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ABSTRACT 

During the cotton harvest, other parts of the cotton plants in addition to the 

cotton fibers are collected.  This plant debris causes a number of problems in cotton 

processing, including decreased yarn quality and increased number of yarn breakages 

during spinning.  Because these debris break down in size physically after harvest, 

human visual identification of and discrimination among these contaminants are 

difficult or impossible, but identification of the contaminant type is desirable for 

investigations of process breakdowns and efficiency monitoring of cleaning processes.   

To achieve contaminant identification and discrimination, a number of projects that 

explore spectral comparison in general and develop solutions to the specific problem of 

cotton contaminant discrimination is reported.  Chemometric methods for contaminant 

class discrimination have been developed for and applied to the FT-IR attenuated total 

reflection (ATR) spectra of cotton contaminants.  Novel voting scheme algorithms were 

developed to improve spectral identification by library searching for a USDA spectral 

library of cotton contaminants.  Improvements in contaminant identification were also 



 

realized via partial least squares discriminant analysis (PLS-DA).  Quantitative analysis 

of cotton contaminant mixtures was achieved with the use of partial least squares (PLS) 

regression and a novel error correction algorithm that was developed.  This work also 

reports the development of a mixture generator algorithm to generate sets of mixtures 

representative of mixture spaces of arbitrary dimensions.  Finally, the spectral 

differences caused by the use of different FT-IR spectrometers and ATR accessories 

were investigated by measuring spectra of a polyethylene terephthalate film with the 

use of several different spectrometers and accessories.  The spectra were compared 

before and after corrections for depth of penetration and anomalous dispersion effects.  

The results show that these correction methods do not always achieve the goal of 

increased spectral similarity.    
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

 The research projects presented in this dissertation relate to two important areas 

of analytical chemistry: chemometrics and spectrometry.  Specifically, Fourier transform 

infrared spectrometry (FT-IR) with the use of attenuated total reflection (ATR) sampling 

accessories has been the spectrometric technique used and explored in these projects.  

Because of its inherent ability to produce unique spectra of numerous organic and 

inorganic substances, FT-IR proves to be an ideal candidate with which to combine the 

power of chemometrics to achieve discrimination and quantitative analysis of complex 

samples.  Chemometrics has been defined as “the chemical discipline that uses 

mathematics and statistical methods, (a) to design or select optimal measurement 

procedures and experiments; and (b) to provide maximum chemical information by 

analyzing chemical data”1.  This non-specific definition allows the study of 

chemometrics to encompass many different techniques and approaches.  The studies 

that make up this work are generally divided into three sub-disciplines of 

chemometrics: (1) spectral analysis and discrimination, (2) quantitative analysis of 

mixtures, and (3) experimental design.   

The projects presented here were pursued with a two-fold purpose in mind.  The 

first purpose was to deal with immediate challenges that presented themselves in the 

areas of discrimination of cotton contaminants and quantitation of cotton contaminant 
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mixtures, but the second and broader purpose was to develop and investigate analysis 

methods applicable to situations where complex samples or feedstocks occur.  These 

projects provide both novel methods of analysis for cotton contamination, and 

fundamental advances in the understanding and application of the chemometric sub-

disciplines listed above.  In this introductory chapter, the problem of cotton 

contamination and the complex nature of cotton contaminants will be discussed.  In 

addition, the fundamentals of ATR spectrometry and of the chemometric sub-

disciplines that relate to the projects will be reviewed.  Beyond this introductory 

chapter, five research projects presented in the manuscript style are followed by a final 

conclusion chapter that briefly discusses the prospects for future studies. 

COTTON CONTAMINATION 

 Harvested cotton fibers can be contaminated with a variety of natural and 

synthetic substances2-6.  Most of the contaminants are debris from other parts of the 

cotton plants themselves.  The hulls, stems, leaves, seeds, and other parts of the plants 

are unavoidably harvested along with the cotton fibers.  Other contaminants such as 

soil, greases, oils, and plastics can at times be found in harvested cotton fibers as well, 

but the primary contaminants present are those from the cotton plants.  Cotton fibers 

can also be contaminated by sugary residues left behind when white flies and aphids 

feed on cotton fibers late in the growing season.  Although sticky cotton is a serious 

problem for the cotton industry, it will not be discussed further in this introduction 

because none of the following research projects directly relate to the problem of sticky 
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cotton.  The interested reader should consult the large volume of work that has been 

and continues to be published in this area6-55.   

 Cotton debris causes a number of problems during cotton processing, including 

an increased number of yarn breakages during spinning and an increased number of 

yarn imperfections2, 56-58.  Because of these issues, cotton contaminated with debris 

undergoes cleaning processes at the cotton gin location to lessen the impact of the 

debris on production, but the cleaning processes shorten the length of the cotton 

fibers59.  All of these factors decrease the profitability of producing products composed 

of cotton and decrease the value of raw cotton contaminated with large amounts of 

debris.  For increased profitability, it would be beneficial to identify the types of debris 

present at different stages of the production process.  This information can allow 

process engineers to make process and machinery adjustments to limit the effects of 

particular types of debris.  For instance in the work by Foulk et al.2, it was discovered 

that the dust accumulating in the rotor groove during rotor spinning of cotton fibers 

into yarn was composed primarily of hull and shale.  The authors speculate that a more 

profitable cleaning process that focused specifically on these types of debris instead of 

indiscriminately cleaning out every type of debris could be implemented to prevent the 

buildup of dust in the rotor groove.  By limiting the buildup of dust in the rotor groove, 

the number of yarn imperfections and breakages could potentially be limited.  A more 

efficient cleaning process would save time and limit the detrimental effects of cleaning 

on the fiber quality mentioned above.  This case study provides only one example of the 



 4 

potential advantages of being able to discriminate among the different types of plant 

debris present in cotton.  

Although the potential advantages of debris identification are great, 

discrimination of different types of debris is not a trivial task.  Because debris breaks 

down in size physically from the time it is harvested along with the cotton fibers until 

spinning is complete, visual identification of the type of debris can be difficult or 

impossible.  In some cases, debris particles found in the system may be as small as the 

size of particles found in ground pepper2.  In the past, work has been reported on a 

method of debris identification relying on color in the visible region of the spectrum 

and/or geometric analysis of debris shape for larger pieces of debris4, 5.  These systems 

were primarily intended for large scale classing of raw cotton with regards to its trash 

content.  They have not been developed for investigative work of the type described in 

the case study above.  In addition, they fail to make use of the more precise chemical 

information contained in spectra from the mid-IR region of the spectrum. 

Recently, USDA scientists have been developing an ATR FT-IR spectral library of 

cotton contaminants that provides a searchable repository of debris spectra to be used 

for the identification of unknown cotton contaminants2, 3.  Currently, this library 

contains over 900 spectra, and although it contains spectra of both cotton plant debris 

and the other non-plant related contaminants mentioned above, the majority of spectra 

in the library are of cotton plant parts.  All of the plant parts are cellulose based.  The 

structure of cellulose is given in Fig. 1.1.  Figure 1.2 shows representative spectra for 

four of the most common parts of plant debris found in cotton: hull, leaf, stem, and seed
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Figure 1.1: Structure of cellulose 



 6 

O

CH
2
OH

H OH

H

O

H

H

OHO

CH
2
OH

H OH

H

O

H

H

OH

n



 7 

 

 

Figure 1.2: Spectra of leaf, stem, seed coat, and hull from the cotton plant.  The spectra 

have been offset for clarity. 
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coat.  One will notice that the spectra of different types of plant parts are very similar 

because of the common major chemical component; however, the spectra differ because 

of changes in the other chemical components of the plant parts.  Figure 1.3 

demonstrates the variability that can occur in a single category of plant debris present 

in the library.  The extreme similarity of the spectra from different debris categories 

combined with the wide variability that exists within the spectra from individual 

categories of debris make debris discrimination a challenge.  Research has shown, 

though, a greater than 90% identification rate for a test set where the test set spectra 

were obtained on the same spectrometer and ATR accessory as the library spectra and 

the library spectra were generally representative of the plant variety and plant growing 

conditions for the test set3.  The work presented in this dissertation continues the 

exploration and development of cotton contaminant discrimination and identification 

methods for cases where the unknown spectra are not well represented by the library. 

SPECTRAL DISCRIMINATION 

 Spectral identification is a key concern of the projects presented in this work, and 

the research reported augments the line of spectral discrimination tools that have been 

reported previously.  Lowery et al.60 have given a succinct history of infrared spectral 

search systems.  In the 1950s, the first infrared spectral search systems emerged61, 62.  For 

these systems, a library of spectra would be encoded into punch cards.  The cards 

denoted whether or not a peak existed at each spectral resolution element.  When an 

unknown spectrum was obtained, an electric sorter was employed to determine the 

cards in the library that had peaks at the same resolution elements as the unknown
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Figure 1.3: Spectra of four different cotton leaves. 
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spectrum.  These systems allowed one to search for the absence of absorption bands at 

particular resolution elements as well.  The computerized ASTM binary spectral library 

was the major development in spectral search systems in the 1960s63-65.  Like the punch 

card system, the binary spectral library only recorded whether a band was present or 

absent at a particular resolution element in the spectrum.  The advantage of this system 

was that the time required to search through the library was much faster than with 

punch cards and an electric sorter.  This innovation made it much easier to perform 

multiple spectral searches in a reasonable time frame.  The EPA vapor phase library, the 

first major digitized infrared spectral library, came into use in the 1970s66.  With truly 

digitized spectra, the actual intensity values at each resolution element were stored in 

the library.  For the first time, both band location and intensity could easily be used to 

identify unknown spectra.  The introduction of a digitized spectral library required new 

types of search algorithms that went beyond logic comparisons of binary data.  At this 

time, scientists began to use Euclidean distance metrics to measure the similarity of an 

unknown spectrum to the library spectra.  In the late 1970s and into the 1980s, 

correlation metrics67, 68 and metrics based on differences in derivatives of spectra came 

into use60.  Since the 1980s, there have been no fundamental advances in the way FT-IR 

spectral search systems operate.  They still rely on the same comparison metrics that 

have been listed.   

 A brief description of the standard search metrics in use follows.  A spectrum can 

be thought of as a vector where the intensity of each resolution element forms an entry 

in the vector, i.e. each resolution element can be thought of as a direction in space.  The 
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descriptions of spectral similarity metrics that follow assume that each spectrum in the 

library and being searched against the library is represented by a vector.  Let the vector 

jl
r

 represent the jth spectrum in the library, and the vector u
r
 represent a spectrum 

searched against the library.  The subscript i represents the ith element of a vector, and n 

equals the number of elements in each vector or the number of resolution elements in 

each spectrum.  The score describing how closely related the spectrum being searched is 

to the jth spectrum in the library is represented by Sj.  Before calculating the scores for 

these search metrics, all spectra are usually normalized by some method to eliminate 

the spectral variation due only to overall intensity variations.   

Equation 1.1 is the formula for the Euclidean distance metric: 

 ( ) 2

1

1

2








−= ∑

=

n

i
jijijS ul

rr
 (1.1) 

The smaller the value of Sj the more similar two spectra are.  A value of 0 indicates 

identical spectra.  Equation 1.2 is the formula for the dot product metric: 

 jjjS ul
rr

•=  (1.2) 

When ordering a set of library spectra from most similar to least similar, the dot 

product metric will yield the same order as the Euclidean distance metric, but 

calculation of the dot product metric requires fewer calculations than the Euclidean 

distance metric.  For spectra vector normalized to unit magnitude, the score from the 

dot product metric equals the cosine of the angle between the two spectral vectors being 

compared. A perfect score for the dot product metric is 1, and scores decrease as spectra 
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become more dissimilar.  Equation 1.3 gives the formula for a variation of the Euclidean 

distance metric called the absolute value metric: 

 ∑
=

−=
n

i
jijijS

1

ul
rr

 (1.3) 

Equations 1.4 and 1.5 show the formulas for two metrics that are based on the 

differences in the derivatives between two spectra: 
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Difference of derivative metrics work well in situations where there are varying 

baseline offsets in the library, the unknowns, or both.  For metrics in Eqs. 1.3-1.5, a 

smaller score means more similar spectra versus a larger score.  A score of 0 indicates 

identical spectra.  Finally, Eq. 6 gives the formula for a correlation similarity metric: 
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Like the dot product metric, identical spectra have a score of 1, and the score decreases 

as similarity decreases.  The scores from different metrics cannot be compared directly, 

but the rankings from different metrics can be compared.  The ranking of the library 
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spectra from most similar to least similar to an unknown spectrum will not necessarily 

be identical when using the different metrics. 

 Chemometric classification methods present a different approach to spectral 

discrimination than library searching.  The disadvantage of replacing standard library 

searching with a classification technique is the time involved in creating classification 

models versus simply searching a spectrum against a spectral library, but the potential 

gain in discrimination power warrants exploration of classification techniques for 

cotton debris discrimination.  SIMCA and partial least squares discriminant analysis 

(PLS-DA) are the two major classification methods that could be used for spectral 

discrimination.  Wise et al.69, 70 have given a detailed overview of these two techniques.   

PLS-DA is arguably the most promising classification technique available for this 

purpose, but one needs to understand the basics of the two methods to understand why 

this is the case.   

There is disagreement on what the acronym SIMCA actually stands for, but one 

choice is soft independent method of class analogy70.  SIMCA requires a separate 

principal component analysis (PCA) model to be constructed for the calibration spectra 

in each sample class that is to be distinguished.  PCA is a data decomposition and 

compression method the works by decomposing a matrix of data into scores and 

loadings vectors.  Equation 1.7 describes the PCA decomposition: 

 EVTA += T
kk  (1.7) 
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The square matrix of data is A, Tk is the matrix of scores, Vk is the matrix of loadings, E 

is the residual matrix, and the subscript k represents the number of principal 

components (PCs) that have been retained in the model.  If the original data matrix, A, 

is not square, ATA must be used in place of A in the decomposition.  The loadings in 

PCA are the orthonormal eigenvectors of the matrix A, and the scores are given by Eq. 

1.8: 

 AVT =  (1.8) 

A single PC is composed of the ith column of T and the ith row of VT.  The first PC 

captures the maximum variance that can possibly be described in a single linear 

direction in the data space.  The next PC captures the maximum variance possible in a 

single linear direction that is orthogonal to the direction of the first principal 

component, and the pattern continues for higher numbers of PCs.  There will be as 

many PCs as there are rows or columns in the data matrix A.  Because the first PCs 

explain the largest directions of variance in the data, the last PCs usually capture mostly 

random noise in the data.  By discarding the later PCs, one can actually create a data set 

where most of the noise has been extracted from the original data.  Because the PCs are 

orthogonal, PCA is also a method of removing repetitious or collinear information 

within the data.  The removal of noise and repetitious information explain how PCA is 

used to compress data. 

 For each class considered in SIMCA, the data matrix has the spectra representing 

that class as its row vectors.  This fact means that the columns of the data matrix are the 

resolution elements of the spectra.  The use of PCA models to represent spectral data is 
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advantageous because many of the resolution elements in spectra are describing the 

same information.  Applying PCA to the spectra both eliminates random noise and 

removes collinear information recorded in the spectra, making comparisons of 

unknown spectra to the compressed spectra quicker than to uncompressed spectra after 

the initial models have been created.  After a PCA model has been created for each 

class, one can determine the class that best represents an unknown spectrum by 

projecting that spectrum vector onto the lower dimensional PCA models that have been 

created, and then finding the class that the projection of the unknown spectrum vector 

lies closest to. 

 PLS-DA is based on PLS multivariate regression.  See the next section of the 

introduction on multivariate calibration for a discussion of multivariate regression 

methods and an explanation of PLS regression.  In PLS-DA, categorical variables are 

regressed onto the spectral data by means of a PLS regression.  A matrix of categorical 

variables or so called dummy variables take the place of the matrix of analyte 

concentrations that would normally be used to build a spectral regression model to 

predict concentrations.  The goal of PLS-DA is of course not to predict analyte 

concentrations, but to predict class membership.  There will be a separate categorical 

variable for each class that one is interested in predicting membership for.  In the 

calibration set, all of the spectra that belong to a given class are assigned a value of 1, 

and all other spectra that do not belong to that class are assigned a value of 0.  After 

building the PLS model, a probabilistic threshold value between 0 and 1 is chosen for 

each class variable.  When the value of the class variable for an unknown spectrum is 
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predicted by the PLS model, the unknown will be considered part of the class if the 

predicted value is greater than the threshold value and not part of the class if the 

predicted value is less than the threshold value.  This threshold value is chosen so that 

the misclassification rate for the calibration set is as small as possible. 

 The advantages of the PLS-DA method versus PCA methods like SIMCA have 

been discussed by Barker and Rayens71.  As discussed above, the data decomposition 

and compression in PCA is guided by total variance in the spectral data.  This type of 

decomposition could be helpful when the largest sources of variance in the spectral data 

are related to class differences; however, if the among class variation is smaller than the 

within class variation, PCA based methods will do a very poor job of class 

discrimination.  The data decomposition in PLS is guided by among class variation 

instead of total variation, so the PLS-DA method is ideally suited to the class 

discrimination application.  As was demonstrated by Figs. 2.2 and 2.3, the within class 

variation for the classes of cotton debris is substantial compared to the between class 

variation.  For this reason, PLS-DA was one of the classification methods explored in 

the work presented in this dissertation.      

MULTIVARIATE CALIBRATION 

 Several excellent texts discuss the topic of multivariate calibration72-74.  To 

understand multivariate calibration, it is helpful to start with a review of univariate 

calibration.  In univariate least squares regression for spectral quantitative analysis, the 

absorbance values of a set of calibration solutions at a particular frequency related only 

to the species of interest are regressed onto the concentrations of that species in the 
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corresponding solutions.  The regression yields a proportionality constant that can be 

used to predict the concentration of the species of interest in unknown solutions from 

the absorbance values of those solutions.  This process is based on Beer’s Law which is 

shown in Eq. 1.9: 

  bcA ε=      (1.9) 

In this equation, A is absorbance at a particular frequency, ε is the absorption coefficient 

at that frequency, b is the pathlength or sample thickness, and c is the concentration of 

the analyte.  To simplify the equation, the absorption coefficient and the pathlength can 

be combined to form a single proportionality constant.  In short, Eq. 1.9 shows that 

absorbance is linearly proportional to concentration.  Of course, there are conditions 

where this relationship can break down, but assuming linearity holds, the relationship 

given in Eq. 1.9 forms the basis for univariate calibration.  In simple terms, the least 

squares regression works by finding the line of best fit through the data points.  In this 

process, the line of best fit is found by choosing the line that minimizes the error 

between the actual absorbance values for all the calibration samples and the values 

predicted for those samples by the line.  The data points do not fall exactly on the line 

because in any experiment random errors from a variety of sources exist.   

 Equation 1.9 also leads us to multivariate least squares calibration if one 

incorporates the fact that the total absorbance at a certain frequency is equal to the 

absorbance of all the analytes in a mixture that absorb radiation of that energy.  This 

fact is important because in mixtures absorption bands are many times attributed to 

more than one component of the mixture72.  In fact, a univariate calibration to predict 
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the concentration of an individual analyte in a mixture is impossible if the 

concentrations of different components in a mixture are changing and a band 

attributable only to the single analyte of interest does not exist.  If one wants to develop 

a multivariate calibration model, spectral measurements must be made for at least as 

many frequencies as components in the mixture.  The information at these frequencies 

must correspond to the chemical structure of the analytes in such a way that 

information about all of the analytes is obtained.  In other words, if one of the analytes 

does not absorb at any of the frequencies measured, one will not be able to make 

predictions about the concentration of this analyte in mixtures of unknown 

concentration.  As the number of frequencies measured is increased above the number 

of components in the system, one achieves the same effect as is achieved by adding 

more calibration points in a univariate calibration, i.e. the precision of the calibration 

model will increase as random errors are averaged out.     

