
Abstract

A novel approach to modeling the distribution of precipitation volume is developed using a

combination of traditional and new techniques in spatial statistics. Data are taken from

the Community Collaborative Rain, Hail and Snow (CoCoRaHS) network; this network of

trained volunteers provides daily precipitation depth measurements across the country. Data

for three regions in Colorado were selected due to its spatial density. Combined variogram

clouds were calculated for each region, and variograms were fitted to this data using weighted

least squares. Precipitation depths were estimated using ordinary Kriging, and bilinear

interpolation was used to approximate daily precipitation volumes. Distributions were fitted

to the seasonal volume estimates using maximum likelihood, and fit comparisons were done

using negative log-likelihood and the Anderson-Darling test.

Key Words: Bilinear Interpolation; CoCoRaHS; Distribution fitting; Kriging; Precipitation;

Variogram; Volume.
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1. Introduction

Accurately modeling precipitation intensity and return periods for extreme storms is an

active area of research in climatology and hydrology, often employing mathematical and

statistical techniques to assist in the process. Accurate estimates for the likelihood of these

events are crucial for designing infrastructure in di�erent communities. As seen by the

flooding in Colorado in 2013, Houston in 2015, and West Virginia in 2016, overwhelmed

infrastructure to handle run-o� precipitation can have catastrophic e�ects. By definition,

these storms are extreme events that lie far out in the tails of the distributions used to

model them. Historic methods of modeling these distributions rely on averaging data from

fixed stations over long time horizons in order to develop a distribution for the precipitation

depth. It is these distributions that are used to estimate the return periods. Averaging

in this way smooths out and diminishes the impact of large storms. In addition to using

the arithmetic or weighted averages to estimate precipitation depth, intensity is often

measured via the rate of accumulation [11] [10]. There is a dearth of resources available

for estimating precipitation volume. Rather, depth estimates are used to estimate runo�

volume [10]. However, the networks reporting precipitation depth are typically spatially

sparse. Colorado, the state containing the three regions explored in this paper, has 24

stations from the Global Historical Climatology Network (GHCN) providing daily reports.

By comparison, there are an average of 32 Community Collaborative Rain, Hail and Snow

Network (CoCoRaHS) stations in Fort Collins alone providing daily precipitation records.

Spatial density is important because it increases the likelihood of measuring the most intense

parts of the storm. As a storm develops and moves over land, a spatially dense network
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can better measure this storm than a sparse network. Mattingly et al. (2016) [6] show that

precipitation depth distributions based on the GHCN network dramatically understate the

probability of experiencing high amounts of precipitation. This leads to return periods which

are longer than in reality. Furthermore, meteorological records show an increase in average

precipitation levels (Karl et al. 1996) [4], and the Intergovernmental Panel on Climate

Change (IPCC) projects an increase in the intensity and frequency of extreme weather

events. The need for a better means to estimate the likelihood of extreme storms is paramount.

A collection of daily precipitation measurements from the Community Collaborative Rain,

Hail and Snow (CoCoRaHS) network for Boulder, Fort Collins, and Lakewood, Colorado, from

January 1, 2005 through December 31, 2014 is used to generate seasonal 24-hour precipitation

volume distributions. Method for combining variogram clouds for spatial data collected in

the same region over a period of time are used to calculate the empirical variogram for each

region (Walter et al. 2007)[13]. Spherical variogram models are fit to the empirical data

using weighted least squares, and an interactive plotting script developed for this research

is used to tune the parameters by hand. Ordinary Kriging is used to generate estimates of

precipitation depth over a grid of points encompassing each region. The daily precipitation

volumes are calculated using bilinear interpolation. The precipitation volumes displayed

clear seasonal dependence, and were subsequently divided seasonally. Seasonal distributions

were fit to the data and used to estimate the likelihood of extreme storms as measured by

large 24-hour precipitation volumes. This approach found distributions that fit the estimated

volumes well. Through the use of spatially dense data and the modeling techniques described
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above, more accurate estimates of the likelihood of extreme storm events can be made than

with current methods.

2. Methods

2.1 Data and Data Aggregation

CoCoRaHS is a network of volunteers who measure and map precipitation, which is defined as

rain, hail, and snow. The volunteers go through training to learn accurate measurement and

reporting techniques so that the network can provide accurate data. CoCoRaHS increases

the density of high quality precipitation data available to researchers over that of GHCN

data. While the GHCN often has only 1 station for a given region, CoCoRaHS can have any

number of volunteers.

The data are a collection of daily precipitation records for CoCoRaHS stations in three

regions of Colorado: Boulder, Fort Collins, and Lakewood. The three regions from which

data were collected have anywhere from 7 to 32 stations reporting on a given day. In

particular, our data comes from stations within a circular area with radius 6 km for each

region. The reports include precipitation depth in inches, which was converted to tenths

of a millimeter, latitude and longitude of the station, and elevation in feet, which was

converted to meters. Measurements for CoCoRaHS member stations are taken daily at

7:00 am. We use daily reports from the time period starting January 1, 2005 and ending

December 31, 2014. Unfortunately, GHCN stations measure and report the precipitation

depth daily at 9:00 am. This removes any spatial correlation from the GHCN and CoCoRaHS
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daily precipitation measurements for each region, and makes grouping the daily GHCN and

CoCoRaHS precipitation data inappropriate.

