
 

 

 

INVESTIGATING THE EFFECTIVENESS OF DIFFERENT PRECISION SOIL 

SAMPLING STRATEGIES FOR SITE-SPECIFIC NUTRIENT MANAGEMENT IN 

THE SOUTHEASTERN US 

by 

MATTHEW W. TUCKER 

(Under the Direction of Simerjeet S. Virk) 

ABSTRACT 

Soil sampling is an important component of site-specific nutrient management in precision 

agriculture. To investigate how some of the commonly used precision soil sampling 

strategies influence the depiction of spatial nutrient variability and site-specific nutrient 

application requirements within agricultural fields, studies were conducted across multiple 

sites in 2022 and 2023. In the first study, soil sampling was conducted using grid sizes of 

0.4, 1.0, 2.0, 3.0, and 4.0 ha in each field whereas the second study utilized management 

zones delineated using different spatial data layers for precision soil sampling. The nutrient 

application accuracy decreased with the increase in grid size; however, the total application 

costs were comparable among the grid sizes. For soil sampling based on management 

zones, soil sampling results were similar to the 0.4-ha grid sampling for some nutrients but 

were inconsistent across the nutrients (Lime, P, and K) and the fields used in this study.  
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

1.1 Introduction 

Most agricultural production fields in the southeastern United States have a large 

amount of spatial variability regarding soil physical properties and nutrient levels due to 

variations in climate, landscape, and crop management practices in the past. This within-

field spatial variability oftentimes leads to crop variability which can be observed in stand 

development, crop health, maturity, and ultimately yield. While both soil and crop 

variability make crop management challenging; one of the main principles of precision 

agriculture is to accurately detect and address this variability using various precision 

practices and technologies. Precision agriculture techniques allow fields to be divided into 

relatively smaller areas of similar field or crop characteristics that can be managed 

separately from the adjacent areas. Variable-rate (VR) application of soil amendments and 

nutrients has proven to be cost-effective and increases yield to the area's potential when 

conducted appropriately. In fact, VR application to inform site-specific crop input 

management is one of the main components of precision agriculture as VR technology 

enables the right place and the right rate of the 4Rs of nutrient management (Johnston & 

Bruulsema, 2014). The 4Rs of nutrient management refer to the right rate at the right place, 

using the right source, and at the right time. With advancements in sensing and application 

technologies over the years, new and improved methods of site-specific crop management 

have been developed and adopted by the industry and growers.  



 

2 

Site-specific nutrient management requires proper soil testing to determine soil nutrient 

levels in a field. Different soil sampling approaches have evolved over recent decades from 

collecting a single composite sample from each field to a few samples based on the 

grower’s knowledge or management history to precision soil sampling techniques such as 

collecting samples from certain size grids and pre-defined zones within a field. Before the 

adoption of any precision soil sampling methods, composite soil sampling to determine 

soil nutrient levels within the fields was a common practice (Mahler & Tindall, 1994). 

Composite soil sampling consists of collecting multiple soil cores from randomly selected 

locations across the field or sections of similar productivity or soil type based on historical 

knowledge of the field and then combining them to create a single or few samples for each 

field. The soil testing results from composite samples are used to apply lime or fertilizer at 

a single rate uniformly across the whole field. While the composite soil sampling and 

single-rate fertilizer application approaches are easier to implement, they usually result in 

relatively large areas of under- and over-application of fertilizer within the fields, thus 

causing more nutrient variability issues (Sawyer, 1994). Due to such issues associated with 

traditional composite sampling methods, grid- and zone-based precision soil sampling 

strategies have seen increased adoption in the last decade among consultants and growers 

in the US (Walton et al., 2010). Grid soil sampling consists of placing uniformly sized grids 

– ranging in size from 1.0 to 5.0 ha – in a field. Composite soil samples are then collected 

within each grid to be representative of that particular area of the field.  

Currently, various precision soil sampling methods are utilized throughout the 

southeastern US by consultants, precision ag companies, and growers to determine spatial 

nutrient variability and inform variable-rate fertilizer applications. The most common 
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among these strategies is the grid-based approach - most commonly used are 1.01- and 

2.02-ha grids – due to its ease of implementation and eliminating the need for requiring 

any prior field knowledge or expertise of any specialized software. Wollenhaupt and 

Wolkowski (1994) found that grids should be no larger than 0.40 ha to capture the spatial 

nutrient variability. They also found that grid-based sampling produced maps with higher 

accuracy when compared to zone-based sampling. Several studies have also investigated 

the possibility of utilizing management zones (MZ) for soil sampling in the past, including 

using layers such as farmer experience and aerial imagery (Fleming et al., 2000), stable 

yield maps from multi-year yield data (Flowers et al., 2005), topography, and electrical 

conductivity (EC) (Johnson et al., 2003). Farmer experience and soil color maps created 

from aerial imagery identified homogeneous subregions within fields, but the effectiveness 

of these strategies varied across different fields (Fleming et al., 2000). Flowers et al. (2005) 

found multi-year yield maps nearly as effective at delineating soil nutrient variability as a 

1.01-ha grid. Johnson et al. (2003) investigated the use of EC and found no consistent 

relationship between EC and yield variability. However, the addition of other data layers 

could be used to establish MZs, correlating with crop yield. Previous work in this area has 

primarily been conducted in the Midwestern United States where soil type and cropping 

systems differ considerably from the southeastern US. Limited research on different 

precision soil sampling approaches is available in the prevalent soil types in the 

southeastern US. 

The adoption and utilization of different precision soil sampling strategies vary 

considerably among growers, especially in the southeastern US (Mooney et al., 2010). The 

selection of an appropriate grid size or management zone further differs among the users 
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depending on several factors. Common questions received from consultants and growers 

are about the optimal grid size for soil sampling and the type of information needed to 

implement soil sampling based on management zones. While grid-based soil sampling is 

easier to implement and widely used in the southeastern US, it can become labor-intensive 

and costly depending on the size of the grids. Similarly, zone-based soil sampling can 

decrease the number of samples taken from a field; however, the exact approach to defining 

and validating zones becomes difficult and overwhelming. A study comparing the different 

grid and zone-based precision soil sampling methods is needed to provide unbiased, 

research-based information to consultants and growers for determining a practical and cost-

effective soil sampling strategy for their farms. 

1.2 Literature Review 

1.2.1 Precision Agriculture 

The International Society of Precision Agriculture defines precision agriculture as 

a management strategy that gathers, processes, and analyzes temporal, spatial, and 

individual data and combines it with other information to support management decisions 

according to estimated variability for improved resource use efficiency, productivity, 

quality, profitability and sustainability of agricultural production (ISPA, 2022). Precision 

agriculture includes four key elements: global positioning system (GPS), gathering 

information, decision support, and variable-rate treatment (Pedersen & Lind, 2017). The 

ultimate reason for precision agriculture research and development is due to the amount of 

spatial variability of soil types, nutrients, yield, etc. This issue is by no means a new 

problem for agricultural production; however, it is more prominent now as advancements 

in engineering and equipment have allowed for far more land to be covered by one machine 



 

5 

per day. Precision agriculture technologies have been commercially available since the 

1990s, though the adoption of these practices has been slow in the southeastern US 

(McBride & Daberkow, 2003). With advancements in technology, such as yield 

monitoring, precision soil sampling, variable-rate, and remote sensing, the adoption of 

precision agriculture practices is increasing on both small and larger farms (Lambert et al., 

2015). Stafford (2000) mentions that precision agriculture is an important step ahead for 

growers to reduce costs by making data-driven decisions. Pedersen and Lind (2017) 

described the adoption of precision farming practices as a “step back in time” referring to 

the idea that as fields and equipment grow larger, the amount of land one grower can 

manage gets increasingly large. With the help of remote sensing and other precision 

techniques today, growers can effectively manage these large farms with detailed 

knowledge about each field just as our ancestors did when farming small areas by hand. 

1.2.2 Components of Precision Agriculture 

Precision agriculture can be described as a toolbox with a different set of tools that can 

be used for different jobs/operations based on the farm size and crop management 

practices. Many authors have described that precision technologies have benefitted 

different agricultural practices in some way. Many of these technologies are or are related 

to, remote sensing, crop monitoring, planting, spraying, yield monitoring, and site-specific 

applications (Adamchuk et al., 2004; Gebbers & Adamchuk, 2010; Khan et al., 2021; 

Lambert et al., 2015; Lowenberg‐DeBoer & Erickson, 2019; McBride & Daberkow, 2003; 

Mooney et al., 2010; Stafford, 2000; Walton et al., 2010).  

Remote sensing can be described as the use of a sensor carried by satellite or unmanned 

aerial vehicle (UAV) to collect data (Mulla, 2013). Proximal sensing is very similar, except 
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the sensor is within relative proximity to the object being sensed and sometimes even in 

contact with the object such as a crop sensor attached to a sprayer boom (Mulla, 2013) or 

a soil moisture sensor placed in the field (Adamchuk et al., 2018). Remote and proximally-

sensed information can be used during the growing season to determine crop health 

(Ferguson & Rundquist, 2018), spatially map weed density in a field (Sishodia et al., 2020), 

create water and nutrient recommendations (Basso et al., 2016; Lacerda et al., 2021), and 

even survey soils and topography (Escadafal, 1993; Guo et al., 2012; Hurley et al., 2001).  

Planting technology has advanced rapidly as well, from ground-driven seed meters and 

gravity seed tubes to fully electronic meters and precision delivery systems (Strasser et al., 

2019). A few of the major advancements in planter technology have been the development 

of electric row units for more precise seed metering and individual row-control for 

variable-rate seeding (Virk et al., 2020), hydraulic and pneumatic downforce (Virk et al., 

2021), and on-the-go sensing of soil properties to vary seeding rate and depth in real-time 

(René-Laforest et al., 2014).  

The size and availability of technology on agricultural sprayers have also advanced 

considerably. Most advanced sprayers on the market today have at least 30 or 36 m boom 

and come equipped with a rate controller and section control system (Sharda et al., 2013). 

Advanced spray technologies such as pulse width modulation (PWM) systems (Butts et al., 

2019; Virk and Meena, 2022), are also becoming more standard options on new agricultural 

sprayers. The most precise sprayer on the market today has a series of cameras that are 

looking ahead of the sprayer boom and can identify weeds in the field and instantly turn on 

the correct nozzles to spray only the areas of the field where weeds are present (Heraud, 

2018).  
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Yield monitoring has become one of the most widely used aspects of precision 

agriculture (Lowenberg‐DeBoer & Erickson, 2019). Yield monitors use a combination of 

GPS and various sensors to determine the amount of crop harvested from a given location 

in the field. This data can then be analyzed using a geographic information system (GIS) 

to help a grower make management decisions for the following year (Fulton et al., 2018). 

Yield data is much like a report card at the end of a year that helps in assessing the 

performance of different management decisions made throughout the growing season.  

For each of these components and technologies mentioned above, the spatial resolution 

of data being collected or the precision of the application being conducted has increased 

considerably from the field level to in some cases plant-by-plant level. The advancements 

in these technologies and the data quality have greatly improved the capabilities of site-

specific applications (Sharda et al., 2018). These improvements include site-specific 

application of water (Evans et al., 2013), seed (Virk et al., 2020), tillage (Bertocco et al., 

2008), and soil amendments or nutrients (Dobermann et al., 2002). Precision placement of 

these inputs combined with the right application rate and timing during the season have 

attributed to increased input-use efficiencies and crop yields.    

1.2.3 Site-Specific Nutrient Management 

1.2.3.1 Traditional soil sampling and uniform fertilizer application 

In previous studies, many authors have stated that the recommendation for soil 

sampling a field was to only sample areas that are representative of the area being sampled 

(Mahler & Tindall, 1994; Sabbe & Marx, 1987; Wollenhaupt & Wolkowski, 1994). In 

traditional composite soil sampling, soil samples collected from random locations 

throughout the field are combined to create one or two composite samples for the whole 
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field and sent for soil analysis. The soil test results are then used to perform single-rate, 

uniform fertilizer applications. With the introduction of precision agriculture and VR 

technology, more growers have slowly transitioned to utilizing a more systematic approach 

i.e. some sort of precision soil sampling to inform site-specific nutrient applications.  

 
Figure 1.1 Illustration of (a) composite soil sampling method, (b) soil pH map based on 

the composite soil sampling, and (c) map depicting the actual pH variability in the field.  

 

 

1.2.4 Precision Soil Sampling Strategies and VR Fertilizer Application 

1.2.4.1 Grid Soil Sampling 
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Figure 1.2 Maps illustrating grid soil sampling method on (a) 0.40-ha and (b) 2.02-ha grids 

for a field. 

 

 Many studies have been conducted to evaluate the appropriateness of soil sampling 

methods to effectively display the spatial distribution of soil nutrients (Brouder et al., 2005; 

Flowers et al., 2005; Mahler & Tindall, 1994; Mallarino & Wittry, 2004; Stępień et al., 

2013). Before the initial adoption of grid soil sampling, traditional soil sampling was one 

of the most common methods to determine soil nutrient requirements. In some cases, the 

fields were also soil sampled by dividing them into sections of similar productivity or soil 

type based on farmer knowledge of the field (Mahler & Tindall, 1994). With the 

advancement of GPS and soil sampling technologies over the years, most growers and 

consultants in the southeastern US have transitioned to grid soil sampling, where uniform-

sized grids are overlayed on the field and soil samples are collected from each grid. An 

illustration of grid soil sampling on two different grid sizes is shown in Figure 1.2. The 

sampling grid size is an important consideration for the grid sampling strategy. Different 

grid sizes have been evaluated by the researchers ranging from 0.2- to 4-ha and findings 

from these studies varied depending on the location and environmental factors (Brouder et 

al., 2005; Flowers et al., 2005; Mallarino & Wittry, 2004; Stępień et al., 2013; Wollenhaupt 

& Wolkowski, 1994). 

Wollenhaupt and Wolkowski (1994) reported that a grid size of approximately 0.4 ha 

(200ft x 200ft) should be used during the first year to determine in-field nutrient variability, 

and some additional sampling should be conducted in the areas of the field where nutrient 

levels are either too high or too low. The authors suggested a “systematic unaligned 

sampling approach” to be used, where smaller grids are created inside the coarse grids to 

create randomization in the sampling locations. Mallarino and Wittry (2004) reported a 
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0.2-ha grid size can produce a very detailed map of soil nutrients although it is not practical 

because of the high cost and increased time associated with collecting the increased amount 

of soil samples. This study also found that the amount of spatial variability influenced the 

effectiveness of the method used for soil sampling. When compared to a 0.2-ha grid 

sampling method, a grid size of 1.2−1.6 ha produced VR prescription maps that, on 

average, accurately placed P and K fertilizers on 54 % and 66 % of the field, respectively. 

