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Chapter 1

Overview

The chapters of this thesis cover varied topics which at first sight may appear to be unrelated,

though in fact there are several links between them; we give here a short description of the

chapters and discuss their connections. For a more detailed summary of the contents of

individual chapters we refer the reader to the introductory section of each chapter.

The material in this thesis was developed in response to various questions that arose from

two entirely separate lines of inquiry which, surprisingly, in time became closely related.

On the one hand, we aimed to extend Lorenzini’s work [40] on Tamagawa numbers of

elliptic curves over Q. It was noticed by Agashe that for optimal elliptic curves over Q with a

rational point of order N = 5 or 7, the product of the Tamagawa numbers of the elliptic curve

seemed to be always divisible by N . This phenomenon was later explained by Lorenzini, who

also proved more general results concerning the interplay between torsion and Tamagawa

numbers of elliptic curves over Q. Similar patterns seem to hold for elliptic curves over

number fields of higher degree. Explaining these patterns often requires understanding points

of higher degree on the modular curves X1(N) from both a computational and theoretical

perspective. In Chapter 2 we carry out a study of quadratic points on the modular curves

X1(N) of genus 2, and in Chapter 5 we use these results along with other techniques to
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prove observed patterns in the Tamagawa numbers of elliptic curves over number fields of

small degree. Our study of quadratic points on the modular curves of genus 2 also motivated

a new question regarding congruences satisfied by the discriminants of the quadratic fields

where a given hyperelliptic curve has points. An initial study of this question is contained

in Chapter 3.

On the other hand, a separate project in arithmetic dynamics was developed in order to

extend Poonen’s analysis [58] of rational preperiodic points for quadratic polynomials over

Q to the context of all quadratic fields. Gathering significant amounts of data on preperiodic

points required an algorithm for computing elements of bounded height in number fields.

A new algorithm for doing this is explained in Chapter 6, which is the basis for an article

coauthored with John Doyle [15]. This algorithm opened up the possibility of computing the

preperiodic points for any given quadratic polynomial over a number field. Large amounts

of data over quadratic fields were gathered using this algorithm, and are summarized in

Appendix A. The results of these computations will appear in a joint article with John

Doyle and Xander Faber [13].

Having this data on preperiodic points for quadratic polynomials over quadratic fields, we

observed several patterns and formulated questions about the possible preperiodic structures

for such polynomials. It has been a surprising discovery that the modular curves X1(N) of

genus 2, namely X1(13), X1(16), and X1(18), arise naturally in the study of preperiodic

points for quadratic polynomials, and that a good understanding of the quadratic points

on these curves is essential to classifying the possible preperiodic structures for this family

of polynomial maps. The material in Chapter 2 is therefore crucial in this context, and is

applied very successfully in Chapter 4 to determine the full set of quadratic points on certain

dynamical modular curves.
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Chapter 2

Quadratic points on modular curves

2.1 Introduction

Following Mazur’s theorem [43] on torsion subgroups of elliptic curves over the rational

numbers, the possible torsion subgroups of elliptic curves over quadratic number fields were

classified by Kamienny [31] and Kenku-Momose [35]:

Theorem 2.1.1. Let K be a quadratic number field, and E/K an elliptic curve. Then the

torsion subgroup of E(K) is isomorphic to one of the following 26 groups:

• Z/n for n = 1, . . . , 16 and 18;

• Z/2⊕ Z/2n for n = 1, . . . , 6;

• Z/3⊕ Z/3n for n = 1, 2;

• Z/4⊕ Z/4.

Kenku and Momose had conjectured this result, and proved it assuming that the order

of a torsion point on an elliptic curve over a quadratic field can only be divisible by primes

smaller than 17. Kamienny then proved the latter result.

3



In passing from the field Q to the context of all quadratic fields, new types of questions

arise regarding the relations between a field K and the torsion structures that can occur over

K:

1. Given a quadratic field K, which groups in the above list occur as torsion subgroups

for elliptic curves over K?

2. Given a group G from the list, what can be said about the quadratic fields over which

G occurs?

Question (1) was completely answered by Najman [52, 51] for the fields Q(
√
−1) and

Q(
√
−3); in a subsequent paper, Kamienny and Najman [32] proposed some ideas for an-

swering the question in general, and successfully applied their methods to several quadratic

fields of small discriminant. Regarding question (2), we remark that for a given group G

there may be properties that are common to all quadratic fields over which G occurs as a

torsion subgroup. The only examples of this phenomenon we have found in the literature

are due to Kenku-Momose [35] and Momose [46], who prove results about the splitting of

rational primes in quadratic fields where the torsion groups Z/13 and Z/18 occur. For the

group Z/16, Momose makes a statement of similar type, but this turns out to be incorrect

(see §2.6.3 below).

Our main goal in this chapter is to address question (2) when the group G is Z/13, Z/16,

or Z/18. We prove in §2.6 several results about the quadratic fields where these torsion

subgroups occur, extending the results of Kenku and Momose. In addition, we discuss in

§2.7 some improvements to the method proposed by Kamienny and Najman for answering

question (1).

The natural way to address these questions is to study quadratic points on the modular

curves X1(M,N). In this chapter we will restrict attention to the torsion structures that do

not occur over Q; moreover, question (2) is easily answered for the groups G = Z/4 ⊕ Z/4
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and G = Z/3 ⊕ Z/3n: the properties of the Weil pairing [67, §3.8] imply that the group

Z/4⊕Z/4 can only occur over the field Q(
√
−1), and the groups Z/3⊕Z/3n can only occur

over Q(
√
−3). Hence, we will not be concerned with these groups. The pairs (M,N) that

are relevant to us are therefore (1, N) for N = 11, 13, 14, 15, 16, 18; and (2, 10), (2, 12). The

genera of the corresponding modular curves are as follows: X1(N) := X1(1, N) has genus

1 for N ∈ {11, 14, 15} and genus 2 for N ∈ {13, 16, 18}; the curves X1(2, 10) and X1(2, 12)

have genus 1. (Genus formulas for modular curves may be found in [27, Thm 1.1].)

Our initial motivation for studying quadratic points on modular curves was to add to

the existing literature on torsion subgroups of elliptic curves over quadratic number fields.

However, we have found surprising applications of the results of this chapter to the study of

preperiodic points for quadratic polynomials — we refer the interested reader to the article

[14].

2.2 The modular curves X1(N)

We give here a brief sketch of the construction and modularity property of the curves X1(N).

In addition, we discuss the question of finding explicit equations for these curves. For a

detailed treatment of the subject see the books of Shimura [65], Katz-Mazur [33], Diamond-

Shurman [12]; as well as Rohrlich’s article [61].

2.2.1 Definition and properties

Let N be a positive integer. The principal congruence subgroup of level N is the group

Γ(N) ≤ SL2(Z) consisting of matrices that are congruent to the identity matrix modulo

N . A subgroup of SL2(Z) is a congruence subgroup if it contains Γ(N) for some N . Every

congruence subgroup Γ acts by linear fractional transformations on the upper half plane

H = {z ∈ C : =z > 0}. The quotient space Y (Γ) = Γ\H carries a natural structure of
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Riemann surface, and corresponds to the set of complex points on a smooth affine algebraic

curve over C. The Riemann surface Y (Γ) is not compact, but can be compactified by adding

a finite number of points, called cusps; the resulting compact Riemann surface is denoted by

X(Γ). Being a compact Riemann surface, X(Γ) corresponds to the set of complex points on

a smooth projective algebraic curve over C (see [21, App. B]).

The congruence subgroups that are most relevant here are the groups Γ1(N) defined by

Γ1(N) =


a b

c d

 ∈ SL2(Z) :

a b

c d

 ≡
1 ∗

0 1

 (mod N)

 .

We denote by X1(N) (resp. Y1(N)) the smooth projective (resp. affine) curve corre-

sponding to the Riemann surface X(Γ1(N)) (resp. Y (Γ1(N))). Though these curves are a

priori defined over C, it is known that they can in fact be defined over Q. The main property

of the modular curves Y1(N) we will need is given below.

Theorem 2.2.1. For N ≥ 4, the curve Y1(N) has the following property: for any field K

of characteristic 0, the set Y1(N)(K) is in bijection with the set of isomorphism classes of

pairs (E,P ), where E/K is an elliptic curve and P ∈ E(K) has order N .

Pairs (E,P ) and (E ′, P ′) as in the theorem are isomorphic if there is an isomorphism

E −→ E ′ taking P to P ′.

2.2.2 Equations for modular curves

Given a positive integer N , one would like to write down an equation f(x, y) = 0 for a

plane curve that is birational to X1(N). This problem has been studied by several authors,

for various reasons. Lecacheux [39], Washington [75], and Darmon [10] computed equations

for the curves X1(13), X1(16), and X1(25), respectively, with the goal of constructing cyclic

6



extensions of Q. Their methods cannot be readily applied to all curves X1(N). General

methods have been put forth by Ishida-Ishii [26], Yang [77], Baaziz [1], and Sutherland [72].

For our purposes, we need not only an equation for X1(N), but also an explicit method

for constructing the pair (E,P ) corresponding to a given point on an affine plane model.

Using the interpretation of X1(N) as a moduli space for isomorphism classes of pairs (E,P ),

Reichert [60] computed equations for various curves X1(N) of small level and showed how to

obtain the elliptic curves corresponding to a point on his affine models. Reichert’s methods

have since been extended and refined [1, 59, 72]. The starting point for the methods in these

articles is the following result:

Lemma 2.2.2. Let K be any field and E/K an elliptic curve. Suppose that P ∈ E(K)

is a torsion point of order N ≥ 4. Then, after a change of variables, we can assume that

P = (0, 0) and E is given by an equation of the form

E(b, c) : y2 + (1− c)xy − by = x3 − bx2

for some elements b, c ∈ K.

Proof. See [36, §V.5].

Setting the order of P = (0, 0) on the curve E(b, c) to be N yields a relation between b

and c which defines a plane curve birational to X1(N). As N grows, the resulting equation

becomes increasingly complicated, so one must work with this equation in order to simplify

it as much as possible; different ways of doing this are developed in the articles [1, 59, 72].

We remark that neither Reichert [60], Sutherland [72], nor Rabarison [59] seem to prove that

their equations define plane curves birational to the curves X1(N) as we have defined them

in §2.2.1. However, this is discussed by Baaziz — see [1, §3].
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2.3 Preliminary results

For later reference we gather here a series of facts about integer polynomials. We encourage

the reader to skip this section on a first reading and refer to it when necessary.

Notation 2.3.1. For of a nonzero rational number r we let S(r) denote the squarefree part

of r, i.e., the unique squarefree integer D such that r/D is a square in Q.

Definition 2.3.2. Given a polynomial f(x) ∈ Z[x] we define Π(f) to be the set of all prime

numbers p such that f(x) does not have a root modulo p.

Lemma 2.3.3. Let f(x) ∈ Z[x] be an irreducible polynomial. Let L/Q be a splitting field of

f(x) and G = Gal(L/Q). Fix a root θ of f(x) in L, and put K = Q(θ), H = Gal(L/K) ≤ G.

Then the density of the set of primes p for which f(x) has a root modulo p is

∣∣∣∣∣⋃
g∈G

g−1Hg

∣∣∣∣∣
|G|

.

Proof. This is a consequence of the Chebotarev density theorem. See [3, Thm. 2] for a proof

of a more general result.

Lemma 2.3.4. Let f(x) ∈ Z[x] be a monic, irreducible polynomial of even degree, and let

p be an odd prime. If p ∈ Π(f), then p is unramified in every quadratic field of the form

Q(
√
f(r)) with r ∈ Q.

Proof. Given a prime p ∈ Π(f) and a quadratic field K of the form K = Q(
√
f(r)) we must

show that p does not divide the discriminant of K. Let D = S(f(r)), so that K = Q(
√
D).

Since p is odd, it suffices to show that p does not divide D. Set

f(x) = x2k + a2k−1x
2k−1 + · · ·+ a1x+ a0,
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and let r be expressed in lowest terms as r = n/d. Note that S(f(r)) = S(d2kf(r)) =

S(n2k + a2k−1n
2k−1d+ · · ·+ a1nd

2k−1 + a0d
2k), so that we have an equation

n2k + a2k−1n
2k−1d+ · · ·+ a1nd

2k−1 + a0d
2k = Ds2

for some integer s. Suppose that d ≡ 0 mod p. Then, reducing the above equation modulo

p we obtain n2k ≡ Ds2 mod p. Since p cannot divide n (because n and d are coprime), we

conclude that p does not divide D. Suppose now that d 6≡ 0 mod p. We can then consider

the equation d2kf(n/d) = Ds2 as taking place in the localization Z(p), and reduce modulo p.

Since f(x) has no roots modulo p (by hypothesis), this equation implies that D is nonzero

modulo p.

Lemma 2.3.5. Let f(x) ∈ Z[x] and let p be a prime. Suppose that f(x) has a simple root

modulo p. Then there is an integer n such that ordp(f(n)) is odd.

Proof. Let r be an integer such that f(r) 6= 0 and p divides f(r) but not f ′(r). If ordp(f(r))

is odd, then we can take n = r. Otherwise, let ordp(f(r)) = 2s and set n = r + p2s−1. By

using a Taylor expansion we see that f(n) = f(r) + f ′(r)p2s−1 +m, where m is divisible by

p4s−2. It follows that ordp(f(n)) = 2s− 1 is odd.

Remark 2.3.6. The requirement in Lemma 2.3.5 that the root of f(x) be simple is necessary.

Consider, for example, f(x) = xd + p2, where d > 2. It is easy to see that for every integer

r, ordp(f(r)) is either 0 or 2.

Lemma 2.3.7. Let f(x) ∈ Z[x] be a polynomial with nonzero discriminant and degree at

least 5. Suppose that p1, . . . , pt are distinct primes such that f(x) has a simple root modulo

pi for all i. Then there exist infinitely many squarefree integers D such that D is divisible

by p1 · · · pt and D ∈ {S(f(n)) : n ∈ Z and f(n) 6= 0}.
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Proof. By Lemma 2.3.5, there are integers ni such that ordpi(f(ni)) is odd, say equal to

2si + 1. Let

N := {n ∈ Z : n ≡ ni mod p2si+2
i for all i}.

For every n ∈ N we have f(n) ≡ f(ni) mod p2si+2
i ; in particular, f(n) 6= 0, and ordpi(f(n)) =

2si + 1 is odd for all i, so that p1 · · · pt divides S(f(n)). Hence, every element of the set

D = {D ∈ Z : D = S(f(n)) for some n ∈ N}

is divisible by p1 · · · pt. The lemma will be proved if we show that D is an infinite set.

Note that a squarefree integer D can only be equal to S(f(n)) for finitely many integers

n. Indeed, if D = S(f(n)), then f(n) = Ds2 for some integer s, so that (n, s) is a rational

point on the hyperelliptic curve Dy2 = f(x). Since the degree of f(x) is at least 5, this curve

has genus greater than 1, so by Faltings’ theorem the curve has only finitely many rational

points. In particular, there are only finitely many options for n. This shows that the map

n 7→ S(f(n)) from N to D is finite-to-one. Since N is clearly an infinite set, this implies

that D is also infinite.

2.4 Non-obvious quadratic points on hyperelliptic curves

Let k be a number field, and fix an algebraic closure k of k. Let C be a smooth, projective,

geometrically connected curve defined over k. We assume that C is hyperelliptic over k,

so that there exists a morphism ϕ : C −→ P1
k of degree 2. Let σ be the hyperelliptic

involution on C, i.e., the unique involution such that ϕ ◦ σ = ϕ. Corresponding to the

map ϕ there is an affine model of C of the form y2 = f(x), where f(x) ∈ k[x] has nonzero

discriminant. With respect to this equation, σ is given by (x, y) 7→ (x,−y), and the quotient

map ϕ : C −→ C/〈σ〉 = P1
k is given by (x, y) 7→ x.
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Definition 2.4.1. A point P ∈ C(k) is quadratic over k if [k(P ) : k] = 2.

We wish to distinguish between two kinds of quadratic points on C. Given a model

y2 = f(x) for C, there is an obvious way of producing quadratic points: choosing any

element x0 ∈ k we obtain a point (x0,
√
f(x0)) ∈ C(k) which will often be quadratic as

we vary x0. Indeed, Hilbert’s irreducibility theorem [18, Chap. 12] implies that this will

occur for infinitely many x0 ∈ k. Points of this form will be called obvious quadratic points

for the given model. Stated differently, these are the quadratic points P ∈ C(k) such that

ϕ(P ) ∈ P1(k), or equivalently σ(P ) = P , where P is the Galois conjugate of P . We are

interested here in the problem of determining whether a given model for a hyperelliptic curve

has finitely or infinitely many non-obvious quadratic points. The following result will provide

an answer for curves of genus larger than 3.

Theorem 2.4.2 (Vojta [73], Cor. 0.3). Let C be a curve of genus g defined over a number

field k, let v be a positive integer, and let ϕ : C −→ P1 be a dominant morphism. Assume

that g > 1 + (v − 1) · degϕ. Then the set {P ∈ C(k) : [k(P ) : k] ≤ v and k(ϕ(P )) = k(P )}

is finite.

Corollary 2.4.3. Let C/k be a hyperelliptic curve of genus g ≥ 4, and fix a model y2 = f(x)

for C. Then C has only finitely many non-obvious quadratic points for this model.

Proof. Corresponding to the given model for C there is a morphism ϕ : C −→ P1 of degree

2. A non-obvious quadratic point P on C satisfies [k(P ) : k] = 2 and k(ϕ(P )) = k(P ), since

k(ϕ(P )) ⊆ k(P ) and k(ϕ(P )) 6= k. Applying Theorem 2.4.2 with v = 2 we conclude that

the set of non-obvious quadratic points is finite.

In contrast to the case of higher genera, we will see that set of non-obvious quadratic

points on a curve of genus 2 can be empty, finite, or infinite.
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2.5 Quadratic points on curves of genus 2

Let C/k be a curve of genus 2. Fix an affine model y2 = f(x) for C, where f(x) has degree

5 or 6, and let σ be the hyperelliptic involution on C.

Lemma 2.5.1. Suppose that C/k has genus 2 and C(k) 6= ∅. Let J be the Jacobian variety

of C.

1. The set of non-obvious quadratic points for the model y2 = f(x) is finite if and only if

J(k) is finite.

2. Suppose that J(k) is finite, and let q denote the number of non-obvious quadratic points

for the given model. Then there is a relation

q = 2j − 2 + w − c2,

where j = #J(k), c = #C(k), and w is the number of points in C(k) that are fixed

by σ.

Proof. Fix a point P0 ∈ C(k) and let ι : C ↪−→ J be the embedding taking P0 to 0. Let

S = Sym2(C) denote the symmetric square of C. Points in S(k) correspond to unordered

pairs {P,Q}, where P,Q ∈ C(k). The embedding ι induces a morphism f : S −→ J taking

{P,Q} to ι(P ) + ι(Q). We will need a few facts concerning the fibers of this morphism; see

the article of Milne [45] for the necessary background material. There is a copy of P1
k inside

S whose points correspond to pairs of the form {P, σ(P )}. The image of P1 under f is a

single point ∗ ∈ J(k), and f restricts to an isomorphism f : U = S\P1 ∼−→ J\{∗}. In

particular, there is a bijection

U(k) = S(k)\P1(k)←→ J(k)\{∗}. (2.1)
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Points in S(k) correspond to pairs of the form {P,Q} where either P and Q are both

in C(k), or they are quadratic over k and Q = P ; in particular, points in P1(k) ⊂ S(k)

correspond to pairs {P, σ(P )} where either P ∈ C(k) or P is an obvious quadratic point.

Finally, the points of U(k) are either pairs {P, P} with P a non-obvious quadratic point, or

pairs {P,Q} with P,Q ∈ C(k) but Q 6= σ(P ).

Hence, there are three essentially distinct ways of producing points in S(k): first, we can

take points P and Q in C(k) and obtain a point {P,Q} ∈ S(k). Second, we can take an

obvious quadratic point P and obtain {P, σ(P )} ∈ P1(k) ⊂ S(k). Finally, we can take a

non-obvious quadratic point P and obtain {P, P} ∈ U(k) ⊂ S(k).

Let Qo and Qn denote, respectively, the set of obvious and non-obvious quadratic points

on C. We then have maps ψo : Qo −→ P1(k) and ψn : Qn −→ U(k), and a map ϕ :

C(k) × C(k) −→ S(k) defined as above. The proof of the lemma will be a careful analysis

of the images of these three maps.

We have S(k) = im(ϕ) t im(ψo) t im(ψn) . Removing the points of P1(k) from both

sides we obtain

U(k) = (im(ϕ)\P1(k)) t im(ψn). (2.2)

To prove part (1), suppose first that Qn is finite. We know by Faltings’ theorem that

C(k) is finite, so it follows from (2.2) that U(k) is finite. By (2.1) we conclude that J(k) is

finite. Conversely, assume that J(k) is finite. Then U(k) is finite by (2.1), so im(ψn) is finite

by (2.2). But ψn is 2-to-1 onto its image, so we conclude that Qn is finite. This completes

the proof of part (1).

To prove part (2), suppose that J(k) is finite and let q = #Qn, so that #im(ψn) = q/2.

By (2.1) and (2.2) we have

q/2 = #U(k)−#(im(ϕ)\P1(k)) = j − 1−#(im(ϕ)\P1(k)). (2.3)
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By simple combinatorial arguments we see that

#im(ϕ) = c+
c(c− 1)

2
and #(P1(k) ∩ im(ϕ)) = w +

c− w
2

.

Therefore,

#(im(ϕ)\P1(k)) = c+
c(c− 1)

2
− w − c− w

2
=
c2 − w

2
.

By (2.3) we then have

j − 1 =
q

2
+
c2 − w

2
,

and part (2) follows immediately.

2.5.1 Methods of computation

We comment briefly on how the quantities appearing in Lemma 2.5.1 can be computed in

the case where k = Q. Modern computational methods provide a way of obtaining an upper

bound for the rank of J(Q). In particular, the Magma command RankBound implements

Stoll’s algorithm [69] of 2-descent. If J(Q) has rank 0, this method will sometimes allow

one to prove that the rank is 0. In this case, the function Chabauty0 can be used to find all

the rational points on C, thus determining the number c. The function TorsionSubgroup

can compute the torsion subgroup of J(Q); the algorithm used is due to Poonen [57]. Thus,

assuming we know that J(Q) has rank 0, the number j can be determined. Finally, the

number w is closely related to the number r of roots of f(x) in k: if f(x) has even degree,

then w = r (since the two points at infinity are interchanged by σ); otherwise, w = r + 1

since the unique point at infinity is fixed by σ.

We remark that the way in which elements of the Jacobian of a genus-2 curve are stored

in Magma, namely the Mumford representation, makes it immediately clear what the non-

obvious quadratic points on the curve are: a point in the Jacobian is represented by a pair
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of polynomials (p(x), q(x)), where deg(q(x)) < deg(p(x) ≤ 2 and p(x) divides q(x)2 − f(x).

For those pairs where p(x) is irreducible of degree 2 we obtain the non-obvious quadratic

points (α, q(α)), where α is a root of p(x). For more details on the Mumford representation,

see Mumford’s article [49, Chap. IIIa] and also [7, 19, 37].

2.6 Applications to the modular curves X1(N) of genus

2

In this section we apply Lemma 2.5.1 to the three modular curves X1(N) of genus 2, and use

the result to obtain information about the quadratic fields where these curves have points.

It is known that the Jacobians J1(N) for N = 13, 16, 18 have rank 0 over Q (see [44, §4] for

the case of J1(13) and [34, Thm. 1] for J1(16)). Hence, Lemma 2.5.1 implies that the curves

X1(N) of genus 2 have only finitely many non-obvious quadratic points. We will fix models

to be used throughout this chapter. The following equations are given in [59, pp. 32,38,39]:

X1(13) : y2 = f13(x) := x6 − 2x5 + x4 − 2x3 + 6x2 − 4x+ 1;

X1(16) : y2 = f16(x) := x(x2 + 1)(x2 + 2x− 1);

X1(18) : y2 = f18(x) := x6 + 2x5 + 5x4 + 10x3 + 10x2 + 4x+ 1.

The cusps on these curves satisfy, respectively,

x(x− 1)(x3 − 4x2 + x+ 1) = 0;

x(x− 1)(x+ 1)(x2 + 1)(x2 − 2x− 1)(x2 + 2x− 1) = 0;

x(x+ 1)(x2 + x+ 1)(x3 − 3x− 1) = 0.

(2.4)

Of course, the rational points at infinity are also cusps.
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With the notation introduced in (2.3.2), note that Π(f16) = ∅ since f16(x) has an integer

root. The first few elements of Π(f13) and Π(f18) are shown below.

Π(f13) = {2, 3, 5, 7, 11, 19, 23, 31, 43, 47, 53, 59, 67, 71, 73, 79, 83, 89, 97, . . .}

Π(f18) = {2, 5, 7, 13, 17, 19, 23, 29, 31, 37, 47, 53, 61, 71, 73, 79, 83, 101, . . .}

Proposition 2.6.1. The sets Π(f13) and Π(f18) both have Dirichlet density 13
18

.

Proof. We apply Lemma 2.3.3 to the polynomials f13(x) and f18(x), making use of the

Galois theory functionality available in Magma. A splitting field L for f13(x) can be com-

puted using the SplittingField function. The group G = Gal(L/Q) is computed with

the AutomorphismGroup command. Choosing a root θ of f13(x) in L, we obtain the group

H = Gal(L/Q(θ)) by using the FixedGroup function. With this data computed it is then

easy to construct the set ∪g∈Gg−1Hg. We find that this set has order 5, and that G has

order 18. Therefore, the set of primes p for which f13(x) has a root modulo p is 5/18. The

complement of this set of primes, which is Π(f13) by definition, has density 1− 5
18

= 13
18

. For

the polynomial f18(x) we obtain the same numerical results: the order of the Galois group

is 18, and the corresponding set ∪g∈Gg−1Hg has order 5.

2.6.1 Quadratic Points on X1(18)

We begin by recalling earlier results concerning the quadratic fields where X1(18) has points.

Theorem 2.6.2 (Kenku-Momose [35], Prop. 2.4 ). Let K be a quadratic number field such

that Y1(18)(K) 6= ∅. Then 5 and 7 are unramified in K, and either 2 splits or 3 does not

split in K. Moreover, 3 is not inert in K.

The statement that either 2 splits or 3 does not split is strengthened below in part (2b)

of Theorem 2.6.5; the fact that 3 is not inert in K is proved in a different way in part 2(c).
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The fact that 5 and 7 are unramified in K is extended in part (2d): we have an infinite set of

primes (of known density), containing 5 and 7, such that all primes in the set are unramified

in K.

Theorem 2.6.3 (Najman). For the fields K = Q(
√
−1) and Q(

√
−3) we have Y1(18)(K) =

∅.

Proof. See [52, Lem. 4] and [51, §3].

One consequence of Theorem 2.6.5 is that Y1(18)(K) = ∅ for all imaginary quadratic

fields K, and that the only imaginary quadratic field where X1(18) has a quadratic point is

Q(
√
−3).

Theorem 2.6.4 (Kamienny-Najman [32], Thm. 8). Let K = Q(
√
D), with D squarefree,

be a quadratic field such that Y1(18)(K) 6= ∅. Then |D| ≥ 33.

Theorem 2.6.5 implies that in fact D ≥ 33 (without the absolute value), since 33 is the

smallest squarefree integer that is greater than 1, congruent to 1 modulo 8, and not divisible

by any prime in Π(f18).

Theorem 2.6.5.

1. The only non-obvious quadratic points for the model y2 = f18(x) are the following four

cusps:

(ω, ω − 1), (ω2, ω2 − 1), (ω, 1− ω), (ω2, 1− ω2),

where ω = −1+
√
−3

2
is a primitive cube root of unity. In particular, every non-cuspidal

quadratic point on X1(18) is obvious.

2. If X1(18) has a quadratic point defined over the field K = Q(
√
D) with D 6= −3

squarefree, then:
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(a) D > 0. Hence, K is a real quadratic field.

(b) D ≡ 1 mod 8. Hence, the rational prime 2 splits in K.

(c) D 6≡ 2 mod 3. Hence, the prime 3 is not inert in K.