For each of the three regions, a grid of roughly 10,000 uniformly spaced points was created

within circles centered on the mean latitude and mean longitude of the CoCoRaHS stations.

The R package sp [1][8] was used to sample within a polygon object and select points

separated by the same horizontal and vertical distance. Distance in this case is merely the

Euclidean distance between pairs of points of the form (longitude

i

, latitude

i

). As all of the

points are within 12 km of each other, it can be safely assumed that the curvature of the

surface of the grid is essentially zero, i.e., the grid is flat.

Figure 2.1.1: Example Kriging Grid
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2.2 Variogram Estimation

Geostatistics is, “a hybrid discipline of mining, engineering, geology, mathematics, and

statistics” [3] used to study and model both spatial trend and spatial correlation of a random

process. The first step in geostatistical analysis is finding a suitable variogram model for the

spatial process being investigated. The variogram is used to model the spatial dependence

of a random process. In this case, we wish to model the spatial correlation of precipitation

depth for each of the three CoCoRaHS zones. The precipitation depth at a particular point

in a given region is treated as a random variable, and the values reported as measurements

from CoCoRaHS stations are realizations of this process. We need a variogram in order to

model the spatial dependence of this process so that we may perform Ordinary Kriging over

the spatial grids and obtain estimates of precipitation depth at each point. More formally,

the variogram is defined as the variance of the di�erence between field values at two locations

(x and y) across realizations of field[3], denoted Z(x), where

x = (x
lon

, x

lat

), y = (y
lon

, y

lat

).

In this case, the locations are the coordinates of CoCoRaHS stations, and the realizations are

observed precipitation depths. Assuming that the process is stationary implies that it has

constant mean, E(Z(x)) = µ, and the covariance depends only on the distance, h, between

points

Cov(Z(y), Z(x)) = Cov(Z(x + h), Z(x)) = C(h).
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Then the variogram, 2“(x, y), can be written as

2“(x, y) = V ar(Z(x) ≠ Z(y)) = V ar(Z(x + h) ≠ Z(x)) = 2“(h),

and the variogram depends only on the distance and direction between locations. If it is

assumed that the process is isotropic, then the variogram depends only on h = |x ≠ y|,

the distance between points, and direction no longer matters. Under the assumptions of

stationarity and isotropy, the variogram can be expressed as

2“(h) = var(Z(x + h) ≠ Z(x)) = E[(Z(x + h) ≠ Z(x))2] = 2‡

2 ≠ 2C(h),

where

• Z(x) is the realization of the point process at point x.

• Z(x + h) is the realization of the point process at point x+ distance h, and

• “(x) is called the semivariance

A variogram has three main components:

• Nugget: 2“(h), h æ 0. In a perfect world, the nugget is zero. We would expect

that, as samples are taken closer together, the observed values will be more similar.

So at a separation distance of zero, we expect no measurement variability. However,

measurement errors occur because devices are not perfect. The nugget captures this

e�ect. Variation that occurs on a scale smaller than the sampling distances will also

show up in the nugget.

6



• Sill: 2‡

2, is the value reached when the variogram levels o� as h æ Œ and C(h) æ 0.

It represents the variability of the data.

• Range: the distance at which the variogram reaches the sill. Points separated by a

distance beyond the range are considered uncorrelated.

Matheron (1963)[5] proposed the following unbiased and minimum variance estimator for the

theoretical variogram

2“̂(h) = 1
|N(h)|

ÿ

N(h)
(z(x

i

) ≠ z(x
j

))2

where

• 2“̂(h) = estimated variogram at distance h

• z(x
i

) = sample value at point x

i

• z(x
j

) = sample value at point x

j

• N(h) = {(i, j) : dist(x
i

, x

j

) = h}

• |N(h)| = the cardinality of N(h), i.e., the number of pairs points separated by by a

distance of h.

In reality we rarely find multiple pairs of points that are exactly a distance of h apart. In

order to calculate the empirical variogram, one typically selects distance classes and bin the

data accordingly, e.g., all the pairs of points between 950 meters and 1050 meters could

be binned together for distance h = 1000 meters. After distance classes are selected, the

pairs of points are binned, and the average squared di�erence between pairs of observations
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is calculated for each bin. The resulting pairs (h, “̂(h)) make up the empirical variogram.

It is vital that appropriate distance classes are selected because the empirical variogram is

used to estimate the true variogram, and the accuracy of Kriging depends on accurately

modeling the spatial dependence with the variogram. Of particular importance for selecting

distance classes is the number of pairs of points in each class. Too few pairss will inflate the

variogram value for a specific distance. Cressie (1985) [2] suggests 30-50 pairs, while more

recent research, Webster and Oliver (2001) [14], recommends 100 or more pairs. In order to

obtain the threshold of 100 or more pairs, we need 15 or more points at which observations

are recorded.

Often it is the case that data are sparse spatially, but dense temporally. This occurs when a

small number of locations are sampled frequently over time. CoCoRaHS data has this trait:

daily precipitation measurements are taken at a limited number of stations within a larger

geographic region. As selecting an accurate variogram model is of the utmost importance,

methods to increase the information available to infer the variogram are quite useful. Walter

et al. (2007)[13] develop a method to combine variogram clouds from multiple time points

for a particular region into an empirical variogram. Their method makes the following

assumptions about the data:

• The measurements are taken over time from a random process in the same region

that shares a common covariance structure, i.e., the spatial dependence of the random

process is not changing over time.