Flowers et al. (2005) concluded that grid cell sampling results in higher amounts of 

variability explained when compared to grid point sampling, while the use of high-intensity 

grid point samples was used to create the grid cell method. Stępień et al. (2013) found that 

for lime, P, and K, a 2-ha grid sampling method was able to explain more variability than 

a 4-ha grid sampling method. Most of these studies show that there is not one single grid 

sampling approach that is optimal for all fields and soil properties, which makes choosing 

the correct approach more challenging especially when no sampling has been conducted 

previously in a field. Sabbe and Marx (1987) stated that sampling should aim to increase 

the precision and accuracy of nutrient variability with the least number of samples. Varying 

results among these studies require more investigation in this area, especially when the 

location and dominant soil types change. 

1.2.4.2 Soil Sampling Based on Management Zones 
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Figure 1.3 Depiction of management zones created from (a) soil brightness and (b) 

historical field knowledge and yield history for zone soil sampling. 

 

Management zones (MZs) are defined as areas of homogeneous properties in a single 

field that can be managed as separate smaller fields (Shaner et al., 2008). The overall goal 

of MZs is to reduce the total amount of sampling locations while maintaining a high level 

of variability captured. The increased amount of technology development and digital tools 

available today has allowed the research in this topic area to be very broad (Khanal et al., 

2020). Delineation of MZs typically starts with one or more spatial data layers to subdivide 

the field into non-uniform-sized areas. Many previous studies have investigated the 

suitability of different spatial data layers to create these MZs such as soil survey data, EC, 

topography, aerial imagery, yield, farmer knowledge, and other remote sensing approaches 

(Castrignanò et al., 2018; Fleming et al., 2000; Flowers et al., 2005; Gavioli et al., 2019; 

Hornung et al., 2006; B. Iticha and C. Takele, 2019; Johnson et al., 2003; Li et al., 2008; 

Mallarino & Wittry, 2004; Nawar et al., 2017; Schepers et al., 2004; Shaner et al., 2008).  

Fleming et al. (2000) evaluated the use of soil color, topography, and farmer experience 

to create MZ for VR nitrogen to compare to a grid sampling scheme. The authors found no 

significant differences in yield between the two methods and concluded that the MZ 

strategy is effective because it was cheaper to implement than the grid method. Johnson et 

al. (2003) reported that the use of EC data exclusively to create MZ is ineffective, and the 

addition of complementary data layers, such as yield could benefit the actual depiction of 

soil nutrient variability. The findings of Mallarino and Wittry (2004) agreed with Johnson 

that multiple spatial data layers create effective MZs. Schepers et al. (2004) used principal 

component analysis to create management zones from soil brightness, elevation, and EC 
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and reported it as an effective approach in delineating MZs to characterize soil chemical 

properties.  

Flowers et al. (2005) created MZs from multi-year yield data and found that this method 

is nearly as effective as a 98-m grid method while reducing sampling time and cost. 

Although  Hornung et al. (2006) found MZs based on soil color performed better than the 

yield in a study comparing soil color, topography, and farmer knowledge MZ, and yield-

based MZ including soil imagery, organic matter, cation exchange capacity, soil texture, 

and yield. These results also show that adding more spatial data layers doesn’t necessarily 

increase the resolution of the soil nutrient map. Shaner et al. (2008) compared different 

MZs to grid soil sampling and concluded that zone-based soil sampling could be a cost-

effective method. Li et al. (2008) evaluated the use of fuzzy c-means clustering for creating 

MZs with EC, yield, and normalized difference vegetation index (NDVI). The authors 

reported this approach to be a good option for creating initial MZs for soil sampling. An 

extensive literature review by Nawar et al. (2017) pointed out several research gaps in MZ 

creation. The authors concluded that a single spatial data layer is not sufficient for 

explaining enough variability to base all management decisions, and the use of new remote 

sensing methods should be researched for more effective and accurate MZs.  

With continued research on MZ delineation, there is also a disconnect between the 

researcher's and the grower’s ability to create or use them effectively. The process of 

creating informative and accurate MZ maps is difficult, especially when multiple layers are 

being used. Growers can produce MZs by hand drawing on aerial maps based on their 

knowledge of the field (Fleming et al., 2000; Oliver et al., 2010), but this is time-consuming 

when doing so in multiple fields and nearly impossible if they have no historical knowledge 
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about the field. Currently, many precision agriculture companies also offer specialized 

software that can be used for the delineation of MZs. Each of these companies has a specific 

approach to help determine the best MZs and identify areas for soil sampling that may 

include a combination of soil EC and topography maps, topography, crop health (NDVI), 

or gamma radiation emitted from the soil from previous years. While the approach for 

delineating MZs may differ amongst these companies, many of them claim to decrease the 

overall number of soil samples needed compared to grid soil sampling while increasing the 

accuracy of input applications. Most of these software providers are also based and 

operated out of the midwestern US where these approaches have been tested primarily in 

the soils common to those production areas. Due to grid soil sampling still being one of the 

most predominant soil sampling methods in the southeastern US, utilization of the software 

and services provided by these companies for zone soil sampling are minimal to none. The 

large inherent spatial soil variability in the southeastern soils along with the high costs and 

time associated with grid soil sampling approaches necessitate an exploration into different 

zone soil sampling strategies. An investigation into the utility and effectiveness of the 

commercially available software for zone soil sampling is also needed to determine cost-

effective and efficient precision soil sampling strategies that can be utilized by consultants 

and growers across the southeastern US. 

1.2.5 Variable-Rate Application  

VR application of crop inputs is one of the key components of precision agriculture 

allowing for site-specific placement of crop inputs to increase overall productivity 

(Pedersen & Lind, 2017). VR application support the 4Rs of nutrient management 

regarding the right rate and right place (IPNI, 2022). Single-rate fertilizer applications can 
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result in over- and under-application in certain areas of the fields. This also leads to 

environmental concerns (Liakos et al., 2013) where over-application of certain fertilizers 

could be subject to runoff into waterways that are harmful to aquatic life and drinking water 

supplies. Additionally, single-rate fertilizer applications can also be uneconomical as 

correct placement of input is not met in all areas of the field and economic return, measured 

by plant response in yield, may be low in an area that either received too much fertilizer or 

not enough (Sawyer, 1994; Wittry & Mallarino, 2004; Yang et al., 2001).  

The technologies discussed previously such as sensing and yield monitoring can 

influence applications of soil amendments and/or nutrients if a grower is quite progressive 

(Lambert et al., 2015). Although many site-specific nutrient applications are informed by 

soil sampling (Sabbe & Marx, 1987; Sawyer, 1994; Wollenhaupt & Wolkowski, 1994). 

Wollenhaupt and Wolkowski (1994) found that VR applications for site-specific nutrient 

management are only as accurate as the soil sampling data they are created from. This 

implies that if the data being used to create the VR prescription map is inaccurately 

representing the nutrient levels in certain areas of the field, the VR application may not be 

correcting the spatial variability issue but could be making it even worse. Sawyer (1994) 

suggested that economic return to VR applications does not occur in every field and every 

application because of factors such as sampling strategy and little response in crop yield. 

However, when conducted appropriately, VR application of crop inputs has the potential 

to increase productivity in most fields (Bullock et al., 1994; Franzen & Peck, 1995; Sawyer, 

1994). 
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1.3 Rationale 

While many previous studies have investigated different aspects related to grid soil 

sampling, the optimal sample density recommendation has varied. Additionally, most of 

these studies focused on precision soil sampling methods have been conducted in the 

midwestern US. Limited research and information are available on the effectiveness and 

economics of different grid sizes for grid-based soil sampling approaches in the 

southeastern US. One common theme concerning grid soil sampling is that smaller grid 

sizes are more accurate in depicting spatial nutrient variability within the fields; however, 

they are not effective in terms of both time and cost. For zone soil sampling, a review of 

the literature suggests that there are many ways to create MZs for zone soil sampling and 

the results again vary considerably among the type of spatial data layers used and between 

different regions. Today, data quality is increasingly becoming more important in every 

aspect of precision agriculture due to the increased interest among the growers to make 

informed, data-driven decisions, and improve efficiencies and productivity in their farming 

operations. Data quality in regards to precision soil sampling and the accuracy of VR 

fertilizer applications is also gaining interest, which is evident from the increased questions 

and concerns from growers and consultants around the suitability of different commonly-

used precision soil sampling strategies and their effectiveness in the southeastern US. To 

answer these questions, it is imperative to compare different grid and zone soil sampling 

strategies and investigate their efficacy and economics as they relate to the accuracy of 

site-specific nutrient management in the southeastern soils. The broader impact of the 

proposed research involves not only growers but the whole precision agriculture industry 

in the southeastern US including crop consultants, fertilizer retailers, agricultural 
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technology software, and service providers. This research will provide valuable 

information about the data quality and accuracy associated with different precision soil 

sampling strategies and how some of the currently utilized methods can be improved upon 

to capture within-field spatial nutrient variability and increase the accuracy of VR fertilizer 

applications. 

 The overall goal of this research study is to compare and evaluate different precision 

soil sampling strategies − grid and zone − to determine an effective and economical soil 

sampling method(s) that accurately represents the nutrient spatial variability within the 

fields and can be utilized by agricultural producers and consultants for site-specific nutrient 

management in the southeastern US. 

1.4 Objectives 

 Based on the literature of review presented here and the information known about 

different precision soil sampling strategies, the following objectives were formulated for 

this research: 

Objective 1: To evaluate the effectiveness of different commonly-used grid sizes for 

precision soil sampling in depicting within-field spatial nutrient variability and perform an 

economic comparison among different grid sizes. 

Objective 2: To compare and investigate different zone-based management strategies for 

precision soil sampling and evaluate their effectiveness as compared to the grid soil 

sampling methods. 
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CHAPTER 2 

EFFICACY AND ECONOMICS OF DIFFERENT SOIL SAMPLING GRID SIZES 

FOR SITE-SPECIFIC NUTRIENT MANAGEMENT IN THE SOUTHEASTERN US1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
1 Tucker, M., Virk, S., Harris, G., Levi, M., Lessl, J., Smith, A., Kichler, J., McAllister, S., Hand, J., 

Carlson, S., and Sapp, P. Submitted to Precision Agriculture, 11/16/2023. 
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2.1 Abstract 

Precision soil sampling on uniform-sized grids is a widely adopted practice for site-specific 

nutrient management in the southeastern United States. To address questions and concerns 

from growers regarding optimal grid size for soil sampling, a study was conducted across 

nine fields in 2022 to evaluate the influence of different grid sizes on the depiction of spatial 

nutrient variability, and their influence on the accuracy of variable-rate fertilizer 

application and total application costs. Soil sampling was conducted in each field using 

grid sizes of 0.4, 1.0, 2.0, 3.0, and 4.0 ha, and the resulting variable-rate prescription maps 

for lime, P, and K were compared with a reference map (generated from high-density soil 

sampling; approximately 2.5 samples per hectare) to assess nutrient application accuracy. 

An economic analysis was also conducted including the soil sampling costs, soil analysis 

costs, and nutrient costs to determine the effect of grid size on total application costs. The 

study results indicated that soil sampling on a 0.4 ha grid size performed the best in 

depicting the spatial variability of soil pH, P, and K within the fields and exhibited the 

highest application accuracy for the variable-rate prescription maps. The general trend was 

that the application accuracy decreased with an increase in grid size with the potential for 

under- and over-application of nutrients significantly increasing at the larger grid sizes of 

2.0 ha or greater. For economic analysis, the total application cost varied among the fields 

as it was largely influenced by the amount of under- and over-application associated with 

each grid size. In most fields, the total application costs for a 0.4 ha grid size were lower 

or comparable to other grid sizes. In some fields, the larger grid sizes exhibited lower 

application costs but at the expense of reduced application accuracy. Overall, the findings 



 

19 

from this study suggested that the smaller grid sizes were most optimal for soil sampling 

providing both accuracy and cost-effectiveness for site-specific nutrient management.              

2.2 Introduction 

Spatial variability within agricultural fields is a major challenge in row crop production, 

especially in the southeastern United States. This variability can be related to many factors 

including topographical features, soil properties - both physical and chemical - and 

previous management history (Mulla & McBratney, 2002). This within-field spatial 

variability leads to crop variability which can be observed in stand development, crop 

health, maturity, and ultimately yield. While both soil and crop variability make crop 

management challenging; one of the main principles of precision agriculture is to 

accurately detect and address this variability using various practices and technologies 

(Sawyer, 1994). If the spatial variability is under- or over-assessed, the potential of 

inaccurate applications of crop inputs in certain areas of the field is increased and can 

further lead to crop variability within the field. Variable-rate (VR) application of inputs, 

such as fertilizer and water, is the primary mechanism to address this within-field spatial 

variability and to inform site-specific crop input management in precision agriculture 

(Stafford, 2000). With advancements in sensing and application technologies in recent 

years, new and improved methods of site-specific crop input management have been 

developed and adopted by growers. These precision practices help growers to be more 

efficient and sustainable while also improving productivity to feed the growing population 

(Gebbers & Adamchuk, 2010), which is expected to reach 9.8 billion globally by 2050 

(Nations, 2017).  
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Among different site-specific management strategies used by growers, variable-rate 

fertilizer applications to address within-field nutrient spatial variability is a widely adopted 

practice in precision agriculture (Lowenberg‐DeBoer & Erickson, 2019). One of the most 

important aspects of site-specific nutrient management is proper soil testing to determine 

varying soil nutrient levels within the fields. Soil sampling approaches have evolved from 

collecting few samples based on grower knowledge or management history to precision 

soil sampling techniques such as collecting samples from certain size grids and pre-defined 

zones within a field. Before the adoption of any precision soil sampling methods, 

composite soil sampling to determine soil nutrient levels within the fields was a common 

practice (Mahler & Tindall, 1994). Composite soil sampling consists of collecting multiple 

soil cores from randomly selected locations across the field or sections of similar 

productivity or soil type based on prior knowledge, and then combining them to create a 

single composite sample for each field or each sub-area within the field. The soil testing 

results from composite samples are used to apply lime or fertilizer at a single rate uniformly 

across the whole field. While the composite soil sampling and single-rate fertilizer 

application approach are relatively easy to implement, it usually results in relatively large 

areas of under- and over-application of fertilizer within the fields, thus causing more 

nutrient variability issues (Sawyer, 1994). To properly address nutrient spatial variability 

within the agricultural fields, grid- and zone-based precision soil sampling strategies have 

become more common in the last decade among consultants and growers in the US (Walton 

et al., 2010). A grid soil sampling approach consists of placing uniformly sized grids within 

a field, which can range from 1.0 to 5.0 ha in size. Composite soil samples are then 
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collected within each grid to represent that particular field area (Wollenhaupt & 

Wolkowski, 1994).  

