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Abstract

Eye tracking is an important tool with applications in many domains. �e ability to mea-

sure where a person is looking can be used for psychological studies, medical diagnoses,

and human–computer interaction techniques. Existing high-accuracy solutions require

custom and expensive hardware, limiting their reach. Amore accurate low-cost solution

is proposed to bring real-time unconstrained eye tracking to mobile devices.

A deep convolutional neural network is used to determine gaze using only an image

acquired from the front-facing camera found on modern phones and tablets. As with

most deep learning approaches, the model requires a large volume of training data to

perform well. Existing gaze datasets su�er from too few subjects or too little variety.

�is is largely due to the di�culty in conducting such experiments on a large scale. To

overcome this data limitation, a crowdsourcing technique is introduced along with an

unprecedentedly-large dataset, both in terms of the number of subjects and in variability.



With this dataset, the trained model achieves state-of-the-art accuracy by a signi�-

cant margin. Furthermore, it is robust to various lighting conditions and di�erent user

poses. �rough an extensive evaluation, a variety of approaches to further improve the

model’s accuracy are demonstrated. Finally, to enable real-world mobile application of

our model, the computation time and memory usage are optimized while maintaining

high accuracy.

�is end-to-end design of an eye tracking system represents how modern computer

vision and machine learning techniques can be used to make signi�cant progress in

appearance-based problems. �ese novel contributions represent a signi�cant leap for-

ward for eye tracking and should better equip the next generation of researchers and

innovators.

Index words: Gaze estimation, Eye tracking, Deep learning, Big data,
Crowdsourcing, Computer vision, Computer science
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Chapter 1

Introduction

Eye tracking is the process that measures where a person is looking. �esemeasurements

of gaze, or point of regard are useful because they provide a window into the mind. Gaze

is the externally-observable indicator of human visual attention. In many studies, gaze

samples are the building blocks that enable the physiological study of the human visual

system.

Eye tracking (or more precisely, gaze estimation) has applications in many domains

[Duchowski, 2007, 2002], fromhuman–computer interaction techniques [Jacob andKarn,

2003; Majaranta and Bulling, 2014; Morimoto and Mimica, 2005] to medical diagnoses

[Holzman et al., 1974] to psychological studies [Rayner, 1998] to computer vision [Borji

and Itti, 2013; Karthikeyan et al., 2013]. As we will explore in Section 2.1, researchers have

worked to record eye movements since the late eighteenth century [Huey, 1908].

Today, a variety of solutions exist (many of them commercial) but all su�er from

one or more of the following: high cost (e.g., Tobii X2-60), custom or invasive hardware
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(e.g., Eye Tribe, Tobii EyeX), or inaccuracy under real-world conditions (e.g., Mora et al.

[2014]; Sugano et al. [2014]; Zhang et al. [2015]). �ese factors prevent eye tracking from

becoming a pervasive technology that should be available to anyone with a reasonable

camera (e.g., a smartphone or a webcam). In this work, our goal is to overcome these

challenges to bring eye tracking to everyone.

1.1 Overview of Our Solution

We focus on implementing eye tracking for mobile devices currently on the market. In

this way, we inherently minimize the cost, specialty, and invasiveness of the hardware.

�is makes for a highly accessible and usable solution with one signi�cant problem to

overcome: inaccuracy. As we will describe in this section (and validate in Chapter 5),

inaccuracy can be overcome by employing a powerful model and using the right data

to train it. �e big-picture contribution of this dissertation is a novel dataset (Mobileyes,

collected by our crowdsourcing app,GazeCapture) and amodel (iTracker) which are used

together to achieve an unprecedented level of accuracy for unconstrained camera-based

eye tracking.

1.1.1 Trends in Computer Vision

�e primary sensor that enables eye tracking on mobile devices is the front-facing cam-

era. �e �eld of computer vision o�ers many techniques for the analysis of these RGB

(i.e., red, green, and blue color channels) images. Recent advances in the �eld suggest

that signi�cant improvements can be made to the state of the art in gaze estimation.

2



In particular, deep learning has proven to be a very powerful tool across many do-

mains in computer vision [Krizhevsky et al., 2012; Girshick et al., 2014; Taigman et al.,

2014]. Deep learning describes a family of data-driven modeling tools derived from re-

search in machine learning and arti�cial intelligence. We describe these models in more

detail in Section 1.3, but what makes them unique is their ability to handle complex data

on a large scale.

Historically, computer vision has relied on the creation of hand-cra�ed features to

work with images. Raw image data is too high-dimensional and complex for most sys-

tems to work with directly, so the purpose of hand-cra�ed features is to describe the data

in a more compact way. For example, consider the raw pixel values pictured in Figure

1.1. Computer models may miss the “big picture” amidst the many individual values.

Furthermore, a seemingly-trivial change in image illumination could change all values.

Instead, as an example of a human-cra�ed feature, the pictured image region could be

described by single value describing a horizontal edge. In this way, dimensionality is

reduced while still preserving important high-level information about the image.

�e choice of representation is essential to being able to work with images. Human-

cra�ed features are inherently limited as they rely on human innovation to be improved

upon. With deep learning, features can be discovered automatically from large amounts

of data. Furthermore, these features can be tuned to best work for the task at hand. For

example, generally speaking, color is less important than the relationships between par-

ticular shapes for eye tracking. A signi�cant contribution of this work is a learned feature

representation that works well for eye tracking.
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Figure 1.1: Raw pixel values (in the range 0–255) for a single color channel.

1.1.2 Model

Weuse a deep convolutional neural network (CNN) to process input images and tomake

a prediction of where the subject is looking. �e CNN model is trained and evaluated

with example images where the gaze location is known. Unlike similar related models,

it does not rely on any preexisting systems for head pose (i.e., the position of the head in

space) estimation or other manually-engineered features for prediction. We simply train

the network with crops of both eyes, the face, and the position of the face.

Due to the hierarchical nature of the model, a gaze-speci�c feature representation is

also learned in addition to the main prediction. We use this feature representation to
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show how our model can generalize beyond our training and test data.

We perform a thorough baseline analysis to show how our model outperforms ex-

isting eye tracking approaches in this domain by a signi�cant margin. Whereas existing

approaches have mean prediction errors (i.e., the average distance between the predicted

and the actual gaze point) of over 3 cm at best [Huang et al., 2015], we achieve 2 cm in an

unconstrained setting. Furthermore, we show how calibration can signi�cantly reduce

this error further.

While our network achieves state-of-the-art performance in terms of accuracy (i.e.,

minimal mean prediction error), the size of the inputs and number of parameters make

it di�cult to use in real-time on a mobile device. To address this, we apply ideas from

the work on dark knowledge by Hinton et al. [2015] to train a smaller and faster network.

�rough performance tests, we infer that this smaller model can achieves real-time per-

formance on mobile devices with a minimal loss in accuracy.

1.1.3 Data

Ourmodel is the product of careful design and experimentation; however, a key element

of its success is the data we use to train it. Deep learning’s application to eye tracking

has been rather limited [Zhang et al., 2015]. We believe that this is due to the lack of

availability of large-scale data, with the largest modern datasets having around 50 sub-

jects [Huang et al., 2015; Sugano et al., 2014]. Compare this to the datasets of other deep

learning successes. For example, Krizhevsky et al. [2012] used 1.2 million images to train

the well-regarded and high-performing CNN used for image classi�cation.

We overcome this problem by building our own dataset. As with many other re-
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cent large-scale datasets requiring human interaction, we employ crowdsourcing. Our

dataset, Mobileyes, was created by asking subjects to use an app that displays dots on the

screen while video frames from the front-facing camera are saved.

With over 1000 subjects, our dataset is signi�cantly larger than existing datasets (roughly,

by a factor of 20). Furthermore, due to the collection methodology, it has more in-the-

wild variety than existing datasets. We believe Mobileyes represents a signi�cant contri-

bution to the community and will have a lasting impact on the future of eye tracking.

1.1.4 Summary

We propose an end-to-end eye tracking solution using the front-facing camera on exist-

ing mobile devices. Inherently, this removes the barrier-to-entry present in many exist-

ing eye tracking systems, so we focus on reducing the inaccuracy, especially in real-world

conditions.

As depicted in Figure 1.2, our end-to-end solution involves collecting anunprecedentedly-

large dataset which we use to train a deep learning model. By combining the power of

big data with the learning capability of deep learning, we achieve state-of-the-art perfor-

mance by a signi�cant margin. Overall, we take a signi�cant step towards putting the

power of eye tracking in everyone’s palm.

1.2 Visual Attention

Gaze is only the “tip of the iceberg”—it is the externally-observable portion of the com-

plex human visual system. �is system has intrigued researchers for well over a century.
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(a) (b)

(c)(d)(e)

Mobileyes

iTracker

Figure 1.2: Utilizing a massive user pool (a) and our data gathering application (b) we
have acquired a large dataset of face images with associated ground truth gaze locations
(c) which enabled training of our eye tracking convolutional neural network model (d)
and predicting gaze location using only the RGB image of a user’s face (e).
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By examining the physiological underpinnings of gaze, we will be able to better design

and evaluate our experiments.

Imagine being able to read a page of a book without moving your eyes. Our eyes are

certainly capable of “seeing” an entire page at once, but at any given time, we can only

attend to a few words.

�e reason for this is two-fold. First, the eye only receives high-resolution input at

the center of the �eld of view; the farther from the center, themore blurry the image. �is

is known as foveated imaging. Second, on a related note, the human brain is not capable

of processing much input in the �rst place.

�e way the brain handles these limitations is through a process known as selective

attention.

Every one knowswhat attention is. It is the taking possession by themind, in

clear and vivid form, of one out of what seem several simultaneously possible

objects or trains of thought. Focalization, concentration, of consciousness

are of its essence. It implies withdrawal from some things in order to deal

e�ectively with others. . .

—William James [1890]

�e selective attention process is typically divided up into two parts. First, during

the preattentive process, the brain considers the entire scene [Neisser, 1967]. �is process

is very quick and happens subconsciously. It determines the most salient points in the

scene which guide the second part: the attentive process.

During the attentive process, the eyesmove to �xate on a particular point in the scene

for more detailed analysis. A�er a short period of time, the eye will saccade (French for
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“jerk”) to a new �xation point [Yarbus, 1967]. In this way, gaze is indicative of visual

attention.

�ere are some caveats, though. For example, �xational eye movements are minia-

ture eye movements around a particular �xation point [Engbert and Kliegl, 2003]. �ese

movements happen naturally even if attention is �xed on a particular spot. Furthermore,

attentional shi�s may even happen without eye movement [Posner, 1980]. �is is known

as covert attention, while overt attention involves an associated eye �xation. �us, gaze

is inherently linked to the study of visual attention, but is not always a pure indicator of

visual attention.

1.3 Introduction to Deep Learning

In machine learning and arti�cial intelligence, any learning or intelligence must take

place inside of a well-de�ned model. For example, one such model (albeit näıve) could

involve averaging daily rainfall from previous years and using that to predict the chance

in the future. Indeed, this approach is unlikely to work well, but the predictions are likely

to be better than random guesses, so we can say the model learned something from the

training data.

1.3.1 Arti�cial Neural Networks

In this work, ourmodel is based on arti�cial neural networks (or simply neural networks).

�ey have their foundations in the 1940s [McCulloch and Pitts, 1943] and 1950s [Rosen-

blatt, 1958] and are loosely inspired by the human brain. In their most basic form, neural
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networks are made up of “neurons” which take one or more numerical inputs and pro-

duce a single numerical output. �e output is produced by taking a weighted sum of the

inputs, then passing the result through some non-linear function. See Figure 1.3 for a

common visual representation of a neuron.

x1

x2

x3

y

w1

w2

w3

Figure 1.3: A single neuron in a neural net-
work.

More formally, we can specify the neu-

ron’s task mathematically:

y = f (∑
i
wixi + b) ,

where f (⋅) is the activation function. �is

non-linear function is o�en the sigmoid

function or the hyperbolic tangent func-

tion. �ese “squash” the outputs to be in

the range between 0 and 1 or -1 and 1, respectively. �is operation is biologically inspired

and makes the model more powerful than a simple linear model. �e b term above is

not shown in the �gure, but is a model parameter along with the weights. It is called the

bias term or the intercept term and it inuences the prediction independent of all inputs.