(d) Every prime in the set Π(f18) is unramified in K.

Proof.

1. We apply Lemma 2.5.1 to the curve C = X1(18). Using Magma as explained in §2.5.1

we find that

j = 21, w = 0, c = 6,

and hence q = 4. Therefore, X1(18) has exactly four non-obvious quadratic points.

Computing Mumford representations for the elements of J1(18)(Q) we obtain exactly

two pairs (p(x), q(x)), namely (x2 + x + 1, x − 1) and (x2 + x + 1,−x + 1), for which

p(x) is irreducible of degree 2. These pairs clearly give rise to the four non-obvious

quadratic points listed above. Note that these four points are cusps, by 2.4.

2. By part (1), every quadratic point defined over K is obvious for the model y2 = f18(x),

so there is an x0 ∈ Q such that K = Q(
√
f18(x0)).

(a) The polynomial function x 7→ f18(x) only takes positive values for x ∈ R, so

f18(x0) > 0.

(b) Letting x0 = n/d with n and d coprime integers, we have that K = Q(
√
g(n, d)),

where

g(n, d) := d6f18(n/d) = n6 + 2n5d+ 5n4d2 + 10n3d3 + 10n2d4 + 4nd5 + d6.
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We claim that g(n, d) is congruent to 1 modulo 8. If n, d are both odd, then

g(n, d) ≡ 1 + 2nd+ 5 + 10nd+ 10 + 4nd+ 1 = 17 + 16nd ≡ 1 mod 8.

If n is even and d is odd, then g(n, d) ≡ d6 ≡ 1 mod 8. Finally, if n is odd and d

is even, then g(n, d) ≡ 1 + 2nd+ 5nd2 mod 8. Writing n = 2k+ 1 for some integer

k we see that g(n, d) ≡ 5d2 + 2d + 1 ≡ (d + 1)2 ≡ 1 mod 8, proving the claim.

Since D is the squarefree part of g(n, d), this implies that D ≡ 1 mod 8.

(c) By a similar calculation as done in part (2b) we find that g(n, d) is always congru-

ent to 0 or 1 modulo 3. Considering all possible values of n and d modulo 9, we

find that if g(n, d) is divisible by 9, then n and d are both divisible by 3, which is a

contradiction; hence g(n, d) is not divisible by 9. Writing g(n, d) = Ds2 for some

integer s, this implies that s is not divisible by 3, and therefore g(n, d) ≡ D mod 3.

Hence, D is congruent to 0 or 1 modulo 3.

(d) For the prime p = 2 this is a consequence of part (b). For odd primes p, the result

follows from Lemma 2.3.4.

2.6.2 Quadratic Points on X1(13)

We recall a few previously known results about the quadratic fields where X1(13) has points.

Theorem 2.6.6 (Momose). Let K be a quadratic field such that Y1(13)(K) 6= ∅. Then the

rational prime 2 splits in K, and 3 is unramified in K.

Proof. See Remark 3.3.3 in [46].

The fact that 2 splits is derived in a different way in part (2b) of Theorem 2.6.9, and the

fact that 3 is unramified in K is extended in part (2c).
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Theorem 2.6.7 (Najman). For the fields K = Q(
√
−1) and Q(

√
−3) we have Y1(13)(K) =

∅.

Proof. See [51, §2-3].

One consequence of Theorem 2.6.9 below is the stronger statement that Y1(13)(K) = ∅

for all imaginary quadratic fields K.

Theorem 2.6.8 (Kamienny-Najman [32], Thm. 3). Let K = Q(
√
D), with D squarefree,

be a quadratic field such that Y1(13)(K) 6= ∅. Then |D| ≥ 17.

The stronger result that D ≥ 17 (without the absolute value) follows immediately from

parts (2a) and (2b) of Theorem 2.6.9.

Theorem 2.6.9.

1. All quadratic points on X1(13) are obvious for the model y2 = f13(x).

2. If X1(13) has a quadratic point defined over the field K = Q(
√
D) with D squarefree,

then:

(a) D > 0. Hence, K is a real quadratic field.

(b) D ≡ 1 mod 8. Hence, the rational prime 2 splits in K.

(c) Every prime in the set Π(f13) is unramified in K.

Proof.

1. We apply Lemma 2.5.1 to the curve C = X1(13). Using Magma we find that

j = 19, w = 0, c = 6,

and hence q = 0. Therefore, all quadratic points on X1(13) are obvious.
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2. By part (1) we have K = Q(
√
f13(x0)) for some rational number x0.

(a) The polynomial function x 7→ f13(x) only takes positive values for x ∈ R, so

f(x0) > 0.

(b) Write x0 = n/d with n and d coprime integers. We have K = Q(
√
g(n, d)), where

g(n, d) = d6f13(n/d) = n6 − 2n5d+ n4d2 − 2n3d3 + 6n2d4 − 4nd5 + d6.

Arguing in the same way as in the proof of part (2b) of Theorem 2.6.5 we conclude

that g(n, d) is congruent to 1 modulo 8. Since D is the squarefree part of g(n, d),

it follows that D ≡ 1 mod 8.

(c) For the prime p = 2 this follows from part (b). For odd primes p, it is a conse-

quence of Lemma 2.3.4.

2.6.3 Quadratic Points on X1(16)

We have not found in the literature any results giving properties common to all quadratic

fields where X1(16) has points. Momose [46, Remark 3.3.1] claims that if Y1(16) has a point

over a quadratic field K, then the primes 3 and 5 are both unramified in K. However, we

show below that this is false.

Proposition 2.6.10. There are infinitely many quadratic number fields K such that Y1(16)(K) 6=

∅ and both 3 and 5 ramify in K.

Proof. The polynomial f16(x) has a simple root (namely x = 0) modulo 3 and 5. By Lemma

2.3.7, there are infinitely many squarefree integers D divisible by 15 such that D is of the

form D = S(f16(n)) for some integer n. Note that for every such integer D, the curve X1(16)
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has a quadratic point defined over the field Q(
√
D). This construction gives infinitely many

quadratic fields K such that 3 and 5 ramify in K, and X1(16) has a quadratic point over

K. Since the cusps of X1(16) could only be defined over a finite number of these fields, the

result follows.

By Proposition 2.6.10, there exist infinitely many quadratic fields Q(
√
D) such that 15

divides D and there is an elliptic curve over K with a K-rational point of order 16. For

concreteness, we give one explicit example of this phenomenon.

Example 2.6.11. Let K = Q(
√

105) and let E/K be the elliptic curve defined by the

Weierstrass equation

y2 + (19
√

105 + 343)xy + (727552
√

105 + 8655360)y = x3 + (1624
√

105 + 19320)x2.

One can verify that the point (0, 0) ∈ E(K) has order 16, and both 3 and 5 ramify in K.

From the factorization f16(x) = x(x2 + 1)(x2 + 2x − 1) we see clearly that the chosen

model for X1(16) has at least four non-obvious quadratic points, namely

(
√
−1, 0), (−

√
−1, 0), (−1 +

√
2, 0), (−1−

√
2, 0).

By (2.4), these four points correspond to cusps on X1(16).

Theorem 2.6.12. The only non-obvious quadratic points for the chosen model of X1(16)

are the four cusps listed above.

Proof. We apply Lemma 2.5.1 to the curve C = X1(16). Using Magma we find that

j = 20, w = 2, c = 6,
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and hence q = 4. Therefore, X1(16) has exactly four non-obvious quadratic points. We have

already listed four such points, so these must be all.

It follows from Theorem 2.6.12 that all non-cuspidal quadratic points on X1(16) are

obvious, so they occur over fields of the form K = Q(
√
f16(x0)) with x0 ∈ Q. In contrast

to the cases of X1(13) and X1(18), we cannot use this description to prove results about the

splitting of rational primes in K. However, we have noticed the following property of the ideal

class groups of such number fields K: when K is imaginary quadratic and K 6= Q(
√
−15),

its class number seems to be always divisible by 10. We have verified this for a total of 77,618

imaginary quadratic fields. More precisely, taking all rational numbers x0 ∈ Q of height at

most 103 we construct the corresponding number fields K = Q(
√
f16(x0)) and keep only

those fields whose discriminants are negative and do not exceed 1015 in absolute value. This

amounts to a total of 77,618 distinct fields Q(
√
D), where D is a squarefree integer ranging

from −999970393954035 to −15. With the exception of Q(
√
−15), which has class number

2, all of these fields have class number divisible by 10, ranging from 10 to 64445120. This

leads us to ask:

Question 2.6.13. Let K 6= Q(
√
−15) be an imaginary quadratic field where Y1(16) has a

point. Is it necessarily the case that the class number of K is divisible by 10?

A partial result towards answering this question can be obtained using the fascinating

work of Gillibert and Levin [20]. Computing the torsion subgroup of J1(16)(Q) we find that

this group has a point of order 10. The techniques of [20] allow us to map this point to an

ideal class in K which has order dividing 10. One must then ask whether this ideal class has

order 10. At present, the best result we can prove is the following.

Theorem 2.6.14. There are infinitely many imaginary quadratic fields K such that X1(16)

has a quadratic point over K and the class number of K is divisible by 10.
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Proof. Note that X1(16) is a hyperelliptic curve with a rational Weierstrass point, and J1(16)

has a rational point of order 10. The proofs of Corollaries 3.1 and 3.2 in [20] show how to

construct an infinite set of imaginary quadratic fields K whose class numbers are divisible

by 10. Moreover, these fields K are, by construction, the fields of definition of quadratic

points on X1(16).

2.7 Points over a given quadratic field

We address here the problem of determining whether the torsion structures Z/13,Z/16, and

Z/18 occur over a fixed quadratic field K. Before restricting to these groups, we briefly

discuss the more general question:

Problem 2.7.1. Given a quadratic field K, determine which groups occur as torsion subgroups

of elliptic curves E/K.

This is equivalent to deciding whether certain modular curves X1(M,N) have non-

cuspidal points over K. We recall the approach to Problem 2.7.1 suggested in [32, p. 293]:

• If X1(M,N) is an elliptic curve: Try to compute its rank over K. If the rank is positive,

then the curve X1(M,N) has infinitely many points over K, and therefore must have

non-cuspidal points. If the rank is 0, then all the points of X1(M,N) over K can be

determined, and one just has to check whether one of these points is not a cusp.

• If X1(M,N) has genus 2: The curve X1(M,N) has only a finite number of points over

K, by Faltings’ theorem, and one must try to find all of them. Let J be the Jacobian

variety of X1(M,N). One has some hope of being able to determine all K-rational

point on X1(M,N) if J(K) is finite. Two ways are suggested for attempting to show

that J(K) has rank 0:
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1. By performing a 2-descent one can obtain an upper bound for the rank. If this

upper bound is 0, then J(K) is certainly finite.

2. A criterion is given [32, Thm. 11] which provides sufficient conditions for J(K)

to be finite in the case of the curves X1(13) and X1(18).

Assuming success in proving that J(K) is finite, one might then determine the K-

rational points on X1(M,N) and see whether one of them is not a cusp. If the rank

of J(K) can be shown to be 1, then the method of Chabauty and Coleman might still

be used to determine the K-rational points on X1(M,N).

There are a few drawbacks to the above strategy. For the curves of genus 2, even if J(K)

has rank 0, a 2-descent may be computationally expensive and moreover fail to prove that

the rank is 0. Also, the criterion given to prove that J1(13) and J1(18) have finitely many

points over K applies only to imaginary quadratic fields K, and in the case of J1(18) one

must further assume that 2 does not split in K. However, by Theorems 2.6.5 and 2.6.9, for

such fields K we already know that Y1(13) and Y1(18) have no points over K. Hence, for

the purpose of computing the full set of K-rational points on these two curves, the criterion

is irrelevant.

We propose here a different method, in which one only needs to determine whether a

quadratic twist of X1(N) has a rational point.

Notation 2.7.2. Let C be a hyperelliptic curve given by a model y2 = f(x), and let d be

a squarefree integer. We denote by Cd the quadratic twist of C by d, i.e., the hyperelliptic

curve defined by dy2 = f(x).

Lemma 2.7.3. Let K = Q(
√
d) be a quadratic field, where d is a squarefree integer. For

N ∈ {13, 18} the following are equivalent:

1. Y1(N)(K) 6= ∅.

25



2. Xd
1 (N)(Q) 6= ∅.

Proof. (1) =⇒ (2): Note first that it follows from Theorems 2.6.5 and 2.6.9 that every non-

cuspidal quadratic point on X1(N) is obvious for the model y2 = fN(x). Suppose that

Y1(N) has a point P defined over K. Since Y1(N) has no rational point, P is a non-cuspidal

quadratic point on X1(N). Hence, P must be of the form (x0,
√
fN(x0)) for some x0 ∈ Q.

Then d must be the squarefree part of fN(x0), so there is a rational s such that ds2 = fN(x0).

This shows that Xd
1 (N)(Q) 6= ∅.

(2) =⇒ (1): Let P ∈ Xd
1 (N)(Q). Note that Xd

1 (N) has no rational point at infinity, since

the leading coefficient of d · fN(x) is d. Therefore, P = (x0, s) for some x0, s ∈ Q. We thus

have ds2 = fN(x0) with s 6= 0, since fN(x) is irreducible. Hence, Q := (x0, s
√
d) ∈ X1(N)(K)

is an obvious quadratic point. By (2.4) we know that for N = 13, X1(N) has no quadratic

cusp, and for N = 18 the only quadratic cusps are non-obvious. Therefore, Q must be a

non-cuspidal quadratic point. This shows that Y1(N)(K) 6= ∅.

In view of Lemma 2.7.3 we must discuss the following:

Problem 2.7.4. Given a curve C/Q of genus 2, decide whether C(Q) = ∅.

There are several computational tools that can be used to attack this problem. First,

a search for rational points on a given hyperelliptic curve can be carried out using Stoll’s

ratpoints program, which is available in Magma via the Points function. As explained in

[71, §2.1], one can reasonably expect that if C has a rational point, it will be found by this

method. If no rational point on C is found, we may attempt to show that C(Q) = ∅. As

a first test we determine whether C has points over all completions of Q; this can be done

using the Magma command HasPointsEverywhereLocally. If the result is negative, then

we know that C(Q) = ∅. If, however, C does have points over all completions, then we can

compute the fake 2-Selmer set of C (see [6] for details); for this we use the Magma function

TwoCoverDescent. If this set is empty, then we know with certainty that C(Q) = ∅. For
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further techniques and more information on this problem we refer the reader to the articles

[71, 5].

Example 2.7.5. Let K = Q(
√
d), where d = 1009. We will determine whether the torsion

structure Z/18 occurs over K. A search for rational points on the twist Xd
1 (18) immediately

yields the point (5
3
, 11
27

). By Lemma 2.7.3 this implies that the group Z/18 does occur as the

torsion subgroup of an elliptic curve over K. Furthermore, since we have the point

(
5

3
,
11
√
d

27

)
∈ Y1(18)(K),

we can use the change of variables in [59, p. 39] to find an elliptic curve over K with a point

of order 18. We obtain the curve E/K with a-invariants [a1, a2, a3, a4, a6] as follows:

[1452
√

1009+49925,−42721140
√

1009−1355613420,−197585272500
√

1009−6269712067500, 0, 0].

One can verify that the point (0, 0) ∈ E(K) has order 18, so that E(K)tors ∼= Z/18.

Example 2.7.6. Let K = Q(
√
d), where d = 2657. We will determine whether the torsion

structure Z/13 occurs over K. A 2-descent yields an upper bound of 2 for the rank of

J1(13)(K). To see this we use the fact that, since J1(13)(Q) has rank 0, the rank of J1(13)(K)

is equal to the rank of Jac(T )(Q), where T := Xd
1 (13) is the twist by d. The Magma code

for this calculation is shown below.

> _<x> := PolynomialRing(Rationals());

> f13 := x^6 - 2*x^5 + x^4 - 2*x^3 + 6*x^2 - 4*x + 1;

> X13 := HyperellipticCurve(f13);

> T := QuadraticTwist(X13,2657);

> RankBound(Jacobian(T));

2
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Note also that K is a real quadratic field where 2 splits. Hence, none of the ideas proposed

in [32] apply in this context. By Lemma 2.7.3, the problem at hand is equivalent to deciding

whether T has a rational point. To do this we will follow the steps suggested above. First,

we carry out a search for rational points on T :

> Points(T : Bound := 10^5);

{@ @}

Since no points are found, we suspect that there are none. Next, we test whether T has

points over all completions of Q:

> g,h := HyperellipticPolynomials(T);

> HasPointsEverywhereLocally(g,2);

true

Hence, there is no local obstruction to T having a rational point. Finally, we compute

the fake 2-Selmer set of T :

> IsEmpty(TwoCoverDescent(T));

true

Since the fake 2-Selmer set is empty, it follows that T (Q) = ∅. We conclude that there

does not exist an elliptic curve E over the field K = Q(
√

2657) such that E(K)tors ∼= Z/13.

To further illustrate the applicability of our method we will attempt to determine all

fields K = Q(
√
d) with d < 1000 where the curves Y1(N), N ∈ {13, 18}, have points.

Theorem 2.7.7. The ordered set of squarefree integers d such that Y1(18) has a point over

the field K = Q(
√
d) begins with the values d = 33, 337, 457 and contains no other number

smaller than 1000, except possibly d = 681.
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Proof. We make a list of all 607 squarefree integers d between 2 and 1000, and remove from

the list all those values of d satisfying any of the following conditions:

1. d 6≡ 1 mod 8 or d ≡ 2 mod 3.

2. d is divisible by some prime in Π(f18).

3. The Jacobian of Xd
1 (18) has rank 0, and Xd

1 (18)(Q) = ∅.

4. Xd
1 (18)(Qp) = ∅ for some prime p.

5. The fake 2-Selmer set of Xd
1 (18) is empty.

By Theorem 2.6.5 and Lemma 2.7.3, every d < 1000 such that Y1(18) has a point over

Q(
√
d) will belong to the resulting list. Initially, the list of numbers d contains 607 elements.

After step (1), 58 remain; after step (2), 18 are left; after step (3) the following 6 numbers

remain:

33, 201, 337, 417, 457, 681.

After step (4) we obtain the list

33, 337, 457, 681.

With step (5) we do not eliminate any numbers. For each of the remaining values of d we

now search for rational points on the twist Xd
1 (18). For d = 33, 337, 457 we do find rational

points, but not for d = 681. Our method has not succeeded in deciding whether the twist

by 681 has a rational point.

Theorem 2.7.8. The ordered set of squarefree integers d such that Y1(13) has a point over

the field K = Q(
√
d) begins with the values d = 17, 113, 193. It contains the numbers d = 313

and 481, and no other number smaller than 1000, except possibly d = 257, 353, 601, 673.
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Proof. We make a list of all squarefree integers d between 2 and 1000, and remove from the

list all those values of d satisfying any of the following conditions:

1. d 6≡ 1 mod 8.

2. d is divisible by some prime in Π(f13).

3. The Jacobian of Xd
1 (13) has rank 0, and Xd

1 (13)(Q) = ∅.

4. Xd
1 (13)(Qp) = ∅ for some prime p.

5. The fake 2-Selmer set of Xd
1 (13) is empty.

By Theorem 2.6.9 and Lemma 2.7.3, every d < 1000 such that Y1(13) has a point over

Q(
√
d) will belong to the resulting list. Initially, the list of numbers d contains 607 elements.

After step (1), 97 remain; after step (2), 26 are left; after step (3) the following 11 numbers

remain:

17, 113, 193, 257, 313, 353, 377, 409, 481, 601, 673.

After step (4) the number 377 is removed and we obtain the list

17, 113, 193, 257, 313, 353, 409, 481, 601, 673.

With step (5) we eliminate the number 409 to obtain

17, 113, 193, 257, 313, 353, 481, 601, 673.

For each of these values of d we now search for rational points on the twist Xd
1 (13). For

d = 17, 113, 193, 313, and 481 we do find rational points, but not for d = 257, 353, 601, 673.

We suspect that the twists by the latter values of d have no rational point, but are unable

to prove it.
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Chapter 3

Squarefree parts of polynomial values

3.1 Introduction

We studied in §2.6 three polynomials, namely f13(x), f16(x), f18(x), and showed that they

have the following properties:

• If K is a quadratic field of the form K = Q(
√
f13(x0)) with x0 ∈ Q, then its discrimi-

nant D satisfies D ≡ 1 mod 8.

• If K is a quadratic field of the form K = Q(
√
f18(x0)) with x0 ∈ Q, then its discrimi-

nant D satisfies D ≡ 1 mod 8 and D ≡ 0, 1 mod 3.

• For f16(x) there appear to be no analogous congruences that are always satisfied.

What is different about f16(x) that we were not able to find such congruences? And for

the polynomials f13(x) and f18(x), are there other congruences that we have not discovered?

We mention the following facts which have been verified by explicit computation:

• Let p < 105 be a prime, p 6= 2. Then every nonzero congruence class modulo p is

represented by the discriminant D of a quadratic field of the form Q(
√
f13(x0)) with

x0 ∈ Q.
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• Let p < 105 be a prime, p 6= 2, 3. Then every nonzero congruence class modulo p is

represented by the discriminant D of a quadratic field of the form Q(
√
f18(x0)) with

x0 ∈ Q.

• Let p < 104 be a prime. Then every nonzero congruence class modulo p is represented

by the discriminant D of a quadratic field of the form Q(
√
f16(x0)) with x0 ∈ Q.

Hence, the polynomials f13(x) and f18(x) exhibit special behavior at the primes p = 2 and

p = 2, 3, respectively, and apparently at no other primes. In contrast, it seems that f16(x)

does not exhibit similar behavior at any prime. In this chapter we explore phenomena of

this type. Rather than restrict attention to the three polynomials above, we consider more

generally an arbitrary polynomial f(x) ∈ Z[x] and ask whether there are any nontrivial

congruences satisfied by the discriminants of quadratic fields Q(
√
f(r)) for r ∈ Q.

3.2 Statement of the problem

Recall that the squarefree part of a nonzero rational number r is the unique squarefree integer

D such that r/D is a square in Q. We will denote the squarefree part of r by S(r). The

number S(r) can also be defined by the following formula:

S(r) = sign(r) ·
∏

ordp(r) odd

p.

Let f(x) be a polynomial with integer coefficients, and let p be a prime. In this chapter

we consider the following question:

Does the set {S(f(r)) : r ∈ Q and f(r) 6= 0} contain an element from every congruence

class modulo p?
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As will be seen below, there are pairs (f(x), p) for which this property holds, and others

for which it does not; our main goal is to understand precisely what makes the distinction.

In studying the above question we will make two simplifying assumptions. First, we assume

that f(x) is squarefree. There is not much loss in this, because if d(x) is the squarefree

part of f(x), then S(f(r)) = S(d(r)) for every rational number r which is not a root of

f(x). Second, in order to avoid certain degenerate behavior, a restriction will be made on

the prime p:

Definition 3.2.1. We say that a prime p is good for a given polynomial f(x) ∈ Z[x] if

the reduced polynomial f(x) mod p ∈ Fp[x] has the same degree as f(x) and has nonzero

discriminant.

Notation 3.2.2. For a polynomial f(x) ∈ Z[x] and a prime number p, we let Σ(f, p) denote

the image of the set {S(f(r)) : r ∈ Q and f(r) 6= 0} under the reduction map Z −→ Z/p.

With this notation and terminology we can now rephrase our main question.

Let f(x) ∈ Z[x] have nonzero discriminant, and let p be a good prime for f(x). Is

Σ(f, p) = Fp?

We begin by giving necessary and sufficient conditions to have 0 ∈ Σ(f, p).

Proposition 3.2.3. Let f(x) ∈ Z[x] have nonzero discriminant, and let p be a good prime

for f(x). If f(x) has odd degree, then 0 ∈ Σ(f, p). If f(x) has even degree, then 0 ∈ Σ(f, p)

if and only if f(x) has a root modulo p.

Proof. Suppose that f(x) has odd degree, and write f(x) = a2k−1x
2k−1 + · · · + a1x + a0.

Letting d be any integer such that ordp(d) is odd and f(1/d) 6= 0, we claim that p divides

S(f(1/d)). To see this, note first that S(f(1/d)) = S(d2kf(1/d)) = S(a2k−1d+ · · ·+ a0d
2k),

so it suffices to show that ordp(a2k−1d + · · · + a0d
2k) is odd. But the latter is clearly equal

to ordp(d), which is odd by construction. This shows that 0 ∈ Σ(f, p).
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Suppose now that f(x) has even degree. Assuming that f(x) has a root modulo p, we

must show that 0 ∈ Σ(f, p). Since the root of f(x) modulo p must be simple, there is an

integer n such that f(n) 6= 0 and p divides f(n) but not f ′(n). If ordp(f(n)) is odd, then we

are done. Otherwise, let ordp(f(n)) = 2s, and r = n + p2s−1. By doing a Taylor expansion

we see that f(r) = f(n) + f ′(n)p2s−1 + A, where A is divisible by p4s−2. It follows that

ordp(f(r)) = 2s− 1 is odd, so p divides S(f(r)), and hence 0 ∈ Σ(f, p).

Finally, assuming that f(x) does not have a root modulo p we must show that 0 /∈ Σ(f, p).

This will follow from the proof of Proposition 3.5.1 below, so we omit the proof here.

In view of Proposition 3.2.3 we will henceforth be interested only in determining whether

Σ(f, p) ⊇ F∗p.

3.3 Degrees 1 and 2

Proposition 3.3.1. Suppose that f(x) ∈ Z[x] has degree 1, and let p be a good prime for

f(x). Then Σ(f, p) = Fp.

Proof. We know that 0 ∈ Σ(f, p) by Proposition 3.2.3. Given any integer m 6≡ 0 mod p, we

will show that there is an integer r such that S(f(r)) ≡ m mod p. We reduce easily to the

case where f(x) = d(ax+ b) with gcd(a, b) = 1 and d squarefree. Since p does not divide ad,

there is an integer t such that t ≡ b mod a and dt ≡ m mod p. The integer t is coprime to

ap, so by Dirichlet’s theorem on primes in arithmetic progressions, there are infinitely many

prime numbers q such that q ≡ t mod ap. Choose such a prime q which does not divide d.

By construction, there exists an integer n such that q = an + b. For this integer n we have

S(f(n)) = S(dq) = dq ≡ m mod p.

Next, we consider polynomials f(x) of degree 2. We will need the following classical

result due to Legendre. (See [25, §17.3] for a proof.)
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Theorem 3.3.2 (Legendre). Let a, b, c be nonzero integers, squarefree, pairwise coprime,

and not all positive nor all negative. Then the equation ax2 + by2 + cz2 = 0 has a nontrivial

integral solution if and only if the following conditions are satisfied:

(i) −bc is a square modulo a.

(ii) −ac is a square modulo b.

(iii) −ab is a square modulo c.

Proposition 3.3.3. Suppose that f(x) ∈ Z[x] has degree 2 and nonzero discriminant. If p

is a good prime for f(x), then Σ(f, p) ⊇ F∗p.

Proof. Let f(x) = ax2 + bx + c and ∆ = b2 − 4ac. Let d be the squarefree part of a, and δ

the squarefree part of ∆, so that we can write

a = ds2 , ∆ = δt2

for some integers s, t. Given any integer m coprime to p, we have to show that there is a

rational number r such that S(f(r)) ≡ m mod p. We claim that there exists a prime number

q such that

q ≡ 1 mod a∆ , dq ≡ m mod p , and δ is a square modulo q.

Assuming this claim for the moment, it follows from Theorem 3.3.2 that there is a nontrivial

integral solution to the equation x2−qy2−δz2 = 0. The plane conic defined by this equation

is then isomorphic to P1, and therefore has infinitely many rational points. In particular,

there exists a rational solution to x2 − qy2 = δ with y 6= 0, and therefore a rational solution
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(x, y) to the equation x2 − qy2 = ∆, with y 6= 0. Letting

r =
x− b

2a
, w =

ys

2a

we obtain dqw2 = f(r) with f(r) 6= 0. Therefore, dq = S(f(r)) and, by construction,

dq ≡ m mod p. This concludes the proof of the proposition.