A variety of methods for collecting samples within the grids have been investigated 

including zigzag pattern, grid cell sampling (random locations from the entire grid), and 

grid point sampling (random locations within a 3-meter radius of the center point) (Mahler 

& Tindall, 1994; Sabbe & Marx, 1987). Contrary to grid sampling, zone-based soil 

sampling involves using various soil and crop features, remotely sensed information, 

farmer knowledge, and/or other spatial data (Flowers et al., 2005; Hornung et al., 2006; 

Schepers et al., 2004) to delineate homogenous areas within the field and collect samples 

from each area. While both grid and zone soil sampling methods are commonly utilized, 

each method has its own merits and drawbacks. Grid-based soil sampling is easier to 

implement; however, the accurate representation of the spatial nutrient variability in the 

field depends largely on the selected grid size (Sawyer, 1994). Zone-based sampling can 

be challenging to implement because of the need for more advanced knowledge and 

experience in analyzing spatial data layers; however, if conducted appropriately it can 

reduce the number of soil samples while improving the amount of nutrient variability 

captured within the fields (Fleming et al., 2000). Besides the accurate depiction of spatial 

nutrient variability, the cost associated with each soil sampling method is also an important 

consideration. While grid soil sampling at higher densities, to capture more variability, 

increases overall sampling and analysis costs due to a large number of soil samples, zone 

sampling strategies can also become costly depending on different types of spatial data 

used and the amount of analysis required to accurately delineate management zones. 

Generally, the number of samples collected in zone sampling is considerably lower than in 
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grid sampling. While both grid and zone sampling are valid methods, grid sampling 

remains one of the most widely used approaches for soil sampling by growers and 

consultants, especially in the southeastern US; largely due to its ease of implementation 

and the fact that it does not require any historical field information.     

Several studies have evaluated the appropriateness of different grid soil sampling 

methods in effectively representing the spatial distribution of soil nutrients (Brouder et al., 

2005; Flowers et al., 2005; Mahler & Tindall, 1994; Mallarino & Wittry, 2004; Stępień et 

al., 2013). Different grid sizes, ranging from 0.2- to 4.0-ha, have been investigated by many 

researchers and reported varied findings depending on the geographic location and other 

environmental factors associated with the agricultural fields (Brouder et al., 2005; Flowers 

et al., 2005; Mallarino & Wittry, 2004; Stępień et al., 2013; Wollenhaupt & Wolkowski, 

1994). Wollenhaupt and Wolkowski (1994) reported that a grid size of 61 x 61 m (roughly 

0.4 ha) should be used during the first year to determine soil nutrient variability, along with 

some additional sampling in areas of the field with very low or high nutrient values. The 

authors also suggested utilizing a “systematic unaligned sampling approach”, where 

smaller grids are created inside the coarser grids to generate randomization within the 

sampling locations. Mallarino and Wittry (2004) reported that a 0.2-ha grid can produce a 

very detailed map of soil nutrients, although it is not practical because of the high cost and 

increased time associated with collecting a large number of soil samples. The authors also 

found that the amount of spatial variability influenced the effectiveness of the soil sampling 

method. When compared to a 0.2-ha grid sampling method, a grid size of 1.2-1.6 ha 

produced VR prescription maps that, on average, accurately placed P and K fertilizers on 

54 and 66 percent of the field (area), respectively. Flowers et al. (2005) concluded that grid 
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cell sampling (soil sampling from random locations within the entire grid) resulted in a 

higher amount of nutrient variability captured compared to grid point sampling (soil 

sampling within 3 m of the grid center). Stępień et al. (2013) reported that a 2-ha grid 

sampling method was able to explain more variability in soil pH, P, and K than a 4-ha grid 

sampling method. Brouder et al. (2005) concluded that a 1.0 ha grid is only 10% better than 

whole-field composite sampling. The authors also observed small differences in the spatial 

nutrient maps created using inverse distance weighted (IDW) and kriging interpolation 

methods but suggested that no major consequence exists to using either interpolation 

method. Most of the previous research indicates that when it comes to the grid sampling 

approach, a single grid size may not be optimal for all fields or soil types, which makes it 

more challenging to choose the correct approach especially when no prior soil sampling 

has been conducted. These studies have been conducted in different regions of the US and 

reported varying results mainly due to the different soil types and crop management 

practices prevalent within each region. Sabbe and Marx (1987) stated that the goal of soil 

sampling should be to increase the precision and accuracy of nutrient variability with the 

least number of samples. This is even more important today due to the increased prices of 

fertilizer and other crop inputs. Basso et al. (2006) suggested that site-specific nutrient 

management of nitrogen fertilizer has both environmental and economic benefits. 

Inaccurately depicting nutrient variability in crop fields is found to be one of the main 

reasons for VR applications not being profitable (Sawyer, 1994). While grid soil sampling 

can be costly due to the number of samples needed to produce accurate prescription maps, 

(Fleming et al., 2000; Koch et al., 2004), data quality is an important consideration for VR 

applications to be accurate and effective (Fleming et al., 2000; Sawyer, 1994).  
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While many previous studies have investigated different aspects related to grid soil 

sampling, most researchers have reported that the soil sampling results can vary depending 

on the geographic location and other soil and crop management practices specific to the 

region. Most of the previous studies focused on precision soil sampling having been 

conducted in the midwestern US and some in other countries with minimal to no published 

information in the southeastern US. Current research on evaluating the effectiveness of 

different grid sizes to determine an optimal and economical grid sampling approach in the 

southeastern US is limited. Data quality is increasingly becoming more important in every 

aspect of agriculture today due to the increased adoption of technology among growers and 

the rising interest in being more efficient with crop inputs. With the rising input costs and 

narrow profit margins, growers are interested in making more informed, data-driven 

decisions to improve efficiency and productivity in their farming operations. Due to 

varying cropping systems and prevalent production practices in the southeastern US, 

questions from growers and consultants around the suitability and efficacy of different grid 

sizes for precision soil sampling, and how it affects the application accuracy and economics 

of VR fertilizer application are common. To investigate these concerns and effectively 

answer questions related to soil sampling grid size,  this study was conducted to evaluate 

the efficacy and economics of different commonly used grid sizes for precision grid-based 

soil sampling in the southeastern US. The specific objectives of this study were: (1) to 

compare and evaluate the effectiveness of different grid sizes in depicting soil nutrient 

variability and their influence on fertilizer application accuracy, and (2) to perform an 

economic analysis among different grid sizes to determine a cost-effective soil sampling 

strategy (or strategies) that also ensures high application accuracy. 
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2.3 Materials and Methods 

Data for this on-farm study was collected in 2022 across nine different grower fields to be 

planted in row-crops prevalent in the southeastern US (cotton, corn, or peanuts). The 

selected fields ranged from 8.3 to 37.6 ha in size. All fields were located in the Coastal 

Plain physiographic region of the southeastern US and had two or more soil types. Detailed 

information on the location, size, and soil types present within each field is presented in 

Table 2.1 (Web Soil Survey, 2021). These fields were randomly selected by local county 

Extension agents with the only criterion that the field be representative of the local 

geographic area. The soil sampling methods and other procedures were kept consistent 

among all locations used in this study.  

 

Table 2.1 Location and size of all nine fields used in this 

precision soil sampling study conducted in 2022. 

Field Latitude Longitude Size (ha) Soil Type(s) 

1 32.880897 -82.20426 9.1 
Tifton, Dothan, 

Carnegie, Grady 

2 31.307355 -83.914703 37.6 
Tifton, Carnegie, 

Leefield, Borrow 

3 31.077626 -83.694082 9.1 Dothan, Tifton 

4 33.209401 -82.503499 36.9 
Faceville, Tifton, 

Orangeburg, Nankin 

5 32.045822 -84.377226 12.4 
Greenville, Tifton, 

Ochlockonee 

6 32.043561 -84.365362 8.3 
Greenville, Tifton, 

Ochlockonee 

7 31.729895 -84.463742 25.5 Greenville, Grady 

8 31.473537 -83.407591 22.4 
Ocilla, Clarendon, 

Alapaha, Tifton 

9 31.535035 -83.659815 12.7 Tifton, Carnegie 

 

2.3.1 Grid Soil Sampling 

Field boundaries for all fields were imported into a farm data management software 

(SMS Advanced, AgLeader Technology, Ames, IA) and soil sampling maps were created 

using grid sizes of 0.4, 1.0, 2.0, 3.0, and 4.0 ha (1.0, 2.5, 5.0, 7.5, and 10.0 ac) as shown in 
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Figure 2.1  for one of the fields used in this study. Each sampling grid was independent of 

the others (i.e., no sample was used for multiple grid sizes). Sampling points were placed 

at the center of each grid for ease of navigation to the center of the grid during soil 

sampling. The soil sampling maps were uploaded on a handheld Trimble GPS unit, with a 

horizontal accuracy of 2-4 meters, (Nomad 1050, Trimble Inc., Sunnyvale, CA), which 

was used to navigate to different soil sampling grids within each field.  

     

    

 
Figure 2.1 Soil sampling maps at grid sizes of (a) 0.4 ha, (b) 1.0 ha, (c) 2.0 ha, (d) 3.0 ha, 

and (e) 4.0 ha for one of the fields used in this study. 

 

In all fields, soil samples were collected, in November through January, at each grid 

size using the point sampling method which involved collecting 12 to 15, 15.2 cm deep 

cores in a 6.1 – 9.1 m radius around each point, and then combining all the cores to make 
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a composite sample which represented that particular grid. All soil samples from each field 

were placed in a pre-labeled paper bag with the field and sample number. Once all the 

samples were collected, they were sent to the University of Georgia’s Agricultural and 

Environmental Services Laboratories (AESL) in Athens, GA for soil nutrient analysis. The 

AESL used Mehlich 1 extractions to determine soil nutrient levels and provided the 

analysis for soil pH, Phosphorus (P), Potassium (K), Calcium (Ca), Magnesium (Mg), Zinc 

(Zn), Manganese (Mn), and cation exchange capacity (CEC) for each sample in a .csv 

format. Since this study focused on soil pH, P, and K, soil test results for only those 

nutrients were used for further mapping and analysis. 

 

2.3.2 Spatial Nutrient Mapping and Analysis 

Soil nutrient analysis results for each field were imported into AgLeader SMS 

Advanced software and used for further spatial analysis and interpolation. For all fields, 

spatial maps for soil pH, P, and K were created from soil nutrient levels for each grid size 

using an inverse distance weighting (IDW) interpolation method. The IDW interpolation 

uses an algorithm to predict values of unmeasured locations by weighting measured values 

based on the spatial distance from the measured locations (Burrough et al., 2015). The 

interpolation process consisted of creating a 9.14 x 9.14 m raster map for each grid size. 

Each cell in the map was georeferenced and contained soil nutrient values for soil pH, P, 

and K. The soil analysis results for all sampling methods i.e. grid size of 0.4, 1.0, 2.0, 3.0, 

and 4.0 ha were combined to replicate a high-density sampling method (approximately 2.5 

samples per hectare), which was assumed to represent the actual spatial variability within 

each field, and was also used as a reference layer for comparison among the maps based 

on different grid sizes. This high-density map is hereafter referred to as the reference map 
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for each nutrient. The VR lime, phosphorus (P2O5), and potassium (K2O) prescription maps 

were created for each grid size strategy for fertilizing cotton for a yield goal of 1345 kg ha-

1 using the UGA cotton fertilization recommendations (Plank and Harris, 2022). All 

fertilizer prescription maps were converted to raster format to enable direct comparison to 

the actual prescription map for each nutrient. A comparison between the prescription map 

for each grid size and the reference prescription map was performed to create a difference 

map that depicted the spatial location (total area receiving each prescribed fertilizer 

amount) as well as the amount of under- and over-application that would occur in those 

areas in the field. Figure 2.2 illustrates an example of this methodology where (a) is the 

reference P map for the field depicting actual (assumed) nutrient variability within the field, 

(b) is the prescription map generated from soil sampling results from a 2.5 ac grid size, and 

(c) is the difference map which represents the areas of on-target (green), under- (red) and 

over-application (blue) within the field. 
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Figure 2.2 Illustration of a (a) prescription map for P based on reference nutrient 

variability, (b) prescription map generated from 2.5 grid size sampling, and (c) difference 

map. In (c), the areas in green represent a portion of the field that received accurate/on-

target fertilizer application whereas the areas in red and blue represent under- and over-

fertilized areas, respectively in the field.   
 

2.3.3 Economic Analysis 

For each field, an economic analysis was conducted to determine the total cost per 

hectare for the sampling strategy based on each grid size. The total amount of 

recommended fertilizer for each grid size was computed from the VR prescription maps 

for lime, P, and K. The lime and fertilizer costs ($ kg-1 of fertilizer) were obtained from the 

2022 UGA Enterprise Row Crop Budgets (Zhou et al., 2022). The actual prices used for 

this analysis were as follows: lime – 0.055 ($ kg-1), Phosphorus – 1.47 ($ kg-1), and 

Potassium – 1.50 ($ kg-1). The soil sampling costs were calculated based on the nominal 

soil sampling fees charged by the consultants in the southeastern US. This cost was 

determined to be $20 per hectare for a 0.4 ha grid size, $15 per hectare for a 1.0 ha grid 

size, and $10 per hectare for the remaining larger grid sizes of 2.0 to 4.0 ha. A soil analysis 

cost of $6 per sample was used which again represented the nominal soil sample analysis 

fees charged by most private and public soil testing laboratories in the southeastern US. 

Table 2.2 below illustrates an example of the calculation of total cost ($ ha-1) for different 

grid sizes for lime application in one of the fields used in this study. The total cost per 

hectare for each grid size strategy is the sum of the soil sampling cost, analysis cost (which 

varied based on the grid size and the number of soil samples), and the lime/fertilizer costs 

(which depended on the total amount of lime/fertilizer prescribed by each grid size 

strategy). Additionally, the total cost per hectare for fertilizing the field was computed by 

combining per-hectare costs associated with each nutrient (lime, P, and K).  

 



 

30 

Table 2.2 Example of computation of total cost ($ ha-1) for lime application based on soil 

sampling on different grid sizes for one of the fields used in this study.     
Grid 

Size Samples 

Sampling 

Cost 

Analysis 

Cost 

Total 

Lime Rec. 

Lime 

Cost 

Total 

Lime Cost 

Total 

Cost*  

(ha)  ($ ha-1) ($ ha-1) (kg) ($ ton) ($ ha-1) ($ ha-1) 

0.4 90 20 14 55,690 50 37 71 

1.0 35 15 6 48,050 50 32 53 

2.0 17 10 3 43,344 50 29 42 

3.0 13 10 2 47,020 50 31 43 

4.0 8 10 1 62,164 50 41 52 

*Total cost is the sum of the cost of soil sampling, analysis, and lime. 

 

2.4 Results and Discussion 

2.4.1 Effectiveness of Different Grid Sizes 

The application accuracy results for soil sampling at different grid sizes are presented 

separately for each nutrient (lime, P, and K) in the following sections. The data presented 

in Tables 2.3, 2.4, and 2.5 for lime, P, and K, respectively shows the percent of under-

application, on-target (accurate), and over-application associated with soil sampling at 

different grid sizes (0.4, 1.0, 2.0, 3.0 and 4.0 ha) in each field. It is also important to note 

that the application data presented in these tables was computed by performing 

comparisons to the reference application map, which was based on the high-density soil 

sampling (2.5 samples per hectare) and assumed to represent the actual spatial variability 

within each field. Additionally, as visual representation helps in better illustrating the 

differences among the maps, the reference prescription map and prescription maps 

generated using soil sampling at different grid sizes are also presented for lime, P, and K 

in Figures 2.3, 2.4, and 2.5, respectively for one of the fields (Field 2) used in this study.   

