PickLE: EVOLVING SERIALIZABLE AGENTS

FOR COLLECTIVE ANIMAL BEHAVIOR RESEARCH

by

TERRANCE NELSON MEDINA

(Under the direction of Maria Hybinette)

ABSTRACT

Agent-based Modeling and Simulation has become a mainstream tool for use in business and
research in multiple disciplines. Along with its mainstream status, ABMS has attracted the
attention of practitioners who are not comfortable developing software in Java, C++ or any
of the scripting languages commonly used for ABMS frameworks. In particular, animal be-
havior researchers, or ethologists, require agent controllers that can describe complex animal
behavior in dynamic, unpredictable environments. But the existing solutions for expressing
agent controllers require complicated code. We present Pickle, an ABMS platform that au-
tomatically generates complete simulations and agents using behavior-based controllers from
simple XML file descriptions. This novel approach allows for new approaches to understand-
ing and reproducing collective animal behavior, by controlling and evolving the fundamental
behavioral mechanisms of its agents, rather than only the physical parameters of their sensors

and actuators.

INDEX WORDS: Behavior-based Robot control architecture Ethology Modeling
Simulation XML Scala

PickLE: EVOLVING SERIALIZABLE AGENTS

FOR COLLECTIVE ANIMAL BEHAVIOR RESEARCH

by

TERRANCE NELSON MEDINA

B.Mus., University of Cincinnati, 1998

B.S., University of Georgia, 2009

A Dissertation Submitted to the Graduate Faculty
of The University of Georgia in Partial Fulfillment
of the

Requirements for the Degree

MASTER OF COMPUTER SCIENCE

ATHENS, GEORGIA

2015

(©2015
Terrance Nelson Medina

All Rights Reserved

PicKLE: EVOLVING SERIALIZABLE AGENTS

FOR COLLECTIVE ANIMAL BEHAVIOR RESEARCH

by

TERRANCE NELSON MEDINA

Approved:
Major Professor: Maria Hybinette

Committee: John Miller
Tucker Balch

Electronic Version Approved:

Suzanne Barbour

Dean of the Graduate School
The University of Georgia
August 2015

Pickle: Evolving Serializable Agents

for Collective Animal Behavior Research

Terrance Nelson Medina

July 17, 2015

v

Dedication

This work is dedicated to my wife, Amanda Knisely-Medina, for putting up with the many
late nights when I was locked in my office. To my father, Dr. Augusto Medina, who taught
me to never stop trying. And to my mother, Norma Dinell Medina, whose last words to me

were “I love you, now go finish your research.”

Contents

List of Figures viii
List of Tables xi
1 Introduction 1
1.1 Background 2
1.2 Modeling and Simulation oo 4
1.3 Agent Controllers 5
1.4 Evolutionary Algorithms 12
1.5 Ethology 14
1.6 Collective animal behavior 15
1.7 Summary 21
2 Pickle 22
2.1 Design of the Simulation Framework 22
2.2 Comparison with Previous Work 32
2.3 Implementation of the Simulation Framework 34
3 The Genetic Programming Framework and Experimental Platform 37
3.1 Design . . . oL 38
3.2 Implementation of the Experimental Platform 39

vi

4 Experimental Results

4.1 Comparison of Code Complexity

5 Conclusion

Bibliography

vii

61

List of Figures

1.1

1.2

1.3

1.4

1.5

1.6

A hypothetical deliberative-style control architecture. Sensor input is passed
to a long-term goal planner, which filters the information down to subordi-
nate processes like path planning and mapping, as necessary. Unlike reactive
controllers, there is typically a lot of computation between the sensor input
and the motor output.
Reactive controllers emphasize tight coupling of sensor inputs and motor out-
puts, with minimal deliberation in between.
Visualization of a hybrid controller
A school of fish in the Florida Keys National Marine Sanctuary. These fish
are assuming a “funnel” shape. Photo by Dr. Jiangang Luo, courtesy of the
National Oceanographic and Atmospheric Administration.
Typical schooling behavior in small fish. These are schooling over the Geyer
Bank in the Gulf of Mexico. Photo courtesy of the National Oceanographic
and Atmospheric Administration. L.
A depiction of the zones of attraction, orientation and repulsion, described by

lain Couzin in his work on collective flocking.

viil

2.1

2.2

2.3

2.4

3.1

3.2

4.1

A high-level view of Pickle’s architecture. Pickle is essentially an applica-
tion layer that reads input from a Configuration Layer consisting of XML
descriptions for simulation parameters, Agents and Controllers. It uses a set
of drivers as a translation interface to run on multiple simulation kernels.

A description of the Pickle taxonomy. Agents are distinguished from other
phenomena by the presence of sensors, which consume information about the
simulated environment, actuators that effect changes to the environment, and
a controller that binds sensors with actuators.
A view of how pie slice regions for sensors work. Each Sensor operates within
a single pie-slice region, and Agents may have multiple sensors.
The interface for the simulation driver in our prototype implementation. A
suitable driver implementation would need to fulfill these functions using its

simulation kernel. L

The predator controller used in our genetic programming experiments. This
controller consists of a priority or subsumption coordination operator that
chooses between repulsion from pool edges, repulsion from other predators,
attraction to prey and random motion.
The boid-like controller that we hand-coded as the control in our experiments.
It consists of a priority coordination operator that chooses between avoiding
pool edges, avoiding predators, closing in on other prey, avoiding collisions

with other prey and random motion.

A frequency distribution of the fitness evaluations for the hand-coded flocking

controller. L L

1X

23

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

A screen shot of the flocking behavior displayed by our control group of “hand-
coded” boid-like agents. Notice that the flocks grouping are fairly compact.
A frequency distribution of the fitness evaluations for the evolved flocking
controller. This controller shows a slight improvement over the hand-coded
flocking controller.
A screen shot of the evolved flocking behavior displayed by the most fit indi-
vidual in generation 50 of the fourth set of evolutionary experiments. Notice
that the flocks appear looser, more expansive and larger.
A frequency distribution of the fitness evaluations for the evolved “swarming”
controller. This controller outperforms the hand-coded flocking controller by
30%0.
A screen shot of the evolved “swarming” behavior displayed by the most fit
individual in generation 12 of the fifth set of evolutionary experiments.

An evolved controller that exhibits distinctive flocking behavior.
An evolved controller that enables superior predator evasion, but does not use
flocking.
A side-by-side comparison of the fitness of the hand-coded, evolved flocking
and evolved swarming controllers. The evolved swarming controller outper-
forms the hand-coded flocking controller by 30%.
A plot of the “most fit” members from the fourth set of evolution trials. This
shows a steady improvement in the maximum fitness of the population. This
population produced flocking behavior starting at generation 28.
A screen capture of Minnows that showed promising flocking behavior. Note

that they clump together, making them easy targets for predators.

List of Tables

3.1

3.2

4.1
4.2

4.3

Physical attributes and sensors of the predators (“Shark”s) and prey (“Min-
NOW”S). o v v v e e e e

Description of the evolution parameters for five different sets of experiments.

Description of outcomes from each set of experiments.
Average fitness and relative frequency of individual motor schema “genes”.
These numbers were produced by parsing all of the evolved individuals from
Experiment Set 4.
Results from our complexity evaluation of Pickle. We found that Pickle pro-
duced accurate agent behaviors with less complex code as measured by the

number of lines and number of files required.00

x1

Chapter 1

Introduction

In this chapter, we will introduce the fundamental concepts behind our research. First, we
will frame the problem that we are addressing and introduce our solution. In the remaining
sections, we will define the fields of Agent-based Modeling and Simulation, including their
heritage from discrete event based simulation and parallel simulation [Section 1.2]. We will
discuss agent control strategies, with special emphasis on behavior-based robotics. We will
also include a brief history of robot control architectures to show the logical progression
from hierarchical to reactive and ultimately hybrid controllers [Section 1.3]. Next we will
give a brief overview of Ethology, with emphasis on its relationship to research in collective
animal behavior [Section 1.5]. We will present the design and implementation of Pickle,
our platform for modeling agents using robot control architectures [Section 2.1]. Finally, we
will demonstrate the usefulness of Pickle by using it to show a contribution to the field of

collective animal behavior research [Section 3.

1.1 Background

Ethology, the science of animal behavior, can be a time-consuming occupation. Ethologists
spend hours observing animals, sometimes in the lab, but preferably in the field. They use a
notebook to record their observations in minute detail, and then translate those observations
into an ethogram, or a graphical depiction of the animal’s behavior that resembles a finite
state machine or Markov model.

This can be a difficult and time-consuming process, and if the ethologist wants to use an
executable model - a piece of software that runs in a simulated environment - as a research
tool, the task becomes even more difficult [Balch et al., 2006]. The ethogram would have to
be programmed by hand into executable code in a programming language like Java or C++,
that targets a particular simulation platform such as Repast or MASON. This is not only
time and labor intensive, but could also present significant problems for animal researchers
who are not experienced programmers [Minar et al., 1996]. We believe this presents an
opportunity to simplify or even automate the process of producing executable models of
animal behavior.

The research field of multiagent systems has provided some approaches to simplify con-
troller generation by constructing toolkits that automatically generate agent controllers from
visual specifications. Some frameworks, like the Agent Modeling Platform (AMP) [Parker,
2015] for Eclipse, allow users to visually construct hierarchical controllers that specify se-
quences of actions for agents to take and conditions under which they should execute them.
Unfortunately, these sequential approaches are often inadequate for describing the behaviors
of living creatures in dynamic, unpredictable environments. Repast Simphony (sic) features
the Statecharts modeling tools, which allow a user to graphically depict states and transi-
tions between them, but the actual behavior functions of each state must still be hand-coded

by the developer [Ozik and Collier, 2014]. Other frameworks, such as easyABMS [Garro and

Russo, 2010] or INGENIAS [Pavén and Gémez-Sanz, 2003] use the Unified Modeling Lan-
guage (UML) or a similar software-oriented modeling language to allow users to visually
diagram an agent in terms of views and relationships. However, UML is not likely to be
a familiar language for animal behavior researchers, who would benefit from an intuitive
interface that more closely resembles the ethogram depictions that they already use.

In this work we present Pickle, an Agent-based modeling framework that uses behavior-
based robot control architectures as a basis for describing agent controllers. Behavior-based
models, also known as hybrid controllers, incorporate the advantages of sequential and UML-
based controllers, while overcoming many of their shortcomings. Similarly to sequential
controllers, behavior-based controllers allow agents to operate under different rules in differ-
ent circumstances, but whereas sequential controllers are tied to rigid sequences of actions,
behavior-based controllers allow for emergent behavior driven by a stream of input from
their sensors. This allows them to be more adaptable to changes in their environment.

Pickle simulations use semi-structured data files to describe not only the simulation
parameters, but also the agents themselves including their behavior controllers. This allows
the entire simulation to be not only machine readable, but machine writable. This means
that we can arbitrarily modify semi-structured data and even randomly generate controllers
from scratch, given a schema description of what those controllers should include. It also
means that entire simulations and agents may be serialized for transmission, collaboration
and storage, independently of the source code for the simulation environment in which they
run.

We have designed Pickle to be easily extendible by experienced programmers, able to be
run on multiple simulation kernels, and explicitly capable of supporting automatic generation
and modification of agent XML descriptions.

Finally, to demonstrate the usefulness of our platform, we make a contribution to the

field of collective animal behavior research by using genetic programming techniques to evolve

controllers that avoid predators in a contained space. Previous work has focused on evolving
the sensor parameters of prey agents, but using Pickle’s serializable controllers, we are able
to evolve the actual control architecture itself. Using Pickle, we show that flocking behavior
does in fact evolve in response to predation, but that, particularly in confined spaces, it
is not always the best solution to predator evasion. Furthermore, we are able to quantify
the relative importance of the primary behavioral traits of our controllers with respect to

predator evasion.

1.2 Modeling and Simulation

Modeling and simulation systems rely on descriptions of an entity within an environment (a
model), to try to predict the state of the environment, or system, at a given offset from the
initialization time. The two conventional approaches to M&S are continuous and discrete
event systems.

Continuous simulation relies on sets of differential equations as models to predict the
state of a system at any arbitrary time ¢, where the values of ¢ are uncountably infinite.