Now for a proof of the claim. By the Chinese Remainder Theorem there exists an integer

N such that N ≡ 1 mod 8a∆ and dN ≡ m mod p. (In the case p = 2 the numbers 8a∆

and p are not coprime, but we can take N = 1 in this case.) Since N is coprime to 8ap∆,

by Dirichlet’s theorem on primes in arithmetic progressions there exists a prime q such that

q ≡ N mod 8ap∆. In particular,

q ≡ 1 mod a∆ , dq ≡ m mod p , q ≡ 1 mod 8.

We will show that δ is a square modulo q. Write δ = (−1)η2εq1 · · · qv, where η, ε ∈ {0, 1}

and the qi are distinct odd primes. Since q ≡ 1 mod 8 and q ≡ 1 mod qi, then

(
δ

q

)
=

(
−1

q

)η (
2

q

)ε v∏
i=1

(
qi
q

)
= 1 · 1 ·

v∏
i=1

(
q

qi

)
=

v∏
i=1

(
1

qi

)
= 1,

and this proves the claim.

3.4 Degrees 3 and 4

Before considering polynomials of degrees 3 and 4 we recall the statement of the Parity

Conjecture for elliptic curves over Q. Let E/Q be an elliptic curve of conductor NE. The

L-function L(E, s) admits an analytic continuation to the complex plane C, and satisfies a
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functional equation

Λ(E, s) = wEΛ(E, 2− s)

where wE ∈ {±1} is the root number of E and

Λ(E, s) = N
s/2
E (2π)−sΓ(s)L(E, s).

Conjecture 3.4.1 (Parity Conjecture). If E is an elliptic curve over Q, then

wE = (−1)rank(E(Q)).

The root number of E is related to the root number of a quadratic twist of E in the

following way. For every quadratic number field K there is a Dirichlet character

χK : (Z/DZ)× −→ {±1},

where D is the discriminant of K, satisfying the following properties:

• χK(−1) = sign(D).

• If D is odd, then χK(2) = (−1)(D
2−1)/8.

• For an odd prime p not dividing D, χK(p) =
(
D
p

)
.

Lemma 3.4.2. Let E be an elliptic curve over Q, D a squarefree integer, and ED the

quadratic twist of E by D. Let K = Q(
√
D). If NE is coprime to the discriminant of K,

then

wED = wE · χK(−NE).

Proposition 3.4.3. Assume the Parity Conjecture. Let f(x) ∈ Z[x] have degree 3 or 4, and

nonzero discriminant. If p is a good prime for f(x), then Σ(f, p) ⊇ F∗p.
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Proof. Given any integer m coprime to p, we have to show that there is a rational number

r such that S(f(r)) ≡ m mod p. Let d be the squarefree part of the leading coefficient of

f(x), and let g(x) = d · f(x). The hyperelliptic curve E defined by the equation y2 = g(x)

then has a rational point at infinity, so it is an elliptic curve over Q. Let

NE = 2f
v∏
i=1

pfii

be the prime factorization of the conductor of E. Note that p is coprime to NE, since p is

good for g(x). We will assume that wE = 1; the other case is dealt with in a similar way.

By Dirichlet’s theorem on primes in arithmetic progressions, there are infinitely many prime

numbers q such that

q ≡ −1 mod 8 , dq ≡ −m mod p , and q ≡ −1 mod pi for all i.

Choose such a prime q not dividing d. Let D = −q, and let χ be the Dirichlet character

associated to Q(
√
D). By Lemma 3.4.2 we have

wED = χ(−NE) = (−1) · χ(2)f
v∏
i=1

χ(pi)
fi = (−1) · (−1)(D

2−1)/8
v∏
i=1

(
D

pi

)fi
= −1.

By the Parity Conjecture, this implies that rank(ED(Q)) is odd, hence positive, so there

are infinitely many rational solutions to the equation Dy2 = g(x). In particular, there

is a solution (r, s) with g(r) 6= 0. Note that Dd(s/d)2 = f(r) with Dd squarefree, so

Dd = S(f(r)); and by construction, Dd ≡ m mod p. This completes the proof.

3.5 Higher degrees

In view of the positive results in degrees 1-4 we naturally consider the following statement:
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(?) Let f(x) ∈ Z[x] have nonzero discriminant, and let p be a good prime for f(x).

Then Σ(f, p) ⊇ F∗p.

We have shown that (?) is true if f(x) has degree 1 or 2, and — assuming the Parity

Conjecture — that it also holds when f(x) has degree 3 or 4. However, for polynomials

of higher degree the statement may fail to hold; the following proposition gives a way of

constructing examples where this occurs.

Proposition 3.5.1. Let f(x) ∈ Z[x] have even degree 2k, and let p be a good prime for f(x)

such that f(x) has no roots modulo p. Let a2k be the leading coefficient of f(x), and suppose

that f(Fp) is contained in the square class of a2k modulo p. Then Σ(f, p) is contained in the

square class of a2k modulo p.

Proof. Set f(x) = a2kx
2k+ · · ·+a1x+a0. Let r ∈ Q be expressed as r = n/d in lowest terms,

and let D = S(f(r)). Note that S(f(r)) = S(d2kf(r)) = S(a2kn
2k + · · ·+ a1nd

2k−1 + a0d
2k),

so that we have

a2kn
2k + · · ·+ a1nd

2k−1 + a0d
2k = Ds2

for some integer s.

Suppose first that d ≡ 0 mod p. Reducing the above equation modulo p we obtain

a2kn
2k ≡ Ds2 mod p. Since p divides neither n nor a2k, then D and s are coprime to p.

Therefore, D ≡ a2kn
2ks−2 mod p, so D is in the square class of a2k modulo p.

Now suppose that d 6≡ 0 mod p. We can then consider the equation d2kf(n/d) = Ds2

modulo p. Since f has no roots modulo p, this equation implies that D and s are coprime

to p, so D and f(n/d) are in the same square class modulo p. By hypothesis, f(n/d) is in

the square class of a2k, so D is also in the square class of a2k modulo p.

Corollary 3.5.2. Let f(x) ∈ Z[x] have even degree, and let p be a good prime for f(x). Sup-

pose that the equation y2 = f(x) has no solutions modulo p, and that the leading coefficient
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of f(x) is not a square modulo p. Then Σ(f, p) ⊆ F∗p\(F∗p)2.

Proof. Let a be the leading coefficient of f(x), which is not a square modulo p. The fact

that there are no solutions to the equation y2 = f(x) modulo p implies that f(x) has no

roots modulo p, and that f(Fp) contains no squares. Hence f(Fp) is contained in the square

class of a modulo p. It follows from Proposition 3.5.1 that Σ(f, p) contains only nonsquares.

We can use Corollary 3.5.2 to give examples where (?) fails to hold. To do this we need

hyperelliptic curves having no rational points modulo p.

Definition 3.5.3. We say that a smooth projective curve C over Fp is pointless if C(Fp) = ∅.

Theorem 3.5.4 (Hasse-Weil). Let C be a smooth projective curve of genus g over a finite

field Fq. Then

|#C(Fq)− q − 1| ≤ 2g
√
q.

We deduce from Theorem 3.5.4 that if C is a pointless curve over Fp, then p+ 1 ≤ 2g
√
p.

This cannot occur if g = 0 or 1, but in genus 2 there are pointless curves. A complete list of

such curves (up to isomorphism) is given in an article of Maisner and Nart [42]. For genera

3 and 4, pointless curves are studied in [22]. Using these results on pointless curves together

with Corollary 3.5.2 we can produce infinitely many examples for which (?) does not hold.

Example 3.5.5.

1. Let f(x) ∈ Z[x] be any polynomial of degree 6 such that

f(x) ≡ (−x2 + 2)(x4 − 5x3 + x2 + x+ 4) (mod 11).

Then 11 is a good prime for f(x), but by Corollary 3.5.2, Σ(f, 11) does not contain

any squares.
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2. If f(x) ∈ Z[x] is any polynomial of degree 8 such that

f(x) ≡ 2x8 − x6 − 8x4 − x2 + 2 (mod 19),

then Σ(f, 19) does not contain any squares modulo 19.

Remark 3.5.6. When the degree of f(x) is 4, we cannot use Corollary 3.5.2 to contradict

Proposition 3.4.3 because the necessary hypotheses will never be satisfied: indeed, if f(x)

has degree 4 and p is a good prime for f(x), then the equation y2 = f(x) defines a smooth

projective curve C of genus 1 over Fp, and such a curve will always have an Fp-rational

point, by the Hasse-Weil bounds. Since we are assuming that the leading coefficient of f(x)

is not a square in Fp, the two points of C at infinity are not rational, and hence the equation

y2 = f(x) must have a solution modulo p.

Just as we used pointless curves to give examples where (?) is false, we can also use

curves having many rational points to give a different class of examples. The next result

follows immediately from Proposition 3.5.1.

Corollary 3.5.7. Let f(x) ∈ Z[x] have even degree, and let p be a good prime for f(x).

Suppose that the leading coefficient of f(x) is a square modulo p, and that f(Fp) ⊆ (F∗p)2.

Then Σ(f, p) ⊆ (F∗p)2.

Note that, with f(x) as in the above corollary, the hyperelliptic curve defined by y2 = f(x)

will have 2p+ 2 rational points.

Definition 3.5.8. We say that a hyperelliptic curve C over Fp is pointful if #C(Fp) = 2p+2,

that is, if C has as many rational points as a hyperelliptic curve over Fp could possibly have.

Despite the opposite nature of pointless and pointful hyperelliptic curves, there is in

fact a natural relation between the two: given a pointless curve we can construct from it a

pointful one, and vice versa.
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Lemma 3.5.9. Let C be a hyperelliptic curve over Fp defined by an equation y2 = f(x),

where f(x) has even degree. Let a ∈ F∗p be a non-square, and define g(x) = a · f(x). Let C ′

be the hyperelliptic curve defined by the equation y2 = g(x). Then C is pointless if and only

if C ′ is pointful.

Proof. Suppose that C is pointless. Since the leading coefficient of f(x) is not a square, then

the leading coefficient of g(x) is a square; hence, the points of C ′ at infinity are rational.

For any α ∈ Fp we know that f(α) is not a square. It follows that g(α) = a · f(α) is a

nonzero square, say β2 = g(α). Thus, α gives rise to two rational points (α, β), (α,−β).

This shows that C ′ has 2p affine rational points, and we conclude that C ′ is pointful. The

reverse direction of the lemma is entirely analogous to this one, so we omit the proof.

Using Lemma 3.5.9 we can modify the polynomials from Example 3.5.5 to give infinitely

many new examples where (?) fails.

Example 3.5.10.

1. Let g(x) ∈ Z[x] be any polynomial of degree 6 such that

g(x) ≡ −(−x2 + 2)(x4 − 5x3 + x2 + x+ 4) (mod 11).

Then 11 is a good prime for g(x), but by Corollary 3.5.7, Σ(g, 11) only contains squares.

2. If g(x) ∈ Z[x] is any polynomial of degree 8 such that g(x) ≡ 2(2x8−x6−8x4−x2 +2)

(mod 19), then Σ(g, 19) only contains squares.

We end by listing some questions for future work:

1. By the Hasse-Weil bounds, examples where (?) fails can only be constructed using

Corollaries 3.5.2 and 3.5.7 if the prime p is small compared to the degree of f(x). Does

(?) hold for all large enough primes p?
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2. Throughout this chapter we have evaluated f(x) at rational numbers r. Would (?)

hold if we restrict to integer values of r? The proof of Proposition 3.3.1 shows that

this does hold when the degree of f(x) is 1; however, it is not clear what will occur for

larger degrees.

3. The same questions studied in this chapter could be asked for curves of the form

yn = f(x) with n > 2, rather than just for n = 2. Do similar patterns hold for larger

values of n?

4. All of the examples we have found where (?) fails to hold have f(x) with even degree.

Is (?) necessarily true for polynomials of odd degree?
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Chapter 4

Preperiodic points for quadratic

polynomials over number fields

4.1 Introduction

Let K be a field and let ϕ : Pn −→ Pn be a morphism defined over K. For any point

P ∈ Pn(K) we may consider the sequence of all iterates of P under ϕ:

P, ϕ(P ), ϕ(ϕ(P )), ϕ(ϕ(ϕ(P ))), . . . .

We say that P is preperiodic for ϕ if this sequence contains only finitely many distinct

elements; that is, if the set {ϕn(P ) : n ≥ 0} is finite. Equivalently, P is preperiodic for

ϕ if there are distinct positive integers m,n such that ϕn(P ) = ϕm(P ). We say that P is

periodic for ϕ if it satisfies the stronger condition that there exists a positive integer n for

which ϕn(P ) = P . The smallest integer n with this property is called the period of P .

Notation 4.1.1. The set of all points P ∈ Pn(K) that are preperiodic for ϕ is denoted by

PrePer(ϕ,K).
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In this chapter we carry out a study of preperiodic points in the case that K is a number

field and ϕ : P1 −→ P1 is a quadratic polynomial map. In particular, we discuss in §4.3 an

algorithm for computing the set PrePer(ϕ,K), and in §4.5 we specialize to the case where

K is a quadratic number field. Known results in the case K = Q are summarized in §4.4.

4.2 Northcott’s Theorem and Uniform Boundedness

We state here the Uniform Boundedness Conjecture, which was our main motivation for

developing the material in this chapter.

Theorem 4.2.1 (Northcott [53]). Let H be the absolute multiplicative height on Pn(Q̄). For

any constants B and D, the set

{P ∈ Pn(Q̄) : H(P ) ≤ B and [Q(P ) : Q] ≤ D}

is finite.

The following theorem is a fundamental finiteness result in arithmetic dynamics.

Theorem 4.2.2 (Northcott [53]). Let K be a number field and let ϕ : Pn −→ Pn be a

morphism of degree d ≥ 2 defined over K. Then the set PrePer(ϕ) ⊂ Pn(K̄) is a set of

bounded height. In particular, for every integer D ≥ 1, the set

⋃
[L:K]≤D

PrePer(ϕ,L)

is finite.

Northcott’s theorem implies that ϕ has only finitely many K-rational preperiodic points.

One of the guiding questions in arithmetic dynamics is the following Uniform Boundedness

45



Conjecture, which predicts the existence of uniform bounds on the number of preperiodic

points of a morphism.

Conjecture 4.2.3 (Morton, Silverman [48]). Fix integers n ≥ 1, D ≥ 1, d ≥ 2. There exists

a constant M(n,D, d) such that for every number field K of degree D, and every morphism

ϕ : Pn −→ Pn of degree d defined over K,

# PrePer(ϕ,K) ≤M(n,D, d).

In the case where ϕ : P1 −→ P1 is a quadratic polynomial map, Conjecture 4.2.3 would

imply that, for a fixed degree D, the number of preperiodic points of ϕ can be bounded in

terms of D only. This special case of the conjecture has not been proved, although some

progress has been made in the cases D = 1 and 2; a summary of earlier work as well as

several new results are presented in §4.4 and §4.5.

4.3 Computation of preperiodic points

Given a number field K and a quadratic polynomial f with coefficients in K, we discuss

here a method for computing the preperiodic points of f in K. A very different and more

general method is given in a recent preprint of Hutz [23], although at present it has only

been implemented in the case where K = Q.

From a theoretical as well as computational perspective, it is useful to note that for the

purpose of studying the dynamics of quadratic polynomials it is enough to consider only

polynomials of the form fc(z) = z2 + c : for every quadratic polynomial f(z) ∈ K[z] there is

a unique linear polynomial g(z) ∈ K[z] and a unique c ∈ K such that g ◦ f ◦ g−1 = fc. One

sees easily that dynamical properties of f , such as the behavior of points under iteration by

f , are reflected in the dynamical properties of fc.
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We can therefore restrict attention to the one-parameter family {fc : c ∈ K}.

Notation 4.3.1. If K is a number field and c ∈ K, we let fc denote the quadratic polynomial

fc(z) = z2 + c.

The set PrePer(fc, K) can be given in a natural way the structure of a directed graph

by letting the vertices of the graph correspond to the elements P ∈ PrePer(f,K), and by

drawing directed edges P −→ f(P ) for every such point P .

Notation 4.3.2. The directed graph corresponding to the set PrePer(fc, K) will be denoted

by G(fc, K).

We know by Northcott’s theorem (4.2.2) that the set PrePer(fc, K) is a set of bounded

height. The following explicit height bound for the preperiodic points of fc is proved in [13].

Lemma 4.3.3. Let K be a number field, and c ∈ K. Then for all points P ∈ PrePer(fc, K)

we have

HK(P ) ≤

(
1 +
√

5

2

)[K:Q]

HK(c)1/2.

Our method for computing the set PrePer(fc, K) is to first find all elements ofK satisfying

the height bound in Lemma 4.3.3, and then to determine which elements of this set of

bounded height are preperiodic for fc. A method for carrying out the first step is given in

Chapter 6. For the second step, we need a way to quickly eliminate many elements from

the set of elements of bounded height which are not preperiodic for fc. We discuss here a

series of local tests that can be used to do so. Full details and proofs appear in the article

of Doyle, Faber, and Krumm [13].

Proposition 4.3.4. Let K be a number field, and let P, c ∈ K.

1. If there exists a maximal ideal p of OK such that ordp(P ) < 0 ≤ ordp(c), then P is not

preperiodic for fc.
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2. If there exists a maximal ideal p of OK such that ordp(c) < 0 and ordp(P ) 6= 1
2

ordp(c),

then P is not preperiodic for fc. In particular, if ordp(c) is negative and odd for some

maximal ideal p, then fc has no preperiodic point in K.

3. If there exists a maximal ideal p of OK, lying above an odd rational prime, such that

ordp(c) < 0 and −c is not a square in the completion Kp, then fc has no preperiodic

point in K.

Proof. See Lemma 4.1 in [13].

Proposition 4.3.4 provides a way of showing that a given element P ∈ K is not prepe-

riodic for fc, by using the non-Archimedean places of K. Similar tests may be used at the

Archimedean places, as shown below.

Proposition 4.3.5. Let K be a number field, and let P, c ∈ K.

1. If |σ(P )| > 1
2

+
√

1
4

+ |σ(c)| for some embedding σ : K ↪→ C, then P is not preperiodic

for fc.

2. If σ(c) > 1
4

for some embedding σ : K ↪→ R, then fc has no preperiodic point in K.

3. Suppose σ is a real embedding of K such that σ(c) ≤ 1
4
, and set a = 1

2
+
√

1
4
− σ(c). If

|σ(P )| > a, then P is not preperiodic for fc.

4. Suppose σ is a real embedding of K such that σ(c) < −2, and set a = 1
2

+
√

1
4
− σ(c).

If

σ(P ) 6∈
[
−a,−

√
−a− σ(c)

]
∪
[√
−a− σ(c), a

]
,

then P is not preperiodic for fc.

Proof. See Lemma 4.2 in [13].
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We now have in place all necessary tools for determining the set PrePer(fc, K) for a given

quadratic polynomial fc over a number field K. First, we must find all elements of the set

B = {x ∈ K : HK(x) ≤ B}, where

B =

(
1 +
√

5

2

)[K:Q]

HK(c)1/2.

By Lemma 4.3.3 we know that PrePer(fc, K) ⊆ B. Next, every element of B must be tested

using Propositions 4.3.4 and 4.3.5. Letting C be the set of elements of B which pass all the

tests, we have PrePer(fc, K) ⊆ C. Finally, for each element P ∈ C we can decide whether P

is preperiodic for fc or not by computing the first n iterates of P , where n = 1 + #C. To

see this, note that if two of these iterates are equal, then P is preperiodic, by definition; and

if all n iterates are distinct, then P cannot be preperiodic: if it was, then these n distinct

iterates would also be preperiodic, and hence belong to C; but the latter is a set with fewer

than n elements.

4.4 Rational preperiodic points

The Uniform Boundedness Conjecture (4.2.3) predicts the existence of a constant M such

that for every quadratic polynomial f ∈ Q[z] we have # PrePer(f,Q) ≤ M . Even this very

special case of the conjecture has not been proved. Walde and Russo [74] carried out an

initial study of periodic points for quadratic polynomials over Q; in particular, they described

quadratic polynomials with points of periods 1, 2, and 3, and they asked the question of what

the possible periods are for the rational periodic points of a quadratic polynomial over Q.

The following series of theorems gives a partial answer to this question.

Theorem 4.4.1 (Morton [47]). There does not exist a quadratic polynomial over Q with a

rational point of period 4.
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Theorem 4.4.2 (Flynn, Poonen, Schaefer [17]). There does not exist a quadratic polynomial

over Q with a rational point of period 5.

Theorem 4.4.3 (Stoll [70]). Assume the Birch and Swinnerton-Dyer Conjecture. Then

there does not exist a quadratic polynomial over Q with a rational point of period 6.

It is believed that a quadratic polynomial with rational coefficients cannot have rational

periodic points of period greater than 3.

Conjecture 4.4.4 (Flynn, Poonen, Schaefer [17]). If n ≥ 4, then there does not exist a

quadratic polyomial over Q with a rational periodic point of period n.

In addition to the evidence provided by the above theorems, there is empirical evidence

supporting this conjecture.

Proposition 4.4.5 (Hutz, Ingram [24]). If c is a rational number with H(c) ≤ 108, then the

polynomial f(z) = z2 + c does not have a rational periodic point of period n > 3.

Assuming Conjecture 4.4.4, Poonen obtained the following upper bound for the number

of rational preperiodic points of a quadratic polynomial over Q.

Theorem 4.4.6 (Poonen [58]). Assume that there does not exist a quadratic polynomial

over Q with a rational periodic point of period n > 3. Then for every quadratic polynomial

f(z) ∈ Q[z],

# PrePer(f,Q) ≤ 9.

In addition to an upper bound for the number of preperiodic points, Poonen determined

that there are, up to isomorphism, only 12 possible graph structures G(fc,Q) for quadratic

polynomials fc ∈ Q[z].
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4.5 Quadratic preperiodic points

As a next step to Poonen’s results mentioned in the previous section, we consider quadratic

polynomials defined over quadratic number fields and study their preperiodic points. In

particular, we would like to know how many preperiodic points such a polynomial can have,

and what the possible graph structures G(fc, K) are. A partial answer to these questions

is provided by the following result, which was obtained using the computational methods

discussed in §4.3.

Theorem 4.5.1 (Doyle, Faber, Krumm [13]). Suppose that there exists a constant N such

that # PrePer(f,K) ≤ N for every quadratic number field K and quadratic polynomial

f ∈ K[z]. Then N ≥ 15. Moreover, there are at least 46 directed graphs corresponding to

sets PrePer(f,K) for such a K and f .

We show in Appendices A.1 and A.2 the 46 graphs mentioned in the theorem, together

with a representative example of a field and a polynomial giving rise to each particular

structure. For every one of these graphs we may ask the following questions:

• Are there infinitely many quadratic polynomials whose set of preperiodic points has

the given structure?

• If there are infinitely many, can they be described explicitly?

• If there are only finitely many, can they all be determined?

In what follows we give a series of four examples showing how the results of Chapter 2

can be used to address these questions. The general strategy is to associate to every graph an

algebraic curve parametrizing quadratic polynomials whose preperiodic points have the given

structure. In order to study the existence of particular graph structures over a quadratic

field, we must then study the quadratic points on these curves.

The following terminology will be used throughout this section.
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Definition 4.5.2. Let f(z) be a quadratic polynomial over a field K. A point of type mn

for f(z) is an element x ∈ K that is preperiodic for f(z) and enters an m-cycle after n

iterations.

We will need in this section an explicit description of all quadratic points on an elliptic

curve, which is provided by the following result.

Lemma 4.5.3. Let k be a field, and let X/k be an affine curve defined by an equation of the

form

y2 = ax3 + bx2 + cx+ d,

where a, b, c, d ∈ k and a 6= 0. Suppose that (x, y) ∈ X(k) is a quadratic point with x /∈ k.

Then there is a point (x0, y0) ∈ X(k) and an element v ∈ k such that y = y0 + v(x−x0) and

x2 +
ax0 − v2 + b

a
x+

ax20 + v2x0 + bx0 − 2y0v + c

a
= 0.

Proof. Since y ∈ k(x), we can write y = p(x) for some polynomial p(t) ∈ k[t] of degree at

most 1. Note that x is a root of the polynomial

F (t) := at3 + bt2 + ct+ d− p(t)2,

so F (t) must factor as F (t) = a(t − x0)m(t), where m(t) is the minimal polynomial of x,

and x0 ∈ k. Since F (x0) = 0, then (x0, p(x0)) ∈ X(k). Letting y0 = p(x0) we can write

p(t) = y0 + v(t− x0) for some v ∈ k; in particular, y = p(x) = y0 + v(x− x0). Carrying out

the division

F (t)

a(t− x0)
=
at3 + bt2 + ct+ d− (y0 + v(t− x0))2

a(t− x0)

we obtain

m(t) = t2 +
ax0 − v2 + b

a
t+

ax20 + v2x0 + bx0 − 2y0v + c

a
.
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4.5.1 Graph 10(1,1)a

The search carried out in [13] found the pair

(K, c) =

(
Q(
√
−7),

3

16

)

for which the graph G(fc, K) is of type 10(1,1)a. We now show that this is the only such

pair (K, c) with K a quadratic number field and c ∈ K.

Figure 4.1: Graph type 10(1,1)a

Lemma 4.5.4. Let C/Q be the curve of genus 4 defined by the equations


y2 = 2(x3 + x2 − x+ 1)

z2 = −2(x3 − x2 − x− 1).

(4.1)

Consider the rational map ϕ : C 99K A3 = SpecQ[a, b, c] given by

a =
y

x2 − 1
, b =

z

x2 − 1
, c =

−2(x2 + 1)

(x2 − 1)2
.

For every number field K, the map ϕ induces a surjection from the set

{(x, y, z) ∈ C(K) : x(x2 − 1) 6= 0}
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to the set of all triples (a, b, c) ∈ K3 such that a and b are points of type 13 for the map fc

satisfying fc(a) = −fc(b) and a 6= ±b.

Proof. Fix a number field K and let (x, y, z) ∈ C(K) satisfy x(x2 − 1) 6= 0. Defining a, b, c

as in the lemma, it is a routine calculation to verify that a and b are points of type 13 for the

map fc satisfying fc(a) = −fc(b). Moreover, a2 − b2 = 4x/(x2 − 1) 6= 0, so a 6= ±b. Hence,

ϕ gives a well-defined map.

To see surjectivity, suppose that a, b, c ∈ K are such that a and b are points of type 13 for

the map fc satisfying fc(a) = −fc(b) and a 6= ±b. The argument given in [58, p. 22] shows

that there is an element x ∈ K \ {±1} such that

c =
−2(x2 + 1)

(x2 − 1)2
and a2 =

2(x3 + x2 − x+ 1)

(x2 − 1)2
. (4.2)

Since a2 + c = fc(a) = −fc(b) = −b2 − c, then using (4.2) we obtain

b2 =
−2(x3 − x2 − x− 1)

(x2 − 1)2
.

By assumption we have a2 6= b2, and this implies x 6= 0. Letting y = a(x2− 1), z = b(x2− 1)

we then have (x, y, z) ∈ C(K) with x(x2 − 1) 6= 0 and ϕ(x, y, z) = (a, b, c).

Theorem 4.5.5. With C as in Lemma 4.5.4 we have the following:

1. C(Q) = {(±1,±2,±2)}.

2. If K is a quadratic field different from Q(
√

2) and Q(
√
−7), then C(K) = C(Q).

3. For K = Q(
√

2), C(K) \ C(Q) = {(0,±
√

2,±
√

2)}.

4. For K = Q(
√
−7), C(K) \ C(Q) consists of the points (x,±(2x− 4),±(2x + 4)) with

x2 + 7 = 0.
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Proof. The equation y2 = 2(x3 + x2 − x + 1) defines the elliptic curve with Cremona label

11a3. This curve has rank 0 and torsion order 5; the affine rational points are (±1,±2). The

equation z2 = −2(x3 − x2 − x − 1) defines the same elliptic curve, and the rational points

are again (±1,±2). Therefore, C(Q) = {(±1,±2,±2)}.

Suppose now that (x, y, z) ∈ C(Q) is a point with [Q(x, y, z) : Q] = 2, and let K =

Q(x, y, z).

