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ABSTRACT 

 Aflatoxin accumulates in peanut seeds in the field (pre-harvest) or during storage (post-

harvest) as a result of Aspergillus spp. infection. It is one of the most challenging diseases for 

peanut as toxin biosynthesis is dependent on environment, which makes identification of 

resistant genotypes difficult. Therefore, this study was carried out to discover genetic factors and 

biochemical pathways that underlie resistance to postharvest aflatoxin contamination of 

cultivated peanut. 

Since accumulated evidence supports the importance of the lipoxygenase (LOX) gene 

superfamily in plant defense against many diseases, LOX genes of cultivated peanut were 

identified. In addition, functional classification, evolutionary analysis, and in-depth expression 

analysis were carried out. Moreover, the expression responses to different diseases including 

aflatoxin contamination were estimated. 

 To identify resistant genotypes, a protocol of tracking and assaying the A. flavus infection 

and the subsequent aflatoxin accumulation was developed using a GFP-expressing strain. In 

addition, a phenotyping tool was designed, designated SICIA (Seed Infection Coverage and 

Intensity Analyzer) using a Matlab script. The application of this protocol combined with 



different statistical models enabled the identification of a highly reliable resource for resistance 

in cultivated peanut. Moreover, this approach allowed differentiation between the genotype 

response to A. flavus infection and the ability to accumulate aflatoxins. 

 Genetic mapping of putative resistance genes requires DNA sequence variation. Since 

cultivated peanut is tetraploid, extracting true SNPs directly from next generation sequencing 

data using currently available filtering tools is challenging. Therefore, a machine learning tool 

for refining SNP calling from sequence data of polyploids was designed, designated SNP-ML. 

 RNA-seq analysis was carried out for A. flavus-infected resistant and susceptible peanut 

genotypes to determine the factors associated with the resistance response for aflatoxin 

accumulation in cultivated peanut. An R package was designed to conduct KEGG enrichment 

analysis for polyploids, designated keggseq. The application of this package revealed the 

importance of alpha-linolenic acid and protein processing in the endoplasmic reticulum in the 

resistance response. The analysis also included application of different tools for differential 

expression analysis of time course experiments, expression clustering, GO enrichment analysis, 

de novo assembly, annotation and co-expression network analysis. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

Peanut, or groundnut, (Arachis hypogaea) is one of the most important oilseed crops. 

Almost 50% of the peanut seed is oil. In addition, seeds are rich in protein (26%). Peanuts have a 

wide range of uses, e.g., peanut butter, cooking oil, candies, biscuits, peanut flour and coffee, and 

are used in a wide range of products, e.g., laxatives, atopic dermatitis treatment, shampoos, 

lotions, creams and soaps, stains, inks and paper (Roth 1991; Floyd et al., 2000; Paller et al., 

2003; Mattes 2005; Shastry et al., 2009; Seo et al., 2013), George Washington Carver developed 

almost 300 peanut products (Burchard 2005). Moreover, peanut was the first source of biofuel 

(Knothe 2001) and it has a high biofuel production; one peanut acre produces 90 gallons of 

biofuel (Brown 2006). However, it is used rarely as a bioenergy crop since it is an expensive 

resource as compared to other crops such as flax, sunflower, or soybean.  

Cultivated peanut is an allo-tetraploid (2n = 4x = 40) that was formed from spontaneous 

doubling of a cross between two diploid species, i.e., A. duranensis and A. ipaensis (Seijo et al., 

2004). The two sub-genomes are very similar (Bertioli et al., 2015), which increases the 

difficulty of finding genetic factors underlying economic traits or disease resistance. 

Peanut production faces numerous diseases such as leaf spots, nematode infection and 

aflatoxin contamination. However, the latter is the most challenging disease since it is very 

sensitive to the environmental conditions as the climate directly influences the fungal community 

structure and quantity of aflatoxin produced by aflatoxin-producing fungi, and indirectly affects 

fungal interaction with a plant during development or due to wounding from insects (Cotty and 
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Jaime-Garcia, 2007). Aflatoxin is an acutely toxic, carcinogenic and immune-suppressive class 

of mycotoxins that affects domesticated animals and humans (Scheidegger and Payne, 2003) and 

is produced as a secondary metabolite (Diener et al., 1987) upon Aspergillus spp. (A. flavus and 

A. parasiticus) infection. A. flavus is an ascomycetous fungus that can infect humans, plants, 

animals and insects (Klich 2007). The fungus may infect peanut and accumulate aflatoxin in the 

field (pre-harvest aflatoxin contamination) or during storage (post-harvest aflatoxin 

contamination). Drought-tolerant genotypes, or irrigation combined with good management 

practices may reduce pre-harvest aflatoxin contamination since drought conditions are highly 

correlated with aflatoxin accumulation (Holbrook et al., 2000a; Nigam et al., 2009). However, 

improving breeding lines for resistance to post-harvest aflatoxin conamination is required 

especially in developing countries as they lack good storage conditions and aflatoxin testing is 

irregular. Therefore, finding genetic factors controlling A. flavus infection and aflatoxin 

contamination for harvested peanut is important.  

Lipoxygenase importance for plant defense of Aspergillus spp. infection and other 

diseases 

Lipoxygenases (LOX) are a gene superfamily encoding dioxygenases that catalyze the 

addition of molecular oxygen atoms to polyunsaturated fatty acids. Accumulated evidence stated 

the importance of LOXs in plant defense (Porta and Rocha-sosa, 2002). Some LOXs were 

observed as positive effectors in resistance while others were found to contribute to susceptibility 

(Kumari et al. 2012; Muller et al., 2014). 

LOXs play an important role in Aspergillus spp. infection and aflatoxin contamination of 

peanut. However, the exact role is not clear since the response of LOXs to these fungi is 

controversial. The first recognized peanut LOX, PnLOX1, had a positive regulation with the 
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infection by A. parasiticus (Burow et al., 2004). However, two other subsequently described 

LOXs, PnLOX2 and PnLOX3, showed negative regulation upon infection by A. flavus 

(Tsitsigiannis et al., 2005). On the other hand, there is evidence that PnLOX2 and PnLOX3 are 

expressed in different patterns when resistant and susceptible varieties of peanut are compared 

under normal and infection conditions. Kumari et al. (2012) found that PnLOX2 was expressed 

in a resistant genotype with and without infection and an uninfected susceptible genotype 

whereas PnLOX3 only was expressed in the infected resistant genotype. Muller et al. (2014) 

observed that both PnLOX2 and PnLOX3 are up-regulated in a susceptible genotype and down-

regulated in a resistant genotype 27 hours post-infection by A. flavus. In addition, they found that 

PnLOX4 and PnLOX5 are up-regulated in the resistant genotype and down-regulated in the 

susceptible 20 and 5 hours post-infection, respectively. However, the expression pattern reversed 

27 and 48 hours post-infection, respectively. 

Although aflatoxins produced in soybean seeds infected by A. flavus is much lower than 

for peanut (Bean et al., 1972), volatile aldehydes that are formed by the lipoxygenase pathway in 

soybean were found to inhibit A. flavus growth and the subsequent aflatoxin contamination 

(Doehlert et al., 1993; Boue et al., 2005). On the other hand, lipoxygenase-derived linoleic acid 

derivatives, 9S-HPODE and 13S-HPODE, stimulate morphological differentiation of A. flavus 

and A. parasiticus (Calvo et al., 1999). 

Additionally, considerable evidence in the literature supports the involvement of LOX in 

Aspergillus spp. interaction with many other plants, e.g., maize (Gao et al., 2009; Huang et al., 

2013), cottonseeds (Zeringue 1996) and almond (Mita et al., 2007). Furthermore, the role of 

lipoxygenases is not limited to interaction between the plant and the fungus. Lipoxygenase 
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products can affect aflatoxin biosynthesis inside the fungus; 9S-HPODE promotes aflatoxin 

production whereas 13S-HPODE and 9S-HPOTE inhibit it (Burow et al., 1997). 

Root-knot and cyst nematodes are destructive pathogens that have huge negative 

economic effects for many crops. LOXs were found to play a role in interaction of plants with 

nematodes. LOX3 and LOX4 of Arabidopsis, which share 97% amino acid sequence similarity in 

the substrate-binding pocket (Caldelari et al., 2011), act differently against nematode infection 

since a mutant lacking LOX3 is more resistant than wild type and a mutant lacking LOX4 is more 

susceptible (Ozalvo et al., 2014). In maize, the expression of ZmLOX3 increases after inoculation 

with root-knot nematode. In addition, the disruption of ZmLOX3 suppresses plant growth and 

increases the reproduction of root-knot nematode (Gao et al., 2008). 

Lipoxygenases have an important role in soybean resistance to Phakopsora pachyrhizi, 

which causes soybean rust (Choi et al., 2008). LOX induction increases in pearl millet seedlings 

after the infection by Sclerospora graminicola, the pathogen that causes downy mildew disease 

(Babitha et al., 2004; Babitha et al., 2006). In comparison between resistant and susceptible pearl 

millet cultivars to downy mildew pathogen, higher lipoxygenase activities were found in the 

resistant genotype under infection conditions (Shivakumar et al., 2003). In rice, LOX activity 

rapidly increases in leaves after inoculation with an incompatible race of Magnaporthe grisea, 

the rice blast fungus (Ohta et al., 1991). Additionally, OsLOX1 increases rapidly in response to 

attack by brown plant hopper. Moreover, a transgenic rice line with a lower activity of OsLOX1 

was found to be less tolerant (Wang et al., 2008). On the other hand, the volatiles produced by 

LOX-3 in rice grains during storage are attractive for storage insects, and the cultivars lacking 

LOX-3 are more resistant to storage insects (Tang et al., 2009).  



 

5 

Differential induction of LOX activity in leaves of the tomato cv Moneymaker was found 

in response to inoculations with the non-host pathogen Pseudomonas syringae pv syringae, 

which induces a hypersensitive resistance response, and P. syringae pv tomato, which is a 

pathogen of tomato causing the bacterial speck disease (Koch et al., 1992).  

Overexpression of TomLoxD leads to elevated wound-induced jasmonic acid 

biosynthesis, increases expression of wound-responsive genes and enhances resistance to insects 

and necrotrophic pathogens (Yan et al., 2013). Induced Systemic Resistance (ISR) triggered by 

Pseudomonas putida BTP1 in tomato is associated with a higher level of TomLoxD and 

TomLoxF transcription (Mariutto et al., 2011). CsLOX1 products play an important role in 

regulating cell death related to flower senescence and the jasmonic acid related defensive 

reaction of tea (Camellia sinensis) plant to phloem-feeders (Liu and Han, 2010). 

In addition to LOX function in pathogenicity, LOX also may be involved in symbiosis of 

plants with other organisms e.g., Rhizobium tropici symbiosis with common bean (Porta and 

Rocha-sosa, 2000). 

Lipoxygenase importance for plant development and quality traits 

Many LOX paralogs have been identified within plant genomes, hence it is a large 

multigene family. Different LOXs are expressed differentially from tissue to tissue, which 

reflects the importance of LOXs in plant development. During leaf development of soybean, the 

neutral and most of the acidic lipoxygenase isozymes are present in greatest abundance in the 

youngest leaves and decline in amount as leaves age (Saravitz and Siedow, 1995). In addition, 

lipoxygenase activity increases during root initiation (Junghans et al., 2004). Arabidopsis LOX1 

is expressed specifically during early germination (Melan et al., 1994). LOXg expression is 

found in the endocarp and the mesocarp of pea pods and absent from the pod exocarp and ovules 
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(Rodríguez-Concepción and Beltrán 1995). In tomato, tomloxA is expressed in germinating seeds 

as well as in ripening fruits and reaches its peak during the breaker stage. However, tomloxB is 

highly accumulated in ripe fruit (Ferrie et al., 1994). In potato, jasmonic acid, which is one of the 

oxylipin products of lipoxygenase activity, plays a critical role in microtuber formation (Matsuki 

et al., 1992). In addition, the suppression of potato LOX1 causes a reduction in tuber yield, 

decreases the average tuber size, and disrupts tuber formation (Kolomiets et al., 2001).  

LOX activity may positively or negatively affect plant traits. LOX activity is helpful in 

delaying bran deterioration of rice, e.g. high LOX-1 and LOX-2 activity is essential for red rice 

bran storage, while high LOX-3 activity is essential for white rice bran storage (Zhang et al., 

2009). On the other hand, the activity of soybean LOXs on linolenic acid results in seed quality 

deterioration (Lima et al., 2010). Additionally, oxylipins that are produced by LOXs may cause 

rancidity of seed oils of maize (Rodriguez-Saona et al., 1995). Moreover, inhibition or reduction 

of LOX activity can decrease oil rancidity in rice seeds (Malekian et al., 2000), and retard the 

development of oxidative rancidity and extend the shelf life of walnuts and almonds 

(Buranasompob et al., 2007). 

Hydroperoxide products that are formed from linoleic and linolenic acid due to LOX 

activities are metabolized with enzymatic and non-enzymatic pathways to volatile products, 

which may alter flavor (Gardner 1988). The rice LOX-3 is involved in the production of volatiles 

that are responsible for stale flavor during storage. Development of this undesirable flavor is 

delayed in cultivars lacking LOX3 (Shirasawa et al., 2008). In tomato, C5 and C6 volatile 

compounds are among the most important contributors to consumer attraction to fresh tomatoes. 

Co-suppression or antisense inhibition of TomLoxC leads to a large reduction in C5 and C6 

volatiles (Shen et al., 2014) and major decrease in the flavor volatiles in both fruit and leaf (Chen 
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et al., 2004). Tomato peel, which has significantly higher concentrations of volatiles than flesh, 

has a significantly higher LOX activity (Ties and Barringer, 2012). MdLOX1a and MdLOX5e 

contribute in fruit aroma production of apple (Vogt at al., 2013). 

Mycotoxin formation in oil crops 

Filamentous fungi produce a wide variety of economically important secondary 

metabolites that are known as extrolites. An extrolite is any outwardly directed chemical 

compound that is excreted or accumulated in the cell wall of living organisms (Frisvad and 

Samson, 2004). Many of these extrolite compounds are beneficial, such as antibiotics, food grade 

pigments, enzymes, vitamins, lipids, and various pharmaceuticals. However, others, such as 

mycotoxins, have deleterious effects (Adrio and Demain, 2003). Mycotoxins are some of the 

most toxic natural substances known and have been estimated to contaminate up to 25 % of the 

world's food production (Bennett and Klich, 2003).  

There are several classes of mycotoxins, based on structural and chemical properties; the 

most important one is polyketides that includes sterigmatocystin and aflatoxin (Payne and 

Brown, 1998). Aflatoxin is a family of toxic and carcinogenic metabolites that causes a severe 

impact on human health, and a great loss and a high management cost for agricultural crops 

(Robens and Cardwell, 2003; Carbone et al., 2007). There are four major classes of aflatoxins, 

depending on the presence of the characteristic polyketide dihydro- (B1 and G1) or tetrahydro- 

(B2 and G2) bisfuran rings (Ehrlich et al., 2004). 

Aflatoxin-producing fungi primarily belong to Aspergilli, which contain A. flavus and A. 

parasiticus, and are responsible for aflatoxin contamination of oil-rich crops such as corn, 

peanuts, cottonseed, and tree nuts (Horn 2003). Aspergillus spp. is the dominant infecting fungus 

of maize, peanut and soybean under poor storage conditions (Bhattacharya and Raha, 2002). 
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The biosynthesis of aflatoxins involves over 20 enzymatic reactions in a complex 

polyketide pathway that converts acetate and malonate to the intermediates Sterigmatocystin 

(ST) and O-Methylsterigmatocystin (OMST), the respective penultimate and ultimate precursors 

of aflatoxins. Although these precursors are chemically and structurally very similar, their 

accumulation differs at the species level for Aspergilli. Notable examples are A. nidulans that 

synthesizes only ST, A. flavus that makes predominantly aflatoxins, and A. parasiticus that 

generally produces either aflatoxins or OMST (Carbone et al., 2007). 

Aspergillus spp. infection and aflatoxin contamination (screening and resistance) for peanut 

As screening peanut genotypes for resistance to aflatoxin contamination is the most 

critical step in the breeding process, different approaches have been developed for pre- and post- 

harvest screening (Mixon and Rogers, 1973; Holbrook et al., 1994; Anderson et al., 1996; 

Young and Cousin, 2001, Xue et al., 2004a). Based on these methods, several peanut genotypes 

were reported to be resistant for pre-harvest aflatoxin contamination, e.g. J-11, Lampang 

(Kisyombe et al., 1985), and post-harvest aflatoxin contamination e.g., PI 337394F (Mixon and 

Rogers, 1973), J-11 (Kisyombe et al., 1985), PI337409 (Mixon and Rogers, 1973; Kisyombe et 

al., 1985), TG19, TG49, TG18A and TG18 (Harish et al., 2005). However, very rarely does a 

cultivar consistently show resistance per se since aflatoxin contamination is very variable even 

for the same cultivar under different conditions (Blankenship et al., 1984). 

Green Fluorescent Protein (GFP) can be utilized to track A. flavus infection of peanut. It 

was used widely in fungal biology and for studying the fungus/plant interaction, e.g., it has been 

used in monitoring food colonization by A. flavus (Du et al., 1999), studying the oomycete 

pathogen Phytophthora parasitica interaction with tobacco (Bottin et al., 1999), estimating the 

expression of an endopolygalacturonase gene of Colletotrichum lindemuthianum during bean 



 

9 

infection (Dumas et al., 1999), tracking Trichoderma harzianum growth and activity in soil (Bae 

and Knudson, 2000) and studying A. flavus interaction with cottonseed (Rajasekaran et al., 

2008). 

GFP is a 27-kDa protein that absorbs light at maxima of 395 and 475 and emits it at a 

maximum of 508 nm (Lorang et al., 2001). A cDNA expressing GFP was initially cloned from 

the jellyfish Aequorea victoria in 1992 (Prasher 1992). A short time afterwards, it was 

successfully expressed in bacteria and Caenorhabditis elegans (Lorang et al., 2001). 

Applications of GFP rapidly increased after this breakthough. GFP has many advantages as a 

reporter protein since it only requires UV light and oxygen for visualization (no cofactor or 

substrates are needed), it can be tracked in vivo, it allows non-destructive sampling, and it is 

stable against proteases, a wide range of pH and relatively high temperature (Lorang et al., 

2001). 

Abiotic stress is an important factor controlling aflatoxin accumulation. Drought stress is 

the most important environmental factor affecting aflatoxin contamination of peanut as it 

enhances Aspergillus infection and increases aflatoxin accumulation (Guo et al., 2006; Shan et 

al., 2011) and the development of drought-tolerant peanut cultivars could reduce aflatoxin 

contamination (Holbrook et al., 2000a; Guo et al., 2006). On the other hand, drought tolerance 

does not always lead to lower aflatoxin contamination (Hamidou et al., 2014). However, drought 

conditions that have no significant apparent effects on peanut traits, e.g., pegs, pods and fibrous 

roots, may increase the severity of A. parasiticus infection (Kisyombe et al., 1985). Although, 

susceptible peanut cultivars have higher levels of seed infection than the resistant cultivars under 

water stress conditions, resistant genotypes may become very susceptible under extreme water 

deficit conditions (Waliyar et al., 2003). Moreover, aflatoxin contamination of peanut can be 
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related to the occurrence of soil moisture stress during pod-filling when soil temperatures are 

near optimal for A. flavus (Craufurd et al., 2006).  

Peanut genotypes that are selected as resistant based on in vitro seed colonization by A. 

flavus may contain high levels of aflatoxin when subjected to an extended period of heat and 

drought stress (Blankenship et al., 1984). Therefore, heat stress plays an important role in 

aflatoxin accumulation. A longer heat stress period and higher incidence of A. flavus 

contamination can result in higher aflatoxin accumulation (Sanders et al., 1985). 

In addition, seed structure and chemical composition greatly influences the amount of aflatoxin 

formed. Resistance to fungal colonization and aflatoxin contamination was found to be 

associated with seed coat integrity in the peanut resistant genotypes PI 337394, PI 337409, and 

J11 genotypes (Asis et al., 2005). Wax contents of some resistant genotypes are significantly 

higher than susceptible cultivars (Liang et al., 2003). 

No peanut cultivars have complete resistance to aflatoxin production. However, 

significant cultivar differences do exist (Mehan and McDonald, 1984, Xue et al., 2004a). In 

general, peanut diploid genotypes are more resistant to seed inoculation by A. flavus and the 

subsequent aflatoxin contamination than cultivated peanuts (Xue, et al., 2004b). The potential 

exists to associate components of resistance with molecular markers if reliable phenotyping of 

segregating materials can be combined with polymorphic, genome-wide molecular markers. 

Peanut molecular markers and polymorphism analysis 

Molecular markers generally have proven to be very useful for crop improvements and 

studies of crop evolution in many species (Mohan et al., 1997). In addition, they help to enhance 

selection efficiency, reduce the intensive work of indirect selection and speed up the breeding 

process (Liqin et al., 2004). However, low levels of polymorphism in cultivated peanut to 
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abundant levels in wild Arachis have been reported (Halward et al., 1991). Therefore, abundant 

and highly reliable markers are still needed for cultivated peanut breeding. 

Different markers were used to study polymorphism among peanuts, i.e., DNA 

Amplification Fingerprinting (DAF) (He and Prakash, 1997), Randomly Amplified Polymorphic 

DNA (RAPD) (Halward et al., 1992; Dwivedi et al., 2001; Creste et al., 2005; Mondal et al., 

2005; Mondal et al., 2008), Amplified Fragment Length Polymorphism (AFLP) (He and 

Prakash, 1997; Jiang et al., 2007), Inter-Simple Sequence Repeat ISSR (Mondal et al., 2008; 

Baloch et al., 2010) and Sequence Related Amplified polymorphism (SRAP) (Baloch et al., 

2010). However, such types of markers are dominant and most of them have low reproducibility.  

Simple Sequence Repeats (SSR) delivered more interest as they are co-dominant, stable 

markers. In addition, the variation found in peanut using microsatellites is higher than that 

discovered using other markers such as RAPD and AFLP (Gimenes et al., 2007). Therefore, 

SSRs were used widely for identifying polymorphisms among peanut genotypes, creating genetic 

maps and finding Quantitative Trait Loci (QTL) for different traits (Hopkins et al., 1999; Raina 

et al., 2001; Guohao et al., 2003; Moretzsohn et al., 2004; Jayashree et al., 2005; Luo et al., 

2005; Jiang et al., 2007; Proite et al., 2007; Cuc et al., 2008; Mondal et al., 2008; Foncéka et al., 

2009; Liang et al., 2009; Selvaraj et al., 2009; Hong et al., 2010; Jiang et al., 2010; 

Mandoulakani et al., 2010; Li et al., 2011; SangIK et al., 2011; Zhao et al., 2012; Ren et al., 

2014; Huang et al., 2015; Zhao et al., 2016; Huang et al., 2017; Wilson et al., 2017). 

Single Nucleotide Polymorphism (SNP) is the most abundant genome-wide source of 

variation among species. Therefore, it has become the most attractive marker type for scientists 

especially after the emergence of Next-Generation Sequencing (NGS) technology. However, 

extracting reliable SNPs from NGS data of polyploid species is challenging. The two progenitors 



 

12 

of cultivated peanut have very similar sequences (Bertioli et al., 2016), which increases the 

difficulty of differentiating SNPs within versus between sub-genomes of cultivated peanut. 

Therefore, the true SNP discovery rate in tetraploid peanut using NGS data is very low (Zhou et 

al., 2014; Khera et al., 2013; Peng et al., 2016). However, different filtration approaches were 

proposed which allows increasing the discovery rate. Recently, Sliding Window Extraction of 

Explicit Polymorphisms (SWEEP) was developed (Clevenger and Ozias-Akins, 2015) which 

produces 40% accuracy. To further improve SNP-calling accuracy, we investigated the utility of 

machine learning. 

Machine learning applications in biology 

Machine learning is a set of algorithms that facilitate pattern recognition, classification 

and prediction based on models derived from existing data (Tarca et al., 2007). Machine learning 

algorithms are divided into two main categories, i.e., supervised and unsupervised. Supervised 

algorithms predict the classes of data points based on the classes supplemented in the training 

dataset (classification). On the other hand, unsupervised algorithms separate the input data points 

into distinct groups (clustering). 

The first machine learning approach was created by Rosenblatt (1958) since he built a 

hypothetical nervous system model called a perceptron, which is considered the first artificial 

neural network model, to study the organization of cognitive systems. However, such types of 

models did not receive the widespread attention of biologists until 1982 when they were used to 

extract sequences of E.coli translation initiation sites from a library of over 78,000 mRNA 

sequences (Stormo et al., 1982). Afterwards, a large number of machine learning algorithms 

were developed, e.g., decision trees, super vector machine, naive Bayes, K-nearest neighbors, K-

means, random forest, dimensionality reduction, gradient boosting and models that were based 
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on linear or logistic regression (Tarca et al., 2007). Now, there are many computational tools for 

machine learning modeling such as WEKA, Scikit learn package of python, machine learning 

toolbox of MATLAB. 

Since the era of ‘omics’ began, intensive work has been carried out for creating in-silico 

methods for sequence structural and functional annotation to extract information from the 

growing sequence databases. Homology-based methods were successful in many cases since 

they provide a rapid, efficient, and concise analysis for gene structure and function. However, the 

effectiveness of such methods drops dramatically when the sequence similarity is too low and 

becomes useless in cases of sequences with no similarity with any known genes. In addition, 

sequences sharing similarities sometimes do not have the same function (Hirsh and Fraser, 

2001). In such cases, the importance of ab initio methods becomes apparent. These methods 

comprise approaches that extract features directly from sequences such as splice 

donors/acceptors, transcription start/end and coding regions to annotate gene/protein structure or 

function. Machine learning was an effective tool included in different applications of ab initio 

methods to annotate gene or protein structure or function as listed below. 

Neural network has been used for a variety of purposes in DNA or protein annotation, 

e.g., locating protein-coding regions in DNA sequences (Uberbacher and Mural, 1991), DNA 

flow cytometry histogram analysis (Ravdin et al., 1993), structured vs random DNA or RNA 

region discrimination (Alvager et al., 1997), image analysis of DNA sequencing slab gels (Li et 

al., 2000), rare event detection in genomes (Choe et al., 2000), clustering of DNA microarray 

data (Sawa and Ohno-Machado, 2003), studying stability of DNA/DNA duplexes (Liu et al., 

2005), regulatory DNA element discovery (Firpi et al., 2010), non-coding DNA function 
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prediction (Quang and Xie 2016) and studying DNA-protein binding site interaction (Zeng et al., 

2016; Dutta et al., 2016). 

Support vector machine was used to apply classification of single function enzymes using 

only protein structure information (Dobson and Doig, 2005), sequence features (Mohammed and 

Guda, 2015), and combined attributes such as sequence, structure and chemical properties 

(Borgwardt et al., 2005). Additionally, other trainers were used successfully for the same 

purposes, e.g., neural network using sequence information (Osman et al., 2010). However, not 

all enzymes have unique reactions and these methods introduce errors when multi-functional 

enzymes are included (Amidi et al., 2017). Therefore, multi-label classifiers were also created 

using different machine learning approaches (Zou et al., 2013; Wang et al., 2014; Amidi et al., 

2017). A combined model of neural network and NAÏVE Bayes classifier was used to create a 

protein structure predictor for protein contact maps (He et al., 2017). 

Genetic factors underlying aflatoxin formation and resistance 

The whole genome sequence of A. flavus was released in 2005, which was built from 

2761 scaffolds (4.5Mbp-200bp). The genome has a size of 40 Mbp and contains 13,478 

predicted genes distributed on 8 chromosomes (https://www.aspergillusflavus.org/genomics/). 

Aflatoxin synthesis is controlled by a large gene cluster near the telomere of chromosome 3 

(Amaike and Keller, 2011). Although, the whole genome of A. parasiticus has not been 

sequenced so far, the aflatoxin cluster was sequenced and observed to be very similar to that of 

A. flavus (Yu et al., 2004). Bhatnagar et al. (2003) described 21 enzymatic steps required for 

aflatoxin formation, regulated by two genes, aflR and aflJ, which are involved in transcriptional 

activation of most of the structural genes. All genes were located in a region of 70 Kbp. 

Subsequently, additional genes were identified within this region; Yu et al. (2004) described 25 
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genes, Ehrlich et al. (2005) reported 28 genes and Georgianna and Payne (2009) mapped 30 

genes. The cluster region is conserved with other species of Aspergilli such as A. nominus, A. 

pseudotamarii and A. bombycis, and even with species of other genera such as Emericella 

astellata and Dothistroma spp. However, only A. flavus and A. parasiticus produce aflatoxin or 

the related sterigmatocystin in agricultural commodities (Amaike and Keller, 2011). The 

aflatoxin pathway is affected by different environmental and nutritional factors such as 

temperature, pH, carbon and nitrogen source, stress factors, lipids, and salts since these factors 

may affect the globally acting transcription factor aflR (Bhatnagar et al., 2003). This variability 

confounds study of the plant response to A. flavus or A. parasiticus infection.  