 Equation 1.10 shows the multivariate version of Eq.1.9: 

  EKCA +=  (1.10) 

This relationship is the basis for a multivariate calibration method called classical least 

squares (CLS).  In this equation, A is a matrix of absorbance values, K is a matrix of 

proportionality constants, C is a matrix of concentrations, and E is a matrix of random 

errors.  The rows of A are sample spectra, and each column of C records the 

concentrations for all the components of a particular calibration sample.  The 

proportionality constants are found by solving Eq. 1.10 for K.  The proportionality 

constants can then be used to predict analytes’ concentrations from spectra of mixtures of 
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unknown concentrations.  The major disadvantage to this method lies in the calibration 

step.  In order to calculate the proportionality matrix, one must have access to the pure 

spectra of every component contributing to the spectra of the mixtures because one must 

account for the total absorbance, which is the sum of the absorbance values for all 

components that absorb at a given frequency.  In many cases, it may be difficult or 

impossible to obtain the pure component spectra for all components in a mixture system. 

 Inverse least square (ILS) regression methods do not require access to the pure 

spectra of each component in a mixture or the knowledge of all of the components in a 

mixture.  Equation 1.11 describes the ILS model: 

  EAPC +=   (1.11) 

In this equation, C is a matrix of concentrations, A is a matrix of absorbance values, P is 

a matrix of proportionality constants, and E is a matrix of random errors.  This method 

looks like Beer’s Law in an inverse fashion: Instead of treating total absorbance as being 

proportional to the concentrations of all of a mixture’s components, ILS works by 

treating the concentration of a particular component as being proportional to the 

absorbance values at all the resolution elements of a spectrum.  During the calibration 

step, ILS only requires one to know the concentrations of the analytes of interest.  

Because in practice one many times is only interested in a single component or a few 

components in a complex system, ILS is a much more practical method than CLS in 

many circumstances.  The problem with ILS is its sensitivity to collinearity.  Equation 

1.12 shows the least squares solution for P: 

   ( ) CAAAP
T1T −

=  (1.12) 
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In order for the inverse of ATA to exist, the columns of A must be linearly independent.  

The columns of A are the absorbance values of the calibration spectra at the frequencies 

measured, and all of the frequencies measured in the spectra are usually not linearly 

independent.  In addition to the independence requirement, the number of calibration 

spectra in A must be at least as large as the number of resolution elements in each 

spectrum for the inverse of ATA to exist.  A typical infrared spectrum may have several 

thousand resolution elements, but the experimentalist will seldom have that many 

linearly independent samples to work with.  A solution to this problem is to choose a 

subset of the frequencies measured instead of the full spectra.  Methods of frequency 

selection have been discussed in the literature75.  This process can be time consuming 

and tricky because algorithms designed to choose the best subset of spectral frequencies 

can often reach what might be termed local minima.  In other words, the algorithm 

might select a good subset, but not the best subset. 

 Multivariate data reduction methods and regression techniques provide a more 

popular solution to the disadvantages of ILS.  One popular method is principal 

component regression (PCR).  In this method, the scores matrix, Tk, from Eq. 1.7 

replaces A in Eq. 1.11.  PCR is ILS where the data has been dimensionally reduced via 

PCA before regression takes place.  One can think of the rows of Tk as being 

dimensionally reduced spectra that represent the original calibration spectra.  Instead of 

frequencies, the columns of Tk represent linearly independent combinations of spectral 

frequencies, i.e. the loadings.  PRC allows most of the original spectral information to be 

represented by a small number of PCs, which means that the restriction that the number 
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of sample spectra must be at least the number of columns is easily met.  Because of this 

reason, PCR is many times a very effective regression method; however, the 

disadvantage to PCR is that the data reduction and compression that takes place only 

considers the variation in the spectral data.  No attempt is made to maximize the 

covariance between the spectral data and the concentration data for the calibration set, 

and because factors other than variation in concentration affect the spectral variation, 

the PCs calculated in PCR may not be well correlated to the changes in concentration 

that the model is trying to predict.  In other words, if there are large variations in the 

measurement system that do not directly relate to changes in analyte concentration, 

PCR may produce a poor prediction model 

 PLS regression, which has already been mentioned in the section of the 

introduction on spectral discrimination, does consider the covariance between the 

spectral data and the concentration data.  In PLS, the abstract factors that are created are 

called latent variables (LVs) instead of principal components, and the LVs calculated by 

PLS will be different for a given set of data than the PCs that would be calculated by 

PCA of the spectral data.  PLS requires the LVs to be orthogonal like the PCs must be in 

PCA.  PLS begins by decomposing the spectral data similarly to PCA.  The loading 

capturing the largest amount of variation is then rotated so that it achieves the best 

possible correlation to the concentration data.  This iterative process continues until the 

desired number of latent variables has been calculated.  One can essentially view the 

LVs in PLS as the PCs from PCR that have been rotated to achieve the best correlation 

between the PCs and the changes in concentration.  Because PLS chooses factors that 
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correlate best to concentration variance, PLS models many times outperform PCR 

models with higher numbers of factors.  Because of all its potential advantages, PLS is 

the regression method used in the projects in this dissertation.   

 Two major types of PLS regression exist.  In PLS-1, a separate regression model is 

developed for each analyte for which concentration is to be predicted.  This method 

only considers the concentration of one analyte when the LVs for a particular model are 

calculated.  When the concentration of more than one analyte is of interest, the matrix of 

concentration values can also be regressed simultaneously onto the spectral data with a 

method called PLS-2.  In PLS-2, the concentration matrix is decomposed like the 

spectral data, and the loadings of the spectral data are rotated to achieve the best 

correlation possible with the loadings of the concentration matrix.  In general, a priori 

prediction of whether a PLS-1 or a PLS-2 will be the best model for a certain dataset 

cannot be made73. 

 Experimental design is an important part of any calibration experiment.  Many 

authors have addressed this topic in detail76-78, and there are many different options and 

viewpoints to consider when the samples for a calibration set are chosen.  In dealing 

with multi-component systems, some general guidelines have been discussed by 

Kramer73.  First, even for linear systems, regression models should not be used to 

extrapolate predictions beyond the mixture space covered by the calibration set.  

Second, the mixtures in the calibration set must cover the mixture space of interest and 

be linearly independent.  Third, one needs to be able to visualize the mixture space in 

order to clearly understand whether or not the mixture space is being representatively 
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covered by the calibration set.  This last consideration can be difficult or impossible to 

achieve for some higher dimensional mixture spaces.  One of the projects presented 

here addresses this point through the use of experimental design and novel algorithm 

development. 

ATR SPECTROMETRY 

 In the traditional FT-IR sampling method of transmission, the sample must be 

prepared in such away that light can be absorbed by the analyte as radiation passes 

through the sample, but the sample must be thin enough or dilute enough that total 

absorption of the radiation does not occur.  For liquid samples or solutions, 

transmission sampling requires special plates or sample cells that are transparent to the 

light frequencies of interest.  For polymers, transmission requires the preparation of 

thin films.  For other solids, the sample must be pressed with KBr into a pellet or mixed 

with mineral oil into a mull.  These sample preparation techniques can be expensive 

and difficult or impossible to achieve for some samples.  Some transmission 

measurements also require the sample compartment to be exposed to the atmosphere 

each time the sample is changed.  This increases the sampling time for good 

measurements because one must usually wait for the IR active atmospheric gases to be 

purged from the sample compartment before measurements can be made.  ATR 

accessories provide a quick and easy alternative to the transmission mode of 

measurement.  A number of texts have discussed the ATR technique72, 79, 80. 

 When light strikes the interface between a higher refractive index medium and a 

lower refractive index medium from the higher refractive index side, total internal 
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reflection of the light can occur.  Total internal reflection will occur when the angle of 

the radiation to the normal is at or above the critical angle for the higher refractive 

index medium.  Snell’s Law is given in Eq. 1.13: 

  2211 sinsin θηθη =     (1.13) 

In this well known equation, η1 is the refractive index of medium 1, η2 is the refractive 

index of the medium 2, θ1 is the angle of incidence for the radiation, and θ2 is the angle 

of refraction.  Figure 1.4 demonstrates Snell’s Law for a beam of light traveling from 

material 1 to material 2 where η1 is greater than η2.  In this case, the angle of refraction is 

greater than the angle of incidence.  As θ1 is increased, θ2 increases until at some critical 

angle, θ1 = θC, θ2 equals 90° and total internal reflection begins to occur.  The formula for 

the critical angle is given in Eq. 1.14: 

  
1

2arcsin
η
η

θ =C  (1.14) 

The critical angle is simply determined by the refractive indices for the two media being 

considered. 

 Although the photons in the light wave are completely reflected inside the higher 

refractive index medium during total internal reflection, the electric field of the light 

wave penetrates a short distance beyond the media interface.  This electric field is 

known as the evanescent wave, and it decays exponentially as the distance into the 

lower refractive index medium increases.  Eq. 1.15 gives the effective depth of 

penetration of the evanescent wave into the lower refractive index medium: 
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Figure 1.4: Snell’s Law diagram. 
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λ

−
=pd  (1.15) 

In Eq. 1.15, E0 is the electric field strength of the evanescent wave at the media interface, 

θ is the angle of incidence, and dp is the effective depth of penetration of the evanescent 

wave.  This equation shows that the depth of penetration at a given angle of incidence 

will vary depending on the refractive indices of the media. 

 In the ATR sampling mode, the lower refractive index medium is the sample.  

Most organic materials have a refractive index of approximately 1.5 in the mid-IR 

region of the spectrum.  Various materials such as Zinc selenide (η=2.40), Silicon 

(η=3.41), and Germanium (η=4.00) can be used for the higher refractive index medium.  

In an ATR accessory, the higher refractive index medium is called the internal reflection 

element (IRE).  Because all but the surface of the IRE can be enclosed in a purged 

atmosphere that allows for seamless connection of the accessory to the spectrometer, 

ATR is a very convenient technique.  Liquid, solid, and film samples can simply be 

pressed onto the IRE and the spectrum can be obtained without other sample 

preparation.  One potential disadvantage of this technique is that it is essentially a 

surface technique.  As Eq. 1.15 shows, the depth of penetration into the sample is 

governed by the wavelength of the light and the refractive index of the IRE.  In most 

cases, the depth of penetration will be no more than a few micrometers.  In many cases 

though, the relatively low depth of penetration does not present a problem, and if one is 

interested in studying layers, ATR can be an ideal technique because the depth of 

penetration can be varied by the angle of incidence. 
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 Differences exist between transmission and ATR spectra that must be considered 

when comparing ATR and transmission spectra.  Equation 1.9 describes the factors that 

contribute to absorbance in transmission measurements.  The equation for absorbance 

in ATR is more complicated and is given in Eq. 1.16: 

  ( )
( )2cos

log
1

2
02

θη

η adE
eA

p=  (1.16) 

In this equation, all of the variables have already been defined except a, which is the 

linear absorption coefficient per unit thickness of sample.  In ATR, depth of penetration 

is the analog of pathlength in transmission.  In transmission the pathlength is constant, 

but as Eq. 1.15 shows, depth of penetration increases with wavelength.  In ATR, the 

intensity of longer wavelength absorption bands will be greater than that of smaller 

wavelength bands simply because of the greater depth of penetration.  This effect does 

not occur in transmission.  The second major difference between ATR and transmission 

spectra is due to anomalous dispersion.  It is well known that the refractive index of a 

material changes sharply around the absorption bands for that material.  On the smaller 

wavelength side of an absorption band, the refractive index of the material falls lower 

than the average refractive index of the material in spectral regions where there are no 

absorption bands.  On the longer wavelength side of the band, the refractive index rises 

higher than the average refractive index of the material.  Because of the dependence of 

Eqs. 1.15 and 1.16 on η2, anomalous dispersion causes the absorption bands in an ATR 

spectrum to be shifted slightly to longer wavelengths compared to a transmission 
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spectrum of the same sample.  In one of the projects presented here, the implications of 

these effects on spectral comparison are investigated.   
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ABSTRACT 

  During harvest, a variety of plant based contaminants are collected along with 

cotton lint.  The USDA previously created a mid-IR, ATR, FT-IR spectral library of 

cotton contaminants for contaminant identification as the contaminants have negative 

impacts on yarn quality.  This library has shown impressive identification rates for 

extremely similar cellulose based contaminants in cases where the library was 

representative of the samples searched.  When spectra of contaminant samples from 

crops grown in different geographic locations, seasons, and conditions and measured 

with a different spectrometer and accessories were searched, identification rates for 

standard search algorithms decreased significantly.  Six standard algorithms were 

examined: dot product, correlation, sum of absolute values of differences, sum of the 

square root of the absolute values of differences, sum of absolute values of differences 

of derivatives, and sum of squared differences of derivatives.  Four categories of 

contaminants derived from cotton plants were considered: leaf, stem, seed coat, and 

hull.  Experiments revealed that the performance of the standard search algorithms 

depended upon the category of sample being searched and that different algorithms 

provided complementary information about sample identity.  These results indicated 

that choosing a single standard algorithm to search the library was not possible.  Three 

voting scheme algorithms based on result frequency, result rank, category frequency, or 

a combination of these factors for the results returned by the standard algorithms were 

developed and tested for their capability to overcome the unpredictability of the 

standard algorithms’ performances.  The group voting scheme search was based on the 
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number of spectra from each category of samples represented in the library returned in 

the top 10 results of the standard algorithms.  This group algorithm was able to identify 

correctly as many test spectra as the best standard algorithm without relying on human 

choice to select a standard algorithm to perform the searches. 

 

Index Headings: Spectral search system; Search algorithm; Voting scheme algorithm; 

Spectral library; Spectral library; Infrared; FT-IR; ATR; Chemometrics; Cotton; 

Contaminants. 

INTRODUCTION 

  When cotton is mechanically harvested from the field, it can be contaminated by 

a variety of foreign matter.  In addition to the desired cotton fiber, parts of the plants 

such as leaves, stems, seeds, and hulls are also collected.  Parts of other plants growing 

in the field, inorganic matter such as clay or sand, plastic waste, and greases and oils 

from machinery can also contaminate the cotton, but the majority of contamination 

comes from the cotton plants themselves1.  These contaminants have major impacts on 

the quality of cotton yarn produced and, ultimately, on the profitability of processing.  

Contaminants are responsible for an increased number of yarn breakages during 

spinning and lower the quality and price of the final yarn product2, 3. 

  Because of the negative impact of these contaminants on quality and profit, their 

detection and removal is important.  Knowledge of which contaminants are most 

abundant in the cotton and which contaminants create the most difficulties during 

processing allow the entire process from harvesting through production of the final 
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product to be streamlined to limit those contaminants, but the identification of 

contaminants is not straightforward.  From the time organic contaminants are first 

harvested along with the cotton, they begin to break down in size physically making 

human visual identification difficult or impossible.3 

 Some attempts to identify contaminant particles by color4 or geometric features5 

have been made in the past.  These methods did not make use of the chemical 

information available through spectroscopic analysis of trash components.  Over several 

years, the United States Department of Agriculture—Agricultural Research Service 

(USDA-ARS) has developed a mid-IR, FT-IR, attenuated total reflection spectral library 

of cotton contaminants1, 3.  This library allows one to employ the power of molecular 

fingerprinting, inherent to the mid-IR region of the spectrum, to be applied to the 

problem of cotton contaminant identification.  Work by Himmelsbach et al.1, 3 has 

shown the utility of the library and the high percentage of correct matches returned by 

searching when the library spectra are representative of the unknown samples.  It 

should be noted that identification of cotton plant parts by library searching is 

significantly more difficult than standard searches for a diverse library, such as most 

commercial libraries.  In the current study, all the samples have both spectra and 

chemical compositions that are extremely similar.  Standard algorithms have been 

designed to distinguish between relatively different library entries. 

 The current work demonstrates that when spectra of plant parts grown in 

different seasons and geographic locations and measured with a different spectrometer 

and ATR accessories from those represented in the library are searched, the 
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identification rate drops significantly compared to searching spectra that have 

representatives from the same growing regions and seasons and measured under the 

same conditions.  The performance of a variety of standard searching algorithms was 

investigated, and it was found that identification depends on the type of plant part 

spectrum being searched.  Additionally, different algorithms were found to give 

complementary information about sample identity instead of completely repetitive 

information.  In other words, each algorithm may return correct answers that are not 

returned by every other algorithm.  These results meant that it was impossible to pick a 

single standard algorithm that would yield the best matches from the library for every 

category of contaminant considered.  This work focuses on the creation of voting 

scheme algorithms that overcome the disadvantages of the standard algorithms and 

improve identification. 

BACKGROUND 

 A thorough history of the development of infrared spectral library search 

systems through the mid 1980s has been reported by Lowry et al.6  The first automated 

spectral library search systems based on punch cards and electric sorters were reported 

in the 1950s7, 8.  These systems relied on encoded cards to record the location of spectral 

absorption bands.  Electric sorters were then used to locate cards that represented 

spectra with the same bands as the unknown spectrum searched.  These early systems 

even made use of the absence as well as the presence of bands to match an unknown 

spectrum to the most similar spectra in a library.  In the 1960s, the computerized ASTM 

binary encoded spectral library came into use9-11.  Because this system allowed for 
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computerized searching of electronically stored information, the time required to search 

through a given number of spectra decreased, but only band location, and not band 

intensity, information was still used to match spectra.  In the 1970s, Azaraga12 

introduced the EPA vapor phase library, which was the first major digitized spectral 

library.  With the introduction of this library, scientists began to use Euclidean distance 

as a metric to determine how closely related spectra in a library were to an unknown 

spectrum.  Into the 1980s, work continued with correlation algorithms13, 14 and 

variations on the Euclidean distance metric, such as metrics based on the differences 

between the derivatives of spectra6, but in practice there has been little change in 

infrared spectral library searching since that time. 

MATERIALS AND METHODS 

  USDA ATR FT-IR Spectral Library.  This library contained 929 FT-IR spectra 

measured with a Nicolet Magna 850 FT-IR spectrometer (Thermo Fisher Scientific, 

Waltham, MA) and a DuraScope attenuated total reflection (ATR) sampling accessory 

(Smiths Detection, Danbury, CT).  The spectrometer contained a ceramic source, a KBr 

beamsplitter, and a deuterated triglycine sulfate (DGTS) detector.  The ATR accessory 

had a diamond-coated ZnSe internal reflection element (IRE).  Spectra were measured 

over the range of 4000 to 650 cm-1 at 8 cm-1 resolution, with 128 interferograms co-

added, and interferograms were processed with Happ-Genzel apodization prior to 

Fourier transformation.  Spectra were collected with the use of Omnic E.S.P. 5.2 

software (Thermo Fisher Scientific, Waltham, MA).  All spectra were first converted to 

GRAMS format (Thermo Fisher Scientific, Waltham, MA) and then imported into 
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MATLAB (The Math Works, Natick, MA).  The library was comprised of the spectra of 

foreign materials found in harvested cotton and included the following types of 

samples: cotton plant parts including bloom, bract, hull, leaf, seed coat, shale, and stem; 

other organic matter such as poultry feathers, cow leather, and weed parts; inorganic 

materials such as sand and clay; greases and oils; and plastics.  Organic samples were 

representative of several geographic locations and growing conditions.  

  Test Set Spectra.  A set of 75 test spectra of samples from several geographic 

locations and seasons different from the samples in the USDA library were measured 

with the use of a Varian Excalibur Series FTS-4000 FT-IR spectrometer (Varian, Palo 

Alto, CA) and three different ATR sampling accessories.  The samples were obtained 

from the USDA-ARS Cotton Quality Research Laboratory (Clemson, SC).  The 

spectrometer contained a ceramic source, a KBr beamsplitter, and a DGTS detector.  The 

ATR accessories were the Specac Golden Gate (Specac, Woodstock, GA) with a 

diamond-coated ZnSe IRE and the Harrick SplitPea and Seagull (Harrick Scientific, 

Pleasantville, NY) with Si and ZnSe IREs, respectively.  Spectra were measured over the 

range of 4000 to 400 cm-1 at 4 cm-1 resolution, with 256 interferograms co-added.  

Interferograms were processed with Happ-Genzel apodization to be consistent with the 

USDA library.  Each spectrum in the test set was the average of three replicate spectra.  

