, we write u4 = u1,4 + u2,4. Then Theorem 4.2.4 implies that there exists

a positive constant Cc (see 4.2.27) such that

Cc|||u2 − u2,4|||21,k,Ω ≤ |B(u2 − u2,4, u2 − u2,4)|.

By the orthogonality condition (4.4.2), B(u2 − u2,4, w) = 0 for all w ∈ S1
p(4). We

have

|B(u2 − u2,4, u2 − u2,4)| = ||B(u2 − u2,4, u2)| ≤ CB|||u2 − u2,4|||1,k,Ω |||u2|||1,k,Ω.
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Together with the estimate above of the estimate above, Cc|||u2−u2,4|||1,k,Ω ≤ CB|||u2|||1,k,Ω.

Similarly, using Lemma 4.2.5, we can have c|||u1 − u1,4|||1,k,Ω ≤ CB|||u1|||1,k,Ω. Let

us put these two estimates together to have

|||u− u4|||1,k,Ω ≤|||u1 − u1,4|||1,k,Ω + |||u2 − u2,4|||1,k,Ω

≤CB/c|||u1|||1,k,Ω + CB/Cc|||u2|||1,k,Ω. (4.4.12)

Finally we recall that the decomposition of Yi and Xi are based on the inner

produce 〈u, v〉A =
∫

Ω
∇u · ∇v̄ + k2

∫
Ω
uv̄. It follows that

|||u1|||21,k,Ω + |||u2|||21,k,Ω = |||u1 + u2|||21,k,Ω = |||u|||21,k,Ω.

Combining the above estimate with (4.4.12), we conclude the desired result with

β = CB
√

1/c2 + 1/C2
c .

Finally, let us establish the main result in this paper.

Theorem 4.4.3. Let Ω be a bounded Lipschitz domain. Suppose that k2 is not a

Dirichlet eigenvalue of −∆ over Ω. Let u be the unique weak solution in H1(Ω)

satisfying (4.2.1) and u4 ∈ Srp(4), p ≥ 3r + 2, r ≥ 1 be the spline weak solution to

(4.1.1) satisfying (4.3.4). Then if u ∈ Hs(Ω) with 1 ≤ s ≤ p, there exists C > 0 such

that

|||u− u4|||1,k,Ω ≤ C(1 + k|4|)|4|s−1|u|s,2,Ω, (4.4.13)

where C does not go to ∞ when k →∞.

If Ω ⊂ R2 is a bounded strictly star-shaped domain and has Lipschitz boundary,

then the approximation constant C in (4.4.13) can be more precisely written as C =

c(1 + k) for a positive constant c which is independent of k.
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Proof. We simply use the inf-sup condition, i.e. Theorem 4.4.2. For each v ∈ H1(Ω),

sup
u∈H1(Ω)

Re(B(u, v))

|||u|||1,k,Ω |||v|||1,k,Ω
≥ α.

By the continuity of the sesquilinear B(·, ·), the left-hand side is bounded above by

the constant CB. For each v, there exists a w ∈ H1(Ω) dependent on v which is larger

than one third of the upper limit of the left-hand side above, i.e.

Re(B(w, v))

|||w|||1,k,Ω |||v|||1,k,Ω
≥ 1

3
α. (4.4.14)

In particular, by choosing v = u− u4 in (4.4.14), we have

Re(B(w, u− u4)) ≥ α

3
|||w|||1,k,Ω |||u− u4|||1,k,Ω.

for w ∈ H1(Ω) dependent on u− u4. Note that from (4.2.1) and (4.3.4), we have the

orthogonality condition:

a(u− u4, v)− k2〈u− u4, v〉+ i〈u− u4, v〉∂Ω = 0, ∀v ∈ S1
p(4). (4.4.15)

That is, B(u − u4, v) = 0 for all v ∈ S1
p(4). By using v = w4, the spline weak

solution in S1
p(4) to the Helmholtz equation (4.1.1) whose weak solution is w, we

have

Re(B(w − w4, u− u4)) ≥ α

3
|||w|||1,k,Ω |||u− u4|||1,k,Ω

By using v = u4 − Q(u), where Q(u) is the quasi-interpolatory spline of u, we have

B(w − w4, u4 −Q(u)) = 0 and add it to the inequality above which yields

Re(B(w − w4, u−Q(u))) ≥ α

3
|||w|||1,k,Ω |||u− u4|||1,k,Ω.
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It follows that

|||u− u4|||1,k,Ω |||w|||1,k,Ω ≤
3

α
|||u−Qp(u)|||1,k,Ω|||w − w4|||1,k,Ω. (4.4.16)

Since |||w|||1,k,Ω 6= 0 and |||w − w4|||1,k,Ω ≤ β|||w|||1,k,Ω for a positive constant β by

Lemma 4.4.3, the inequality in (4.4.16) can be simplified to be

|||u− u4|||1,k,Ω ≤
3β

α
|||u−Qp(u)|||1,k,Ω.

Finally, we use the approximation property of spline space Srp(4), i.e. (4.3.5). For

u ∈ Hs(Ω) with 1 ≤ s ≤ p, we use the quasi-interpolatory operator Qp(u) of u to

have

|||u−Qp(u)|||1,k,Ω ≤ C(1 + k|4|)|4|s−1|u|s,2,Ω

for another constant C dependent on Ω, p and the smallest angle of 4 only. With

the term above, we can rewrite (4.4.16) as follows:

|||u− u4|||1,k,Ω ≤
C

α
(1 + k|4|)|4|s−1|u|s,2,Ω. (4.4.17)

for another positive constant C.

If we use Theorem 4.2.1 in the place of Theorem 4.4.2 above, we can get the

estimate in (4.4.13) with a constant dependent on c(1 +k). These complete the proof

of Theorem 4.4.3.

From the results above, we can see that the estimate in (4.4.13) is better when

C dependent on 1/α than the one with constant c(1 + k) which is a traditional

estimate which accounts for the pollution error in numerical experiments. Our proof

of Theorem 4.4.3 removes the dependence of the constant C on k. We have not yet

established explicit dependence of α on k, although α does not go to 0 when k →∞.
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4.5 Remarks

Remark 4.5.1. We have assumed Ω is convex or is a bounded domain with C1,1

boundary. This requirement can be weakened by using the new condition called do-

main with positive reach as explained in [20]. Under the positive reach condition, the

solution of Poisson equation will be in H2(Ω). Similarly, the solution to Helmholtz

equation will be in H2(Ω). We leave the details for future study.

Remark 4.5.2. As pointed out in several places in previous sections, the explicit

dependence of constants Cc and α on wave number k is not clear when the domain Ω

is not a strictly star-shaped domain. This may be an interesting area for future study.

Remark 4.5.3. Several estimates discussed in previous sections are dependent on

whether the number k2 is a Dirichlet eigenvalue or not. As the theory of the existence

and uniqueness to Helmholtz equation (4.1.1) has no such requirement, it is interesting

to remove such a condition. For example, it is also interesting to extend the stability

result in Theorem 4.4.2 when k2 is a Dirichlet eigenvalue.
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Chapter 5

Numerical Solutions of the Helmholtz

Equation

5.1 Introduction to Numerical Results

In this section, we shall present our computational method and then report some nu-

merical results. Our main computational algorithm is given as follows. For spline

space S1
p(4), let c be the coefficient vector associated with each spline function

s ∈ S1
p(4). In the implementation explained in [3], c is a stack of the polyno-

mial coefficients over each triangle in 4. Let H be the smoothness matrix such that

s ∈ Srp(4) if and only if Hc = 0. In the following numerical experiments, it is usually

the case that r = 0 or r = 1. Next let f and g be the vectors of coefficients for the

spline approximations for the source functions f and g, respectively. LetM and K be

the mass and stiffness matrices as in [3]. Then the spline solution to the Helmholtz

equation in weak form can be given in terms of these matrices as follows:

c>Kc4 − k2c>Mc4 + ic>MΓc4 = c>M f + c>MΓg, ∀c ∈ RN (5.1.1)
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for c and c4 which satisfies Hc4 = 0 and Hc = 0, where MΓ is the mass matrix over

the boundary such that
∫

Γ
uv̄ = c>4MΓc̄. Note that c is the standard conjugate of c

and N = (p + 1)(p + 2)N4/2 and N4 is the number of triangles in 4. To solve this

constrained system of linear equations, we use the so-called the constrained iterative

minimization method described in [3]. That is, we solve the following constrained

minimization:

min
c

1

2
(c>Kc− k2c>Mc + ic>MΓc)− c>M f − c>MΓg, (5.1.2)

subject to Hc = 0. The constrained iterative minimization method in [3] provides an

efficient way to find the solution of the minimization above.

However, as needed, we have introduced several modifications to the approach

detailed in [3]. In addition to a more efficient generation of the matrices K, M ,

and H of spline inner products and smoothness conditions, we have adapted and

generalized an idea first implemented by Dr. Slavov in [24] for generating a basis

of bivariate splines over arbitrary triangulations. New to this work is the ability to

implement this approach for general boundary conditions in both the bivariate and

trivariate settings.

Given the desired degree p of the spline function, and a given triangulation 4, we

generate an m × n matrix P , where m = #(T )
(
p+2

2

)
and n is the dimension of the

spline space S0
p(4). The matrix entry Pij = 1 if domain points i and j correspond to

the same x ∈ Rd, d = 2, 3; otherwise Pij = 0. Accordingly, some columns of P will

have multiple nonzero entries (those columns corresponding to domain points along

shared vertices and edges), but the sum of each row is always 1. Then, conjugating

K, M by P yields for example Kb = P TKP . These new spline matrices can be used

in place of K, M without H in 5.1.2 to generate a continuous spline solution; or,

in situations where the size of these matrices is modest compared to the computing
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power (RAM) available, a solution can be found very quickly using a spline basis and

Matlab’s mldivide function to solve the linear system that results from the standard

Galerkin formulation of the weak form of a given elliptic PDE.

This implementation reduces the size of the linear system to be solved, and so

allows a given computer to compute a spline solution with more degrees of freedom.

If a C1 solution is desired instead of just a C0 solution, we can implement 5.1.2 with

Kb, Mb, and Hb1 := H1P , where the rows of H1 contain only the r = 1 smoothness

conditions.

We also comment that for the case of very large wave numbers over a given domain,

the number of degrees of freedom needed to produce a “good" multivariate spline

approximation may exhaust the available computational power. As we approach

this limit, solving the linear system that results from the FEM discretization of the

boundary value is very difficult. We explored several options including the approach

5.1.2 from [3] and Matlab routines such as mldivide.m, gmres.m, and pcg.m. We also

began work on new domain decomposition methods for multivariate spline functions,

but these methods were not used for the experiments reported in this document.