For example, without the bias term, all 0 inputs would always produce a 0 output, which

may not be desirable.

To understand the value of such a model, we can consider an example. Imagine we

want to predict whether I will ride my bicycle today or not. Valuable inputs to use might

be the probability of a friend joining (x1), the likelihood of rain (x2), and howmuch ofmy

dissertation is complete (x3). I might setw1 to some positive value so that a friend joining

positively a�ects the decision. w2 should probably be negative so that a high chance of

10



rain has the inverse e�ect. �en, of course, w3 should be very high to ensure that my

dissertation gets �nished.

In practice, many of these neurons are chained together to make predictions. See

Figure 1.4 for an example. �e outputs from some layers are the inputs to other layers.

Note that neurons do not produce multiple outputs, but rather the same output may be

copied to multiple inputs. Also, note that the weights and bias terms (i.e., parameters)

are not displayed.

x1

x2

x3

y1

y2

Input Layer Hidden Layer Output Layer

Figure 1.4: An example neural network with two �nal outputs.

Also shown in Figure 1.4, neurons are o�en grouped together in layers. �e �rst layer

is the “input layer,” the last layer is the “output layer,” and the others are called “hidden

layers.” Every neuron in one layer is connected to every neuron in the next layer. We say

that these layers are “fully connected.” �is property allows the network the exibility to

determine which connections are most important on its own; the weight value for each
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connection can strengthen or weaken the connection as needed.

1.3.2 Backpropagation

In the above bike-riding example, I selected the weights. Practically though, the weights

are learned during the training phase, where sample inputs with known ground truth

outputs are given to the network. During a forward pass through the network, each input

gets an associated output (i.e., a prediction). A loss function compares the prediction

with the ground truth to compute an error value (or a loss). �is error value is then

backpropagated through the network (in a backward pass) so that eachweight is attributed

some amount of responsibility for the overall error.

�en, typically through a process known as stochastic gradient descent, theweights are

updated according to the partial derivative of the error function (relative to each partic-

ular weight). �e partial derivatives are useful to determine howmuch error is changing

respective to any given parameter—this information is useful in deciding exactly how

much the weight should be adjusted and in which direction.

1.3.3 Deep Learning

Computers have become exponentially more powerful since the inception of neural net-

works. Deep learning is, in essence, the latest iteration of neural network research made

possible by these computational improvements and someother essential theoretical break-

throughs. One key de�ning characteristic of deep neural networks is their size. In terms of

layers, neurons, and parameters, deep neural networks are very large. For example, a typ-

ical deepmodel may have tens of millions of parameters! To deal with this size, graphical
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processing units (GPUs) are o�en used because of their ability to performmany oating

point mathematical operations in parallel.

1.3.4 Convolutional Neural Networks

In this work, we use a specialized deep neural network known as the convolutional neural

network (CNN). It is one of the most frequently used deep learning techniques in use

today and has proven to be a very e�ective model in the computer vision community.

Speci�cally, it is well-suited to take images as inputs.

Convolutional neural networks are still very closely related to simple “shallow” neural

networks; however, to e�ectively deal with 2D multi-channel (i.e., red, green, and blue)

images, the formulation is more complex. By classifying and describing di�erent types

of layers (beyond just “input,” “hidden,” and “output”), these complex networks can be

modularized.

Convolutional Layers

As theCNN’s namesake, convolutional layers lie at the heart ofwhatmakesCNNsuniquely

suited to work with images. Image convolution is a process based on a signal process-

ing operation. Given an input image and a convolutional kernel (or mask, or �lter), a

modi�ed output image is created.

Kernels are typically small, square 2D matrices. �ey typically have an odd number

of values in both dimensions such that there is a single center value. �e values in the

kernel determine the e�ect when applied to the input image. To “convolve” a kernel with

an image, a window the same size as the kernel is moved across the image to every pos-
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sible position. �e values from the window are multiplied by the associated values in

the kernel, then summed to produce a single output value, which is placed in the output

image at coordinates relative to the position of the window in the image. See Figure 1.5

for a visual example.

113

-1 -1 -1

-1 8 -1

-1 -1 -1

254 254 242 191 121 76 95 126

253 253 239 187 117 76 97 127

253 253 237 183 114 76 99 130

253 253 236 179 110 76 102 133

254 254 235 176 108 77 107 137

254 254 234 173 105 74 105 137

Output Image
Kernel

Input Image

Figure 1.5: An example of image convolution. Each of the highlighted input pixel values
are multiplied with their associated kernel values before being summed to a single pixel
value in the output image. In this example, the output pixel value is computed as follows:
(253∗−1)+(239∗−1)+(187∗−1)+(253∗−1)+(237∗8)+(183∗−1)+(253∗−1)+(236∗
−1) + (179 ∗ −1) = 113�e operation pictured is repeated for every possible position of
the window in the input image.

Depending on the size of kernel, some number of border pixels are not produced in

the output image. For example, in Figure 1.5, thewindow in the input imagewill reference

non-existent neighbors for border pixels in the output image. In these cases, a number

of trivial solutions exist to preserve the resolution of the image, such as repeating border

pixels or simply padding the image with 0 values.

Convolution is a dynamic and powerful tool for applying a wide variety of image op-

erations. �ese operations can help expose key elements in an image useful to the task
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at hand. For example, a crosswalk detector may make use of a horizontal edge detec-

tor. In a CNN, hundreds or thousands of di�erent kernels may be used. Some common

mathematically-derived, hand-cra�ed kernels are shown in Table 1.6.

Identity
Could also be 1 × 1

⎡
⎢
⎢
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⎢
⎢
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⎥
⎥
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1
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⎥
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Figure 1.6: Sample convolutional kernels and their e�ects. �e image for the “Identity”
kernel is the input image. In a CNN, kernels are learned. Note that a scalar multiple is
used to improve the readability of the blur kernels.

�e use of convolution in a neural network is natural. Convolution involves comput-

ing the weighted sum, as does a neuron. �us, the values of the convolution kernel are

represented as neuron weights in a CNN. To account for themoving window, there exists

a neuron for each pairing of a window to an output pixel. �eweights are shared between
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these neurons, though, as the convolution kernel should not change across space. 1

When designing the CNN architecture, the size and number of kernels is set, but the

weights are learned during training. �e con�gurable number of kernels is equivalent to

the number of output images, which brings up an important (though subtle) variation

between standard image convolution and CNNs.

For a three-channel (i.e., RGB) image, a 2D kernel is typically applied to each color

channel independently. �is produces three outputs, which can again be displayed as a

three-channel color image. �is is how the images in Figure 1.6 were produced. In CNNs,

however, we may wish to produce only a single output channel or many output channels.

Furthermore, the model may be able to produce more useful output if multiple input

channels can be considered simultaneously. For this reason, convolution kernels are 3D;

two dimensions are con�gurable and the third is equal to the number of input channels.

�us, there are more weights to be learned to allow di�erent channels to contribute dif-

ferently to the output. �e input window still moves in the 2D spatial domain and output

from this 3D convolution is still the weighted sum of all input pixels, producing a single

output value.

�us, to summarize, in a convolutional layer, there exists a single neuron for each

pixel in each output channel (excluding edge padding). �e inputs to these neurons are

the pixels in the spatially-associated window across all input channels. �e weights on

the input of the neuron are learned during the training of the network and weights are

shared amongst all neurons for each output channel.
1When weights are shared, error is averaged across all instances during training with backpropagation.
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Pooling Layers

Pooling layers operate much like convolutional layers. �ey move a certain-sized win-

dow across an input image and they produce an output image. Instead of learning pa-

rameters though, the operation is �xed: typically either taking the average of all values

or the maximum of all values (which can’t be done with a weighted average). Another

di�erence is that instead of using a con�gurable number of output channels, there is ex-

actly one output channel for each input channel. Furthermore, each channel is processed

independently, unlike the 3D kernel in convolution layers.

In practice, this layer is used with an increased stride setting. Stride is con�gurable

for both convolutional and pooling layers; it de�nes how many pixels should be skipped

between each window location. A stride of 1 visits every possible location (as was de-

scribed for convolutional layers), while a stride of 2 visits every other pixel, reducing the

number of neurons and the resolution of the output channels by a factor of 2.

�is is typically the primary use of pooling: to reduce the resolution of the image

channels while maintaining important information from the larger resolution. Reduced

resolution is desirable for both performance reasons and to improve spatial invariance

of the model. For example, we may use “max pooling” with a stride of 2 to remember

how much of an edge was detected by the previous convolutional layer, but by halving

the resolution, we care only half as much about where it appears.

Fully Connected Layers

Fully connected (or “inner product”) layers are the simple standard neural network layers

introduced in Section 1.3.1 and in Figure 1.4. Whereas convolutional and pooling layers
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are designed to extract important features from images, fully connected layers perform

the �nal classi�cation or regression task. Any spatial aspect of the data is lost at this point

as well. For these reasons, fully connected layers are typically used as output layers, a�er

all convolutional and pooling layers.

1.4 Overview of Dissertation

Our end-to-end solution is described and analyzed in this dissertation. Chapters are

organized as follows:

• Chapter 2 explores the rich history of eye tracking research up through modern-

day approaches. Approaches related to ours are reviewed in more detail. A survey

of related datasets and crowdsourcing approaches are also covered.

• Chapter 3 covers our methodology for crowdsourcing gaze data.

• Chapter 4 describes the detailed setup of our eye tracking model.

• Chapter 5 describes evaluation techniques for both the dataset and the model. Re-

sults are presented and analyzed.

• Chapter 6 reects on the implications of our work, highlighting key applications

and future work.

�is dissertation was written for an audience with a background in computer science

and a rudimentary understanding ofmachine learning. Advanced topics are covered, but

for the most part, our contributions should be made clear a�er reading the introduction.
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�ough this dissertation was written by a single author and the intent is to highlight

the individual contributions to the �eld, this work was done in collaboration with oth-

ers. As such, “we” and “our” are used throughout the work. �e collaborators are gradu-

ate students studying atMassachusetts Institute of Technology in Boston, Massachusetts:

Aditya Khosla (advised byDr. Antonio Torralba) and Petr Kellnhofer (workingwithWo-

jciech Matusik, visiting from Max-Planck-Institut für Informatik in Saarbrücken, Ger-

many).
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Chapter 2

Review of the Literature

Eye tracking has a long history, largely due to its value in a variety of di�erent �elds.

In this chapter, we will survey the history of eye tracking before exploring modern ap-

proaches. �en, we will introduce speci�c works related to the methodologies proposed

in this work. �e contributions of this work are underscored in light of the existing lit-

erature.

2.1 History of Eye Tracking

�e idea of recording and studying eye movements has been around for centuries. Im-

provements to eye trackingmethodologies have followed trends in research related to hu-

man visual attention. In this regard, the progress has been joint: as eye tracking method-

ologies have improved, so has our understanding of various aspects of the human visual

system.

Before special devicesweremade to assist in the observation of eyemovements, direct

20



observation was employed. In the late eighteenth century, Erasmus Darwin with his son,

Robert Waring Darwin [1786] demonstrated the user of a�erimages: the phenomenon

where an image will remain burned into the retina for a period of time a�er seeing it.

Darwin discovered �xational eye movements by trying to stare at a red dot on white

paper without moving his eyes. �e edges of the circle would “librate” on one side—a

part of the a�erimage would stand out against the white paper as his eyes moved quickly

[Darwin and Darwin, 1786].

In a similar manner, William Charles Wells [1792] studied visual vertigo. First, he

stared at a candle to temporarily burn an a�erimage into his retina. It appeared stationary

at �rst, but a�er spinning in circles until he became dizzy, the a�erimage and the real

image would dri� apart for a while. He validated the relationship between a�erimages

and eye movements by watching someone else’s eyes move during the same experiment.

Visual vertigo was one of a few medical reasons for studying eye movements in early

eye tracking history. In the late nineteenth century, there was elevated interest in reading

studies. In this context, an important discovery was made: �ough perceived as being

smooth, eyes jerk from point to point. Louis Émile Javal [1879] is widely credited with us-

ing the term “saccade” (French for “jerk”) to describe this motion, though his individual

contributions on the matter are debated [Wade and Tatler, 2009].