Spectra were collected with the use of Varian Resolutions Pro 4.0.5.009 and WinIR Pro 

3.2 software (Varian, Palo Alto, CA).  All spectra were first converted to GRAMS format 

and then imported into MATLAB.  The test set samples contained hull, leaf, seed coat, 

and stem samples, both intact and powdered, from nine different growing locations. 
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  Standard Search Algorithms.  Six standard search algorithms were used in the 

experiments: dot product, correlation, sum of the absolute values of differences, square 

root of the sum of the absolute values of differences, sum of the absolute values of 

differences of the derivatives, and sum of the squared differences of the derivatives.  

Each equation below can be thought of as a metric for the comparison of two spectra 

represented as vectors.  The vector jl
r

 represents the jth spectrum in the library, and the 

vector u
r
 represents the spectrum searched against the library.  The subscript i 

represents the ith element of a vector, and n equals the number of elements in each 

vector or the number of resolution elements in each spectrum.  The score describing 

how closely related the spectrum being searched is to the jth spectrum in the library is 

represented by Sj.  The dot product metric is given by Eq. 2.1:   

  jjjS ul
rr

•=  (2.1) 

It should be noted that the dot product metric gives the same comparative information 

as an algorithm based on the sum of the squares of the differences between spectral 

resolution elements (often called a least squares algorithm in the literature), but the dot 

product metric requires a much smaller number of computations.  For spectra vectors 

normalized to unit magnitude, the dot product metric is equivalent to the cosine of the 

angle between the vectors.  A perfect match has a score of 1 and orthogonal spectra 

have a score of 0.  Equation 2.2 is the sum of the absolute values of the differences 

algorithm, and Eq. 2.3 is the sum of the square root of the absolute values of the 

differences. 
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These first three metrics differ in the emphasis placed on small versus large differences 

between the spectra compared: from Eq. 2.1 to Eq. 2.2 to Eq. 2.3 more emphasis is 

placed on small differences between the spectra versus large differences.  Equations 2.4 

and 2.5 represent the sum of the absolute values of the differences of the derivatives 

and sum of the squared differences of the derivatives metrics. 
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These derivative metrics are especially useful for the comparison of spectra with 

varying baseline shifts.  For the metrics represented by Eqs. 2.2-2.5, the smaller the score 

between unknown and library spectra the more spectrally related the unknown 

spectrum is to the library spectrum, and a perfect match has a score of 0.  Equation 2.6 is 

for the correlation metric: 
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For the correlation metric, a perfect match has a value of 1, and values of the score 

decrease as the similarity of the spectra decrease.  In order to find the spectrum in a 

library that most closely matches the spectrum that is searched for a given algorithm, 

the score, Sj, for each spectrum in the library is calculated.  The scores for a given 

standard algorithm are then ordered so that the spectra in the library are ranked by 

their similarity to the spectrum being searched.  The scores returned by different 

standard search algorithms are not directly comparable, but the ranks of the results 

returned by each algorithm are directly comparable.  The voting scheme algorithms 

described in the next section are a method of incorporating information from all of the 

standard search algorithms described for a given spectrum searched against the library.   

  Voting Scheme Algorithms.  Three voting scheme algorithms were developed.  

Each algorithm combined the top 10 ranked results from the library spectra returned by 

each standard algorithm and then ranked these 60 matches according to three different 

criteria.  The weighted frequency algorithm assigned a weight to each of the 60 matches.  

Any match that was ranked first by a standard algorithm received a weight of 10.  Any 

match ranked second by a standard algorithm received a weight of 9.  This pattern 
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continued until the matches given a rank of 10 by each of the standard algorithms were 

given a weight of 1.  All of the weights associated with a given spectrum from the 

library were summed, and all of the spectra were then ranked by their associated sum 

of weights from highest to lowest.  The highest sums were considered to be the best 

matches.  This algorithm considered both the ranks of a given spectrum in the results of 

the standard algorithms and the number of standard algorithms that matched the 

spectrum. 

  The frequency algorithm ranked spectra solely on the number of standard 

algorithms that returned the given spectrum.  This search would have been equivalent 

to a weighted frequency search where all 60 spectra were assigned a weight of 1. 

  The group algorithm counted the number of matches out of 60 that represented 

sample categories found in the library.  The spectra in the library were assigned to 

belong to 1 of 21 possible groups.  Group divisions included leaf, stem, seed coat, and 

hull.  The number of matches that belonged to a particular group counted as the 

number of votes for a particular group.  The group with the highest number of votes 

was considered to be the best match for the test spectrum that was searched. 

  Library Searching.  Before searching, all spectra were truncated so that they 

ranged from 3700 to 2700 cm-1 and 1800 to 650 cm-1.  The region between 2700 to 1800 

cm-1 was removed because none of the library or test spectra contained significant 

absorption bands in this region.  The spectra in the test set were also de-resolved to 8 

cm-1 resolution to match the library spectra.  After these preprocessing steps, all spectra 

contained 558 resolution elements.  All spectra were also given a common minimum by 
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subtraction of the lowest absorbance value in each spectrum from the absorbance values 

for every resolution element in that spectrum.  All spectra were vector normalized to 

unit magnitude. 

  A 20 member subset of the test spectra set was chosen to test the performance of 

standard spectral library search algorithms.  This subset was comprised of five spectra 

each of hull, leaf, seed coat, and stem spectra.  Spectra of powdered samples (80 mesh) 

accounted for two or three spectra out of each group of five spectra.  These spectra were 

searched against the library with the use of the six standard search algorithms, and the 

top 10 results returned by each algorithm for each spectrum in the subset were 

recorded.  The combined top 10 results returned for each test spectrum by the standard 

algorithms were then searched with the use of the three voting scheme algorithms. 

  A second subset of 12 spectra from the 75 test spectra set and 12 spectra from the 

library were chosen to test the performance of the standard algorithms when test 

spectra were searched against a library that had been augmented by combining the 75 

spectra test set into the USDA library.  This 24 spectra test set contained six spectra each 

of hull, leaf, seed coat, and stem.  The spectra for each category were comprised of three 

spectra from the original 929 spectra library and three spectra from the 75 member test 

set.  When each spectrum was searched against the augmented library, all spectra in the 

library that were replicates of the spectrum to be searched were removed from the 

library before the search was executed.  All algorithms were programmed in the 

MATLAB programming language and executed with MATLAB 7 software. 
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  The performances of the standard algorithms were judged by the number of rank 

one results returned that correctly identified the test samples and by the total number of 

correct matches in the top 10 results returned for the test samples (e.g. If a leaf is being 

searched against the library, any leaf spectrum that is returned will be considered a 

correct result).  The performances of the voting scheme algorithms were compared to 

the standard algorithms by the number of correct rank one results returned. 

RESULTS AND DISCUSSION 

  To distinguish among the infrared spectra of plant based contaminants found in 

cotton is not a trivial task.  Figure 1.2 shows the spectra of four cotton contaminant 

samples: a leaf, stem, seed coat, and hull.  Each of these materials has cellulose as its 

main component, and thus, they all have very similar spectra.  The absorbance band 

locations in these spectra are nearly identical from one spectrum to the next; however, 

the band intensities do vary.  If all stems from all cotton plants had the same spectrum 

and if all hulls from all cotton plants had the same spectrum but the hull spectrum was 

different from the stem spectrum, then one would be able to distinguish the spectrum of 

a stem contaminant from the spectrum of a hull contaminant by the differences in band 

intensities between the two spectra.  Unfortunately, this is not the case.  Because of the 

differing concentrations of components that make up parts from different plants and 

multiple parts from the same plant, relatively large variations exist among the spectra of 

a given type of plant part when compared to the similarity of the spectra of different 

types of plant parts seen in Fig. 2.1.  In other words, the within group variation is 

significant compared to the between group variation.  Figure 2.2 demonstrates this 
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point for a group of leaf spectra.  This figure shows the spectra of four different cotton 

leaves.   

  Despite these challenges, previous research has shown that more than 90% of 

organic based contaminant samples can be identified with the use of the USDA cotton 

contaminant library and standard spectral search algorithms when the spectra in the 

library are representative of the spectra being searched and the unknown spectra are 

acquired with the same instrument used to measure the library spectra1.  Representative 

means that spectra of cultivars from the same geographic region and time period and 

grown under similar conditions as the sample represented by the unknown spectrum 

being searched must be contained in the library.  In this work, spectra of samples grown 

in different geographic regions and different time periods than the library spectra were 

used to test the performance of standard algorithms.  Additionally, the test spectra were 

measured with a different instrument and different ATR accessories than the library 

spectra.  It is well known that transferring spectral calibrations from one spectrometer 

to another can be difficult because of instrumental differences, and these instrumental 

differences also affect the performance of library searches.  For true versatility, a 

spectral library needs to provide consistent results despite these sources of variation, 

and the experiments conducted in this study were designed to check the performance of 

the library under these conditions. 

  When a test set of 20 spectra that represented samples from growing regions, 

years, and environmental conditions not represented in the library and that were 

measured with different spectrometers and accessories was searched with the use of
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Figure 2.1: Spectra of leaf, stem, seed coat, and hull from the cotton plant.  The spectra 

have been offset for clarity. 
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Figure 2.2: Spectra of four different cotton leaves. 
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standard search algorithms, the standard search algorithm that produced the highest 

number of rank one identifications was able to correctly identify only 12 out of 20 

spectra.  More serious was the differing performance of the standard search algorithms.  

Figure 2.3 shows the number of correct rank one results returned by each of the six 

standard algorithms, broken down by the four categories of plant parts.  One can see 

that a different algorithm performed best for each of the four categories of plant parts 

tested against the library.  Furthermore, in some cases, the best performing algorithms 

for a given sample category were the worst performing algorithms for a different 

category of samples.  For example, the correlation and square root algorithms correctly 

identified the most seed coat samples of any of the algorithms, but the correlation and 

square root algorithms identified fewer stem samples than any of the other algorithms.  

These data revealed that one can have significantly different rates of identification that 

depend upon the algorithm chosen to search this library.  Since there is no single 

standard algorithm capable of identifying all sample types, one’s chances of 

successfully identifying an unknown spectrum depend on the choice of algorithm, but 

for a true unknown sample, there is no way to know if the best algorithm has been 

chosen.  These facts pointed to the need for a voting scheme algorithm. 

  Figure 2.4 shows the total number of correct results returned in the top 10 results 

by each of the six standard algorithms.  From looking at these results, one might predict 

that it would be best to use the top 10 matches returned by one of the derivative 

algorithms as a basis for a voting algorithm, but Fig. 2.5 shows why this approach is not 
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Figure 2.3: Number of samples in the 20 member test set correctly identified by the first 

result returned by each standard algorithm.  The results are broken down by sample 

type as indicated in the legend. 
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Figure 2.4: Total number of results in the top 10 results returned by each of the standard 

algorithms for each of the 20 test set samples that correctly identified a test spectrum. 
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Figure 2.5: Total number of results in the top 10 results returned by each of the standard 

algorithms for each of the 20 test set samples that correctly identified a test spectrum.  

The results are broken down by sample type as indicated in the legend. 
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ideal.   As with the number of correct rank one results (see Fig. 2.5), the algorithm that 

produces the greatest number of correct matches in the top ten results returned varies 

by sample category.  These results are indicative of the fact that for a given unknown 

sample the algorithm that produces the greatest number of correct answers cannot be 

predicted.  For instance, Table 2.1 shows the actual results returned for a leaf sample 

from the test set when searching with the absolute value and the absolute value 

derivatives algorithms.  From the results shown in Fig. 2.4, one would have predicted 

that the derivative algorithm would have given the greatest number of correct answers, 

but in this case (see Table 2.1) the absolute value algorithm yielded five correct matches 

to the derivative algorithm’s one correct match.  This example demonstrates why any 

successful voting scheme algorithm must incorporate information from all six standard 

algorithms. 

  The three voting scheme algorithms developed were designed to take 

advantage of both complementary and repetitive information among the top 10 results 

returned by the six algorithms.  The results returned by the standard algorithms varied 

because each algorithm measures the similarity of spectra by a different metric, and 

since these spectra are so similar to begin with, different orderings of the most likely 

candidate spectra occur.  Despite this fact, one still expects that some of the algorithms 

will return some of the exact same spectra.  This is the principle behind the frequency 

algorithm.  The number of times a particular result shows up in the hit lists of the six 

algorithms the more likely that result correctly identifies the unknown contaminant.   
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Table 2.1: Search results for a leaf powder sample. 

Absolute Value Absolute Value Derivative 

Rank Score Category 
Index 

Numbera Score Category 
Index 

Numbera 

1 1.318 Hull 703 0.2118 Leaf 363 
2 1.636 Hull 697 0.2129 Hull 703 
3 1.651 Bract 65 0.2130 Hull 478 
4 1.702 Stem 518 0.2157 Hull 481 
5 1.785 Leaf 363 0.2178 Hull 697 
6 1.788 Leaf 364 0.2214 Stem 21 
7 1.815 Stem 805 0.2219 Hull 696 
8 1.843 Leaf 525 0.2223 Bloom 35 
9 1.874 Leaf 523 0.2256 Hull 699 
10 1.877 Leaf 526 0.2261 Hull 695 

aUnique index number assigned to the spectra from the library. 
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The weighted frequency algorithm modified this approach by considering both the 

number of algorithms that returned a particular result and the algorithm specific ranks 

of the results returned.  This algorithm considers the facts that both frequency of a 

particular result among the 60 hits and the rank of those results among the individual 

10 member hit lists are indicators of the probability of a particular result correctly 

matching the unknown.  The group algorithm uses the frequency of particular results 

returned in a different manner.  This algorithm is only considering the number of 

results returned in a particular category. 

  Table 2.2 shows an example of how these algorithms work.  The results returned 

by searching a particular seed coat spectrum from the test set with the six standard 

algorithms are shown.  The group search algorithm would reveal that the group 

returned most often was seed coat with 36 out of 60 results returned.  The frequency 

search would focus on the fact that seed coat samples 167 and 624, appearing in the 

results five times each, tied for the first ranked result with hull samples 481 and 703, 

which also appeared five times each.  Finally, the weighted voting search revealed that 

when frequency and rank are considered seed coat sample 624 is ranked number 1 with 

a score of 42.   

  Table 2.3 summarizes the top matches returned by each of the voting scheme 

algorithms for the same seed coat test spectrum for which standard algorithm results 

are shown in Table 2.2.  The results of the weighted frequency voting and group voting 

searches definitely identify the test spectrum as seed coat, while only four of the six 

standard algorithms had a correct rank one match for this test spectrum (see Table 2.2).  
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Table 2.2: Top 10 ranked results for all standard algorithms for a cotton seed coat powder spectrum. 

Square Root Squared Derivative Absolute Value 

Rank Score Category 
Index 

Number Score Category 
Index 

Number Score Category 
Index 

Number 

1 25.15722 Seed 
Coat 

165 0.0001371 Stem 20 1.49286 Seed 
Coat 

166 

2 26.28441 Seed 
Coat 

166 0.0001542 Hull 481 1.50666 Seed 
Coat 

165 

3 27.73352 Seed 
Coat 

624 0.0001582 Seed 
Coat 

624 1.61960 Seed 
Coat 

624 

4 27.75385 Hull 703 0.0001615 Seed 
Coat 

618 1.75337 Hull 703 

5 29.44865 Hull 481 0.0001620 Seed 
Coat 

167 1.83423 Seed 
Coat 

164 

6 29.76650 Seed 
Coat 

164 0.0001622 Hull 697 1.83423 Seed 
Coat 

168 

7 29.76650 Seed 
Coat 

168 0.0001630 Seed 
Coat 

625 1.89044 Hull 481 

8 29.81726 Hull 696 0.0001632 Seed 
Coat 

628 1.91286 Seed 
Coat 

167 

9 29.83374 Cacyx 122 0.0001641 Hull 696 1.93826 Hull 696 

10 29.84427 Bloom 35 0.0001726 Hull 703 1.95001 Seed 
Coat 

623 
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Table 2.2: (continued) 

Dot Product Absolute Value Derivative Correlation 
 

Rank Score Category 
Index 

Number Score Category 
Index 

Number Score Category 
Index 

Number 

1 0.99224 Seed 
Coat 

166 0.18702 Stem 20 0.99080 Seed 
Coat 

166 

2 0.99150 Seed 
Coat 

164 0.19129 Seed 
Coat 

624 0.98959 Seed 
Coat 

624 

3 0.99150 Seed 
Coat 

168 0.19322 Seed 
Coat 

628 0.98957 Seed 
Coat 

165 

4 0.99100 Seed 
Coat 

165 0.19403 Hull 481 0.98754 Seed 
Coat 

164 

5 0.99080 Leaf 244 0.19486 Hull 697 0.98754 Seed 
Coat 

168 

6 0.99050 Seed 
Coat 

623 0.19535 Seed 
Coat 

167 0.98581 Seed 
Coat 

167 

7 0.99048 Bract 76 0.19782 Hull 489 0.98573 Seed 
Coat 

627 

8 0.99044 Hull 699 0.19816 Seed 
Coat 

625 0.98537 Hull 703 

9 0.99032 Seed 
Coat 

167 0.19844 Hull 703 0.98441 Seed 
Coat 

623 

10 0.99017 Stem 26 0.19854 Seed 
Coat 

618 0.98384 Hull 481 



 

  

69

Table 2.3: Results from voting scheme algorithms for the same seed coat powder sample for which standard algorithm 

results are shown in Table 2.2. 

Weighted Frequency Frequency Group 

Rank Score 

Substance 

Name 

Index/Group 

Numbera Score 

Substance 

Name 

Index/Group 

Numbera Scoreb 
Substance 

Name 

Index/Group 

Numberc 

1 42 Seed Coat 624 5 Seed Coat 167 36 Seed Coat 11 

2 39 Seed Coat 166 5 Hull 481 17 Hull 18 

3 34 Seed Coat 165 5 Seed Coat 624 3 Stem 5 

4 27 Hull 481 5 Hull 703 1 Bloom 6 

5 27 Seed Coat 164 4 Seed Coat 164 1 Bract 7 

6 23 Seed Coat 168 4 Seed Coat 165 1 Leaf 8 

7 21 Seed Coat 167 4 Seed Coat 166 1 Cacyx 10 

8 20 Hull 703 4 Seed Coat 168    

9 20 Stem 20 3 Seed Coat 623    

10 11 Seed Coat 628 3 Hull 696    
aUnique index number assigned to the spectra from the library. 
bAll 60 possible spectra to be ranked are included in 7 results. 
cUnique numbers assigned to each category of spectra represented in the library.
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One should also notice that the derivative algorithms are the algorithms that did not 

have a correct rank one match for the test spectrum.  Recall that in Fig. 2.4 the derivative 

algorithms were shown to provide the largest total of correct results in the top ten 

results returned by the six standard algorithm, but in this case the derivative algorithms 

did not give a correct rank 1 result.  This outcome reiterates the fact that the six 

standard algorithms are not simply giving repetitive information: All of the algorithms 

seem to be giving some distinct information useful to correctly identify unknown 

spectra.  The ability of these voting scheme algorithms to take advantage of both 

complementary and repetitive information provided by the standard algorithms’ results 

makes these voting scheme algorithms valuable. 

  The results for the voting scheme algorithms for the entire test set are shown in 

Fig. 2.6.  The data for the group algorithm show impressive performance:  The group 

search was able to yield as many correct rank one matches as the best standard 

algorithm.  By use of the group search algorithm, one does not need to make a decision 

as to which standard algorithm should be used and risk choosing a poorly performing 

algorithm.  The group search uses the discriminating information given by all of the 

standard algorithms to overcome the problem of different standard algorithms 

performing differently for different sample types (see Figs. 2.3 and 2.4).   