Given that aflatoxin accumulation in peanut is sensitive to environmental conditions, 

which causes large variation in aflatoxin contents among infected seeds within genotypes, 

finding high-confidence genetic factors controlling resistance is very challenging. As mentioned 

before, lipoxygenases were studied for a long time as candidates for aflatoxin resistance. Some 

other proteins have been reported to affect A. flavus resistance such as β-1,3-glucanases, 

chitinases, pathogenesis-related proteins 10 and 10.1, ribosome inactivating proteins (RIPs), and 

zeamatin (Fountain et al., 2014). In addition, WRKY transcription factors are implicated in 

resistance (Fountain et al., 2015a). Furthermore, the drought stress-responding compounds such 

as reactive oxygen species (ROS) are highly associated with aflatoxin production (Jayashree and 

Subramanyam, 2000; Reverberi et al., 2012; Fountain et al., 2015b) and antioxidant enzymes are 

highly co-expressed with fungal growth under infection conditions (Fountain et al., 2016). 

 This study was designed to identify the genetic factors behind the A. flavus/peanut 

interaction and affecting post-harvest aflatoxin formation. Initially, tetraploid peanut 

lipoxygenases were studied in detail since they were reported as important genes in plant 
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defense. Then, a screening approach for post-harvest aflatoxin resistance was proposed and used 

to identify a resistant peanut genotype. Furthermore, a SNP calling tool was created to refine the 

SNP calling of polyploids and to study polymorphism between the resistant genotype and the 

susceptible one. Finally, an RNA-seq experiment was carried out to identify the genes and 

pathways involved in resistance to aflatoxin contamination.  
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Abstract 

Lipoxygenases (LOX) are a dioxygenase gene super-family which functions to catalyze 

the addition of two oxygen atoms on cis, cis-1,4-pentadiene structure within fatty acids. 

Although, this function is simple at the molecular level, its biological impact is on plant 

development and response to pathogens. Lipoxygenases have a very conserved structure 

containing two domains, i.e., PLAT and Lipoxygenase domains, which facilitates LOX gene 

annotation. 

In soybean, lipoxygenases have been studied in detail and a large number of LOX genes, 

44 genes, were identified. In peanut (Arachis hypogaea), only three lipoxygenases have been 

experimentally confirmed from seed cDNA libraries and three from root cDNA libraries. 

Therefore, we utilized the published reference genomes of the progenitors of cultivated peanut 

(A. duranensis and A. ipaensis) to carry out a comprehensive study of LOX genes in tetraploid 

peanut including characterization, functional classification, and large-scale expression profiling 

for developmental stages, nodulation and plant-pathogen interactions. 

Twenty-four and 25 LOX genes were identified in A. duranensis and A. ipaensis, 

respectively. Among them, 20 orthologous pairs were assigned. LOX genes were distributed 

across most chromosomes and tended to be located within regions that have chromosomal 

rearrangements. Three LOX pairs are located in regions with inversions (chromosome 6 or 9), 

ten within regions with intra-chromosomal translocation (e.g., chromosome 8) and one within an 

inter- chromosomal translocation region (chromosomes 6 and 9).  

Eleven LOX genes were missing a PLAT domain or had a truncated Lipoxygenase 

domain. Therefore, functional prediction was applied to only 36 genes because of the difficulty 

to align genes with significantly different lengths. The genes were successfully classified into 
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four clusters, 13S_typeI, 13S_type_II, 9S_type_I and 9S_typeII. Differential expression profiling 

of 22 different developmental stages showed three prominent patterns; one group of LOX genes 

was highly expressed in seed tissues (different stages), another group was constitutively 

expressed and the third was highly expressed only in gynophore, shoot, root, pericarp and flower 

tissues. In addition, expression profiles showed similar patterns for orthologous genes. The 

expression pattern of LOX genes during plant-pathogen interaction (Aaspergilli, nematode and 

Cercosporidium personatum) revealed the response of specific LOX genes for every disease. 

Most affected LOX genes were down-regulated under the infection conditions compared with the 

respective controls. 

We identified 17 active LOX gene pairs in tetraploid peanut, out of 20 total orthologous 

pairs, which were clustered in functional groups that reflect their cellular roles. In addition, LOX 

genes were grouped into discrete expression patterns across peanut developmental stages that 

may give an indication for their phenotypic functions. Moreover, LOX genes whose expression 

was altered during pre- or post-harvest aflatoxin contamination, nematode, late leaf spot 

infection, and nodulation were identified.  

Background 

Lipoxygenases (LOX) form a gene superfamily that is ubiquitously distributed in plants, 

fungi, algae and animals (Andreou et al., 2009). In addition, LOX genes have been detected in 

prokaryotic organisms (Hansen et al., 2013) and Archaea (Koval and Jarrell, 1987). Moreover, 

some LOX-like sequences were found in viruses (Horn et al., 2015). Lipoxygenases are non-

heme, iron-containing dioxygenases that recognize a cis,cis-1,4-pentadiene structure within 

polyunsaturated fatty acids and activate the addition of two molecular oxygen atoms to produce 

fatty acid hydroperoxides. The amino acid sequences of LOX genes have a conserved structure 
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across animals and plants; they have five conserved histidine residues in a stretch of 38 residues 

in addition to a sixth histidine at 160 residues downstream (Steczko et al., 1992). Lipoxygenases 

have two distinct domains, i.e., PLAT (Polycystin-1, Lipoxygenase, Alpha-Toxin) and 

Lipoxygenase. The PLAT domain (NCBI-CDD: pfam01477) is a small amino-terminal domain 

forming an eight-stranded antiparallel β-barrel. On the other hand, the Lipoxygenase domain 

(NCBI-CDD: pfam00305) is a long carboxy-terminal domain, which contains the active site and 

forms 18-22 helices in addition to one or two anti-parallel β-sheets. The conserved histidine 

residues and domain structure facilitate the distinction of lipoxygenases from other enzymes of 

living organisms. 

Lipoxygenases have been classified according to the insertion position of oxygen atoms; 

animals have four major types, i.e., 12-lipoxygenase (EC:1.13.11.31), 15-lipoxygenase 

(EC:1.13.11.33), 5-lipoxygenase (EC:1.13.11.34) and 8-lipoxygenase (EC:1.13.11.40) that insert 

dioxygen atoms at C12, C15, C5 and C8 positions of arachidonic acid, respectively. Although 

plants have two fatty acids containing a cis, cis-1,4-pentadiene structure, linoleic and alpha-

linolenic acid, they have merely two types of lipoxygenases, 13-lipoxygenase (EC:1.13.11.12) 

and 9-lipoxygenase (EC:1.13.11.58) that insert dioxygen at C13 and C9 positions of these fatty 

acids, respectively.  

Plant lipoxygenases produce cis-trans 9S- or 13S- hydroperoxy linoleic acid (9S- or 13S-

HPODE) or 9S- or 13S-hydroperoxy linolenic acid (9S- or 13S-HPOTE) (Tsitsigiannis et al., 

2005). 13-lipoxygenase catalyzes the oxidation of linoleate acid into (9Z,11E,13S)-13-

hydroperoxyoctadeca-9,11-dienoate or alpha-linolenate into (9Z,11E,13S,15Z)-13-

hydroperoxyoctadeca-9,11,15-trienoate (UNIPROT: http://www.uniprot.org/). Whereas, 9-

lipoxygenase catalyzes the oxidation of linoleate acid into (9S,10E,12Z)-9-hydroperoxy-10,12-
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octadecadienoate (UNIPROT: http://www.uniprot.org/). These oxidative products are highly 

reactive as they are metabolized in various enzymatic pathways into a series of oxylipins, e.g., 

jasmonates, epoxy hydroxy-fatty acids, hydroxyl-fatty acids, keto-fatty acid, aldehydes, alcohols, 

traumatin and divinylether. These compounds have important roles in plant defense mechanisms, 

plant development, signaling, abiotic stress and quality traits (AOCS Lipid Library: 

http://lipidlibrary.aocs.org/). 

Peanut (Arachis hypogaea L.) is an important oilseed crop; it is ranked fourth in world 

production after soybean, cottonseed and rapeseed. Peanut kernels are very rich in protein (25-

30%) and oil (45-55%) contents. Peanut oil contains 27.3-38.3 % linoleic acid, 4.7 % in high 

oleic lines (O’keefe et al., 1993), in addition to 0.37 to 1.11 % of alpha-linolenic (Musa 2010), 

which are suitable substrates for lipoxygenases. Lipoxygenases have been reported to be 

involved in biotic stress such as Aspergillus flavus and A. parasiticus infection and the 

subsequent aflatoxin contamination (Tsitsigiannis et al., 2005; Burow et al., 2000), and 

nematode infection (Gao et al., 2008), which are major problems that affect peanut production 

and quality. In addition, they may have a role in nodulation (Bueno et al., 2001), an important 

process for peanut growth. Moreover, lipoxygenases have been reported to be involved in plant 

development, and seed quality and flavor (St. Angelo et al., 1979; Engeseth et al., 1987; 

Robinson et al., 1995). 

The first recognized peanut LOX gene, PnLOX1, was identified from a seed cDNA 

library (Burow et al., 2000). It was shown to be highly induced by methyl jasmonate treatment, 

wounding and A. parasiticus infections in mature cotyledons (Burow et al., 2000). Two other 

peanut seed LOX genes, PnLOX2 and PnLOX3, were observed to be highly expressed in mature 

seeds (Tsitsigiannis et al., 2005); however, they were repressed by Aspergillus flavus infection 
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(Tsitsigiannis et al., 2005). Two additional peanut seed LOX genes were annotated from a 

transcriptome shotgun assembly (TSA) database, PnLOX4 and PnLOX5, these two genes 

responded differently, compared with each other and across different peanut genotypes, as well 

as across multiple time points, to A. flavus infection (Muller et al., 2014). Recently, three peanut 

LOX genes were identified from a root cDNA library, i.e., PnLOX6, PnLOX7 and PnLOX8 (Guo 

et al., 2015). 

In this work, we identified all possible LOX genes in tetraploid peanut utilizing the 

reference genome of its progenitors (A. duranensis and A. ipaensis), studied the orthology and 

synteny among them, and classified them into functional clusters. In addition, we profiled their 

expression across a wide range of developmental tissues and their response to A. flavus, 

nematode, Cercosporidium personatum and Rhizobium interaction with peanut. 

Results and Discussion 

LOX gene pool of cultivated peanut 

Lipoxygenases have a highly conserved motif within the Lipoxygenase domain at the 

binding site of catalytic iron; this motif has five histidine residues in the form of H-4aa-H-4aa-H-

17aa-H-8aa-H (where, H is histidine and aa is any amino acid). This structure was validated in 

legumes using crystallographic determination of the active site and the ligand of soybean LOX-1 

(Minor et al., 1993). In addition, the full structure of plant lipoxygenase domains, which is 

formed from PLAT domain followed by Lipoxygenase domain was confirmed for the same 

enzyme of soybean by crystallography (Minor et al., 1996). Moreover, we found a region of 50 

residues, designated the LOX-Core having a similar amino acid frequency across 135 LOX 

genes that were collected from a wide range of organisms. These genes were extracted from 

GenBank by searching lipoxygenases that have been experimentally tested; the annotated LOXs 
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were excluded. These features allowed the annotation of LOX sequences from the gene pools of 

A. duranensis and A. ipaensis with a high level of confidence (Bertioli et al., 2016). Scanning 

MAKER annotation of both genomes captured 24 and 25 LOX genes (out of 39313 and 44436 

total genes), respectively (Table 2.1 and additional files: Tables 2.S1 and 2.S2). 

The orthology analysis of these LOX genes using reciprocal best Basic Local Alignment 

Search Tool (BLAST) Hits (RBH) approach identified 20 orthologous pairs (Table 2.1). The 

genes were named by the abbreviation of the reference genome, A or B for A. duranensis and A. 

ipaensis, respectively, then an underscore and the number of the gene assigned according to the 

order of its occurrence across chromosomes. The estimated gene structure on the tetraploid 

genome was named by the abbreviation of Arachis hypogaea, Ah, followed by the source of the 

annotated gene between two underscores then the gene number. The source of the annotated 

genes were abbreviated by A, B or A/B; A for paralogous genes of A. duranensis without an 

orthologous gene within the A. ipaensis genome and duplicated from one LOX gene of A. 

duranensis. B is vice versa. And the orthologous pairs that had one gene originating from the A. 

duranensis genome and the other gene originating from the A. ipaensis genome were abbreviated 

by A/B. Every orthologous pair or single paralogs were considered a unique A. hypogaea LOX 

gene. 

Although, RBH was used widely for identification of orthologous gene pairs across 

different genomes (Mattila et al., 2012; Fuchsman and Rocap, 2006; Hirsh and Fraser, 2001), 

genes that are most similar based on BLAST best hits, may not be phylogenetically the closest 

(Koski and Golding, 2001). One example of this among the LOX genes we analyzed, 

Araip.8Z22U, had the best BLAST similarity with Aradu.2E0TL, which was annotated as 

phosphoenolpyruvate carboxylase. Therefore, RBH may lead to inaccurate results and needs to 
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be supported by other approaches for orthology study. We validated the results of RBH by 

creating dot-plots for all pairs and studying the flanking genes (data not shown). 

To confirm the LOX gene structures, the most similar proteins were identified using 

NCBI-BLASTp (Additional files: Table 2.S3) using peanut predicted LOX amino acid sequences 

against the non-redundant protein database of NCBI. All orthologous gene pairs, Ah_A/B_ 01, 

03-06, 8-11, 13-15, 17 and 18, had a PLAT domain and a complete Lipoxygenase domain, the 

ideal structure of LOX. However, the orthologous pair Ah_A/B_02 had two domains of each 

PLAT and Lipoxygenase in a structure of PLAT-Lipoxygenase-PLAT-Lipoxygenase for both 

A_02 and B_02, suggesting that both pairs were tandem duplications and were more likely to be 

four genes rather than only two. An opposite scenario was observed for Ah_A/B_07 since 

Aradu.U67PQ had part of a Lipoxygenase domain, and Aradu.289WG located adjacently on the 

chromosome in the same direction and had the second part of Lipoxygenase and a PLAT 

domain. Therefore, they are more likely to be the same gene that were truncated, interrupted by 

another segment or had a mistake in the MAKER annotation especially its orthologous gene, 

Araip.HGI2J, which had the two domains in the ideal structure. Similarly, the two genes 

Aradu.2ZL37 and Aradu.S1X34 were located adjacent to each other and in the same direction on 

the same chromosome. The first one had a PLAT domain and a part of a Lipoxygenase domain 

and the latter had the other part of the Lipxoygenase domain. Therefore, they presumably are one 

gene.  

Based on these results, corrections were applied for genes of Ah_A/B_02 to split each 

gene into two genes (Ah_A/B_2A and Ah_A/B_2B) and Ah_A/B_07 to join Aradu.U67PQ and 

Aradu.289WG into one gene (Ad_07). In addition, Aradu.2ZL37 and Aradu.S1X34 are joined in 

one gene (Ah_A_26) (Table 2.1). Moreover, the analysis showed that some LOX genes had 
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missing segments, e.g., the four genes Ah_A/B_12 and Ah_A/B_20, and Araip.Q7EYZ of 

Ah_A/B_19. Therefore, they are excluded from the phylogenetic analysis, as they may 

negatively affect multiple alignment and more likely to be pseudogenes. 

A phylogenetic tree of the annotated LOX genes and the eight experimentally recognized 

peanut LOX genes was generated to reveal redundant genes (Additional files: Table 2.S4 and 

figure 2.S1). The three cDNA seed library LOX genes, PnLOX1-3 (Tsitsigiannis et al., 2005; 

Burow et al., 2000), were identified as different forms of Ah_A/B_09. In addition, the seed LOX 

PnLOX4 (Muller et al., 2014) was identified as Ah_A/B_08. Additionally, the seed LOX 

PnLOX5 (Muller et al., 2014) and the root LOX PnLOX7 (Guo et al., 2015) were recognized as 

one gene, Ah_A/B_17. Root LOXs PnLOX6 and PnLOX8 (Minor et al., 1993) matched 

Ah_A/B_15 and Ah_A/B_14, respectively. Interestingly, 13 new LOX genes were recognized, 

i.e., Ah_A/B_01, Ah_A/B_02A, Ah_A/B_02B, Ah_A/B_03, Ah_A/B_04, Ah_A/B_05, 

Ah_A/B_06, Ah_A/B_07, Ah_A/B_10, Ah_A/B_11, Ah_A/B_13, Ah_A/B_16 and Ah_A/B_18. 

A similar study was carried out in legumes (Song et al., 2016). However, the number of 

recognized LOXs in peanut was lower than those in this study. 

To study if there are more LOX genes in tetraploid peanut that were not annotated from 

the two progenitor genomes, de novo assembly of RNA-seq data without genome guidance 

resulted in 250,802 genes (376,393 isoforms); 284,642,109 bases were assembled with a contig 

N50 value = 1185 and an average contig = 756.24. Among these genes, 41 genes (63 isoforms) 

were recognized as LOX genes. Within the peanut LOX gene pool, the shortest sequence 

containing a full Lipoxygenase domain was Ad_16 (2127 bp). Therefore, sequences that are 

shorter than 2 kbp are more likely to be pseudogenes as the functional LOXs previously reported 

or found in NCBI GenBank had a length greater than 2 Kbp. For that reason, we extracted 
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assembled genes that were captured by BLAST and had a length more than 2 kbp; 13 genes (31 

isoforms) were extracted. No redundancy was found among these genes. LOX gene structure of 

these was confirmed by NCBI-BLASTx search. The phylogenetic tree of these genes with peanut 

LOX genes, described above, revealed that none of these assembled genes is a new LOX gene 

(Additional files: Figure 2.S2). This suggests that all LOX gene duplications took place before 

the hybridization of A. duranensis and A. ipaensis. In other words, the duplication of LOX genes 

occurred in the diploid genomes of peanut and no event occurred in the tetraploid peanut. 

De novo assembly without genome guidance failed to differentiate between the two forms 

(homeologs) of the genes since the similarity between them is very high (> 99 %). In addition, 

some LOX genes were not assembled, i.e., Ah_A/B_ 01, 06,17 and 20 since their expression 

levels were too low to be assembled. Although Ah_A/B_ 09, 10 and 13 had significant 

expression in some tissues, they also failed to be assembled since they were expressed in many 

other tissues and they had a very highly similarity with other genes, i.e., Ah_A/B_ 19, 11 and 15, 

respectively. This increases the probability that many common k-mers will occur between them, 

which increases the probability of forming overlapping de Bruijn graphs (Homolog.us – 

Bioinformatics: http://www.homolog.us/blogs/) that complicates distinction of splicing forms of 

the same gene and highly similar genes. 

Localization of LOX genes across chromosomes 

The abundance of LOXs in peanut suggests their importance in peanut evolution 

especially in terms of disease resistance. Therefore, studying LOX duplications across the 

genome is a necessary prerequisite to elucidating duplicate gene function. Chromosomal 

locations and directions of LOX genes were estimated on a synthetic peanut tetraploid genome 

constructed by combining sequences from A-genome and B-genome progenitors, A. duranensis 
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and A. ipaensis, respectively (Figure 2.1). LOX genes were distributed across all chromosomes, 

except chromosomes A01/B01 and A05/B05, and sometimes on opposite strands. Some 

chromosomes had few LOX genes, i.e., A04/B04 and A07/B07 (AB stands for the synthetic 

tetraploid genome). The majority of LOX genes were found on chromosomes A03/B03, 

A06/B06, A08/B08 and A09/B09, the latter had almost half of the LOX genes, nine orthologous 

pairs (eight full length with both domains) and two paralogs. 

Twenty-six LOX genes are positioned near the ends of chromosomes and many are in 

rearranged chromosomal regions, i.e., inverted segments, intra-chromosomal translocations and 

inter-chromosomal translocations. Almost half of the LOX genes are found in intra-chromosomal 

translocations (Figure 2.1 – green regions) as the orthologous genes were located on the same 

chromosome of the other parental genome however in different positions. Three gene pairs are 

located within inversions (Figure 2.1 – sky blue regions and additional files: Figure 2.S3). 

Orthologous genes at Ah_A/B_05 were surrounded by 11-S seed storage protein and potassium 

transporter family protein in opposite directions. The two genes of Ah_A/B_06 were surrounded 

by auxin response 4-like gene and DNA-directed DNA polymerase gene in opposite directions. 

The two pairs were located on chromosomes A06/B06. The distance between Ad_05 and Ad_06 

LOX genes was 3.33 Mbp, and 3.17 Mbp between Ai_05 and Ai_06. Therefore, Ah_A/B_05 and 

Ah_A/B_06, were located in a large inverted region. The third inverted orthologous pair was 

located near of the end of chromosomes A09/B09 surrounded by spermidine synthase I and a 

vacuolar membrane-like protein in opposite directions. Only one orthologous pair, Ah_A/B_20, 

was found in an inter-chromosomal translocation as one gene was located on A09 and the second 

of the pair was located on B06 (Figure 2.1 – a dark blue line). However, the Lipoxygenase 

domains of both genes are incomplete and they are missing PLAT domains. 
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To validate the synthetic tetraploid genome assembly and the locations of LOX genes, 

PCR primers were designed to amplify the interval segments between LOX genes and the closest 

genes. However, most of these interval segments are too long to be amplified easily by PCR. 

Therefore, we tested two loci with intergenic segments predicted to be less than 3 kbp. The 

primers were designed based on conserved sequences across A- and B- genomes. PCR for the 

intergenic segments between Ad_18 and Aradu_5RZ6C and between Ai_18 and Araip_Q00X2 

produces bands with a size of ~600 bp (data not shown), which are close to the predicted sizes. 

Similarly, amplicons of segments around Ah_A/B_04 were close to the calculated ones as the 

calculated segments flanking Ad_04 that were 1000 and 1863 bp had amplicons of ~1 and 2 kbp, 

respectively. And those calculated ones around Ai_04, which were 977 and 2389 bp had 

amplicons of ~1 and 2.5 kbp, respectively (Additional files: Figure 2.S4). 

LOX genes are ubiquitously distributed across living organisms, from very basic forms of 

life (prokaryotes) up to the highly advanced organisms (human). In addition, they often are 

duplicated within genomes during evolution (Additional files: Table 2.S5). Our results showed 

that LOX genes are distributed on the genomes similarly across different eukaryotes since 

multiple, or sometimes many, LOXs are located on particular chromosomes and most of them 

tend to cluster near telomeres while other chromosomes do not have any LOXs. Soybean is the 

closest related crop to peanut with experimentally detailed studies for LOX genes (Additional 

files: Figure 2.S5). Forty-four LOX sequences, containing a Lipoxygenase domain, were 

retrieved from SoyBase (Soybase: http://www.soybase.org/) (Additional files: Table 2.S6). 

Soybean LOXs also were distributed across multiple chromosomes, nine chromosomes had 1-2 

LOXs each, and five chromosomes had four to nine LOXs; most of them were clustered in small 
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regions near the ends of chromosomes. In addition, six chromosomes were devoid of LOX 

genes. 

Classification of Peanut LOX genes 

Andreou and Feussner (2009) classified plant, mammal and prokaryotic LOX genes into 

three functional groups based on amino acid sequences, i.e., 13S_legumes, 9S-typeI and 

13S_typeII. They used two criteria: 1) the position of added dioxygen on the fatty acid (carbon 

13 or 9) and 2) the subcellular localization of the translated enzyme (typeI contains extra-

plastidial enzymes and typeII contains plastidial enzymes). We constructed a phylogenetic tree 

using the annotated peanut LOX gene sequences along with selected plant and mammalian 

sequence accessions; the latter were included as an outgroup (Figure 2.2 and additional files: 

Table 2.S7). Unlike Andreou and Feussner (2009), we excluded prokaryotes from our analysis 

since the lipoxygenase structure differs from that of plants and animals (Hansen et al., 2013). In 

addition, we included only complete LOX genes as truncated ones may distort the multiple 

alignment and consequently affect the integrity of the phylogenetic tree.  

All functionally characterized LOX genes that clustered within the 13S_typeII group 

(Figure 2.2 - green color) had evidence of chloroplast localization and the production of 13-

hydroxyperoxides as major products; Arabidopsis thaliana had three genes within this group, all 

with chloroplast transit peptides, jasmonate-inducibility and photosynthetic light reactivity (Bell 

and Mullet, 1993; Frenkel et al., 2009; Kilaru et al., 2011; UNIPROT: http://www.uniprot.org/). 

Similarly, LOXs from other species of this group had predicted transit peptides for targeting the 

enzymes to chloroplasts and tendency to produce 13S-hydroperoxides, i.e., two potato LOXs 

(LOX2:St:1 and LOX2:St:2), two tomato LOXs (LOX2:Le:1 and LOC2:Le:2), moss PpLOX1 

and tobacco LOX2:Nt (Royo et al., 1996; Heitz et al., 1997; Chen et al., 2004; Shen et al., 2014; 
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Senger et al., 2005). Since peanut LOX genes Ah_A/B_ 01, 03, 04, 07, 16 and 19 were clustered 

within this group, they are more likely to be chloroplastic 13S-lipoxygenases. Moreover, NCBI-

BLASTp search (Additional files: Table 2.S3) confirmed the similarity of these genes to 

13S_typeII since all of them had best hits with 13S-lipoxygenases with a chloroplast localization 

feature. 

The other two groups contained type-I LOX genes since there was no evidence for the 

presence of chloroplast transit peptides. LOX genes of potato and Arabidopsis that bordered the 

9S_typeI group (Figure 2.2 - blue color) are recognized to be 9S- lipoxygenases (Kilaru et al., 

2011; Royo et al., 1996). There are three peanut genes located among this group, i.e., 

Ah_A/B_06, Ah_A/B_17 and Ah_A/B_18. However, the latter contains a signal for chloroplast 

translocation since NCBI-BLASTp search gave best hits with chloroplastic 9S- lipoxygenases. 

On the other hand, a NCBI-BLASTp search for the other two genes gave best hits with 9S- 

lipoxygenases without chloroplastic signals. Therefore, Ah_A/B_18 is more likely to be a new 

(fourth) group of, i.e., 9S_typeII (Figure 2.2 - dark blue color). 

The classification of 13S_legume LOXs as 13S_typeI (Figure 2.2 - red color) is 

erroneous since four out of seven soybean LOX genes, which form the main structure of this 

group, produce only 50-60% of 13S- hydroperoxy products (Chen et al., 2004; Youn et al., 

2006). Moreover, all peanut genes included in this group had best hits of NCBI-BLASTp search 

with 9S-lipoxygenases except Ah_A/B_09, which had best hits with 13S-lipoxygenases. 

However, this gene is equivalent to PnLOX1, which produces 30% 9S-hydroperoxy products 

(Burow et al., 2000), and PnLOX2 and PnLOX3, which produce 16% 9S-hydroperoxy 

(Tsitsigiannis et al., 2005). Therefore, this group presents LOX genes that produce a 

combination of 9S- and 13S- hydroperoxy products and it may be roughly divided into two sub-
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groups depending on the ratio of 13S- to 9S- hydroperoxy products, i.e., 13S-typeI_SG1, which 

has a high ratio (> 0.4), and 13S-typeI_SG2, which has a moderate to low ratio (< 0.4).  

Interestingly, all peanut LOX genes that belong to 13S_typeII group were located on 

chromosomes A02/B02, A03/B03, A06/B06 and A10/B10, except Ah_A/B_16 and Ah_A/B_17 

(chromosome A09/B09). In addition, all LOX genes that belong to 13S_typeI group were located 

on chromosome A08/B08 and two clusters on chromosome A09/B09. Therefore, LOXs that have 

similar function tend to be clustered together. 

The expression profiling of peanut LOX genes at developmental stages 

Figure 2.3 represents the RNA-seq expression profiles of peanut LOX genes across 22 

different peanut tissues, including leaves, shoots, flowers, gynophores, pericarps, and seeds 

(Additional files: Table 2.S8) (Clevenger et al., 2016a). The profile revealed three prominent 

expression patterns (EP) i.e., EP-I, EP-II and EP-III, in addition to unique patterns for some 

genes. Moreover, genes that do not have a complete LOX gene structure, i.e., Ah_A/B_ 12, 20 

and 21-27 (which are excluded from the phylogenetic tree – Figure 2.2), did not show significant 

expression in any tissue, except for Ah_A/B_20. This pair lacks the PLAT domain and part of 

the Lipoxygenase domain. Therefore, while expressed, function may be impaired. Although, 

Ah_A/B_01 and Ah_A/B_19 have complete LOX gene structures, they may be pseudogenes 

since they have low expression in all tissues. Interestingly, all other genes had significant 

expression levels across the tissues and the two orthologs for each pair had similar expression 

profiles. Southern and northern blot analysis of several LOX orthologous pairs using ortholog-

specific probes confirmed their copy number and expression patterns (Additional files: Table 

2.S9 and figures 2.S6 and 2.S7). 
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EP-I comprised two orthologous pairs, Ah_A/B_8 (PnLOX4 (Muller et al., 2014)) and 

Ah_A/B_9 (PnLOX1-3 (Tsitsigiannis et al., 2005; Burow et al., 2000)) that are highly expressed 

in mature and immature seeds. The expression of PnLOX1-4 changes significantly upon in vitro 

infection by Aspergillus spp. (Tsitsigiannis et al., 2005; Burow et al., 2000; Muller et al., 2014). 

