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Abstract

This work investigates certain Lagrangian submanifolds of products of spheres. In particular,

we will study several constructions of “exotic” Lagrangian tori in S2×S2, and we will prove

that they are all Hamiltonian isotopic. In the space (S2)
3
, we will investigate a Lagrangian

submanifold that is diffeomorphic to RP 3, and we will prove that it is nondisplaceable under

Hamiltonian diffeomorphisms by showing that the homology of a certain chain complex

(called the pearl complex) is non-trivial.
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Chapter 1

Introduction and Symplectic

Preliminaries

In this work, we will investigate certain Lagrangian submanifolds of products of spheres,

beginning with some Lagrangian tori in S2 × S2 in Chapter 2 and then moving on to a

particular Lagrangian submanifold of (S2)
3

in Chapters 3, 4, and 5. In order to study these

objects, we must first establish some terminology. It is assumed that the reader is familiar

with the fundamentals of smooth manifolds, and we begin by covering some definitions from

symplectic topology.

Definition 1.1. A symplectic vector space is a pair (V, ω) consisting of a 2n-dimensional

real vector space V with a nondegenerate, skew-symmetric bilinear form ω : V × V → R.

Given two symplectic vector spaces (V1, ω1) and (V2, ω2), a linear symplectomorphism

from V1 to V2 is a linear isomorphism ϕ : V1 → V2 such that ϕ∗ω2 = ω1.

Recall that nondegeneracy means that, for each non-zero vector v1 ∈ V , there is a vector

v2 ∈ V such that ω (v1, v2) 6= 0. Skew-symmetry means that ω (v1, v2) = −ω (v2, v1) for all

v1, v2 ∈ V . A standard example of a symplectic vector space is R2n with standard basis

1



{x1, . . . , xn, y1, . . . , yn} and the bilinear form given by

ω0 =
n∑
j=1

dxj ∧ dyj,

where {dx1, . . . , dxn, dy1, . . . , dyn} is the dual basis. In fact, a standard result says that every

symplectic vector space of dimension 2n is linearly symplectomorphic to (R2n, ω0).

Definition 1.2. A Lagrangian subspace W of a symplectic vector space (V, ω) is a vector

subspace W ≤ V such that dim (W ) = 1
2

dim (V ) and ω
∣∣
W×W = 0.

Using the example (R2n, ω0) from above, one example of a Lagrangian subspace of R2n

is W = span{x1, . . . , xn}.

Definition 1.3. The Lagrangian Grassmannian, denoted L (n), is the set of all La-

grangian subspaces of (R2n, ω0). That is,

L (n) = {W ≤ R2n | dim (W ) = n and ω0

∣∣
W×W = 0}.

It is well known that L (n) can be given the structure of a smooth manifold of dimen-

sion n (n+ 1) /2 whose fundamental group π1 (L (n)) is isomorphic to Z (see Chapter 2 of

[MS98] for example). An explicit isomorphism is provided by the Maslov index, which we

will define shortly. First, we observe that the unitary group U (n) acts transitively on L (n)

with the stabilizer subgroup of a point being O (n); and so L (n) is naturally diffeomorphic

to U (n) /O (n). Given a loop γ : S1 → L (n), we choose a path Uγ : [0, 2π] → U (n) corre-

sponding to the path t 7→ γ (eit) via the identification L (n) ∼= U (n) /O (n) and satisfying

{det (Uγ (0)) , det (Uγ (2π))} ⊂ {±1}. It is not difficult to show that the Maslov index as de-

fined below is independent of the choice of the path Uγ and depends only on [γ] ∈ π1 (L (n)).
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Definition 1.4. The Maslov index of [γ] ∈ π1 (L (n)), denoted µ ([γ]), is defined to be the

degree of the map

S1 → S1

eit 7→ det
(
(Uγ (t))2) .

Definition 1.5. A symplectic vector bundle over a smooth manifold M is a pair (E,ω)

consisting of a real rank-2n vector bundle E →M and a smooth section ω : M → Λ2E∗ such

that, for each p ∈M , the fiber (Ep, ωp) is a symplectic vector space. The section ω is called

a symplectic bilinear form on E. Two symplectic vector bundles (E1, ω1) and (E2, ω2)

over M are said to be isomorphic if there is a vector bundle isomorphism Ψ : E1 → E2

covering the identity over M and satisfying Ψ∗ω2 = ω1.

Note that the condition Ψ∗ω2 = ω1 means that Ψ
∣∣
(E1)p

:
(

(E1)p , (ω1)p

)
→
(

(E2)p , (ω2)p

)
is a linear symplectomorphism for each p ∈ M . A standard example of a vector bundle is

the trivial vector bundle M × R2n. If we endow M × R2n with the symplectic bilinear form

given by ωp = ω0 for each p ∈ M , then it becomes a symplectic vector bundle called the

trivial symplectic vector bundle over M .

Definition 1.6. A symplectic trivialization of a symplectic vector bundle (E,ω) over M

is an isomorphism of symplectic vector bundles Ψ : E → M × R2n, where M × R2n is the

trivial symplectic vector bundle over M .

Definition 1.7. A symplectic manifold (M,ω) is a 2n-dimensional smooth manifold M

together with a closed, nondegenerate differential 2-form ω called a symplectic form. If

(M1, ω1) and (M2, ω2) are symplectic manifolds, a symplectomorphism from M1 to M2 is

a diffeomorphism ϕ : M1 →M2 satisfying ϕ∗ω2 = ω1.
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Recall that ω being closed means that dω = 0, and nondegeneracy means that (TpM,ωp)

is a symplectic vector space for each p ∈M . In other words, if M is a symplectic manifold,

then the tangent bundle TM is a symplectic vector bundle with symplectic bilinear form ω.

A standard example of a symplectic manifold is R2n with coordinates (x1, . . . , xn, y1, . . . , yn)

and symplectic form ω0 =
n∑
j=1

dxj ∧ dyj. Darboux’s Theorem says that every symplectic

manifold of dimension 2n is locally symplectomorphic to (R2n, ω0).

Definition 1.8. A Lagrangian submanifold L in a symplectic manifold (M,ω) is an

embedded submanifold L ⊂M such that dim (L) = 1
2

dim (M) and i∗ω = 0 for the inclusion

i : L ↪→M .

Now that we have established definitions of symplectic manifolds and Lagrangian sub-

manifolds thereof, we will define two important homomorphisms called the area and Maslov

homomorphisms. Let L be a Lagrangian submanifold of the symplectic manifold (M,ω),

and let [u] ∈ π2 (M,L) be represented by a smooth map u : (D2, S1) → (M,L), where

D2 = {z ∈ C | |z| ≤ 1} is the closed unit disk and S1 is the unit circle.

Definition 1.9. The area homomorphism Iω : π2 (M,L)→ R is defined by

Iω ([u]) =

∫
D2

u∗ω.

Observe that the symplectic vector bundle u∗TM is trivial since its base is the disk

D2, and note that
((
u
∣∣
S1

)∗
TL
)
eit

is a Lagrangian subspace of (u∗TM)eit at each point

eit ∈ S1. Let τ : u∗TM → D2 × R2n be a symplectic trivialization, and consider the loop

γu,τ : S1 → L (n) given by this trivialization, namely

γu,τ : S1 → L (n)

eit 7→ prR2n ◦ τ
(((

u
∣∣
S1

)∗
TL
)
eit

)
,
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where prR2n : D2 × R2n → R2n is the obvious projection. It is a standard result that the

Maslov index µ ([γu,τ ]) does not depend upon the symplectic trivialization, leading to the

following definition.

Definition 1.10. The Maslov homomorphism Iµ : π2 (M,L)→ Z is defined by

Iµ ([u]) = µ ([γu,τ ]) ,

where τ : u∗TM → D2×R2n is a symplectic trivialization. The number Iµ ([u]) is called the

Maslov index of [u].

In the late 1980s and early 1990s, the development of Lagrangian intersection Floer ho-

mology led to the study of a particular class of Lagrangian submanifolds called monotone.

In particular, it was shown by Oh in [Oh93] and [Oh95] that Lagrangian intersection Floer

homology can be defined for monotone Lagrangian submanifolds such that the Maslov ho-

momorphism satisfies a certain restriction. All of the Lagrangian submanifolds studied in

this paper will be monotone, which is defined as follows.

Definition 1.11. Let L be a Lagrangian submanifold of a symplectic manifold (M,ω).

We say that L is monotone with monotonicity constant κ > 0 if the area and Maslov

homomorphisms satisfy Iω = κIµ.

One of the main results of this work (stated as Corollary 5.10) is to show that a certain

monotone Lagrangian submanifold of (S2)
3

is nondisplaceable under Hamiltonian diffeomor-

phisms, and so we now proceed to establish precisely what is meant by this.

Definition 1.12. Let (M,ω) be a symplectic manifold, and let H : M → R be a smooth

function. The vector field XH defined by the equation ω (·, XH) = dH is called the Hamil-

tonian vector field associated to the Hamiltonian H. The flow of the Hamiltonian vector
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field XH , denoted {ϕtH | t ∈ R} and defined by

d

dt
ϕtH (p) = XH

(
ϕtH (p)

)
and ϕ0

H (p) = p

for all p ∈M and t ∈ R, is called the Hamiltonian flow associated to H.

In the above definition, we assume that the vector field XH is complete (in other words,

the flow is defined for all p ∈ M and t ∈ R), an assumption that is not too restrictive since

we usually consider compactly supported Hamiltonians H : M → R. It is also useful to

consider time-dependent functions H : M × [0, 1]→ R; we write Ht = H (·, t).

Definition 1.13. Let (M,ω) be a symplectic manifold, and let H : M × [0, 1] → R be a

smooth function. The time-dependent vector field XHt defined by the equation ω (·, XHt) =

dHt is called the time-dependent Hamiltonian vector field associated to the time-

dependent Hamiltonian H. The flow of the time-dependent Hamiltonian vector field

XHt , denoted {ϕtH | t ∈ [0, 1]} and defined by

d

dt
ϕtH (p) = XHt

(
ϕtH (p)

)
and ϕ0

H (p) = p

for all p ∈M and t ∈ [0, 1], is called the Hamiltonian flow associated to H.

Again we assume in the above definition that the flow {ϕtH} is globally defined, and it

is a standard result that ϕtH is a symplectomorphism for all t (in both the time-dependent

and time-independent cases).

Definition 1.14. A symplectomorphism ϕ : M →M is called a Hamiltonian diffeomor-

phism if ϕ = ϕ1
H for some (possibly time-dependent) Hamiltonian H. Two submanifolds

L0, L1 ⊂M are said to be Hamiltonian isotopic if there is a Hamiltonian diffeomorphism

ϕ such that ϕ (L0) = L1.
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Definition 1.15. Let (M,ω) be a symplectic manifold, and let A ⊂ M . We say that A is

displaceable under Hamiltonian diffeomorphisms if there is a Hamiltonian diffeomorphism

ϕ such that ϕ (A)∩A = ∅. Otherwise, we say that A is nondisplaceable under Hamiltonian

diffeomorphisms.

We now proceed to define the language of Hamiltonian group actions. Throughout the

remainder of this chapter, we let G denote a compact Lie group with Lie algebra g. Suppose

that G acts on a symplectic manifold (M,ω) so that we have a diffeomorphism ψg : M →M

for each g ∈ G. Of course, by the definition of a group action, we have ψg1g2 = ψg1 ◦ ψg2 for

all g1, g2 ∈ G, and ψe is the identity on M if e is the identity element of G.

Definition 1.16. The Lie group G acts on M by symplectomorphisms if ψg : M →M

is a symplectomorphism for all g ∈ G.

Given a group action G on M , each ζ ∈ g determines a vector field on M via the

prescription

Xζ (p) =
d

dt

∣∣∣∣
t=0

ψexp(tζ) (p) .

Definition 1.17. Suppose that G acts on M by symplectomorphisms; we say that action is

weakly Hamiltonian if the vector field Xζ is Hamiltonian for all ζ ∈ g.

In other words, a group action of G on M by symplectomorphisms is weakly Hamiltonian

if, for each ζ ∈ g, there is a smooth function Hζ : M → R such that XHζ = Xζ . In order to

define a Hamiltonian group action, we first need to define the Poisson bracket.

Definition 1.18. Let F : M → R and H : M → R be smooth functions on a symplectic

manifold (M,ω). The Poisson bracket of F and H is defined by

{F,H} = ω (XH , XF ) = dF (XH) ,
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where XF and XH are the Hamiltonian vector fields associated to F and H, respectively. If

{F,H} = 0, then we say that F and H Poisson commute.

Another standard result says that the Poisson bracket defines a Lie algebra structure on

the space of smooth real-valued functions on M , denoted C∞ (M).

Definition 1.19. Suppose that the action of G on M is weakly Hamiltonian so that, for

each ζ ∈ g, there is a smooth function Hζ : M → R such that XHζ = Xζ . If the functions

Hζ can be chosen such that the map

g→ C∞ (M)

ζ 7→ Hζ

is a Lie algebra homomorphism, then the action is called Hamiltonian. If the action of G

on M is Hamiltonian, then a moment map for the action is a map mom : M → g∗ such

that, for Hζ defined by the prescription

Hζ (p) = 〈mom (p) , ζ〉 = (mom (p)) (ζ) ,

the map (g→ C∞ (M)) : ζ 7→ Hζ is a Lie algebra homomorphism.

Of particular interest in the study of Hamiltonian group actions is the case in which the

group acting is a torus. We write Tk for the k-dimensional torus S1 × · · · × S1, and we note

that its Lie algebra t is abelian (i.e., the Lie bracket vanishes). We identify t with Rk via

the map
(
ζ1

∂
∂θ1
, . . . , ζk

∂
∂θk

)
7→ (ζ1, . . . , ζk), and we identify t∗ with Rk using the standard

Euclidean inner product. With such identifications, if the action of Tk on M is Hamiltonian,

then a moment map for the action is a map mom : M → Rk. The following theorem (the

proof of which can be found in Chapter 5 of [MS98]) demonstrates that the images of moment

maps for Hamiltonian torus actions are well understood.
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Theorem 1.20 (Atiyah, Guillemin–Sternberg). Let (M,ω) be a compact connected sym-

plectic manifold, and suppose that Tk acts on M by symplectomorphisms. If the action is

Hamiltonian with moment map mom : M → Rk, then:

(1) the fixed points of the action form a finite union of connected symplectic submanifolds

C1, . . . , CN ;

(2) the moment map mom is constant on each Cj, and we write ηj = mom (Cj);

(3) the image of mom is the convex hull of {η1, . . . , ηN} ⊂ Rk, i.e.,

mom (M) =

{
N∑
j=1

λjηj

∣∣∣∣∣
N∑
j=1

λj = 1, λj ≥ 0

}
.

In the situation described by the above theorem, the image mom (M) of the moment map

is called the moment polytope. Recall that a group action is said to be effective if the only

element of the group G that acts by the identity on M is the identity element of the group.

Definition 1.21. A symplectic toric manifold is a compact connected symplectic man-

ifold (M,ω) equipped with an effective Hamiltonian action of a torus Tk of dimension equal

to half the dimension of M (i.e., dimM = 2k) and with a moment map mom : M → Rk for

the action.

By the work of Delzant in [De88], it is known that there are certain stringent restrictions

on the polytopes that can arise as moment polytopes of symplectic toric manifolds, and

moreover, the moment polytope determines the symplectic toric manifold (up to equivariant

symplectomorphism). A similar classification for symplectic toric orbifolds has been carried

out by Lerman and Tolman in [LT97].
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Example 1.22. We consider S2 × S2 as a subset of R3 × R3 in the usual way:

S2 × S2 =
{

(~v, ~w) ∈ R3 × R3
∣∣ |~v| = |~w| = 1

}
.

Then, where pr1 : S2 × S2 → S2 and pr2 : S2 × S2 → S2 are the projections onto the first

and second factors, respectively, and where ωstd is the standard area form on S2, we define a

symplectic form Ω on S2 × S2 by Ω = 1
2
pr∗1 ωstd + 1

2
pr∗2 ωstd (consistent with our conventions

in Chapter 2). We write

Rt =


1 0 0

0 cos t − sin t

0 sin t cos t

 ,

and we let T2 act on S2 × S2 by

(
eiθ1 , eiθ2

)
· (~v, ~w) = (Rθ1~v,Rθ2 ~w) .

This action is effective and Hamiltonian with moment map mom : S2 × S2 → R2 given by

mom (~v, ~w) =
(
−1

2
~v · ~e1,−1

2
~w · ~e1

)
, where ~e1 is the first standard basis vector in R3. The

fixed point set of the action is {(~e1, ~e1) , (−~e1, ~e1) , (~e1,−~e1) , (−~e1,−~e1)}, and the moment

polytope is

mom
(
S2 × S2

)
=

{
(x, y) ∈ R2

∣∣∣∣−1

2
≤ x, y ≤ 1

2

}
.

Thus, S2 × S2 is a symplectic toric manifold with the above action and moment map. The

fiber

mom−1 (0, 0) =
{

(~v, ~w) ∈ S2 × S2
∣∣ ~v · ~e1 = 0, ~w · ~e1 = 0

}
is the product of two “equatorial” circles and is often referred to as the “Clifford torus.”

The fiber over each interior point of the moment polytope is a Lagrangian torus, but the

Clifford torus is the unique monotone Lagrangian torus fiber. Moreover, every fiber except
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the Clifford torus (including those over the boundary points of the polytope) is displaceable

by Hamiltonian diffeomorphisms (by a rotation through angle π in both factors about the

axis ~e2 for example). The Clifford torus, on the other hand, is nondisplaceable (as follows

from the previous sentence and a result of [EP06] that states that at least one fiber must be

nondisplaceable).

Given a symplectic manifold (M,ω), we say that the functions f1, . . . , fk : M → R are

independent if their differentials (df1)p , . . . , (dfk)p are linearly independent at each point p in

some open dense subset of M . It can be shown that the coordinate functions of the moment

map for a symplectic toric orbifold are independent and also pairwise Poisson commute. In

the context of Example 1.22, the functions (~v, ~w) 7→ −1
2
~v · ~e1 and (~v, ~w) 7→ −1

2
~w · ~e1 are

independent and Poisson commute. The following example can be seen as a generalization

of Example 1.22 in the sense that it exhibits two independent Poisson commuting functions

on S2 × S2 (yet the functions are not the coordinate functions of a moment map for a

Hamiltonian torus action).

Example 1.23. Let (S2 × S2,Ω) be as in Example 1.22, and consider G1, G2 : S2×S2 → R

defined by

G1 (~v, ~w) = |~v + ~w|2 and G2 (~v, ~w) = (~v + ~w) · ~e1.

The functions G1 and G2 are independent and Poisson commute (since one can easily see

that G1 is preserved under the Hamiltonian flow ϕtG2
, which acts by simultaneous rotation

of both factors about the axis −~e1), and the fiber

(G1 ×G2)−1 (1, 0) =
{

(~v, ~w) ∈ S2 × S2
∣∣ |~v + ~w|2 = 1, (~v + ~w) · ~e1 = 0

}
is a monotone Lagrangian torus. In fact, since |~v + ~w|2 = 2 + 2~v · ~w for (~v, ~w) ∈ S2 × S2, it

11



is easy to see that this fiber is exactly the torus TEP studied in Chapter 2:

TEP = {(~v, ~w) ∈ S2 × S2 | (~v + ~w) · ~e1 = 0, ~v · ~w = −1/2},

and the torus TEP was shown to be monotone in [EP09]. Moreover, by the results of [CS10]

and [FOOO12] (and the equivalences exhibited in Chapter 2), the torus TEP is nondisplace-

able. Recall that the moment map mom : S2 × S2 → R2 in Example 1.22 has exactly one

monotone nondisplaceable fiber, but in contrast the function (G1 ×G2) : S2 × S2 → R2 has

two monotone nondisplaceable fibers since one can show that the fiber

(G1 ×G2)−1 (0, 0) =
{

(~v, ~w) ∈ S2 × S2
∣∣ |~v + ~w|2 = 0, (~v + ~w) · ~e1 = 0

}
is also monotone and nondisplaceable. In fact, it is clear that (G1 ×G2)−1 (0, 0) is exactly

the anti-diagonal

∆ =
{

(~v, ~w) ∈ S2 × S2
∣∣ ~v = −~w

}
,

which is monotone and is nondisplaceable by the results of [EP09].

Chapter 2 is dedicated to giving thorough descriptions of several monotone Lagrangian

tori in (S2 × S2,Ω) and showing that each of these tori is Hamiltonian isotopic to the torus

TEP . Analogous to Example 1.23, we now consider a system of 3 independent functions

on (S2)
3

that pairwise Poisson commute (but which are not the coordinate functions of a

moment map for a Hamiltonian torus action).

Example 1.24. We write elements of (S2)
3

as 3 × 3 matrices

(
~u ~v ~w

)
for ~u,~v, ~w ∈ S2,

and where ωstd is the standard symplectic form on S2 and the map prj : (S2)
3 → S2 is

the (holomorphic) projection onto the jth factor of (S2)
3

for j = 1, 2, 3, we consider (S2)
3

with the split symplectic form Ω = pr∗1 ωstd + pr∗2 ωstd + pr∗3 ωstd. We then consider functions

12



H1, H2, H3 : (S2)
3 → R defined by

H1

(
~u ~v ~w

)
= |~u+ ~v + ~w|2 ,

H2

(
~u ~v ~w

)
= (~u+ ~v + ~w) · ~e1,

H3

(
~u ~v ~w

)
= ~u · (~v × ~w) .

It can be shown that the functions H1, H2, and H3 are independent and Poisson commute.

Indeed, it is not difficult to see that both H1 and H3 are preserved under the Hamiltonian

flow ϕtH2
(which acts by simultaneous rotation of all 3 factors about the axis −~e1), and one

can also use the Jacobi identity for the cross product to show that the quantity ~u+~v+ ~w is

preserved under the Hamiltonian flow ϕtH3
(and hence H1 and H2 are preserved under the flow

ϕtH3
as well). We will show in Chapters 3, 4, and 5 that the fiber (H1 ×H2 ×H3)−1 (0, 0, 0)

of the R3-valued function H1 ×H2 ×H3 is monotone and nondisplaceable. Indeed, one can

easily see that

(H1 ×H2 ×H3)−1 (0, 0, 0) =

{(
~u ~v ~w

)
∈
(
S2
)3

∣∣∣∣ ~u+ ~v + ~w = ~0

}
,

which is exactly the Lagrangian L described in Chapters 3, 4, and 5.

Since the fiber L = (H1 ×H2 ×H3)−1 (0, 0, 0) in Example 1.24 is apparently analogous

to the anti-diagonal ∆ ⊂ S2 × S2 from Example 1.23, one naturally wonders whether there

is a monotone Lagrangian torus fiber (H1 ×H2 ×H3)−1 (x, y, z) that is analogous to the

monotone Lagrangian torus TEP ⊂ S2 × S2 in Example 1.23. At the time of this writing,

computations seem to indicate that the fiber (H1 ×H2 ×H3)−1 (1, 0, 0) should be monotone,

but it turns out that the point (1, 0, 0) is not a regular value of the map H1×H2×H3 (for that

matter, neither is (0, 0, 0), but the fiber (H1 ×H2 ×H3)−1 (0, 0, 0) turns out to be a smooth

submanifold of (S2)
3

whereas the fiber (H1 ×H2 ×H3)−1 (1, 0, 0) is not a manifold). It would

13



be interesting to know if the singular fiber (H1 ×H2 ×H3)−1 (1, 0, 0) is nondisplaceable,

but the main focus of this work (in Chapters 3, 4, and 5) is to show that L ⊂ (S2)
3

is

nondisplaceable.
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Chapter 2

Lagrangian Tori in S2 × S2

In this chapter, which is self-contained for the most part, we will give several descriptions

of “exotic” monotone Lagrangian tori in S2 × S2, and we will prove that all of these tori

are equivalent under Hamiltonian diffeomorphisms (closely following previous joint work

with Usher in [OU13]). The term “exotic” was used by Entov and Polterovich in [EP09]

to describe a monotone Lagrangian torus in S2 × S2 that we denote TEP . They used this

term because they showed that there is no symplectomorphism ϕ : S2 × S2 → S2 × S2 such

that ϕ (TEP ) is equal to the more standard “Clifford torus,” which is a product of equatorial

circles S1
eq × S1

eq ⊂ S2 × S2.

Throughout this chapter, we consider S2 × S2 as a subset of R3 × R3 in the usual way:

S2 × S2 =
{

(~v, ~w) ∈ R3 × R3
∣∣ |~v| = |~w| = 1

}
.

Then, where pr1 : S2 × S2 → S2 and pr2 : S2 × S2 → S2 are the projections onto the

first and second factors, respectively, and where ωstd is the standard area form on S2, we

define a symplectic form Ω on S2 × S2 by Ω = 1
2
pr∗1 ωstd + 1

2
pr∗2 ωstd. In particular, with this

convention, the sphere S2 × {point} has area 2π.
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The first torus we define is the simplest to describe. Following [EP09], we define a torus

TEP =
{

(~v, ~w) ∈ S2 × S2
∣∣ (~v + ~w) · ~e1 = 0, ~v · ~w = −1/2

}
, (2.1)

where here and throughout this chapter the vector ~e1 is the first standard basis vector in R3.

Next, we describe a torus in S2 × S2 introduced by Chekanov and Schlenk in [CS10].

We begin with a curve Γ enclosing an area of π
2

and contained in the open upper half disk

H
(√

2
)

= {z ∈ C | Im (z) > 0, |z| <
√

2} of radius
√

2. The curve ∆Γ = {(z, z) ∈ C2 | z ∈ Γ}

then lies in the diagonal of B2
(√

2
)
× B2

(√
2
)
, where B2

(√
2
)

= {z ∈ C | |z| <
√

2} is the

open disk of radius
√

2. Then, we consider the torus ΘCS in B2
(√

2
)
× B2

(√
2
)

given as

the orbit of ∆Γ under the circle action

eit · (z1, z2) =
(
eitz1, e

−itz2

)
.