  Figure 2.6 also reveals that while the frequency and weighted frequency 

algorithms performed better than some of the standard search algorithms they do not 

have the same discriminating power that the group search algorithm has.  One can gain 

some insight into this outcome by looking at the results shown in Table 2.3.  Regarding 
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Figure 2.6: Number of samples in the 20 member test set correctly identified by the first 

result returned by each of the voting scheme algorithms. 
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the frequency algorithm, the results show that many ties occur among the hits.  This 

behavior is typical of the results obtained by this algorithm for all of the test samples, 

and this lack of discrimination means that this algorithm is not as successful at 

distinguishing among spectra as the other algorithms.  The rank information considered 

by the weighted frequency algorithm, in addition to the frequency information, 

generally gives the weighted frequency algorithm more discrimination power than the 

frequency algorithm.  This trend is also demonstrated in the results contained in Table 

2.3.  The example in Table 2.3 cannot show us why the group search generally performs 

better than the weighted voting search, but one can infer the reasons from the search 

data for the test set on the whole.  In the top 10 results returned by the six standard 

algorithms, correct answers show up often, but are not always highly ranked.  Also, 

these six standard algorithms all calculate spectral similarity so that they often return 

the correct category of sample in their results, but these algorithms use metrics to 

calculate spectral similarity that differ enough that particular spectra from the library 

are not consistently returned by all of the standard algorithms.  These factors hurt both 

the frequency search and the weighted frequency search since these algorithms depend 

upon a particular spectrum from the library being returned consistently, or consistently 

and highly ranked, respectively, in the results from the standard algorithms.  These 

same factors are beneficial to the group search algorithm because it does not rely on 

rank or the consistency of particular results being returned.  The group search only 

considers the category of spectrum being returned. 
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  In order to demonstrate that the dependence of algorithm performance on 

sample category was related to the test set samples not being represented in the library, 

the 75 test spectra were added to the library.  Twelve test spectra along with 12 spectra 

from the original library were searched against this augmented library, as described 

earlier, to show that when spectra representative of the test set were included in the 

library a high identification rate could be obtained by the standard algorithms.  This 

experiment was a legitimate use of the 75 member test set because replicate spectra of 

the same plant parts represented by the test set were removed from the augmented 

library before each search was conducted.  The results of this experiment are 

summarized in Fig. 2.7.  The absolute value derivative and squared derivative 

algorithms yielded correct rank one matches for 22 out of 24 test spectra, and the 

number of correct rank one results improved for all of the standard algorithms.  Figure 

2.8 shows how each of the standard algorithms performed by sample category.  The 

absolute value derivative and squared derivative algorithms consistently performed the 

best for all sample categories tested.  The data show that when spectra representative of 

the test set were found in the library the performances of the standard search 

algorithms were predictable.  These results demonstrated the importance of making the 

library representative of the spectra that are going to be searched against it, but in cases 

where the library cannot be made completely representative of the unknown spectra to 

be searched, the voting scheme algorithms provide a way to overcome the problem of 

not being able to choose a single standard algorithm for the searches. 
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Figure 2.7: Number of samples in the 24 member test set searched against the 

augmented library that was correctly identified by the first result returned. 
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Figure 2.8: Number of samples in the 24 member test set searched against the 

augmented library that was correctly identified by the first result returned. The results 

are broken down by sample type as indicated in the legend. 
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CONCLUSION 

  A spectral library of cotton contaminants had previously been developed to aid 

in the identification of foreign matter of extremely similar chemical composition and 

with closely related spectra found in cotton lint.  Our experiments demonstrated that 

when this library was representative of the types of samples being searched against it, 

standard library searching algorithms accurately identified test samples, but when 

spectra of samples grown in different geographic locations, seasons, and environmental 

conditions and measured with a different spectrometer and ATR accessories were 

searched against the library, the identification rates for standard spectral search 

algorithms decreased significantly.  Compounding this problem was the fact that under 

these conditions one could not reliably choose a standard search algorithm to search 

unknown spectra against the library because the performances of the standard 

algorithms varied by sample type; consequently, the best performing algorithm could 

not be predicted.  Our experiments showed that by using the group voting scheme 

algorithm based on the numbers of samples returned from each category of samples 

represented in the library, a number of rank one identifications equal to the best 

standard algorithm could be obtained.  The success of this voting scheme is due to the 

fact that the information gained from different standard search algorithms is 

complementary and repetitive.  By using the information gained from multiple 

standard search algorithms, a more reliable and robust search algorithm was created.  

In addition to the identification of cotton contaminants in an underrepresented library, 

these voting scheme techniques could have applications to other spectral libraries with 
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significant within group variation compared to between group variation, such as 

biological or forensic spectral libraries. 
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ABSTRACT 

Identification and removal of cotton contaminants are important goals of cotton 

research.  Contaminants harvested along with the desired cotton fibers include other 

parts of the cotton plant such as leaves, stems, seeds, and hulls.  Identification and 

removal of these contaminants is important because of the detrimental effects 

contaminants have on product quality and profitability.  During transportation and 

processing, these contaminants break down in size, which makes visual identification 

difficult at best.  The United States Department of Agriculture (USDA) created a mid-IR 

spectral library to enable identification of contaminants by the use of infrared spectra.  

In a previous paper, the authors described the difficulty of searching samples not 

representative of the geographic regions and growing conditions represented in the 

library against the library with standard spectral search algorithms.  In that previous 

work, a novel voting scheme algorithm capable of overcoming the unreliability of 

standard algorithms was introduced.  The current work explores the use of partial least 

squares discriminant analysis (PLS-DA) for contaminant identification of non-

represented samples.  PLS-DA identified 80% of the test set samples compared to 60% 

for the previously described voting scheme algorithm.  PLS-DA was shown to be a good 

choice for classification of samples that have extremely similar spectra. 

 

Index Headings: Discriminant Analysis; Partial least squares; PLS-DA; cotton; 

contaminants; Spectral discrimination; Spectral library. 
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INTRODUCTION 

 During harvest, organic contaminants such as cotton leaf, stem, seed coat, and 

hull are harvested along with fibers from the cotton plant that are to be spun into yarn.  

In cotton research, there has been a large and sustained emphasis on the investigation of 

the effects of these contaminants on cotton quality and processing efficiency1-13.  These 

contaminants cause an increased number of yarn breakages during the spinning 

process6, and are also a cause of yarn imperfections4.  Since any factors that lower 

quality of the final product or decrease production efficiency negatively affect 

profitability of textile manufacturing, identification and removal of cotton contaminants 

is important.  A method to identify the debris present in cotton would allow for 

correlation of yarn quality and process efficiency to the types of contaminants present14.  

This information would allow production of yarn from plant harvest to completed 

product to be optimized for contaminant removal.  

 As contaminants travel from the fields to the processing facilities and as they 

travel through different stages of cotton processing, they break down in size.  While it is 

often possible to recognize the intact contaminants, the small pieces and contaminant 

powders that result from breakdown are difficult or impossible to distinguish visually.  

To solve this problem, the USDA created a mid-IR spectral library of cotton 

contaminants to identify contaminants from their infrared spectra.  Previous work has 

described the introduction and use of this spectral library14-16. 

 In a previous article, the authors described the difficulties associated with 

searching this library when the library is not sufficiently representative of the 
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geographic regions and growing seasons of the unknown samples to be identified15.  

Despite vector normalization, spectra of unknown samples from instruments different 

from the one used to obtain the library can also be a challenge for a non-representative 

library.  This previous work examined the performance of several standard library 

search algorithms and found that when the library is not sufficiently representative the 

performance of the standard algorithms varied unpredictably by sample type.  That 

paper reported the development of a novel library searching method based on a voting 

scheme algorithm that solved the problem of not being able to choose a best standard 

search algorithm a priori.   

 The purpose of the current work is to explore qualitative identification of cotton 

contaminants with PLS-DA.  This work demonstrates that PLS-DA performs better as 

an identification method for cotton contaminants than the previously described voting 

scheme algorithm15. 

MATERIALS AND METHODS 

Several sets of spectra used in the creation and testing of two PLS-DA models are 

described below.  The models will be referred to as model A and model B.  The sets of 

spectra are summarized in Table 3.1 for the reader’s convenience. 

Model A Calibration Set.  A set of 354 spectra from a USDA cotton contaminant 

spectral library16 was selected for a PLS-DA calibration set.  The set contained 87 cotton 

leaf spectra, 73 cotton stem spectra, 48 cotton seed coat spectra, and 146 cotton hull 

spectra.  The spectra represented intact plant parts.  The original library spectra were 

obtained with the use of a Nicolet Magna 850 FT-IR spectrometer (Thermo Fisher 



 

86

Table 3.1: Summary of spectra sets used in experiments. 

Set Name 

Number 

of Spectra Description 

Model A Calibration Set 354 Spectra from the USDA Cotton Contaminant Library 

Augmentation Set 75 Spectra of samples from different growing locations and seasons than 

represented in the USDA Cotton Contaminant Library 

Model B Calibration Set 330 Spectra chosen from the model A calibration set combined with spectra chosen 

from the augmentation set 

Model A Test Set 20 Spectra chosen from the augmentation set 

Model B Test Set 12 Spectra chosen from the model A test set and the model A calibration set 
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Scientific, Waltham, MA) and a DuraScope attenuated total reflection (ATR) sampling 

accessory (Smiths Detection, Danbury, CT).  The spectrometer contained a ceramic 

source, a KBr beamsplitter, and a L-Alanine doped DGTS detector.  The ATR accessory 

contained a diamond coated ZnSe internal reflection element (IRE).  Spectra were 

measured over the range of 4000 to 650 cm-1 at 8 cm-1 resolution, with 128 

interferograms co-added.  Interferograms were processed with Happ-Genzel 

apodization.  Spectra were collected with the use of Omnic E.S.P. 5.2 software (Thermo 

Fisher Scientific, Waltham, MA).  All spectra were first converted to GRAMS format 

(Thermo Fisher Scientific, Waltham, MA) and then imported into MATLAB (The Math 

Works, Natick, MA). 

 Augmentation Set.  A set of 75 spectra of samples from several geographic 

locations and seasons different from the samples in the USDA library were measured 

with the use of a Varian Excalibur Series FTS-4000 FT-IR spectrometer (Varian, Palo 

Alto, CA) and three different ATR sampling accessories.  The set contained hull, leaf, 

seed coat, and stem samples, both intact and powdered, from 9 different growing 

locations.  The spectrometer contained a ceramic source, a KBr beamsplitter, and a L-

Alanine doped DGTS detector.  The ATR accessories were the Specac Golden Gate 

(Specac, Woodstock, GA) with a diamond coated ZnSe IRE and the Harrick SplitPea 

and Seagull (Harrick Scientific, Pleasantville, NY) with Si and ZnSe IREs, respectively.  

Spectra were measured over the range of 4000 to 400 cm-1 at 4 cm-1 resolution, with 256 

interferograms co-added.  Interferograms were processed with Happ-Genzel 

apodization to be consistent.  Each spectrum in the test set was the average of three 
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replicate spectra.  Spectra were collected with the use of Varian Resolutions Pro 

4.0.5.009 and WinIR Pro 3.2 software (Varian, Palo Alto, CA).  All spectra were first 

converted to GRAMS format and then imported into MATLAB.  

Model A Test Set.  A set of 20 spectra was randomly chosen from the 

augmentation set to serve as a test set for the PLS-DA model created from the model A 

calibration set.  This test set included five spectra each of leaf, stem, seed coat, and hull 

samples.   

 Model B Calibration Set.  A set of 330 spectra was chosen from the model A 

calibration set and the augmentation set of spectra to create a PLS-DA model 

representative of both the model A calibration set and the augmentation set of spectra. 

 Model B Test Set.  A set of 12 spectra was drawn from the model A calibration 

set and the augmentation set to test the PLS-DA model formed from the Model B 

calibration set.  This test set included four spectra from the Model A test set that were 

not identified by Model A, four spectra from the Model A test set that were identified 

by Model A, and four spectra from the Model A calibration set. 

 Spectra Pretreatment.  Before spectra were used in any of the experiments, they 

were truncated to include only the regions from 3700 to 2700 cm-1 and 1800 to 650 cm-1 

for consistency with earlier work15.  All spectra were corrected to give each spectrum a 

common minimum intensity value.  Spectra were vector normalized to unit magnitude, 

and all spectra were mean centered. 

 PLS-DA Model A.  A PLS-DA model was constructed from the model A 

calibration set to predict the class membership of the model A test set samples from one 
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of four classes: leaf, stem, seed coat, and hull.  A PLS-2 model was created, so that the 

PLS regression included all four class membership response variables.  Plots of the 

magnitudes of regression vectors versus root mean squared error of calibration 

(RMSEC) and plots of the A-values versus RMSEC were used to determine the number 

of significant latent variables (LVs).  These methods of choosing the significant number 

of LVs and the definitions of RMSEC and A-values have been described by Green and 

Kalivas17.  A model with 21 LVs was chosen.  All models presented in this work were 

built with the use of MATLAB 7 and PLS_toolbox 3.5 (Eigenvector Research, 

Wenatchee, WA). 

   PLS-DA Model B.  A PLS-DA model was constructed from the model B 

calibration set to predict the group membership of the initial test set samples in one of 

four classes: leaf, stem, seed coat, and hull.  A PLS-1 model was created, so that a 

separate PLS-DA model was made for each of the four group membership variables. 

The same methods of choosing significant LVs as described for model A was used for 

model B.  The number of LVs chosen for the leaf, stem, seed coat, and hull models were 

15, 25, 8, and 22, respectively. 

RESULTS AND DISCUSSION 

PLS-DA is a method of classification that relies on PLS regression.  Wise et al.18 

have given a thorough description of the PLS-DA method.  The calibration spectra 

make up the X block of data, and vectors of dummy variables for each class in the data 

make up the Y block.  For this work, the Y block contained four column vectors: one 

each for leaf, stem, seed coat, and hull.    For example if a calibration sample is a leaf, the 
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component of the leaf column vector for the corresponding spectrum will contain a 1.  If 

the sample is not a leaf, the leaf column vector will contain a 0.  These dummy variables 

are regressed onto the spectra using PLS.  Predicted values are then obtained for the 

calibration set and a probabilistic threshold value between 0 and 1 is determined that 

will minimize the rate of misclassifications for the calibration set.  Predictions can then 

be made for unknown samples, and class membership decided by determining if the 

predicted value of the dummy variable is above or below the threshold value. 

 Barker and Rayens19 have reported the advantages of PLS-DA compared to 

classification methods that rely upon principal component analysis (PCA).  The data 

reduction in PLS-DA is determined by the largest directions of between class variance 

in the data space, but in PCA the reduction is determined by the largest directions of 

total variance.  In other words, the PLS-DA algorithm uses the directions in the data 

space that show the greatest separation among classes.  The directions showing greatest 

separation among classes will not always be the directions showing the largest total 

variance in the data space, and total variance is what guides the PCA method.  Since the 

total variance is the sum of the between class and within class variance, PCA will 

perform well for classification tasks where the between class variance is much larger 

than the within class variance, but PCA will not yield good classification for situations 

where the within class variance is significant compared to the between class variance.  

Figure 3.1 shows the spectra of samples of the four different classes for which we were 

interested in classifying our samples into.  Figure 3.2 shows the spectra of four different 

cotton leaves.  These figures demonstrate that for these cotton plant parts the within 
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Figure 3.1: Spectra of leaf, stem, seed coat, and hull from the cotton plant.  The spectra 

have been offset for clarity. 
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Figure 3.2: Spectra of four different cotton leaves. 
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class spectral variance is large compared to the between class variance, so PLS-DA is a 

wise choice for the types of samples that were considered in this work. 

In the first experiment that was performed, a set of calibration spectra (model A 

calibration set) taken from the USDA library was used to create a single PLS-DA model 

(model A) that included all of the response variables.  The response variables were 

dummy variables corresponding to class membership in the leaf, stem, seed coat, and 

hull classes.  When the plots of the magnitude of the regression vectors versus RMSEC 

and the A-Values versus RMSEC (see Methods and Materials) were examined to 

determine the optimum number of LVs to use, the plots for leaf, stem, seed coat, and 

hull indicated 21 LVs should be used.  The performance of model A was tested by 

examining the accuracy of class membership predictions made for a set of 20 test 

spectra (model A test set) representative of samples from different growing locations 

and seasons than those spectra in the model A calibration set.  Model A was created to 

test the ability of PLS-DA to predict sample class when the test set was not 

representative of the calibration set.  Figure 3.3 shows the results of the analysis.  One 

can see from the figure that model A unambiguously identified 16 of the 20 samples 

from the model A test set.  In the previous work15, we reported that a group voting 

scheme algorithm identified 12 of 20 test samples.  With PLS-DA instead of the voting 

scheme algorithm, a 20% increase in the identification rate was seen.  The test set in 

both cases was the model A test set.   

 The second experiment was designed to test the performance of PLS-DA when 

the calibration set used to build the model (model B) was representative of the test set  
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Figure 3.3: The columns of this figure represent the model A test set samples. The rows 

correspond to the group the PLS-DA algorithm indicated the test sample belonged to.  

The patterns representing true positive, false positive, and false negative identifications 

are shown in the legend.  White boxes represent true negative identifications. 
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being used (model B test set).  This situation differed from the first experiment because 

the model A test set was not representative of the model A calibration set.  To form the 

model B calibration set, a set of 75 spectra (augmentation set) from which the model A 

test set was drawn were combined with the model A calibration set.  These 75 spectra 

were representative of samples from different geographic regions and growing seasons 

from those represented by the model A calibration set.  Of the 429 combined spectra, 

330 spectra were chosen for the model B calibration set.  Of the 99 remaining spectra, 12 

spectra were chosen for the model B test set.  This combined test set included 4 spectra 

from the model A test set that were correctly identified by model A, 4 spectra from the 

model A test set that were not identified by model A, and 4 spectra from the model A 

calibration.  The four spectra from the model A test set that were identified correctly by 

model A were included to test for the reliability of the PLS-DA method.  The four 

spectra from the model A test set that were not identified correctly by model A were 

included to test for prediction improvements with adding representative spectra to the 

model.  The four spectra from the model A calibration set were added to determine the 

ability of model B to identify samples from the original USDA library.  Of the 12 

members of the model B test set, there were three spectra representing each of the 

following classes: leaf, stem, seed coat, and hull.  The remaining 87 of the 429 spectra 

combined from the augmentation set and the model A test set were discarded to ensure 

that the model B test set was independent of the model B calibration set: These 87 

spectra were the spectra of plant parts from the same plants that were represented in 

the model B test set. 
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When the plots of magnitudes of regression vectors and A-values versus RMSEC 

were studied for PLS-2 models, it was discovered that the optimum number of LVs 

suggested for each response category differed greatly.  Because of this result, it was 

decided that model B would contain a PLS model for each response variable.  The 

number of LVs chosen for these models was 15, 25, 8, and 22 for the leaf, stem, seed 

coat, and hull variables, respectively.  The lower number of LVs chosen for the leaf and 

seed coat classes indicates that these classes are easier to distinguish from the other 

sample classes than the stem and hull classes are.  These results generally agree with the 

results reported in the previous library search paper15.  

Figure 3.4 shows the favorable results of the predictions made by model B.  One 

should first note that the four spectra identified correctly by model A were also 

identified correctly by model B.  This fact demonstrates that broadening the range of 

samples represented in the calibration set did not degrade the performance of PLS-DA.  

Three of the four spectra that were not identified correctly by model A were identified 

correctly by model B.  The sample leaf 5 which was incorrectly identified by both model 

A and model B was on the threshold of identification by model B, so even though it was 

not clearly identified in model B, it was closer to being identified as leaf by model B 

than by model A.  The fact that the spectra that were not identified correctly by model A 

were identified correctly by model B demonstrates the importance of using a calibration 

set as representative of unknown samples as possible.  For the case of cotton 

contaminants, these results illustrate that it is best to continue updating the library with 

samples from different geographic locations and growing conditions as the samples to
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Figure 3.4: This figure representing the results of the second experiment should be read 

the same way as Figure 3.1.  Samples leaf 5, stem 1, seed coat 1, and hull 2 were samples 

from the model A test set that were not identified correctly by model A.  Samples leaf 4, 

stem 3, seed coat 4, and hull 5 were samples from the model A test set that were 

identified correctly by model A.  The remaining samples were taken from the model A 

calibration set. 
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be identified change.  Only two of the four model B test set spectra obtained from the 

model A calibration set were identified correctly.  This was probably due to the fact that 

once these two spectra and their closely related spectra were removed from the 429 pool 

of spectra, the remaining calibration spectra were not representative of these two 

spectra.  If a larger pool of spectra had been available to choose the model B calibration 

and test sets from, these unidentified test set spectra may have been identified.  Overall, 

the results from model B demonstrate that improvement in PLS-DA results when 

spectra representative of the same growing regions, conditions, and instruments as 

those used in the test set are present in the library. 