• The process exhibits second-order stationarity and isotropy within the time points.
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Their method works as follows

1. Standardize the realizations for each time point. In our case, the precipitation depths

recorded at each station for a given day are standardized to a common N(0, 1) scale.

s(x
i

) = Z(x
i

) ≠ z̄

SD(z)

where z̄ is the mean of the realizations for that time point and SD(z) is their standard

deviation.

2. The variogram cloud is made for each time point. The variogram cloud is simply a plot

where the vertical axis is the squared di�erence between realizations at points x and

y, ((Z(x
i

) ≠ Z(x
j

))2), plotted against the horizontal axis h = dist(x, y) for all pairs of

points with dist(x, y) less than a predefined cuto�. Typically the cuto� is less than half

the maximum distance between any two points (Cressise 1993) [citation].

3. Because the realizations have been standardized, the variogram clouds for each time

point are on the same scale and can be combined into one variogram cloud. These data

are typically analyzed via a plot of squared di�erences versus distance, and appropriate

distance classes can be selected from inspecting the plot.

4. Bin the data according to the selected distance classes and calculate the average squared

di�erence between realizations for each bin. This produces the empirical variogram for

the random spatial process of interest.
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Finally, parameters for a theoretical variogram are estiamted from the empirical variogram

using weighted least squares, where weights are given by

|N(h)|
h

2 .

This is performed using the fit.variogram() function in the gstat package produced by

Edzer Pebesma [7]. The estimates returned by the fitting function minimize the sum of

squared errror (SSE) of the model for the available data points. However, we know the data

points near and beyond the range of the empirical variogram can behave oddly and bias

the results of the fitting algorithm. Therefore, the parameter estimates are used as initial

values for the interactive plotting tool. The plotting tool allows a user to change the values

of the parameters while the plot updates in real-time, displaying the fit variogram, the tuned

variogram, and the empirical variogram.

The spherical model was selected because it tends to be more flexible than others. The

variogram function increases smoothly at a decreasing rate over the interval h œ [0, range].

It levels o� for h Ø 0, indicating that covariance for points separated by a distance greater

than the range is 0. Finally, the functional form of the model is quite simple. Thee spherical

variogram model is given by

2“(h) =

Y
_____]

_____[

c + b{3
2

1
h

a

2
≠ 1

2

1
h

a

23
} if 0 < h Æ a

c + b if h Ø a

where the nugget is given by c, the range is given by a, and the sill is c + b.
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2.3 Kriging

Kriging is a procedure used to interpolate or predict unobserved values of a random spatial

process. In particular, if x0 is a point which was not sampled, and x1, . . . , x

n

are the sampled

locations with observed values z1, . . . , z

n

, then Kriging uses a weighted average

Ẑ(x0) = [w1, . . . , w

n

] · [z1, . . . , z

n

]Õ =
nÿ

i=1
w

i

(x0)zi

to interpolate the value at x0. The weights, w1, . . . , w

n

, are selected such that Ẑ(x0) is

unbiased and possesses minimum variance. The Kriging procedure produces these estimates

for each point in the grid for every day in the data set. The interpolated values are then

backtransformed using the observed mean and standard deviation to the original scale, mm

of precipitation.

2.4 Volume Estimation

The ultimate goal of this process is to accurately model the volume of precipitation dropped

over the region during a storm event. We use the interpolated daily precipitation values to

approximate the volume. Recall Figure 2.1.1, the example Kriging grid, and note that the

points are laid out uniformly in the region. Fixing the longitude, the di�erence in latitudes for

consecutive points is the same. Fixing the latitude, the di�erence in longitude for consecutive

points is the same. If one treats the precipitation values as a height associated with each

point, then the precipitation volume for a given day is the volume of the object whose surface

is given by the points (x, Z(x)). We do not have a perfectly smooth surface, rather, we have
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a mesh grid. Unfortunately, computing the volume of a mesh grid is no easy task unless

the grid adheres to strict properties. Our grid does not possess properties like convexity.

However, we can

1. Divide the Kriging grid into squares of 4 neighboring points (Figure 2.4.1, left).

2. Use these points to form the base of a 3-dimensional object whose height is given by

the precipitation depth at each point.

3. Find the volume of this 3-dimensional object (Figure 2.4.1, right).

4. Sum the volume for all of these objects to approximate the volume of the entire mesh

grid.

Figure 2.4.1: Kriging Grid Square and 3-D volume object
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Suppose the four points of the square are (0, 0, p00), (0, 1, p01), (1, 0, p10), (1, 1, p11), they form

a unit square with the origin as a corner. We can use bilinear interpolation to approximate the

quadric surface passing through those four points. Bilinear interpolation gives the following

form for the surface S(m), where m = (m1, m2) is an interior point of the square[9]:

S(m) = (1 ≠ m1)(1 ≠ m2)p00 + m1(1 ≠ m2)p10 + (1 ≠ m1)m2p01 + m1m2p11.

Then the volume under this surface is simply found through integration

⁄ 1

m1=0

⁄ 1

m2=0
P (m)dm1dm2 = p00 + p01 + p10 + p11

4 .