Discrete-event simulation (DES) is used to predict the state of a system at discrete points
in time. The system changes state only at the edges of those discrete time points. Models
in a DES typically use random variables (e.g., from the Poisson distribution) as models.
For example, a Poisson distribution might be used to model the time between arrival times
(inter-arrival time) of phone calls at a call center.

Process, or parallel simulation is a further refinement of DES, which keeps the features
of a DES, but in addition, models actors within the simulation. These actors are typically
implemented as interdependent threads which create and handle events as they run in the

simulation environment. It is important to note that process simulation is used to model

the same kinds of systems as discrete event simulation. The difference is primarily one of
implementation: multi-threaded and event based, versus single-threaded and synchronous.

Agent-based Modeling and Simulation (ABMS) can be seen as a logical extension of
process simulation, but it is actually orthogonal to both process and discrete-event method-
ologies. That is, an ABMS could be implemented as either a single-threaded controller
or a multi-threaded set of interacting processes. In ABMS, the actors, or agents, are au-
tonomous software entities that follow the “sense-think-act” operational life cycle. Most
importantly, ABMS uses autonomous software processes to model complex systems using
emergent behavior. The key observation is that complex systems such as financial markets,
social animal communities and airport runways can be difficult to model explicitly using
differential equations or random variables [North and Macal, 2007]. The ABMS approach
attempts to overcome this challenge by treating a simulation as a system of autonomous
agents, each having some set of instructions that controls its interactions with other agents
and the environment. This allows complex behaviors to emerge from the system, instead of
having to explicitly model those complex behaviors in a set of threaded actors.

As mentioned previously, the defining characteristic of an agent is the “sense-think-act”
cycle. At a given time step of a simulation, an agent takes input from its environment
(sensing), processes it in some manner (thinking) and uses the result to enact some change
in its environment, such as moving within it, or modifying its state (acting). Defining the
middle part, think, is crucial to agent development, and constitutes what is typically referred

to as the control architecture of an autonomous agent.

1.3 Agent Controllers

There are two main streams of thought in agent controller design: the “scruffy” and the

“neat” [Minsky, 1991]. The “neat” philosophy grows out of classical Decision Theory and

Knowledge-based systems. It is based on Rational Agents, described first by Allen Newell, a
Turing award recipient and one of the founding fathers of artificial intelligence research. In
Newell’s conception, a rational agent is equivalent to a knowledge-level system; it has some
incomplete knowledge base about its domain, and a means of inferring information from the
knowledge base about how to act in a given situation [Carley and Newell, 1994]. Rational
agents are deliberative (Figure 1.1). When it is time to make a decision, they will consider
all possible courses of action, compute the likely outcome given the current state of their
environment, and take the action that is most likely to lead them to some desired state.

Some of the earliest robots used controllers that extended from this rational agent
methodology. Shakey was a robot developed between the late 1960’s and early 1970’s by
Stanford Research Institute (SRI), and is credited with being the first autonomous mo-
bile robot that was able to analyze its commands and break them down into subtasks —
a decidedly rationalist approach [Nilsson, 1984]. This also meant that Shakey’s navigation
algorithm had to evaluate and compare alternative routes to try to approximate the best
available traversal path when moving through an obstacle course. This combination of prior
knowledge and heuristic guessing was groundbreaking for its time, and is in fact the now-
famous A* search algorithm. However, it also resulted in a robot that would move a little,
stop and think a lot, then move a little again — an approach that is unsuitable for rapidly
changing environments.

This approach has been refined by Michael Bratman into his Belief, Desires and Intents
(BDI) model for agent design [Bratman et al., 1988]. In BDI, a “Belief” is information
(possibly inaccurate) about the environment that is stored within an agent. “Desires” are
goals that an agent tries to achieve, and which are selected for action according to its belief
set. Once selected for execution a desire becomes an “Intent”. The BDI model attempts to

reconcile the need for long-range, deliberative planning with the real-world problem of finite

. Goal
Sensor input ——| Planner
Path Mapper
Planner
Motor
Manager Representational
/ \ World Storage
Individual Individual
Motor Motor
Controllers Controllers
Motor output Motor output

Figure 1.1: A hypothetical deliberative-style control architecture. Sensor input is passed to
a long-term goal planner, which filters the information down to subordinate processes like
path planning and mapping, as necessary. Unlike reactive controllers, there is typically a lot
of computation between the sensor input and the motor output.

computational resources by limiting the agent’s deliberation to the selection of completely
or partially pre-computed plans.

The BDI approach has been adopted by some successful agent simulators such as the Pro-
cedural Reasoning System (PRS) developed at SRI during the 1980’s [Cohen and Levesque,
1990] and Jack, a commercial MAS developed by researchers on the PRS [Howden et al.,
2001].

The second stream of thought in agent design, the “scruffy”, grew out of a radical re-
thinking of the nature of intelligence, which became popular with a rebel group of robotics
researchers in the 1980’s and 90’s.

In the late 1960’s an MIT researcher named Marvin Minsky was trying to make a robotic
arm that could grasp children’s building blocks and construct them to mimic an existing
example structure [Minsky, 1988]. This was no easy task. In fact, while following the
approach set down by Newell and the rationalists, Minsky quickly became overwhelmed by
the seemingly endless nesting of subtasks within subtasks involved in something as seemingly
simple as playing with children’s blocks.

Along with Seymour Papert, then the director of the Artificial Intelligence Laboratory at
MIT, Minsky began to develop a model of intelligence not as a single omnipotent process, but
as a community of smaller heterogeneous processes that coordinate themselves cooperatively
to produce a result. They named this approach The Society of Mind.

The success of this model in Minsky and Papert’s experiments spurred a reaction to
hierarchical planners. Now, researchers started using so-called “reactive” controllers, which
emphasized a tight coupling between sensor inputs and actuator outputs, with minimal
planning or deliberating in between (Figure 1.2). In the reactive view, the presence of
a 'god-like’ controller was both unnecessary and ineffective in generating robust behavior.
This point of view is summarized in Rodney Brooks’ 1987 memo “Planning is just a way of

avoiding figuring out what to do next” [Brooks, 1987].

Coordinator |——— Motor Output

Schema

Motor Motor
Schema Schema

\ Sensor Input

Figure 1.2: Reactive controllers emphasize tight coupling of sensor inputs and motor out-
puts, with minimal deliberation in between.

Brooks later developed the subsumption architecture, which expanded the reactive con-
troller model by establishing a hierarchy of action impulses and allowing for some impulses
to modify or completely override other impulses. Specifically, sensor inputs are consumed by
many independent processes, each of which processes the perceived information according to
its own rules. The results are then passed along to higher order processes, which subsume
those micro decisions by either accepting or overriding them.

The subsumption architecture was implemented by Brooks in his robot Allen [Brooks,
1991], which used three levels of control impulses. The lowest level allowed it to avoid
obstacles, the next level allowed it to wander aimlessly, and the third level allowed it to
navigate toward a distant objective. When combined in the subsumption architecture, Allen
was able to navigate through an obstacle course to a goal.

While reactive controllers succeeded in allowing robots to behave adaptively in dynamic
environments, they lost something in the process. Whereas, the rational approach to intelli-

gence emphasized explicit planning and world representation, the reactive approach consid-

ered these to be unnecessary for adaptive navigation. As a result, reactive controllers did not
allow for any long-range planning or learning — a feature which greatly limited their utility.
Ronald Arkin, attempting to bridge the two models into a unified approach that allowed for
both dynamic adaptation and explicit long-range planning and goal-orientedness, developed
the Theory of Societal Agents, also known as Behavior-based Robotics [Arkin, 1998].

Behavior-based architectures take the notion of bottom-up information flow from sub-
sumptive controllers, combined with the representational world knowledge and long-range
planning capabilities of hierarchical controllers (Figure 1.3) to create planning robot con-
trollers that can adapt to uncertain and dynamic physical environments [Arkin and Balch,
1997].

The Societal Agents model uses schema theory to provide basic building blocks for com-
plex agent controllers [MacKenzie et al., 1997]. Schema theory has roots as far back as
Emmanuel Kant, but has been applied in the 20th century to neuroscience and the study of
animal behavior. A schema defines the process by which a sensor input produces an impulse
to action [Arbib, 1992]. It produces a “coarse-grained” model for behavior; it is not overly
concerned with the details of its implementation (whether in code or in neurons), but rather
provides a broad, symbolic description of its effect.

When a schema produces a result, or impulse to action, it does so in the form of a vector.
A vector, as in physics, is simply a point in space with both direction and magnitude. To
describe behavior, vectors can be used to indicate attraction to a goal (e.g., water, prey
or home) or repulsion from obstacles or predators. Furthermore, vectors can be summed
to produce result vectors. This leads to the use of vector fields for path navigation. For
example, the combination of vectors that attract an agent to a goal, and repel it from an
obstacle, create resultant vectors that lead the agent around the obstacle and to the goal.
Such a use of vector fields as the basis for motor impulse decisions is well-established in

neuroscience [Arkin, 1998] and ethology [Arbib, 2003].

10

] Motor schema
(3 Coordination Operator

O Assemblage

950'\
\“?’.)}966‘-’3'

Competitive

., . ‘ _'
Coordinator Metor Output

Weighted Sum Move to
Coordinator Ant

Move to Avoid
nest Obstacles

Sensor Input

Figure 1.3: An example of a hypothetical hybrid controller. A temporal coordinator, or
finite state machine, controls the behavior of the agent, while each state of the machine is a
reactive controller, or behavioral assemblage.

11

The theory of societal agents considers three types of schemas: perceptual schemas, motor
schemas and behavior schemas. Perceptual schemas provide sensor data about the world to
the controller, and are embedded within motor schemas. Motor schemas describe basic
stimulus and response processes; given information provided by its embedded perceptual
schema, a motor schema produces a result vector. Motor schemas may be grouped together
via coordination operators to form more complex behavior schemas, or assemblages.

Coordination operators take the result vectors of their subordinate motor schemas and
produce a combined result vector. Theory of Societal Agents (TSA) describes three coordina-
tion operators, Continuous, Temporal and Competitive. Continuous coordination operators
are the simplest — they produce a weighted vector sum of all of their subordinate schemas or
assemblages. A temporal coordination operator is a finite state machine. Each coordinated
assemblage is a state, and transitions between states are motivated by perceptual triggers.
Competitive coordination operators function much the same as the subsumption controllers
described previously. Assemblages are prioritized, with higher priority assemblages given the
power to modify or override the result vectors of lower assemblages.

These assemblages are then selected by a planner of some kind. In MacKenzie, Arkin
and Cameron’s MissionLab simulator for goal-based robot teams [MacKenzie et al., 1997],
planning is performed by a temporal coordination operator called the temporal sequencer
The temporal sequencer chooses from a set of assemblages based on input from a perceptual
trigger. This is essentially a finite state machine, where assemblages are states and perceptual

triggers are edges.

1.4 Evolutionary Algorithms

We will now detour into a seemingly unrelated branch of artificial intelligence research —

evolutionary algorithms. Evolutionary algorithms are an heuristic approach that applies

12

Darwin’s Theory of Natural Selection to generally intractable optimization problems [Eiben
and Smith, 2003]. The idea is to represent inputs to the problem as some kind of data
structure (in the simplest genetic algorithms a list of values or even a bitstring is used). This
is called the genome. At first the genomes of the initial population are randomly constructed.
A simulation of the problem to be solved is run with the values from the genome as inputs
— this could be as simple as plugging the values into a formula, or as complex as running an
agent-based simulator. This is called the “fitness function,” and after each run the genomes
are ranked according to how well they solved the fitness function. Depending on the type
of algorithm used, some may be randomly mutated, or changed arbitrarily, others may be
combined together in a process called crossover to produce new offspring genomes. Some
genomes, typically the worst performing ones, will be dropped from the next generation and
others will be held over.

When successful, the evolutionary approach will, over the course of many generations,
develop genomes the steadily improve their performance against the fitness function. While
there is no guarantee in finding the optimal solution to a problem, the evolutionary approach
has proven useful in engineering and manufacturing disciplines, especially when counterin-
tuitive decisions are needed to solve design problems. For example, evolutionary algorithms
have been used in the design of completely asymmetrical satellite booms that are 20,000%
better at damping vibrations than other, more traditional designs [Keane, 1996].