CONCLUSION 

The use of PLS-DA as a classification technique for cotton contaminants has been 

shown to be an effective method for contaminant identification.  The results of the 

predictions from model A revealed that when the library was not representative of the 

test set samples, PLS-DA achieved an 80% unambiguous identification rate.  This rate is 

20% greater than the group voting scheme algorithm introduced in a previous paper15.  

The results from model B showed that further improvements in the performance of 

PLS-DA models for cotton contaminant identification can be obtained with 

representative calibration sets.  In short, when a representative calibration set is 

unavailable, PLS-DA more accurately identifies cotton contaminants than library 

searching methods, but if the calibration set can be updated to include spectra more 

representative of the unknown spectra to be identified, the accuracy of PLS-DA 
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predictions will further increase.  In all, PLS-DA was shown to be a good choice for 

classification of unknown cotton contaminants. 
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ABSTRACT 

During the harvest and ginning processes, cotton fibers are contaminated with a 

variety of plant debris from the cotton plants themselves.  Cotton leaves, stems, seeds, 

and hulls are the major constituents of this debris.  Because debris leads to increased 

numbers of yarn breakages during spinning and imperfections in the finished yarn, 

debris has serious negative effects on the profit margin of the cotton industry.  These 

problems point to the importance of cleaning debris from the cotton before the cotton is 

spun into yarn.  Much of this cleaning takes place in different processes at the gin 

location.  The operators manually adjust the cleaning machinery responsible for 

removing different types of debris to optimize debris removal for different batches of 

cotton containing different debris compositions.  Real time feedback on the effects 

machinery adjustments have on the composition of the debris being removed at a 

particular point in the process would enable faster and better optimization of the 

cleaning processes.  This work focused on creating partial least squares (PLS) regression 

models for quantitative analysis of simulated debris mixtures and on creating an 

iterative error correction algorithm to improve the prediction accuracy of the models’ 

predictions. 

 

Keywords: Quantitative analysis; FT-IR; ATR; Chemometrics; Cotton; Contaminants, 

Prediction error. 
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INTRODUCTION 

  Historically, contamination of cotton by plant debris has been an important and 

difficult problem for the cotton industry, and this problem is one that continues 

today(1-17).  Contamination takes place when materials in the growing fields other than 

the desired cotton fibers are harvested along with the fibers.  The greatest source of 

these contaminants is the cotton plants themselves.  The major parts of the plants that 

are harvested along with the fibers are the leaves, stems, hulls, and seeds.  Although 

steps are taken to reduce the amounts of these unwanted plant parts during harvest, 

extraction of debris from the cotton is still an important part of processing that occurs at 

the cotton gin.   

  Numerous papers have described the problems caused by debris remaining in 

cotton during spinning of the cotton into yarn(2-6, 13).  One important impact of debris 

is increases in the number of yarn breakages during spinning(6).  As the number of 

breakages increases, the time and, thus, the cost required to produce yarn increase.  

Debris also causes imperfections in yarn(4).  As the number of imperfections in yarn 

increases, the value of the yarn decreases.  Because of these problems, cotton 

contamination decreases the profit margin of the cotton industry.  The detriments of 

cotton contamination reveal the need for cotton to undergo cleaning during processing 

at the gin location. 

  During processing, different types of debris are removed at different times(2-4).  

Currently, the gin operators must manually make adjustments to much of the cleaning 

machinery to ensure efficient operation and cleaning.  Adjustments are necessary 
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because as the composition of the plant debris in the cotton changes between different 

batches the machinery must be optimized to operate efficiently under different 

conditions.  As with any manufacturing process, faster processing times mean more 

profit if a faster production rate can be achieved without sacrificing the quality of the 

product being produced, but the time required to adjust the machinery for optimum 

operation is limited by the difficulty of identifying the types and amounts of debris 

present in the cotton.  When debris is intact and sufficiently large, it may be identified 

visually, but from the time the debris leaves the field with the cotton, the debris begins 

to break down in size.  This breakdown continues as the debris travels to the gin and 

the cotton begins to undergo processing(4, 8).  Much of the debris eventually breaks 

down into powder sized particles making visual identification impossible.   

 Recent work has shown that mid-IR spectrometry can be used to successfully 

distinguish among different types of plant debris found in cotton(8, 9, 18).  Figure 4.1 

shows the spectra of cotton leaf, stem, seed coat, and hull.  One can see that the spectra 

of these cellulose based plant parts are very similar.  Figure 4.2 shows an example of the 

variation that can occur within a single class of these natural products.  These figures 

demonstrate that the within group variation is significant compared to the between 

group variation.  One can see that to visually discriminate among spectra from these 

different classes is not a trivial task; however, these previous reports have shown that 

mid-IR spectrometry combined with the appropriate chemometric methods has the 

ability to distinguish among these different types of debris.  One of the important 

advantages of using spectroscopy for this application is its speed and ease of sampling.  
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Figure 4.1: Spectra of leaf, stem, seed coat, and hull from the cotton plant.  The spectra 

have been offset for clarity. 
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Figure 4.2: Spectra of four different cotton leaves. 
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These advantages mean that if quantitative regression models could be developed, 

process efficiency monitoring could be incorporated on-line or at-line during the 

cleaning processes, providing real or near real-time feedback to operators. 

 The successes of previous studies to distinguish qualitatively among the spectra 

of the different types of plant debris and the potential gain to the industry if 

quantitative analysis of debris could be achieved, led us to investigate the use of mid-IR 

spectra to develop chemometric regression models for quantitative analysis.  Our work 

focused on the creation of PLS regression models to predict the percent of leaf, stem, 

seed coat, and hull present in simulated debris powders.  Additionally, an iterative 

error redistribution algorithm that has potential applications to other quantitative 

analysis problems was developed to improve the accuracy of the predictions obtained 

from the models. 

MATERIALS AND METHODS 

 Debris Mixture Samples.  Samples of powdered debris from three different 

growing locations were obtained from the USDA-ARS Cotton Quality Research 

Laboratory (Clemson, SC).  The locations will be referred to as A, B, and C.  For each 

location, we received several grams of powder of cotton leaves, stems, seed coats, and 

hulls that had been harvested from cotton plants and then ground to a size of 80 mesh.  

Thirty mixtures of these four types of debris powders were prepared for each growing 

location by accurate weighing of aliquots of each type of powder.  The total mass for 

each mixture was 0.5000 g.  The samples’ masses were measured with a Fisher A-200DS 
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analytical balance (Fisher Scientific, Hampton, NH).  The powders were measured onto 

clean watch glasses, and the samples were mixed thoroughly with the use of a spatula.         

 Calibration and Test Spectra Sets.  Spectra of the 30 samples from each growing 

location were measured with a Varian Excalibur Series FTS-4000 FT-IR spectrometer 

(Varian, Palo Alto, CA) and a Specac Golden Gate attenuated total reflection (ATR) 

sampling accessory (Specac, Woodstock, GA) with a diamond coated ZeSe Internal 

Reflection Element (IRE).  The spectrometer contained a ceramic source, a KBr 

beamsplitter, and an L-Alanine-doped DGTS detector.  Spectra were measured over the 

range of 3700 to 650 cm-1 at 4 cm-1 resolution, with 256 interferograms co-added.  

Interferograms were processed with Norton-Beer Medium apodization before Fourier 

transformation.  Each spectrum used in the experiments was the average of three 

sample replicate spectra.  Spectra were collected with the use of Varian Resolutions Pro 

4.0.5.009 software (Varian, Palo Alto, CA).  All spectra were first imported into GRAMS 

(Thermo Fisher Scientific, Waltham, MA) and then imported into MATLAB (The 

MathWorks, Natick, MA).  Twenty spectra that represented each growing location were 

used for calibration sets, and the remaining 10 spectra from each growing location were 

used for test sets. 

 Regression Models.  The calibration sets were used to create PLS models to predict 

the percent cotton leaf, stem, seed coat, and hull in each test sample.  Both PLS-1 and 

PLS-2 models were investigated.  In PLS-1, a separate model is built for each variable to 

be predicted.  In PLS-2, a single model is developed to predict all of the variables of 

interest.  All of the various permutations of mean centering and autoscaling the spectra 
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and composition data of the calibration sets were investigated.  In this paper, 

autoscaling is defined as transforming the values of a variable to have mean equal to 0 

and variance equal to 1.  The PLS_Toolbox 3.5 software (Eigenvector Research, 

Wenatchee, WA) and MATLAB 7 software (The MathWorks, Natick, MA) were used to 

build and test the calibration models.  The appropriate number of latent variables (LVs) 

for the models was chosen based on the root mean squared error of cross validation 

(RMSECV) obtained from random subset cross validation (4 subsets, 20 iterations).  

Equation 1 shows the formula for RMSECV. 
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In this equation, iŷ  represents the predicted value for the ith sample left out of the 

calibration set for the cross validation, iy  represents the true value of the ith sample, and 

n is the number of samples in the calibration set.  The number of LVs used in the models 

ranged from 2 to 11. 

 Iterative Error Correction Algorithm.  An algorithm was developed to redistribute 

the error in the prediction values due to negative predictions and sum of percent 

compositions over 100% for individual samples.  The algorithm was written in 

MATLAB.  First, negative predictions for each sample were set to 0.  A value of 100 was 

then subtracted from the new sum of the predictions for the percent leaf, stem, seed 

coat, and hull predicted for each sample.  Let this difference be denoted by d. If d was 
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negative, the absolute value of d was divided proportionally into four parts, and the 

parts were added to the four predictions for each sample.  If d was positive, d was 

divided proportionally into four parts, and the parts were subtracted from the four 

predictions for each sample.  This procedure was repeated until the sum of the 

predictions for a given sample was within ± 0.005 of 100% percent.  The number of 

iterations required for convergence ranged from 6 to 27.  Only samples with negative 

predictions were corrected. 

 Three methods for proportionally dividing the error, d, were examined.  The first 

method used the ratios of the individual squared RMSECV values for each response 

variable to the sum of the squared RMSECV values for all four response variables to 

estimate the prediction error.  The second method simply assumed that the proportion 

of prediction error for each variable was equal, i.e. 25% per variable.  The third method 

determined the mean positive and negative differences between the predicted values 

and the true values for each response variable for all of the samples in a calibration set.  

One set of proportions was obtained by dividing the mean positive difference by the 

sum of the mean positive differences for all four variables.  The other set of proportions 

was obtained by dividing the mean negative difference by the sum of the mean negative 

differences for all four variables.  If d was positive, the proportions from the positive 

differences were used to divide the error, and if d was negative, the proportions from 

the negative differences were used. 
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RESULTS AND DISCUSSION 

 Since preprocessing data can have significant effects on the accuracy of predictions 

obtained from a regression model, we compared different methods of preprocessing the 

X and Y block data.  The X block refers to the matrix of spectra, and the Y block refers 

to the matrix of percent leaf, stem, seed coat, and hull response variables for PLS-2 

models and vectors for each of these variables individually for the PLS-1 models.  Both 

PLS-1 and PLS-2 models were explored because they yield different results, and it was 

not known a priori which type of regression would yield the best results for the system 

under consideration.  In general when PLS-2 is used, predictions for all variables are 

based on the same number of LVs because the number of LVs that yield the best 

predictions for one variable is equal or similar to the number of LVs that yield the best 

predictions for the other variables when judged by RMSECV.  In this work, we found 

from RMSECV versus LV number plots that this was not the case with the calibration 

sets.  Because of this fact, we experimented with making predictions based on the 

optimum number of LVs for each response variable instead of just compromising for 

the PLS-2 model that used the same number of LVs to predict all four response 

variables. 

 Initially, 11 separate models were created for each growing location.  Four PLS-1 

models and seven PLS-2 models were necessary to test the permutations of mean 

centering and autoscaling the X and Y block data.  Table 4.1 records the data 

preprocessing techniques applied for the eleven models considered.  More 

permutations are possible for the PLS-2 models than the PLS-1 models since the PLS-1
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Table 4.1: Describes the preprocessing conditions and regression type 

used for each of the eleven conditions sets used in the experiments. 

Model Conditions # Regression Type Preprocessing 

1 PLS-2 None 
2 PLS-1 None 
3 PLS-2 X-mncna, Y-mncn 
4 PLS-1 X-mncn, Y-mncn 
5 PLS-2 X-autob, Y-auto 
6 PLS-1 X-auto, Y-auto 
7 PLS-2 X-auto, Y-mncn 
8 PLS-2 X-mncn, Y-auto 
9 PLS-2 X-none, Y-mncn 
10 PLS-1 X-none, Y-mncn 
11 PLS-2 X-none, Y-auto 

amean centered 
bautoscaled
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models only look at the variables in the Y block one column at a time.  If all seven 

preprocessing permutations applied to the PLS-2 models were applied to the PLS-1 

models, three of those seven PLS-1 models would provide identical results to one of the 

remaining four models; thus, only the four unique PLS-1 models were included.  Three 

of the seven models would provide redundant information because when the Y block is 

only comprised of one variable autoscaling the Y block has no effect on the model.  

 To determine the best method for preprocessing these data, the regression 

models for each of the three calibration sets were ordered from lowest total RMSECV to 

highest.  The total RMSECV is the square root of the sum of the squared RMSECV 

values for the percent leaf, stem, seed coat, and hull variables in each model.  Table 4.2 

shows the order obtained.  From these results, it can be seen that model 9 most 

consistently yielded the best results when minimization of RMSECV was the criterion.  

The regression type for model 9 was PLS-2 with no X block pretreatment and the Y 

block mean centered.  These results reveal that in this instance a value of zero for the 

response variables is significant to the system, which is a logical result.  Table 4.3 

confirms the results from the calibration sets for the test sets.  Table 4.3 orders the root 

mean squared error prediction (RMSEP) values for all of the model conditions for each 

test set from lowest RMSEP to highest.  The equation for RMSEP can be considered to 

be the same as Eq. 1 except that predictions are for the test set instead of the excluded 

samples from the cross validation, and n is the number of samples in the test set.  The 

test set data confirm that model 9 yielded the best prediction results most consistently.  
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Table 4.2: The model conditions numbers ranked from lowest to highest 

RMSECV values for the three calibrations sets A, B, and C. 

 Rank 

Set 1 2 3 4 5 6 7 8 9 10 11 

A 10 9 11 4 2 8 3 1 6 7 5 
B 9 10 11 2 4 5 6 7 8 1 3 
C 1 9 11 10 2 4 3 8 6 5 7 
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Table 4.3: The model conditions numbers ranked from lowest to highest RMSEP 

values for the three calibrations sets A, B, and C. 

 Rank 

Set 1 2 3 4 5 6 7 8 9 10 11 

A 8 3 9 6 4 11 10 7 5 2 1 
B 10 9 2 11 6 3 4 8 7 5 1 
C 11 9 3 8 1 10 2 4 6 7 5 
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 Since the test set was not used to create the model, one expects the accuracy of the 

predictions to be a closer estimate to the accuracy of the model in practice than the 

results obtained from cross validation. 

 When one examines the predictions generated by using model 9, one finds that 

the models provide for quantitative prediction of the composition of the debris 

mixtures.  Figure 4.3 shows the number of predictions from each model that lie within 

±10 percentage points of their true values for each test set.  There were four predictions  

made for each of 10 samples, so there was a total of 40 predictions made for each test 

set.  It is important to understand that although an error of ±10 percentage points would 

not be suitable for many quantitative applications, it is adequate for machinery 

operators to determine the effects of adjustments on the composition of debris.  One 

should note that ±10 percentage points is a sharp cutoff, and if one were to consider the 

predictions just beyond this limit, improvements in prediction accuracy as judged by 

the criterion shown in Fig. 4.3 would be observed.  Consider test set A as an example.  If 

the criterion was ±11 percentage points instead of ±10, the number of predictions falling 

within the desired range would increase by 3.  Also, in considering the extreme spectral 

similarity of cotton leaves, stems, seed coats, and hulls and the chemical complexity of 

these natural products, the performance of these regression models is impressive; 

however, improvements in prediction accuracy are always beneficial if costs are not 

significantly increased.  To this end, an iterative error correction algorithm was 

designed to improve prediction accuracy. 
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Figure 4.3: Number of predictions within ±10 percentage points for test sets A, B, and C.  

A total of 40 predictions were made for each test set. 
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 When the predictions for the test sets were examined, several predictions of negative 

percent compositions were observed for mixture components in samples where those 

components made up only a small percent of the mixture.  These observations were due 

to the inevitable prediction error present in the models, but physically, a component of 

a mixture cannot have a negative percent composition.  No component can make up 

less than 0% of the mixture.  It is also physically impossible for the sum of the percent 

compositions for all components to be greater than 100%.  Although it is possible for the 

sum of percent compositions to be less than 100%, if all of the mixture components have 

been specified the sum should be 100%.  Because of these facts, an iterative error 

correction algorithm was designed to take advantage of these boundary conditions.  

The algorithm was described earlier in the methods and materials section of this paper.   

 In developing the algorithm, we faced the question of how to redistribute the known 

error present in the predictions to improve the total prediction error.  Three different 

methods to redistribute the error proportionally were compared.  Since RMSECV is a 

measure of a model’s accuracy, one method was based on RMSECV.  Since measures of 

variance add linearly, the ratio of the squared values of RMSECV for a given response 

variable to the sum of the squared values for all response variables for a model’s 

calibration set were used.  These ratios were then used to redistribute the error in the 

predictions for the test set as described previously.  A second redistribution method 

served as a null case.  We tested the effect of simply splitting the error evenly among all 

four variables being predicted in the test set without regard to difference in magnitudes 
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of prediction error among different variables.  Since the data revealed that the RMSECV 

values for percent leaf, stem, seed coat, and hull were different in all of the models, it 

was expected that this method would perform worse than a method that took these 

differences into account.  The third method was a novel attempt at taking the sign of the 

prediction errors for individual variable’s predictions into account.  As described 

previously, this method was based on the average positive and negative prediction 

errors present in the predictions for the calibration set.  When the sum of the predictions 

for a test was less than 100%, the mean negative errors were used to redistribute the 

prediction error, and when the sum of the predictions for a test set was greater than 

100%, the mean positive errors were used to redistribute the prediction error.  This 

method was tested because of the possibility that mean negative prediction error could 

be larger than the mean positive prediction error or vice versa. 

 The results of these experiments are shown in Fig. 4.4.  The ordinate units are 

percent decrease in RMSEP after application of the redistribution algorithm with the 

use of the three different redistribution methods.  One notices some variation in the 

results.  For test sets A and C, error redistribution method 2 performed worst, but this 

method performed best for test set B.  This discrepancy can be explained by comparison 

of the RMSECV values for the calibration sets.  Table 4.4 shows the RMSECV for each 

variable in the three models.  One will notice that the RMSECV values for individual 

variables are most similar for calibration set B.  This fact means than the prediction error 

in this model is more evenly distributed than in the other models, explaining the better 

results for method 2 in set B.  In fact, if one considers the variance of the four RMSECV
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Figure 4.4: Comparison of the decrease in RMSEP seen for each of three test sets A, B, 

and C as a result of the three error redistribution methods used for the iterative error 

redistribution algorithm. 
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Table 4.4: RMSECV values and their variances for the three test sets. 