2.4.2 Lime Application Accuracy 

The 0.4-ha grid size provided the best lime application accuracy (>85%) in most fields 

while the under- and over-application, on average, increased with grid size (Table 2.3). 



 

31 

This trend of decreased lime application accuracy with increasing grid size was observed 

in all nine fields and can be attributed to the fact that as grid size increases, the distance 

between the adjacent sampling points increases which makes the interpolation procedure 

(IDW in this case) predict across the field with fewer known points. The 1.0-ha grid size 

resulted in lime applications that were ≥80% accurate in only four fields while the accuracy 

ranged between 66% and 78% in the rest of the fields. This can be due to the high amount 

of soil pH variability in these fields, and these data also suggested that the application 

accuracy in these fields can be considerably lower even from a grid size of 0.4 ha to 1.0 

ha.  

For grid sizes of 2.0 ha and greater, the lime application accuracy was mostly 

inconsistent ranging between 19% and 82% among the fields. However, in one of the fields 

(Field 3), the application accuracy was >85% even at the larger grid sizes of 2.0 and 3.0 

ha, likely due to the low soil pH variability within this field  (min soil pH=6.0, max soil 

pH=6.4). While a general trend regarding the on-target (accurate) lime application existed 

between the fields (Table 2.3), no particular trend in the amount of over- and under-

application was observed. In general, the inaccuracy of lime application increased with grid 

size with the under- or over-application mostly under 20% for grid sizes of 1.0 ha and 

lower. For grid sizes of 2.0 and greater, the under- or over-application was as large as 50% 

or more in some fields. 

The VR lime prescription maps presented in Figure 2.3 support these findings where the 

prescription map based on the 0.4 ha grid size (Figure 2.3b) is most closely related to the 

reference lime prescription map (Figure 2.3a) whereas the association between the 

prescription maps decreases thereafter for grid sizes of 1.0 ha and greater (Figure 2.3, c - 
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f). The corresponding under- and over-application associated with each grid can also be 

noticed by observing the change in the area for each recommended lime application rate.  

Table 2.3. Lime application accuracy for soil sampling at different grid sizes. Data 

represent the percent over-application, on-target, and under-application associated with 

each grid size for all nine fields used in this study.     

Field Application 
0.4 1.0 2.0 3.0 4.0 

-------------------------------(%)------------------------------- 

1 

Over 4 1 0 6 5 

Target 95 92 75 94 65 

Under 2 8 25 0 30 

2 

Over 10 3 1 12 47 

Target 87 66 51 46 45 

Under 3 31 48 42 9 

3 

Over 2 1 11 2 65 

Target 95 93 87 92 30 

Under 3 6 3 6 2 

4 

Over 8 13 29 8 4 

Target 90 70 65 70 48 

Under 3 17 6 22 48 

5 

Over 11 9 13 25 25 

Target 75 82 80 75 75 

Under 14 9 8 0 0 

6 

Over 7 3 12 2 2 

Target 91 41 68 41 41 

Under 1 56 20 57 57 

7 

Over 6 9 7 0 4 

Target 90 78 81 89 54 

Under 4 13 13 11 42 

8 

Over 6 3 9 29 41 

Target 89 85 75 66 34 

Under 5 13 16 5 24 

9 

Over 5 13 22 8 24 

Target 91 76 77 81 76 

Under 4 9 1 10 0 

 

As an example, Figure 2.3a (reference map) shows that the 18.8 and 17.1 ha within the 

field would receive the recommended lime application rate of 1,120 and 1,680 kg ha-1, 

respectively. Now observing the prescription map based on the 0.4 ha grid size (Figure 

2.3b), the area within the field receiving the lime application rates of 1,120 and 1,680 kg 

ha-1 are 16.5 and 19.5 ha respectively, which means that around 2.3 ha in the field will be 



 

33 

over-applied based on soil sampling at 0.4-ha grid size. Similarly, the areas within the field 

for the 1.0 ha grid sizes (Figure 2.3c) receiving the application rates of 1,120 and 1,680 kg 

ha-1 are 9.0 and 27.2 ha, respectively indicating that 8.4 ha in the field will be under-

applied based on soil sampling at 1.0 ha grid size. This under- or over-application of lime 

further increases with grid size and can be noticed by observing the change in areas within 

different lime application rates in Figures 2.3d, 2.3e, and 2.3f. 

     

     

     

Figure 2.3 (a) depicts the reference lime prescription map based on the high-density soil 

sampling (2.5 samples per hectare) whereas (b - f) represents the variable-rate lime 

prescription maps based on soil sampling grid sizes of 0.4 to 4.0 ha, respectively for one 

of the fields used in this study.  
 



 

34 

2.4.3 Phosphorus (P) Application Accuracy 

As observed in Table 2.4, the application accuracy for P at the 0.4 ha grid size was >80% 

for most of the fields, except for field 7 where it was below 75%. Similar to the trend 

observed for the lime application, the application accuracy of P decreased with an increase 

in grid size. The application accuracy for the 1.0-ha grid size was ≥80% for only three of 

the nine fields while it ranged between 36% and 68% for all other fields. For the grid sizes 

of 2.0 to 4.0 ha, the application accuracy varied considerably among the fields and ranged 

anywhere from 19% up to 82%. These data show the inconsistency in the effectiveness of 

larger grid sizes, especially greater than 2.0 ha, and their ability to accurately depict P 

variability across the fields. While there is one field (Field 4) with an on-target application 

of >80% for the larger sizes of 2.0 and 3.0 ha, this is again likely caused by the low P 

variability in this field.  Similar to the lime application, the amount of under- and over-

application for P did not follow a particular trend and increased with grid size. For grid 

sizes of 1.0 ha and lower, the amount of under-application was ≤30% for all the fields 

whereas the over-application was <20% except for two fields (Fields 1 and 7).    

The prescription maps for P, shown in Figure 2.4 for one of the fields (Field 2), show a 

general trend observed in the data presented in Table 2.4. The application areas for different 

P application rates in the prescription map for the 0.4 ha grid size (Figure 2.4b) resemble 

closely with the application areas in the reference prescription map (Figure 2.4a); however, 

these similarities among the prescription maps diminish quickly as grid size increases. 

Observing the prescription maps in Figure 2.4, it can be noticed that while the total area 

under different P application rates does not vary considerably between the maps, the under- 

and over-application in the field was still noticeable as the grid size increased. This is due 
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to the difference in the spatial accuracy of P among these maps, which indicates that in 

some cases the total area within the field receiving a particular application rate may not 

change between grid sizes, but the spatial accuracy of nutrient application is reduced with 

an increase in grid size. Therefore, assessing spatial locations of under- and over-

applications within each field along with the total amount is also important to accurately 

understand the effectiveness of different soil sampling strategies.      

Table 2.4 Phosphorus application accuracy for soil sampling at different grid sizes. Data 

represent the percent over-application, on-target, and under-application associated with 

each grid size for all nine fields used in this study.     

Field Application 
0.4 1.0 2.0 3.0 4.0 

-------------------------------(%)------------------------------ 

1 

Over 5 45 81 50 12 

Target 82 40 19 32 42 

Under 13 16 0 18 47 

2 

Over 10 12 26 21 22 

Target 84 58 49 42 42 

Under 6 30 26 36 35 

3 

Over 7 3 33 12 1 

Target 88 82 51 64 37 

Under 5 15 16 24 63 

4 

Over 6 6 5 6 7 

Target 92 82 81 82 72 

Under 2 13 13 12 21 

5 

Over 10 20 45 12 4 

Target 81 57 46 55 55 

Under 9 22 10 33 41 

6 

Over 7 12 22 18 28 

Target 91 60 65 60 64 

Under 2 28 14 23 8 

7 

Over 1 58 35 54 77 

Target 75 36 53 32 20 

Under 23 5 12 14 3 

8 

Over 2 12 20 17 7 

Target 92 82 70 74 77 

Under 6 6 10 9 15 

9 

Over 3 19 27 21 36 

Target 91 68 63 67 57 

Under 6 14 10 12 8 
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Figure 2.4 (a) depicts the reference phosphorus prescription map based on the high-

intensity soil sampling whereas (b - f) represents the variable-rate phosphorus prescription 

maps based on soil sampling grid sizes of 0.4 to 4.0 ha, respectively. 

 

2.4.4 Potassium (K) Application Accuracy 

The application accuracy results for K for the 0.4 ha grid size were similar to both lime 

and P where it exhibited an application accuracy of ≥84% for all fields except for field 5 

where it was 73%. The spatial K variability in field 5 was high ranging from 70 to 338 kg 

ha-1. These data also suggest that in some fields, spatial nutrient variability can be difficult 

to capture even with a grid sampling size of 0.4 ha. For the 1.0 ha grid size, none of the 
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fields had K application accuracy above 80% which again indicated that most of these 

fields had high amounts of K variability which cannot be depicted with soil sampling at 

grid sizes of 1.0 ha or greater. The application accuracy for larger grid sizes (2.0 - 4.0 ha) 

for all fields was in the range of 26 to 68% indicating their poor performance compared to 

the 0.4 ha grid size. The low application accuracy associated with larger grid sizes also 

suggests that the long-term reliance on these grid sizes to make K prescription maps could 

be detrimental to the areas of the fields that are receiving an over-application of K year 

after year. As observed for lime and P, no particular trend in under- and over-application 

existed for K with grid size. For grid sizes of 1.0 ha and greater, the under-application 

ranged between 1% and 66% whereas the over-application varied between 2% and 54% 

across all the fields used in this study.   

The prescription maps for K (Figure 2.5) also showed a similar trend as observed for 

lime and P (Figure 2.3 and 2.4, respectively) where the prescription K map based on the 

0.4 ha grid size (Figure 2.5b) is comparable to the reference K map (Figure 2.5a). However, 

this association between the reference map and other prescription maps (Figure 2.5, c -f) 

decreases rapidly as the grid size increases. Referring to the prescription maps in Figures 

2.5a and 2.5b, the areas within the field receiving different target K application rates are 

very similar with only about 1.0 ha of the field being over-applied. The areas receiving the 

same K application rates in Figure 2.5 (c - f) vary considerably from the reference K map 

indicating a high under- and over-application associated with grid sizes of 1.0 ha and 

greater. Unlike P maps (Figure 2.4) where the total area within each P application rate 

stayed somewhat similar, the maps for K highlight the differences in both the magnitude 
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and spatial resolution of application accuracy associated with soil sampling at different grid 

sizes.        

 

Table 2.5 Potassium application accuracy for soil sampling at different grid sizes. Data 

represent the percent over-application, on-target, and under-application associated with 

each grid size for all nine fields used in this study.     

Field Application 
0.4 1.0 2.0 3.0 4.0 

------------------------------(%)----------------------------- 

1 

Over 7 20 1 16 23 

Target 86 64 59 63 53 

Under 8 16 40 20 23 

2 

Over 9 20 16 7 32 

Target 85 57 52 49 44 

Under 6 22 32 45 24 

3 

Over 6 12 27 24 31 

Target 84 61 48 45 60 

Under 10 26 25 31 9 

4 

Over 4 26 24 25 16 

Target 84 64 61 57 54 

Under 12 10 15 18 30 

5 

Over 19 20 23 19 21 

Target 73 42 30 27 26 

Under 8 38 47 54 53 

6 

Over 8 32 32 33 19 

Target 84 57 55 54 64 

Under 8 12 12 14 16 

7 

Over 1 35 19 51 66 

Target 89 59 68 38 32 

Under 10 6 13 11 2 

8 

Over 5 13 10 30 28 

Target 88 72 66 49 54 

Under 6 14 23 21 18 

9 

Over 11 27 32 25 15 

Target 87 61 39 51 58 

Under 2 12 29 24 27 
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Figure 2.5 (a) depicts the reference potassium prescription map based on the high-intensity 

soil sampling whereas (b - f) represents the variable-rate potassium prescription maps 

based on soil sampling grid sizes of 0.4 to 4.0 ha, respectively. 
 

Observing the data altogether for all three nutrients in Tables 2.3 to 2.5 also highlights 

an issue that may arise for a grower when choosing a grid size for their farm due to the 

variation in the accuracy among different nutrients. For example, a grower may choose to 

collect samples using a 2.0 ha grid for field 7 which exhibited an on-target lime application 

of >80% but it was only 53% and 68%, respectively for P and K at the same grid size. 

Similar observations can be made for other fields as well where a certain grid size provided 

a high application accuracy for one nutrient but may not be suitable for other nutrients. 
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These results indicate that the selection of an optimal grid size could be different for each 

field and each nutrient; however, it is not feasible for a grower to collect soil samples at 

different grid sizes in the same field to target different nutrients. For this reason, it may be 

optimal to determine the best soil sampling grid size for each field individually; however, 

as farms grow larger, the need to be efficient with different operations is increased, 

including soil sampling. While conducting soil sampling on different grid sizes across the 

farm may be feasible for a few growers, it is not practical for most growers in the 

southeastern US.   

Table 2.6 presents the application accuracy averaged across all nine fields for lime, P, 

and K along with CV values that represent the amount of variability that existed among the 

fields for each nutrient. When averaged across all fields, the overall results again exhibit a 

similar trend for all three nutrients in that the application accuracy is highest from 84% to 

89% at a grid size of 0.4 ha whereas it decreased considerably for grid sizes of 1.0 ha and 

greater to below 73% for lime, and to below 63% and 60% for P and K, respectively. As 

indicated by the low CV values (6 – 7%), the results for 0.4-ha grid size were also 

consistent across all the fields while the relatively higher CV values for grid sizes of ≥1.0 

ha indicate that the application accuracy depicted using larger grid sizes can vary among 

the fields depending on the nutrient variability within the field and previous management 

history.  The results obtained in the present study for application accuracy of lime, P, and 

K at different soil sampling grid sizes are similar to the observations shared by previous 

studies. Wollenhaupt and Wolkowski (1994) recommended that a 0.4-ha grid sampling 

method is the most appropriate in the first year to determine the amount of nutrient 

variability within the field. After the first year, the authors speculate a thorough nutrient 
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budget, maintaining accounts of fertilizer applications and crop removals, will be sufficient 

to make fertilizer applications in the following years. Additional samples can be collected 

in the following years if no significant response to fertilizer application is found. Stępień 

et al. (2013) chose 1.0 ha to be their densest sampling but suggested that there could be 

more variability present within the fields for some nutrients, that were not captured by the 

1-ha grid size. The authors recommend a sampling size of 1.0 ha, with the option to collect 

samples on a coarser grid size (2.0- or 4.0- ha) for the two years following. Mallarino and 

Wittry (2004) found that a 1.2 to 1.6 ha grid sampling method had an accuracy of 54% and 

66% for P and K, respectively. These findings were similar to the accuracy values attained 

in the present study where a 1.0-ha grid size exhibited an application accuracy of 63% and 

60%  for P and K, respectively. It is evident that a grid size of 0.40 ha captures the greatest 

nutrient spatial variability within the fields and results in the highest application accuracy 

than other larger grid sampling sizes. 