In other words, we define

ΘCS =
{(
eitz, e−itz

)
| z ∈ Γ, t ∈ [0, 2π]

}
⊂ B2

(√
2
)
×B2

(√
2
)
,

and we then define a torus TCS ⊂ S2 × S2 to be the image of ΘCS under a standard dense

symplectic embedding B2
(√

2
)
×B2

(√
2
)
↪→ S2 × S2.

To describe the monotone Lagrangian torus in [FOOO12], one begins with a symplectic

toric orbifold that is denoted F2 (0) and whose moment polytope is

∆FOOO =

{
(x, y) ∈ R2

∣∣∣∣ 0 ≤ x ≤ 2, 0 ≤ y ≤ 1− 1

2
x

}

with exactly one singular point sitting over the point (0, 1) ∈ ∆FOOO. By replacing a

neighborhood of the singular point in F2 (0) with a neighborhood of the zero-section of
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the cotangent bundle T ∗S2, one obtains a manifold denoted F̂2 (0) that is shown to be

symplectomorphic to S2×S2. Letting ΘFOOO denote the fiber over the point
(

1
2
, 1

2

)
∈ ∆FOOO,

the monotone Lagrangian torus TFOOO ⊂ S2× S2 is then defined to be the image of ΘFOOO

under a symplectomorphism F̂2 (0)→ S2 × S2.

In [AF08], it was shown that there is a (nondisplaceable) monotone Lagrangian torus

ΘAF in the cotangent bundle T ∗S2. Explicitly, we use the standard Riemannian metric on

S2 to identify T ∗S2 with TS2, which we think of as a submanifold of R3 × R3 via

T ∗S2 ∼= TS2 =
{

(~p, ~q) ∈ R3 × R3
∣∣ ~q · ~p = 0, |~q| = 1

}
.

Under this identification, the canonical 1-form on T ∗S2 is λ = p1dq1 + p2dq2 + p3dq3, and we

consider T ∗S2 with symplectic form dλ. We define

ΘAF =

{
(~p, ~q) ∈ R3 × R3

∣∣∣∣ |~p| = 1

2
, (~p× ~q) · ~e1 = 0

}
⊂ T ∗S2.

Where D∗1S
2 ⊂ T ∗S2 denotes the open unit disk bundle, one can symplectically identify

D∗1S
2 with (S2 × S2) \ ∆, where ∆ ⊂ S2 × S2 is the diagonal. We will provide such a

symplectomorphism Φ2 : (S2 × S2) \∆ → D∗1S
2 in Lemma 2.5 below, and although Albers

and Frauenfelder did not explicitly consider their torus in T ∗S2 as a submanifold of S2×S2,

we nonetheless write TAF = Φ−1
2 (ΘAF ).

The final description of a torus in S2× S2 that we give (which will be denoted TBC) was

considered by Gadbled in [Ga13] and is based on a Lagrangian circle bundle construction

of Biran in [Bi06]. First we recall the description of standard symplectic disk bundles from

[Bi01], which is presented here with some modifications pertaining to normalization. Let

(Σ, ωΣ) be a symplectic manifold, and let πP : P → Σ be a principal S1-bundle with Chern

class
[

1
τ
ωΣ

]
for some τ > 0. Also, let β ∈ Ω1 (P ) be a connection 1-form on P normalized

so that dβ = − 1
τ
π∗P (ωΣ). The standard symplectic disk bundle to Σ associated to the pair
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(P, β) is the symplectic manifold (Dτ (P ) , ωcan) defined as follows. Where D
(√

τ/π
)

={
z ∈ C

∣∣∣ |z| <√τ/π
}

is the open disk of radius
√
τ/π in C, the smooth manifold Dτ (P )

is defined by

Dτ (P ) =
P ×D

(√
τ/π

)
(eiθ · w, z) ∼ (w, eiθz)

.

Writing q : P ×D
(√

τ/π
)
→ Dτ (P ) for the quotient map, ωC for the standard symplectic

form on C, and prP : P ×D
(√

τ/π
)
→ P and prD : P ×D

(√
τ/π

)
→ D

(√
τ/π

)
for the

obvious projections, the symplectic form ωcan on Dτ (P ) is defined by

q∗ωcan = d
((
π|z|2 − τ

)
pr∗P β

)
+ pr∗D ωC.

Note that the map iΣ : Σ→ Dτ (P ) defined by iΣ (πP (w)) = [(w, 0)] gives an embedding of

Σ into Dτ (P ) as the “zero-section” {[(w, 0)] |w ∈ P}, and the symplectic form ωcan satisfies

(iΣ)∗ ωcan = ωΣ. Moreover, the projection pr : Dτ (P ) → Σ given by pr ([(w, z)]) = πP (w)

gives Dτ (P ) the structure of a fiber bundle over Σ whose fibers are symplectic disks, each

having area τ .

Now if Λ ⊂ Σ is a monotone Lagrangian submanifold, then, for any r ∈
(

0,
√
τ/π

)
, the

submanifold

Λ(r) = {[(w, z)] ∈ Dτ (P ) | |z| = r, pr ([(w, z)]) ∈ Λ}

will be a monotone Lagrangian submanifold of Dτ (P ) which has the structure of a circle

bundle over Λ. According to the main result of [Bi01], if (Σ, ωΣ) is a complex hypersurface

of a Kähler manifold (M,ω) that is Poincaré dual to the cohomology class
[

1
τ
ω
]
, then the

standard symplectic disk bundle Dτ (P ) symplectically embeds into M as the complement of

an isotropic CW complex. By Proposition 6.4.1 of [BC09], there is typically a unique value

of r for which a symplectic embedding Dτ (P ) ↪→ M maps Λ(r) to a monotone Lagrangian

submanifold of M , which we call the Biran circle bundle construction associated to Λ.
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To define the torus which we denote TBC ⊂ S2 × S2, one works through the above

construction with (M,ω) = (S2 × S2,Ω) and with Σ equal to the diagonal ∆ ⊂ S2 × S2

(with τ = 2π in our conventions). Identifying ∆ with S2 in the obvious way, one takes the

principal circle bundle P to be the unit circle bundle in the tangent bundle TS2, namely

P =
{

(~p, ~q) ∈ R3 × R3
∣∣ |~p| = |~q| = 1, ~p · ~q = 0

}
with projection πP : (~p, ~q) 7→ ~q and circle action given by

eit · (~p, ~q) = ((cos (t)) ~p+ (sin (t)) ~q × ~p, ~q) .

Under the identification ∆ ∼= S2, we take Λ = {~v ∈ S2 |~v · ~e1 = 0} to be an “equator” in

∆. We define TBC to be the Biran circle bundle construction associated to Λ (an explicit

symplectic embedding Dτ (P ) ↪→ S2 × S2 will be given in the proof of Proposition 2.7).

It was shown in [Ga13] that the tori TBC and TCS are Hamiltonian isotopic, and it has been

suspected by several authors that many (or all) of the above constructions led to Hamiltonian

isotopic tori. Through joint work with Usher in [OU13], it has been demonstrated that this

is indeed the case.

Theorem 2.1. All of the tori TEP , TCS, TFOOO, TAF , and TBC are Hamiltonian isotopic to

each other.

Remark 2.2. Since some of these tori are defined in terms of a symplectomorphism from some

other symplectic manifold M to the standard S2 × S2, it might appear that the existence

of a Hamiltonian isotopy between any two of them depends upon the choice of symplecto-

morphism M → S2×S2. However, according to 0.3.C of [Gr85], any symplectomorphism of

S2 × S2 is either a Hamiltonian diffeomorphism or can be written as the composition of a

Hamiltonian diffeomorphism with the diffeomorphism S2 × S2 → S2 × S2 that switches the
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two factors of S2×S2. Observe that TEP is invariant under this latter diffeomorphism. Then,

since each torus in Theorem 2.1 will be shown to be Hamiltonian isotopic to TEP , it follows

that there is in fact no dependence upon the choice of symplectomorphism M → S2 × S2.

The proof of Theorem 2.1 is given by Propositions 2.3, 2.6, and 2.7 below. While TEP is

given very explicitly as a submanifold of S2 × S2, the same cannot be said of TFOOO, which

is instead described as a the image of a submanifold ΘFOOO ⊂ F̂2 (0) under a symplecto-

morphism F̂2 (0) → S2 × S2. In [FOOO12], the proof that F̂2 (0) is symplectomorphic to

S2 × S2 makes it difficult to determine what the image of ΘFOOO might be under such a

symplectomorphism. Hence, most of our task in proving Proposition 2.3 will be to give a

construction of the manifold F̂2 (0) that allows it to be symplectically identified with S2×S2

in an explicit way. Once the construction is complete, it will follow rather quickly that

ΘFOOO is mapped to TEP under our symplectomorphism.

Similarly, most of the work in showing that TBC is Hamiltonian isotopic to TEP consists

of giving an explicit construction of the standard symplectic disk bundle Dτ (P ) and deter-

mining a symplectic embedding Dτ (P ) ↪→ S2 × S2. Having completed such constructions,

it will be completely clear that TBC is Hamiltonian isotopic to TEP (in fact, we will see that

the two are equal).

Proposition 2.3. TAF is equal to TEP , and there is a symplectomorphism S2×S2 → S2×S2

taking TFOOO to TEP .

Before proving this proposition, we need to establish a couple of lemmata.

Lemma 2.4. Where B4 (2) is the open ball of radius 2 in the quaternions H ∼= C2 ∼= R4,

where R3 is identified with the pure imaginary quaternions, and where 0S2 ⊂ T ∗S2 is the

zero-section, the map ϕ1 : B4(2) \ {0} → D∗1S
2 \ 0S2 defined by

ϕ1(ξ) =

(
−ξ
∗kξ

4
,
ξ∗jξ

|ξ|2

)
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is a symplectic double cover with ϕ1(ξ1) = ϕ1(ξ2) if and only if ξ1 = ±ξ2. Moreover, where

~e1 ∈ R3 is the first standard basis vector and fT ∗S2(~p, ~q) = |~p| and gT ∗S2(~p, ~q) = (~p× ~q) · ~e1,

we have

fT ∗S2 ◦ ϕ1(z1 + z2j) =
1

4
(|z1|2 + |z2|2) and gT ∗S2 ◦ ϕ1(z1 + z2j) =

1

4
(|z1|2 − |z2|2)

for z1, z2 ∈ C with 0 < |z1|2 + |z2|2 < 4.

Proof. First, writing ξ = z1 + z2j, we observe that

gT ∗S2 ◦ ϕ1(z1 + z2j) = gT ∗S2 ◦ ϕ1(ξ) =

(
−ξ
∗kξ

4
× ξ∗jξ

|ξ|2

)
· ~e1 =

(
1

4
ξ∗iξ

)
· ~e1

=

(
1

4

(
(|z1|2 − |z2|2)i− Im(2z̄1z2)j + Re(2z̄1z2)k

))
· ~e1

=
1

4
(|z1|2 − |z2|2)

and also that

fT ∗S2 ◦ ϕ1(z1 + z2j) = fT ∗S2 ◦ ϕ1(ξ) =

∣∣∣∣−ξ∗kξ4

∣∣∣∣ =
1

4
|ξ|2 =

1

4
(|z1|2 + |z2|2),

which proves the second statement of the lemma and also makes clear that ϕ1 has an appro-

priate codomain.

We then observe that ϕ1(−ξ) = ϕ1(ξ), and we claim also that ϕ1(ξ1) = ϕ1(ξ2) only if

ξ1 = ±ξ2. Indeed if ϕ1(ξ1) = ϕ1(ξ2), then it follows that |ξ1| = |ξ2| and also that

(
ξ1

|ξ1|

)∗
j

(
ξ1

|ξ1|

)
=

(
ξ2

|ξ2|

)∗
j

(
ξ2

|ξ2|

)
,(

ξ1

|ξ1|

)∗
k

(
ξ1

|ξ1|

)
=

(
ξ2

|ξ2|

)∗
k

(
ξ2

|ξ2|

)
,(

ξ1

|ξ1|

)∗
i

(
ξ1

|ξ1|

)
=

(
ξ2

|ξ2|

)∗
i

(
ξ2

|ξ2|

)
.
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Then, writing S for the group of unit quaternions, it is well known that the map S → SO(3)

given by ξ 7→
(
ξiξ∗ ξjξ∗ ξkξ∗

)
is a surjective Lie group homomorphism with kernel {±1}

(see Exercise 9-10 of [Lee03] for example); thus, it follows from the above displayed equations

that (ξ1/|ξ1|)∗ = ± (ξ2/|ξ2|)∗ and hence that ξ1 = ±ξ2. Moreover, the surjectivity of this Lie

group homomorphism, when paired with the observation that
∣∣− ξ∗kξ

4

∣∣ = 1
4
|ξ|2, implies that

ϕ1 is surjective. A routine computation shows that

ϕ∗1λ = −y1

2
dx1 +

x1

2
dy1 −

y2

2
dx2 +

x2

2
dy2,

from which it follows that

ϕ∗1(dλ) = d (ϕ∗1λ) = d
(
−y1

2
dx1 +

x1

2
dy1 −

y2

2
dx2 +

x2

2
dy2

)
= dx1 ∧ dy1 + dx2 ∧ dy2,

which of course is the standard symplectic form on B4 (2). Then, since any symplectic map

is an immersion, it follows that ϕ1 is a symplectic double cover as claimed.

Lemma 2.5. Where ∆ ⊂ S2 × S2 is the diagonal, the map Φ2 : (S2 × S2) \ ∆ → D∗1S
2

defined by

Φ2(~v, ~w) =

(
~v × ~w

|~v − ~w|
,
~v − ~w

|~v − ~w|

)
is a symplectomorphism. Moreover, where fT ∗S2 and gT ∗S2 are as in Lemma 2.4, we have

fT ∗S2 ◦ Φ2(~v, ~w) =
1

2
|~v + ~w| and gT ∗S2 ◦ Φ2(~v, ~w) =

1

2
(~v + ~w) · ~e1.
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Proof. First, we observe that

gT ∗S2 ◦ Φ2(~v, ~w) =

(
~v × ~w

|~v − ~w|
× ~v − ~w

|~v − ~w|

)
· ~e1 =

(
(~v × ~w)× ~v − (~v × ~w)× ~w

|~v − ~w|2

)
· ~e1

=

(
−(~v · ~w)~v + ~w + ~v − (~v · ~w)~w

|~v − ~w|2

)
· ~e1

=

(
(~v + ~w)(1− ~v · ~w)

2− 2~v · ~w

)
· ~e1 =

1

2
(~v + ~w) · ~e1,

and the relationship

|~v − ~w|2|~v + ~w|2 = 4|~v × ~w|2 for (~v, ~w) ∈ S2 × S2 (2.2)

makes clear that fT ∗S2 ◦Φ2(~v, ~w) = 1
2
|~v+ ~w|. Thus, we have proved the second statement of

the lemma (which also makes clear that Φ2 has an appropriate codomain).

To see that Φ2 is a symplectomorphism, we observe that the vector fields

X1(~v, ~w) = (~v × ~w, ~w × ~v) X2(~v, ~w) = (~v × (~v × ~w), ~w × (~w × ~v))

X3(~v, ~w) = (~w × ~v, ~w × ~v) X4(~v, ~w) = (~v × (~w × ~v), ~w × (~w × ~v))

give a basis for T(~v,~w) ((S2 × S2) \∆) at each point (~v, ~w) not in the anti-diagonal

∆ = {(~v, ~w) ∈ S2 × S2 | ~v = −~w}.

We then compute that Ω evaluates on pairs as follows:

Ω(X1, X2) = Ω(X3, X4) = |~v × ~w|2,

Ω(X1, X3) = Ω(X1, X4) = Ω(X2, X3) = Ω(X2, X4) = 0.

Then, using the coordinate free formula for the exterior derivative of a one form, we will
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verify that Φ∗2dλ evaluates on pairs in an identical manner to Ω. To that end, computing the

commutators of the vector fields X1, X2, X3, and X4, one finds the following relationships:

[X1, X2] =
1

2
|~v − ~w|2X1 = −[X3, X4],

[X1, X3] = −2X4,

[X1, X4] =
1

2
|~v + ~w|2X3 = [X2, X3],

[X2, X4] = (2~v · ~w)X4.

Moreover, another computation shows that Φ∗2λ(X1) = 1
2
|~v + ~w|2 while Φ∗2λ(Xj) = 0 for

j 6= 1 (note that (2.2) was used here to obtain the simplified form given for Φ∗2λ(X1)),

and yet another computation reveals that Xj (Φ∗2λ(X1)) = 0 for j 6= 2 (since the quantity

Φ∗2λ(X1) = 1
2
|~v+ ~w|2 is preserved under the flows of X1, X3, and X4) while X2 (Φ∗2λ(X1)) =

−2|~v × ~w|2. It then follows from (2.2) that

dΦ∗2λ(X1, X2) = X1 (Φ∗2λ(X2))−X2 (Φ∗2λ(X1))− Φ∗2λ ([X1, X2])

= 2|~v × ~w|2 − Φ∗2λ

(
1

2
|~v − ~w|2X1

)
= 2|~v × ~w|2 − 1

4
|~v − ~w|2|~v + ~w|2 = |~v × ~w|2,

dΦ∗2λ(X3, X4) = X3 (Φ∗2λ(X4))−X4 (Φ∗2λ(X3))− Φ∗2λ ([X3, X4])

= −Φ∗2λ

(
−1

2
|~v − ~w|2X1

)
=

1

4
|~v − ~w|2|~v + ~w|2 = |~v × ~w|2,
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and also that

dΦ∗2λ(X1, X3) = X1 (Φ∗2λ(X3))−X3 (Φ∗2λ(X1))− Φ∗2λ ([X1, X3])

= −Φ∗2λ (−2X4) = 0,

dΦ∗2λ(X1, X4) = X1 (Φ∗2λ(X4))−X4 (Φ∗2λ(X1))− Φ∗2λ ([X1, X4])

= −Φ∗2λ

(
1

2
|~v + ~w|2X3

)
= 0,

dΦ∗2λ(X2, X3) = X2 (Φ∗2λ(X3))−X3 (Φ∗2λ(X2))− Φ∗2λ ([X2, X3])

= −Φ∗2λ

(
1

2
|~v + ~w|2X3

)
= 0,

dΦ∗2λ(X2, X4) = X2 (Φ∗2λ(X4))−X4 (Φ∗2λ(X2))− Φ∗2λ ([X2, X4])

= −Φ∗2λ ((2~v · ~w)X4) = 0,

and then (by continuity along the anti-diagonal ∆ where the vector fields Xj vanish) we see

that Φ∗2dλ = Ω on (S2 × S2) \∆ as required. Finally, to see that Φ2 is bijective, a routine

check (using (2.2) and the fact that 4− |~v+ ~w|2 = |~v− ~w|2 for (~v, ~w) ∈ S2×S2) reveals that

Φ−1
2 (~p, ~q) =

(√
1− |~p|2 ~q − ~q × ~p,−

√
1− |~p|2 ~q − ~q × ~p

)

defines the inverse for Φ2.

With Lemmata 2.4 and 2.5 proved, we are now ready to give a construction of the

manifold F̂2(0) and prove Proposition 2.3.

Proof of Proposition 2.3. First the fact that TAF = TEP follows immediately from the def-

initions and from the computations of fT ∗S2 ◦ Φ2 and gT ∗S2 ◦ Φ2 in Lemma 2.5. Indeed,

since

|~v + ~w| =
√

2 + 2~v · ~w for (~v, ~w) ∈ S2 × S2,
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one can see from the definitions that (~v, ~w) ∈ TAF if and only if fT ∗S2 ◦ Φ2 (~v, ~w) = 1
2

and

gT ∗S2 ◦ Φ2 (~v, ~w) = 0, conditions that are equivalent to |~v + ~w| = 1 and (~v + ~w) · ~e1 = 0.

These latter conditions are equivalent to ~v · ~w = −1
2

and (~v + ~w) · ~e1 = 0, which hold if and

only if (~v, ~w) is an element of TEP .

Since the preimage of the zero-section 0S2 under Φ2 is the anti-diagonal ∆ ⊂ S2 × S2, it

follows from Lemmas 2.4 and 2.5 that the map Φ−1
2 ◦ϕ1 : B4(2) \ {0} → (S2×S2) \ (∆∪∆)

descends to a symplectomorphism

A :
B4(2) \ {0}
±1

→ (S2 × S2) \ (∆ ∪∆)

which pulls back the function (~v, ~w) 7→ 1
2
|~v + ~w| to the function [(z1, z2)] 7→ 1

4
(|z1|2 + |z2|2)

and pulls back the function (~v, ~w) 7→ 1
2
(~v+ ~w) ·~e1 to the function [(z1, z2)] 7→ 1

4
(|z1|2−|z2|2).

Consequently, we may introduce the symplectic 4-orbifold

O =
(B4(2)/± 1) t

(
(S2 × S2) \∆

)
[(z1, z2)] ∼ A([(z1, z2)]) for (z1, z2) 6= (0, 0)

since the fact that A is a symplectomorphism shows that the the symplectic forms on

(B4(2)/± 1) and on (S2 × S2) \∆ coincide on their overlap in O. Moreover we have well-

defined functions F : O → R and G : O → R defined by

F ([(z1, z2)]) =
1

4
(|z1|2 + |z2|2) G([(z1, z2)]) =

1

4
(|z1|2 − |z2|2)

F (~v, ~w) =
1

2
|~v + ~w| G(~v, ~w) =

1

2
(~v + ~w) · ~e1

for (z1, z2) ∈ B4(2) and (~v, ~w) ∈ (S2 × S2) \∆

One easily verifies that the map (F +G, 1−F ) : O → R2 is a moment map for a symplec-

tic toric action on the symplectic orbifold O, with image equal to the polytope ∆FOOO. The

classification of toric orbifolds from [LT97] therefore implies that O is equivariantly sym-
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plectomorphic to the orbifold F2(0) from [FOOO12] (as O and F2(0) have identical moment

polytopes and both have only one singular point, located at the preimage of (0, 1) under the

moment map); accordingly we hereinafter implicitly identify F2(0) with O. The manifold

F̂2(0) from [FOOO12] is then constructed by removing a neighborhood U of the unique singu-

lar point [(0, 0)] of O and gluing in its place a neighborhood N of 0S2 in the cotangent bundle

T ∗S2, using a symplectomorphism between U \ {[(0, 0)]} and N \ 0S2 . While a particular

choice of this symplectomorphism is not specified in [FOOO12], we have already constructed

one that will serve the purpose, namely the map Φ1 : (B4(2)\{0})/±1→ D∗1S
2\0S2 induced

on the quotient by the map ϕ1 from Lemma 2.4. This gives a symplectomorphism between

the manifold F̂2(0) from [FOOO12] and the manifold

D∗1S
2 t
(
(S2 × S2) \∆

)
(~p, ~q) ∼ Φ−1

2 (~p, ~q) for (~p, ~q) ∈ D∗1S2 \ 0S2

.

But of course the map Φ−1
2 then induces a symplectomorphism between this latter manifold

and S2 × S2.

There is an obvious continuous map Π : F̂2(0)→ F2(0) which maps the zero-section 0S2

to the singular point [(0, 0)] and coincides with Φ−1
1 on D∗1S

2 \ 0S2 ⊂ F̂2(0) and with the

identity on (S2 × S2) \ ∆ ⊂ F̂2(0); the torus ΘFOOO ⊂ F̂2 (0) is the preimage of the point(
1
2
, 1

2

)
under the pulled-back moment map ((F +G) ◦ Π, (1− F ) ◦ Π) : F̂2(0)→ R2. In view

of the expressions for the functions F,G on (S2×S2) \∆, it follows that ΘFOOO is taken by

our symplectomorphism F̂2(0)→ S2 × S2 to

{
(~v, ~w) ∈ S2 × S2

∣∣∣∣ 1

2
|~v + ~w|+ 1

2
(~v + ~w) · ~e1 =

1

2
, 1− 1

2
|~v + ~w| = 1

2

}
,
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which is easily seen to be equal to the Entov-Polterovich torus

TEP =

{
(~v, ~w) ∈ S2 × S2

∣∣∣∣ (~v + ~w) · ~e1 = 0, ~v · ~w = −1

2

}
.

Thus, for our choice of symplectomorphism F̂2 (0)→ S2 × S2, we have TFOOO = TEP .

Proposition 2.6. There is a symplectomorphism S2 × S2 → S2 × S2 taking TCS to TEP .

Proof. We recall that TCS is defined as ψ × ψ(ΘCS), where

ψ :
(
B2(
√

2), ωC

)
→
(
S2 \ {−~e1},

1

2
ωstd

)

reiθ 7→


1− r2

r cos θ
√

2− r2

r sin θ
√

2− r2


is a symplectomorphism (shown by a standard computation) and

ΘCS = {(eitz, e−itz) | z ∈ Γ, t ∈ [0, 2π]} ⊂ B2(
√

2)×B2(
√

2)

for a curve Γ ⊂ H(
√

2) enclosing area π
2

(the Hamiltonian isotopy class of TCS is easily seen

to be independent of the particular choice of Γ). Alternatively, ΘCS is given as the orbit of

the curve ∆Γ = {(z, z) | z ∈ Γ} under the circle action

eit · (z1, z2) = (eitz1, e
−itz2).
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Another simple computation shows that

ψ
(
eitreiθ

)
= Rt ψ(reiθ), where Rt =


1 0 0

0 cos t − sin t

0 sin t cos t

 ∈ SO(3),

from which it follows that

TCS = ψ × ψ(ΘCS) = {(Rt ψ(z), R−t ψ(z)) | t ∈ [0, 2π], z ∈ Γ}.

In other words, TCS is the orbit of the curve ψ × ψ (∆Γ) under the following circle action,

denoted ρCS, on S2 × S2:

ρCS(eit) · (~v, ~w) = (Rt ~v,R−t ~w) .