 Response Variables  

Set Leaf Stem Seed Coat Hull Variance 

A 15.00 18.68 8.89 4.54 29.7 
B 10.81 7.25 5.23 10.90 5.83 
C 8.80 8.90 18.01 14.66 15.4 
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values for each model, redistribution method 2 performs better as the variance 

decreases.  This result is expected since method 2 should perform best when the 

prediction errors for the different variables are equal.  The results for method 3 are 

similar to method 2 and vary for the different test sets used.  At least for this system, the 

concept behind method 3 does not appear to give reliable correction results.   

 Error redistribution method 1, which was based on the RMSECV values, gave the 

best results in terms of providing a dramatic and consistent decrease in the total RMSEP 

values for the tests sets of data.  Figure 4.4 shows that for all three test sets, method 1 

reduced the RMSEP values by over 10%, and these results were consistent for each test 

set considered.  By using this method, the errors due to predictions below 0% and sum 

of predictions over 100% were successfully redistributed.  The better performance of 

method 2 over method 1 for the second set of data was due to the fact that the types of 

prediction error being corrected for by this model are not the only model errors 

contributing to prediction error.  By random chance, method 2 was able to yield better 

results than method 1 but method 1 was still the most reliable method tested. 

 It should be emphasized that the iterative correction algorithm developed 

reduced the total prediction error, but did not always reduce the RMSEP values for 

every variable.  With the data under consideration, the algorithm sometimes slightly 

increased the prediction error for some variables, but the trade off in error reduction for 

other variables was valuable as evidenced by the reductions in total RMSEP values 

shown in Fig. 4.4.  Table 4.5 shows the RMSEP values for the second test set before and 

after the correction algorithm based on method 1 of error redistribution.  In this 
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Table 4.5: Example of RMSEP values for test set B before and after 

application of the iterative error redistribution algorithm. 

 RMSEP 

Response Variables Before Correction After Correction 

Leaf 8.40 8.50 
Stem 13.58 11.06 

Seed Coat 4.63 4.29 
Hull 7.96 7.56 

Total 18.4 16.4 
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example, the RMSEP value for percent leaf slightly increased, but the RMSEP values for 

the other variables all decreased.  Despite the leaf RMSEP increase, the fact remains that 

the total RMSEP was reduced by 11%. 

 In addition to examining the improvements in RMSEP because of the iterative 

error redistribution algorithm, the improvements in the number of predictions within 

±10 percentage points of their true values should also be considered.  Figure 4.5 shows 

the effects of the error redistribution algorithm with the use of redistribution method 1.  

In each case but the first, a dramatic improvement in the number of predictions within 

±10 percentage points is observed.  It should be reemphasized that the limit of ±10 

percentage points is a sharp cutoff, and if one were to consider the number of 

predictions just beyond the cutoff, the accuracy of the predictions as judged by the 

criterion in Fig. 4.5 would be further improved.  Consider test A again as an example.  If 

the criterion was ±11 percentage points instead of ±10, the number of predictions falling 

within the desired range would increase by 5 predictions after the corrections were 

made 

CONCLUSION 

Through the use of PLS regression models, we were able to predict successfully the 

composition of mixtures of cotton leaf, stem, seed coat, and hull powders.  We found 

that for this system, PLS-2 models performed best.  The accuracy of the models’ 

predictions were dramatically improved by the iterative error correction algorithm that 

was developed as evidenced by a greater than 10% improvement in RMSEP values for 

each test set considered.  The results of these experiments demonstrate that mid-IR
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Figure 4.5: Comparison of the number of predictions within ±10 percentage points for 

test sets A, B, and C before and after application of the iterative error redistribution 

algorithm with method 1 used to redistribute the error. 
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spectrometry combined with chemometric methods is a capable tool for the analysis of 

these very complex agricultural product mixtures, and it is expected that these methods 

would work well in other similarly complex agricultural, industrial, or biological 

applications dealing with complex chemical feed stocks or sample matrices where these 

methods have yet to be tried. 
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A MIXTURE GENERATOR ALGORITHM FOR GENERATION OF CALIBRATION 

MIXTURE STANDARDS FOR CLOSED MIXTURE SPACES1
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ABSTRACT 

When building a spectroscopic calibration model to predict the composition of 

mixtures, it is desirable to build the model with actual samples from the process being 

studied.  These samples are analyzed via a primary method and then a calibration 

based on some secondary method, such as spectrometry, can be built.  In some cases 

where mixtures are being analyzed, though, it is impossible or difficult to use actual 

samples from the process of interest, so simulated mixture samples must be used.  In 

other cases, many samples from the process are available, but because of the large 

number of samples to select from, a representative subset of the samples may be 

difficult to choose.  In these instances, it is important that the range of mixture samples 

cover the entire mixture space and that the number of mixture samples be large enough 

to provide adequate coverage of the mixture space.  For a two component mixture, this 

task is straightforward, but for three or more components the task of choosing which 

mixtures to make becomes increasingly difficult.  The practical difficulties lie in dealing 

with large numbers of mixtures and in the inability to visualize hyper-dimensional 

spaces.  A mixture generator algorithm capable of determining sets of mixtures that will 

evenly cover the closed mixture space for three or more component mixtures has been 

developed.  The algorithm receives as inputs a requested number of mixtures and the 

number of mixture components, and the algorithm outputs a representative set of 

mixtures that cover the concentration mixture space of interest. 
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Keywords: Experimental design, spectroscopic calibration, design of experiment, 

mixtures, quantitative analysis. 

INTRODUCTION 

 To create a successful spectroscopic calibration model for prediction of the 

concentrations of mixture components requires the consideration of many factors, but 

one of the first and most important issues to decide on is the set of standards that will 

be used to build the calibration model.  In many calibration problems that involve 

process monitoring, mixture samples from the actual process can be collected and 

analyzed to create a data set, but this strategy is not always possible.  Sometimes the 

mixture calibration standards must be constructed from the individual components of 

the mixtures to be predicted by the finished model.  There are also cases where many 

samples exist, but the choice of a representative subset of samples is not 

straightforward.  These types of experiments require careful consideration to be sure 

that the calibration sets are representative of the mixtures that the model will be asked 

to predict in the future.  A representative calibration set is one which contains samples 

that cover the full range of variation expected in future samples to be analyzed by the 

calibration model under construction.   

Kramer1 has discussed several important points related to the selection of 

representative spectral calibration sets.  First, the calibration set should cover the entire 

concentration ranges of interest for all analytes since extrapolation of the model beyond 

the concentration ranges represented in the calibration set generally does not yield 

accurate results, even for linear models.  Second, calibrations dealing with multi-
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component systems require calibration sets to be designed from a multi-dimensional 

standpoint.  Kramer points out that it is possible to span the entire concentration ranges 

of interest for all analytes without representing the entire region of interest if each 

sample contains only one analyte of interest and the concentration of each analyte is 

varied over the entire range of interest.  This statement means that multi-component 

mixtures that are spaced throughout the mixture space of interest should be used in a 

calibration set.  Finally, Kramer points out the importance of visualizing the multi-

component mixture space to determine if the calibration set representatively covers the 

mixture space of interest. 

 While the first and third points relate to spectral calibrations in general, the 

second point relates specifically to factorial experiments.  A factorial experiment is only 

concerned with the concentrations of individual analytes.  This type of system would be 

represented by four analytes dissolved in a solvent.  In this type of mixture, the 

concentrations of the analytes can vary independently.  In other words, this type of 

system allows for the concentration of a single analyte to be varied over the entire range 

of interest for that analyte while the concentrations of the other analytes are held at a 

constant level.  One should note that this is the type of experimental design that Kramer 

is warning against in his second point.  Instead, the analytes should be varied 

simultaneously to cover the entire mixture space in a multivariate fashion. 

 Many methods have been suggested to accomplish this task.  The primary 

method is the use of a factorial design or some variant of a factorial design.  The details 

of the factorial design have been covered in a number of references dealing with 
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statistics and experimental design1-6.  The two-level, two-factor, full factorial design 

provides a simple example of how the factorial design works.  This design can be used 

for an experiment involving mixtures that contain two analytes that both have specified 

upper and lower concentration limits.  For this case, the calibration set would include 

four mixtures.  Let Ui and Li represent the upper and lower concentration limits for the 

i
th component.  For the two-level case, the mixtures would include the two components 

at the following concentrations: U1 U2, U1 L2, L1U2, and L1 L2.  One can see how this 

mixture set could be augmented by adding more than two concentration levels of each 

component.  The factorial designs and their variants are well known and can be applied 

to a many different types of experiments. 

 Factorial designs are not directly applicable to closed mixture systems.  In a 

closed mixture system, one is concerned not with the concentrations of analytes, but 

instead, with how the proportions of the system’s components vary.  Examples of this 

type of system would include solid mixtures of powders or solvent systems used in 

methods such as HPLC.  In these closed systems if one proportion is varied, then the 

proportion of at least one other component in the system much change.   The 

proportions of different components cannot be varied independently as is the case for 

the analytes’ concentrations in a factorial experiment.  Cornell7 has written an excellent 

reference on experimental design for these closed mixture systems.  One of the standard 

experimental designs for doing these types of closed mixture experiments is called a 

simplex-lattice design.  In this design, the mixtures or design points to be used to build 

the calibration are equally spaced throughout the mixture space.  Figure 5.1 shows an 
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Figure 5.1: Ten point simplex-lattice experimental design for three components.  
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example of this type of design for a three component system.  The ith component is 

represented by qi. In this example, the mixture space is represented by a 2-regular 

simplex, i.e. a triangle.  Simplexes are a convenient geometrical means to represent 

closed mixture spaces.  An m component mixture space can be represented by a regular 

(m-1)-simplex.  A 2-simplex is a triangle, a 3-simplex is a tetrahedron, and an m-simplex 

is the m-dimensional equivalent of a tetrahedron.  It is important to realize the 

significance of this statement: m-component space can be represented in an (m-1)-

dimensional space because in a closed mixture there are only m-1 independent 

compositions that can be specified.  In these simplexes, the concentration axis for each 

component in the mixture runs from the center of the sides or faces of the simplex to the 

vertices.  Each axis in the simplex represents a different component of the system and 

has length equal to unity.  At the side or face, the axis represents 0% of the specified 

component in the mixture, and at the vertex, the axis represents the system being 

entirely composed of the specified component.  Figure 5.2 shows the location of the 

component axes for a three component system. 

 The simplex-lattice design can be changed to include more design points or 

adapted to higher component spaces or both, but a general algorithm to calculate the 

location of the lattice points for arbitrary numbers of mixtures and mixture components 

has not been reported.  For small numbers of mixtures and mixture components, the 

calculation of the simplex-lattice design points is trivial, but calculating the design 

points quickly becomes a daunting task when one desires higher numbers of design 

points or to work with more components.  In the past, simplex-lattice designs have been 
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Figure 5.2: Shows the location of the component axes for a three component system.
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limited to relatively small numbers of mixtures because of the types of calibration 

models the mixtures have been used to build.  Designs for closed mixture systems have 

primarily been used for the case of modeling systems where the component proportions 

are the predictor variables for a system property.  One example from Cornell7 is to 

create a model to predict the general acceptance by a sensory panel of mixed beverages 

that contain different proportions of three fruit juices.  The predictor variables for this 

experiment are the proportions of the juices.  This type of model is very different from a 

spectral calibration model.   

In a spectral calibration model, the factors of some dimensionally reduced form 

of the calibration set spectra of the mixtures will be used as the predictor variables.  This 

means that there will generally be many more predictor variables considered than when 

the component proportions are the response variables; consequently, the number of 

samples required will be greater.  Kramer1 has discussed that in practice the number of 

samples required for a successful spectral calibration model ranges from as few as three 

times to as many as ten times the number of components in the system.  When the 

variation present in the mixtures is extremely large, even more samples than ten times 

the number of system components may be required.  Due to the large number of 

samples that must be considered, the availability of an algorithm to produce mixture 

designs with equally spaced design points throughout mixture spaces would allow 

experimentalist to easily generate potential mixture sets to be used in spectral 

calibrations for closed mixture systems.  This work reports the development of such an 

algorithm.  The mixture generator algorithm developed produces a set of mixtures 
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evenly distributed over any m-dimensional mixture space with the number of mixtures 

in the set determined by the user’s input. 

MATERIALS AND METHODS 

 The algorithm was written in the MATLAB programming language and run and 

tested with the use of MATLAB 7 software (The MathWorks, Natick, MA).  The inputs 

for the algorithm are the number of components in the mixtures the user wants to create 

and the total number of mixtures to be created.  The algorithm outputs the mixture 

proportions for each component of a certain allowed number of mixtures.  The number 

of mixtures returned to the user is equal to the number of allowed mixtures closest to 

the number requested by the user.  Only a certain number of mixtures are allowed 

because of the pattern followed by the algorithm to choose the individual mixtures. 

 The steps of the algorithm are shown in the flowchart of Fig. 5.3.  The first step in 

the algorithm calculates the allowed number of mixtures closest to the number of 

mixtures requested by the user.  The pattern followed by the algorithm to arrive at the 

allowed number of mixtures is defined by two constraints: (1) every component of the 

mixture system when considered separately must have its minimum and maximum 

proportions equal to the minimum and maximum proportions, respectively, for every 

other component and (2) all mixtures must be positioned at equal intervals throughout 

the mixture space.  To calculate the allowed number of mixtures, the algorithm begins 

at the smallest number of mixtures allowed by constraints 1 and 2 above. The algorithm 

then iteratively calculates the next highest number of mixtures allowed until the 

number calculated exceeds the number requested.  Let the final number of mixtures 
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Figure 5.3: Algorithm flow chart.
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calculated be the nth number calculated.  The algorithm then determines if the requested 

number of mixtures is closer to the nth or n-1th number calculated.  Whichever allowed 

number is closer to the requested number becomes the number of mixtures that is 

returned to the user in the output.  The lowest number of mixtures that meets 

constraints 1 and 2 above is a single mixture.  In this case, no matter how many 

components are present, the mixture will be made up of an equal part mixture of all of 

the components.  Constraint 1 is met because the proportions of all components are 

equal in the single mixture and there are no other mixtures being considered.  

Constraint 2 is met because there are no other mixtures that this single mixture shares 

the mixture space with.  The next higher allowed number of mixtures depends on the 

number of components in the system. 

 Figure 5.4 demonstrates the pattern that must be followed to meet the two 

constraints described above.  In this figure, the index for the number of components is i.  

The total number of components is m.  The index for the proportion set is j and the total 

number of proportion sets is z.  A proportion set contains a set of mixtures that all have 

the same proportion of component 1.  Once the proportion of component 1 is specified, 

all of the possible combinations of proportions for components 2 through m-1 are 

considered to belong to the proportion set for that specified level of component 1.  The 

numbers inside the circles are the proportion levels and are represented by the index k.  

For instance, if one considers all the mixtures that fall under the z-1 proportion set, there 

are only two different concentrations of component 2.  These two levels are labeled 

proportion level 2 and 1.  Level 2 will be the higher proportion of component 2 and 
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Figure 5.4: Pattern followed by algorithm.
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level 1 the lower proportion of component 2.  Each unique pathway from the top of the 

figure to the m-1st row of the figure represents a completely specified mixture, i.e. once 

the proportions of the first m-1 components have been specified the proportion of the 

m
th component is known.  The circles in those unique pathways represent the 

proportions of the components that correspond to the row of the figure the circle is 

found.   

 To calculate the allowed numbers of mixtures, the algorithm begins by setting  

z = 1.  The algorithm then iteratively increases the value of z by 1 until the decision 

process for choosing the allowed number of mixtures closest to the requested number of 

mixtures is completed.  At each iteration, the algorithm uses the pattern shown in the 

figure to calculate the number of mixtures that would be generated at that value of z.  

The total number of mixtures at a particular value of z would be represented by the 

number of circles found in the m-1th row of the figure.   Because the algorithm uses the 

pattern described to calculate the allowed number of mixtures, once the allowed 

number of mixtures and the corresponding z value has been calculated, the algorithm 

has all the information needed to determine the number of proportion levels for each 

component within each proportion set.   

 From a programming sense, all of this is accomplished by implementing a series 

of for loops that count and record the number of proportion level divisions of each 

component.  In Fig. 5.4 these divisions are represented by the lines connecting the 

circles.  For each iteration, the program first counts and record the integers from 1 to z.  

These values can be thought of as making up a vector with z entries.  Let this vector be 
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a.  The program than writes a new vector based upon the entries of a.  For this new 

vector, the program reads the first entry of a, and then records the integers from 1 to the 

first entry of a in the new vector that can be called b.  The program then reads the 

second entry of a and records the integers from 1 to the second entry as the next entries 

in vector b.  This pattern continues until all of the entries from vector a have been read 

and the corresponding values in vector b recorded.  The program would create m-2 

vectors where m is the number of components in the system.  The program determines 

the z that corresponds to the allowed number of mixtures by summing the value of the 

entries of the m-2 vector for each z value that is tried:  This sum of the entries equals the 

total number of mixtures that will result for that particular z value.  For z = 3 and m = 4, 

the vectors generated would look as follows: a=(1,2,3) and b=(1,1,2,1,2,3).  The entries of 

these vectors can be used to generate the proportion level numbers shown inside the 

circles in Fig. 5.4.  The proportion level numbers for component 1 will always be a series 

of ones equal in number to the value of z.  The proportion levels for the second 

component can be found by reading the entries of vector a, and then counting and 

recording the integers from the first entry of A backwards to 1, the second entry of A 

backwards to 1, and so on until all of the entries of A have been examined.  The 

proportion levels for the remaining components up to component m-1 can be generated 

in this method.  .   

 The final step of the algorithm before the mixtures are output is to calculate the 

value of the proportion levels for each mixture in the mixture test set.  Equation 5.1 is 
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used to calculate the proportion values for the first m-1 mixture components for each 

individual mixture: 

 
imt

pb
P

ij

ijki
ijk −+

=  (5.1) 

In Eq. 5.1, Pijk is the proportion of component i in proportion set j in proportion level k.  

When i = 1, bi = j, but when i > 1, bi = k.  The proportion of mixture that has not been 

specified for the given mixture is pijk, the number of proportion levels in the jth 

proportion set for the ith component is tij, and m is again the total number of components 

in the mixture system.  When i = 1, tij is defined to be equal to z instead of 1.  The 

proportion values for the mth component are found by subtracting the sum of the 

proportions of the other m-1 components from 1.  Table 5.1 shows the formulae and the 

proportion values for the example of m = 3 and z = 3.  The numbers used in the formulae 

can be found by referring to Fig. 5.4. 

RESULTS AND DISCUSSION 

 Figure 5.5 shows a plot of the mixture set produced by the algorithm for a 3-

component mixture space when the input to the algorithm requested 15 mixtures.  One 

will immediately notice several facts.  First, this design provides the most even coverage 

of the interior of the space possible with 15 mixtures.  The second fact is one that has 

already been mentioned: the mixtures are only distributed over the interior of the space.  

This design is intentional and allows the experimentalist to include mixtures on the 

edges, vertices, and faces of the mixture space in several ways.  One method would be 

to augment this design by using surface mixtures that would create a complete simplex-
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Table 5.1: Example calculations from algorithm for three component system with z = 3. 
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Figure 5.5: Visual depiction of algorithm’s output for 15 mixtures of 3 components.
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lattice design, or one could augment the equally spaced internal points with a different 

surface design.  Algorithms for calculating surface design points have been reported in 

the literature7.  A third choice would be simply to use the design as is and include no 

surface points.  In any case, the algorithm provides the experimentalist with a 

preliminary set of evenly distributed internal mixtures to begin working with and the 

freedom to choose how to proceed from that point. 

 As stated in the introduction, Kramer’s third point concerning the choice of 

calibration sets was that one should be able to visualize the multi-component space to 

be able to see how the calibration set is distributed throughout that space.  Using the 

simplex representation of closed mixture spaces works very well for visualizing three 

and even four component systems, but beyond four components, visualization becomes 

difficult or impossible.  It is certainly impossible for humans to visualize more than 

three orthogonal dimensions directly, so the question of how to show that the algorithm 

works for m-1-dimensional space for any value of m arises.  While specific examples for 

three and four component systems can be shown, the inductive argument that follows 

demonstrates that the algorithm is effective for higher dimensional spaces.   