One particular branch of evolutionary algorithms uses a tree data structure instead of a
list or a bitstring. This is called genetic programming, because the original intent was to
develop the parse trees for entire programs through the evolutionary process described above.
In genetic programming, the mutation procedure typically consists of randomly modifying
an arbitrary subtree of a given genome, while crossover implies swapping subtrees of two

genomes.

13

Previous work in this vein has evolved programs using LISP, a natural choice due to
the tree structure of pure s-expressions [Koza, 1989]. In this work, we employ genetic pro-
gramming to evolve the behavior-based controllers of our agents by directly manipulating
the hierarchy of motor schemas and coordination operators in the agent navigator. By us-
ing a machine-writable format for our controllers, we can generate and modify behaviors
such as attraction to fellow prey agents or repulsion from predators and obstacles. By ab-
stracting away the implementation details of the code, we can manipulate and evolve the
controllers based on their semantic meaning, rather than on the syntactic details of their

implementation.

1.5 Ethology

Ethology concerns the creation of quantitative models of individual animal behavior through
observation of real animals in their natural environments [Gould, 1982]. As a principal tool of
the ethologist, the ethogram is an encoding of the model as a catalogue of observed actions,
accompanied by a frequency distribution for each observed action, or a state transition table
that shows the probability of moving between any observed state and any other observed
state [Eibl-Eibesfeldt, 1970].

Ethology as a field started in the 19th century, with the works of Darwin, whose discovery
of natural selection prompted further inquiry into the nature of inborn, instinctive behaviors
in animals. Karl von Frisch showed experimentally that bees use a sensitivity to ultraviolet
light in their pollination routines, and further that they are particularly sensitive to carbon
dioxide, relative humidity and the Earth’s magnetic fields.

In the 1930’s, the work of Konrad Lorenz and Niko Tinbergen is generally accepted as
the beginning of ethology as a mature science. One of their most significant contributions

was the recognition of “releaser” mechanisms, in which certain environmental stimuli would

14

automatically trigger a predetermined response in an animal, known as a fixed action pattern.
For instance, the greylag goose has a distinctive behavior while incubating its eggs. If it sees
that one of its eggs has rolled out of the nest, it will carefully roll the egg back up into the
nest. Lorenz and Tinbergen showed that, far from being a carefully thought out solution to
a problem, the behavior was entirely instinct driven. In fact the goose would roll anything
remotely egg-shaped (e.g. batteries, lightbulbs and snail shells) into the nest and incubate
it as though it were an egg.

Modern ethology concerns itself primarily with the understanding of how these innate
release mechanisms, or IRMs, are genetically encoded, inherited and modified through the
evolutionary process. It also attempts to understand how those primitive, inherited IRMs
are shaped by environmental factors through imprinting, habituation, learning and teaching

[Gould, 1982].

1.6 Collective animal behavior

Ethology emphasizes the study of individual animal behavior, but what about the behavior
of animals as groups? The collective formation of schools of fish, flocks of birds and herds of
cattle has fascinated and continues to inspire biologists and laymen alike with the aesthetic
beauty of hundreds and even thousands of animals moving synchronously while avoiding
obstacles, predators and each other (See Figures 1.4 and 1.5).

While many early ethologists and biologists worked on the presumption that collective
behaviors emerged because of some benefit to the collective as a whole, D.W. Hamilton put
forth the idea that such collective behaviors emerged from a competition amongst members
of the group to avoid predation. He published this idea in his 1971 paper “Geometry of the
Selfish Herd.” [Hamilton, 1971] Here he postulated that positioning within the herd could be

modeled with a Voronoi diagram, in which each member is enclosed within a convex polygon,

15

Figure 1.4: A school of fish in the Florida Keys National Marine Sanctuary. These fish
are assuming a “funnel” shape. Photo by Dr. Jiangang Luo, courtesy of the National
Oceanographic and Atmospheric Administration.

every point of which is closer to its center than it is to any other point on the polygon.
Such a shape constitutes a “domain of danger” around the group member. Hamilton ran
numerical simulations in one dimension to support his claim that selfish behavior could lead
to aggregation, but left the behavior in two and three dimensions as a thought experiment.

Significantly, Hamilton modeled the collective behavior not as a whole, or even as a set
of individual actions where the individual has some global knowledge of the current shape of
the flock or even the existence of the flock, but rather as a simple behavioral process relative
to each individual’s nearby neighbors and the presence of a predator as an outside stimulus.

Ten years later, Ichiro Aoki expanded on this idea by conducting two-dimensional com-
puter simulations of flocking behavior using a discrete event simulator [Aoki, 1982]. Similarly
to Hamilton, Aoki modeled the behavior of each individual as a simple rule set in relation to
its neighbors, but he also expanded on it by representing the movement of each individual as
a stochastic vector, and by postulating three distinct behavioral rules as sufficient for flock
formation: attraction to other individuals, collision avoidance and sympathetic orientation,
in which individuals mimic the orientation of their nearby flock-mates. Using these rules,

Aoki was able to show the creation of flock behavior without programming any explicit

16

Figure 1.5: Typical schooling behavior in small fish. These are schooling over the Geyer
Bank in the Gulf of Mexico. Photo courtesy of the National Oceanographic and Atmospheric
Administration.

knowledge of the flock into his agents or having any hierarchical leadership structure within
the flock.

Aoki’s approach was later expanded into three dimensions by Craig Reynolds with his
well-known Boids model [Reynolds, 1987]. Using early three-dimensional computer anima-
tion, Reynolds used the same three basic behaviors to create flocks of bird-like creatures,
or “boids” in the New York vernacular, that collectively avoid obstacles while maintaining
group cohesion.

An important part of the model shared by Aoki and Reynolds is the use of zones in a
pie-slice shape around the agents. These concentric zones constitute the areas over which
each behavior is active, and each is prioritized. The inner circle is the highest priority — if
another individual is seen within the inner zone, the agent will try to avoid it to prevent
collisions. The next concentric circle represents the zone of orientation, and is also the next
higher priority. When another similar agent is seen within this zone, the agent that sees it

will try to orient itself in a direction similar to that agent. Finally, the outer zone is the

17

)
h

zone of attraction
zone of repulsion

zone of orientation

Figure 1.6: A depiction of the zones of attraction, orientation and repulsion, described by
[ain Couzin in his work on collective flocking.

zone of attraction, in which an agent will be attracted towards any other similar agents it
perceives in that zone (Figure 1.6).

In his 2002 work on flocking behaviors, Tain Couzin started with this model of individual
behavior, but treated the actual width of each zone as an adjustable parameter in a three-
dimensional simulation. He found that as he gradually adjusted the widths of the concentric
zones, there were sudden changes in the collective behavior of the individuals [Couzin et al.,
2002]. With a very small zone of orientation, the agents exhibited a swarming behavior
in which they were actively drawn toward each other and avoided collisions, but there was
no coordinated movement as in a flock. With a relatively small zone of orientation, the
agents exhibited the so-called torus formation, in which they collectively swirl around in a
funnel shape. This formation is sometimes observed in open-water fish populations. As the

zone of orientation grows larger, the agents begin to take on weakly directed movement,

18

which Couzin refers to as a Dynamically Parallel Group, which moves about freely with
significantly aligned orientation. Couzin observed this type of formation to occur with large
zones of orientation and medium to large zones of attraction. Finally, with a very large zone
of orientation, the agents showed highly directed, almost rigidly defined directionality, which
Couzin termed the Highly Parallel Group.

There have been a few attempts to use genetic algorithms to generate these models. Wood
and Ackland used predation as a stimulating factor in evolving prey agents in the style of
Aoki and Couzin [Wood and Ackland, 2007]. They evolved their model based on a gene with
five traits: 1) the angle of perception and 2) range of movement, which were made to be
complementary to avoid an individual that simply maximizes both, 3) the width of the zone
of orientation, 4) the amount of noise, and 5) the weight placed on the detection of external
stimuli. Furthermore, the individuals were evolved as part of a heterogeneous population,
with each individual having different values for the parameters than its fellow individuals.
There were some interesting choices in their setup for the evolution. For instance, crossover
selection was driven not by performance according to a fitness function but rather by ability
of a single individual to survive a simulation run, as well as its ability to forage for food.
Predators in their model have a finite lifespan, and are removed from the simulation as soon
as either their lifespan has ended or they have caught a single prey. Using this system, they
were able to evolve flocking agents that exhibited the torus-like behavior identified by Couzin,
as well as the dynamically parallel grouping, against which predators were only successful
60-70% of the time. From this, they concluded that flocking behavior likely evolved as a
defense against predation.

While Wood and Ackland extended Couzin’s work on the effects of sensor thresholds
in flocking agents, Reluga and Viscido have conducted similar work in which they attempt
to validate Hamilton’s selfish herd theory through genetic algorithmic techniques [Reluga

and Viscido, 2005]. In their simulated environment, prey agents are distributed uniform

19

randomly in a two-dimensional environment. At each run of the simulation, each agent
chooses a direction vector that is weighted and influenced by its neighbors in the simulation
and advances a fixed distance in the direction of the vector. Next, a predator appears at a
random place, similar to an ambush attack as described by Hamilton, and the prey nearest
to the predator is eaten and removed from the simulation. After each simulation run, a
survivor is chosen at random to generate a replacement via mutation for the eaten prey.
Only a single gene was evolved, representing an influence factor of nearby neighbors on the
acting agent’s direction vector.

The implication is that individuals that are drawn primarily toward their closest neigh-
bors end up on the periphery of the cluster, thereby having a larger domain of danger
and being more susceptible to predation. On the other hand, individuals that are drawn
more strongly to distant neighbors will “leapfrog” over their nearby neighbors, thus selfishly
putting that neighbor on the periphery of the cluster and reducing the agent’s own domain
of danger. As expected the gene responsible for the more selfish strategy gained dominance
over the course of Reluga and Viscido’s experiments.

It is notable that these evolution experiments sought to evolve genes that were tied
directly to parameters of the individuals’ sensory or physical capabilities. In the case of
Wood and Ackland, the width of the domain of orientation as well as range of motion, active
sensor region and noise ratio were evolved, while they assumed as constant the necessity
of the three behavioral drives: attraction to neighbors, collision avoidance and orientation
with neighbors. Our work takes the converse approach. We hold as constant the types and
attributes of sensors and physical capabilities, these being selected based on values that have
been shown on our platform to allow for capable flock maneuvering, and attempt to evolve
a set of behaviors as a controller that enables flocking to avoid predation. The description
of our model, test platform and experimental setup and results follow in the proceeding

sections.

20

1.7 Summary

In this chapter we discussed the various approaches to modeling and simulation, we looked
at the historical roots of reactive and hybrid robot controllers, and we presented a brief
overview on the field of Ethology and its relation to collective animal behavior research. In
this section, we will briefly summarize the relevance of each of these subjects in relation to

our framework, Pickle.

e Agent-based: Pickle is an agent-based modeling and simulation framework, which
means that its fundamental units are autonomous processes that operate on a “sense-

think-act” paradigm.

e Behavior-based: Pickle uses behavior-based robot controllers to drive the “think”
functionality of its agents. This means that Pickle agents have the flexibility and
adaptability of reactive agents, but are also capable of some higher level planning in

the form of activating different behavioral states.

e Evolutionary: Pickle uses genetic programming to evolve its behavior-based con-

trollers.

e Collective animal behavior: Pickle’s novel approach to agent controller description
allows for new approaches to understanding and reproducing collective animal behav-
ior, by controlling and evolving the fundamental behavioral mechanisms of its agents,

rather than only the physical parameters of their sensors and actuators.

21

Chapter 2

Pickle

In this chapter we will describe the overall system design of the Pickle agent-based platform.

Later, we will discuss specific details about its implementation.

2.1 Design of the Simulation Framework

When designing Pickle, we had three objectives for our modeling framework: first, it must
have explicit support for sense-think-act agents. This paradigm is fundamental to collabora-
tive biological and simulation & modeling research. Our framework must enable researchers
to create and modify both sensors and actuators easily. It should also be easy to connect
them through a controller, while maintaining a consistent interface between sensors, actua-
tors and controller.

