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Abstract

Breast cancer is the most commonly diagnosed cancer within women[1]. A great amount of

research has focused on discovering and evaluating predictive biomarkers. In our research,

we investigate the interaction between a biomarker and treatment effects(true Θ, which is

the decrease in the population event rate under marker-based treatment versus a standard of

care)based on the assumption of Cox regression model, and then we conduct a simulation to

calculate the estimated Θ under the range of ICC from 0 to 1. We plot the curve of estimated

Θ vs. ICC under four different settings. Then we conduct a random effects simulation for

the biomarker Ki67, and get the ICC of biomarker Ki67. We conclude that the biomarker is

better to detect the treatment effect when the ICC value is greater. We could get the true

value of risk rate decrease under marker-based treatment of particular biomarker if we know

the estimated value and the ICC of the biomarker in experiments. Our study is informative

to evaluate the predictive biomarker detection of treatment effects in cancer.

Index words: Breast Cancer, Predictive Marker, Oncotype DX, TAILORx,
Survival Analysis, ICC, Cox Proportional Hazard, Random Effects
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CHAPTER 1

INTRODUCTION

Breast cancer, which develops from breast tissue, is one of the most dangerous diseases,

and is the most commonly diagnosed cancer within women[1]. It affects approximately

12% of women in the world [1]. Since breast cancer is widely distributed worldwide, a

lot of treatment options have been developed, such as surgery, radiation oncology, medical

oncology, and so on [2].

A great amount of research has been focused on discovering and evaluating markers which

can predict a patient’s probability of responding to treatment [3]. The treatment selection

markers, sometimes called predictive markers, can be used to identify subpopulations of

patients who are most likely to respond to a given treatment. The individual patient with

predictive biomarkers is able to select the treatment with the best outcome [4]. A predictive

marker is a factor which is indicative of sensitivity or resistance to a treatment, and it

is important in treating cancer since different cancers have different responses on different

treatments. Thus, only some patients will respond to a treatment, while most will only

suffer from its side effects [5]. Predictive marker might improve patient outcomes and reduce

medical costs as it could allow treatment in those subjects who would benefit from treatment,

while avoiding treatment in those who would only likely to suffer its side effects and other

costs. Thus, it could be used as indicator of the likely benefit to a specific patient from a

specific treatment [6].

One example of predictive markers is the 21-gene Oncotype DX[7]. The 21-gene expres-

sion assay provides prognostic information, which is independent of those clinicopathologic
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features. It could also predict the benefit from adjuvant chemotherapy in estrogen-receptor-

positive disease [7]. The 21-gene recurrence score, which is also called Oncotype DX recur-

rence score, has a scale from 0 to 100. It is derived from the reference-normalized expression

measurements in four steps [8]. The score is higher, the risk of recurrence is greater. The trial

assigning individualized options for treatment, which is also called TAILORx, was designed

to determine whether the test that analyzes the 21-gene expression is associated with risk

of recurrence among women with early-stage breast cancer. Such trial could be applied for

treatment selection. The patients with a recurrence score of 0 to 10 were assigned to receive

endocrine therapy alone, and the patients with scores from 11 to 25 were randomized to

the different treatments: either chemotherapy plus endocrine therapy or endocrine therapy

alone, and those with score of 26 or higher received chemotherapy plus endocrine therapy

[7].

In most cases, the survival time of breast cancer patients is not complete, and it might

be censored at certain times, which forms the survival data; therefore the survival analysis

is needed. Survival analysis is a series of statistical processes for which the outcome variable

is time until an event occurs. In early study, the term “survival analysis” indicated that

the event of interest was death[9]. Now the meaning of survival analysis has become wide,

and it could be used for time until occurrence of disease, time until equipment failure, time

until earthquake, and so on [9]. Censoring is defined when participants’ information is not

available on time to event, and it is caused by losing to follow up the participants or absence

of the outcome event before the trial ends [10]. There are three reasons which lead to

censoring. The first case is that a person does not experience the event before the study

ends; a second case is that a person is lost to follow-up during the study period; and the

third case is that a person is withdrawn from the study due to death (if the death is not the

event of interest) or some other reasons [10].

Since markers that can predict treatment efficacy could make great benefit on improving

clinical outcomes and decreasing medical cost, there is much literature on study designs which
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are related to treatment selection markers. It is necessary to design a study to evaluate the

benefit of a predictive biomarker. However, most research focuses on powering studies which

test the statistical interaction between the marker and treatment, and this is not sufficient

to evaluate marker performance [11, 12]. An interaction may exist, but the marker not be

useful. The positivity criterion, which is a biomarker-based rule for treatment assignment

existing before the study, is often uncertainty. In all, the existing trial design method is

limited[13].

Based on the reality of survival data, Holly Janes et al. [13] focused on assessing the

clinical impact of using the biomarker to assign the treatment, and they used a continuous

marker’s data to identify a positivity criterion, and evaluated the marker’s performance for

treatment selection. First, they set two treatment options, binary clinical outcome of interest

and the marker value Y. They considered the breast cancer treatment context, proposed the

marker-positivity criterion, and listed some statistical measures to evaluate the performance

of this treatment rule. One of them is Θ, which is denoted as the difference between the

probability of surviving k-years under an optimally-guided-biomarker therapy and under the

current standard of care therapy. Then they described two marker evaluation studies. One is

called Randomized Control Trial (RCT) design. In this study design, they set four criterions,

and described the advantages and disadvantages of each criterion. They used the Oncotype

DX marker to illustrate this design by measuring the four criteria and sample size needed to

satisfy each of the design criteria. In our research, we applied this type of marker evaluation.

For the detailed design method, we will discuss in the next section.