To account for the fact that each square in the Kriging grid does not have a unit base, one

simply multiplies the volume by the area of the base. This process can be repeated for each

square in the grid, and all of the volumes summed to approximate the total volume. Each

point in the grid is included in either 1, 2, 3, or 4 bases depending on if it is an outer corner,

and outer edge, an inner corner, or an interior point. By classifying the points in the grid, one

can compute the volume as the inner product of the vector of precipitation depth at each grid

point and the vector of 1’s, 2’s, 3’s, and 4’s, indicating how many times each precipitation

depth is summed.

2.5 Volume Distribution Fitting

After volumes were estimated for each day, we had a 3,652 estimated volumes. The goal of

this research is to accurately model the distribution of the precipitation volume dropped over
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a particular region during a storm event. We have particular interest in the likelihood a large

volume of precipitation will be released during a storm, as this is when catastrophic damage

to infrastructure is likely to occur. Various approaches were taken to model the distribution of

precipitation volumes. Daily data were categorized into two sets according to the number of

CoCoRaHS stations reporting positive precipitation depths. The first set contains the volumes

for every day with at least one station reporting positive precipitation depth. The second

contains the volumes for every day with all of the stations reporting positive precipitation

depth. For each data set, the daily precipitation volumes were classified by season, and

distributions were fit. A custom Matlab script fit all available parametric distributions using

maximum likelihood estimation to estimate parameter values, and candidate models were

selected based on fit statistics. The Anderson-Darling test was carried out for all candidate

models. The final model for each season was selected and used to perform inference on the

likelihood of storms dropping certain volumes of precipitation.

3 Analysis and Results

3.1 Procedure Algorithm

The algorithm below provides a general outline of the steps taken to perform this analysis.

1. Variogram Estimation

1.1. Normalize daily precipitation depths.

1.2. Calculate daily variogram clouds and merge to one data set.
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1.3. Select distance bins and calculate empirical variogram.

1.4. Fit theoretical variogram to empirical variogram.

2. Interpolate Precipitation Depths and Estimate Volume

2.1. Perform Ordinary Kriging for each point in Kriging grid for every day of data.

2.2. Back transform precipitation depth estimates to original scale (millimeters).

2.3. Use bilinear interpolation to estimate daily precipitation volume (in billions of

liters).

3. Fit distributions to Volume Estimates

3.1. Subset daily volume data by season.

3.2. Fit distributions to seasonal volume data.

3.3. Assess fit and calculate seasonal volume percentiles.

3.2 Variogram Estimation

Prior to performing the variogram estimation method proposed by Walter et al[13], the data

for each region was divided into two sets:

• The daily observations for all days in which at least 1 of the reporting stations records

a positive precipitation value.

• The daily observations for all days in which all of the reporting stations record a positive

precipitation value.
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The first set for each region has between 1100 and 1200 days, while the second has between

400 and 650 days. This subsetting of the full data set was done for a few reasons. First, any

day where all stations report zero precipitation will clearly have no precipitation volume,

and witnessed no storm events. These days are not of interest for modeling the distribution

of precipitation volume during storm events. We must condition on the fact that some

precipitation fell. While the first set does satisfy this condition, the data are noisy because

there are many days with only a handful of stations reporting a small amount of precipitation.

By focusing on days where all stations report positive precipitation, the second set provides

a clearer picture of the spatial dependence structure for precipitation in each region.

Boulder and Fort Collins were model data sets, Fort Collins more so than Boulder. The Fort

Collins data have an average of 27 stations reporting daily, and Boulder averages 11 stations

reporting daily. Recall the assumptions made when combining variogram clouds in order to

calculate the empirical variogram.

• The measurements are taken over time from a random process in the same region

that shares a common covariance structure, i.e., the spatial dependence of the random

process is not changing over time.

• The process exhibits second-order stationarity and isotropy within the time points.

The first assumption is easily satisfied as the precipitation measurements are reported daily,

and taken from stations within the same 6 km circle in each region. Because the data come

from a 10-year period, it is reasonable to assume the covariance structure for precipitation

over each region stays constant. Over a much longer time period, geographic changes could
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invalidate this assumption. The assumption of second order stationarity is typically safe to

make with precipitation data over a short time horizon. Prior to computing the variogram

cloud, a cuto� distance, D, must be selected. Any pair of observed values with a distance

between them that is greater than D will not be included in the variogram cloud. The

literature recommends selecting D to be a value less than half the maximum distance between

any two observed values. For Fort Collins, the cuto� distance was 5.4 km. For Boulder, the

cuto� was 4.85 km. The combined variogram clouds for each of these regions had tens of

thousands of data points that we used to infer the true variogram model for each region.

Figure 3.2.1 displays the combined variogram cloud for Fort Collins. The vertical gaps

indicate distances that do not exist for any pairs of stations in the data. By selecting distance

classes appriately we can smooth out these gaps and produce an empirical variogram. As

distance increases the density of points with higher squared deviations increases, which is

typical of spatially correlated data.
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Figure 3.2.1: Fort Collins Combined Variogram Cloud

Typically when one selects distance classes, one must balance the number of distance bins

with the number of points in each bin. As the number of bins increases, each bin has fewer

points, and the average squared di�erence of observed values in each bin is more variable. On

the other hand, fewer bins means fewer points for fitting a variogram model. By combining

daily variogram clouds, we get a massive increase in the number of data points available to

infer the true variogram model. We were able to bin each variogram cloud into 25 equally

sized bins from a distance of 0 to the cuto� value. Each bin had hundreds or thousands of

data points which far surpasses the thresholds of 50 to 100+ in the literature. Having 25

distance classes for computing the empirical variogram leads to 25 pairs of (h, “̂(h)) to be

used in estimating the variogram parameters. The large number of points provided a clear

picture of the spatial relationship for precipitation depth in both Boulder and Fort Collins.
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After calculating the empirical variograms for Fort Collins and Boulder, theoretical mod-

els were fit using the fit.variogram() function from the gstat package in R[7] and an

interactive plotting tool developed for this research.