In the following, we report some basic error results based on both our bivariate and

trivariate spline functions. Solving the Helmholtz equations with the spline method

offers advantages over the existing finite element framework including high order

FEM, interior penalty and hybridized discontinuous Galerkin methods, and weak

Galerkin methods. Our implementation is relatively straightforward and allows us

to find accurate spline solutions of arbitrary degree and smoothness for problems

involving large wave numbers. With reference to the results in [12], given a wave

number, we can in principle choose a triangulation and degree p to produce a spline

solution which does not suffer from preasymptotic pollution error. We emphasize the

following:
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(1) we are able to solve the Helmholtz problem with large wave number 1 ≤ k ≤ 500

by using our splines of degree p ≥ 5 and h = 1/64 on a laptop computer;

using a large memory (1000GB) node from the Sapelo 2 cluster at University

of Georgia, we are able to find accurate solutions to the Helmholtz equation

with wave numbers from 500–1500 by using spline functions of degree 12 and

h = 1/100. For example, the calculation Example 5.2.3 for k = 1500 used just

under 630GB of memory and our program ran for 30 hours.

(2) we provide numerical evidence to support the main results from [12]; that is, for a

fixed wave number, we find that we can effectively eliminate the pollution error

by choosing our triangulation and degree p appropriately–in 2 and 3 dimensions.

Moreover, we report some possible values for the constants c1, c2 in our setting.

(3) we are able to solve the Helmholtz problem with accurate numerical solutions over

domains which are not strictly star-shaped or not convex. See Example 5.2.3.

(4) we are able to use the same implementation for exterior domain problem of

Helmholtz equation (reported in [35].

(5) although our theory established in the previous sections requires C1 smooth

spline functions, our numerical experiments show that our algorithm also works

using C0 splines.

Moreover, we shall present some numerical evidence investigating the extent to

which observed preasymptotic error is in fact due to the Helmholtz BVP, rather than

other factors (such as highly oscillatory source functions, for example). It is known

(cf. [47]) that higher-order methods are less sensitive to pollution. We give some

examples of this phenomenon for multivariate spline functions.
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5.2 Reporting Basic Results

5.2.1 2D Examples

In this section we attempt to solve the boundary value problem


−∆u− k2u = f, in Ω,

α(∇u · n) + βu = g, on Γ = ∂Ω

(5.2.1)

for some α, β over various domains Ω and for various k ≥ 1.

Example 5.2.1. We take Ω to be unit regular hexagon with center (0, 0) as seen in

[16] and [52]. Here we take f = sin(kr)
r

, α = 1, β = ik, and g is chosen so that the

exact solution is given by:

u =
cos(kr)

k
− cos(k) + i sin(k)

k(J0(k) + iJ1(k))
J0(kr)

in polar coordinates, where Jν(z) are Bessel function of the first kind and r =√
x2 + y2.

Figure 5.1: Example 5.2.1: Real and imaginary part of the spline solution us ∈ S1
9

with wave number 100. Real part shown middle and imaginary part shown right.

In Fig. 5.1 we show plots of the spline solution us ∈ S1
9 (real and imaginary parts)

to Eq. (5.2.1) with wave number k = 100. We also use spline functions in S1
p degree

p = 5, ..., 17 to approximate the solution over the domain shown in Fig. 5.1, left. The

relative errors in the L∞ norm as well as the root mean square error based on 67201
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equally-spaced points within Ω are shown in Table 5.1 (k = 200). It is clear from

Table 5.1, when the degree of splines increases, the errors get better.

Table 5.1: Example 5.2.1: Relative and maximum L2 and H1 seminorm errors for C1

spline solutions of various degrees to the Helmholz BVP with wave number k=200

p h rel. L2 error rel. H1 error `∞ error |u|1,∞
5 0.063 1.3054e+00 1.4632e+00 2.9566e-02 1.0032e+01
7 0.063 1.0274e+00 1.0207e+00 5.4012e-02 1.6182e+01
9 0.063 5.0853e-02 5.7129e-02 1.8468e-03 5.6149e-01
11 0.063 1.1197e-03 1.5021e-03 4.3664e-05 1.2068e-02
13 0.063 4.8710e-05 1.0916e-04 1.7632e-06 9.6094e-04
15 0.063 2.2405e-06 4.8859e-06 7.6330e-08 3.4396e-05
17 0.063 1.0917e-07 2.5422e-07 3.8012e-09 2.5664e-06

Example 5.2.2. We next solve (5.2.1) again over the unit regular hexagon with center

at (0, 0) (as shown in the left graph of Fig. 5.1) for large wave number k = 500. We

use uniformly refined triangulations to find spline solutions of (5.2.1) which accurately

approximate the exact solution as shown in Table 5.2. The errors decrease as the sizes

of triangulation decrease.

Table 5.2: Example 5.2.2: Accuracy of spline solutions in S1
12 to the Helmholtz equa-

tion with wave number k = 500

wave no. h p rel. L2 error rel. H1 error `∞ error |u|1,∞ error
500 0.125 12 1.4541e+00 1.2967e+00 1.0588e-02 9.0560e+00
500 0.062 12 1.1921e+00 1.1743e+00 1.4517e-02 7.6721e+00
500 0.031 12 6.3515e-03 8.6685e-03 7.6444e-05 7.8923e-02
500 0.016 12 9.8523e-08 8.7072e-07 1.5062e-09 7.3869e-06

Example 5.2.3. In this example, we show the accuracy of spline solutions for high

wave numbers. Again, we solve (5.2.1) over the unit hexagon. We report the relative

errors for our spline solutions with p = 10, r = 1 with high wave numbers (k =

500− 1000) in the top part of Table 5.3 and p = 12 and r = 1 (k = 1100− 1500) in

the bottom part of Table 5.3.

Example 5.2.4. To see the degrees of freedom when solving (5.2.1), let us present

two tables for our spline method with the weak Galerkin method in [52]. For wave
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Table 5.3: Example 5.2.3: Accuracy of spline solution in S1
10 for various large wave

numbers

wavenumber k h rel. L2 error rel. H1 error `∞ error |u|1,∞ error
500 0.016 5.4581e-06 6.7180e-05 1.1751e-07 5.9545e-04
600 0.016 1.3501e-04 4.0429e-04 1.7397e-06 2.6984e-03
700 0.016 2.0630e-03 2.5532e-03 3.3968e-05 1.6688e-02
800 0.008 8.0733e-07 7.6723e-06 1.3186e-08 6.6425e-05
900 0.008 1.9449e-06 2.3920e-05 3.5339e-08 1.8619e-04
1000 0.008 7.3629e-06 6.7027e-05 9.8781e-08 8.5276e-04

Table 5.4: Example 5.2.3 Accuracy of spline solution in S1
12 for various large wave

numbers

wavenumber k h rel. L2 error rel. H1 error `∞ error |u|1,∞ error
1100 0.0100 2.9026e-05 4.9725e-05 1.8495e-07 4.6325e-04
1200 0.0100 8.5032e-05 1.3023e-04 4.5849e-07 9.1309e-04
1300 0.0100 3.8509e-04 4.3707e-04 5.2119e-06 2.0724e-03
1400 0.0100 1.9326e-03 1.9489e-03 2.3369e-05 1.7926e-02
1500 0.0100 8.3163e-03 8.2431e-03 5.3503e-05 1.2119e-01

number k = 1, we compare the accuracy of spline solutions from the space S1
5 to

piecewise constant weak Galerkin solutions (relative error results from [52]) along

with degree of freedom counts. For the piecewise constant WG method, we calculate

the degrees of freedom by dofcwg = #(E) + #(T ). For splines in S1
5(4), we report

an only upper bound on the degrees of freedom for convenience; dofS1
5
< 2#(V ) +

#(E)(d− 1) + #(E)(d− 3). We write #(V ),#(E), and #(T ) to denote the number

of vertices, edges, and triangles in a given triangulation. The numerical results are

shown in Table 5.5.

In Table 5.6, a comparison of relative errors of the solutions of spline S1
5 and

piecewise linear weak Galerkin solutions from [52] is shown, along with degree of

freedom counts. For piecewise linear WG, we calculate doflwg = 2#(E)+3#(T ). The

spline method provides a more accurate solution using far fewer degrees of freedom.

Here the wave number is k = 5.
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Table 5.5: Comparison of the accuracy of spline method with piecewise constant weak
Galerkin method

piecewise constant WG Spline S1
5

|4| rel. L2 error rel. H1 error dof rel. L2 error rel. H1 error dof
1.000 - - - 9.285e-07 1.948e-05 98
0.500 4.170e-03 2.490e-02 66 1.672e-08 6.819e-07 332
0.250 1.050e-03 1.110e-02 252 6.635e-10 2.224e-08 1214
0.125 2.630e-04 5.380e-03 984 - - -
0.062 6.580e-05 2.670e-03 3888 - - -
0.031 1.650e-05 1.330e-03 15456 - - -
0.016 4.110e-06 6.650e-04 61632 - - -

Table 5.6: Comparison of the accuracy of spline solution with piecewise constant
linear weak Galerkin method

linear WG Spline S1
5

|4| rel. L2 error rel. H1 error dof rel. L2 error rel. H1 error dof
1.000 - - - 4.287e-03 1.489e-02 98
0.500 - - - 1.183e-04 7.197e-04 332
0.250 2.580e-04 9.480e-03 600 2.019e-06 2.546e-05 1214
0.125 3.460e-05 2.310e-03 2352 3.525e-08 8.609e-07 4634
0.062 4.470e-06 5.740e-04 9312 2.411e-09 2.866e-08 18098
0.031 5.640e-07 1.430e-04 37056 - - -
0.016 7.060e-08 3.580e-05 147840 - - -
0.008 8.790e-09 8.960e-06 590592 - - -
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Example 5.2.5. Let us consider the Helmholtz boundary value problem over a non-

convex domain, shown left in Fig. 5.2. For this example, α = 1, β = ik and source

functions f and g are chosen so that the analytic solution to (5.2.1) is given by

u = Jξ(kr) cos(ξθ).

As above, r and θ are the usual polar coordinates, k is the wavenumber, and Jξ is

a Bessel function of the first kind. This is another standard testing function studied

in [52] and [21]. We study three situations where ξ = 1, 3/2, and 2/3. Plots of

the spline solutions from S1
5 for k = 4 and k = 20 are shown in Fig. 5.2– 5.4. We

summarize numerical results for each of these three cases in Tables 5.7, 5.9, and 5.8.

Figure 5.2: Example 5.2.5: Spline solution s ∈ S1
5 to non-convex Helmholtz problem

with exact solution u = Jξ(kr) cos(ξθ), with ξ = 1. The underlying triangulation is
shown left, solution with wave number k = 4 center, and solution with wave number
k = 20 right.

Table 5.7: Example 5.2.5: Numerical results of spline approximation ∈ S1
5 over non-

convex domain with ξ = 1

wavenumber=4 wavenumber=20
|∆| rel. L2 error rel. H1 error rel. L2 error rel. H1 error

1.0000 1.1242e-03 4.6766e-03 1.3420e+00 1.6892e+00
0.5000 2.0562e-04 8.2798e-04 8.9020e-01 8.7483e-01
0.2500 3.4424e-06 3.0885e-05 1.0677e-01 1.1434e-01
0.1250 8.1231e-08 1.1162e-06 1.6385e-03 4.1769e-03
0.0625 - - 2.0492e-05 1.3421e-04
0.0312 - - 6.5958e-06 8.2274e-06

Example 5.2.6. Certainly, we are interested in exploring numerical solution to a

nonconvex domain with larger wave numbers k = 100, 200, 300. As referenced in
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Figure 5.3: Example 5.2.5: Spline solution s ∈ S1
5 to non-convex Helmholtz problem

with exact solution u = Jξ(kr) cos(ξθ), where ξ = 3/2. The underlying triangulation
is shown left, solution with wave number k = 4 center, and solution with wave number
k = 20 right.