In real laboratory environment, there exist measurement errors of biomarker results, thus

it is necessary to conduct reliability studies using intraclass correlation coefficient (ICC) as

an index of reliability. There are different approaches to define and classify ICC. If the two-

way model is assumed, we have the agreement ICC, which is different from the consistency

ICC[14]. The agreement ICC is the ratio which is calculated by the subject variance divided

by the sum of the subject variance, the rater variance and the error variance, while the
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consistency ICC is the ratio which is calculated by the subject variance divided by the sum

of the subject variance and the error variance. The agreement ICC should be used if the

variability due to raters is relevant. Another approach is classifying ICC as the following

two types: one is called the ICC for single-rater reliability and the other is the ICC for

average-rater reliability. The ICC for single-rater reliability is often used to investigate the

reliability of individual rating, while the ICC for average-rater reliability is used to evaluate

the reliability of average of multiple ratings. In this research, the agreement and single-rater

ICC is applied, and the ICC is denoted as: ICC =
σ2
t

σ2
t +σ2

r+σ2
e
, where σ2

t is the subject variance,

and σ2
r is the rater variance, and σ2

e is the error variance [15].

In our research, we tried to conduct a simulation to get the association between estimated

Θ and ICC. We generated pseudo survival data using Cox proportional hazard. We will

discuss this in more detailed in the next section. There are several approaches to analyze

time-to-event curves, such as Cox proportional hazards, log-rank, and accelerated failure

time models. The Cox proportional hazards model has been widely used [16]. The Cox

model is a regression method used for analysis of survival data and identifying differences

in survival due to treatment. It could estimate the hazard ratio along with its confidence

interval. The Cox regression is also considered as a ‘semi-parametric’ process because the

baseline hazard function does not need to be specified [17].
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CHAPTER 2

METHOD

2.1 Setting and Notation

Following notation similar to Janes et al.’s paper[3], let Y1 be the biomarker value. Let T = 0

indicate an individual on a control regimen, and T = 1 indicate an individual on a treatment

regimen. Let D = 1 if an individual dies before a prespecified time t0 , and D = 0 if the

individual dies after t0. This prespecified time is the same for all patients. All data analysis

were conducted using the R language version 3.3.0.

2.2 Calculating true Θ

Unlike Janes et al.’s paper[3], we assume a Cox regression model with hazard function

h(t) = h0(t)Exp[β1Y1 + β2T + β3TY1] = Exp[α0 + β1Y1 + β2T + β3TY1].

Here h0(t) is the baseline hazard, and α0=Ln(h0(t)). The baseline hazard is exponential.

Then the survival function is

s(t) = {Exp[−H0(t)]}Exp(β1Y1+β2T+β3TY1)

= {Exp[−t ∗ Exp(α0)]}Exp(β1Y1+β2T+β3TY1)

= Exp[−t ∗ Exp[α0 + β1Y1 + β2T + β3TY1]],
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where H0(t) is the cumulative hazard function of h0(t).

When T = 0, we get the survival function at t0 as follows:

s(t0|T = 0) = Exp[−t0Exp[α0 + β1Y1]].

We want to set a t0 to construct the proportion of death in control regimen so that

approximately half of the death times were before t0 and half were after t0 in the control

regimen, given the parameters α0 and β1. Thus, we could avoid having a t0 with very few

events before or after it.

P (D = 0|T = 0) = s(t0|T = 0) = Exp[−t0Exp[α0 + β1Y1]] = 0.5.

Then, we could get

t0 = −Ln(0.5)Exp[−(α0 + β1Y1)].

From this, we could get a general formula:

t0 = −Ln(p)Exp[−(α0 + β1Y1)].

Here p is the percentile of D = 0 under the control regimen. Then we could get

P (D = 0) = s(t0) = Exp[−t0Exp[α0 + β1Y1 + β2T + β3TY1]].

From this it follows that,

P (D = 0|T = 1)− P (D = 0|T = 0)

= Exp[−t0Exp[α0 + β1Y1 + β2 + β3Y1]]− Exp[−t0Exp[α0 + β1Y1]].
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From Janes et al.’s paper[3], let

∆(Y1) = P (D = 1|T = 0, Y1)− P (D = 1|T = 1, Y1)

be the absolute treatment effect given a marker value Y1. I will make some transformation

of this formula as follows:

∆(Y1) = P (D = 1|T = 0, Y1)− P (D = 1|T = 1, Y1)

= 1− P (D = 0|T = 0, Y1)− (1− P (D = 0|T = 1, Y1))

= P (D = 0|T = 1, Y1)− P (D = 0|T = 0, Y1).

For individuals whose ∆(Y1) < 0, the optimal way is to recommend against treatment, and

for those whose ∆(Y1) > 0, it’s good to recommend treatment.

Then, we could get

P (D = 0|T = 1,∆(Y1) < 0)− P (D = 0|T = 0,∆(Y1) < 0)

=
∫

∆(Y1)<0

{Exp[−t0Exp[α0 + β1Y1 + β2 + β3Y1]]− Exp[−t0Exp[α0 + β1Y1]]} f(Y1)dY1

= −Bneg.

where Bneg is the average benefit of foregoing treatment when ∆(Y1) < 0 in Janes et al.’s

paper[3]. Next, we will rewrite Bneg in the formula of death instead of survival.

Bneg = P (D = 0|T = 0,∆(Y1) < 0)− P (D = 0|T = 1,∆(Y1) < 0)

= (1− P (D = 1|T = 0,∆(Y1) < 0))− (1− P (D = 1|T = 1,∆(Y1) < 0))

= P (D = 1|T = 1,∆(Y1) < 0)− P (D = 1|T = 0,∆(Y1) < 0).
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As noted in Janes et al.’s paper[3], Pneg is defined as the proportion of individuals that

can forego treatment, which could be written as:

Pneg = P (∆(Y1) < 0).