On the other hand, if we consider the smooth embedded curve C ⊂ S2×S2 parametrized

by

[0, 2π]→ S2 × S2

s 7→



−
√

3
2

sin(s)

−
√

3
2

cos(s)

1
2

 ,


√

3
2

sin(s)
√

3
2

cos(s)

1
2


 ,

then we claim that the torus TEP is the orbit of C under the following action of the circle

on S2 × S2:

ρEP (eit) · (~v, ~w) = (Rt ~v,Rt ~w) .

Indeed, TEP is exactly the regular level set (F1 × F2)−1
(
0,−1

4

)
for the R2-valued function
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F1 × F2, where F1 : (~v, ~w) 7→ −1
2
(~v + ~w) · ~e1 and F2 : (~v, ~w) 7→ 1

2
~v · ~w. The Hamiltonian

vector fields associated to the functions F1 and F2 are XF1(~v, ~w) = (~e1 × ~v,~e1 × ~w) and

XF2(~v, ~w) = (~v × ~w, ~w × ~v), respectively. We then observe that the curve C is the orbit of

the point

((
0 −

√
3

2
1
2

)>
,

(
0

√
3

2
1
2

)>)
∈ TEP under the Hamiltonian flow for F2, and

thus the torus TEP is exactly the orbit of C under the Hamiltonian flow for F1. Noting that

the Hamiltonian flow for F1 gives the circle action ρEP , we see that TEP is the orbit of C

under the action ρEP as claimed.

Next, we use the observation of Gadbled in [Ga13] that the actions ρEP and ρCS are

conjugate in SO(3)× SO(3). Indeed a simple computation shows that

(Rt, Rt) = (P1,P2)−1 (Rt, R−t) (P1,P2)

for P1 the identity and P2 =
( −1 0 0

0 −1 0
0 0 1

)
. Hence, it follows that

(P1P2)
(
ρEP (eit) · (~v, ~w)

)
= ρCS(eit) · ((P1,P2)(~v, ~w)) , (2.3)

and we define T ′EP to be the orbit of the curve (P1,P2)(C) under the action of ρCS. Where

Γ′ ⊂ S2 is the curve parametrized by s 7→
(
−
√

3
2

sin(s) −
√

3
2

cos(s) 1
2

)>
, we observe that

(P1,P2)(C) is the curve ∆Γ′ = {(~v,~v) ∈ S2×S2 | ~v ∈ Γ′} in the diagonal of S2×S2. Where

D2 ⊂ C is the closed disk of radius 1, we observe that the disk D′ ⊂ S2 \{−~e1} parametrized

by

g : D2 → S2 \ {−e1}

reiφ 7→


√

3
2
r sin(φ)

−
√

3
2
r cos(φ)√

1− 3
4
r2


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has boundary Γ′, and a routine computation shows that

g∗
(

1

2
ωstd

)
=

3r

4
√

4− 3r2
dr ∧ dφ.

Thus, D′ has area

∫
D′

1

2
ωstd =

∫
D2

g∗
(

1

2
ωstd

)
=

∫ 2π

0

∫ 1

0

3r

4
√

4− 3r2
dr dφ =

∫ 2π

0

1

4
dφ =

π

2
,

which means that Γ′ encloses a domain of area π
2

in S2\{−~e1}. It then follows that the curve

ψ−1(Γ′) encloses an area of π
2

since ψ is a symplectomorphism, and it is not difficult to see

that ψ−1(Γ′) also lies in H(
√

2) since ψ maps H(
√

2) to the hemisphere {~v ∈ S2 | v3 > 0}.

Finally, taking the curve Γ in Chekanov and Schlenk’s construction to be the curve

ψ−1(Γ′), the corresponding torus TCS ⊂ S2 × S2 is exactly the orbit of the curve

ψ × ψ (∆Γ) = ∆Γ′ = (P1,P2)(C)

under the action of ρCS; in other words, TCS = T ′EP . Now, by (2.3) and the fact that TEP

is the orbit of C under the action ρEP , it is clear that T ′EP is nothing more than the image

of TEP under the map (P1,P2), and thus TCS = T ′EP = (P1,P2) (TEP ). Since (P1,P2) is

a symplectomorphism (a Hamiltonian diffeomorphism in fact), the desired result has been

obtained.

Proposition 2.7. The tori TBC and TEP are equal.

Proof. We begin by giving a clear construction of the torus TBC , including describing the

standard symplectic disk bundle Dτ (P ) (for an appropriate choice of τ and P to be given

below) as well as giving an explicit symplectic embedding Dτ (P ) ↪→ S2 × S2. Observe that

the diagonal ∆ ⊂ S2×S2 is a complex hypersurface that is Poincaré dual to the cohomology

class
[

1
2π

Ω
]

since the intersection numbers of ∆ with S2 × {point} and with {point} × S2
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are both 1 while ∫
S2×{point}

1

2π
Ω = 1 and

∫
{point}×S2

1

2π
Ω = 1.

Note that
(
∆,Ω

∣∣
∆

)
is symplectomorphic to (S2, ωstd) in an obvious way, and we identify

them in this manner hereafter. By the main result of [Bi01], there is a symplectic embedding

D2π (P ) ↪→ S2 × S2, where πP : P → ∆ is a principal S1-bundle over ∆ with Chern class[
1

2π
Ω
∣∣
∆

]
. In other words, under the identification of ∆ with S2, the principal S1-bundle

πP : P → S2 should have Chern class
[

1
2π
ωstd

]
.

We choose P to be the unit circle bundle in the tangent bundle TS2, namely

P =
{

(~p, ~q) ∈ R3 × R3
∣∣ |~p| = |~q| = 1, ~p · ~q = 0

}
with projection πP : (~p, ~q) 7→ ~q and circle action given by

eit · (~p, ~q) = ((cos (t)) ~p+ (sin (t)) ~q × ~p, ~q) .

Note that

T(~p,~q)P =
{(

~a,~b
)
∈ R3 × R3

∣∣∣ ~a · ~p = 0,~b · ~q = 0,~a · ~q + ~p ·~b = 0
}
,

and observe that the 1-form β defined by β(~p,~q)

(
~a,~b
)

= 1
2π
~a · (~q × ~p) is a connection 1-form

for P . A routine computation shows that, for
(
~a1,~b1

)
,
(
~a2,~b2

)
∈ T(~p,~q)P , one has

dβ(~p,~q)

((
~a1,~b1

)
,
(
~a2,~b2

))
=

1

2π

(
2~q · (~a1 × ~a2)− ~p ·

(
~b1 × ~a2 + ~a1 ×~b2

))

and that dβ = − 1
2π
π∗P (ωstd) as required. Then, where D√2S

2 is the radius-
√

2 disk bundle

D√2S
2 =

{
(~x, ~y) ∈ R3 × R3

∣∣∣ |~y| = 1, |~x| <
√

2, ~x · ~y = 0
}
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in TS2, we note that the map Ψ : D2π (P )→ D√2S
2 defined by

Ψ
(
[(~p, ~q) , reiθ]

)
= ((r cos θ) ~p+ (r sin θ) ~q × ~p, ~q)

is a diffeomorphism mapping the “zero-section” {[(~p, ~q) , 0] | (~p, ~q) ∈ P} of D2π (P ) to the

zero-section of D√2S
2. Recall that the symplectic form ωcan on D2π (P ) satisfies

q∗ωcan = d
((
π|z|2 − 2π

)
pr∗P β

)
+ pr∗D ωC = d

((
πr2 − 2π

)
pr∗P β +

(
r2

2
− 1

)
dθ

)
,

where q : P ×D
(√

2
)
→ D2π (P ) is the quotient map, ωC is the standard symplectic form on

C, and prP : P ×D
(√

2
)
→ P and prD : P ×D

(√
2
)
→ D

(√
2
)

are the obvious projections.

Where η ∈ Ω1
(
D√2S

2 \ 0S2

)
is given by

η(~x,~y)

(
~a,~b
)

=

(
1

2
− 1

|~x|2

)
~a · (~y × ~x) ,

we claim that d (Ψ∗η) = ωcan away from the “zero-section,” a fact that can be verified by

showing that

q∗Ψ∗η =
(
πr2 − 2π

)
pr∗P β +

(
r2

2
− 1

)
dθ,

which in turn follows from a routine computation. Thus, we may symplectically identify

D2π (P ) with D√2S
2, where the symplectic form on D√2S

2 is given by dη away from 0S2 .

Now, where ∆ ⊂ S2 × S2 is the anti-diagonal, we define Φ3 : D√2S
2 → (S2 × S2) \∆ by

Φ3 (~x, ~y) =

((
1− |~x|

2

2

)
~y +

√
1− |~x|

2

4
~x,

(
1− |~x|

2

2

)
~y −

√
1− |~x|

2

4
~x

)
.

It is not difficult to check (using the identity |~v − ~w|2 = (2− |~v + ~w|) (2 + |~v + ~w|) for
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(~v, ~w) ∈ S2 × S2) that the smooth map (S2 × S2) \∆→ D√2S
2 defined by

(~v, ~w) 7→

(
~v − ~w√

2 + |~v + ~w|
,
~v + ~w

|~v + ~w|

)

is an inverse to Φ3, and so Φ3 is a diffeomorphism. Note that Φ3 maps the zero-section of

D√2S
2 to the diagonal ∆ ⊂ S2 × S2. Where Φ2 : (S2 × S2) \ ∆ → D∗1S

2 is the symplec-

tomorphism defined in Lemma 2.5, we consider the composition Φ2 ◦ Φ3 (restricted to the

complement of the zero-section of D√2S
2), which (as one can easily compute) is given by

Φ2 ◦ Φ3 (~x, ~y) =

((
|~x|2

2
− 1

)(
~y × ~x

|~x|

)
,
~x

|~x|

)
.

Moreover, where λ is the canonical 1-form on T ∗S2, one computes that (Φ2 ◦ Φ3)∗ λ = η,

which implies that

(Φ2 ◦ Φ3)∗ dλ = dη

on the complement of the zero-section of D√2S
2. Since Φ2 is a symplectomorphism, this

implies that Φ3 is a symplectomorphism on the complement of the zero-section, and hence

globally by continuity.

To complete the construction of TBC , we consider the monotone Lagrangian “equatorial”

circle Λ = {~v ∈ S2 |~v ·~e1 = 0} in S2 ∼= ∆, and the Biran circle bundle construction associated

to Λ is the image under Φ3 of the unit circle bundle over Λ. (The radius 1 is the radius

necessary to guarantee monotonicity according to Proposition 6.4.1 of [BC09] after adjusting

for differences in normalization). More explicitly, we consider the circle bundle

Λ(1) =
{

(~x, ~y) ∈ D√2S
2
∣∣ |~x| = 1, ~y · ~e1 = 0

}
⊂ D√2S

2,

and TBC is defined to be Φ3

(
Λ(1)

)
. Writing (~v, ~w) = Φ3 (~x, ~y) for (~x, ~y) ∈ D√2S

2, we observe
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that

(~v + ~w) · ~e1 =
(
2− |~x|2

)
~y · ~e1

and

~v · ~w =

(
1− |~x|

2

2

)2

−
(

1− |~x|
2

4

)
|~x|2 = 1− 2|~x|2 +

|~x|4

2
.

Since |~x| <
√

2, it follows that (~v, ~w) ∈ TEP if and only if ~y · ~e1 = 0 and |~x| = 1, conditions

which are equivalent to (~x, ~y) ∈ Λ(1). Hence, TEP = Φ3

(
Λ(1)

)
= TBC as claimed.
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Chapter 3

A Lagrangian RP 3 in
(
S2
)3

The tori listed in Theorem 2.1 are of interest not only because they are distinct from the

Clifford torus S1
eq×S1

eq ⊂ S2×S2 (as shown in [EP09]) but also because they are nondisplace-

able under Hamiltonian diffeomorphisms (as shown in [FOOO12] and [CS10]). As noted in

Example 1.23, the torus TEP ⊂ S2 × S2 defined in (2.1) can be viewed as a regular fiber of

the R2-valued function G1 ×G2 : S2 × S2 → R2, where G1 and G2 are defined by

G1 (~v, ~w) = |~v + ~w|2 and G2 (~v, ~w) = (~v + ~w) · ~e1.

We also noted in Example 1.23 that the anti-diagonal

∆ = (G1 ×G2)−1 (0, 0) =
{

(~v, ~w) ∈ S2 × S2
∣∣ ~v = −~w

}
is a monotone nondisplaceable Lagrangian submanifold.

For the remainder of this work, we will investigate a particular Lagrangian submanifold

L ⊂ (S2)
3

that is analogous to ∆ ⊂ S2 × S2 (as noted in the discussion following Example

1.24). Writing elements of (S2)
3

as 3 × 3 matrices

(
~u ~v ~w

)
for ~u,~v, ~w ∈ S2, we will
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consider

L =

{(
~u ~v ~w

)
∈
(
S2
)3

∣∣∣∣ ~u+ ~v + ~w = ~0

}
.

Where ωstd is the standard symplectic form on S2 and the map prj : (S2)
3 → S2 is the

(holomorphic) projection onto the jth factor of (S2)
3

for j = 1, 2, 3, we consider (S2)
3

with

the split symplectic form Ω = pr∗1 ωstd + pr∗2 ωstd + pr∗3 ωstd. In this chapter, we will show

that L is a Lagrangian submanifold that is diffeomorphic to RP 3, and we will describe the

relative homotopy group π2

(
(S2)

3
, L
)

.

Consider the Lie group SU(2), which we think of as

SU(2) =


 α β

−β̄ ᾱ


∣∣∣∣∣∣∣ α, β ∈ C and |α|2 + |β|2 = 1

 .

Identifying SU(2) with the group of unit quaternions

S =
{
ξ = α + βj

∣∣α, β ∈ C and |α|2 + |β|2 = 1
}
,

we observe that each of ξiξ∗, ξjξ∗, and ξkξ∗ is a pure imaginary quaternion and may therefore

be thought of as a column vector in R3. More explicitly, for ξ = α+βj, one easily computes

that

ξiξ∗ =
(
|α|2 − |β|2

)
i− i

(
αβ − ᾱβ̄

)
j −

(
αβ + ᾱβ̄

)
k

=


|α|2 − |β|2

−i
(
αβ − ᾱβ̄

)
−
(
αβ + ᾱβ̄

)

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and also that

ξjξ∗ = i
(
ᾱβ − αβ̄

)
i+

1

2

(
α2 + β2 + ᾱ2 + β̄2

)
j − i

2

(
α2 + β2 − ᾱ2 − β̄2

)
k

=


i
(
ᾱβ − αβ̄

)
1
2

(
α2 + β2 + ᾱ2 + β̄2

)
− i

2

(
α2 + β2 − ᾱ2 − β̄2

)
 ,

ξkξ∗ =
(
αβ̄ + ᾱβ

)
i+

i

2

(
α2 − β2 − ᾱ2 + β̄2

)
j +

1

2

(
α2 − β2 + ᾱ2 − β̄2

)
k

=


αβ̄ + ᾱβ

i
2

(
α2 − β2 − ᾱ2 + β̄2

)
1
2

(
α2 − β2 + ᾱ2 − β̄2

)
 .

Then, we consider the map Φ : SU(2)→ SO(3) defined by

Φ(ξ) =

(
ξiξ∗ ξjξ∗ ξkξ∗

)
, (3.1)

which is well known (see Exercise 9-10 of [Lee03] for example) to be a surjective Lie group

homomorphism with kernel

ker Φ =


1 0

0 1

 ,

−1 0

0 −1




(or ker Φ = {±1} if we think of Φ as having domain S).

Next, we consider a group action of SU(2) on S2 defined by

ξ · ~u = Φ(ξ)~u (3.2)

for ξ ∈ SU(2) and ~u ∈ S2. Since Φ is a homomorphism, it is easy to see that (3.2) gives a
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legitimate group action:

(ξ1ξ2) · ~u = Φ (ξ1ξ2) ~u = Φ (ξ1) Φ (ξ2) ~u = ξ1 · (ξ2 · ~u) .

Proposition 3.1. Using the action given by (3.2), the group SU(2) acts on S2 by holomor-

phic automorphisms.

Proof. First, we identify CP 1 with S2 by the map

ϕ : CP 1 → S2

[w : z] 7→
(
|w|2 − |z|2

|w|2 + |z|2
i
wz̄ − w̄z
|w|2 + |z|2

wz̄ + w̄z

|w|2 + |z|2

)>
,

which is holomorphic with respect to the standard complex structures on CP 1 and S2.

Indeed, when working in the usual affine charts for CP 1, the map ϕ is exactly the inverse of

the usual (orientation preserving) stereographic projections from −~e1 and ~e1:

ϕ ([w : 1]) =

(
|w|2 − 1

|w|2 + 1
i
w − w̄
|w|2 + 1

w + w̄

|w|2 + 1

)>
=

(
|w|2 − 1

|w|2 + 1

2 Im(w)

|w|2 + 1

2 Re(w)

|w|2 + 1

)>
,

ϕ ([1 : z]) =

(
1− |z|2

1 + |z|2
i
z̄ − z

1 + |z|2
z̄ + z

1 + |z|2

)>
=

(
1− |z|2

1 + |z|2
−2 Im(z)

1 + |z|2
2 Re(z)

1 + |z|2

)>
.

Next, we recall that SU(2) acts on CP 1 by holomorphic automorphisms in an obvious way

by thinking of [w : z] as a column vector; writing ξ = α + βj and noting that

 α β

−β̄ ᾱ


w
z

 =

 αw + βz

−β̄w + ᾱz

 ,

we set

ξ · [w : z] = [αw + βz : −β̄w + ᾱz].
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Then, a routine computation shows that

ϕ (ξ · [w : z]) = ξ · ϕ ([w : z]) ,

which completes the proof of the proposition.

Corollary 3.2. The Lie group SU(2) acts on (S2)
3

by holomorphic symplectomorphisms.

Proof. Using the action given by (3.2), we let SU(2) act diagonally on (S2)
3
:

ξ ·
(
~u ~v ~w

)
= Φ(ξ)

(
~u ~v ~w

)
(3.3)

for ~u, ~v, ~w ∈ S2. Since the standard complex structure on (S2)
3

is the split structure and

SU(2) acts on each factor holomorphically, the result follows immediately from Proposition

3.1 along with the fact that Φ has image SO(3), which acts on (S2)
3

by symplectomorphisms.

Recall that the Lie algebra su(2) consists of 2 × 2 skew-Hermitian matrices, a basis for

which is given by the Pauli matrices:

σ1 =

i 0

0 −i

 , σ2 =

 0 1

−1 0

 , σ3 =

0 i

i 0

 .

Using this basis, we identify R3 with su(2) by the prescription

~ζ =

(
ζ1 ζ2 ζ3

)>
7→ ζ = ζ1σ1 + ζ2σ2 + ζ3σ3. (3.4)

Lemma 3.3. Given nonzero ζ ∈ su(2), the matrix Φ (exp (tζ)) ∈ SO(3) acts by right-handed

rotation about the axis ~ζ/|~ζ| through angle 2t|~ζ|.
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Proof. First, we observe that

exp
(
t|~ζ|σ1

)
=

ei|~ζ|t 0

0 e−i|
~ζ|t

 ,

and hence

Φ
(

exp
(
t|~ζ|σ1

))
=


1 0 0

0 cos
(

2|~ζ|t
)
− sin

(
2|~ζ|t

)
0 sin

(
2|~ζ|t

)
cos
(

2|~ζ|t
)
 ,

which acts by right-handed rotation about the axis ~e1 through angle 2t|~ζ|. Since SO(3)

acts transitively on S2, we may choose A ∈ SO(3) such that A
(
~ζ/|~ζ|

)
= ~e1; then, since

Φ : SU(2)→ SO(3) is surjective, we may choose ξ ∈ SU(2) such that Φ (ξ) = A. Writing

ξ =

 α β

−β̄ ᾱ

 ,

the fact that (Φ (ξ))> ~e1 = (Φ (ξ))−1 ~e1 = A−1~e1 = ~ζ/|~ζ| implies the equations

ζ1

|~ζ|
= |α|2 − |β|2, ζ2

|~ζ|
= i
(
ᾱβ − αβ̄

)
,
ζ3

|~ζ|
= αβ̄ + ᾱβ.

Then, observe that

ξ−1σ1ξ =

i (|α|2 − |β|2) 2iᾱβ

2iaβ̄ −i (|α|2 − |β|2)

 =

 i ζ1
|~ζ|

ζ2
|~ζ|

+ i ζ3
|~ζ|

− ζ2
|~ζ|

+ i ζ2
|~ζ|

−i ζ1
|~ζ|

 =
1

|~ζ|
ζ,

from which it follows that

ξ−1
(
t|~ζ|σ1

)
ξ = t|~ζ|ξ−1σ1ξ =

t|~ζ|
|~ζ|

ζ = tζ.
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Then, using the fact that exp
(
ξ−1

(
t|~ζ|σ1

)
ξ
)

= ξ−1exp
(
t|~ζ|σ1

)
ξ, we compute that

Φ (exp (tζ)) = Φ
(

exp
(
ξ−1

(
t|~ζ|σ1

)
ξ
))

= Φ
(
ξ−1exp

(
t|~ζ|σ1

)
ξ
)

= Φ
(
ξ−1
)

Φ
(

exp
(
t|~ζ|σ1

))
Φ (ξ)

= A−1


1 0 0

0 cos
(

2|~ζ|t
)
− sin

(
2|~ζ|t

)
0 sin

(
2|~ζ|t

)
cos
(

2|~ζ|t
)
A,

which acts by right-handed rotation about the axis ~ζ/|~ζ| through angle 2t|~ζ|.

Recall also that su(2) has an inner product given by 〈η, ζ〉 = 1
2

trace
(
η̄>ζ

)
, which identi-

fies su(2)∗ with su(2). With this convention and our previous identification of R3 with su(2),

we have the following proposition:

Proposition 3.4. The action of SU(2) on (S2)
3

given by (3.3) is Hamiltonian with moment

map given by

mom :
(
S2
)3 → su(2)∗(

~u ~v ~w

)
7→ −2 (~u+ ~v + ~w) .

Proof. Given ζ ∈ su(2), the infinitesimal action determines a vector field Xζ on (S2)
3

defined

by

Xζ

(
~u ~v ~w

)
=

d

dt

∣∣∣∣
t=0

Φ (exp (tζ))

(
~u ~v ~w

)
.

By Lemma 3.3, Φ (exp (tζ)) ∈ SO(3) acts by right-handed rotation about the axis ~ζ/|~ζ|
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through angle 2t|~ζ| (or by the identity if ~ζ = ~0), and so it follows quickly that

Xζ

(
~u ~v ~w

)
= 2

(
~ζ × ~u ~ζ × ~v ~ζ × ~w

)
.

On the other hand, if we define Hζ : (S2)
3 → R by

Hζ

(
~u ~v ~w

)
=

〈
mom

(
~u ~v ~w

)
, ζ

〉
,

then it is easy to compute that Hζ

(
~u ~v ~w

)
= −2 (~u+ ~v + ~w) · ~ζ. Then, given a tangent

vector

(
~x ~y ~z

)
∈ T(

~u ~v ~w

) (S2
)3

, we observe that

dHζ

(
~x ~y ~z

)
= −2 (~x+ ~y + ~z) · ~ζ

while

Ω

((
~x ~y ~z

)
, Xζ

(
~u ~v ~w

))
= 2Ω

((
~x ~y ~z

)
,

(
~ζ × ~u ~ζ × ~v ~ζ × ~w

))
= 2

(
~u ·
(
~x×

(
~ζ × ~u

))
+ ~v ·

(
~y ×

(
~ζ × ~v

))
+ ~w ·

(
~z ×

(
~ζ × ~w

)))
= 2

(
−~x · ~ζ − ~y · ~ζ − ~z · ~ζ

)
= −2 (~x+ ~y + ~z) · ~ζ,

which shows that the Hamiltonian vector field XHζ is exactly Xζ .

Finally, given ζ, η ∈ su(2), we will show that H[ζ,η] = {Hζ , Hη} and thus that the map

ζ 7→ Hζ is a Lie algebra homomorphism as required. A routine computation reveals that

[ζ, η] = ζη − ηζ = 2
(
~ζ × ~η

)
,
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and so

H[ζ,η]

(
~u ~v ~w

)
= −4 (~u+ ~v + ~w) ·

(
~ζ × ~η

)
.

On the other hand, we have

{Hζ , Hη}
(
~u ~v ~w

)
= dHζ

(
XHη

(
~u ~v ~w

))
= Ω

(
XHη

(
~u ~v ~w

)
, XHζ

(
~u ~v ~w

))
= Ω

(
2

(
~η × ~u ~η × ~v ~η × ~w

)
, 2

(
~ζ × ~u ~ζ × ~v ~ζ × ~w

))
= 4

(
~u ·
(

(~η × ~u)×
(
~ζ × ~u

))
+ ~v ·

(
(~η × ~v)×

(
~ζ × ~v

))
+~w ·

(
(~η × ~w)×

(
~ζ × ~w

)))
= 4

(
−
(
~u ·
(
~ζ × ~η

))
−
(
~v ·
(
~ζ × ~η

))
−
(
~w ·
(
~ζ × ~η

)))
= −4 (~u+ ~v + ~w) ·

(
~ζ × ~η

)
,

which shows that H[ζ,η] = {Hζ , Hη} and completes the proof of the proposition.

Proposition 3.5. Where mom : (S2)
3 → su(2)∗ is as in Proposition 3.4, the subset

L = mom−1
(
~0
)

=

{(
~u ~v ~w

)
∈
(
S2
)3

∣∣∣∣ ~u+ ~v + ~w = ~0

}

is a Lagrangian submanifold of (S2)
3

that is diffeomorphic to RP 3.

Proof. First, we exhibit an explicit diffeomorphism Υ : L→ SO(3), and we recall that SO(3)

is well known to be diffeomorphic to RP 3. Set

Υ

(
~u ~v ~w

)
=

(
2
3

(
~u× ~v +

√
3
2
~u
)

2
3

(
~v × ~w +

√
3
2
~v
)

2
3

(
~w × ~u+

√
3
2
~w
))

. (3.5)

If ~u+ ~v + ~w = ~0, then it follows quickly that

3 + 2~u · ~v + 2~u · ~w + 2~v · ~w = |~u+ ~v + ~w|2 = 0,
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which in turn yields

1 + 2~v · ~w = 3− 2 + 2~v · ~w = 3 + 2~u · (−~u) + 2~v · ~w = 3 + 2~u · (~v + ~w) + 2~v · ~w = 0.