There is evidence of seed LOX gene response in Aspergillus spp. interaction with soybean 

(Doehlert et al., 1993; Mellon and Cotty, 2002), maize (Gao et al., 2009; Huang et al., 2013), 

cotton (Zeringue Jr 1996) and almond (Buranasompob et al., 2007). Furthermore, LOX products 

can affect aflatoxin biosynthesis in the fungus (Kumari et al., 2011). Therefore, Ah_A/B_08 and 

Ah_A/B_09 are more likely to have roles in Aspergillus spp. interaction with peanut and 

aflatoxin biosynthesis inside the fungi.  

Seed LOX genes can affect seed quality positively or negatively. Their activity is helpful 

in delaying bran deterioration in rice (Zhang et al., 2009). On the other hand, oxylipins that are 

produced by LOX proteins cause oil rancidity in seeds of soybean (Rodriguez-Saona et al., 

1995), walnuts and almond (Buranasompob et al., 2007). In addition, oxylipins are metabolized 

to volatile products, which may alter seed flavor (Gardner 1988). These products may be 

responsible for stale flavor in rice after storage (Shirasawa et al., 2008) and fruit aroma in apple 

(Vogt et al., 2013), yet they may contribute to C6 (Chen et al., 2004) and C5 (Shen et al., 2014) 

flavor volatiles, which are important for consumer liking of fresh tomatoes. Therefore, 

Ah_A/B_08 and Ah_A/B_09 may also have roles in seed quality and flavor traits of peanut. 

EP-II comprised mainly Ah_A/B_ 04, 14, 16, 17 and 18. These genes were ubiquitously 

expressed across all tissues. On the other hand, EP_III comprised six LOX genes, i.e., Ah_A/B_ 

03, 05, 10, 11, 13 and 15, which are expressed in gynophore, shoot, root, pod and flower 

(Ah_A/B_15 is expressed also in leaves) but at different levels. LOX genes play a role in leaf 
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development in soybean (Saravitz and Siedow, 1995), early germination of Arabidopsis (Melan 

et al., 1994), carpel development of pea (Rodriguez-Concepcion and Beltran 1995), seed 

germination and fruit ripening of tomato (Ferrie et al., 1994) and microtuber formation in potato 

(Matsuki et al., 1992; Kolomiets et al., 2001). Therefore, the expression of genes that belong to 

these two groups, across a wide range of tissues and in different stages with different levels, 

supports the idea that they may have functions in peanut development. 

Peanut LOX genes in the response to plant-pathogen interaction 

Many reports support the inclusion of LOX genes in plant-pathogen interaction for 

different diseases, e.g., soybean interaction with Phakopsora pachyrhizi (which causes soybean 

rust) (Choi et al., 2008), pearl millet infection by Sclerospora graminicola (the pathogen that 

causes downy mildew disease) (Babitha et al., 2004; Babitha et al., 2006), the interaction 

between rice and Magnaporthe grisea, (which causes rice blast fungus) (Ohta et al., 1991), the 

resistance to insects and necrotrophic pathogens in tomato (Yan et al., 2013) and defensive 

reaction of tea to phloem-feeders (Liu and Han, 2010). 

Expression profiles of peanut LOX genes in response to different pathogens and 

nodulation is presented in Figure 2.4. Ah_A/B_8 and Ah_A/B_9, which showed high expression 

in seed tissues, were the most responsive to pre- and post-harvest aflatoxin contamination. The 

genes were down-regulated in response to infection as compared with controls in more resistant 

(C76-16, NC3033, Tifguard) and more susceptible (A72, Florida07 and Tifrunner) genotypes to 

pre-harvest aflatoxin (Clevenger et al., 2016b), and in both resistant (ICG 1471) and susceptible 

(Florida-07) genotypes to post-harvest aflatoxin (Chapter 3). These results are contrary to those 

reported by Burow et al. (2000) where up-regulation of PnLOX1 (Ah_A/B_9) after infection by 

A. parasiticus was observed using northern blot analysis. These conflicting results may be due to 
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probe choice since they observed only one band in southern blot analysis, yet at least two bands 

would be predicted based on our observations. In addition, Tsitsigiannis et al. (2005) tested two 

forms of the same gene (Ah_A/B_09), PnLOX2 and PnLOX3, using northern blot and qPCR and 

reported opposite results from previous work, i.e., down-regulation for both after the infection of 

A. flavus. Moreover, our northern blot analysis of three peanut genotypes (GT-C20, Tifrunner 

and Florunner) showed down-regulation in peanut after infection by A. flavus (additional files: 

Figure 2.S8). Genes Ah_A/B_17, Ad_25 and Ai_27 were responsive also for infection in both 

pre- and post- harvest aflatoxin analysis. Therefore, they may play a minor role in response to 

infection as they had lower expression in seed tissues. The differential response between the 

resistant versus susceptible genotype is not clear. For instance, Ah_A/B_08 of Florida-07 

(susceptible for pre- and post- harvest aflatoxin contamination) was the most down regulated as a 

result of infection as compared with those of the three resistant genotypes in pre-harvest 

aflatoxin analysis. On the other hand, this gene of ICG-1471, which is resistant to post-harvest 

aflatoxin contamination, was more down regulated than that of the susceptible genotypes 

(Florida-07) in post-harvest aflatoxin analysis.  

LOX genes were reported to play important roles in Arabidopsis and maize responses to 

nematodes (Gao et al., 2008; Ozalvo et al., 2014). Ah_A/B_ 10, 14, 15 and 16 had high 

responses to nematode infection (Figure 2.4) as their expression was very high and was 

extremely reduced by the infection. They also had a significant high expression in the root tissue 

(Figure 2.3). Similar to A. flavus infection, LOX genes are down-regulated by nematode 

infection in both the resistant (Tifguard) and susceptible (Gregory) genotypes. Ah_A/B_ 06, 07 

and 02 had a high response to late leaf spot infection (Figure 2.4). They also were expressed 

highly in the leaf tissues especially Ah_A/B_02, which was expressed only in leaf tissue (Figure 
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2.3). Therefore, they may be candidate genes in leaf development and have a function in the 

response to late leaf spot. Again, LOXs are more likely to be down-regulated by Cercosporidium 

personatum infection. Interestingly, LOXs are very specific in their response to pathogens since 

LOXs that responded to A. flavus infection are different from those that responded to nematode 

infection and both are different from C. personatum responsive LOXs. This suggests that the 

pathways including these gene groups do not interact, especially since these genes have tissue 

specific expression patterns (Figure 2.3) and knocking out a particular LOX expressed in one 

tissue in response to pathogen infection may not affect response to another disease organism 

(Martins et al., 2002). Additionally, most LOX genes responsive to diseases are 13S_typeI or 

13S_typeII. Therefore, 13S-hydroperoxides are important in disease response pathways either in 

cytoplasm or plastids. 

Ah_A/B_ 03, 13, 14, 15 and 16 were the most affected genes during nodulation stages 

(Figure 2.4). They had significantly different expression profiles between roots and nodules 

(Figure 2.3), suggesting they are involved in the symbiosis between peanut and Bradyrhizobium 

spp. since this role was notified for LOX genes in some plants, e.g., common bean (Porta and 

Rocha-Sosa, 2000). 

Conclusions 

Among the annotated genes of A. duranensis and A. ipaensis, 28 genes were recognized 

as candidate LOX genes in tetraploid peanut, 21 orthologous pairs (including the two 

orthologous pairs resultied from Ah_A/B_02 splitting) and 7 paralogs. Seventeen orthologous 

pairs had a complete LOX gene structure and were expressed in peanut tissues (not 

pseudogenes). Thirteen orthologous pairs out of them had three discrete expression patterns and 

each of the others had unique expression profiles. The expression patterns reflected the 
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importance of LOX genes in peanut and their putative functions in peanut development, biotic 

stress (Aspergilli, nematode and C. personatum) and symbiosis (nodulation). In addition, LOX 

genes were functionally classified into four clusters, one of which had two sub-clusters and 

another one merely contained one gene. Moreover, LOX genes tend to be located in clusters near 

to the chromosome ends since most of LOX genes of peanut and many other organisms had this 

feature. Finally, de novo assembly of RNA-seq data failed to discover a new class of LOX genes. 

Therefore, all LOX duplication events occurred before the tetraploidization of peanut. 

Methods 

Data resources 

The genomes and MAKER annotations of diploid progenitors of cultivated tetraploid 

peanut (Arachis duranensis and A. ipaensis) were downloaded from PeanutBase (PeanutBase: 

http://peanutbase.org/). RNA-seq data of 22 different tissues of tetraploid cultivar Tifrunner were 

obtained from the transcriptome project of tetraploid peanut (courtesy of Peggy Ozias-Akins lab 

in collaboration with Brian Scheffler) (Clevenger et al., 2016a). The RNA-seq data of pre-

harvest, post-harvest aflatoxin, nematode and late leaf spot infections, and nodulation were 

collected from different projects (courtesy of Peggy Ozias-Akins lab). Published LOX gene and 

protein sequences were collected from NCBI, SoyBase, MaizeGDB and UniProt databases 

(O’keefe et al., 1993; Soybase: http://www.soybase.org/; Maize GDB: 

http://www.maizegdb.org/). 

Synteny analysis 

Blast+ was used to carry out reciprocal BLAST analysis (Camacho et al., 2009); two 

nucleotide libraries were constructed for the transcripts of A. duranensis and A. ipaensis, 

BLASTn was applied for the LOX gene pool of A. duranensis against the library of A. ipaensis 
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and vice versa. Geneious was used to create dot-plot graphs for protein and DNA sequences 

(Geneious version 8.1.6 http://www.geneious.com, (Kearse et al., 2012)). Flanking genes of 

LOX genes were studied using the visualization tool of PeanutBase (PeanutBase: 

http://peanutbase.org/). The LOX pairs that passed the reciprocal BLAST and at least one of the 

dot plots or flanking genes filters were considered orthologous (Additional files: Table S10).  

Clustering of LOX genes 

BLASTx and BLASTp were applied to the transcripts and the annotated protein 

sequences of LOX genes for studying structure. Geneious was used for applying multiple 

alignment and creating UPGMA phylogenetic trees (Geneious version 8.1.6 

http://www.geneious.com, (Kearse et al., 2012)). 

RNA-seq analysis 

All paired-end read files were mapped to a synthetic tetraploid peanut genome, which 

merged A. duranensis and A. ipaensis genomes, using Tophat version 2.0.13 (Trapnell et al., 

2009). Cufflinks, Cufflmerge and Cuffdiff were used for applying the differential expression 

analysis of tissue samples (Cufflinks version 2.2.1, (Trapnell et al., 2012)) and CummeRbund R 

package (Goff et al., 2013) were used for visualizing the expression profiles in (+1Log10) FPKM 

(Fragment Per Kilobase Million); (+1Log10) TPM (Transcripts Per Kilobase Million) were 

calculated for biotic stress RNA-seq experiments using R 3.2.2. 

Plant materials and nucleic acid extraction 

Young leaf tissues of Tifrunner and GTC-20 genotypes were collected for southern blot 

analysis. Modified CTAB method was used for DNA extraction (Doyle and Doyle, 1987). Leaf, 

root, pericarp, mature and yellow-I stage seeds were collected from GTC-20 for probe 

preparation and northern blot analysis. RNA was extracted by homogenizing 100 mg of frozen 
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ground tissues (powdered) in 1 ml trizol and 200 µl of chloroform. RNA was precipitated using 

250 µl of 3M sodium acetate and 250 µl of isopropanol. RNA was tested on formaldehyde 

agarose gel and measured by nanodorp (Thermo Scientific - Version 2000).  

The Validation of LOX gene loci 

PCR primers were designed for two loci of LOX and adjacent genes (Additional files: 

Table 2.S11) using Geneious 8.1.6 (Kearse et al., 2012). DNA of A. duranensis and A. ipaensis 

accessions V14167 and K30076 respectively (courtesy of Peggy Ozias-Akins lab) was used for 

PCR. 

Designing and preparing the probes 

cDNA was constructed from RNA of root, leaves and seeds tissues using SuperScript® 

III RT (Invitrogen, Carlsbad, CA) according to the manufacturer's instructions. LOX gene 

specific primer pairs were designed by Vector NTI®Suite V6.0 Software (InforMax, Bethesda, 

MD) (Additional files: Table 2.S11). An amplicon for every LOX gene was selected after PCR 

and purified by QIAquick Gel Extraction Kit (QIAGEN Inc. Valencia, CA) according to the 

manufacturer's instructions. The cleaned amplicons were ligated to PCR-4-Topo vector 

(Invitrogen, Carlasbad, CA) and transformed to NEB-5-alpha competent E. coli cells (New 

England BioLabs Inc., Ipswich, MA). Isolated colonies were collected and sequenced by Sanger 

capillary DNA sequencing (Georgia Genomics Facility, University of Georgia, Athens, GA). 

Plasmids were extracted from the enriched colonies using QIA prep spin miniprep kit 

(QIAGEN Inc. Valencia, CA) according to the manufacturer's instructions and PCR was 

conducted. Amplicons were purified by QIAquick Gel Extraction Kit (QIAGEN Inc. Valencia, 

CA) according to the manufacturer's instructions. Twenty-five ng of every probe was labeled by 

α32P-dCTP using Random Primer DNA Labeling Kit (Roche, Indianapolis, IN) according to the 
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manufacturer's instructions. Unincorporated label was removed by Sephadex G-50 (Sigma, St. 

Louis, MO).  

The specificity of every probe was tested against all probes by running 80 pg in an 

agarose gel, transferring to GeneScreen Plus® nylon membrane (PerkinElmer Inc., Waltham, 

Massachusetts) then applying hybridization according to Sambrook and Russell (2001) 

(Additional files: Figure 2.S9). 

Southern blot analysis 

Ten µl Tifrunner and GTC-20 DNAs were digested overnight using EcoRV, XbaI and 

SacI restriction nucleases. The digested DNA was run on an agarose gel overnight at 30 V. The 

gels were transferred to GeneScreen Plus® nylon membranes (PerkinElmer Inc., Waltham, 

Massachusetts) overnight in 0.4N sodium hydroxide. DNA was fixed at 80° C for 2 h. the 

hybridization was carried out overnight at 65° C according to Sambrook and Russell (2001). The 

signals were visualized by the overnight exposure to X-ray film.  

Northern blot analysis 

Fifteen µl of RNA of the previously described tissues were applied to formaldehyde 

agarose gel overnight at 30 V. RNA was transferred to GeneScreen Plus® nylon membranes 

(PerkinElmer Inc., Waltham, Massachusetts) overnight in 20X SSC and fixed at 80° C for 2 h 

and hybridized with labeled probes overnight according to Sambrook and Russell (2001). The 

signals were visualized by the exposure to X-ray film overnight.  

De novo assembly of RNA-seq data and sequence analysis for LOX genes 

De novo transcript sequence assembly was carried out for concatenated files of the 22 

tissues using Trinity 2.0.6 (Haas et al., 2013). One hundred thirty five different LOX proteins of 

different organisms were collected from GenBank. Fifty residues, including active site and 
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surrounding segments were extracted and designated LOX-Core. Motif signatures were analyzed 

using WEBLOGO Version 2.8.2 (WEBLOGO: http://weblogo.berkeley.edu/) (Additional files: 

Figure 2.S10). BLASTx was applied for the assembled transcripts against a library of LOX-Core 

sequences using BLAST+ (Camacho et al., 2009).  
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Tables 

Table 2.1. Orthologous pairs and paralogs of peanut LOX genes depending on A. duranensis and 

A. ipaensis genomes, their locations and designated shortcut names. 

Orthologous pairs / 
paralogous ID 

Chromosome 
A-genome B-genome 

PeanutBase ID Short-form ID PeanutBase ID Short-form ID 

Ah_A/B_01 02 Aradu.XZG8N Ad_01 Araip.849ER Ai_01 

Ah_A/B_02A 03 
Aradu.Q5K4W Ad_02 Araip.MN7KE Ai_02 

Ah_A/B_02B 03 

Ah_A/B_03 03 Aradu.W07KG Ad_03 Araip.NWR3L Ai_03 

Ah_A/B_04 03 Aradu.C88Z1 Ad_04 Araip.X1W86 Ai_04 

Ah_A/B_05 06 Aradu.8D3SW Ad_05 Araip.2KP3T Ai_05 

Ah_A/B_06 06 Aradu.G99LQ Ad_06 Araip.W6TLM Ai_06 

Ah_A/B_07 
06 Aradu.U67PQ Ad_07a 

Ad_07b 
Araip.HGI2J Ai_07 

 Aradu.289WG 

Ah_A/B_08 08 Aradu.AC956 Ad_08 Araip.DH1Z0 Ai_08 

Ah_A/B_09 08 Aradu.WX5KP Ad_09 Araip.E99Y9 Ai_09 

Ah_A/B_10 09 Aradu.SK1BS Ad_10 Araip.5F6MD Ai_10 

Ah_A/B_11 09 Aradu.AE16G Ad_11 Araip.T64GQ Ai_11 

Ah_A/B_12 09 Aradu.GJ1CE Ad_12 Araip.7V9BH Ai_12 

Ah_A/B_13 09 Aradu.FM0YX Ad_13 Araip.GV48H Ai_13 

Ah_A/B_14 09 Aradu.TJL9X Ad_14 Araip.K56RN Ai_14 

Ah_A/B_15 09 Aradu.951UC Ad_15 Araip.Q8LFT Ai_15 

Ah_A/B_16 09 Aradu.LNK8S Ad_16 Araip.VN0A4 Ai_16 

Ah_A/B_17 09 Aradu.C3RV0 Ad_17 Araip.3GK67 Ai_17 

Ah_A/B_18 09 Aradu.KZX2M Ad_18 Araip.D6PZJ Ai_18 

Ah_A/B_19 10 Aradu.AS232 Ad_19 Araip.Q7EYZ Ai_19 

Ah_A/B_20 09/06 Aradu.5E1NU Ad_20 Araip.G6789 Ai_20 

Ah_B_21 02 - - Araip.HUQ4W Ai_21 

Ah_B_22 04 - - Araip.J97JQ Ai_22 

Ah_B_23 06 - - Araip.P423S Ai_23 

Ah_B_24 07 - - Araip.8Z22U Ai_24 

Ah_A_25 08 Aradu.KXZ9V Ad_25 - - 

Ah_A_26 
09 Aradu.2ZL37 Ad_26a 

Ad_26b 
- - 

 Aradu.S1X34 - - 
Ah_B_27 09 - - Araip.LB22X Ai_27 
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Figures 

 

Figure 2.1: Locations and directions peanut LOX genes on a synthetic tetraploid genome based 

on A. duranensis (A-genome) and A. ipaensis (B-genome): Up arrow: the gene locates on the 

forward strand (3’ to 5’ direction), down arrow: the gene locates on reverse strand (5’ to 3’ 

direction), black arrow: genes with complete Lipoxygenase domain, red arrow: genes with 

incomplete lipoxygenase domain, numbers from 1-20 in black circles: locations of orthologous 

gene pairs; numbers 21-27: locations of paralogs; longer arrows of orthologous pairs 7 and 26: 

two incomplete genes are joined in one gene; duplicated arrow of the orthologous pair 2: genes 

with structures of two LOX genes (every one is a duplicated LOX gene); regions marked with 
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green: regions with intra-translocation; regions marked with sky blue: regions with inversion; 

dark blue line of the orthologous pair 20: a region with inter-translocation; lines between two 

genes: the two genes have a synteny; Mbp: Million base pairs, rectangles: a magnified part of the 

chromosome. 

  



 

65 

 

 

Figure 2.2: Classification of peanut LOX genes based on previously published phylogenetic tree 

(Andreou and Feussner, 2009): GenBank IDs of the used accessions are presented in 

supplemental table 2.7. 



 

66 

 

 

Figure 2.3: RNA-seq differential expression profile of peanut LOX genes: Upper rectangle: EP-I 

(Expression Pattern 1); middle rectangle: EP-II (Expression Pattern 2); lower rectangle: EP-III 

(Expression Pattern 3); font colors match the figure 2.2 classification; a description of the tissues 

is represented in additional files: Table S8. 

 



 

67 

 

Figure 2.4: RNA-seq profile of peanut interaction with pathogens and nodulation: PreAf: Pre-

harvest Aflatoxin; PostAf: Post-harvest Aflatoxin; Nem: Nematode; LLS: Late Leaf Spot; Nod: 

Nodulation; font colors match the figure 2.2 classification.  
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Table 2.S1: Orthologous pairs of peanut LOX genes depending on A. duranensis and A. ipaensis 

genomes, which have identified by reciprocal BLAST and confirmed by dot plots.  
L

oc
us

 

C
hr

om
os

om
e 

A-genome B-genome 

PeanutBase ID Shortcut ID PeanutBase ID Shortcut ID 

1 02 Aradu.XZG8N Ad_01 Araip.849ER Ai_01 

2 03 Aradu.Q5K4W Ad_02 Araip.MN7KE Ai_02 

3 03 Aradu.W07KG Ad_03 Araip.NWR3L Ai_03 

4 03 Aradu.C88Z1 Ad_04 Araip.X1W86 Ai_04 

5 06 Aradu.8D3SW Ad_05 Araip.2KP3T Ai_05 

6 06 Aradu.G99LQ Ad_06 Araip.W6TLM Ai_06 

7 06 Aradu.U67PQ Ad_07 Araip.HGI2J Ai_07 

8 08 Aradu.AC956 Ad_08 Araip.DH1Z0 Ai_08 

9 08 Aradu.WX5KP Ad_09 Araip.E99Y9 Ai_09 

10 09 Aradu.SK1BS Ad_10 Araip.5F6MD Ai_10 

11 09 Aradu.AE16G Ad_11 Araip.T64GQ Ai_11 

12 09 Aradu.GJ1CE Ad_12 Araip.7V9BH Ai_12 

13 09 Aradu.FM0YX Ad_13 Araip.GV48H Ai_13 

14 09 Aradu.TJL9X Ad_14 Araip.K56RN Ai_14 

15 09 Aradu.951UC Ad_15 Araip.Q8LFT Ai_15 

16 09 Aradu.LNK8S Ad_16 Araip.VN0A4 Ai_16 

17 09 Aradu.C3RV0 Ad_17 Araip.3GK67 Ai_17 

18 09 Aradu.KZX2M Ad_18 Araip.D6PZJ Ai_18 

19 10 Aradu.AS232 Ad_19 Araip.Q7EYZ Ai_19 

20 09/06 Aradu.5E1NU Ad_20 Araip.G6789 Ai_20 
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Table 2.S2: Paralogous peanut LOX genes, which did not meet the reciprocal BLAST criteria 

and have a synteny with other genes that they probably duplicated from. 

Chromosome 
PeanutBase ID of 

paralogous LOX genes 
PeanutBase ID of the best 

hits (paralogs) 
PeanutBase ID of the 

best hits of the paralogs 

A06 Aradu.289WG Araip.HGI2J Aradu.U67PQ 

A08 Aradu.KXZ9V Araip.E99Y9 Aradu.WX5KP 

A09 Aradu.2ZL37 Araip.LB22X Aradu.951UC 

A09 Aradu.S1X34 Araip.Q8LFT Aradu.951UC 

B02 Araip.HUQ4W Aradu.951UC Araip.Q8LFT 

B04 Araip.J97JQ Aradu.Q5K4W Araip.MN7KE 

B06 Araip.P423S Aradu.AC956 Araip.DH1Z0 

B07 Araip.8Z22U Aradu.2E0TL - 

B09 Araip.LB22X Aradu.951UC Araip.Q8LFT 
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Table 2.S3: BLASTp analysis of every peanut LOX translated gene. 

ID Protein structure and BLASTp best hits 

01_A02 
Lipoxygenase 3, chloroplastic [Glycine soja] 
gb|KHN08522.1| Length: 833 

01_B02 
Lipoxygenase 3, chloroplastic [Glycine soja] 
Sequence ID: gb|KHN08522.1|Length: 833 

Araip.HUQ4W Lipoxygenase [Macrotyloma uniflorum] 
Sequence ID: gb|AIL90390.1|Length: 867 

02_A03 
Linoleate 13S-lipoxygenase 2-1, related protein [Medicago truncatula] 
Sequence ID: gb|KEH30273.1|Length: 906 

02A_B03 
linoleate 13S-lipoxygenase 2-1, related protein [Medicago truncatula] 
Sequence ID: gb|KEH30273.1|Length: 906 

02A_A03 
Linoleate 13S-lipoxygenase 2-1 [Morus notabilis] 
Sequence ID: ref|XP_010087356.1| 

02B_B03 
Linoleate 13S-lipoxygenase 2-1 [Morus notabilis] 
Sequence ID: ref|XP_010087356.1|Length: 912 

03_A03 
Linoleate 13S-lipoxygenase 3-1, chloroplastic [Glycine soja] 
Sequence ID: gb|KHN07257.1|Length: 910 

03_B03 
Linoleate 13S-lipoxygenase 3-1, chloroplastic [Glycine soja] 
Sequence ID: gb|KHN07257.1|Length: 910 

04_A03 
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Lipoxygenase [Theobroma cacao] 
Sequence ID: ref|XP_007045017.1|Length: 914 

04_B03 
Lipoxygenase [Theobroma cacao] 
Sequence ID: ref|XP_007045017.1|Length: 914 

Araip.J97JQ Linoleate 13S-lipoxygenase 2-1, chloroplastic [Glycine soja] 
Sequence ID: gb|KHN21876.1|Length: 653 

05_A06 
Lipoxygenase [Sesbania rostrata] 
Sequence ID: emb|CAC43237.1|Length: 922 

05_B06 
Lipoxygenase [Sesbania rostrata] 
Sequence ID: emb|CAC43237.1|Length: 922 

06_A06 
Lipoxygenase [Corylus avellana] 
Sequence ID: emb|CAD10740.1|Length: 873 

06_B06 
Lipoxygenase [Corylus avellana] 
Sequence ID: emb|CAD10740.1|Length: 873 

07_A06 Linoleate 13S-lipoxygenase 2-1, chloroplastic [Glycine soja] 
Sequence ID: gb|KHN46337.1|Length: 859 

Aradu.289WG Linoleate 13S-lipoxygenase 2-1, chloroplastic [Glycine soja] 
Sequence ID: gb|KHN21708.1|Length: 854 

07_A06 & 

Aradu.289WG Linoleate 13S-lipoxygenase 2-1, chloroplastic [Glycine soja] 
Sequence ID: gb|KHN21708.1|Length: 854 

07-B06 
Linoleate 13S-lipoxygenase 2-1, chloroplastic [Glycine soja] 
Sequence ID: gb|KHN21708.1|Length: 85 
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Araip.P423S Linoleate 9S-lipoxygenase [Phaseolus vulgaris] 
Sequence ID: sp|P27481.1|LOXB_PHAVULength: 741 

Araip.8Z22U Linoleate 9S-lipoxygenase-4 [Glycine soja] 
Sequence ID: gb|KHN32712.1|Length: 720 

08_A08 
Linoleate 9S-lipoxygenase-4 [Glycine max] 
Sequence ID: sp|P38417.1|LOX4_SOYBNLength: 853 

08_B08 
Linoleate 9S-lipoxygenase-4 [Glycine max] 
Sequence ID: sp|P38417.1|LOX4_SOYBNLength: 853 

09_A08 
13-lipoxygenase [Arachis hypogaea] 
Sequence ID: gb|AAY87056.1|Length: 863 

09_B08 
13-lipoxygenase [Arachis hypogaea] 
Sequence ID: gb|AAY87057.1|Length: 863 

Aradu.KXZ9V 
13-lipoxygenase [Arachis hypogaea] 
Sequence ID: gb|AAY87056.1|Length: 863 

10_A09 
Seed linoleate 9S-lipoxygenase-3 [Glycine soja] 
Sequence ID: gb|KHN32710.1|Length: 857 

10_B09 
Seed linoleate 9S-lipoxygenase-3 [Glycine soja] 
Sequence ID: gb|KHN32710.1|Length: 857 

11_A09 
Seed linoleate 9S-lipoxygenase-3 [Glycine soja] 
Sequence ID: gb|KHN32710.1|Length: 857 
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11_B09 
Seed linoleate 9S-lipoxygenase-3 [Glycine soja] 
Sequence ID: gb|KHN32710.1|Length: 857 

12_A09 
Linoleate 9S-lipoxygenase 5, chloroplastic [Glycine soja] 
Sequence ID: gb|KHN32739.1|Length: 744 

12_B09 
Linoleate 9S-lipoxygenase 5, chloroplastic [Glycine soja] 
Sequence ID: gb|KHN32739.1|Length: 744 

13_A09 
Seed linoleate 9S-lipoxygenase-3 [Glycine soja] 
Sequence ID: gb|KHN32710.1|Length: 857 

13_B09 
Seed linoleate 9S-lipoxygenase-3 [Glycine soja] 
Sequence ID: gb|KHN32710.1|Length: 857 

14_A09 
Seed linoleate 9S-lipoxygenase-3 [Glycine soja] 
Sequence ID: gb|KHN32710.1|Length: 857 

14_B09 
Seed linoleate 9S-lipoxygenase-3 [Glycine soja] 
Sequence ID: gb|KHN32710.1|Length: 857 

Aradu.2ZL37 

lipoxygenase-9 [Glycine max] 
Sequence ID: ref|NP_001237323.1|Length: 865 

Aradu.S1X34 

Araip.LB22X 
Linoleate 9S-lipoxygenase 1 [Glycine soja] 
Sequence ID: gb|KHN01371.1|Length: 846 

15_A09 
lipoxygenase-9 [Glycine max] 
Sequence ID: ref|NP_001237323.1|Length: 865 

15_B09 

lipoxygenase-9 [Glycine max] 
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Sequence ID: ref|NP_001237323.1|Length: 865 

16_A09 
Linoleate 13S-lipoxygenase 3-1, chloroplastic [Glycine soja] 
Sequence ID: gb|KHN39622.1|Length: 922 

16_B09 
Linoleate 13S-lipoxygenase 3-1, chloroplastic [Glycine soja] 
Sequence ID: gb|KHN39622.1|Length: 922 

17_A09 
putative lipoxygenase-9 [Arachis hypogaea] 
Sequence ID: gb|AJT49215.1|Length: 860 

17_B09 
putative lipoxygenase-9 [Arachis hypogaea] 
Sequence ID: gb|AJT49215.1|Length: 860 

18_A09 
Linoleate 9S-lipoxygenase 5, chloroplastic [Glycine soja] 
Sequence ID: gb|KHN02707.1|Length: 850 

18_B09 
Linoleate 9S-lipoxygenase 5, chloroplastic [Glycine soja] 
Sequence ID: gb|KHN02707.1|Length: 850 

19_A10 
Lipoxygenase 3, chloroplastic [Glycine soja] 
Sequence ID: gb|KHN08522.1|Length: 833 

19_B10 
Lipoxygenase 3, chloroplastic [Glycine soja] 
Sequence ID: gb|KHN08522.1|Length: 833 

20_A09 13-lipoxygenase [Arachis hypogaea] 
Sequence ID: gb|AAY87056.1|Length: 863 

20_B06 13-lipoxygenase [Arachis hypogaea] 
Sequence ID: gb|AAY87056.1|Length: 863 
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Table 2.S4: Published peanut LOX genes. 