Θ is denoted as the decrease in the population event rate under marker-based treatment.

Thus, we could calculate true Θ as follows:

Θ = [P (D = 1|T = 1)]− [P (D = 1,∆(Y1) ≥ 0|T = 1)]− [P (D = 1,∆(Y1) < 0|T = 0)]

= [P (D = 1,∆(Y1) < 0|T = 1)]− [P (D = 1, T = 0|∆(Y1) < 0)P (∆(Y1) < 0)]

= [P (D = 1, T = 1|∆(Y1) < 0)P (∆(Y1) < 0)]− [P (D = 1, T = 0|∆(Y1) < 0)P (∆(Y1) < 0)]

= [P (D = 1, T = 1|∆(Y1) < 0)− P (D = 1, T = 0|∆(Y1) < 0)]P (∆(Y1) < 0)

= BnegPneg.

Here BnegPneg is the cumulative benefit of foregoing treatment when ∆(Y1) < 0.

2.3 Simulation

2.3.1 Simulation Overview

In order to look at the bias of the statistical procedure, we did a simulation which generated

pseudo survival data. First, we constructed measured biomarker value considering lab effect

and error. Then, we used Cox proportional hazard model to generate the survival time.

After we got the survival time, we produced two status: Alive and Death. Finally, we

applied Holly Janes et. al’s approach[3] to calculate the estimated Θ. We also set ICC from

0 to 1 step by 0.05, and plot the association between estimated Θ and ICC.
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2.3.2 Construct Measured Biomarker Value

Before we generated pseudo survival data, we denoted

Biomarker = Bioleffect+ Labeffect+ erreffect

as the measured biomarker value. Here Bioleffect is the biomarker effect on different sub-

jects(patients), which is set to be normally distributed with mean 0.5 and variance σ2
b . Lab-

effect is the effect of each different lab, which is set to be normally distributed with mean 0

and variance σ2
l . erreffect is the random error, which is set to be normally distributed with

mean 0 and variance σ2
e . All of these effects are independent.

2.3.3 Generate Pseudo Survival Data

As noted in the methods section, the survival time could be generated using the following

formula:

h(t) = Exp[α0 + β1Y1 + β2T + β3TY1].

Here, Y1 is the Bioeffect. The survival time is generated from an exponential distribution

with rate=h(t).

Next, we denote the status as “Alive” if survival time > t0, and the status as “Death” if

survival time ≤ t0.

2.3.4 Plot estimated Θ and ICC

Based on the approach in Holly Janes et al. ’s paper [3], we could get the estimated Θ. ICC

could be computed as the following formula:

ICC =
σ2
b

σ2
b + σ2

l + σ2
e

.
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In the simulation part, our ICC is set from 0 to 1 step by 0.05. For each ICC value, we

simulated 2000 times, and got the average estimated Θ.

Finally, we plot a figure which indicates the association between ICC and estimated Θ.

It’s worth noting that we use the average estimated Θ of 2000 simulation results, and the

2000 estimated Θ might be truncated at zero. Thus, in some cases, it is necessary to plot

the histogram of the 2000 estimated Θ value.

2.3.5 Extension of the Approach

In the previous method, we do not take into consideration that some of the patients are

censored. It is possible that the patients’ censoring time is less than t0, but in fact their

survival time is longer than t0.

In the real world, different patients have different censoring time. Thus, we conducted

another simulation method by generating a group of survival time si and a group of threshold

wi. We denote the status as “censor” if survival time si > wi, and the status as “die” if

si ≤ wi.

Since Janes’ method does not use the full survival data, but instead it makes survival

binary. If we use t0 to divide the survival time into two status “Alive” and “Death”, the

patients we recorded “die” is known exactly whether it is survival or not at the time point

t0, but the patients we recorded “censor” might die before or after t0. If the censor time

is longer than t0, which means the patients is still “Alive” at t0, but the patients who is

censored before t0 might be “Alive” or “Death” at t0. In this case, we need to delete the

censored cases which had threshold before t0, and then apply Janes’ method. Thus, we could

get the estimated Θ in this situation.
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2.4 Computing the estimated ICC from Ki67 Data

2.4.1 Background of Ki67 Data

The Ki67 data was collected using the same method from Polley et al.’s paper[18],

There were 100 breast cancer cases, and they were arranged into 1-mm core tissue mi-

croarrays(TMAs), and each 50 of them represented on each of two TMA blocks. There were

eight laboratories from North America and Europe participating in this experiment. Each

tissue would be stained using the method introduced in Polley et al’s paper[18], and the

percentage of tumor cells positively stained was recorded as the final Ki67 score. We have

two groups of data. One is called “experiment A”, and another is called “experiment B”.

2.4.2 Statistical Analysis of Ki67 Data

There was very little missing data in the experiments (0.75% in experiment A and 2.38% in

experiment B), and the missing data was dealt with filling them with the average of each

patient’s Ki67 score. We would like to apply random effects model in this research. Since the

random effects model requires the data being normally distributed with constant variance, we

took a BoxCox-transformation with Ki67 data to make it approximately normally distributed

with constant variance.

After dealing with the raw data, the random effects model was fitted using the lme4

package [19].

The random effects model is as follows:

Yij = u+Bi + Lj + εij.

Where Yij is the Ki67 score after BoxCox transformation of the jth lab at the ith subject.

u is the avarage score of the entire population. Bi is the biological subject-specific random

effect. Lj is the lab-specific random effect.
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2.4.3 Computing the estimated ICC from σ̂2
b , σ̂

2
l , and σ̂2

e

We could get the σ̂2
b , σ̂

2
l , and σ̂2

e value from the R output of random effects model, which is

shown in the Appendix B.1. We could also calculate the estimated ICC of Ki67 data using

this formula:

̂ICC =
σ̂2
b

σ̂2
b + σ̂2

l + σ̂2
e

.
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CHAPTER 3

RESULTS

3.1 Simulation Result

3.1.1 Parameter Settings

Before we conducted simulation, we have these following four groups of parameter setting

shown in Table 3.1.