Figure 3.2.2: Fort Collins Empirical and Theoretical Variogram

After calculating the empirical variograms for Boulder and Fort Collins, the theoretical

variograms were calculated using a fitting algorithm and graphical parameter tuning. Figure

3.2.2 displays a plot of the empirical and fitted variogram for Fort Collins. The spherical

model selected describes the spatial correlation of the data well. The non-zero nugget is the

result of tuning by hand. In theory this represents microscale variations or measurement

error. Around a distance of 4.5 km the variogram begins leveling o� as the correlation

between locations decreases rapidly. At 5.38 km, the range, the curve flattens completely,

and locations separated by this distance or more are uncorrelated.
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The theoretical model for Boulder is given by (range in km)

2“(h) =

Y
_____]

_____[

0.155 + 1.096{3
2

1
h

4.096

2
≠ 1

2

1
h

4.096

23
} if 0 < h Æ 4.096

0.155 + 1.096 if h Ø 4.096

.

The theoretical model for Fort Collins is given by (range in km)

2“(h) =

Y
_____]

_____[

0.175 + 1.009{3
2

1
h

5.381

2
≠ 1

2

1
h

5.381

23
} if 0 < h Æ 5.381

0.175 + 1.009 if h Ø 5.381

.

That both models have similar parameter estimates is a good sign. Boulder and Fort Collins

are in the same state and only 74 km apart. We would expect similar spatial dependence

structures for precipitation in the two regions. However, the Flatiron Foothills border the

entire western side of Boulder, and have a large impact on the way storm systems move in

and across Boulder. The absence of this feature in Fort Collins likely contributes to the

di�erences in the two theoretical variograms.

Lakewood has 17 stations in total with around half of them reporting most days. Still, there

was not enough data at di�erent distances to accurately infer the theoretical variogram.
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Figure 3.2.3: Lakewood Empirical Variogram

Figure 3.2.3 displays the empirical variogram for Lakewood. The minimum distance between

stations was about 1 km. This highlights a limitation of the variogram cloud overlay method.

While it can provide more information than is available spatially sparse data, if the repeated

measurements do not have distances between pairs throughout the entire range, then the

resulting empirical variogram cloud will not be useful for estimating the theoretical variogram.

Lakewood is 55 km from Boulder, and 110 km from Fort Collins. Due to its proximity to

Boulder, it was decided to use Boulder’s fitted variogram for Lakewood.

21



3.3 Kriging Daily Precipitation Depths

Once variogram models were selected, ordinary Kriging was performed over each region’s

Kriging grid for every day from January 1, 2005 through December 31, 2014. Ordinary

Kriging provides estimates for the precipitation depth at each point in the Kriging grid as

a weighted average of the observed precipitation depth at each of the stations reporting

that day. As stated in the methodology section, the weights for the observed values are

selected such that the estimator is unbiased and has minimum variance. It should be noted

that the Kriging estimates were back-transformed to the original scale. Recall that daily

precipitation values were standardized, i.e., the mean was substracted from each observation

and the result was divided by the standard deviation. So the kriged estimates for each day

were multiplied by the standard deviation of the observed precipitation values for that day,

and the mean of the obseved values was added to this result. Ordinary Kriging assumes the

random process exhibits second-order stationarity, isotropy, and that the realizations of the

process are normally distributed. The isotropy and second-order stationarity assumptions

are met as discussed in section 3.2. However, the normality assumption is not. Fortunately,

the daily precipitation depths produced by Ordinary Kriging were only used for smoothing

purposes, not for inference. So the predication variance, which will be impacted by violating

the normality assumption, is not a concern.

Once the daily precipitation depths were calculated for every day in each region, daily volume

estimates were computed from the back-transformed daily precipitation values using bilinear

interpolation.

Unfortunately, there is no resource available where one can designate a region on the globe
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and a date, and receive the precipitation volume that fell over the specified region on the

given date. This made benchmarking the volume estimates di�cult. The only means of

benchmarking available was through an application on the U.S. Geological Survey’s website

[12]. This tool allows one to specify:

1. The precipitation depth, p.

2. The area of the region, A.

and it outputs a precipitation volume estimate for the region using p ú A. For a random

sample of 20 days from each region, the volume estimates produced by bilinear interpolation

were within a few million liters of the USGS estimate (using the mean precipitation depth

for that day and the area of the Kriging grid). When many of the volumes are in the billions

of liters range, plus or minus a few million liters of the USGS calculator was considered

adequate, especially since the USGS calculator is a less refined method than ours.