Thus, we have ~v · ~w = −1/2, and a similar argument shows that ~u · ~w = ~u ·~v = −1/2 as well.

It then follows that

|~u× ~v|2 = |~u|2 |~v|2 − (~u · ~v)2 = 1− 1

4
=

3

4
,

|~v × ~w|2 = |~v|2 |~w|2 − (~v · ~w)2 = 1− 1

4
=

3

4
,

|~w × ~u|2 = |~w|2 |~u|2 − (~w · ~u)2 = 1− 1

4
=

3

4
.

(3.6)

Moreover, assuming that

(
~u ~v ~w

)
∈ L, we obtain the equations

~u× ~v = ~v × (−~u) = ~v × (~v + ~w) = ~v × ~w,

~v × ~w = ~w × (−~v) = ~w × (~u+ ~w) = ~w × ~u,

~w × ~u = ~u× (−~w) = ~u× (~u+ ~v) = ~u× ~v.

(3.7)

Then, combining (3.6) and (3.7), a quick computation reveals that

(
Υ

(
~u ~v ~w

))>(
Υ

(
~u ~v ~w

))
=


1 0 0

0 1 0

0 0 1

 .
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Using again the equations (3.6) and (3.7), one can also compute that

2

3

(
~v × ~w +

√
3

2
~v

)
× 2

3

(
~w × ~u+

√
3

2
~w

)

=
4

9

(√
3

2
(~v × ~w)× ~w +

√
3

2
~v × (~w × ~u) +

3

2
~v × ~w

)

=
4

9

(√
3

2

(
−~v − 1

2
~w

)
+

√
3

2

(
−~w − 1

2
~v

)
+

3

2
~v × ~w

)
,

and thus we see (again using (3.6) and (3.7)) that

det

(
Υ

(
~u ~v ~w

))
=

2

3

(
~u× ~v +

√
3

2
~u

)
·

(
2

3

(
~v × ~w +

√
3

2
~v

)
× 2

3

(
~w × ~u+

√
3

2
~w

))

=
2

3

(
~u× ~v +

√
3

2
~u

)
· 4

9

(√
3

2

(
−~v − 1

2
~w

)
+

√
3

2

(
−~w − 1

2
~v

)
+

3

2
~v × ~w

)

=
8

27

(
3

2
|~u× ~v|2 +

3

2

(
1

2
+

1

4

)
+

3

2

(
1

2
+

1

4

))
= 1.

Thus, we see that SO(3) is an appropriate codomain for Υ. To verify that Υ is a diffeomor-

phism, we will show that its inverse Υ−1 : SO(3)→ L is given by

Υ−1

(
~a ~b ~c

)
=

(√
3
2

(
2
3
~a− 1

3
~b− 1

3
~c
) √

3
2

(
2
3
~b− 1

3
~a− 1

3
~c
) √

3
2

(
2
3
~c− 1

3
~a− 1

3
~b
))

.

Given

(
~a ~b ~c

)
∈ SO(3), it is easy to compute that

∣∣∣∣∣
√

3

2

(
2

3
~a− 1

3
~b− 1

3
~c

)∣∣∣∣∣
2

= 1,∣∣∣∣∣
√

3

2

(
2

3
~b− 1

3
~a− 1

3
~c

)∣∣∣∣∣
2

= 1,∣∣∣∣∣
√

3

2

(
2

3
~c− 1

3
~a− 1

3
~b

)∣∣∣∣∣
2

= 1,
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and it is also plain to see that

√
3

2

(
2

3
~a− 1

3
~b− 1

3
~c

)
+

√
3

2

(
2

3
~b− 1

3
~a− 1

3
~c

)
+

√
3

2

(
2

3
~c− 1

3
~a− 1

3
~b

)
= ~0.

Hence, L is an appropriate codomain for Υ−1. The computation that

Υ−1 ◦Υ

(
~u ~v ~w

)
=

(
~u ~v ~w

)

is straightforward using (3.7) and the fact that ~u + ~v + ~w = ~0. Noting that ~a × ~b = ~c,

~b× ~c = ~a, and ~c× ~a = ~b for

(
~a ~b ~c

)
∈ SO(3), it is also straightforward to compute that

Υ ◦Υ−1

(
~a ~b ~c

)
=

(
~a ~b ~c

)
.

Thus, we have shown that Υ is a diffeomorphism as required.

Next, we show that L is the orbit of the point

C =


1 −1

2
−1

2

0
√

3
2
−
√

3
2

0 0 0

 ∈ (S2
)3

under the SU(2) action given by (3.3). Since ~0 ∈ su(2)∗ is a fixed point of the coadjoint

action, its preimage L = mom−1
(
~0
)

is invariant under the action of SU(2). Noting that

C ∈ L, it follows that the orbit of C is contained in L.

On the other hand, given a point

(
~u ~v ~w

)
∈ L, we want to show that there is some

ξ ∈ SU(2) such that ξ ·
(
~u ~v ~w

)
= C. Since SO(3) acts transitively on S2, we may

choose a matrix A1 ∈ SO(3) such that A1~u = ~e1. Writing A1~v =

(
v′1 v′2 v′3

)>
and
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A1 ~w =

(
w′1 w′2 w′3

)>
, we have

A1

(
~u ~v ~w

)
=


1 v′1 w′1

0 v′2 w′2

0 v′3 w′3

 .

The fact that A1

(
~u ~v ~w

)
is an element of L implies that

1 + v′1 + w′1 = 0, v′2 + w′2 = 0, v′3 + w′3 = 0.

By the fact that A1 ~w ∈ S2, we see that

1 = (w′1)
2

+ (w′2)
2

+ (w′3)
2

= (−1− v′1)
2

+ (−v′2)
2

+ (−v′3)
2

= 1 + 2v′1 + (v′1)
2

+ (v′2)
2

+ (v′3)
2

= 2 + 2v′1,

which implies that v′1 = −1/2, and similarly w′1 = −1/2. Thus, we may write

A1

(
~u ~v ~w

)
=


1 −1

2
−1

2

0 v′2 −v′2

0 v′3 −v′3

 .

Using the fact that A1~v ∈ S2, we obtain (v′2)2 + (v′3)2 = 3/4, and so it is easy to verify that
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the matrix

A2 =


1 0 0

0 2√
3
v′2

2√
3
v′3

0 − 2√
3
v′3

2√
3
v′2


is an element of SO(3). Furthermore, one readily sees that

A2A1

(
~u ~v ~w

)
=


1 0 0

0 2√
3
v′2

2√
3
v′3

0 − 2√
3
v′3

2√
3
v′2




1 −1
2
−1

2

0 v′2 −v′2

0 v′3 −v′3

 = C.

Since the map Φ : SU(2) → SO(3) is surjective, we may choose ξ ∈ SU(2) such that

Φ (ξ) = A2A1, and thus we have

ξ ·
(
~u ~v ~w

)
= A2A1

(
~u ~v ~w

)
= C

as required. Hence, we see that L is exactly the orbit of C under the action of SU(2) as

claimed.

Since L is the orbit of C under the SU(2) action, we have

T(
~u ~v ~w

)L =

{
Xζ

(
~u ~v ~w

) ∣∣∣∣ ζ ∈ su(2)

}
,

where Xζ

(
~u ~v ~w

)
is defined as in the proof of Proposition 3.4. Observe now that

Hζ

(
~u ~v ~w

)
=

〈
mom

(
~u ~v ~w

)
, ζ

〉
= 0

for all

(
~u ~v ~w

)
∈ L and ζ ∈ su(2). In particular, this implies that Hζ is constant on
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L = mom−1
(
~0
)

for all ζ ∈ su(2). Then, since Xζ = XHζ , we see that

Ω

(
Xη

(
~u ~v ~w

)
, Xζ

(
~u ~v ~w

))
= Ω

(
Xη

(
~u ~v ~w

)
, XHζ

(
~u ~v ~w

))
= dHζ

(
Xη

(
~u ~v ~w

))
= 0

for all

(
~u ~v ~w

)
∈ L and η, ζ ∈ su(2). Hence, L is isotropic and thus Lagrangian since

dim(L) = 3 = 1
2

dim
(

(S2)
3
)

.

Remark 3.6. There are diffeomorphisms L → SO(3) that are significantly simpler than Υ

as defined in (3.5). In particular, one quite simple one will be given in the proof of Lemma

3.7. However, the map Υ ends up providing the necessary genericity to work with the pearl

complex described in Section 5.1.

Writing D2 = {z ∈ C | |z| ≤ 1} with S1 = ∂D2 = {z ∈ C | |z| = 1}, we consider a map

uD : (D2, S1)→
(

(S2)
3
, L
)

defined by

uD
(
reit
)

=


2r

1+r2 cos (t) 2r
1+r2 cos

(
t+ 4π

3

)
2r

1+r2 cos
(
t+ 2π

3

)
2r

1+r2 sin (t) 2r
1+r2 sin

(
t+ 4π

3

)
2r

1+r2 sin
(
t+ 2π

3

)
1−r2

1+r2
1−r2

1+r2
1−r2

1+r2

 .

Lemma 3.7. The map uD is holomorphic, and the homotopy class
[
uD
∣∣
S1

]
is the unique

nontrivial element of π1 (L).

Proof. To show that uD is holomorphic, it suffices to show that each map prj ◦uD : D2 → S2

is holomorphic. By composing each map prj ◦ uD with the (holomorphic) stereographic

projection from the point −~e3, it becomes clear that each such map is holomorphic. Indeed,
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we have the stereographic projection given by

ϕ(−~e3) : S2 \ {−~e3} → C
p1

p2

p3

 7→ p1 + ip2

1 + p3

,

and a simple computation shows that the compositions ϕ(−~e3) ◦ prj ◦ uD are given by

ϕ(−~e3) ◦ pr1 ◦ uD
(
reit
)

= reit,

ϕ(−~e3) ◦ pr2 ◦ uD
(
reit
)

= rei(t+
4π
3 ),

ϕ(−~e3) ◦ pr3 ◦ uD
(
reit
)

= rei(t+
2π
3 ),

each of which is holomorphic. Therefore, uD is holomorphic.

Although we have already established a diffeomorphism Υ : L → SO(3), we now give a

different diffeomorphism to establish the lemma. Consider χ : L→ SO(3) defined by

χ

(
~u ~v ~w

)
=

(
2√
3

(
~v + 1

2
~u
)

~u 2√
3

(~v × ~u)

)
,

with inverse given by

χ−1

(
~a ~b ~c

)
=

(
~b −1

2
~b+

√
3

2
~a −1

2
~b−

√
3

2
~a

)
.

It is quite straightforward to show that χ is a diffeomorphism, and so the proof is omitted.
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Noting that

χ ◦ uD
(
eit
)

= χ


cos (t) cos

(
t+ 4π

3

)
cos
(
t+ 2π

3

)
sin (t) sin

(
t+ 4π

3

)
sin
(
t+ 2π

3

)
0 0 0



= χ


cos (t) −1

2
cos (t) +

√
3

2
sin (t) −1

2
cos (t)−

√
3

2
sin (t)

sin (t) −
√

3
2

cos (t)− 1
2

sin (t)
√

3
2

cos (t)− 1
2

sin (t)

0 0 0



=


sin (t) cos (t) 0

− cos (t) sin (t) 0

0 0 1

 ,

we see that χ ◦uD
∣∣
S1 represents the unique nontrivial element of π1 (SO(3)), and the lemma

then follows immediately from the fact that χ is a diffeomorphism.

We also consider maps uSj : S2 → (S2)
3
, for j = 1, 2, 3, defined by

uS1 (~p) =

(
~p −1

2
~e1 −

√
3

2
~e2 −1

2
~e1 +

√
3

2
~e2

)
,

uS2 (~p) =

(
~e1 ~p −1

2
~e1 +

√
3

2
~e2

)
,

uS3 (~p) =

(
~e1 −1

2
~e1 −

√
3

2
~e2 ~p

)
,

which are easily seen to be holomorphic.

Lemma 3.8. The Hurewicz homomorphism π2

(
(S2)

3
, L
)
→ H2

(
(S2)

3
, L
)

is an isomor-

phism, and the relative homotopy classes [uD] ,
[
uSj
]
∈ π2

(
(S2)

3
, L
)

satisfy the relationship

2 [uD] = [uS1 ] + [uS2 ] + [uS3 ] .
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Proof. According to Section 4.2 of [Ha01], the absolute and relative Hurewicz homomor-

phisms fit into a commutative diagram coming from the homotopy and homology long exact

sequences:

· · · π2 (L) π2

(
(S2)

3
)

π2

(
(S2)

3
, L
)

π1 (L) π1

(
(S2)

3
)

· · ·

· · · H2 (L) H2

(
(S2)

3
)

H2

(
(S2)

3
, L
)

H1 (L) H1

(
(S2)

3
)

· · · .

h1 h2 h3 h4 h5

Both h1 and h5 are isomorphisms since the corresponding groups are trivial, and h4 is an

isomorphism since it corresponds to abelianization and π1 (L) ∼= Z/2Z is already abelian.

Moreover, the Hurewicz theorem implies that h2 is an isomorphism since (S2)
3

is simply

connected. Then, by the five lemma, it follows that h3 is an isomorphism as claimed.

To prove the second statement of the lemma, we consider the holomorphic submanifolds

V1,2 =

{(
~u ~v ~w

)
∈
(
S2
)3

∣∣∣∣ ~u = ~v

}
,

V1,3 =

{(
~u ~v ~w

)
∈
(
S2
)3

∣∣∣∣ ~u = ~w

}
,

V2,3 =

{(
~u ~v ~w

)
∈
(
S2
)3

∣∣∣∣ ~v = ~w

}
,

(3.8)

none of which intersect L, and thus there are well-defined intersection numbers B · [V1,2],

B · [V1,3], and B · [V2,3] whenever B ∈ H2

(
(S3)

2
, L
)

. In particular, we compute the following

intersection data for the classes [uD] and
[
uSj
]
:

· [V1,2] [V1,3] [V2,3]

[uD] 1 1 1

[uS1 ] 1 1 0

[uS2 ] 1 0 1

[uS3 ] 0 1 1
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Indeed, it is not difficult to show that the map uD intersects each of the submanifolds V1,2,

V1,3, and V2,3 transversely in a single point, and the intersection numbers are positive since

the maps and submanifolds are all holomorphic. The remainder of the intersection numbers

in the above table are likewise easy to compute.

Next, a portion of the homotopy exact sequence reads

0 π2

(
(S2)

3
)

π2

(
(S2)

3
, L
)

π1 (L) 0,

which implies that 2 [uD] is contained in the image of the map π2

(
(S2)

3
)
→ π2

(
(S2)

3
, L
)

since π1 (L) ∼= Z/2Z. Since the above sequence is exact and the classes [uS1 ], [uS2 ], and [uS3 ]

generate π2

(
(S2)

3
)

, we may write

2 [uD] = a1 [uS1 ] + a2 [uS2 ] + a3 [uS3 ]

for some integers a1, a2, a3. Then, by the above intersection data, we obtain the equations

a1 + a2 = 2,

a1 + a3 = 2,

a2 + a3 = 2,

from which we see that a1 = a2 = a3 = 1, completing the proof of the lemma.

Let Fab (D,S1, S2, S3) denote the free abelian group generated by formal variables D, S1,

S2, and S3, and consider the group homomorphism F : Fab (D,S1, S2, S3) → π2

(
(S2)

3
, L
)

defined by

F (D) = [uD] , F (S1) = [uS1 ] , F (S2) = [uS2 ] , F (S3) = [uS3 ] .
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Proposition 3.9. The group homomorphism F is surjective with kernel generated by 2D −

S1 − S2 − S3. Thus, F descends to a group isomorphism

Fab (D,S1, S2, S3)

〈2D − S1 − S2 − S3〉
∼= π2

((
S2
)3
, L
)
.

Proof. First, recall that a portion of the homotopy long exact sequence reads

0 π2

(
(S2)

3
)

π2

(
(S2)

3
, L
)

π1 (L) 0,
∂

and note that ∂[uD] =
[
uD
∣∣
S1

]
is the unique nontrivial element of π1 (L) by Lemma 3.7.

Now given B ∈ π2

(
(S2)

3
, L
)

, we consider two possibilities. If B ∈ ker ∂, then by exactness

and the fact that the classes [uS1 ], [uS2 ], and [uS3 ] generate π2

(
(S2)

3
)

, we may write

B = a1 [uS1 ] + a2 [uS2 ] + a3 [uS3 ]

for some integers a1, a2, a3. On the other hand, if B 6∈ ker ∂, then ∂B = ∂[uD], which implies

that B − [uD] ∈ ker ∂ and hence that

B − [uD] = a1 [uS1 ] + a2 [uS2 ] + a3 [uS3 ]

for some integers a1, a2, a3. In such a case, it follows that

B = a1 [uS1 ] + a2 [uS2 ] + a3 [uS3 ] + [uD] .

Thus, we see that π2

(
(S2)

3
, L
)

is generated by the classes [uD], [uS1 ], [uS2 ], and [uS3 ], and

thus F is surjective.
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Next, we note that 2D− S1− S2− S3 ∈ kerF by the definition of F and Lemma 3.8. On

the other hand, if a0D + a1S1 + a2S2 + a3S3 ∈ kerF, then we have

a0 [uD] + a1 [uS1 ] + a2 [uS2 ] + a3 [uS3 ] = 0.

It then follows that

a0∂[uD] = ∂ (a0 [uD] + a1 [uS1 ] + a2 [uS2 ] + a3 [uS3 ]) = ∂ (0) = 0,

which implies that a0 = 2k for some integer k. Then, using Lemma 3.8 once more, we write

0 = a0 [uD] + a1 [uS1 ] + a2 [uS2 ] + a3 [uS3 ]

= 2k [uD] + a1 [uS1 ] + a2 [uS2 ] + a3 [uS3 ]

= (k + a1) [uS1 ] + (k + a2) [uS2 ] + (k + a3) [uS3 ] ,

which can only hold if a1 = a2 = a3 = −k since the generators [uS1 ], [uS2 ], and [uS3 ] have no

dependence relation. Thus, we have

a0D + a1S1 + a2S2 + a3S3 = 2kD − kS1 − kS2 − kS3 = k (2D − S1 − S2 − S3) ,

which shows that 2D−S1−S2−S3 generates kerF, completing the proof of the proposition.

Remark 3.10. Using the isomorphism given by Proposition 3.9, we will often refer to elements

of π2

(
(S2)

3
, L
)

by a representative element in Fab (D,S1, S2, S3). In particular, we will

frequently use D and Sj in place of [uD] and
[
uSj
]
, respectively.
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Chapter 4

Holomorphic Disks with Lagrangian

Boundary

The goal of this chapter is to describe certain holomorphic disks u : (D2, S1)→
(

(S2)
3
, L
)

.

In particular, we will be interested in those disks with Maslov index 2; and we will shortly

show that such disks can only represent one of 3 classes in π2

(
(S2)

3
, L
)

.

Proposition 4.1. The Lagrangian L ⊂ (S2)
3

described in Proposition 3.5 is monotone with

monotonicity constant π, and the class D ∈ π2

(
(S2)

3
, L
)

has Maslov index 6 while each of

the classes Sj has Maslov index 4.

Proof. By the proof of Proposition 3.9, the classes D,S1, S2, S3 generate π2

(
(S2)

3
, L
)

.

Where c1

(
(S2)

3
)

is the first Chern class of T (S2)
3
, we recall that

Iµ (Sj) = 2
〈
c1

((
S2
)3
)
, Sj

〉
= 4.

On the other hand, since the standard area of S2 is 4π, we have

IΩ (Sj) =

∫
S2

u∗SjΩ =

∫
S2

ωstd = 4π,
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which shows that IΩ (Sj) = πIµ (Sj) for j = 1, 2, 3. Then, since we have the relation 2D =

S1 + S2 + S3, it follows that

2IΩ (D) = IΩ (2D) = IΩ (S1 + S2 + S3) = πIµ (S1 + S2 + S3) = πIµ (2D) = 2πIµ (D) ,

which implies that IΩ (D) = πIµ (D). Since the classes D,S1, S2, S3 generate π2

(
(S2)

3
, L
)

,

we have IΩ = πIµ, and so L is monotone with monotonicity constant π as claimed.

To compute the Maslov index of D, we first compute that

IΩ (D) =

∫
D2

u∗DΩ

=

∫
D2

u∗D (pr∗1 ωstd + pr∗2 ωstd + pr∗3 ωstd)

=

∫
D2

u∗Dpr∗1 ωstd +

∫
D2

u∗Dpr∗2 ωstd +

∫
D2

u∗Dpr∗3 ωstd

=

∫
pr1◦uD(D2)

ωstd +

∫
pr2◦uD(D2)

ωstd +

∫
pr3◦uD(D2)

ωstd

= 2π + 2π + 2π

= 6π,

where the penultimate equality above follows from the fact that each map prj ◦ uD is an

embedding with image the hemisphere {~p ∈ S2 | ~p · ~e3 ≥ 0}, which has standard area 2π.

Then, since L is monotone with monotonicity constant π, it follows that Iµ (D) = 6.

Proposition 4.2. If B ∈ π2

(
(S2)

3
, L
)

has a holomorphic representative and satisfies

Iµ (B) = 2, then B = D − Sj for some j ∈ {1, 2, 3}.

Proof. Using the fact that the classes D,S1, S2, S3 generate π2

(
(S2)

3
, L
)

and the relation

2D = S1 + S2 + S3, we note that B can be written in the form

B = a0D + a1S1 + a2S2 + a3S3
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for a0 ∈ {0, 1} and integers a1, a2, a3. If a0 = 0, then it follows that Iµ (B) = 4 (a1 + a2 + a3),

which contradicts Iµ (B) = 2. Thus, we write

B = D + a1S1 + a2S2 + a3S3,

and it follows that 2 = Iµ (B) = 6 + 4 (a1 + a2 + a3), which in turn implies

a1 + a2 + a3 = −1. (4.1)

Since B has a holomorphic representative, its intersection numbers with the holomorphic

submanifolds V1,2, V1,3, and V2,3 given in (3.8) must be nonnegative. In other words, we

must have

1 + a1 + a2 = (D + a1S1 + a2S2 + a3S3) · [V1,2] = B · [V1,2] ≥ 0,

1 + a1 + a3 = (D + a1S1 + a2S2 + a3S3) · [V1,3] = B · [V1,3] ≥ 0,

1 + a2 + a3 = (D + a1S1 + a2S2 + a3S3) · [V2,3] = B · [V2,3] ≥ 0,

which combine with (4.1) to yield the inequalities

a1 ≤ 0, a2 ≤ 0, a3 ≤ 0.

Then, again using (4.1) and the fact that a1, a2, a3 are integers, one quickly sees that exactly

one of a1, a2, a3 must be −1 with the remaining two coefficients being 0. In other words, we

must have B ∈ {D − S1, D − S2, D − S3}.

We now proceed to classify holomorphic representatives u : (D2, S1)→
(

(S2)
3
, L
)

of the

classes D − S1, D − S2, D − S3. To that end, we write Bj = D − Sj, and we consider maps
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uBj : (D2, S1)→
(

(S2)
3
, L
)

given by

uB1

(
reit
)

=


0 2

√
3r

3+r2 cos (t) 2
√

3r
3+r2 cos (t+ π)

0 2
√

3r
3+r2 sin (t) 2

√
3r

3+r2 sin (t+ π)

−1 3−r2

3+r2
3−r2

3+r2

 ,

uB2

(
reit
)

=


2
√

3r
3+r2 cos (t) 0 2

√
3r

3+r2 cos (t+ π)

2
√

3r
3+r2 sin (t) 0 2

√
3r

3+r2 sin (t+ π)

3−r2

3+r2 −1 3−r2

3+r2

 ,

uB3

(
reit
)

=


2
√

3r
3+r2 cos (t+ π) 2

√
3r

3+r2 cos (t) 0

2
√

3r
3+r2 sin (t+ π) 2

√
3r

3+r2 sin (t) 0

3−r2

3+r2
3−r2

3+r2 −1

 .

Proposition 4.3. Each of the maps uBj is holomorphic and satisfies

IΩ

(
[uBj ]

)
= 2π, Iµ

(
[uBj ]

)
= 2, and [uBj ] = Bj = D − Sj.

Proof. We prove the proposition only for j = 1, the other two cases being nearly identical.

First, to see that uB1 is holomorphic, one need only show that each map prj ◦ uB1 is holo-

morphic. It is clear that pr1 ◦ uB1 is holomorphic since it is constant; then by composing

with the holomorphic stereographic projection from −~e3 (as in the proof of Lemma 3.7), one

obtains

ϕ(−~e3) ◦ pr2 ◦ uB1

(
reit
)

=

√
3

3
reit,

ϕ(−~e3) ◦ pr3 ◦ uB1

(
reit
)

=

√
3

3
rei(t+π),

each of which is holomorphic. Therefore uB1 is holomorphic as claimed.
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Next, using the fact that pr1 ◦ uB1 is constant, we compute that

IΩ ([uB1 ]) =

∫
D2

u∗B1
Ω

=

∫
D2

u∗B1
(pr∗1 ωstd + pr∗2 ωstd + pr∗3 ωstd)

=

∫
D2

u∗B1
pr∗1 ωstd +

∫
D2

u∗B1
pr∗2 ωstd +

∫
D2

u∗B1
pr∗3 ωstd

=

∫
D2

0 +

∫
pr2◦uB1

(D2)

ωstd +

∫
pr3◦uB1

(D2)

ωstd

= 0 + π + π

= 2π,

where the penultimate equality above follows from the fact that both pr2◦uB1 and pr3◦uB1 are

embeddings with image {~p ∈ S2 | ~p · ~e3 ≥ 1/2}, which has standard area π. By Proposition

4.1 and the definition of monotonicity, it follows that Iµ ([uB1 ]) = 2.