λ β1 β2 β3 −β2/β3

0.6086 -3.145 -3.145 6.290 0.5
0.2454 -1.169 -1.169 2.337 0.5
0.0262 3.145 3.145 -6.290 0.5
0.1386 0.000 1.479 -3.145 0.5

Table 3.1: Four groups of parameter setting

3.1.2 Result Plots

If we set λ =0.6086, β1=-3.145, β2=-3.145, β3=6.290, we could get a true Θ=0.2137063. The

biomarker is normally distributed with mean 0.5 and variance 1/12.

In this parameter setting group, we have the risk curve which is shown in Figure 3.1a.

It has a treatment risk line and a non-treatment risk line. The intersection between the

treatment line and non-treatment line is pointing at around 44% population below marker

value around 0.47.

The plot of estimated Θ vs. ICC is shown in Figure 3.1b. From the figure, we could

find that slope=Θ*1=Θ, and then estimated Θ=ICC*Θ =0.2137063*ICC.
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To compare easily, we also plot the estimated Θ vs. ICC when there is a censored problem

(We generated censored data and eliminated the ones with censored time before the t0 cutoff)

which is discussed in the extension part of method. This plot is shown in Figure 3.1c. The

simulation that goes with 3.1c, 3.2c, 3.3c, and 3.4c contains about 30% of censoring data

before we deleted the ones with censored time ahead t0, but it contains only about 15% after

we deleted them. The percentage that were deleted during analysis is roughly 18%.

If we set λ =0.2454, β1=-1.169, β2=-1.169, β3=2.337, we could get a true Θ=0.09105615.

The biomarker is normally distributed with mean 0.5 and variance 1/12.

In this parameter setting group, we have the risk curve which is shown in Figure 3.2a.

The intersection between the treatment line and non-treatment line is pointing at around

60% of population below marker value around 0.58.

The plot of estimated Θ vs. ICC is shown in Figure 3.2b. From the figure, we could

find estimated Θ=ICC*Θ =0.09105615*ICC.

To compare easily, we also plot the estimated Θ vs. ICC when we generated censored

data and eliminated the ones with censored time before the t0 cutoff. This plot is shown in

Figure 3.2c.

If we set λ =0.0262, β1=3.145, β2=3.145, β3=-6.290, we could get a true Θ= 0.213746.

The biomarker is normally distributed with mean 0.5 and variance 1/12.

In this parameter setting group, we have the risk curve which is shown in Figure 3.3a.

The intersection between the treatment line and non-treatment line is pointing at around

49% of population below biomarker value around 0.49.

The plot of estimated Θ vs. ICC is shown in Figure 3.3b. From the figure, we could

find estimated Θ=ICC*Θ =0.213746*ICC.

To compare easily, we also plot the estimated Θ vs. ICC when we generated censored

data and eliminated the ones with censored time before the t0 cutoff. This plot is shown in

Figure 3.3c.
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Figure 3.1: group 1 of parameter settings. In 3.1(a), the biomarker values are shown on the
lowest axis.

15



(a) risk curve
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(b) estimated Θ vs. ICC
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Figure 3.2: group 2 of parameter settings. In 3.2(a), the biomarker values are shown on the
lowest axis.
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(c) estimated Θ vs. ICC with censored prob-
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Figure 3.3: group 3 of parameter settings. In 3.3(a), the biomarker values are shown on the
lowest axis.
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If we set λ =0.1386, β1=0.000, β2=1.479, β3=-3.145, we could get a true Θ= 0.1036687.

The biomarker is normally distributed with mean 0.5 and variance 1/12.

In this parameter setting group, we have the risk curve which is shown in Figure 3.4a.

The intersection between the treatment line and non-treatment line is pointing at around

42.5% of population below biomarker value around 0.45.

The plot of estimated Θ vs. ICC is shown in Figure 3.4b. From the figure, we could

find estimated Θ=ICC*Θ =0.1036687*ICC.

To compare easily, we also plot the estimated Θ vs. ICC when we generated censored

data and eliminated the ones with censored time before the t0 cutoff. This plot is shown in

Figure 3.4c.

In this case, we set ICC=0 and ICC=0.5, and plot the histogram of the 2000 estimated

Θ. The histogram of estimated Θ when ICC=0 is shown in Figure 3.5a, and the histogram

of estimated Θ when ICC=0.5 is shown in Figure 3.5b.

I also changed sample length from 300 to 1000, and plot the estimated Θ vs. ICC, and the

figure is shown in Figure 3.4d. If I increase the proportion of censoring data from around

30% to around 70% before we deleted the ones with censored time ahead t0, we have the

plot of estimated Θ vs. ICC in Figure 3.4e.

3.2 Real Data Result

First, we get the scatter plot of the original data. The scatter plot of the original data of

experiment A is shown in Figure 3.6, and the scatter plot of B is shown in Figure 3.7.

From these two plots, we could find most of these correlation is positive with non-constant

variance. The variance is increasing when the Ki67 score is increasing. Thus, it might be

necessary to conduct a BoxCox transformation.

After we conducted a BoxCox test, we get that the λ of BoxCox transformation of

experiment A is 0.2614825, and the λ of BoxCox transformation of experiment B is 0.1846809.