Instead, Lamare [1892] andHering [1879] (working in Javal’s laboratory [Wade, 2015])

should be credited with discovering saccade motions [Wade, 2010]. �ey were both able

to record when eyes saccade by mounting rubber tubes on subjects’ eyelids. �ey heard

“clapping” sounds whenever the eye moved. �ey used this technique to validate older

a�erimage techniques.
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By the end of the nineteenth century, the �rst attempts at building a mechanical eye

tracker were introduced [Delabarre, 1898; Huey, 1898, 1900]. �ese early devices were

used to record lateral eye movement during reading. Huey’s method used a contact lens

to physically attach the cornea to a device that recorded motions onto a smoked drum

kymograph. See Figure 2.1 for an overview of this setup and Figure 2.1 for a sample ky-

mograph recording. Subjects bit into a wax mold custom-�t to their teeth and attached

to the machine to prevent head motion. Subjects’ eyelids were held open as well. �is

early technique was invasive and was limited by the friction and inertia of the machine’s

parts [Wade, 2010].

(a) Setup of the eye tracker used
in Huey [1898].

(b) Recording from Huey [1900]. Only lat-
eral eye movements are recorded; vertical
movement encodes time.

Figure 2.1: Early eye trackers were invasive and only recorded lateral movements.

Photographic approaches emerged around the turn of the twentieth century. Light

reected from the subject’s eye was recorded onto a photographic plate, leaving a light

trail for analysis. Orschansky [1899] usedmirrors attached to the eye to reect light while

[Dodge and Cline, 1901; Dodge, 1903, 1904] used corneal reections (a point source of
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light reected o� the cornea; also called a glint [Hansen and Ji, 2010]). Light was passed

through a horizontal slit while the recording surface slowly dropped, recording lateral

movement over time (as with the kymograph recordings).

Dodge’s use of corneal reectionswas groundbreaking, as it was the �rst non-invasive

recording technique. For this reason, it inspired many follow-up studies [Taylor, 1937;

Wade, 2010] and corneal reections are still in use today (see Section 2.2).

Corneal reections have the property of moving only slightly as the eye moves. As a

spherical surface rotates about its center, light is reected in the same location (relative to

the outside world); however, this slight motion occurs because the eye is neither entirely

spherical nor does it rotate about its center [Richardson and Spivey, 2004].

�e movement of the corneal reection lags behind that of the eye, and so

presents a diminished copy of the original; and moreover this diminution is

greater in some instances than in others, according to the direction of the

eye’s movement, the position of the object reected in the cornea, and the

direction from which the reected image is observed.

— George Malcolm Stratton [1902]

In some cases (as with Dodge and Stratton), this slight movement is used to mea-

sure eye movement, while in other cases (described in Section 2.2), the relative lack of

movement is used as a reference point for eye tracking. Despite this dichotomy, corneal

reections have proven to be an important facet of eye tracking regardless of usage.

In the context of studying how people view geometric shapes, Stratton [1902] and

Judd [1905] recorded both horizontal and vertical movements. Stratton continuously

recorded corneal reections in an otherwise dark room, but faced inaccuracy (due to the
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nature of corneal reections; see the above quote). Judd used a white speck placed on

the eye along with motion picture photography. �eir approach did not require a dark

room, but they were limited by temporal resolution, recording only around 8–9 frames

per second [Wade, 2015].

Similar photographic approaches were used for the better part of the twentieth cen-

tury [Richardson and Spivey, 2004]. Buswell [1935] and Yarbus [1967] both recorded

continuous gaze in two dimensions to explore a problem still widely studied today: How

do people look at pictures? In these studies, viewing paths from multiple subjects were

overlaid and a critical observation was made: �e task given to the subject before view-

ing the image had a large impact on the viewing pattern. Buswell’s recording device is

pictured in Figure 2.2.

Over the years, eye trackers have been improved in various areas, including recording

resolution in di�erent dimensions (i.e., horizontal, vertical, and temporal), invasiveness,

and accuracy. Even today, trade-o�s must be made in the same areas, but technological

advances have greatly reduced limitations. For a more in-depth survey of historical eye

movement research, see Wade [2007, 2010, 2015]; Richardson and Spivey [2004]; Jacob

and Karn [2003]; Young and Sheena [1975].

2.2 Mainstream Eye Tracking

Today, through advances in technology, manymore hassle-free eye tracking solutions ex-

ist. Commercial implementations of modern research have made conducting eye track-

ing experiments relatively simple. �ey still typically require expensive hardware and a
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Figure 2.2: Eye tracker used by Buswell [1935].

relatively controlled environment, but high accuracy eye tracking is available.

�emostwidely-used scienti�c eye tracking solution in use today is video-oculography

(VOG) [Duchowski, 2007]. Using frames from a video camera as input, certain features

of the eye are detected and used to compute the point of regard. One such feature is the

pupil center, o�en detected by a geometric model.

�is technique works well when integrated into a headset, where the camera moves
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with the head, but using the pupil center alone can be problematic otherwise. “Remote”

solutions (where the tracking is done in a noninvasive way) must account for head mo-

tion. For a �xed gaze point, the pupil center relative to the corners of the eye can vary

greatly depending on head pose.

To overcome this, corneal reections (or “Purkinje images”) are used as a mostly-

�xed reference point on the eye. Light reected o� the cornea from a �xed light source

will appear in nearly the same position on the eye for a �xed gaze point, regardless of head

position (since the eye’s absolute position will not change much relative to the light). On

the other hand, if the eye gaze changes, the position of the pupil center relative to the

reection will change. �us, the corneal reection is used as a reference point to track

eyemovement relative to the outsideworld (as is the goal with eye tracking) rather than to

the head. �is use of corneal reections di�ers from historical uses of corneal reections

for eye tracking (see Section 2.1).

To create a corneal reection, most modern eye trackers integrate one or more light

sources somewhere near the camera. Infrared light is typically used to avoid shining

visible light into the subject’s eyes. �is approach produces some of the most accurate

results today, but the use of a special light source requires specialized hardware and a

relatively controlled environment.

While VOG is most prevalent today because it produces accurate results and can be

used in a noninvasive way, there are other approaches in use. Electro-oculography (EOG)

uses sensors placed around the subject’s eyes to measure changes in potential, which can

be mapped to eye movements. �is approach is robust, even if the subject’s eyes are

closed, as is the case when monitoring eye movements during REM sleep. Also, contact
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lenses are still used in some cases, where a metal ring’s movement in a magnetic �eld can

be sensed.

�ese modern approaches o�er many practical solutions for academics looking to

conduct eye tracking studies. However, there exists a signi�cant barrier to entry due to

the price and special hardware required. A robust approach using commodity cameras

could greatly expand the audience for practical eye tracking.

2.3 Research Trends in Eye Tracking

In most cases, mainstream commercial eye trackers are the direct result of successful

research plus time required to re�ne the technique. Current eye tracking research is

primarily geared towards improving video-oculography approaches. Many of these ap-

proaches focus on removing limitations—most notably, the requirement for specialized

hardware. Here, we give a brief overview of gaze estimationmethods in current research.

We suggest the survey, Hansen and Ji [2010], for a more complete picture.

Gaze estimation methods can be divided into two broad categories: model-based

and appearance-based [Hansen and Ji, 2010]. Model-based approaches use a geometric

model of the eye. �ese approaches can be further classi�ed as either corneal-reection-

based approaches or shape-based approaches. Corneal-reection-based methods [Yoo

and Chung, 2005; Zhu and Ji, 2005; Zhu et al., 2006; Hennessey et al., 2006] rely on

external light sources to detect eye features. On the other hand, shape based methods

[Ishikawa, 2004; Chen and Ji, 2008; Valenti et al., 2012; Hansen and Pece, 2005] infer

gaze direction from observed eye shapes, such as pupil centers and iris edges. �ese ap-
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proaches tend to perform poorly when presented with low-quality images, as is possible

in our unconstrained scenario.

Appearance-basedmethods [Tan et al., 2002; Sewell andKomogortsev, 2010; Lu et al.,

2014b,a; Torricelli et al., 2008; Baluja and Pomerleau, 1994] directly use eye images as

input (not requiring conformity to a model) and can potentially work on low-resolution

images. Appearance-based methods are believed [Zhang et al., 2015] to require larger

amounts of user-speci�c training data as compared to model-based methods.

Our proposed model is an appearance-based method; however, we show that our

model is able to generalize well to novel faces without needing user-speci�c data. While

calibration is helpful, its impact is not as signi�cant as it is in other approaches, given

ourmodel’s inherent generalization ability achieved through the use of deep learning and

large-scale data. �us, our model does not have to rely on visual saliency maps [Chen

and Ji, 2011; Sugano et al., 2013] or key presses [Sugano et al., 2008] to achieve accurate

calibration-free gaze estimation.

2.4 Gaze Datasets

Used for training and evaluating gaze models, gaze datasets are important tools for eye

tracking research. �ere are a number of publicly available gaze datasets in the commu-

nity. We survey many of them in this section, and we summarize various distinctions

between them in Table5.1 (see Chapter 5).

Many of the earlier datasets [McMurrough et al., 2012; Weidenbacher et al., 2007;

Smith et al., 2013] either lack signi�cant variation in head pose or have a coarse gaze point

28



sampling density. We overcome this by encouraging participants to move their head

while recording and generating a randomdistribution of gaze points for each participant.

More modern datasets follow an approach similar to ours. An example of this is

TabletGaze [Huang et al., 2015], which we use extensively for evaluation in Chapter 5. In

this dataset, subjects are asked to look at dots on a tablet screen while a video is recorded

on the device’s front-facing camera. Dots are randomly selected from a set of 35 dots

arranged evenly across the screen in a 5 × 7 grid. Each dot appears for three seconds.

Participants are asked to complete the task in each of four loosely-described poses:

standing, sitting, slouching, and lying. �ey are also asked to hold the tablet in the land-

scape orientation only. Otherwise, they are free to hold the device as desired. Recording

is done in a lab setting with overhead lights turned o� to prevent backlighting.

Before using the data, the authors prune away problematic frames and recordings.

�e authors perform a manual inspection of the data to determine loss of attention re-

sulting inmislabeled data. Also, the �rst 1.5–2.5 seconds of each dot are removed to allow

the participant su�cient time to saccade to the dot. Blinks and blur are also detected and

removed.

We also perform evaluation onMPIIGaze [Zhang et al., 2015], which only involves 15

subjects and uses laptops, but conducts experiments outside of the lab over the course of

several months. Subjects use special so�ware that interrupts them during normal laptop

use for true in-the-wild data. No instructions are given regarding pose.

In the task, subjects are asked to look at a sequence of 20 dots that shrink. To ensure

attentiveness while viewing dots, they are asked to push a key on the keyboard right

before the dot disappears.
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While some of the modern datasets follow a similar approach to ours [Sugano et al.,

2014;Mora et al., 2014; Zhang et al., 2015; Huang et al., 2015], their scale—especially in the

number of participants—is rather limited. We overcome this through the use of crowd-

sourcing, allowing us to build a dataset with roughly 20 times as many participants as

the current largest dataset. Further, unlike Zhang et al. [2015], given our recording per-

missions, we will release the complete images without post-processing. We believe that

our dataset will serve as an invaluable resource for future work in this domain.
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Chapter 3

GazeCapture:

Crowdsourcing Gaze Data

Data lies at the heart of many scienti�c inquiries. More data points o�en yield better

models andmore compelling results. For example, imagine being trained for a new job as

ight attendant—the more examples you are shown of what’s expected of you, the better

your chance for success and the better you’ll be able to evaluate your own performance.

Furthermore, data quality is just as important as data quantity. Returning to our

example, imagine your extensive training deals with customer service, ight safety, and

other cabin operations. If, during a ight, you are then expected to y the airplane, you

may not perform so well. In practice, issues with data quality may be more subtle, but

�nding the right data can have a signi�cant impact on the real-world applicability of a

model.

