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ABSTRACT 

Despite significant advances and widespread adoption of geospatial information science 

and technology (GIS&T), place names continue to be important in public health. This 

dissertation includes three different applications of GIS&T to public health problems, and finds 

that place names remain a dominant way of collecting, mapping, managing, and communicating 

public health information, despite the ubiquity of GPS and mobile computing in our everyday 

lives. The first study examines the variation in geocoding results of historic monkeypox 

surveillance data stored as village place names depending on the type of geocoding methodology 

employed. This study highlights that digital gazetteers remain limited for geocoding in many 

international locations, and that archival maps can improve the accuracy of geocoding results 

considerably. The second study examines the types of place names travelers and clinicians use to 

describe international travel itineraries, and shows that there is a need for more innovative 

GIS&T-based applications to enable travelers and clinicians to more easily find location-based 

travel health recommendations. The third study takes up the challenge of developing and 

deploying a GIS&T-enabled travel recommendation service so that United States travelers and 

clinicians can find accurate and up-to-date Zika virus travel health recommendations for any 



international destination. This case study demonstrates that interactive mapping technology 

which utilizes the latest web-based geospatial data, software, and services can address the needs 

described in the second study above. More specifically, that web-based geocoding services can 

enable people to easily search for and find relevant travel health recommendations using a range 

of place names. Though the solution described meets the current needs for the Zika virus 

outbreak, this study points out that geospatial capacity needs to be more broadly distributed and 

improved within public health programs if similar types of applications are to be developed for 

other diseases. This dissertation contributes to the understanding of the current GIS&T 

capabilities and needs within applied public health, and should serve to encourage others with 

expert GIS&T knowledge to explore further collaboration and research opportunities within 

applied public health. 
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CHAPTER 1 

INTRODUCTION 

Geographers have long been developing a set of tools for answering questions about what, 

where, and why things exist on the surface of the earth. For many centuries, the geographer’s 

tool kit was limited to the technology of the human eye (what could be seen), paper and pencil 

(what could be written), and algebra (what could be counted, compared, and summarized). 

Subsequent efforts at accelerating and increasing the capacity for production, revision, and 

analysis of maps to answer geographical questions were termed geographical information 

systems (GIS), a name which gained wider acceptance when used to name newly formed peer-

reviewed journals and commercial software packages (Foresman 1998). Though a considerable 

amount of GIS research was focused on developing spatial information and spatial analysis 

capabilities, Goodchild (1992) sought to situate the “systems” based research focus on a small 

subset of what he proposed as a much broader research field called geographic information 

science. He argued that geographic research in geographic information science, later given the 

shorthand of GIScience, should include the following: data collection and measurement; data 

capture; spatial statistics; data modeling and theories of spatial data; data structures, algorithms 

and processes; display; analytical tools; institutions, managerial, and ethical issues.  

Though many geographers have been involved in pursuing the GIScience research 

agenda Goodchild described, the original GIScience agenda did not account for the impact that 

the internet, software design, and mobile computing would have on our information systems and 

tools for understanding the world (Goodchild 2009). DiBiase et al. (2006), redefined the domain 
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of geography techniques yet again, coining the term “Geographic Information Science and 

Technology”, or GIS&T, to account for the ever evolving impacts that new computing and 

information technologies are having on geographic knowledge and research. The GIS&T body of 

knowledge defines the domain as being comprised of three sub-domains: geographic information 

science; geospatial technology; and application of geographic information science and 

technology. As such, this dissertation research seeks to make a modest contribution to 

knowledge about GIS&T in public health research and operations. 

In this dissertation, I will use the term “map” to refer to visualizations of spatial data 

according to native arrangement on the surface of the earth. A map may be a static data display 

in print or digital form, and it can also include dynamic or interactive digital displays. The use of 

maps to provide novel insight into the study of human health and disease has a rich history 

spanning Europe and the America’s over more than a century (Koch 2005). The use of GIS&T in 

public health has been broadly surveyed in two editions of textbooks written by Cromley & 

McLafferty (2002, 2012). In the first edition, they described it as a field “in its infancy (pg. ix),” 

and 10 years later it had flourished with “hundreds of articles… in the research literature each 

year.”  While these characterizations of the field of GIS&T and public health are factually sound 

and well supported, their textbooks do not attempt to critically analyze nor address why some 

parts of public health were early adopters of GIS while others are just now adopting, or have yet 

to adopt, this technology tool. 

This dissertation is organized in the format of three different manuscripts that each 

explore the different application of GIS&T to a different public health problem. The common 

thread of geocoding and place names ties each of these three manuscripts together. The first 

manuscript explores the available methods for geocoding historical disease surveillance data in 
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Africa, which is an important and necessary first-step to enable further analysis of geographic 

patterns of disease risk. The second manuscript is a descriptive study of the way that travelers 

and clinicians use place name information when interpreting travel health recommendations 

produced by public health agencies, and the knowledge derived from this study is important for 

developing new GIS&T travel medicine applications. Finally, the third manuscript seeks to 

develop and implement a GIS&T travel medicine application which provides dynamic place 

name search capabilities so that travelers and clinicians can more easily find Zika virus travel 

health recommendations. 

Research Objectives and Questions 

The broad question this dissertation aims to answer is can the implementation of geographic 

information science and technology (GIS&T) improve international disease surveillance and 

prevention activities when applied within a national public health institution? 

To investigate this question more thoroughly, three specific objectives are sought: 

1) Demonstrate GIS&T methods for geocoding legacy disease surveillance data under 

challenging conditions, namely in foreign locations where geographic reference information 

is poor, thereby transforming the legacy surveillance data into digital geospatial data which 

are amenable to modeling and risk assessment. The following questions addressed this 

objective. 

a. What disease surveillance data elements are important for comparing data across 

different locations? 

b. What GIS&T tools are available, or can be developed, to organize, distribute, and 

analyze disease surveillance data compiled from disparate sources? 
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c. How can the spatial precision of the original surveillance data be preserved to 

document the difficulties, limitations, and associated uncertainties in the available 

methods for geocoding historic disease data in foreign locations when high quality 

geographic reference information are required?. 

2) To assess the need for new ways to report and identify travel health recommendations using 

GIS&T by evaluating the types of place names used by travelers and clinicians to describe 

the travelers’ intended itinerary we ask the following. 

a. How frequently are country, state, and county place names reported by travelers when 

describing their intended travel itinerary? 

b. How frequently are other types of place names used to describe travel itineraries? 

c. If the place names used to report travel health recommendations are not the most 

commonly used, what type of new GIS&T applications could be developed that 

would assist clinicians with the task of identifying location specific travel heath 

recommendations? 

3) Develop and deploy a novel GIS&T application, an interactive web map, to enable travelers 

and travel health clinicians to identify location-specific Zika virus travel health 

recommendations. Research questions include the following. 

a. What are the design goals for an interactive web map application for communicating 

travel health recommendations? 

b. What types of software, hardware, data, and workflows are needed to support 

interactive web-mapping applications for the CDC’s Travelers’ Health website? 

c. What are the demographics of users for this type of interactive web map application? 
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Significance of Study 

This dissertation contributes uniquely to the existing GIS&T body of knowledge about the 

realities of trying to improve GIS&T infrastructure and applications within the confines of a 

large federal government agency – the U.S. Centers for Disease Control and Prevention (CDC). 

Such applied knowledge is necessary so as to test, as well as inform, theory about the utility and 

applicability of GIS&T in achieving the mission of public health. The Centers for Disease 

Control and Prevention’s current mission statement is to collaborate “to create the expertise, 

information, and tools that people and communities need to protect their health – through health 

promotion, prevention of disease, injury and disability, and preparedness for new health threats 

(Centers for Disease Control and Prevention 2012).” Since it was founded in 1942, the Centers 

for Disease Control and Prevention (CDC) has always maintained renowned expertise in the two 

core areas of public health, epidemiology and laboratory science (Etheridge 1992). While 

rudimentary mapping has long been a part of the epidemiologists tool kit, I argue that advances 

in GIS&T are enabling novel types of collaborative tools and relationships which are useful for a 

wider range of research including investigations of disease etiology or causes, developing and 

implementing intervention strategies, and informing policy decisions, as well as improving the 

knowledge and awareness of the general public.  

A recent literature review of the types of public health applications for which geographic 

information system (GIS) has been employed revealed four predominant themes:  disease 

surveillance (n = 227), risk analysis (n = 189), health access and planning (n = 138), and 

community health profiling (n = 115) (Nykiforuk and Flaman 2011). Geographic Information 

System driven applications have been a part of various activities within CDC for roughly 20 

years now (Croner et al. 1996), and a number of CDC GIS&T applications are currently 
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available (Table 1.1). Croner describes GIS as a “much-awaited tool” for public health 

professionals, and predicts that “in the years ahead, GIS will have a profound impact on public 

health strategies involving surveillance, risk assessment, analysis, and the control and prevention 

of human disease.”  

The CDC is comprised of multiple national centers, and the study of GIS&T within each 

single center is likely worthy of an individual dissertation. As such, my dissertation research will 

focus solely on application of GIS&T to meet the needs and goals of the National Center for 

Emerging Zoonotic and Infectious Diseases (NCEZID). Diseases studied within this center are 

caused by infectious pathogens, which require either an animal host or vector to maintain the 

pathogen and transmit it to humans. Data available from the last four years show a trend of 

increasing investment in GIS based on the number of GIS Software licenses paid for within 

NCEZID, and a doubling in the number of software licenses in 2012 compared to 2009 (Figure 

1.1). These data suggest that interest in applying GIS&T to the public health activities within 

NCEZID is continuing to grow. 

Specifically, this dissertation will try to address the challenges that still exist for 

transforming legacy disease data into a geospatial format; using geospatial analysis to map 

public health risk; and effectively communicating knowledge about public health risks to others. 

This dissertation aims to generate and contribute knowledge about: 1) how to maximize the 

geocoding accuracy of legacy disease surveillance data in areas of poor geographic reference 

data; 2) assess the need for new GIS&T applications for help clinicians to identify location-

specific travel health recommendations during pretravel consultations; and 3) report on the 

development and deployment of a novel GIS&T application, an interactive web-map, for the 
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identification and reporting of location-based travel health recommendations to travelers and 

clinicians. 
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Figures 

Table 1.1 Survey of CDC web-based GIS&T applications. 

A variety of interactive mapping applications have been created and supported by various groups 

at CDC. The applications are often called interactive maps, atlases, or data portals.  

Atlas Name URL 

Interactive Atlas of Heart 

Disease and Stroke 

http://nccd.cdc.gov/dhdspatlas/Default.aspx 

Diabetes Data and Statistics http://www.cdc.gov/diabetes/atlas/countydata/atlas.html 

Dengue Map http://www.healthmap.org/dengue/en/ 

Fatal Injury Mapping http://wisqars.cdc.gov:8080/cdcMapFramework/ 

Interactive Lyme Disease Map http://www.cdc.gov/lyme/stats/maps/interactiveMaps.html 

Vectorborne disease maps http://diseasemaps.usgs.gov/mapviewer/ 

National Center for 

HIV/AIDS, Viral Hepatitis, 

STD, and TB Prevention, 

(NCHHSTP) Atlas 

http://gis.cdc.gov/GRASP/NCHHSTPAtlas/main.html 

Interactive Cancer Atlas 

(InCA) 

http://www.cdc.gov/cancer/npcr/about_inca.htm 

Data.CDC.gov https://data.cdc.gov/browse?limitTo=maps&s_cid=cdc-

data-001&utf8=%E2%9C%93 

Social Vulnerability Index http://svi.cdc.gov/map.aspx 
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Figure 1.1  Trends in ESRI ArcGIS Software usage in the National Center for Emerging 

and Zoonotic Infectious Diseases (NCEZID), CDC from 2009-2012.
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CHAPTER 2 

LITERATURE REVIEW 

 

The story of John Snow’s map of a London cholera epidemic has become lore through the 

popular press (Johnson 2006), and is retold in an inspirational way by many from various 

academic and professional disciplines.  However, that story, where John Snow gets the idea to 

map where cholera patients lived to discover which water pump was the source of cholera. The 

map showed a clustering of cases around the Broad Street pump, and thus, Snow had the pump 

handle removed an no one else got ill; that story is more myth than fact (McLeod 2000). The 

truths to the Snow map and the mythology which are now associated with it in public health and 

epidemiology have been more rigorously studied by Koch (2004). Koch’s historical research 

shows that Snow’s map was not an early example of exploratory data visualization providing 

novel epidemiological insight, but rather a purposefully designed diagram meant to persuasively 

advance Snow’s previously published theory that cholera was not an airborne illness as most 

people at the time believed, but rather a waterborne illness (Koch 2011). 

Geographers Cliff & Haggett (1988) summarize various quantitative spatial analytical 

approaches for mapping and modeling disease occurrence through time and space based on 

public health data stored as both spatial points and areas. Spatial statisticians have also published 

books summarizing quantitative methods for studying disease risk and transmission (Waller and 

Gotway 2004, Lawson 2009). Many of the analytical approaches described have been 

incorporated into commercial GIS software packages, and cookbooks for using these software 
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tools are available (Kurland and Gorr 2012). Cromley & McLafferty (2012), both long active in 

the academic discipline of geography, have surveyed and summarized the dominant trends in the 

application of GIS&T to public health over the last 20 years. This textbook provides a reasonable 

introduction to GIS&T, geospatial data, sources of public health information, and different 

approaches to spatially and temporally analyzing public health data.  

The idea that GIS&T can be more broadly utilized in public health will be explored. 

Specifically, this dissertation will consider more deeply the application of GIS&T within the 

public health sub-fields of epidemiology, public health surveillance, and public health 

communication. Epidemiology is the study of the distribution and determinants of disease within 

a specified population, and the application of this knowledge to control disease. Public health 

surveillance systems are the primary way in which we gather epidemiologic data to construct and 

refine our understanding of disease. These surveillance systems are principally designed to 

capture information about what groups of people are at risk for disease; what types of pathogens 

are responsible for causing disease; and the places where peoples and pathogens converge to 

enable disease occurrence or further transmission. Public health communication is a field that 

aims to improve the access and delivery of accurate and relevant public health information to the 

public. Within these subfields, patterns in the adoption of GIS&T can already be seen within the 

literature, with variations occurring due to differences in public health program aims, disease 

system, geographic location, and political scale. 

Public Health Surveillance Systems 

A principal and primary concern when beginning any disease mapping study is to understand the 

nature of the disease and the means by which it has been observed, that is, a thorough 
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understanding of how the disease data are collected and produced. When focusing on infectious 

diseases of international importance, access to appropriate disease data for mapping and 

modeling remains a challenge. Cliff & Haggett (1988) provide a series of diagrams reprinted 

here which help explain the multiple processes required for generating accurate disease data 

(Figure 2.1). These processes begin at the point of infection at the cellular level (Panel A), 

reporting of the disease at the primary care provider (Panel B), data collection networks at the 

local, national, and international levels (Panel C), and finally reporting of the case data to the 

general public (Panel D). Public health map makers need to have a complete understanding of 

the data flow responsible for generating disease data so that they can account for potential bias 

and uncertainty in the available data. 

The idea of disease surveillance is a relatively modern one, showing some signs of 

evolution over time. Most of the discussion about what a diseases surveillance system was and 

how it was designed to operate has been controlled by with the earliest uses of the terminology 

ascribed to Alex Langmuir (Langmuir 1963). To him, the term meant “the continued 

watchfulness over the distribution and trends of incidence through the systematic collection, 

consolidation and evaluation of morbidity and mortality reports and other relevant data… with 

regular dissemination of this data and its interpretation to all who need to know.”  According to 

Langmuir’s line of reasoning, by studying the medical reports of ill persons, public health 

interventions could be better evaluated and targeted.  