Earlier in this article the assertion was made that the pattern demonstrated in 

Fig. 5.4 along with Eq. 5.1 will yield an evenly distributed mixture set for m-component 

space for any value of m.  Figure 5.6 shows the specific pattern used for the case of 10 

mixtures in 4 components, and Fig. 5.7 shows the actual distribution of mixtures 

calculated by the algorithm.  In a geometric sense, the last row of circles in Fig. 5.6 can 
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Figure 5.6: Pattern followed by algorithm to produce 10 mixtures in 4 component space.
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Figure 5.7: Visual depiction of algorithm’s output for 10 mixtures of 4 components.
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be thought of as a 1-dimensional unfolded representation of the entire mixture set.  

Figure 5.8 demonstrates how this 1-dimensional representation of the mixture system 

can be folded up into the three dimensional or four component representation shown in 

Fig. 5.7.  In the second row of Fig. 5.8, one sees the circles folded up into a 2-

dimensional representation of the system, but these triangular shaped collections of 

circles are really just separate three component representations similar to the one seen 

in Fig. 5.5.  In this case though, each three component representation can be thought of 

as existing at a fixed value of the fourth component.  The different shading patterns of 

the circles represent the three different levels of the fourth component.  The third line of 

Fig. 5.8 demonstrates these three component representations folded up into a single 

four component representation: Each separate three component representation becomes 

a plane of mixtures within the four component space.  (This tetrahedral collection of 

design points is being viewed along the q4 axis.)  It is now easy to see what happens 

when the case of five components is considered.  The pattern that would be dictated for 

five components would take separate four component representations each at a 

different level of the fifth component and fold those separate representations up into 

another dimension to achieve the five component mixture set representation.  Although 

the pattern cannot be directly visualized, one can see how this reasoning can be 

extended to any arbitrary dimension.  In summary, the design for more complex 

systems can be obtained by building up the patterns known and demonstrated for three 

and four component systems.  
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Figure 5.8: Demonstrates how the pattern shown in Fig. 5.4 is an unfolded 

representation of the mixture sets. 
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In discussing this algorithm, it is important to address the concern of whether or 

not the mixtures generated will be linearly independent of one another.  Let us consider 

the simplest case of a three component system.  For three components, three mixtures at 

most can be linearly independent.  For convenience, consider the case of 10 mixtures 

evenly distributed in 3-component space.  The 2-simplex, a triangle, is used to represent 

a three component system, but only two orthogonal dimensions are required for the 

representation because the proportion of the third component in the closed system is 

known once the first two components have been specified.  This fact means that the 2-

simplex is really on a plane in 3-dimensional space.  Because of this, the question of 

whether or not all the mixtures will be linearly dependent arises.  Let each of the design 

points be represented by a vector with three entries equal to the three proportions of 

that mixture.  This example is shown visually in Fig. 5.9.  If there is only one linearly 

independent mixture, all of the vectors will lie along the same line.  If there are only two 

linearly independent mixtures, all of the vectors will lie in the same plane.  If there are 

three linearly independent mixtures, then three dimensions will be required to describe 

the set of vectors.  As can be seen in Fig. 5.9, one cannot draw a single line or plane that 

will contain all of the vectors; thus, the system is of full rank and there will be three 

linearly independent mixtures.  Although this example in itself is not a proof of the 

algorithm’s ability to produce a set of linearly independent mixtures, this example 

could be extended to an arbitrary dimensional space to show that the algorithm 

produces mixture sets with the highest degree of linear independence possible. 
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Figure 5.9: Vector plot demonstrating linear independence of data set.
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 Finally, the way in which the results of the algorithm will be used should be 

discussed.  Intuitively, if the mixtures representatively cover the sample space, one 

would expect the calibration model to do the best job possible of predicting the 

concentration of future mixtures.  This might not always be the case.  As Cornell7 has 

discussed, different mixtures (design points) included in the model will influence the 

calibration model to different extents.  The leverage of each mixture is one measure of 

this influence.  The least squares regression model is represented by Eq. 5.2: 

  εXβy +=  (5.2) 

In this equation, y is the vector that contains the response variable, X is the matrix of 

predictor variables, β is the vector of regression coefficients, and ε is the vector of 

residuals.  The value of the estimated regression vector, b̂ , is given by Eq. 5.3: 

  ( ) yXXXb T1Tˆ
−

=  (5.3) 

The model’s estimate of the response variable vector, ŷ , is given by Eq. 5.4: 

 HybXy == ˆˆ  (5.4) 

In Eq. 5.4, H is called the hat matrix and is defined by Eq. 5.5: 

 ( ) T1T XXXXH
−

=  (5.5) 

The leverage of a particular mixture on the model is measured by the corresponding 

diagonal entry of the hat matrix.  The error vector, e, contains the residuals for the 

predictions made by the model at the design points and is given by Eq. 5.6: 

 yHIyye )(ˆ −=−=  (5.6) 

This equation demonstrates that the matrix (XTX)-1 and, thus, the mixtures or design 
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points chosen are related to the error in the model.  Many optimization methods based 

on different goals for choosing the set of mixtures that will lead to the best (XTX)-1  

matrix and, thus, the best model with lowest errors have been reported6,7.  All of these 

optimization methods, though, require an initial pool of mixtures or design points from 

which to choose.  The point of this work is not to explore the implications of the 

algorithm’s results for all of these different optimization methods, but rather, the 

emphasis of this work is to provide the experimentalist with a tool to begin the initial 

experimental design process.  The experimentalist may use the mixtures that are 

generated by the algorithm in a number of ways to develop a calibration model.  The 

experimentalist may even choose subsets of the mixtures generated to find a 

representative set of mixtures for a constrained mixture space where all of the 

components cannot vary over the whole range from 0% to 100% of a mixture’s 

composition. 

CONCLUSION 

 To develop a successful spectral calibration model for a closed mixture system 

requires the consideration of many factors, but without first developing a representative 

calibration set, one cannot begin to create a successful calibration model.  Until now, no 

general algorithm to specifically generate mixtures evenly distributed over mixture 

spaces has been reported.  The mixture generator algorithm reported in this work fills 

this gap by allowing an experimentalist to generate a set of mixtures evenly distributed 

throughout a closed mixture space for any arbitrary number of components.  The 

algorithm allows the experimentalist unlimited choice in the number of mixtures to be 
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generated.  The algorithm also allows experimentalists the freedom to create a set of 

mixtures larger than required for the calibration set, so that subsets of the mixtures can 

be used for model validation and test sets.  The development of this algorithm gives 

experimentalists a foundation from which to build successful spectral calibration 

models. 
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ABSTRACT 

 While spectral library searching can be an invaluable tool for identification of 

unknowns, one must be aware of the complications that arise.  Spectral differences 

always exist between spectra measured with different spectrometers and by different 

methods, e.g. transmission, attenuated total reflection (ATR), and specular reflection.  

All of these spectral differences must be considered when one searches a spectrum 

against a library when that spectrum was measured with a different spectrometer, 

sampling technique, or both than the instruments or techniques used to build the 

library.  Because of differences in depth of penetration and dispersion effects, the 

differences between transmission and ATR spectra have received a great deal of 

attention, but the spectral differences encountered when comparing spectra measured 

on different ATR accessories has not received the same amount of attention.  ATR 

accessories come in many different designs and incorporate several different materials 

for their internal reflection elements (IREs).  In this study, spectra of a polyethylene 

terephthalate (PETE) film were measured with the use of five different ATR accessories 

that represented four different models of accessories from a total of three different 

manufacturers.  Each accessory was paired with a different spectrometer except that 

two of the four models were paired with one spectrometer.  The IREs represented were 

Zinc selenide (ZnSe), diamond, and Silicon (Si).  Spectral differences were observed and 

investigated, and the ability of depth of penetration correction and a proprietary 

correction for ATR dispersion effects to increase the similarity of the spectra was 

explored.  The identity of the accessories and manufacturers will remain anonymous. 
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INTRODUCTION 

 Searching infrared spectra of unknown samples against a spectral library can be 

a valuable tool to determine the identity of an unknown.  If spectra of the unknown or a 

similar substance are included in the library, the library search may give the researcher 

important information about the identity of the unknown, but if the spectra of the 

unknown in the library are not sufficiently similar to the spectrum of the unknown 

being searched against the library, the search may be useless or even give specious 

results.  In addition, the rate of misidentifications will increase as the similarity of the 

library spectra to one another increases.   

It is important to understand that differences in spectra of chemically identical 

substances can arise because many more factors than the chemical composition of a 

substance lead to the infrared spectrum of that substance.  Some of the most obvious 

differences will arise from the method of infrared spectrometry used.  For example, the 

spectra obtained by transmission versus ATR will be quite different1-6.  Even when 

using the same method to expose the sample to radiation, the response functions of 

different instruments will not be the same and will affect the spectra.  The light source, 

the detector, and every part between the light source and the detector influences the 

response function of the instrument2.  The instruments’ components will affect factors 

such as noise, spectral intensity, and alignment of the abscissa scale of the spectra.  

Changes in the spectral resolution, the type of appodization function used, and the 
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number of co-added scans will also produce differences in spectra.  In short, there is any 

number of factors that can lead to differences in two spectra of the same substance, and 

we have only listed a small number of those factors here.  Throughout the years, many 

of these issues have been explored, and the text by Griffiths and de Haseth2 covers 

many of these points in detail. 

 For spectral library searching, the spectral differences between transmission and 

ATR spectra have been discussed at length1-6.  In transmission, the infrared radiation 

from the source passes through the sample where some of the radiation is absorbed on 

its way to the detector.  In ATR, the sample absorbs infrared radiation by being in 

contact with an IRE that is in the beam of radiation from the source.  Because the 

infrared radiation enters the IRE above the critical angle of the higher refractive index 

IRE in contact with the lower refractive index sample, the radiation beam undergoes 

total internal reflection inside the IRE; however, the electric field of the radiation at the 

interface extends into the sample allowing absorption of the radiation to take place.  

This electric field at the interface is known as the evanescent wave.  In transmission and 

ATR, the absorbance of the sample is proportional to the sample thickness or depth of 

penetration of the evanescent wave, respectively.  The absorbance for transmission 

mode can be calculated by Eq. 6.1 and for ATR by Eq. 6.2: 

  abCA =  (6.1) 

  ( )
( )2cos

log
1

2
02

θη

η adE
eA

p
=  (6.2) 

In Eq. 6.1, a is the absorption coefficient, b is the pathlength, and C is the analyte 
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concentration.  In Eq. 6.2, η2 is the sample refractive index, η1 is the refractive index of 

the IRE, E0 is the electric field strength of the evanescent wave at the sample/IRE 

interface, θ is the angle of incidence, dp is the depth of penetration of the evanescent 

wave, and a is the linear absorption coefficient per unit thickness of sample. 

 Equation 6.2 is the key to understanding the differences between transmission 

and ATR spectra.  The implications of this equation for ATR spectra have recently been 

discussed by Nishikida and Kempfert4, and work done in this area by Nishikida and 

others has resulted in the deployment of the “Advanced ATR Correction”7.  Some of the 

theoretical basis for this correction is based upon work done by Plaskett and Schatz5 

and Schatz et al.6 in the 1960s.  From Eq. 6.2, one can see that similar to pathlength for 

transmission the absorbance of the sample in ATR is proportional to the depth of 

penetration of the evanescent wave.  In transmission, the pathlength or thickness of the 

sample is a constant value, but in ATR the depth of penetration varies with wavelength.  

Equation 6.3 shows the effective depth of penetration of the evanescent wave: 

  
( )12

2
1 /sin2 ηηθπη

λ

−

=pd     (6.3) 

Equations 6.2 and 6.3 together show that the first difference between transmission and 

ATR spectra is that at longer wavelengths or lower wavenumber the depth of 

penetration will be greater than at shorter wavelengths or higher wavenumber.  This 

change in depth of penetration means that absorption bands at the lower wavenumber 

end of the mid-IR spectrum will have larger absorbance values relative to the higher 

wavenumber end of the spectrum simply because of the increase in depth of 
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penetration at the lower wavenumber regions.  Comparing Eqs. 6.1 and 6.2 also reveals 

another difference between transmission and ATR spectra: The absorbance and depth of 

penetration in ATR are proportional to the refractive index of the sample material.  It is 

commonly known that sharp changes in refractive index of a material occur over 

absorption bands, where the refractive index is lower on the higher wavenumber side of 

the band and higher on the lower wavenumber side, known as anomalous dispersion, 

compared to the average refractive index in regions of the spectrum where no 

absorption occurs (normal dispersion).  Anomalous dispersion tends to cause bands in 

ATR spectra to be shifted to lower wavenumber values compared to transmission 

spectra.  Because the value of η1 in the ratio η2/η1 will be different for each IRE material 

of a different refractive index, this will lead to a relative change in depth of penetration 

for the different IREs.  This indicates that spectra measured with different IREs will 

experience different spectral shifts to lower wavenumber values, and the magnitude of 

the shift should decrease as the ratio η2/η1 decreases.  The average refractive index for 

most organic materials in the infrared region of the spectrum is approximately 1.52, so 

as the refractive index of the IRE material increases, the spectral shifts because of 

anomalous dispersion become smaller.  

 If ATR spectra are to be successfully compared to transmission spectra, the ATR 

spectra must be corrected for these spectral differences.  The differences caused by 

changes in depth of penetration due simply to changes in wavenumber can by corrected 

by multiplying the ATR spectrum by the wavenumber values2.  The spectral changes 

induced by anomalous dispersion require a more complex correction.  Some of the 
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details required for such a correction have been discussed in the literature5, 6.  The 

“Advanced ATR Correction” mentioned earlier is a proprietary correction algorithm for 

dealing with both the dependence of depth of penetration on frequency and the spectral 

effects induced by anomalous dispersion.  The need for these types of correction to be 

done before comparing ATR and transmission spectra has received a great deal of 

attention as evidenced by the resources cited above; however, a study that compares the 

spectra obtained from ATR accessories of different designs and IREs of different 

refractive indices has not been reported.  Spectra from differently designed ATR 

accessories and from ATR accessories with IREs of different refractive indices will yield 

different spectra as evidenced by the dependence on both depth of penetration (Eq. 6.3) 

and absorbance (Eq. 6.2) in ATR.  Since there are numerous ATR accessory designs 

available and ATR has become such a widely used application, it is important to 

consider the implications of these differences for searching a library of ATR spectra 

obtained with one ATR accessory against unknowns obtained with a different 

accessory.  Any differences in ATR spectra will be even more significant when a library 

is composed of extremely similar spectra.  The importance of unknown spectra being 

representative of calibration spectra for multivariate regressions based on ATR spectra 

must also be considered.  To address some of these concerns, this work compares 

spectra of the same PETE film measured with different spectrometers, ATR accessories, 

and IREs for non-corrected spectra, depth of penetration corrected spectra, and spectra 

corrected with the proprietary “Advanced ATR Correction”. 
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MATERIALS AND METHODS 

 Spectrometers and ATR Accessories.  Since the purpose of this study is to draw 

attention to the difficulties encountered in the comparison of FT-IR spectra measured 

with the use of different instruments and different types of ATR accessories and not to 

discuss the characteristics of specific models of instruments and ATR accessories, the 

manufacturers of the instruments and ATR accessories used in this study will remain 

anonymous.  Four different FT-IR spectrometers representing three different 

manufacturers, and five different ATR accessories representing four different models 

and three different manufacturers were used in this study.  Three of the accessories had 

diamond IREs, one accessory had a ZeSe IRE, and one accessory had a Si IRE.  All of the 

ATR accessories were of single reflection design and had nominal angle of incidence of 

45°.  Two of the three diamond IREs were the same model ATR accessory from the 

same manufacturer.  A set of codes will be used to identify the comparisons.  The three 

different ATR accessory manufactures are represented by the upper case letters A, B, 

and C.  The four spectrometers will be represented by the Roman numerals I, II, III, and 

IV.  Note that spectrometers II and III were made by the same manufacturer.  The five 

ATR accessories will be represented by the Arabic numbers 1, 2, 3, 4, and 5.  For 

example, the code IC1 would represent a particular spectrometer and ATR accessory.  

Note that accessories 4 and 5 are the two accessories of the same model.  Table 6.1 

shows the combinations of spectrometers and accessories for which data were collected. 
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Table 6.1: Experimental design. 
 

 Accessory Manufacturer 

Spectrometer A B C 

I 4(Si)  1(diamond) 

II  3(diamond)  

III 5(ZnSe)   

IV   2(diamond) 
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 Spectra.  A heated and pressed PETE film was used as the sample for all the 

spectra measured for this study.  For each spectrometer/ATR accessory combination, 

six replicate spectra of the film were measured and averaged to obtain the 

representative spectra for comparison.  Between each replicate measurement, the 

pressure applicator on the ATR accessory was loosened, the active area of the IRE was 

covered with a different area of the film, and the pressure applicator was reset.  The 

pressure applied for each ATR accessory was determined by increasing the applied 

pressure until no increases in absorbance could be seen in the real-time processed 

spectra, indicating the best possible contact between the IRE and the film.  The spectra 

were measured at 4 cm-1 resolution with 256 scans co-added.  The spectra were 

processed with the Happ-Genzel apodization function.  The spectra ranged from 4000 

to 650 cm-1.  All spectra were measured with DTGS detectors.   

 Spectral Comparison.  Three types of spectra were compared: the original 

averaged spectra, the averaged spectra corrected for differences in depth of penetration 

with the use of the ATR correction available in the Omnic 7.1a software (Thermo 

Scientific, Madison, WI), and the averaged spectra corrected for depth of penetration 

and dispersion effects with the use of the Advanced ATR Correction available in Omnic 

7.1a.  The wavenumber values of the data points at which the spectra were collected 

were set to a reference laser wavenumber of 15798.0 cm-1.  This wavenumber correction 

was accomplished through the normalize frequency command in Omnic 7.1a.  For 

visual comparison, the spectra were scale normalized so that the lowest point in each 

spectrum had an absorbance value of 0 and the highest point an absorbance value of 1.  
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In an additional study, the averaged spectra were compared after being subjected to 

manual spline baseline corrections using varying numbers of correction points.  These 

baseline corrected spectra underwent the “Advanced ATR Correction” in order to 

examine the effects of baseline correction on spectral similarity.  Correlation coefficients 

among the spectra of each group were used as a comparison metric to determine how 

similar the spectra from different spectrometer/ATR accessory combinations were.  The 

correlation coefficients were calculated with the use of MATLAB 7 software (The 

MathWorks, Natick, MA). 

RESULTS AND DISCUSSION 

 In an ideal experimental design, each ATR accessory would have been paired 

with a single spectrometer, to allow for comparison of the spectral differences due 

solely to differences in the ATR accessories.  Unfortunately, this type of experiment was 

impossible to conduct because of the inability to acquire all four models of ATR 

accessories in one laboratory; however, one can still gain a great deal of useful 

information about spectral comparison.  Throughout this section, a series of 

comparisons that explore the spectral similarities and differences because of the 

different ATR accessories and spectrometers will be discussed. 

 Figure 6.1 compares the spectra measured from two ATR accessories of the same 

model on two different spectrometers: IC1 and IVC2.  These spectra demonstrate the 

point discussed earlier that spectra of a sample measured with different spectrometers 

under the same conditions can be different.  Spectrum IVC2 shows a baseline close to 

zero absorbance above 1770 cm-1 while spectrum IC1 shows a baseline substantially 
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Figure 6.1: PETE spectra IC1 and IVC2. 
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higher than zero from 1770 to 4000 cm-1.  Spectrum IC1 also shows a higher baseline in 

the region of the spectrum below 1770 cm-1 as well.  If one assumes that the two ATR 

accessories of the same model affect the spectra in the same ways, one must conclude 

that these spectral differences are due to differences in the spectrometers.  While the 

reasons for these higher baselines are not known, the greater anomalous dispersion 

shown by spectrometer I distorts the baseline in the lower wavenumber region.  It could 

be possible that the greater anomalous dispersion exhibited by spectrometer I is a result 

of a wider beam angle in spectrometer I than IV.  In any case, Fig. 6.1 demonstrates that 

even under the same conditions different spectrometers can produce different spectra, 

and this fact must be considered when either qualitative or quantitative comparisons 

are being made. 