Second, the same separation of concerns between sensors, actuators and controller should
be a feature of the entire framework. The simulation kernel itself should have a consistent
interface to the application layer, and the configuration layer, which comprises the XML de-

scriptions, should be loosely coupled with the application layer (Figure 2.1). This will enable

22

Drivers

MASON | | RePast SASSY
driver driver driver

MASON 00 0 [N

Figure 2.1: A high-level view of Pickle’s architecture. Pickle is essentially an application
layer that reads input from a Configuration Layer consisting of XML descriptions for simu-
lation parameters, Agents and Controllers. It uses a set of drivers as a translation interface
to run on multiple simulation kernels.

future support for multiple simulation kernels, visualization methods and semi-structured
data representations.

Third, everything must be serializable. Full serializability enables both the collaboration
of non-programmers, and the automatic generation of agents. To enable the collaboration of
non-programmers, there must be a way for agent and controller definitions to be generated,
stored and shared independently of the executable source code that is used to actually run
them. This in turn enables the automatic generation and modification of agents for our

experiments in genetic programming.

23

Phenomena

Controller

Attributes Sensors Actuators

t

Figure 2.2: A description of the Pickle taxonomy. Agents are distinguished from other
phenomena by the presence of sensors, which consume information about the simulated
environment, actuators that effect changes to the environment, and a controller that binds
sensors with actuators.

2.1.1 Taxonomy of a Pickle Simulation

The notion of a physical world in which agents can perceive objects, process those perceptions
and then take actions to effect change in their physical environment is central to Pickle and
to agent-based modeling and simulation as a whole. In a Pickle simulation, anything that is
perceivable through a sensor is called a “Phenomenon”. Phenomena also have bodies with
sets of free-form attributes such as size and color.

There are two basic types of Phenomena: Obstacles, which are inanimate objects and
Agents, which are animated through a sense-think-act cycle. The things that set an Agent
apart from any other Phenomenon in a Pickle simulation are: Sensors, which collect data
about neighboring Phenomena, Actuators, which attempt to modify the simulated world in
some way, and a Controller, which connects the Sensors to the Actuators. A diagram of the

Pickle Taxonomy is depicted in Fig. 2.2.

24

2.1.2 Sensors

Every agent has a set of Sensors that collect information about nearby Phenomena in the
simulated world and pass that information on to the Controller. For example, a simple sen-
sor might return all Phenomena within a certain distance from the sensing agent’s current
location. However, there are several ways that we can refine that information. First, it
is probably more useful for a sensor to return information about a particular type of Phe-
nomenon. For instance, a minnow might have a sensor dedicated specifically to detecting
predators, like sharks, another sensor dedicated to other minnows, and still another sensor
dedicated to obstacles like coral reefs. In Pickle, this is accomplished by defining a list of
filters for each sensor.

Another way in which we can filter the information returned by a sensor is by specifying
an active region for the sensor. Every sensor has an active region that is essentially a pie
slice with respect to the sensing agent (Figure 2.3). Phenomena that fall within the pie slice
are perceived by the sensor, while those that fall outside the pie slice are ignored.

Whenever a sensor is activated, resulting data is passed to the behavior controller, which

in turn activates the agent’s actuators.

2.1.3 Actuators

For an agent to interact with its environment, it must have actuators. These allow the agent
to move through the environment, to grab or eat other agents, and to modify the state
of their environment in any meaningful way. Actuators receive their instructions from the
agent’s controller as a list of Action objects, each of which is marked as belonging to one of
the agent’s actuators.

For example, a Navigation Action marked with the name of the agent’s navigation actua-

tor will contain a vector that is given to the actuator. The Navigation actuator in turn makes

25

|1 - agent body

- active sensor region

© - right angle offset

& - |eft angle offset

center at 0°

Figure 2.3: A view of how pie slice regions for sensors work. Each Sensor operates within
a single pie-slice region, and Agents may have multiple sensors.

a request to the Simulation Driver to move its owning agent to a point in space specified by

the vector.

2.1.4 Controller

A Pickle Controller is a memoryless finite state machine that binds sensors to actuators.
It does this by consuming sensor data (a list of items called Perceptual Schemas) provided
by the agent’s sensors, and producing a list of actions which are processed by the agent’s
actuators. A Controller is basically a set of schemas, each of which subscribes to exactly one
Perceptual Schema. The use of the Schema nomenclature comes from our previous work in
BioSim [Medina et al., 2014], and more broadly from the work of Arkin and Arbib [Arbib,
2003].

By “memoryless” we mean that at any given step (event or time based), the result of the

controller computation depends only on its sensor inputs for this step and the current state,

26

but not on any previous steps or state. This creates some limitations for our agents. For
instance if a predator is closing in on a prey, and the prey moves outside of the predator’s
sensor range, the predator has effectively forgotten about the prey and will stop tracking
it until it comes back into its sensor range. This is in keeping with the underlying reactive
nature of our controllers. Long-term planning in the style of Arkin’s AuRA controllers is
provided through the State Change Schemas described in Section 2.1.7.

When a Perceptual Schema arrives at the Controller, the Controller Schemas are polled
to see if any of them subscribe to it. If so, that Controller Schema is “fired” by which we
mean that it is given the data attached to the Perceptual Schema as input, and called upon
to produce some result.

For example, an agent may be attracted to a resource such as a food pellet. Such an
agent will have a sensor which detects nearby food pellets. When that sensor detects a food
pellet, it sends a reference to the nearest pellet along with the pellet’s point in space relative
to the agent as sensor data to the controller as a Perceptual Schema called “nearestPellet”.
The controller would then have a schema that subscribes to the “nearestPellet” Perceptual
Schema, that when fired, would produce a vector pointing toward the food pellet. That
vector is then passed along to the agent’s Navigation Actuator, which asks the Simulation

Driver to move the agent accordingly.

2.1.5 Motor Schemas

In fact, this describes a Motor Schema, which is one of three kinds of Controller Schemas,
each of which is distinguished by the kind of result it is expected to produce. Motor Schemas
produce a vector, which signals a desire to move the Agent in some corresponding direction,
with a given magnitude. Motor schemas are defined by the Perceptual Schema that they

react to, the type of reaction, either ‘attraction’ or ‘repulsion’, the response curve of the

27

reaction, which may be ‘linear’, ‘quadratic’ or ‘exponential’, and a weight value or priority

value, to be used by its Coordination Operator.

2.1.6 Action Schemas

An Action Schema is tied directly to one of the Agent’s non-navigation actuators. When an
Action Schema is fired, it sends the corresponding sensor data to the Actuator. For example,
a Shark Agent might have a sensor called bumpedMinnow. When that sensor is activated,
a Perceptual Schema called “bumpedMinnow” is sent to the Shark’s controller. If the Shark
has an Action Schema called “chompMinnow” that is tied to a Chomp Actuator, the sensor
data (i.e., the x and y coordinate, or “Point” in shark-space and the reference to the minnow
itself) are sent to the shark’s Chomp actuator, which in turn can tell the Simulation Driver
“I want to chomp this minnow”.

It is important to note here the Simulation Driver’s role as an arbiter of the simulated
world. An agent may request to move to a point in space, and the Simulation Driver may
move it there, or deliver the bad news that there is an obstacle or another agent in the way,
and leave the agent where it is. By the same token, an agent may signal a desire to eat
another agent, and the Simulation Driver may either act accordingly or, with some random

probability allow the prey to escape.

2.1.7 State Change Schemas

Motor Schemas and Action Schemas are grouped together in the Controller as a unified state
called an Agent Schema. An Agent Controller may have multiple Agent Schemas, along
with a way to transition in and out of these states. This brings us to Pickle’s third kind
of Controller Schema, the State Change Schema. Each State Change Schema belongs to an

Agent Schema and is also bound to some other Agent Schema. When fired, a State Change

28

Schema changes the currently active state from the Agent Schema to which it belongs, to
the Agent Schema to which it is bound.

A controller is a finite state machine, consisting of discrete states and transitions between
those states. At each step, sensor data is ingested by the controller. First, State Change
Schemas are checked against the sensor data, and if one is fired, then the active Agent
Schema changes immediately. Next, the Motor Schemas are checked and produce a result
vector. Finally, the Action Schemas are checked. Once the Action Schemas have returned
their results, they are put into a list along with the navigation vector and passed to the

actuators for action.

2.1.8 The Navigator

In the controller, Motor Schemas are grouped hierarchically into an abstract syntax tree,
where the Motor Schemas are the leaf nodes and Coordination operators are the interior
nodes.

Every node of the Navigator produces a vector. Motor Schemas (the leaf nodes) produce
vectors when fired as detailed above. If a Motor Schema is not fired, it produces a zero vector.
Weighted sum operators evaluate all of their children and scale their output according to a
weight value assigned to each child, and return the vector sum of all of them. Priority, or
subsumption operators, evaluate their children and choose exactly one result to return. The
choice is made by assigning a priority to each child, so that the child that has both fired and
has the highest priority is selected as the result vector.

For example, imagine a scenario with a shark that currently sees two things in its en-
vironment: a minnow, to which it is attracted, and an obstacle, from which it is repulsed.
With a summation coordination operator, the attractive and repulsive vectors are summed
into a result vector which, over successive time steps will guide the shark around the obstacle

and toward the minnow, as demonstrated by Arkin. Alternatively, the subsumption operator

29

will completely suppress the output of one schema in the presence of another schema. So
in the above example, the repulsive vector would be completely disregarded in favor of the
attractive vector toward the minnow. The end result could be that the shark takes a more
direct route toward its prey, or that it stumbles blindly into an obstacle.

A more practical use of the subsumption operator can be given in the implementation of
Boid mechanics. In Boid mechanics, agents attempt to maintain an ideal distance between
each other in a flock. This comes from the artificial life research of Craig Reynolds [Reynolds,
1987]. Boid agents have an inner zone and an outer zone and neighboring agents will try to
stay within the outer zone without entering the inner zone and risking a collision. This can
be implemented using a subsumption operator as follows: agents have both an inner zone
sensor and an outer zone sensor. While the outer zone sensor fires, the agents are attracted
to their neighbor, but as soon as the inner zone sensor fires, it suppresses the attraction to

the neighbor and returns only a repulsion from the neighbor (Figure 1.6).

2.1.9 The Simulation Driver

With so many autonomous processes roaming throughout the simulated world, the need
for an arbitrator, or referee becomes apparent. This is the job of the translation layer, or
Simulation Driver. When agents use their actuators to effect some change in the simulated
world, they send the request to a simulation driver, which collects actuator requests from
all the agents in a particular timestep, and may or may not implement those requests in the
simulated world. The simulation driver is in charge of arbitrating collision detection between
both agents and inanimates, maintaining the physics of motion for the agents, deciding who
gets eaten and who escapes. The use of a single layer for this task supports our notion of

loose coupling between the simulation kernel and the application layer (Figure 2.4).

30

package edu.uga.pickle.drivers;
import edu.uga.pickle.body.Point
import edu.uga.pickle.application.{Phenomenon, Agent}

abstract class SimulationDriver
{

val width: Int

val height: Int

def put(p: Phenomenon, 1: Point)

def markReady(p: Agent)

def randomDouble: Double

def getRough(caller: Agent): List[Phenomenon]

def get(filters: List[(Phenomenon) => Boolean], range: Int, center: Int,
offsetL: Int, offsetR: Int)(caller: Agent, rough: List[Phenomenon])
List [(Point ,Phenomenon)]

def getRandom(freq: Double, active: Double, center: Double) (caller: Agent,
rough: List[Phenomenon]) : List[(Point,Phenomenon)]

def getWithFilters(filters: List[(Phenomenon) => Boolean]) (caller: Agent, bag:
List[0bject]) : List[Phenomenon]

def getNearest(filters: List[(Phenomenon) => Boolean], range: Int, center:
Int, offsetlL: Int, offsetR: Int)(caller: Agent, rough: List[Phenomenon])
List [(Point,Phenomenon)]

def runWithGUI(bgColor: String, showIDs: Boolean)

def removePhenomenon(p: Phenomenon)

def bumpSensor(target: String) (caller: Agent, empty: List[Phenomenon]):
List [(Point,Phenomenon)]

Figure 2.4: The interface for the simulation driver in our prototype implementation. A
suitable driver implementation would need to fulfill these functions using its simulation
kernel.