Thacker et al. (1989) was one of the first to use the term “science of public health 

surveillance,” which he used to argue for the strengthening of public health surveillance 

activities that would be more rigorous and methodical such that the public’s health would 

eventually improve. At its core, public health surveillance is about creating a network of 
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individuals and institutions that can reliably collecting individual disease reports, collating them, 

and then analyzing them at a population scale. The relatively new field of public health 

informatics seeks to apply new computer and communication technology to grow and strengthen 

disease surveillance networks by integrating this new technology (Krishnamurthy and St. Louis 

2010). Examples of these types of informatics initiatives include the Global Infectious Diseases 

and Epidemiology Network (GIDEON) (Berger 2005), as well as HealthMap (Brownstein et al. 

2008). The research proposed in this dissertation has the opportunity to inform public health 

informatics development, by providing informatics researchers with information about the 

challenges faced when trying to accurately link public health events to specific geographic 

locations.  

Geocoding Public Health Data 

Geocoding is an essential first step towards enabling GIS-based analyses of public health data 

(Vine et al. 1997, Rushton et al. 2008). It is the process by which textual descriptions of the 

geographic provenance of cases and diagnostic specimens are transformed into digital spatial 

data (longitude and latitude coordinates; “geocoding” is generally used to refer to the simpler 

process of adding geographic coordinates to postal addresses) (Hill 2009). The geocoding 

process has been generalized into the following components: input records, reference datasets 

(e.g., gazetteers), and a geocoder (the algorithm used to normalize, standardize, and match input 

records to the reference dataset) (Goldberg et al. 2007). Ideally, the process is documented with 

detailed metadata (Wieczorek et al. 2004).  

Geocoding methods and services for public health have evolved over time and their 

usefulness routinely evaluated. Initially, most geocoding was performed on a fee-for-service 
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bases by spatial data processing businesses. Krieger et al. (2001) evaluated the accuracy of 

different contract services relative to financial cost, timeliness, and quality of customers service 

when geocoding 70 household street addresses across Massachusetts and Rhode Island to the 

census tract and block group level, with the best firm correctly matching 96% of the addresses. 

Improvements in personal computing hardware, geocoding algorithms in desktop GIS software, 

and improved accuracy and completeness of reference data (e.g., United States Census TIGER 

centreline files) made geocoding more accessible to the average GIS users. Ward et al. (2005) 

compared in-house geocoding accuracy of household street addresses from 234 addresses in 

Iowa using ESRI ArcView 3.2 geocoding software and United States Census TIGER 2000 

reference data to the results of an independent contractor. The match rate for the in-house 

geocoding was 88% while the match-rate for the contractor was 92%, and the two methods 

agreed on 84% of the locations. They identified a spatial bias in geocoding accuracy, with better 

accuracy in urban areas than rural areas. 

In general, the quality of the geographic reference data available nationally in the United 

States is quite high, permitting geocoding to within a kilometer of accuracy in rural areas, and 

even greater accuracy in suburban and urban areas. Sub-kilometer accuracy can be more reliably 

achieved when geocoding algorithms can make use of multiple geographic reference datasets, 

selecting the most accurate reference dataset for a suitable geographic location. This type of 

geocoding is known as a multi-stage method, and subtle yet quantifiable improvements in both 

the match rate and spatial accuracy of the geocoding results has been shown (Zhan et al. 2006, 

Lovasi et al. 2007) 

The value of geocoded public health data for research, intervention design, and control 

measures at the  state (MacDorman and Gay 1999) and national (Croner et al. 1996, Boulos 
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2004) public health systems is clear. However, nearly all research on the efficiency, reliability, 

and accuracy of geocoding methods has relied on examples of contemporary input records and 

reference datasets from North America and Europe (Abe and Stinchcomb 2008), possibly 

because geocoding methods evolve as the availability and accuracy of reference datasets increase 

(Goldberg et al. 2007). 

While the value of geocoded health data to public health agencies and researchers is 

clear, these organizations and individuals have a legal and ethical obligation to protect the 

privacy of the individuals who supplied this information (Olson et al. 2006, Rushton et al. 2008, 

Lee and Gostin 2009). Researchers have shown that simple dot maps of disease cases can 

accurately reveal the true locations of cases through the relatively simple process of reverse-

geocoding (Brownstein et al. 2006). U.S. Cancer registries have studied the risks introduced by 

geocoding in considerable detail (Gittler 2008), and made recommendations as to the best 

practices for protecting privacy during the geocoding process, as well as subsequently storing, 

analyzing, and presenting this information (Goldberg 2008). The common practice for protecting 

the privacy of individual geocoded data is to “mask” the data using one of three approaches: 

displacing data; aggregating data; or randomly perturbing the data (Rushton et al. 2006). 

Ecological Niche Modeling for Estimating Disease Distributions 

A common problem in public health is geographically limited or spatially biased disease 

occurrence data. As a result, public health researchers are interested in a variety of inferential or 

predictive techniques that can be used to fill in the spatial and temporal gaps inherent in these 

disease occurrence datasets. Ecological niche modeling (ENM) is one such inferential modeling 

technique which is increasingly being used to study a growing range of zoonotic disease 
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distributions, including hantavirus (Wei et al. 2011), Marburg and Ebola viruses (Peterson et al. 

2006), monkeypox virus (Ellis et al. 2012), and vector-borne zoonotic diseases such as plague 

(Holt et al. 2009, Maher et al. 2010), tularemia (Nakazawa et al. 2010), Chagas disease (Gurgel-

Gonçalves et al. 2012), dengue and chikungunya (Campbell et al. 2015), leishmaniasis (Chalghaf 

et al. 2016), Crimean-Congo hemorrhagic fever (Estrada-Peña et al. 2008), and Rift Valley fever 

(Mweya et al. 2017), though this list is not exhaustive.  

A comprehensive overview of the theoretical basis for ENM and association computational 

techniques have been summarized by Peterson, Soberón et al. (2011). A good working definition of 

an ecological niche for the purposes of this dissertation is “the set of conditions under which the 

species can maintain populations without immigration of individuals from other areas (Peterson 

2006).” In seeking to more explicitly state the set of conditions where a given species is found, 

Soberón and Peterson (2005) proposed three conditions which must be met for a species to exist: 1) 

the physical environment and climate must be suitable; 2) the interactions with other species must 

permit the species of interest to maintain a stable population level for regular reproduction; 3) the 

species must be able to physically access the geographic region where conditions 1 and 2 are met. 

Soberón and Peterson assembled a venn diagram (e.g., the BAM diagram) to enable the ecological 

space defined by these sets of conditions to be visualized (Figure 2.2). In Panel A, set A, the abiotic 

conditions, represents the physical geographic environment which is suitable for a species to exist. 

While all of the physical geography conditions within the abiotic set are suitable for the species in 

question, biotic conditions (set B) such as the absence of predator species or the presence of prey 

species, limits the species from inhabiting all of set A. Finally, set M is the range of conditions which 

are accessible to the species. Given this framework, a species ecological niche is defined as the union 

of set A, with set B, and set M.   
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Figure 2.2, Panel B is an example of how the BAM diagram can be used to understand the 

changing ecological niche of human disease plague. Plague is a vectorborne zoonotic disease caused 

by the bacterium Yersinia pestis found originally in small rodents hosts only in Central Asia, and 

transmitted to humans most commonly through the bite of infected fleas. As trade between Europe 

and Asia increased in the middle ages, a series of human pandemics occurred and the bacterium 

spread into other rodent host species, particularly urban Rattus species. Plague arrived in port cities in 

the United States in the 1900s from Asia, and subsequently spread into native rodent species where it 

is now maintained. Figure 2.2, Panel B shows the changes in the ecological niche of plague over the 

last century. Notice that the biotic set (B) has contracted as the sanitation movement successfully 

broke the plague cycle in urban rodents. Meanwhile, the mobility set (M) has expanded the 

ecological niche as the continued expansion of international trade has brought plague to new parts of 

South American, Africa, and Southeast Asia. 

The process for building ENMs is relatively simple. Two types of input data are needed, a 

GIS point file of species occurrence records, and appropriate physical geographic and climatic raster 

data. Some pre-processing of these two input datasets may be needed if point files are to be subset for 

training and testing, and raster datasets must all have a common spatial projection, spatial resolution, 

and digital file format, steps which are easily performed in desktop GIS software. ENM software is 

comprised of an algorithm for extracting environmental values at species occurrence points, as well 

as pseudo-absence points, and then an automated algorithm that will seek to optimally fit a model 

around the range of environmental conditions which distinguish the occurrence data sample from the 

pseudo-absence data.  
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Map Communication within Public Health Communication 

This research will contribute uniquely to research on how maps are used to communicate public 

health information, specifically how maps and GIS can be employed to deliver individually 

tailored travel health recommendations. As such, it aims to demonstrate how methods and 

techniques found in the literature on cartographic design and map communication can inform 

health communication work such that public health information users receive for tailored 

information. This type of research is notably absent from currently published applications of 

GIS&T to public health, which has been well surveyed and recently summarized (Cromley and 

McLafferty 2012). 

The study of map communication began with Robinson’s book “The Look of Maps 

(1952),” which was the first of its kind to persuasively argue that the scientific study of map 

design was needed to support the growth in map production, due to the then recent developments 

in photographic techniques for map production and reproduction. For the next half-century, 

understanding the map communication process and defining optimal cartographic design 

principles were the focus of much cartographic research. Robinson et al. (1995) described 

methods for standardizing static map production, while Dent (1999) focused on the cartographic 

design principles for effective static thematic map production. MacEachren (1995) explored 

issues of cartographic representation, visualization, and design, and his cartographic 

visualization cube provided conceptual clarity to how changes in the audience of a map alters 

cartographic decision making. More recently, Muehlenhaus (2014) summarized map 

communication principles and methods useful for designing static and interactive maps on the 

web. Methods for 3-dimensional and 4-dimensional data visualization have also been developed 

for cartography 
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Health communication is a growing area of importance within public health which aims 

to produce and deliver information promoting healthy behaviors in individuals. It is broadly 

defined as “the art and technique of informing, influencing, and motivating individual, 

institutional, and public audiences about important health information (U.S. Department of 

Health and Human Services 2000; emphasis added by this author).”  Most public health policies 

and interventions are guided by public health research which is vetted through the peer-reviewed 

publishing process. However, most peer-reviewed writing is accessible only to a select audience 

who are knowledgeable in the technical details and specialized vocabulary of these fields, so in 

practices, health communicators aim to transform public health information to make it more 

accessible to the general public where its relevance and importance can be easily understood. 

Health communicators frequently customize public health messaging to help them reach 

the intended audience(s) through either targeted or tailored approaches. Targeting is the process 

of transforming public health information to reach a sub-population of the intended audience, 

while tailoring is the process of developing health communication messages specific to an 

individual audience member (Kreuter and Wray 2003). The concept of tailoring health 

communication was first proven successful in studies of printed health communication materials 

which showed that messages are more easily read and remembered when tailored (Skinner et al. 

1999), because tailoring enhances the relevance of the content of health message in the eyes of 

the individual.  

Research on the role of pictures and graphics in health communication found that pictures 

improve individual understanding of health education information when compared to written or 

spoken text alone (Houts et al. 2006). However, little research has been published in the health 

communication literature about the role of maps as communication devices. Parrott et al. (2007) 
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studied the communication function and effects of static and interactive maps within cancer 

control plans used for policy making. They examined maps used to present information as 

evidence for decision making, but doubted how reliably users could correctly interpret 

correlations between geographic location and disease incidence without more careful instruction 

and training. 

Outside the health communication literature, maps have been studied principally as tools 

used by public health researchers to answer questions about epidemiology, or health 

communication to an existing technically literate peer audience. The National Center for Health 

Statistics (NCHS) has performed an extensive amount of research on the design, production, and 

use of county level cancer rate maps for studying the epidemiology of cancer. These statistical 

rate maps were first made in the 1960s and provided novel insights into localized risk patterns 

associated with the rate of cancer incidence for different types of cancers (Hoover et al. 1975). 

While these early maps proved useful for generating new hypotheses and identifying “hotspots” 

for further study, little empirical data existed which could be used to inform how best to 

symbolize statistical rate data. For example, how did the map maker’s decisions on the use of 

color gradients, fill patterns, or graduated symbols to represent different classes of data impact 

how the mapped data were interpreted?  In a study which examined how map users perceived 

spatial clustering of health data depending on the use of monochrome, diverging color, 

categorical colors, dot density, and pie maps, Lewandowsky et al. (1993), found that classifying 

the data using monochrome symbol classes was optimal for enabling users to reliably detect the 

location of a common disease cluster. Pickle (2009) has recently published a historical account 

of the 40 years of design, production, and use of these national mortality atlases, and concludes 
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that though the maps have some design limitations, they have led to import etiologic findings and 

interventions to reduce cancer rates and health disparities. 
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Figures 

 

Figure 2.1 Summary of the disease infection, reporting, collection networks, and finally 

public reporting 

Cliff & Haggett (1988) provide a series of diagrams reprinted here which help explain the 

multiple processes required for generating accurate disease data. These processes begin at the 

point of infection at the cellular level (Panel A), reporting of the disease at the primary care 

provider (Panel B), data collection networks at the local, national, and international levels (Panel 

C), and finally reporting of the case data to the general public (Panel D). Public health map 

makers need to have a complete understanding of the data flow responsible for generating 

disease data so that they can account for potential bias and uncertainty in the available data.  
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Figure 2.2. Venn diagram showing the conditions necessary for a species to be present 

according to ecological niche theory 

 

This Venn diagram shows the three conditions necessary for a species to be present according to 

ecological niche theory, which are defined set A as abiotic physical environmental conditions; 

set B as biotic conditions, or favorable relations with other species occupying the same space; 

and set M as mobility conditions, meaning that the portions of set A which the species occupies 

must be physically accessible to the species of interest. Figure B applies this ecological niche 

theory to the disease plague, with the dashed outlines of set B and M showing the conditions 

present around 1900, and the solid outlines representing present day conditions. GO represents 

the actual area of distribution of the species, where abiotic and biotic conditions are favorable 

and within reach to dispersing individuals. GAGI is a potential area of distribution, invasible if 

the structure of M changes. Redrawn from Peterson et al. (2011). 
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CHAPTER 3  

EFFECTS OF GEOREFERENCING EFFORT ON MAPPING MONKEYPOX CASE 

DISTRIBUTIONS AND TRANSMISSION RISK1 
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1 Lash, R., D. Carroll, C. Hughes, Y. Nakazawa, K. Karem, I. Damon and A. Peterson. 2012. International Journal 

of Health Geographics 11(1): 23. 

Reprinted here with permission of the publisher. 
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Abstract 

Background: 

Maps of disease occurrences and GIS-based models of disease transmission risk are increasingly 

common, and both rely on georeferenced diseases data. Automated methods for georeferencing 

disease data have been widely studied for developed countries with rich sources of geographic 

referenced data. However, the transferability of these methods to countries without comparable 

geographic reference data, particularly when working with historical disease data, has not been 

as widely studied. Historically, precise geographic information about where individual cases 

occur has been collected and stored verbally, identifying specific locations using place names. 

Georeferencing historic data is challenging however, because it is difficult to find appropriate 

geographic reference data to match the place names to. Here, we assess the degree of care and 

research invested in converting textual descriptions of disease occurrence locations to numerical 

grid coordinates (latitude and longitude). Specifically, we develop three datasets from the same, 

original monkeypox disease occurrence data, with varying levels of care and effort: the first 

based on an automated web-service, the second improving on the first by reference to additional 

maps and digital gazetteers, and the third improving still more based on extensive consultation of 

legacy surveillance records that provided considerable additional information about each case. 