Both of the BoxCox confidence interval of λ do not contain 1. Thus, it is necessary to conduct
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(b) estimated Θ vs. ICC when sam-
ple length=300
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(c) estimated Θ vs. ICC with cen-
sored problem
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(d) estimated Θ vs. ICC when sam-
ple length=1000
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(e) estimated Θ vs. ICC with a lot
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Figure 3.4: group 4 of parameter settings. In 3.4(a), the biomarker values are shown on the
lowest axis.
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Figure 3.5: Histogram of estimated Θ
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Figure 3.6: scatterplot of original data in experiment A

a BoxCox transformation. After the data was transformed, we drew the scatter plot of each

experiment again. The scatter plot of A is shown in Figure 3.8, and the scatter plot of B

is shown in Figure 3.9. The scatterplot shows that the Ki67 score between every two labs

are positive correlated with constant variance, though there exists some outliers. Then we

could use the data after transformation to fit the random effects model.

After we fitted a random effect model, we get the following results of experiment A:

σ̂2
b=3.4951, σ̂2

l =0.5830, σ̂2
e=0.5774.

Thus we could calculate the estimated ICC of experiment A:

̂ICC =
σ̂2
b

σ̂2
b + σ̂2

l + σ̂2
e

=
3.4951

3.4951 + 0.5830 + 0.5774
= 0.7507464
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Figure 3.7: scatterplot of original data in experiment B

We get the following results of experiment B: σ̂2
b=2.2415, σ̂2

l =0.5734, σ̂2
e=0.8439.

Thus, we could calculate the estimated ICC of experiment B:

̂ICC =
σ̂2
b

σ̂2
b + σ̂2

l + σ̂2
e

=
2.2415

2.2415 + 0.5734 + 0.8439
= 0.6126326

In contrast, Janes et al. [3] used a base 2 log transformation which results in an estimated

ICC of 0.71 in experiment A and estimated ICC of 0.59 in experiment B.
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Figure 3.8: scatterplot of experiment A
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Figure 3.9: scatterplot of experiment B
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CHAPTER 4

DISCUSSION

When λ=0.6086, β1=-3.145, β2=-3.145, β3=6.290, the risk curve indicates that this biomarker

is very strong since there is a dramatically big difference between the treatment risk and non-

treatment risk. This also indicates that the slope of the plot of estimated Θ vs. ICC would

be larger. From the risk curve, we could conclude that the proportion of subjects with posi-

tive treatment effects who need treatment is around 44% below the marker value about 0.47.

The fact that the proportion is estimated to be 44% rather than 50% is just because of the

limited dataset(n=300) and there is always some noise in the estimates. This situation also

occurs in the other three groups of parameter settings. The slope of the plot of estimated Θ

vs. ICC is close to the true Θ value as the dot is almost on the straight line with slope of

0.2137063. From the plot of ICC vs. estimated Θ under the situation with censored prob-

lem which we have discussed in the method extension part, we could find the bias is small

and the plot looks very similar to the plot without censored problem. In this situation, we

have generated the censored data and then eliminated the ones with censored time before t0

cutoff.

When λ =0.2454, β1=-1.169, β2=-1.169, β3=2.337, the risk curve indicates that this

biomarker is not so strong as the biomarker of the first group of parameter settings. But

there is still a big difference between the treatment risk and non-treatment risk. This also

indicates that the slope of the plot of estimated Θ vs. ICC would be smaller than the first

group. From the risk curve, we could conclude that the proportion of subjects with positive

treatment effects who need treatment is around 60% below the marker value about 0.58 .
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The slope of the plot of estimated Θ vs. ICC is also close to the true Θ value as the dot is

almost on the straight line with slope of 0.09105615. After we generated the censored data

and then eliminated the ones with censored time before t0 cutoff, we have the plot of ICC

vs. estimated Θ under this situation, and we could find the bias is small and the plot looks

very similar to the plot without censored data except that the curve is not so smooth.

When λ =0.0262, β1=3.145, β2=3.145, β3=-6.290, the risk curve indicates that this

biomarker is as strong as the biomarker of the first group of parameter settings since there is

also a dramatically big difference between the treatment risk and non-treatment risk. This

also indicates that the slope of the plot of estimated Θ vs. ICC would be large. From the

risk curve, we could conclude that the proportion of subjects with negative treatment effects

who should avoid treatment is around 49% below the marker value about 0.49. The slope

of the plot of estimated Θ vs. ICC is also close to the true Θ value as the dot is almost

on the straight line with slope of 0.213746. After we generated the censored data and then

eliminated the ones with censored time before t0 cutoff, we get another plot of ICC vs.

estimated Θ, and we could find that the bias is small and the plot looks very similar to the

plot without censored data.

When λ =0.1386, β1=0.000, β2=1.479, β3=-3.145, the risk curve indicates that this

biomarker is weak since this plot is not symmetric, and the treatment line is increasing, while

the non-treatment line is almost flat. There is not a big difference between the treatment

risk and non-treatment risk. This indicates the slope of the plot of estimated Θ vs. ICC

would be small. From the risk curve, we could conclude the proportion of subjects with

negative treatment effects who should avoid treatment is around 42.5% below the biomarker

value about 0.45.

The slope of the plot of estimated Θ vs. ICC is not so close to the true Θ value as

the dot is a little away from the straight line with slope of 0.1036687. Thus, we plotted

the histogram of the 2000 estimated Θ when ICC=0 and ICC=0.5, and from the figure, we

could find that the histogram is truncated at 0. This indicates the curve of estimated Θ vs.
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ICC should be close to the straight line with slope of true Θ, and when ICC=0, estimated

Θ should also be equal to zero. The plot with estimated Θ not equal to zero is caused by

that we have used the average of estimated Θ to plot it, which is not zero any more.

It also indicates that there is a bias in the Janes et al.’s method for values of Θ near

0. This is a new and somewhat interesting finding (not a big deal because usually if Θ is

near 0, then the marker is not of interest, but it suggests that the method probably need

improvement).