�e end goal of eye tracking studies is to be able to predict where a person is looking.
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�us, the needed data should include some measurement of the subjects’ eye(s) along

with known ground truth annotations of where they are looking. As described in Sec-

tion 2.4 and validated in Section 5.1, existing datasets of this type are limited both in

terms of size and in variability. �is is particularly true regarding their applicability to

deep learning approaches, which have proven to be very powerful solutions where large

datasets exist.

In this chapter, we describe a crowdsourcing approach, “GazeCapture,” for collecting

gaze data on a large scale. Crowdsourcing has not yet been applied to collecting ground

truth gaze data, so we describe our methodologies for maximizing the size and quality

of our dataset. We use this approach to collect a novel dataset, “Mobileyes,” which we

analyze to validate our methods in Section 5.1.

3.1 Experimental Design

As with other recent papers, we pose the gaze estimation problem as a mapping from

an input image to an (x , y) pair of screen coordinates. Although our model actually

predicts the gaze location in physical space relative to the camera (see Section 4.2), the

predictions are directly mapped to screen coordinates. �e use of screen coordinates for

ground truth labels (rather than, e.g., 3D gaze vectors) is well-suited to our ultimate goal

of predicting where a subject is looking on a screen. Also, in a crowdsourcing setting,

this simple approach is pragmatic, as it avoids special constraints or tools.

To collect such ground truth data, on-screen dots are displayed to participants and

they are asked to look at the dots while video frames are recorded using the front-facing

32



camera. We chose to target smartphones and tablets because of their many applications

in an increasingly-mobile world. Also, by focusing on mobile devices, where camera

motion is expected, we anticipate a more robust solution, such that the model may be

applied in a wider variety of environments.

3.1.1 Dot Display

Figure 3.1: 13 calibration dots, as
used in Xu et al. [2015]. �e gray
border indicates the margin where
no dots are displayed to prevent
them from going o�-screen. Evalu-
ation using these dots is described
in Section 5.4.2.

�e task is designed to be completed by subjects

in one sitting of approximately ten to ��een min-

utes. In the main part of the task, a single red dot

appears on a blank white background. �is strong

color contrast is chosen to maximize the saliency

of the point on the screen. To further increase the

saliency of the dot, we make the dot continually

oscillate between a larger and a smaller size with-

out moving the center of the dot (which is precisely

identi�ed by a small, �xed-size black point). �is

motion is also intended to help keep attention a�er

the initial �xation.

Dot locations are selected both randomly and

from a set of 13 �xed locations (see Figure 3.1). �e

�xed locations represent a typical eye tracking cali-

bration task, as is used by Xu et al. [2015], designed

to provide good coverage of the screen. See Section 5.4.2 for our application of these �xed
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Display Dot Start Recording Display Letter Hide Dot, Wait for Response

0.5s 1.5s

“Tap left or
  right side”

Figure 3.2: �e timeline of a single dot. �e recording begins 0.5 seconds a�er displaying
the dot to allow the subject time to saccade to the dot. �e dotted lines around the dots
indicate the way a dot pulses as it is being displayed (to attract and maintain attention).
A letter is ashed inside the dot for 50 milliseconds at the end for quality assurance (see
Section 3.1.2).

locations in a calibration scenario. All dot centers appear within a �xed border to prevent

the dot from going o� of the screen.

We select the duration of each dot’s display qualitatively, by examining data collected

during both development and an early round of crowdsourcing. �ere exist a few trade-

o�s between shorter and longer dot durations. For shorter durations, more dots can be

displayed in the same time period, but fewer samples will be collected at each point. If

the duration is too short, the subject may not have time to �xate on the dot at all. For

longer dot durations, we notice that subjects may look away from the dot. We �nd that

1.5 seconds for each dot is a good balance between these trade-o�s. We also �nd that

omitting the �rst 0.5 seconds of each recording is su�cient to allow most subjects time

to saccade to the dot. See Figure 3.2 for a timeline of our dot display process.
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3.1.2 Attentiveness Task

Perhaps one of the most important aspects of the process was �nding a way to ensure

subjects were paying attention. We reduce the likelihood of on-device interruptions (see

Section 3.2.4), but in a crowdsourcing scenario, we do not expect intrinsic motivation to

provide quality data. We suggest an attentiveness task that is essential to quality control.

Immediately before the end of each dot’s display, we ash the outline of a letter inside

the dot for 50 milliseconds (see Figure 3.2). A�erward, the subject is asked to report

which letter they saw—they must tap the le� side of the screen for “L” and the right side

for “R.” �ere is also an “I Don’t Know” button for users to self-report inattentiveness.

�e user is warned a�er each incorrect answer and the dot is displayed again. �e

number of incorrect answers is logged to help identify bad data. With only one correct

and one incorrect answer, some bad data (i.e., of an inattentive subject) is likely to pass

this �lter. �is decision is intentional to maximize speed. Distinguishing le� from right

is simple and can be performed quickly. �e input method is fast and reliable as well,

requiring only two buttons that �ll the screen. In this way, we anticipate a high signal-

to-noise ratio.

�e user’s response time for each answer is also logged and—although we do not

currently make use of the information—the average is reported to the user when they

have completed the task. We discovered through post-study feedback (see Section 3.3.1)

that some participants �nd the the task enjoyable like a game:

• “Fun. Like a game.”

• “�at was awesome!”
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• “It was a fun game. It probably wasn’t a game, but I still thought it was fun”

Others �nd it less enjoyable:

• “Mild headache from the task.”

• “I got a little dizzy!”

• “�at was way harder than it seemed.”

Manyof these comments reinforce our con�dence in the duration of the letter display—

it is short enough to be challenging and long enough for attentive subjects to see. Further-

more, this encourages us to consider gami�cation for future versions of this task. Such

an approach could be valuable to attracting and engaging users (as was done in Xu et al.

[2015]), perhaps even without incentive. Simply adjusting dot length over time—perhaps

in response to the user’s attentiveness task accuracy—could create a more engaging ow

through the duration of the task [Deci and Ryan, 1985].

3.1.3 HeadMotion

We encourage continuous head motion (or device motion) during initial instructions

(see Section 3.3.3) and during the task in the app (see Figure 3.4). We do this to increase

variety in pose and visual appearance. Even for frames recorded during a single dot

(which are typically highly correlated, and thus, less useful for machine learning) we

anticipate the continuousmotion will providemore frame-to-frame variety. A side e�ect

is an increased likelihood of motion blur, especially in low-light scenarios, but even this

may be useful variety to have for designing a robust model for use in the real world.
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3.1.4 Device Orientation

During the task, the user is asked to rotate their device on occasion as to record dots

for each supported orientation. �is is important because the appearance of the user’s

eyes will di�er greatly for any given dot at di�erent orientations. We account for the

orientation in the way wemap between screen coordinates and our prediction space (see

Section 4.2).

All four possible orientations are supported on iPads, but we do not support the “por-

trait upside down” orientation on iPhone since few apps support it in practice. An even

number of dots is shown for each supported orientation. We also display all 13 calibration

points at each orientation.

3.2 The GazeCapture App

Figure 3.3: �e Gaze-
Capture app icon.

Typically, crowdsourcing tasks are implemented as a web-based

application. Xu et al. [2015] even performed live processing of a

camera feed in a web browser for their crowdsourced eye track-

ing study (utilizing a preexisting gaze prediction model). How-

ever, browser-based camera access is still a nascent technology

and is faced withmany limitations, especially onmobile devices.

�us, we decided that a native app would be the best solution.
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3.2.1 Platform

We designed the experiment as an iOS app, supporting iPhone and iPad devices. �e

majority of the code was written in Swi�, with some Objective-C and C++ as necessary.

�e decision to develop for iOS rather than Android was primarily due to the smaller

set of hardware con�gurations to consider. �is decision was particularly advantageous

when testing on-device performance of the app andwhen gathering physical device spec-

i�cations (as described in Section 4.2).

A server applicationwas written (using PHP andMySQL) to accept uploaded record-

ings, serve app con�gurations (e.g., dot duration) andmanage di�erent aspects of crowd-

sourcing.

3.2.2 Consent Form

A�er launching the app, the user is prompted for their date of birth. �is is used to con-

�rm that they are at least 18 years of age. A�er verifying this, a consent form is presented.

�e consent form clearly describes the purpose of the study, procedures, privacy consid-

erations, and contact information, amongst other details. �is form was approved by the

IRB, as described in Section 3.3.4. �e user must press an “Accept” button to continue.

3.2.3 Participation Code

�e user is presented with a text �eld and asked to enter a code if they have one. In

Section 3.3.2, we show the need to uniquely identify subjects via a code. �is request is

intentionally vague and generic, as to support a variety of contexts without requiring an
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update to the app. �e code is validated with the server before continuing. Alternatively,

there exists a “Skip” button for anyone without a code.

3.2.4 Device Setup

So as to reduce the likelihood of distracting on-device noti�cations, we require the user to

put their device into “AirplaneMode,” disabling communication devices for the duration

of the task. If the setting is disabled at any point during the task, we pause the recording

session. At this point, we also prompt the user to grant access for our app to use their

camera.

3.2.5 Interactive Instructions

We use an interactive instruction stage to inform, engage, and train users before starting

the experiment. First, a camera preview is shown to the userwith bounding boxes around

the face and eyes. �e user is asked to ensure good lighting conditions and to make sure

their face is visible at all times. Since the camera feed is not displayed to the user during

the experiment, we �nd this screen useful for putting the user in a feasible pose.

Next, the user is shown sample dots and asked to notice the ashing letter before

pressing “Next.” �e attentiveness task is then described with a visualization of the full-

screen buttons. To verify that the user is ready, we display two consecutive practice dots.

Finally, we tell the user they’re ready and we summarize the instructions.
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(a) (b) (c) (d)

Figure 3.4: Select screenshots from GazeCapture’s interactive instructions. A�er verify-
ing that the camera can see the subject (a) the dots with blinking letters are introduced
(b). �e attentiveness task is described (c) then two demo dots are displayed (d) for prac-
tice.

3.2.6 Main Task

During the experiment, the user has a set of three controls: “Start”/“Reset,” “Pause”/“Resume,”

and “Cancel.” �ese controls were designed to stay out of the way and not to attract at-

tention. In some cases, dots may overlap the buttons. A�er starting the experiment, the

user is shown a brief countdown before displaying dots. �e countdown is shown again

whenever ow is broken by an incorrect answer or resuming from a paused state.

A�er a predetermined number of completed dots, the user is prompted to rotate their

device to a certain orientation. �is is accomplished by presenting an arrow and asking

the user to make it point upward.

We repeat a dot if the user fails the attentiveness task (or if the user taps “I Don’t
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Know”). Also, if no faces are detected in any of the frames, the dot is repeated with some

suggestions to the user. For example, a�er rotating to a landscape orientation, we �nd

that many users may inadvertently cover up the camera with their �ngers.

Also, on occasion, the user is reminded to continue moving their head. We �nd that

this greatly helped increase pose variety, as users frequently forgot to move due to their

focus on the task. As one user said in post-study feedback (see Section 3.3.1), “�e re-

minder to keep moving helped a lot. I frequently forgot!”

�e user can track their progress through the task by an indicator at the top of the

screen. �is is only displayed during the attentiveness task.

3.2.7 Data Recording

During the display of a dot, video frames are captured from the camera at a �xed reso-

lution of 640 × 480 (or 480 × 640, depending on the orientation). For each frame, a fast

and robust GPU face detector and a CPU eye detector is used (both using built-in Apple

frameworks). �e eye detector was con�gured to provide fast detections at the cost of

accuracy—we expect our model to account for inaccurate detections.

Depending on the device and lighting conditions, anywhere from 1–19 frames may

be recorded for a dot. In this way, the same pipeline used for data collection could also

be used in a realistic detection environment where face and eye detections are required.

We also record data from the device’s motion sensors at a rate of 60 samples per

second. �is includes accelerometer, gyroscope, and magnetometer data. We do not

currently make use of this information, but we record it in case it could be used to better

estimate device pose in the future.
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3.2.8 Data Upload

A�er the experiment is complete, we present average reaction time, total number of er-

rors, and size of the data to the user. A�er asking the user to disable Airplane Mode, a

button is presented to upload the data. �e upload is typically a few hundred megabytes.