To illustrate the implications of these seemingly subtle improvements in data quality, we develop 

ecological niche models and predictive maps of monkeypox transmission risk based on each of 

the three occurrence data sets. 

Results: 

We found macrogeographic variations in ecological niche models depending on the type 

of georeferencing method used. Less-careful georeferencing identified much smaller areas as 
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having potential for monkeypox transmission in the Sahel region, as well as around the rim of 

the Congo Basin. These results have implications for mapping efforts, as each higher level of 

georeferencing precision required considerably greater time investment. 

Conclusions: 

The importance of careful georeferencing cannot be overlooked, despite it being a time- and 

labor-intensive process. Investment in archival storage of primary disease-occurrence data is 

merited, and improved digital gazetteers are needed to support public health mapping activities, 

particularly in developing countries, where maps and geographic information may be sparse. 
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Background 

Georeferencing is an essential first step towards enabling GIS-based analyses of public health 

data (Vine et al. 1997, Rushton et al. 2008). It is the process by which textual descriptions of the 

geographic provenance of cases and diagnostic specimens are transformed into digital spatial 

data (longitude and latitude coordinates; “geocoding” is generally used to refer to the simpler 

process of adding geographic coordinates to postal addresses) (Hill 2009). The georeferencing 

process has been generalized into the following components: input records, reference datasets 

(e.g., gazetteers), and a georeferencer (the algorithm used to normalize, standardize, and match 

input records to the reference dataset) (Goldberg et al. 2007). Ideally, the process is documented 

with detailed metadata (Wieczorek et al. 2004). 

The value of georeferenced public health data to state (MacDorman and Gay 1999) or 

national (Croner et al. 1996, Boulos 2004) public health systems is clear, as it enables all spatial 

data analysis. However, nearly all research on the efficiency, reliability, and accuracy of 

georeferencing methods has relied on examples of contemporary input records and reference 

datasets from North America and Europe (Abe and Stinchcomb 2008), possibly because 

georeferencing methods evolve as the availability and accuracy of reference datasets increase 

(Goldberg et al. 2007). In contrast, our study compares three georeferencing approaches to 

legacy monkeypox data from villages across Central and West Africa. 

Qualitative assessments of different georeferencing methods for public health data have 

been developed previously (Krieger et al. 2001, Ward et al. 2005, Zhan et al. 2006, Lovasi et al. 

2007, Zandbergen et al. 2012). Efforts aimed at georeferencing public health data in data-poor 

parts of the world include trypanosomiasis in Africa (Guerra et al. 2007) and malaria globally 

(Cecchi et al. 2009). However, although these studies acknowledge the challenges faced during 
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the georeferencing process for locations where reference data are sparse or of poor quality, they 

do not provide a comparison of various georeferencing methods that could guide future studies 

needing georeferenced disease data. 

Monkeypox Background 

Monkeypox (MPX) virus was first identified as an agent of human disease in 1970 in the 

Democratic Republic of Congo (“DRC,” then Zaire) (Ladnyj et al. 1972). Prior to that date, 

MPX virus had been isolated only from captive cynomologous monkeys (McConnell et al. 

1962). MPX presents clinically in a manner nearly indistinguishable from smallpox, and thus 

was cause for great concern among public health officials trying to eradicate smallpox (Foster et 

al. 1972). 

During 1970–1986, human MPX cases were identified from seven countries across 

Central and West Africa as a result of localized active disease surveillance efforts (summarized 

in Figure 3.1). MPX cases have since been identified in Gabon (Meyer et al. 1991) and the 

Republic of Congo (Learned et al. 2005). Even more recently, a limited outbreak of human MPX 

in the United States was linked to rodents imported from Ghana (Reynolds et al. 2010), and 

human MPX cases have been identified in South Sudan (Formenty et al. 2010). 

An MPX-specific research agenda was outlined in 1969 to address the problems that 

MPX posed to the smallpox eradication campaign (Fenner et al. 1988). Under this plan, World 

Health Organization (WHO) Collaborating Centers in the United States and the former Soviet 

Union, the Centers for Disease Control (CDC), and the Moscow Research Institute for Viral 

Preparations, respectively, provided laboratory diagnostic services, enabling new information on 

MPX to be assembled. This collaborative work supported serological studies during the 1970s 

and into the 1980s (World Health Organization 1982): surveillance activities intensified during 
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1981–1986 (World Health Organization 1982, 1984, 1986), when 21,994 specimens were tested 

from Congo, Ivory Coast, Sierra Leone, and Zaire (Ježek and Fenner 1988). During this period 

of intensified surveillance, 228 cases were confirmed by electron microscopy or virus culture; 

only 99 cases were confirmed based on serology alone, while 11 additional cases died before 

specimens could be collected. In all, during 1970–1986, 404 cases of human MPX disease were 

documented and confirmed (Ježek and Fenner 1988). 

Collection of diagnostic specimens from suspected cases of MPX followed a system 

established by WHO during the smallpox eradication campaign (Fenner et al. 1988). Staff at 

local health facilities were responsible for completing semi-standardized case forms at the time 

diagnostic specimens were collected from patients. Specimens and forms were sent to WHO 

Headquarters in Geneva, Switzerland, where they were divided and sent on to the two 

collaborating centers. After diagnostic testing, a diagnostic result form was generated by the lab; 

results were either cabled to WHO Headquarters, or sent directly to personnel in the field. 

During the active surveillance period, summary information from the case forms for the 

404 confirmed cases was organized in data tables. Later, WHO researchers generated a digital 

spreadsheet of individual case information; the geographic information in this spreadsheet 

enabled subsequent MPX research (Levine et al. 2007). The spreadsheet contains five 

hierarchical place name fields for each case: country, region, district/zone, town, and locality. 

Unfortunately, details of the provenance of the data on the WHO spreadsheets are not known. In 

2007, CDC researchers discovered that in the late 1980s, after much of the initial research 

agenda regarding orthopoxviruses had been completed, many of the CDC laboratory diagnostic 

records were converted to microfilm and the originals likely destroyed. The microfilm has since 

been scanned digitally, and converted to PDF formats. Preliminary comparisons of data from a 
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few case forms against the information in the WHO spreadsheet identified several 

inconsistencies, which served as a motivation for this study. 

An active area of recent MPX ecology and epidemiology research is based on GIS 

mapping and modelling techniques used to search for patterns between the locations of case 

occurrences and geographic and environmental variables (Ježek and Fenner 1988, Levine et al. 

2007, Fuller et al. 2010, Rimoin et al. 2010). Historically, broad association of MPX virus and 

tropical forest was observed in early MPX research (Arita et al. 1985, Ježek et al. 1987, 

Khodakevich et al. 1987b); later, continental-scale ecological niche models showed that disease 

occurrence had stronger association with mean annual precipitation than with land cover (Levine 

et al. 2007). Subsequent analyses at finer spatial scales constrained to within the Congo Basin, 

however, pointed back to proximity to dense forest (Fuller et al. 2010), probably reflecting 

different scales and resolutions. However, studies to date have not considered the quality of the 

georeferencing of the case occurrence data used as model inputs—this point, although seemingly 

a simple methodological step, ends up being quite important. 

Here, we test the hypothesis that different levels of effort invested in the georeferencing 

process can introduce considerable biases into geographic models of disease transmission. 

Specifically, we produce three georeferencing data sets for the MPX disease occurrences based 

on the same original WHO data, but differing in the detail and care with which they were 

derived. The first was based on automated georeferencing modules developed to facilitate the 

georeferencing process for biodiversity data (“automated data set”). Such automated approaches 

approximate the level of care and attention that many researchers pay to this step, and indeed 

exceed greatly the standards of some studies, which have depended on Internet search engines 

such as Google, Bing, and Yahoo maps, along with Open Street Map. The second data set, or 
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“worked data set,” was developed by consulting a broader suite of geographic data sources to 

refine the first. This method explores the results one might obtain if not intimately aware of the 

nuances of a set of disease data. The final data set, or “researched data set,” was developed by 

consulting both geographic datasets and legacy CDC records (“researched data set”). This 

method represents the product of exhaustive searches for the greatest number of highest-quality 

georeferences could produce for our study system. 

To compare the results of these methods, we developed ecological niche models and 

maps of potential MPX distributions based on each of the three occurrence data sets, and thereby 

can assess the effects of the different georeferencing methods on maps of MPX transmission risk 

(this latter defined for the purposes of this particular example as the potential for transmission at 

a site, given its environmental characteristics and geographic position). 

Methods 

Georeferencing 

We used the point-radius approach (Wieczorek et al. 2004) and implemented the recommended 

metadata architecture (Chapman and Wieczorek 2006) to document the georeferencing process 

in the production of all three data sets. This approach captures (1) the original data, such that the 

lineage of information is preserved back to its source; (2) all decisions and assumptions made in 

the course of the georeferencing process; (3) the georeferenced coordinates, in a specified format 

and datum; and (4) a summary of uncertainty associated with the georeference. This summary of 

uncertainty represents an integration of uncertainty inherent in the geographic reference (e.g., an 

incomplete description), uncertainty in components of the geographic reference (e.g., “5 miles 

east” may be anything between 4.5 and 5.5 miles, and anything between northeast and 

southeast), and uncertainty in the underlying geography (e.g., the spatial footprint of the site 
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referred to, distances among ‘multiple hits’ in matching gazetteer data). It is expressed as the 

radius of a circle that sums the diverse sources of uncertainty in the georeference. We relied on 

the MaNIS georeferencing calculator for estimating positional uncertainty (Wieczorek 2001) and 

excluded any locality with an uncertainty greater than 10 km. 

Automated data set 

The methods for producing the automated data sets are similar to the single-stage georeferencing 

methods described elsewhere (Lovasi et al. 2007, Wilson et al. 2010), and are summarized in 

Figure 3.2. We reduced the initial set of input data to unique textual locality records, and 

submitted the resulting table of country, state, district, municipality, and locality records to 

Biogeomancer for automated georeferencing. We used the automated georeferencing facility 

implemented in the Biogeomancer workbench (Biogeomancer Workbench 2012). This free, web-

based platform automates georeferencing by taking the WHO spreadsheet input data, and 

searching for matching localities in the National Geospatial-Intelligence Agency’s (NGA) 

GEOnet Names Service (GNS) database (National Geospatial-Intelligence Agency 2012), and 

then automatically calculating and populating the MaNIS metadata fields (Guralnick et al. 2006).  

Worked data set 

The methods for producing the worked data sets are akin to multi-stage georeferencing methods 

described elsewhere (Lovasi et al. 2007, Wilson et al. 2010), wherein we attempted to match 

manually input data for which satisfactory georeferences were not produced by the automated 

method (Figure 3.3). Here, the initial Biogeomancer output was processed further by a person 

knowledgeable in African geography, but without access to the case reports. Using the 

automated output from the Biogeomancer Workbench facility (see above) as a starter, the data 

were explored further, refining initial automated results using locality information on the 

Biogeomancer site, and incorporating additional information from additional sources: gazetteer 
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data (Falling Rain Genomics 2010), Google Earth, and general Internet searches. The objective 

was to ascertain the location of each record with greater precision, and to describe uncertainty 

(Wieczorek et al. 2004) more accurately. This step involved 5–30 minutes of work per locality, 

and the result is referred to as our “worked” dataset. 

Researched data set 

The method used for georeferencing the researched data departs considerably from the previous 

two methods, and may be characterized as an iterative, detailed clerical review (Boscoe 2008), 

and is summarized in Figure 3.4. It is distinguished from the previous two methods because it 

utilized legacy primary disease data to refine the input data, and it consulted a broader range of 

geographic reference material than those used in the automated and researched methods. The 

CDC legacy case form provided the basis for modifying and refining the input data, based on the 

assumption that the WHO spreadsheet contained transcription and other typographical errors. 

Additional legacy data was used to enrich the available geographic reference material, by 

compiling all available historic maps of MPX case locations into a common GIS map document 

to easily overlay and compare geographic information from different sources (Centers for 

Disease Control and Prevention 1971, Smallpox Eradication Program 1971, Foster et al. 1972, 

Ladnyj et al. 1972, Breman et al. 1977, World Health Organization 1981, Mutombo et al. 1983, 

World Health Organization 1984, Arita et al. 1985, Ježek et al. 1987, Khodakevich et al. 1987a, 

Khodakevich et al. 1987b, Ježek and Fenner 1988, Ježek et al. 1988, Khodakevich et al. 1988, 

Breman et al. 1999). GNS geographic reference data was further supplemented with Joint 

Operation Graphics (JOG) topographic reference maps (KU Humanitarian Demining 2007, Lee 

2007). 

The workflow used to produce this dataset for MPX cases was iterative, as persistent and 

repeated searches sometimes turned up additional useful information. The initial step was to 



38 

 

identify and resolve discrepancies between the input data from the WHO spreadsheet and the 

available case forms. Next, we examined all information available about individual cases to 

construct a sound spatial logic for identifying locations. When discrepancies were encountered, 

information from different sources had to be prioritized. We deemed original case forms as the 

most authoritative, but these records were not available for all cases. If original case forms were 

unavailable, the earliest published journal article reports were prioritized. If these two sources 

proved unhelpful, then information in review articles or marginal annotations was considered. 

Once we had verified the geographic information for a given case, we began the search 

for a matching reference location. Our general strategy for assigning a georeference was to 

consult the JOG maps first, which had the finest spatial resolution, using all available 

information sources to find the locality on JOG maps (sometimes including preliminary GNS 

searches). If no location could be found or inferred there, then less-detailed data resources were 

used in order of decreasing precision. To expedite locating areas of interest within the JOG 

maps, GNS was consulted because it could be queried electronically. If a single GNS match was 

found, then the location could frequently be confirmed on the JOG maps and more precise 

coordinates recorded. If no probable match was found in GNS, or if more than one location had 

the same place name, then information from alternative data sources was used to guide searches. 

In all cases, prior to model development (see below), we discarded localities for which the 

uncertainty radius exceeded 10 km. 

We evaluated the quality of results for each of the georeferencing methods based on 

completeness, positional accuracy, concordance, and repeatability (Zandbergen et al. 2012). 

Completeness is determined by the number of locations which could be matched to latitude and 

longitude coordinates. Positional accuracy is determined here by the spatial resolution of the 
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geographic reference dataset. Concordance is difficult to quantify in this study, as it assesses 

whether the georeferenced coordinates match truthfully those referenced by the locality place 

name. Because this study is based on historical data for which it is impossible to revisit, our 

measure of concordance is the number of localities falling within the political geography 

boundary cited in the original data record. Repeatability is largely determined by the 

georeferencing methodology. 

Ecological Niche Model Comparisons 

Ecological niche modeling is a methodology that has seen extensive use in recent years (Peterson 

et al. 2011), and that has seen increasing applications to understanding disease geography 

(Peterson 2008a). We used a simple application of the methodology, as the purpose of these 

analyses was only to test whether different georeferencing methodologies identify different areas 

as “at risk” of MPX transmission. In particular, we developed models using the Genetic 

Algorithm for Rule-set Prediction, or GARP (Stockwell and Noble 1992), based on default 

settings, save for generating 100 random replicate models instead of 20, and derived a consensus 

model that summed the 10 models with lowest omission error out of the original 100 models. 