 

Table 2.6. Application accuracy of lime, phosphorus, and potassium for different grid 

sizes. Data is averaged across all fields.   

Grid 

Size 

Lime  Phosphorus  Potassium 

Target CV  Target CV  Target CV 

(%) (%)  (%) (%)  (%) (%) 

0.4 89 7  86 7  84 6 

1.0 69 38  63 28  60 14 

2.0 73 15  55 32  53 24 

3.0 64 42  56 32  48 22 

4.0 52 32  52 35  49 26 

 

2.4.5 Economics of Different Grid Sizes - Material Costs  

Besides assessing application accuracy, it is important to evaluate the economics of 

different soil sampling grid sizes to identify an optimal soil sampling that is also cost-

effective. Tables 2.7 through 2.9 present the material cost per hectare for lime, P, and K 
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applications, respectively, based on different soil sampling grid sizes in each field. The 

data presented in these tables illustrates how total material cost (computed from the amount 

of material recommended by each grid size strategy) changes with application accuracy. 

For this calculation, the cost of soil sampling and lab analysis is excluded as they are 

included in the total cost in the following section. It should be noted that because the 

material cost is directly related to the amount of over- and under-application associated 

with each grid size, the trend observed for lime and fertilizer costs was mostly similar to 

the application accuracy discussed in the previous sections. This can also be explained as 

that the costs were higher where the lime or fertilizer was over-applied, and they were 

lower where the lime or fertilizer was under-applied. For instance, Field 2 in Table 2.7 

reports the cost of lime as 81, 70, 63, 69, and 91 dollars per hectare for grid sizes of 0.4, 

1.0, 2.0, 3.0, and 4.0 ha, respectively. There is a decrease in the cost of lime per hectare for 

the 1.0, 2.0, and 3.0 ha grid sizes and an increased cost of lime per hectare for the 4.0 ha 

grid size. Now observing the application accuracy for different grid sizes for the same field 

in Table 2.3, data shows an increase in under-application of lime for the 1.0, 2.0, and 3.0 

ha grid sizes and an increase in over-application of lime for the 4.0-ha grid size when 

compared to the 0.4 ha grid size. Although the smallest grid size of 0.4 ha recommends 

more lime per hectare (higher cost per hectare) when compared to the larger grid sizes, the 

application accuracy at this smaller grid size is also high (87%) for this particular field as 

opposed to <66% for the larger grid sizes. A practical implication of these results, in this 

case, would be that in some fields, a grower would have a higher application cost due to 

greater fertilizer cost, but they will also be more confident in the accuracy of site-specific 

fertilizer application (placement) by selecting a grid size of 0.4 ha. There is also an 
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expectation that yields will be increased due to the correct placement of nutrients, 

increasing profit margins. 

As discussed in the previous example, precision fertilizer application through soil 

sampling on a smaller grid size doesn’t necessarily always correlate to high application 

costs but can also help in reducing the total application costs in some cases. This can be 

noticed, for example, in Table 2.8. For Fields 7, 8, and 9, the 0.4-ha grid size recommends 

the lowest material (lime and fertilizer) cost per hectare when compared to the 1.0, 2.0, 3.0, 

and 4.0 ha grid sizes. In this case, it can be attributed that 0.4-ha grid size has the highest 

application accuracy which means low under- and over-application (Table 2.4). It can again 

be noticed in these fields where the application accuracy decreases (increase in over- or 

under-application), and the cost of material follows the same trend as the amount of over 

and under-application. If there is greater over-application then the total cost of material 

will also increase and if there is under-application then the total cost of material will 

decrease.  

Similar observations are seen throughout the other fields and nutrients in the present 

study and are ultimately the reason that there is no general trend with the data displayed in 

Tables 2.7-2.9, as the total cost per hectare of material depends primarily on the amount of 

over- and under- application that occurs in each field, which is presented in Tables 2.3-2.5. 
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Table 2.7 Total material cost per hectare of lime for different soil sampling grid sizes. 
 

  0.4 1.0 2.0 3.0 4.0 

Field  --------------------------($ ha-1)-------------------------- 

1 59 55 45 62 44 

2 81 70 63 69 91 

3 60 58 66 62 84 

4 69 68 77 66 43 

5 84 85 88 92 92 

6 74 62 73 62 62 

7 57 51 52 0 33 

8 26 19 24 37 31 

9 114 142 122 114 123 

 

 

Table 2.8 Total material cost per hectare of phosphorus for different soil sampling grid 

sizes. 
 

  0.4 1.0 2.0 3.0 4.0 

Field  --------------------------($ ha-1)-------------------------- 

1 93 123 182 136 78 

2 67 51 65 48 46 

3 35 31 44 22 5 

4 13 7 8 7 2 

5 173 167 188 166 157 

6 46 33 58 51 67 

7 42 100 77 96 127 

8 16 22 19 22 14 

9 87 93 107 102 113 

 

 

Table 2.9 Total material cost per hectare of potassium for different soil sampling grid sizes. 
 

  0.4 1.0 2.0 3.0 4.0 

Field  --------------------------($ ha-1)-------------------------- 

1 93 98 42 85 94 

2 114 119 105 90 125 

3 152 152 160 155 168 

4 30 42 47 39 27 

5 139 128 122 97 108 

6 56 61 60 59 42 

7 16 32 22 42 55 

8 196 195 191 200 200 

9 189 194 194 190 184 
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2.4.6 Economics of Different Grid Sizes – Application Costs  

Table 2.10 presents the total application cost per hectare based on different grid sizes 

for all the fields. The total application cost per hectare includes the cost per hectare of each 

material (lime, P, and K), the cost per hectare for the collection of the soil samples, and the 

cost per hectare for the analysis of the soil samples. When observing the data in Table 2.10, 

it is difficult to define a particular trend or trends across the fields and also between the 

different grid sizes because many factors can influence the total application cost per 

hectare. These factors are, but are not limited to, the application accuracy associated with 

each grid, the cost of fertilizer, and the cost of the soil sampling method.  

For most fields, the 0.4-ha grid sampling method does result in the highest cost per 

hectare, which is expected due to the higher cost of sampling and analysis associated with 

the smaller grid size. Interestingly, on average, the change in total application cost per 

hectare from a 1.0-ha to a 0.4-ha sampling grid represents an increase of less than 2.5% of 

the total cost per hectare. However, this change in soil sampling grid size will, on average, 

also increase the application accuracy by >20% for lime, P and K. While changing soil 

sampling from a 2.0-ha grid size to a 0.4-ha grid size will cost on average 3% more per 

hectare in sampling costs, lab analysis, and material, the application accuracy increase is 

>30% for P and K. Understanding that producers may not be willing to make such a large 

shift to 0.4-ha grids, going from a 2.0-ha grid size to a 1.0-ha grids increases the total cost 

by 1.6% and an increase in application accuracy of 4% on average.   
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Table 2.10. Total application cost per hectare for soil sampling on different grid sizes. 

  0.4 1.0 2.0 3.0 4.0 

 Field --------------------------($/ha)-------------------------- 

1 279 297 282 295 226 

2 296 261 246 219 273 

3 282 263 283 251 268 

4 146 137 145 124 84 

5 429 401 410 367 369 

6 210 176 203 183 181 

7 149 204 165 151 225 

8 271 257 247 272 256 

9 424 450 436 418 431 

 

  

Overall, when considering both the application accuracy and total application costs 

associated with different soil sampling grid sizes, the results obtained in this study are 

helpful to producers in the southeastern U.S. as they highlight the strengths and weaknesses 

of different soil sampling grid sizes as well as the importance of selecting a proper grid 

size as it can greatly influence both accuracy and costs. If the 9 fields used in this study 

were to represent a sub-sample of a growers’ farm, the data suggests an optimal grid size 

would vary from a field-by-field basis. However, when considering the overall results 

across all the fields, it is also evident that the 0.4 ha grid size does perform better than all 

other grid sizes but it may come at the expense of increased cost in some fields. However, 

it can also be said that some growers are more willing to spend money in areas or fields 

with high-yield potential. Considering that, precision soil sampling on a smaller grid size 

such as 0.4 ha gives those producers a higher confidence in their nutrient management by 

ensuring fertilizer application at the correct rate and the correct place. It is important to 

emphasize here that the most common grid size currently used for precision soil sampling 

across the southeastern US is 2.0 ha, which only exhibited 50% to 70% application 

accuracy across nine fields in this study. Interestingly, the larger grid sizes of 3.0 and 4.0 
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ha are also used by some consultants and growers in the southeastern US, the results 

attained here suggest an incredibly large amount of under- or over-application of nutrients 

associated with them. While lowering soil sampling costs is one of the main reasons behind 

larger grid sizes, the authors believe that this effort to save is costing growers more in 

fertilizer application inaccuracies and consequently in crop yields. In some cases, these 

inaccurate fertilizer applications could also cause more nutrient variability than originally 

present in the field. Therefore, growers who have soil sampled on larger grid sizes over the 

years need to be cautious about inadvertently causing these nutrient variations in their 

fields. Based on the findings in this study, it is recommended that most fields should be 

soil sampled on a 0.4 ha grid size at least once to understand the nutrient variability within 

each field and to make a decision for subsequent years if it needs to be soil sampling on 

0.4 ha or larger grid size.  While most fields have some sort of inherent variability due to 

soil type, texture, or management, the authors do believe that some (mostly uniform) fields 

can be soil sampled on larger grid sizes to manage soil sampling costs. This also presents 

a relatively different approach to soil sampling as currently the soil sampling is performed 

on one grid size across the whole farm; however, there could be an opportunity for growers 

to be more efficient with nutrient management and costs by adopting varied grid sizes for 

fields across their farm. Though grid soil sampling will remain a prevalent soil sampling 

practice in the southeastern US, we can expect the adoption of zone-based soil sampling 

strategies in the future as the interest in precision nutrient management and maximizing 

yield increases among the growers. 
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2.5 Conclusions 

Site-specific nutrient management through variable-rate application of lime and fertilizer 

is one of the most widely adopted practices in the US including in the southeastern region. 

The rising fertilizer costs and increased interest among growers in precision nutrient 

management have recently raised concerns and questions about the efficacy of different 

grid sizes nominally used for precision soil sampling across the southeastern US. Thus, this 

study was aimed at evaluating the effectiveness of different soil sampling grid sizes (0.4, 

1.0, 2.0, 3.0, and 4.0 ha) in depicting the spatial nutrient (soil pH, P, and K) variability 

within nine agricultural fields and their influence on the accuracy of variable-rate fertilizer 

prescription maps. Results from this study showed that the smallest grid size of 0.4 ha was 

the best at representing the most spatial variability for soil pH, P, and K within the selected 

fields while the ability to depict spatial variability decreased significantly with an increase 

in grid size. The resulting VR prescription maps generated from soil sampling at different 

grid sizes indicated a similar trend where the potential for under- or over-application was 

the least for the smaller grid sizes and the highest for the larger grid sizes. In general, it 

was noticed across all nutrients that the application accuracy was greatest for grid sizes of 

0.4 ha (>80%)  while it varied considerably (20% to 90%) among the fields for grid sizes 

equal to or larger than 1.0 ha. Lower CV values (6 – 7%) for application accuracy of lime, 

P, and K also indicated that the findings for 1.0 ha grid size were also consistent among all 

nine fields.  

Over the years, one of the major drivers behind the push towards larger soil sampling 

grid sizes has been the increased costs of soil sampling; however, that approach fails to 

consider the effect of larger grid sizes on the fertilizer costs per hectare. Thus, this study 
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also investigated the economics of soil sampling on different grid sizes, including 

considering the soil sampling costs, sample analysis costs, and material (lime, P, and K) 

costs, to better understand if there is a certain trend to the total application costs with the 

increase in soil sampling grid size. Results from the economic analysis suggested that while 

the soil sampling costs are mostly fixed (independent of the grid size) and soil analysis 

costs are directly proportional to the grid size – the smaller the grid size, the greater the 

number of samples; the fertilizer costs were correlated to the amount of under- and over-

application associated with different grid sizes within each field. This also influenced the 

total application costs as a high amount of under-application resulted in low material costs 

and vice-versa. Overall, these data suggested that while the larger grid sizes, especially 

≥2.0 ha, may help in lowering soil sampling costs, the total application costs including 

fertilizer costs can be lower or higher than the total costs for soil sampling on smaller grid 

sizes (0.4 or 1.0 ha), depending on the amount of under- and over-application. Direct 

impacts of accurate nutrient inputs are beyond the scope of this study, but, likely, higher 

nutrient use efficiency would also translate to better yield.  In some cases, the 0.4-ha grid 

size may have the highest application costs than other grid sizes but it also ensures the 

greatest application accuracy. Similarly, in some fields, the total application costs 

associated with larger grid sizes could be lower than the 0.4-ha grid size but not without 

the added expense of significant under-application of nutrients in certain areas of those 

fields. In conclusion, the smaller grid sizes of 0.4 or 1.0 ha are most optimal when 

considering both the accuracy of VR fertilizer applications and the total application costs.  

 

 



 

50 

 

 

CHAPTER 3 

EVALUATION AND COMPARISON OF DIFFERENT ZONE-BASED SOIL 

SAMPLING METHODS FOR SITE-SPECIFIC NUTRIENT MANAGEMENT2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
2 Tucker, M., Virk, S., Harris, G., Levi, M., Lessl, J. To be submitted to a peer-reviewed journal. 
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3.1 Abstract 

Precision soil sampling strategies are commonly used to determine areas in the field for 

site-specific application of soil amendments and nutrients. Grid-based soil sampling is a 

predominant practice in the southeastern US and research has shown that the nutrient 

application accuracy decreases significantly for grid sizes greater than 1.0 ha. Precision 

soil sampling on grids, especially on 0.4 and 1.0 ha, incurs considerable soil sampling and 

analysis costs. Thus, there has been an increased interest among consultants and growers 

recently in understanding the potential of zone-based soil sampling methods to lower some 

of the soil sampling costs while maintaining high application accuracy. Currently, many 

precision ag companies offer zone-based soil sampling services that combine 

homogeneous areas of the field and present information on zones for soil sampling. To 

better understand the potential of different zone-based soil sampling methods for site-

specific soil nutrient management, a study was conducted in six fields in southern Georgia 

using three different zone-based soil sampling methods. Soil samples were also collected 

on 0.2-ha grids to determine and use that information as a reference for comparison among 

the zone strategies. The first strategy utilized soil electrical conductivity (EC) to create 

management zones while the second approach utilized a gamma radiation sensor to detect 

variability in the soil and create management zones for soil sampling based on the 

company’s algorithm. The third strategy utilized the gamma radiation sensor but used the 

raw data to delineate management zones. The soil sampling based on each of the three 

strategies was conducted in Spring 2023 and all the soil test results of each method were 

analyzed. Variable-rate nutrient application maps (lime, P, and K) based on each strategy 

were created and compared to the reference map generated from the 0.5 ac grid sampling 
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method. Zone-based sampling methods did decrease the amount of soil samples in each 

field, but the consistency of the application accuracy was also decreased. Promising results 

were found that the zone delineation methods could be successful, but further research is 

needed to determine the best way to collect samples within the zones to make sure a 

representative nutrient value is assigned for each zone. Collecting soil samples with a grid 

size smaller than 1.0 ha should be preferred to best understand the nutrient variability in 

the fields, until zone-based management zone strategies can be studied further.  