Similar to the other three groups of parameter settings, we get the plot of ICC vs.

estimated Θ after generating the censored data and deleting the ones with censored time

before t0. We could find the bias is small and the plot looks very similar to the plot without

censored problem. However, if there exists a lot of censoring, there is a little bias of 0.01

between true Θ and estimated Θ.

In the figure with length equal to 1000, we could find that the curve of estimated Θ vs.

ICC is closer to the straight line compared to the previous plot, which indicates that the

estimated Θ value might be more accurate if we increase the sample length.

From the result of real data Biomarker Ki67, we could find that estimated ICC of ex-

periment A is 0.7507464, and the estimated ICC of experiment B is 0.6126326. Since the

estimated ICC could not be one in real world, thus the estimated marker-based treatment

effects might be worse than the real treatment effects. From previous discussion, we could

suppose the true Θ of Biomarker Ki67 to be around 0.3 to 0.6. For example, if we have the

true Θ of Biomarker Ki67 which is 0.6, and it means the risk rate could decrease 60% under

treatment. We could draw a straight line of estimated Θ=0.6* ̂ICC. Since we could not get

the true Θ in real world as the biomarker is not perfect, we could only get the estimated Θ.

In experiment A, we could have that the estimated Θ is 0.6*0.7507464 ≈ 0.45, which means

the risk rate decrease 45% under treatment. This indicates that the marker-based treatment

effects decrease from 60% to 45% using the Ki67 biomarker in experiment A. Similarly to

experiment B, we have that the estimated Θ is 0.6*0.6126326 ≈ 0.37, which means the risk
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rate decrease 37% under treatment. This also indicates that the treatment effects decrease

from 60% to 37% using the Ki67 biomarker in experiment B. Besides, we could also draw a

straight line once we get the estimated Θ, and this line will pass through (0,0). We could

also get the estimated ICC value in experiments, thus we could have an idea what the true

Θ is, which means that we could get a much more precise estimation of the true treatment

effects if we have the coarse estimated treatment effects from experiments.
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CHAPTER 5

CONCLUSION

In our research, we have looked at risk curve under four different groups of parameter settings.

It shows that some biomarkers are strong and some biomarkers are weak.

We also looked at the association between ICC and estimated Θ. We could conclude

that the estimated Θ decreases in a nearly linear fashion (that is probably faster than one

might have guessed) when ICC decreases. It also indicates that the Biomarker with greater

reliability has a greater risk rate decrease under marker-based treatment.

From the discussion, we could also conclude that the straight line with slope of true Θ is

close to the plot of estimated Θ vs. ICC, which also indicates that we could have a better

estimation of the true value of risk rate decrease under marker-based treatment for particular

biomarker if we have the estimated value of risk rate decrease under marker-based treatment

and the reliability of experiments.

We have found that if there is censoring in the data, the bias of the estimator in Jane’s

method is small unless the censoring proportion gets to be large (e.g. well over 50%). When

we used Janes et al.’s method to calculate the estimated Θ, we might have a problem of

estimated Θ with truncated zero normal distribution, which produces a positive bias for

value of Θ near 0. A better way to get a more exact estimated Θ under simulation might

need to be further studied.
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APPENDIX A

CODE

A.1 Simulation Code

A.1.1 Without Censoring Data

rm(list=ls())

#######calculate true Theta###########

normalmean = 0.5;

normalvar = 1/12;

mcreps = 2000;

sample_length <- 300

#sample_length <- 1000

T<-round(runif(sample_length,min=0,max=1))

library(survival)

ICClist = (0:20)/20;

#ICClist=0;

#ICClist=0.5;

sigmasqblist = ICClist/12;

sigmasqelist = (1/24)*(1-ICClist);

sigmasqllist = sigmasqelist;

Bioleffectvec<-rnorm(1e7,mean=normalmean,sd=sqrt(normalvar))
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alpha0 = log(0.6086)

beta1 = -3.145

beta2 = -3.145

beta3 =6.290

plot_index = 1

#alpha0 = log(0.2454)

#beta1 = -1.169

#beta2 = -1.169

#beta3 =2.337

#plot_index = 2

#alpha0 = log(0.0262)

#beta1 = 3.145

#beta2 = 3.145

#beta3 =-6.290

#plot_index = 4

#alpha0 = log(0.1386)

#beta1 = 0

#beta2 = 1.479

#beta3 =-3.145

#plot_index = 5

t0percentile = 0.5;

# This below code sets t0 to be about the approx median of the survival times

# under control, to change, change t0percentile
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t04param = -log(t0percentile)*exp(-(alpha0+beta1*normalmean));

t04param;

# delta_Y = exp(0-t04param*exp(alpha0+beta1*Bioleffectvec+beta2+beta3*Bioleffectvec))

# -exp(-t04param*exp(alpha0+beta1*Bioleffectvec))

delta_Y = 1 - exp(-t04param*exp(alpha0))^exp(beta1*Bioleffectvec) -1

+ exp(-t04param*exp(alpha0))^exp(beta1*Bioleffectvec+beta2+beta3*Bioleffectvec);

stat_delta_Y <-NULL

stat_delta_Y[which(delta_Y<0)]=1

stat_delta_Y[which(delta_Y>=0)]=0

P_neg = sum(stat_delta_Y)/length(delta_Y)

B_neg = 0-sum(delta_Y*stat_delta_Y)/length(which(stat_delta_Y==1))

B_neg

theta <-B_neg*P_neg

theta

########calculate estimated Theta and plot ICC-Theta##########

ICC<-NULL

#theta_hat_e<-NULL

#theta_hat_mod<-NULL

library(doParallel)

mycluster = makeCluster(3)

registerDoParallel(mycluster)

getDoParWorkers()

library(foreach)

result1 <- foreach(j = 1:length(ICClist),.combine=rbind) %dopar% {
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library(TreatmentSelection)