31

2.2 Comparison with Previous Work

2.2.1 BioSim

In previous work with the BioSim platform, we detailed methods for dynamically generating
controllers from semistructured data descriptions by generating and compiling Java source
code on the fly [Medina et al., 2014]. We accomplished this through the use of XSLT trans-
formations to produce the text of the source code, and then invoking the Java ClassLoader to
compile the code and inject it into an already running environment. This entire process was
controlled by a dynamically generated ANT build script, and we used the Java Architecture
for XML Binding (JAXB) to generate a document object model for our controllers, which
allowed us to randomly generate and arbitrarily modify our XML controller descriptions.

The Java source code that was generated was specifically targeted for the BioSim model-
ing and simulation framework, which uses the MASON simulation kernel and the Clay robot
control architecture library [Balch, 1998].

While these efforts were successful and promising, the present work improves upon them
in several important ways. First our approach to BioSim became complicated because it
was necessary to overcome inherent limitations in the simulation framework. Second, the
BioSim framework required pulling together different technologies in sometimes counterin-
tuitive ways. For instance, in BioSim there is no explicit support for a sense-think-act cycle
with a separation of concerns between each step in the cycle.

By designing Pickle from the ground up with separation of concerns and explicit support
for sense-think-act agents in mind, we are now able to specify not just controllers, but
entire agents, including body attributes, sensors and actuators using XML. Rather than
generating and compiling code at runtime, we can simply use the XML specification to

populate instances of Pickle classes and carry out the internal wiring of those classes.

32

2.2.2 SASSY

Our use of a middle translation layer to maintain separation between the application layer
and the simulation kernel has been partly inspired by previous work on the SASSY Agent-
based Modeling and Simulation framework [Hybinette et al., 2006]. SASSY uses a middle-
layer API to wed an ABMS framework to a high-performance Parallel Discrete Event Simula-
tion (PDES) kernel. However, SASSY was never intended to be a multi-kernel architecture;
it essentially provides its own application layer and its own PDES kernel. Furthermore
SASSY has no support for serializable agents; a SASSY user would need to be a capable
programmer to create an application. Pickle has been designed with the intent to function
on multiple kernels, given appropriately written Simulation Drivers for each kernel. In future
development, we intend to incorporate more high-performance elements into Pickle, such as

a middle layer that can use GPU acceleration for massively parallel agent computations.

2.2.3 MissionLab

Our controller model, and the field of behavior-based robotics in general, owes a partic-
ular debt to the work of Ronald Arkin, who formalized much of its groundwork. Along
with Douglas MacKenzie and Jonathan Cameron, Arkin produced MissionLab, a robotics
simulator that uses behavior-based robot controllers [MacKenzie et al., 1997]. MissionLab
features a graphical user interface to specify the robot controllers, which produces code in
the Configuration Description Language (CDL), a domain-specific language (DSL) developed
specially for MissionLab. CDL describes high-level features of robot controllers, including
behavior primitives and how those primitives combine to form assemblages, but it does not
define the implementation of behavior primitives themselves. Rather it presumes that the
CDL primitives will be bound to some existing library of primitives designed for a particular

physical platform. This makes sense for MissionLab, since the intent was to compile a robot

33

controller, test it in a simulated environment, then take that same controller and put it onto
an actual robot.

Pickle extends on these ideas in three ways. First, we abandon the use of special pur-
pose domain-specific languages in favor of semi-structured data representations, or XML
in our case. This allows us to maintain a language-neutral environment, and also makes
our controllers completely machine generatable and modifiable, a feature that is not easily
supported with a domain specific language.

Second, Pickle allows users to create and modify an agent’s sensors and actuators as part
of the XML description. In MissionLab, sensor and actuator hardware are simulated through
a server application, which supports very specific models of hardware sensors and actuators
which may be found on the target hardware robotics platforms. By removing the strict
dependency on hardware availability and describing sensors and actuators in terms of other
Phenomena (anything that is perceivable through a Sensor) in the simulated world, Pickle
offers a set of capabilities better suited towards an ABMS for animal behavior research.

Finally, MissionLab is based around the idea of specifying teams of robots that work
together toward a common goal. However, for animal behavior research, it is just as necessary
to specify agents that will be working at odds, as in a predator and prey scenario. As such,
while MissionLab offers no support for complex behaviors such as killing, consuming or
otherwise removing agents from the world, Pickle supports these actions directly through its

actuators and Simulation Driver model.

2.3 Implementation of the Simulation Framework

2.3.1 Scala and XML

We have written our prototype implementation of Pickle in the Scala programming language,

a hybrid object-oriented and functional language that compiles to produce bytecode for the

34

Java Virtual Machine. Scala enables us to define all of our agents’ behaviors at runtime while
keeping a relatively small and manageable code base. We exploit its functional programming
features to both enable a thin programmer user interface and to dynamically generate anony-
mous functions. While the same end results are possible in a pure Java implementation, (i.e.,
anything in Scala has an equivalent implementation in Java), such an implementation would
require thick, intrusive interfaces, hand written code and result in a code base that is more
bloated and less maintainable and extendable than our Scala implementation.
Furthermore, our prototype implementation uses XML (Extensible Markup Language)
as the semi-structured data format to serialize simulations, agents and controllers. While it
is convenient that the Scala programming language features native support for creating and
parsing XML as literal values, there is no reason why a similar implementation could not
support JSON or any other semi-structured language as well, and this is an extension that

is marked for future work.

2.3.2 Sensor implementation

In practical terms, a sensor is a curried lambda function, generated at runtime that queries
a data structure maintained by the simulation kernel and accessed through the Simulation
Driver. When the sensor is initially created, it is given a list of filter functions and a numeric
range with offset angles to define the range of the sensor, or its effective “pie slice.” When
it is called, the function is provided with the current position of the calling agent.

Each filter is an anonymous Boolean function. For instance a filter that returns all min-
nows within the given range would be type = “Minnow”, which performs a string comparison
on the perceived Phenomenon’s type value. Similar comparisons can be made on any of a
Phenomenon’s attributes. So for example, if an agent needed a sensor specialized for all

green food pellets versus all red food pellets, or all minnows of size greater than 5, this

35

would be specified in the XML as a Sensor with two filters: one that matches on the type
(“minnow” or “food pellet”) and one that matches on the attribute (“color = green”).

The pie slice region can be defined in the XML as a center angle relative to the agent’s
straight-ahead or 0° heading. It has a left-offset to define the inner-angle of the left edge
of the pie slice with the center and a right-offset for the right edge. Finally, it has a range
parameter to specify the radius from the agent’s center. Pie slice regions do not need to be
symmetrical.

In future work, we plan to provide support for a sensor decay function, to allow users to
specify a curve to describe a decrease in sensor reliability as a factor of distance from the

sensing agent.

2.3.3 Simulation Kernel

We have implemented our prototype driver to support the MASON simulation kernel from
George Mason University [Luke et al., 2005]. MASON operates on a single thread that uses
a time-stepped event queue to poll the agents in the simulation sequentially. However, we
should reiterate that the design of Pickle is not restricted to being either time-stepped or
single threaded; it allows for both Discrete Event Simulation, or a multithreaded Process-
based Simulation. Pickle simply inherits the simulation paradigm of the implementation of
the Simulation Driver.

When polled and given sensor data, Pickle Agents use their Actuators to send requests
to the Simulation Driver. This could be a single-thread that manages the underlying event
queue and environment data structures (as in our prototype implementation), or it could be
a thread manager that dispatches requests to a subordinate process running in parallel. In a
Pickle simulation, the application remains insulated from the implementation details of the

underlying kernel.

36

Chapter 3

The Genetic Programming
Framework and Experimental

Platform

To demonstrate the usefulness of our approach to simulation and agent controller specifi-
cation, we have implemented a genetic programming framework for Pickle and used it to
conduct experiments in evolving XML-serialized controllers. Through these experiments, we
have explored the following questions: does flocking behavior evolve as a way for prey agents
to avoid predation? Are there other successful strategies besides flocking to avoid predation?
What fundamental behaviors are necessary to induce flocking as a way to escape predation?
If there are valid solutions besides flocking, what behavior mechanisms do they use? To
help us answer these questions, our genetic programming framework generates, scores and
modifies Pickle controllers by directly manipulating their XML representation. The details
of our experimental design are given in Section 3.1, and the results of our experiments are

given in Chapter 4.

37

3.1 Design

Our genetic programming framework is designed to be easily controllable through an XML
configuration file that specifies parameters of the evolution such as the population size, the
number of generations to evolve, which application to run as the fitness function for the
evolution and for which agent of the application we should be generating controllers.

Pickle applications are normally launched through a shell script; launching pickle with
the “evolve” parameter causes the application to parse its evolution parameters and begin
the genetic programming process. Each individual of each generation is recorded as an XML
file that includes its controller, ranked amongst the other individuals of its generation, a
unique, randomly generated identifier and a “family history” of parents if the individual is
the product of crossover or mutation. These XML documents may later be searched through
and individually replayed to examine the behavior of any particular individual from the
evolution.

The initial population for an evolution consists of randomly constructed controllers.
These are built by parsing the application file to create a list of available sensors and ac-
tuators for the agent whose controller is being generated. First, a Navigator is generated
by recursively generating coordination operators and populating them with motor schemas.
When creating a coordination operator, the type (“sum” or “priority”) is selected with a

” W

uniform random distribution. When creating a motor schema, the type (“attraction,” “re-

bR

pulsion,” or “mimic”) and the response curve (“linear,” “exponential” or “logarithmic”) are
chosen uniform randomly. Next the perceptual schema for the motor schema is selected
randomly from the list of available sensors. Finally, weights or priorities are assigned to each
coordinator or motor schema based on the type of its parent node in the tree hierarchy. The

numerical value for each weight or priority is generated randomly within a predefined window

of values. This allows for the possibility of duplicate weight or priority values, but poses no

38

difficulty for weights as it simply indicates that the vectors produced by the motor schemas
have the same weight when summed together during controller evaluation. For priorities
however, this introduces a conflict. When the controller is evaluated, the conflict is resolved
by choosing the first of two motor schemas that have the same priority for inclusion in the
result vector.

This randomly constructive process is carried out recursively. At each level of the recur-
sion, a random decision is made to either stop the recursion or continue. To avoid arbitrarily
deep controller trees, a maximum depth parameter is specified in the evolution parameters
XML file. In the same manner, the maximum number of motor schemas and coordina-
tion operators that may be generated as the children of a parent coordination operator is
configurable via the XML file.

Crossover between two controllers is implemented by first selecting a receiver and a donor
controller. Next, an interior node (excluding the root) is selected at random from both the
receiver and donor. Finally, the donor’s selected node and it’s entire subtree are used to
replace the selected node in the receiver. The receiver controller is then returned as the
“offspring” of the two controller individuals.

Mutation of a single controller is implemented by selecting an interior node randomly
from the individual, generating a new random subtree and replacing the selected node with
the newly generated subtree.

The evolution continues until either the process is killed by the user, or the maximum

number of generations specified in the configuration file is reached.

3.2 Implementation of the Experimental Platform

Our simulation consisted of a predator and prey scenario with 60 prey in a rectangular

shaped simulation environment, and three predators which attempted to catch and eat the

39

Table 3.1: Physical attributes and sensors of the predators (“Shark”s) and prey (“Min-
now”s).

| Physical parameters |

Shark Minnow

Size 20px 10px
Speed 8px 10px
Turning radius 40° 30°

’ Shark Sensors ‘
Name Range | Active Zone (on each side)
getNearestMinnow 550px 180°
getNearestShark 50px 180°
getNearestEdge 20px 180°
getRandom 70°

’ Minnow Sensors
Name Range Active Zone
getNearestMinnowOuter | 100px 100°
getNearestMinnowInner 50px 180°
getNearestMinnowCollide | 20px 180°
getNearestShark 100px 180°
getNearestEdge 100px 120°
getRandom 70°

prey. We chose an aquatic environment, and so we used the LazyNavigation actuators for
all agents with a world friction level of 0.7. The size of the simulated pool was 1280 by 720
pixels. We named our predator and prey agents Sharks and Minnows respectively, although
this should not be construed as a direct reference to the actual biological creatures. Rather,
these were convenient labels for abstract predator and prey agents.