�e user is also given the option to erase their data and start over.

3.3 Crowdsourcing Procedure

�ough the app is designed to be scalable, �nding and managing participants requires a

considerable amount of overhead. In this section, we describe our procedures regarding

human subjects in our study.

3.3.1 Recruitment

Most participants are recruited viaAmazonMechanical Turk (AMT), a service that allows

people to earn money (to spend on the Amazon.com store) for completing short-term

tasks. Registered as an AMT “Requester,” we create a Human Intelligence Task (HIT)

for AMT “Workers” to use our app. Workers discover our HIT through either keyword

searches or lists sorted by the pay or number of available tasks. �e description of our

HIT makes clear that the Worker must have a supported Apple device.

A�er accepting, Workers are given 24 hours to download the app and complete the

HIT while incentive is reserved for them upon their completion. If the Worker does not

complete the task within 24 hours, the HIT (and the associated money) is returned to

the pool of available tasks, allowing another AMTWorker to accept the work. We release
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HITs in batches during development to re�ne our methodology, instructions, and app.

Feedback is gathered through a short, optional demographic survey presented a�er the

HIT is complete. �e survey includes �elds for age, gender, race, and a comment.

We also recruit students in large undergraduate computer science classes (with be-

tween a 60% and 70% participation rate) at �e University of Georgia (UGA). A brief

presentation and demo of the app was given to motivate the topic. For students without

a supported Apple device, we provide devices during o�ce hours. No survey is given to

UGA participants, though feedback has typically been positive.

3.3.2 Incentive

AMTWorkers are o�ered an incentive of 1.00 USD for completing the HIT. Many other

HITs pay signi�cantly less formuch shorter tasks, so our task appears highwhenWorkers

sort HITs by pay. We also have to pay a premium to Amazon for using their service. In

cases where Workers experience a problem with our app (e.g., a crash), we still give the

incentive.

To associate a HIT with a particular upload from our app (independently down-

loaded from the Apple App Store), we generate a code for each accepted HIT. We tell

the user that they must use this code in the app (see Section 3.2.3) to receive their incen-

tive.

UGA students are o�ered extra credit for their participation. �ey are asked to enter

their o�cial school ID with a special pre�x as their code to identify their participation.

We emphasized that the decision to participate or not participate in this research would

have no impact on their grade. For students preferring a non-research alternative, we
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o�ered the same amount of extra credit for writing a couple of paragraphs brainstorming

ideas on uses for eye tracking.

�ough we do not reject multiple uploads from the same subject, we do not o�er

incentive more than once. As we show later in Figure 5.3, preferring additional subjects

to additional samples produces better results.

3.3.3 Instructions

For both AMT and UGA populations, we present a specialized web page for prospective

participants. On this page, we provide a description of the task, app installation and usage

instructions, and other general advice. For example, we recommend that users complete

this task over Wi-Fi due to the heavy data usage. On this page, we make use of animated

images to describe more complex subjects, such as the expected head movement and

how to enable Airplane Mode. We �nd that we can improve collected data quality by

�ne-tuning the way we present our expectations.

3.3.4 Ethical Considerations

As this study makes use of human subjects, we obtained an exempt approval from �e

University of Georgia Institutional Review Board (IRB). �e approval can be referenced

using UGA IRB IDs STUDY00002656 and MOD00002239. �rough this process, we re-

ported and re�ned key ethical aspects of our research, including recruitment procedures,

incentives, informed consent, and data collection methods.

An important outcome of this process is our ability to release full camera images to

the research community as a part of our dataset. Other datasets have been limited in this
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regard (e.g., Zhang et al. [2015], which only includes eye images). We believemodels have

the capacity to perform better given complete camera input.
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Chapter 4

iTracker: DeepModel

Given the large scale of the data, we can hope to learn eye tracking end-to-end using deep

learning without having to include hand-cra�ed features such as the head pose [Zhang

et al., 2015]. Inspired by well-performing naı̈ve approaches, we build a convolutional

neural network customized to our problem. We select the inputs and prediction space

to best suit our purposes, then �ne-tune the design and learning parameters for optimal

results. We call our model “iTracker.”

�is initial model is computationally expensive and incorporates all of the required

information to make a highly accurate prediction of gaze. However, we �nd that this

model is slow and cannot be incorporated into modern mobile devices for real-time eye

tracking. �us, we use techniques such as dark knowledge [Hinton et al., 2015] to help

learn a smaller model that achieves a similar performance while using only a fraction

of the parameters and being able to run at a reasonable frame rate on a modern mobile

device.
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4.1 Inputs

Rather than feeding our model only eye crops or entire image frames, we select inputs

that we intuitively surmise should be most useful to the network. Also, by using only

information built into the GazeCapture pipeline (i.e., face and eye detections), we are

operating in a practically-implementable domain.

First, we use both le� and right eye images cropped from the frame. We use eye
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Figure 4.1: Overview of our model, “iTracker.” Inputs include le� eye, right eye, and
face images detected and cropped from the original frame. �e face grid input is used
to indicate the location and size of the head within the frame. �e convolutional layers
are same for all image pipelines. Dotted lines between eye convolutional layers indicate
that the weights are shared. �e pooling layers are not shown, but the relative size of
the convolutional layers is indicative of reduced resolution from pooling (and in the �rst
case, convolutional stride). See Table 4.1 for layer details. �e output is the distance from
the camera which is then directly mapped to on-screen coordinates.
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detections saved at the time of capture. �e eye detector used in GazeCapture (an Apple

library) was selected with performance inmind; it is fast at the expense of some accuracy

(see Figure 4.2). �us, we do not require tight crops. As such, we �nd that a relatively

large image size (224 × 224) performs best over lower resolutions.

We also include the face image at a resolution of 224×224. �is is designed to take the

place of the head pose model used in Zhang et al. [2015]. If the recorded face detection

is outside of the bounds of the image, edge pixels are repeated for padding.

Figure 4.2: Sample le� eye crops.
We expect our model to compen-
sate for inaccurate eye detections.

Finally, we include face location as an input

to help the model determine the subject’s pose.

Rather than directly using the coordinates and the

size of the face bounding box, we use a binarymask

to give the network greater representational power,

as is done in Recasens∗ et al. [2015]. We create a

25×25 grid of bits to represent the image frame. We

place 1’s in the relative position of the face bound-

ing box within the image and 0’s elsewhere. We call

this input face grid. We expect this input to be particularly useful in distinguishing be-

tween device orientations; if the camera is to the le� of the subject’s �eld of view, the face

bounding box will likely appear towards the le� of the frame.

We assume that the perspective and �eld of view is similar across the front-facing

cameras on Apple devices. As such, we assume our model should naturally be robust to

any minor di�erences.
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4.2 Prediction Space

We want our solution to naturally adapt to di�erent devices and orientations. Directly

predicting screen coordinates would not bemeaningful beyond a single device in a single

orientation since the input could vary signi�cantly between devices. Instead, we leverage

the fact that the front-facing camera is typically on the same plane as, and facing the same

direction as, the screen. As shown in Figure 4.3, we predict the dot location relative to

the camera (in centimeters in the x and y directions).

�is requires precise measurements of device screen sizes and camera placement,

which we acquire from an Apple document for case designers. Speci�cally, we use the

distance between the camera and the top-le� corner of the screen (in both the horizontal

and vertical directions) as well as the width and height of the screen.

4.3 Architecture

We use deep convolutional neural networks (CNNs; see Section 1.3.4) to make use of

our large dataset. Table 4.1 describes the details of each layer in our CNN, which we will

motivate in this section.

�e conv1 * through conv3 * layers (where the * indicates a di�erent copy for each

image input) are unmodi�ed from the ImageNet [Krizhevsky et al., 2012] architecture.

�is includes pool1 * and pool2 *, which are used to reduce resolution. We choose

these ImageNet layers because our extensive baseline evaluation indicates that they are

useful for representing eye images (see Section 5.2).

�e conv3 * layer is very large, producing 384 di�erent image channels. In conv4 *,
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Figure 4.3: Locations of dots shown to participants,mapped to our prediction space. Axes
measure centimeters from the camera. Brighter areas represent a higher concentration
of dots in our dataset. iPhone screens in three supported orientations and iPad screens
in four supported orientations can be easily distinguished. �e empty area in the center
is indicative of the camera position, since we cannot display dots on the camera.

we use a 1× 1 kernel to avoid spatial convolution while still weighting across all channels.

�is allows the network to selectively combine image channels (while still maintaining

the 2D structure), suppressing those that are less useful for making gaze predictions.
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�e le� and right eye convolutional layers are con�gured to share weights due to the

similarity between the inputs. Furthermore, we concatenate the output from both eyes

immediately a�er the convolution layers (conv4 l and conv4 r).

At this point, we apply fully connected layers to each input pipeline separately. �is

includes the face grid, which is not processed by convolutional layers at all; the input is

simple enough to not require convolution, even though it is 2D. Input pipelines are con-

catenated as shown in Figure 4.1. �is arrangement of fully connected layers being con-

catenated helps combine and compact information from the di�erent inputs. Ultimately,

the �nal fully connected layer produces two output values in our prediction space (see

Section 4.2).

All layers (except for the output layer and non-weighted pooling layers) make use

of recti�ed linear units (ReLUs) to apply an activation function on each neuron’s output.

Also called recti�er, or hinge activation, the function is simple: max(0, x). �is activa-

tion function has been popular in deep learning due to its fast computation, sparse out-

put, e�cient backpropagation, and biological plausibility [Glorot et al., 2011]. Further-

more, in keeping with the ImageNet architecture for our early layers, local response nor-

malization (LRN) is used to help the network generalize from training data [Krizhevsky

et al., 2012].

4.4 Data Augmentation

In the case of certain experiments, we arti�cially increase our dataset size by a factor

of 25. We �nd that this helps prevent over�tting, improve performance, and promote
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Layer Name Type Kernel Size Stride Padding Output Size
conv1 * Convolutional 11 × 11 4 0 96 @ 54 × 54
pool1 * Max Pooling 3 × 3 2 0 96 @ 27 × 27
conv2 * Convolutional 5 × 5 1 2 256 @ 27 × 27
pool2 * Max Pooling 3 × 3 2 0 256 @ 13 × 13
conv3 * Convolutional 3 × 3 1 1 384 @ 13 × 13
conv4 * Convolutional 1 × 1 1 0 64 @ 13 × 13
fc1 e Fully Connected — — — 128
fc1 f Fully Connected — — — 128
fc1 fg Fully Connected — — — 256
fc2 f Fully Connected — — — 64
fc2 fg Fully Connected — — — 128
fc1 Fully Connected — — — 128
fc2 Fully Connected — — — 2

Table 4.1: Layer-by-layer details for the iTracker architecture. * indicates that all convo-
lutional and pooling layers are duplicated for the each input image: le� eye (l), right eye
(r), and the face (f). Likewise, e indicates both eyes, concatenated and fg indicates face
grid. “Output Size” for convolutional and pooling layers is the number of image chan-
nels produced along with their resolution. For fully connected layers, this represents the
number of neurons. Input images are 224 × 224.
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spatial invariance for inaccurate eye detections. We achieve this by pairing �ve di�erent

face detection variants with �ve di�erent eye detection variants. �e �ve variants include

the original detection plus detections shi�ed up, down, le�, and right. �e shi�ed face

detections are moved enough such that the face grid is also shi�ed one column or row.

In this way, the augmentation a�ects all inputs.

In Section 5.4.1, we demonstrate that augmentation is e�ective both for training and

testing. Training on the augmented data improves accuracy on the original test set. Ac-

curacy can be improved further by augmenting test samples, making a prediction from

each variant, then averaging all predictions together. In Section 5.4.1, we show how this

single averaged prediction tends to be better than the prediction from the original sam-

ple alone. Augmented test results require 25 forward passes through the network instead

of just one, but it is a feasible approach for improving real-world accuracy.