We analyzed known MPX occurrences for each of the three georeferencing approaches in 

the context of 7 dimensions of climate drawn from the WorldClim climate data set (Hijmans et 

al. 2005). Specifically, we used annual mean temperature, mean diurnal range, maximum 

temperature of warmest month, minimum temperature of coldest month, annual precipitation, 

and precipitation of the wettest and driest months, which represent a diverse and relatively 

uncorrelated environmental space in which to calibrate models (Jiménez-Valverde et al. 2009). 

All analyses were conducted at 2.5’ spatial resolution, which is equivalent to ~6.5 km near the 
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Equator. The niche model results were summarized as maps of putative suitable conditions, and 

compared by means of calculation of difference maps on a pixel-by-pixel basis. 

Results 

Differences in Georeferencing Methods 

The 404 recorded MPX cases in the WHO spreadsheet came from 231 unique localities, a figure 

which may vary slightly depending on whether spelling variations are interpreted as valid entries 

or human error. The automated method successfully georeferenced only 69/231 localities (30% 

match rate); the worked method successfully georeferenced 116/231 localities (50% match rate), 

while the researched method successfully georeferenced 106/231 localities (match rate = 46%). 

Match rates for each method are broken down geographically in Table 3.1. 

The georeferencing process for the researched data set is of particular interest. During 

this process, 48 locations were georeferenced using the input data as listed in originally in the 

WHO spreadsheet; georeferencing remaining localities involved careful checking against 

primary records and/or alternative sources of geographic information. Table 3.2 summarizes the 

relative utility of the additional data resources used: CDC legacy records and JOG maps 

provided the most valuable information, followed by a coarse-scale (1:1,000,000) map that 

provided information on 7 localities (World Health Organization 1981); several useful articles 

came from Ebola virus outbreak investigations, which covered many of the same villages. 

The above discussions of development of georeferenced public health data sets may all 

be inconsequential if the additional precision and documentation that they provide make no 

tangible difference to the outcome of analyses. That is, if the results of analyses are qualitatively 

the same with such high-quality data as with less-carefully-prepared data, then no reason exists 

to invest time in the processes outlined above. Comparing the distribution of localities of these 
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three datasets (Figure 3.5A), no MPX occurrences along the eastern, southeastern, and 

northeastern limits of the known distribution of the pathogen were reliable, as none could be 

substantiated in the researched data set. 

The spatial projections of the three niche models identified areas that differed 

consistently. In brief, the researched data set identified broader areas throughout West Africa, as 

well as broader areas to the southwest and east in the Congo Basin (Figure 3.5B). Visualizing the 

occurrence points in a simple environmental space (annual mean temperature X annual 

precipitation; Figure 3.5E), we see that, although researched points define most of the extremes 

of the distribution of the pathogen, the points with lowest annual rainfall come from the 

automated dataset only. Additionally, only the worked dataset includes areas of both high 

temperature and high precipitation. 

Discussion 

The method with the best match rate overall was the worked dataset (50% match rate overall), 

followed by the researched dataset (46%), and finally the automated dataset (30%) (Table 3.1). 

Comparing match rates by country shows that the worked dataset achieved 100% success only in 

Ivory Coast, whereas the researched dataset achieved 100% success in Ivory Coast, Liberia, 

Nigeria, and Sierra Leone; the automated dataset did not achieve 100% success in any country. 

The researched data set was successful, for example, in Liberia, because a detailed map and set 

of site descriptions (Smallpox Eradication Program 1971) were among the materials that it used. 

A previous study (Levine et al. 2007) georeferenced 156 of 231 locations (68% match rate), but 

the georeferencing methods were not documented in detail. 
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While comparing match rates across each country provides a metric of how well different 

georeferencing methods performed broadly across the continent, 220/231 (95%) of MPX cases 

occurred in the DRC. In the DRC, the worked method achieved a match rate of 51%, the 

researched method 45%, and the automated method only 30%. Issues of concordance arise, 

however: for example, consider numbers of cases georeferenced in the DRC regions of Bas 

Zaire, Haut Zaire, and Shaba. The worked method identified 9 localities in Haut Zaire, but the 

WHO spreadsheet indicated only three (marked with an asterisk in Table 3.1). The automated 

method had even lower concordance, identifying 8 localities in Haut Zaire, one in Bas Zaire, and 

one in Shaba, when the WHO spreadsheet showed three in Haut Zaire and none in the other two 

regions. 

Additional issues of concordance may go undetected in these automated and worked 

datasets, as it is not entirely clear how these methods dealt with multiple ‘hits,’ i.e., several 

places having the same name. In the researched processing, localities were only entered into the 

database if the locations fell within the indicated political geographic unit, which reduced match 

rates by excluding some questionable localities that did have valid returns; however, it 

minimized the probability of including sites falsely. Under the other two methods, this 

conflicting evidence was clearly viewed subjectively (worked data) or managed in unknown 

ways depending on distances among the multiple localities (automated data). 

Information Resources for Georeferencing 

When georeferencing historical disease data for foreign locations, this study shows that 

georeferencing results are improved by both supplementing geographic reference information, 

and consulting a variety of information sources to check and validate input data. The overall 

match rate improved considerably between the automated method and the worked and researched 
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methods because the latter two methods utilized additional geographic reference information 

beyond a single gazetteer (e.g., GNS). While the overall match rate between the worked and 

researched methods were similar, the researched method used more authoritative geographic 

information resources. The worked method included the Falling Rain digital gazetteer (Falling 

Rain Genomics 2010) for which there is no metadata about its data sources or standards. In 

comparison, the researched method made extensive use of the JOG maps, which have very 

detailed standards and specifications (Defense Mapping Agency 1995). 

The CDC legacy case forms were a unique and informative resource that illuminated and 

modified the information in the WHO spreadsheet which has previously been available to MPX 

specialists. These records allowed us to seek details of geographic reference in several 

dimensions—place of residence, location of the reporting clinic, etc. Such information may 

frequently not be available for other disease systems, but their utility in this study pointed clearly 

to the importance of tracking down all levels of documentation for disease case occurrences in 

such studies. 

The legacy case forms posed challenges, though. They were not available for all 404 

cases; four different variations of the typed form had been used; and forms were almost always 

completed by hand. In theory, cases for which CDC provided confirmatory testing (n = 193) 

should have been available; however, not all of these case forms could be located. Generally, 

forms captured important information, including patient identification, patient history, health 

facility contact information, examining physician, and regional surveillance team, and each 

patient was assigned a unique identification number. Specific to the geographic information on 

the form, a case’s place of residence was captured using a hierarchy of place names, including 

the following fields: name of region (e.g., administrative level-1), sub-region (e.g., 
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administrative level-2), zone (e.g., administrative level-3), collectivité (a French term for a local 

government administrative unit, e.g., administrative level-4), and locality (e.g., village of 

residence). Only one of the four versions of the case form included the sub-region field. Two 

versions of the form included separate zone, collectivité, and locality fields for where the 

affected person was when illness began, and where the case had resided two weeks prior to onset 

of symptoms; however, this information was most commonly identical. One version of the form 

did not have separate fields for each of the hierarchical place names; rather, it asked for the 

“complete address” of the case, and the person completing the form filled in abbreviated field 

names for collectivité, zone, and region. 

The JOG maps also proved useful for overcoming the limited precision of the GNS data. 

It is worth noting that when localities from the GNS data are overlaid on the JOG maps in 

ArcGIS, the village locations between the two do not align perfectly, apparently owing to the 

higher spatial precision of the JOG maps (Figure 3.6). In GNS, nearly all Congo Basin localities 

have been truncated to the nearest 1’ (~2.6 km near the Equator), whereas the scale of the JOG 

maps provides geographic precision finer than 1 km. A limitation of both the GNS and JOG 

maps, is the fact that little information is known about the temporal provenance of the 

information in either resource. Similar temporal problems with georeferenced data have been 

noted elsewhere (Krieger et al. 2002), and potential end users of the data must be aware that no 

solution is readily available. 

While the GNS data set provides a helpful textual search functionality, JOG maps (which 

must be inspected visually by the user) allow more accurate georeferencing. Operationally, using 

GNS and the JOGs in tandem was the most efficient process. If a locality could be found using 

the text-based search in GNS, it could frequently be found and georeferenced with greater 
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precision using the JOG maps. When a record could not be identified in GNS at the locality 

level, the next-higher unit place name (county, district, etc.) could frequently be found on the 

JOG maps, which then guided visual searches of the JOG maps for the locality—many of the 

place names found on JOG maps have not been captured in the GNS database. Because JOG 

maps were not available for our entire study area, some potential exists for spatial bias in the 

resulting georeferencing database. However, such areas were not omitted completely because 

some records could be georeferenced via other information resources, so we neglect this source 

of bias in our results. 

The following provides an example of one of the unique and more complex instances of 

the georeferencing process, for the locality “Libela.” Libela was recorded as a MPX occurrence 

locality from a case in 1972, but was not found in either the GNS database or the JOG maps. 

Likely alternative spellings (e.g., Libella, Lebella, etc.) were considered, but again no matching 

records were found. After an Internet search using Google, a reference to Libela was identified in 

the proceedings of a conference on Ebola virus held in 1977, where the author notes a fatal case 

of possible hemorrhagic fever “in Libela (38 km south of Yambuku) (Van der Groen et al. 

1978).” Figure 3.6 shows a portion of a JOG map near Yambuku Mission (not labeled on the 

map, but noted with a church symbol, and included in the GNS database). Following the only 

road south from Yambuku for 38 km leads to an unlabeled populated place symbol, which we 

inferred to be Libela. Hence, in this example, we had to use the conjunction of GNS and JOG to 

identify Yambuku, and then non-standard Internet resources to find the relationship of Libela to 

Yambuku. 
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Monkeypox Transmission Geography 

The extra effort invested in the ‘researched’ data set impacted the results of the ecological niche 

models. As the data in Table 3.1 shows, the researched dataset matched all of the West African 

locations (Nigeria, Ivory Coast, Liberia, Sierra Leone), but both the automated and worked 

datasets failed to locate many of the cases in this region (Figure 3.5A). Ecological niche models 

generated from the results of the researched method (Figure 3.5B) therefore include more area in 

West Africa as part of their predictions. However, models generated from the results of 

automated (Figure 3.5C) and worked (Figure 3.5D) georeferencing methods largely do not 

include much of these West African locations in their predicted distribution. The ecological 

conditions represented by the West African locations are different than much of the rest of the 

MPX ecological niche, as shown in the highlighted portion of Figure 3.5E. Areas along the 

northern and southern edges of the Congo Basin were more variable in the effects of researching 

data points, as the signals from the worked and automated data sets differed for these areas. 

Even without the modeling step, the exercise of investigating each occurrence record in 

great depth was illuminating, and the linking of individual diagnostic results with each unique 

location proved insightful. No researched data point fell in the eastern quarter of the Congo 

Basin. Biologically more importantly, however, no researched data point comes from the 

Republic of the Congo, on the west side of the Congo River above Kinshasa. This latter area has 

not seen massive political conflicts, so this absence may in fact be real; research is underway into 

the causes of this lack of records from the region. Because the relational database created was 

able to incorporate data on confirmatory lab test as well, we can state that laboratory 

confirmation of MPX by viral culture occurred in 70 (66%) of the 106 localities in the researched 

data set, a higher standard for disease confirmation than serology testing alone. Hence, earlier 

studies based on the less carefully researched WHO spreadsheet (Levine et al. 2007) must be 
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taken with a grain of salt: quite simply, different georeferencing have very-real implications for 

results of mapping exercises. 

Conclusions 

This paper contributes uniquely because we document the difficulties and limitations in the 

available methods for georeferencing under challenging conditions, namely historic disease data 

in foreign locations with poor geographic reference information. We demonstrate the utility of 

institutional legacy data and importance of consulting a variety of geographic data resources to 

the process of georeferencing. We show meaningful differences in the resulting MPX 

distribution depending on the georefrencing method chosen. While other studies have 

encountered and identified similar difficulties to georeferencing historic public health data from 

developing countries (Guerra et al. 2007, Cecchi et al. 2009), the MPX data used in this study are 

even older; we believe that our results may help other researchers in the future to plan 

strategically for georeferencing other historic public health data sets. Elsewhere, analyses are 

appearing in the literature using ecological niche modeling or other related GIS based modeling 

methods to examine disease distributions in various locations and at various spatial scales e.g., 

(Thomson et al. 1999, Peterson et al. 2006, Lash et al. 2008, Fichet-Calvet and Rogers 2009). 

Too often, however, occurrence data are used without careful introspection or the georeferencing 

process is executed without detailed attention. 

Such concerns have seen considerable discussion and development in the biodiversity 

informatics world (Chapman 1999, Peterson et al. 2004, Wieczorek et al. 2004, Chapman 2005). 

In public health, a clear and robust argument of the need for georeferenced health data was put 

forth nearly 15 years ago (Krieger et al. 1997). Since then, a large amount of research has 
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focused on georeferencing domestic disease occurrences (Krieger et al. 2001, Goldberg 2008, 

Goldberg et al. 2008, Henry and Boscoe 2008, Rushton et al. 2008). The work herein, like that of 

Serebriakova (2005), suggests that greater investment in georeferencing resources for 

international public health research is needed, and that legacy map library collections should be 

used to fill gaps in digital gazetteer data (Cromley 2011). In this vein, automated approaches to 

extracting information from scanned maps (Chiang and Knoblock 2011) may offer even greater 

efficiency than manual digitizing. Discussions have begun as regards alternative formats for 

capture of human disease occurrence data (Eisen and Eisen 2007, Peterson 2008b), but much 

more contemplation is needed, owing to differences in disease surveillance systems and 

geographic information infrastructure around the world. Emerging technologies may be one way 

of strengthening public health surveillance capacity, such as monitoring Twitter feeds (Davis Jr. 

et al. 2011), and other types of mobile communications (Freifeld et al. 2010). In light of the 

ongoing threat posed by emerging and re-emerging infectious diseases (Jones et al. 2008), it 

seems most advantageous to initiate a focus on constructing high-quality, well-documented 

geographic summaries of primary disease data. 
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Figures 

 

Figure 3.1. Total reported monkeypox case distribution across Central and West Africa, 

1970–1986. 

The distribution of monkeypox (MPX) cases in seven countries where MPX cases were reported 

through the joint WHO/CDC surveillance efforts, including the total number of cases identified 

within each county (Ježek and Fenner 1988). Countries labeled in gray without numbers indicate 

locations where additional MPX or MPX-related disease have occurred since 1986 (Meyer et al. 

1991, Learned et al. 2005, Formenty et al. 2010, Reynolds et al. 2010). 
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Figure 3.2 Flow diagram of the geocoding process used to generate the Automated data set. 
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Figure 3.3 Flow diagram of the geocoding process used to generate the Worked data set. 
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Figure 3.4 Flow diagram of the geocoding process used to generate the Researched data set. 
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Table 3.1 Comparison of georeferencing match rates across countries and sub-national 

units for each different method 

The number of monkeypox case localities were matched at different rates in different national 

and sub-national units (i.e. state or province), which are expressed as fractions and percentages, 

relative to numbers of unique localities reported there in the WHO spreadsheet. Bolded regions 

in the DRC represent likely errors of commission, where more localities were georeferenced than 

would be expected based on the WHO spreadsheet. Asterisks identify probable specific instances 

of this type of error, such that calculating match rate percentages are not useful. 