The “Sharks” were slightly larger in size and slightly slower than the “Minnows”, but
with a slightly wider turning radius. Their sensors were designed for finding prey within the
pool. All sensors were active for the full 360° around the predator, with the sensor range of

the prey sensor set at a very large 550 pixels, the sensor for other predators set at a 50 pixel

40

<controller>
<AgentSchema name="hunt" initial="true">
<Navigation actuator="LazyNavigation'">
<CoordinationOperator type="priority" weight="1">
<MotorSchema type='"repulsion" curve="linear" priority="4"
PerceptualSchema="getNearestEdge" />
<MotorSchema type='"repulsion" curve="linear" priority="3"
PerceptualSchema="getNearestShark" />
<MotorSchema type="attraction" curve="linear" priority="2"
PerceptualSchema="getNearestMinnow" />
<MotorSchema type="attraction" curve="linear" priority="1"
PerceptualSchema="getRandomPoint" />
</CoordinationOperator>
</Navigation>

<Action actuator="eatMinnow">
<ActionSchema PerceptualSchema="bumpedMinnow" />
</Action>
</AgentSchema>
</controller>

Figure 3.1: The predator controller used in our genetic programming experiments. This
controller consists of a priority or subsumption coordination operator that chooses between
repulsion from pool edges, repulsion from other predators, attraction to prey and random
motion.

range, and the sensor for the pool edges set at a conservative 20 pixel range. The predators
were equipped with a “Chomp” actuator which fires the “eatMinnow” action when triggered.

The predator controller (Figure 3.1) was a simple “priority” type coordination operator.
The highest priority went to avoiding the pool edges so as not to get stuck. The next highest
priority behavior was to avoid other nearby predators. The next highest was to seek out
prey, and finally if none of these perceptual schemas are fired, the predator moved randomly.

The prey were smaller than the predators, measuring 10 pixels in diameter, with a faster
top speed of 10 pixels per turn and a slightly less navigable 30° turning radius. Their sensors
were designed for spotting predators. The nearest predator sensor was active for 360° around

the prey agent with a range of 100 pixels. The prey agent also had a set of sensors for other

41

prey that are analogous to the zones proposed by Aoki and Couzin. The outermost zone,
named “getNearestMinnowOuter” had a range of 100 pixels and an active zone of 100° off

" inner had a range of 50 pixels, with

of center for each side. The next, “getNearestMinnow’
an active zone of 360° around the Minnow, and the innermost, “getNearestMinnowCollide,”
had a range of just 20 pixels and an active zone of 360° around the Minnow. Finally, the
Minnow had a pool edge sensor with a range of 100 pixels and an active zone of 120° from
center on either side of the agent.

To validate that flocking behavior was achievable with this setup for our Minnows, we
“hand-coded” a Pickle controller description along the lines of those used by Aoki, Reynolds
and Couzin (Figure 3.2). This controller had a priority coordination operator that selected
between (in descending priority) avoiding the pool edges, avoiding Sharks, avoiding collisions
with other Minnows, attraction to nearby Minnows and finally, random movement when no
other sensor was fired. There are two refinements worth mentioning: the impulse to avoid
nearby Minnows in the inner zone was tempered by summing the repulsion vector with a
“mimic” vector that duplicates the current direction of the sensed Minnow. Likewise the
attraction to Minnows in the outer zone was summed with a mimic vector so that the end
result is for the acting Minnow to move in a heading that would put it just in front of the
Minnow being sensed, rather than attempting to swim directly into it. This was in keeping
with the selfish herd theory, in which prey animals attempt to move ahead of other animals.
This controller exhibited dynamic flocking, with acting in coordinated maneuvers to avoid
each other, pool edges and predators.

Each simulation ran for 1,000 time steps. During this time, the Sharks and Minnows were
set free in the simulated pool environment. As Minnows were eaten by the Sharks, they were
removed from the simulation, and at the end of the run, the total number of surviving agents

was recorded. This included the three Sharks, so there is a constant bias of three. Thus,

42

<controller>
<AgentSchema name="Boid">
<Navigation init="true" actuator="LazyNavigation">
<CoordinationOperator type="priority">

<MotorSchema type='"repulsion" curve="linear" priority="6"
PerceptualSchema="getNearestEdge" />

<MotorSchema type='"repulsion" curve="linear" priority="5"
PerceptualSchema="getNearestShark" />

<MotorSchema type="repulsion" curve="linear" priority="4"
PerceptualSchema="getNearestMinnowCollide" />

<CoordinationOperator type="sum" priority="3">

<MotorSchema type="mimic" curve="linear" weight="3"
PerceptualSchema="getNearestMinnowInner" />

<MotorSchema type='"repulsion" curve="linear" weight="1"
PerceptualSchema="getNearestMinnowInner" />

</CoordinationOperator>
<CoordinationOperator type="sum" priority="2">

<MotorSchema type="mimic" curve="linear" weight="3"
PerceptualSchema="getNearestMinnowOuter" />

<MotorSchema type="attraction" curve="linear" weight="1"
PerceptualSchema="getNearestMinnowOuter" />

</CoordinationOperator>

<MotorSchema type="attraction" curve="linear" priority="1"
PerceptualSchema="getRandomPoint" />

</CoordinationOperator>
</Navigation>
</AgentSchema>
</controller>

Figure 3.2: The boid-like controller that we hand-coded as the control in our experiments.
It consists of a priority coordination operator that chooses between avoiding pool edges,
avoiding predators, closing in on other prey, avoiding collisions with other prey and random
motion.

43

a Minnow controller that behaved “perfectly” and was never caught by any of the Sharks
would score a 63, while a controller in which all Minnows were eaten would score a 3.

The scores generated by a given controller tended to be normally distributed. In earlier
experiments we used the outcome of a single simulation run as our fitness function. This
introduced more error into the result scoring, as the score could potentially be at the low or
high end of the normal curve. However, we believe that error was not necessarily detrimental
to the outcome of the experiments, because in practice it served to allow more genetic mixing
and less elitism amongst the individuals of the population. Furthermore, the average fitness
of the population showed steady improvement despite the potential for error. However, in
later experiments, we ran each simulation multiple times and used the mean of the outcomes
as the score for that individual. Simulations were run until either the standard error (/+/n)
fell below a threshold of 1.5, or the maximum of 10 iterations was reached. Another valid
approach would be to check the relative precision of the results.

The search space for this problem is very large. In general, the number of priority motor
schemas is n = numberO f Perceptual SchemassnumberO f CurveTypesxmaximumPriorityx
numberO fTypes, or 1,890 in our setup. The number of possible weighted motor schemas
may be calculated similarly. Given the maximum number of motor schemas allowed in a
coordination operator = p , we can say that the number of possible priority coordination
operators is (Z) or 1.99 x 10'* for our setup. The same can be said for sum coordination
operators, so the total number of possible coordination operators is 3.98 x 10'4. Finally,
with a maximum tree depth of k£ and a limit of two coordination operators as children of any
other coordination operator (i.e., a tree arity of two) the maximum number of coordination
operators in a controller is 2571 — 1 | or 63 in our case. So the number of possible controllers
for our problem is 22:1 (3'35 +x1i0114)‘ Furthermore, the fitness of each controller is a random

variable. As such, we cannot directly calculate the fitness value of each dimension, but in-

44

Table 3.2: Description of the evolution parameters for five different sets of experiments.

Set | Size | Carryover Crossover Pool Mutation Pool | Replaced Dropped

1 12 | top 50% top 50% mid 25% bottom 25% 0%

2 24 0% top 50% mid 25% 25% bottom 50%
3 24 | top 25% top 50% mid 25% 25% bottom 25%
4 12 | top 25% top 50% mid 25% 25% bottom 25%
5 24 | top 256% | top & bottom 25% mid 25% 25% bottom 25%

stead have to rely on multiple independent trials to generate a confidence interval for the
mean value of each controller.

We ran five sets of evolution experiments with different parameters (Table 3.2). Our
first attempt was to achieve quick convergence. Our prototype implementation of Pickle
is not optimized for speed, and so a single simulation run of 1,000 time steps typically
takes around five minutes to complete. This being the case, we designed our first set of
experiments to converge quickly by having a high degree of generational elitism and a strict
penalty for poorly performing controllers. These experiments used a population size of 12
individuals. After each run of the generation, the individuals were ordered by fitness. The
top six controllers were held over for the next generation. These top six were also randomly
paired together to produce three offspring. The next best-performing three individuals were
selected for mutation. Their mutated versions were carried over into the next generation.
Finally, the worst three individuals were dropped from the population and replaced by the
three newly generated offspring from the top six.

Our second set of experiments was designed to allow more genetic mixing amongst the
population. For this, we used a larger population size of 24 individuals. After each gen-

erational run, the top 50% were selected for crossover, but were not held over to the next

45

generation. The next 25% were selected for mutation and the bottom 25% were dropped
from the population and replaced by newly generated random controllers, along with an
additional 25% random controllers.

The third set of experiments split the difference between sets one and two. These exper-
iments held over the top 25%, used the top 50% for crossover, the next 25% for mutation,
replaced the bottom 25% with the new offspring and introduced 25% newly generated con-
trollers. The population size for this set was 24 individuals.

A fourth used the mean from a series of simulation runs for the fitness function, as
described previously. Because it took up to ten times longer to evaluate each individual
from the population, we used a smaller population size, 12 individuals as in the first set, but
with the carryover proportions the same as in set three.

Finally, we ran a set of experiments with parameters similar to the fourth set of experi-
ments, but with a larger population size of 24 individuals, and a crossover pool that consists
of both the top 25% of individuals from the previous generation and the bottom 25% of in-
dividuals from the previous generation. This was intended to promote better genetic mixing
and prevent premature convergence.

The results from the evaluation of each controller were recorded into an XML file along
with a UUID generated as an identifier for the controller, a copy of the controller itself, its
rank and generation, fitness score and a list of its “heritage,” or all of its parents’ UUIDs.

In the next section, we discuss our findings from these experiments.

46

Chapter 4

Experimental Results

We found that flocking behavior does evolve as a valid solution to predator evasion, but
that it is not the only valid solution. We found at least one controller that does not exhibit
flocking behavior (Figures 4.5, 4.6 and 4.8), but performs as well and slightly better on
average than the hand coded flocking controller (Figures 4.1, 4.2 and 3.2) and evolved flocking
controller (Figures 4.3, 4.4 and 4.7). Finally, we found that while temporary flocking can
be achieved with only some of the fundamental flocking behaviors mentioned previously,
sustained flocking that avoids predation has only been observed in controllers that coordinate
all of the fundamental behaviors. A brief summary of results from each experiment set is
listed in Table 4.1.

In the first set of experiments, designed for quick convergence and high elitism, we
achieved flocking very quickly after 11 generations in one population. However, succes-
sive runs failed to achieve either flocking behavior, or fitness scores as high as those we have
observed with flocking controllers. Instead, they tended to converge too quickly around a

lower local optimum.

47

Table 4.1:

Description of outcomes from each set of experiments.

Set

Results

Successfully evolved flocking in one population. Others converged too early.

No improvement in population fitness.

Evolved swarming as a solution to predator evasion.

Successfully evolved flocking in one population. Others converged too early.

QY | W N~

Successfully evolved a very high quality swarming controller.

Fitness of the Hand-coded Flocking Controller

0,07 T T T
. Fitness of hand-coded controller o R
Gaussian fit -
s = . a opP b e
0,05 | o o =
Sample Size = 567 pre
Mean = 35.5 7 - ® o0
Variance = 49.2 P & 7 o
0,05k | StdDew=7.0 0 oot gt o e\c\ K N
Stderr = 0.295 N &
90% Cl = 35.5 +/- 0.486 - &ﬁﬂ - %
95% Cl = 35.5 +/- 0.578 o - ?
E‘ 0,04k | 98% Cl=3554/-0760 |- o i 5 4 .
w
3 A
5 p
E 0,08 b b e 3 N
¢ . ;: P "
02 O w "
0.0l
) - Figure 4.2: A screen shot of the
0 10 20 30 40 50 (4] . . .
Number of Survivors flocking behavior displayed by our
control group of “hand-coded” boid-
Figure 4.1: A frequency distribution of the like agents. Notice that the flocks
fitness evaluations for the hand-coded flocking grouping are fairly compact.
controller.