3.4 Modeling The Distribution of Precipitation Volumes

This was the ultimate goal of the research: to develop a means of modeling the distribution

of precipitation volume during storm events for each of the regions. The first step in this

process was exploring the histograms of the daily volume estimates for each region. The

histograms for the volumes corresponding to the days when at least 1 station reported positive

precipitation are skewed more heavily than than the distribution of volumes for days when

100% of the stations report precipitation. See Figures 3.4.1 and 3.4.2 for the regional volume

histograms for each of the two reporting conditions. As expected, for each region, there
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are many more days with an estimated volume near 0 liters for the set of days when at

least 1 station reports precipitation. Furthermore, we see large outliers far to the right of

each histogram. These huge volume estimates come from September 2013, when Colorado

experienced historic levels of rainfall and widesrpead flooding.
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Figure 3.4.1: Precipitation Volumes (billion liters): at least one station reporting precipitation
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Using Matlab, an automated procedure was used to fit all parametric distributions available,

using maximum likelihood estimates for the parameters, to each of the two sets of volumes

for each region. Disastrous results occurred when distributions were fitted to the volumes for

each region. This happened regardless of whether the volumes were subset to days when at

least one station reports precipitation or days when 100% of stations reported precipitation.

At this point, the volume data was subset by season in order to get a clearer picture of the

distributions. Because the volume estimates are conditioned on the fact that some stations

record precipitation for that day, it was necessary to get an idea of the probability that

precipitation will occur.

The percentage of days where at least one station reports precipitation were calculated for

each month from January 2005 through December 2014. These monthly percentages were then

grouped according to season. Figure 3.4.3 displays the seasonal probability of precipitation

for each region. From the boxplot it is clear that the probability of precipitation is highly

dependent on the season. The summer months have the highest probability of precipitation,

while winter and fall have the lowest. Winter is the most consistent season in terms of

probability of precipitation, while summer is the most variable. Boulder appears to be the

most variable of the three regions, which could be due in part to The Flat Iron Foothills

resting along the entire western edge of Boulder. This mountain range has a significant impact

on the weather experienced in Boulder. For a given season, the probability of precipitation is

similar across the 3 regions.
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Figure 3.4.3: Seasonal Probability of Precipitation

An attempt was made to incorporate data on the El Niño and La Niña e�ects, as it is believed

these phenomena have a large impact on weather patterns. However, due to the limited

time horizon of 10 years and weak El Niño and La Niña e�ects during this stretch, this did

not produce useful results. Figure 3.4.4 displays the seasonal precipitation volume for each

region, and Figure 3.4.5 elucidates the seasonal distributions by excluding the extreme outlier

present due to the historic levels of rainfall experienced during September 2013 in Colorado.

Aside from December 2006 when blizzards swept through Colorado and dropped historic

snowfall, winter is the least variable and has the lowest average precipitation volume. Fall

and spring experience the widest range of precipitation volumes, and summer is only slightly

more consistent.

27



Figure 3.4.4: Seasonal Average Precipitation Volume (L)

Figure 3.4.5: Seasonal Average Precipitation Volume (L), excluding 2013 floods

Distributions were fit to the seasonal precipitation volumes for each region. Dividing the

28



volumes seasonally produced much better fits. From the distributions fit by the automated

script, the top four candidates for each volume data set were selected according to negative log-

likelihood. The 10th

, 25th

, 50th

, 75th

, and 90th percentiles were calculated for each distribution,

and compared to the same precentiles from the data. The candidate distributions fit the

seasonal data remarkably well. Table 3.4.1 contains the results from the fit analysis for Fort

Collins spring precipitation volume distribution, and Figure 3.4.6 displays the histogram of

Fort Collins’s spring precipitation volumes with the candidate distributions plotted. The

observed and estimated percentiles are nearly identical. The corresponding tables and figures

for the other region and season combinations can be found in the appendix.

Millions of Liters

Model NLogL p-value 10% 25% 50% 75% 90% max / max%
Observed 120 201 570 1250 2100 3870

Birnbaum Saunders 2663 (0.644) 134 244 515 1090 1980 0.965
Inverse Gaussian 2664 (0.323) 138 237 469 993 1950 0.958
Lognormal 2667 (0.351) 136 255 514 1040 1950 0.958
Exponential 2673 (0.253) 89 243 585 1170 1950 0.975

Table3.4.1: Fort Collins Spring Distributions

In addition, the maximum observed volume for Fort Collins in spring, approximately 3.1

billion liters, corresponds to the 95-95% percentile for each of the candidate distributions.

These tables for each combination of season and region can be found in the Appendix. The

best model from among the four candidates for each region and season was selected according

to the Anderson-Darling test. This test has the null hypothesis that the precipitation volume

data come from a specified distribution, and the alternate hypothesis that the data do not

come from the specified distribution. The candidate distribution with the largest p-value was

selected as the best. Larger p-values indicate a higher probability of observing the given data

29



assuming they come from the specified distribution. Table 3.4.2 lists the best fit distribution

for each region and season with the p-value from the Anderson-Darling test in parentheses.