Case 1: x ∈ Q. We cannot have x = ±1, since this would imply that y = ±2 and z = ±2,

contradicting the assumption that (x, y, z) is a quadratic point on C. Hence, x 6= ±1. It

follows that y /∈ Q, since having x, y ∈ Q would imply that x = ±1. Similarly, z /∈ Q.

Therefore, K = Q(y) = Q(z), so there is a rational number q such that

x3 + x2 − x+ 1 = −q2(x3 − x2 − x− 1).

Letting w = q(x3 − x2 − x− 1) we have

w2 = −x6 + 3x4 + x2 + 1 (4.3)

Let X be the hyperelliptic curve of genus 2 defined by (4.3). We claim that the following is

a complete list of rational points on X:

X(Q) = {(±1,±2), (0,±1)}.

To see this, note that X has an involution (x,w) 7→ (−x,−w). The quotient of X by this

involution is the elliptic curve 44a1 defined by the equation v2 = u3 + u2 + 3u − 1. The

quotient map X −→ 44a1 of degree 2 is given by (x,w) 7→ (1/x2, w/x3). The curve 44a1 has

exactly 3 rational points, so it follows that X can have at most 6 rational points. Since we

have already displayed 6 rational points on X, these must be all such points. Now, we have
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(x,w) ∈ X(Q) with x 6= ±1, so x = 0. By (4.1) we then have y2 = z2 = 2, so we obtain the

quadratic point (x, y, z) = (0,±
√

2,±
√

2).

Case 2: x is quadratic. By Lemma 4.5.3 applied to the equation y2 = 2(x3 +x2−x+ 1),

there exist a rational number v and a point (x0, y0) ∈ {(±1,±2)} such that

x2 +
2x0 − v2 + 2

2
x+

2x20 + v2x0 + 2x0 − 2y0v − 2

2
= 0. (4.4)

Similarly, applying Lemma 4.5.3 to the equation z2 = −2(x3− x2− x− 1) we see that there

exist a rational number w and a point (x1, z1) ∈ {(±1,±2)} such that

x2 +
2x1 + w2 − 2

2
x+

2x21 − w2x1 − 2x1 + 2z1w − 2

2
= 0. (4.5)

Comparing (4.4) and (4.5) we obtain the system


2x0 − v2 + 4 = 2x1 + w2

2x20 + v2x0 + 2x0 − 2y0v = 2x21 − w2x1 − 2x1 + 2z1w.

For each choice of points (x0, y0), (x1, z1) the above system defines a zero-dimensional

scheme S in the (v, w) plane over Q, so all its rational points may be determined. There are

a total of 16 choices of pairs (x0, y0), (x1, z1), leading to 16 schemes S. Using the Magma

function RationalPoints we find all the rational points (v, w) on these schemes, and in

every case check whether the polynomial (4.4) is irreducible. This occurs for four of these

schemes, and for all of these (4.4) becomes x2 + 7 = 0. The equations (4.1) now imply that

y2 = (2x− 4)2 and z2 = (2x+ 4)2. Therefore, (x, y, z) ∈ {(x,±(2x− 4),±(2x+ 4))}.

Corollary 4.5.6. Let K be a quadratic field and let c ∈ K. Suppose that G(fc, K) contains

a graph of type 10(1,1)a. Then c = 3/16 and K = Q(
√
−7).
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Proof. By Lemma 4.5.4 there is a point (x, y, z) ∈ C(K) with x(x2 − 1) 6= 0 such that

c =
−2(x2 + 1)

(x2 − 1)2
.

It follows from Theorem 4.5.5 that K = Q(
√
−7) and x2+7 = 0. We then obtain c = 3

16
.

4.5.2 Graph 10(3,2)

Figure 4.2: Graph type 10(3,2)

Lemma 4.5.7. Let C/Q be the affine curve of genus 2 defined by the equation

y2 = F13(x) := x6 + 2x5 + x4 + 2x3 + 6x2 + 4x+ 1. (4.6)

Consider the rational map ϕ : C 99K A3 = SpecQ[a, b, c] given by

a =
x3 + 2x2 + x+ 1

2x(x+ 1)
, b = −1

2
+

y

2x(x+ 1)
, c = −x

6 + 2x5 + 4x4 + 8x3 + 9x2 + 4x+ 1

4x2(x+ 1)2
.

For every number field K, the map ϕ induces a surjection from the set

{(x, y) ∈ C(K) : x(x+ 1)(x2 + x+ 1)F13(x) 6= 0}
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to the set of all triples (a, b, c) ∈ K3 such that a and b are points of periods 3 and 2,

respectively, for the map fc.

Proof. Fix a number field K and let (x, y) ∈ C(K) with x(x + 1)(x2 + x + 1)F13(x) 6= 0.

Defining a, b, c as in the lemma, is it easy to check that a is a point of period 3 for fc and b

is a point of period 2. Hence, ϕ gives a well-defined map.

To see surjectivity, suppose that a, b, c ∈ K are such that a and b are points of periods

3 and 2, respectively, for fc. Since b has period 2, then by [58, Thm. 1] there is an element

σ ∈ K such that

c = −3/4− σ2 and b = −1/2 + σ.

Moreover, since a is a point of period 3 for fc, then by [58, Thm. 1] there is an element

τ ∈ K \ {0,−1} such that

c = −τ
6 + 2τ 5 + 4τ 4 + 8τ 3 + 9τ 2 + 4τ + 1

4τ 2(τ + 1)2

and a belongs to the set S = { τ3+2τ2+τ+1
2τ(τ+1)

, τ
3−τ−1

2τ(τ+1)
,− τ3+2τ2+3τ+1

2τ(τ+1)
}. We define an element

x ∈ K as follows: if a is the first element of S, then we set x = τ ; if a is the second element

of S, then x = −(τ + 1)/τ ; if a is the third element of S, then x = −1/(τ + 1). One can

verify that in all three cases, x 6= 0,−1 and

a =
x3 + 2x2 + x+ 1

2x(x+ 1)
, c = −x

6 + 2x5 + 4x4 + 8x3 + 9x2 + 4x+ 1

4x2(x+ 1)2
.

Furthermore, we must have x2 + x+ 1 6= 0, since otherwise a would be fixed by fc; similarly,

F13(x) 6= 0 since otherwise b would be fixed. Equating the above expression for c with the

expression c = −3/4− σ2 and letting y = 2x(x+ 1)σ we obtain

y2 = x6 + 2x5 + x4 + 2x3 + 6x2 + 4x+ 1.
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Thus, we have a point (x, y) ∈ C(K) with x(x + 1)(x2 + x + 1)F13(x) 6= 0 and ϕ(x, y) =

(a, b, c).

Theorem 4.5.8. There are infinitely many quadratic fields K containing an element c for

which G(fc, K) admits a subgraph of type 10(3,2). Moreover, every such field K is a real

quadratic field.

Proof. As noted in §2.6, the curve y2 = F13(−x) is an affine model for the modular curve

X1(13). This curve has exactly 6 rational points:

X1(13)(Q) = {∞+,∞−, (0,±1), (−1,±1)}.

Hence, if x ∈ Q\{0,−1}, then F13(x) is not a square. For any such rational number x we let

y =
√
F13(x) and K = Q(y), thus obtaining a quadratic field K and a point (x, y) ∈ C(K)

with x(x+ 1)(x2 + x+ 1)F13(x) 6= 0. By Lemma 4.5.7 this implies that there is an element

c ∈ K for which G(fc, K) admits a subgraph of type 10(3,2). Clearly, as we vary x ∈ Q

we obtain infinitely many quadratic fields K in this form. This proves the first part of the

theorem.

Suppose now that K is a quadratic field such that there is some c ∈ K for which G(fc, K)

admits a subgraph of type 10(3,2). By Lemma 4.5.7 there is a point (x, y) ∈ C(K) with

x(x + 1) 6= 0. We cannot have both x, y ∈ Q since this would imply that x ∈ {0,−1},

which we are assuming is not the case. Therefore, (x, y) is a quadratic point on X1(13), so it

follows from Theorem 2.6.9 that x ∈ Q. Since K = Q(x, y) = Q(y) = Q(
√
F13(x)), to show

that K is a real quadratic field it suffices to note that F13(x) only takes positive values for

x ∈ Q.

We end our discussion of the graph type 10(3,2) by stating explicitly how to obtain all

pairs (K, c) consisting of a quadratic field K and an element c ∈ K for which G(fc, K) is of

this type.
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Theorem 4.5.9. Let K be a quadratic field. Suppose that there exists an element c ∈ K

such that G(fc, K) is of type 10(3,2). Then there is a rational number x /∈ {0,−1} such that

c = −x
6 + 2x5 + 4x4 + 8x3 + 9x2 + 4x+ 1

4x2(x+ 1)2
. (4.7)

Moreover, the graph G(fc,Q) is of type 6(3) and K = Q(
√
−3− 4c).

Proof. By Lemma 4.5.7 there is a point (x, y) ∈ C(K) with x(x+ 1) 6= 0 such that c is given

by (4.7). As seen in the proof of Theorem 4.5.8, we must have x ∈ Q. Moreover, x cannot

equal 1, since this would lead to c = −29/16; however, the map fc would then have a point

of type 32 (see [58, Thm. 3]). Letting σ = y/2x(x+ 1) we have c = −3/4−σ2. Clearly then,

K = Q(y) = Q(σ) = Q(
√
−3− 4c). To see that G(fc,Q) is of type 6(3), note that since

x ∈ Q, the three points of period 3 for fc are also rational. Hence, we have c ∈ Q\{−29/16}

such that fc has a rational point of period 3. It follows from Poonen’s classification [58] that

G(fc,Q) is of type 6(3).

4.5.3 Graph 12(2,1,1)a

The search carried out in [13] produced the pair

(K, c) =

(
Q(
√

17),−13

16

)

for which the graph G(fc, K) is of type 12(2,1,1)a. We show here that this is the only such

pair (K, c) with K a quadratic number field and c ∈ K.

Lemma 4.5.10. Let C/Q be the affine curve of genus 5 defined by the equations


y2 = 2(x4 + 2x3 − 2x+ 1)

z2 = 5x4 + 8x3 + 6x2 − 8x+ 5.

(4.8)
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Figure 4.3: Graph type 12(2,1,1)a

Consider the rational map ϕ : C 99K A4 = SpecQ[r, s, p, c] given by

r = −x
2 + 1

x2 − 1
, s =

y

x2 − 1
, p =

1

2
+

z

2(x2 − 1)
, c = −x

4 + 2x3 + 2x2 − 2x+ 1

(x2 − 1)2
.

For every number field K, the map ϕ induces a surjection from the set

{(x, y, z) ∈ C(K) : x(x2 − 1)(x2 + 4x− 1) 6= 0}

to the set of all tuples (r, s, p, c) ∈ K4 such that p is a fixed point of the map fc and r, s are

points of type 22 for fc satisfying fc(s) = −f 2
c (r) and r 6= ±s.

Proof. Fix a number fieldK and let (x, y, z) ∈ C(K) be a point with x(x2−1)(x2+4x−1) 6= 0.

Defining r, s, p, c ∈ K as in the lemma, it is a simple calculation to verify that p is a fixed

point of the map fc and that r, s are of type 22 for fc satisfying fc(s) = −f 2
c (r). Moreover,

we have s2− r2 = (x2 + 4x− 1)/(x2− 1) 6= 0, so r 6= ±s. Hence, ϕ gives a well-defined map.

To see surjectivity, suppose that r, s, p, c ∈ K are such that p is a fixed point of the map

fc and r, s are points of type 22 for fc satisfying fc(s) = −f 2
c (r) and r 6= ±s. The argument

given in [58, p. 20] shows that there is an element x ∈ K \ {0,±1} such that

c = −x
4 + 2x3 + 2x2 − 2x+ 1

(x2 − 1)2
, r = −x

2 + 1

x2 − 1
, s2 =

2(x4 + 2x3 − 2x+ 1)

(x2 − 1)2
.
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The condition r 6= ±s implies that x2 + 4x− 1 6= 0. By [58, Thm. 1] there is an element

ρ ∈ K such that c = 1
4
− ρ2 and p = 1/2 + ρ. Letting y = s(x2 − 1) and z = 2ρ(x2 − 1) we

obtain a point (x, y, z) ∈ C(K) with x(x2−1)(x2+4x−1) 6= 0 and ϕ(x, y, z) = (r, s, p, c).

Theorem 4.5.11. With C as in Lemma 4.5.10 we have the following:

1. C(Q) = {(±1,±2,±4)}.

2. If K is a quadratic field different from Q(
√

5) and Q(
√

17), then C(K) = C(Q).

3. For K = Q(
√

5), C(K) \ C(Q) = {(x,±(4x− 2),±8x) : x2 + 4x− 1 = 0}.

4. For K = Q(
√

17), C(K) \ C(Q) consists of the points (−3,±2
√

17,±4
√

17),

(1/3,±2
√

17/9,±4
√

17/9), and the points (x,±10x,±(16x− 4)) with x2 + 8x− 1 = 0.

Proof. The curve y2 = 2(x4+2x3−2x+1) is birational to the elliptic curve with Cremona label

40a3, which has rank 0 and torsion order 4. The rational points on this curve are (±1,±2).

The curve z2 = 5x4 + 8x3 + 6x2 − 8x + 5 is birational to the elliptic curve 17a4, which has

rank 0 and torsion order 4; the rational points are (±1,±4). Hence, C(Q) = {(±1,±2,±4)}.

Suppose now that (x, y, z) ∈ C(Q̄) satisfies [Q(x, y, z) : Q] = 2, and let K = Q(x, y, z).

Case 1: x ∈ Q. We cannot have x = ±1, since this would imply that y = ±2 and z = ±4,

contradicting the assumption that (x, y, z) is a quadratic point on C. Hence, x 6= ±1. It

follows that y /∈ Q, since having x, y ∈ Q would imply that x = ±1. Similarly, z /∈ Q.

Therefore, K = Q(y) = Q(z), so there is a rational number q such that

2(x4 + 2x3 − 2x+ 1) = q2(5x4 + 8x3 + 6x2 − 8x+ 5).

Letting w = q(5x4 + 8x3 + 6x2 − 8x+ 5) we obtain

w2 = 10x8 + 36x7 + 44x6 − 12x5 − 44x4 + 12x3 + 44x2 − 36x+ 10 (4.9)

62



with x,w ∈ Q and x 6= ±1. Let X be the hyperelliptic curve of genus 3 defined by (4.9).

We claim that the following is a complete list of rational points on X:

X(Q) = {(±1,±8), (−3,±136), (1/3,±136/81)}.

Assuming this for the moment, we must then have x = −3 or x = 1/3. Taking x = −3 we

obtain by (4.8) that y2 = 68 and z2 = 272. If x = 1/3, then y2 = 68/81 and z2 = 272/81.

Thus, we obtain the quadratic points (−3,±2
√

17,±4
√

17) and (1/3,±2
√

17/9,±4
√

17/9).

In order to determine all rational points on X we note that X has an involution (x,w) 7→

(−1/x, w/x4). The quotient of X by this involution is the elliptic curve

17a2 : v2 + uv + v = u3 − u2 − 6u− 4.

The quotient map X −→ 17a2 of degree 2 is given by

u =
2x6 + 6x5 + 2x4 − 12x3 − x2w − 2x2 + 6x+ w − 2

x6 − 3x4 + 3x2 − 1
,

v =
−6x6 − 24x5 − 22x4 + 16x3 + 2x2w + 22x2 + 4xw − 24x− 2w + 6

x6 − 3x4 + 3x2 − 1
.

Since 17a2 has only 4 rational points, it follows that X has at most 8 rational points.

We have already found 8 points in X(Q), so these must be all of them.

Case 2: x is quadratic. We make the change of variables

X =
2x2 + y

(x− 1)2
, Y =

3x3 + 3x2 + 2xy − 3x+ 1

(x− 1)3
(4.10)

S =
5x2 + 2x+ 2z + 1

(x− 1)2
, T =

2(7x3 + 9x2 + 3xz − 3x+ z + 3)

(x− 1)3
(4.11)
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satisfying

X2 + 2Y

X2 − 4X + 2
= x =

S2 + 2S + 4T + 1

S2 − 10S + 5
(4.12)

to obtain the equations 
Y 2 = X3 − 2X + 1

T 2 = S3 − 11S + 6.

The idea of the proof is to use these two equations together with Lemma 4.5.3 to find

the minimal polynomials of X and S, and then using (4.12) to find the minimal polynomial

of x. It may occur that X or S is rational rather than quadratic, so we must consider

this possibility. If X ∈ Q, then substituting y = X(x − 1)2 − 2x2 into the equation y2 =

2(x4 + 2x3 − 2x+ 1) we obtain the following expression for the minimal polynomial of x:

x2 − 2X2

X2 − 4X + 2
x+

X2 − 2

X2 − 4X + 2
= 0. (4.13)

Similarly, if S ∈ Q, then substituting z = 1
2
[S(x − 1)2 − 5x2 − 2x − 1] into the equation

z2 = 5x4 + 8x3 + 6x2 − 8x+ 5 we find that

x2 − 2S2 + 4S + 2

S2 − 10S + 5
x+

S2 − 2S − 19

S2 − 10S + 5
= 0. (4.14)

Now, if X is quadratic, then by Lemma 4.5.3 applied to the equation Y 2 = X3− 2X + 1,

there is a rational number v and a point (X0, Y0) ∈ {(0,±1), (1, 0)} such that

X2 + (X0 − v2)X +X2
0 + v2X0 − 2Y0v − 2 = 0 , Y = Y0 + v(X −X0). (4.15)

The point (0,−1) is excluded in this case because (4.12) would imply that x = v
v−2 ∈ Q.
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If (X0, Y0) = (0, 1), then (4.12) and (4.15) imply that

x2 − 4(v + 1)

v2 − 2
x− 1 = 0. (4.16)

If instead (X0, Y0) = (1, 0), then

x2 − 4x

v2 − 2v − 1
− v2 + 2v − 1

v2 − 2v − 1
= 0. (4.17)

Similarly, if S /∈ Q, then by Lemma 4.5.3 applied to the equation T 2 = S3 − 11S + 6,

there is a rational number w and a point (S0, T0) ∈ {(−1,±4), (3, 0)} such that

S2 + (S0 − w2)S + S2
0 + w2S0 − 2T0w − 11 = 0 , T = T0 + w(S − S0). (4.18)

The point (−1,−4) is excluded because it would lead to x = w+1
w−3 ∈ Q. If (S0, T0) = (3, 0),

then (4.12) and (4.18) imply that

x2 − 8x

w2 − 4w − 1
− w2 + 4w − 1

w2 − 4w − 1
= 0, (4.19)

and if (S0, T0) = (−1, 4), then

x2 − 8w + 8

w2 − 5
x− 1 = 0. (4.20)

We now split the proof into four cases, according to whether X and S are rational or

quadratic.

Case 2a: X,S ∈ Q. We simultaneously have relations (4.13) and (4.14). Comparing

these equations we obtain the system


X2(S2 − 10S + 5) = (X2 − 4X + 2)(S2 + 2S + 1)

(X2 − 2)(S2 − 10S + 5) = (X2 − 4X + 2)(S2 − 2S − 19),
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whose rational solutions are (X,S) = (0,−1) and (X,S) = (1, 3). However, both solu-

tions lead to x = ±1 by applying (4.13) and (4.14). We conclude that X and S cannot both

be rational.

Case 2b: X ∈ Q, S /∈ Q. We have (4.13) and (4.18). If (S0, T0) = (3, 0), then we

compare (4.13) and (4.19) to arrive at the system


X2(w2 − 4w − 1) = 4(X2 − 4X + 2)

(X2 − 2)(w2 − 4w − 1) = −(X2 − 4X + 2)(w2 + 4w − 1),

whose only rational solution is (X,w) = (1, 1). However, when w = 1, (4.19) becomes

(x+ 1)2 = 0, a contradiction.

If (S0, T0) = (−1, 4), then we compare (4.13) and (4.20) to conclude that X = 0 or 2.

Then (4.13) becomes x2 − 1 = 0 (a contradiction) or x2 + 4x− 1 = 0.

Case 2c: X /∈ Q, S ∈ Q. In this case we have (4.14) and (4.15). If (X0, Y0) = (0, 1),

then we compare (4.14) and (4.16) to conclude that S = 7 and x2 + 8x− 1 = 0.

If (X0, Y0) = (1, 0), then we compare (4.14) and (4.17) to arrive at the system


2(S2 − 10S + 5) = (v2 − 2v − 1)(S + 1)2

−(v2 + 2v − 1)(S2 − 10S + 5) = (v2 − 2v − 1)(S2 − 2S − 19),

whose only rational solution is (S, v) = (3, 1). However, if v = 1, then (4.17) becomes

(x+ 1)2 = 0, a contradiction.

Case 2d: X,S /∈ Q. We have (4.15) and (4.18).

• If (X0, Y0) = (1, 0) and (S0, T0) = (3, 0), then comparing (4.17) and (4.19) we find that

v = w = ±1. But then (4.17) implies that x = ±1, a contradiction.

• If (X0, Y0) = (1, 0) and (S0, T0) = (−1, 4), then we compare (4.17) and (4.20) to see
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that v = 0 and x2 + 4x− 1 = 0.

• If (X0, Y0) = (0, 1) and (S0, T0) = (3, 0), then we compare (4.16) and (4.19) to conclude

that w = 0, and therefore x2 + 8x− 1 = 0.

• If (X0, Y0) = (0, 1) and (S0, T0) = (−1, 4), then comparing (4.16) and (4.20) we obtain

(v + 1)(w2 − 5) = 2(w + 1)(v2 − 2).

Let E ⊂ P2 be the projective closure of the curve defined by this equation. Then E

is a nonsingular plane cubic with at least four rational points, namely the affine point

(−1,−1) and three points at infinity. Using Magma we find that E is the elliptic curve

17a4, which has exactly 4 rational points. It follows that (v, w) = (−1,−1) is the only

affine point on E. But then (4.16) becomes x2 − 1 = 0, which is a contradiction.

In all cases that have not led to a contradiction we have concluded that either x2+4x−1 =

0 or x2 + 8x− 1 = 0. If x2 + 4x− 1 = 0, then (4.8) implies that y = ±(4x− 2) and z = ±8x.

If x2 + 8x− 1 = 0, then y = ±10x and z = ±(16x− 4).

Corollary 4.5.12. Let K be a quadratic field, and let c ∈ K. Suppose that G(fc, K) contains

a graph of type 12(2,1,1)a. Then c = −13/16 and K = Q(
√

17).

Proof. By Lemma 4.5.10 there is a point (x, y, z) ∈ C(K) with x(x2 − 1)(x2 + 4x − 1) 6= 0

such that

c = −x
4 + 2x3 + 2x2 − 2x+ 1

(x2 − 1)2
.

It follows from Theorem 4.5.11 that K = Q(
√

17) and that x is either −3, 1/3, or a quadratic

number satisfying x2 + 8x− 1 = 0. In all three cases we obtain c = −13
16

.
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4.5.4 Graph 12(4)

The search carried out in [13] produced a unique pair

(K, c) =
(
Q(
√

105),−95/48
)

consisting of a quadratic field K and an element c ∈ K for which the graph G(fc, K) is of

type 12(4). We show here that in addition to this known example there are at most five

other pairs (K, c) with this property.

Figure 4.4: Graph type 12(4)

Lemma 4.5.13. Let C/Q be the affine curve of genus 9 defined by the equations


y2 = −x(x2 + 1)(x2 − 2x− 1)

z2 = x(−x6 + x5 + 7x4 + 10x3 − 7x2 + 5x+ 1)− 2x(x− 1)(x+ 1)2y.

(4.21)

Consider the rational map ϕ : C 99K A2 = SpecQ[p, c] given by

p =
z

2x(x2 − 1)
, c =

(x2 − 4x− 1)(x4 + x3 + 2x2 − x+ 1)

4x(x2 − 1)2
.
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For every number field K, the map ϕ induces a surjection from the set

{(x, y, z) ∈ C(K) : x(x4 − 1)(x2 − 2x− 1) 6= 0}

to the set of all pairs (p, c) ∈ K2 such that p is a point of type 42 for the map fc.

Proof. Fix a number field K. Suppose (x, y, z) ∈ C(K) is a point with x(x4−1)(x2−2x−1) 6=

0, and define p, c ∈ K as in the lemma. It is then a simple calculation to verify that p is a

point of type 42 for fc. Hence, ϕ gives a well-defined map.

To prove surjectivity, suppose that p, c ∈ K are such that p is a point of type 42 for the

map fc. Then q := p2 + c is a point of type 41, so −q is a point of period 4. By [47, pp.

92–93] there are elements x, y ∈ K satisfying y2 = −x(x2 + 1)(x2 − 2x− 1) such that

c =
(x2 − 4x− 1)(x4 + x3 + 2x2 − x+ 1)

4x(x− 1)2(x+ 1)2
, − q =

x− 1

2(x+ 1)
+

y

2x(x− 1)
,

and x(x4 − 1)(x2 − 2x− 1) 6= 0. Clearing denominators in the equation

−p2 − (x2 − 4x− 1)(x4 + x3 + 2x2 − x+ 1)

4x(x− 1)2(x+ 1)2
=

x− 1

2(x+ 1)
+

y

2x(x− 1)

and letting z = 2x(x2 − 1)p we obtain

z2 = x(−x6 + x5 + 7x4 + 10x3 − 7x2 + 5x+ 1)− 2x(x− 1)(x+ 1)2y.

Thus, we have a point (x, y, z) ∈ C(K) with x(x4 − 1)(x2 − 2x − 1) 6= 0 and ϕ(x, y, z) =

(p, c).

Lemma 4.5.14. Let X/Q be the hyperelliptic curve of genus 5 defined by the equation

w2 = x12 + 2x11− 13x10− 26x9 + 67x8 + 124x7 + 26x6− 44x5 + 179x4− 62x3− 5x2 + 6x+ 1.
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Then X(Q) contains the points∞+,∞−, (±1,±16), (0,±1), (−3,±368) and at most 10 other

points.

Proof. Using the Magma function Points we search for rational points on X of height at

most 105 and obtain the points listed above. Using the RankBound function we obtain an

upper bound of 4 for the rank of Jac(X)(Q); we are thus in a position to bound the number

of rational points on X using the method of Chabauty. The primes 3, 5, 7, 11, and 13 are of

good reduction for X, and Magma’s Points function yields

#X(F3) = 8, #X(F5) = 12, #X(F7) = 12, #X(F11) = 20, #X(F13) = 19.

Applying the Coleman bound [9] at the prime p = 13 we deduce that #X(Q) ≤ 27. The

Lorenzini-Tucker bounds [41, Thm 1.1] give a smaller bound using p = 7, d = 2:

#X(Q) ≤ #X(F7) +
6

5
(8) = 12 +

6

5
(8) < 22,

so #X(Q) ≤ 21. However, since X has no rational point with w = 0, the number of rational

points must be even, and therefore #X(Q) ≤ 20. Since we have already found 10 rational

points, we conclude that there are at most 10 additional rational points on X.

Theorem 4.5.15. With C as in Lemma 4.5.13 we have the following:

1. C(Q) = {(0, 0, 0), (±1,±2,±4)}.

2. If (x, y, z) is a quadratic point on C, then x ∈ Q \ {0,±1}. Moreover, there exists

w ∈ Q such that (x,w) ∈ X(Q), where X is the curve defined in Lemma 4.5.14.

Proof. As noted in §2.6, the curve y2 = −x(x2 + 1)(x2 − 2x − 1) is an affine model for the

modular curve X1(16). This curve has exactly six rational points:

X1(16)(Q) = {∞, (0, 0), (±1,±2)}.
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The affine rational points on X1(16) give rise to the listed rational points on C.

Suppose now that (x, y, z) ∈ C(Q) is a point with [Q(x, y, z) : Q] = 2, and let K =

Q(x, y, z). We cannot have x ∈ {0,±1} since this would imply that (x, y, z) ∈ C(Q). It

follows that (x, y) cannot be a rational point on X1(16) and must therefore be quadratic. If

x /∈ Q, then by Theorem 2.6.12 either x2 = −1 and y = 0, or x2 − 2x − 1 = 0 and y = 0.