48

= 9 T
Fitness of the Evolved Flocking Controller N b
0,08) N "Fitness of evolved flocking controller 3 ’ € h ®
. ° Gaussian fit — 1 ¢
008k —— L . o A o -
Sample Size = 311 i b 4 i
™M = 38.4
o7k V:r?gnce 337 e . Q\ .) 4 .
stdDev - 5.80 3]
Stderr = 0.329
006k .- 90% Cl = 38.4 +/-0.543 |- f AT o N . .
95% Cl = 38.4 +/-0.645 2 ¢
> 99% C| = 38.4 +/- 0,849 v L
2 005f ...] T T T T T h e B % g) » o b
¢ & s
2 o b
EJ- 0,08 b - 4 N LA ¢
= a G é ,5 ¢ & b
0,03 F d . 4
0,02 R SO S SO
0,0l b e B e Flgure 44 A screen ShOt Of the
Y SO S evolved flocking behavior displayed
0 10 2 n 40 50 60 . L. .
Number of Survivors by the most fit individual in gener-
ation 50 of the fourth set of evolu-
Figure 4.3: A frequency distribution of the tionary experiments. Notice that the

fitness evaluations for the evolved flocking con-
troller. This controller shows a slight improve-
ment over the hand-coded flocking controller.

Fitness of the Evolved Swarming Controller

flocks appear looser, more expansive
and larger.

0.12 : : : Fitrm.'; of swarming t:ulntr'nller'
Ga,:s_:iian fit b
: Ed
o1 f 1 L
Sample Size = 210 -0 «
Mean = 45.5 L4
Variance = 20.63 o » A .
ook .. StdDev - 4.54 | b2
. Stderr = 0.313] & -
90% Cl = 45.5 +/- 0.517
F 95% Cl = 45.54/- 0.614 ° » v
€ 99% Cl = 45.5 +/- 0.809 -
RN S - - d ?
g
K e " AN &
N e %
0,04 |] 3 v . " a
o0z SO o SRR SURREIRRRNRRNNETR SRR
o —ess . .
0 10 20 30 0 5 @ Figure 4.6: A screen shot of
Number of Survivors . . .
the evolved “swarming” behavior dis-
. e layed by the most fit individual in
Figure 4.5: A frequency distribution of the play Y

fitness evaluations for the evolved “swarming”

generation 12 of the fifth set of evo-
lutionary experiments.

controller. This controller outperforms the
hand-coded flocking controller by 30%.

49

The second set of experiments yielded no useful results. Without holding over any of the
previous generation, the zero elitism approach, the fitness of the population never improved
beyond the random walk.

The third set of experiments yielded steady growth in fitness population, but we did
not observe flocking as the best solution. Instead, in all three of these evolution cycles,
a controller that produced behavior more similar to swarming emerged. This controller
behaved as well or better than either the hand coded flocking controller or the evolved
flocking controller.

In the fourth set of experiments, in which we used the mean as a more stable fitness
function, we again observed flocking evolve in one of the controllers starting at generation 28
(Figure 4.3). Once flocking was introduced into the gene pool, it came to quickly dominate
the top 50% of individuals. Furthermore, the individuals from this population showed steady
improvement over the course of the experiment (Figure 4.10). However, the other two runs
from this experimental set failed to reach a fitness level as high as that of the population
that achieved flocking, having reached plateaus similar to those of the first experimental set.

Finally, the fifth set of experiments produced a controller that performed significantly
better than either the hand-coded or evolved flocking controllers (Figure 4.5). This controller
emphasized predator avoidance and attraction to other prey to produce a “swarming” effect,
but without the presence of mimic genes that create a coordinated flocking behavior. This
controller performed 30% better than the hand-coded flocking controller and 18% better
than the evolved flocking controller (Figure 4.9).

In examining and replaying the results from some of these experimental runs, we can
reach some interesting conclusions about the nature of predator evasion in this simulated
environment. First, we can learn about the requirements of flocking by examining controllers
that exhibit some degree of flocking, but that failed to be successful at predator evasion. For

instance, in one controller, flocking was observed, but the Minnows failed to avoid collisions

20

<controller id="627d0fb9-382e-42b6-a4d0-c6e0f7113877">
<AgentSchema name="agentschema_1" init="true">
<Navigation actuator="LazyNavigation">

<CoordinationOperator type="sum">

<MotorSchema type='"repulsion" curve="logarithmic" weight="1"
PerceptualSchema="getNearestEdge"></MotorSchema>

<MotorSchema type='"repulsion" curve="exponential" priority="2"
PerceptualSchema="getNearestEdge"></MotorSchema>

<MotorSchema type="repulsion" curve="logarithmic" weight="3"
PerceptualSchema="getNearestMinnowInner"></MotorSchema>

<CoordinationOperator type="priority" weight="1">

<CoordinationOperator type='"priority" weight="1">
<MotorSchema type="repulsion" curve="logarithmic" weight="3"
PerceptualSchema="getNearestMinnowInner"></MotorSchema>
<MotorSchema type="mimic" curve="logarithmic" priority="2"
PerceptualSchema="getNearestMinnowOuter"></MotorSchema>
<MotorSchema type="attraction" curve="logarithmic" weight="2"
PerceptualSchema="getNearestEdge"></MotorSchema>
<MotorSchema type='"repulsion" curve="logarithmic" priority="1"
PerceptualSchema="getNearestShark"></MotorSchema>
<MotorSchema type="repulsion" curve="exponential" priority="2"
PerceptualSchema="getNearestEdge"></MotorSchema>
</CoordinationOperator>

<MotorSchema type="mimic" curve="logarithmic" priority="2"
PerceptualSchema="getNearestMinnowOuter"></MotorSchema>
<MotorSchema type="attraction" curve="logarithmic" weight="2"
PerceptualSchema="getNearestEdge"></MotorSchema>
<MotorSchema type="repulsion" curve="logarithmic" priority="1"
PerceptualSchema="getNearestShark"></MotorSchema>
<MotorSchema type="repulsion" curve="logarithmic" priority="1"
PerceptualSchema="getNearestShark"></MotorSchema>

</CoordinationOperator>
</CoordinationOperator>
</Navigation>
<StateChange></StateChange>
</AgentSchema>
</controller>

Figure 4.7: An evolved controller that exhibits distinctive flocking behavior.

o1

<controller id="29c793c7-7acl-47ab-b5dd-3814fcdbd7£5">
<AgentSchema name="agentschema_1" init="true">
<Navigation actuator="LazyNavigation'">
<CoordinationOperator type="sum">
<MotorSchema type="attraction" curve="exponential"
weight="1" PerceptualSchema="getNearestMinnowOuter"/>
<MotorSchema type='"repulsion" curve="linear"
weight="8" PerceptualSchema="getNearestShark"/>
<CoordinationOperator type="sum" weight="1">
<MotorSchema type="attraction" curve="exponential"
weight="3" PerceptualSchema="getNearestMinnowInner"/>
<MotorSchema type="repulsion" curve="
weight="5" PerceptualSchema="getNearestEdge"/>
<MotorSchema type="repulsion" curve="linear"
weight="7" PerceptualSchema="getNearestMinnowCollide"/>
<MotorSchema type="repulsion" curve="logarithmic"
priority="4" PerceptualSchema="getNearestEdge"/>
</CoordinationOperator>
</CoordinationOperator>
</Navigation>
<StateChange></StateChange>
</AgentSchema>
</controller>

exponential"

Figure 4.8: An evolved controller that enables superior predator evasion, but does not use
flocking.

Comparitive Fitness of Controllers

T
Munber of Survivors s

Gy

Number of Survivors

Average of Population Hand-coded flocking Evolved flocking Evolved zwarming

Figure 4.9: A side-by-side comparison of the fitness of the hand-coded, evolved flocking and
evolved swarming controllers. The evolved swarming controller outperforms the hand-coded
flocking controller by 30%.

52

Progression of the Most Fit
44 T T T T T T

U Most it ow
Linear fit
*

Number of survivors

32

20

28

] 5 10 15 20 25 30 35 40 45 50
Generation

Figure 4.10: A plot of the “most fit” members from the fourth set of evolution trials. This
shows a steady improvement in the maximum fitness of the population. This population
produced flocking behavior starting at generation 28.

with each other. This left them in vulnerable clumps, which were devoured by the Sharks
(Figure 4.11).

In another generation, the Minnows learned to flock very well, but failed to avoid obsta-
cles, namely the pool edges. Once they got stuck on the pool edges, the Sharks were able to
swim along the edges and eat them all.

Common to all successful controllers was the behavior to avoid predators, as might be
expected, but also a motivation to group via an attraction to similar prey was also commonly
observed. Finally, the ability to avoid obstacles proved to be another key to successful
predator evasion. However, coordinated flocking behavior, while not a hindrance to predator
evasion, was also not a requirement.

There are a few possible explanations for this. The first obvious one involves the lim-
itations of the simulated environment. The predators used are somewhat naive in their

implementation, and the simulated world is a fairly confined space, unlike the open water

93

2
»)
& LD
-2)
.
b o 3
P s = pg o o
R
o
-
S ?
?
b . g
- *
¢ »
o
- o
& A
o
o
é [e2ad) N G

Figure 4.11: A screen capture of Minnows that showed promising flocking behavior. Note
that they clump together, making them easy targets for predators.

areas in which flocking generally occurs. Strategies that work well in this environment, such
as swarming near the edges of the pool, might work well in more constrictive spaces such as
littorals and shoals, but fail in large open water, where schooling typically occurs. It could
also suggest that flocking provides benefits in addition to predator evasion in the natural
world. These could include easier movement through the environment by relying on neigh-
bor motion to reduce drag, whether in aquatic or aerial environments. It could also include
improved foraging through the group transmission of information.

Table 4.2 shows a list of all combinations of pairings of motor schema types and percep-
tual schemas. This table illustrates the relative importance of each trait pairing to predator
evasion. The first column shows the average fitness of all individuals that possessed that
pairing anywhere in their controller. The second column shows the percentage of the indi-

viduals in the sample set that possessed the trait pairing. For reference, the first column

o4

Table 4.2: Average fitness and relative frequency of individual motor schema “genes”. These
numbers were produced by parsing all of the evolved individuals from Experiment Set 4.

’ Gene ‘ Avg. Fitness ‘ Frequency ‘
All 16.37 100.0%
repulsion-getNearestEdge 23.42 37.4%
repulsion-get NearestShark 23.21 41.8%
repulsion-getNearestMinnowInner 21.87 37.8%
mimic-getNearestShark 19.50 32.7%
mimic-getNearestMinnowQOuter 15.67 22.7%
attraction-getNearestEdge 14.43 17.6%
attraction-get Nearest MinnowCollide 13.74 16.3%
repulsion-getNearestMinnowCollide 9.23 11.0%
mimic-getNearestEdge 8.49 14.0%
repulsion-getNearest MinnowOuter 7.44 11.9%
mimic-getNearestMinnowCollide 7.34 14.5%
attraction-getNearestMinnowInner 6.69 13.8%
mimic-getNearestMinnowInner 5.84 13.7%
attraction-getNearestShark 5.69 10.5%
attraction-getNearestMinnowOuter 5.45 10.9%

shows the average fitness of all individuals in the sample set. For this table, the sample set
consisted of all individuals generated in the fourth set of experimental trials.

These tabular results reinforce our intuition that predator avoidance and pool-edge avoid-
ance are key factors in successful predator evasion. This is followed closely by collision
avoidance with other prey. Next comes a trait that causes prey to mimic, or essentially
flock with nearby predators — an interesting strategy that performs surprisingly well. Next
comes the trait that causes prey to flock in the outer zone of other prey. The prevalence
of the mimic trait on the outer zone, as opposed to the inner zone could explain the looser
flock groupings of our evolved flocking controller as opposed to the tighter flocks of our

hand-written controller. Furthermore, the superior fitness shown by mimicking the outer

95

zone minnows versus the inner zone minnows could explain the improved performance of the
evolved flocking controller over the hand-written flocking controller.