Boulder Model NLogL p-value Parameter Estimates
Winter Birnbaum Saunders 2673 (0.968) — = 2.453 ◊ 108 and “ = 1.113
Spring Birnbaum Saunders 3843 (0.850) — = 4.319 ◊ 108 and “ = 1.151
Summer Inverse Gaussian 3525 (0.968) µ = 5.275 ◊ 108 and ⁄ = 3.361 ◊ 108

Fall Generalized Extreme Value 2623 (0.953) k = 1.040, ‡ = 1.785 ◊ 108 and µ = 1.838 ◊ 108

Fort Collins Model NLogL p-value Parameter Estimates
Winter Loglogistic 1597 (0.9961) µ = 19.498 and ‡ = 0.464
Spring Birnbaum Saunders 2663 (0.6439) — = 5.151 ◊ 108 and “ = 1.131
Summer Inverse Gaussian 2629 (0.8915) µ = 7.791 ◊ 108 and ⁄ = 4.247 ◊ 108

Fall Birnbaum Saunders 1977 (0.9447) — = 5.316 ◊ 108 and “ = 1.074
Lakewood Model NLogL p-value Parameter Estimates
Winter Loglogistic 2652 (0.9960) µ = 19.390 and ‡ = 0.523
Spring Birnbaum Saunders 4092 (0.8681) — = 4.106 ◊ 108 and “ = 1.176
Summer Birnbaum Saunders 3710 (0.9784) — = 3.701 ◊ 108 and “ = 1.226
Fall Birnbaum Saunders 2833 (0.8146) — = 3.600 ◊ 108 and “ = 1.190

Table 3.4.2: Seasonal Best Fit Distributions

Figure 3.4.6: Fort Collins Spring
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4. Conclusion

The distributions developed in the previous section accurately model the seasonal precipitation

volumes in the regions of interest. The distributions are skewed far to the right, indicating

a rapidly decreasing probability of massive volumes of precipitation in a 24-hour period.

Through use of spatially dense data and geostatistical techniques, the methods presented

better account for the variability of precipitation depth over a given region during a storm

than current methods of smoothing averages relying on few stations. It should be noted that

the short time span of available CoCoRaHS data hinders the ability to incorporate certain

climatological factors into the model which are known to have meaningful impact on the

weather systems in North America. El Niño and La Niña e�ects can be incorporated into

climate models through use of the Southern Oscillation Index, but their e�ects are more

clearly pronounced with a long time horizon. However, the size of the CoCoRaHS network

has grown rapidly to 5,177 stations reporting daily across the United States, Puerto Rico,

southern Canada, and, even, the Bahamas. The value of this data source should only increase

with time, as it becomes more spatially and temporally dense. Going forward, improvements

could be made to the process of fitting variograms for the daily precipitation depths. While

Fort Collins and Lakewood were both relatively flat regions, Boulder’s geography could be

better accounted for through the inclusion of data like elevation and proximity from the Flat

Iron Foothills. Any improvements to the variogram models will lead to overall increases in

accuracy, as they provide the means of inferring precipitation depths at unsampled points.

Approaching the variograms from a seasonal perspective could help account for the seasonal

variation that was displayed in the estimated volumes. The approach developed to modeling
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seasonal 24-hour precipitation volumes provides a novel and solid framework for new analyses

of extreme storm events. The need to more accurately model these outlier events will only

increase as climate change results in more variable weather systems and reliance on techniques

which explicitly smooth out the e�ects of outliers wanes.
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6. Appendix

6.1 Figures

Figure 6.1.1: Fort Collins Combined Variogram Cloud
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Figure 6.1.2: Boulder Combined Variogram Cloud
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Figure 6.1.3: Lakewood Combined Variogram Cloud
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Figure 6.1.4: Fort Collins Empirical and Theoretical Variogram

Figure 6.1.5: Boulder Empirical and Theoretical Variogram
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Figure 6.1.6: Lakewood Empirical Variogram
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Precipitation Volumes (billion liters): at least one station reporting precipitation

Figure 6.1.7: Precipitation Volumes (billionliters): all stations reporting precipitation
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Figure 6.1.8: Seasonal Probability of Precipitation
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Figure 6.1.9: Seasonal Average Precipitation Volume (L)

Figure 6.1.10: Seasonal Average Precipitation Volume (L), excluding 2013 floods
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Figure 6.1.11: Boulder Winter Figure 6.1.12: Boulder Spring

Figure 6.1.13: Boulder Summer Figure 6.1.14: Boulder Fall

Figure 6.1.15: Fort Collins Winter Figure 6.1.16: Fort Collins Spring
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Figure 6.1.17: Fort Collins Summer Figure 6.1.18: Fort Collins Fall

Figure 6.1.19: Lakewood Winter Figure 6.1.20: Lakewood Spring

Figure 6.1.21: Lakewood Summer Figure 6.1.22: Lakewood Fall
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6.2 Tables

Millions of Liters

Model NLogL p-value 10% 25% 50% 75% 90% max / max%
Observed 101 165 286 508 892 4260

Inverse Gaussian 1597 (0.970) 106 168 298 545 933 0.996
Lognormal 1597 (0.995) 104 172 300 522 861 0.999
Loglogistic 1597 (0.996) 106 176 294 489 814 0.997
Birnbaum Saunders 1598 (0.822) 104 171 311 566 932 0.999

Table 6.2.1: Fort Collins Winter Distributions

Millions of Liters

Model NLogL p-value 10% 25% 50% 75% 90% max / max%
Observed 120 201 570 1250 2100 3870

Birnbaum Saunders 2663 (0.644) 134 244 515 1090 1980 0.965
Inverse Gaussian 2664 (0.323) 138 237 469 993 1950 0.958
Lognormal 2667 (0.351) 136 255 514 1040 1950 0.958
Exponential 2673 (0.253) 89 243 585 1170 1950 0.975