 

    Researched   Worked   Automated   

Country               

Sub-national unit 
WHO 

Locations 
Matched % Matched % Matched % 

Cameroon 2 0/2 0 1/2 50 0/2 0 

Centre 2 0/2 0 1/2 50 0/2 0 

Central African Republic 2 0/2 0 0/2 0 0/2 0 

Sangha 2 0/2 0 0/2 0 0/2 0 

Democratic Republic of 

the Congo 
220 99/220 45 112/220 51 67/220 30 

Bandundu 37 14/37 38 23/37 62 12/37 32 

Bas Zaire 0 0/0 n/a 0/0 n/a 1/0* n/a 

Equateur 143 62/143 43 71/143 50 38/143 27 

Haut Zaire 3 2/3 67 9/3* n/a 8/3* n/a 

Kasai Occidental 3 2/3 67 1/3 33 2/3 67 

Kasai Oriental 31 19/31 61 6/31 19 5/31 16 

Kivu 3 0/3 0 2/3 67 0/3 0 

Shaba 0 0/0 n/a 0/0 n/a 1/0* n/a 

Ivory Coast 2 2/2 100 2/2 100 1/2 50 

Abengourou 1 1/1 100 1/1 100 0/1 0 

Haut-Sassandra 1 1/1 100 1/1 100 1/1 100 

Liberia 2 2/2 100 0/2 0 0/2 0 

Grand Gedeh 2 2/2 100 0/2 0 0/2 0 

Nigeria 2 2/2 100 1/2 50 1/2 50 

East Central 1 1/1 100 0/1 0 0/1 0 
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    Researched   Worked   Automated   

Country               

Sub-national unit 
WHO 

Locations 
Matched % Matched % Matched % 

Oyo 1 1/1 100 1/1 100 1/1 100 

Sierra Leone 1 1/1 100 0/1 0 0/1 0 

Southern 1 1/1 100 0/1 0 0/1 0 

Overall 231 106/231 46 116/231 50 69/231 30 
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Table 3.2 Geographic information resources consulted for “researched” dataset 

The number of monkeypox case localities which benefited from more detailed CDC legacy data 

and other historic materials, by resource name. 

Localities Name Reference 

43 Joint Operation Graphic’s (JOG’s) (KU Humanitarian Demining 

2007) 

18 Legacy CDC case forms  

 Reports  

4 Report of Meeting on the implementation of Post-

Smallpox Eradication Policy 

(World Health Organization 

1981) 

3 Human infections with monkeypox virus: Liberia 

and Sierra Leone 

(Smallpox Eradication 

Program 1971) 

 Articles  

3 The role of squirrels in sustaining monkeypox 

virus transmission. 

(Khodakevich et al. 1987a) 

2 Ebola haemorrhagic fever in Zaire, 1976. (World Health Organization 

1978) 

4 A search for Ebola virus in animals in the 

Democratic Republic of the Congo and 

Cameroon: ecologic, virologic, and serologic 

surveys, 1979–1980. 

(Breman et al. 1999) 

1 Human monkeypox. (Foster et al. 1972) 

1 Human poxvirus disease after smallpox 

eradication. 

(Breman et al. 1977) 

1 Four generations of probable person-to-person 

transmission of human monkeypox. 

(Ježek et al. 1986) 

1 Results of Ebola antibody surveys in various 

populations groups 

(Van der Groen et al. 1978) 
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Figure 3.5 Exploration of effects of different levels of care and detail in georeferencing of 

human monkeypox cases on derivative transmission risk maps. 

Models derived from the automated and worked occurrence data differ in environmental and 

geographic dimensions from those based on the carefully researched occurrence data points. See 

text for additional detail. Red and orange areas in panels C and D are those that are more 

extensive in the researched data set, while blue areas are those that are less extensive. Panel E 

highlights portions of the ecological niche unique to the West African countries (Nigeria, Ivory 

Coast, Liberia, Sierra Leone) which were located using the researched method, but largely 

missed by the other two methods. 
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Figure 3.6 Example of application of complex spatial logic to georeferencing a difficult 

locality. 

A portion of a JOG map is shown, with GNS gazetteer data overlaid as orange dots with orange 

labels. The village of Libela did not appear on either the JOG map or in the GNS database, but 

anecdotal reference was made to it as being 38 km south of Yambuku (Van der Groen et al. 

1978). Using ArcGIS, a 38 km distance (solid white line) from Yambuku Mission (church 
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symbol on JOG map highlighted in white) to the south led to an unnamed village on the JOG 

map 38 km away, which could reasonably be inferred to be Libela. 
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CHAPTER 4 

ENABLING CLINICIANS TO EASILY FIND LOCATION-BASED TRAVEL HEALTH 

RECOMMENDATIONS-- IS INNOVATION NEEDED?1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

_________________ 

1 Lash, R. R., A. Walker, C. V. Lee, R. C. LaRocque, S. R. Rao, E. T. Ryan, G. Brunette, N. K. Holton and M. J. 

Sotir. To be submitted to the Journal of Travel Medicine.  
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Abstract 

Background 

The Centers for Disease Control and Prevention (CDC) publishes travel health recommendations 

to enable clinicians to perform risk assessments during pretravel consultations. Most 

recommendations describe risk at the country level; however, recommendations for subnational 

areas are also made when disease risk varies within a country, as they currently do for malaria 

and yellow fever. It is unknown whether the types of place names CDC uses to describe disease 

risk (e.g., country name, state name, city name, etc.) match the types found in travel itinerary 

descriptions during pretravel consultations. Understanding place name that types clinicians must 

search for would be valuable for developing new search tools and display formats to help 

clinicians find more targeted recommendations on a multitude of travel-related illnesses.  

Objectives 

Analyze the types of place names currently found in travel itinerary descriptions and evaluate 

how these terms can be used to develop new tools for clinicians to use. 

Methods 

Data analyzed were individual travel itineraries collected using a standard pretravel consultation 

form at GlobalTravEpiNet (GTEN) travel clinic sites. We selected a stratified random sample of 

itineraries from records which contained responses to an open-ended question from 18 GTEN 

clinics. Place names were extracted and classified as one of 8 different types:  multi-national 

area; country; state/province; county/district; physical geographic area (e.g., island, mountain 

region); vague subnational area; populated places (e.g., cities, villages); tourist destination (e.g., 

national park, historic site). Itineraries could include multiple place names and place name types. 

Summary statics were generated. 
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Results 

Of 1,756 itineraries sampled, 1,570 (89%) itineraries included one or more place name, for a 

total of 3,377 place names. More frequently found types were: 2,119 (63%) populated places; 

336 (10%) tourist destinations, 283 (8%) physical geographic area, and 206 (6%) vague 

subnational areas. The types used by CDC were found less frequently, including 163 (5%) state, 

153 (5%) country, and 48 (1%) county. 

Conclusions 

This study shows that the type of place names most frequently used to describe travel itineraries 

during pretravel consultations are rarely the ones used currently by CDC to describe national and 

subnational health recommendations. This means that clinicians must use additional maps, 

atlases, or online search tools to cross reference the provided place names to the available health 

recommendations. Clinical tools using geographic information technology to directly identify 

health recommendations would make it easier for clinicians to find recommendation information. 
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Introduction 

The Centers for Disease Control and Prevention (CDC) publishes travel health recommendations 

to enable clinicians to perform risk assessments during pretravel consultations. Most 

recommendations describe risk at the country level; however, recommendations for subnational 

areas are also made when disease risk varies within a country, as they currently do for malaria 

and yellow fever (Hay et al. 2013). As disease surveillance improves in the future, subnational 

recommendations may be needed for other diseases. Subnational place name (e.g., state name, 

city name, etc.) search terms regularly used by clinicians are largely undocumented. Obtaining 

place name search data would be useful in developing new search tools and display formats to 

help clinicians find more targeted recommendations on a multitude of travel-related illnesses.  

Objectives 

This study has three objectives. The first objective is to classify the types of place names used to 

describe a travelers’ itinerary during pretravel consultations, as recorded in a representative 

sample of patient intake forms obtained from the Global Travel EpiNetwork (GTEN). The 

second objective is to summarize types of place names as compared to the currently used terms 

to report travel health recommendations. If there are discrepancies between the place names 

types used in pretravel consultations, and the place names used in travel health 

recommendations, then this suggests clinicians may experience a burden when trying to find and 

interpret travel health recommendations. If a discrepancy is found, then the final objective is to 

make recommendations about how new geospatial technology (e.g., interactive maps and place 

name search services) could be used to develop new tools for clinicians to use to find relevant 

travel health information more efficiently. 
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Background 

There is a rich history of mapmaking and spatial analysis in public health (Koch 2005), and 

increasingly the application of geographic information systems (GIS) within epidemiology 

(Cromley and McLafferty 2012). Bauer and Puotinen (2002) suggest different ways that GIS can 

contribute to travel medicine, including the use of GIS for querying spatial databases of disease 

presence. At the time that Bauer and Puotinen published their article, GIS primarily consisted of 

data and software on a personal computer that required considerable training to be able to use. 

Since then, global positioning systems (GPS), as well as web-based mapping and mobile 

technologies have revolutionized the way that we use and consume map information (Batty et al. 

2010, Longley et al. 2011). 

One GIS application that Bauer and Puotinen (2002) envisioned was the ability for travel 

health clinicians to quickly and easily search global GIS databases of travel related diseases and 

disease risks. Such tools could save valuable time during pre-travel consultations, which can 

often take more of the clinicians time than what their appointment schedule permits (Hatz and 

Chen 2013). The individual risk assessment is an important and potentially time consuming part 

of the consultation. The risk assessment requires travelers to provide important details about their 

medical history and planned trip, including a detailed travel itinerary, while the clinician must 

process this information to determine the relevant health risks the traveler will likely encounter.  

To process destination information, clinicians usually use a travel medicine reference 

book or website.  The CDC publishes a clinical medicine textbook called the CDC’s Yellow 

Book (Brunette 2017), and also makes this information available through CDC’s Travel Health 

website (Centers for Disease Control and Prevention 2017). In addition to CDC’s reference 

materials, clinicians may use other reference sources, such as the World Health Organization’s 
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International Travel and Health website (World Health Organization 2012a), other countries’ 

travel health recommendations, or those of commercial travel information providers (e.g. 

Shoreland®, Global Infectious Disease and Epidemiology Online Network (GIDEON), 

TropiMed®, etc.). However, recommendations for certain diseases may vary within a country, 

such as yellow fever and malaria. Because these recommendations are made based on political 

boundaries within countries, clinicians need sufficiently detail maps in order to locate the travel 

destinations and described risk areas (Deye and Magill 2013), and have been advised to acquire 

separate atlases, world maps, or globes (Hill and Rosselot 2013) to assist them. An international 

study of nurses suggested that requiring clinicians to rely on their own ability to locate and 

interpret these numerous mapping resources remains overly burdensome (Bauer et al. 2013). 

To try to address this need, the CDC Yellow Book has included some country-specific 

yellow fever and malaria maps (Figure 4.1). The scale and format of these maps can only show a 

limited number of labeled places on the map, so should a clinician not find the destination they 

are looking for, they must still rely on separate mapping resources to be able to interpret the 

published travel health recommendations. Some CDC map users indicate that the map’s ease of 

use may be questionable (Kohl 2016). 

Previous research has shown that the itinerary information provided during pretravel 

consultations can be problematic. It is subject to changing after the pre-travel consultations 

(Rossi and Genton 2012), or may be ill-defined at the time of the pretravel consultation (Flaherty 

and Md Nor 2016). Rossi and Genton (2012) noted that the impact of the differences between 

reported and actual travel plans only altered their recommendations for the rabies-vaccine, and 

all other vaccine and malaria prophylaxis recommendations remained the same. 
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Data and Methods 

Global TravEpiNet (GTEN) Patient Intake Forms 

Global TravEpiNet (GTEN) is a network of 29 travel clinics from across the United States 

(Figure 4.2) organized to improve the health of those traveling internationally (LaRocque et al. 

2012). Each clinic uses a standardized electronic data collection form. Although travelers are 

sked to complete the form online prior to their appointment, clinicians may add additional details 

during the pre-travel consultation. The form captures the intended travel itineraries in two ways: 

1) a mandatory question that asks users to select one or more places from a list of country names; 

and 2) an optional question allowing users to write-in “additional details regarding their 

destinations.”  After reviewing the proposed research and data request, GTEN data managers 

executed the desired stratified random sampling scheme, and furnished a deidentifed data table 

which included the two itinerary variables, as well as demographic variables describing traveler 

age, sex, length of travel, and purpose for travel. 

A total of 35,119 forms from 29 GTEN clinics contained responses to the second 

“additional destination detail” question. 11 of the 29 GTEN clinics were excluded from the 

eligible sample set (n=110 form) because the optional question was not regularly completed at 

these clinics, reducing the total number of eligible forms down to 35,009 from 18 clinics. From 

those clinics with greater than 100 eligible forms (n=15), 100 forms were randomly selected for 

review. From the remaining clinics that had fewer than 100 eligible forms but greater than 50 

(n=3), all available forms were selected (256 forms). In summary, 18 out of 29 (62%) GTEN 

sites met our sampling requirements and resulted in a sample size of 1,756 intake forms. 
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Classifying Itinerary Place Names by Type 

A manual process was used to identify, extract, and classify individual place names found within 

the intake forms that included responses to the “additional destination details” question. The 

processing methodology is summarized as follows:  

• Examine additional destination information and identify possible place names 

• Record possible place names in place name data table 

• Look up possible place names in online resources that travelers likely use (e.g., Google 

Maps, Wikipedia, and other travel websites) to identify place name type and correct any 

misspellings 

• Classify place name type according to Table 4.1 

 

Table 4.2 shows an example of how the manual process was executed. In this entry, the 

additional destination details response was a list of place names separated by commas, and 

ending with a period, followed by a shorthand clinician’s note. The first location can be easily 

recognized as the city of Kolkata, in India, which is assigned the “populated place” type. 

Similarly, Thimpu is the capital city of Bhutan, and also a populated place type. “Mountain 

areas” would be considered a physical geographic area. Jaipur is recognized as another populated 

place in India. A search for “Ramthambore” using the Google Search Engine did not yield a 

match, but the search results identify Ranthambore National Park as a likely spelling itinerary, 

and national parks are a type of tourist destination. Varanasi is found to be another populated 

place in India. The remainder of the information “. Guided, OAT” is interpreted as a shorthand 

note entered by the clinician meaning “guided overseas adventure travel.” This example is 

representative of the types of semi-structured free-text responses found within the intake forms. 

A Microsoft Access (Microsoft Office 2013, Redmond, WA) relational database with 

custom data entry forms was used to input and manage data during manual processing contained 

in the “additional destination details” field, and for creating summary data tables. During the 
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process of identifying individual place names, their type, and spelling, some assumptions were 

needed to be made to handle the variation within the unstructured data. These assumptions were:   

1) If names such as Singapore, or Hong Kong, or Sao Paulo were encountered, they were 

coded as the type populated place, although there are also administrative areas with the 

same name;  

2) If a hierarchical place name list was provided, such as “Cancun, Quintana Roo, Mexico”, 

it was interpreted that the traveler was visiting only one destination “Cancun,” and that 

the other place names were simply descriptors of which “Cancun” the traveler was going 

to. 

3) Country place names were not counted if they were already selected as a response to the 

mandatory country list question.  

Results 

Table 4.3 shows a demographic breakdown of the entire GTEN dataset compared to the sample 

of 1,756 intake forms selected through the stratified random sampling procedure. Overall the 

sample appears representative of the larger GTEN dataset. The sample is comprised of 14% 

more women than men, and is largely comprised of adults born before 1990. The highest 

proportion of travelers were traveling to the African Region 

Of all the itineraries sampled, 1,570 (89%) itineraries included one or more place name, 

for a total of 3,366 place names (Table 4.4). By comparing the total number of place names per 

GTEN site to the number of itineraries, we see that two are not strongly correlated. Table 4.5 

shows that the most frequently found types were: 2,119 (63%) populated places; 336 (10%) 

tourist destinations, 283 (8%) physical geographic area, and 206 (6%) vague subnational areas. 
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The types used in CDC recommendations were found less frequently, including 163 (5%) state, 

153 (5%) country, and 48 (1%) county.  