4.5 Training

Our primary network is trained on our augmented dataset to maximize accuracy. We

initialize eye ImageNet [Krizhevsky et al., 2012] layers with ImageNet weights, as they

are known to work well (see Section 5.2). We use two di�erent learning rates. First, we

use a learning rate of 0.001 for 0.65 epochs over our augmented data (16.25 epochs relative

to our original data). �en, we step to a learning rate of 0.0001 and continue training for

half the duration of the �rst learning rate (i.e., 0.33 epochs over our augmented data and

8.13 epochs relative to our original data).

We use the open source deep learning framework, Ca�e [Jia et al., 2014], accelerated
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by cuDNN [Chetlur et al., 2014]. Using a single GeForce GTX TITAN X GPU with 12

GB of memory, training takes about 15 hours.

4.6 Truncation

In our setting, we assume that the system is aware of the current device’s orientation

and screen size. �is information is not used to make predictions, but it is required to

map from our prediction space to screen coordinates. While our prediction space should

naturally account for o�-screen gaze predictions, we truncate any such predictions. �is

is done by clamping to the boundary of the screen, both in the x and the y direction.

4.7 Real-Time Inference

As our goal is to build an eye tracker that is practically useful, we provide evidence that

our model can be applied on resource-constrained mobile devices. Our primary model

produces accurate results, but it is too large to run in real time (andwith limitedmemory)

on existing mobile devices. �us, we reduce the size of the network signi�cantly for a

more feasible solution.

While we design the iTracker network to be robust to poor-quality eye detections, we

�nd that tighter crops make the biggest di�erence in network size. Tighter crops reduce

the expectations put on the model to localize the eye and allow lower-resolution images

(non-square crops scaled disproportionately to 80×80) to be used for better performance

(due to signi�cantly fewer neurons needed across all convolutional and pooling layers).

We use facial landmark eye detections [Baltrusaitis et al., 2013] to get these crops, as
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Layer Name Type Kernel Size Stride Padding Output Size
conv1 * Convolutional 5 × 5 2 2 64 @ 40 × 40
pool1 * Max Pooling 3 × 3 2 0 64 @ 20 × 20
conv2 * Convolutional 5 × 5 2 2 32 @ 10 × 10
pool2 * Average Pooling 3 × 3 2 0 32 @5 × 5
conv3 * Convolutional 5 × 5 2 2 64 @ 3 × 3
pool3 * Average Pooling 3 × 3 2 0 64 @ 1 × 1
fc1 e Fully Connected — — — 128
fc1 f Fully Connected — — — 128
fc1 fg Fully Connected — — — 256
fc2 f Fully Connected — — — 64
fc2 fg Fully Connected — — — 128
fc1 Fully Connected — — — 128
fc2 Fully Connected — — — 2

Table 4.2: Layer-by-layer details for the real-time iTracker architecture. �is table is set
up in the same way as Table 4.1. �e fully-connected layers are exactly the same. Input
images are 80 × 80.

used in Zhang et al. [2015]. �is detector takes longer to run than the detector used in

the GazeCapture pipeline, but we �nd the trade-o� worthwhile considering the relative

speedup and accuracy of the smaller network.

We further reduce complexity of the network by decreasing the kernel size and in-

creasing the stride of the convolutional layers. We leave the fully connected layers un-

touched as they are very fast compared to the convolutional layers. Speci�cs of the net-

work architecture can be found in Table 4.2.

Finally, encouraged by the work of Hinton et al. [2015], we apply ideas related to dark

knowledge to train our smaller model. Typically, training is done by optimizing a loss

function which compares the last-layer predictions to the ground truth. We �nd that our
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smaller model struggles to make the same end-to-end connections as our larger model,

resulting in reduced accuracy.

To overcome this, we compute loss by comparing the �nal two layers of our smaller

network to the �nal two layers of our original network (i.e., fc1 and fc2). In this way, we

provide additional supervision to help our smaller network learn the sameway our larger

network did. �is process uses an additional training hyperparameter, which controls the

relative loss between the last layer and the penultimate layer. We �nd that weighting the

penultimate layer to 60% of the �nal layer produced the best results.
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Chapter 5

Experiments

In this chapter, we evaluate the methodologies proposed in Chapter 3 and Chapter 4.

First, we report the makeup of our dataset and analyze the variety. �en, we evaluate

the accuracy of our model in a variety of scenarios. �rough this, we are able to better

understand the importance of data, strengths and weaknesses of our model, and ways to

maximize performance. Overall, we show our key hypotheses to be valid, representing

signi�cant advances to the study of gaze modeling.

5.1 Data Composition and Analysis

We gather GazeCapture recordings from 1025 subjects. See Figure 5.1 for sample frames

(in portrait orientation only). �is represents a signi�cant improvement over existing

datasets, as shown in Table 5.1.

Using a subset of subjects (see Section 5.2), we examine the composition of our dataset.

A demographic survey was given to crowdsourced participants, but it was optional (see
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Participants Poses Targets Illumination Images
McMurrough et al. [2012] 20 1 16 1 videos
Weidenbacher et al. [2007] 20 19 2–9 1 1,236

Smith et al. [2013] 56 5 21 1 5,880
Mora et al. [2014] 16 cont. cont. 2 videos
Sugano et al. [2014] 50 8 + synth. 160 1 64,000
Zhang et al. [2015] 15 cont. cont. cont. 213,659
Huang et al. [2015] 51 cont. 35 cont. videos

Ours 1025 cont. 13 + cont. cont. 1,610,401

Table 5.1: Comparison of our Mobileyes dataset with other publicly available datasets.
Mobileyes has approximately 20 times as many participants as the largest existing
datasets. Furthermore, it contains a signi�cant amount of variation in pose and illu-
mination, as it is recorded via crowdsourcing without human supervision. We use the
following abbreviations: cont. for continuous and synth. for synthesized.

Section 3.3.1); thus, we use human annotations on this subset. Of the 787 subjects—393

male and 394 female—142 were wearing glasses. �ere were 664 iPhone users and 123

iPad users. We examine the impact of this iPhone–iPad imbalance in Section 5.4.3.

We wish to show that our dataset o�ers more variation than other datasets. Since

we ask subjects to move their heads around during the recording, we expect to see more

variety in head pose. As is done in MPIIGaze [Zhang et al., 2015], we estimate head

pose (h) to compare the range of variation of our dataset with other datasets. We also

compare the range of gaze direction relative to head pose (g). Results, shown in Figure

5.2, indicate more variety over both h and g. We also observe this variation qualitatively

with an animated version of Figure 5.1.
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Figure 5.1: A preview of random frames (the �rst recorded in portrait orientation) from
our Mobileyes dataset. Note the signi�cant variation in illumination, head pose, appear-
ance, and background. �is variation allows us to learn robust models that generalize
well to novel faces.
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Figure 5.2: Distribution of head pose h (1st row) and gaze direction g relative to the head
pose (2nd row) for datasets TabletGaze [Huang et al., 2015], MPIIGaze [Zhang et al., 2015]
and Mobileyes (Ours). All intensities are logarithmic.

5.2 Setup and Baselines

In this, and following sections, we explore in-depth the performance of our model in

terms of mean error. Traditionally, eye tracking solutions measure gaze prediction er-

ror in an eye-centric manner using angular deviation, measured in degrees. In such a

scenario, gaze is thought of as a 3D vector indicating the direction in which the eye is

pointing. �ese 3D predictions can be made for both eyes, then intersected with the

screen and averaged to infer the point of regard.

In our end-to-end model, we expect predictions to be made directly on the screen
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plane, so like other similar approaches (e.g. Huang et al. [2015]), we primarily evaluate

error in the 2D domain. Speci�cally, we measure the error in centimeters to compare

across di�erent screen coordinate systems. We also predict error in degrees for com-

parability with other angular gaze measurements. �is is done using estimates of eye

position relative to the device in 3D space.

For our experimental results, we make use of the TabletGaze dataset [Huang et al.,

2015] and 787 subjects with complete uploads from our Mobileyes dataset.

On the TabletGaze data, we use the same 41 subjects used for the evaluation inHuang

et al. [2015] (with the exception of one subject recording which was unavailable at the

time). We randomly select eight subjects for testing and use the remaining 32 for training.

Eye crops are obtained using the samemethod as Huang et al. [2015] and head detections

are inferred from the geometry of the eyes.

For our Mobileyes dataset, we select 789 subjects, but two of the subjects are in such

dark conditions that the eye detector provides no detections. �e recording is stopped

if no face is detected during a dot recording, but the face detector used is very robust

to low illumination. �us, of the remaining 787 subjects, 80 subjects are held out for

testing and the other 707 are used for training. We eliminate frames lacking either face

detections (7.8% of selected frames) or eye detections (39.6% of selected frames) leaving

884,216 frames.

We do not discard any subjects with high failure rates on the attentiveness task (see

3.1.2). Dots with an incorrect response are recorded again in the app andwe do not notice

signi�cant correlation between a subject’s failure count and their mean error.

We evaluate recent work and some näıve approaches using the TabletGaze dataset.
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Insights from this comparison are used to guide the design of our model. Some key

baseline results are highlighted in Table 5.2.

Notice the state-of-the-art performance using only features from ImageNet [Krizhevsky

et al., 2012], a deep CNN that was trained to perform a completely di�erent task (object

classi�cation)! In this way, features from the ImageNet conv3 layer can be considered

to be good generic feature descriptors. �is approach is unwieldy to train due to the

large size (64,896 dimensions) of the conv3 layer (even on a machine with 220 GB of

main memory). To train the SVRmodel with two eyes from conv3 plus face features, we

modify the liblinear [Fan et al., 2008] source code to work with a smaller data type.

Baseline Method Error (cm)
TabletGaze (as reported in Huang et al. [2015],
using leave-one-out cross validation) 3.1
TabletGaze [Huang et al., 2015] 4.04
MPIIGaze [Zhang et al., 2015] 3.63
TurkerGaze [Xu et al., 2015] raw pixel features + SVR 4.77
Center 7.54
ImageNet [Krizhevsky et al., 2012] features
(eyes (conv3), face (fc6), and face grid) + SVR 3.09

Table 5.2: Baseline approaches using our train/test splits on the TabletGaze [Huang et al.,
2015] dataset (unless otherwise speci�ed). In Section 5.6, we show howwe use ourmodel
to achieve an error of 2.80 cm on TabletGaze data. See Table A.1 for an extended version
of this table.

5.3 Error Metrics

Our standard evaluation metric is the mean Euclidean distance between the predicted

location and the ground truth location (in 2D).We also evaluate x and y error separately.
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Regardless of device orientation, x describes horizontal error and y describes vertical

error in physical space. Unless otherwise noted, all measurements are in centimeters.

While our model works on each sample independently, real-world applications may

use a video stream, which is likely to have a strong correlation between temporally-local

frames. In such scenarios, solutions such as temporal smoothing (e.g., the Kalman �lter)

can help improve both error and the perceived stability of the system. As a rough esti-

mate of the improvement potential, we incorporate a metric we call dot error. For this

metric, we use ground truth labels to average all predictions for a single dot (and a single

participant) together before computing error. �e use of ground truth data limits the

practicality of this metric in a real-world environment, but it provides valuable insight

into the stability of our system.

5.4 Model Results

We evaluate our model using our held-out Mobileyes test data. By comparing di�erent

variants of our model, we show the relative merit of the design decisions outlined in

Chapter 4. Although we design for a fully unconstrained solution, we also explore ways

to improve our model in di�erent settings.

5.4.1 Data Augmentation

iTracker was trained on the augmented Mobileyes dataset (see Chapter 4). In Table 5.3,

we show the bene�t of augmentation during training (compare “no augmentation” with

“augmentation on train”). We also show how error can be improved by augmenting test
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Model Error x Error y Error Error (deg.) Dot Error
iTracker, no augmentation 2.46 1.41 1.69 2.53 2.21
iTracker, augmentation on train 2.22 1.21 1.58 2.37 2.07
iTracker, augmentation on train/test 2.16 1.17 1.54 2.30 2.06
iTracker, augmentation on train/test
with device �ne-tuning 2.05 1.13 1.44 1.61 1.89

Table 5.3: Results for our uncalibrated iTracker predictions. Fine-tuning results are de-
scribed in Section 5.4.3; other results are described in Section 5.4.1. All error measure-
ments are in centimeters unless otherwise speci�ed.

samples, then averaging multiple network outputs to produce a single prediction (see

Section 4.4; referred to as “augmentation on test” in Table 5.3).