In both cases we find that the second equation in (4.21) has no solution in K. We conclude

that x must be a rational number different from 0,±1. Since y2 ∈ Q, the Galois conjugate

of y is −y. Hence, taking norms on both sides of the second equation in (4.21) we obtain

w2 = x12 + 2x11− 13x10− 26x9 + 67x8 + 124x7 + 26x6− 44x5 + 179x4− 62x3− 5x2 + 6x+ 1,

where w = NK/Q(z)/x.

Corollary 4.5.16. In addition to the known pair (Q(
√

105),−95/48) there are at most five

pairs (K, c), with K a quadratic number field and c ∈ K, for which G(fc, K) contains a

graph of type 12(4). Moreover, for every such pair we must have c ∈ Q.

Proof. Suppose that (K, c) is such a pair. Since fc has a point of type 42 in K, then by

Lemma 4.5.13 there is a point (x, y, z) ∈ C(K) with x(x2 − 1) 6= 0 such that

c =
(x2 − 4x− 1)(x4 + x3 + 2x2 − x+ 1)

4x(x2 − 1)2
. (4.22)

We cannot have (x, y, z) ∈ C(Q) since this would imply that x ∈ {0,±1}. Hence, (x, y, z)

is a quadratic point on C. By Theorem 4.5.15, x ∈ Q, and thus c ∈ Q. Moreover, there

is a rational number w such that (x,w) ∈ X(Q). It follows from Lemma 4.5.14 that either

x = −3 or x belongs to a list of at most 5 other rational numbers. Setting x = −3 yields
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c = −95/48, and the system (4.21) becomes


y2 = 420

z2 = 2256− 96y.

Hence, y = ±2
√

105 and z = ±(2y−24). In particular, K = Q(
√

105), so we have recovered

the known pair (Q(
√

105),−95/48). If x 6= −3, then there are at most five options for x;

each value of x determines the number c by (4.22) and the field K by (4.21). This gives at

most five options for the pair (K, c).

Remark 4.5.17. The map z2−95/48 has no preperiodic point in Q. This follows, for instance,

from part (2) of Proposition 4.3.4, since ord3(−95/48) = −1. Hence, the twelve preperiodic

points that this map has over the field Q(
√

105) are all quadratic over Q.

Note that the proof of Corollary 4.5.16 only used the existence of one pair of points of

type 42 for fc, rather than the two pairs of such points which occur in a graph of type 12(4).

However, there is no loss in doing this since, for quadratic fields K, the existence of one pair

of points of type 42 implies the existence of a second pair, as shown below.

Corollary 4.5.18. Let K be a quadratic field and let c ∈ K. Suppose that the map fc has

a point p ∈ K of type 42. Then σ(p) is another point of type 42 for fc (different from ±p),

where σ is the nontrivial element of Gal(K/Q).

Proof. By Lemma 4.5.13 there is a point (x, y, z) ∈ C(K) such that ϕ(x, y, z) = (p, c).

Moreover, as seen in the proof of Corollary 4.5.16, we must have x ∈ Q \ {0,±1}. Applying

σ to the system (4.21) we obtain the point (x,−y, σ(z)) ∈ C(K). Applying the map ϕ we

obtain ϕ(x,−y, σ(z)) = (σ(p), c). Hence, Lemma 4.5.13 shows that σ(p) is a point of type 42

for fc. Using the defining equations of C we see that neither y nor z2 are rational; it follows

that σ(z) /∈ {±z}, and therefore σ(p) /∈ {±p}.
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From this result we immediately deduce the following:

Corollary 4.5.19. There does not exist a pair (K, c) consisting of a quadratic number field

K and an element c ∈ K for which the graph G(fc, K) has a unique pair of points of type

42. In other words, the following graph structure 10(4) cannot occur over a quadratic field:

Figure 4.5: Graph type 10(4)
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Chapter 5

Tamagawa numbers and torsion of

elliptic curves

5.1 Introduction

Let K be a number field and E an elliptic curve defined over K. The L-series of E/K is

an analytic function L(E, s) on the half-plane Re(s) > 3/2, and it is conjectured that this

function admits an analytic continuation to the complex plane C. Our goal in this chapter

is to study several questions regarding the quotient

(∏
v

cv

)
/|E(K)tors|

appearing in the leading term of the L-function of E in the conjecture of Birch and Swinnerton-

Dyer.

For every finite place v of K we let Kv denote the completion of K at v, and kv the

residue field. After a base change, we may consider E as an elliptic curve over Kv. The

subgroup E0(Kv) of E(Kv) consisting of points of nonsingular reduction has finite index,
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and we define the Tamagawa number of E at v to be this index:

cv := [E(Kv) : E0(Kv)] .

If p is the maximal ideal of the ring of integers OK corresponding to a place v, we will also

denote cv by cp.

In order to state the questions addressed in this chapter we introduce the following

notation and terminology.

• If E is an elliptic curve over K, define

cE/K :=
∏
v

cv .

If the field K is clear from context, we will write cE instead of cE/K .

• We will say that a pair (N, d) of positive integers is admissible if there exists some

number field K of degree d, and some elliptic curve over K with a K-rational point of

order N . Equivalently, the pair (N, d) is admissible if the modular curve Y1(N) has a

point over some number field of degree d.

• For integers N and c with c 6= 0, let ordN(c) denote the largest integer m such that

Nm divides c.

We can now define our main object of study.

Definition 5.1.1. If (N, d) is an admissible pair, we let V (N, d) denote the ordered set of

all numbers ordN(cE/K), where K ranges over all number fields of degree ≤ d and E ranges

over all elliptic curves defined over K having a K-rational point of order N .

We would like to understand the set V (N, d) as well as possible. Since V (N, d) ⊆ N, a

natural first question is to determine its least element.

75



Question 5.1.2. What is the smallest element of the set V (N, d)?

If we know that a particular integer n belongs to V (N, d), then we can consider the elliptic

curves E and the number fields K such that n = ordN(cE/K). All the evidence available at

present suggests that the first few elements of V (N, d) arise from only finitely many elliptic

curves, while the remaining values can be obtained from infinitely many curves.

Question 5.1.3. Which elements of V (N, d), if any, occur as ordN(cE) for only finitely many

elliptic curves E?

This chapter is organized as follows: in sections 5.2-5.6 we consider the above questions

for number fields of degrees d ≤ 5. A large amount of computations have been done in

preparing this chapter; our methods are explained in §5.7. Sections 5.8 and 5.9 contain

background material which we use throughout the chapter.

5.2 Elliptic curves over Q

The admissible pairs (N, 1) have N = 1, . . . , 10 or 12, as follows from Mazur’s theorem [43].

Our main questions introduced above were treated in detail by Lorenzini [40] for elliptic

curves over Q. We include in this section a few refinements of his results.

Theorem 5.2.1 (Lorenzini).

1. Let E/Q be an elliptic curve with a Q-rational point of order 5. Then 5|cE unless

E = X1(11), in which case cE = 1. In particular, minV (5, 1) = 0.

2. If E/Q is an elliptic curve with a Q-rational point of order 7, then 7|cE. The elliptic

curve E = 26b1 has ord7(cE) = 1, so that minV (7, 1) = 1. Moreover, the value

1 ∈ V (7, 1) is taken only by 26b1.

3. If E/Q is an elliptic curve with a Q-rational point of order 9, then 27|cE. The elliptic
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curve E = 54b3 has a rational point of order 9 and cE = 27. However, every other

elliptic curve E over Q with a rational point of order 9 has 92|cE.

Proof. See (2.7), (2.10), and (2.17) in [40].

Our results below make the divisibility statements of Theorem 5.2.1 more precise.

Proposition 5.2.2. Let E/Q be an elliptic curve with a Q-rational point of order 7. Then

the Tamagawa number of E at 2 is divisible by 7.

Proof. Let P ∈ E(Q) have order 7. We claim that P /∈ E0(Q2), which will imply the result

because the image of P in the group E(Q2)/E0(Q2) will then have order 7. Suppose that

P ∈ E0(Q2). By Theorem 5.9.4 we have P /∈ E1(Q2), so P̃ ∈ Ẽns(F2) has order 7. However,

it follows from Theorems 5.8.1 and 5.9.1 that, regardless of the reduction type of E at 2,

the order of the group Ẽns(F2) is at most 5. This is a contradiction, so we conclude that

P /∈ E0(Q2), as claimed.

Proposition 5.2.3. Let E/Q be an elliptic curve with a Q-rational point of order 9. Then

the Tamagawa number of E at 2 is divisible by 9, and the Tamagawa number of E at 3 is

divisible by 3.

Proof. Let P ∈ E(Q) have order 9. We claim that P /∈ E0(Q2). Suppose that P ∈ E0(Q2).

By Theorem 5.9.4 we see that P̃ ∈ Ẽns(F2) has order 9. However, it follows from Theorems

5.8.1 and 5.9.1 that, regardless of the reduction type of E at 2, the order of the group Ẽns(F2)

is at most 5. This is a contradiction, so P /∈ E0(Q2), as claimed. Note that in particular

this implies that E cannot have good reduction at 2.

We now show that [3]P /∈ E0(Q2), which will imply that 9 divides c2. Suppose that

R = [3]P ∈ E0(Q2). Since R has order 3 we have R /∈ E1(Q2), so R̃ ∈ Ẽns(F2) has order 3.

Hence, the group Ẽns(F2) has order divisible by 3. Since E does not have good reduction

at 2, this implies by Theorem 5.9.1 that E has non-split multiplicative reduction at 2. But
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then by Theorem 5.9.3 we have c2 = 1 or 2. This implies that [2]P ∈ E0(Q2), but we have

already shown that E0(Q2) cannot contain elements of order 9. This contradiction proves

that [3]P /∈ E0(Q2), and hence that 9|c2.

To show that c3 is divisible by 3 it suffices to show that P /∈ E0(Q3). Suppose that

P ∈ E0(Q3). Using Theorem 5.9.4 we see that P̃ ∈ Ẽns(F3) has order 9. However, it follows

from Theorems 5.8.1 and 5.9.1 that, regardless of the reduction type of E at 3, the order of

the group Ẽns(F3) is at most 7. This is a contradiction, so we conclude that P /∈ E0(Q3).

5.3 Elliptic curves over quadratic fields

We recall the list of possible torsion subgroups of elliptic curves over quadratic fields:

Theorem 5.3.1 (Kamienny [31], Kenku-Momose [35]). Let K be a quadratic number field,

and E/K an elliptic curve. Then E(K)tors is isomorphic to one of the following 26 groups:

• Z/n for n = 1, . . . , 16 and 18.

• Z/2⊕ Z/2n for n = 1, . . . , 6.

• Z/3⊕ Z/3n for n = 1, 2.

• Z/4⊕ Z/4.

It follows from Theorem 5.3.1 that the admissible pairs (N, 2) have N = 1, . . . , 16 or 18.

Lorenzini considered the values N = 11 and 13; we will improve slightly on his results here,

and also consider the case N = 15.

Theorem 5.3.2 (Lorenzini). Let K be a quadratic number field, and E/K an elliptic curve

with a K-rational point of order N = 11 or 13. Then N |cp for every prime ideal p of OK

lying over 2. In particular, minV (11, 2) ≥ 1 and minV (13, 2) ≥ 1.
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Proof. See [40, Cor. 3.4].

We have found exactly two non-isomorphic examples of an elliptic curve E over a quadratic

field K such that E has a K-rational point of order 11 and ord11(cE) = 1. These examples

are the two Galois conjugates of the following curve:

Example 5.3.3. Let K = Q(
√

2) and let E be the following elliptic curve over K:

E : y2 + (
√

2 + 3)xy + 4
√

2y = x3 +
√

2x2.

Then E(K)tors ∼= Z/11. We have cp2 = 11 for the unique prime p2 of K lying over 2, and

for all other primes p, cp = 1. We remark that K is second smallest quadratic field (in terms

of absolute discriminant) where Y1(11) has points; this follows from [32, Thm. 2]. From this

example we conclude that minV (11, 2) = 1. However, we do not know whether the two

Galois conjugates of E are the only curves achieving the minimal value ord11(cE) = 1.

Proposition 5.3.4. Let K be a quadratic number field, and E/K an elliptic curve with a

K-rational point of order 13. Then 132|cE.

Proof. By Theorem 2.6.9, if the modular curve X1(13) has a quadratic point over a quadratic

number field K, then the rational prime 2 must split in K. The result then follows from

Theorem 5.3.2.

We have found exactly one example of an elliptic curve E over a quadratic field K such

that E has a K-rational point of order 13 and ord13(cE) = 2. This curve is isomorphic to its

Galois conjugate over K.

Example 5.3.5. Let K = Q(
√

17) and let E be the following elliptic curve:

E : y2 + (2
√

17− 9)xy + (18
√

17− 74)y = x3 + (18
√

17− 74)x2.
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Then E(K)tors ∼= Z/13. We find that cp = 13 for each of the two primes p of K lying

over 2, and cp = 1 for all other primes p. We remark that K is smallest quadratic field (in

terms of absolute discriminant) where Y1(13) has points [32, Thm. 3]. From this example we

conclude that minV (13, 2) = 2. However, we do not know whether this is the unique curve

achieving the minimal value ord13(cE) = 2.

Based on extensive computations we make the conjecture that all elements of V (13, 2)

are even. We have verified, for a total of 48,925 elliptic curves E over quadratic fields having

a point of order 13, that the power of 13 dividing cE is even.

Conjecture 5.3.6. Every element of the set V (13, 2) is even.

Proposition 5.3.7. Let K be a quadratic number field, and E/K an elliptic curve with a

K-rational point of order 15. Then 5|cp for every prime ideal p of OK lying over 2.

Proof. Let p be a prime lying over 2, and let v be the place of K corresponding to p. We

will show that 5|cv.

Let P ∈ E(K) have order 15. We claim that P /∈ E0(Kv). Suppose that P ∈ E0(Kv).

By Theorem 5.9.4 we see that P̃ ∈ Ẽns(kv) has order 15. However, it follows from Theorems

5.8.1 and 5.9.1 that, regardless of the reduction type of E at v, the order of the group Ẽns(kv)

is at most 9. This is a contradiction, so P /∈ E0(Kv), as claimed. Note that in particular

this implies that E cannot have good reduction at v.

We now show that [3]P /∈ E0(Kv), which will imply that 5 divides cv. Suppose that

R = [3]P ∈ E0(Kv). Since R has order 5 we have R /∈ E1(Kv), so R̃ ∈ Ẽns(kv) has order 5.

Hence, the group Ẽns(kv) has order divisible by 5. By Theorem 5.9.1 this can only happen

if either E has good reduction at v, which we have already ruled out, or if kv = F4 and E

has non-split multiplicative reduction at v. In the latter case, cv = 1 or 2 by Theorem 5.9.3.

But then [2]P ∈ E0(Kv), and we have already shown that E0(Kv) cannot contain elements

of order 15. This contradiction proves that [3]P /∈ E0(Kv), and hence that 5|cv.
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Remark 5.3.8. Our computations suggest that, in the context of the above proposition, 3|cE.

However, there does not appear to be any particular rational prime p such that cp is always

divisible by 3 for some prime p of OK lying over p.

We have found exactly one example of an elliptic curve E over a quadratic field K such

that E has a K-rational point of order 15 and ord15(cE) = 1. This curve is isomorphic to its

Galois conjugate over K.

Example 5.3.9. Let K = Q(
√

5) and let E be the following elliptic curve over K:

E : y2 +
√

5xy + (50− 22
√

5)y = x3 + (25− 11
√

5)x2.

Then E(K)tors ∼= Z/15. The prime 2 is inert in K, and c(2) = 5. There is a unique prime

p lying over 5, and cp = 3; for all other primes p, cp = 1. In view of this example we expect

that minV (15, 2) = 1. We remark that K is smallest quadratic field (in terms of absolute

discriminant) where Y1(15) has points [32, Thm. 5].

5.4 Elliptic curves over cubic fields

In contrast to the cases of Q and quadratic number fields, a complete list of possible torsion

subgroups of elliptic curves over cubic fields is not known. However, there is the following

partial result:

Theorem 5.4.1 (Jeon, Kim, Schweizer). As K varies over all cubic fields and E varies over

all elliptic curves over K, the groups which appear infinitely often as E(K)tors are exactly

the following:

• Z/n for n = 1, . . . , 16 and 18, 20.

• Z/2⊕ Z/2n for n = 1, . . . , 7.
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Proof. See [29, Thm. 3.4].

Hence, we have admissible pairs (N, 3) for N = 1, . . . , 16, 18, 20. It is also known by work

of Parent [55, Thm. 5.1] that the only prime values of N for which (N, 3) is admissible are

N = 2, 3, 5, 7, 11, 13.

Proposition 5.4.2. Let K be a cubic number field, and E/K an elliptic curve with a K-

rational point of order 11. Then 11|cp for every prime ideal p of OK lying over 2.

Proof. Let P ∈ E(K) have order 11, and let p be a prime ideal of OK lying over 2. Let v

be the place of K corresponding to p. We claim that P /∈ E0(Kv), which will imply that

11|cv. Suppose that P ∈ E0(Kv). By Theorem 5.9.4 we have P /∈ E1(Kv), so P̃ ∈ Ẽns(kv)

has order 11. Since kv is either F2,F4 or F8, it follows from Theorems 5.8.1 and 5.9.1 that

kv = F8 and E has good reduction at v. But then Ẽ is an elliptic curve over F8 with a point

of order 11, and such a curve does not exist, by Theorem 5.8.2.

Up to Galois conjugates, we have found exactly one example of an elliptic curve E over

a cubic field K such that E has a K-rational point of order 11 and ord11(cE) = 1.

Example 5.4.3. LetK be the cubic field generated by a root g of the polynomial t3−t2+t+1,

and let E/K be the elliptic curve with a-invariants [a1, a2, a3, a4, a6] as follows:

[−g, g2 − 3g − 2, g2 − 3g − 2, 0, 0].

Then E(K)tors ∼= Z/11 and cE = 11. More precisely, the ideal (2) factors as p32 and cp2 =

11; for all other prime ideals p, cp = 1. From this example we conclude that minV (11, 3) = 1.

However, we do not know whether this is the unique example achieving the minimal value

ord11(cE) = 1. We remark that the field K has very small discriminant, namely −44, and is

only the third field in Jones’s database [30] of cubic fields ordered by discriminant.
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Considering now N = 13, we can show that minV (13, 3) = 0. Up to Galois conjugates,

we have found exactly one example of an elliptic curve E over a cubic field K such that E

has a K-rational point of order 13 and ord13(cE) = 0.

Example 5.4.4. Let K = Q(g), where g is a root of the polynomial t3 + 2t2− t− 1, and let

E/K be the elliptic curve with a-invariants [a1, a2, a3, a4, a6] as follows:

[−2g2 + 2,−9g2 + 2g + 4,−9g2 + 2g + 4, 0, 0].

Then E(K)tors ∼= Z/13 and cE = 1. Note that K has very small discriminant, namely 49,

and is only the fourth field in Jones’s list of cubic fields ordered by discriminant.

Proposition 5.4.5. Let K be a cubic number field, and E/K an elliptic curve with a K-

rational point of order 15. Then 15|cp for some prime ideal p of OK lying over 2.

Proof. There is some prime ideal p lying over 2 such that the norm of p is not 4. We will

show that 15|cp. Let v be the place of K corresponding to p. Note that kv = F2 of F8. The

group E(K) has a point P3 of order 3 and a point P5 of order 5. We will show that neither

point can belong to E0(Kv), and this will imply that 15|cv.

First of all, we cannot have both P3 ∈ E0(Kv) and P5 ∈ E0(Kv): if this were the case,

then by Theorem 5.9.4 the group Ẽns(kv) would have order divisible by 15. However, it

follows from Theorems 5.8.1 and 5.9.1 that, regardless of the reduction type of E at v, the

order of the group Ẽns(kv) is at most 14. Thus, either P3 or P5 does not belong to E0(Kv).

We show now that in fact neither point belongs to E0(Kv).

Suppose that P3 ∈ E0(Kv). Then P5 /∈ E0(Kv), so 5|cv. By Theorem 5.9.3 this implies

that E has split multiplicative reduction at v, so Ẽns(kv) ∼= Gm(kv) by Theorem 5.9.1. But

by Theorem 5.9.4 we have that P̃3 ∈ Ẽns(kv) has order 3, so 3 divides the order of k∗v , which

is either 1 or 7. This is a contradiction, so we conclude that P3 /∈ E0(Kv).
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Finally, suppose that P5 ∈ E0(Kv). Since P3 /∈ E0(Kv), E cannot have good reduction at

v. Since kv = F2 or F8, by Theorem 5.9.1 the order of the group Ẽns(kv) is either 1, 2, 3, 7, 8 or

9. But the image of P5 in this group has order 5 by Theorem 5.9.4, so we have a contradiction.

Therefore, P5 /∈ E0(Kv), and we are done.

Up to Galois conjugates, we have found exactly two examples of an elliptic curve E over

a cubic field K such that E has a K-rational point of order 15 and ord15(cE) = 1.

Example 5.4.6.

• Let K be the cubic field generated by a root α of the polynomial t3 + 2t − 1, and let

E/K be the elliptic curve with a-invariants [a1, a2, a3, a4, a6] as follows:

[−2α2 − 2α− 3, 22α2 + 10α + 48, 22α2 + 10α + 48, 0, 0].

Then E(K)tors ∼= Z/15 and cE = 3 ·52. More precisely: the ideal (2) factors as p2,1 ·p2,2

with cp2,1 = 15 and cp2,2 = 5; for every other prime ideal p, cp = 1. The field K has

discriminant −59, making it the fifth field in Jones’s list of cubic fields.

• Let K be the cubic field generated by a root α of the polynomial t3 − t2 + t + 1, and

let E/K be the elliptic curve with a-invariants [a1, a2, a3, a4, a6] as follows:

[−2α2 + 12α + 15, 70α2 − 126α− 84, 490α2 − 882α− 588, 0, 0].

Then E(K)tors ∼= Z/15 and cE = 3 · 52. More precisely: the ideal (2) factors as p32 with

cp2 = 15. The ideal (7) factors as p7,1 · p7,2 with cp7,1 = 5; for every other prime ideal

p, cp = 1. The field K has discriminant −44, making it the third field in Jones’s list

of cubic fields.
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From these examples we conclude that minV (15, 3) = 1. However, we do not know

whether these are the only examples achieving the minimal value ord15(cE) = 1.

5.5 Elliptic curves over quartic fields

As in the case of cubic fields, a complete list of possible torsion subgroups of elliptic curves

over quartic fields is not known. However, Jeon, Kim, and Park [28, Thm. 3.6] showed that

there are exactly 38 groups occurring infinitely often as E(K)tors over quartic number fields

K. Kamienny, Stein, and Stoll have announced a proof that the only admissible pairs (N, 4)

with N prime have N = 2, 3, 5, 7, 11, 13, 17. We will consider here only N = 17, which does

not occur over fields of degree smaller than 4.

Proposition 5.5.1. Let K be a quartic number field, and E/K an elliptic curve with a

K-rational point of order 17. If 2 is not inert in K, then 17|cp for every prime ideal p of

OK lying over 2.

Proof. Let P ∈ E(K) have order 17, and let p be a prime ideal of OK lying over 2. Let v

be the place of K corresponding to p. We claim that P /∈ E0(Kv), which will imply that

17|cv. Suppose that P ∈ E0(Kv). By Theorem 5.9.4 we have P /∈ E1(Kv), so P̃ ∈ Ẽns(kv)

has order 17. Since 2 is not inert in K, the residue field kv is either F2,F4 or F8. It follows

from Theorems 5.8.1 and 5.9.1 that, regardless of the reduction type of E at v, the order of

the group Ẽns(kv) is at most 14. This is a contradiction, so P /∈ E0(Kv), as claimed.

The following example was found using the main algorithm in the paper [15]; see Example

5.7.6 below for more details. Up to Galois conjugates, we have found exactly one example

of an elliptic curve E over a quartic field K such that E has a K-rational point of order 17

and ord17(cE) = 0.
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Example 5.5.2. Let K be the quartic field generated by a root g of the polynomial t4− t3−

3t2 + t+ 1, and let E/K be the elliptic curve with a-invariants [a1, a2, a3, a4, a6] as follows:

[−6g3 − 7g2 + 4g + 4,−155g3 − 170g2 + 109g + 74,−155g3 − 170g2 + 109g + 74, 0, 0].

Then E(K)tors ∼= Z/17 and cE = 1. In view of this example we conclude that minV (17, 4) =

0. We remark that K has very small discriminant for a quartic field, namely 725, making it

the 37th quartic field in Jones’s list of fields ordered by discriminant.

5.6 Elliptic curves over quintic fields

We are not aware of any published work giving a conjecturally complete list of torsion

subgroups of elliptic curves over quintic number fields. However, Derickx, Kamienny, Stein,

and Stoll have claimed a proof that the only admissible pairs (N, 5) with N prime have

N = 2, 3, 5, 7, 11, 13, 17, 19. We will consider here only N = 19, which does not occur over

fields of degree smaller than 5.

Proposition 5.6.1. Let K be a quintic number field, and E/K an elliptic curve with a

K-rational point of order 19. If 2 is not inert in K, then 19|cp for every prime ideal p of

OK lying over 2.

Proof. Let P ∈ E(K) have order 19, and let p be a prime ideal of OK lying over 2. Let v be

the place of K corresponding to p. We claim that P /∈ E0(Kv), which will imply that 19|cv.

Suppose that P ∈ E0(Kv). By Theorem 5.9.4 we have P /∈ E1(Kv), so P̃ ∈ Ẽns(kv) has

order 19. Since 2 is not inert in K, the residue field kv is either F2,F4,F8 or F16. It follows

from Theorems 5.8.1 and 5.9.1 that the only way that the order of the group Ẽns(kv) can be

divisible by 19 is if kv = F16 and E has good reduction at v. But in this case Ẽ is an elliptic

curve over F16 with a point of order 19, and such a curve does not exist, by Theorem 5.8.2.
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This is a contradiction, so P /∈ E0(Kv), as claimed.

The following example was found using the same method as Example 5.5.2 above. Up to

Galois conjugates, we have found exactly one example of an elliptic curve E over a quintic

field K such that E has a K-rational point of order 19 and ord19(cE) = 0.

Example 5.6.2. Let K be the quintic field generated by a root g of the polynomial t5 −

t3 − 2t2 + 1, and let E/K be the elliptic curve with a-invariants [a1, a2, a3, a4, a6] as follows:

[−5g4+4g3+2g2+8g−6,−37g4+29g3+15g2+62g−49,−37g4+29g3+15g2+62g−49, 0, 0].

Then E(K)tors ∼= Z/19 and cE = 1. From this example we conclude that minV (19, 5) =

0. We remark that K has very small discriminant for a quintic field, namely −4511, making

it the 22nd quintic field in Jones’s list of fields ordered by discriminant.

5.7 Computational methods

In order to study the main questions of this article by means of gathering computational

evidence, one needs an efficient way of producing elliptic curves E over number fields K of

various degrees, such that E has a K-rational torsion point of given order N . One way of

doing this is to produce points of a given degree on the modular curve X1(N). We have

discussed in §2.2.2 how to obtain equations for X1(N). Once such an equation is known,

one would like a method of finding points of a given degree d which satisfy this equation.

Moreover, it would be desirable that all points of degree d will be found by this method. We

will show in §5.7.1 that this can be done in degrees 2 and 3 when X1(N) is an elliptic curve

(which occurs when N = 11, 14, 15). When X1(N) has genus 2 (i.e. for N = 13, 16, 18), the

quadratic points are described in Chapter 2. For curves of larger genera we take a different

approach based on the algorithm [15] for listing elements of bounded height in number fields.
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5.7.1 Quadratic and cubic points on elliptic curves

Let k be a field and let E be an elliptic curve over k defined by a Weierstrass equation

y2 = x3 + Ax + B. We give here a way of describing all points in E(k) that have degree 2

or 3 over k.

Proposition 5.7.1. Suppose that (α, β) ∈ E(k) has degree 2 over k. Then one of the

following occurs:

1. α ∈ k and the minimal polynomial of β is t2 − (α3 + Aα +B).

2. There is a point (x0, y0) ∈ E(k) and an element v ∈ k such that β = y0 + v(α − x0)

and the minimal polynomial of α is t2 + (x0 − v2)t+ x20 + v2x0 + A− 2vy0.