3.2 Introduction 

Proper nutrient management in row crops is crucial for producing high-yielding and 

high-quality crops. Most agricultural production fields in the southeastern U.S. have high 

amounts of spatial variability regarding soil physical properties and nutrient levels, due to 

variations in climate, landscape, and management (Duffera et al., 2007). Single-rate 

broadcast applications can cause variations in nutrient levels causing areas of yield loss 

that can take years to improve (Sawyer, 1994). Precision agriculture techniques allow fields 

to be divided into smaller homogenous areas that can be managed separately from the 

adjacent areas. Variable-rate application of soil amendments and fertility have proven to 

be cost-effective and increase yields to the area’s potential when conducted appropriately. 

Variable-rate technology achieves the right place and right rate of the 4Rs of nutrient 

management (IPNI, 2012). Soil sampling is an important component of site-specific 

nutrient management in precision agriculture. Precision soil sampling techniques such as 

grid- or zone-based sampling methods are utilized to determine spatial variability of soil 

pH and nutrients within fields and are commonly used for variable-rate fertilizer 

applications (Ackerson, 2018).  
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Various methods are used by growers use to collect soil samples to determine spatial 

nutrient variability and inform variable-rate applications, with grid-based approach (1.0- 

and 2.0-ha grids) being the most common in the southeastern US. Wollenhaupt (1994) 

found that grids should be no larger than 0.40 ha to capture the spatial nutrient variability. 

The author also found that grid-based sampling produced maps with higher accuracy when 

compared to zone-based sampling. Different management zone (MZ) based strategies have 

also been investigated by researchers in the past including using farmer experience and 

aerial imagery (Fleming et al., 2004), stable yield maps from multi-year yield data (Flowers 

et al., 2005), topography (Kravchenko et al., 2000), and electrical conductivity (EC) 

(Johnson et al., 2003). Farmer experience and soil color maps created from aerial imagery 

identified homogeneous sub-regions within fields, but the effectiveness varied across 

different fields (Fleming et al., 2004). Flowers et al. (2005) found multi-year yield maps to 

be nearly as effective at delineating soil nutrient variability as 1.0-ha grids. Johnson et al. 

(2005) investigated the use of soil EC and found that there was no consistent relationship 

between EC and yield variability. However, the addition of other data layers could be used 

to establish MZs that correlate to crop yield.    

The adoption and utilization of these strategies vary considerably among growers, 

especially in the southeastern United States (Mooney et al., 2010). With grid-based soil 

sampling being labor intensive and costly (due to the large number of grids used to 

determine nutrient spatial variability), there is a growing interest among growers in 

adopting zone-based soil sampling strategies, but the proper selection of management zone 

differs among the users depending on several factors. Hence, questions from growers and 

consultants regarding the suitability of different zone-based soil sampling approaches and 
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the type of information needed to delineate management zones for soil sampling are 

common. Therefore, the objective of this study was to evaluate and compare different zone-

based soil sampling methods with the goal of a better understanding of how zone-based 

soil sampling strategies influence the depiction of soil nutrient variability and site-specific 

nutrient application requirements within fields. 

3.3 Materials and Methods 

Data for this on-farm study was collected in 2023 across six different grower fields to be 

planted in row crops prevalent in the southeastern US (cotton, corn, or peanuts). The 

selected fields ranged from 9.2 to 37.6 ha in size. All fields were located in the Coastal 

Plain physiographic region of the southeastern US and had two or more soil types. Detailed 

information on the location, size, and soil types present within each field is presented in 

Table 3.1 (Web Soil Survey, 2021). These fields were randomly selected by local county 

Extension agents with the only criterion that the field be representative of the local 

geographic area. The soil sampling methods and other procedures were kept consistent 

among all locations used in this study.  

 

Table 3.1. Location and size of all six fields used in this precision soil 

sampling study conducted in 2023. 

Field Latitude Longitude Size (ha) Soil Type(s) 

1 31.307355 -83.914703 37.6 
Tifton, Carnegie, 

Leefield, Borrow 

2 33.209401 -82.503499 36.9 
Faceville, Tifton, 

Orangeburg, Nankin 

3 31.729895 -84.463742 25.5 Greenville, Grady 

4 31.473537 -83.407591 22.4 
Ocilla, Clarendon, 

Alapaha, Tifton 

5 31.351563 -83.930176 9.2 Pelham, Tifton 

6 31.351420 -83.926449 10.0 Tifton, Pelham 
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3.3.1 Grid Soil Sampling 

Field boundaries for all fields were imported into a farm data management software 

(SMS Advanced, AgLeader Technology, Ames, IA), and soil sampling maps were created 

to effectively have a grid size of 0.2 ha (0.5 ac), as shown in Figure 3.1 for one of the fields 

(Field 1) used in this study. Two 0.4-ha grid point maps were created and combined in an 

offset pattern to create the map shown in Figure 3.1. The reason for using two 0.4-ha grids 

offset from each other was the previous year’s sampling in these fields was conducted on 

0.4 ha grid and this data was to be used in a separate long-term study to determine the 

change in nutrient values from year to year when collecting samples in the same location. 

Sampling this way also allowed for this project to have a 0.2-ha grid sampling method 

(using all points) and a 0.4-ha grid sampling method (using only half the points). Sampling 

points were placed at the center of each grid for ease of navigation to the center of the grids 

during soil sampling. The soil sampling maps were uploaded on a handheld Trimble GPS 

unit, with a horizontal accuracy of 2-4 m, (Nomad 1050, Trimble Inc., Sunnyvale, CA), 

which was used to navigate to different soil sampling grids within each field.  

In all fields, soil samples were collected using the point sampling method which 

involved collecting 12 to 15, 15.2 cm deep cores in a 6.1 – 9.1 m radius around each point, 

and then combining the cores to make a composite sample which represented that grid. All 

soil samples from each field were placed in a pre-labeled paper bag with the field and 

sample number. Once all the samples were collected, they were sent to the University of 

Georgia’s Agricultural and Environmental Services Laboratories (AESL) in Athens, GA 

for soil nutrient analysis. The AESL used Mehlich 1 extractions to determine soil nutrient 

levels and provided the analysis for soil pH, Phosphorus (P), Potassium (K), Calcium (Ca), 
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Magnesium (Mg), Zinc (Zn), Manganese (Mn), and cation exchange capacity (CEC) for 

each sample in a .csv format. Since this study only focused on soil pH, P, and K, soil test 

results for only those nutrients were used for further mapping and analysis. 

 
Figure 3.1 Grid soil sampling map (0.2 ha grids) to illustrate the layout of grids in one of 

the fields used in this study. 
 

 

3.3.2 Zone Soil Sampling 

Management zones are created to divide the field into sections with similar 

characteristics. Numerous characteristics that could be used to delineate management 

zones. Many of them are outdated, labor-intensive, or difficult to collect. For example, soil 

type is a known soil characteristic that plays into nutrient management, but many NRCS 

soil survey maps are over 50 years old. Therefore, unless we have extensive knowledge of 

the field(s) of interest and time to map them to accurately decipher the soil type, this could 

be an extremely difficult task. Currently, there are few sensing technologies being utilized 

for mapping large fields to depict different soil properties. Consequently, two different 

sensors were used in this study to collect data to delineate MZs in all the fields.  

3.3.3 Electrical Conductivity 

Soil Electrical conductivity (EC) data was collected for the selected fields using a Veris 

Technologies MSP3 Sensor (Veris Technologies, Salina, KS) pulled using a UTV, as 
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shown in Figure 3.2. The UTV was equipped with a John Deere Starfire GPS/GNSS system 

with an accuracy of +/- 15 cm. In each field, data was collected by making consecutive 

passes every 12 m apart and two passes around the field boundary. The data from each 

field was sent to Veris for post-processing and returned for analysis.  

 
Figure 3.2 Veris Soil EC mapper used for EC data collection in this study. 

 

The EC sensor collects one data point every second (1 Hz) as it is being pulled across 

the field. A point map was returned from Veris after post-processing (Figure 3.3). This 

point map was then interpolated using IDW to create a continuous map of the field 

(Figure 3.4). During the interpolation process, a 9.14 x 9.14 m cell raster map was created 

for each field. This data was then subjected to a k-means clustering algorithm to 

determine the appropriate number of zones for each field and section the fields into 

zones. Soil samples, using the same collection method as the grid sampling, were 

randomly collected within the zones. All the cores collected inside each zone were mixed 

and sent to the lab for analysis. By using this method, one composite sample represented 

a zone, and the entire zone would be assigned the soil property values from this sample. 
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Figure 3.3 (a) Soil EC data before post-processing and (b) soil EC map after interpolation 

for one of the fields in this study. 

 

3.3.4 Gamma Radiation 

The other sensor used in this study was a gamma radiation sensor from Soil Optix, as 

shown in Figure 3.4. The process for collecting data with this sensor was the same as data 

collection with the Veris. However, the data and readings among the two sensors are quite 

different. This sensor measures natural geological properties emitted from the soil; 

Caesium-137, Uranium-238, Thorium-232, and Potassium-40. This sensor also collects a 

data point every second (1 Hz) as it travels across the field. This data was submitted to Soil 

Optix for post-processing where their algorithm correlated the values from the sensor to 

soil texture and nutrient levels. 

 
Figure 3.4 Soil Optix Gamma Radiation sensor 
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The data collected from this sensor was used in two different ways in this study. The 

first method involved data collected by the Soil Optix sensor after being processed by their 

algorithm and converting it into a raster map for further analysis. The process for collecting 

soil samples with Soil Optix after the full field has been surveyed is based on a map 

generated on the field computer. The Soil Optix software generates sampling locations to 

collect soil samples within the fields as shown in Figure 3.5. 

 
Figure 3.5 Map representing sampling locations recommended by Soil Optix software for 

one of the fields in this study. Black dots represent soil sampling points recommended by 

the software. 

 

The Soil Optix software generates these locations based on where the gamma radiation 

levels were low, medium, and high. The recommended sampling density from the 

manufacturer for this method is 1 sample per 3 ha. These samples were collected by 

navigating to the sample location with the sensor on and collecting the samples 2 to 5 m 

away from the sensor in a semi-circle. These soil samples were labeled according to the 

Soil Optix software and sent to the lab for analysis. Upon receiving the soil analysis, the 

data was sent to Soil Optix to validate their algorithm.  

The second method to create zones with this data was to process and use the raw data 

collected from the sensor in the same way as soil EC data. Raw data from the Soil Optix 
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sensor (Count Rate) was interpolated using the IDW method and then ran through a k-

means clustering algorithm to determine the appropriate number of zones and sort each 

raster cell into the zone it belonged to, as shown in Figure 3.6.  

 
Figure 3.6 Map representing management zones created using Soil Optix Countrate data. 

 

Soil samples were then randomly collected within each zone, and the samples 

within each zone were combined into a composite sample and submitted to the lab for 

analysis. When the data was returned, each zone was assigned the soil nutrient values for 

the entire zone.  

3.3.5 Spatial Nutrient Mapping and Analysis 

Soil nutrient analysis results for each field were imported into AgLeader SMS 

Advanced software and used for further spatial analysis and interpolation. For all fields, 

spatial maps for soil pH, P, and K were created from soil nutrient levels for each soil 

sampling strategy (both grid and zone) using an inverse distance weighting (IDW) 

interpolation method. The IDW interpolation uses an algorithm to predict values of 

unmeasured locations by weighting measured values based on the spatial distance from the 

unmeasured locations (Burrough et al., 2015). The interpolation process consisted of 

creating a 9.14 x 9.14 m raster map for each grid size. Each cell in the map was 



 

61 

georeferenced and contained soil nutrient values for soil pH, P, and K. The soil analysis 

results for the 0.2-ha grid were assumed to represent the actual spatial variability within 

each field and were used as a reference layer for comparison among other maps based on 

different sampling strategies. This 0.2-ha grid map is hereafter referred to as the reference 

map for each nutrient. The zone maps for EC and Soil Optix Countrate were created by 

using a k-means algorithm to determine the appropriate number of zones and how the data 

would be split into the zones. The raster maps with the interpolated values of soil EC and 

Gamma radiation (Soil Optix Countrate) were then converted into zone maps by assigning 

a zone number to each cell of the raster. These zone maps were then imported into a 

handheld GPS unit and soil samples were randomly collected within each zone. At least 20 

cores were collected from each zone and then mixed to send a composite sample 

(representing each zone) to the lab for analysis.  

The variable-rate (VR) lime, phosphorus (P), and potassium (K) prescription maps 

were created for each zone-based soil sampling strategy for fertilizing cotton for a yield 

goal of 1345 kg ha-1 using the UGA cotton fertilization recommendations (Plank and 

Harris, 2022). All VR fertilizer prescription maps were converted to raster format to enable 

direct comparison to the reference prescription map for each nutrient. A comparison 

between the prescription map for each zone-based strategy and the reference prescription 

map (based on 0.2-ha grid size) was performed to create a difference map that depicted the 

spatial location as well as the amount of on-target, under-, and over-application that 

occurred in different areas within the field, as shown in Figure 3.7. Difference maps were 

created for all soil sampling methods used in this project: 0.4-ha grid sampling, 

management zones based on soil EC, management zones created from Soil Optix using 
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their algorithm, and management zones created from raw data from Soil Optix (Countrate). 

The difference maps used a buffer to allow minor differences in nutrient recommendations 

to be considered on target, these buffers are as follows: lime +/- 225 kg, P and K +/- 25 kg. 

These buffers were used because of known dry-spreading equipment restraints and 

accuracies. These methods are hereafter referred to as 0.4-ha Grids, Soil EC, Soil Optix, 

and Soil Optix Countrate. 

 

 
Figure 3.7 Illustration of a (a) prescription map for P based on reference nutrient 

variability, (b) prescription map generated from EC management zone method, and (c) 

difference map. In (c), the areas in green represent a portion of the field that received 

accurate/on-target fertilizer application whereas the areas in red and blue represent under 

and over-fertilized areas, respectively.   

 

Various soil sampling strategies used in this study required varying amounts of soil 

samples to be collected from the fields. Zone-based strategies typically call for fewer soil 

samples to be collected, but have other data collected to help justify the small number of 
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samples. Table 3.2 presents information on the number of soil samples collected within 

each field for different soil sampling strategies used in this study. 