Next, by Proposition 4.2, it must be the case that [uB1 ] = D − Sj for some j ∈ {1, 2, 3}.

By computing and comparing the intersections

[uB1 ] · [V1,2] = 0, [uB1 ] · [V1,3] = 0, [uB1 ] · [V2,3] = 1,

with

(D − S1) · [V1,2] = 0, (D − S1) · [V1,3] = 0, (D − S1) · [V2,3] = 1,

(D − S2) · [V1,2] = 0, (D − S2) · [V1,3] = 1, (D − S2) · [V2,3] = 0,

(D − S3) · [V1,2] = 1, (D − S3) · [V1,3] = 0, (D − S3) · [V2,3] = 0,

one quickly sees that the only possibility is that [uB1 ] = D − S1 as claimed.
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We now present a slight generalization of the maps uBj that will prove useful shortly. We

consider

S1
(
TS2

)
= {(~p, ~q) ∈ R3 × R3 | ~p · ~q = 0, |~p| = |~q| = 1},

the unit circle bundle of the tangent bundle TS2. Given a point (~p, ~q) ∈ S1 (TS2), we observe

that the matrix

(
~p ~q × ~p ~q

)
is an element of SO(3). In particular, this means that the

map

u~p,~q :
(
D2, S1

)
→
((
S2
)3
, L
)

z 7→
(
~p ~q × ~p ~q

)
uB1(z)

(4.2)

is holomorphic since uB1 is holomorphic and since SU(2) acts on (S2)
3

holomorphically

through multiplication by elements of SO(3). In other words, there is some ξ ∈ SU(2) such

that Φ (ξ) =

(
~p ~q × ~p ~q

)
, and then

(
~p ~q × ~p ~q

)
uB1(z) = Φ (ξ)uB1(z) = ξ · uB1(z)

so that u~p,~q is holomorphic as claimed. Since L is an orbit of the SU(2) action, we also see

clearly that u~p,~q (S1) ⊂ L. Note that u~e1,~e3 is identically uB1 , and moreover, the map u~p,~q

represents the class B1 since SU(2) is connected.

We also consider maps s12 : (S2)
3 → (S2)

3
and s13 : (S2)

3 → (S2)
3

defined by

s12

(
~u ~v ~w

)
=

(
~v ~u ~w

)
,

s13

(
~u ~v ~w

)
=

(
~w ~v ~u

)
.

It is easy to see that s12 and s13 are holomorphic and that uB2 = s12◦uB1 and uB3 = s13◦uB1 .

Additionally, given (~p, ~q) ∈ S1 (TS2), the maps s12 ◦ u~p,~q and s13 ◦ u~p,~q are holomorphic and

represent the classes B2 and B3, respectively.
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Now consider the moduli space M̃ (Bj) of parametrized holomorphic disks u : (D2, S1)→(
(S2)

3
, L
)

representing the class Bj ∈ π2

(
(S2)

3
, L
)

, which is a smooth manifold according

to the following lemma.

Lemma 4.4. The moduli space M̃ (Bj) is a smooth manifold of dimension 5.

Proof. By Corollary 3.2, the group SU(2) acts on (S2)
3

by holomorphic automorphisms, and

by the proof of Proposition 3.5, the Lagrangian L is an orbit of the SU(2) action. Thus,

the pair
(

(S2)
3
, L
)

is SU(2)-homogeneous in the parlance of [EL14]. It then follows from

Lemma 3.2.1 of [EL14] that M̃ (Bj) is a smooth manifold. The dimension of M̃ (Bj) is given

by the formula

dim
(
M̃ (Bj)

)
= Iµ (Bj) +

1

2
dim

((
S2
)3
)
,

which yields dim
(
M̃ (Bj)

)
= 2 + 3 = 5 since Bj has Maslov index 2.

We let G denote the group of holomorphic automorphisms of the disk D2, and following

closely the conventions of Appendix A of [BC12], we have

G =
{
σθ,α | θ ∈ (−π, π], α ∈ Int

(
D2
)}
,

where

σθ,α (z) = eiθ
z + α

1 + ᾱz
.

Noting that 1+ᾱ
1+α
∈ S1\{−1} whenever α ∈ Int (D2) and writing log for the standard principal

complex logarithm, we see that

log

(
1 + ᾱ

1 + α

)
= iθ

for some θ ∈ (−π, π). In particular, this implies that −i log
(

1+ᾱ
1+α

)
∈ (−π, π) whenever

α ∈ Int (D2), a fact we use in the statement of the following theorem.
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Theorem 4.5. Suppose that Ψ : S1 (TS2)× Int (D2)→ M̃ (B1) is defined by

Ψ (~p, ~q, α) = u~p,~q ◦
(
σθΨ(α),α

)−1
,

where u~p,~q is as in (4.2) and θΨ (α) = −i log
(

1+ᾱ
1+α

)
. Then Ψ is a diffeomorphism, and the

maps s12 ◦ Ψ : S1 (TS2) × Int (D2) → M̃ (B2) and s13 ◦ Ψ : S1 (TS2) × Int (D2) → M̃ (B3)

are diffeomorphisms.

Before proving the above theorem, we will establish a few related lemmata.

Lemma 4.6. If σ : D2 → D2 is a holomorphic automorphism with σ (1) = 1, then σ =

σθΨ(α),α for some α ∈ Int (D2), where θΨ (α) = −i log
(

1+ᾱ
1+α

)
as in the statement of Theorem

4.5. Conversely, given any α ∈ Int (D2), we have σθΨ(α),α (1) = 1.

Proof. Since σ ∈ G, we have σ = σν,α for some ν ∈ (−π, π] and α ∈ Int (D2). This implies

that

1 = σ (1) = σν,α (1) = eiν
1 + α

1 + ᾱ
,

which in turn yields

eiν =
1 + ᾱ

1 + α
.

Therefore, we see that

iν = log

(
1 + ᾱ

1 + α

)
,

which implies that ν = −i log
(

1+ᾱ
1+α

)
= θΨ (α). Hence, σ = σθΨ(α),α as required. The converse

is a simple computation.

Given a positive integer p, we write

M̃p (Bj) = M̃ (Bj)× Tp,
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where Tp ⊂ (S1)
p

is the open set consisting of all tuples of points ~z = (z1, . . . , zp) with the

property that all of the zk are distinct and additionally are cyclically ordered (with respect

to the usual orientation of S1) if p ≥ 3. By Lemma 4.4, it is clear that M̃p (Bj) is a smooth

manifold of dimension 5 + p.

Observe that G acts on M̃ (Bj) and M̃p (Bj) in obvious ways:

σ · u = u ◦ σ−1 and σ · (u, z1, . . . , zp) =
(
u ◦ σ−1, σ (z1) , . . . , σ (zp)

)
.

We then writeM (Bj) = M̃ (Bj) /G andMp (Bj) = M̃p (Bj) /G, and we note thatM (Bj)

and Mp (Bj) are smooth manifolds of dimension 2 and 2 + p, respectively.

Next, since SU(2) acts on (S2)
3

by holomorphic automorphisms and L is an orbit of

the SU(2) action, it follows that SU(2) acts on M̃ (Bj) as well. Given ξ ∈ SU(2) and

u ∈ M̃ (Bj), we define ξ · u : (D2, S1)→
(

(S2)
3
, L
)

by

(ξ · u) (z) = ξ · (u(z)) ,

where the action on the right hand side above is that given by (3.3). Since SU(2) is connected,

the map ξ · u obviously represents the class Bj whenever u does, and so ξ · u ∈ M̃ (Bj) as

required. It is easy to see that this action descends to yield actions of SU(2) onM (Bj) and

Mp (Bj) by

ξ · [u] = [ξ · u] and ξ · [u, z1, . . . , zp] = [ξ · u, z1, . . . , zp], (4.3)

respectively.

Lemma 4.7. Given [u0] ∈ M (Bj), the stabilizer of [u0] under the action given by (4.3) is

a 1-dimensional subgroup of SU(2).

Proof. We roughly follow the proofs of Lemma 3.4.1 and Lemma 3.4.2 in [EL14]. First,

we observe that map ev :M1 (Bj) → L defined by ev ([u, z]) = u (z) is equivariant, and we
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claim that ev is in fact a local diffeomorphism. SinceM1 (Bj) and L are both 3-dimensional,

it is sufficient to prove that ev has no critical values. Assume to the contrary that P ∈ L

is a critical value, in which case ξ · P is also critical for all ξ ∈ SU(2). Since SU(2) acts

transitively on L, this implies that every point of L is a critical value, contradicting Sard’s

Theorem. Hence, ev is a local diffeomorphism as claimed.

Next, we claim that the stabilizer of [u0, z0] is a 0-dimensional subgroup of SU(2). Con-

sider the diagram

SU(2) M1 (Bj)

L,

o([u0,z0])

o(u0(z0))
ev

where o([u0,z0]) (ξ) = ξ · [u0, z0] and o(u0(z0)) (ξ) = ξ · (u0 (z0)). The above diagram commutes

since the map ev is equivariant, and the stabilizer of [u0, z0] ∈M1 (Bj) is given by

Stab ([u0, z0]) =
(
o([u0,z0])

)−1
([u0, z0])

while the stabilizer of u0 (z0) ∈ L is given by

Stab (u0 (z0)) =
(
o(u0(z0))

)−1
(u0 (z0)) .

Since the diagram commutes and [u0, z0] ∈ ev−1 (u0 (z0)), it follows that

Stab ([u0, z0]) =
(
o([u0,z0])

)−1
([u0, z0])

⊂
(
o([u0,z0])

)−1 (
ev−1 (u0 (z0))

)
=
(
o(u0(z0))

)−1
(u0 (z0))

= Stab (u0 (z0)) .
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It is not difficult to see that Stab (u0 (z0)) is 0-dimensional based on the definition of the

action given in (3.3). In fact, one can easily compute that

Stab (u0 (z0)) =


1 0

0 1

 ,

−1 0

0 −1


 ,

and hence Stab ([u0, z0]) is also 0-dimensional. Moreover, the map o(u0(z0)) is a local diffeo-

morphism, and thus o([u0,z0]) is also a local diffeomorphism since the diagram commutes and

ev is a local diffeomorphism.

Next, we consider the diagram

SU(2) M1 (Bj)

M (Bj) ,

o([u0,z0])

o([u0])
f

where o([u0]) (ξ) = ξ · [u0] and f ([u, z]) = [u]. This diagram also commutes since f is equivari-

ant. Moreover, the stabilizer of [u0] is given by

Stab ([u0]) =
(
o([u0])

)−1
([u0]) =

(
o([u0,z0])

)−1 (
f−1 ([u0])

)
,

which is 1-dimensional since the fibers of f are 1-dimensional and o(u0(z0)) is a local diffeo-

morphism.

Recalling the identification of su(2) with R3 given by (3.4), we consider ζ ∈ su(2) with

|~ζ| = 1
2
. By Lemma 3.3, the matrix Φ (exp (tζ)) acts by right-handed rotation about the axis

2~ζ through angle t. Then, given a point ~q ∈ S2, it is clear that the map eit 7→ Φ (exp (tζ)) ~q

is well-defined and parametrizes a loop in S2.
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Lemma 4.8. Suppose that ζ ∈ su(2) satisfies ~ζ = 1
2
~e3 and that w : D2 → S2 is holomorphic

and satisfies

w ◦ δ
(
eit
)

= Φ (exp (tζ)) ~q

for some orientation preserving diffeomorphism δ : S1 → S1 and some ~q ∈ S2 \{±~e3}. Then

w
(
D2
)
⊃ {~p ∈ S2 | ~p · ~e3 ≥ ~q · ~e3}.

Proof. First, observe that

w ◦ δ
(
eit
)

=


cos (t) − sin (t) 0

sin (t) cos (t) 0

0 0 1

 ~q,

and so we have

w
(
D2
)
⊃ w

(
S1
)

= {~p ∈ S2 | ~p · ~e3 = ~q · ~e3}.

Now, assume that the result is not true, and choose some point ~x ∈ S2 with ~x · ~e3 > ~q · ~e3

and ~x 6∈ w (D2). Let ϕ~x : S2 \ {~x} → C denote a holomorphic stereographic projection from

~x, and observe that the image of S1 under the map ϕ~x ◦ w is a circle in C (of finite radius

since ~x 6∈ w (S1)). Suppose that ϕ~x ◦ w (S1) has center a and radius r, and let fa,r : C→ C

be given by fa,r : z 7→ 1
r

(z − a). Then the map fa,r ◦ϕ~x ◦w is holomorphic and maps S1 onto

S1, and it then follows from the maximum modulus principle that fa,r ◦ ϕ~x ◦ w (D2) ⊂ D2.

By composing with (fa,r ◦ ϕ~x)−1, one quickly sees that

w
(
D2
)
⊂ {~p ∈ S2 | ~p · ~e3 ≤ ~q · ~e3}.
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In particular, this implies that ~e3 6∈ w (D2), and so we can consider the map ϕ~e3 ◦ w, where

ϕ~e3 : S2 \ {~e3} → C
p1

p2

p3

 7→ p1 − ip2

1− p3

is a holomorphic stereographic projection from ~e3. Writing ~q =

(
q1 q2 q3

)>
, we observe

that

ϕ~e3 ◦ w ◦ δ
(
eit
)

=
(q1 cos (t)− q2 sin (t))− i (q1 sin (t) + q2 cos (t))

1− q3

=
q1 − iq2

1− q3

e−it.

Writing f : z 7→ 1−q3
q1−iq2 z, we have a holomorphic map f ◦ ϕ~e3 ◦ w : D2 → D2, and the map

f ◦ ϕ~e3 ◦ w ◦ δ : S1 → S1 has degree −1. Then, using the fact that the standard area form

on C is rdr ∧ dθ = d
(

1
2
r2dθ

)
, it follows from Stokes’ Theorem, the degree theorem, and the

fact that δ : S1 → S1 is an orientation preserving diffeomorphism that

∫
D2

(f ◦ ϕ~e3 ◦ w)∗ d

(
1

2
r2dθ

)
=

∫
S1

(
f ◦ ϕ~e3 ◦ w

∣∣
S1

)∗(1

2
r2dθ

)
=

∫
S1

(
f ◦ ϕ~e3 ◦ w

∣∣
S1

)∗(1

2
dθ

)
=

∫
S1

δ∗
(
f ◦ ϕ~e3 ◦ w

∣∣
S1

)∗(1

2
dθ

)
=

∫
S1

(f ◦ ϕ~e3 ◦ w ◦ δ)
∗
(

1

2
dθ

)
= deg (f ◦ ϕ~e3 ◦ w ◦ δ)

∫
S1

1

2
dθ

= −π,

which contradicts the fact that the nonconstant holomorphic map f ◦ ϕ~e3 ◦ w should have
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positive area. Thus, it must be the case that

w
(
D2
)
⊃ {~p ∈ S2 | ~p · ~e3 ≥ ~q · ~e3}

exactly as claimed.

Lemma 4.9. Suppose that u : (D2, S1) →
(

(S2)
3
, L
)

is holomorphic and represents the

class Bj, and write

u(1) =

(
~u ~v ~w

)
.

Suppose also that ζ ∈ su(2) satisfies ~ζ = 1
2
~e3 and that there is some orientation preserving

diffeomorphism δ : S1 → S1 such that

u ◦ δ
(
eit
)

= Φ (exp (tζ))

(
~u ~v ~w

)
.

Then exactly one of the following must hold:

(i) ~u = −~e3 and u is a reparametrization of uB1.

(ii) ~v = −~e3 and u is a reparametrization of uB2.

(iii) ~w = −~e3 and u is a reparametrization of uB3.

Proof. First we will show that −~e3 ∈ {~u,~v, ~w}, and we will then deal with the statement

regarding u being a reparametrization of uBj . Assume to the contrary that −~e3 6∈ {~u,~v, ~w},

and we will obtain a contradiction in each of several possible cases.

First, we consider the case that −~e3 6∈ {−~u,−~v,−~w} in addition to the assumption

−~e3 6∈ {~u,~v, ~w}. We consider the holomorphic maps pr1 ◦ u, pr2 ◦ u, and pr3 ◦ u, and we
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observe that

pr1 ◦ u
(
D2
)
⊃ {~p ∈ S2 | ~p · ~e3 ≥ ~u · ~e3},

pr2 ◦ u
(
D2
)
⊃ {~p ∈ S2 | ~p · ~e3 ≥ ~v · ~e3},

pr3 ◦ u
(
D2
)
⊃ {~p ∈ S2 | ~p · ~e3 ≥ ~w · ~e3},

by Lemma 4.8. In particular, this implies that

∫
D2

(pr1 ◦ u)∗ ωstd ≥ 2π (1− ~u · ~e3) ,∫
D2

(pr2 ◦ u)∗ ωstd ≥ 2π (1− ~v · ~e3) ,∫
D2

(pr3 ◦ u)∗ ωstd ≥ 2π (1− ~w · ~e3) ,

which in turn yields

IΩ ([u]) =

∫
D2

u∗Ω

=

∫
D2

(pr1 ◦ u)∗ ωstd +

∫
D2

(pr2 ◦ u)∗ ωstd +

∫
D2

(pr3 ◦ u)∗ ωstd

≥ 2π (3− (~u+ ~v + ~w) · ~e3) = 2π
(

3−~0 · ~e3

)
= 6π.

By monotonicity, it follows that Iµ ([u]) ≥ 6, contradicting u representing the class Bj since

Iµ (Bj) = 2.

Next, we consider the case that ~u = ~e3, which implies that ~v · ~e3 = ~w · ~e3 = −1
2
. By

Lemma 4.8, we see that

pr2 ◦ u
(
D2
)
⊃ {~p ∈ S2 | ~p · ~e3 ≥ ~v · ~e3},

pr3 ◦ u
(
D2
)
⊃ {~p ∈ S2 | ~p · ~e3 ≥ ~w · ~e3},
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which yields

∫
D2

(pr2 ◦ u)∗ ωstd ≥ 2π (1− ~v · ~e3) = 3π,∫
D2

(pr3 ◦ u)∗ ωstd ≥ 2π (1− ~w · ~e3) = 3π.

It then follows that

IΩ ([u]) =

∫
D2

u∗Ω

=

∫
D2

(pr1 ◦ u)∗ ωstd +

∫
D2

(pr2 ◦ u)∗ ωstd +

∫
D2

(pr3 ◦ u)∗ ωstd

≥ 0 + 3π + 3π

= 6π,

leading to a contradiction as above. The cases of ~v = ~e3 and ~w = ~e3 lead to similar

contradictions. Hence, we must have −~e3 ∈ {~u,~v, ~w} as claimed.

Suppose now that ~u = −~e3 so that ~v · ~e3 = ~w · ~e3 = 1
2
. Applying Lemma 4.8 again, we

see that

IΩ ([u]) =

∫
D2

u∗Ω

=

∫
D2

(pr1 ◦ u)∗ ωstd +

∫
D2

(pr2 ◦ u)∗ ωstd +

∫
D2

(pr3 ◦ u)∗ ωstd

≥ 0 + π + π

= 2π

with equality if and only if pr1 ◦ u is constant and both pr2 ◦ u and pr3 ◦ u have area π,

conditions that must hold since u represents Bj and IΩ (Bj) = 2π by monotonicity. Note

that there is some point ~x ∈ S2 with ~x · ~e3 <
1
2

and ~x 6∈ pr2 ◦ u (D2), since otherwise we
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would have pr2 ◦ u (D2) = S2 and hence

∫
D2

(pr2 ◦ u)∗ ωstd ≥ 4π,

a contradiction. By composing with a holomorphic stereographic projection from ~x and

applying the maximum modulus principle as in the proof of Lemma 4.8, we can conclude

that

pr2 ◦ u
(
D2
)

=

{
~p ∈ S2

∣∣∣∣ ~p · ~e3 ≥
1

2

}
.

In particular, −~e3 6∈ pr2 ◦ u (D2), and so we can consider the map ϕ(−~e3) ◦ pr2 ◦ u, where

ϕ(−~e3) : S2 \ {−~e3} → C is a holomorphic stereographic projection as in the proof of Lemma

3.7. Similarly, one can show that −~e3 6∈ pr3 ◦ u (D2), and so we can also consider the map

ϕ(−~e3) ◦ pr3 ◦ u. Writing ~v =

(
v1 v2 v3

)>
and ~w =

(
w1 w2 w3

)>
, we have

u ◦ δ
(
eit
)

=


cos (t) − sin (t) 0

sin (t) cos (t) 0

0 0 1




0 v1 w1

0 v2 w2

−1 v3 w3

 .

We then compute that

ϕ(−~e3) ◦ pr2 ◦ u ◦ δ
(
eit
)

= ϕ(−~e3)


v1 cos (t)− v2 sin (t)

v1 sin (t) + v2 cos (t)

v3

 =
v1 + iv2

1 + v3

eit

and similarly that

ϕ(−~e3) ◦ pr3 ◦ u ◦ δ
(
eit
)

=
w1 + iw2

1 + w3

eit.
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Noting that v3 = w3 = 1
2
, we have

∣∣∣∣v1 + iv2

1 + v3

∣∣∣∣ =

√
v2

1 + v2
2

(1 + v3)2 =

√
1− v2

3

(1 + v3)2 =

√
3

3
,

and similarly ∣∣∣∣w1 + iw2

1 + w3

∣∣∣∣ =

√
3

3
.

Thus, we may write

v1 + iv2

1 + v3

=

√
3

3
eiφ

for some φ ∈ [0, 2π), and since w1 = −v1 and w2 = −v2, we have

w1 + iw2

1 + w3

= −v1 + iv2

1 + v3

=

√
3

3
eiφeiπ.

Where σφ : D2 → D2 is the automorphism σφ : z 7→ eiφz, it follows from the proof of

Proposition 4.3 that

3√
3
ϕ(−~e3) ◦ pr2 ◦ u ◦ δ

(
eit
)

= eiφeit =
3√
3
ϕ(−~e3) ◦ pr2 ◦ uB1 ◦ σφ

(
eit
)
,

3√
3
ϕ(−~e3) ◦ pr3 ◦ u ◦ δ

(
eit
)

= eiφeiπeit =
3√
3
ϕ(−~e3) ◦ pr3 ◦ uB1 ◦ σφ

(
eit
)
.

(4.4)

Since δ is a diffeomorphism, we see that the holomorphic maps

(
3√
3
ϕ(−~e3) ◦ pr2 ◦ u

)
: D2 → D2,(

3√
3
ϕ(−~e3) ◦ pr3 ◦ u

)
: D2 → D2,

are injective when restricted to S1 and are therefore holomorphic automorphisms of the disk.
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Likewise the maps

(
3√
3
ϕ(−~e3) ◦ pr2 ◦ uB1 ◦ σφ

)
: D2 → D2,(

3√
3
ϕ(−~e3) ◦ pr3 ◦ uB1 ◦ σφ

)
: D2 → D2,

are automorphisms of the disk, and thus there are automorphisms σ2, σ3 ∈ G such that

(
3√
3
ϕ(−~e3) ◦ pr2 ◦ u

)
◦ σ2 =

(
3√
3
ϕ(−~e3) ◦ pr2 ◦ uB1 ◦ σφ

)
,(

3√
3
ϕ(−~e3) ◦ pr3 ◦ u

)
◦ σ3 =

(
3√
3
ϕ(−~e3) ◦ pr3 ◦ uB1 ◦ σφ

)
.

(4.5)

It follows from (4.4) and (4.5) that

σ2

(
eit
)

=

(
3√
3
ϕ(−~e3) ◦ pr2 ◦ u

)−1

◦
(

3√
3
ϕ(−~e3) ◦ pr2 ◦ uB1 ◦ σφ

)(
eit
)

= δ
(
eit
)
,

σ3

(
eit
)

=

(
3√
3
ϕ(−~e3) ◦ pr3 ◦ u

)−1

◦
(

3√
3
ϕ(−~e3) ◦ pr3 ◦ uB1 ◦ σφ

)(
eit
)

= δ
(
eit
)
,

which in turn implies that σ2 = σ3. Writing σ = σ2 = σ3, it follows from (4.5) that

ϕ(−~e3) ◦ pr2 ◦ u ◦ σ = ϕ(−~e3) ◦ pr2 ◦ uB1 ◦ σφ,

ϕ(−~e3) ◦ pr3 ◦ u ◦ σ = ϕ(−~e3) ◦ pr3 ◦ uB1 ◦ σφ,

and thus we have

pr2 ◦ u = pr2 ◦ uB1 ◦
(
σφ ◦ σ−1

)
,

pr3 ◦ u = pr3 ◦ uB1 ◦
(
σφ ◦ σ−1

)
.
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Since both pr1 ◦ u and pr1 ◦ uB1 are constant with value −~e3, we also have

pr1 ◦ u = pr1 ◦ uB1 ◦
(
σφ ◦ σ−1

)
.

It follows that u is a reparametrization of uB1 in the case that ~u = −~e3, and the proofs for

the cases of ~v = −~e3 and ~w = −~e3 are extremely similar.

We are now ready to prove Theorem 4.5.

Proof of Theorem 4.5. We only prove the statement of the theorem for the moduli space

M̃(B1); the proofs for the other two moduli spaces are very similar. First, we show that Ψ is

surjective. Suppose that u ∈ M̃(B1), and consider the (unparametrized) disk [u] ∈M(B1).

By Lemma 4.7, the stabilizer of [u] is a 1-dimensional subgroup of SU(2). Let ζ ∈ su(2) be a

generator of the stabilizer subgroup of [u] satisfying |~ζ| = 1
2
. We then have exp (tζ) · [u] = [u]

for all t ∈ R. In particular, this implies that, for each t ∈ [0, 2π], there is an automorphism

σt ∈ G such that

exp (tζ) · u = u ◦ σt.