Conversely,

(i) Let α ∈ k be such that the polynomial t2− (α3 +Aα+B) is irreducible, and let β be a

root of this polynomial. Then (α, β) ∈ E(k) and has degree 2.

(ii) Let (x0, y0) ∈ E(k) and v ∈ k be such that the polynomial

t2 + (x0 − v2)t+ x20 + v2x0 + A− 2vy0

is irreducible. Let α be a root of this polynomial and let β = y0 + v(α − x0). Then

(α, β) ∈ E(k) and has degree 2 over k.

Proof. Clearly [k(α) : k] = 1 or 2, and likewise for k(β). Suppose first that α ∈ k. We

cannot have β ∈ k, for then k(α, β) = k. Therefore, [k(β) : k] = 2. Since β is a root of the

polynomial t2− (α3 +Aα+B) ∈ k[t], this must be its minimal polynomial. Thus we are led

to case (1). Now suppose that [k(α) : k] = 2. Since β ∈ k(α), we can write β = p(α) for some

p(t) ∈ k[t] of degree at most 1. Since α is a root of the polynomial F (t) = t3+At+B−p(t)2,
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which has degree 3, F (t) must factor as F (t) = (t − x0)m(t), where m(t) is the minimal

polynomial of α and x0 ∈ k. Since F (x0) = 0, then (x0, p(x0)) ∈ E(k). Letting y0 = p(x0)

we can write p(t) = y0 + v(t − x0) for some v ∈ k. Carrying out the division F (t)/(t − x0)

we obtain m(t) as in case (2) of the proposition.

We now prove the converse. The proof of (i) is trivial, so we omit it. With notation as

in (ii) we have the identity

t3+At+B−(y0+v(t−x0))2 = (t−x0)
(
t2 + (x0 − v2)t+ x20 + v2x0 + A− 2vy0

)
+x30+Ax0+B−y20.

Evaluating at α we obtain α3 + Aα + B − β2 = 0, so (α, β) ∈ E(k). It is clear that (α, β)

has degree 2.

Remark 5.7.2. The description of quadratic points on E given in the above proposition has

the following geometric interpretation: suppose P = (α, β) ∈ E(k) is quadratic over k, let

K = k(α, β) be the field of definition of P , and let σ be the nontrivial element of Gal(K/k).

We can then consider the point Q = P + P σ ∈ E(k), where P σ = (σ(α), σ(β)) denotes the

Galois conjugate point of P . If Q is the point at infinity on E, then the line through P and

P σ is vertical, so that α = σ(α) and hence α ∈ k; this gives rise to the points of type 1 in

Proposition 5.7.1. If Q is not the point at infinity, then it is an affine point in E(k), say

Q = (x0,−y0) for some elements x0, y0 ∈ k. The points P, P σ, and (x0, y0) are collinear, and

the line containing them has slope in k, say equal to v ∈ k; we then have β = y0 + v(α−x0).

This gives rise to points of type 2 in Proposition 5.7.1.

Proposition 5.7.3. Suppose that (α, β) ∈ E(k) has degree 3 over k. Then one of the

following occurs:

1. β ∈ k and the minimal polynomial of α is t3 + At+B − β2.

2. There is a polynomial p(t) ∈ k[t] of degree 1 such that β = p(α) and the minimal

89



polynomial of α is t3 + At+B − p(t)2.

3. There is a point (x0, y0) ∈ E(k) and elements u, v ∈ k with v 6= 0 such that

β = y0 + u(α− x0) + v(α− x0)2

and the minimal polynomial of α is given by t3 + c2t
2 + c1t+ c0, where

c2 =
−3x0v

2 + 2uv − 1

v2
, c1 =

3v2x20 − 4uvx0 − x0 + u2 + 2vy0
v2

,

c0 =
−x30v2 − x20 + 2x20uv − x0u2 − 2x0vy0 + 2uy0 − A

v2
.

Conversely,

(i) Let β ∈ k be such that the polynomial t3 + At + B − β2 is irreducible, and let α be a

root of this polynomial. Then (α, β) ∈ E(k) and has degree 3 over k.

(ii) Let p(t) ∈ k[t] be such that deg(p) = 1 and the polynomial m(t) = t3 +At+B−p(t)2 is

irreducible. Let α be a root of m(t) and β = p(α). Then (α, β) ∈ E(k) and has degree

3 over k.

(iii) Let (x0, y0) ∈ E(k) and u, v ∈ k be such that the polynomial m(t) = t3 + c2t
2 + c1t+ c0

(with ci as above) is irreducible. Let α be a root of m(t) and let

β = y0 + u(α− x0) + v(α− x0)2.

Then (α, β) ∈ E(k) and has degree 3 over k.

Proof. We cannot have α ∈ k, for then β2 ∈ k, which implies that either β ∈ k (in which case

[k(α, β) : k] = 1), or [k(β) : k] = 2, which is impossible since [k(α, β) : k] = 3 is not divisible
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by 2. Therefore, we must have [k(α) : k] = 3. Since β ∈ k(α), we can write β = p(α) for

some polynomial p(t) ∈ k[t] of degree at most 2. If deg(p) = 0, so that β ∈ k, then α is a root

of the polynomial t3 + At + B − β2, which has degree 3. It follows that this is the minimal

polynomial of α, and we are lead to case (1). If deg(p) = 1 then α is a root of the polynomial

t3 +At+B − p(t)2, which has degree 3 and must therefore be the minimal polynomial of α.

This leads us to case (2). Finally, suppose that deg(p) = 2. Let F (t) = p(t)2− (t3 +At+B)

and let m(t) be the minimal polynomial of α. Since F (α) = 0, then m(t) divides F (t), so

we can write F (t) = v2(t − x0)m(t), where v is the leading coefficient of p(t) and x0 ∈ k.

Letting y0 = p(x0) we have that (x0, y0) ∈ E(k), and writing p(t) = y0 +u(t−x0)+v(t−x0)2

we compute F (t)/[v2(t− x0)] and obtain m(t) as in case (3).

We now prove the converse. In all cases it suffices to show that (α, β) ∈ E(k), for it is

clear that this point has degree 3. The proofs of (i) and (ii) are trivial, so we omit them.

With notation as in (iii), let p(t) = y0 + u(t− x0) + v(t− x0)2. We have the identity

p(t)2 − (t3 + At+B) = v2(t− x0)m(t)− (x30 + Ax0 +B − y20);

evaluating at α we obtain β2 − (α3 + Aα +B) = 0.

5.7.2 Sample computations

We give here full details of three computations in order to illustrate the methods by which

all the examples in previous sections were found.

Example 5.7.4. A search for minV (13, 2). We use the following equation for X1(13) given

in [59]:

y2 = f13(x) := x6 − 2x5 + x4 − 2x3 + 6x2 − 4x+ 1.

By Theorem 2.6.9, all quadratic points on X1(13) are the form (t,
√
f13(t)) for some t ∈ Q.
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For every rational number t such that f13(t) is not a square, the change of variables in [59, p.

32] allows us to construct an elliptic curve E over the quadratic field K = Q(
√
f13(t)) such

that (0, 0) ∈ E(K) is a point of order 13. We can then compute the Tamagawa numbers of

E using the Magma function LocalInformation, and thus determine the value of ord13(cE).

We have carried out this procedure for all rational numbers t of height at most 100, keeping

all those values of t which yield an elliptic curve with ord13(cE) ≤ 2. The result is that

the values t = −1, 1/2, and 2 yield elliptic curves over Q(
√

17) with ord13(cE) = 2. The

three curves obtained in this way are isomorphic to Galois conjugates of the curve given in

Example 5.3.5.

Example 5.7.5. A search for minV (15, 3). We use the following equation for X1(15) given

in [59]:

X1(15) : y2 = x3 − 27x+ 8694.

The change of variables

s =
y

216
− x

72
− 7

24
, t =

x

36
− 5

12
(5.1)

gives the alternate equation

s2 + st+ s = t3 + t2.

Using Proposition 5.7.3 we will make an exhaustive search for cubic points on X1(15)

within some range, and then compute the product of the Tamagawa numbers of the elliptic

curves corresponding to these points. Proposition 5.7.3 divides cubic points into three classes,

which we will refer to as Types 1, 2, and 3.

Type 1: We consider all rational numbers r such that the polynomial f(x) := x3− 27x+

8694 − r2 is irreducible. We then let K be the cubic field defined by f(x), and g a root of

f(x) in K, so that the relation r2 = g3 − 27g + 8694 is satisfied.
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Type 2: We consider all rational numbers c1, c0 such that the polynomial

f(x) := x3 − 27x+ 8694− (c1x+ c0)
2

is irreducible. We then let K be the cubic field defined by f(x), and g a root of f(x) in K.

We set r = c1g + c0 so that the relation r2 = g3 − 27g + 8694 is satisfied.

Type 3: For every point (x0, y0) ∈ X1(15)(Q)\{∞} = {(15,±108), (−21, 0)} we consider

all the rational numbers u, v such that, defining c2, c1 and c0 as in Proposition 5.7.3, the

polynomial f(x) := x3 + c2x
2 + c1x + c0 is irreducible. We then let K be the cubic field

defined by f(x), and g a root of f(x) in K. We set r = y0 + u(g − x0) + v(g − x0)2 so that

the relation r2 = g3 − 27g + 8694 is satisfied.

Once a cubic point (g, r) on X1(15) has been found as explained above, we make the

change of variables (5.1) to obtain a cubic point (s, t) satisfying the equation s2 + st + s =

t3 + t2. We can then use the change of variables in [59, p. 36] to construct an elliptic curve

E/K with a K-rational point of order 15.

We have carried out the above procedure for all rational numbers within certain height

bounds: for points of Type 1 we considered all r ∈ Q with height at most 40; for points

of Type 2 we considered all c1, c0 ∈ Q of height at most 20; and for points of Type 3 we

considered all u, v ∈ Q of height at most 10. In every case we record the data giving rise

to elliptic curves E with ord15(cE) ≤ 1. The result is that points of Types 1 and 2 yield no

curves with this property, while points of Type 3 yield four examples which in the end are

found to be only two distinct examples:

• Taking (x0, y0) = (15, 108) and u = 9, v = 1/3 we obtain the cubic field K1 with

defining polynomial x3 +297x+3834, and an elliptic curve E1/K1 with ord15(cE1) = 1.

The field K1 can also be defined by the simpler polynomial x3 + 2x − 1; making the

corresponding change of variables to the equation for E1 we obtain the first curve given
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in Example 5.4.6.

• Taking (x0, y0) = (15, 108) and u = −9, v = −1/6 we obtain the cubic field K2 with

defining polynomial x3 + 27x2 − 1485x − 80487, and an elliptic curve E2/K2 with

ord15(cE2) = 1. The field K2 can also be defined by the simpler polynomial x3 − x2 +

x+ 1; making the corresponding change of variables to the equation for E2 we obtain

the second curve given in Example 5.4.6.

• With (x0, y0) = (−21, 0) and u = −3, v = −1/6 we are led to the same cubic field and

elliptic curve as in the first example.

• With (x0, y0) = (15,−108) and u = 3, v = −1/6 we are led to the same cubic field and

elliptic curve as in the first example.

Example 5.7.6. A search for minV (17, 4). We need a method for producing an exhaustive

list of quartic points on X1(17) within some range. Since X1(17) has genus 5, we cannot

apply the methods above to give a simple description of all quartic points on it. We will

therefore take a different approach.

We propose the following as a method of search for points on any affine plane curve over

Q.

Algorithm 5.7.7. Let C/Q be an affine plane curve defined by an equation f(x, y) = 0,

and let K be a number field. In order to search for points in C(K):

1. Choose a height bound B and make a list L of all elements of K of height at most B.

2. For each x0 ∈ L, determine whether the polynomial f(x0, y) has a root in K; if so, we

have found a point on C defined over K.

3. Similarly, for each y0 ∈ L, determine whether the polynomial f(x, y0) has a root in K.
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An equation f(x, y) = 0 for X1(17) may be found in [72, p. 1144]. From Jones’s database

[30] we obtain the first 100 quartic fields. For each quartic field K, we use the algorithm

[15] to make a list L of all elements of K of height at most 50. Next, we apply Algorithm

5.7.7 to search for points that X1(17) has over these quartic fields. For each point (x0, y0),

we use the change of variables in [72, p. 1145] together with [72, Prop. 1] to construct an

elliptic curve over K having a K-rational point of order 17. We record the fields K and

elliptic curves E/K for which ord17(cE) ≤ 1. The result of this computation is that only

one field K yields such examples, and in every case the elliptic curve E is isomorphic to a

Galois conjugate of the one given in Example 5.5.2.

Remark 5.7.8. To the best of our knowledge, there are no currently implemented methods for

searching for points on curves defined over general number fields, except in special families

such as elliptic and hyperelliptic curves. Hence, the approach taken above using the algorithm

[15] may at the moment be the only way to carry out an exhaustive search for quartic points

on X1(17).

5.8 Elliptic curves over finite fields

We recall in this section a few results concerning the group of rational points on an elliptic

curve over a finite field. See [67, §V.1] for more information.

Theorem 5.8.1 (Hasse). Let E be an elliptic curve over the finite field Fq. Then

|#E(Fq)− (q + 1)| ≤ 2
√
q.

Thus, the order of the group E(Fq) is an integer in the interval [q+1−2
√
q, q+1+2

√
q].

Conversely, we can ask which integers in this interval occur as the order of the group of

rational points on some elliptic curve over Fq. The answer is provided by the following
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result.

Theorem 5.8.2 (Waterhouse [76]). Let q = pn be a power of a prime. The possible orders

#E(Fq), where E is an elliptic curve over Fq, are the numbers of the form h = q + 1 − a

where a is an integer with |a| ≤ 2
√
q satisfying any one of the following:

(a) p does not divide a.

(b) n is even and a = ±2
√
q.

(c) n is even, p 6≡ 1 mod 3, and a = ±√q.

(d) n is odd, p = 2 or 3, and a = ±p(n+1)/2.

(e1) n is odd and a = 0.

(e2) n is even, p 6≡ 1 mod 4, and a = 0.

In particular, note that if q is prime, then all integers in the interval given by Hasse’s

theorem occur as the order of E(Fq) for some elliptic curve E.

Theorem 5.8.2 can be made more precise: it is known exactly which groups can occur as

the group of rational points on an elliptic curve over a given finite field Fq.

Theorem 5.8.3 (Rück [62]). Let h =
∏

` `
h` be a possible order #E(Fq), as described in

Theorem 5.8.2. Then all possible groups E(Fq) with #E(Fq) = h are the following:

Z/php ×
∏
` 6=p

(
Z/`a` × Z/`h`−a`

)
with:

• In case (b) of Theorem 5.8.2, each a` is equal to h`/2.

• In all other cases, a` is any integer satisfying 0 ≤ a` ≤ min{ord`(q − 1), bh`/2c}.
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5.9 Reduction of elliptic curves

We recall here some facts about reductions of elliptic curves defined over local fields. A

standard reference for this material is [67, Chap. VII].

Let (K, v) be a complete, discretely valued field with residue field k. We assume that v

has value group Z. If E/K is an elliptic curve, the reduction of E is a curve Ẽ/k with at

most one singularity. If it has no singularities, then it is an elliptic curve; in this case we say

that E has good reduction. If there is a singularity, then it can either be a node, in which

case we say that E has multiplicative reduction; or it can be a cusp, in which case we say that

E has additive reduction. In the case of multiplicative reduction, we say the reduction type

is split if the slopes of the tangent lines of Ẽ at the singularity are in k, and the reduction is

non-split otherwise. Regardless of reduction type, the set Ẽns(k) of non-singular k-rational

points on Ẽ has a natural group structure.

Theorem 5.9.1 ([67], Exercise 3.5). Let K and E be as above.

1. If E has additive reduction, then Ẽns(k) is isomorphic to Ga(k), the additive group of

k.

2. If E has split multiplicative reduction, then Ẽns(k) is isomorphic to Gm(k), the multi-

plicative group of k.

3. If E has non-split multiplicative reduction, then Ẽns(k) ∼= {x ∈ `∗ : N`/k(x) = 1} for

some quadratic extension `/k. In particular, if k is a finite field, then |Ẽns(k)| = |k|+1.

There is a reduction map

E(K) −→ Ẽ(k) , P 7−→ P̃
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giving rise to two subgroups of E(K):

E0(K) = {P ∈ E(K) : P̃ is nonsingular}, E1(K) = {P ∈ E0(K) : P̃ = 0}.

Note that if E has good reduction, then E0(K) = E(K).

Proposition 5.9.2. The reduction map E0(K) −→ Ẽns(k) is a group homomorphism with

kernel E1(K), and there is an exact sequence of abelian groups

0 −→ E1(K) −→ E0(K) −→ Ẽns(k) −→ 0.

This fact allows us to study the group E(K) indirectly by studying the groups appearing

in the above sequence, as well as the group E(K)/E0(K). The next two results give structural

information about these groups.

Theorem 5.9.3. The group E(K)/E0(K) is finite and

1. cyclic if E has split multiplicative reduction.

2. of order 1 or 2 if E has non-split multiplicative reduction.

3. of order at most 4 if E has additive reduction.

Theorem 5.9.4. Let p = char(k).

1. If E1(K) contains an element of finite order m, then m is a power of p.

2. If E1(K) has a point of order pn, then pn−1(p− 1) ≤ v(p).

Proof. Let M be the valuation ideal of K, and let Ê be the formal group of E. Then

E1(K) ∼= Ê(M), so the theorem follows from general facts about formal groups (see [67,

Chap. IV]).
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Chapter 6

Computing algebraic numbers of

bounded height

6.1 Introduction

All the material in this chapter is joint work with John Doyle. Let K be a number field with

ring of integers OK , and let HK be the relative height function on K. For any bound B it

is known that the set of all x ∈ K with HK(x) ≤ B is finite [66, §3.1]. Moreover, there is an

asymptotic formula for the number of such elements, due to Schanuel [64]:

#{x ∈ K : HK(x) ≤ B} ∼ CKB
2,

where CK is an explicit constant which depends only on K. However, there does not appear

to be in the literature an algorithm that would allow fast computation of all these elements.

In [56] Pethő and Schmitt require such an algorithm to be able to compute the Mordell-Weil

groups of certain elliptic curves over real quadratic fields. They obtain an algorithm by

showing that if ω1, . . . , ωn is an LLL-reduced integral basis of K, then every element x ∈ K
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with HK(x) ≤ B can be written as

x =
a1ω1 + · · ·+ anωn

c
,

where a1, . . . , an, c are integers within certain explicit bounds depending only on B and K.

The set of all such numbers x is finite, so one would only need to search through this set and

discard elements whose height is greater than B. Unfortunately, in practice this method is

slow because the search space is very large. We describe in this paper an algorithm which

is faster, assuming class group representatives for OK and a basis for the unit group of OK

can be computed efficiently. Sample computations showing the improvement in performance

may be seen in §6.6.

Our motivation for designing a fast algorithm that can handle relatively large bounds B

comes from arithmetic dynamics. In [58] Poonen provides a conjecturally complete list of

rational preperiodic graph structures for quadratic polynomial maps defined over Q. It is

then natural to ask what preperiodic graph structures can occur for such maps over other

number fields. In order to gather data about these graphs one needs to be able to compute

all the preperiodic points of a given quadratic polynomial. It is possible to give an explicit

upper bound for the height of any preperiodic point of a given map, so a first step towards

computing preperiodic points is computing all points of bounded height. Further details on

this question, together with the generated data, will be presented in a subsequent paper [13].

6.2 Background and notation

Let K be a number field; let σ1, . . . , σr1 be the real embeddings of K, and τ1, τ 1, . . . , τr2 , τ r2

the complex embeddings. Corresponding to each of these embeddings there is an archimedean

absolute value on K extending the usual absolute value on Q. For an embedding σ, the

100



corresponding absolute value | |σ is given by |x|σ = |σ(x)|C, where | · |C is the usual complex

absolute value. Note that | |τ i = | |τi for every i. We will denote by M∞
K the set of absolute

values corresponding to σ1, . . . , σr1 , τ1, . . . , τr2 .

For every maximal ideal p of the ring of integers OK there is a discrete valuation vp on

K with the property that for every a ∈ K∗, vp(a) is the power of p dividing the principal

ideal (a). If p lies over the prime p of Z, there is an absolute value | |p on K extending the

p-adic absolute value on Q. Let e(p) and f(p) denote the ramification index and residual

degree of p, respectively. This absolute value is then given by |x|p = (Np)−vp(x)/(e(p)f(p)). We

denote by M0
K the set of all absolute values | |p, and we let MK = M∞

K ∪M0
K .

For an absolute value v ∈MK , let Kv be the completion of K with respect to v, and let

Qv be the completion of Q with respect to the restriction of v to Q. Note that Qv = R if

v ∈ M∞
K , and Qv = Qp if v ∈ M0

K corresponds to a maximal ideal p lying over p. The local

degree of K at v is given by nv = [Kv : Qv]. If v corresponds to a real embedding of K, then

Kv = Qv = R, so nv = 1. If v corresponds to a complex embedding of K, then Kv = C and

Qv = R, so nv = 2. Finally, if v corresponds to a maximal ideal p, then nv = e(p)f(p).

The relative height function HK : K −→ R≥1 is defined by

HK(γ) =
∏
v∈MK

max{|γ|nv
v , 1}

and has the following properties:

• For any α, β ∈ K with β 6= 0, HK(α/β) =
∏

v∈MK
max{|α|nv

v , |β|nv
v }.

• For any α, β ∈ K, HK(αβ) ≤ HK(α)HK(β).

• For any α, β ∈ OK with β 6= 0, HK(α/β) = N(α, β)−1
∏

v∈M∞
K

max{|α|nv
v , |β|nv

v }. Here

N(α, β) denotes the norm of the ideal generated by α and β.

• For any γ ∈ K∗, HK(γ) = HK(1/γ).
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• For any γ ∈ K and any root of unity ζ ∈ K, HK(ζγ) = HK(γ).

It will sometimes be convenient to use the logarithmic height function hK = log ◦HK .

The following notation will be used throughout: O×K is the unit group of OK , µK is the

group of roots of unity in K, r = r1 + r2− 1 is the rank of O×K , and h is the class number of

K. For an ideal I of OK we let N(I) denote the norm of the ideal.

Define a logarithmic map Λ : K∗ −→ Rr+1 by

Λ(x) = (log |x|nv
v )v∈M∞

K
=
(

log |x|σ1 , . . . , log |x|σr1 , log |x|2τ1 , . . . , log |x|2τr2
)
.

Note that Λ is a group homomorphism. By a classical result of Kronecker, the kernel of Λ

is µK . Letting π : Rr+1 −→ Rr be the projection map that deletes the last coordinate, we

set Λ′ = π ◦ Λ.

Recall [38, Chap. 5] that there is a system ε = {ε1, . . . , εr} ⊂ O×K of fundamental units

such that every unit u ∈ O×K can be written uniquely as u = ζεn1
1 · · · εnr

r for some integers

n1, . . . , nr and some ζ ∈ µK . We denote by S(ε) the r×r matrix with column vectors Λ′(εi).

6.3 The method

Let K be a number field with relative height function HK : K −→ R≥1 . Given a bound

B ≥ 1, we want to list the elements γ ∈ K satisfying HK(γ) ≤ B. Our method for finding all

such numbers is based on the observation that this problem can be reduced to the question

of finding all units of bounded height. In essence, the idea is to generalize the following

statement that holds over Q: if x ∈ Q∗ and HQ(x) ≤ B, then x can be written as x = ±a/b

where a and b are integers such that (a, b) = 1 and |a|, |b| ≤ B. For a general number field

K, the analogous statement we make is that given x ∈ K∗ with HK(x) ≤ B, it is possible to

write x in the form x = u · a/b, where u ∈ O×K is a unit whose height is explicitly bounded;
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a and b are elements of OK such that (a, b) = a, where a is one ideal from a predetermined

list of ideal class representatives for OK ; and |NK/Q(a)|, |NK/Q(b)| ≤ B ·N(a).

6.3.1 The main algorithm

Theorem 6.3.1 below provides the theoretical basis for our algorithm. In order to describe

all elements of bounded height in K we fix integral ideals a1, . . . , ah forming a complete set

of ideal class representatives for OK . Suppose we are given a bound B ≥ 1. For each ideal

a`, let g`,1, . . . , g`,s` be generators for all the nonzero principal ideals contained in a` whose

norms are at most B ·N(a`). We define a B-packet to be a tuple of the form

P = (`, (i, j), (n1, . . . , nr))

satisfying the following conditions:

• 1 ≤ ` ≤ h;

• 1 ≤ i < j ≤ s`;

• (g`,i, g`,j) = a`; and

• HK(εn1
1 · · · εnr

r ) ≤ B ·HK(g`,i/g`,j).

To a packet P we associate the number

c(P ) = εn1
1 · · · εnr

r ·
g`,i
g`,j
∈ K∗\O×K

and the set

F (P ) = {ζ · c(P ) : ζ ∈ µK} ∪ {ζ/c(P ) : ζ ∈ µK}.

Note that the union defining F (P ) is disjoint, and that F (P ) does not contain units.

Moreover, all the elements of F (P ) have the same height. If r = 0, then a packet is a tuple
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of the form (`, (i, j)) satisfying only the first three defining conditions above, and in this case

c(P ) = g`,i/g`,j.

With the notation and terminology introduced above we can now describe all elements

of K whose height is at most B.

Theorem 6.3.1. Suppose that γ ∈ K∗ satisfies HK(γ) ≤ B. Then either γ ∈ O×K or γ

belongs to the disjoint union ⋃
B-packets P

F (P ).

Proof. Assuming that γ /∈ O×K we must show that there is a packet P such that γ ∈ F (P ).

We can write the fractional ideal generated by γ as (γ) = IJ−1, where I and J are coprime

integral ideals. Since I and J are in the same ideal class, there is some ideal a` (namely

the one representing the inverse class of I and J) such that a`I and a`J are principal;

say (α) = a`I, (β) = a`J . Note that (α, β) = a` because I and J are coprime. Since

(γ) = (α)(β)−1 we may assume, after scaling α by a unit, that γ = α/β. From the bound

HK(γ) ≤ B it follows that

∏
v∈M∞

K

max{|α|nv
v , |β|nv

v } ≤ B ·N(a`).

In particular,

|NK/Q(α)| =
∏

v∈M∞
K

|α|nv
v ≤ B ·N(a`) and |NK/Q(β)| =

∏
v∈M∞

K

|β|nv
v ≤ B ·N(a`).

Since N(α), N(β) ≤ B · N(a`), there must be some indices a, b ≤ s` such that (α) = (g`,a)

and (β) = (g`,b). Hence, we have α = g`,aua and β = g`,bub for some units ua, ub. Letting

t = ua/ub we have γ = tg`,a/g`,b, and since HK(γ) ≤ B, then

HK(t) = HK(γg`,b/g`,a) ≤ HK(γ)HK(g`,b/g`,a) ≤ B ·HK(g`,b/g`,a).

104



Write t = ζεm1
1 · · · εmr

r for some integers m1, . . . ,mr and some ζ ∈ µK . We define indices

i, j and an integer tuple (n1, . . . , nr) as follows: if a < b, we let i = a, j = b, (n1, . . . , nr) =

(m1, . . . ,mr); and if a > b, we let i = b, j = a, (n1, . . . , nr) = (−m1, . . . ,−mr). (The case

a = b cannot occur since γ is not a unit.) Note that in either case we have i < j and

(g`,i, g`,j) = (α, β) = a`. Letting u = εn1
1 · · · εnr

r we have HK(u) = HK(t), so HK(u) ≤

B · HK(g`,i/g`,j). This proves that P := (`, (i, j), (n1, . . . , nr)) is a B-packet. Finally, if we

set c = ug`,i/g`,j, then ζc = γ if a < b; and ζ/c = γ if a > b. Therefore, γ ∈ F (P ).

We show now that the union in the statement of the theorem is disjoint. Suppose that

P = (`, (i, j), (n1, . . . , nr)) and P ′ = (`′, (i′, j′), (n′1, . . . , n
′
r))

are packets such that F (P ) ∩ F (P ′) 6= ∅. We aim to show that P = P ′. Let u = εn1
1 · · · εnr

r ,

and similarly define u′. From the assumption that F (P ) and F (P ′) have a common element

it follows that either

c(P ) · c(P ′) ∈ µK or c(P )/c(P ′) ∈ µK .