ICC = ICClist[j];

sigmasqb = sigmasqblist[j];

sigmasqe = sigmasqelist[j];

sigmasql = sigmasqllist[j];

theta<-NULL

conflow<-NULL

confupper<-NULL

for (k in 1:mcreps){

T<-round(runif(sample_length,min=0,max=1))

Bioleffectvec = rnorm(sample_length,mean=0.5,sd=sqrt(sigmasqb))

labeffectvec = rnorm(sample_length,mean=0,sd=sqrt(sigmasql))

erreffect=rnorm(sample_length,mean=0,sd=sqrt(sigmasqe))

Myresponse<-Bioleffectvec+labeffectvec+erreffect

lamda_x<-exp(alpha0+beta1*Bioleffectvec+beta2*T+beta3*T*Bioleffectvec)

lamda_x

si<-NULL

for(i in 1:sample_length)

{

si[i]<-rexp(n=1,rate=lamda_x[i])

}

si # the si are the survivl times

#### NO CENSORING YET ###
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t0<-rep(t04param,sample_length)

status<-NULL

status[which(si<=t0)]="D"

status[which(t0<si)]="C"

status1<-NULL

status1[which(status=="C")]=1

status1[which(status=="D")]=0

status1

dataframe<-data.frame(event=status1,trt=T,Y1=Myresponse)

mytrtsel = trtsel(event="event",trt="trt",marker="Y1",data=dataframe,

study.design="randomized cohort",link="cloglog",default.trt="trt all")

#no computation of confident interval

tmp = eval.trtsel(mytrtsel,bootstraps=0,alpha=0.01)

theta[k]<-as.numeric(tmp$estimates[8])

}

thetanew<-mean(theta)

if (ICC ==1)

{

setEPS()

postscript(paste("~/Desktop/ICC/", ICC, ".eps"))

plot(mytrtsel, bootstraps=100, plot.type="risk", show.marker.axies=TRUE)

dev.off()

}

36



return(c(ICC,thetanew,t0[1]))

#return(theta)

}

result1

#hist(result1)

setEPS()

postscript(paste("~/Desktop/ICC_theta_no_bias_", plot_index, ".eps"))

plot(result1[,1],result1[,2],ylim=c(0.95*min(result1[,2]),

1.05*max(theta, max(result1[,2]))), ylab="estimated theta",

xlab="ICC",main="estimated theta vs ICC")

abline(h=theta, col="red", lty=2)

abline(a= 0, b=theta,col="red", lty=2)

dev.off()

A.1.2 With Censoring Data

rm(list=ls())

#######calculate true Theta###########

normalmean = 0.5;

normalvar = 1/12;

mcreps = 2000;

sample_length <- 300

#sample_length <- 1000

T<-round(runif(sample_length,min=0,max=1))

library(survival)
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ICClist = (0:20)/20;

sigmasqblist = ICClist/12;

sigmasqelist = (1/24)*(1-ICClist);

sigmasqllist = sigmasqelist;

Bioleffectvec<-rnorm(1e7,mean=normalmean,sd=sqrt(normalvar))

alpha0 = log(0.6086)

beta1 = -3.145

beta2 = -3.145

beta3 =6.290

plot_index = 1

rate = 0.05

#alpha0 = log(0.2454)

#beta1 = -1.169

#beta2 = -1.169

#beta3 =2.337

#plot_index = 2

#rate = 0.06

#alpha0 = log(0.0262)

#beta1 = 3.145

#beta2 = 3.145

#beta3 =-6.290

#plot_index = 4

#rate = 0.05
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#alpha0 = log(0.1386)

#beta1 = 0

#beta2 = 1.479

#beta3 =-3.145

#plot_index = 5

#rate = 0.055

t0percentile = 0.5;

# This below code sets t0 to be about the approx median of the survival times

# under control, to change, change t0percentile

t04param = -log(t0percentile)*exp(-(alpha0+beta1*normalmean));

t04param;

# delta_Y = exp(0-t04param*exp(alpha0+beta1*Bioleffectvec+beta2+beta3*Bioleffectvec))

# -exp(-t04param*exp(alpha0+beta1*Bioleffectvec))

delta_Y = 1 - exp(-t04param*exp(alpha0))^exp(beta1*Bioleffectvec) -1 +

exp(-t04param*exp(alpha0))^exp(beta1*Bioleffectvec+beta2+beta3*Bioleffectvec);

stat_delta_Y <-NULL

stat_delta_Y[which(delta_Y<0)]=1

stat_delta_Y[which(delta_Y>=0)]=0

P_neg = sum(stat_delta_Y)/length(delta_Y)

B_neg = 0-sum(delta_Y*stat_delta_Y)/length(which(stat_delta_Y==1))

B_neg

theta <-B_neg*P_neg
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theta

########calculate estimated Theta and plot ICC-Theta##########

ICC<-NULL

#theta_hat_e<-NULL

#theta_hat_mod<-NULL

library(doParallel)

mycluster = makeCluster(3)

registerDoParallel(mycluster)

getDoParWorkers()

library(foreach)

result1 <- foreach(j = 1:length(ICClist),.combine=rbind) %dopar% {

library(TreatmentSelection)

ICC = ICClist[j];

sigmasqb = sigmasqblist[j];

sigmasqe = sigmasqelist[j];

sigmasql = sigmasqllist[j];

theta<-NULL

conflow<-NULL

confupper<-NULL

proportion<-NULL

for (k in 1:mcreps){

T<-round(runif(sample_length,min=0,max=1))