Table 5.8: Example 5.2.5: Numerical results of spline approximation s ∈ S1
5 over

nonconvex domain with ξ = 3/2

wavenumber=4 wavenumber=20
|∆| rel. L2 error rel. H1 error rel. L2 error rel. H1 error

1.0000 1.0993e-01 1.4599e-01 1.9511e+00 2.3335e+00
0.5000 2.7023e-03 2.1935e-02 1.0055e+00 1.0333e+00
0.2500 1.0796e-03 5.7067e-03 4.4131e-02 6.5030e-02
0.1250 2.2659e-04 2.0220e-03 6.4977e-03 1.1583e-02
0.0625 4.9490e-05 7.1555e-04 1.3156e-03 3.4129e-03
0.0312 1.0926e-05 2.2876e-04 2.8728e-04 1.0494e-03

Figure 5.4: Example 5.2.5: Spline solution to non-convex Helmholtz problem with
exact solution u = Jξ(kr) cos(ξθ), with ξ = 2/3. The underlying triangulation is
shown left, solution with wave number k = 4 center, and solution with wave number
k = 20 right.

Table 5.9: Example 5.2.5: Numerical results of spline approximation s ∈ S1
5 over

nonconvex domain with ξ = 2/3

wavenumber=4 wavenumber=20
|∆| rel. L2 error rel. H1 error rel. L2 error rel. H1 error

0.5000 9.1279e-03 5.3100e-02 1.4984e+00 1.5024e+00
0.2500 3.3169e-03 3.0808e-02 9.5122e-01 9.4475e-01
0.1250 1.2753e-03 1.8893e-02 8.1904e-03 2.6594e-02
0.0625 4.9854e-04 1.0827e-02 3.1416e-03 1.4909e-02
0.0312 1.9433e-04 5.6974e-03 1.2276e-03 7.7787e-03
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[52], the computation for ξ = 2/3 is more challenging than the case where ξ = 1

and ξ = 3/2. However, the spline solution in S1
10 is nonetheless highly accurate. In

Fig. 5.5, graphs of the spline solutions in S1
10(4) to the difficult BVP with ξ = 2/3

are shown for higher wave numbers k = 200 and k = 300. Relative errors are given

in the plots; all relative L2 and H1 errors are on the order of 10−2.

Figure 5.5: Example 5.2.6: Spline solution ∈ S1
10 to the non-convex number Helmholtz

problem with large wave number. The exact solution is u = Jξ(kr) cos(ξθ) and
ξ = 2/3, with wave numbers k = 200 left and k = 300 right.

Example 5.2.7. Here we return to the first example with source term f =
sin(kr)

r

and with reference to [12] and equation 4.1.9, we fix the quantities kh
p

for varying

wave number k. In this experiment, we use degree 8, C1 splines. Our results, shown

in Table 5.10, suggest that the constants C1 may be as large as 1/2 and C2 as small

as 1.3. We have not yet attempted to identify optimal bounds for bivariate spline

functions, but the constants reported here may serve as a guide for selecting a spline

method (triangulation and degree), given the wave number, that will not suffer from

preasymptotic pollution error.

5.2.2 3D Examples

In this section, we take Ω to be unit regular cube with center (0.5, 0.5, 0.5) and consider

the Helmholtz equation in three dimensions. The splines solutions are generated in

the same way as described in 5.1, but producing accurate numerical solutions for
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Table 5.10: Example 5.2.7: Relative L2 and H1 error results for p = 8 and the size of
the triangulation h chosen so that that the product kh

p
= 1

2
.

k h kh/p rel. L2 error rel. H1 error `∞ error |u|1,∞ error
60 0.067 1/2 3.3041e-06 1.3658e-05 3.5912e-07 6.4930e-05
120 0.033 1/2 3.6576e-06 1.1103e-05 1.5460e-07 6.5157e-05
180 0.022 1/2 1.6801e-06 1.4977e-05 7.8387e-08 5.8730e-05
240 0.017 1/2 1.6748e-06 1.5134e-05 6.8373e-08 6.9122e-05
300 0.013 1/2 1.6735e-06 1.5231e-05 6.1516e-08 7.8338e-05
360 0.011 1/2 1.6738e-06 1.5294e-05 5.6416e-08 8.6716e-05
420 0.010 1/2 1.6725e-06 1.5342e-05 5.2400e-08 9.4442e-05
480 0.008 1/2 1.6749e-06 1.5375e-05 4.9167e-08 1.0164e-04

large wave numbers is more challenging in the 3D setting. This phenomenon is at

least partly explained by the relative density of the spline inner product matrices

to be inverted, even when keeping constant the total number of degrees of freedom.

Figure 5.6 is a visualization for the case p = 9. Bivariate spline dimension is
(
p+2

2

)
; for

trivariate splines we have
(
p+3

3

)
, so the underlying 2D mesh for the situation shown

here has 4 times more triangles than the 3D mesh has tetrahedra.

Figure 5.6: The plots show the locations of nonzero entries in the matrices to be
inverted when solving a Helmholtz BVP for the spline coefficient vector. The bivariate
spline case is left; trivariate, right; both arise from continuous splines of degree 9 but
from meshes of different size.
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The result is that in the trivariate setting, it is not just the extra dimension

that contributes to the numerical difficulty involved. It is reasonable to ask whether

the trivariate spline code (arbitrary degree and smoothness) works ‘as well as the

bivariate version. We investigate that question by comparing bivariate and trivariate

approximations uHs to the Helmholtz boundary value problem with exact solution

u(x) = sin(kx). (5.2.2)

Naturally, because the spline degrees of freedom are distributed along each cardinal

direction, and the function being approximated is constant in the z direction, the

bivariate approximation achieves greater accuracy with fewer total degrees of freedom.

However, if we count in each case only the number of degrees of freedom in the

direction of the wave oscillation, the bivariate and trivariate approximations achieve

the same level of accuracy. This outcome is demonstrated for wave number k = 30 in

Figure 5.7, where we also plot interpolatory splines and spline solutions to the Poisson

equation (uPs) with exact solution given by Eq. 5.2.2. This comparison demonstrates

that the spline solutions to the Helmholtz equation do not suffer from pollution error

in this example.

Example 5.2.8. This is a generalization into three dimensions of Example 5.2.1. As

above, we choose the boundary condition with β = ik, and g is chosen so that the

exact solution is given by:

u = sin(kz)
(cos(kr)

k
− cos(k) + i sin(k)

k(J0(k) + iJ1(k))
J0(kr)

)
in cylindrical coordinates, where Jν(z) are Bessel function of the first kind and r =√
x2 + y2. Error results for C0 spline functions of various degrees can be found in

Table 5.11.
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Figure 5.7: The relative H1 seminorm error for C0 and C1 bivariate and trivariate
splines versus degrees of freedom counts. The plot on the left gives error against the
total dimension of the spline; the rightmost plot shows error against the number of
degrees of freedom in the direction of sine wave oscillation.

Table 5.11: Example 5.2.8: Relative and maximum errors for C1 spline solutions of
various degrees to the 3-dimensional Helmholz BVP with wave number k=25. The
errors shown are in the L2 norm and H1 seminorm.

p h rel. L2 error rel. H1 error `∞ error |u|1,∞
5 0.125 9.3057e-03 2.6901e-02 2.0714e-03 1.2002e-01
6 0.125 2.4927e-03 8.0630e-03 7.6470e-04 7.0878e-02
7 0.125 4.6380e-04 1.9359e-03 1.0437e-04 1.7896e-02
8 0.125 7.9027e-05 3.9022e-04 2.1745e-05 4.9318e-03
9 0.125 1.7481e-05 5.6743e-05 4.2484e-06 7.0103e-04
10 0.125 2.2924e-06 1.0117e-05 5.9486e-07 8.9463e-05
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Table 5.12: Example 5.2.9: Relative L2 and H1 error results for p = 6 and the size of
the triangulation h chosen so that that the product kh

p
= 1

2
.

k h kh/p rel. L2 error rel. H1 error `∞ error |u|1,∞
3 1.000 1/2 1.2882e-03 6.3733e-03 3.5667e-03 1.3857e-01
6 0.500 1/2 1.4247e-03 7.5663e-03 1.5878e-03 1.3899e-01
12 0.250 1/2 1.5451e-03 7.5061e-03 1.0329e-03 9.0459e-02
24 0.125 1/2 1.7702e-03 7.2155e-03 5.1897e-04 4.9262e-02
36 0.083 1/2 1.1569e-03 5.4474e-03 1.9324e-04 3.0029e-02

Example 5.2.9. With reference again to [12], here we solve the same Helmholtz

boundary value problem as in 5.2.8 while fixing the quantity kh
p

as in Example 5.2.7.

This time, we use splines of degree 6, and choose mesh size h based on the wave

number k. Our results in Table 5.12 suggest that the preasymptotic pollution error

is well controlled with constant C1 as large as 1/2 and C2 as small as 1.7. Ideally, we

could expand the table a few more rows by considering even larger wave numbers, but

the computational demands for computing a three-dimensional spline approximation

are too great at this time.

5.3 Numerical Investigation of Dispersion Error

In this sections we present a numerical investigation of the pollution error of multi-

variate spline solutions to the Helmholtz equation. As discussed in Chapter 4, this

preasymptotic error has been theoretically established and is generally unavoidable

for two- and three-dimensional finite element methods. However, it is known that the

effect of this type of error is reduced for higher-order methods; as our spline method

is of arbitrary degree, it is interesting to identify and record levels of pollution error

for various wave numbers approximations of varying degree. Moreover, we present

numerical evidence that suggests that the pollution error is better controlled by C1 or

C2 conforming approximations, at least when measured against degrees of freedom.
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There seem to be a few fundamental observations to be made. For bivariate

splines of low degree, it is relatively easy to observe the pollution phenomenon over

a unit domain for wave lengths k between 15 and 70. However, as the degree of the

spline method is increased, preasymptotic error due to the Helmholtz dispersion effect

becomes increasingly difficult to establish. Figure 5.8 shows the error in the relative

H1 seminorm for bivariate spline solutions uHs to the Helmholtz boundary value

problem with exact solution u = sin(kx) against degrees of freedom per wavelength.

For comparison, the error of interpolatory splines of the same degree are plotted. For

problems with small wave number e.g. k = 4, no pollution is observed for uHs of

any degree. For larger wave numbers, e.g. k = 64, far more preasymptotic is present

for uHs than for the interpolatory splines of low degree. As the degree of the spline

solution increases, however, the difference in preasymptotic relative error becomes

negligible. This phenomenon is known, but we record it here for spline functions for

the first time. Additionally, these numerical results evidence the theoretical findings

from [12].