We consider the latter case first. There are ideals b`,i, b`,j, b`′,i′ , b`′,j′ such that

(g`,i) = a`b`,i ; (g`,j) = a`b`,j ; (g`′,i′) = a`′b`′,i′ ; (g`′,j′) = a`′b`′,j′ . (6.1)

Note that b`,i and b`,j are coprime because (g`,i, g`,j) = a`; similarly, b`′,i′ and b`′,j′ are

coprime. Now, since c(P )/c(P ′) ∈ µK , there is an equality of ideals (g`,i)(g`′,j′) = (g`,j)(g`′,i′).

Therefore, b`,ib`′,j′ = b`,jb`′,i′ and by coprimality we conclude that

b`,i = b`′,i′ and b`,j = b`′,j′ . (6.2)
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Considering ideal classes, by (6.1) and (6.2) we obtain

[a`]
−1 = [b`,i] = [b`′,i′ ] = [a`′ ]

−1,

so ` = `′. Thus, again using (6.1) and (6.2),

(g`,i) = a`b`,i = a`′b`′,i′ = (g`′,i′) = (g`,i′),

and hence i = i′. Similarly, j = j′. It follows that u/u′ = c(P )/c(P ′) ∈ µK , so (n1, . . . , nr) =

(n′1, . . . , n
′
r), and therefore P = P ′.

The case where c(P ) · c(P ′) ∈ µK is dealt with similarly, and leads to the conclusion that

(i, j) = (j′, i′). But this is a contradiction, since i < j and i′ < j′; therefore, this case cannot

occur.

Remark 6.3.2. In the case where r = 0, Theorem 6.3.1 and its proof still hold if we omit

mention of the fundamental units. See §6.4.4 for a refinement of the theorem in this case.

From Theorem 6.3.1 we deduce the following algorithm.

Algorithm 6.3.3 (Algebraic numbers of bounded height).

Input: A number field K and a bound B ≥ 1.

Output: A list of all elements x ∈ K satisfying HK(x) ≤ B.

1. Create a list L containing only the element 0.

2. Determine a complete set a1, . . . , ah of ideal class representatives for OK .

3. Compute fundamental units ε1, . . . , εr.

4. Include in L all units u ∈ O×K with HK(u) ≤ B.

5. For each ideal a` :
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(a) Find generators g`,1, . . . , g`,s` for all the nonzero principal ideals contained in a`

whose norms are at most B ·N(a`).

(b) For each pair of indices i, j such that 1 ≤ i < j ≤ s` and (g`,i, g`,j) = a` :

i. Find all units u of the form u = εn1
1 · · · εnr

r such that HK(u) ≤ B ·HK(g`,i/g`,j).

ii. For all such units u, let c = u · g`,i/g`,j. If HK(c) ≤ B, then append to L all

elements of the form ζ · c and ζ/c with ζ ∈ µK .

6. Return the list L.

Note that, by Theorem 6.3.1, the list L will not contain duplicate elements. There are

known methods [8, §6.5] for carrying out steps 2 and 3 of Algorithm 6.3.3. An efficient

method for step 5a can be found in the article of Fincke and Pohst [16]. It remains to

explain how a set of units of bounded height can be computed.

6.3.2 Units of bounded height

For a given bound D ≥ 1 we wish to determine all units u ∈ O×K such that HK(u) ≤ D. Our

method for doing this makes use of the following classical result.

Theorem 6.3.4 (Dirichlet). The map Λ′ : O×K −→ Rr is a group homomorphism with kernel

µK, and Λ′(O×K) is a lattice of full rank in Rr spanned by the vectors Λ′(ε1), . . . ,Λ
′(εr).

Let S = S(ε) be the r × r matrix with column vectors Λ′(εi), and let T = S−1 be the

linear automorphism of Rr taking the basis Λ′(ε1), . . . ,Λ
′(εr) to the standard basis for Rr.

Proposition 6.3.5. Suppose u ∈ O×K satisfies HK(u) ≤ D. Then there exist an integer

point (n1, . . . , nr) in the polytope T ([− logD, logD]r) and a root of unity ζ ∈ µK such that

u = ζεn1
1 · · · εnr

r .
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Proof. The bound HK(u) ≤ D implies that |u|nv
v ≤ D for all v ∈ M∞

K . Since HK(1/u) =

HK(u) we also have 1/|u|nv
v ≤ D. Therefore,

− logD ≤ log |u|nv
v ≤ logD for all v ∈M∞

K ,

so Λ′(u) ∈ [− logD, logD]r. We can write u = ζεn1
1 · · · εnr

r for some ζ ∈ µK and some

integers ni. Then (n1, . . . , nr) = T (Λ′(u)) ∈ T ([− logD, logD]r).

The proposition leads to the following algorithm.

Algorithm 6.3.6 (Units of bounded height).

Input: A number field K and a bound D ≥ 1.

Output: A list of all units u ∈ O×K satisfying HK(u) ≤ D.

1. If r = 0, return µK . Otherwise:

2. Create an empty list U .

3. Compute fundamental units ε1, . . . , εr.

4. Find all integer points Q in the polytope T ([− logD, logD]r).

5. For all such points Q = (n1, . . . , nr) :

(a) Let u = εn1
1 · · · εnr

r .

(b) If HK(u) ≤ D, then include uζ in U for all ζ ∈ µK .

6. Return the list U .

Step 4 of Algorithm 6.3.6 can be done using known methods for finding integer points in

polytopes; see, for instance, the articles [2, 11].
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Remark 6.3.7. With more work it is possible to replace the box [− logD, logD]r in step 4 of

Algorithm 6.3.6 with a substantially smaller set, namely the polytope P(D) in Rr cut out

by the inequalities

− logD ≤
∑
i∈I

xi ≤ logD,

where I runs through all nonempty subsets of {1, . . . , r}. This polytope is contained in the

box [− logD, logD]r, and one can show that its volume is smaller than that of the box by

a factor of at least (br/2c!)2. In addition to providing a smaller search space, using P(D)

eliminates the need to check the heights of the units obtained. This is due to the fact that

for units u, HK(u) ≤ D if and only if Λ′(u) ∈ P(D). We omit the proofs of these statements

since we will not use the polytope P(D) here — the box [− logD, logD]r works well in

practice and will suffice for the theoretical analysis of the main algorithm.

For later reference we record the following facts concerning units of bounded height.

Lemma 6.3.8. If the unit u = ζεn1
1 · · · εnr

r satisfies HK(u) ≤ D, then

max
1≤i≤r

|ni| ≤M := d‖T‖ ·
√
r · logDe,

where ‖T‖ denotes the operator norm of T .

Proof. By Proposition 6.3.5, the point (n1, . . . , nr) belongs to T ([− logD, logD]r). Every

vector in this polytope has Euclidean norm at most M , so the polytope is contained in

[−M,M ]r. Hence, (n1, . . . , nr) ∈ [−M,M ]r.

Corollary 6.3.9. Fix λ > 0. There is a constant q = q(λ,K, ε) such that for every bound

D ≥ 1 + λ, the number of units u ∈ O×K satisfying HK(u) ≤ D is at most q · (logD)r.

Proof. Suppose u = ζεn1
1 · · · εnr

r is a unit with HK(u) ≤ D. By Lemma 6.3.8, (n1, . . . , nr) ∈

[−M,M ]r. This gives at most (2M + 1)r options for the tuple (n1, . . . , nr), and hence at
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most (#µK) · (2M + 1)r options for u. Therefore,

#{u ∈ O×K : HK(u) ≤ D}
(logD)r

≤ (#µK)

(
3

log(1 + λ)
+ 2
√
r · ‖T‖

)r
,

and the result follows.

While Algorithms 6.3.3 and 6.3.6 form a theoretically accurate description of our method,

for purposes of computing they are not optimal. We discuss now a few changes to the method

which will make it more efficient.

6.3.3 Computational improvements to the method

We aim in this section to modify Algorithms 6.3.3 and 6.3.6 with the following goals in mind:

to avoid computing any given piece of data more than once; to minimize the cost of height

computations; and to avoid, as much as possible, doing arithmetic with fundamental units.

The latter is desirable because fundamental units in a number field can be very large, so

that arithmetic operations with them might be costly.

Regarding the expense of height computations, we begin by noting that the height of an

element of K can be computed by using the logarithmic map Λ. Indeed, suppose α, β are

nonzero elements of OK ; letting Λ(α) = (x1, . . . , xr+1) and Λ(β) = (y1, . . . , yr+1) we have

log(N(α, β)) + hK(α/β) =
r+1∑
i=1

max{xi, yi}. (6.3)

In view of this fact, throughout this section we will use the logarithmic height function

hK rather than HK . From a computational standpoint, hK is also more convenient because

it is defined as a sum rather than a product.

To minimize the amount of time spent on height computations in step 5 of Algorithm

6.3.3, we make the following observation. Using (6.3), all of the heights required in that step
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can be computed from the data of the real vectors Λ(ε1), . . . ,Λ(εr) and the vectors Λ(g`,i)

for all indices `, i:

• The height of a unit u = εn1
1 · · · εnr

r can be found knowing only the tuple (n1, . . . , nr) —

without actually computing u. Indeed, hK(u) can be computed from the vector Λ(u),

which is equal to
∑r

j=1 njΛ(εj).

• The numbers hK(g`,i/g`,j) required in step 5(b)(i) of Algorithm 6.3.3 can be computed

from the vectors Λ(g`,i) and Λ(g`,j).

• Using the fact that Λ(ug`,i) = Λ(u)+Λ(g`,i), the number hK(u ·g`,i/g`,j) in step 5(b)(ii)

can be computed from the tuple (n1, . . . , nr) and the vectors Λ(g`,i), Λ(g`,j).

From these observations we conclude that the vectors Λ(ε1), . . . ,Λ(εr) and Λ(g`,i) (for

all appropriate indices `, i) should be computed once and stored for later use; all height

computations that take place within the algorithm can then make use of this precomputed

data.

Step 5(b)(i) of Algorithm 6.3.3, in which we compute all units of height less than a given

bound, must be performed many times — each time with a different height bound. It would

be more efficient to let d be the largest height bound considered, and determine the list U

of units u satisfying hK(u) ≤ d. This list will then contain all units needed throughout the

algorithm. In particular, the units from step 4 can be obtained from U . Hence, step 4 should

be carried out only after the list U has been computed. By making these changes, only one

computation of units of bounded height will be required throughout the entire algorithm.

Similar remarks apply to step 5(a) of Algorithm 6.3.3: letting N = max`N(a`), we should

list all principal ideals of OK whose norms do not exceed B ·N . All of the ideals required in

step 5(a) can then be found within this list. Thus, only one computation of principal ideals

of bounded norm will be needed throughout the algorithm.
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With all of the above modifications in mind we now give an improved version of our

method.

Algorithm 6.3.10 (Algebraic numbers of bounded height).

Input: A number field K and a bound B ≥ 1.

Output: A list L of all elements γ ∈ K satisfying HK(γ) ≤ B.

1. Find a complete set a1, . . . , ah of ideal class representatives.

2. Let N = max`N(a`) and make a list P of all nonzero principal ideals of OK — each

represented by a single generator g — having norm at most B · N . Record Λ(g) for

each g.

3. For each ideal a`, make a list (g`,1), . . . , (g`,s`) of all elements of P contained in a` whose

norms are at most B ·N(a`).

4. For each index `:

(a) Make a list R` of pairs (i, j) such that 1 ≤ i < j ≤ s` and (g`,i, g`,j) = a`.

(b) For each pair (i, j) in R`, use the data recorded in step (2) to compute h`,i,j =

hK(g`,i/g`,j).

5. Let d = logB + max` max(i,j)∈R`
h`,i,j.

6. Compute a system ε = {ε1, . . . , εr} of fundamental units, and record their images

under the logarithmic map Λ. Construct the matrix S = S(ε) with column vectors

Λ′(ε1), . . . ,Λ
′(εr).

7. Construct a list U consisting of all integer vectors (n1, . . . , nr) in the polytope S−1([−d, d]r).

8. Create a list L containing only the element 0, and create empty lists U0 and L0.

9. For each tuple u = (n1, . . . , nr) in U :
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(a) Compute the vector Λu =
∑r

j=1 njΛ(εj) using the data from step (6).

(b) Use Λu to compute hu = hK (εn1
1 · · · εnr

r ).

(c) If hu ≤ logB, then append u to U0.

(d) If hu > d, then remove u from U .

10. For each index ` :

For each pair (i, j) ∈ R` :

For each tuple u = (n1, . . . , nr) in U :

If hu ≤ logB + h`,i,j, then:

i. Let P be the packet (`, (i, j), (n1, . . . , nr)).

ii. Use the data recorded in steps (2) and (9a) to compute hK(c(P )).

iii. If hK(c(P )) ≤ logB, then append the packet P to L0.

11. For each tuple (n1, . . . , nr) in U0, append to L all numbers of the form ζεn1
1 · · · εnr

r with

ζ ∈ µK .

12. For each packet P in L0, append to L all numbers of the form ζ · c(P ) and ζ/c(P ) with

ζ ∈ µK .

13. Return the list L.

Note that several quantities appearing in Algorithm 6.3.10 involve real numbers, so that

an implementation of the algorithm may require floating point arithmetic. For some appli-

cations this may not be an issue, but if one needs to know with certainty that all elements

not exceeding the specified height bound have been found, then it is imperative to choose

the precision for floating point calculations carefully. In the next section we will address this

in detail.

113



6.4 Error analysis

There are two issues that must be considered in order to implement Algorithm 6.3.10 in

such a way that the output is guaranteed to be complete and correct. These issues are

due to the fact that in a computer we cannot work exactly with the real numbers that

appear in the algorithm (heights of algebraic numbers, logarithms of real numbers, absolute

values of algebraic numbers), so we must make do with rational approximations of them.

We consider now the question of finding approximations that are good enough to guarantee

correct results.

The first issue is that of computing the height of an algebraic number. In carrying out

Algorithm 6.3.10 one must check inequalities of the form hK(x) ≤ D for given x ∈ K∗ and

D ∈ R. In practice, one can only work with rational approximations h̃ of hK(x) and D̃ of D,

and check whether h̃ ≤ D̃. However, it may happen that hK(x) ≤ D even though h̃ > D̃.

To deal with this problem one must be able to find arbitrarily close rational approximations

of hK(x).

The second issue is that of enumerating lattice points inside a polytope, which is needed

in Algorithm 6.3.6. The polytopes considered are of the form T (B), where B = [−d, d]r

is a box in Rr and T : Rr −→ Rr is a linear isomorphism. In practice, the box B must

be replaced by a box B̃ with rational vertices, and the matrix of T must be approximated

by a rational matrix corresponding to a map T̃ . We will not necessarily have an equality

Zr ∩ T (B) = Zr ∩ T̃ (B̃), so lattice points may be lost in this approximation process. One

must therefore take great care to ensure that good enough approximations are found so that

at least there is a containment Zr ∩ T (B) ⊆ Zr ∩ T̃ (B̃).

There are several ways of dealing with these issues, each one leading to a different imple-

mentation of the main algorithm. For concreteness, we describe in this section one way of

solving these problems, and we give the corresponding modification of Algorithm 6.3.10.
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We introduce the following terminology to be used throughout this section: if ~x =

(x1, . . . , xm) is a vector in the Euclidean space Rm, we say that ~y = (y1, . . . , ym) ∈ Rm

is a δ-approximation of ~x if |xi − yi| < δ for all 1 ≤ i ≤ m.

6.4.1 The height function

Given an element x ∈ K∗ and a real number λ > 0, we wish to compute a rational number

h̃ such that |h̃− hK(x)| < λ. Writing x = α/β with α, β ∈ OK and using (6.3), we see that

hK(x) can be approximated by first finding good approximations of the vectors Λ(α) and

Λ(β).

Lemma 6.4.1. Fix λ > 0 and set δ = λ/(r + 2). Let α, β be nonzero elements of OK. Let

ñ, (s1, . . . , sr+1), and (t1, . . . , tr+1) be δ-approximations of log(N(α, β)), Λ(α), and Λ(β),

respectively. Then, with

h̃ = −ñ+
r+1∑
i=1

max{si, ti}

we have |hK(α/β)− h̃| < λ.

Proof. Let Λ(α) = (x1, . . . , xr+1) and Λ(β) = (y1, . . . , yr+1). Using (6.3) we obtain

|hK(α/β)− h̃| ≤ |ñ− log(N(α, β))|+
r+1∑
i=1

|max{xi, yi} −max{si, ti}| < (r + 2)δ = λ.

For a nonzero element y ∈ K, each entry of the vector Λ(y) is of the form nv log |y|v

for some place v ∈ M∞
K . Corresponding to v there is an embedding σ : K ↪→ C such that

|y|v = |σ(y)|. Since σ(y) is a complex root of the minimal polynomial of y, known methods

(see [54], for instance) can be applied to approximate σ(y) with any given accuracy. In this

way, the vector Λ(y) can be approximated to any required precision.
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Lemma 6.4.1 provides a way of approximating the height of any element of K by using

the map Λ. However, in practice a slightly different method will be needed for computing

heights of units. As mentioned in §6.3.3, in order to avoid costly arithmetic with fundamental

units we do not work directly with units u when carrying out Algorithm 6.3.10. Hence, we

cannot approximate the vector Λ(u) by computing |u|v for every place v. Instead, a unit

u = εn1
1 · · · εnr

r is encoded by the tuple (n1, . . . , nr), so we need a way of approximating hK(u)

given only this tuple. Since Λ(u) =
∑r

j=1 njΛ(εj), it is enough to approximate the vectors

Λ(εi) sufficiently well; we make this precise in the following lemma.

Lemma 6.4.2. Fix λ,M > 0 and set δ = λ/(r(r + 1)M). Let {ε1, . . . , εr} be a system of

fundamental units for O×K, and for each j let (s1,j, . . . , sr+1,j) be a rational δ-approximation

of Λ(εj) = (x1,j, . . . , xr+1,j). Suppose u = εn1
1 · · · εnr

r is a unit with |n1|, . . . , |nr| ≤M . Then,

with

h̃ =
r+1∑
i=1

max

{
r∑
j=1

njsi,j , 0

}

we have

|hK(u)− h̃| < λ.

Proof. Since Λ(u) =
∑r

j=1 njΛ(εj), the i-th coordinate of Λ(u) is given by
∑r

j=1 njxi,j.

Applying (6.3) to u = u/1 yields

hK(u) =
r+1∑
i=1

max

{
r∑
j=1

njxi,j , 0

}
.

Therefore,

|hK(u)− h̃| =

∣∣∣∣∣
r+1∑
i=1

(
max

{
r∑
j=1

njxi,j, 0

}
−max

{
r∑
j=1

njsi,j, 0

})∣∣∣∣∣
≤

r+1∑
i=1

r∑
j=1

|nj| · |xi,j − si,j| < r(r + 1)Mδ = λ.
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6.4.2 Units of bounded height

We use here the notation from §3.2. Let d = logD and let B = [−d, d]r. Algorithm 6.3.6

requires that we enumerate all integer lattice points in the polytope S−1(B). In practice, the

matrix S must be replaced by a rational approximation S̃, and the box B by a rational box

B̃. We show here how to choose these approximations so that S−1(B) ⊆ S̃−1(B̃). For the

purpose of enumerating integer lattice points, we may then replace B with B̃ and S with S̃,

thus avoiding errors arising from floating-point arithmetic.

For a vector v ∈ Rr we denote by |v| the usual Euclidean norm of v, and for a linear map

L : Rr −→ Rr we let ‖L‖ denote the operator norm,

‖L‖ = sup
|x|≤1
|Lx| .

We also denote by L the matrix of L with respect to the standard basis for Rr. Recall that

the supremum norm of L is given by ‖L‖sup := maxi,j |Li,j|, and that there is an inequality

‖L‖ ≤ r
√
r · ‖L‖sup. (6.4)

We begin with two results which will be useful for approximating the inverse of a matrix.

Lemma 6.4.3. Let V be an r × r invertible matrix over the real numbers, and let Ṽ be a

matrix such that

‖Ṽ − V ‖ · ‖V −1‖ < 1.

Then Ṽ is invertible and

‖Ṽ −1 − V −1‖ ≤ ‖Ṽ − V ‖ · ‖V −1‖2

1− ‖Ṽ − V ‖ · ‖V −1‖
.
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Proof. See the proof of Theorem 9.8 in [63].

Using (6.4) we obtain:

Corollary 6.4.4. With V as in the lemma, let m be a constant with m ≥ r2 · ‖V −1‖sup.

Given λ > 0, let Ṽ be a matrix such that ‖Ṽ − V ‖sup < λ
r2(m2+mλ)

. Then Ṽ is invertible and

‖Ṽ −1 − V −1‖ < λ.

We can now give the required accuracy in approximating the matrix S.

Proposition 6.4.5. Let S be an invertible r × r matrix over the real numbers, and let d be

a positive real number. Given η > 0, define B̃ = [−d − η, d + η]r. Let m be a real number

such that

m ≥ r2 ·max{‖S‖sup, ‖S−1‖sup}.

Define constants

λ :=
η

dr(1 +m)
and δ := min

{
λ

r2(m2 +mλ)
,

1

r2

}
.

If S̃ is any r × r matrix such that ‖S̃ − S‖sup < δ, then S̃ is invertible and S−1(B) ⊆

S̃−1(B̃).

Proof. It follows from Corollary 6.4.4 that S̃ is invertible and ‖S̃−1 − S−1‖ < λ. For any

x ∈ B we then have

|S̃(S−1x)− x| = |S̃(S−1x)− S̃(S̃−1x)| ≤ ‖S̃‖ · ‖S−1 − S̃−1‖ · |x| < η.

Hence, we see that S̃(S−1x) ∈ B̃, so S−1x ∈ S̃−1(B̃) and this completes the proof.

Proposition 6.4.5 reduces the problem of finding an adequate approximation of S to

finding upper bounds for ‖S‖sup and ‖S−1‖sup. The former can be easily done using any
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approximation of S. One way of finding an upper bound for ‖S−1‖sup is to use the fact that

S−1 = 1
det(S)

· A, where A is the adjugate matrix of S. By approximating S one can obtain

a lower bound for det(S) and an upper bound for the entries of A.

6.4.3 Revised algorithm

Using the methods described above we give a new version of Algorithm 6.3.10 which takes

precision issues into account. We assume here that r > 0; the case r = 0 is treated in §6.4.4

for imaginary quadratic fields, and is trivial when K = Q.

Algorithm 6.4.6 (Algebraic numbers of bounded height).

Input: A number field K, a bound B ≥ 1, and a tolerance θ ∈ (0, 1], with B, θ ∈ Q.

Output: Two lists, L and L′, such that:

• If x ∈ K satisfies HK(x) ≤ B, then x is in either L or L′.

• For every x ∈ L, HK(x) < B.

• For every x ∈ L′, |HK(x)−B| < θ.

1. Set t = θ/(3B) and let δ1 = t/(6r + 12). Find a complete set a1, . . . , ah of ideal

class representatives, and for each index ` compute a rational δ1-approximation of

log(N(a`)).

2. Let N = max`N(a`) and make a list P of all nonzero principal ideals of OK — each

represented by a single generator g — having norm at most B ·N . For each g, find a

δ1-approximation of Λ(g).

3. For each ideal a`, make a list (g`,1), . . . , (g`,s`) of all elements of P contained in a` whose

norms are at most B ·N(a`).
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4. For each index `:

(a) Make a list R` of pairs (i, j) such that 1 ≤ i < j ≤ s` and (g`,i, g`,j) = a`.

(b) For each pair (i, j) in R`:

Use Lemma 6.4.1 and data from steps (1) and (2) to find a rational approxima-

tion of hK(g`,i/g`,j).

The result will be a rational number r`,i,j such that |r`,i,j − hK(g`,i/g`,j)| < t/6.

5. Find a rational number b such that t
12

< b − log(B) < t
4

and set d̃ = b + t
6

+

max` max(i,j)∈R`
r`,i,j.

6. Compute a system of fundamental units ε = {ε1, . . . , εr} and find a constant m such

that

m ≥ r2 ·max{‖S(ε)‖sup, ‖S(ε)−1‖sup}.

7. Define constants

λ̃ =
t/12

d̃r(1 +m)
, δ̃ = min

{
λ̃

r2(m2 +mλ̃)
,

1

r2

}
, M = dd̃(m+λ̃

√
r)e, δ2 = min

{
δ̃,

t/6

r(r + 1)M

}
.

8. Compute δ2-approximations v1, . . . , vr of the vectors Λ(ε1), . . . ,Λ(εr), and construct

the r× r matrix S̃ whose j-th column is the vector vj with its last coordinate deleted.

9. Construct a list U consisting of all integer vectors (n1, . . . , nr) in the polytope S̃−1([−d̃, d̃]r).

10. Create a list L containing only the element 0, and create empty lists U0, U
′
0 and L0, L

′
0.

11. For each tuple u = (n1, . . . , nr) in U :

(a) Compute the vector Λ̃u =
∑r

j=1 njvj.

(b) Using Λ̃u and Lemma 6.4.2, find a rational approximation of hK (εn1
1 · · · εnr

r ). The

result will be a rational number ru such that |ru − hK (εn1
1 · · · εnr

r ) | < t/6.
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(c) If ru + 5
12
t < b, then append u to U0.

(d) If b− 5
12
t ≤ ru < b+ 1

12
t, then append u to U ′0.

(e) If ru − t/12 > d̃, then remove u from U .

12. For each index ` :

For each pair (i, j) ∈ R` :

For each tuple u = (n1, . . . , nr) in U :

If ru < b+ r`,i,j + 1
4
t, then:

(a) Let P be the packet (`, (i, j), (n1, . . . , nr)).

(b) Use the data from steps (1), (2), and (11a), together with (6.3), to find

a rational approximation of hK(c(P )). The result will be a rational

number rP with |rP − hK(c(P ))| < t/3.

(c) If rP + 7
12
t ≤ b, then append the packet P to L0.

(d) If b− 7
12
t < rP < b+ 1

4
t, then append the packet P to L′0.

13. For each tuple (n1, . . . , nr) in U0, append to L all numbers of the form ζεn1
1 · · · εnr

r with

ζ ∈ µK , and similarly for U ′0 and L′.

14. For each packet P in L0, append to L all numbers of the form ζ · c(P ) and ζ/c(P ) with

ζ ∈ µK , and similarly for L′0 and L′.

15. Return the lists L and L′.

We make the following comments regarding various steps of Algorithm 6.4.6:

• Let S = S(ε). With d as in step (5) of Algorithm 6.3.10 we have d̃ > d + t/12.

Therefore, if we set η = t/12 and let λ and δ be defined as in Proposition 6.4.5, then
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λ̃ < λ and δ̃ ≤ δ. By construction, ‖S̃ − S‖sup < δ̃ ≤ δ, so that by Proposition 6.4.5

we have

S−1([−d, d]r) ⊆ S̃−1([−d− η, d+ η]r) ⊆ S̃−1([−d̃, d̃]r).

• In order to use Lemma 6.4.2 in step 11(b) we must know that |ni| ≤M for all 1 ≤ i ≤ r.

Since u ∈ S̃−1([−d̃, d̃]r), we clearly have the upper bound |ni| ≤ d̃
√
r‖S̃−1‖. By

Corollary 6.4.4, ‖S̃−1−S−1‖ < λ̃, so applying (6.4) we have ‖S̃−1‖ ≤ r
√
r‖S−1‖sup+ λ̃.

It follows that |ni| ≤ d̃(m+ λ̃
√
r) ≤M .

• The condition ru + 5
12
t < b from step (11)c implies that hu < logB; the condition

b − 5
12
t ≤ ru < b + 1

12
t from step (11)d implies |hu − logB| < t. Moreover, every

u = (n1, . . . , nr) for which hK(εn1
1 · · · εnr

r ) ≤ logB is in U0 or U ′0, since hu ≤ logB

implies ru < b+ 1
12
t.

• The condition ru − t/12 > d̃ from step (11)e implies that hu > d.