Bioleffectvec = rnorm(sample_length,mean=0.5,sd=sqrt(sigmasqb))

labeffectvec = rnorm(sample_length,mean=0,sd=sqrt(sigmasql))

erreffect=rnorm(sample_length,mean=0,sd=sqrt(sigmasqe))
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Myresponse<-Bioleffectvec+labeffectvec+erreffect

lamda_x<-exp(alpha0+beta1*Bioleffectvec+beta2*T+beta3*T*Bioleffectvec)

lamda_x

si<-NULL

for(i in 1:sample_length)

{

si[i]<-rexp(n=1,rate=lamda_x[i])

}

si

wi<-rexp(n=sample_length,rate=rate)

####ci could choose 10, and 20 as threshold)###

wi

status<-NULL

status[which(si<=wi)]="D"

status[which(wi<si)]="C"

mytime = si;

mytime[which(wi<si)] = wi[which(wi<si)]

index<-which(status=="D" | wi>= t04param)

event<- as.numeric(mytime>t04param)

event<-event[index]

Myresponse<-Myresponse[index]
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T<-T[index]

#status<-status[index]

dataframe<-data.frame(event=event, trt=T, Y1=Myresponse)

mytrtsel = trtsel(event="event",trt="trt",marker="Y1",data=dataframe,

study.design="randomized cohort",link="cloglog",default.trt="trt all")

#no computation of confident interval

tmp = eval.trtsel(mytrtsel,bootstraps=0,alpha=0.01)

proportion[k]<-sum(as.numeric(status=="C"))/length(status)

#proportion[k]<-sum(event)/length(event)

#proportion[k]<-(sample_length-length(index))/sample_length

theta[k]<-as.numeric(tmp$estimates[8])

}

thetanew<-mean(theta)

p<-mean(proportion)

return(c(ICC, thetanew, t04param, p))

}

result1

setEPS()

postscript(paste("~/Desktop/censor", plot_index, ".eps"))

plot(result1[,1],result1[,2],ylim=c(0.95*min(result1[,2]),

1.05*max(theta,max(result1[,2]))), ylab="estimated theta",

xlab="ICC",main="estimated theta vs ICC")
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abline(h=theta, col="red", lty=2)

dev.off()

A.2 ICC Estimation from Real Data

#Estimated ICC of Exp1A#

library(lme4)

library(forecast)

data<-read.csv('~/Documents/STUDY/UGA/Thesis/Thesis data/Exp1Adata_for_KD.csv')

data1<-NULL

Lab_list<-c('G','B','E','D','H','C','A','F')

for(i in 1:nrow(data))

{

for(j in 1:(length(Lab_list)))

{

ID<-data$ID[i]

Lab<-Lab_list[j]

Myresponse<-as.numeric(data[i,j+1])

data1<-rbind(data1, cbind(ID,Lab,Myresponse))

}

}

data1<-data.frame(data1)

data1$Myresponse<-as.numeric(as.character(data1$Myresponse))

lambda<-BoxCox.lambda(data1$Myresponse)

#get the scatter plot#

data<-BoxCox(data, lambda)

pairs(~G+B+E+D+H+C+A+F, data=data,pch=20)
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data1$Myresponse<-BoxCox(data1$Myresponse,lambda)

lm<-lmer(Myresponse ~ (1|ID)+(1|Lab), data1)

summary(lm)

ICC<-3.4951/(3.4951+0.5830+0.5774)

ICC

#Estimated ICC of Exp1B#

data<-read.csv('~/Documents/STUDY/UGA/Thesis/Thesis data/Exp1Bdata_for_KD.csv')

data1<-NULL

Lab_list<-c('G','B','E','D','H','C','A','F')

for(i in 1:nrow(data))

{

for(j in 1:(length(Lab_list)))

{

ID<-data$ID[i]

Lab<-Lab_list[j]

Myresponse<-as.numeric(data[i,j+1])

data1<-rbind(data1, cbind(ID,Lab,Myresponse))

}

}

data1<-data.frame(data1)

data1$Myresponse<-as.numeric(as.character(data1$Myresponse))

lambda<-BoxCox.lambda(data1$Myresponse)

#get the scatter plot#

data<-BoxCox(data, lambda)
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pairs(~G+B+E+D+H+C+A+F, data=data,pch=20)

data1$Myresponse<-BoxCox(data1$Myresponse,lambda)

lm<-lmer(Myresponse ~ (1|ID)+(1|Lab), data1)

ICC<-2.2415/(2.2415+0.5734+0.8439)
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APPENDIX B

ADDITIONAL RESULT

B.1 Summary Result for Random Effects Model

B.1.1 Experiment A

> summary(lm)

Linear mixed model fit by REML ['lmerMod']

Formula: Myresponse ~ (1 | ID) + (1 | Lab)

Data: data1

REML criterion at convergence: 2253.9

Scaled residuals:

Min 1Q Median 3Q Max

-3.9099 -0.6054 0.0379 0.5510 3.5034

Random effects:

GroupsName Variance Std.Dev.

ID(Intercept) 3.4951 1.8695

Lab(Intercept) 0.5830 0.7635

Residual 0.5774 0.7599

Number of obs: 800, groups:ID, 100; Lab, 8
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Fixed effects:

Estimate Std. Error t value

(Intercept)4.3090 0.3295 13.08

B.1.2 Experiment B

> summary(lm)

Linear mixed model fit by REML ['lmerMod']

Formula: Myresponse ~ (1 | ID) + (1 | Lab)

Data: data1

REML criterion at convergence: 2479.7

Scaled residuals:

Min 1Q Median 3Q Max

-7.7733 -0.3908 0.0165 0.4821 3.4763

Random effects:

GroupsName Variance Std.Dev.

ID(Intercept) 2.2415 1.4972

Lab(Intercept) 0.5734 0.7573

Residual 0.8493 0.9216

Number of obs: 800, groups:ID, 100; Lab, 8

Fixed effects:

Estimate Std. Error t value

(Intercept)3.6883 0.3085 11.96
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