Table 6.2.2: Fort Collins Spring Distributions

Millions of Liters

Model NLogL p-value 10% 25% 50% 75% 90% max / max%
Observed 118 194 440 971 2060 5560

Inverse Gaussian 2629 (0.891) 120 207 417 904 1820 0.982
Birnbaum Saunders 2629 (0.789) 116 214 463 999 1850 0.974
Lognormal 2632 (0.576) 115 220 449 918 1750 0.974
Generalized Extreme Value 2633 (0.553) 124 205 391 849 2010 0.989

Table 6.2.3: Fort Collins Summer Distributions
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Millions of Liters

Model NLogL p-value 10% 25% 50% 75% 90% max / max%
Observed 145 241 546 1270 1850 5060

Birnbaum Saunders 1977 (0.945) 147 262 532 1080 1920 0.995
Inverse Gaussian 1978 (0.618) 152 255 493 1010 1910 0.989
Lognormal 1978 (0.821) 153 278 540 1050 1900 0.989
Exponential 1983 (0.408) 89 242 583 1170 1940 0.998

Table 6.2.4: Fort Collins Fall Distributions

Millions of Liters

Model NLogL p-value 10% 25% 50% 75% 90% max / max%
Observed 60 114 251 516 815 3420

Birnbaum Saunders 2673 (0.968) 65 244 245 511 925 0.999
Inverse Gaussian 2674 (0.625) 67 237 224 470 915 0.997
Lognormal 2675 (0.795) 67 255 244 482 888 0.996
Loglogistic 2678 (0.540) 67 243 246 470 900 0.989

Table 6.2.5: Boulder Winter Distributions

Millions of Liters

Model NLogL p-value 10% 25% 50% 75% 90% max / max%
Observed 112 206 451 998 1750 4750

Birnbaum Saunders 3843 (0.850) 110 202 432 922 1690 0.996
Lognormal 3846 (0.588) 117 220 444 897 1690 0.989
Inverse Gaussian 3847 (0.196) 115 197 394 844 1680 0.990
Exponential 3852 (0.308) 76 208 501 1000 1660 0.999

Table 6.2.6: Boulder Spring Distributions

Millions of Liters

Model NLogL p-value 10% 25% 50% 75% 90% max / max%
Observed 91 161 348 683 1210 3950

Inverse Gaussian 3525 (0.968) 91 155 302 627 1210 0.995
Birnbaum Saunders 3526 (0.874) 89 159 329 679 1220 0.998
Lognormal 3528 (0.888) 90 164 321 628 1150 0.994
Loglogistic 3531 (0.694) 89 168 316 596 1120 0.988

Table 6.2.7: Boulder Summer Distributions
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Millions of Liters

Model NLogL p-value 10% 25% 50% 75% 90% max / max%
Observed 74 158 335 688 1480 15800

Inverse Gaussian 2625 (0.489) 79 144 322 812 1920 0.999
Generalized Extreme Value 2623 (0.953) 84 134 263 639 1790 0.987
Lognormal 2630 (0.252) 71 148 330 740 1530 0.999
Loglogistic 2631 (0.297) 68 143 303 641 1360 0.997

Table 6.2.8: Boulder Fall Distributions

Millions of Liters

Model NLogL p-value 10% 25% 50% 75% 90% max / max%
Observed 92 139 256 483 858 3580

Lognormal 2652 (0.996) 82 143 265 489 850 0.998
Inverse Gaussian 2652 (0.911) 81 134 251 491 895 0.998
Birnbaum Saunders 2653 (0.934) 79 137 267 520 898 0.999
Loglogistic 2653 (0.942) 84 149 264 467 827 0.993

Table 6.2.9: Lakewood Winter Distributions

Millions of Liters

Model NLogL p-value 10% 25% 50% 75% 90% max/ max%
Observed 93 207 451 880 1680 4220

Birnbaum Saunders 4092 (0.868) 102 189 411 890 1650 0.993
Lognormal 4095 (0.755) 108 206 420 857 1630 0.986
Inverse Gaussian 4096 (0.169) 106 184 371 808 1630 0.986
Exponential 4102 (0.273) 74 201 484 968 1610 0.998

Table 6.2.10: Lakewood Spring Distributions

Millions of Liters

Model NLogL p-value 10% 25% 50% 75% 90% max / max%
Observed 79 167 371 808 1640 5460

Birnbaum Saunders 3710 (0.978) 87 165 370 828 1570 0.998
Inverse Gaussian 3710 (0.717) 91 159 328 736 1530 0.994
Lognormal 3712 (0.889) 89 174 363 759 1470 0.993
Loglogistic 3717 (0.639) 88 178 360 728 1470 0.986

Table 6.2.11: Lakewood Summer Distributions

47



Millions of Liters

Model NLogL p-value 10% 25% 50% 75% 90% max / max%
Observed 89 156 355 738 1520 4530

Birnbaum Saunders 2832 (0.815) 88 165 360 788 1470 0.997
Inverse Gaussian 2833 (0.714) 91 158 322 708 1440 0.992
Lognormal 2836 (0.590) 89 170 352 727 1400 0.991
Loglogistic 2841 (0.001) 33 106 346 1130 3680 0.916

Table 6.2.12: Lakewood Fall Distributions
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