• The condition rP+ 7
12
t ≤ b from step (12)c implies that hK(c(P )) < logB; the condition

b− 7
12
t < rP < b + 1

4
t from step (12)d implies that |hK(c(P ))− logB| < t. Moreover,

every packet P with h(c(P )) ≤ logB is in either L0 or L′0, since hK(c(P )) ≤ logB

implies that rP < b+ t
4
.

• Elements x ∈ L satisfy HK(x) < B, since they come from tuples in U0 and packets in

L0. Elements x ∈ L′ satisfy |hK(x)− logB| < t, which implies that |HK(x)− B| < θ

by the Mean Value Theorem.

Note that the list L′ of Algorithm 6.4.6 consists of elements x ∈ K whose heights are so

close to B that it is not possible to decide whether HK(x) ≤ B with the tolerance specified

as input. In particular, L′ might contain elements of height exactly B. For general number

fields K we cannot prevent this from occurring; however, for quadratic fields we can prevent

it, as explained below.
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6.4.4 Case of quadratic fields

We give here a way to shorten the list L′ from Algorithm 6.4.6 in the case of real quadratic

fields, and to eliminate it altogether in the case of imaginary quadratic fields.

Proposition 6.4.7. Let K be a quadratic field and let x ∈ K∗. Let σ be the generator of

Gal(K/Q).

1. If K is an imaginary field, then HK(x) is an integer.

2. If K is a real field, then HK(x) ∈ Q if and only if max{|x|, |σ(x)|} ≤ 1 or min{|x|, |σ(x)|} ≥

1. Moreover, if HK(x) ∈ Q, then HK(x) ∈ Z.

Proof. Write x = a/b with a, b ∈ OK , and let a = (a, b) be the ideal generated by a and b in

OK . Then HK(x) = N(a)−1
∏

v∈M∞
K

max{|a|nv
v , |b|nv

v }. There are coprime ideals I and J of

OK such that (a) = a · I and (b) = a ·J . We then have HK(x) = N(J)
∏

v∈M∞
K

max{|x|nv
v , 1}.

1. If K is an imaginary field, then

HK(x) = N(a)−1 max{NK/Q(a), NK/Q(b)} = max{N(I), N(J)} ∈ Z.

2. IfK is a real field, thenHK(x) = N(J) max{|x|, 1}·max{|σ(x)|, 1}. If max{|x|, |σ(x)|} ≤

1, then HK(x) = N(J) ∈ Z. If min{|x|, |σ(x)|} ≥ 1, then

HK(x) = N(J)|NK/Q(x)| = N(J)N(a)/N(b) = N(I) ∈ Z.

Now suppose that max{|x|, |σ(x)|} > 1 and min{|x|, |σ(x)|} < 1. Then, without

loss of generality we may assume that |x| < 1 < |σ(x)|. It follows that x /∈ Q, so

HK(x) = N(J)|σ(x)| /∈ Q.
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In the case of real quadratic fields it is possible to detect some elements of the list L′

from Algorithm 6.4.6 which should be in the list L: if x ∈ L′ has height HK(x) ∈ Q — a

condition which can be determined using Proposition 6.4.7 — then by construction of L′ it

must be the case that HK(x) is the unique integer closest to B (assuming the tolerance θ

from Algorithm 6.4.6 was chosen to be less than 1/2). If the nearest integer is bBc, then x

can then be deleted from L′ and appended to L. Otherwise, x can be deleted from L′. At

the end of this process the list L′ will only contain elements of K whose heights are irrational

and very close to B.

For imaginary quadratic fields K there is a modification of Algorithm 6.3.10 that allows

us to determine elements of bounded height without doing any height computations. Thus,

for such fields we avoid the need for a list L′ as in Algorithm 6.4.6.

With the notation and terminology of §6.3.1 we have:

Theorem 6.4.8. Let K be an imaginary quadratic field. Then

{γ ∈ K∗ : HK(γ) ≤ B} = µK ∪
⋃

B-packets P

F (P ).

Proof. One containment follows from Theorem 6.3.1. It is therefore enough to show that

HK(c(P )) ≤ B for every packet P . Letting P = (`, (i, j)) we have

N(a`)HK(c(P )) =
∏

v∈M∞
K

max{|g`,i|nv
v , |g`,j|nv

v } = max{NK/Q(g`,i), NK/Q(g`,j)} ≤ B ·N(a`).

Hence, HK(c(P )) ≤ B.

Theorem 6.4.8 leads to the following algorithm.

Algorithm 6.4.9 (Numbers of bounded height in an imaginary quadratic field).

Input: An imaginary quadratic field K and a bound B ≥ 1.

Output: A list of all elements x ∈ K satisfying HK(x) ≤ B.
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1. Create a list L containing 0 and all elements of µK .

2. Find a complete set a1, . . . , ah of ideal class representatives.

3. Let N = max`N(a`) and make a list P of all nonzero principal ideals of OK — each

represented by a single generator g — having norm at most B ·N .

4. For each ideal a`, make a list (g`,1), . . . , (g`,s`) of all elements of P contained in a` whose

norms are at most B ·N(a`).

5. For each index `:

For each pair of indices (i, j) such that 1 ≤ i < j ≤ s` and (g`,i, g`,j) = a`:

Let c = g`,i/g`,j and append to L all elements of the form ζ · c and ζ/c with

ζ ∈ µK .

6. Return the list L.

By Theorem 6.3.1, the list L will not contain duplicate elements.

6.5 Efficiency of the algorithm

We discuss in this section a measure of the efficiency of Algorithm 6.3.10 — henceforth

abbreviated A3 — and of the algorithm of Pethő and Schmitt — abbreviated PS — proposed

in [56]. Given a number field K and a height bound B, both methods begin by computing

some basic data attached to K: an integral basis for OK in the case of PS; the ideal class

group and a set of fundamental units in the case of A3. After this step, both methods

construct a set of elements of K which is known to contain the desired set of numbers of

bounded height; this larger set will be called the search space of the method and denoted by

SPS(B) or SA3(B). Once a search space is known, the two methods proceed to compute the

height of each element in this set and check whether it is smaller than B. We will measure
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the efficiency of a method by comparing the size of the search space to the size of the set of

elements of height ≤ B. Thus, we define the search ratio of PS to be the number

σPS(B) :=
#SPS(B)

#{P ∈ K : HK(P ) ≤ B}
,

and similarly for A3.

Recall the result on which PS is based:

Theorem 6.5.1 (Pethő, Schmitt). Let K be a number field of degree n over Q. Let B ∈

R, B ≥ 1. Denote by r2 the number of complex places of K. Let ω1, . . . , ωn be an LLL-reduced

integral basis for OK. Then every element x ∈ K with HK(x) ≤ B can be written in the

form

x =
a1ω1 + · · ·+ anωn

c
,

where a1, . . . , an, c are integers satisfying

1 ≤ c ≤ B and |ai| ≤ 2n(n+1)/4−r2Bc .

Proof. See the proof of Theorem 2 in [56].

This leads to the following algorithm:

Algorithm 6.5.2 (PS).

Input: A number field K and a bound B ≥ 1.

Output: A list of all elements x ∈ K satisfying HK(x) ≤ B.

1. Compute an LLL-reduced integral basis ω1, . . . , ωn for OK .

2. Create an empty list L.

3. For c = 1 to bBc :
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(a) Let D = b2n(n+1)/4−r2Bcc .

(b) For every integer tuple (a1, . . . , an) ∈ [−D,D]n :

i. Let x =
a1ω1 + · · ·+ anωn

c
.

ii. If HK(x) ≤ B, then append x to L.

4. Return the list L.

We now give our main result comparing the efficiency of PS with that of A3.

Theorem 6.5.3. Let K be a number field of degree n. The search ratios of PS and A3

satisfy

σPS(B)� B2n−2 and σA3(B)� (logB)r,

where r is the rank of the unit group O×K.

Proof. By Schanuel’s formula [64] we know that there is a constant CK such that

#{P ∈ K : HK(P ) ≤ B} ∼ CKB
2.

A simple calculation shows that the size of the search space in PS satisfies #SPS(B) >

B2n2n
2(n−1)/4+n; the first statement in the theorem then follows easily. Now let a = {a1, . . . , ah}

be a complete set of ideal class representatives for OK and ε = {ε1, . . . , εr} a system of fun-

damental units. For each index ` let g`,1, . . . , g`,s` be generators for all nonzero principal

ideals contained in a` whose norms are at most B ·N(a`). By [4, p. 123] we may assume that

|g`,i|nv
v ≤ EK(B ·N(a`))

1/(r+1) (6.5)

for every place v ∈ M∞
K and all indices `, i. Here EK is a constant which depends on ε but

not on B.
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Let P (B) =
∑h

`=1 s`. Using the bound given in [50, Thm. 1] we find that P (B) � B.

Using Theorem 6.3.1 we see that the size of the search space considered in A3 satisfies

#SA3(B) ≤ 1+#{u ∈ O×K : HK(u) ≤ D} ·
(
1 + 2 · P (B)2

)
� B2 ·#{u ∈ O×K : HK(u) ≤ D},

(6.6)

where D is any number such that D ≥ B ·max`,i,j HK(g`,i/g`,j). By (6.5) we have

HK(g`,i/g`,j) ≤
∏

v∈M∞
K

max{|g`,i|nv
v , |g`,j|nv

v }
N(a`)

≤
∏

v∈M∞
K
EK(B ·N(a`))

1/(r+1)

N(a`)
= FKB

for all `, i, j and for some constant FK independent of B. Hence, we may take D = FKB
2.

By Corollary 6.3.9,

#{u ∈ O×K : HK(u) ≤ D} � (logB)r.

Therefore, by (6.6), the size of the search space in A3 satisfies #SA3(B) � B2(logB)r.

The second statement in the theorem follows from this inequality and Schanuel’s asymptotic

estimate.

Theorem 6.5.3 shows that, for a fixed field K, the method A3 is asymptotically (as

B −→ ∞) much more efficient than PS. However, the search ratio is not the only factor

determining total computation time: the initial step of computing basic data for K can be

very time-consuming. If K is a field for which the cost of this initial step is high, then PS

may perform better than A3. An example of this phenomenon may be seen in the next

section.

6.6 Performance of the algorithm

Having done a theoretical analysis of the methods PS and A3 in the previous section, we show

in this section how the methods perform in practice. Both algorithms have been implemented
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in Sage [68]. All computations below have been done on a Mac Pro with a Quad-Core 2.26

GHz processor and 8 GB of memory. In all examples, the embeddings of the number field K

are computed using 100 bits of precision. When K is imaginary quadratic, Algorithm 6.4.9

(henceforth abbreviated A5) is used instead of A3.

The computations presented in this section are intended to make a comparison of the

performances of A3, A5, and PS in practice. We will first determine the range within which

PS can operate (in terms of number field degrees and height bounds); next, we compare A3

and A5 with PS within this range. Finally, we show that A3 and A5 can run efficiently on

many examples that are well beyond the range of applicability of PS. In order to be able

to give a substantial amount of examples, we will only consider number fields K and height

bounds B for which the computation of the set {x ∈ K : HK(x) ≤ B} requires at most 10

hours using A3, A5 or PS.

6.6.1 Limits of PS

Table 6.1 below lists the time required for computing the set {x ∈ K : HK(x) ≤ B} for three

number fields K and bounds B using PS. The field is specified by its defining polynomial in

the variable t. In each case the field was chosen so that, among all number fields of equal

degree, it has minimal absolute discriminant and maximal number of complex embeddings

(such data may be found in Jones’s number field database [30]). This choice minimizes the

amount of time spent on steps 1 and 3 of PS, therefore minimizing total computation time.

Thus, for any bound B and for number fields of fixed degree, the fields given in the table

represent a best-case scenario for PS. However, even with the small values of B chosen here,

the computation times exceed our set limit of 10 hours.

In view of these times, we will not carry out any computations using PS over fields of

degree larger than 3. Moreover, for quadratic fields we will only consider height bounds
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Number field K Height bound B PS time
t4 − t3 − t2 + t+ 1 2 33.64 hours

t3 − t2 + 1 5 20.84 hours
t2 − t+ 1 25 16.27 hours

Table 6.1: Sample computations with PS

B ≤ 20, and for cubic fields only bounds B ≤ 4.

6.6.2 Comparing A3 and A5 with PS

The four tables below contain the results of computations done using both PS and A3/A5

over quadratic and cubic fields, and are meant to give representative examples of the efficiency

of the methods. Number fields are chosen to have nontrivial class group so that computing

time for A3/A5 will not be optimal. In the tables, a number field K is specified by giving a

defining polynomial for it in the variable t. The class number of K is given, then the height

bound used for the particular computation, and then the computing times and search ratios

of the two methods. Note that, by Theorem 6.4.8, the search ratio of A5 is always 1.

Field K #Cl(K) Bound B PS time A5 time σPS(B) σA5(B)
t2 + 61 6 20 5.41 hours 0.38 seconds 96,233 1
t2 + 9026 160 20 5.39 hours 4.50 seconds 330,540 1
t2 + 49661 424 20 4.83 hours 25.24 seconds 330,540 1
t2 + 312311 1001 20 4.88 hours 50.30 seconds 330,540 1

Table 6.2: PS and A5 over imaginary quadratic fields

As mentioned in §6.5, PS may be faster than A3 if the discriminant of K is very large

and B is very small. For example, the computation of all elements of height ≤ 5 in the

quadratic field K = Q(
√

359612476105) with class number 53,936 took 2.47 minutes using
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Field K #Cl(K) Bound B PS time A3 time σPS(B) σA3(B)
t2 − 36865 52 15 9.95 hours 3 seconds 495,268 3.13
t2 − 254017 124 15 9.95 hours 13 seconds 495,268 1.0
t2 − 627265 206 15 9.28 hours 29 seconds 495,268 1.0
t2 − 705601 254 15 10.25 hours 34 seconds 495,268 1.0

Table 6.3: PS and A3 over real quadratic fields

Field K #Cl(K) Bound B PS time A3 time σPS(B) σA3(B)
t3 − t2 + 21t− 1 13 4 4.26 hours 0.48 seconds 106 1.0
t3 − t2 + 45t− 93 53 4 4.95 hours 16.63 seconds 106 1.0
t3 − 141t− 1004 87 4 4.54 hours 1.89 minutes 3× 106 1.0

t3 − t2 + 194t− 944 123 4 4.56 hours 1.95 minutes 3× 106 1.0

Table 6.4: PS and A3 over cubic fields with one real embedding

Field K #Cl(K) Bound B PS time A3 time σPS(B) σA3(B)
t3 − t2 − 17t− 16 4 2.7 2 hours 0.1 seconds 219,501 1.0
t3 − t2 − 25t+ 24 8 2.7 2 hours 0.49 seconds 219,501 1.0
t3 − t2 − 55t− 77 13 2.7 2 hours 12 seconds 219,501 1.0
t3 − t2 − 49t+ 48 16 2.7 1.88 hours 1.66 seconds 219,501 1.0

Table 6.5: PS and A3 over totally real cubic fields

PS, but using A3 the computation did not terminate within 10 hours. This difference is due

to the expense of computing ideal class representatives.

6.6.3 Performance of A3 and A5

We end by giving a series of examples showing how A3 and A5 perform over number fields

of various degrees and with several different height bounds.
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Bound B A5 time σA5(B) Elements found
200 0.84 seconds 1 15,275

1,000 19.06 seconds 1 393,775
3,000 2.78 minutes 1 3,523,651
7,000 15.25 minutes 1 19,124,179

Table 6.6: Computing times for A5 over the field K = Q(
√
−107)

Bound B A3 time σA3(B) Elements found
200 8.45 seconds 11.98 14,331

1,000 2.02 minutes 14.94 366,395
3,000 17 minutes 18.28 3,315,767
5,000 49 minutes 19.86 9,161,731

Table 6.7: Computing times for A3 over the field K = Q(
√

91)

Bound B A3 time σA3(B) Elements found
200 37 seconds 121.89 6,819

1,000 7.09 minutes 197.66 166,751
2,000 26 minutes 234.11 667,651
4,000 1.75 hours 270.43 2,671,227

Table 6.8: Computing times for A3 over the field K : t3 − 43t− 66

Bound B A3 time σA3(B) Elements found
200 12 seconds 68.08 75,027
500 1.44 minutes 125.76 528,459

1,000 6 minutes 149.93 2,073,303
3,000 1 hour 186.94 18,261,363

Table 6.9: Computing times for A3 over the sextic cyclotomic field K = Q(ζ7)
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Appendix A

Graphs of preperiodic points

This appendix contains figures, in the first section, and data in the second, corresponding

to sets of preperiodic points for quadratic polynomials over quadratic number fields.

A.1 Figures

We give here a list of 46 graphs representing preperiodic structures for quadratic polynomials

over quadratic number fields, discovered via the methods described in §4.5. The label of each

graph is in the form N(`1, `2, . . .), where N denotes the number of vertices in the graph, and

`1, `2, . . . are the lengths of the directed cycles in the graph in nonincreasing order. If more

than one isomorphism class of graphs with this data was observed, we add a lowercase roman

letter to distinguish them. For example, the labels 5(1,1)a and 5(1,1)b correspond to the

two isomorphism classes of graphs observed that have five vertices and two fixed points. In

all figures below we omit the connected component corresponding to the point at infinity.
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A.2 Data

We now give, for each graph shown in the previous section, a representative example of a

map fc and a quadratic field K such that the set PrePer(fc, K) has the given graph structure.

The data below is presented in the form

K, p(t), c,PrePer(fc, K)′.

Here K = Q(
√
D) is a quadratic field over which this preperiodic structure was observed;

p(t) is a defining polynomial for K with a root g ∈ K; c is an element of K such that the set

PrePer(fc, K)\{∞}, when endowed with the structure of a directed graph, is isomorphic to

the given graph; and PrePer(fc, K)′ is an abbreviated form of the full set of finite K-rational

preperiodic points for fc: since x ∈ PrePer(fc, K) if and only if −x ∈ PrePer(fc, K), we list

only one of x and −x in the set PrePer(fc, K)′. If a particular graph was observed over both

real and imaginary quadratic fields, we give a representative set of data for each case.

0.

Q(
√

5), t2 − t− 1, 1, ∅

Q(
√
−3), t2 − t+ 1, 2, ∅

2(1).

Q(
√

5), t2 − t− 1, 1
4
,
{

1
2

}
Q(
√
−7), t2 − t+ 2, 1

4
,
{

1
2

}
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3(1,1).

Q(
√

5), t2 − t− 1, 0, {0, 1}

Q(
√
−7), t2 − t+ 2, 0, {0, 1}

3(2).

Q(
√

3), t2 − 3, −1, {0, 1}

Q(
√
−3), t2 − t+ 1, −1, {0, 1}

4(1). Q(
√
−3), t2 − t+ 1, 1

4
,
{

1
2
, g − 1

2

}
4(1,1).

Q(
√

5), t2 − t− 1, 1
5
,
{

1
5
g + 2

5
, 1
5
g − 3

5

}
Q(
√
−3), t2 − t+ 1, 1, {g, g − 1}

4(2).

Q(
√

5), t2 − t− 1, −4
5
,
{

1
5
g + 2

5
, 1
5
g − 3

5

}
Q(
√
−3), t2 − t+ 1, −2

3
,
{

1
3
g − 2

3
, 1
3
g + 1

3

}

5(1,1)a.

Q(
√

13), t2 − t− 3, −2, {0, 2, 1}

Q(
√
−3), t2 − t+ 1, −2, {0, 2, 1}
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5(1,1)b. Q(
√
−1), t2 + 1, 0, {0, 1, g}

5(2)a. Q(
√
−1), t2 + 1, g, {0, g, g − 1}

5(2)b. Q(
√

2), t2 − 2, −1, {0, 1, g}

6(1,1).

Q(
√

5), t2 − t− 1, −3
4
,
{

1
2
, g − 1

2
, 3
2

}
Q(
√
−3), t2 − t+ 1, −3

4
,
{

1
2
, 3
2
, g − 1

2

}

6(2).

Q(
√

5), t2 − t− 1, −3, {1, 2, 2g − 1}

Q(
√
−3), t2 − t+ 1, −13

9
,
{

1
3
, 4
3
, 5
3

}

6(2,1). Q(
√
−1), t2 + 1, 1

4
,
{

1
2
, g − 1

2
, g + 1

2

}
6(3).

Q(
√

33), t2 − t− 8, −301
144
,
{

5
12
, 19
12
, 23
12

}
Q(
√
−67), t2 − t+ 17, −301

144
,
{

5
12
, 19
12
, 23
12

}

7(1,1)a. Q(
√

2), t2 − 2, −2, {0, 1, 2, g}

7(1,1)b. Q(
√

3), t2 − 3, −2, {0, 1, 2, g}

7(2,1,1)a. Q(
√
−3), t2 − t+ 1, 0, {0, 1, g, g − 1}

7(2,1,1)b. Q(
√

5), t2 − t− 1, −1, {0, 1, g, g − 1}
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8(1,1)a.

Q(
√

13), t2 − t− 3, −289
144
,
{

5
6
g + 1

12
, 1
2
g − 13

12
, 1
2
g + 7

12
, 5
6
g − 11

12

}
Q(
√
−15), t2 − t+ 4, − 5

16
,
{

1
4
, 3
4
, 5
4
, 1
2
g − 1

4

}
8(1,1)b.

Q(
√

13), t2 − t− 3, −40
9
,
{

4
3
, 8
3
, 5
3
, 4
3
g − 2

3

}
Q(
√
−2), t2 + 2, −10

9
,
{

2
3
, 1
3
g, 4

3
, 5
3

}
8(2)a.

Q(
√

10), t2 − 10, −13
9
,
{

1
3
, 1
3
g, 4

3
, 5
3

}
Q(
√
−3), t2 − t+ 1, − 5

12
,
{

2
3
g − 5

6
, 2
3
g + 1

6
, 1
3
g + 5

6
, 1
3
g − 7

6

}
8(2)b.

Q(
√

13), t2 − t− 3, −37
9
,
{

4
3
, 5
3
, 7
3
, 4
3
g − 2

3

}
Q(
√
−7), t2 − t+ 2, −13

16
,
{

1
4
, 3
4
, 1
2
g − 1

4
, 5
4

}
8(2,1,1).

Q(
√

5), t2 − t− 1, −12, {3, 3g − 1, 3g − 2, 4}

Q(
√
−3), t2 − t+ 1, 7

12
,
{

2
3
g + 1

6
, 2
3
g − 5

6
, 4
3
g − 7

6
, 4
3
g − 1

6

}
8(3).

Q(
√

5), t2 − t− 1, −29
16
,
{

1
4
, 5
4
, 3
4
, 7
4

}
Q(
√
−3), t2 − t+ 1, −29

16
,
{

1
4
, 5
4
, 3
4
, 7
4

}
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8(4).

Q(
√

10), t2 − 10, −155
72
,
{

1
4
g − 1

6
, 1
4
g + 1

6
, 1
12
g − 3

2
, 1
12
g + 3

2

}
Q(
√
−455), t2 − t+ 114, 199

720
,
{

1
10
g + 17

60
, 1
15
g − 47

60
, 1
10
g − 23

60
, 1
15
g + 43

60

}

9(2,1,1). Q(
√

5), t2 − t− 1, −2, {0, 1, 2, g, g − 1}

10(1,1)a. Q(
√
−7), t2 − t+ 2, 3

16
,
{

1
4
, 1
2
g + 1

4
, 1
2
g − 1

4
, 1
2
g − 3

4
, 3
4

}
10(1,1)b. Q(

√
17), t2 − t− 4, −1

2
g − 13

16
,
{

1
4
, 1
2
g + 3

4
, 3
4
, 1
2
g − 1

4
, 1
2
g + 1

4

}
10(2).

Q(
√

73), t2 − t− 18, 1
9
g − 205

144
,
{

1
6
g + 1

12
, 1
6
g − 11

12
, 1
6
g + 7

12
, 1
3
g − 7

12
, 1
3
g − 1

12

}
Q(
√
−7), t2 − t+ 2, −1

2
g − 5

16
,
{

1
4
, 1
2
g − 1

4
, 1
2
g + 1

4
, 3
4
, 1
2
g + 3

4

}

10(2,1,1)a.

Q(
√

17), t2 − t− 4, −273
64
,
{

11
8
, 13

8
, 19

8
, 5
4
g − 5

8
, 21

8

}
Q(
√
−1), t2 + 1, 3

8
g − 1

4
,
{

3
4
g + 1

4
, 3
4
g − 3

4
, 1
4
g − 1

4
, 1
4
g + 3

4
, 1
4
g − 5

4

}

10(2,1,1)b.

Q(
√

13), t2 − t− 3, −10
9
,
{

2
3
, 4
3
, 5
3
, 1
3
g − 2

3
, 1
3
g + 1

3

}
Q(
√
−7), t2 − t+ 2, −21

16
,
{

1
4
, 7
4
, 1
2
g − 1

4
, 3
4
, 5
4

}

10(3)a. Q(
√

41), t2 − t− 10, −29
16
,
{

1
4
, 5
4
, 3
4
, 1
2
g − 1

4
, 7
4

}
10(3)b. Q(

√
57), t2 − t− 14, −29

16
,
{

1
4
, 3
4
, 5
4
, 7
4
, 1
2
g − 1

4

}
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10(3,1,1) Q(
√

337), t2 − t− 84, −301
144
,
{

5
12
, 19
12
, 23
12
, 1
6
g + 5

12
, 1
6
g − 7

12

}
10(3,2). Q(

√
193), t2 − t− 48, −301

144
,
{

5
12
, 19
12
, 23
12
, 1
6
g + 5

12
, 1
6
g − 7

12

}
12(2). Q(

√
2), t2 − 2, −15

8
,
{

3
4
g + 1

2
, 3
4
g − 1

2
, 1
4
g + 1

2
, 1
4
g − 3

2
, 1
4
g − 1

2
, 1
4
g + 3

2

}
12(2,1,1)a. Q(

√
17), t2 − t− 4, −13

16
,
{

1
4
, 3
4
, 5
4
, 1
2
g + 1

4
, 1
2
g − 3

4
, 1
2
g − 1

4

}
12(2,1,1)b.

Q(
√

33), t2 − t− 8, −45
16
,
{

3
4
, 9
4
, 5
4
, 1
2
g − 3

4
, 1
2
g + 1

4
, 1
2
g − 1

4

}
Q(
√
−7), t2 − t+ 2, − 5

16
,
{

1
4
, 3
4
, 5
4
, 1
2
g + 1

4
, 1
2
g − 3

4
, 1
2
g − 1

4

}
12(3). Q(

√
73), t2 − t− 18, −301

144
,
{

1
6
g − 1

12
, 5
12
, 19
12
, 1
3
g + 1

12
, 1
3
g − 5

12
, 23
12

}
12(4). Q(

√
105), t2−t−26, −95

48
,
{

1
6
g − 13

12
, 1
6
g + 11

12
, 1
3
g − 5

12
, 1
6
g + 5

12
, 1
6
g − 7

12
, 1
3
g + 1

12

}
12(4,2). Q(

√
−15), t2−t+4, −31

48
,
{

1
3
g + 1

12
, 1
6
g − 13

12
, 1
3
g − 5

12
, 1
6
g + 5

12
, 1
6
g − 7

12
, 1
6
g + 11

12

}
12(6). Q(

√
33), t2−t−8, −71

48
,
{

1
6
g − 13

12
, 1
6
g − 7

12
, 1
3
g − 5

12
, 1
6
g + 5

12
, 1
3
g + 1

12
, 1
6
g + 11

12

}
14(2,1,1). Q(

√
17), t2 − t− 4, −21

16
,
{

1
4
, 3
4
, 5
4
, 7
4
, 1
2
g − 1

4
, 1
2
g − 3

4
, 1
2
g + 1

4

}
14(3,1,1). Q(

√
33), t2 − t− 8, −29

16
,
{

1
4
, 5
4
, 3
4
, 1
2
g − 3

4
, 1
2
g + 1

4
, 1
2
g − 1

4
, 7
4

}
14(3,2). Q(

√
17), t2 − t− 4, −29

16
,
{

1
4
, 5
4
, 3
4
, 1
2
g − 1

4
, 1
2
g − 3

4
, 1
2
g + 1

4
, 7
4

}
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