Table 3.2. Information on the number of soil samples collected based on different soil 

sampling strategies used in this study. 

Field 
0.4 ha 

Grids 

Soil  

EC 

Soil 

Optix 

Optix 

Countrate 

1 88 3 12 3 

2 88 3 12 3 

3 64 3 10 3 

4 53 3 8 3 

5 20 3 4 3 

6 24 3 4 3 

 

3.4 Results and Discussion 

3.4.1 Effectiveness of Management Zone Sampling 

The application accuracy results for each soil sampling strategy are presented 

separately for each nutrient (lime, P, and K) in the following sections. The data presented 

in tables 3.3, 3.4, and 3.5 for lime, P, and K, respectively shows the percent of under-

application, on-target (accurate), and over-application associated with each soil sampling 

strategy (0.4-ha grids, Soil EC, Soil Optix and Soil Optix Countrate) in each field. It is also 

important to note that the application data presented in these tables was computed by 

performing comparisons to the reference application map, which was based on the high-

density soil sampling (0.2-ha grids) and assumed to represent the actual spatial variability 

within each field.  

3.4.2 Lime Application Accuracy 

As shown in Table 3.3, the 0.4-ha grid performed better than any of the zone methods 

for lime in all fields except in field 3. In fields 1 and 3, each of the sampling methods 

provided greater than or equal to 80% application accuracy for lime. The Soil Optix 

countrate method performed, on average, better than any of the other zone methods across 
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all the fields for lime with an accuracy of 76%, where soil sampling based on soil EC had 

73% and Soil Optix had 66% accuracy. Although the 0.4-ha grid performed better than the 

zone methods, for each of the fields, it also had the greatest amount of soil samples required 

(7 times or more; Table 3.2) compared to all other methods. It is worth noting that for all 

fields, except field 4, each of the MZ strategies had greater over-application than under-

application, likely meaning these methods are likely recommending lime to be applied in 

areas where soil pH does not need to be adjusted. This is due to soil sampling in the 

management zones not depicting the accurate pH value for the zones. This could be due to 

one of the constraints of this project, the random soil sampling within the zones may not 

have been an accurate representation of the entire zone.   

Table 3.3. Lime application accuracy for different soil sampling methods. Data 

represents the percent over-application, on-target, and under-application associated with 

each soil sampling method for all six fields used in this study.     

Field Application 
0.4-ha Grids Soil EC Soil Optix 

Optix 

Countrate 

-------------------------------(%)---------------------------- 

1 

Over 5 13 13 13 

Target 93 86 80 86 

Under 2 0 7 0 

2 

Over 4 48 46 48 

Target 86 52 53 52 

Under 11 0 0 0 

3 

Over 1 4 4 4 

Target 93 96 96 96 

Under 6 0 0 0 

4 

Over 4 14 29 28 

Target 79 69 37 67 

Under 17 16 34 5 

5 

Over 7 19 27 27 

Target 87 69 73 73 

Under 6 12 0 0 

6 

Over 8 34 43 18 

Target 84 65 57 67 

Under 8 1 0 15 

 



 

65 

 

 

 
Figure 3.8 (a) depicts the reference lime prescription map based on the 0.2 ha soil sampling 

whereas (b - f) represents the variable-rate lime prescription maps based on different soil 

sampling methods for one of the fields as follows: (b) 0.4 ha grid, (c) EC Zones, (d) Soil 

Optix Zones, and (e) Soil Optix Countrate Zones 

 

Fig. 3.8 depicts the VR prescription maps for Lime in one of the fields in this study. 

The amount of variability in this field, field 1, is not extremely high, so all soil sampling 

strategies were at least 80% accurate when compared to the high-density reference map 

(0.2 ha grids). The prescription map based on 0.4-ha grid samples (Fig 3.8b) closely 

represents the reference map, some of the areas where the rate changes were slightly bigger 

or smaller when comparing the 0.4-ha grid map to the 0.2-ha grid map, but, overall, these 
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two maps are closely related to each other. In the MZ maps (c, d, and e), the majority of 

the field calls for a single rate. In Figures 3.8c and 3.8e, the entire field is one rate, while 

(d) does have a few small areas where the rate is 0 kg/ha. Looking at it, the map in Figure 

3.8d compared to the 0.2-ha reference map (a), the locations calling for 0 kg/ha do not seem 

to match the areas calling for 0 kg/ha in the reference map. 

3.4.3 Phosphorus (P) Application Accuracy 

The results for application accuracy for phosphorus can be found in Table 3.4. For fields, 

1, 3, 5, and 6, the 0.4-ha grid sampling strategy outperformed all the zone-based strategies. 

There was high P variability in these fields. While a few zone sampling methods exhibited 

accuracy levels close to 80% for some fields, such as Soil Optix countrate in Field 1 and 

EC zones in Field 5, there was no consistent trend that can be found for any of the zone-

based strategies, related to chemical properties in the fields. There was minimal to very 

low P variability in Fields 2 and 4, likely due to historical field management, therefore all 

the zone-based methods showed almost 100% accuracy when compared to the 0.2-ha grid 

method. The Rx maps for these fields called for either no application or a single rate 

application based on the prevalent P levels. For fields 1 and 3, the Optix Countrate 

performed the best among the MZ strategies, while for fields 5 and 6 the Soil EC MZ 

strategy was marginally higher than the other MZ methods. There does not seem to be a 

trend for one MZ strategy to outperform the others, or to be as good or better as the 0.4-ha 

grid method, across all fields in this study.   
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Table 3.4 Phosphorus application accuracy for different soil sampling methods. Data 

represents the percent over-application, on-target, and under-application associated with 

each soil sampling method for all six fields used in this study.      

Field Application 
0.4-ha Grids Soil EC Soil Optix 

Optix 

Countrate 

-------------------------------(%)------------------------------ 

1 

Over 7 4 1 5 

Target 89 73 78 79 

Under 4 23 21 16 

2 

Over 1 0 0 0 

Target 99 100 100 100 

Under 0 0 0 0 

3 

Over 18 7 57 11 

Target 80 61 37 66 

Under 2 32 6 23 

4 

Over 0 0 0 0 

Target 100 100 100 100 

Under 0 0 0 0 

5 

Over 10 5 5 10 

Target 89 79 75 72 

Under 1 16 20 18 

6 

Over 15 42 26 36 

Target 82 56 53 55 

Under 4 3 21 9 

 

              

Fig. 3.9 displays Rx maps for VR P application for one of the fields used in this study. 

Similarly to the VR lime map, the 0.4 ha grid sampling has the most similar Rx map to the 

0.2 ha reference map. Interestingly, each of the zone-based strategies was able to delineate 

a zone in the northeastern section of the field that has a similar shape to the reference map. 

While the nutrient levels in this area may not be exact, it is promising to see the zone 

methods were able to capture a difference in nutrient levels in this section of the field. It 

can be noticed that the yellow section in the north part of the Soil EC MZ map (Figure 

3.9c) is similar in size and location to the yellow-colored section in the reference map. This 

same area can be seen in the Soil Optix MZ map (Figure 3.9d), but the nutrient 
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recommendation for this area is lower for the Soil Optix method when compared to the 

reference map.  

 

 

Figure 3.9 (a) depicts the reference P prescription map based on the 0.2 ha soil sampling 

whereas (b - f) represents the variable-rate P prescription maps based on different soil 

sampling methods for one of the fields used in this study: (b) 0.4 ha grid, (c) EC Zones, (d) 

Soil Optix Zones, and (e) Soil Optix Countrate Zones 

 

3.4.4 Potassium (K) Application Accuracy 

The application accuracy for K was similar to P in some ways (Table 3.5), fields 

with more variability exhibited lower application accuracy with the zone-based strategies 
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as compared to the 0.4-ha grid sampling strategy. However, the fields with low variability 

(Fields 3 and 4) showed high application accuracy for each sampling method. Overlooking 

fields 3 and 4, only one of the MZ methods had an application accuracy greater than 80% 

and that was found in field 5 using the Optix Countrate method. The Soil EC method 

exhibited under-application in all fields. Whereas Soil Optix in all fields (except field 6) 

resulted in greater over-application than under-application. The Optix Countrate method in 

field 1 had more over-application, while the remaining fields in this study had a greater 

amount of under-application. 

Table 3.5 Potassium application accuracy for different soil sampling methods. Data 

represents the percent over-application, on-target, and under-application associated with 

each soil sampling method for all six fields used in this study.     

 

   

Again, the VR Rx maps for one of the fields in this study are shown for K in Figure 

3.10. The 0.4-ha grid soil sampling method (Figure 3.10b) produced the most similar map 

Field Application 
0.4-ha Grids Soil EC Soil Optix 

Optix 

Countrate 

-------------------------------(%)------------------------------ 

1 

Over 15 8 26 29 

Target 83 52 73 71 

Under 2 40 2 0 

2 

Over 11 2 19 8 

Target 83 66 71 74 

Under 5 32 9 17 

3 

Over 4 0 4 0 

Target 96 94 93 94 

Under 0 6 3 6 

4 

Over 0 0 2 0 

Target 100 99 97 99 

Under 0 1 1 1 

5 

Over 3 0 21 1 

Target 91 76 73 90 

Under 7 24 6 10 

6 

Over 11 4 0 2 

Target 84 70 69 76 

Under 5 25 31 21 
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to the reference map (Figure 3.10a). It is worth noting that the 0.2-ha reference map does 

have some “hot spots” in the center of the map because of the high-density sampling 

(sampling points located close to each other). There were large differences in nutrient 

levels between these locations as there is a noticeable soil type transition in this area. The 

east side is more sandy loam whereas the west side is more clay. Due to the high density 

of samples and the differences in their nutrient levels, the interpolation created these “hot 

spots”. As noticed in the 0.4-ha grid sampling method, this area is much more consistent. 

This does not imply that the 0.2-ha sampling method is incorrect but suggests that it is 

common for denser sampling points to demonstrate greater variability than larger grids. 

The Soil Optix map was able to accurately identify the zone in the southern portion of the 

field where the target rate matched as prescribed by the reference 0.4-ha grid sampling. 

The Soil EC MZ method also depicted some variability in the field, but the nutrient values 

were different from the actual nutrient levels depicted by the reference map and 

recommended either too much or not enough fertilizer in these areas.  
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Figure. 3.10 (a) depicts the reference K prescription map based on the 0.2 ha soil sampling 

whereas (b - f) represents the variable-rate K prescription maps based on different soil 

sampling methods for one of the fields used in this study.  

(b) 0.4 ha grid, (c) EC Zones, (d) Soil Optix Zones, and (e) Soil Optix Countrate Zones 
 

As shown in Tables 3.3-3.5, there is not one particular zone-based soil sampling 

strategy that stands out above the rest. When looking at the fields individually, there may 

be a management zone strategy that performs well for a few fields but not great for the 

remaining. In Table 3.6, the accuracy data is averaged across each of the fields for each 

nutrient studied in this project, as well as a coefficient of variation (CV) is presented for 

each method and nutrient. The CV value represents the consistency of the method in 

accurately depicting soil nutrient levels across the fields. The higher the CV, the higher the 
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variability in the application accuracy across the fields, which means that a particular 

method worked well in some fields but did not consistently provide the required accuracy 

in other fields. It is obvious that the 0.4-ha grid sampling has the most accurate application 

across all nutrients. Thus, the CV is lowest for the 0.4-ha grid sampling method across all 

fields meaning it is consistently within an acceptable range of 80% accuracy or better. The 

zone sampling methods all have a CV greater than 14% and most are greater than 20%, 

meaning they are inconsistent in accurately depicting the soil nutrient levels across multiple 

fields. While it should be noted the Soil Optix countrate method performed better on 

average than the Soil Optix method, where the countrate method used fewer soil samples. 

This could be due to the difference in soil types in the southeastern US compared to in the 

midwestern US where the Soil Optix algorithm was ultimately developed. This is an 

important consideration as growers need a method to collect soil samples that can 

consistently provide accurate data year over year across all their fields. 

Table 3.6. Application accuracy of lime, phosphorus (P), and potassium (K) for different 

sampling strategies. Data is averaged across all fields.   

Sampling 

Method 

Lime   P   K 

Target CV  Target CV  Target CV 

(%) (%)   (%) (%)   (%) (%) 

0.4-ha Grids 87 6  78 9  90 8 

Soil EC 73 21  78 24  76 23 

Soil Optix 66 32  74 34  79 15 

Optix Countrate 76 21   79 23   84 14 

 

2.5 Conclusions 

Variable-rate (VR) applications aid growers in making site-specific management decisions. 

VR application of lime and fertilizer is widely adopted in the southeastern region of the 

US. The increasing cost of farm inputs has increased the adoption of VR applications 

significantly; though this has also led to increased questions and concerns about precision 
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soil sampling methods and their effectiveness. This study was conducted to evaluate the 

effectiveness of different zone-based soil sampling methods to determine their 

effectiveness at depicting spatial nutrient variability within six agricultural fields and their 

influence on the accuracy of VR prescription maps. The zone-based methods were also 

compared to soil sampling on 0.4-ha grids. Results from this study showed that different 

zone-based soil sampling methods evaluated in this study (soil EC, Soil Optix, and Soil 

Optix Countrate), were not able to consistently provide a VR Rx map over 80% accuracy 

for each nutrient across all the fields. While the zone-based sampling methods did decrease 

the amount of soil samples collected from each field, the accuracy of the Rx maps was not 

consistently at an optimum level. Some of the fields in this study show promising results 

for the delineation of the actual management zones in the fields, but there is still further 

investigation needed to determine the best way to collect samples within the zones to make 

sure the nutrient values are representative of the entire zone. Based on this study, collecting 

soil samples with a smaller grid size (1 ha) should be preferred to better understand the 

nutrient variability in the field, especially if conducting precision soil sampling in a field 

for the first time. The grid size in the subsequent years can be increased appropriately to 

save time and cost if the variability in the field is found to be minimal. While zone-based 

soil sampling methods have potential and could be easier to implement than grid soil 

sampling, they need to be studied further in different regions and possibly with different 

methodologies when it comes to collecting the soil samples within the zones. Further 

research is also needed to understand how to properly delineate different management 

zones from different soil properties and historical crop data. Another thing that should be 

examined would be whether incorporating more spatial data layers into the zone creation 
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process would make the zones more accurate and if certain spatial layers must be 

considered during the creation of management zones. 
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CHAPTER 4 

CONCLUSIONS 

Precision soil sampling methodology is critical to ensure accurate site-specific nutrient 

applications in agricultural fields. Poor selection of a soil sampling strategy can result in 

inaccurate and inefficient nutrient applications. Inaccurate Rx maps can create more 

variability in fields because of over- and under-application of nutrients, which can further 

make soil sampling and balancing out nutrients in some fields more difficult as time goes 

on. Soil sampling methodology has been studied for decades, but few studies have been 

conducted in the southeastern US when it comes to selecting the appropriate grid size or 

using management zones for soil sampling in agricultural fields. Therefore, this study was 

conducted to determine the effectiveness of common soil sampling grid and zone methods 

in depicting spatial nutrient variability and the accuracy associated with their nutrient 

recommendations.  