Name Gene bank ID 
pnLOX1 AAF60270.1 
pnLOX2 AAY87056.1 
pnLOX3 AAY87057.1 
pnLOX4 EZ722311.1 
pnLOX5 JR564445.1 

pnLOX6_c05 AJT49213 
pnLOX6_e10 AJT49214 
pnLOX7_g02 AJT49215 
pnLOX8_h07 AJT49216 
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Table 2.S5: LOX gene number in some plants based on NCBI search and SoyBase annotation 

file. 

Species No. of LOXs 
Arabidopsis 6 

Rice 14 
Apple 36 
Mei 18 

Peach 16 
Strawberry 14 

Grape 12 
Pear 23 

Barely 3 
Wheat 9 

Medicago truncatula 32 
soybean 44 
peanut 8 
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Table 2.S6: Soybean LOX genes, which contained Lipoxygenase domain, extracted from the 

annotation file of SoyBase. 

Feature Chromosome Start End Assembly 
Glyma.03g2373 Gm03 43723483 43730370 Glyma2.0 
Glyma.04g1055 Gm04 10440510 10445278 Glyma2.0 
Glyma.04g1059 Gm04 10789400 10791837 Glyma2.0 
Glyma.05g0986 Gm05 26207237 26209499 Glyma2.0 
Glyma.07g0067 Gm07 491733 496064 Glyma2.0 
Glyma.07g0069 Gm07 503752 509348 Glyma2.0 
Glyma.07g0070 Gm07 509819 514700 Glyma2.0 
Glyma.07g0071 Gm07 529398 533680 Glyma2.0 
Glyma.07g0348 Gm07 2763836 2770113 Glyma2.0 
Glyma.07g0349 Gm07 2782231 2787974 Glyma2.0 
Glyma.07g0399 Gm07 3288274 3294751 Glyma2.0 
Glyma.07g1778 Gm07 33819873 33820090 Glyma2.0 
Glyma.07g1968 Gm07 36509005 36518982 Glyma2.0 
Glyma.08g1891 Gm08 15163027 15164686 Glyma2.0 
Glyma.08g1892 Gm08 15172904 15178499 Glyma2.0 
Glyma.08g1893 Gm08 15186020 15191205 Glyma2.0 
Glyma.08g1894 Gm08 15193038 15201472 Glyma2.0 
Glyma.08g1895 Gm08 15206364 15212242 Glyma2.0 
Glyma.08g1896 Gm08 15235197 15239971 Glyma2.0 
Glyma.08g1897 Gm08 15242887 15243655 Glyma2.0 
Glyma.08g1898 Gm08 15249052 15254212 Glyma2.0 
Glyma.10g1539 Gm10 38898358 38904608 Glyma2.0 
Glyma.11g1302 Gm11 9903923 9913136 Glyma2.0 
Glyma.11g1303 Gm11 9925260 9936297 Glyma2.0 
Glyma.12g0547 Gm12 3949453 3957386 Glyma2.0 
Glyma.13g0303 Gm13 9773782 9780355 Glyma2.0 
Glyma.13g0759 Gm13 17965521 17975820 Glyma2.0 
Glyma.13g2390 Gm13 34926963 34931964 Glyma2.0 
Glyma.13g3475 Gm13 43761727 43766023 Glyma2.0 
Glyma.13g3476 Gm13 43769021 43773290 Glyma2.0 
Glyma.13g3477 Gm13 43773475 43780320 Glyma2.0 
Glyma.13g3478 Gm13 43797692 43803266 Glyma2.0 
Glyma.14g1735 Gm14 42911150 42913226 Glyma2.0 
Glyma.15g0263 Gm15 2123754 2128104 Glyma2.0 
Glyma.15g0264 Gm15 2130531 2134563 Glyma2.0 
Glyma.15g0265 Gm15 2142191 2147489 Glyma2.0 
Glyma.15g2333 Gm15 43893441 43895221 Glyma2.0 
Glyma.16g0087 Gm16 735622 742337 Glyma2.0 
Glyma.16g0962 Gm16 18245957 18246472 Glyma2.0 
Glyma.19g2633 Gm19 50591809 50596423 Glyma2.0 
Glyma.20g0537 Gm20 12341598 12348808 Glyma2.0 
Glyma.20g0540 Gm20 12411805 12423973 Glyma2.0 
Glyma.20g0541 Gm20 12486755 12493110 Glyma2.0 
Glyma.20g2344 Gm20 46695256 46696124 Glyma2.0 
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Table 2.S7: Gene bank ID of accessions that used in the LOX gene classifications. 

Name Genbank ID 
LOX1:At:1 Q06327 
LOX1:At:2 CAC19365 

LOX1:Gm:1 AAA33986 
LOX1:Gm:2 AAA33987 
LOX1:Gm:3 CAA31664 
LOX1:Gm:4 BAA03101 
LOX1:Gm:5 AAB67732 
LOX1:Gm:6 AAA96817 
LOX1:Gm:7 S13381 
LOX1:Lc:1 CAA50483 
LOX1:Le:1 P38415 
LOX1:Le:2 P38416 
LOX1:Le:3 AAG21691 
LOX1:Nt S57964 

LOX1:Ps:1 AAB71759 
LOX1:Ps:2 CAA55318 
LOX1:Ps:3 CAA55319 
LOX1:St:1 S44940 
LOX1:St:2 AAD09202 
LOX1:St:3 P37831 
LOX1:St:4 CAA64766 
LOX1:St:5 CAA64765 
LOX1:St:6 AAB67860 
LOX2:At:1 P38418 
LOX2:At:2 AAF79461 
LOX2:At:3 CAC19364 
LOX2:At:4 AAB65766 
LOX2:Le:1 AAB65767 
LOX2:Le:2 AAB65767 
LOX2:Na AAP83138 
LOX2:St:1 CAA65268 
LOX2:St:2 CAA65269 
PpLOX1 CAE47464 

Mm_5-LOX AAC37673 
Mm_8-LOX CAA75003 

Mm_12R-LOX CAA74714 
Mm_e12-LOX AAA20659 
Mm_l12-LOX AAA20658 
Mm_p12-LOX CAA67625 
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Table 2.S8: The description of tissues that were used in RNA-seq differential expression 

analysis. 

Tissue Stage 
Leaf leaflets partially open 
Leaf leaflets partially open, from mainstem 
Leaf leaflets partially open, from laterals 

Vegetative shoot first flower, from mainstem 
Reproductive shoot first flower, from laterals 

Root structures 10 d post-emergence 
Nodules 25 d post-emergence 
Flowers Pedals,keel, hypanthium sepals 
Flower Fully open, morning of anthesis; pistles 
Flower Fully open, morning of anthesis; stamens 

Gynophore tip elongating peg prior to soil penetration 
Gynophore tip elongating peg after 24 h soil penetration 
Gynophore tip At pod swelling (Pattee stage 1) 

Gynophore “stalk” At pod swelling (Pattee stage 1) 
Pod Pericarp very watery, embryo very small 

Pericarp Pericarp soft, not as watery 
Seed embryo flat 

Pericarp beginning to show cracks or cottony 
Seed Torpedo shaped 
Seed Torpedo to round shaped 
Seed Round shaped 
Seed seed coat beginning to dry out 
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Table 2.S9: BLASTn search using probe sequences against a library of all annotated transcripts 

of A. duranensis and A. ipaensis. 

The 
query 

sequence 
id 

Subject % id 
alignment 

length 
mis-

matches 
gap 

openings 
q.start q.end s.start s.end e-value 

bit 
score 

P_01 Araip.DH1Z0.1 100 296 0 0 1 296 2279 2574 5.00E-167 587 

P_01 Aradu.AC956.1 99.32 296 2 0 1 296 2159 2454 3.00E-162 571 

P_02 Araip.E99Y9.1 100 316 0 0 1 316 2389 2704 6.00E-179 626 

P_02 Aradu.WX5KP.1 99.05 316 3 0 1 316 2320 2635 9.00E-172 603 

P_02 Araip.G6789.1 98.42 316 5 0 1 316 1883 2198 6.00E-167 587 

P_02 Aradu.KXZ9V.1 98.42 316 5 0 1 316 3238 3553 6.00E-167 587 

P_02 Aradu.5E1NU.1 97.15 316 9 0 1 316 1074 1389 2.00E-157 555 

P_03a Araip.W6TLM.1 99.69 321 1 0 1 321 2259 2579 2.00E-179 628 

P_03a Aradu.G99LQ.1 99.69 321 1 0 1 321 2284 2604 2.00E-179 628 

P_03b Araip.W6TLM.1 100 333 0 0 1 333 446 778 0 660 

P_03b Aradu.G99LQ.1 99.7 333 1 0 1 333 471 803 0 652 

P_04_ Aradu.C3RV0.1 100 332 0 0 1 332 2248 2579 0 658 

P_04 Araip.3GK67.1 98.19 331 6 0 1 331 1977 2307 2.00E-173 609 

P_05 Araip.K56RN.1 99.69 321 1 0 1 321 1560 1880 2.00E-179 628 

P_05 Aradu.TJL9X.1 99.07 321 3 0 1 321 1550 1870 1.00E-174 613 

P_06 Araip.Q8LFT.1 99.66 293 1 0 1 293 2431 2723 8.00E-163 573 

P_06 Aradu.951UC.1 99.32 293 2 0 1 293 2439 2731 2.00E-160 565 
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Table 2.S10: Evidence of orthologs and paralogs of LOX genes 

Locus Chromosome A-genome B-genome Reciprocal Full Transcript flanking 

1 02 Aradu.XZG8N Araip.849ER 1 1 1 0 

2 03 Aradu.Q5K4W Araip.MN7KE 1 1 1 2 

3 03 Aradu.W07KG Araip.NWR3L 1 1 1 2 

4 03 Aradu.C88Z1 Araip.X1W86 1 1 1 2 

5 06 Aradu.8D3SW Araip.2KP3T 1 0 1 2 

6 06 Aradu.G99LQ Araip.W6TLM 1 0 1 2 

7 06 Aradu.U67PQ Araip.HGI2J 1 1 1 2 

8 08 Aradu.AC956 Araip.DH1Z0 1 1 1 2 

9 08 Aradu.WX5KP Araip.E99Y9 1 1 1 2 

10 09 Aradu.SK1BS Araip.5F6MD 1 1 1 1 

11 09 Aradu.AE16G Araip.T64GQ 1 1 1 1 

12 09 Aradu.GJ1CE Araip.7V9BH 1 1 1 1 

13 09 Aradu.FM0YX Araip.GV48H 1 1 1 2 

14 09 Aradu.TJL9X Araip.K56RN 1 1 1 2 

15 09 Aradu.951UC Araip.Q8LFT 1 1 1 2 

16 09 Aradu.LNK8S Araip.VN0A4 1 1 1 1 

17 09 Aradu.C3RV0 Araip.3GK67 1 1 1 1 

18 09 Aradu.KZX2M Araip.D6PZJ 1 0 1 2 

19 10 Aradu.AS232 Araip.Q7EYZ 1 1 1 2 

20 09/10 Aradu.5E1NU Araip.G6789 1 0 1 0 

21 06 Aradu.289WG - 0 - - - 

22 08 Aradu.KXZ9V - 0 - - - 

23 09 Aradu.2ZL37 - 0 - - - 

24 09 Aradu.S1X34 - 0 - - - 

25 02 - Araip.HUQ4W 0 - - - 

26 04 - Araip.J97JQ 0 - - - 

27 06 - Araip.P423S 0 - - - 

28 07 - Araip.8Z22U 0 - - - 

29 09 - Araip.LB22X 0 - - - 
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Table 2.S11: PCR primer pairs of probes, assembly validation and sequencing. 
 

Primer ID Forward sequence Reverse sequence 
P_01 5’-TGCCTGAGAAAGGGTCTCCT-3’ 5’-AGCTGGTCCAGAACGATTTT-3’ 
P_02 5’-TCCATATGGAGGGCTTATCC-3’ 5’-CCCATCTTTGTTCTTCTCTG-3’ 
P_03a 5’-TCCATGCTGCAGTTAACTTT-3’ 5’-TTCTCTTCTCAATCTCTGCT-3’ 
P_03b 5’-CCTGGTGCATTCTTAATTAG-3’ 5’-ACGAGCATATTCTGAACCTT-3’ 
P_04 5’-CGAACCGTCCAGCCATAAGT-3’ 5’-GGGCATCTTAACAGGTCCAT-3’ 
P_05 5’-CCTATGCTACAAGAACCGTT-3’ 5’-TGTCTCTATAATGTGGGAGA-3’ 
P_06 TTACCGGAACTCGAAAGCGA-3’ 5’-GCAGGCCCAATTCTGTTTCT-3’ 

Araip.D6PZJ_Araip.Q00X2 5’-CAAGGGAGGGTGGTCTCACTGGAAAA-3’ 5’-GCCATGTATGAACCTTGCAGCTTCCT-3’ 
Aradu.5RZ6C_Aradu.KZX2M 5’-AGGAAGCTGCAAGGTTCATACATGGC-3’ 5’-GGTCTCACTGGAAAGGGAATCCCCAA-3’ 
Aradu.GB953_Aradu.C88Z1 5’-GTTAGTAGAGGCGTATGAGCGGGAGG-3’ 5’-GGTCCAGGTGTAACTGGTCGTGGAAT-3’ 
Aradu.C88Z1_Aradu.P0D43 5’-TCCTTCCAGAAGAAACCACGGAACCA-3’ 5’-TTGCAAATTAGCCTTACCAGCAAGTT-3’ 
Araip.X1W86_Araip.HTH9H 5’-AGTCACTTGGCACTCTCAACTCAGCA-3’ 5’-CTCTCATCACAACAATGCCCTCTGCC-3’ 

pSMART2IFD 5’-TCACACAGGAAACAGCTATGA-3’ 5’-CCTCTTCGCTATTACGCCAGC-3’ 
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Figure 2.S1: A phylogenetic tree based on multiple alignment of annotated and published peanut 

LOX genes. 
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Figure 2.S2: Phylogenetic tree based on multiple alignment of 13 assembled LOX genes and 

peanut LOX gene pool. 
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Figure 2.S3: LOX genes included within inverted regions between A-genome (upper panels) and 

B-genome (lower panels). 
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Figure 2.S4: PCR for interval regions at locus 04. 
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Figure 2.S5: The divergence among peanut, soybean and maize. 
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Figure 2.S6: Southern blot analysis of six peanut LOX genes: lanes from left to right: marker, 

positive control, GTC-EcoRV, TIF-EcoRV, GTC-XbaI, TIF-XbaI, GTC-SacI, TIF-SacI. 
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Figure 2.S7: Northern blot analysis of six peanut LOX genes: IS: Immature seed, P: Pericarp, L: 

Leaf, R: Root, MS: Mature seed. 
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Figure S8. Northern blot analysis of Ah_A/B_9 after inoculation by A. flavus: 0,8,24 and 48: 

hours after infection, +: treatments, -: controls (mock), G: GT-C20, T: Tifrunner, F: Florunner.  

 

Southern blot analysis (Additional files: Figure 2.S8-upper panel) of Ah_A/B_08 

produced two bands for all tested restriction enzymes in both cultivars (GT-C20 and Tifrunner), 

which represent Ad_08 and Ai_08 alleles. However, the analysis of Ah_A/B_09 produced three 

bands with XbaI and two different intensity bands with the other two restriction enzymes (one 

band is roughly twice in intensify of another). This may have resulted from the two homeologs 

(Ad_09 and Ai_09) in addition to Ad_25, Ad_20 or Ai_20 since they have a high similarity to 

Ah_A/B_09. In addition, NCBI-BLASTn search using probe sequences against a library of all 

annotated transcripts of A. duranensis and A. ipaensis (Additional files: Table 2.S9) captured 

only the two-allele hits of every probe except for P_01, which captured extra three sequences, 

i.e., Ad_25, Ad_20 or Ai_20. The expression profile of genes included in this group, EP-I, was 

confirmed using northern blot analysis (Additional files: Figure 2.S9) since both Ah_A/B_8 and 

Ah_A/B_9 generated signals only in the two seed tissues, out of five tested tissues, Immature 

and mature, pericarp, leaves and root. 
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Southern blot analysis (Additional files: Figure 2.S8-middle panel) of Ah_A/B_06 and 

Ah_A/B_17 (EP-II) showed two bands with all restriction enzymes for the two cultivars, except 

some low intensity bands in Ah_A/B_17. However, the analysis of Ah_A/B_14 and Ah_A/B_15 

(Additional files: Figure 2.S8-bottom panel) produced three bands with two restriction enzymes, 

out of three. Among the 83,749 entries in combined BLASTn library of A. duranensis and A. 

ipaensis, BLASTn search using the probes captured only the two pairs of both genes (Additional 

files: Table 2.S9). The probes were very specific based on BLASTn results, even different 

probes for the same gene, P_03a_Alox6 and P_03b_Alox6 (Additional Files: Figure 2.S7), yet 

the extra bands may have resulted from low but sufficient level of similarity to hybridize. 

Northern blot analysis (Additional files: Figure 2.S9) confirmed the RNA-seq profiling of 

genes in these two groups (EP-II and EP-III) since no bands were generated for tested genes of 

the EP-II group and the tested genes of the EP-III group produced bands only in root and leaf 

tissues. However, the pericarp had high expression in RNA-seq profiling and no bands in 

northern blot analysis. This may have resulted from cultivar differences since RNA-seq data 

were produced from Tifrunner tissues and RNAs for northern blot analysis were extracted from 

GTC-20. 
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Figure 2.S9: LOX probe specificity every membrane has marker (first lane) and 7 probes. 
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Figure 2.S10: The probability signature of amino acid sequences for LOX-Core. 
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CHAPTER 3 

GENOTYPIC REGULATION OF AFLATOXIN ACCUMULATION BUT NOT 

ASPERGILLUS FLAVUS GROWTH UPON POST-HARVEST INFECTION OF PEANUT 

(ARACHIS HYPOGAEA L.) SEEDS 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1W. A. Korani, Y. Chu, C. C. Holbrook, J. P. Clevenger, and P. Ozias-Akins. To be submitted to 

Toxins 



 

106 

Abstract 

Aflatoxin contamination is a major economic and food safety concern for the peanut 

industry that largely could be mitigated by genetic resistance. To screen peanut for aflatoxin 

resistance, ten genotypes were infected with a green fluorescent protein (GFP)-expressing 

Aspergillus flavus strain. Percentages of fungal infected area and fungal GFP signal intensity 

were documented by visual ratings every 8 hours for 72 hours after inoculation. Significant 

genotypic differences in fungal growth rates were documented by repeated measures and area 

under the disease progress curve (AUDPC) analyses. SICIA (Seed Infection Coverage and 

Intensity Analyzer), an image processing software, was developed to digitize fungal GFP signals. 

Data from SICIA image analysis confirmed visual rating results validating its utility for 

quantifying fungal growth. Among the tested peanut genotypes, NC 3033 and GT-C20 supported 

the lowest and highest fungal growth on the surface of peanut seeds, respectively. Although 

differential fungal growth was observed on the surface of peanut seeds, total fungal growth in the 

seeds was not significantly different across genotypes based on a fluorometric GFP assay. 

Significant differences in aflatoxin B levels were detected across peanut genotypes. ICG 1471 

had the lowest aflatoxin level whereas Florida-07 had the highest. Two-year aflatoxin tests under 

simulated late-season drought confirmed the reduced aflatoxin production of ICG 1471 under 

pre-harvest field conditions. These results suggest that all studied peanut genotypes support A. 

flavus fungal growth yet differentially influence aflatoxin production. 

Introduction 

Aspergillus flavus is an opportunistic pathogen with a wide host range including peanut, 

corn, wheat, barley, rice, tree nuts, and cotton seeds (Chang and Markakis, 1982; Rajasekaran et 

al., 2008; Taheri et al., 2012; Ostadrahimi et al., 2014; Elzupir et al., 2015; Abbas et al., 2015). 
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Peanut is one of the most susceptible crops to A. flavus and A. parasiticus infection either in the 

field (pre-harvest) or during storage (post-harvest) (Diener et al., 1987; Xue et al., 2004). A. 

flavus and A. parasiticus produce aflatoxins as secondary metabolites under conducive 

environmental conditions. Aflatoxins cause toxicosis, cancer, and immunosuppressive diseases 

in animals and humans (Scheidegger and Payne, 2003; Verma 2004) and alfatoxin B1 level is 

highly regulated worldwide (Smith et al., 2016). Aflatoxin contamination incurs an average $20 

million annual cost to the U.S. peanut industry (Lamb and Sternitzke, 2001). 

Aspergillus spp. conidia are abundant in the soil and can survive through harsh weather 

conditions. Since peanut pods develop underground, direct contact of developing peanut pods 

with fungal mycelium provides the main entry for fungal invasion (Cole et al., 1986; Torres et 

al., 2014). Peanut pods damaged by insects and nematodes were shown to have elevated levels of 

aflatoxin contamination (Lynch and Wilson, 1991; Timper et al., 2004). Another possible route 

of fungal infection is through flowers (Styer et al., 1983). Heat and drought stress in the field 

exacerbates aflatoxin contamination (Holbrook et al., 2009). Peanut host genes altered by A. 

flavus contamination were discovered by a genome wide RNA-seq analysis (Clevenger et al., 

2016). Disruption of peanut ABA signaling pathway by A. flavus invasion was suggested to 

facilitate aflatoxin accumulation. As for minimizing post-harvest aflatoxin contamination, clean, 

dry and temperature controlled storage conditions with protection from insect and rodent 

infestation are recommended (Torres et al., 2014). In developing countries, appropriate storage 

conditions are often inaccessible or unaffordable.  

Development of aflatoxin resistant peanut cultivars has been one of the most challenging 

goals due to the large variation in pre-harvest aflatoxin contamination. Even aflatoxin resistant 

lines accumulated widely different levels of aflatoxin when grown in the same or different 
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environments (Blankenship et al., 1984). A recent gene profiling study comparing an aflatoxin 

resistant line and a susceptible line revealed multiple biological pathways enriched in the 

resistant line upon A. flavus challenge (Houmiao et al., 2016). However, the resistant line 

accumulated over 20,000 ppb of aflatoxin over the 10-d time frame of the experiment, which 

even though 1% of the aflatoxin in the susceptible line, far exceeds the U.S. action level of 20 

ppb for human food consumption and is not actually resistant. 

To circumvent the high variation in field aflatoxin evaluation of genetic resistance, in 

vitro inoculation has been used to ensure more uniform fungal infection of seeds. Several wild 

diploid peanut relatives and interspecific tetraploids were reported to be resistant to aflatoxin 

based on in vitro inoculation of seeds and analysis 8-d post inoculation (Xue et al., 2004). Since 

complete inhibition of fungal growth or aflatoxin contamination is unlikely, a time-course to 

monitor fungal growth during the disease progression could reveal differential fungal-host 

interactions among peanut genotypes. Surrogate parameters estimating fungal growth such as β-

l-3-glucanase activity previously were used in in vitro studies (Liang et al., 2005; Sharaf et al., 

2011), but are destructive assays. Green fluorescent protein (from Aequorea victoria) 

transformed A. flavus allows for the non-destructive measurement of fungal growth (Lorang et 

al., 2001) and AF-70-GFP, a GFP-expressing A. flavus strain, was used in cotton to identify 

resistant cotton lines (Rajasekaran et al., 2008). Since dissociation of in vitro aflatoxin resistance 

and pre-harvest aflatoxin contamination was reported previously (Nigam et al., 2009), it is 

possible that in vitro and field tests were interrogating different aspects of aflatoxin resistance 

mechanisms in the genotypes examined. 

In this study, ten peanut genotypes were selected based on their resistance to aflatoxin 

and or drought tolerance. ICGV88145 (Rao et al., 1995) and ICG 1471 (Dwivedi and Varma, 
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2002; Waliyar et al., 1994; Asis et al., 2005; Hamidou et al., 2014) are aflatoxin resistant lines 

released by ICRISAT and Senegal, respectively. ICG 1471 also is drought tolerant (Mehan 

1989). GT-C20 is a Chinese cultivar (Liang et al., 2006) reported to retard A. flavus fungal 

growth and prevent aflatoxin production (Zhang et al., 2015). C76-16 is a drought tolerant 

USDA breeding line with field aflatoxin resistance (Holbrook et al., 2007). Tifguard (Holbrook 

et al., 2008), NC 3033 (Beute et al., 1976), Tifrunner (Holbrook and Culbreath, 2007) and 

Florida-07 (Gorbet and Tillman, 2009) showed less aflatoxin contamination compared to 

susceptible control breeding line A72 (Luis et al., 2016). Another susceptible breeding line, A69, 

was selected from the cross NCV-11 x GFA-2 from the USDA peanut breeding program in 

Tifton, GA. In this study, these ten peanut genotypes were inoculated with AF-70-GFP and 

evaluated for fungal growth by both visual rating and image analysis as well as for aflatoxin 

contamination over a 3-d time course. Genotypic differences in aflatoxin production per unit of 

fungus were documented. 

Results and Discussion 

It is known that aflatoxin contamination increases in seeds with low viability and 

germination rate as Aspergilli produce metallo and serine proteases that reduce seed vaiablity to 

facilitate their accession (Klich and Lee, 1982; Asis et al., 2009). In this study, instead of using 

seed sources from storage, all genotypes were grown in a common field and harvested at their 

respective optimum maturity dates. Sound and mature seeds were selected to reduce the variable 

of maturity. Germination tests of these freshly harvested seeds showed greater than 98% 

germination rate (data not shown). Since the presence or absence of testa can affect the level of 

colonization by Aspergilli (Xue et al., 2005), and tannins (Lansden 1982) and antioxidants 

(Shiow Chyn et al., 2003) have been identified in peanut testa, we adopted a method of surface 
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sterilization to preserve testa integrity. Therefore, peanut kernels were UV sterilized prior to 

inoculation which protected the intactness of peanut testa and minimized the confounding effect 

of A. flavus or other microbiota persisting from the field. The more extensive testa surface area 

of Florida-07 seeds, which were approximately twice the size of ICG 1471, remained intact with 

UV sterilization.  