5.4.2 Calibration

Eye tracking error can be improved on a per-user basis through calibration. By collecting

ground truth samples of the user looking at a known location, the system can be tuned to

an individual. Typically, calibration is a formal procedure, although incognito calibration

may be applied in certain contexts.

We apply calibration for all subjects in our test set using 13 �xed dot locations (de-

picted in Figure 3.1). Along with random dot locations, the GazeCapture app displays

these 13 dots in each recorded orientation. We train a support vector regression model

[Fan et al., 2008] using features extracted from the penultimate layer of our network

(fc1). All samples (augmented by a factor of 25 as described in Section 4.4) at calibration

points are used for training. All samples at non-calibration points are used for evaluation

(not augmented).
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Calibration Points Error (cm) Dot Error (cm)
4 2.30 2.30
5 2.10 1.97
9 1.92 1.72
13 1.82 1.64

Table 5.4: E�ect of calibration on error using ourmodel. �e error reduces asmore points
are used for calibration.

In Table 5.4, we show improved performance a�er each user goes through a 13-point

calibration. We also evaluate subsets of the 13 points: border dots and the center dot (nine

dots), corner dots and the center dot (�ve), and only corner dots (four). �e evaluation

set remains �xed throughout (i.e., all points not at one of the 13 calibration locations).

5.4.3 Device Fine-tuning

Training a single model to make predictions for di�erent device types is convenient and

hopefully more generalizable to new domains; however, in many cases, optimizing a

model to one speci�c device would be a feasible way to reduce error. We �ne-tune seven

copies of our model to optimize performance for each device type in each supported ori-

entation. We start with our model that was trained on multiple device types, and resume

training again using only samples for the speci�c device and orientation.

Results are shown in Table 5.3 and Table 5.5, with averaged augmented predictions in

the test set. iPhone error improves to 1.88 cm and iPad improves even more, to 3.53 cm.

We analyze these results further in Section 5.5.2.
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Data Split Error Error (deg.) Dot Error
iPhone Portrait 1.99 2.15 1.84
iPhone Landscape (Camera on Le�) 1.86 2.06 1.67
iPhone Landscape (Camera on Right) 1.78 1.97 1.62
iPad Portrait 3.08 2.95 3.26
iPad Portrait Upside Down 4.02 3.73 3.60
iPad Landscape (Camera on Le�) 3.55 3.65 3.48
iPad Landscape (Camera on Right) 3.45 3.29 3.58
Weighted average: 2.05 1.61 1.89

Table 5.5: Results for our iTracker model �ne-tuned to speci�c devices/orientations.

5.5 Model Analysis

In this section, we analyze various aspects of our model and its relationship to our data.

By exploring the results in detail, we gain a better understanding of howourmodelworks.

We also explain how we can leverage our insights to improve performance.

5.5.1 Dataset Size

We use crowdsourcing to collect data because of its potential to reach a large number

of subjects. We distinguish this from the goal of simply collecting a large number of

samples (e.g., Zhang et al. [2015]). Indeed, as shown in Table 5.3, augmenting the number

of samples (even arti�cially) is valuable in terms of reducing error, but we argue that the

number of subjects is even more important.

To validate this claim, we train ourmodel from scratch on di�erent subsets of data. In

Figure 5.3, we grow one subset by the number of samples per subject (keeping the number

of subjects �xed) while we grow the other subset by the number of subjects (keeping the
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number of samples per subject �xed). In both cases, our �xed test set is used to compute

error. Figure 5.3 demonstrates a clear advantage to collecting data from many subjects.

In the same �gure, we also show the overall trend in adding participants to our

dataset. �e initial impact is largest, but we are encouraged that continued crowdsourc-

ing of data could continue to have a positive e�ect on our model.
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Figure 5.3: Dataset size is important for achieving low error. Speci�cally, growing the
number of subjects in a dataset is more important than the number of samples, which
further motivates the use of crowdsourcing.

5.5.2 Error Maps

To better understand the source of error in our model, we plot a heat map (see Figure

5.4) of error at di�erent spots in our prediction space. From this �gure, we observe that

the error is highest where the dot is farthest from the camera (which is in the white area

in themiddle of the plot). While there are theoretical explanations for inaccuracies at the
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extremities [Hansen and Ji, 2010], we suspect insu�cient training data to be the primary

cause. �ese areas are only covered by iPad samples, which account for only 15.6% of our

entire dataset. �is lack of iPad data, particularly in the test split, is visible in the patchy

nature of the plot.
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Figure 5.4: Error across the prediction space, plotted at ground truth location. We ob-
serve that the error near the camera tends to be lower as the darker regions correspond
to the iPhones, for which we have signi�cantly more data. �e outer parts with greater
error correspond to the iPads, where our data is rather limited. Error is clamped to 10
(i.e., error = min(error, 10)) to show more color variation on the low end of the scale.

We con�rm a disparity between iPhone and iPad prediction quality by evaluating
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error separately. Whereas, for the entire dataset, the mean error (averaging augmented

test predictions) is 2.16 cm (see Table 5.3), iPhone error is 1.94 cm, and iPad error is 4.14

cm. �is can be explained by the network learning to prefer predictions close to the

camera due to the infrequency and high prediction error of points farther away.

In Section 5.4.3, we show how �ne-tuning to speci�c devices and orientations can be

helpful; however, iPad error is still signi�cantly worse. �e most improvement is likely

to come from collecting additional iPad data.

5.5.3 Best andWorst Samples

In Figure 5.5, we visualize samples which have the lowest and highest prediction error.

We only select one sample for a given dot due to the high correlation between frames;

however, subjects may appear multiple times. Best-scoring samples are on the top row

and the worst-scoring samples are on the bottom row. We observe that the worst-scoring

samples tend to have severe variation in lighting conditions, heavy blur, and reections

from glasses. Furthermore, they tend to have head poses which occur less frequently in

our dataset for a given gaze point.

Figure 5.5: Samples with the lowest (top row) and highest (bottom row) prediction error
in our dataset. Only one sample is shown for a given dot, as we assume strong correlation
between frames. Both rows are sorted from lowest error to highest error. For the worst-
scoring samples (bottom row), notice the extreme examples of poor illumination, blur,
reection from glasses, and head pose.
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5.5.4 Error Visualizations

We also visualize individual predictions alongside their associated ground truth points

and input frames to better understand how our model works. See Figure 5.6 for select

samples and predictions from our original model (with augmented training data only;

see Section 5.4.1) and our �ne-tunedmodel (for speci�c devices/orientations; see Section

5.4.3).
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Figure 5.7: We �nd that the amount
of subject head motion is related to
their average error. Head motion
is computed by averaging the vari-
ance of estimated head yaw and the
variance of estimated head pitch.

�rough this analysis, we gain many insights.

First, we estimate human accuracy to be low, espe-

cially without the context of other similar frames.

�is demonstrates the di�culty of unconstrained

gaze estimation. We also notice how certain sub-

jects have certain trends in the error (e.g., bias to-

wards the center of the screen or towards the cam-

era). Some of these can be explained visually (e.g.,

closed eyelids o�en produce predictions lower on

the screen); in such cases, the value of calibration

is clear (see Section 5.4.2).

5.5.5 Per-subject and Per-device Analysis

To better understand which characteristics of a participant make for better or worse re-

sults, we analyze di�erent user traits. In Figure 5.7, we showhow the relationship between

the amount of headmotion (quanti�ed by the averaged yaw and pitch variance produced

by the head pose model of Zhang et al. [2015]) and mean error for a subject.
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Figure 5.6: Error visualizations for select subjects in our test set. Black dots are at
ground truth dot locations while red dots are predicted locations. �e screens are mir-
rored so that subjects appear to look at the dots. Nine calibration points are used for
ground truth locations and the associated input frames are shown in the same relative
position to the le� of the devices. �e le� device shows predictions from our original
iTracker model (trained on augmented data, but not tested on augmented data; see Sec-
tion 5.4.1). �e right device shows predictions from our �ne-tuned model (for speci�c
devices/orientations; see Section 5.4.3). �e top subject achieved a mean error of 1.32
cm on an iPhone 5c. �e bottom subject achieved a mean error of 3.64 cm on a fourth-
generation iPad.
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Average subject error (without calibration) ranges from 1.00 cm to 7.81 cm with a

median of 2.08 cm. As expected (see Section 5.5.2), nearly all iPad users score poorly,

although the best iPad error is 2.09 cm. �e top three subjects with lowest prediction

error all use an iPhone 5c, although other iPhones achieve a better overall average. A

larger test set would be necessary to make further observations regarding speci�c device

models.

5.5.6 Ablation Tests

We perform ablation tests on our model to understand the importance of the various

inputs. We remove the di�erent inputs, one at a time and observe their impact on the

performance. Whereas our fullmodel achieves an error of 2.16 cm (seeTable 5.3), training

without a face image increases the error to 2.21 cm, and training without a face grid yields

an error of 2.38 cm. �is demonstrates the importance of each input for optimizing the

accuracy of our model and its ability to integrate information from a variety of disparate

sources.

5.5.7 Network Visualizations

We can gain some additional insight regardingwhat and how the network has learned by

visualizing di�erent layers of the network. In Figure 5.8, we show the progression of le�

eye inputs from an early layer (pool1 l, on the top row) to a later layer (conv4 l). We

generate these images by examining the output of the selected layers while feeding images

in our test set through our CNN. We save, normalize, and display the output that causes

the maximal activation (i.e., the highest sum over all neurons) for selected channels.
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Figure 5.8: Visualization of network lay-
ers pool1 l (top row) and conv4 l

(bottom row). �ese images are the nor-
malized output of select neurons in the
selected layers. �e samples fed through
the network are from the test set and we
display only those which maximally ac-
tivate the selected neurons.

We observe that the early layer helps to de-

�ne important edges in the image. In the later

layer (with lower-resolution images), we see

indication in some channels that the pupil has

been localized along with some key reference

points on the eye. �is information can help

inuence future network design changes (e.g.,

reducing or increasing the number of outputs

for a certain layer).

5.6 Generalization Ability of iTracker Features

As we have shown, our deep CNN model is well-suited for using our data. We propose

that our model has also learned in a way that generalizes well to new data.

To demonstrate this, we return to the TabletGaze [Huang et al., 2015] dataset. Due to

the di�erences in the device used (and without exact measurements of the hardware), we

do not expect our predictions to be immediately useful. However, we propose the use of

the penultimate layer of our model (fc1) as a generic eye feature representation.

Because TabletGaze uses very tight eye crops, we expand the bounding box to reect

the type of input provided to our model. �en, a�er generating the other necessary in-

puts, we extract the fc1 features for each sample. Training samples are used to train a

support vector regression (SVR) model [Fan et al., 2008]. With an average prediction

error of 2.80 cm, the results of our model surpass all other baselines using TabletGaze
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data. �us, our model—even though trained on our own data—proves generally useful

for gaze-related tasks.

5.7 Real-Time Inference

In Section 4.7, we describe how we can reduce the complexity of our model to improve

performance in the resource-constrained environments associated with mobile devices.

First, we justify the need formodel optimization by timing our full iTrackermodel. A sin-

gle forward pass takes on average 215 ms on a GPU. On a mobile device, where resources

are far more constrained, this model’s performance could not pass as “real-time.”

By producing tighter crops and thus, smaller images, we gain signi�cant improve-

ment on our model execution time. Another key component is the adjustments made to

the architecture; the original model has 8,152,602 parameters while the optimized model

has only 589,666 parameters. With these changes, the single forward pass time is reduced

to only 14 ms on a GPU. All this is done while maintaining an average of 2.83 cm predic-

tion error. Without using dark knowledge [Hinton et al., 2015], the network takes longer

to train and achieves 2.86 cm of error.

To derive an inference regarding on-device performance, we consider a deep learning

framework optimized for iPhone (“Jetpac” with “DeepBeliefSDK”). �ey claim they can

process an image through ImageNet [Krizhevsky et al., 2012] in under 300 ms on an

iPhone 5s. Given that our model has approximately 100 times fewer parameters than

ImageNet, we estimate an on-phone running time of no more than 50 ms.