If we choose spline methods of even higher degree, it becomes more difficult to

document the pollution effect. For example, for p = 10, it is hard to identify any

dispersion error for wave numbers even as large as k = 300. More numerical results

can be found in Figure 5.9.

The same pattern holds for trivariate splines. Figure 5.10 contains plots of the

relative H1 seminorm errors of trivariate spline solutions to the Helmholtz boundary

value problem with exact solution

u(x) = sin(
k√
3
x) sin(

k√
3
y) sin(

k√
3
z), (5.3.1)

along with the errors of interpolatory splines of the same degree.
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Figure 5.8: The pollution effect for k = 4, 16, 64 for bivariate spline solutions to
the Helmholtz boundary value problem with exact solution u = sin(kx). Pollution
decreases with increasing p for fixed k.
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Figure 5.9: The pollution effect for k = 100, 200, 300 for bivariate spline solutions
to the Helmholtz boundary value problem with exact solution u = sin kx. Pollution
decreases with increasing p for fixed k.
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Figure 5.10: The pollution effect for k = 10, 30, 50 for trivariate spline so-
lutions to the Helmholtz boundary value problem with exact solution u =
sin( k√

3
x) sin( k√

3
y) sin( k√

3
z). Pollution decreases with increasing p for fixed k.
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Figure 5.11: The “gap” between the error curves in the bivariate spline solution to
the Helmholtz equation and the interpolatory spline (left) is not fully attributable to
the pollution term. A spline solution to the Poisson BVP also has less accuracy in
the relative seminorm in the preasypmtotic region as compared with the interpolator.
Here p = 4 for all spline functions.

An interesting dynamic is at play. For a numerical approximation of degree p,

there must be some k where preasymptotic error is non-negligible; but practically, for

a Helmholtz boundary value problem with k given, we are either 1) able to choose p

large enough to produce a spline approximation which does not suffer from pollution

error or 2) the solution to be found is so difficult to approximate that the applied

computer would also have difficulty computing even the interpolatory spline. We

suggest then, (with added confidence from the theoretical results in [12]) that for an

arbitrary degree method like our implementation of multivariate splines, concerns of

preasymptotic pollution error are more theoretical rather than practical.

We also present a numerical investigation into the discrepancy between the relative

errors of spline solutions to the Helmholtz boundary value problem and the errors of

the interpolation splines. To what degree is this discrepancy directly attributable to

the “pollution" term in 4.1.2? In Figures 5.8 – 5.10, there are “gaps” between the

error curves of the spline solutions and spline interpolations in the preasymptotic

regions of the plots. Based on the analysis in Chapter 4, it is reasonable to assume
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that those gaps are due to that pollution term; but, intuitively, it is also plausible

that the discrepancy may be partly due to the highly oscillatory nature of the source

functions. Would a FEM solution to another, sign-definite boundary value problem

exhibit the same preasymptotic error behavior?

To address this question, we solve both a Poisson and Helmholtz boundary value

problem with boundary conditions and source functions determined by the same

exact solution. Interestingly, relative seminorm errors of the spline solutions ups to

the Poisson equation also lag behind the interpolator in the preasymptotic regime. An

example of this gap for bivariate boundary value problems with exact solution u(x) =

sin(kx) for k = 200 is shown in Figure 5.11. Results of this kind are evidence that

the actual numerical effect of the pollution term is smaller than a visual inspection

of the log-log error plots may suggest.

Finally, we investigate the effect that imposing higher regularity has on the pol-

lution error of spline approximations to the Helmholtz equation. Some results of this

inquiry for bivariate splines in Sr6(4) are shown in Figure 5.13. When measuring error

in the relative H1 seminorm against the dimension of the spline space, the C1 spline

solution gives better results than the C0. The C1 splines show little preasymptotic

error, and seems to reach the asymptotic region with fewer degrees of freedom than

C0 spline solutions to either the Helmholtz or the Poisson equation. And, as shown

in Figure refdisp:c2, the trend seems to continue for C2 spline solutions, although the

pollution effect is harder to observe for higher order methods. There, p = 9. More

theoretical study may help to better explain the relationship between preasymptotic

pollution error and higher regularity finite elements.
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Figure 5.12: Relative H1 seminorm errors for C1 and C0 spline solutions in Sr6 to the
Helmholtz BVP are shown, along with error results for spline solutions to the Poisson
equation and interpolatory splines. The C1 splines have better error results in the
preasymptotic region.

Figure 5.13: Relative H1 seminorm errors for C1 and C0 spline solutions in Sr9 to the
Helmholtz BVP are shown, along with error results for spline solutions to the Poisson
equation and interpolatory splines. The C2 splines have better error results in the
preasymptotic region.
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Chapter 6

Numerical Solutions of the Maxwell

Equations

6.1 Shielded Microstrip

Here we present a calculation of the potential and electric field resulting from a

shielded mircrostrip operating at low frequency.

A microstrip is a kind of “waveguide" or transmission line. A transmission line is

simply some structure designed to deliver an electrical signal from one part of a circuit

to another. The microstrip is the most common type of planar transmission line, and

is “quasi-TEM", (a TEM wave is a transverse electromagnetic wave), which means

TEM analysis is applicable when the microstrip circuit operates at low frequency.

Striplines and coaxial lines are two other common types of TEM transmission lines.

For microstrip circuit elements, the cutoff frequency for TEM versus non-TEM anal-

ysis occurs at low microwave frequencies of around 5 GHz. For higher frequency

currents, the longitudinal components of the electric field cannot be ignored.

We seek to reproduce an example originally presented by Jin in [33] of electrostatic

analysis of a shielded microstrip operating at low frequency. Jiang also addresses the
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Figure 6.1: A schematic of a shielded microstrip wavequide. The rectangular bound-
ary of the planar section is a conducting surface and so the electric potential V=0
there. The shaded lower section is a dielectric with electric permittivity ε1 and mag-
netic permeability µ1; the upper region is simply air, so its permittivity and per-
meability are simply defined to be the vacuum constants. The black region is the
current-carrying strip, maintained at a certain electric potential.

problem in [31] using a first-order div-curl formulation. In both cases, the analysis

is done by solving a boundary value problem over a domain like the one shown in

Figure 6.1.

First, we assume that the inner conductor is held at a constant potential Vimp so

that electrostatic analysis is warranted; second, we make use of the symmetry of the

domain shown in Fig. 6.1 to cut the size of the domain in half. That is, rather than

solve over the whole rectangle, we instead bisect the domain vertically and impose a

Neumann boundary condition on this plane of symmetry Γs (the dashed line in the

figure above).

The first-order formulation of an electrostatic boundary value problem is

∇×E = 0 in Ω

∇ · (εE) = ρ in Ω (6.1.1)

E = −∇V in Ω (6.1.2)

where V is the electric potential (which is known on the boundary), ρ is the charge

distribution and ε is the electric permittivity over all of Ω. Here, we have ρ = 0, and
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ε is defined piecewise. The required external boundary conditions are

V = Vimp on Γcc (6.1.3)

n×E = 0 on Γc (6.1.4)

n ·E = 0 on Γs. (6.1.5)

where Γc is the shielding conducting surface and Γcc is portion of the boundary that

actually touches the current-carrying portion of the microstrip (the boundary of the

small black rectangle in Fig. 6.1). Let Ω = Ω1 ∪ Ω0 where Ω1 is the lower shaded

region which contains the dielectric material and Ω0 is the upper air-filled region;

then we must impose the following additional boundary conditions at the junction

Γint := Ω̄1 ∩ Ω̄0, as justified in 3.3:

V + = V − on Γint (6.1.6)

n×E+ = n×E− on Γint (6.1.7)

n · (ε0E+) = n · (ε1E−). (6.1.8)

Jiang’s formulation in [31] uses the least squares method, which amounts to mi-

minizing the quadratic functional I(E) = ||∇×E||2+||∇·E−ρ/ε||2 with the additional

internal boundary conditions enforced “naturally" by adding the term

(∇E+ −∇E−)2 + (E+
x −E−x )2 + (ε0E

+
y − ε1E−y )2

to the functional for each node that borders Γint.

We make use of the potential formulation detailed in Chapter 3, and solve for V

and differentiate to get E. We substitute Equation 6.1.2 into the rest of the first-order
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formulation and equation 6.1.1 reduces to

−∆(εV ) = 0 in Ω or


−∆(ε0V ) = 0 in Ω0

−∆(ε1V ) = 0 in Ω1.

(6.1.9)

Figure 6.2: Shielded Microstrip: A contour plot of the electric potential and its
underlying triangulation. The potential, V for a shielded microstrip, held at constant
voltage (V=1), left. The triangulation used to compute the spline solution, right.

We must also convert the boundary conditions to be compatible with this for-

mulation. Condition 6.1.3 is automatically satisfied; for condition 6.1.4 we consider

−n × (∇V ) = 0. In the potential formulation, this is simply the requirement that

the derivative of V in the tangent direction at the boundary is zero; it will be ex-

actly satisfied if V is constant on Γc. In the case of the shielded microstrip, Γc is

a grounded conductor, so V ≡ 0 on Γc. The Dirichlet condition 6.1.5 becomes a

Neumann boundary condition after the substitution −∇V = E:

n ·E = 0 =⇒ n · ∇V = 0 =⇒ ∂V

∂n
= 0 on Γs.

Then internal boundary conditions at Γint but also be converted. Condition 6.1.6

will be satisfied as an essential boundary condition since our numerical solution be-

longs to a subspace of Sd0 . By choosing a triangulation ∆ so that Γint only coincides

with edges of triangles in ∆, we can also easily enforce condition 6.1.7. To see this,
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let edge Eint be an edge of the triangulation that lies on Γint, and let T+ and T− be

the triangles above and below the edge respectively. Since V is globally continuous,

VT+|Eint
= VT−|Eint

; on the edge Eint, VT+ and VT− reduce to the same univariate

polynomial. Therefore, their derivatives in the direction tangent to Eint will match.

Therefore we have

t · ∇VT+ = t · ∇VT−
∣∣
Eint

⇐⇒ n×∇VT+ = n× VT−
∣∣
Eint

⇐⇒ n×ET+ = n×ET−
∣∣
Eint

.

Since this will hold for all such edges Eint, as long as we cover Γint with edges of ∆,

condition 6.1.7 will be satisfied.

Condition 6.1.8 is somewhat more difficult. In the potential formulation, it be-

comes the Neumann-type interface condition ε0 ∂V
+

∂n
= ε1

∂V −

∂n
. The C0 continuity con-

ditions from Equation 2.1.24 ensure that the derivatives of these polynomial pieces in

the direction tangent to the shared edge also match. The additional linear condition

described in Equation 2.1.25 guarantees that the derivatives of VT+ and VT− match in

the direction of an (unshared) edge of T+. The linear independence of these directions

then gives C1 smoothness across the edge in question.

We impose condition 6.1.8 across the appropriate edges of the triangulation, by

altering the smoothness conditions on the domain points near the edge in question.

Instead of enforcing matching derivatives in an edge direction, we directly require

continuity of the normal derivatives. This is accomplished by calculating an edge’s

normal direction using barycentric direction vectors of the neighboring triangles. The

details of this new linear constraint can be found in Chapter 2, but once formulated,

we can simply multiply one side of the linear constraint equation by ε1/ε0 to guarantee

6.1.8 is satisfied along the edges in question.