The AF-70-GFP strain does not differ from wild-type A. flavus in terms of pathogen 

aggressiveness and aflatoxin production (Rajasekaran et al., 2008). The GFP signal produced by 

AF-70-GFP is a good indicator of fungal growth allowing non-destructive, real-time monitoring 

of fungal development. In this study, A. flavus fungal growth rates were significantly different 

among the tested peanut genotypes determined by visual ratings of fungal GFP signal on the seed 

surface (Figure 3.1). Fungal growth curves based on visual ratings and reported as percentage of 

infected area (Figure 3.1A) and intensity of fungal GFP signal (Figure 3.1B) gave similar 

patterns suggesting either parameter can be applied to monitor fungal development on the seed 

surface. GFP signal was not detected on seed surfaces freshly inoculated with conidial 

suspension whereas newly grown hypha and conidia emitted strong GFP signals. Fungal GFP 

expression became visible across peanut genotypes between 8 to 24 hours after inoculation 

(HAI) and rapidly increased throughout the 72-h time course. Therefore, under current testing 

conditions, AF-GFP-70 had a short incubation period of 8-16 h prior to initiating a vigorous 

growth phase. Tukey's range test showed that GT-C20 is the genotype most conducive to fungal 

growth followed by C76-16 and A69. NC 3033 had the least fungal growth on seed surfaces, 

however it was not significantly different from Tifrunner, Tifguard, A72, ICGV88145 and 

Florida-07. ANOVA analysis of area under the disease progress curve (AUDPC) of these two 

parameters gave similar results (Figure 3.S1). 
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To objectively determine fungal GFP signal on seed surfaces, seed infection coverage 

and intensity analyzer (SICIA), a Matlab software, was developed. The software analysis flow 

chart (Figure 3.2A) and examples of the fungal infected area and fungal intensity quantification 

by SICIA (Figure 3.2B) are provided. Both percentage of infected area, and intensity of fungal 

GFP signal, estimated by SICIA (Figure 3.3), confirmed visual rating scores (Figure 3.1) in that 

GT-C20, C76-16, and A69 supported the highest level of fungal growth and NC 3033 had the 

least surface fungal growth. Visual rating across a time course is tedious, which limits the 

number of genotypes that can be included in a study. On the contrary, image analysis is 

automated, removes subjectivity, and is fast. In addition, visual rating scores are categorical with 

limited interpolation whereas image analysis quantifies GFP signal by continuous measurements 

which explains the better separation of means by SICIA than that of visual rating. 

GT-C20, NC 3033, ICG 1471, Tifrunner, and Florida-07 were selected for quantification 

of GFP and aflatoxin B by fluorometric and VICAM assays, respectively, since these five 

genotypes represented the range of fungal growth in this study. GFP and aflatoxin analyses were 

performed on a single-seed basis for best comparison between aflatoxin production and fungal 

growth. No statistically significant differences were found for GFP expression among genotypes 

(Figure 3.4A). Although NC 3033 appeared to support significantly less fungal growth on the 

seed surface in the previous analysis, vigorous fungal growth beneath the testa negates the 

difference on seed surfaces. Previously, tannins extracted from the testa were shown to inhibit A. 

flavus growth [43]. It is possible that testa tannin or phenolic content of NC 3033 may retard 

fungal growth on the seed surface which could be of interest for further investigation. In 

addition, this shows that the progressing fungal growth pattern can be different across peanut 
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genotypes as it tends to be on the surface in some genotypes and more penetrated inside the 

seeds in others. 

ICG 1471 was found to accumulate significantly less aflatoxin than other genotypes and 

Florida-07 had the highest level of aflatoxin (Figure 3.4A). Interaction plots between GFP and 

aflatoxin level indicated that ICG 1471 produced minimum amounts of aflatoxin regardless of 

the amount of fungal GFP accumulation (Figure 3.4B). Florida-07 is the only high oleic 

genotype [38] among the tested genotypes and high oleic, low linoleic, acid in peanut has been 

suggested to increase post-harvest aflatoxin accumulation (Xue et al., 2003; Xue et al., 2005). 

Among the other four tested genotypes with normal oleic acid content, ICG 1471 accumulated 

significantly less aflatoxin.  

 To further investigate genotypic differences in pre-harvest aflatoxin accumulation, all 

genotypes were tested in rain exclusion shelters inoculated with A. flavus and A. parasiticus 

(Table 3.1). From the two-year data, ICG 1471 had low aflatoxin production whereas most tested 

lines accumulated greater than 20 ppb of aflatoxin. High variation of field aflatoxin accumulation 

documented here is common for field studies (Holbrook et al., 2009), and aflatoxin resistant 

lines need to be tested for multiple years in multiple environments. Although our in vitro data is 

consistent with field studies in regard to aflatoxin resistance of ICG 1471, additional field and 

laboratory studies are needed to define the resistance mechanisms for this genotype. GT-C20 was 

previously reported to limit A. flavus fungal growth and inhibit aflatoxin production (Zhang et 

al., 2015), which is contrary to our findings. Both our field and in vitro studies demonstrated the 

high susceptibility of GT-C20 to A. flavus fungal growth and aflatoxin production. As mentioned 

earlier, a truly aflatoxin resistant line should not be claimed unless it withstands multiple tests 
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due to the highly variable nature of the A. flavus/peanut host/secondary product biosynthesis 

interaction. 

Highly reproducible results from this study support the robustness of these methods 

applied to quantify A. flavus growth. Differential genotypic responses to A. flavus fungal growth 

and aflatoxin production were revealed. Peanut germplasm ICG 1471 was found to inhibit 

aflatoxin production without restraining fungal growth. Rainout shelter testing supported the 

reduced aflatoxin production in ICG 1471, suggesting that this germplasm and its underlying 

genetic mechanisms for resistance may be useful in breeding for pre- and post-harvest aflatoxin 

reduction. Future RNA-seq study is required to reveal the genetic mechanism controlling 

aflatoxin contamination in this genotype.  

Materials and Methods 

Plant materials 

Ten peanut genotypes were planted on the Tifton Campus of the University of Georgia in 

June and harvested in October 2015. Harvest was according to respective maturity dates as 

follows: ICG88145, ICG 1471, GT-C20: 115 days; C76-16, A72, A69, Tifguard, NC 3033: 135 

days; and Tifrunner, Florida-07: 150 days. Mature seeds were selected from each genotype. 

Thirty seeds per genotype were used to determine seed viability by a germination test, and 

another 150 seeds were used for fungal infection and aflatoxin analysis studies described below. 

The seeds were stored at 4°C during the experiment progress. In addition, the seeds were dried at 

30°C for 7-10 days.  

In vitro A. flavus inoculation using AF-70-GFP 

This experiment was conducted with a randomized complete block (RCB) design; 3-4 

blocks were used. Each block had five individual seeds as replicates, and the experiment was 
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replicated three times (11 total blocks of infected seeds). Seeds were surface sterilized for 15 min 

under UV light (LABCONCO purified class II biosafety cabinet, Kansas City, MO). The AF-70-

GFP strain (Rajasekaran et al., 2008) was used for infection. This strain had Enhanced Green 

Fluorescent Protein (EGFP) under the control of glyceraldehyde phosphate dehydrogenase 

(gpdA) promoter and A. parasiticus nmt-1 terminator (Rajasekaran et al., 2008). The fungus was 

grown on potato dextrose agar (PDA) medium in petri dishes for two weeks at 30°C, and conidia 

were suspended in 0.01% Tween-20 solution. Conidia concentration was estimated using a 

Fuchs-Rosenthal Counting Chamber (Hausser Scientific, Horsham, PA) and was adjusted to 

1000 conidia/ml. Twenty ml of conidial suspension was used to inoculate every five seeds by 

immersion for 30 min with quick vortexing every 5 min (Burow et al., 2000). A wide range of 

conidia concentrations (104 to 106 conidia/ml) had been used previously (Burow et al., 2000; 

Tsitsigiannis et al., 2005; Muller et al., 2014). A low concentration of conidia was chosen for 

this study to avoid an overwhelming level of colonization. After inoculation, the seeds were 

placed in 12-well tissue culture plates (Fisher Scientific, Suwanee, GA ) at a density of one seed 

per well with the two middle wells filled with sterilized water to increase humidity. The ten 

seeds on each plate came from the ten peanut genotypes included in this study and were 

randomly distributed on the plate, therefore, each plate is a randomized replicate. Five plates 

were included in this study which formed one experimental block. The plates were sealed and 

incubated in dark at 30°C for 72 hours. 

Visual tracking of GFP expression 

 Fungal growth on the seeds was visually monitored by fungal GFP expression under a 

microscope (STEMI SV 11 ZEISS equipped with a HBO 100 microscope illumination system, 

Carl Zeiss Microscopy, Thornwood, NY). GFP signal was observed at 480 ± 30 nm excitation; 



 

115 

545 nm emission wavelengths. Fungal GFP expression on the seed surface was scored visually 

every 8 hours for up to 72 hours after inoculation. Percentage of fungal infected area over the 

surface area of peanut kernels visualized under the microscope was estimated based on a scale of 

0 to 5 as follows: 0: no infection to 5%; 1: 5-25%; 2: 25-50%; 3: 50-75%; 4: 75-90%; and 5: > 

90%. The intensity of fungal GFP signal was estimated based on a scale of 0 to 3 as follows: 0: 

no infection; 1: low intensity; 2: medium intensity; and 3: high intensity. Initiation of sporulation 

was estimated by documenting the time point that the first spore became visible on the surface of 

infected seeds. 

Image processing 

At 72 hours, all seeds that had a percentage of infected area higher than 5% were 

photographed using an Axiocam CCD camera (Carl Zeiss Microscopy, Thornwood, NY). Two 

images were taken for each seed; one image was taken for GFP visualization and the other image 

was taken under white light. 

Seed Infection Coverage and Intensity Analyzer (SICIA) software was designed with 

MATLAB R2016a (The University of Georgia campus-wide site licensing agreement). The 

software layout is presented (Figure 3.2A). SICIA extracts the outline of a seed using the image 

taken under white light. GFP signal was captured from the image taken under fluorescent light 

and superimposed to the seed outline to calculate seed size, infected area, GFP signal density, 

and infection coverage ratio. The program generated a .csv output file containing the calculated 

values and produced processed images in .jpg format. SICIA is freely available to the public 

under MIT license and can be downloaded from https://github.com/w-korani/SICIA. SICIA is 

also calibrated to analyze images from small seeds, e.g., rice, and leaves. 
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GFP and aflatoxin analysis 

 All seeds were harvested at 72 hours after inoculation and ground in liquid nitrogen. A 

portion of the pulverized tissue was used for total protein extraction in a sucrose-Tris solution 

(0.5 M and 0.1 M respectively, pH 7.5 containing 1 mM PMSF) (Chen and Dickman, 2004). The 

tube was then stored on ice for 15 min and centrifuged at 17530 xg for 15 min at 4 °C. The 

supernatant containing extracted protein was quantified by a BCA assay kit (Pierce, Rockford, 

IL). The GFP relative fluorescence units (RFU) were detected in 100 µl of the protein extract at 

485 nm excitation and 535 nm emission wavelengths (Synergy HT Bio-Tek instrument, Bio-Tek 

Instruments Inc, Winooski, VT). RFU was normalized to 1 mg of the total extracted protein. 

Aflatoxin was extracted from a second aliquot of pulverized tissue by adding 200 µl of 25% 

NaCl and 800 µl of 100% methanol (Anderson et al., 1995). The tube was vortexed and 

incubated at room temperature for 30 min. One hundred µl of supernatant was collected after 

centrifugation at 9,000 xg for 10 min at room temperature, and 400 µl of HPLC-grade water was 

added. VICAM Afla-B column (VICAM, Nixa, MO) was used to extract aflatoxin B1, and the 

VICAM Fluorometer (VICAM, Nixa, MO) was used to detect the quantity according to the 

manufacturer’s instructions. 

Rainout shelter study 

Pre-harvest susceptibility to aflatoxin accumulation was evaluated in rainout shelters 

established in Tifton, GA using a randomized block design (Holbrook et al., 2000). The fields 

were inoculated with A. flavus Link ex Fries (NRRL 3357) and A. parasiticus (NRRL 2999) at 

mid-bloom as both strains produce aflatoxin B1 which is our main target in this work and it is the 

most regulated type (Smith et al., 2016). Drought stress was imposed by moving the rainout 
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shelters over test plots 40 d before harvest. Peanuts were shelled and measured for aflatoxin 

levels using the VICAM columns as described above. 

Statistical analysis 

Statistical analysis was carried out by R3.2.2 using ‘stats’ package. Agricolae package in 

R3.2.2 (Core Team 2011) was used to perform Duncan’s multiple range test and to calculate the 

area under disease progress curve (AUDPC).  
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Tables 

Table 3.1: Aflatoxin levels tested in the rainout shelter 

Year 2014 Year 2015 

Genotype 
Aflatoxin range 

(ppb) 

Average aflatoxin 

B (ppb) 

Aflatoxin 

range (ppb) 

Average aflatoxin B 

(ppb) 

ICG 1471 5 to 35 15 2 to 7 3 

Florida-07 5 to 18 11 23 to 641 214 

Tifrunner 9 to 48 26 4 to 1200 381 

A69 3 to 230 61 3 to 54 20 

A72 3 to 679 216 3 to 2100 425 

ICGV88145 1 to 1034 226 1 to 11 4 

C76-16 25 to 535 246 22 to 599 200 

Tifguard 12 to 734 272 n/a n/a 

NC 3033 220 to 360 303 n/a n/a 

GT-C20 220 to 39000 4581 n/a n/a 
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Figures 

 

Figure 3.1: Repeated measure analysis of ten peanut genotypes inoculated with AF-70-GFP 

strain across nine time points from 8 to 72 hours after inoculation (HAI) determined by visual 

rating. Log-transformed percentage of colonized area (upper panel) and fungal GFP intensity 

(lower panel) were presented. Different letters indicate significant differences at p <0.05 level 

determined by Tukey’s range test. 
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Figure 3.2: SICIA. A. SICIA data analysis flow chart; B. Three examples of SICIA output of 

percentage of infected area (c) and intensity of GFP signal (i) for seeds with varied levels 

of fungal infection. 
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Figure 3.3: ANOVA analysis of log-transformed values of percentage of the infected area (upper 

panel) and intensity of fungal GFP signal (lower panel) determined by SICIA. Different letters 

indicate significant differences at p <0.05 level determined by Duncan’s multiple range test. 

  



 

122 

 

Figure 3.4: Fungal GFP expression and aflatoxin accumulation in five selected genotypes 

measured by fluorometric and VICAM assays. A. ANOVA analysis of fungal GFP level, left bar 

graph, and aflatoxin B level, right bar graph. Different letters indicate significant differences at p 

<0.05 level determined by Duncan’s multiple range test; B. Interaction between GFP and 

aflatoxin levels, each data point is the average of an experimental block. RFU is GFP relative 

fluorescence units. 
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Figure S1: ANOVA analysis of log-transformed AUDPC values of the ten inoculated peanut 

genotypes. Percentage of infection area (upper panel) and the intensity of the fungal GFP signal 

(lower panel); Different letters indicate significant differences at p <0.05 level determined by 

Tukey’s range test.  
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CHAPTER 4 

MACHINE LEARNING AS AN EFFECTIVE METHOD FOR IDENTIFYING TRUE SNPS IN 

POLYPLOID PLANTS 
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Abstract 

Single Nucleotide Polymorphisms (SNPs) have many advantages as molecular markers 

since they are ubiquitous and co-dominant. However, the discovery of true SNPs especially in 

polyploid species is difficult. Peanut is an allopolyploid, which has a very low rate of true SNP 

calling. A large set of true and false SNPs identified from the Arachis 58k Affymetrix array was 

leveraged to train machine learning models to select true SNPs straight from sequence data. 

These models achieved accuracy rates of above 80% using real peanut RNA-seq and whole 

genome shotgun (WGS) re-sequencing data, which is higher than previously reported for 

polyploids. Using methods to simulate SNP variation in peanut, cotton, wheat, and strawberry, 

we show that models built with our parameter sets achieve above 98% accuracy in selecting true 

SNPs. Additionally, models built with simulated genotypes were able to select true SNPs at 

above 80% accuracy using real peanut data, demonstrating that our model can be used even if 

real data are not available to train the models. A novel tool was developed for predicting true 

SNPs from sequence data, designated as SNP-ML (SNP-Machine Learning, pronounced “snip 

mill”), using the aforesaid models. SNP-ML additionally provides functionality to train new 

models not included in this study for customized use, designated SNP-MLer (SNP-Machine 

Learner, pronounced “snip miller”). SNP-ML is freely available for public use. 

Introduction 

Single Nucleotide Polymorphisms (SNPs) are a major source of variation across plant 

genotypes. Therefore, the demand for discovery of a large number of SNPs increased after the 

advent of Next-Generation Sequencing (NGS). However, the extraction of true SNPs in 

polyploid organisms is challenging. Cultivated peanut is an allotetraploid, which poses an 

exceptional challenge for the discovery of true SNPs since the two parental diploid genomes (A 
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and B) are very similar and the natural polymorphisms among peanut genotypes are very low 

(Bertioli et al., 2016; Kochert et al., 1991).  

Using Restriction-site-Associated DNA (RAD) sequencing, a large number of SNPs were 

identified in peanut diploid species; however, very few SNPs were discovered in cultivated 

peanuts (Gupta et al., 2015). Generally, the true SNP discovery in tetraploid peanut using NGS 

data is very low (Zhou et al., 2014; Khera et al., 2013; Peng et al., 2016). Sliding Window 

Extraction of Explicit Polymorphisms (SWEEP) was developed to improve the SNP calling by 

filtering out the polymorphisms between the two parental subgenomes (Clevenger and Ozias-

Akins, 2015). However, SNP calling in tetraploid peanut requires additional improvement. An 

Affymetrix SNP array was designed using the SWEEP pipeline and showed promising 

genotyping results among cultivated peanuts (Clevenger et al., 2017). The chip showed that 

SWEEP identified ~40% true SNPs in tetraploid peanut genotypes. The array provided an 

unprecedented number of validated true and false SNP calls that can be leveraged with machine 

learning to increase the accuracy of selection of true SNPs straight from sequence data. The 

ability to have confidence in in-silico SNP calls gives researchers access to all avenues of 

sequence-based genotyping methods. 

 Machine learning applies sets of different algorithms that facilitate pattern recognition 

and classification leading to prediction by creating models using existing data (Tarca et al., 

2007). Machine learning algorithms are divided into two major classes; i.e. supervised and 

unsupervised. Supervised algorithms train previously well classified existing objects to predict 

the classes of new objects based on available features. Unsupervised algorithms cluster objects 

depending on their features without providing pre-defined classes. Both algorithms are used 

widely in different biological fields; e.g. coding region recognition, signal peptide prediction, 
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biomarker identification, disease gene recognition, metabolic network detection, and protein-

protein interaction (Bostan et al., 2009; Lingner, et al., 2011; Swan et al., 2013; Jowkar and 

Mansoori, 2016; Roche-Lima, 2016; Melo et al., 2016). For SNP calling, neural networks were 

used to differentiate between true SNPs and sequence errors and this method showed promising 

results for human SNPs (Unneberg et al., 2005). In plants, neural networks also were used to 

classify called SNPs as true or false positives and the approach showed a positive prediction rate 

of 84.8% on the testing sets of soybean (Matukumalli et al., 2006). However, there has been little 

application of machine learning in polyploid organisms where the occurrence of more than one 

subgenome with high similarity to each other increases the complexity of read mapping and 

confounds the calling of true SNPs. 

In this study, different supervised machine learners were used to improve the discovery 

of tetraploid peanut SNPs, utilizing the information of sequencing features and mapping data of 

the validated true- and false-positive SNP data sets extracted from analysis of the Arachis 

Affymetrix array. Simulated SNP variant data from peanut, cotton, wheat, and strawberry also 

were used to extend the functionality of machine learning to other allopolyploids. Models trained 

with simulated data then were used to select SNPs from real peanut data with an accuracy 

exceeding 80%. This result has implications for using machine learning to select true SNPs in 

polyploid crops where no large validation sets are available. A tool was created, SNP-MLer 

(SNP-Machine Learner), which allows users to train models for use in selecting true SNPs from 

sequence data. The user can completely customize parameter sets used in training the models or 

default to the complete set used to train the peanut models. The models then can be implemented 

in SNP-ML (SNP-Machine Learning) to select true SNPs in new data sets. 
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Results and discussion 

Identification and evaluation of attributes for the model 

 A set of 18,057 validated true-positive SNPs and 26,050 false-positive SNPs were 

collected from the Axiom Arachis 58K SNP array (Clevenger et al., 2017). These SNPs had been 

identified using SWEEP from 21 tetraploid peanut genotypes. The true-positive rate achieved 

was 40%, which was higher than previous efforts in peanut, but still inadequate. All of the 

mapping data in vcf form was available from the initial SNP calling, which provided the ability 

to test the hypothesis that machine learning would increase the accuracy of true SNP selection. 

 Seventy percent of the array-validated true- and false-positive SNPs (12,640 and 18,235, 

respectively) were randomly selected to train the machine learning model. Seventeen different 

attributes to be used in the model were calculated from sequences surrounding these SNPs (Table 

1). These attributes were categorized into two groups, i.e. sequence and map features. The first 

machine learning approach used in biological applications was neural networks where it was 

used for recognizing the transcriptional start sites in Escherichia coli (Tarca et al., 2007). Since 

that time, it has become one of the most common machine learning approaches. In addition, 

neural networks have many advantages such as detection of all possible interactions between 

predictor variables, the ability to detect complex nonlinear relationships between independent 

and dependent variables, and applicability for different types of data sets (Tu 1996). Therefore, 

we used neural networks to build our first model and to select the most effective attributes.  

Sequence features previously were used for genome wide de novo prediction purposes such as 

the prediction of coding regions, and to build a reliable neural network model for SNP calling in 

humans (Unneberg et al., 2005). Thermodynamics of nucleic acids are important for diagnostic 

genetic markers for diseases, SNP sequencing on a genome-wide scale, designing PCR primers 
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and creating probes for cloning and hybridization experiments (Wu et al., 2002). Since 

thermodynamic parameters give indications for DNA molecule stability, they were used widely 

to predict the DNA secondary structure (SantaLucia and Hicks, 2004). Therefore, we calculated 

the thermodynamic parameters deltaH, deltaS and deltaG for the SNP locations and flanking 

seven nucleotides (15 nucleotide segments) and incorporated the highest values from each pair of 

alternate SNP segments into the model. The higher value is associated with less stable states. 

Melting temperature (Tm) also was used in the same manner as it shares the primary components 

of deltaH and deltaS. Molecular weight was included since the change of a nucleotide affects the 

molecular weight of the DNA molecule. Lower GC contents decrease the stability of the DNA 

molecule. Therefore, we used the lower GC percentage of the two 15 nucleotide segments (the 

one with reference nucleotide versus the one with alternative nucleotide). In addition, frequency 

of the reference and alternate nucleotides in the sequences adjacent to the SNP location were 

calculated (for the seven nucleotides before and after the SNP location) and included in the 

model. We hypothesized that higher abundance of a particular nucleotide (reference or alternate 

nucleotide) would lower the probability of a true SNP. 

The map features represent the quality of the mapping process and sequence data. Nine 

mapping parameters were selected to be used in the training model, namely quality features, i.e. 

mq (mapping quality) and qual (SNP quality); read abundance features, i.e. dp (depth of reads 

covering the SNP), af (minor allele frequency), n1 (reads with a reference base), n2 (reads with 

an alternate base) and n1/n2 (ratio of reference reads to alternate reads). In addition, a probability 

feature of homozygous reference genotypes (lg) was included. Some of these attributes, i.e. dp, 

n1, n2 and qual, were successfully used to create a neural network classifier for SNP calling for 
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soybean (Matukumalli et al., 2006). Therefore, we assumed that these attributes and related 

features are good candidates for building a classifier in polyploids. 

 Twenty percent of the array-validated SNPs (3,611 true- and 5,210 false-positive SNPs) 

were used to test the model. Neural network models were applied to every one of the seventeen 

attributes independently and the relationship between false positives to false negatives was 

plotted for every model (Figure 4.1A). Interestingly, eight out of 17 attributes, all eight being 

map attributes, strongly affected the trainer (Figure 4.1A). These eight attributes were used for 

building one model, which showed a high reliability in classification of true- and false-positive 

SNPs (Figure 4.1B). The neural network score output of the testing data was applied to different 

neural network score cutoffs, from 0.1 to 0.9 by 0.1 intervals. The confusion matrices (predicted 

vs. actual) showed a gradual increase in the percentage of true negative (TN; false-positive SNP 

on the array and not called by SNP-ML) and decrease in the percentage of true positives (TP; 

true-positive SNP on the array and called by SNP-ML) as the cutoff increased (Figure 4.2). 

Increasing the cutoff over 0.5 dramatically decreased the percentage of TP SNPs, and also led to 

loss of a large number of valid SNPs (FN; true-positive SNP on the array but missed by SNP-

ML). On the other hand, decreasing the cutoff below 0.5 increased the occurrence of a large 

number of false-positive SNPs (FP; false-positive SNP on the array and called by SNP-ML), an 

undesirable result. The cutoff of 0.5 showed a reasonable trade-off for recovery of the largest 

possible number of TP while minimizing FP and FN SNPs. These confusion matrices confirmed 

the efficiency of the eight selected attributes to build a reliable classifier.  

Comparison among different supervised machine learning models using the selected attributes 

 The training data set was used to build training models by applying different supervised 

algorithms, i.e. Logistic Regression (LR), Discriminant Analysis (DA), K-nearest Neighbors 
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(KN), Naïve Bayes (NB), Decision Trees (DT) and TreeBagger (TB). The testing data set was 

applied for these trainers along with the neural network output of 0.5 cutoff (Figure 4.3). All 

models showed 60 to 80% true-positive rates relative to the number of SNPs extracted by a 

respective model, or between 25.0 to 33.4% of the total number of SNPs in the testing set. KN 

showed the highest false-positive rate and the neural network gave the lowest rate. Conversely, 

NB showed the lowest true-positive rate while TB produced the best rate. However, both TB and 

neural network showed the best trade-off between the two rates (Figure 4.4 and Supplemental 

Material, Table 4.S1). Therefore, we combined these two models to increase accuracy. TB was 

first described around 50 years after the first neural network approach was proposed (Breiman 

1996). It reduces the variance among observations and avoids overfitting, which are two 

limitations for neural network, thus it works as a complementary model to neural network to 

overcome its drawbacks. 

 To further test the model, the remaining 10% of the original data set, 1,806 validated 

true-positive and 2,605 false-positive SNPs, was used as a validation set. This data set was 

applied to the combined NN + TB model. A total of 1,510 SNPs was extracted by the model and 

1,214 of those were true-positive SNPs. Therefore, the combined model efficiency increased to 

80% versus 73% (1,271 out of 1,792) and 76% (1,369 out of 1,797) of using only neural network 

or TB, respectively. However, 33% of validated SNPs were lost through the prediction process 

using the combined model. 

Building models for RNA-seq 

Unlike the re-sequencing data, RNA-seq provides data that measure gene expression and 

can produce a very high depth at specific loci (Lopez-Maestre et al., 2016). The values of the 

attributes are different from the genomic re-sequencing data. For this reason, a specific model 
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was built for RNA-seq data using sequence from nine tetraploid peanut genotypes. The analysis 

of this data set with SWEEP produced 3,525 SNP-chip overlapped SNPs, 2,143 true and 1,382 

false SNPs.  

Eighty percent of the array-validated SNPs were used for training the models, 1,714 true- 

and 1,104 false-positive SNPs, and the remaining 20% of SNPs were used as a testing set, 429 

true- and 278 false-positive SNPs. Two models were built, i.e. neural network and TB, and the 

scored results were combined. The combined model extracted 371 SNPs (using the cutoff of 0.5 

for neural network model). Of the SNPs extracted, 328 of them were true SNPs. The accuracy of 

true SNP discovery was raised to 88%. However, 101 SNPs were lost (~24%). 