Figure 4.3 shows that when you compare the proportion of place name types described in 

aggregate above (column 1) to the individual proportions from each GTEN site, the trends are 

similar. This figure shows that the proportion of populated places varies between GTEN site, 

though it consistently makes-up the largest proportion of all place names. GTEN Site R has the 

highest proportion of country type place names of all the GTEN sites, and conversely the lowest 

proportion of populated place types. Further examination of the individual records for this site 

shows that one intake form reports an itinerary that includes 16 different countries. 

Discussion 

This data shows that populated place types were listed 6 times more often than tourist 

destinations and 10 times more often than state/province and country types. It is clear that the 

types of place names commonly used to describe travel itineraries during pretravel consultations 

are different than the place names commonly used to define travel health recommendations. 

There are some limitations to these results. Because the “additional destination detail” question 

on the GTEN form is optional and users are given essentially no instruction on what type of 

information to input, little is known about why some forms contain this information and others 

do not. Similarly, because both the traveler and the clinician are able to enter information into the 

intake form, it is difficult to associate patterns in the data with the knowledge, attitudes, or 

practices of either the traveler or the clinician. 

These results are consistent with results from related tourism and hospitality research, 

which has sought to understand the way that travelers use location to search for travel 
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information (e.g., tourist activities, hotels, etc.) to inform tourist destination website 

development. Hwang et al. (2009) studied the transcripts of U.S. based domestic travelers calling 

and Illinois state tourism information call-center. As the study reported herein, they classified the 

different place names reported in the queries as either the state, region within the state, county, 

and city place name types, for single destination searches and multi-destination searches. They 

found that cities were the most frequent place name type used overall, with 83% of the single 

destination searched and 75% of the multi-destination searches, while counties and states were 

the least common and second-least common place name types, respectively. Similar research was 

done on a sample of internet search engine queries to study travelers’ accommodation search 

query, and found that cities were again the most common type of place name type used, and were 

used four times more frequently than country and state place names (Pan et al. 2007).  

Based on the evidence we have presented, as well as the data reported by tourism related 

research, it is reasonable to conclude that travelers plan their travel itineraries at a local scale, 

planning their itineraries in terms of “Where is the airport located?”, “Where am I going to 

sleep?”, “What types of activities do I want to do while I am there?” These behaviors are 

unlikely to change in such a way that it would make it quicker and easier for travel health 

clinicians to identify the appropriate travel health recommendations. It is equally important to 

acknowledge that public health agencies generate public health recommendations based upon the 

best available surveillance data and the smallest political geographic units at which the data are 

reported (Shlim and Magill 2017). It is conceivable that improved surveillance and reporting 

systems may be implemented in the future however,  and that subnational travel health 

recommendations may become more common (Hay et al. 2013), and thus more burdensome to 

clinicians.  
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Conclusions 

Using new geospatial technology such as interactive maps to display travel health information is 

not new, (Centers for Disease Control and Prevention 2009, World Health Organization 2012b), 

including more recent examples from commercial entities (Sanofi Pasteur Austrailia 2017, 

Travax® 2017). However, our study is the first to provide data to document the clinical need for 

these tools, specifically the specific need for place name search capabilities. Future studies 

should continue this line of inquiry to enable new and better clinical tools to be developed so that 

doctors, nurses, and travelers may be confident that they are using the best and most accurate 

information available. 

This study shows that the type of place names most frequently used to describe travel 

itineraries during pretravel consultations are rarely the ones by public health authorities use to 

report national and subnational travel health recommendations. As a result, clinicians must 

undertake a time-consuming process of cross-referencing the place names in the itinerary against 

additional maps, atlases, or online search tools to find out where these places are located relative 

to the description of the travel health recommendations. This time consuming process for 

clinicians could be made less burdensome by developing a travel health recommendation search 

application which incorporates geospatially formatted travel health recommendation data, 

interactive web maps, and a place name search services. 
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Figures 

 

Figure 4.1 Photograph of Yellow Fever and Malaria travel health recommendations for 

Ecuador from 2018 CDC Yellow Book  

This photograph shows the way that yellow fever and malaria travel health recommendation 

information for Ecuador are presented in the current CDC Yellow Book (Brunette 2017). The 

Ecuador country information is described in words beginning in the upper-left, and a map 

visualizing this information can be seen in the upper-right. Recommendations are defined by 

provinces in the text, so all provinces are shown and labeled on the map, though the density of 

these labels prevents other places from being shown and labeled on the map. A separate Ecuador 

malaria risk map appears on the following page of the book. 
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Figure 4.2. Distribution of Global Travel EpiNet (GTEN) clinic sites included and not 

included in the final analysis 

This map shows the geographic distribution of Global Travel EpiNet (GTEN) clinic sites across 

the United States that use the standardized patient intake form. Blue triangles show the GTEN 

clinics that were included in this study, and orange circles show the clinics which were not 

included in the study (based up criteria defined in the text). 
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Table 4.1. Defining different types of place names 

Place Name Type Definition 

Multi-national area An area covering more than one country 

Country/territory A sovereign political entity found on GTEN country list 

State/province 
A subnational first-order administrative region within a 

country 

County/district/municipality 
A subnational second-order administrative region within a 

country, nested within a state/province 

Populated place  A city, village, or airport 

Tourist destination Any specific park, resort, or cultural heritage site 

Physical geographic area A mountain, mountain range, river, ocean, ecological zone 

Vague subnational area 

An area clearly within a country but for which the location or 

boundaries are ill-defined and not clearly demarcated on any 

available map 

Undefined 
A named location which cannot be found in any of the online 

resources consulted 
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Table 4.2. Example of data processing scenario 

Additional destination details: 

Kolkata, Thimpu, Mountain Areas, Jaipur, Ramthambore, Tented Camp, Varanasi. Guided, 

OAT 

Country Place Name Place Name Type 

India Kolkata Populated place 

Bhutan Thimpu Populated place 

Bhutan Mountain Areas Physical geo area 

India Jaipur Populated place 

India Ranthambore National Park Tourist destination 

India Varanasi Populated place 
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Table 4.3. Demographic and Travel-Related Characteristics of Travelers Included in 

Sample 

Characteristic 

All Travelers 

n= 40,810 

Travelers 

Sampled 

n=1,756 

Sex       
Female 22,987 56% 1,001 57%  
Male 17,823 44% 755 43% 

Birth cohort      
1957-1989 35,053 86% 1,417 81%  
1990 or after 5,757 14% 339 19% 

Region of Travel 1,2      
Africa 14,471 35% 667 38%  
Americas 11,562 28% 537 31%  
Eastern Mediterranean 2,156 5% 86 5%  
Europe 2,025 5% 112 6%  
Southeast Asia 10,090 25% 431 25%  
Western Pacific 7,052 17% 339 19% 

Reason for travel 2      
Business 8,775 22% 299 17%  
Humanitarian service 

work 

3,180 8% 298 17% 

 
Leisure 20,507 50% 977 56%  
Other 4,935 12% 169 10%  
Research/Education 5,272 13% 188 11%  
Visiting Friends and 

Relatives 

3,208 8% 139 8% 

Duration of Travel      
<14 day 17,014 42% 677 39%  
>= 14 days 23,766 58% 1,077 61% 

1 Region of travel defined according to WHO Administrative Regions (World Health 

Organization 2017) 
2 Not mutually exclusive groups 
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Table 4.4. Sampled intake forms with additional place names recorded by GTEN site 

GTEN Site ID Sampled Intake Forms Itineraries with Place names Place names 

Site A 100 98 138 

Site B 100 83 240 

Site C 90 80 245 

Site D 100 85 307 

Site E 100 94 325 

Site F 100 93 176 

Site G 100 89 215 

Site H 100 91 135 

Site I 100 89 249 

Site J 83 76 152 

Site K 100 81 130 

Site L 100 95 195 

Site M 100 91 125 

Site N 100 91 168 

Site O 100 96 219 

Site P 100 71 88 

Site Q 100 92 161 

Site R 83 75 98 

TOTAL 1,756 1,570 3,366 
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Table 4.5. Frequency of different place name types 

Type of place name Count of References Percentage of total references 

Populated place 2,119 63% 

Tourist destination 336 10% 

Physical geographic area 283 8% 

Vague subnational area 206 6% 

State/province 163 5% 

Country 142 4% 

Multi-national area 57 2% 

County/district/municipality 48 1% 

Undefined 12 0% 

Total place names 3,366  
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Figure 4.3 Trends in place name type variation across GTEN Sites 
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CHAPTER 5 

COMMUNICATING NATIONAL ZIKA VIRUS TRAVEL HEALTH RECOMMENDATIONS 

THROUGH AN INTERACTIVE WEB MAP: DESIGN, DEVELOPMENT, AND 

DEPLOYMENT1  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

_________________ 

1 Lash, R., C. Lee, R. Henry, W-L Juang, T. Kim. A. Walker, Y. Haber, J. Wages, M. O’Sullivan, S. Schuafenhauer, 

A. Friedman, H. Stroud, M. Dessecker, K. Holton, and G. Brunette. To be submitted to the International Journal of 

Health Geographics.  
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Abstract 

Web-based interactive mapping technology was used to build a novel interactive map to query 

and display global Centers for Disease Control and Prevention (CDC) travel health 

recommendations during the 2016-2017 Zika virus outbreak. The map enables users to quickly 

and reliably search for and identify location-based Zika virus recommendations for travelers by 

integrating three principal features: a place name search service; a detailed global Zika virus 

travel recommendation map built from OpenStreetMap administrative boundary data and Earth 

Environment 90-m Digital Elevation Model ; and customized pop-up messages delivering 

authoritative travel health recommendations for any area of the world. This map was deployed 

on March 10, 2017, and has been viewed over 750,000 times within three months. It represents a 

significant increase in CDC’s Traveler’s Health Branch (THB) cartographic capacity, and is an 

important case study of how interactive mapping technology can be used to make the process of 

communicating location-based travel health recommendations less burdensome to travelers and 

travel health clinicians who provide medical education and care.  
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Introduction 

The Centers for Disease Control and Preventions (CDC) Travelers’ Health Branch (THB) has the 

mission of reducing illness and injury in U.S. residents traveling internationally or living abroad.  

In support of this mission, THB has regularly made static maps (i.e., traditional fixed and non-

interactive maps) to help communicate important international travel health risk and 

recommendation information to the general public and medical clinicians. These maps are 

primarily published in the CDC Yellow Book (Brunette 2017). The CDC encourages travelers to 

visit and use the CDC Travelers’ Health Website (Centers for Disease Control and Prevention 

2017c) when planning their trips to learn about country-specific health recommendations to keep 

them healthy and safe while traveling abroad. To inform travelers about the latest health issues 

related to specific destinations, CDC will post travel notices using a three tiered system based on 

the type of recommendations which are provided:  Level-1 (Watch); Level-2 (Alert); or Level-3 

(Warning) (Centers for Disease Control and Prevention 2017f). A travel notice will contain a 

brief description of the unique health risks, and then the recommendations for how a traveler can 

eliminate or mitigate the risks. 

While outbreak related travel notices can garner a lot of attention, the most frequently 

accessed material on the THB website are usually the country destination pages. These pages 

provide country specific health recommendations, including: vaccine and medicine 

recommendations; preventing foodborne diseases; preventing mosquitoborne disease; how to 

avoid injuries; a healthy travel packing list; and post-travel health information. Most of the 

recommendations mentioned above apply universally across all parts of a country; however, 

yellow fever vaccine and malaria prophylaxsis recommendations are two important exceptions.  

Both diseases can be fatal, and some countries require proof of yellow fever vaccine to allow 
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travelers to enter the country. Identifying the appropriate location-specific recommendations for 

yellow fever vaccine and malaria prophylaxis can be difficult because the specific 

recommendations may vary geographically within a country and the place names used to 

describe the geographic variation may be foreign to the user, as was described in the previous 

chapter. To make the recommendation information on the Travelers’ Health Website easier to 

interpret and understand, THB has created more disease and country specific static maps with 

information at a subnational level (Centers for Disease Control and Prevention 2017a). 

Despite the popularity of these maps, the map scale and format can make it difficult to 

interpret the health information on the maps, particularly if a traveler is going to a destination not 

labeled on the map. Because of these limitations, THB mapping experts have been interested in 

developing interactive web map versions of these maps. They believe this would make the 

information easier to use and interpret, thereby improving the communication of health risk and 

prevention to travelers and clinicians. As part of CDC’s response to the 2016-2017 Zika virus 

outbreak, additional mapmaking resources became available for the development of interactive 

travel health information maps, and these maps were eventually deployed in March of 2017. 

Because developing and deploying new interactive mapping technology within a United States 

federal government agency is a unique challenge, the intent of this article is to document this 

accomplishment as a case study for how other government and non-governmental agencies may 

consider adopting similar mapping technologies to support health communication efforts in the 

future. 
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Background 

Web-based Maps in Travel Medicine 

 Croner (2003) predicted that internet and geographic information systems (GIS) based 

applications in public health would see important and exciting developments in the new 

millennium. The topic of web-based GIS use in public health surveillance systems has been 

recently reviewed (Luan and Law 2014), and they found that most examples of web-based GIS 

in public health today were of the “health atlas” format, and primarily focused on data sharing 

and visualization for expert audiences. Koenig et al. (2011) found that public health practioners 

had difficulty accurately interpreting exemplar health atlases, and suggested that both practioners 

needed more basic map interpretation training and that health atlas systems needed improved 

design. 

Bauer and Puotinen (2002) predicted internet-based GIS technology could eventually 

reach travel medicine providers. While this prediction appears true, the examples are limited. 

CDC produced one of the earliest examples of interactive maps for travel medicine with their 

Malaria Map Application launched in 2009, though the application has since been abandoned 

(Centers for Disease Control and Prevention 2009). In 2012, the World Health Organization 

released their International Travel Health Interactive map application (World Health 

Organization 2012). While this application is still available on the web, this application does not 

incorporate any place name search capabilities, nor a very rich interactive map or pop-up 

message content.  In summary, though there have been some examples of web-base GIS 

applications in travel medicine, none have taken full advantage of the recent technological 

improvements in web-based geospatial data, software, and services described by Batty et al. 

(2010). 
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CDC’s Travelers’ Health Website 

The CDC’s THB became aware of isolated Zika virus outbreaks in Brazil beginning in June of 

2015, and issued a Level-1 travel notice for the country (Table 5.1) to inform travelers going 

there that they were at risk of acquiring Zika virus infection and recommended that travelers 

prevent mosquito bites to avoid infection. As the outbreak spread, CDC issued additional travel 

notices in December 2015 and January 2016 for affected countries in Central, North, and South 

America (Centers for Disease Control and Prevention 2015, 2016). As a result of new research 

that showed that there was a link between Zika virus infection in pregnant women and severe 

fetal birth defects, the World Health Organization designated the Zika virus outbreak a Public 

Health Emergency of International Concern. CDC subsequently issued revised travel 

recommendations that stated pregnant women should not travel to any of the affected Zika virus 

outbreak countries and territories (Table 5.1) (Centers for Disease Control and Prevention 2016). 