Figure 6.2 shows level curves of the calculated electric potential over the trian-

gulated domain on the right. Note the change in the shape of these curves at the
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Figure 6.3: Shielded Microstrip: A contour plot of the electric potential and its
underlying triangulation over the full cross-section. The potential, V for a shielded
microstrip, held at constant voltage (V=1), left. The triangulation used to compute
the spline solution, right.

interface Γint between the dielectric material and air. Figure 6.3 shows the com-

putation done over the entire domain, where we use a nonuniform triangulation for

improved efficiency.

Figure 6.4: Shielded Microstrip: Computed Electric Field. We take the negative
gradient of the numerical solution of the potential equation (area near the microstrip
shown for clarity).

We can then differentiate to obtain the electric field at all points in the domain.

The resulting vector field is shown in Figure 6.4. To reproduce Jiang’s calculation,

we compute the electric field at each vertex in the triangulation, and give the electric
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Figure 6.5: Shielded Microstrip: Averaged Electric Field. We average the computed
electric field over each triangle to match Jiang’s calculation in [31]

.

field vector at the center of each triangle as the average of the field at the triangle’s

vertices. This is Figure 6.5.

6.2 Coaxial Join

Here we explore a three dimensional problem in which the symmetry of the solution

domain can be exploited to reduce the analysis to 2 dimensions. Consider a join of two

coaxial waveguides of different inner radii. Each coaxial cable has an inner, current

carrying conductor, and an outer, grounded conductor. In between these cylindrical

conductors lies a layer of dielectric material. We wish to calculate the electrostatic

potential and the electric field in this region.

Let the cable be running along the z−axis, with the join occurring at the origin.

For the leftmost coaxial waveguide, we take the radius of the outer conductor to be

1.2, and inner radius 0.2; the guide it is joined to has the same outer radius, but an

inner radius of 0.7. We assume the inner conducting surfaces are held at a constant
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Figure 6.6: Coaxial Join: Triangulation of region of interest. The vertical axis here
measures r; the horizontal is the z-axis. Far away from the join, on grounds of
symmetry, we impose ∂u

∂n
= 0 on the vertical boundaries and Dirichlet conditions

(informed by 3.3) on the conductors in question.

potential of 1 V, while the outer conductor is grounded at 0 V. These become Dirichlet

boundary conditions for the potential formulation of the boundary value problem.

To take advantage of the axial symmetry, we reformulate the electrostatic problem

using cylindrical coordinates; r := (x2 + y2)1/2, θ := arctan(y/x), and x := z. The

region in question does not vary with θ, so we consider a slice of the coaxial waveguide

in the z-direction, perpendicular to θ. We also slice across the cylinder, parallel to θ,

at a sufficient distance away from the join; along these edges, because of the symmetry

in the z-direction away from the join, we expect ∂u
∂n

= 0. This gives us a portion of a

plane Ω with boundary Γ on which we can perform the electrostatic analysis in two

dimensions. Let Γo be the edge of Ω corresponding to the outer conductor, Γi the

edges of the inner conductor, and Γv the vertical edges where the Neumann conditions

hold. A triangulation ∆ of the region is shown in Figure 6.6.
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Clearly, this change in coordinates affects the equation to be solved. Instead of

solving 6.1.9, we must consider the Poisson Equation in cylindrical coordinates

−1

r

∂

∂r

(
r
∂u

∂r

)
− 1

r2

∂2u

∂θ2
− ∂2u

∂z2
= f(r, θ, z).

In this case, we have by symmetry ∂u
∂θ
≡ 0, and because there is no charge in the

domain of interest, f ≡ 0. Thus the equation we wish to solve is

− ∂

∂r

(
εrr

∂u

∂r

)
− ∂

∂z

(
εrr

∂u

∂z

)
= 0.

Since our analysis can now take place in the plane, we substitute y for r and x for z,

and using the standard del operator the problem to be solved is

∇ · (εry∇u) = 0

with boundary conditions

u = 0 on Γo

u = 1 on Γi

∂u

∂n
= 0 on Γv

We multiply through by a test function φ, and integrate by parts:

∫
Ω

∇ · (εry∇u)φdΩ = εr

∫
Γ

y(∇u · n)φdΓ− εr
∫

Ω

y∇u · ∇φdΩ = 0

For a careful formulation, the boundary value problem should be reformulated as

in Section 6.1. so that the integral over Γ becomes an integral only over Γv, where

we impose the Neumann boundary conditions; Dirichlet boundary conditions are

imposed explicitly on the remainder of the boundary. We note that the construction
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Figure 6.7: Plots of numerical solution to BVP with exact solution u = y sin(π
3
x)

and error. The spline approximation is shown left; the spatial distribution of errors
is shown right. The plot demonstrates that the solution is approximated well at all
boundaries and in the domain interior.

of the stiffness matrix will be different than it was for the standard Poisson problem

in Cartesian coordinates. Now, for the entries corresponding to a particular triangle

T ∈ 4, we have

KT =

[∫
T

y∇BT
ijk∇BT

l,m,n

]
i+j+k=d
l+m+n=d

;

i.e. the integral is weighted by the coordinate y. To address this in practice, we

represent the function y as a degree d Bernstein-Bezier polynomial so that the product

and the integral can be performed using the convenient formulas arising from the de

Casteljau algorithm. Details can be found in [39].

To test the accuracy of the code for this new formulation, we consider a test

problem with exact solution g(x, y) = y sin(π
3
x). This produces a nonhomogeneous

case with source function f(x, y) = ((π
3
y)2 − 1) cos(π

3
x); we impose u = g(x, y) on Γo

and Γi, and ∂u
∂n

= ∂g
∂n

= 0 on Γv, and solved using the approximation space S1
5 . The

error between the approximate spline solution and the exact solution was calculated

on a grid of 10000 points spread over Ω. The maximum error of the solution was 1.5e-
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Figure 6.8: Coaxial Join: Contour plot of equipotential lines, top, and computed
electric field, bottom

10, and the maximum error in the first order derivatives was less than 9e-9. A plot of

the numerical solution and a plot of the error is shown in Figure 6.7 respectively. This

matches what we expect from the theory, and so we can trust our calculations for the

coaxial join problem even though there is no exact solution for us to test against.

Thus we are ready to calculate the potential in the dielectric material surrounding

the join in the coaxial waveguides. A contour plot of the potential surface and the

computed electric field is shown in Figure 6.8. The contour plot visually matches

an example from Jin in [33], and the electric field satisfies the appropriate boundary

conditions for a field near a conducting surface. Namely, the electric field is orthogonal

to the surface of the conductors at or near the surface in question.
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6.3 A Bivariate Spline Analysis of the TEM mode of

a Parallel Plate Waveguide

Our goal is to characterize the disturbance to the TEM mode of a plane wave caused

by a material discontinuity in a parallel plate waveguide. We will replicate a numerical

experiment found in [33] to verify the validity of our numerical analysis, and then

extend the existing analysis in the literature by varying the frequency of the waves

in the waveguide and the shape of the dielectric discontinuities. We begin with a

thorough explanation of the physics involved.

We consider two, perfectly conducting (sometimes referred to as PEC) metal plates

parallel to each other and to the yz−plane as in Fig. 6.9. The dimensions of the plates

are far greater than their separation d, assuring the effect of fringing fields is negligible

[25].

Figure 6.9: Schematic of a parallel plate waveguide with a material discontinuity.
The obstruction and surrounding material may have different electric permittivities,
resulting in interesting electromagnetic behavior.

The assumed geometry will lead to plane waves which propagate through the

guide in the z−direction. The propagating waves are composed of 3 basic wave

types: transverse electric (TE) waves, which have no electric field in the direction of

propagation; and transverse magnetic (TM) waves, which have no magnetic field in
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the direction of propagation; transverse electromagnetic (TEM) waves, which have no

electric or magnetic field component in the direction of propagation [58]. We assume

that some source, outside our region of interest, is driving electromagnetic waves to

propagate from left to right in Fig. 6.9. We further assume that the excitation of

the conducting plates is uniform in the y-direction. Then the complete set of the TE,

TM, and TEM modes allows for the representation the waves resulting from a source

of arbitrary frequency [25]. In [33], Jin asserts that as long as the waveguide operates

at a low enough frequency, the propagating wave will take the form

H(x, y, z) = Hoe
−ikzzŷ, (6.3.1)

after accounting for differences in orientation.

But why must the wave take only that form if and (only if) the electromagnetic

wave is low frequency? At what frequency threshold does this model breakdown? We

expand Jin’s justification for his analysis below. The following analysis is not new to

the literature, but it is original, and as it informs the numerical experiments which

follow, we include it for understanding and completeness. Our analysis assumes the

same orientation as depicted in Fig. 6.9; we refer to the interior of the waveguide as

Ω.

We begin with the assumption that we have monochromatic plane waves propa-

gating down the waveguide so that

H̃(x, y, z, t) = H(x, y, z)e−iωt = H(x, y)ei(kzz−ωt) (6.3.2)

Ẽ(x, y, z, t) = E(x, y, z)e−iωt = E(x, y)ei(kzz−ωt). (6.3.3)
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[25]. Then, away from the dielectric discontinuity, the (time-harmonic) Maxwell equa-

tions give

∇ ·E = 0 ∇×E = iωµH

∇ ·B = 0 ∇×H = −iωεE.

Interpreting these equations component-wise, we discover that each of the com-

ponents of the field quantities may be written in terms of their z-components only;

therefore, our goal is simply to solve for those components. The full analysis is below,

where we let, for example, H =< Hx,Hy,Hz >.