The first objective of this study was to investigate the effectiveness and economics 

of different commonly used grid sizes in the southeastern US. In this study, the application 

accuracy of grid sampling significantly reduced as grid size increased. Overall, greater 

over- and under-application occurred in the fields with grid sizes larger than 2.0 ha. Grid 

sizes less than 1.0 ha had application accuracy of greater than 80% for the fields studied, 

across all nutrients (Lime, P and K). The economic analysis suggested that even with 

increased soil sampling with smaller grid sizes (< 1.0 ha), it is recommended to choose a 
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smaller grid size to ensure higher application accuracy. The increase in soil sampling 

locations (number of samples) increases costs but also adds confidence in the application. 

These findings prove the importance of grid size selection to ensure nutrient applications 

at the right rate and in the right place.  

The second objective of this study was to investigate the use of management zones 

for site-specific nutrient management. The management zone strategies, used in this study, 

show a potential to be a feasible soil sampling method for growers, as trends were found 

when comparing the nutrient maps to a high-density reference map, that there was a good 

correlation between nutrient maps based on zone sampling and reference map, but the 

nutrient values were either high or low. Further research should be conducted to determine 

the best method for selecting sampling locations within the zones to increase the 

application accuracy of the management zones. It would also be beneficial to explore other 

spatial data layers that could be added to these zone delineation methods to better 

understand the variability within the fields, such as elevation, aerial imagery,  etc.  

In conclusion, the findings from this research show the importance of precision soil 

sampling methodologies and their impact on site-specific application of soil amendments 

and nutrients. By selecting the appropriate soil sampling strategy and informing accurate 

site-specific nutrient management, growers can minimize input costs and optimize yields 

within the fields. Continued research in soil sampling techniques is essential for further 

advancing precision agriculture on farms in the southeastern US.  

  

 

 



 

77 

 

 

 

REFERENCES 

Adamchuk, V., Ji, W., Rossel, R. V., Gebbers, R., & Tremblay, N. (2018). Proximal soil 

and plant sensing. Precision agriculture basics, 119-140.  

Adamchuk, V. I., Hummel, J. W., Morgan, M. T., & Upadhyaya, S. K. (2004). On-the-go 

soil sensors for precision agriculture. Computers and electronics in agriculture, 

44(1), 71-91. https://doi.org/10.1016/j.compag.2004.03.002  

Basso, B., Fiorentino, C., Cammarano, D., & Schulthess, U. (2016). Variable rate nitrogen 

fertilizer response in wheat using remote sensing. Precision Agriculture, 17(2), 

168-182.  

Bertocco, M., Basso, B., Sartori, L., & Martin, E. (2008). Evaluating energy efficiency of 

site-specific tillage in maize in NE Italy. Bioresource Technology, 99(15), 6957-

6965.  

Brouder, S., Hofmann, B., & Morris, D. (2005). Mapping soil pH: Accuracy of common 

soil sampling strategies and estimation techniques. Soil Science Society of America 

Journal, 69(2), 427-442. https://doi.org/10.2136/sssaj2005.0427  

Bullock, D., Hoeft, R., Dorman, P., Macy, T., & Olson, R. (1994). Nutrient management 

with intensive soil sampling and differential fertilizer spreading. Better Crops with 

Plant Food, 78(4), 10-12.  

Burrough, P. A., McDonnell, R. A., & Lloyd, C. D. (2015). Principles of geographical 

information systems. Oxford university press.  

Butts, T. R., Butts, L. E., Luck, J. D., Fritz, B. K., Hoffmann, W. C., & Kruger, G. R. 

(2019). Droplet size and nozzle tip pressure from a pulse-width modulation sprayer. 

Biosystems engineering, 178, 52-69.  

Dobermann, A., Witt, C., Dawe, D., Abdulrachman, S., Gines, H., Nagarajan, R., 

Satawathananont, S., Son, T., Tan, P., & Wang, G. (2002). Site-specific nutrient 

management for intensive rice cropping systems in Asia. Field Crops Research, 

74(1), 37-66.  

Duffera, M., White, J. G., & Weisz, R. (2007). Spatial variability of Southeastern US 

Coastal Plain soil physical properties: Implications for site-specific management. 

Geoderma, 137(3-4), 327-339.  

Escadafal, R. (1993). Remote sensing of soil color: principles and applications. Remote 

Sensing Reviews, 7(3-4), 261-279.  

Evans, R. G., LaRue, J., Stone, K. C., & King, B. A. (2013). Adoption of site-specific 

variable rate sprinkler irrigation systems. Irrigation science, 31(4), 871-887.  

https://doi.org/10.1016/j.compag.2004.03.002
https://doi.org/10.2136/sssaj2005.0427


 

78 

Ferguson, R., & Rundquist, D. (2018). Remote sensing for site‐specific crop management. 

Precision agriculture basics, 103-117.  

Fleming, K., Westfall, D., & Bausch, W. (2000). Evaluating management zone technology 

and grid soil sampling for variable rate nitrogen application. Proceedings of the 5th 

International Conference on Precision Agriculture,  

Flowers, M., Weisz, R., & White, J. G. (2005). Yield‐based management zones and grid 

sampling strategies: Describing soil test and nutrient variability. Agronomy 

Journal, 97(3), 968-982.  

Franzen, D. W., & Peck, T. R. (1995). Field soil sampling density for variable rate 

fertilization. Journal of Production Agriculture, 8(4), 568-574.  

Fulton, J., Hawkins, E., Taylor, R., & Franzen, A. (2018). Yield monitoring and mapping. 

Precision agriculture basics, 63-77.  

Gebbers, R., & Adamchuk, V. I. (2010). Precision agriculture and food security. Science, 

327(5967), 828-831.  

Guo, W., Maas, S. J., & Bronson, K. F. (2012). Relationship between cotton yield and soil 

electrical conductivity, topography, and Landsat imagery. Precision Agriculture, 

13(6), 678-692. https://doi.org/10.1007/s11119-012-9277-2  

Heraud, J. (2018). Blue River Sunnyvale, California. Resource Magazine, 25(6), 12-12.  

Hornung, A., Khosla, R., Reich, R., Inman, D., & Westfall, D. (2006). Comparison of site‐

specific management zones: Soil‐color‐based and yield‐based. Agronomy Journal, 

98(2), 407-415. https://doi.org/10.2134/agronj2005.0240  

Hurley, T. M., Kilian, B., Malzer, G. L., & Dikici, H. (2001). The value of information for 

variable rate nitrogen applications: a comparison of soil test, topographical, and 

remote sensing information. 10.22004/ag.econ.20726 

Iticha, B., & Takele, C. (2019). Digital soil mapping for site-specific management of soils. 

Geoderma, 351, 85-91.  

Johnson, C. K., Mortensen, D. A., Wienhold, B. J., Shanahan, J. F., & Doran, J. W. (2003). 

Site‐specific management zones based on soil electrical conductivity in a semiarid 

cropping system. Agronomy Journal, 95(2), 303-315.  

Johnston, A. M., & Bruulsema, T. W. (2014). 4R nutrient stewardship for improved 

nutrient use efficiency. Procedia Engineering, 83, 365-370.  

Khan, N., Ray, R. L., Sargani, G. R., Ihtisham, M., Khayyam, M., & Ismail, S. (2021). 

Current progress and future prospects of agriculture technology: Gateway to 

sustainable agriculture. Sustainability, 13(9), 4883.  

Koch, B., Khosla, R., Frasier, W., Westfall, D., & Inman, D. (2004). Economic feasibility 

of variable‐rate nitrogen application utilizing site‐specific management zones. 

Agronomy Journal, 96(6), 1572-1580.  

Lacerda, L., Snider, J., Cohen, Y., Liakos, V., & Vellidis, G. (2021). The use of remote 

sensing for variable rate irrigation in cotton. In Precision agriculture’21 (pp. 217-

237). Wageningen Academic Publishers.  

https://doi.org/10.1007/s11119-012-9277-2
https://doi.org/10.2134/agronj2005.0240


 

79 

Lambert, D. M., Paudel, K. P., & Larson, J. A. (2015). Bundled adoption of precision 

agriculture technologies by cotton producers. Journal of agricultural and resource 

economics, 325-345.  

Liakos, V., Vellidis, G., Harris, G., Hill, R., & Henry, H. (2013). Variable rate application 

of side-dress nitrogen on cotton in Georgia, USA. In Precision agriculture’13 (pp. 

435-442). Springer.  

Lowenberg‐DeBoer, J., & Erickson, B. (2019). Setting the record straight on precision 

agriculture adoption. Agronomy Journal, 111(4), 1552-1569.  

Mahler, R. L., & Tindall, T. A. (1994). Soil sampling. Cooperative Extension Service, 

University of Idaho, College of Agriculture. https://idahopar.org/PAR/resources/ 

SoilSampling.pdf  

Mallarino, A. P., & Wittry, D. J. (2004). Efficacy of grid and zone soil sampling approaches 

for site-specific assessment of phosphorus, potassium, pH, and organic matter. 

Precision Agriculture, 5(2), 131-144. https://doi.org/10.1023/B:PRAG.000002 

2358.24102.1b  

McBride, W. D., & Daberkow, S. G. (2003). Information and the adoption of precision 

farming technologies. Journal of Agribusiness, 21(345-2016-15210), 21-38.  

Mooney, D. F., Roberts, R. K., English, B. C., Lambert, D. M., Larson, J. A., Velandia, M. 

M., Larkin, S. L., Marra, M. C., Martin, S. W., & Mishra, A. K. (2010). Precision 

farming by cotton producers in twelve southern states: Results from the 2009 

southern cotton precision farming survey.  

Mulla, D., & McBratney, A. B. (2002). Soil spatial variability. Soil physics companion, 

343373.  

Mulla, D. J. (2013). Twenty five years of remote sensing in precision agriculture: Key 

advances and remaining knowledge gaps. Biosystems Engineering, 114(4), 358-

371.  

Nations, U. (2017). World population projected to reach 9.8 billion in 2050, and 11.2 

billion in 2100. In: UN Department of Economics and Social Affairs New York, 

NY, USA. 

Pedersen, S. M., & Lind, K. M. (2017). Precision agriculture: Technology and economic 

perspectives. Springer.  

René-Laforest, F., Adamchuk, V. I., Mastorakos, M. A., Dhawale, N. M., & Su, Y. (2014). 

Variable depth planting of corn. 2014 Montreal, Quebec Canada July 13–July 16, 

2014,  

Sabbe, W. E., & Marx, D. B. (1987). Soil sampling: spatial and temporal variability. Soil 

testing: Sampling, correlation, calibration, and interpretation, 21, 1-14. 

https://doi.org/10.2136/sssaspecpub21.c1  

Sawyer, J. E. (1994). Concepts of variable rate technology with considerations for fertilizer 

application. Journal of Production Agriculture, 7(2), 195-201.  



 

80 

Schepers, A. R., Shanahan, J. F., Liebig, M. A., Schepers, J. S., Johnson, S. H., & Luchiari 

Jr, A. (2004). Appropriateness of management zones for characterizing spatial 

variability of soil properties and irrigated corn yields across years. Agronomy 

Journal, 96(1), 195-203. https://doi.org/10.2134/agronj2004.1950  

Sharda, A., Franzen, A., Clay, D. E., & Luck, J. D. (2018). Precision variable equipment. 

Precision agriculture basics, 155-168.  

Sharda, A., Luck, J. D., Fulton, J. P., McDonald, T. P., & Shearer, S. A. (2013). Field 

application uniformity and accuracy of two rate control systems with automatic 

section capabilities on agricultural sprayers. Precision Agriculture, 14(3), 307-322.  

Sishodia, R. P., Ray, R. L., & Singh, S. K. (2020). Applications of remote sensing in 

precision agriculture: A review. Remote Sensing, 12(19), 3136.  

Stafford, J. V. (2000). Implementing precision agriculture in the 21st century. Journal of 

agricultural engineering research, 76(3), 267-275. https://doi.org/10.1006/jaer. 

2000.0577  

Stępień, M., Gozdowski, D., & Samborski, S. (2013). A case study on the estimation 

accuracy of soil properties and fertilizer rates for different soil‐sampling grids. 

Journal of Plant Nutrition and Soil Science, 176(1), 57-68. https://onlinelibrary 

.wiley.com/doi/pdf/10.1002/jpln.201100422  

Strasser, R., Badua, S., Sharda, A., Mangus, D., & Haag, L. (2019). Performance of planter 

electric-drive seed meter during simulated planting scenarios. Applied engineering 

in agriculture, 35(6), 925-935.  

Virk, S., Fulton, J., Porter, W., & Pate, G. (2020). Row-crop planter performance to support 

variable-rate seeding of maize. Precision Agriculture, 21(3), 603-619.  

Virk, S., Porter, W., Snider, J., Rains, G., Li, C., & Liu, Y. (2021). Cotton emergence and 

yield response to planter depth and downforce settings in different soil moisture 

conditions. AgriEngineering, 3(2), 323-338.  

Walton, J. C., Roberts, R. K., Lambert, D. M., Larson, J. A., English, B. C., Larkin, S. L., 

Martin, S. W., Marra, M. C., Paxton, K. W., & Reeves, J. M. (2010). Grid soil 

sampling adoption and abandonment in cotton production. Precision Agriculture, 

11(2), 135-147. https://doi.org/10.1007/s11119-009-9144-y  

Wittry, D. J., & Mallarino, A. P. (2004). Comparison of uniform‐and variable‐rate 

phosphorus fertilization for corn-soybean rotations. Agronomy Journal, 96(1), 26-

33.  

Wollenhaupt, N., & Wolkowski, R. (1994). Grid soil sampling. Better crops, 78(4), 6-9. 

http://www.ipni.net/publication/bettercrops.nsf/0/CDD207A2ADFB855385257D

310068B14C/$FILE/BC-1994-4%20p6.pdf  

Yang, C., Everitt, J., & Bradford, J. (2001). Comparisons of uniform and variable rate 

nitrogen and phosphorus fertilizer applications for grain sorghum. Transactions of 

the ASAE, 44(2), 201.  

 

https://doi.org/10.2134/agronj2004.1950
https://onlinelibrary.wiley.com/doi/pdf/10.1002/jpln.201100422
https://onlinelibrary.wiley.com/doi/pdf/10.1002/jpln.201100422
https://doi.org/10.1007/s11119-009-9144-y
http://www.ipni.net/publication/bettercrops.nsf/0/CDD207A2ADFB855385257D310068B14C/$FILE/BC-1994-4%20p6.pdf
http://www.ipni.net/publication/bettercrops.nsf/0/CDD207A2ADFB855385257D310068B14C/$FILE/BC-1994-4%20p6.pdf