We define δ : S1 → S1 by δ (eit) = σt (1) so that

exp (tζ) · u (1) = u ◦ δ
(
eit
)
,

and we claim that δ is a diffeomorphism. Note that Φ (exp (2πζ)) is the identity element

of SO(3) (according to Lemma 3.3) and hence σ2π = σ0 is the identity in G; therefore δ is

well-defined.

Now assume that σs (1) = z0 = σt (1) for some s, t ∈ [0, 2π). Consider [u, z0] ∈ M1 (B1),

whose stabilizer subgroup Stab ([u, z0]) ⊂ SU(2) is a 0-dimensional subgroup according to
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the proof of Lemma 4.7. More precisely, the proof of Lemma 4.7 implies that

Stab ([u, z0]) ⊂


1 0

0 1

 ,

−1 0

0 −1


 .

Observe that

exp (tζ) · [u, z0] = [exp (tζ) · u, z0] = [u ◦ σt, z0] = [u, (σt)
−1z0] = [u, 1]

= [u, (σs)
−1z0] = [u ◦ σs, z0] = [exp (sζ) · u, z0] = exp (sζ) · [u, z0],

and hence (exp (sζ))−1 exp (tζ) ∈ Stab ([u, z0]), which implies that exp (tζ) = ±exp (sζ). It

follows that Φ (exp (tζ)) = Φ (±exp (sζ)); by Lemma 3.3, the matrix Φ (exp (tζ)) acts by

right-handed rotation about axis ~ζ/|~ζ| through angle t while the matrix Φ (±exp (sζ)) acts

by right-handed rotation about axis ~ζ/|~ζ| through angle s. Since s, t ∈ [0, 2π), it follows that

s = t, and hence δ is injective. Since S1 is compact, we know that δ is an embedding, and it

must be surjective since its image is a compact connected subset of S1 that is homeomorphic

to S1. Therefore δ is a diffeomorphism as claimed.

Moreover, we can assume without loss of generality that δ is orientation preserving.

Indeed, if δ as defined above is orientation reversing, then we instead choose −ζ as generator

of the stabilizer subgroup of [u]. We would then have exp (t (−ζ)) ·u = exp (−tζ) ·u = u◦σ−t

so that the diffeomorphism δ′ : eit 7→ σ−t (1) is orientation preserving with

exp (t (−ζ)) · u (1) = u ◦ δ′
(
eit
)
.

Thus, we assume henceforth that δ as initially defined above is orientation preserving.
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Now, choose a matrix A ∈ SO(3) such that A~ζ = 1
2
~e3, and write C1 = A (u(1)) so that

u(1) = A−1C1. Furthermore, we choose ξA ∈ SU(2) with Φ (ξA) = A. Then observe that

(ξA · u) ◦ δ
(
eit
)

= Φ (ξA)
(
u ◦ δ

(
eit
))

= A (exp (tζ) · u (1))

= AΦ (exp (tζ))u (1)

= AΦ (exp (tζ))A−1C1

= Φ

(
exp

(
t
~e3

2

))
C1,

where the final equality follows Lemma 3.3 and from the fact that AΦ (exp (tζ))A−1 acts by

right-handed rotation about the axis ~e3 through angle t. Noting that

(ξA · u) (1) = Φ (ξA) (u(1)) = A (u(1)) = C1,

it follows from Lemma 4.9 and the hypothesis that u represents the class B1 (and hence so

does (ξA · u)) that C1 =

(
−~e3 ~v ~w

)
and that (ξA · u) is a reparametrization of uB1 . Then,

we choose a matrix B ∈ SO(3), namely a rotation about the axis ~e3, such that

BC1 =


0

√
3

2
−
√

3
2

0 0 0

−1 1
2

1
2

 .

Writing C2 = BC1 and choosing ξB ∈ SU(2) such that Φ (ξB) = B, it follows that
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A−1B−1C2 = u(1) and thus that

(ξBξA · u) ◦ δ
(
eit
)

= Φ (ξBξA)
(
u ◦ δ

(
eit
))

= BA (exp (tζ) · u (1))

= BAΦ (exp (tζ))u (1)

= BAΦ (exp (tζ))A−1B−1C2

= Φ

(
exp

(
t
~e3

2

))
C2

similarly to above. Likewise, we observe that

(ξBξA · u) (1) = Φ (ξBξA) (u(1)) = BA (u(1)) = C2,

and so it follows from Lemma 4.9 that (ξBξA · u) is a reparametrization of uB1 . In other

words, we have (ξBξA · u) = uB1 ◦ σ−1 for some σ ∈ G. Moreover, we note that

uB1 ◦ σ−1 (1) = (ξBξA · u) (1) = C2 = uB1 (1) ,

which implies that σ−1 (1) = 1 since uB1 is injective. Then by Lemma 4.6, it follows that

σ = σθΨ(α),α for some α ∈ Int (D2), where θΨ (α) = −i log
(

1+ᾱ
1+α

)
as in the statement of

Theorem 4.5. Thus, we have (ξBξA · u) = uB1 ◦
(
σθΨ(α),α

)−1
, which implies

u = (ξBξA)−1 ·
(
uB1 ◦

(
σθΨ(α),α

)−1
)
.
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In other words, we have

u(z) = (ξBξA)−1 ·
(
uB1 ◦

(
σθΨ(α),α

)−1
(z)
)

= Φ
(
(ξBξA)−1)uB1

((
σθΨ(α),α

)−1
(z)
)

= A−1B−1uB1

((
σθΨ(α),α

)−1
(z)
)

=

(
~p ~q × ~p ~q

)
uB1

((
σθΨ(α),α

)−1
(z)
)

= u~p,~q ◦
(
σθΨ(α),α

)−1
(z),

where (~p, ~q) ∈ S1 (TS2) are chosen so that

(
~p ~q × ~p ~q

)
= A−1B−1 in SO(3). Thus, we

have shown that

u = u~p,~q ◦
(
σθΨ(α),α

)−1
= Ψ (~p, ~q, α) ,

and so Ψ is surjective.

Now to show that Ψ is injective, suppose that Ψ (~p, ~q, α) = Ψ (~x, ~y, β), which combines

with Lemma 4.6 to yield

(
−~q

√
3

2
~p+ 1

2
~q −

√
3

2
~p+ 1

2
~q

)
=

(
~p ~q × ~p ~q

)
uB1 (1)

= u~p,~q ◦
(
σθΨ(α),α

)−1
(1)

= u~x,~y ◦
(
σθΨ(β),β

)−1
(1)

=

(
~x ~y × ~x ~y

)
uB1 (1)

=

(
−~y

√
3

2
~x+ 1

2
~y −

√
3

2
~x+ 1

2
~y

)
.

From the above computation, we immediately see that ~q = ~y, which then quickly implies
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that ~p = ~x. It then follows that

u~p,~q ◦
(
σθΨ(α),α

)−1
= u~x,~y ◦

(
σθΨ(β),β

)−1
= u~p,~q ◦

(
σθΨ(β),β

)−1
,

and hence we have σθΨ(α),α = σθΨ(β),β since u~p,~q is injective. In particular, this implies that

1 + ᾱ

1 + α
α = σθΨ(α),α (0) = σθΨ(β),β (0) =

1 + β̄

1 + β
β,

which implies that |α| = |β| since
∣∣1+ᾱ

1+α

∣∣ = 1 and
∣∣∣1+β̄

1+β

∣∣∣ = 1. Using this fact and simplifying

the above equation, one quickly obtains α = β. Thus, Ψ is injective as required.

Regarding smoothness of Ψ, we refer the reader primarily to Chapter 3 and Appendix

B of [MS04]. In short, for sufficiently large integers k and p, the moduli space M̃ (B1)

is an embedded submanifold of W k,p
(

(D2, S1) ,
(

(S2)
3
, L
))

, which is a Banach manifold

consisting of continuous maps (D2, S1)→
(

(S2)
3
, L
)

that are represented by W k,p-functions

in local coordinate charts. Given a smooth u ∈ W k,p
(

(D2, S1) ,
(

(S2)
3
, L
))

, the tangent

space at u consists of W k,p-sections of the bundle pair
(
u∗T (S2)

3
,
(
u
∣∣
S1

)∗
TL
)
→ (D2, S1):

TuW
k,p
((
D2, S1

)
,
((
S2
)3
, L
))

= W k,p
((
D2, S1

)
,
(
u∗T

(
S2
)3
,
(
u
∣∣
S1

)∗
TL
))

.

Now observe that W k,p
(

(D2, S1) ,
(

(S2)
3
, L
))

is a Banach submanifold of the Banach space

W k,p (D2,R9) since (S2)
3 ⊂ R9 in a natural way. Then note that the map

(~p, ~q, α, z) 7→ u~p,~q ◦
(
σθΨ(α),α

)−1
(z)

is smooth, from which it follows that Ψ is smooth when viewed as a map to W k,p (D2,R9).
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Now consider a path γ : t 7→ (~p (t) , ~q (t) , α (t)) in S1 (TS2)× Int (D2) so that d
dt

∣∣
t=0

γ (t)

is a tangent vector in T(~p(0),~q(0),α(0)) (S1 (TS2)× Int (D2)). Then observe that

Ψ∗

(
d

dt

∣∣∣∣
t=0

γ (t)

)
(z) =

d

dt

∣∣∣∣
t=0

(
u~p(t),~q(t) ◦

(
σθΨ(α(t)),α(t)

)−1
(z)
)
.

It is then not difficult to see that Ψ∗ is injective. For example, one obtains 3 linearly

independent vectors in

Ψ∗
(
T(~p(0),~q(0),α(0))

(
S1
(
TS2

)
× Int

(
D2
)))
⊂ W k,p

((
D2, S1

)
,
(
u∗T

(
S2
)3
,
(
u
∣∣
S1

)∗
TL
))

by choosing paths γ1, γ2, and γ3 that fix α and vary (~p, ~q) in 3 distinct directions within

S1 (TS2) – note that each such section will be non-vanishing at 1 ∈ D2. Then, one can

obtain 2 more linearly independent vectors by choosing paths γ4 and γ5 that fix ~p and ~q

while varying α in 2 distinct directions within Int (D2) – note that each of these sections will

vanish at 1 ∈ D2 according to Lemma 4.6. Thus, we see that Ψ∗ is injective, and so Ψ is an

immersion.

Finally, since Ψ : S1 (TS2) × Int (D2) → M̃ (B1) is a smooth bijective immersion, it

follows from the Inverse Function Theorem that Ψ−1 is also smooth, and thus Ψ is a diffeo-

morphism as claimed.

We now consider the subgroup H ⊂ G of automorphisms fixing −1 and 1. According to

Appendix A of [BC12], this is a 1-dimensional subgroup consisting of the elements σ0,β with

β ∈ (−1, 1):

H = {σθ,β ∈ G | θ = 0, β ∈ (−1, 1)}.

As a subgroup of G, H also acts on M̃ (Bj) by the prescription

σ0,β · u = u ◦ (σ0,β)−1 . (4.6)
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Proposition 4.10. The subgroup H ⊂ G acts on S1 (TS2)× Int (D2) by the prescription

σ0,β · (~p, ~q, α) =

(
~p, ~q,

α + β + αᾱ + αβ

1 + ᾱ + ᾱβ + αᾱβ

)
,

and the diffeomorphisms Ψ, s12◦Ψ, and s13◦Ψ from Theorem 4.5 are equivariant with respect

to this action and the action given by (4.6).

Proof. Using the fact that β̄1 = β1 and β̄2 = β2 for β1, β2 ∈ (−1, 1), we compute that

σ0,β1 ◦ σ0,β2 (z) = σ0,β1

(
z + β2

1 + β2z

)
=

z + β2

1 + β2z
+ β1

1 + β1
z + β2

1 + β2z

=
z + β2 + β1 + β1β2z

1 + β2z + β1z + β1β2

=
z(1 + β1β2) + (β1 + β2)

(1 + β1β2) + (β1 + β2)z
=

z +
β1 + β2

1 + β1β2

1 +
β1 + β2

1 + β1β2

z

= σ
0,
β1+β2
1+β1β2

(z) .

Now, on the one hand, using the fact that β1, β2 ∈ (−1, 1), we compute (leaving out some

details) that

σ0,β1 · (σ0,β2 · (~p, ~q, α)) = σ0,β1 ·
(
~p, ~q,

α + β2 + αᾱ + αβ2

1 + ᾱ + ᾱβ2 + αᾱβ2

)
=

(
~p, ~q,

β1 + β2 + α + αᾱ + αβ1 + αβ2 + αβ1β2 + αᾱβ1β2

1 + β1β2 + ᾱ + ᾱβ2 + αᾱβ2 + ᾱβ1 + αᾱβ1 + ᾱβ1β2

)

On the other hand, using the first computation of the proof, we have

(σ0,β1 ◦ σ0,β2) · (~p, ~q, α) = σ
0,
β1+β2
1+β1β2

· (~p, ~q, α)

=

~p, ~q, α +
β1 + β2

1 + β1β2

+ αᾱ + α
β1 + β2

1 + β1β2

1 + ᾱ + ᾱ
β1 + β2

1 + β1β2

+ αᾱ
β1 + β2

1 + β1β2


=

(
~p, ~q,

β1 + β2 + α + αᾱ + αβ1 + αβ2 + αβ1β2 + αᾱβ1β2

1 + β1β2 + ᾱ + ᾱβ2 + αᾱβ2 + ᾱβ1 + αᾱβ1 + ᾱβ1β2

)
,
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which shows that H acts on S1 (TS2)× Int (D2) exactly as stated.

To show that Ψ is equivariant, we first note that a routine computation yields

(σν,γ)
−1 (z) = e−iν

z − γeiν

1− γ̄e−iνz
(4.7)

for σν,γ ∈ G. Now, where θΨ (α) = −i log
(

1+ᾱ
1+α

)
as in the statement of Theorem 4.5, we

compute that

θΨ

(
α + β + αᾱ + αβ

1 + ᾱ + ᾱβ + αᾱβ

)
= −i log

1 +
ᾱ + β + αᾱ + ᾱβ

1 + α + αβ + αᾱβ

1 +
α + β + αᾱ + αβ

1 + ᾱ + ᾱβ + αᾱβ


= −i log

(
1 + ᾱ + ᾱβ + αᾱβ

1 + α + αβ + αᾱβ

)

for α ∈ Int (D2) and β ∈ (−1, 1). Then taking γ = α+β+αᾱ+αβ
1+ᾱ+ᾱβ+αᾱβ

and ν = θΨ (γ), we compute

that

(
σθΨ( α+β+αᾱ+αβ

1+ᾱ+ᾱβ+αᾱβ ), α+β+αᾱ+αβ
1+ᾱ+ᾱβ+αᾱβ

)−1

(z)

=
1 + α + αβ + αᾱβ

1 + ᾱ + ᾱβ + αᾱβ
·
z − α + β + αᾱ + αβ

1 + ᾱ + ᾱβ + αᾱβ
· 1 + ᾱ + ᾱβ + αᾱβ

1 + α + αβ + αᾱβ

1− ᾱ + β + αᾱ + ᾱβ

1 + α + αβ + αᾱβ
· 1 + α + αβ + αᾱβ

1 + ᾱ + ᾱβ + αᾱβ
· z

=
(1 + α + αβ + αᾱβ) z − (α + αᾱ + β + αβ)

(1 + ᾱ + ᾱβ + αᾱβ)− (ᾱ + αᾱ + β + ᾱβ) z
,
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while on the other hand we have

(
σθΨ(α),α

)−1 ◦ (σ0,β)−1 (z) =
(
σθΨ(α),α

)−1
(
z − β
1− βz

)

=
1 + α

1 + ᾱ
·

z − β
1− βz

− α · 1 + ᾱ

1 + α

1− ᾱ · 1 + α

1 + ᾱ
· z − β

1− βz

=
(1 + α + αβ + αᾱβ) z − (α + αᾱ + β + αβ)

(1 + ᾱ + ᾱβ + αᾱβ)− (ᾱ + αᾱ + β + ᾱβ) z
.

Thus, we see that

(
σθΨ( α+β+αᾱ+αβ

1+ᾱ+ᾱβ+αᾱβ ), α+β+αᾱ+αβ
1+ᾱ+ᾱβ+αᾱβ

)−1

=
(
σθΨ(α),α

)−1 ◦ (σ0,β)−1 ,

which implies that

Ψ (σ0,β · (~p, ~q, α)) = Ψ

(
~p, ~q,

α + β + αᾱ + αβ

1 + ᾱ + ᾱβ + αᾱβ

)
= u~p,~q ◦

(
σθΨ( α+β+αᾱ+αβ

1+ᾱ+ᾱβ+αᾱβ ), α+β+αᾱ+αβ
1+ᾱ+ᾱβ+αᾱβ

)−1

= u~p,~q ◦
(
σθΨ(α),α

)−1 ◦ (σ0,β)−1

= σ0,β ·
(
u~p,~q ◦

(
σθΨ(α),α

)−1
)

= σ0,β ·Ψ (~p, ~q, α) .

Thus, we have shown that Ψ is equivariant. The above equation also holds when replacing

Ψ with s12 ◦Ψ or s13 ◦Ψ, thus completing the proof.
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Corollary 4.11. The diffeomorphisms Ψ, s12 ◦Ψ, and s13 ◦Ψ from Theorem 4.5 descend to

diffeomorphisms

Ψ :
S1 (TS2)× Int (D2)

H
→ M̃(B1)

H
,

s12 ◦Ψ :
S1 (TS2)× Int (D2)

H
→ M̃(B2)

H
,

s13 ◦Ψ :
S1 (TS2)× Int (D2)

H
→ M̃(B3)

H
,

which (abusing notation) we still denote Ψ, s12 ◦Ψ, and s13 ◦Ψ.

Proof. This follows immediately from Theorem 4.5 and Proposition 4.10.

It will be useful for us to parameterize the space (S1 (TS2)× Int (D2)) /H, which we do

with the following proposition.

Proposition 4.12. Where αΓ : (−π, π)→ Int (D2) is given by

αΓ (φ) =
i sin (φ)

2 + 2 cos (φ)− i sin (φ)
,

we have a diffeomorphism Γ : S1 (TS2)× (−π, π)→ (S1 (TS2)× Int (D2)) /H given by

Γ (~p, ~q, φ) = [~p, ~q, αΓ (φ)].

Proof. We will show that Γ has an inverse given by the formula

Γ−1 ([~p, ~q, α]) =

(
~p, ~q,−i log

(
|α|2 + 2α + 1

|α|2 + 2ᾱ + 1

))
.
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It is extremely straightforward to compute that

|αΓ (φ)|2 + 2αΓ (φ) + 1

|αΓ (φ)|2 + 2αΓ (φ) + 1
=

1 + cos (φ) + i sin (φ)

1 + cos (φ)− i sin (φ)

=
1 + eiφ

1 + e−iφ
= eiφ

e−iφ + 1

1 + e−iφ
= eiφ,

from which it follows that

−i log

(
|αΓ (φ)|2 + 2αΓ (φ) + 1

|αΓ (φ)|2 + 2αΓ (φ) + 1

)
= φ,

and hence that Γ−1 ◦ Γ is the identity on S1 (TS2)× (−π, π).

On the other hand, given α ∈ Int (D2), we note that

|α|2 + 2α + 1

|α|2 + 2ᾱ + 1
= eiτ

for some τ ∈ (−π, π) so that

−i log

(
|α|2 + 2α + 1

|α|2 + 2ᾱ + 1

)
= τ,

and we then compute that

cos (τ) = Re

(
|α|2 + 2α + 1

|α|2 + 2ᾱ + 1

)
=

1

2

(
|α|2 + 2α + 1

|α|2 + 2ᾱ + 1
+
|α|2 + 2ᾱ + 1

|α|2 + 2α + 1

)
,

sin (τ) = Im

(
|α|2 + 2α + 1

|α|2 + 2ᾱ + 1

)
=
i

2

(
|α|2 + 2α + 1

|α|2 + 2ᾱ + 1
− |α|

2 + 2ᾱ + 1

|α|2 + 2α + 1

)
.
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Using this, it follows from a straightforward computation that

αΓ (τ) =
i sin (τ)

2 + 2 cos (τ)− i sin (τ)

=
α− ᾱ

2 + α + 3ᾱ + 2αᾱ
,

and so we have shown that

Γ ◦ Γ−1 ([~p, ~q, α]) =

[
~p, ~q,

α− ᾱ
2 + α + 3ᾱ + 2αᾱ

]
.

Then, writing β = −α + ᾱ + 2αᾱ

2 + α + ᾱ
, another routine computation reveals that

σ0,β · (~p, ~q, α) =

(
~p, ~q,

α + β + αᾱ + αβ

1 + ᾱ + ᾱβ + αᾱβ

)

=

~p, ~q, α− α + ᾱ + 2αᾱ

2 + α + ᾱ
+ αᾱ− α · α + ᾱ + 2αᾱ

2 + α + ᾱ

1 + ᾱ− ᾱ · α + ᾱ + 2αᾱ

2 + α + ᾱ
− αᾱ · α + ᾱ + 2αᾱ

2 + α + ᾱ


=

(
~p, ~q,

α− ᾱ
2 + α + 3ᾱ + 2αᾱ

)
.

Thus, we have shown that

Γ ◦ Γ−1 ([~p, ~q, α]) =

[
~p, ~q,

α− ᾱ
2 + α + 3ᾱ + 2αᾱ

]
= [~p, ~q, α],

completing the proof.

Of particular interest are evaluation maps ev1 : M̃(Bj)/H → L and ev−1 : M̃(Bj)/H →

L defined by

ev1 ([u]) = u (1) and ev−1 ([u]) = u (−1) .
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Proposition 4.13. Suppose that u~p,~q is as in (4.2), Γ is as in Proposition 4.12, and Ψ,

s12 ◦Ψ, and s13 ◦Ψ are as in Corollary 4.11. Then we have

ev1 ◦Ψ ◦ Γ (~p, ~q, φ) = u~p,~q (1) ,

ev−1 ◦Ψ ◦ Γ (~p, ~q, φ) = u~p,~q
(
ei(φ+π)

)
,

ev1 ◦ s12 ◦Ψ ◦ Γ (~p, ~q, φ) = s12 ◦ u~p,~q (1) ,

ev−1 ◦ s12 ◦Ψ ◦ Γ (~p, ~q, φ) = s12 ◦ u~p,~q
(
ei(φ+π)

)
,

ev1 ◦ s13 ◦Ψ ◦ Γ (~p, ~q, φ) = s13 ◦ u~p,~q (1) ,

ev−1 ◦ s13 ◦Ψ ◦ Γ (~p, ~q, φ) = s13 ◦ u~p,~q
(
ei(φ+π)

)
.

Proof. Following the definitions of the maps in view, we observe that

Ψ ◦ Γ (~p, ~q, φ) = u~p,~q ◦
(
σθΨ(αΓ(φ)),αΓ(φ)

)−1
,

and then a simple computation show that

θΨ (αΓ (φ)) = −i log

(
2 + 2 cos (φ)− i sin (φ)

2 + 2 cos (φ) + i sin (φ)

)
.

Now, using (4.7) with ν = θΨ (αΓ (φ)) and γ = αΓ (φ), we compute (with details omitted)

that

(
σθΨ(αΓ(φ)),αΓ(φ)

)−1
(z) = e−iθΨ(αΓ(φ)) z − αΓ (φ) eiθΨ(αΓ(φ))

1− αΓ (φ)e−iθΨ(αΓ(φ))z

=
2z + 2z cos (φ) + i (z − 1) sin (φ)

2 + 2 cos (φ) + i (z − 1) sin (φ)
.

It follows that (
σθΨ(αΓ(φ)),αΓ(φ)

)−1
(1) = 1
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and also that

(
σθΨ(αΓ(φ)),αΓ(φ)

)−1
(−1) =

−2− 2 cos (φ)− 2i sin (φ)

2 + 2 cos (φ)− 2i sin (φ)

= − 1 + eiφ

1 + e−iφ
= −eiφ e

−iφ + 1

1 + e−iφ
= −eiφ = ei(φ+π).

The proposition then follows immediately from the definitions of ev1 and ev−1.

We now provide bases for T(~p,~q,φ) (S1 (TS2)× (−π, π)) and T(
~u ~v ~w

)L that will be

useful later for proving transversality of certain evaluation maps. We define

V1 (~p, ~q, φ) =

√
3

2
(−~q, ~p, 0) ,

V2 (~p, ~q, φ) =

√
3

2

(
~0, ~q × ~p, 0

)
,

V3 (~p, ~q, φ) =
(
~q × ~p,~0, 0

)
,

V4 (~p, ~q, φ) =
(
~0,~0, 1

)
,

(4.8)

which are easily seen to provide a basis for the tangent space T(~p,~q,φ) (S1 (TS2)× (−π, π)).

We provide three different bases for T(
~u ~v ~w

)L that will correspond to the maps in Propo-

sition 4.13. Define

X1

(
~u ~v ~w

)
=

(
~u× (~v × ~w) ~v × (~w × ~u) ~w × (~u× ~v)

)
,

X2

(
~u ~v ~w

)
=

(
~v × ~w 1

2
~w × ~v 1

2
~w × ~v

)
,

X3

(
~u ~v ~w

)
=

(
~0 ~w × ~v ~v × ~w

)
,

(4.9)
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and define

Y1

(
~u ~v ~w

)
=

(
−~u× (~v × ~w) −~v × (~w × ~u) −~w × (~u× ~v)

)
,

Y2

(
~u ~v ~w

)
=

(
1
2
~w × ~u ~u× ~w 1

2
~w × ~u

)
,

Y3

(
~u ~v ~w

)
=

(
~w × ~u ~0 ~w × ~u

)
,

(4.10)

and finally

Z1

(
~u ~v ~w

)
=

(
−~u× (~v × ~w) −~v × (~w × ~u) −~w × (~u× ~v)

)
,

Z2

(
~u ~v ~w

)
=

(
1
2
~u× ~v 1

2
~u× ~v ~v × ~u

)
,

Z3

(
~u ~v ~w

)
=

(
~v × ~u ~u× ~v ~0

)
.