∇×E = iωµH =⇒


∂yEz − ∂zEy = iωµHx

∂zEx − ∂xEz = iωµHy

∂xEy − ∂yEx = iωµHz

(6.3.4a)

(6.3.4b)

(6.3.4c)

∇×H = −iωεE =⇒


∂yHz − ∂zHy = −iωεEx (6.3.5a)

∂zHx − ∂xHz = −iωεEy (6.3.5b)

∂xHy − ∂yHx = −iωεEz. (6.3.5c)

The assumed z-dependence from 6.3.2 and 6.3.3 then yields

∇×E = iωµH =⇒


∂yEz − ikzEy = iωµHx (6.3.6a)

ikzEx − ∂xEz = iωµHy (6.3.6b)

∂xEy − ∂yEx = iωµHz (6.3.6c)

∇×H = −iωεE =⇒


∂yHz − ikzHy = −iωεEx (6.3.7a)

ikzHx − ∂xHz = −iωεEy (6.3.7b)

∂xHy − ∂yHx = −iωεEz. (6.3.7c)
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We combine 6.3.6b and 6.3.7a together to conclude

Ex =
i

ω2µε− k2
z

(kz∂xEz + ωµ∂yHz) (6.3.8)

Hy =
i

ω2µε− k2
z

(kz∂yHz + ωε∂xEz) (6.3.9)

Similarly, 6.3.6a and 6.3.7b yield

Ey =
i

ω2µε− k2
z

(kz∂yEz − ωµ∂xHz) (6.3.10)

Hx =
i

ω2µε− k2
z

(kz∂xHz − ωε∂yEz). (6.3.11)

Finally, we derive the scalar-valued PDEs to be solved by combining 6.3.6c with 6.3.8

and 6.3.10, and 6.3.7c with 6.3.11 and 6.3.9 respectively. This gives

−∆Hz − (ω2εµ− k2
z)Hz = 0 (6.3.12)

−∆Ez − (ω2εµ− k2
z)Ez = 0 (6.3.13)

As does Jin in [33], our analysis below will emphasize the magnetic field component

Hz. For electromagnetic waves oscillating at a microwave frequency regime or lower,

we can assume that the tangential electric field at the perfectly conducting parallel

plates is 0. [41] That is, Ey = Ez = 0 at x = 0 and x = d . Equation 6.3.13 is

supplemented by these Dirichlet boundary conditions. Applying this to 6.3.10, we

discover the Neumann boundary condition imposed in [33], or

∂xHz = 0 at x = 0, d ⇐⇒

∇Hz · n = 0 at x = 0, d,

where n is the unit normal pointing out of the plate boundary.
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Let us consider TE (Ez = 0) waves. By the aforementioned geometric symmetry

or the waveguide, we know that (at least away from the dielectric discontinuity), we

have ∂yHz = 0. We define

kc :=
√
ω2µε− k2

z (6.3.14)

and return to solve the boundary value problem

−
∂2

∂x2
Hz =k2

cHz ∈ Ω

∂xHz =0 x = 0, d,

(6.3.15)

which has general solution Hz(x, y) = Aeikcx + Be−ikcx. Imposing the boundary

conditions leads to the relation

kc =
nπ

d
, n = 1, 2, 3... (6.3.16)

and infinitely many solutions

Hn
z (x, y, z) = Ho cos

(nπ
d
x
)
eikzz.

Similarly, we can consider the TM modes (Hz = 0) and solve

−
∂2

∂x2
Ez = k2

cEz ∈ Ω

Ez = 0, x = 0, d,

(6.3.17)

for Ez. We again have that

kc =
nπ

d
, n = 1, 2, 3... (6.3.18)
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for the TM modes, and get infinitely many solutions

En
z (x, y, z) = Eo sin(

nπ

d
x)eikzz.

The other components of the TE and TM modes may be derived using relations

6.3.8–6.3.11.

Given a source or driving frequency ω, we are interested in the propagation be-

havior that results. The constant kz governs this behavior, and, for both the TE and

the TM modes, can be now be determined by using the relation kc = nπ
d
. We have

kz = ±
√
ω2µε−

(nπ
d

)2
. (6.3.19)

The fact that kz can be positive or negative is reflective of the fact that waves can

travel down the waveguide in both directions. For a fixed n, if ω is such that ω2µε >

nπ
d
, the corresponding mode will propagate without attenuation.

However, the mathematics raises the possibility that the wave number kz might

be an imaginary constant. If if ω is such that ω2µε < nπ
d
, then, for an appropriate α,

we have kz = ±iα. It may be surprising that the imaginary wave number still leads

to a physically meaningful solution, but, at least for the positive root, this is indeed

the case. For example, the z-component of the magnetic field takes the form

Hn
z (x, y, z) = Ho cos

(nπ
d
x
)
e−αz.

This wave decays exponentially as distance from its source increases. If the waveguide

is long enough (one wavelength is sufficient according to [33]), these types of waves

are can be omitted from the propagation analysis. The quantity kc is referred to

as the cutoff frequency of a particular waveguide. If ω is such that ω2µε > kc, the

corresponding wave modes propagate; if not, they decay exponentially. Note that
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6.3.16 and 6.3.18 show that the cutoff frequencies are the same for the corresponding

TE and TM modes for a parallel-plate waveguide.

The TEM mode has Hz = Ez = 0, which, referring to 6.3.8–6.3.11, implies that

either all tangential field components are also 0 (no waves propagating), or that

kz = ±ω√µε.

Consequently, we see from 6.3.14 that the cutoff frequency for any nontrivial TEM

mode is 0. We investigate the existence of such a mode by first assuming that the

waves are driven at a frequency low enough so that the conductor may be modeled as

an equipotential surface. This is a standard and reasonable assumption [58], since our

goal is to study the dominant mode of the waveguide–that mode with the lowest cutoff

frequency. Let the potential of the top and bottom plate be 0 and Vo, respectively.

For the TEM mode, we have from 6.3.3 that Ez = 0. With this, we see that

∇ × E = 0, and so we can write E as the (negative) gradient of a scalar potential

function φ:

E = −∇φ.

The fact that no charges are present (so Gauss’ Law gives ∇ ·E = 0) indicates that

this potential function satisfies Laplace’s equation


∆φ = 0 ∈ Ω

φ = 0 x = 0,∀y,∀z

φ = Vo x = d,∀y,∀z.

(6.3.20a)

(6.3.20b)

(6.3.20c)
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The solution of this boundary value problem is φ = Vox; then we have

E(x, y) =< −Vo, 0, 0 > =⇒ (6.3.21)

E(x, y, z) = −Voeikzzx̂. (6.3.22)

Finally, we can calculate H from 6.3.6b to conclude

H(x, y, z) = ŷHy =
−Vozz
µω

eikzzŷ = Hoe
−ikzzŷ, (6.3.23)

with Ho :=
−Vozz
µω

, in agreement with 6.3.1.

We now return to the problem posed by Jin in [33] of a parallel-plate waveguide

with a dielectric discontinuity. Jin assumes that the waveguide functions at low

frequency so that only the dominant mode of the wave propagates–the TEM mode;

the previous analysis shows that this is valid as long as the wavenumber kz < π/d.

At a distance (far enough) to the left of the discontinuity, Jin approximates the

(y-component of the) wave as the sum of the incident wave and the part of the wave

reflected by the dielectric:

u = uinc + uref = Hoe
−ikz +RHoe

ikz, (6.3.24)

where Ho is a known constant related to the amplitude of the wave, k is the wave

number, and R is the reflection coefficient. Similarly, to the right of the discontinuity,

the part of the wave that continues to propagate is that which is not reflected, but is

transmitted past the junction with the dielectric rod:

u = utrans = THoe
−ikz, (6.3.25)
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where T is the transmission coefficient. Again, the previous analysis shows that this

is reasonable; if the driving frequency is below the n = 1 cutoff frequency, only the

TEM mode of the given form will propagate without attenuation, and thus all other

modes are negligible at the left and right boundary.

Figure 6.10: A schematic of the waveguide considered in 6.3.32 from Jin[33], top; a
triangulation of the domain, with triangle boundaries along the material interface Σ.
The width of the waveguide is taken to be 25cm; its height is 3.5cm. The width of
the dielectric rod is 5cm; its height varies in the experiments performed.

To determine how the propagating wave will interact with the dielectric disconti-

nuity, we must solve the reduced-wave equation that results,

∇ · ( 1

εr
∇u) + k2µru = 0 ∈ Ω, (6.3.26)

subject to boundary and continuity conditions arising from the physics of the setup.

At the waveguide walls (upper and lower boundary Γ1), we have ∂u
∂n

= 0; on the far

right boundary Γr, only the transmitted wave travels, so ∂u
∂x

= −ikTHoe
−ikz = −iku.

On the left boundary Γ`, we similarly calculate ∂u
∂x

= −ikHoe
−ikz + ikRHoe

ikz =

iku − 2ikHoe
−ikz. At the interface between the air and the dielectric rod Θ, the

electromagnetic wave must be continuous, as is the component of its derivative that
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is parallel to the interface; but the perpendicular components on either side of the

junction suffer a discontinuity related to the difference in the dielectric constant of

the two materials:

1

e+
r

∂u+

∂n
=

1

e−r

∂u−

∂n
, (6.3.27)

where the ± indicates the two sides of the material interface. This condition follows

from the more standard continuity condition 6.3.28 applied to the time-harmonic

Maxwell equations. For n pointing in the “positive" direction (from positive to neg-

ative), the condition is

n× (E+ −E−) = 0. (6.3.28)

In the harmonic case ∇×H = −iωεE, so we have

1

ε+
(
n×∇×H+

)
=

1

ε−
(
n×∇×H−

)
.

Here, when there is no y-variation in the fields in question, and for n = [n1;n2;n3];

we compute

∇×H =


−∂zHy

∂zHx − ∂xHz

∂xHy

 , (6.3.29)

so

n×∇×H =


n2∂xHy − n3(∂zHx − ∂xHz)

−n1∂xHy − n3∂zHy

n1(∂zHx − ∂xHz) + n2∂zHy

 . (6.3.30)
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For the all of the dielectric obstructions discussed here, we have n2 ≡ 0; this means

that the only condition on Hy comes from the second component of 6.3.30. With the

condition on n2, this can be compactly written as −n · ∇Hy. With 6.3.29, this leads

to

1

ε+
∂H+

y

∂n
=

1

ε−
∂H−y
∂n

, (6.3.31)

which is the condition 6.3.27 from [33].

In traditional finite element schemes, condition 6.3.27 is satisfied variationally [33].

Using spline functions allows the flexibility to enforce this condition explicitly as a

modified smoothness condition. The implementation is straightforward and requires

only that we triangulate the domain so that the interface boundary does not cross

the interior of any triangles; that is, we require that this interior boundary be covered

by edges of triangles in our triangulation. Note that the triangulation in Fig. 6.10

satisfies this property. Summarizing, and with reference to the figure, we have



∇ · ( 1

εr
∇u) + k2µru = 0 in Ω

∂u

∂n
= 0 on Γ1

∂u

∂n
+ iku = 2ikHoe

−ikz on Γ`

∂u

∂n
+ iku = 0 on Γr

1

e+
r

∂u+

∂n
=

1

e−r

∂u−

∂n
on Σ,

(6.3.32a)

(6.3.32b)

(6.3.32c)

(6.3.32d)

(6.3.32e)

where εr is a discontinuous function giving the relative permittivity of the material

throughout Ω.

Jin’s first experiment is to determine the behavior of the electromagnetic field

near the dielectric obstruction. He assumes that the waveguide is driven so that the

electromagnetic wave propagates with wavelength λ = 10cm (so the wavenumber
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k = 2π/10). He takes the dielectric rod to have a rectangular cross-section of height

1.75cm, and considers dielectrics with 3 distinct relative permittivities: ε2 = 4, 4+1i,

4 + 10i. We seek to replicate his results.

We begin by demonstrating that our numerical scheme is accurate by performing

the experiment with Ho = 1, µr = 1, and εr = 1, in which case 6.3.32 has the exact

analytic solution

u(x, y) = e−ikz.

We used the same wavenumber k = 2π
10

as described above, and solve in the complex

spline space S1
5(Ω) over a triangulation with 2011 triangles. The maximum error

as evaluated over a grid of over one million points is 1.1517× 10−5; the root mean

square error is 6.2924× 10−6. Contour plots of the real and imaginary part of the

spline solution are shown in Fig. 6.11.