 Figure 6.2 compares two spectra measured on the same spectrometer, but 

measured with the use of two different ATR accessories.  In this case, one can assume 

that the major factor that contributes to the spectral differences is the different ATR 

accessories.  The ATR accessory for spectrum IC1 had a diamond IRE, and the accessory 

for spectrum IA4 had a Si IRE.  As described by Eq. 6.3, the depth of penetration will 

vary across the spectral range for both of these accessories because of the different 

refractive indices of diamond (η = 2.41) and Si (η = 3.41).  The effects of depth of 

penetration are evidenced by the intensity of the lower wavenumber bands in IC1 

(diamond IRE) being greater than the same bands in IA4 (Si IRE).  Recall that Eq. 6.3 

says that the depth of penetration and, thus, the absorbance will be greater for diamond 
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Figure 6.2: PETE spectra IC1 and IA4. 
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than Si.  One will also notice that the effect of anomalous dispersion is evidenced in 

these spectra by derivative-like spectral features, and the shifting of bands in spectrum 

IC1 (diamond, η = 2.41) to lower wavenumber relative to the band positions in IA4 (Si 

IRE, η = 3.41) demonstrates the dependence of anomalous dispersion on the IRE 

material.  This shift is expected because the refractive index of diamond is less than the 

refractive index of Si.   

Figure 6.3 shows all of the scale normalized spectra in the region from 1800 to 

650 cm-1.  One can see the band shifting in this region of the spectrum because of 

anomalous dispersion.  Although one must realize that more effects than anomalous 

dispersion are present, the bands in this region of the spectrum are generally shifted 

farther to the low wavenumber region as the refractive index of the associated IRE 

decreases from Si (η = 3.41) to diamond (η = 2.41) and ZeSe (η = 2.40). 

 Although these qualitative comparisons of the spectra are useful, a quantitative 

comparison of the spectral similarity was calculated to examine the implications of the 

spectral differences on library searches.  The correlation coefficients between each of the 

absorbance scale normalized spectra were calculated for the full range from 4000 to 650 

cm-1 and from 1800 to 650 cm-1.  The results are presented in Table 6.2.  The correlation 

coefficient, r, is a commonly used metric for spectral comparison in spectral library 

searches, and its values can range from 0 to 1.  (Theoretically, the correlation coefficient 

can range from a value of -1 to 1, but since the absorbance values have been confined to 

zero or above, the range of correlation coefficient values for this application is from 0 
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Figure 6.3: Scale normalized PETE spectra from 1800 to 650 cm-1: a) IA4, b) IC1, c) IVC2, 

d) IIIA5, and e) IIB3.  The vertical dotted lines draw attention to the spectral shifts. 
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Table 6.2: Correlation coefficients for PETE spectra. 

Full Spectra 

 IVC2 IIB3 IIIA5 IC1 IA4 

IVC2 1.0000     
IIB3 0.9547 1.0000    
IIIA5 0.9126 0.9872 1.0000   
IC1 0.9858 0.9731 0.9509 1.0000  
IA4 0.9783 0.9282 0.8955 0.9721 1.0000 

      
1800 to 650 cm-1 

 IVC2 IIB3 IIIA5 IC1 IA4 

IVC2 1.0000     
IIB3 0.9384 1.0000    
IIIA5 0.8773 0.9810 1.0000   
IC1 0.9826 0.9638 0.9296 1.0000  
IA4 0.9717 0.8848 0.8308 0.9641 1.0000 
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to 1.)  At a correlation coefficient value of 1, two spectra are identical.  At a correlation 

coefficient value of 0, no linear relationship between the two spectra exists.  Taken as a 

group, the values in Table 6.2 for the full spectra support the fact that the spectra 

measured with different spectrometers and ATR accessories produce different spectra.  

Even though the same sample has been measured in each case, several of the spectra 

pairs show correlation coefficients less than 0.95.  These spectral differences cannot be 

attributed to inhomogeneity of the sample or human sampling error.  The correlation 

coefficients for each pair of spectra within the replicate spectra from individual 

spectrometer/ATR combinations were calculated.  The lowest correlation coefficient for 

any spectral pair within a replicate set was 0.9923.  Some interesting facts can also be 

gleaned from looking at individual values in the table.  The table reveals that the most 

similar spectrum to IC1 is IVC2, and the correlation coefficient for this pair is 0.9858.  

One expects this result because the two spectra were obtained with the same model and 

type of ATR accessory.  One would also expect that the next most similar spectrum to 

either of these spectra would be IIB3 because IIB3, IC1, and IVC2 are all from diamond 

IREs; however, this is not the case.  We see that IVC2 is more similar to IA4 than IIB3, 

and that IC1 is just as similar to IIB3 as to IA4.  This is a puzzling result because IA4 is 

from a Si IRE, and one would expect spectrum IA4 to be the most dissimilar to the 

spectra from the diamond IREs.  This result further emphasizes that the spectral 

differences due to spectrometers and ATR accessories cannot be ignored when spectral 

comparison among spectra from different spectrometers and accessories takes place.   
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If one considers the correlation coefficients for just the spectral region from 1800 

to 650 cm-1 in Table 6.2, the same trends will be seen; however, the spectral differences 

in this region are greater, in general, than when the entire spectra are considered.  This 

result is expected because the differences in depth of penetration should be largest at 

the low wavenumber end of the spectra.  In one case, the correlation coefficient between 

IIIA5 and IA4 is 0.8308 in the region from 1800 to 650 cm-1.  This low value can partially 

be attributed to the water absorption bands present in spectrum IIIA5 and not in the 

other spectra.  The design of ATR accessory A5 requires the inside of the accessory to be 

exposed to the laboratory atmosphere each time the sample is changed.  This design 

makes proper purging of the ATR accessory difficult.   

 If one wanted to increase the similarity of the spectra measured with the use of 

different ATR accessories, the traditional thought would be to correct the spectra for the 

differences in depth of penetration.  Table 6.3 shows the correlation coefficients for 

spectra that were first corrected for depth of penetration and then absorbance scale 

normalized.  The correlation coefficients for the full spectra show that the spectral 

similarity actually decreased, and in some cases the decrease was substantial, compared 

to the non-corrected spectra.  For instance, the correlation coefficient between IIB3 and 

IA4 was 0.6990.  If one examines the correlation coefficients for the spectral region from 

1800 to 650 cm-1 in Table 6.3, the correlation coefficients are increased over the values 

reported for the same region in Table 6.2.  This paradox is explained by the nature of the 

depth of penetration correction: the larger the wavenumber the larger the linear 

correction term that is applied.  This effect exacerbates any upward sloping baselines 
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Table 6.3: Correlation coefficients for PETE spectra after depth of 

penetration correction. 

Full Spectra 

 IVC2 IIB3 IIIA5 IC1 IA4 

IVC2 1.0000     
IIB3 0.9654 1.0000    
IIIA5 0.9199 0.9592 1.0000   
IC1 0.8587 0.8048 0.8729 1.0000  
IA4 0.8210 0.6990 0.7532 0.9480 1.0000 

      
1800 to 650 cm-1 

 IVC2 IIB3 IIIA5 IC1 IA4 

IVC2 1.0000     
IIB3 0.9599 1.0000    
IIIA5 0.9228 0.9819 1.0000   
IC1 0.9856 0.9633 0.9503 1.0000  
IA4 0.9652 0.8749 0.8470 0.9592 1.0000 
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that might be present in the upper wavenumber region of the spectra being processed.  

Figure 6.4 shows this trend in the corrected spectra.  Although this unwanted side effect 

occurs, the similarity of the spectra in the region below 1800 cm-1 generally increases 

because the differences in depth of penetration due to the different refractive indices of 

the IREs are greatest at lower wavenumber.  The depth of penetration correction 

generally succeeds in making this region of the spectra more similar. 

 Because it was known that anomalous dispersion also contributes to the spectral 

differences observed, the ability of the proprietary “Advanced ATR Correction” to 

increase the spectral similarity was examined.  Table 6.4 gives the correlation 

coefficients for the spectra that were corrected and then absorbance scale normalized, 

and Fig. 6.5 shows the corresponding spectra.  For both the full spectra and the region 

from 1800 to 650 cm-1, most of the correlation coefficients were worse than or similar to 

the correlation coefficients for the spectra subjected to only the depth of penetration 

correction.  Because the algorithm is proprietary, the cause of the decreases in similarity 

cannot be thoroughly explored; however, the software’s documentation warns that the 

correction might not work well for spectra where the baseline in not flat.  Figure 6.6 

shows the original non-scale normalized spectra.  It is clear that in this case the 

baselines are not flat.  This is especially true in the lower wave number region of the 

spectra. 

Because of the software’s warning concerning sloping baselines, performing 

manual baseline correction on the spectra before applying the “Advanced ATR 
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Figure 6.4: PETE spectra after depth of penetration correction: a) IA4, b) IC1, c) IVC2, d) 

IIIA5, and e) IIB3. 
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Table 6.4: Correlation coefficients of PETE spectra after “Advanced ATR 

Correction”. 

Full Spectra 

 IVC2 IIB3 IIIA5 IC1 IA4 

IVC2 1.0000     
IIB3 0.8895 1.0000    
IIIA5 0.8646 0.9594 1.0000   
IC1 0.8836 0.6869 0.7575 1.0000  
IA4 0.8105 0.6361 0.7322 0.9754 1.0000 

      
1800 to 650 cm-1 

 IVC2 IIB3 IIIA5 IC1 IA4 

IVC2 1.0000     
IIB3 0.8659 1.0000    
IIIA5 0.8562 0.9847 1.0000   
IC1 0.9874 0.8099 0.8132 1.0000  
IA4 0.9760 0.8492 0.8541 0.9854 1.0000 
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Figure 6.5: PETE spectra after “Advanced ATR Correction”: a) IA4, b) IC1, c) IVC2, d) 

IIIA5, and e) IIB3. 
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Figure 6.6: PETE spectra from 4000 to 650 cm-1: a) IA4, b) IC1, c) IVC2, d) IIIA5, and e) 

IIB3. 
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correction” was tried to explore the effect on spectral similarity.  Although this 

experiment was carried out, the validity of baseline corrections under these  

circumstances can be questioned2.  Any baseline correction is only a guess at the true 

baseline, and the corrected baseline may have no correspondence to the true baseline of 

a spectrum.  The baseline correction may also introduce unwanted processing artifacts 

in the spectra.  Before the “Advanced ATR Correction” was carried out, the region 

above 3500 cm-1 in spectrum IIIA5 was replaced by a zero absorbance line to eliminate 

the effect of the water bands in that region of spectrum on the “Advanced ATR 

Correction”.  Table 6.5 shows the correlation coefficients for the baseline corrected 

spectra after absorbance scale normalization.  When compared with the correlation 

coefficients for non-baseline corrected spectra in Table 6.2, the correlation coefficients 

slightly decreased in many cases.  This result supports the validity of the cautions 

issued above.  Figure 6.7 shows the spectra with manually corrected baselines before 

the absorbance values were normalized.  Table 6.6 shows the correlation coefficients for 

spectra that were manually baseline corrected, processed with the “Advanced ATR 

Correction”, and then absorbance scale normalized, and Fig. 6.8 shows the 

corresponding spectra.  In comparison to the results in Table 6.3 for the spectra 

corrected for depth of penetration, the correlation coefficients for the full spectra are 

generally higher because the sloping baselines in the high wavenumber region have 

been corrected.  When one considers the region from 1800 to 650 cm-1, the results are 

mixed.  In many cases, the similarities are worse after the “Advanced ATR Correction” 
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Table 6.5: Correlation coefficients for baseline corrected PETE spectra.  

Full Spectra 

 IVC2 IIB3 IIIA5 IC1 IA4 

IVC2 1.0000     
IIB3 0.9547 1.0000    
IIIA5 0.9162 0.9812 1.0000   
IC1 0.9860 0.9689 0.9559 1.0000  
IA4 0.9750 0.9070 0.8814 0.9702 1.0000 

      
1800 to 650 cm-1 

 IVC2 IIB3 IIIA5 IC1 IA4 

IVC2 1.0000     
IIB3 0.9384 1.0000    
IIIA5 0.9070 0.9825 1.0000   
IC1 0.9866 0.9463 0.9359 1.0000  
IA4 0.9635 0.8574 0.8329 0.9586 1.0000 
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Figure 6.7: Non-scale normalized PETE spectra after baseline correction: a) IA4, b) IC1, 

c) IVC2, d) IIIA5, and e) IIB3. 
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Table 6.6: Correlation coefficients for baseline corrected PETE spectra 

after “Advanced ATR Correction”. 

Full Spectra 

 IVC2 IIB3 IIIA5 IC1 IA4 

IVC2 1.0000     
IIB3 0.8895 1.0000    
IIIA5 0.8455 0.9638 1.0000   
IC1 0.9844 0.9038 0.8973 1.0000  
IA4 0.9771 0.9312 0.9090 0.9898 1.0000 

      
1800 to 650 cm-1 

 IVC2 IIB3 IIIA5 IC1 IA4 

IVC2 1.0000     
IIB3 0.8659 1.0000    
IIIA5 0.8543 0.9775 1.0000   
IC1 0.9892 0.8650 0.8756 1.0000  
IA4 0.9774 0.9047 0.9041 0.9877 1.0000 
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Figure 6.8: Baseline corrected PETE spectra after “Advanced ATR Correction”: a) IA4, 

b) IC1, c) IVC2, d) IIIA5, and e) IIB3. 
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has been applied.  However, the spectral similarity of IA4 (Si IRE) to the other spectra 

has increased, and it was expected that the “Advanced ATR Correction” should have 

the most significant effects on the spectral differences between IA4 and the other 

spectra.  When the entire set of spectra is viewed together, the results indicate that 

under some circumstances the “Advanced ATR Correction”, with or without baseline 

correction preprocessing, will not lead to the most similar set of spectra.   

In general, the experimental results taken on the whole show that for the lower 

wavenumber region of the spectra, where the significant absorption bands occur, the 

most similar spectra resulted from simply applying a depth of penetration correction, 

instead of also trying to correct for band shifting due to anomalous dispersion.  These 

results demonstrate the potential danger of blindly applying correction methods before 

searching an unknown spectrum against a spectral library: the corrections could make 

the unknown spectrum less similar to the true matching library spectrum than the 

uncorrected unknown spectrum would be.  The results reported also demonstrate that 

consideration of the dissimilarity of ATR spectra from different ATR accessories and 

spectrometers cannot be neglected when spectral comparison is performed.                    

CONCLUSION 

 In this work, the similarity of spectra of the same sample measured with 

different ATR accessories and spectrometers was explored.  The results showed that the 

comparison of spectra measured with different ATR accessories and spectrometers even 

when the ATR accessories are of the same model is not straightforward.  The analyst 

must consider the many factors that contribute to spectral variation, and spectral 
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correction should not blindly be applied.  In the case of the PETE spectra being studied, 

it was found that simply applying a depth of penetration correction increased the 

similarity of many of the spectra, but that applying the proprietary “Advanced ATR 

Correction” that should correct for both depth of penetration and anomalous dispersion 

effects decreased the similarity of many of the spectra.  These results do not suggest that 

the “Advanced ATR Correction” is an invalid correction method, but the results do 

reiterate the importance of not assuming that all spectral data can be handled in the 

same way.  The overall conclusion of this study is that the analyst must use caution 

when comparing spectra obtained from different ATR accessories and when applying 

correction methods intended to correct the known effects that lead to differences among 

ATR spectra.  This is especially true when one is comparing unknown spectra to a set of 

extremely similar spectra: the spectral differences due to spectrometer and ATR effects 

could be larger than the spectral differences due to changes in chemical composition. 
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CHAPTER 7 

CONCLUSION AND FUTURE STUDIES 

 The five projects presented in this dissertation have both demonstrated novel 

analysis methods for cotton contamination and investigated the fundamentals of 

infrared spectral comparison.  The accomplishments reported here came about through 

the combination of chemometrics with the inherent chemical information captured by 

infrared spectra.  By exploring both spectrometry and chemometrics, greater advances 

in the understanding of spectral discrimination and identification have been made than 

would have been possible by focusing solely on the spectrometry or chemometrics 

alone. 

Two projects in this work reported on improvements in qualitative spectral 

identification of cotton contaminants through the use of the USDA cotton contaminant 

library.  By first exploring the performance of standard spectral comparison metrics for 

this library, new spectral library search algorithms capable of combining the 

information yielded by standard comparison metrics were developed.  These voting 

scheme algorithms improved the identification of cotton contaminants by spectral 

library searching by making the process of choosing a single standard comparison 

metric unnecessary.  The successful application of these voting scheme algorithms was 

seen for the case of a test set of contaminant spectra which were not represented by the 

growing seasons and locations or measured with the same instruments as those spectra 
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in the USDA cotton contaminant library.  A second project demonstrated further 

improvements in spectral identification through the use of PLS-DA to differentiate the 

classes of contaminate spectra from one another better than was possible by using only 

the information from standard spectral comparison metrics. 

One of the projects presented in this work successfully showed prediction of the 

percent composition of cotton contaminant powder mixtures.  Although plant based 

cotton contaminants are extremely similar natural products, prediction of mixture 

composition through the use of PLS regression and an error correction algorithm was 

shown to be possible.  This quantitative analysis project also provided the inspiration 

for the mixture design algorithm presented.  Experimental design for mixtures is a 

complex and much studied topic, but this mixture generator algorithm fills the need for 

an easy method of generating sets of representative mixtures for any number of mixture 

components an experimentalist is interested in examining. 

The last project presented in this work looked at some of the important 

implications for comparison of ATR spectra.  The results of this project draw attention 

to the large differences that can exist among spectra of the same sample measured with 

the use of different spectrometers and ATR accessories.  This project also demonstrated 

that accepted methods of correcting ATR spectra to look like transmission spectra may 

not always increase the similarity of ATR spectra measured with the use of different 

spectrometers and accessories. 

In the study of cotton contamination, one of the important areas of future study 

that will build on the work presented will be online spectral monitoring.  The projects 
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presented here have demonstrated that spectral discrimination of cotton contaminants 

is possible.  The next step will be to develop spectrometers and spectrometer interfaces 

capable of online monitoring of cotton processing.  For instance, online monitoring of 

cotton cleaning processes to determine the types and amounts of contaminants being 

removed by different cleaning machinery could improve the speed of the cleaning 

processes.  The time savings achieved would increase profits by allowing more cotton 

to be processed in a shorter time and by reducing the damage done to cotton fibers by 

non-efficient cleaning processes that require repeated cleaning cycles to achieve the 

desired reduction in cotton debris levels.  The realization of online contaminant 

monitoring will require the development of instruments, interfaces, and chemometric 

models that are robust to the changing samples and environmental conditions that 

would be experienced by the online instrumentation.  Successful creation of suitable 

spectrometers and instruments will require careful planning and engineering to ensure 

that the spectrometers can obtain sufficient chemical information to allow for successful 

contaminant discrimination.  Creation of robust chemometric models will require 

periodic updates of the models with new sample spectra to keep the models 

representative of the seasonal, varietal, and geographical changes in the chemical make-

up of the cotton plants.  As the projects in this work have demonstrated, effective 

methods of transferring chemometric models for contaminant discrimination from one 

spectrometer to another will also be necessary for wide spread implementation of 

online processing.   
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In summary, all of the projects included in this work should be seen as not only 

improving cotton contaminant identification, but as demonstrating methods of analysis 

for and exploring questions applicable to many types of complex samples.  Many 

situations that deal with complex and highly similar feedstocks and products or both 

stand to benefit from the work presented here.  Some examples include forensics, 

polymer production, and of course, analysis of the multitude of other natural products 

besides cotton.  As the future work outlined above proceeds and the analysis of other 

complex samples takes place, the projects presented in this dissertation will provide a 

foundation of fundamental investigations upon which to build.   

       