Application in other polyploids 

In the absence of validation SNP sets for allotetraploid cotton (Gossypium hirsutum), 

allohexaploid wheat (Triticum aestivum), or allo-octoploid strawberry (Fragaria x ananassa), a 

simulation experiment was carried out to generate allelic variation. Genome sequence for each 

species was downloaded and five genotypes were simulated in one of the subgenomes while 

keeping the other subgenomes constant. The locations of true-positive SNPs thus were known 

due to the in-silico mutation of the sequence and any other SNPs called by the program were 

considered false-positive. Because only one subgenome was mutated to derive the genotypes, all 

true SNPs were subgenome-specific. The true and false SNP calls were randomly categorized as 

training set (70%) and testing set (30%). The training set was used to train neural network 

models which were then used to select SNPs from the testing set. Simulations for all three 

species achieved accuracy of greater than 99% at five different sequence coverage depths (10X, 

20X, 30X, 40X and 50X) (Table 4.2 and Supplemental Material, Table 4.S2). A peanut 

simulation was also included for comparison. 
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Application of simulation trained models on real data 

Next, it was tested if models trained with simulated genotypes could achieve high 

accuracy in predicting true SNPs from real data, using the validation SNP sets available for 

peanut. Models that were trained in the simulations discussed above were used to select SNPs 

from the 21 genotypes of peanut (Supplemental Material, Table 4.S3). Each run of SNP-ML was 

performed three times to show variation between runs. For peanut, the models trained with 

simulated data were able to select true SNPs with accuracy on average of 78%. This result 

strongly suggests that this method can be used effectively in species where there are no large 

validation sets to train the models, but some reference sequence is available. This result, 

combined with the simulation results and results on real peanut data led us to construct a novel 

tool, SNP-ML, to carry out these analyses. The tool is designed to be highly flexible so that it 

can be used effectively in the broadest sense. 

SNP-MLer 

 All of the models discussed in this work are provided in the SNP-ML subdirectory “/db”. 

They include the peanut WGS and RNA-seq-trained models from real data and the models 

trained from simulated cotton, wheat, and strawberry data. The binary executable tool, SNP-

MLer, will take two files as input, a vcf file containing true-positive SNP calls and a vcf file 

containing false-positive SNP calls. By default, SNP-MLer will train a neural network model 

using these sets of SNP calls and the eight parameters used in this work. The user has the ability 

with ‘-skip’ to not use one or more (up to seven) of the parameters if they wish or use ‘-custom’ 

to specify selected parameters in a comma-delimited sequence. Additionally, the user can use ‘-

m’ to train a treebagging model as well. Most importantly, the user can add customized 

parameters to include in the model training by invoking ‘-addnew1’ and ‘-addnew2’. These 
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options take csv files that include one or more new parameter lists for the true-positive SNP calls 

(-addnew1) and the false-positive calls (-addnew2). The user also needs to add the prefix name 

for the new model using ‘-o’. 

SNP-ML 

 If the user has trained new models using SNP-MLer or will use the models trained in this 

study, all models are located in the ‘\db’ folder for use with SNP-ML. SNP-ML is the tool that 

will take as input (-i) a vcf file of the SNP calls of interest. It is recommended to first use 

SWEEP to filter most of the false-positive SNP calls, but it is not required. The name of model to 

be used for SNP selection (-iM) should also be given as input to SNP-ML. The program contains 

currently two models, “peanut_DNA” for use with WGS data, and “peanut_RNA” for use with 

RNA-seq data. Any new models trained with SNP-MLer by the user will be included in this 

folder as well. Users can submit any newly trained models to be included in new versions of 

SNP-ML by emailing the author. SNP-ML has similar options as SNP-MLer to skip (-skip) or 

customize (-custom) parameter sets for SNP prediction, and to invoke the treebagging model (-

m) or add new parameters (-addnew; for custom trained models). An additional option (-c) 

allows the user to increase or decrease the stringency of true-positive selection from the default 

of 0.5. As discussed above and in Figure 4.2, increasing this cutoff will decrease false positives 

(decreasing selection of false SNPs) while increasing false negatives (limiting recovery of 

validated true SNPs) while decreasing the cutoff has the opposite effect.  

The program is freely available for public use under MIT license and can be downloaded 

from https://github.com/w-korani/SNP-ML. A help file containing detailed information about 

using the program can be accessed by typing SNP-ML -h.  
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Conclusions 

We introduce a highly reliable method for calling SNPs for polypoid species using 

machine learning. To have a good classifier, the most effective attributes should be determined. 

Many attributes were tested and the best were selected for creating the model. In addition, 

different supervised machine learning algorithms were tested and the best ones for the data sets, 

neural network and bagging, were combined. We built and tested our method on peanut, an 

allotetraploid for which identifying true SNPs has been difficult. The method was then used on 

simulated data from three other allopolyploids with different ploidy levels and achieved high 

accuracy. Most importantly, we showed that simulated data can be used to train models that 

achieve similar accuracy in selecting true SNPs using real data as do models trained with real 

data. The implication is that for species where there are no large validation sets available, our 

method can still be used to efficiently select true SNPs. With this important result in mind, SNP-

MLer was developed; a tool that will train new neural network or treebagging models with user 

inputted data. Subsequently, SNP-ML can be used with newly trained models or included peanut 

models to select true SNPs for two different data set types, re-sequencing and RNA-seq. The 

flexibility and functionality of these tools allow the user a completely customizable experience, 

giving the ability to use the power of machine learning to researchers of all expertise levels. 

Materials and Methods 

Data sets 

The re-sequencing data set was created using 21 tetraploid A. hypogaea genotypes 

described in Clevenger et al. (2017) and deposited publically at ncbi.nlm.nih.gov (Bio Project 

PRJNA340877 and Bio Samples SAMN05721179 to SAMN05721198). The RNA-seq data set 

has information from nine tetraploid peanut genotypes described in Clevenger et al. (2014, 
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2016a, 2016b). Validated true and false-positive SNP sets were based on testing the Arachis 

Affymetrix array with 384 peanut genotypes (Clevenger et al., 2017). Mapping parameters were 

extracted from the vcf files used for the original design of the array. All positions of SNPs and 

surrounding sequence are based on the A. duranensis and A. ipaensis v1 pseudomolecules 

(peanutbase.org; Bertioli et al., 2016).  

Creating and testing the machine learning models 

The data sets were prepared by R statistical software, e.g. extracting the attributes, 

randomly created training and testing sets and preparing fasta files for SNP flanking segments. 

Various toolboxes in MATLAB R2015b (the University of Georgia campus-wide site licensing 

agreement) were used for different purposes. Bioinformatics Toolbox was used for calculating 

the thermodynamic parameters, molecular weights and GC contents, Statistics and Machine 

Learning Toolbox was used for creating and testing the different models of supervised machine 

learning and Graphics functions were used for producing the bar plots and ROC (Receiver 

Operating Characteristic) graphs.  

SNP-ML construction 

 We built paired (neural network and TB) specific trainer models for the two data types, 

WGS re-sequencing and RNA-seq. The models were built and stored in four files by a python 

script. In addition, three C++ classes were built, vcf.h, csv_write.h and csv.h, to process vcf and 

csv files. The SNP-ML main steps are illustrated in Figure 4.5. It uses C++ class vcf.h to extract 

the eight selected attributes from the input file, which is a vcf file of the output of SNP calling by 

mpileup of SAMtools, either directly or after primary filtration by SWEEP. The output is saved 

using the C++ class csv_write.h into a csv file, which is read by a python script to be applied to 

one pair of stored models (two files, one for neural network and the other for TB) depending on 



 

145 

the data type. The two score sets are saved to a csv file, which is read by C++ class csv.h. The 

scores are filtered by passing only SNPs that have a value higher than the cutoff of neural 

network, which can be selected by the user (the default is 0.5), and occurred in the two score sets 

(shared SNPs in the output of the neural network and TB score file), in case the user selects that 

option. The scores are stored in csv files and the corresponding SNPs are stored in a vcf file.  

To extend the program applications, a second tool was designed, designated SNP-MLer 

(pronounced ‘snip miller’) to allow users to create predictors that are suitable for interested 

species/experimental conditions. SNP-MLer uses reading/writing approach as described above, it 

takes validated true-positive and false-positive vcf files as input and generates predictor models 

as outputs. 

Both tools, SNP-ML and SNP-MLer allow the user to skip or select some of the eight 

attributes, and to apply new user defined attributes as csv files. 

SNP-ML requirements 

The script was written by C++ and python 2.7.1. C++ was used for processing the data, 

input, output and filtering. The binary file was created by GCC 4.1.2 that was run on Red Hat 

4.1.2-55 linux system. Python was used for creating the neural network and bagging machine 

learning models and applying the prediction using them. Different python packages were used 

for these purposes, i.e. numpy-1.11.0 (SciPy.org), scipy-0.17.1 (SciPy.org), pandas-0.18.1 

(pandas.pydata.org), python-dateutil-2.0 (pypi.python.org), pytz-2016.4 (pypi.python.org), 

scikit-learn-0.17.1 (scikit-learn.org) and pyrenn 0.1 (pyrenn.readthedocs.io).  

Creating and testing models using simulated data 

The pseudo molecule assembly AD1_BGI of cotton (cottongen.org; Li et al., 2015), the 

pseudomolecule assembly of the 3B chromosome of wheat (Choulet et al., 2014), the contigs of 
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TGACv1 wheat genome (plants.ensembl.org), the pseudomolecule assembly of Fragaria vesca 

Genome v1.1 (rosaceae.org; Shulaev et al., 2011), and the contigs of F. nipponica Genome v1.0 

(FNI_r1.1), F. nubicola Genome v1.0 (FNU_r1.1) and F. orientalis Genome v1.0 (FOR_r1.1) 

(rosaceae.org; Hirakawa et al., 2014) were downloaded. 

10,000 random loci were assigned in Chromosomes Aradu.A01, At_chr1, 3B and LG1, 

of peanut, cotton, wheat and strawberry, respectively. The loci were randomly mutated five times 

to form five synthetic genotypes using ART tool (Huang et al., 2012). HiSeq 125 bp paired end 

sequences with different depths, 10x to 50x, were generated. The fastq produced files were 

mapped using BWA 0.7.10 (Li and Durbin, 2009) with default parameters to synthetic references 

as follows: a synthetic tetraploid reference containing Aradu.A01 and Araip.B01 chromosomes 

for peanut, a synthetic tetraploid reference containing At_chr1 and Dt_chr1 for cotton, a 

synthetic hexaploid reference containing 3B chromosome and the contigs of A and D genomes 

for wheat, and a synthetic octoploid reference containing LG1 chromosome and the contigs of 

FNI, FNU and FOR genomes for strawberry. SNPs were called using samtools mpileup 1.2 and 

bcftools 1.2.1 with default parameters without filtration. The SNP calling was carried out twice 

for every species. SNPs between two genotypes were called in the first instance and SNPs among 

the five genotypes were called in the second. 

For each species, the SNPs located among the 10,000 loci were extracted in a separate 

vcf file, and considered to be True-positive (TP) SNPs. Any others identified by the program 

were extracted in another vcf file, and considered to be False-positive (FP) SNPs. Seventy 

percent of each one were randomly selected, and combined to be used as training sets, and the 

remaining 30% were used as testing sets for Neural Network models using Matlab R2015b (the 

University of Georgia campus-wide site licensing agreement).  
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Testing simulated data against the real data 

For peanut, 21 synthetic genotypes with 10X depth were generated and SNPs were called 

in four batches (three with five and one with six genotypes). The simulated data were used to 

train the model to mimic the conditions of the real data.  

All sets of the TP and FP simulated data were used to train the models, to increase the 

strength, and the testing sets of the real data were re-applied to these simulated models. The 

generation of synthetic genotypes and carrying out the machine learning (training and testing) 

were applied as described above. 
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Tables 

Table 4.1: The attributes that were used for building the machine learning models. *group1: 

sequence features, group2: map features, bold records: the selected attributes. 

Attribute 

abbreviation 
Attribute description group 

Gc Lowest GC contents of the segment of SNP and seven flanking nucleotides 1 

Mw Highest molecular weight of the segment of SNP and seven flanking nucleotides 1 

Tm Highest melting temperature of the segment of SNP and seven flanking nucleotides [32] 1 

Dh 
Highest enthalpy (in kilocalories per mole) of the segment of SNP and seven flanking nucleotides 

[32] 
1 

Ds 
Highest entropy (in calories per mole-degrees Kelvin) of the segment of SNP and seven flanking 

nucleotides [32] 
1 

Dg 
Highest free energy (in kilocalories per mole) of the segment of SNP and seven flanking 

nucleotides [32] 
1 

Dp The number of reads that cover the SNP 2 

n1 The number of reads with the reference nucleotide 2 

n2 The number of reads with the alternate nucleotide 2 

Mq The Root Mean Square (RMS) mapping quality 2 

Af EM estimate of the site allele frequency of the strongest non-reference allele 2 

qual Phred-scaled probability of all samples being homozygous reference 2 

No SNP counts in the segment of SNP and 150 flanking nucleotides 2 

Lg The mean of middle phred-scaled data likelihoods of all homozygous reference genotypes 2 

n1/n2 The ratio of the number of reads with the reference nucleotide to the alternate one 2 

freq1 Frequency of the reference nucleotide in the segment of SNP and 150 flanking nucleotides 1 

freq2 Frequency of the alternate nucleotide in the segment of SNP and 150 flanking nucleotides 1 
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Table 4.2: The SNP-ML calling accuracy on different polyploid simulated data. 

Depth 
Cotton Wheat Strawberry Peanut 

True positive % True positive % True positive % True positive % 

10X 100.00 99.64 99.72 99.85 

20X 99.85 99.65 99.49 99.96 

30X 100.00 99.88 99.73 99.96 

40X 99.93 100.00 99.57 99.92 

50X 99.96 99.88 98.15 99.96 
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Figures 

 

Figure 4.1: Receiver Operating Characteristic (ROC) curve of the attributes used in the neural 

network model trainer A. Independent applications of the 17 attributes. B. The combined 

application of the selected eight attributes. 
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Figure 4.2: Bar plots representing the confusion matrices of the testing data using different 

cutoffs in neural network model, TP: True Positive (validated as a true SNP on the array and 

called by SNP-ML), FP: False Positive (not a true SNP according to array data but called by 

SNP-ML), TN: True Negative (validated as a true SNP on the array and not called by SNP-ML), 

FN: False Negative (not a true SNP according to array data and not called by SNP-ML). The red 

area shows the number of SNPs which are recognized by the model. The left Y scale presents the 

number of SNPs within every class and the right Y scale presents the percentage SNPs of every 

class to the total SNPs. 
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Figure 4.3: Bar plots represented the confusion matrices of the testing data using supervised 

machine learning algorithms, TP: True Positive, FP: False Positive, TN: True Negative, FN: 

False Negative. The red area shows the number of SNPs which are recognized by the model. The 

left Y scale presents the number of SNPs within every class and the right Y scale presents the 

percentage SNPs of every class to the total SNPs. 
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Figure 4.4: A dotplot of the trade-off combination between the different machine learning 

algorithms on the testing set (A) and validation set (B). Every dot shows a single true or false 

SNP (upper black line) and corresponding dots shows if this SNP was called using different 

machine learning algorithms. SNPs that were called by neural network and bagging are 

represented in blue dots and those that were called by other machine learning approaches are 

represented in black dots. 
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Figure 4.5: SNP-ML/SNP-MLer infrastructure. 
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Table 4.S1: 

Testing set 

SNPs 3613 5218 

 

Correctly 

called true 

Miscalled 

true 

Efficiency 

% 

Miscalled 

false 

Correctly 

called 

false 

Efficiency 

% 

Neural Net 2679 934 74.1 744 4474 14.3 

Logistic Regression 2587 1026 71.6 705 4513 13.5 

Discriminant Analysis 2503 1110 69.3 854 4364 16.4 

k-nearest Neighbors 2878 735 79.7 1298 3920 24.9 

Naive Bayes 2207 1406 61.1 1056 4162 20.2 

Decision Trees 2704 909 74.8 1141 4077 21.9 

TreeBagger 2948 665 81.6 739 4479 14.2 

Validating set 

SNPs 1806 2605 

 

Correctly 

called true 

Miscalled 

true 

Efficiency 

% 

Miscalled 

false 

Correctly 

called 

false 

Efficiency 

% 

Neural Net 1271 535 70.4 458 2147 17.6 

Logistic Regression 1218 588 67.4 451 2154 17.3 

Discriminant Analysis 1177 629 65.2 512 2093 19.7 

k-nearest Neighbors 1338 468 74.1 699 1906 26.8 

Naive Bayes 1209 597 66.9 799 1806 30.7 

Decision Trees 1276 530 70.7 690 1915 26.5 

TreeBagger 1369 437 75.8 428 2177 16.4 
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Table 4.S2: 

Cotton 
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2 10X 9662 7669 2332 2311 21 99.1 1993 566 562 4 99.3 99.83 
2 20X 8035 7663 2301 2288 13 99.4 372 109 102 7 93.6 99.69 
2 30X 8025 7679 2300 2294 6 99.7 346 107 101 6 94.4 99.74 
2 40X 8419 7692 2326 2306 20 99.1 727 199 193 6 97.0 99.74 
2 50X 12532 7685 2327 2315 12 99.5 4847 1432 1427 5 99.7 99.78 
5 10X 11019 8894 2665 2656 9 99.7 2125 640 637 3 99.5 99.89 
5 20X 10099 8892 2655 2640 15 99.4 1207 374 369 5 98.7 99.81 
5 30X 11545 8897 2735 2725 10 99.6 2648 728 728 0 100.0 100.00 
5 40X 11092 8918 2688 2681 7 99.7 2174 639 638 1 99.8 99.96 
5 50X 13118 8896 2661 2653 8 99.7 4222 1274 1273 1 99.9 99.96 

Wheat 
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2 10X 4210 3502 1055 530 525 50.2 708 208 177 31 85.1 94.47 
2 20X 7950 6308 1886 1874 12 99.4 1642 499 493 6 98.8 99.68 
2 30X 6184 5181 1536 1526 10 99.3 1003 319 56 263 17.6 85.30 
2 40X 6093 5184 1571 1559 12 99.2 909 257 255 2 99.2 99.87 
2 50X 4185 3538 1060 1052 8 99.2 647 195 195 0 100.0 100.00 
5 10X 4997 2791 843 841 2 99.8 2206 656 653 3 99.5 99.64 
5 20X 2489 1925 575 570 5 99.1 564 172 170 2 98.8 99.65 
5 30X 6158 2795 813 804 9 98.9 3363 1034 1033 1 99.9 99.88 
5 40X 2648 2103 629 622 7 98.9 545 165 165 0 100.0 100.00 
5 50X 13455 2817 848 841 7 99.2 10638 3189 3188 1 100.0 99.88 

Strawberry 

   True SNPS False positive 

A
cc

u
ra

cy
 %

 

N
u

m
b

er
 o

f 
ge

no
ty

pe
s 

D
ep

th
 

T
ot

al
 c

al
ls

 

sa
m

to
ol

s 
ca

ll
s 

T
es

t 
se

t 

C
or

re
ct

ly
 c

al
le

d
 S

N
P

s 

u
n

co
rr

ec
tl

y 
ca

ll
ed

 S
N

P
s 

%
 

S
am

to
ol

s 

T
es

t 
se

t 

C
or

re
ct

ly
 c

al
le

d
 S

N
P

s 

u
n

co
rr

ec
tl

y 
ca

ll
ed

 S
N

P
s 

%
 

2 10X 7298 7220 2168 2158 10 99.5 78 21 15 6 71.4 99.72 
2 20X 7300 7226 2170 2162 8 99.6 74 20 10 10 50.0 99.54 
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2 30X 7467 7280 2189 2179 10 99.5 187 51 42 9 82.4 99.59 
2 40X 7415 7314 2196 2194 2 99.9 101 29 8 21 27.6 99.05 
2 50X 7373 7300 2194 72 2122 3.3 73 18 18 0 100.0 100.00 
5 10X 8771 8469 2532 2523 9 99.6 302 99 92 7 92.9 99.72 
5 20X 8694 8459 2542 2537 5 99.8 235 66 53 13 80.3 99.49 
5 30X 8875 8502 2556 2553 3 99.9 373 107 100 7 93.5 99.73 
5 40X 8940 8555 2567 2564 3 99.9 385 115 104 11 90.4 99.57 
5 50X 8735 8550 2573 2277 296 88.5 185 48 5 43 10.4 98.15 

Peanut 
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2 10X 8694 7664 2324 1696 628 73.0 1030 284 0 284 0.0 85.66 
2 20X 8839 7676 2312 2309 3 99.9 1163 340 0 340 0.0 87.16 
2 30X 8804 7669 2312 1102 1210 47.7 1135 329 313 16 95.1 98.57 
2 40X 8777 7680 2302 2201 101 95.6 1097 331 0 331 0.0 86.93 
2 50X 8748 7674 2291 2275 16 99.3 1074 333 331 2 99.4 99.91 
5 10X 11746 8894 2679 2661 18 99.3 2852 845 841 4 99.5 99.85 
5 20X 10009 8898 2674 2665 9 99.7 1111 329 328 1 99.7 99.96 
5 30X 11124 8902 2651 2635 16 99.4 2222 686 685 1 99.9 99.96 
5 40X 9766 8905 2669 2654 15 99.4 861 261 259 2 99.2 99.92 
5 50X 13905 8907 2694 2677 17 99.4 4998 1477 1476 1 99.9 99.96 
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10X 16,250 2,338 13,912 14.4 23,445 22,884 561 97.6 80.65 

10X 16,250 2,003 14,247 12.3 23,445 22,679 766 96.7 72.34 
10X 16,250 1,151 15,099 7.1 23,445 23,164 281 98.8 80.38 
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CHAPTER 5 

TRANSCRIPTIONAL PROFILING PROVIDES INSIGHT INTO GENETIC FACTORS 
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Abstract 

Aflatoxin contamination is the most challenging issue that affects peanut quality. 

Aflatoxin is produced by fungi belonging to the Aspergilli group, and it is known as an acutely 

toxic, carcinogenic and immune-suppressing class of mycotoxins. Evidence for several host 

genetic factors that may impact aflatoxin contamination has been reported, e.g., genes for 

lipoxygenase, ROS and WRKY; however, their role is still tentative. Therefore, we conducted an 

RNA-seq experiment to differentiate gene response to the infection by Aspergillus flavus 

between resistant (ICG 1471) and susceptible (Florida-07) peanut genotypes. In addition, gene 

expression profiling analysis between the two genotypes was based on biological replication and 

was designed to reveal differentially expressed genes in response to the infection (infected vs 

mock-treated seeds) and the variation within treatments (high vs low contaminated seeds). 

Moreover, the differential expression of the fungal genes was profiled. The study revealed the 

complexity of the interaction between the fungus and peanut seeds as expression of a large 

number of genes was altered including some in the process of plant defense to aflatoxin 

accumulation. Since peanut is tetraploid and currently lacks a reference genome sequence, an R 

package, designated ‘keggseq’, was designed to carry out KEGG enrichment analysis for 

polyploids using combined subgenome sequence. Analysis of the experimental data with 

‘keggseq’ showed the importance of alpha-linolenic acid metabolism, protein processing in 

endoplasmic reticulum, spliceosome and carbon fixation and metabolism pathways in the 

resistance. In addition, co-expression network analysis was carried out to reveal the correlation 

of gene expression among peanut and fungal genes. The results showed the importance of 

WRKY, TIR-NBS-LRR, ethylene and heat shock proteins in the resistance mechanism. 
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Introduction 

Peanut seeds provide a suitable substrate for fungal growth and mycotoxin production, 

and it is the most suscptable species for aflatoxin production as compared with other oilseed 

crops such as soybean (Bean et al., 1972). Different mycotoxins are formed on peanuts, e.g., 

cyclopiazonic acid, zearalenone, trichothecene-toxins and aflatoxin (Chang et al., 2013). The 

latter is the most common and destructive mycotoxin for peanut and other crops such as corn, 

cottonseed, rice, wheat, oat and barley (Stubblefield et al., 1967; Jaime-Garcia and Cotty 2003; 

Mateo et al., 2011; Suárez-Bonnet et al., 2013; Dunham et al., 2017). Aflatoxin has received 

widespread attention since the discovery that it was the causative agent of “Turkey X disease”, a 

disease that killed 100,000 young turkeys on English poultry farms in 1960 (Spensley 1963). 

Aflatoxin products are an acutely toxic, carcinogenic and immunosuppressive class of 

mycotoxins affecting animals including humans (Scheidegger and Payne, 2005). In addition, 

aflatoxins are considered mutagenic agents as they cause oxidative damage to DNA (Verma 

2004). Aflatoxins are classified in four major classes, B1, B2, G1, and G2 (Ehrlich et al., 2004). 

However, aflatoxin B1 is the most potent and carcinogenic naturally occurring substance known 

(Squire 1981). 

Aflatoxin is produced in agricultural products mainly through contamination by A. flavus 

or A. parasiticus. Not only are the fungal products harmful, the fungus A. flavus is an 

ascomycetous fungus that can infect humans, plants, animals and insects (Klich 2007). In 

humans, it is the second leading cause of invasive aspergillosis disease after A. fumigatus 

(Hedayati et al., 2007). A. flavus may infect peanut and lead to aflatoxin accumulation in the 

field (pre-harvest aflatoxin contamination) or during storage (post-harvest aflatoxin 

contamination). Pre-harvest aflatoxin contamination also may occur by flower infection as the 
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fungus invades the flowers and then travels down the pegs to become established in the 

developing seeds (Styer et al., 1983).  

Abiotic stress is an important factor contributing to pre-harvest aflatoxin accumulation. 

Drought conditions and heat stress exacerbate aflatoxin contamination (Kisyombe et al., 1985; 

Holbrook et al., 2000a; Craufurd et al., 2006; Nigam et al., 2009). Therefore, drought tolerant 

genotypes, sufficient irrigation and best management practices may reduce pre-harvest aflatoxin 

contamination. However, understanding the resistance mechanism and developing resistant 

genotypes for post-harvest aflatoxin contamination are needed. 

Different genetic factors that may affect Aspergillus spp. infection and/or aflatoxin 

accumulation have been proposed, however, the exact role of such factors remains unclear. 

Lipoxygenase (LOX) is a gene super family that encodes dioxygenases. It was found to have a 

critical role in many disease response mechanisms of plants such as nematode (Gao et al., 2008; 

Ozalvo et al., 2014), rust (Choi et al., 2008), downy mildew (Shivakumar et al., 2003; Babitha et 

al., 2004; Babitha et al., 2006) and insects (Wang et al., 2008; Tang et al., 2009; Yan et al., 

2013). However, in peanut it has received most attention for its potential role in resistance to A. 

flavus. Burow et al., (2000) isolated the first peanut LOX, PnLOX1 from a seed cDNA library 

and found expression to be enhanced after infection by A. parasiticus. An opposite result was 

obtained by Tsitsigiannis et al., (2005) while studying two more LOXs, PnLOX2 and PnLOX3, 

where they observed reduced expression upon infection by A. flavus (Tsitsigiannis et al., 2005). 

Another two LOXs subsequently were discovered which showed various responses to A. flavus 

inoculation (Muller et al., 2014). In addition, LOX expression differences have been observed 

upon interaction of Aspergillus spp. with plants other than peanut, e.g., soybean (Bean et al., 
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1972; Doehlert et al., 1993; Boue et al., 2005), maize (Huang et al., 2013; Gao et al., 2009), 

cottonseeds (Zeringue 1996) and almond (Mita et al., 2007). 

Additionally, β-1,3-glucanases, chitinases, pathogenesis-related proteins 10 and 10.1, 

ribosome inactivating proteins (RIPs), and zeamatin may be related to A. flavus resistance 

(Fountain et al., 2014) along with WRKY transcription factors (Fountain et al., 2015a). 

Furthermore, the drought stress-responding compounds such as reactive oxygen species (ROS) 

are highly associated with aflatoxin production (Jayashree and Subramanyam, 2000; Reverberi et 

al., 2012; Fountain et al., 2015b) and antioxidant enzymes are highly co-expressed with fungal 

growth under infection conditions (Fountain et al., 2016a). 

Cultivated peanut, Arachis hypogaea, is an allo-tetraploid (2n = 4x = 40) that was formed 

from spontaneous doubling of a cross between two diploid progenitors, A. duranensis and A. 

ipaensis (Seijo et al., 2004). The whole genome sequence of tetraploid peanut is not yet 

available. However, high quality, well-annotated genomes of A. duranensis and A. ipaensis have 

been released (Bertioli et al., 2016; https://peanutbase.org). The two subgenomes together have a 

size of ~2.7 Gb and potentially express 88,876 predicted proteins. The whole genome sequence 

of A. flavus also has been released (https://www.aspergillusflavus.org/genomics/). The genome is 

40 Mbp containing 13,478 predicted genes on 8 chromosomes. Aflatoxin biosynthesis is encoded 

by a 70 Kbp gene cluster and has been extensively studied for A. flavus and A. parasiticus (Yu et 

al., 2004; Ehrlich et al., 2005; Georgianna and Payne, 2009). Although only these two fungi are 

responsible for aflatoxin production in food products, the cluster region is conserved with other 

species such as A. bombycis and Emericella astellata (Amaike and Keller 2011). The aflatoxin 

biosynthetic pathway is sensitive to environmental conditions, e.g., temperature, stress, lipids 
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and salts (Bhatnagar et al., 2003), which makes breeding for resistance to aflatoxin production 

challenging.  