Figure 6.11: Contour plots of the real and imaginary part of the spline solution to
boundary value problem 6.3.32 with εr = 1, which has analytic solution u = e−ikz.
The spline solution in S1

5 has maximum pointwise error 1.1517× 10−5.
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We now return to the case where the permittivity ε2 is different from the permit-

tivity ε1 of the surrounding air. We include countour plots of the real and imaginary

parts of Jin’s finite element solutions in Fig. 6.12 for comparison with our spline

solutions in Fig. 6.13, Fig. 6.14, and Fig. 6.15.

We also present numerical data to demonstrate that the condition 6.3.27 is exactly

and correctly enforced by the spline method, and compare the level of accuracy to

that of a continuous finite element where the condition is enforced only variationally.

Letting us be the computed numerical solution to the boundary value problem 6.3.32,

the shows the difference between the ratio of normal derivatives along each edge of Σ

and the ratio of electric permittivities. That is, referring to 6.3.27, we calculate

∣∣(∂u+
s

∂n
)
/

(
∂u−s
∂n

)− ε+r
ε−r

∣∣. (6.3.33)

Of course, if 6.3.27 is exactly satisfied, 6.3.33 will be exactly zero. The numerical

results shown in Table 6.1 demonstrate that the spline method with modified smooth-

ness condition satisfies the continuity condition almost exactly, and with much more

accuracy than the variational approach. This explicit enforcement of the continuity

condition is new, to our knowledge, and should produce a more accurate solution

globally.

Next, Jin investigates the reflectance and transmittance of the electromagnetic

wave with as the height of the dielectric rod in the waveguide varies from 0 to 3.5cm,

which is the height of the waveguide. Once Hy is determined by solving the boundary

value problem 6.3.32, the coefficients can be calculated from 6.3.24 and 6.3.25, evalu-

ated at the left- and right-hand sides of the waveguide, respectively. The experiment is

repeated for dielectrics of the three relative permittivities mentioned previously. The

dielectric material is called lossless if =(ε) = 0, and, in that situation, the reflection
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Figure 6.12: The finite element solutions to 6.3.32 from [33]. The coutour plots of
the solutions where ε2 = 4, 4 − 1i, and 4 − 10i appear in subfigures a), b), and c)
respectively.
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Figure 6.13: Contour plots of the real and imaginary parts of the spline solution in
S1

5 to 6.3.32 for ε2 = 4. Compare to subfigure a) of Fig. 6.12.

Figure 6.14: Contour plots of the real and imaginary parts of the spline solution
s ∈ S1

5 to 6.3.32 for ε2 = 4− 1i. Compare to subfigure b) of Fig. 6.12.

Figure 6.15: Contour plots of the real and imaginary parts of the spline solution
s ∈ S1

5 to 6.3.32 for ε2 = 4− 10i. Compare to subfigure c) of Fig. 6.12.

141



Table 6.1: Comparison of the accuracy of the interface condition enforced explicitly
via modified spline smoothness conditions and variationally. The table on the left
contains values corresponding to a spline solution to 6.3.33 with explicit enforcement.
The table on the right shows the same results, but for a spline solution to 6.3.32
where 6.3.27 is enforced only variationally, as in [33]. The values are computed at the
midpoints of the three edges of the dielectric.

εr = 4 εr = 4− 1i εr = 4− 10i

Top 1.460e-13 1.354e-13 6.416e-14
Right 3.151e-13 2.004e-13 1.281e-13
Left 1.220e-13 2.330e-13 1.384e-13

εr = 4 εr = 4− 1i εr = 4− 10i

Top 4.054e-04 2.261e-04 3.136e-04
Right 6.284e-05 5.600e-05 8.614e-05
Left 1.277e-04 1.889e-04 2.355e-04

coefficient R and transmission coefficient T satisfy

|R|2 + |T |2 = 1. (6.3.34)

This relation gives us a method by which we can verify our calculations in the lossless

case; computing the difference as in 6.3.33:

∣∣|R|2 + |T |2 − 1
∣∣ (6.3.35)

The plots of the magnitudes of the reflection and transmisison coefficiens of the

spline solutions can be found in Fig. 6.21. For comparison, we have included the

corresponding plots from [33].

The only discernible differences between the spline plots and Jin’s come as the

height of the dielectric bar approaches the height of the waveguide itself, particularly

in the reflection coefficient in the case where ε2 = 4. Even as Jin’s |T | approaches 1

as the ratio h/λ approaches 0.35, it seems that the value of |R| computed from the

finite element solution hovers around |R| = 0.1, so it is unlikely that 6.3.34 would
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Figure 6.16: Comparison of the plots of |R| and |T | from the spline solution s ∈ S1∗
5

and the plots from Jin. The spline plots from S1∗
5 are on the left, where the 1∗ indicates

that the spline solution is C1 everywhere except along the interface Σ, where 6.3.27
holds. The plots from the literature [33] are on the right. The images show that the
spline solution reproduces the established result quite well.
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exactly or even nearly hold. When h/λ = .35, the spline solution yields Rs and Ts

such that
∣∣1− (|Rs|2 + |Ts|2)

∣∣ = 8.0087× 10−9.

Next, we extend the existing analysis to investigate the reflection/transmission

phenomenon for electromagnetic waves of varying frequency. For the moment, we

consider a parallel-plate waveguide with dielectric discontinuity of the same dimen-

sions as the one seen in Fig. 6.10. If the boundary value problem described in 6.3.32

is to continue to guide our analysis, we must refer to 6.3.14 to find an upper limit

for the wavenumbers we consider. Since we only wish to investigate the waveguide’s

dominant TEM mode, we must have

k <
π

d
=

π

3.5
≈ .8976. (6.3.36)

We remark that in this particular case, the numerics themselves led us to the con-

dition in 6.3.36. Experimenting with k > .89 in the case where ε2 = 4 led to solutions

with |R| and |T | that came nowhere close to satisfying 6.3.34. We hypothesize that

the dielectric material excites higher modes when the wavenumber is this large, and

those modes propagate down the waveguide, making the boundary conditions 6.3.32c

and 6.3.32d invalid. This is a good question to investigate with future research.

The reflection and transmission coefficients generated from spline solutions in S1∗
5

are displayed in plots below. We allow the wavenumber to vary from k = .2 to k = .89,

corresponding to wavelengths varying from as large as 35 to as small as 7cm. In Fig.

6.17 we display the |R| and |T | plots for the lossless case; in Fig. 6.18 we assume the

dielectric is a lossy material with the the same complex permittivities as the previous

experiment.

In Table 6.2 we show how close the reflectance and transmittance of the spline

approximation to 6.3.32 come to satisfying relation in 6.3.34. We have great agreeance

as long as the wavenumber is small enough so that the wave’s frequency is below
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Figure 6.17: The plots of the |R| and |T | computed from the spline solutions in S1∗
5

as the wavenumber k varies from 0.2 to 0.9 with εr = 4.

Table 6.2: Absolute error in the 6.3.34 for the reflection and transmission coefficients
|R| and |T | calculated from the spline solutions to 6.3.32.

wavenumber k |1− (|R|2 + |T |2)|
0.20 1.02e-07
0.25 1.46e-07
0.30 1.80e-06
0.35 8.31e-07
0.40 3.92e-07
0.45 1.51e-08
0.50 2.54e-07
0.55 2.38e-07

wavenumber k |1− (|R|2 + |T |2)|
0.60 3.25e-07
0.65 1.93e-06
0.70 2.76e-07
0.75 4.02e-07
0.80 3.09e-07
0.85 4.27e-07
0.90 5.81e-01
0.95 1.25e+00
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Figure 6.18: The plots of the |R| and |T | computed from the spline solutions in S1∗
5 as

the wavenumber k varies from 0.2 to 0.9 with lossy dielectrics. On the left, εr = 4−1i;
on the right, εr = 4− 10i.

the cutoff frequency for this waveguide. In the absence of any analytic solution or

established results to compare against, this table valuable evidence that the data

presented in plots Fig. 6.17 and Fig. 6.18 is accurate. After wavenumber crosses the

cutoff threshold, the relation is not nearly satisfied, signifying the breakdown of this

numerical approach. This is also a positive outcome; we can detect strange numerical

behavior in a situation where our spline solution should not describe the physics of

the waveguide. This behavior can help prevent an inappropriate application of our

numerical methods.

We further exhibit the utility and flexibility of our numerical method by perform-

ing experiments with dielectric obstacles of different geometries. As seen in Fig. 6.19,

we first consider dielectrics of relatively simple geometries, one consisting of three

thin strips, and one dielectric rod with triangular cross section. The width of the

dielectric strips is 1cm, and they are separated by 1cm; the base of the triangle is

4cm long. Table 6.4 shows the accuracy of the spline solutions with respect to 6.3.27

for explict and variational enforcement of the condition for these dielectrics. Within

this table, the tables on the left show this error at the midpoint of each edge of the
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dielectric strips. On the right, the tables show the error at various points spread

along the inclined edges of the triangular dielectric. The accuracy of the modified

spline smoothness condition surpasses the standard variational enforcement.

Next, the heights of both shapes of dielectrics are allowed to vary, and we com-

pute the reflection and transmission coefficients for these geometries as in Fig. 6.21.

Finally, we introduce a more complicated, multilayer dielectric in Fig. 6.22, and, in-

stead of changing the size of the obstruction, we allow the wavenumber to vary from

0 to the cutoff frequency.

Figure 6.19: Triangulations of waveguide with dielectric obstructions of different ge-
ometries. We allow the heights of the obstructions to vary as in the experiment in
Jin.

We observe that the both the geometry and the height of the dielectric clearly

affect the portion of the wave’s power that is transmitted or reflected. For the fixed

wavenumber k = 2π/10, unlike Jin’s experiment, there is no dielectric height at

which full reflection occurs. In general, it seems the larger the imaginary part of the

medium’s relative permittivity, the smaller the transmission coefficient. The inverse,

however, does not always hold for the portion of the wave that is reflects.
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Figure 6.20: The plots of |R| and |T | computed from the spline solution in S1∗
8 ,

calculated as the height of the strip dielectrics from Fig. 6.19 varies from 0 to 3.5.

As before, since we have no analytic solution or existing results with which to

compare our spline solutions, we seek to validate our calculations with relation 6.3.35

and 6.3.33.
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Figure 6.21: The plots of |R| and |T | computed from the spline solution in S1∗
8 ,

calculated as the height of the triangular dielectric in Fig. 6.19 varies from 0 to 3.5.

Table 6.3: The results of 6.3.35 as the heights of the dielectric obstructions seen in
Fig. 6.19 vary from 0 to 3.5. The results for the domain with dielectric strips are
on the left; the results for the dielectric triangle are on the right. In both cases, the
relation is satisfied quite well by the spline solution.