In March 2016, CDC issued revised travel recommendations stating that pregnant women should 

continue to abstain from travel to Zika virus outbreak countries, unless they were traveling only 

to a high-elevation area within those countries where the mosquitoes transmitting Zika virus 

were not likely to be found (Cetron 2016). High-elevation areas were defined high-elevation 

areas as greater than 2,000 meters above sea level. The new elevation-based recommendation 

was added to the country-specific travel notices, and the Mexico travel notice shown in Figure 

5.1 is representative of the way this information was published on the THB website. 

To determine whether it was safe for a pregnant woman to travel to a particular location, 

travelers or their clinician needed to know whether the elevation of their intended travel 

destination is above or below 2,000 meters in elevation. The CDC, therefore, produced and 

published country-specific elevation maps on the THB website. Each of these maps classified the 

country into two categories, either below 2,000 meters elevation, or above 2,000 meters (Figure 
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5.2). Maps were only made for countries containing regions with elevations above 2,000 meters, 

of which there were eventually 19 countries (denoted with asterisks in Table 5.1). However, like 

the yellow fever and malaria maps previously described, the usability of these Zika virus 

elevation maps were limited due to their map scale, which constrained the number of 

destinations which could be labeled on the static map and the accuracy with which users could 

discern the elevation-based recommendation for their destination.  

As the number of Zika virus-affected countries and territories grew, users looking for 

Zika virus-free travel destinations were faced with an additional geographic information 

navigation problem. The THB was publishing a global map of countries and territories with 

active Zika virus transmission (Figure 5.3), with the intention to show all of the locations of Zika 

virus occurrence. However, it was not easy to identify which countries were Zika virus-free on 

these maps because only locations with Zika virus were labeled. If you were someone seeking to 

find the few remaining Zika virus-free island vacation destinations at the time, you likely would 

not realize that the Cayman Islands and The Bahamas were both Zika virus free unless you 

noticed on your own that they were missing from the map and list of locations. Simply put, static 

mapping technology could not meet the requirements of being an effective graphic 

communication device for all possible travel destinations to for both, users who were interested 

in finding information either for a specific set of countries, or users who wanted to find the 

destinations which remained Zika virus free. Though the limitations of static maps were 

apparent, the capacity to produce and publish interactive web-maps on the CDC website did not 

exist at the time. It was believed that such mapping technology could make locating and using 

Zika virus-related travel health recommendation information easier and more efficient for 

website users. 
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Objectives 

The study has multiple objectives. The first objective was to design and implement an interactive 

map that would clearly communicate location-specific Zika virus travel health recommendations 

to international travelers. The second objective was for this interactive map to be flexible enough 

to accommodate the demands and uncertainties of an outbreak response environment, meaning 

that the recommendations messaging or areas of risk would likely change rapidly. The third 

objective was to deploy this system and assess how users respond. 

Data and Methods 

The interactive map was developed using an iterative approach, and some slight modifications 

have been made since it deployed as a result of user feedback received. The focus of the methods 

section will be to describe the interactive map as it currently exists at the time of writing, not as it 

was when it originally deployed. The methods section consists of describing three different parts 

of the interactive map:  the necessary data inputs; the mapping software and services used to 

build the interactive map; and the system architecture. This section will end with a brief 

summary of the different web analytics and user feedback tools available for monitoring the 

interactive map and gauging its success as a health communication tool. 

Non-Spatial Data 

The most important part of the interactive map is the Zika virus travel health recommendation 

messages that display as pop-up messages when users click on the map, for which there are 

many permutations (Table 5.2). The goal of these messages was to provide the most important 

actionable information using words which would be easily and widely understood, and also to 

provide a hyperlink to other CDC web content where the users could find additional health 



97 

 

information. Nearly all message text included some dynamic content, and how this content was 

stored will be covered in the spatial data section below. How it was queried and used, will be 

described in the system architecture section. 

Each pop-up message is tied to an individual data layer in the map. Zika virus risk areas 

are defined based on an assessment of the local risk to travelers from the best available data and 

expert judgement. For countries, this assessment of risk has been performed and published by the 

World Health Origination (WHO) (World Health Organization 2017). The classification of 

domestic Zika virus risk areas is determined by CDC (Centers for Disease Control and 

Prevention 2017e). The remainder of the data section will explain the different types of 

geographic data used to represent the Zika virus risk areas within the interactive map. 

Spatial Data Representing Zika Virus Risk Areas 

The spatial representation of the different Zika virus risk areas and related data were compiled 

from different sources (Table 5.3), and their attributes were customized to meet the need for 

storing some of the dynamic content of the pop-up messages. A schematic of the map application 

system architecture is shown in Figure 5.5, where these custom datasets are shown as inputs for 

custom tilesets hosted in the Mapbox cloud. Once in the Mapbox cloud, this data is combined 

with Mapbox Streets base data to create the custom Mapbox Map style seen by the users. We 

used OpenStreetMap (OSM) as the source for nearly all of the custom datasets (OpenStreetMap 

Wiki 2017a) because OSM is also the source for the Mapbox Streets base data (Mapbox 2017b), 

and we wanted our custom datasets to align with Mapbox Streets. 

Country polygons with territorial waters 

All international Zika virus risk areas were represented as individual country polygons, so that 

whenever a user clicked on any part of the country’s land area, they would see the appropriate 

message for that country. Country polygons for the entire globe based on OSM were downloaded 
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using the OSM Boundaries service (Nordmann 2017). This is a web service where users can 

select their desired national, state, or country boundaries, for free download as polygon 

shapefiles.  

When downloading country polygons using OSM Boundaries users are given the choice 

to have the coastal boundaries extend and include all of the territorial water claims of that 

country, or to have them follow the physical coastline. We chose to use the territorial water 

boundary extent for two reasons: first, this generalized the shape of the coastline considerably 

and reduced the overall file size for this dataset; and second, small islands which occur along the 

coast were often not included in the physical coastline files.  

Country polygons were downloaded as shapefiles. Due to limitations of the OSM 

Boundaries servers, we were limited to only downloading 15 countries at a time. These 

downloaded files were then combined into a single global shapefile using ArcGIS Desktop 

software (ESRI. Redlands, CA).  

The national administrative units defined by OSM Boundaries did not exactly align with 

the country and territorial administrative areas CDC was using to issue Zika virus travel 

recommendations, and these issues were addressed through manual editing of the files. For 

example, the multi-polygon feature for the French Republic needed to be separated into 

individual features for mainland France, French Guiana, Martinique, Guadeloupe, etc. Similar 

problems existed with China, Chile, Ecuador, The Netherlands, Portugal, Spain, United Arab 

Emirates, and the United States of America.  

The attributes for the data file were reduced to only two text fields. The first attribute was 

called “CDCName” and contained the name CDC was using to reference that location. The 
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second attribute was the unique text string used to create the URL for the hyperlink in the pop-up 

messages. 

To ensure that the shapefiles were successfully converted into vector tiles using Mapbox 

Studio Classic, several additional file formatting requirements had to be met. The files needed to 

be reprojected into the WGS 84 geographic projection (EPSG: 4326). All multi-polygon features 

needed to be split into single polygon features. Finally, the geometry of the polygons needed to 

be valid, which involved checking and potential repair using tools in ArcGIS Toolbox. 

CDC Country Labels 

While the Mapbox Streets base data includes country labels, it was necessary to create our own 

label tileset because of the way CDC was issuing travel recommendations to countries and 

territories alike. We wanted to be able to label countries and territories with the same label 

format, and we also needed to make sure that the names used to identify areas conforms with 

United States Government norms (e.g., Burma is labeled as Myanmar). The OSM Boundaries 

polygon data was converted into a point dataset, reprojected, and converted into a GeoJSON files 

using QGIS. This GeoJSON file was then uploaded into Mapbox Studio, and the Mapbox Studio 

data editor was used to position the labels in the same location as existing Mapbox Streets labels. 

High Elevation Areas 

Raster digital elevation model (DEM) data were processed to generate the polygons representing 

high-elevation areas (>=2,000 meters) of countries. Because the interactive map enabled users to 

zoom in to zoom level-11, (map scale of ~1:250,000; resolution of  ~75meters per pixel 

(OPenStreetMap Wiki 2017b)) 90-m DEM was sought. The EarthEnv-DEM90 dataset, which 

merges ASTER GDEM 2 data and CGIAR-SCI v4.1 products, was chosen because it had the 

desired resolution, near global coverage (Robinson et al. 2014). These data were downloaded 

from www.EarthEnv.org as band interleaved by line (BIL) files, and were then imported into an 
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ArcGIS Raster Mosaic for ease of analysis. ArcGIS Model Builder was used to make that data 

processing easier and more efficient. A reclassification operation was performed on the raster 

mosaic to identify all areas greater than 2000m in elevation, and these areas were then converted 

into a vector polygon with simplification enabled. Extremely small area polygons were deleted, 

which represented isolated individual mountain peaks, to further reduce the overall file size. 

Finally this polygon layer was intersected with the OSM Country Polygon layer to create 

individual country-specific high-elevation polygons that had the same attribute fields as the 

previous country polygon layer. 

Continental United States polygon with detailed coastline 

Once the Zika virus outbreak spread to the continental United States, it was necessary to 

symbolize this information on the map. It was decided that this area should be highlighted, and a 

polygon feature with a detailed coastline was downloaded from the OSM Boundaries service 

(Nordmann 2017). This file was processed as previously described.  

United States State polygons with coastal waters 

As mentioned above, once the Zika virus outbreak spread to the state of Florida, it was necessary 

to symbolize this information on the map. State level data was needed in the same format as the 

country polygons with territorial waters described above. State polygons were downloaded from 

the OSM Boundaries service (Nordmann 2017). Because this data would be used to highlight the 

states when a user zoomed in close, the territorial boundary extended further off the coast than 

was desirable for visualization purposes, and had to be redrawn more closely to the coastline. 

This file was processed as previously described. 

Domestic Zika virus areas 

The location and extent of domestic Zika virus areas was highly variable, as these had to be 

drawn on a case-by-case basis between the CDC State and Local Task Force, and the state and 
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local public health authorities, in accordance with the CDC Zika virus Interim Response Plan 

(Centers for Disease Control and Prevention 2017e). We received these boundaries from the 

CDC Emergency Operation Center’s Situational Awareness Team. 

Software and Development Approach 

The interactive mapping application was built primarily using interactive mapping technology 

from commercial mapmaking software and service company, Mapbox (Washington, D.C.). ESRI 

ArcGIS Desktop Advanced Software with Spatial Analyst extension was used for processing 

raster elevation data and polygon boundary data. Mapbox Studio Classic software was used to 

convert large polygon shapefiles into the Mapbox Tiles format (MbTiles). Smaller shapefiles 

could be directly uploaded into Mapbox Studio, where the application would automatically 

convert the files into the MbTiles format. In addition to limited file conversion, Mapbox Studio 

was used to host tilesets; and create and host custom Mapbox Map Styles. Mapbox GL JS is a 

JavaScript library published by Mapbox, and was used to load our Mapbox Studio hosted map 

onto a CDC webpage, and controls additional user functionalities of the interactive map. Finally, 

the Mapbox Geocoding service was used to enable a placename search bar which allowed users 

to type in their desired travel destination, select the destination name from an auto-complete list, 

and have the map automatically pan and zoom into that location. 

System Architecture 

Figure 5.5 shows how the different types of data, software, and services were integrated 

into the final map application. Although the custom datasets listed at the bottom of the figure 

have already been described above,the Mapbox Map Style deserves greater explanation. The 

map style can be thought of as analogous to ESRI ArcMap’s map document file (.MXD). The 

map style is a JSON file that stores all of the necessary information needed for an application 

user’s web browser to connect to the map data and style it accordingly. In our application, the 
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map style is responsible for storing the file paths to each of the data layers within the map, 

filtering this data based on SQL code, if so desired,, and symbolizing the data according to the 

graphic style parameters chosen. As shown in the diagram, the map style seamlessly integrates 

the previously described custom datasets with data from the Mapbox Streets base data. 

The HTML Map Document is the next important part of the interactive map application. 

This HTML file loads the Mapbox GL JS library into the map user’s web browser, and then uses 

the defined methods, objects, and properties to support all of the necessary functionalities 

supported by the application. In general terms, the interactive map uses GL JS to load the custom 

Zika virus map style, create a search bar control inside of the map, and connect that search bar to 

the Mapbox Geocoder database via the Mapbox Geocoding API.  

The GL JS also enables an on-click event to query the map data beneath the application 

user’s pointer, and identify which geographic features are being displayed. The result of the on-

click event returns information about that particular feature, including the name of the data layer 

the feature resides in, as well as any attributes of that feature. The name of the data layer name is 

then used to select the appropriate pop-up message text, and a pop-up message is then displayed 

on the screen where the other properties from the map feature are used to populate the dynamic 

content (e.g., country name, hyperlink, etc.) of the pop-up message text. 

Finally, the HTML Map Document is loaded as an iFrame object onto the CDC webpage 

(https://wwwnc.cdc.gov/travel/page/world-map-areas-with-Zika virus) that represents the 

application interface. It is on this page that additional text and graphic content is contained, 

including the name of the map, instructions on how to use the application, and the map legend 

that appears beneath the map. 
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Mapbox Studio Style Editor 

As stated previously, the map style is important for managing which data are shown on the map 

and in which data layers they appear. Table 5.4 shows a list of the different Zika virus data layers 

used in the interactive map. For example, should Zika virus be found in a new country where 

previously there was no known risk of Zika virus, said country would be added to the 

corresponding layer for recommendation area “Area with risk of Zika virus [epidemic country]” 

layer, and removed from the “Area with no known risk of Zika virus [all other countries]” layer. 

The data features shown on a given layer is a function of: 1) the data source for the layer; and 2) 

the data filter. 

User Analytics and Metrics 

A variety of metrics were available after the map was launched to track how the application was 

being used and how users were discovering the map. CDC’s web analytics platform Adobe 

Analytics (Adobe System, San Jose, CA), as well as information about the number of place name 

searches processed by the Mapbox place name search service were monitored on a daily basis to 

try to understand patterns in traffic volumes. The effects of promotional efforts were captured by 

analytics from THB accounts on Facebook and Twitter. Sysomos (Toronto, Canada), a social 

media marketing analytics service, was used to assess the reach of news media reports which 

directly mentioned and linked to the map application. Finally, directed user feedback was 

received when users emailed us directly with questions or comments, or when they completed a 

generic CDC website customer satisfaction survey.  
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Results 

The interactive web map was launched on the CDC THB website 

(https://wwwnc.cdc.gov/travel/page/world-map-areas-with-Zika virus), Friday, March 10, 2017. 

To demonstrate the functionalities of the interactive map application for travelers, consider the 

following hypothetical scenario:  

A young pregnant woman and her husband are considering a 

babymoon to a beach location before their first child arrives in November. 

This woman heard a NPR story during her morning commute that mentioned 

that Zika virus was still a concern, and that travelers should look at a CDC 

map before booking any plane tickets this summer (Doucleff 2017). She goes to 

the internet and finds the CDC map. Her friend just came back from Saint 

Lucia and loved it, so she decides to start her search there. 

Figure 5.6 shows how this traveler can use the functionalities of the new interactive mapping 

application to find location-based Zika virus travel recommendations. Beginning with Panel A, 

the traveler arrives at the CDC World Map of Areas with Zika virus page. She looks at the map, 

and does not see Saint Lucia labeled anywhere, so she tries the destination search bar (Panel B). 