In this study, we utilized the published peanut and A. flavus genomes to study the genes 

and gene networks that respond to A. flavus infection and are differentially expressed during 

fungal interaction with resistant vs susceptible peanut genotypes. Extended analysis comprising 

self-organizing maps, GO term enrichment, KEGG enrichment, and co-expression network 

analysis was conducted.  

Materials and Methods 

Plant material and infection 

ICG 1471 and Florida-07 seeds were collected from the field in the season immediately 

preceding the experiment. Thirty seeds from each genotype were inoculated with the fungal 

spores, alongside 10 mock-treated seeds. The seeds were harvested after 16 hours (16 HAI, 

Hours After Inoculation), 32 and 64 HAI time points. The experiments were conducted using 

randomized complete block (RCB) designs (10 seeds per block). Every individual seed was 

ground in liquid nitrogen and divided equally into three aliquots. The first portion was used for 

GFP quantification, a second for aflatoxin analysis and the third for RNA-seq analysis. 

Sterilization, all infection procedures, GFP and aflatoxin analysis were carried out according to 

the methods described in our previous work (Chapter 3). A t-test was used to test the differences 

in GFP expression and aflatoxin contamination between the two genotypes under infection 

conditions for every time point (R v3.2.2) (R Core Team, 2014). 

RNA extraction 

For every time point and genotype, the third pulverized portion of six mock-treated seeds 

and six infected seeds, three with high and three with low aflatoxin contamination, were used for 
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RNA extraction using Qiagen RNeasy Plant Mini kit (QIAGEN Inc. Valencia, CA) according to 

the manufacturer's instructions. The quality of RNA was checked with an Agilent 2100 

Bioanalyzer (Georgia Genomics Facility, University of Georgia, Athens, GA). 

RNA sequencing 

DNA was eliminated from the extracted RNA using DNase I, Amplification Grade 

(Invitrogen, Carlsbad, CA) according to the manufacturer's instructions. Seventy-two RNA 

libraries were constructed using KAPA RNA-Seq library Preparation kit (KR0934-v1.13; Kapa 

Biosystems, Wilmington, MA, USA) and the Illumina set B indexes (Illumina, San Diego, CA, 

USA) according to the manufacturer's instructions. The integrity analysis and quantification of 

the libraries were carried out using an Agilent 2100 Bioanalyzer and Qubit 2.0 Fluorometer 

(Georgia Genomics Facility, University of Georgia, Athens, GA). Sequencing was done on an 

Illumina HiSeq2500 (Illumina, San Diego, CA, USA) in six lanes with 12 samples pooled per 

lane (HudsonAlpha Institute for Biotechnology. Huntsville, AL, USA). 

Differential expression analysis 

The sequence quality for all libraries was determined using FastQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/, v. 0.11.4 2015). Trimmomatic 

v0.36 (Bolger et al., 2014) was used to trim the low quality bases and filter out low quality 

sequences. The cleaned paired-end reads were aligned to a Bowtie (v1.1.0, Langmead et al., 

2009) indexed peanut synthetic tetraploid reference genome, containing the genomes of A. 

duranensis and A. ipaensis (Bertioli et al., 2016, https://peautbase.org/), using Tophat v2.0.14 

(Trapnell et al., 2009). Only the cleaned paired-end reads of infected libraries were aligned to a 

Bowtie (v1.1.0, Langmead et al., 2009) indexed A. flavus NRRL3357 reference genome (NCBI, 

txid5059). The raw counts were calculated using HTSeq v0.6.1p1 (Anders et al., 2015).  



 

171 

Differential expression analysis of counts was carried out using edgeR (Robinson et al., 2010). 

DESeq2 (Love et al., 2014) and Next MaSigPro (Nueda et al., 2014) were used to repeat the 

analysis for in-silico validation. Table 5.S1 shows different models used in the analysis. Two 

models were applied to test the differences between the genotypes (resistant and susceptible) due 

to the infection versus control treatments, and high vs low aflatoxin-contaminated treatments. A 

third model was applied to test the differences between the responses of the fungal genes during 

fungal growth on the two genotypes for only high aflatoxin contaminated treatments, since 

control treatments had no fungal growth and the low aflatoxin contaminated treatment had 

limited fungal growth. 

Cufflinks v2.2.1 (Trapnell et al., 2010) was used to calculate FPKM then the Z-score was 

calculated using R v3.2.2 (R Core Team, 2014). The expression profile of differentially 

expressed genes was clustered using Self-Organization Maps (SOM) of the kohonen package (R 

Core Team, 2014). 

GO enrichment analysis 

Libraries GenomicFeatures (Lawrence et al., 2013) and biomaRt (Durinck et al., 2005) 

were used to extract gene lengths and GO terms from annotation files, respectively. GO 

enrichment analysis of differentially expressed genes was implemented using GOseq v2.12 

(Young et al., 2010) with a correction for gene length bias.  

KEGG enrichment analysis 

KEGG enrichment analysis was carried using ‘keggseq’ package for the three models 

described above. The KEGG enrichment analysis for a synthetic tetraploid genome requires 

merging the two sub-genomes in one analysis. However, the available tools for KEGG analysis 

do not support combining two species. Therefore, we designed R packages to carry out this type 
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of analysis designated ‘keggseq’. The p-value was calculated according to Yang et al., (2015) 

within the ‘keggseq’ package. ‘keggseq’ is freely available to the public under MIT license and 

can be downloaded from https://github.com/w-korani/keggseq. 

The package ‘keggseq’ provides some other advantages over the available tools. 1. It 

allows application of KEGG enrichment analysis for diploids or polyploids with any level of 

genome duplication; 2. It generates ready-to-publish plots and produces graphs of interested 

pathways that have differentially expressed enzymes marked; 3. It generates csv files containing 

detailed information of enzymes included in pathways of interest; 4. It allows editing of gene IDs 

if the user wants to use an annotation different from Kyoto Encyclopedia of Genes and Genomes 

annotation; 5. It is a run-time package since the data is downloaded directly from Kyoto 

Encyclopedia of Genes and Genomes database so it does not require an internal database for 

specific species; 6. It is step-by-step and easily implemented.  

De novo assembly of transcripts 

The unmapped reads of ICG 1471 controls, remaining after alignment with A. 

duranensis, A. ipaensis and A. flavus genomes, were converted back to paired-end fastq files 

using bamtools v2.25.0 (Barnett et al., 2011) and concatenated. Trinity v. 2.0.6 (Haas et al., 

2013) was used to assemble the concatenated reads with normalization to maximum coverage of 

50x. The transcripts were given IDs starting with RC.  

The process was repeated for ICG 1471 treatments, Florida-07 controls and treatments 

with given IDs starting with RT, SC and ST, respectively. The four assemblies were combined 

and the redundant transcripts were filtered out using EvidentialGene pipeline 

(http://arthropods.eugenes.org/). Since the assembly contained sequence from peanut and 

sequences from A. flavus, BLAST+ (Camacho et al., 2009) was used to cluster the assembly into 
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peanut and fungal transcripts by applying BLASTn for the transcript against NCBI nucleotide 

database. Transcripts that matched plant sequences were identified as peanut transcripts and 

those that had fungal matches were defined as A. flavus transcripts. The peanut filtered assembly 

was merged with the peanut tetraploid assembly produced by Clevenger et al., (2016a). 

Blast2GO was used to annotate GO terms of the new transcripts (https://www.blast2go.com/). 

Differential expression analysis, GO and KEGG enrichment analyses were carried out as 

described above in the first model (differences between resistant and susceptible genotypes due 

to the infection versus control) (Table 5.S1).  

Co-expression network analysis 

Differentially expressed gene analysis of the fungal response to the infection on both 

genotypes was carried out separately for each genotype using edgeR (Robinson et al., 2010). 

Since a fungal control treatment was lacking, the 16-hour treatment was used as control. In 

addition, differential expression analysis was carried out for both genotypes to test the treatment 

effect (controls vs treatments) for time points 32 and 64 HAI for each genotype separately. The 

Z-score fungal and peanut genes were combined in one matrix/genotype. Pearson correlation 

analysis was done using R v3.2.2 package (R Core Team, 2014) as described by Musungu et al., 

(2016). Only pairs that showed expression correlation > 0.99 were loaded into cytoscape network 

v3.4.0 (Shannon et al., 2003). As the dataset that contained the correlated paired genes of the 

susceptible genotype was huge, the network was clustered only for the resistant genotype using 

MCODE app (Bader and Hogue 2003) and then the genes that matched those of the susceptible 

genotype matrix were excluded from the clusters of the resistant genotype.  

 

 



 

174 

Results and Discussion 

Fungal growth and aflatoxin accumulation 

It was shown previously that the peanut genotype ICG 1471 is a strong candidate for 

resistance to aflatoxin accumulation upon in vitro inoculation of mature peanut seeds with A. 

flavus (Chapter 3). In addition, ICG 1471 has been reported as a resource for resistance to pre- 

(Waliyar et al., 2003; Nigam et al., 2009) and post- (Waliyar et al., 2008) harvest aflatoxin 

contamination. Therefore, it was used in this study along with Florida-07, which was recognized 

as a susceptible genotype for both types of aflatoxin accumulation (Clevenger et al., 2016b; 

Chapter 3).  

To estimate the dynamic change in gene expression, infected seeds and their controls 

were harvested at three different time points, 16, 32, and 64 hours after infection (HAI). Figure 

5.1 shows the interaction between aflatoxin B produced by A. flavus and the progression of 

fungal growth estimated indirectly by relative fluorescence units (RFU) of GFP protein signal. 

The data was in consensus with our previous observations (Chapter 3) as ICG 1471 supported a 

very low amount of aflatoxin per unit of fungus as compared with Florida-07 across the three 

time points. A t-test revealed no significant differences between the two genotypes for GFP 

relative fluorescence for the three time points, yet aflatoxin showed significant differences for 

the respective time points for all three of them. 

The interaction plots revealed that not only peanut genotypes interact differently with the 

fungus, but also every individual seed may produce different levels of aflatoxin within the same 

genotype/treatment/time point. This supports previous reports that aflatoxin accumulation is very 

sensitive to environment (Blankenship et al., 1984; Kisyombe et al., 1985; Bhatnagar et al., 

2003; Craufurd et al., 2006). The samples that were chosen for RNA-seq analysis (Table 5.S2) 
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were clustered in high/low aflatoxin contamination groups (Figure 5.1). Picking such highly 

variant samples gives a realistic representation of the biological replication; however, it increases 

standard deviation. Therefore, six biological replicates were used to study the differentially 

expressed genes due to genotypic effect. In addition, this design allows testing the effect of the 

variations within treatments on accumulated aflatoxin amount.  

Peanut genotypic differential expression analysis 

The cleaned paired-end reads that were mapped to the tetraploid peanut synthetic and the 

A. flavus genomes are presented in Figure 5.2. Except for the highly fungal contaminated 

libraries (treatments of 64 HAI of Florida-07), 3.3 to 9.9 million paired-end reads were correctly 

mapped to the peanut genome for every sample. This gave an average of 6 million paired-end 

reads/library and a total average of 5.6 million paired-end reads/library, including the highly 

contaminated libraries (which had 2.4 to 4.4 million mapped fragments/library). These results 

showed a reasonable depth to the peanut genome that has a total size of ~2.7 Gb (Bertioli et al., 

2016). 

4272 genes were differentially expressed between the two genotypes (resistant vs 

susceptible) due to the infection by A. flavus (treatment vs control). Since the expression profile 

included the dynamic change across the three time points, some SOM clusters of these genes 

may have similar general trends and differ slightly in the dynamic change from one time point to 

another. The general pattern groups represented by SOM clusters are shown in Figure 5.S1. The 

clustering showed that some genes were down-regulated due to the infection in the susceptible 

genotype and up-regulated (Figure 5.S1A) or unaffected (Figure 5.S1B) in the resistant one and 

on the other hand, some genes were up-regulated due to the infection in the susceptible genotype 
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and down-regulated (Figure 5.S1C) or unaffected (Figure 5.S1D) in the resistant one. A fifth 

group was up-regulated in both genotypes but more so in the resistant genotype (Figure 5.S1E). 

GO enrichment analysis of the differentially expressed genes generated 146 significant 

GO terms out of the GO terms found in the annotation of the two subgenomes of peanut. The 20 

most significant GO terms (Figure 5.3A) included several for protein processing, i.e., protein 

polymerization, protein complex, unfolded protein binding, protein folding, protein 

heterodimerization activity, protein binding. The latter had 529 differentially expressed genes. 

On the other hand, KEGG enrichment analysis (Figure 5.3B) only generated five significant 

pathways, i.e,, alpha-linolenic acid metabolism, protein processing in endoplasmic reticulum, 

spliceosome and carbon fixation and carbon metabolism (Figures 5.S2 to S6, respectively). 

The environmental effects, especially water deficit and heat stress, were reported to affect 

pre-harvest aflatoxin production by Aspergillus spp. on peanuts, which can be extended to also 

affect post-harvest aflatoxin production (Blankenship et al., 1984; Kisyombe et al., 1985; 

Sanders et al., 1985; Waliyar et al., 2003; Craufurd et al., 2006; Guo et al., 2006; Cotty and 

Jaime-Garcia, 2007; Shan et al., 2011). This increases the variation of aflatoxin production 

within treatments. Therefore, the samples were clustered in two groups of high and low aflatoxin 

accumulation levels in both genotypes. To test the differentially expressed genes between the 

two genotypes due to the variation within the biological samples, the differential expression 

analysis was repeated for only high- vs low-contamination groups (Figure 5.1), excluding 

controls. The analysis generated 3485 differentially expressed genes. The SOM clustering 

(Figure 5.S7) and GO term enrichment analysis revealed 194 significant GO terms. Out of the 20 

most significant GO terms (Figure 5.4A) the most abundant and highly significant were 

metabolic process, catalytic activity, oxidation-reduction process, protein phosphorylation, 
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protein kinase activity and ATP binding with the latter having 372 differentially expressed genes. 

Therefore, it was the GO term with the most differentially expressed genes after protein binding 

(414 differentially expressed); however, protein binding had a much lower significance level 

(0.02) compared with ATP binding (1.6-12). Unlike the KEGG enrichment analysis of the 

genotypic differences irrespective of aflatoxin level which generated only five significant 

pathways, genotypic differences taking into account high- vs low-aflatoxin showed 14 significant 

pathways (Figure 5.4B), i.e., the metabolism pathways of galactose, phenylalanine, taurine and 

hypotaurine, glutathione, linoleic acid, butanoate, and thiamine, the biosynthesis pathways of 

ubiquinone and other terpenoid-quinone, phenlypropanoid, flavonoid, and isoflavonoid, in 

addition to metabolic pathways, biosynthesis of secondary metabolites and circadian rhythm. 

To mitigate post-harvest aflatoxin contamination of peanut, the resistance mechanisms 

have to be understood. Therefore, genes that are responsive to the infection (infection vs mock-

treatment) have to be studied in addition to those genes that may be affected by the variations 

within treatments (high vs low contaminated clusters). The large number of significant 

differentially expressed genes and GO terms generated by both analyses revealed the complexity 

of the interaction between A. flavus and peanut in terms of aflatoxin production and the extreme 

effect of individual seed physiology on the process. In addition, it can be misleading, even after 

clustering/grouping, to assign a resistance function to a particular gene or small group of genes 

of interest; however, KEGG enrichment analysis gives a clue to pathways that control either the 

resistance or the physiological response. 

As only five KEGG pathways were identified as significant for resistance (excluding 

individual seed effects), it can be assumed that they are the main keys controlling the defense 
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mechanism in ICG 1471. The carbon and alpha-linolenic acid pathways may be of particular 

importance for resistance. 

The most interesting significant pathway is alpha-linolenic metabolism, which contains 

different components that have been reported as important or responsive for biotic and abiotic 

stresses of plants. The pathway catabolizes alpha-linolenic acid into different important products 

including jasmonates, i.e., jasmonate and methyl-jasmonate. Jasmonates are synthesized though 

this pathway in two main cellular compartments, the chloroplast where alpha-linolenic acid is 

converted to 12-oxo-phytodienoic acid (12-OPDA) in a process initiated by chloroplast 13S-

lipoxygenase (Bell et al., 1995), and the peroxisome where 12-OPDA is localized and converted 

to jasmonates (Stintzi 2000).  

Lipoxygenases were documented to play a role in Aspergillus spp. infection and the 

subsequent aflatoxin contamination of different crops such as peanut (Burow et al., 2000; 

Tsitsigiannis et al., 2005; Kumari et al., 2012; Muller et al., 2014), soybean (Bean et al., 1972; 

Doehlert et al., 1993; Boue et al., 2005), maize (Gao et al., 2009; Huang et al., 2013), 

cottonseeds (Zeringue 1996) and almond (Mita et al., 2007). Figure 5.5 shows nine 

lipoxygenases that were found among the differentially expressed genes; eight are predicted to 

generate 13-hydroxyperoxides and six have features of plastidial enzymes, whereas one was not 

classified (Chapter 2). 

Additionally, both 12-OPDA and jasmonates were documented to play independent roles 

in the wound response of Arabidopsis and they can change the expression of the same and 

different responsive genes (Taki et al., 2005; Sham et al., 2015). In addition, numerous reports 

showed the importance of jasmonates in plant response to biotic and abiotic stresses, e.g., insects 

(Thaler et al., 1996; McConn et al., 1997; Kessler et al., 2004), fungi (Vijayan et al., 1998; 
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Thomma et al., 2000; Zeneli et al., 2006; Mei et al., 2006), and wounding (Baldwin et al., 1997) 

and during development (Creelman and Mullet, 1997). In particular, methyl-jasmonate was 

found to delay spore germination, and inhibit mycelial pigment formation and aflatoxin 

poduction of A. flavus (Goodrich-Tanrikulu et al., 1995). Interestingly, it was found to enhance 

aflatoxin production by A. parasiticus (Vergopoulou et al., 2001). However, Meimaroglou et al., 

(2009) showed that methyl-jasmonate might enhance or reduce aflatoxin production by A. 

parasiticus depending on its concentration. Moreover, fungal-pathogens can manipulate, enhance 

or suppress jasmonate signaling in plant-hosts (Zhang et al., 2017).  

The alpha-linolenic acid metabolism pathway also can catalyze alpha-linolenic acid by 

9S-lipoxygenase to different important products such as 10-oxo-11-phytodienoic acid (10-

OPDA) which has a high phytotoxicity (Sherif et al., 2016). 

Another route through the alpha-linolenic acid metabolism pathway produces 8,11,14-

heptadecatrienoic acid using alpha-dioxygenase 1 (DOX1) without lipoxygenase activity. Both 

enzyme and its product were documented to increase in tobacco during interaction with 

Pseudomonas syringae pv syringae (Hamberg et al., 2003). In addition, DOX1 was up-regulated 

in Arabidopsis after 12-OPDA treatment (Sham et al., 2015) which functioned to protect the 

plant from oxidative stress (De Leon et al., 2002). 

Therefore, it can be concluded that, regardless of the direction of the effect, jasmonates 

and 12-OPDA produced by the alpha-linolenic pathway, in addition to other pathway 

components, have an important role in aflatoxin biosynthesis of Aspergillus spp. ICG 1471, as a 

resistant genotype, may regulate the synthesis of jasmonates to reduce aflatoxin production. On 

the other hand, Florida-07, as a susceptible genotype, does not respond to infection with 

jasmonate production, thereby resulting in elevated aflatoxin accumulation.  
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Protein processing in endoplasmic reticulum also was a significant pathway that may contribute 

to the resistance mechanism. However, its role may be integrated with the alpha-linolenic 

pathway since endoplasmic reticulum contributes to the formation of peroxisomes (Hoepfner et 

al., 2005). Fountain et al., (2016b) showed that alternative carbon sources have different effects 

on aflatoxin and kojic acid production; kojic acid has an important role in remediating damage 

resulting from Reactive Oxygen Species (ROS). These results reveal the importance of carbon 

fixation and metabolism pathways in aflatoxin production by Aspergillus spp. and protection of 

the fungus against oxidative damage. 

As a synthetic reference genome of tetraploid peanut was used in our differential 

expression analysis, some genes/transcripts having roles in resistance to aflatoxin accumulation 

may not be represented within the two sub-genomes. Therefore, de novo assemblies were 

constructed to capture such novel transcripts. Four assemblies were created for ICG 1471 control 

and treatments, and Florida-07 controls and treatments, which generated 61176, 67813, 90543 

and 109068 total transcripts, respectively, and among them 413, 457, 551 and 505 were new 

transcripts, respectively. 

To validate the genes and pathways involved in resistance, analysis of differential 

expression between peanut genotypes, was repeated using a combined reference transcriptome 

(88,626 transcripts) that included the 2026 novel transcripts (Supplemental materials: 

afla_new_transcripts.fasta) and the previously published tetraploid peanut transcriptome (86,600 

transcripts) (Clevenger et al., 2016a). The differential expression analysis generated 3879 

significant genes. The expression profile of the novel transcripts is given (Figure 5.S8), out of the 

2026 novel genes, 66 were differentially expressed. GO enrichment analysis identified 406, out 

of 8530, significant GO terms (Figure 5.S9A). Most significant GO terms resulting from 
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genomic analysis (using predicted transcripts) also were significant in transcriptomic analysis. 

However, interestingly, KEGG enrichment analysis generated four of the same significant 

pathways as with genomic analysis (Figure 5.S9B), except for alpha-linolenic acid metabolism, 

which was near the significance threshhold with a q-value of 0.06. These outputs confirmed the 

key role of these five pathways and their respective genes in peanut resistance to aflatoxin 

produced by Aspergilli. 

The relatively large number of biosynthetic and metabolic KEGG pathways (13 out of 

14) that were significant due the physiological condition (Figure 5.4B), may help interpret 

published results of variation underlying aflatoxin production in peanut. For instance, Xue et al., 

(2005) reported that peanut lines with elevated linoleic and low oleic acid are more resistant to 

post-harvest aflatoxin production. However, Holbrook et al., (2000b) found that oleic/linoleic 

levels do not have a significant effect on pre-harvest aflatoxin production. In this analysis, the 

linoleic acid pathway was found among the significant pathways (Figure 5.4B). Therefore, the 

ratio of oleic/linoleic acid may increase variation among individuals yet not be the primary 

determinant of resistance or susceptibility. 

Differential expression of fungal genes and co-expression network analysis 

The interaction between peanut seeds and Aspergilli encompasses responsive pathways 

inside the plant and those inside the fungi, and genes regulating the signaling between organisms. 

Furthermore, some fungal genes may be affected differentially by growth of the fungus on 

different peanut genotypes. To investigate host-pathogen interaction differences, differential 

expression analysis was carried out for fungal genes, which generated 1197 significant genes. 

SOM clusters of the expression patterns of these genes (Figure 5.S10) and GO term enrichment 

analysis showed 97 significant GO terms, out of 4918 total (Figure 5.6A). KEGG enrichment 
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analysis identified eight significant pathways (Figure 5.6B), one interconversion pathway 

(pentose and glucuronate) one degradation pathway (valine, leucine and isoleucine), and six 

metabolic pathways (fructose/mannose, galactose, starch/sucrose, glycerolipid, carbon and 

metabolic pathways). Interestingly, seven of these pathways include carbohydrate processing. 

These results are in agreement with previous studies that showed changes in aflatoxin production 

by A. flavus or A. parasiticus using different sugar sources (Abdollahi and Buchanan 1981; 

Davis and Diener 1986). Growth of A. flavus on ICG 1471 may result in the production of 

different sugars than growth on Florida-07, leading to lower aflatoxin production by the fungus. 

A further consequence may be reduced kojic acid production and subsequent increase in the 

sensitivity of the fungus to ROS. These two hypotheses need to be validated in future work. 

To further investigate the differential response of fungal genes due to host genotype, co-

expression network analysis based on Pearson correlation was conducted (Figure 5.7). 1265 and 

1111 differentially expressed peanut and fungal genes, respectively, were found in A. flavus/ ICG 

1471 interaction (for the time points of 64 and 32 HAI for the comparison of treatments vs 

controls), which formed a matrix of 0.5 million correlated pairs (edges). More (6795 peanut and 

1265 fungal genes) were differentially expressed in A. flavus/Florida-07 interaction, which 

created a huge matrix of 14 million correlated pairs (edges). Figure 5.7 shows the interspecies 

peanut/A. flavus co-expression network for ICG 1471 (A) and Florida-07 (D). The MCODE 

cluster analysis of the ICG 1471 co-expression network generated 45 clusters (Supplemental 

materials, ICG 1471_sub_networks.txt). The most interesting clusters (sub-networks) were 1 and 

15; sub-network 1 had 1037 peanut genes and 8 A. flavus genes (Figure 5.7B), including 

gene10037 (AflNA) and the sub-network 15 had 28 peanut genes and only one A. flavus gene, 

gene10043 (AflH) (Figure 5.7C). AflNA and AflH encode two enzymes regulating the aflatoxin 
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biosynthetic pathway (very upstream enzymes), i.e., averantin hydroxylase (EC 1.14.13.174) and 

versiconal hemiacetal acetate reductase (EC 1.1.1.353), respectively. 

Out of the 1037 and 28 ICG 1471 peanut genes whose expression was highly correlated 

with gene10037 and gene10043 of A. flavus, 640 and 24 genes were not found in the Florida-

07/A. flavus matrix. Among these genes, eight WRKY family transcription factors, nine TIR-

NBS-LRR, six ethylene signaling and one heat shock protein were up-regulated, and expression 

was correlated with gene10037. One heat shock and an ethylene signaling gene were up-

regulated and expression was correlated with gene10043. Figure 5.8 represents the expression 

profile of these genes. Although gene expression was up-regulated in both genotypes for all 

genes, ICG 1471 genes were co-expressed with gene10037 or gene10043 of A. flavus.  

Many plant disease resistance genes encode NBS-LRR proteins (McHale et al., 2006; Sekhwal et 

al., 2015). Ethylene signaling genes were significantly up-regulated in response to A. flavus 

infection of maize (Musungu et al., 2016). Heat shock proteins may play a role in plant defense 

by affecting R protein stability and their regulation (Lee et al., 2012). WRKY transcription 

factors were differentially expressed in the response of resistant and susceptible genotypes of 

maize to infection by A. flavus (Fountain et al., 2015a). In addition, they were found to affect on 

the ethylene-jasmonate-mediated defense (Birkenbihl et al., 2012), plant response to heat stress 

(Li et al., 2010) and defense triggered by jasmonates, either negatively (Gao et al., 2011) or 

positively (Journot-Catalino et al., 2006). Therefore, these eight WRKY genes may be important 

in controlling jasmonate defense mechanisms. In addition, the high correlations between 

expression of these genes in ICG 1471 and gene10037 of A. flavus reveals their importance in 

the defense mechanism and suggests that they may be involved in regulation of the alpha-

linolenic acid metabolism pathway. 
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In-silico validation of differential expression analysis 

In this study, different complex factors were involved in the RNA-seq experiment, e.g., 

genotypic effect, physiological effect, A. flavus infection and time-course dynamic change. 

Therefore, three analytical models were compared (Figure 5.9). Across all analyses, DESeq2 

showed similar results to edgeR for identifying differentially expressed genes. On the other hand, 

Next maSigPro identified many genes that were not discovered by the other two methods and 

failed to extract many other genes that were determined to be differently expressed by the other 

two methods. 

EdgeR is one of the most common methods used for differential expression analysis of 

RNA-seq data. However, it is not a standard method to handle the time course experiments as it 

uses a negative binomial model, which deals with time points as independent factors (Robinson 

et al., 2010). Methods have been designed to account for time course experiments that used 

different models such as Next maSigPro (polynomial regression model) (Neuda et al., 2014), 

DyNB (non-parametric gaussian processes regression negative binomial likelihood model) (Aijo 

et al., 2014), TRAP (beta-negative binomial model) (Jo et al., 2014), SMARTS (input-output 

hidden Markov model) (Wise and Bar-Joseph 2014), EBSeq-HMM (empirical Bayes mixture 

model) (Leng et al., 2015), FunPat (different distribution models) (Savania et al., 2015) and 

timeSeq (negative binomial mixed-effect model) (Sun et al., 2016). All these methods had 

limitations and none was standardized to this type of analysis. Next maSigPro was initially 

designed to analyze microarray data using polynomial regression and later was updated to handle 

RNA-seq data (Neuda et al., 2014). This method relies on R2 factor to extract the significant 

differentially expressed genes, which is considered a drawback since the threshold is user-

defined (Spies and Ciaudo 2015). Although both edgeR and DESeq2 use a negative binomial 
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model, DESeq2 has different implementation, tests and normalization (Love et al., 2014). Both 

gave a reasonable level of analysis validation. 