(4.11)

Proposition 4.14. At each point (~p, ~q, φ) ∈ S1 (TS2)× (−π, π), we have

(ev1 ◦Ψ ◦ Γ)∗ Vj = Xj,

(ev1 ◦ s12 ◦Ψ ◦ Γ)∗ Vj = Yj,

(ev1 ◦ s13 ◦Ψ ◦ Γ)∗ Vj = Zj,

for each j ∈ {1, 2, 3} and

(ev1 ◦Ψ ◦ Γ)∗ V4 =

(
~0 ~0 ~0

)
,

(ev1 ◦ s12 ◦Ψ ◦ Γ)∗ V4 =

(
~0 ~0 ~0

)
,

(ev1 ◦ s13 ◦Ψ ◦ Γ)∗ V4 =

(
~0 ~0 ~0

)
.
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Moreover, if φ = 0, then we have

(ev−1 ◦Ψ ◦ Γ)∗ V1 = −X1,

(ev−1 ◦Ψ ◦ Γ)∗ V2 = −X2,

(ev−1 ◦Ψ ◦ Γ)∗ V3 = X3,

(ev−1 ◦Ψ ◦ Γ)∗ V4 = X3,

and

(ev−1 ◦ s12 ◦Ψ ◦ Γ)∗ V1 = −Y1,

(ev−1 ◦ s12 ◦Ψ ◦ Γ)∗ V2 = −Y2,

(ev−1 ◦ s12 ◦Ψ ◦ Γ)∗ V3 = Y3,

(ev−1 ◦ s12 ◦Ψ ◦ Γ)∗ V4 = Y3,

and finally

(ev−1 ◦ s13 ◦Ψ ◦ Γ)∗ V1 = −Z1,

(ev−1 ◦ s13 ◦Ψ ◦ Γ)∗ V2 = −Z2,

(ev−1 ◦ s13 ◦Ψ ◦ Γ)∗ V3 = Z3,

(ev−1 ◦ s13 ◦Ψ ◦ Γ)∗ V4 = Z3.

Proof. Using Proposition 4.13, an explicit formula is given for each function whose derivative

appears in the statement of this proposition. One can then easily verify each equation by

hand or with the aid of a computer algebra system.
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Chapter 5

Nondisplaceability of the Lagrangian

5.1 The Pearl Complex

Here we briefly describe the pearl complex as defined in [BC07] and [BC09]. Let L ⊂M be

a connected, closed, monotone, Lagrangian submanifold of a connected, closed, symplectic

manifold (M,ω). Assume also that the minimal Maslov number of L is at least 2; more

precisely, where Iµ : π2 (M,L)→ Z is the Maslov homomorphism, we require that

min {Iµ (A) > 0 |A ∈ π2 (M,L)} ≥ 2.

Writing HD
2 (M,L) for the image of the Hurewicz homomorphism π2 (M,L) → H2 (M,L),

we consider the group ring Λ̃ = (Z/2Z) [HD
2 (M,L)], whose elements may be thought of as

“polynomials” in the formal variable T with coefficients in Z/2Z. More explicitly, we write

P (T ) ∈ Λ̃ as

P (T ) =
∑

A∈HD
2 (M,L)

aAT
A,

where aA ∈ Z/2Z, only finitely many of the coefficients aA are non-zero, and the “polynomi-

als” are subject to the obvious addition and multiplication rules (including T 0 = 1 ∈ Z/2Z).
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Given a commutative Λ̃-algebra R with a unit 1R ∈ R and with structural morphism

q : Λ̃→ R, we will describe the pearl complex with coefficients in R.

Consider a Morse function f : L → R and a Riemannian metric ρ so that the pair

(f, ρ) is Morse-Smale, and let J be an almost complex structure compatible with ω. Letting

Crit (f) ⊂ L denote the set of critical points of f , it has been shown in [BC07] and [BC09]

that for a generic choice of the triple (f, ρ, J), there is a chain complex

C (L; f, ρ, J ;R) =
(
(Z/2Z) 〈Crit (f)〉 ⊗ R, dR

)
called the pearl complex with coefficients in R.

In order to describe the differential dR, we must first define the moduli spaces of “pearly

trajectories” between critical points of f . Let γt : L→ L denote the time t negative gradient

flow of f , and let W s
f (x) and W u

f (x) denote the stable and unstable manifolds, respectively,

of a critical point x ∈ Crit (f) taken with respect to γt, namely

W s
f (x) =

{
p ∈ L

∣∣∣ lim
t→∞

γt (p) = x
}

and W u
f (x) =

{
p ∈ L

∣∣∣∣ lim
t→−∞

γt (p) = x

}
.

Given x, y ∈ Crit (f), we consider the space of gradient trajectories from x to y:

m̃ (x, y) = W s
f (y) ∩W u

f (x) .

Note that R acts on m̃ (x, y) by t · p = γt (p), and define m (x, y) = m̃ (x, y) /R. By standard

Morse theory arguments, the space m(x, y) is a compact 0-dimensional manifold whenever

|x| − |y| = 1. Here, the notation |x| denotes the Morse index of the critical point x.
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Writing R+ for the positive real numbers, we define Qf,ρ ⊂ L×L to be the image of the

embedding

(L \ Crit (f))× R+ ↪→ L× L,

(p, t) 7→ (p, γt (p)) .

Additionally, for each non-zero homology class A ∈ HD
2 (M,L), we consider the moduli

space M̃ (A, J) of parametrized J-holomorphic disks u : (D2, S1)→ (M,L) representing the

homology class A. Let H denote the group of automorphisms of D2 that fix −1 and 1, and

note that H acts on M̃ (A, J) in an obvious way (just as in (4.6)). Then given a sequence

of non-zero homology classes A = (A1, . . . , A`) with A1, . . . , A` ∈ HD
2 (M,L), we write

M (A, J) = M̃ (A1, J) /H × · · · × M̃ (A`, J) /H.

Since each element of H fixes −1 and 1, we have a well-defined evaluation map

evA :M (A, J)→ L2`,

([u1], . . . , [u`]) 7→ (u1 (−1) , u1 (1) , . . . , u` (−1) , u` (1)) .

Given x, y ∈ Crit (f), we then define

P (x, y,A; f, ρ, J) = ev−1
A

(
W u
f (x)× (Qf,ρ)

(`−1) ×W s
f (y)

)

as the moduli space of pearly trajectories from x to y.

Given a sequence A = (A1, . . . , A`) as above, we write Iµ (A) =
∑`

j=1 Iµ (Aj). By

choosing the data (f, ρ, J) generically, one can ensure that, for every sequence A and pair

of critical points x, y ∈ Crit (f) satisfying Iµ (A) + |x| − |y| − 1 ≤ 1, the evaluation map evA
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is transverse to W u
f (x) × (Qf,ρ)

(`−1) ×W s
f (y). Under such assumptions, the moduli space

P (x, y,A; f, ρ, J) is either empty or a smooth manifold of dimension

dim (P (x, y,A; f, ρ, J)) = Iµ (A) + |x| − |y| − 1.

Moreover, in the case that P (x, y,A; f, ρ, J) is 0-dimensional, it is in fact compact and so

consists of a finite number of points. Where #2 (FS) denotes the mod 2 count of a finite set

FS, the differential dR is defined by the equation

dR (x⊗ 1R) =
∑

y∈Crit(f)
|x|−|y|=1

#2 (m(x, y)) y ⊗ 1R

+
∑

y∈Crit(f),A=(A1,...,A`)
Iµ(A)+|x|−|y|−1=0

#2 (P (x, y,A; f, ρ, J)) y ⊗ q
(
TA1+···+A`

)
.

(5.1)

According to [BC07] and [BC09], dR as above satisfies dR ◦ dR = 0, and the resulting

homology of C (L; f, ρ, J ;R) is denoted QH∗ (L;R). Moreover, by Theorem A in [BC09], the

isomorphism class of the homology QH∗ (L;R) is independent of the choice of the generic

triple (f, ρ, J), and there is an isomorphism QH∗ (L;R)→ HF∗ (L;R), where HF∗ (L;R) is

the Lagrangian Floer homology as described in Section 3.2.g of [BC09].

5.2 Pearl Complex Computation

Here we consider again the specific case of the Lagrangian L ⊂ (S2)
3

as described in Chapters

3 and 4. The goal of this section is to show that the homology QH∗ (L;R) as described in

Section 5.1 is non-vanishing for an appropriate choice of coefficients R. To that end, we

begin by describing a Morse function on S3 ⊂ R4. We write elements of S3 as vectors

~x =

(
x1 x2 x3 x4

)>
and the standard basis vectors of R4 as ~e1, ~e2, ~e3, and ~e4.
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Proposition 5.1. The function h̃ : S3 → R defined by h̃ (~x) = x2
1 +2x2

2 +3x2
3 +4x2

4 is Morse

and has the following critical points:

(i) the points ~e1 and −~e1, which have index 0,

(ii) the points ~e2 and −~e2, which have index 1,

(iii) the points ~e3 and −~e3, which have index 2,

(iv) the points ~e4 and −~e4, which have index 3.

Moreover, with respect to the standard metric on S3, the function h̃ is Morse-Smale with

stable and unstable submanifolds given by

W s
h̃

(~e1) = {~x | x1 > 0}, W u
h̃

(~e1) = {~e1},

W s
h̃

(−~e1) = {~x | x1 < 0}, W u
h̃

(−~e1) = {−~e1},

W s
h̃

(~e2) = {~x | x1 = 0, x2 > 0}, W u
h̃

(~e2) = {~x | x3 = 0, x4 = 0, x2 > 0},

W s
h̃

(−~e2) = {~x | x1 = 0, x2 < 0}, W u
h̃

(−~e2) = {~x | x3 = 0, x4 = 0, x2 < 0},

W s
h̃

(~e3) = {~x | x1 = 0, x2 = 0, x3 > 0}, W u
h̃

(~e3) = {~x | x4 = 0, x3 > 0},

W s
h̃

(−~e3) = {~x | x1 = 0, x2 = 0, x3 < 0}, W u
h̃

(−~e3) = {~x | x4 = 0, x3 < 0},

W s
h̃

(~e4) = {~e4}, W u
h̃

(~e4) = {~x | x4 > 0},

W s
h̃

(−~e4) = {−~e4}, W u
h̃

(−~e4) = {~x | x4 < 0}.

Proof. First, a routine computation reveals that the gradient vector field of h̃ (with respect

to the standard Riemannian metric on S3) is given at ~x ∈ S3 by

gradh̃ (~x) =



2
(

1− h̃ (~x)
)
x1

2
(

2− h̃ (~x)
)
x2

2
(

3− h̃ (~x)
)
x3

2
(

4− h̃ (~x)
)
x4


.
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It is simple to compute that this vector field vanishes at each of the purported critical points,

and so they are indeed critical points. On the other hand, if ~x ∈ S3 is not one of the known

critical points, then at least two of its entries must be nonzero (for example, x1 6= 0 and

x2 6= 0). In any case, it follows that at least one of the entries of the vector gradh̃ (~x) will

be non-zero since h̃ (~x) has a well-defined value (and cannot be simultaneously 1 and 2 for

instance). It follows that the critical points listed in the statement of the proposition are

indeed the only ones.

To show that each critical point has the index claimed, it suffices to work in local coor-

dinates. We exhibit here the proof in the case of ~e3, and the proofs for the other critical

points are very similar. In a small neighborhood of ~0 ∈ R3, the map


y1

y2

y3

 7→


1√
2
y1

y2√
1−

(
1
2
y2

1 + y2
2 + y2

3

)
y3


parametrizes a neighborhood of the critical point ~e3 ∈ S3 with ~0 mapping to ~e3. Composing

this parametrization with h̃ yields the map


y1

y2

y3

 7→ y2
1

2
+ 2y2

2 + 3

(
1−

(
1

2
y2

1 + y2
2 + y2

3

))
+ 4y2

3 = 3− y2
1 − y2

2 + y2
3,

which clearly shows that ~e3 is a Morse critical point of index 2.
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Now consider the negative gradient vector field of h̃, which is given by

−gradh̃ (~x) =



2
(
h̃ (~x)− 1

)
x1

2
(
h̃ (~x)− 2

)
x2

2
(
h̃ (~x)− 3

)
x3

2
(
h̃ (~x)− 4

)
x4


,

and we let γt denote the time t flow of this vector field. We write ~a for an arbitrary point in

S3, and we consider the curve ~x(~a) : R → S3 given by ~x(~a) (t) = γt (~a). By the definition of

the flow of a vector field, we have

d

dt
~x(~a) (t) =

d

dt



~x
(~a)
1 (t)

~x
(~a)
2 (t)

~x
(~a)
3 (t)

~x
(~a)
4 (t)


=



2
(
h̃
(
~x(~a) (t)

)
− 1
)
~x

(~a)
1 (t)

2
(
h̃
(
~x(~a) (t)

)
− 2
)
~x

(~a)
2 (t)

2
(
h̃
(
~x(~a) (t)

)
− 3
)
~x

(~a)
3 (t)

2
(
h̃
(
~x(~a) (t)

)
− 4
)
~x

(~a)
4 (t)


and ~x(~a) (0) = ~a. (5.2)

Now suppose that ~a ∈ S3 satisfies a1 > 0. Since h̃ (~x) ≥ 1 for all ~x, it follows from (5.2)

that ~x
(~a)
1 (t) > 0 for all t ≥ 0. In particular, this implies that lim

t→∞
γt (~a) = lim

t→∞
~x(~a) (t) cannot

be any critical point other than ~e1. It follows that {~x |x1 > 0} ⊂ W s
h̃

(~e1). On the other

hand, if ~a satisfies a1 < 0, then a similar argument shows that {~x |x1 < 0} ⊂ W s
h̃

(−~e1).

Moreover, if ~a satisfies a1 = 0, then it follows from (5.2) that ~x
(~a)
1 (t) = 0 for all t, and hence

~a 6∈ W s
h̃

(~e1) and also ~a 6∈ W s
h̃

(−~e1). Thus, we have shown that W s
h̃

(~e1) and W s
h̃

(−~e1) are

exactly as claimed in the statement of the proposition.

Next, suppose that ~a satisfies a1 = 0 so that a2
2 + a2

3 + a2
4 = 1. From the definition of h̃,

one can then easily see that h̃ (~a) ≥ 2. If we suppose also that a2 > 0, then it follows from

(5.2) that ~x
(~a)
2 (t) > 0 for all t ≥ 0 (since ~x

(~a)
1 (t) = 0 for all t and h̃ (~x) ≥ 2 for all ~x with

x1 = 0). This implies that lim
t→∞

γt (~a) = lim
t→∞

~x(~a) (t) cannot be any critical point other than
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~e2, and so

{~x |x1 = 0, x2 > 0} ⊂ W s
h̃

(~e2) .

On the other hand if ~a satisfies a1 = 0 and a2 < 0, then a similar argument shows that

{~x |x1 = 0, x2 < 0} ⊂ W s
h̃

(−~e2) .

Moreover, if ~a satisfies a1 6= 0, then we already know that ~a 6∈ W s
h̃

(~e2) and ~a 6∈ W s
h̃

(−~e2)

since it must be in either W s
h̃

(~e1) or W s
h̃

(−~e1). If ~a satisfies a2 = 0, then it follows from

(5.2) that ~x
(~a)
2 (t) = 0 for all t, and hence ~a 6∈ W s

h̃
(~e2) and also ~a 6∈ W s

h̃
(−~e2). Thus, we have

shown that W s
h̃

(~e2) and W s
h̃

(−~e2) are exactly as claimed in the statement of the proposition.

Similar arguments work to show that the other stable submanifolds are as claimed, and

by working with the ordinary gradient flow instead of the negative gradient flow, the exact

same arguments will work to prove that the unstable submanifolds (of the negative gradient

flow) are as claimed in the proposition. The proofs of these remaining cases are omitted.

Proving that h̃ is Morse-Smale with respect to the standard Riemannian metric is done by

going through all cases. Here we present a few examples and leave the remaining cases as

exercises for the interested reader.

First, we note that W s
h̃

(~e1) is transverse to every unstable submanifold. This is obvious

since W s
h̃

(~e1) is an open subset of S3, and the same holds for W s
h̃

(−~e1).

Next, we will show that W s
h̃

(~e2) is transverse to every unstable submanifold. Note that

W s
h̃

(~e2) does not intersect W u
h̃

(~e1), W u
h̃

(−~e1), or W u
h̃

(−~e2), and so there is nothing to prove

in these cases. If ~x ∈ W s
h̃

(~e2) ∩ W u
h̃

(~e2), then we have ~x = ~e2, and a basis for T~e2S
3 is

given by ~e1 ∈ T~e2W u
h̃

(~e2) and ~e3, ~e4 ∈ T~e2W s
h̃

(~e2). Thus, W s
h̃

(~e2) is transverse to W u
h̃

(~e2).

If ~x ∈ W s
h̃

(~e2) ∩W u
h̃

(~e3) or ~x ∈ W s
h̃

(~e2) ∩W u
h̃

(−~e3), respectively, then we have x1 = 0 and

x4 = 0, and thus a basis for T~xS
3 is given by the vectors ~e4,

(
0 x3 −x2 0

)>
∈ T~xW s

h̃
(~e2)

and ~e1 ∈ T~xW u
h̃

(~e3) or ~e1 ∈ T~xW u
h̃

(−~e3), respectively. Hence, W s
h̃

(~e2) is transverse to both
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W u
h̃

(~e3) and W u
h̃

(−~e3). Since W u
h̃

(~e4) and W u
h̃

(−~e4) are both open subsets of S3, there is

nothing to prove regarding the transversality of W s
h̃

(~e2) with these unstable submanifolds.

Hence, we have shown that W s
h̃

(~e2) is transverse to all of the unstable submanifolds.

The remainder of the cases are similar and are left to the reader.

We recall that S3 can be identified with the group of unit quaternions S via the corre-

spondence ~x 7→ x1 +x2i+x3j+x4k, and so we may think of the map Φ defined in (3.1) as a

map S3 → SO(3). We observe that Φ is invariant with respect to the action of the antipodal

map on S3, and so the following proposition follows rather easily from Proposition 5.1.

Proposition 5.2. The map Φ : S3 → SO(3) induces a Riemannian metric g on SO(3)

from the standard Riemannian metric on S3, and the map h̃ : S3 → R descends to a map

h : SO(3) → R satisfying h̃ = h ◦ Φ. With respect to the induced metric, the function h is

Morse-Smale with the following critical points:

(i) the point Φ (±~e1), which has index 0,

(ii) the point Φ (±~e2), which has index 1,

(iii) the point Φ (±~e3), which has index 2,

(iv) the point Φ (±~e4), which has index 3.
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Additionally, the stable and unstable submanifolds of these critical points are given by:

W s
h (Φ (±~e1)) = Φ

(
W s
h̃

(~e1)
)

= Φ
(
W s
h̃

(−~e1)
)
,

W u
h (Φ (±~e1)) = Φ

(
W u
h̃

(~e1)
)

= Φ
(
W u
h̃

(−~e1)
)
,

W s
h (Φ (±~e2)) = Φ

(
W s
h̃

(~e2)
)

= Φ
(
W s
h̃

(−~e2)
)
,

W u
h (Φ (±~e2)) = Φ

(
W u
h̃

(~e2)
)

= Φ
(
W u
h̃

(−~e2)
)
,

W s
h (Φ (±~e3)) = Φ

(
W s
h̃

(~e3)
)

= Φ
(
W s
h̃

(−~e3)
)
,

W u
h (Φ (±~e3)) = Φ

(
W u
h̃

(~e3)
)

= Φ
(
W u
h̃

(−~e3)
)
,

W s
h (Φ (±~e4)) = Φ

(
W s
h̃

(~e4)
)

= Φ
(
W s
h̃

(−~e4)
)
,

W u
h (Φ (±~e4)) = Φ

(
W u
h̃

(~e4)
)

= Φ
(
W u
h̃

(−~e4)
)
.

Proof. According to the discussion preceding Proposition 3.1, the map Φ : S3 → SO(3) is a

two-fold covering map. Given vectors X1, X2 ∈ TPSO(3) and ~x ∈ Φ−1 (P ), there are unique

vectors X̃1, X̃2 ∈ T~xS
3 satisfying Φ∗X̃1 = X1 and Φ∗X̃2 = X2. We then define g by the

equation

g (X1, X2) =
〈
X̃1, X̃2

〉
,

noting that this definition is independent of the choice made since Φ−1 (P ) = {±~x} and since

the antipodal map a : S3 → S3 is an isometry satisfying Φ ◦ a = Φ. Similarly, we can define

h (P ) = h̃ (~x) for any ~x ∈ Φ−1 (P ) since Φ−1 (P ) = {±~x} and since h̃ (~x) = h̃ (−~x). It is

clear that h ◦ Φ = h̃. From the above constructions, it is easy to see that

gradh (P ) = Φ∗gradh̃ (~x) ,

where the right hand side is independent of the chosen ~x ∈ Φ−1 (P ) and so well-defined. The

remaining statements of the proposition then follow immediately from Proposition 5.1.
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Now, where g is defined as in the proof of Proposition 5.2 and where Υ is defined as

in (3.5), we define a Riemannian metric ρ on the Lagrangian L ⊂ (S2)
3

by ρ = Υ∗g.

Furthermore, where h is as in the proof of Proposition 5.2, we define f : L→ R by f = h◦Υ.

Corollary 5.3. Let ρ and f be as above. With respect to the Riemannian metric ρ, the map

f : L→ R is Morse-Smale with the following critical points:

(i) the point C0 = Υ−1 (Φ (±~e1)), which has index 0,

(ii) the point C1 = Υ−1 (Φ (±~e2)), which has index 1,

(iii) the point C2 = Υ−1 (Φ (±~e3)), which has index 2,

(iv) the point C3 = Υ−1 (Φ (±~e4)), which has index 3.

Additionally, the stable and unstable submanifolds of these critical points are given by:

W s
f (C0) = Υ−1 (W s

h (Φ (±~e1))) ,

W u
f (C0) = Υ−1 (W u

h (Φ (±~e1))) ,

W s
f (C1) = Υ−1 (W s

h (Φ (±~e2))) ,

W u
f (C1) = Υ−1 (W u

h (Φ (±~e2))) ,

W s
f (C2) = Υ−1 (W s

h (Φ (±~e3))) ,

W u
f (C2) = Υ−1 (W u

h (Φ (±~e3))) ,

W s
f (C3) = Υ−1 (W s

h (Φ (±~e4))) ,

W u
f (C3) = Υ−1 (W u

h (Φ (±~e4))) .

Proof. This follows immediately from Proposition 5.2, the definitions of f and ρ, and the

fact that Υ is a diffeomorphism.
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As part of the pearl complex computation, we need to know how many (negative) gradient

flow lines there are between critical points whose indices differ by 1. Let C0, C1, C2, and C3

be the critical points of f as in Corollary 5.3. Since the pair (f, ρ) is Morse-Smale, the space

of gradient trajectories

m̃ (Cj, Cj−1) = W s
f (Cj−1) ∩W u

f (Cj)

is 1-dimensional. Moreover, we recall that R acts on m̃ (Cj, Cj−1) via the negative gradient

flow of f , and we write m (Cj, Cj−1) = m̃ (Cj, Cj−1) /R, noting that this space is a compact

0-dimensional manifold.

Lemma 5.4. The mod 2 count of m (Cj, Cj−1) is 0 for j = 1, 2, 3. In particular, we have

#2 (m (C1, C0)) = 0, #2 (m (C2, C1)) = 0, and #2 (m (C3, C2)) = 0.

Proof. We only prove that #2 (m (C2, C1)) = 0 since the other cases are very similar. To

prove this result, it suffices to show that m̃ (C2, C1) consists of 2 disjoint arcs. Furthermore,

it follows quickly from the definitions and Corollary 5.3 that we need only show that

W s
h (Φ (±~e2)) ∩W u

h (Φ (±~e3))

consists of 2 disjoint arcs in SO(3). Using Proposition 5.2, this means that we need to show

that

Φ
(
W s
h̃

(~e2)
)
∩ Φ

(
W u
h̃

(~e3)
)

consists of 2 disjoint arcs. It follows rather quickly that

Φ
(
W s
h̃

(~e2)
)
∩ Φ

(
W u
h̃

(~e3)
)

= Φ
(
Φ−1

(
Φ
(
W s
h̃

(~e2)
))
∩ Φ−1

(
Φ
(
W u
h̃

(~e3)
)))

= Φ
((
W s
h̃

(~e2) ∪W s
h̃

(−~e2)
)
∩
(
W u
h̃

(~e3) ∪W u
h̃

(−~e3)
))
.

104



By Proposition 5.1, we see that
(
W s
h̃

(~e2) ∪W s
h̃

(−~e2)
)
∩
(
W u
h̃

(~e3) ∪W u
h̃

(−~e3)
)

consists of

the 4 following disjoint arcs in S3:

W s
h̃

(~e2) ∩W u
h̃

(~e3) = {~x |x1 = 0, x4 = 0, x2 > 0, x3 > 0},

W s
h̃

(~e2) ∩W u
h̃

(−~e3) = {~x |x1 = 0, x4 = 0, x2 > 0, x3 < 0},

W s
h̃

(−~e2) ∩W u
h̃

(~e3) = {~x |x1 = 0, x4 = 0, x2 < 0, x3 > 0},

W s
h̃

(−~e2) ∩W u
h̃

(−~e3) = {~x |x1 = 0, x4 = 0, x2 < 0, x3 < 0}.

Since Φ (−~x) = Φ (~x), it is easy to see that the image under Φ of the 4 arcs above is a pair of

arcs in SO(3) (the first and fourth arcs above have the same image under Φ and likewise for

the second and third arcs). In other words, the space Φ
(
W s
h̃

(~e2)
)
∩ Φ

(
W u
h̃

(~e3)
)

in SO(3)

consists of the following 2 disjoint arcs:

Φ
(
W s
h̃

(~e2) ∩W u
h̃

(~e3)
)

= Φ
(
W s
h̃

(−~e2) ∩W u
h̃

(−~e3)
)
,

Φ
(
W s
h̃

(~e2) ∩W u
h̃

(−~e3)
)

= Φ
(
W s
h̃

(−~e2) ∩W u
h̃

(~e3)
)
.