Two puzzling results are the relatively good performance of attraction to pool edges and
the relatively equivalent performance of attraction and repulsion from the collision zone of
other prey. The latter could signal a canceling out of the two traits, showing that the collision
zone sensor is, on the whole, relatively unimportant. The former trait could be the result of
noise in the results, since the relative structure of the genes within a controller is not taken
into account in this analysis.

Finally, the table shows us an expected correlation between average fitness and frequency
in the population. Traits that are more associated with successful controllers tend to stick
around in the gene pool for longer and be passed along to more offspring.

These results reaffirm the work of previous researchers like Wood and Viscido that flocking
does evolve as a response to predation. However, we expand on those previous efforts by
showing that it is evolvable not only with respect to the parameters of agent sensors, but also
with respect to the actual behavior mechanisms of a controller. Furthermore, this work shows
that while flocking is a successful strategy to avoid predation, it is not the only one, and
not always the most successful one. This suggests the possibility that coordinated flocking

motion may serve multiple purposes, rather than being solely driven by predator evasion.

4.1 Comparison of Code Complexity

To further evaluate Pickle, we tested its ability to generate a variety of intelligent agents
correctly from the XML descriptions as described above. We also compared the complexity of
Pickle’s XML descriptions against the complexity of Java-based examples of similar scenarios
in Repast and MASON. We did this by building two scenarios, a terrestrial navigation

simulation, suitable for land-bound animals like ants, and an aquatic simulation suitable for

o6

studying swarming and schooling behaviors. Next we ran the simulations to check the agent
behaviors for correctness. Correctness was evaluated by observing whether the specified
behavior generated the expected behavior in simulation (e.g., if the specification calls for
ants to go to green food pellets, do the simulated ants indeed go to green food pellets in
the resulting simulation). Finally, we used the number of lines of code that a user would
be expected to produce as a way to measure the complexity of the solution (Figure 4.3).
We found that in both scenarios, Pickle yielded correct models of the agent behavior, using
a substantially less complex description compared to handwritten code. In future work, it
may be possible to reduce the lines of code even further by implementing Pickle to use an
interpreted domain-specific language (DSL).

The terrestrial simulation generates a single agent, which navigates through a set of
randomly placed obstacles to arrive at a food pellet. The simulation description, including all
agents, their actuators and sensors, as well as the obstacles and general simulation parameters
is represented by less than 100 lines of XML, and the controller for the agents, which has two
MotorSchemas operating within a single AgentSchema, is represented by just twelve lines
of XML. We compared this to the Keep-away Soccer demo from MASON, which features
two mobile agents kicking a soccer ball. This simulation uses 574 lines of Java code in five
classes. Similarly, the “Statechart Zombies” demo that ships with Repast occupies eight files
and 299 lines of code.

Our second simulation was an aquatic simulation suitable for studying swarming and
schooling behaviors. It consisted of 30 prey agents with Boid mechanics implemented as de-
scribed previously, and two larger predator agents that seek out and consume the prey. This
simulation also validated the friction setting of the simulated world. By setting the friction
to a low value, the agents appeared to float in a single direction until their actuators push
them in a new direction. As the simulation progressed, we could see the prey agents begin to

cluster into small schools as they tried to avoid the roaming predators. The controller for the

o7

Table 4.3: Results from our complexity evaluation of Pickle. We found that Pickle produced
accurate agent behaviors with less complex code as measured by the number of lines and
number of files required.

\ Scenario 1: Terrestrial Simulation \

Framework MASON | Repast | Pickle
Lines of code o974 299 100
Number of files 5 8 2

’ Scenario 2: Aquatic Simulation ‘
Framework MASON | Repast | Pickle
Lines of code 658 697 200
Number of files 6 8 3

prey agents consisted of five motor schemas: two to represent the attraction and repulsion of
the Boid Mechanics, one to avoid the predators and one each to avoid obstacles and edges.
The simulation and controllers for both the predator and prey comprised around 200 lines
of XML spread out in three different files. We compared this against the Virus Infection
demonstration that ships with MASON and uses similar predator and prey mechanics with
a similar number of agents. The Virus Infection simulation used 658 lines of Java code in
six different files. A similar simulation in Repast, the Flock demo, used 697 lines of code in
eight different class files.

A video demonstration of these simulations is available for viewing on Vimeo [Medina,

2015).

o8

https://vimeo.com/terrancemedina/introtopickle

Chapter 5

Conclusion

In this thesis, we have introduced a new simulation and modeling framework, Pickle, that
uses a novel technique for representing agent controllers as user-defined XML descriptions.
We have accomplished this by taking the notion of behavior-based controllers from robotics
research and applying it to multi-agent simulations.

Furthermore, we have demonstrated the usefulness of this approach by carrying out new
research in the field of collective animal behavior. We used genetic programming techniques
to investigate the behavioral foundations, rather than the physical enablers, of flocking be-
havior. This work would not have been possible without the use of the machine readable
and writable controller description that Pickle provides.

Finally, while Pickle is already showing its usefulness, there are many exciting possibilities
for future expansion of this work. First, it would benefit greatly from a GUI designer
that can generate the required XML files in the background before sending them to the
simulator. It would also be worthwhile to enable the simulation viewer as a remote client
that receives a stream of data and renders it as an animation. This would enable the
simulations to be created and viewed through a lightweight client device, while a powerful

server actually runs the simulations. Lastly, a high-performance driver, possibly utilizing

29

GPU computing, or possibly implemented using a driver for the SASSY framework, would
be highly advantageous, particularly for performing genetic programming runs with much

larger populations.

60

Bibliography

I Aoki. A simulation study on the schooling mechanism in fish. Bulletin of the Japanese

Society of Scientific Fisheries (Japan), 1982.

Michael A Arbib. Schema theory. The Encyclopedia of Artificial Intelligence, 2:1427-1443,
1992.

Michael A Arbib. The handbook of brain theory and neural networks. The MIT press, 2003.
Ronald C Arkin. Behavior-based robotics. MIT press, 1998.

Ronald C Arkin and Tucker Balch. Aura: Principles and practice in review. Journal of

Ezxperimental & Theoretical Artificial Intelligence, 9(2-3):175-189, 1997.

Tucker Balch. Behavioral diversity in learning robot teams. PhD thesis, Georgia Institute of

Technology, 1998.

Tucker Balch, Frank Dellaert, Adam Feldman, Andrew Guillory, Charles L Isbell Jr, Zia
Khan, Stephen C Pratt, Andrew N Stein, and Hank Wilde. How multirobot systems
research will accelerate our understanding of social animal behavior. Proceedings of the

[EEE, 94(7):1445-1463, 2006.

Michael E. Bratman, David Israel, and Martha E. Pollack. Plans and resource-bounded

practical reasoning. Computational intelligence, 4(4):349-355, 1988.

61

Rodney A. Brooks. Planning is just a way of avoiding figuring out what to do next. September

1987.

Rodney A Brooks. How to build complete creatures rather than isolated cognitive simulators.

Architectures for intelligence, pages 225-239, 1991.

Kathleen Carley and Allen Newell. The nature of the social agent™. Journal of mathematical

sociology, 19(4):221-262, 1994.

Philip R Cohen and Hector J Levesque. Intention is choice with commitment. Artificial

intelligence, 42(2):213-261, 1990.

[ain D Couzin, Jens Krause, Richard James, Graeme D Ruxton, and Nigel R Franks. Col-
lective memory and spatial sorting in animal groups. Journal of theoretical biology, 218

(1):1-11, 2002.

Agoston E Eiben and James E Smith. Introduction to evolutionary computing. Springer

Science & Business Media, 2003.
Irenaus Eibl-Eibesfeldt. Ethology: The biology of behavior. 1970.

Alfredo Garro and Wilma Russo. easyabms: A domain-expert oriented methodology for
agent-based modeling and simulation. Simulation Modelling Practice and Theory, 18(10):
1453-1467, 2010.

James L Gould. FEthology: The mechanisms and evolution of behavior, volume 85. WW
Norton New York, 1982.

William D Hamilton. Geometry for the selfish herd. Journal of theoretical Biology, 31(2):
295-311, 1971.

62

Nick Howden, Ralph Ronnquist, Andrew Hodgson, and Andrew Lucas. Jack intelligent
agents-summary of an agent infrastructure. In 5th International conference on autonomous

agents, 2001.

Maria Hybinette, Eileen Kraemer, Yin Xiong, Glenn Matthews, and Jaim Ahmed. Sassy:
a design for a scalable agent-based simulation system using a distributed discrete event
infrastructure. In Simulation Conference, 2006. WSC' 06. Proceedings of the Winter, pages
926-933. IEEE, 2006.

AJ Keane. The design of a satellite beam with enhanced vibration performance using genetic
algorithm techniques. The Journal of the Acoustical Society of America, 99(4):2599-2603,
1996.

John R Koza. Hierarchical genetic algorithms operating on populations of computer pro-

grams. In IJCAI pages 768-774. Citeseer, 1989.

Sean Luke, Claudio Cioffi-Revilla, Liviu Panait, Keith Sullivan, and Gabriel Balan. ”MA-
SON”: A multiagent simulation environment. SIMULATION, 81:517-527, 2005.

Douglas C. MacKenzie, Ronald C. Arkin, and Jonathan M. Cameron. Multiagent mission

specification and execution. Auton. Robots, 4(1):29-52, 1997.

Terrance Medina. Pickle video demonstration. https://vimeo.com/terrancemedina/

introtopickle, 2015.

Terrance Medina, Maria Hybinette, and Tucker Balch. Behavior-based code generation for
robots and autonomous agents. In Proceedings of the 7th International ICST Conference on
Simulation Tools and Techniques, pages 172-177. ICST (Institute for Computer Sciences,

Social-Informatics and Telecommunications Engineering), 2014.

63

https://vimeo.com/terrancemedina/introtopickle
https://vimeo.com/terrancemedina/introtopickle

N. Minar, R. Burkhart, C. Langton, and M. Askenazi. The swarm simulation system,
a toolkit for building multi-agent simulations, 1996. URL citeseer.ist.psu.edu/

minar96swarm.html.
Marvin Minsky. Society of mind. Simon and Schuster, 1988.

Marvin L Minsky. Logical versus analogical or symbolic versus connectionist or neat versus

scruffy. Al magazine, 12(2):34, 1991.
Nils J Nilsson. Shakey the robot. Technical report, DTIC Document, 1984.

Michael J North and Charles M Macal. Managing business complexity: discovering strategic

solutions with agent-based modeling and simulation. Oxford University Press, 2007.

Jonathan Ozik and Nick Collier. Repast statecharts guide. http://repast.sourceforge.

net/docs/Statecharts.pdf, 2014.
Miles T. Parker. Eclipse, agent modeling platform. https://eclipse.org/amp/, 2015.

Juan Pavén and Jorge Gémez-Sanz. Agent oriented software engineering with ingenias. In

Multi-Agent Systems and Applications I, pages 394-403. Springer, 2003.

Timothy C Reluga and Steven Viscido. Simulated evolution of selfish herd behavior. Journal
of Theoretical Biology, 234(2):213-225, 2005.

Craig W Reynolds. Flocks, herds and schools: A distributed behavioral model. In ACM

Siggraph Computer Graphics, volume 21, pages 25-34. ACM, 1987.

Andrew J Wood and Graeme J Ackland. Evolving the selfish herd: emergence of distinct
aggregating strategies in an individual-based model. Proceedings of the Royal Society of

London B: Biological Sciences, 274(1618):1637-1642, 2007.

64

citeseer.ist.psu.edu/minar96swarm.html
citeseer.ist.psu.edu/minar96swarm.html
http://repast.sourceforge.net/docs/Statecharts.pdf
http://repast.sourceforge.net/docs/Statecharts.pdf
https://eclipse.org/amp/

	List of Figures
	List of Tables
	Introduction
	Background
	Modeling and Simulation
	Agent Controllers
	Evolutionary Algorithms
	Ethology
	Collective animal behavior
	Summary

	Pickle
	Design of the Simulation Framework
	Comparison with Previous Work
	Implementation of the Simulation Framework

	The Genetic Programming Framework and Experimental Platform
	Design
	Implementation of the Experimental Platform

	Experimental Results
	Comparison of Code Complexity

	Conclusion
	Bibliography