Conclusions 

The objective of this study was to identify genetic factors and biochemical pathways that 

function to limit aflatoxin production in resistant peanut genotypes. Differential expression 

analysis revealed five important biochemical pathways regulating resistance. In addition, results 

captured pathways involved in physiological interaction with aflatoxin formation and the fungal 

pathways that are differentially affected by fungal infection and aflatoxin production on resistant 

vs susceptible peanut genotypes. The study highlighted the critical role of the alpha-linolenic 

acid metabolism pathway and certain WRKY genes likely regulating the jasmonate-based 

defense pathways to mitigate aflatoxin production. These results provide key information and 

identify materials that can be used in breeding of peanut lines resistant to aflatoxin production. 
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Figures 

 

Figure 5.1: Interaction between GFP signals and aflatoxin levels for 16 (A), 32 (B), 64 (C) HAI; 

the red line and points represent Florida-07 data; the blue line and points represent ICG 1471 

data; the cross marks show the samples that were chosen for RNA-seq analysis, the 

circles/ovules reveal the high/low contaminated clusters. 

  



 

187 

 

 

Figure 5.2: Sequence read integrity and mapping results to the synthetic tetraploid peanut and A. 

flavus genomes.  
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Figure 5.3: GO/KEGG enrichment analysis of peanut differently expressed genes between 

genotypes due to infection vs control. A. The 20 most significant GO terms extracted by GO 

enrichment analysis; B. KEGG enrichment analysis carried out by keggseq package; 

Rich_factor: the ratio of differentially expressed genes to the all genes that were annotated in the 

pathway. 
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Figure 5.4: GO/KEGG enrichment analysis of differently expressed genes between peanut 

genotypes due to high vs low aflatoxin levels. A. The 20 most significant GO terms extracted by 

GO enrichment analysis; B. KEGG enrichment analysis carried out by keggseq package; 

Rich_factor: the ratio of the differentially expressed genes to the all genes that were annotated in 

the pathway. 
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Figure 5.5: Differentially expressed lipoxygenases. Left, middle and right panels are 16, 32 and 

64 HAI, respectively. The upper panel is extra-plastidial genes, and the lower panel is plastidal 

genes. All genes genes except Ad_25 are predicted to generate 13-S-hydroxyperoxides. Ad_25 

was not classified. FPKM: Z-scores of Fragments Per Kilobase of transcript per Million mapped 

reads. 
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Figure 5.6: GO/KEGG enrichment analysis of A. flavus differently expressed genes due to 

growth of the fungus on resistant vs susceptible genotypes. A. The 20 most significant GO terms 

extracted by GO enrichment analysis; B. KEGG enrichment analysis carried out by keggseq 

package; Rich_factor: the ratio of the differentially expressed genes  
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Figure 5.7: Co-expression network analysis of peanut/A. flavus genes. A. ICG 1471/A. flavus 

network. B. Sub-network 1 of ICG 1471/A. flavus network. C. Sub-network 15 of ICG 1471/A. 

flavus network. D. Florida-07/A. flavus network; lines represent edges, blue rectangles are peanut 

nodes, yellow rectangles are A. flavus nodes. 
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Figure 5.8: Peanut co-expressed genes with gene10037 and gene10043 of A. flavus; FPKM: Z-

scores of Fragments Per Kilobase of transcript per Million mapped reads. 
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Figure 5.9: Differential expression analysis with multiple programs for in-silico validation of 

peanut genotypic differences due to A. flavus infection (A), physiological effects (B), and 

fungal/peanut-genotype effects (C). 
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Table 5.S1: Statistical models that were used for differential expression analysis of the RNA-seq 

data. 

Analysis Package Test Model 
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 to
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ea
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edgeR glmLRT 

time16_effect = (R_T_16-R_C_16)-(S_T_16-S_C_16) 

time32_effect = (R_T_32-R_C_32)-(S_T_32-S_C_32) 

time64_effect = (R_T_64-R_C_64)-(S_T_64-S_C_64) 

Deseq2 LRT 

full = ~ genotype (R/S)+ afla_trt16 (T/C) + 

genotype:afla_trt16) 

reduced = ~ genotype (R/S)+ afla_trt16 (T/C)  

full = ~ genotype (R/S)+ afla_trt32 (T/C) + 

genotype:afla_trt32) 

reduced = ~ genotype (R/S)+ afla_trt32 (T/C)  

full = ~ genotype (R/S)+ afla_trt64 (T/C) + 

genotype:afla_trt64) 

reduced = ~ genotype (R/S)+ afla_trt64 (T/C) 

Next 

MaSigPro 
LLRT R_C, R_T, S_C, S_T 

R
 v

s 
S
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ue

 to
 H

 v
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L
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ea

nu
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edgeR glmLRT 

time16_effect = (R_H_16-R_L_16)-(S_H_16-S_L_16) 

time32_effect = (R_H_32-R_L_32)-(S_H_32-S_L_32) 

time64_effect = (R_H_64-R_L_64)-(S_H_64-S_L_64) 

Deseq2 LRT 

full = ~ genotype (R/S)+ afla_trt16 (H/L) + 

genotype:afla_trt16) 

reduced = ~ genotype (R/S)+ afla_trt16 (H/L)  

full = ~ genotype (R/S)+ afla_trt32 (H/L) + 

genotype:afla_trt32) 

reduced = ~ genotype (R/S)+ afla_trt32 (H/L)  

full = ~ genotype (R/S)+ afla_trt64 (H/L) + 

genotype:afla_trt64) 

reduced = ~ genotype (R/S)+ afla_trt64 (H/L)  

Next 

MaSigPro 
LLRT time16, time32, time64; R_H, R_L, S_H, S_L 
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R
 v

s 
S
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fl
a
vu
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edgeR etLRT 

time16_effect = R_H_16-S_H_16 

time32_effect = R_H_32-S_H_32 

time64_effect = R_H_64-S_H_64 

Deseq2 WT 

time16_effect = ~ genotype (R_H_16/S_H_16) 

time32_effect = ~ genotype (R_H_32/S_H_32) 

time64_effect = ~ genotype (R_H_64/S_H_64) 

Next 

MaSigPro 
LLRT time16, time32, time64; R_H, S_H 

Peanut  

(R)* 

edgeR 

etLRT 
time32_effect = R_T_32-R_C_32 

time64_effect = R_T_64-R_C_64 

Peanut  

(S)* 
etLRT 

time32_effect = S_T_32-S_C_32 

time64_effect = S_T_64-S_C_64 

A. flavus 

(R)* 
etLRT 

time32_effect = R_T_32-R_T_16 

time64_effect = R_T_64-R_T_16 

A. flavus 

(S)* 
etLRT 

time32_effect = S_T_32-S_T_16 

time64_effect = S_T_64-S_T_16 

* Design for network analysis; R, Resistant cultivar; S, susceptible cultivar; T, Treatment; C, 

Control; H, High-level of aflatoxin; L, Low-level aflatoxin; 16, 16 hours after infection; 32, 32 

hours of infection; 64, 64 hours after infection; LRT, Likelihood Ratio Test; WT, Wald Test; 

glmLRT, general linear model - Likelihood Ratio Test; etLRT, exact test - Likelihood Ratio 

Test; LLRT, Log Likelihood Ratio Test. 
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Table 5.S2: RNA integrity, GFP and aflatoxin analysis of samples that were sequenced. 

Genotype Trt 
GFP 

RFU/1mg 
Aflatoxin B 

(ppb) 
Aflatoxin 

level 
Rep. Index Lane RIN 

Florida-07 -16 0.00 5.61 Low 1 TruSeq Adapter, Index 5 1 7.4 

Florida-07 -32 2.69 3.96 Low 1 TruSeq Adapter, Index 13 1 6.7 

Florida-07 -64 2.54 5.21 Low 1 TruSeq Adapter, Index 18 1 6.5 

Florida-07 +16 -2.74 4.66 Low 1 TruSeq Adapter, Index 6 1 6.9 

Florida-07 +32 -1.54 5.71 Low 1 TruSeq Adapter, Index 14 1 8.4 

Florida-07 +64 -3.72 -128.10 Low 1 TruSeq Adapter, Index 19 1 7.1 

ICG 1471 -16 0.00 2.59 Low 1 TruSeq Adapter, Index 2 1 7.4 

ICG 1471 -32 0.00 0.51 Low 1 TruSeq Adapter, Index 7 1 6.8 

ICG 1471 -64 0.00 1.80 Low 1 TruSeq Adapter, Index 15 1 7.2 

ICG 1471 +16 0.00 0.39 Low 1 TruSeq Adapter, Index 4 1 na 

ICG 1471 +32 -2.10 0.52 Low 1 TruSeq Adapter, Index 12 1 7 

ICG 1471 +64 -3.53 0.49 Low 1 TruSeq Adapter, Index 16 1 6.5 

Florida-07 -16 3.99 2.83 Low 2 TruSeq Adapter, Index 5 2 6.7 

Florida-07 -32 1.29 3.31 Low 2 TruSeq Adapter, Index 13 2 7.3 

Florida-07 -64 0.00 3.22 Low 2 TruSeq Adapter, Index 18 2 6.6 

Florida-07 +16 -2.74 4.05 Low 2 TruSeq Adapter, Index 6 2 7 

Florida-07 +32 -3.16 12.03 Low 2 TruSeq Adapter, Index 14 2 7.8 

Florida-07 +64 -2.06 -136.22 Low 2 TruSeq Adapter, Index 19 2 6.7 

ICG 1471 -16 0.00 2.45 Low 2 TruSeq Adapter, Index 2 2 7 

ICG 1471 -32 0.00 2.52 Low 2 TruSeq Adapter, Index 7 2 7.6 

ICG 1471 -64 0.00 2.01 Low 2 TruSeq Adapter, Index 15 2 7.1 

ICG 1471 +16 0.00 0.05 Low 2 TruSeq Adapter, Index 4 2 7.3 

ICG 1471 +32 -2.10 0.27 Low 2 TruSeq Adapter, Index 12 2 7.1 

ICG 1471 +64 -3.53 0.52 Low 2 TruSeq Adapter, Index 16 2 8.3 

Florida-07 -16 3.56 4.27 Low 3 TruSeq Adapter, Index 5 3 6.6 

Florida-07 -32 3.59 4.42 Low 3 TruSeq Adapter, Index 13 3 7.1 

Florida-07 -64 5.65 1.96 Low 3 TruSeq Adapter, Index 18 3 7.5 

Florida-07 +16 -2.74 4.98 Low 3 TruSeq Adapter, Index 6 3 7.4 

Florida-07 +32 -3.12 2.51 Low 3 TruSeq Adapter, Index 14 3 8.4 

Florida-07 +64 -1.40 -128.82 Low 3 TruSeq Adapter, Index 19 3 7.6 

ICG 1471 -16 0.00 1.83 Low 3 TruSeq Adapter, Index 2 3 7 

ICG 1471 -32 0.00 1.27 Low 3 TruSeq Adapter, Index 7 3 7.6 

ICG 1471 -64 0.00 1.92 Low 3 TruSeq Adapter, Index 15 3 7 

ICG 1471 +16 0.00 1.21 Low 3 TruSeq Adapter, Index 4 3 7 

ICG 1471 +32 -2.10 0.31 Low 3 TruSeq Adapter, Index 12 3 6.6 

ICG 1471 +64 -3.53 0.47 Low 3 TruSeq Adapter, Index 16 3 6.5 

Florida-07 -16 9.46 1.79 High 4 TruSeq Adapter, Index 5 4 6.8 
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Florida-07 -32 0.00 4.47 High 4 TruSeq Adapter, Index 13 4 7.6 

Florida-07 -64 1.89 3.76 High 4 TruSeq Adapter, Index 18 4 7.1 

Florida-07 +16 2.81 8.59 High 4 TruSeq Adapter, Index 6 4 7 

Florida-07 +32 17.20 6.13 High 4 TruSeq Adapter, Index 14 4 8 

Florida-07 +64 726.71 5208.14 High 4 TruSeq Adapter, Index 19 4 8.1 

ICG 1471 -16 0.00 0.44 High 4 TruSeq Adapter, Index 2 4 7 

ICG 1471 -32 0.00 1.78 High 4 TruSeq Adapter, Index 7 4 7 

ICG 1471 -64 0.00 1.88 High 4 TruSeq Adapter, Index 15 4 6.3 

ICG 1471 +16 4.71 1.67 High 4 TruSeq Adapter, Index 4 4 na 

ICG 1471 +32 16.19 -0.67 High 4 TruSeq Adapter, Index 12 4 6.3 

ICG 1471 +64 627.20 541.97 High 4 TruSeq Adapter, Index 16 4 7.2 

Florida-07 -16 0.00 8.07 High 5 TruSeq Adapter, Index 5 5 7 

Florida-07 -32 3.52 5.83 High 5 TruSeq Adapter, Index 13 5 6.6 

Florida-07 -64 4.84 4.64 High 5 TruSeq Adapter, Index 18 5 6.1 

Florida-07 +16 1.74 16.71 High 5 TruSeq Adapter, Index 6 5 86.9 

Florida-07 +32 30.86 13.75 High 5 TruSeq Adapter, Index 14 5 8 

Florida-07 +64 644.20 4116.44 High 5 TruSeq Adapter, Index 19 5 7.9 

ICG 1471 -16 0.00 2.71 High 5 TruSeq Adapter, Index 2 5 6.6 

ICG 1471 -32 0.00 2.77 High 5 TruSeq Adapter, Index 7 5 6.7 

ICG 1471 -64 0.00 1.53 High 5 TruSeq Adapter, Index 15 5 6.4 

ICG 1471 +16 6.40 -0.72 High 5 TruSeq Adapter, Index 4 5 6.8 

ICG 1471 +32 38.81 0.75 High 5 TruSeq Adapter, Index 12 5 6.4 

ICG 1471 +64 557.88 320.23 High 5 TruSeq Adapter, Index 16 5 7 

Florida-07 -16 1.61 5.76 High 6 TruSeq Adapter, Index 5 6 6.9 

Florida-07 -32 3.62 4.72 High 6 TruSeq Adapter, Index 13 6 6.3 

Florida-07 -64 2.74 5.05 High 6 TruSeq Adapter, Index 18 6 6.5 

Florida-07 +16 4.82 10.96 High 6 TruSeq Adapter, Index 6 6 7 

Florida-07 +32 13.19 5.25 High 6 TruSeq Adapter, Index 14 6 7.9 

Florida-07 +64 592.85 3006.58 High 6 TruSeq Adapter, Index 19 6 8.3 

ICG 1471 -16 0.00 3.07 High 6 TruSeq Adapter, Index 2 6 6.8 

ICG 1471 -32 0.00 3.45 High 6 TruSeq Adapter, Index 7 6 8.7 

ICG 1471 -64 0.00 2.31 High 6 TruSeq Adapter, Index 15 6 6.3 

ICG 1471 +16 6.31 -0.55 High 6 TruSeq Adapter, Index 4 6 6.7 

ICG 1471 +32 17.48 0.18 High 6 TruSeq Adapter, Index 12 6 6.5 

ICG 1471 +64 677.24 636.33 High 6 TruSeq Adapter, Index 16 6 7.1 

Trt: treatments; Rep: Replicate; +16, +32 and +64: the infection treatments of 16, 32 and 64 

HAI; -16, -32 and -64: the control treatments of 16, 32 and 64 HAI. 
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Figure 5.S1: SOM clusters of differentially expressed genes between genotypes due to the 

infection effect. S: Susceptible genotype (Florida-07); R: Resistant genotype (ICG 1471); C: 

Control treatments; T: Infection treatments; Red lines: Resistant genotype; Blue lines: 

susceptible genotype; Rectangles: Controls; Triangles: Treatments; A: Genes that were down-

regulated due to the infection in the susceptible genotype and up-regulated in the resistant one; 

B: Genes that were down-regulated due to the infection in the susceptible genotype and 

unaffected in the resistant one; C: Genes that were up-regulated due to the infection in the 

susceptible genotype and down-regulated in the resistant one; D: Genes that were up-regulated 

due to the infection in the susceptible genotype and unaffected in the resistant one; E: Genes that 

were up-regulated in both genotypes but more so in the resistant one; F: Genes that were highly 

expressed in the resistant genotype and lowly expressed in the susceptible one either for the 

infection or control treatments. 
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Figure 5.S2: KEGG enrichment significant pathways; shaded boxes are the enzymes coded by 

differentially expressed genes. 
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Figure 5.S3: KEGG enrichment significant pathways; shaded boxes are the enzymes coded by 

differentially expressed genes. 
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Figure 5.S4: KEGG enrichment significant pathways; shaded boxes are the enzymes coded by 

differentially expressed genes. 
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Figure 5.S5: KEGG enrichment significant pathways; shaded boxes are the enzymes coded by 

differentially expressed genes. 
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Figure 5.S6: KEGG enrichment significant pathways. 
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Figure 5.S7: SOM clusters groups of differentially expressed genes between genotypes due to the 

infection effect. S: susceptible genotype (Florida-07); R: resistant genotype (ICG 1471); H: high 

aflatoxin-producing cluster; L: low aflatoxin-producing cluster; Red lines: Resistant genotype; 

Blue lines: Susceptible genotype; Rectangles: Highly contaminated seeds; Triangles: lowly 

contaminated seeds; A: Genes that were highly up-regulated in the susceptable genotype due to 

highly contaminated seeds; B: Genes that were up-regulated in susceptible genotype and down-

regulated in the resistant one due to highly contaminated seeds; C: Genes that were down-

regulated in both genotypes due to the highly contaminated seeds; D: Genes that were up-

regulated in the resistant genotype and down-regulated in the susceptible one due to the highly 

contaminated seeds; E: Genes that were highly expressed in the susceptible genotype and lowly 
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expressed in the resistant one either for high or low contaminated seeds; F: Genes that were 

down-regulated by infection progress in both genotypes either for high or low contaminated 

seeds. 
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Figure 5.S8: Expression profile of the new transcripts discovered from the de-novo assembly, 

FPKM: Z-scores of Fragments Per Kilobase of transcript per Million mapped reads. 

 

  



 

225 

 

 

Figure 5.S9: GO/KEGG enrichment analysis of differently expressed genes between peanut 

genotypes due to the infection vs control of the newly assembled transcripts. A. The 20 most 

significant GO terms extracted by GO enrichment analysis; B. KEGG enrichment analysis 

carried out by keggseq package; Rich_factor: the ratio of the differentially expressed genes to all 

genes that were annotated in the pathway. 
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Figure 5.S10: SOM clusters of fungal differentially expressed genes; S: susceptible genotype 

(Florida-07); R: resistant genotype (ICG 1471); Red lines: Fungus was grown on the resistant 

genotype; Blue lines: Fungus was grown on the susceptible genotype; A,B: Different patterns of 

up-regulated genes in case of susceptible genotype; C, D: Different patterns of up-regulated 

genes in case of resistant genotype 
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CHAPTER 6 

SUMMARY 

 Post-harvest aflatoxin accumulation is a serious problem for peanut production. The 

interaction between peanut and aflatoxin-producing fungi, Aspergilli, is complex and strongly 

affected by environmental conditions. Pre-harvest aflatoxin contamination can be mitigated by 

irrigation, drought tolerant genotypes or informed cultural practices. Post-harvest aflatoxin 

reduction could benefit from resistant peanut lines in addition to proper storage. To breed for 

genetic resistance, heritable factors underlying resistance mechanisms should be identified. Up to 

now, a small number of genes, e.g., lipoxygenases and WRKY, were shown to be responsive to 

infection by Aspergilli. However, the results are tentative and the exact roles of these genes in 

the resistance mechanism are not yet known. Therefore, the present work was carried out to 

characterize interactions between the fungus and resistant and susceptible peanut genotypes to 

identify genes potentially involved in the resistance. Although, the whole genome sequence of 

cultivated peanut, which is allo-tetraploid, is not available, the genomes of the two diploid 

progenitors, A. duranensis and A. ipaensis, recently were released. In addition, the A. flavus 

genome also has been sequenced. These genomes provided essential resources for the project to 

progress.  

 Lipoxygenases (LOXs) are a gene superfamily of dioxygenases that work on cis-1,4-

pentadiene structure of fatty acids, and their role in Aspergillus spp. –peanut interaction has long 

been debated. In this project, lipoxygenases of cultivated peanut were assigned utilizing gene 

models from the two diploid progenitor genomes in which 24 and 25 LOX genes were found in 
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A. duranensis and A. ipaensis, respectively. A study of orthology showed that 20 genes of one 

subgenome had orthologous counterparts with the second genome. In addition, the genes were 

distributed across peanut chromosomes and tended to be located near to telomeres within 

rearranged chromosomal regions. However, not all these genes are likely to be functional LOXs 

since some were truncated or disrupted. Therefore, the study included a detailed structural 

analysis, which revealed 38 full-length LOX genes in tetraploid peanut. LOX genes were 

functionally classified into four clusters utilizing previously published LOXs from different 

resources; 9S_typeII, 13S_typeII classes that generate 9S- to 13S- hydroperoxy products, 

respectively, and have chloroplast transit peptides; 9S_typeI, 13S_typeI that produce the same 

products, however remain as extra-plastdial enzymes. The latter class was clustered into two sub-

groups depending on the ratio of 13S- to 9S- hydroperoxy products i.e., 13S-typeI_SG1, which 

has a high ratio (> 0.4), and 13S-typeI_SG2, which has a moderate ratio (< 0.4). The expression 

profiles of these LOXs were estimated in a wide range of peanut tissues including 22 different 

tissues/stages. The profile revealed three prominent patterns: the first group contained genes 

highly expressed in seed tissues, the second group of genes were expressed in tissues other than 

seeds and the third group was constitutively expressed across all tissues. Furthermore, the 

expression profiling was carried out to study the response of LOXs to different biotic stresses, 

i.e., pre-, post- harvest aflatoxin contamination, nematode invasion, late leaf spot infection, and 

the interaction with Bradyrhizobium spp. Genes that were highly expressed in seed tissues were 

observed to respond to pre- and post- harvest aflatoxin contamination. No new LOX genes were 

identified in a de novo assembly of the tetraploid transcriptome data, which suggests that all 

LOXs were duplicated within the progenitor genomes before their hybridization and that no 

LOXs were further duplicated after tetraploidization. 
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 The first and more important step to breed peanut for post-harvest aflatoxin 

contamination resistance is to reliably identify sources of resistance. To achieve that goal, an 

inoculation assay using a GFP-expressing strain of A. flavus was developed and used to screen 

10 peanut genotypes, i.e., ICGV88145, ICG 1471, GT-C20, C76-16, A72, A69, Tifguard, NC 

3033, Tifrunner and Florida-07. The screening included studying the fungal growth on the 

different genotypes by tracking the GFP expression visually every 8 hours after infection and up 

to 72 hours. In addition, an image processing software was designed using MATLAB script, 

designated SICIA (Seed Infection Coverage and Intensity Analyzer), and used to phenotype the 

fungal growth of the last time point with greater accuracy than visual rating. Upon statistical 

analysis, NC 3033 demonstrated the lowest surface fungal growth while GT-C20 had the 

greatest. These two genotypes plus three additional genotypes were selected for single seed GFP 

quantification and aflatoxin analysis. No significant differences were found in GFP amount 

across the five genotypes; however, aflatoxin was significantly different among them. Florida-07 

and ICG 1471 genotypes showed the highest and lowest aflatoxin contamination, respectively. 

This result suggests that these genotypes are not able to stop or retard Aspergillus spp. growth. 

However, the genotypes differ in their ability to produce aflatoxin. The susceptible genotypes 

enhance aflatoxin production and the resistant genotypes only retard the formation of aflatoxin 

production. In addition, the results support ICG 1471 as a candidate resistant genotype for post-

harvest aflatoxin contamination breeding. 

 As cultivated peanut is tetraploid, extracting true SNPs directly from Next Generation 

Sequence (NGS) data is difficult. Different methods were proposed to increase the efficiency of 

calling SNPs from NGS of polyploids. However, the published efficiency in peanut was very 

low, close to 10%. Recently, a novel tool was created, Sliding Window Extraction of Explicit 
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Polymorphisms (SWEEP). The tool was implemented to design the Axiom_Arachis 58K SNP 

Chip, which validated an increase in the efficiency of true SNPs to 40%. In the present study, a 

data set of true and false SNPs was created based on SNP-array analysis of 21 different tetraploid 

peanut genotypes. Whole genome re-sequencing data of these genotypes was used to calculate 

different sequence and mapping traits. Neural network models were built to test the most 

effective traits. Among the tested traits, eight were selected to build the final training model. In 

addition, different machine learning approaches were tested alongside the neural network model 

to determine the most efficient models, i.e., logistic regression, Discriminant analysis, K-nearest 

neighbors, Naïve Bayes, decision tree and tree bagger. Tree bagger showed the best results after 

neural network; therefore, the two models were combined to create a model for SNP calling of 

re-sequencing data of tetraploid peanut. Testing the model showed more than 80% efficiency of 

calling SNPs. However, when RNA-seq expression data from nine genotypes was tested, the 

efficiency dropped to 78%, but the higher efficiency was recovered by developing another 

combined model for this type of data. Since there are no similar datasets readily available for 

other polyploid crops, simulated genotypes with different sequence depths were created for 

tetraploid cotton, hexaploid wheat, and octoploid strawberry and used to create models. 

Comparison of the efficiencies of these models with a model built by peanut simulated data 

showed similar results; all simulated models showed a very high accuracy (>90). A SNP calling 

tool was designed using C++/Python script that uses neural network and/or tree bagger models to 

call SNPs in polyploids, designated SNP-ML; the tool is supported by an application for creating 

user customized models for new data sets, designated SNP-MLer. Furthermore, an extendable 

database was created containing all previously described models and future user customized 

models. 
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 To study the genetic factors and pathways that control post-harvest aflatoxin resistance, 

an RNA-seq experiment was designed to differentiate the response for the infection and the 

subsequent aflatoxin accumulation in resistant ICG 1471 and susceptible Florida-07 genotypes. 

A GFP-expressing A. flavus strain was used to infect the seeds in vitro and the seeds were 

harvested at three time points, i.e., 16, 32 and 64 hours after inoculation. A randomized complete 

block design was used, and the GFP expression and aflatoxin were quantified based on single 

seed analysis. The statistical analysis confirmed the previous results since no significant 

differences were found between the two genotypes in GFP expression, yet aflatoxin 

accumulation was significantly different; ICG 1471 supports low aflatoxin contamination and 

Florida-07 produces a high amount of aflatoxins. 

 Based on interaction plots between the two genotypes including both aflatoxin and GFP 

analysis, six seeds were selected for every genotype/time point as biological replicates. Three 

seeds were selected from each of two clusters, with clusters representing the environmental 

variations for infection. In addition, six mock-infected seeds were selected as negative 

controls/genotype/time point. 

 The sequence files were cleaned and mapped to a synthetic tetraploid reference genome 

that contained the combined genomes of A. duranensis and A. ipaensis to test the peanut 

response to the infection. In addition, sequences were mapped to the A. flavus genome to test the 

response of the fungus to peanut genotype.  

 4272 and 3845 genes were differentially expressed between the two peanut genotypes as 

a result of infection and environmental variations, respectively. In addition, 1197 fungal genes 

were differentially expressed for the fungus growing on the two genotypes. Different statistical 

models for RNA-seq time course experimental analysis were used to validate the results. 
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Moreover, extended analysis was carried out such as SOM (self organizing map) clustering and 

GO (gene ontology) term enrichment analysis.  

 To perform KEGG enrichment analysis, an R package was designed, designated 

‘keggseq’, since currently available tools do not support combining subgenomes. In addition to 

combining genomes, ‘keggseq’ had many other features such as simplicity, run-time analysis and 

creating standard graphs for publications. The implementation of the package revealed the 

importance of alpha-linolenic acid metabolism, protein processing in endoplasmic reticulum, 

splicesome and carbon fixation and metabolism pathways in peanut resistance to A. flavus.  

 Moreover, co-expression network analysis revealed the importance of some defense 

related proteins in the resistance. Eight WRKY family transcription factors, nine TIR-NBS-LRR, 

six ethylene signaling and one heat shock proteins were found significantly up-regulated and 

highly co-expressed with the AflNA gene of Aspergillus flavus only in the interaction with the 

resistant genotype, ICG 1471. The same scenario was discovered for a heat shock and an 

ethylene signaling protein with the AflH gene. Both AflNA and AflH are proteins upstream in 

the aflatoxin biosynthesis pathway.  

 In summary, this work created a comprehensive study of tetraploid peanut lipoxygenases 

including their functional classification, developmental expression and disease response. 

Furthermore, this study identified ICG 1471 as a strong candidate for post-harvest aflatoxin 

resistance, and revealed important genes and pathways that influence the resistance mechanism. 

Finally, three computational biology tools were created for phenotyping infection, and SNP 

calling and KEGG enrichment analysis of polyploids. These results and tools introduce valuable 

materials for breeding of peanut and other polyploids.  