Strip Dielectric
height |1− (R2 + T 2)|
0.3 3.86e-07
0.7 6.48e-07
1.1 5.56e-08
1.5 7.19e-08
1.9 3.24e-07
2.3 2.69e-08
2.7 6.59e-07
3.1 2.32e-07
3.5 1.58e-06

Triangular Dielectric
height |1− (R2 + T 2)|
0.3 2.20e-07
0.7 2.26e-07
1.1 3.08e-07
1.5 4.32e-08
1.9 4.13e-07
2.3 6.56e-07
2.7 3.58e-07
3.1 2.32e-07
3.5 8.96e-07

Figure 6.22: Triangulation of waveguide with a complicated, multilayer dielectric
obstruction.
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Table 6.4: Error in the spline solutions’ satisfaction of the interface condition 6.3.27
for various dielectric geometries

Modified Spline Smoothness Condition, ε2 = 4
Three Strip Dielectric

Left Strip Center Strip Right Strip
Left Edge 6.026e-13 3.294e-13 5.837e-13
Top Edge 1.911e-12 2.031e-12 1.911e-12
Right Edge 3.669e-13 5.226e-13 3.300e-13

Triangular Dielectric
Left Edge Right Edge
2.552e-13 2.442e-13
1.487e-13 1.186e-13
1.216e-13 1.150e-13

Variational Enforcement, ε2 = 4
Three Strip Dielectric

Left Strip Center Strip Right Strip
Left Edge 2.712e-06 3.295e-06 3.630e-06
Top Edge 6.597e-04 1.169e-03 6.597e-04
Right Edge 3.782e-06 3.288e-06 2.771e-06

Triangular Dielectric
Left Edge Right Edge
6.924e-06 7.769e-05
2.079e-07 2.309e-07
6.735e-05 3.650e-05

Modified Spline Smoothness Condition, ε2 = 4− 1i
Three Strip Dielectric

Left Strip Center Strip Right Strip
Left Edge 5.142e-13 3.068e-13 5.351e-13
Top Edge 3.572e-12 1.647e-12 3.572e-12
Right Edge 3.964e-13 4.922e-13 3.349e-13

Triangular Dielectric
Left Edge Right Edge
2.991e-13 2.678e-13
2.067e-13 9.093e-14
1.640e-13 2.352e-13

Variational Enforcement, ε2 = 4− 1i
Three Strip Dielectric

Left Strip Center Strip Right Strip
Left Edge 2.778e-06 3.300e-06 3.597e-06
Top Edge 7.167e-04 1.221e-03 7.167e-04
Right Edge 3.767e-06 3.454e-06 2.703e-06

Triangular Dielectric
Left Edge Right Edge
8.015e-06 8.138e-05
2.092e-07 2.548e-07
5.984e-05 4.714e-05

Modified Spline Smoothness Condition, ε2 = 4− 10i
Three Strip Dielectric

Left Strip Center Strip Right Strip
Left Edge 2.157e-13 1.562e-13 1.657e-13
Top Edge 3.136e-12 1.440e-12 3.136e-12
Right Edge 4.324e-13 1.997e-12 1.683e-13

Triangular Dielectric
Left Edge Right Edge
2.431e-13 2.359e-13
2.092e-13 1.940e-13
1.573e-13 6.578e-13

Variational Enforcement, ε2 = 4− 10i
Three Strip Dielectric

Left Strip Center Strip Right Strip
Left Edge 3.595e-06 2.772e-06 4.082e-06
Top Edge 1.472e-03 2.173e-03 1.472e-03
Right Edge 9.070e-06 6.258e-05 4.066e-06

Triangular Dielectric
Left Edge Right Edge
6.987e-06 4.264e-05
4.402e-07 4.161e-07
3.639e-05 1.309e-04
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Figure 6.23: A closeup view of the multilayer dielectric. We test the accuracy of the
spline solution with respect to continuity condition 6.3.27 at the locations shown. We
test the inner dielectric at the locations marked by red dots, and the outer dielectric
at the locations marked by black diamonds. The results can be seen in Table 6.6.

Table 6.5: Error in relation 6.3.34 for R and T computed from the spline solution
in S1∗

5 (4) with dielectric εr = 4. As in the previous experiment, the relation breaks
down as the wavenumber grows past the cutoff frequency.

wavenumber |1− (|R|2 + |T |2)|
0.20 6.105e-06
0.25 1.758e-06
0.30 5.750e-07
0.35 1.070e-06
0.40 2.956e-06
0.45 1.694e-06
0.50 5.656e-06
0.55 1.063e-06

wavenumber |1− (|R|2 + |T |2)|
0.60 1.756e-06
0.65 4.148e-06
0.70 5.142e-06
0.75 2.247e-05
0.80 2.361e-05
0.85 4.198e-06
0.90 1.769e-05
0.95 1.870e-03
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Table 6.6: Comparison of the spline modified smoothness condition to variational
enforcement of the relation 6.3.27 for the multilayer dielectric shown in Fig. 6.22.

Multilayer Dielectric: Inner εr = 4, Outer εr = 2

Modified Smoothness Condition
Inner G Dielectric Outer Dielectric

2.379e-11 2.379e-11
5.221e-12 5.221e-12
9.603e-12 9.603e-12
1.022e-11 3.410e-11
7.636e-12 2.924e-12
4.135e-11 3.329e-11
1.033e-11 6.712e-11

Variational Enforcement
Inner G Dielectric Outer Dielectric

4.563e-03 4.563e-03
1.456e-03 1.456e-03
1.309e-02 1.309e-02
2.311e-02 2.917e-03
4.438e-05 1.082e-03
4.279e-03 5.733e-03
3.510e-05 5.604e-04

Multilayer Dielectric: Inner εr = 4− 2i, Outer εr = 2− 1i

Modified Smoothness Condition
Inner G Dielectric Outer Dielectric

1.092e-11 1.092e-11
4.179e-12 4.179e-12
7.631e-12 7.631e-12
8.234e-12 1.973e-11
6.552e-12 4.124e-12
3.785e-11 2.251e-11
1.001e-11 2.445e-11

Variational Enforcement
Inner G Dielectric Outer Dielectric

5.419e-03 5.419e-03
1.193e-03 1.193e-03
8.705e-03 8.705e-03
2.269e-02 1.653e-03
1.249e-04 1.003e-03
4.478e-03 4.453e-03
1.483e-04 4.166e-04

Multilayer Dielectric: Inner εr = 4− 10i, Outer εr = 2− 5i

Modified Smoothness Condition
Inner G Dielectric Outer Dielectric

5.356e-12 5.356e-12
1.390e-12 1.390e-12
2.422e-12 2.422e-12
5.676e-12 6.724e-12
5.962e-12 2.400e-12
2.024e-11 4.706e-12
8.863e-12 1.041e-11

Variational Enforcement
Inner G Dielectric Outer Dielectric

7.204e-03 7.204e-03
2.867e-04 2.867e-04
1.815e-03 1.815e-03
2.118e-02 1.317e-04
5.534e-04 4.225e-04
3.023e-03 1.218e-03
6.946e-04 2.604e-04
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6.4 Wave Equation with Time-Periodic Source Terms

Next we extend the above study to situations in which the governing physics is time-

periodic rather than strictly time-harmonic. In this setting, we expand the known

functions f̃(x, t) and g̃(x, t) in their Fourier series to have

f̃ =
∑
j∈Z

fj(x) exp(iωjt), x ∈ Ω

g̃(x, t) =
∑
j∈Z

gj(x) exp(iωjt), x ∈ ∂Ω.

Then our solution ũ(x, t) can be expressed as

ũ(x, t) =
∑
j∈Z

uj(x) exp(iωjt), ∀x ∈ Ω,

and by matching the Fourier coefficients, we have the Helmholtz boundary value

problem

∆uj(x) +
(ωj)

2

c2
uj(x) = fj(x), x ∈ Ω

α
∂

∂n
uj(x) + βuj(x) = gj(x), x ∈ ∂Ω

(6.4.1)

for each k ∈ Z .

We now describe a numerical scheme under the assumption that the source term

and boundary conditions are band-limited. Let ωmax be the maximum frequency of

interest. We shall use bivariate spline space S1
d(4) to approximate uj, where 4 is a

triangulation of Ω. Then we sample the source f̃(x, t) and boundary function g̃(x, t)

at times tj = j/N , h = 0, 1, ..., N − 1, where N is chosen according to the Nyquist

sampling rate so that N ≥ 2ωmax. For use with the fast Fourier Transform (FFT),

we choose N = 2j for some j ∈ N in practice[6].
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We compute the discrete Fourier transform (FFT) of the time series corresponding

to each domain point of S1
d(4), and determine the frequencies which contribute to the

spectrum at a magnitude greater than a given tolerance tol. For each such ωj ≤ ωmax,

we solve (6.4.1) as in the previous sections. Exploiting the symmetry of the FFT of

real time signal, we have ωj = ωN−j. Finally, we apply the inverse FFT at each

domain point to recover our time-domain solution.

Example 6.4.1. First, we solve a homogeneous wave equation over the unit hexago-

nal domain as in Example 5.2.1, scaled so that µ0ε0 = 1. The exact solution is given

by

u(x, t) =
3∑

n=1

sin(5nπt)
(

cos(5nπx) + cos(5nπy)
)
,

We apply Dirichlet boundary conditions, and solve in the space S1
10 over a trian-

gulation with |h| = 0.1. The time evolution of the approximate and exact wave at

(x, y) = (0, 0) is shown in Figure 6.24, as well as the approximate and exact wave

over the entire domain at time t = 1.64. The maximum pointwise error, taken over

all time in the period, is 8.8154e− 6 which is an exellent approximation to the given

exact solution.

Figure 6.24: Time evolution of the height of the center point of the wave and snapshot
of wave at t = 1.64. The center point (0, 0) of the spline solution is given by the blue
line and exact solution by red points, left; spline wave at t = 1.64 center; exact wave
at same time shown right.
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Our numerical experiments show that this FFT approach works well work a variety

of homogeneous and inhomogeneous wave equations arising from periodic source terms

and boundary conditions. We test our scheme in this final example by solving the wave

equation with an exact solution that is not explicitly a sum of sinusoidal functions in

time.

Example 6.4.2. We seek a spline solution us ∈ S1
5 to the inhomogeneous wave

equation with exact solution

u(x, t) = sin(x+ y)e1/(t2−2t)

which is time-periodic with T = 2. Here we solve over the square domain Ω :=

[0, 1]× [0, 1], and use Dirichlet boundary conditions. We run the experiment 3 times,

using a triangulation with |h| = 0.1, and sampling the source functions at increasingly

fine time intervals. The results of are summarized in Table 6.7; the errors reported

are the maximum pointwise error taken over all time in t = [0, 2].

Table 6.7: Spline solutions to time-periodic wave equation based on FFT.

Length of signal Sampling Freq. Max Physical Freq. Max err
32 16 8 4.5822e-01
64 32 16 4.6042e-02
128 64 32 2.3745e-04

In Fig. 6.25 we display the height of spline solution at a spatial location, say

the 50th domain point of our triangulation (x, y) = (.28, .64) over the time period

t = [0, 2]. By sampling at a rate of 64 herz, we are able to generate a spline wave

whose time evolution is indistinguishable from the exact solution.

155



Figure 6.25: Time evolution of point on time-periodic wave for exact and spline
solution generated by various sampling frequencies. The height of the point (.28, .64)
of the spline solution (red line) and exact solution (blue curve). Spline wave with
maximum frequency component ωmax = 8 left, spline wave with ωmax = 16 center,
and spline wave with ωmax = 32 (right).
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