One can easily see that these 2 arcs are disjoint by noting that Φ
∣∣
{~x |x2>0} is injective.

Now let Bj = D − Sj (for j ∈ {1, 2, 3}) as in Proposition 4.3, and let J be the standard

complex structure on (S2)
3
. Following the notation of Section 5.1, we write

M (A, J) = M̃ (A, J) /H = M̃ (Bj) /H

for the (length 1) sequence A = (Bj). As in Section 5.1, for each such A, we consider the

map evA :M (A, J)→ L× L defined by

evA ([u]) = (u (−1) , u (1)) = (ev−1 ([u]) , ev1 ([u])) .
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Observe that the submanifold W u
f (C2) is not compact (since it is diffeomorphic to R2), but

it does have an obvious compactification, which we denote W u
f (C2) and whose boundary is

given by

∂
(
W u
f (C2)

)
= W u

f (C1) ∪W u
f (C0) .

This also gives a compactification of W u
f (C2)×W s

f (C3), which we denote W u
f (C2)×W s

f (C3)

and whose boundary is given by

∂
(
W u
f (C2)×W s

f (C3)
)

=
(
W u
f (C1) ∪W u

f (C0)
)
× {C3}. (5.3)

Lemma 5.5. Let A = (Bj) for some j ∈ {1, 2, 3}. Then the map evA is transverse to

W u
f (C2)×W s

f (C3), and the resulting moduli space of pearly trajectories

P (C2, C3,A; f, ρ, J) = ev−1
A

(
W u
f (C2)×W s

f (C3)
)

consists of exactly one point. In particular, we have

#2 (P (C2, C3,A; f, ρ, J)) = 1.

Moreover, the image of the map evA does not intersect ∂
(
W u
f (C2)×W s

f (C3)
)

, and so the

number #2 (P (C2, C3,A; f, ρ, J)) is invariant under small perturbations of the data (f, ρ, J).

Proof. We prove the result only for the case of A = (B1) since the other two cases are very

similar. By Corollary 4.11 and Proposition 4.12, the map Ψ ◦ Γ is a diffeomorphism from

S1 (TS2) × (−π, π) to M (A, J). Thus, to prove the desired result, it suffices to show that

the image of the map

evA ◦Ψ ◦ Γ : S1
(
TS2

)
× (−π, π)→ L× L
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intersects W u
f (C2)×W s

f (C3) transversally in a single point and has empty intersection with

∂
(
W u
f (C2)×W s

f (C3)
)

.

Suppose that (~p, ~q, φ) ∈ (evA ◦Ψ ◦ Γ)−1 (W u
f (C2)×W s

f (C3)
)
, and note that this implies

that ev1 ◦Ψ ◦ Γ (~p, ~q, φ) = C3 since W s
f (C3) = {C3}. In particular, one can compute that

C3 = Υ−1 (Φ (±~e4)) =


−
√

2
3

1√
6

1√
6

1√
6
−
√

2
3

1√
6

− 1√
6
− 1√

6

√
2
3

 ,

and by Proposition 4.13, it follows that

(
−~q

√
3

2
~p+ 1

2
~q −

√
3

2
~p+ 1

2
~q

)
= u~p,~q (1) = ev1 ◦Ψ ◦ Γ (~p, ~q, φ) =


−
√

2
3

1√
6

1√
6

1√
6
−
√

2
3

1√
6

− 1√
6
− 1√

6

√
2
3

 .

From this equation, it quickly follows that

~q =


√

2
3

− 1√
6

1√
6

 and ~p =


0

− 1√
2

− 1√
2

 , (5.4)

and we assume that they are as such for the remainder of this proof. The assumption that

(~p, ~q, φ) ∈ (evA ◦Ψ ◦ Γ)−1 (W u
f (C2)×W s

f (C3)
)

implies that ev−1 ◦Ψ◦Γ (~p, ~q, φ) ∈ W u
f (C2).

By Proposition 4.13, this means that u~p,~q
(
ei(φ+π)

)
∈ W u

f (C2). Using the diffeomorphism

Υ : L → SO(3), it follows from Corollary 5.3 that Υ ◦ u~p,~q
(
ei(φ+π)

)
∈ W u

h (Φ (±~e3)). It is
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not difficult to check by hand or using a computer algebra system that

Υ ◦ u~p,~q
(
ei(φ+π)

)
= Φ



1√
6

cos
(
φ
2

)
1√
6

cos
(
φ
2

)√
2
3

cos
(
φ
2

)
sin
(
φ
2

)


,

from which it follows that



1√
6

cos
(
φ
2

)
1√
6

cos
(
φ
2

)√
2
3

cos
(
φ
2

)
sin
(
φ
2

)


∈ Φ−1 (W u

h (Φ (±~e3))) .

By Propositions 5.1 and 5.2, we have

Φ−1 (W u
h (Φ (±~e3))) = W u

h̃
(~e3) ∪W u

h̃
(−~e3) = {~x |x4 = 0, x3 6= 0},

and so it must be the case that φ = 0. Thus, we have shown that

(evA ◦Ψ ◦ Γ)−1 (W u
f (C2)×W s

f (C3)
)

= {(~p, ~q, 0)} ,

where ~p and ~q are as in (5.4).

To show that evA ◦ Ψ ◦ Γ is transverse to W u
f (C2) × W s

f (C3), we begin by defining

C = ev−1 ◦Ψ ◦ Γ (~p, ~q, 0), and we will show that

TCW
u
f (C2) = span{X1 (C) ,X2 (C)},
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where X1 and X2 are defined as in (4.9). Indeed, we compute that

C =


−
√

2
3

1√
6

1√
6

1√
6

1√
6
−
√

2
3

− 1√
6

√
2
3
− 1√

6

 ,

from which it follows that

X1 (C) =


0 −

√
6

4

√
6

4

−
√

6
4

√
6

4
0

−
√

6
4

0
√

6
4

 and X2 (C) =


1
2
−1

4
−1

4

1
2
−1

4
−1

4

−1
2

1
4

1
4

 .

On the other hand, we note that C = Υ−1 ◦ Φ (~a) for

~a =



1√
6

1√
6√
2
3

0


∈ W u

h̃
(~e3) ,

and routine computations show that

(
Υ−1 ◦ Φ

)
∗



√
6

8

−
√

6
8

0

0


=


0 −

√
6

4

√
6

4

−
√

6
4

√
6

4
0

−
√

6
4

0
√

6
4

 = X1 (C) for



√
6

8

−
√

6
8

0

0


∈ T~aW u

h̃
(~e3) ,
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and also that

(
Υ−1 ◦ Φ

)
∗



1
4

1
4

−1
4

0


=


1
2
−1

4
−1

4

1
2
−1

4
−1

4

−1
2

1
4

1
4

 = X2 (C) for



1
4

1
4

−1
4

0


∈ T~aW u

h̃
(~e3) .

Since W u
f (C2) = Υ−1 ◦ Φ

(
W u
h̃

(~e3)
)

, it follows from the above computations that

TCW
u
f (C2) = span{X1 (C) ,X2 (C)}

exactly as claimed.

Now, noting that evA ◦Ψ ◦ Γ (~p, ~q, 0) = (C,C3), we use the splitting

T(C,C3) (L× L) = TCL× TC3L,

and it follows from the definition of evA that

(evA ◦Ψ ◦ Γ)∗ = ((ev−1 ◦Ψ ◦ Γ)∗ , (ev1 ◦Ψ ◦ Γ)∗) .

Then, it follows from Proposition 4.14 that

(evA ◦Ψ ◦ Γ)∗ V1 = (−X1 (C) ,X1 (C3)) ,

(evA ◦Ψ ◦ Γ)∗ V2 = (−X2 (C) ,X2 (C3)) ,

(evA ◦Ψ ◦ Γ)∗ V3 = (X3 (C) ,X3 (C3)) ,

(evA ◦Ψ ◦ Γ)∗ V4 =

(
X3 (C) ,

(
~0 ~0 ~0

))
,
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and it is then easy to see that

(evA ◦Ψ ◦ Γ)∗ T(~p,~q,0)

(
S1
(
TS2

)
× (−π, π)

)
+ T(C,C3)

(
W u
f (C2)×W s

f (C3)
)

= T(C,C3) (L× L)

since we have already shown that

TCW
u
f (C2) = span{X1 (C) ,X2 (C)}.

Thus, we have shown that evA ◦Ψ ◦ Γ is transverse to W u
f (C2)×W s

f (C3) as required.

Finally, we suppose that (~p, ~q, φ) ∈ (evA ◦Ψ ◦ Γ)−1
(
∂
(
W u
f (C2)×W s

f (C3)
))

, which by

(5.3) implies that ev1 ◦ Ψ ◦ Γ (~p, ~q, φ) = C3. As before, this forces ~p and ~q to be defined

by (5.4), and we also must have ev−1 ◦ Ψ ◦ Γ (~p, ~q, φ) ∈ W u
f (C1) ∪ W u

f (C0) by (5.3). By

Proposition 4.13, this implies that u~p,~q
(
ei(φ+π)

)
∈ W u

f (C1) ∪W u
f (C0). Then, just as before,

it follows that 

1√
6

cos
(
φ
2

)
1√
6

cos
(
φ
2

)√
2
3

cos
(
φ
2

)
sin
(
φ
2

)


∈ Φ−1 (W u

h (Φ (±~e2)) ∪W u
h (Φ (±~e1))) .

By Propositions 5.1 and 5.2, we have

Φ−1 (W u
h (Φ (±~e2)) ∪W u

h (Φ (±~e1))) = W u
h̃

(~e2) ∪W u
h̃

(−~e2) ∪W u
h̃

(~e1) ∪W u
h̃

(−~e1)

= {~x |x3 = 0, x4 = 0},

from which it follows that cos
(
φ
2

)
= 0 = sin

(
φ
2

)
, a contradiction. So, the map evA◦Ψ◦Γ does

not intersect ∂
(
W u
f (C2)×W s

f (C3)
)

. Invariance of the number #2 (P (C2, C3,A; f, ρ, J))

under small perturbations of the data (f, ρ, J) follows from the fact that the map evA is

transverse to W u
f (C2)×W s

f (C3) and does not intersect ∂
(
W u
f (C2)×W s

f (C3)
)

.
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Similarly to the discussion preceding Lemma 5.5, we note that W u
f (C1)×W s

f (C2) is not

compact but admits an obvious compactification, which we write as

W u
f (C1)×W s

f (C2) =
(
W u
f (C1) ∪W u

f (C0)
)
×
(
W s
f (C2) ∪W s

f (C3)
)
. (5.5)

Lemma 5.6. Let A = (Bj) for some j ∈ {1, 2, 3}. Then the map evA satisfies

ev−1
A

(
W u
f (C1)×W s

f (C2)
)

= ∅.

In particular, the map evA is transverse to W u
f (C1)×W s

f (C2), and we have

#2 (P (C1, C2,A; f, ρ, J)) = #2

(
ev−1

A

(
W u
f (C1)×W s

f (C2)
))

= 0,

which is invariant under small perturbations of the data (f, ρ, J).

Proof. Again we only prove the result for the case of A = (B1) with the proofs of the

other cases being very similar. Since Ψ ◦ Γ is a diffeomorphism from S1 (TS2)× (−π, π) to

M (A, J), we need only show that the image of the map

evA ◦Ψ ◦ Γ : S1
(
TS2

)
× (−π, π)→ L× L

does not intersect W u
f (C1)×W s

f (C2). By (5.5), we need to show that the image of the map

evA ◦Ψ ◦ Γ does not intersect
(
W u
f (C1) ∪W u

f (C0)
)
×
(
W s
f (C2) ∪W s

f (C3)
)
.
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First, we observe that W s
h̃

(~e3) ∪W s
h̃

(~e4) can be parametrized by

~xs : (−π, π]→ S3

t 7→



0

0

cos
(
t
2

)
sin
(
t
2

)


,

and since W s
f (C2) ∪W s

f (C3) = Υ−1
(

Φ
(
W s
h̃

(~e3) ∪W s
h̃

(~e4)
))

, one can easily compute that

W s
f (C2) ∪W s

f (C3) is parametrized by

Υ−1 ◦ Φ ◦ ~xs : (−π, π]→ L

t 7→


−
√

2
3

1√
6

1√
6

− cos(t)+sin(t)√
6

2 cos(t)−sin(t)√
6

− cos(t)−2 sin(t)√
6

cos(t)−sin(t)√
6

cos(t)+2 sin(t)√
6

−2 cos(t)+sin(t)√
6

 .

Now assume that (~p, ~q, φ) ∈ (evA ◦Ψ ◦ Γ)−1
(
W u
f (C1)×W s

f (C2)
)

, and by Proposition 4.13

and (5.5), it follows that

(
−~q

√
3

2
~p+ 1

2
~q −

√
3

2
~p+ 1

2
~q

)
= u~p,~q (1) = ev1 ◦Ψ ◦ Γ (~p, ~q, φ) ∈ W s

f (C2) ∪W s
f (C3) .

Using the above parametrization of W s
f (C2) ∪W s

f (C3) and the projection pr1 : (S2)
3 → S2

onto the first factor, we see that

~q =


√

2
3

cos(t)+sin(t)√
6

− cos(t)−sin(t)√
6



113



for some t ∈ (−π, π]. For any such choice of ~q as above, we compute using Proposition 4.13

that

pr1 ◦ ev−1 ◦Ψ ◦ Γ (~p, ~q, φ) = pr1 ◦ u~p,~q
(
ei(φ+π)

)
= −~q =


−
√

2
3

− cos(t)+sin(t)√
6

cos(t)−sin(t)√
6

 . (5.6)

On the other hand, similarly to above, we can parametrize W u
h̃

(~e2) ∪W u
h̃

(~e1) by

~xu : (−π, π]→ S3

τ 7→



sin
(
τ
2

)
cos
(
τ
2

)
0

0


,

and since W u
f (C1)∪W u

f (C0) = Υ−1
(

Φ
(
W u
h̃

(~e2) ∪W u
h̃

(~e1)
))

, one can easily compute that

W u
f (C1) ∪W u

f (C0) is parametrized by

Υ−1 ◦ Φ ◦ ~xu : (−π, π]→ L

τ 7→


√

2
3

− 1√
6

− 1√
6

cos(τ)+sin(τ)√
6

−2 cos(τ)+sin(τ)√
6

cos(τ)−2 sin(τ)√
6

cos(τ)−sin(τ)√
6

cos(τ)+2 sin(τ)√
6

−2 cos(τ)+sin(τ)√
6

 .

Since we have assumed that (~p, ~q, φ) ∈ (evA ◦Ψ ◦ Γ)−1
(
W u
f (C1)×W s

f (C2)
)

, it must be the

case that ev−1 ◦ Ψ ◦ Γ (~p, ~q, φ) ∈ W u
f (C1) ∪W u

f (C0). Using the above parametrization and
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the projection pr1, this implies that

pr1 ◦ ev−1 ◦Ψ ◦ Γ (~p, ~q, φ) =


√

2
3

cos(τ)+sin(τ)√
6

cos(τ)−sin(τ)√
6


for some τ ∈ (−π, π], which contradicts (5.6) regardless of the choices of t and τ . Hence,

it must in fact be the case that (evA ◦Ψ ◦ Γ)−1
(
W u
f (C1)×W s

f (C2)
)

is empty as required.

Invariance of the number #2 (P (C1, C2,A; f, ρ, J)) under small perturbations of the data

(f, ρ, J) follows from the fact that the map evA does not intersect W u
f (C1)×W s

f (C2).

Let R denote the field with 4 elements. More explicitly, where (Z/2Z) [X] is the ring of

polynomials in the variable X with coefficients in Z/2Z, we have

R =
(Z/2Z) [X]

〈X2 +X + 1〉
.

The four elements of R can be represented by the elements 0, 1, X,X + 1, and we refer

to the elements by these representatives henceforth. According to Lemma 3.8, we see that

HD
2

(
(S2)

3
, L
)

is isomorphic to π2

(
(S2)

3
, L
)

, which is in turn isomorphic to

Fab (D,S1, S2, S3)

〈2D − S1 − S2 − S3〉

by Lemma 3.9. Let R∗ = {1, X,X + 1} denote the multiplicative group of units of R, and

define a group homomorphism ϕq : Fab (D,S1, S2, S3)→ R∗ by requiring

ϕq (D) = 1, ϕq (S1) = 1, ϕq (S2) = X, ϕq (S3) = X + 1. (5.7)
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Lemma 5.7. The homomorphism ϕq : Fab (D,S1, S2, S3) → R∗ descends to a homomor-

phism

Fab (D,S1, S2, S3)

〈2D − S1 − S2 − S3〉
→ R∗,

which we still denote ϕq.

Proof. This simply amounts to the computation

ϕq (2D − S1 − S2 − S3) = (ϕ1 (D))2 (ϕq (S1))−1 (ϕq (S2))−1 (ϕq (S2))−1

= (1)2 (1)−1X−1 (X + 1)−1 = (1) (1) (X + 1) (X) = 1,

the penultimate equality following from the fact that X−1 = X + 1 and (X + 1)−1 = X.

Following the notation from Section 5.1, we write Λ̃ = (Z/2Z)
[
HD

2

(
(S2)

3
, L
)]

. Based

on our previously established conventions, we think of elements of Λ̃ as “polynomials” in the

formal variable T with coefficients in Z/2Z. Identifying HD
2

(
(S2)

3
, L
)

with

Fab (D,S1, S2, S3)

〈2D − S1 − S2 − S3〉

as discussed above, we define a map

q : Λ̃→ R∑
A∈HD

2 ((S2)3,L)

aAT
A 7→

∑
A∈HD

2 ((S2)3,L)

aAϕq (A) .
(5.8)

Lemma 5.8. The map q above is a ring homomorphism, and defining multiplication by

P (T ) · Z = q (P (T ))Z

for P (T ) ∈ Λ̃ and Z ∈ R makes R into a Λ̃-algebra with structural morphism q.
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Proof. The fact that q is a ring homomorphism is trivial since ϕq : HD
2

(
(S2)

3
, L
)
→ R∗ is a

group homomorphism. This also makes it clear that R is a Λ̃-module with the multiplication

defined in the statement of the lemma. It is also a trivial calculation to verify that this module

structure is compatible with the standard multiplication of R, and so R is a Λ̃-algebra with

structural morphism q.

Theorem 5.9. The homology QH∗ (L;R) of the pearl complex with coefficients in R is

non-trivial.

Proof. We refer the reader back to Section 5.1 for a brief description of the chain com-

plex C (L; f, ρ, J ;R) and its differential dR, which is defined in (5.1). We will show that

dR (C2 ⊗ 1) = 0 and that C2 ⊗ 1 is not in the image of dR.

Observe that L has minimal Maslov number 2 by Propositions 3.9 and 4.1; and moreover,

the only Maslov index 2 classes with holomorphic representatives are B1, B2, and B3 accord-

ing to Proposition 4.2. Since non-constant holomorphic disks have positive area and hence

positive Maslov index by monotonicity of L (see Proposition 4.1), it follows that A = (Bj) for

some j ∈ {1, 2, 3} whenever A is a sequence of non-zero homology classes A = (A1, . . . , A`)

whose entries have holomorphic representatives and which satisfies Iµ (A) = 2.

We claim that the only terms appearing in the second sum of (5.1) in the case of x = C2

are those with y = C3 and A = (Bj) for some j ∈ {1, 2, 3}. Indeed, if a sequence of non-zero

homology classes A = (A1, . . . , A`) and a critical point y ∈ Crit (f) satisfy

Iµ (A) + |C2| − |y| − 1 = 0,

then it must be the case that Iµ (A) = |y| − 1. If |y| < 3, then we have Iµ (A) < 2, which

implies that the moduli space P (C2, y,A; f, ρ, J) is empty. If |y| ≥ 3, which implies y = C3,

then we must have Iµ (A) = 2. This in turn implies either that A = (Bj) or else that the

corresponding moduli space P (C2, y,A; f, ρ, J) is empty. In other words, the moduli space
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P (C2, y,A; f, ρ, J) is empty unless y = C3 and A = (Bj) for some j ∈ {1, 2, 3}, proving the

claim at the start of this paragraph.

We can then compute that

dR (C2 ⊗ 1) = #2 (m(C2, C1))C1 ⊗ 1

+ #2 (P (C2, C3, (B1) ; f, ρ, J))C3 ⊗ q
(
TB1

)
+ #2 (P (C2, C3, (B2) ; f, ρ, J))C3 ⊗ q

(
TB2

)
+ #2 (P (C2, C3, (B3) ; f, ρ, J))C3 ⊗ q

(
TB3

)
.

According to Lemma 5.4, the first term above is 0, and by Lemma 5.5 and the definition of

q in (5.8), we obtain dR (C2 ⊗ 1) = C3 ⊗ ϕq (B1) + C3 ⊗ ϕq (B2) + C3 ⊗ ϕq (B3). Then, by

the definition of ϕq in (5.7), we note that

ϕq (B1) = ϕq (D − S1) = ϕq (D) (ϕq (S1))−1 = (1) (1)−1 = 1,

ϕq (B2) = ϕq (D − S2) = ϕq (D) (ϕq (S2))−1 = (1) (X)−1 = X + 1,

ϕq (B3) = ϕq (D − S3) = ϕq (D) (ϕq (S3))−1 = (1) (X + 1)−1 = X,

from which it follows that

dR (C2 ⊗ 1) = C3 ⊗ (ϕq (B1) + ϕq (B2) + ϕq (B3)) = C3 ⊗ (1 +X + 1 +X) = C3 ⊗ 0 = 0.

By an argument similar to the one given above, one can easily see that the moduli space

P (C3, y,A; f, ρ, J) is empty for all choices of A = (A1, . . . , A`) and y ∈ Crit (f). It then

follows from Lemma 5.4 that dR (C3 ⊗ 1) = 0. Another similar argument shows that the

moduli space P (C1, y,A; f, ρ, J) is empty unless y = C2 and A = (Bj) for some j ∈ {1, 2, 3}.

Then, using Lemma 5.4 and Lemma 5.6, we obtain dR (C1 ⊗ 1) = 0.
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By yet another argument similar to the one given above, one can see that the moduli

space P (C0, y,A; f, ρ, J) is empty unless one of the following two conditions holds:

(i) y = C1 and A = (Bj) for some j ∈ {1, 2, 3},

(ii) y = C3 and Iµ (A) = 4.

Since we additionally have |C0| = 0, it follows that

dR (C0 ⊗ 1) =
∑

y∈Crit(f),A=(A1,...,A`)
Iµ(A)+|C0|−|y|−1=0

#2 (P (C0, y,A; f, ρ, J)) y ⊗ q
(
TA1+···+A`

)

=
∑

A=(Bj)

#2 (P (C0, C1,A; f, ρ, J))C1 ⊗ q
(
TBj

)
+

∑
A=(A1,...,A`)
Iµ(A)=4

#2 (P (C0, C3,A; f, ρ, J))C3 ⊗ q
(
TA1+···+A`

)
,

from which it is clear that C2 ⊗ 1 is not in the image of dR (since we have already shown

that dR (C1 ⊗ 1) = dR (C3 ⊗ 1) = 0).

Finally, we give a remark regarding the genericity of the data (f, ρ, J). While our choice of

data (f, ρ, J) may not necessarily be sufficiently generic to guarantee that all of the relevant

moduli spaces are cut out transversally (for instance, we have not verified transversality for

P (C0, C3,A; f, ρ, J) with Iµ (A) = 4), the fact that (f, ρ) is Morse-Smale and the results of

Lemmata 5.5 and 5.6 indicate that, for a small perturbation of the data which guarantees

sufficient genericity, all of the computations performed in the proof of this theorem will still

hold true. In particular, we will still have dR (C2 ⊗ 1) = 0, and it will still be the case that

C2⊗1 is not in the image of dR. Thus, we see that the homology QH∗ (L;R) is nonvanishing

as claimed.

Corollary 5.10. The Lagrangian submanifold L ⊂ (S2)
3

is nondisplaceable under Hamilto-

nian diffeomorphisms.
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Proof. Assume to the contrary that ϑ : (S2)
3 → (S2)

3
is a Hamiltonian diffeomorphism such

that L ∩ ϑ (L) is empty, and let F : (S2)
3 × [0, 1] → R be a time-dependent Hamiltonian

function generating ϑ (so that ϑ is the time-1 flow of the time-dependent Hamiltonian vector

field XFt). In order to define HF∗ (L;R) as in Section 3.2.g of [BC09], one considers the

path space

P0 (L) =
{
γ ∈ C∞

(
[0, 1],

(
S2
)3
) ∣∣∣ γ (0) ∈ L, γ (1) ∈ L, [γ] = 1 ∈ π1

((
S2
)3
, L
)}

,

and one then considers the subset OF ⊂ P0 (L) consisting of orbits of the Hamiltonian flow

associated to F . In our case, the subset OF is empty since L ∩ ϑ (L) = ∅. Then, where

p : π1 (P0 (L)) → HD
2

(
(S2)

3
, L
)

is the natural epimorphism, one considers the regular,

abelian cover P̃0 (L)) associated to ker (p), and one defines ÕF to be the set of lifts γ̃ of

orbits γ ∈ OF . Since OF is empty in our case, the space ÕF will be empty as well. Then,

assuming that R is a commutative Λ̃-algebra, one defines the Floer chain complex to be the

R-module

(Z/2Z) 〈ÕF 〉 ⊗ R,

and the Lagrangian Floer homology HF∗ (L;R) is defined to be the homology of this chain

complex. (The differential for the chain complex involves moduli spaces of certain holomor-

phic strips – see Section 3.2.g of [BC09] for more details.) Since ÕF is empty in our case, it

follows that HF∗ (L;R) = {0}. However, by Theorem A of [BC09], there is an isomorphism

QH∗ (L;R) → HF∗ (L;R), and we have shown in Theorem 5.9 that QH∗ (L;R) is non-

trivial, a contradiction. Thus, it must be the case that L is nondisplaceable as claimed.
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