Additional time is required to detect tighter crops, but integrated into our Gaze-
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Capture pipeline, we �nd that the OpenCV detector (used to provide tight crops in

TabletGaze [Huang et al., 2015]) can be run on an iPhone in under 15ms on average. �us,

with a total of 65 ms required to process each frame, we estimate that we can achieve a

frame rate of 15 frames per second using existing mobile technology. Furthermore, be-

cause the number of parameters in the network is signi�cantly reduced, the memory

footprint is far more reasonable than our original model.
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Chapter 6

Conclusion

Eye tracking has a long history. Solutions for measuring and recording eye movements

date backmultiple centuries. Interest in studying eye movements goes back even further.

With each advance, the ability to study and build on eye movements has improved. �is

work represents another step forward for eye tracking—hopefully one that will advance

interest, research momentum, and practical applications.

We introduced an end-to-end eye tracking solution targeting mobile devices. First,

we showed how a large-scale dataset could be collected via crowdsourcing. Crowdsourc-

ing has never before been applied to collecting ground truth gaze data. We analyzed the

resulting dataset to show how our collection methodologies produced data with good

variety. We also showed how collecting data from more subjects was more important

than simply collecting more data. �is dataset represents a key contribution by virtue of

its size, variability, and type of data (e.g., full camera frames, motion data).

�is data was then used to train a novel deep learning model that was designed to
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make accurate predictions in real-world conditions. �e model is unique in its ability

to learn from large-scale data. By not relying on hand-engineered features, we allow the

model to learn the best representation possible. We evaluate the strengths and weak-

nesses of our model through a thorough evaluation and we demonstrate ways to reduce

error even further. Finally, we consider ways to bolster performance, enabling real-time

performance on existing mobile technology.

6.1 FutureWork

�econtributions of this work have an immediate impact—gaze predictions can bemade

from images in an unconstrained setting with unrivaled accuracy. Inmanyways, though,

we anticipate the value of this work will be fully realized through future work building

on our data and methodologies.

6.1.1 Reducing Error

In a qualitative evaluation of the TabletGaze model [Huang et al., 2015] which has an

average error rate of over 3 cm, the observed accuracy in an unconstrained setting is still

impressive. Relatively large targets (e.g., the screen divided up into four quadrants) could

be hit with high accuracy, which may be enough for some applications; however, many

applications require more accuracy. For example, to identify a standard app icon on a

mobile phone, we estimate the average error should be well under 1 cm.
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More Data

Our model hasn’t achieved our desired error rate yet, but the plan to improve it is clear.

As shown in Figure 5.3, collecting more data is a simple and reliable way to reduce error.

We plan to continue crowdsourcing data as we have been. Focusing on recruiting partic-

ipants with iPads (of which we have relatively few) will likely have the largest immediate

impact due to the steep rate of change early on in collecting additional subjects.

�e promising results from this work will likely make funding future data collection

easier; however, recruiting participants requires considerable e�ort. Managing incoming

data and addressing the problems and concerns of participants requires oversight. Fur-

thermore, evenwith an incentive, �nding a populationwithwilling participants and valid

devices can be di�cult. We plan to explore crowdsourcing services other than Amazon

Mechanical Turk and possibly promote the research where others may be interested.

6.1.2 Blink Detection

Many gaze estimation models (e.g., [Huang et al., 2015]) detect and remove closed eyes

as a preprocessing step. For our model, we do not remove blinks. Blinks comprise a very

small percentage of our overall dataset and we expect our model to treat such samples

as noise during training. We propose that the ideal solution would be to incorporate a

blink detector into our end-to-endmodel. In this way, we can avoid adding an additional

detection step to the pipeline, and we expect our model should be able to achieve higher

accuracy thanmany existing blink detectionmodels, given our volume of data. Naturally,

we would �rst need to acquire ground truth labels for blinks.
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Better Architecture

Another way to improve our results is by tweaking the model. From tweaking the learn-

ing hyperparameters to experimenting with new architectures, we anticipate improve-

ments could bemade. A deeper analysis of what the network is learning could help guide

these improvements. For example, if we were to determine that only certain neurons

were actually useful in producing predictions, we could strategically reduce the size and

complexity of the model.

Temporal Domain

Additionally, the model could be reworked to operate in the temporal domain. Whereas

our current model works on an image-by-image basis (making independent predictions

for each input) the expected usage is in a video setting. We expect multiple correlated

predictions will bemade back-to-back, so we recommend the use of temporal smoothing

(see Section 5.3).

Perhaps a better approach though, would be to design the model such that it can

learn temporal patterns in gaze data. Recurrent neural networks (RNNs)— speci�cally,

long short-term memory networks (LSTMs)—have had much success as deep learning

approaches to modeling temporal data. Such a network could be added to the end of our

existing model or integrated directly. In this way, we anticipate our model could achieve

an error rate more like that of the dot error described in Section 5.3 without using ground

truth data.
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Motion Data

In our dataset, we collect motion data from the sensors built into many modern mobile

devices. Currently, we do not make use of that data in our model. �e reasoning behind

collecting such data was the thought that it might help describe the pose of the camera

and thus better help gaze predictions. We could use this data as an additional input to our

model, although it is somewhat of a deviation from our original goal of a camera-only

approach. With additional data we expect the face input to be a strong predictor of head

pose relative to the camera.

6.1.3 Expanding to Other Domains

Another goal is to extend our dataset andmodel beyond iPhones and iPads. Othermobile

phones and tablets on themarket could be used as well as webcams on laptop and desktop

computers. Ultimately, we want our approach to generalize to work on any device.

A key challenge with this is dealing with the di�erent poses of a camera relative to the

screen, particularly if the webcam is not built into (and thus oriented perpendicular to)

the screen. Determining screen size may be di�cult in a generalized setting, particularly

with crowdsourcing, but with a one-time calibration process, we could learn all necessary

parameters. Generalizing beyond any speci�c set of deviceswouldmake for an evenmore

useful all-purpose model.
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6.1.4 Software Library

Once we achieve the desired error rate, we would like to �ne-tune the performance (in

terms of the computation and memory footprint) to build a live working demo of the

model. We motivate this in Section 4.7 but we could perform a more in-depth and in-

sightful analysis with a real on-device implementation. �e plan would be to release the

implementation as an open source so�ware library. In this way, we anticipate developers

and researchers will take this research beyond what we could imagine.

6.1.5 Theoretical Limits

As error decreases, we must start considering the theoretical limitations of our system.

�e primary issue is the quality of the ground truth labels in our dataset. First, even

though we implement a quality control system that veri�es that the participant saw each

dot (see Section 3.1.2), it provides no guarantee. With a 50% chance of passing the veri-

�cation task, a participant could get away without looking at the dot at all. Even a well-

intending participant may grow uninterested in the task and inadvertently learn to look

away until the time when the letter ashes. Furthermore, even with an attentive user,

covert attention and �xational eye movements (see Section 1.2) may cause the eye posi-

tion to be misaligned with the �xation point.

One solution would be to use a di�erent approach to data collection. We believe the

speed of our process and the volume of our data yields a high signal-to-noise ratio useful

for training our model. We expect deep learning to deal with noisy samples well. How-

ever, even with a perfect system, the noise would show up as error during evaluation,

so a di�erent approach for evaluation could be useful. Such a dataset could make use of
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reliable subjects to self-report �xations, as is suggested for calibration in Blignaut et al.

[2014]. Inattentiveness, covert attention, and even �xational eye movements can be con-

trolled voluntarily [Engbert and Kliegl, 2003]. �is dataset would likely be smaller due

to the challenge of �nding reliable participants and may not accurately reect an uncon-

strained setting, but is a worthwhile consideration for accurate error measurements.

6.2 Closing Remarks

�e applications of unconstrained real-time eye tracking are far-reaching. By working

to remove limitations of mainstream eye trackers, we hope to enable eye tracking for

everyone. �is would inspire innovators in ways we cannot imagine today; however, we

are certain it would result in more novel data-driven solutions. Following the historical

trend, we expect it would further progress our understanding of the the human visual

system.

�ough eye tracking has been around for centuries, we believe that this work will

stand out as a landmark in the era of big data. We also hope our model and data will

serve as a benchmark for the next generation of eye tracking solutions. Ultimately, the

hope is that this work will enable the widespread use of eye tracking for a variety of novel

applications never before possible.
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Appendix A

Extended Results

Our iTrackermodel architecture is inspired by the results of an extensive baseline analysis

(see Section 4.3). Certain key results are presented in Table 5.2, but we present all results

in this appendix (Table A.1).

We observe that features from the conv3 ImageNet [Krizhevsky et al., 2012] layer

produce the best results compared to earlier (e.g., pool2) or later (e.g., conv4) layers.

Also, we �nd that these approaches do not make much use of our face grid input (see

Section 4.1) while it is important to our model (see Section 5.5.6).
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Model Error (cm) x Error (cm) y Error (cm)

Published Models

Ours 2.80 1.56 1.99

TabletGaze 4.04 — —

TabletGaze (leave-one-out cross validation) 4.05 — —

MPIIGaze 3.63 — —

TurkerGaze raw pixel features (normalized) 1 4.77 2.96 3.12

Naı̈ve Baselines

Center 7.54 5.78 3.80

Gaussian with truncation (σ = 0.2) 8.75 6.75 4.40

Uniform random 10.02 7.70 4.95

ImageNet Le� Eye (no truncation, no bias term)

fc6 (c = 0.01, no normalization) 5.00 3.67 2.68

fc7 (c = 0.1, no normalization) 5.24 4.00 2.62

fc6 (c = 1) 4.92 3.64 2.60

fc7 (c = 100) 5.20 3.98 2.58

fc6 with ridge regression (λ = 1000) 22.08 7.18 20.11

fc7 with ridge regression (λ = 0.01) 15.43 5.27 14.01

ImageNet Le� Eye (no truncation)

fc6 (c = 1) 4.90 3.61 2.61

fc7 (c = 1000) 5.20 3.99 2.57

ImageNet Le� Eye

conv3 (c = 100) 3.89 2.63 2.33

1Using SVR (c = 1000, vs. only 0.0001 and 1)
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conv4 (c = 10000) 3.93 2.69 2.32

pool5 (c = 1) 4.27 2.98 2.46

fc6 (c = 10000) 4.83 3.56 2.55

fc7 (c = 1000) 5.17 3.97 2.54

ImageNet Right Eye

conv3 (c = 10000) 3.64 2.38 2.24

conv4 (c = 1000) 3.68 2.42 2.24

pool5 (c = 1) 4.15 2.82 2.43

fc6 (c = 1) 4.76 3.46 2.55

fc7 (c = 100) 4.91 3.63 2.57

ImageNet Le� Eye and Right Eye Concatenated

conv3 (c = 1) 3.11 1.90 2.03

fc6 (c = 10) 4.11 2.81 2.40

fc7 (c = 100) 4.43 3.21 2.39

ImageNet Le� Eye, Right Eye, and Face Grid Concatenated (face grid not normalized)

fc6 (c = 100) 4.13 2.86 2.38

fc7 (c = 10000) 4.69 3.42 2.51

ImageNet Le� Eye, Right Eye, and Face Grid Concatenated

pool2 (c = 1) 3.18 1.92 2.10

conv3 (c = 1) 3.11 1.90 2.03

fc6 (c = 100) 4.03 2.73 2.38

fc7 (c = 10) 4.33 3.08 2.40

ImageNet Le� Eye, Right Eye, Face Grid, and Face Concatenated

le�/right conv3, face conv3 (c = 10) 3.29 2.03 2.12
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le�/right conv3, face conv4 (c = 1) 3.31 2.01 2.18

le�/right conv3, face pool5 (c = 10) 3.13 1.78 2.17

le�/right conv3, face fc6 (c = 1) 3.09 1.90 2.01

Table A.1: All baseline results used to inspire and evaluate our model. All results make
use of our train/test splits on the TabletGaze [Huang et al., 2015] dataset (unless oth-
erwise speci�ed). Further, unless otherwise speci�ed, ImageNet approaches use L2-
normalized features, support vector regression (SVR), the best parameter chosen from
{0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000}, and truncated predictions.
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