As she starts to type, the suggested results appear. When she sees Saint Lucia she clicks on it, 

and the map responds by panning and zooming to the extent of the island (Panel C). She then 

clicks on the island, and a pop-up message for “Areas with risk of Zika virus” appears telling her 

that CDC does not recommend that pregnant women travel there and directs her to a hyperlink 

for the Saint Lucia travel notice (Panel D). She decides to zoom out on the map to see if there are 

any other Caribbean Islands that would be Zika virus free, and as she zooms-out, she sees that 
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the island of Martinique is a different color. She clicks on Martinique, and the pop-up message 

states that there is “No known Zika virus” in Martinique, and directs her to the Martinique 

destination page for additional information about how to stay healthy and safe while traveling in 

Martinique. 

Assessing Application Usage Metrics 

Adobe Analytics continuously captures some basic information about each of the users who visit 

the interactive mapping application page, such as the daily number of page views, which is a 

count of the number of times that the webpage is loaded by a user. Figure 5.7, Panel A shows 

daily page views from March 12 through June 30, 2017. Over this time period, the webpage has 

had 1,103,137 views, and the average daily page views ranged from a minimum of 5,279 to a 

maximum of 16,693, with a mean of 9,880. A strong weekly periodicity is apparent, meaning 

that the the day-of-the-week heavily impacts the traffic volume. Mondays averaged the highest 

number of page views (13,243), while Saturdays averaged the lowest number of page views 

(6,789).  

Figure 5.7, Panel B smooths the daily variation by summarizing page views per week. 

Looking at the changes in the height of the stacked bars each week shows that though there has 

been slight variation in total number of page views week-to-week, with a range from roughly 

62,000 to 76,000 views a week.  

The stacked bars are divided into four categories based on count of visits per individual. 

This additional information enables us to consider how many first-time visitors (blue part of 

chart) come to the page each week, and whether this number is trending in a particular direction. 

A total of 704,277 users visit the webpage at least once, with an average of 43,508 first time 

visits each week. As can be seen, the total number of visits decreases with each increase in the 
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visit count. It is noteworthy that 174,905 users return to the web-page for a second visit, and 

76,197 users for a third visit. Though not shown in this figure, the number of users who have 

returned 10 or more times is 5,675, and the number of users who have returned 20 or more times 

is 1,231. 

Figure 5.8 shows where users of the webpage are located geographically. As expected, 

these data are skewed towards the United States (69%), followed by the other large English 

speaking countries of Canada (10%), United Kingdom (7%), and Australia (2%).  

Results of Promotion Effort 

The new map was announced in a CDC Media Statement on March 10, 2017(Centers for Disease 

Control and Prevention 2017d), and again through a CDC Emergency Partners newsletter on 

March 15 (Centers for Disease Control and Prevention 2017b). THB also maintains a Twitter 

account (@CDCTravel, 23,900 followers) and Facebook page (@CDCTravelersHealth, 21,346 

followers) which were used to promote the interactive map. The map was mentioned in five 

different tweets between the deployment date and March 18, and this generated 42,715 twitter 

impressions, but only 274 click-throughs. There was only one Facebook post promoting the map, 

which had 6,550 impressions and reached 4,165 people. 

The map was also mentioned and linked to by a number of articles in English-langugage 

print, radio, and internet news sites, according to a search of the the Sysomos database. Through 

June 23, 2017, there were 76 such articles, with an estimated reach of 7.4 million people. The 

single most influential article was published by National Public Radio on June 11, titled “Is Zika 

Virus Still a Problem in Florida and the Caribbean?” The original article reached 3.1 million 

people when posted to the NPR.org website, and then was republished across 49 other state and 

local public radio websites, reaching another 172,000 people. 
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A separate but related search of the Adobe Analytics database shows the diversity of 

other websites not covered by the Sysomos database summarized above. Included in this list 

were Government, Healthcare, Blog and Trade News, Message Boards, and other non-English or 

non-United States media organization websites with webpages that included links to the map 

(Table 5.5). The single largest group of website referrals came from the United States State 

Department’s websites, and those of United States Embassies, who maintain webpages for 

American citizens traveling or living abroad about the latest international health and security 

risks.  

The next largest group of websites represented the Healthcare Providers seeking to 

educate and inform their clients, as well as other websites targeting this information to doctors, 

nurses, physicians, and other healthcare providers needing to the know the latest Zika virus 

information. Notable among the Healthcare category were websites from Canada and 

Switzerland, which show that although CDC’s stated mission is to serve the American public, 

our resources are made available and found useful to citizens of other countries. 

A third group of website referrals came from Blogs and Trade News sites, particularly 

those sites targeting expectant mothers, new mothers, and women seeking fertility assistance. 

Travel Industry websites focused on travel medical insurance. Noteworthy websites in this 

category included Spanish-language pregnancy blogs, as well as a lone blog directed at paternity, 

Fatherly.com. 

The fourth group was message boards supporting a number of the various communities 

described above in the Blogs and Trade News groups. These message boards are unique because 

oftentimes the posters are community members themselves, and thus these opinions represent 

more of a lay audience than that of the reporter or writer responsible for blog posts or websites. 
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The final category was foreign language and international media publishing articles with 

content similar to the United States English-speaking media, but representing unique minority 

communities for CDC information and materials. 

Anecdotal User Feedback 

The final set of results is anecdotal feedback from map users capture in one of two ways, and 

although these data do not come from a representative sample of map users, they nonetheless do 

represent a unique type of direct user feedback. The first set of results comes from 48 users who 

responded to the Foresee customer satisfaction survey, which is randomly targeted to users of 

any THB website to get general demographic information an overall satisfaction with content on 

THB webpages. Unfortunately, it was not possible to tailor the questions in the survey to provide 

more direct and pertinent questions about the interactive map. Respondents were asked to 

respond to the following questions using a scale from 1-10 to the following questions: 

 What is your overall satisfaction with this site? 

 How well does this site meet your expectations? 

 How does this site compare to your idea of an ideal website? 

The average score for the first two questions was 8.2, the average score for the last 

question was an 8.3 

The second dataset includes 39 people who emailed the CDC’s THB directly using the 

email address posted on the webpage, and these messages have been summarized according to 

the topic of the reported comment or question (Table 5.6). A total of 15 users reported that they 

could not view the map in their browser. Ten users asked sent questions seeking additional 

explanation or clarification about what the different categories on the map meant or how it 

should be interpreted. Five users requested Zika virus testing recommendation information, and 2 
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users requested Zika virus epidemiologic case information. Two other users were healthcare 

providers, and they asked for large format printable versions of the map for display in their 

clinic. 

Discussion 

The fact that this project was able to develop and deliver a fully functional interactive mapping 

application in the middle of a major outbreak response activation is noteworthy. That over 

700,000 people have seen this mapping application since it was first deployed has exceeded the 

expectations of all involved, as has the fact that more than 75,000 people have visited the map 3 

times. These numbers, along with the numerous websites that direct their users to visit the map, 

suggest that the map is successfully communicating important Zika virus prevention information 

to people who need to have this information. 

Despite the success of the application, there has been a need to make improvements to the 

application since it was deployed and even still today. These changes will be the focus of the rest 

of the discussion. As noted in the background section, the interactive map application replaced a 

static global map of countries with Zika virus travel notices (Figure 5.3), and included on this 

page was a list of all of the country names. When the interactive map application was deployed, 

it was decided that this list would be removed from the page, as it was assumed that this list was 

strictly there to aid those users who could not easily find their country of interest on the static 

map. However, within days of deploying the new map, we received one email from a user stating 

that the interactive map would not load on their computer. We then received a second email from 

a user who stated that they were a blood donation center who had been checking that list on a 

daily basis to know whether someone returning from international travel should be able to donate 
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blood. Based on this user feedback, we quickly modified the interactive map page to bring back 

the country list, and also to create a separate PDF file (https://wwwnc.cdc.gov/travel/files/zika-

areas-of-risk.pdf) which include an updated static map and country list (Figure 5.9). 

Another important change was made to the map legend after the map was deployed. At 

the time that the map was initially deployed, the labels for the dark purple and light purple color 

swatches in the legend read “Low elevation” and “High elevation” respectively (Figure 5.10). 

These labels were referring to the elevation-based Zika virus travel recommendations described 

in the background section, and the term elevation was meant to refer to the physical geographic 

elevation of areas on the map.  However, some users reported that these labels were confusing to 

them, because without additional explanation, they were inclined to think that the 

term“elevation” was referring to the level of Zika virus risk in an area, and that areas shaded in 

dark purple represented areas of low Zika virus risk. To resolve this confusion, the decision was 

made to update the map legend on June 15, 2017, to change the labels of the dark purple areas to 

“Area with risk of Zika”, and the light purple areas to “Area with minimal risk of Zika.” 

System Architecture in Operation 

The system architecture that the interactive map was built upon appears stable and flexible as 

desired. Despite the fact that 15 users have reported that their browsers would not load the 

interactive map, to the best of our knowledge the application has been online and operational 24 

hours a day, 7 days a week since it deployed. It is our assumption that the reasons these 15 users 

were unable to view the map was because they were either using an unsupported web browser 

(Mapbox 2017a), or their browser settings did not permit the execution of the Mapbox GL JS 

javascript required for displaying the map. 
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Since the map deployed, there has been a need to update the Zika virus risk areas shown 

on the map. These types of changes were anticipated, given that the Zika virus outbreak had the 

potential to spread to new locations and possibly cease in others. The changes that were made in 

accordance with CDC’s included the following. 

 American Samoa, Guadalupe, Martinique, Saint Barthelemy, were moved from 

the “Area with risk of Zika virus [Epidemic country]” category to the “No known 

Zika virus” category. 

 Brazil was moved from the “Area with risk of Zika virus [Epidemic country]” to 

the “Area with risk of Zika virus [Endemic country]”. 

 Pakistan was moved from the “No known Zika virus” category to the “Area with 

risk of Zika virus [Endemic country]”. 

For each of these changes, we were able to simply use Mapbox Studio to change the data 

selection filters for each of these layers-- removing the country name from the filter query for 

one data layer, and adding it to the filter query for the new layer. Once the changes were made,, 

the revisions were published to the map style, and the revisions were visible on the published 

map within minutes. Although this approach to managing the data in the map by manually 

changing selection queries may appear technologically inelegant, as opposed to directly 

managing all of these changes in a single database with a transactional log, it is an approach that 

we have found is adequate for the current map and our current human and technical 

infrastructure. The unfortunate part about this approach is there is no automated transactional log 

for recording what changes occur when, although we are recording this information in the MS 

Word Document. 
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Similar data changes have taken place in the domestic Zika virus risk areas, although 

these changes included creating an entirely new risk category and pop-up messages. At the time 

that the map first deployed, Miami-Date County was still categorized as a “Zika virus cautionary 

yellow area”. However, on June 2, 2017, the county was categorized into a new risk category 

called “Area previously designated as Zika virus cautionary (yellow) area”, with the new 

recommendation that this area was now safe for pregnant women to travel to, among other non-

travel related recommendation changes (Centers for Disease Control and Prevention 2017g). To 

implement these changes, a new data layer had to be created in Mapbox Studio to support the 

new symbolization style of this risk category and a revised map style published. Also, new pop-

up message text had to be drafted, and incorporated into the HTML Map Document. Although 

the changes within Mapbox Studio were executed quickly, CDC IT policy requires that the 

revised HTML Map Document undergo a security scan, which typically takes 1-2 weeks. 

The geocoding component of the map has been the source of considerable amounts of 

internal discussion since the application deployed. Most of these criticisms focused on one of 

two things: 1) Do the auto-complete results returned by the service match the users’ 

expectations?; and 2) Does the map display respond to show the desired location? Unfortunately, 

these discussions have not led to any actionable conclusions, because it is difficult to objectively 

assess whether individual users expectations and experiences of searching specific results are 

representative of the whole user community.  As such, our experience has shown that there 

remains a need for improved tools for comparing the accuracy, strengths, and limitations of 

various geocoding services. Although numerous studies can be found of comparisons for 

geocoding street addresses in developed countries (Krieger et al. 2001, Whitsel et al. 2006, Zhan 

et al. 2006, Wey et al. 2009, Duncan et al. 2011, Goldberg et al. 2013), there does not appear to 
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be a single study or tool available for assessing how well currently available geocoding services 

handle the complexity of global geocoding. 

Challenges Posed by the Outbreak Response Environment 

A unique aspect of the development and deployment of this interactive mapping 

application is the fact that all of this took place during the ongoing CDC Zika virus Outbreak 

Response from January 2016 to present. During major outbreak response activities, additional 

funding becomes available to those CDC programs and projects that are supporting the response 

activities. Large-scale responses to infections disease outbreaks such as the West African Ebola 

Outbreak and the current Zika virus outbreak pose risks to United States citizens traveling 

abroad, and as such, the CDC’s THB has played a larger role. During outbreak responses, the 

THB is responsible for standing-up and staffing the Global Migration Task Force (GMTF), 

which is a crosscutting team representing the various areas of expertise within the Division of 

Global Migration and Quarantine. These areas of expertise include the science, communication, 

and policies regarding travel medicine, immigrant and refugee health, travel health screenings at 

US ports of entry, and risk analysis for the spread of infectious diseases. It is for this reason that 

the THB mapping experts were involved in making Zika virus maps, and subsequently put forth 

the idea of using an interactive map to communicate Zika virus health information. Once the 

preliminary application demonstrated a proof-of-concept, additional Zika virus response funds 

were allocated to secure the necessary Mapbox services. Similarly, the outbreak response 

demanded that developing and supporting the application be a high-priority for all of the 

personnel involved. 

It should be noted that the outbreak response operations also brought some additional 

burdens to the production process. For example, the outbreak response structure creates a 
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number of temporary positions, which are filled by a variety of CDC staff often rotating through 

the position on 30-day cycles. As a result, the map development team leads had to routinely brief 

these new individuals about the project goals, previous design decisions, and current project 

needs. 

Also, because the map covered high-profile communication material, specifically, 

advising the general public and healthcare providers about important Zika virus related health 

decisions, the final map had to receive a number of layers of approval. This included: 

 GMTF Epidemiology and Communication Team Leads; 

 GMTF Lead; 

 Joint Information Center Lead, with cross-clearance to the Epidemiology and 

Surveillance Task Force, Pregnancy and Birth Defects Task Force; 

 Zika virus Response Incident Manager; and 

 Director of the Centers for Disease Control and Prevention. 

Although it is not unusual for CDC information materials to undergo a number of rounds of 

review and a number of layers of approval (Centers for Disease Control and Prevention 2005), 

the layers of approval named above is unique for maps. 

Conclusions 

The work presented herein describes a novel design and implementation of an interactive 

mapping application to facilitate the communication location-specific Zika virus travel health 

recommendations to international travelers. This application has proven flexible enough to 

accommodate the demands and uncertainties of an outbreak response environment, as has been 

demonstrated by the fact that Zika virus risk areas have continued to change since the map was 
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deployed, and each time the map has been updated within hours to reflect these changes. The 

user analytics presented here show that this interactive mapping application has had sustain 

levels of new and returning users since it was deployed. 

More generally, this interactive mapping application shows great promise for increasing 

CDC’s Traveler’s Health Branch (THB) map-making capacity, and is an important case study of 

how interactive mapping technology can be used to make the process of communicating 

location-based travel health recommendations less burdensome to travelers and travel health 

clinicians who provide medical education and care. The sustained level of new and returning 

visitors to the map has been surprising, and as such, has invigorated more interest in using this 

interactive mapping technology to communicate other types of geographically complicated travel 

health information. 

To further support future interactive mapping applications for communicating public 

health information and more accurately characterize the user experience and satisfaction with 

interactive maps, more extensive user evaluation studies should be performed. These studies 

should try to better characterize whether there are different information needs between users who 

are medical clinicians and users who do not have any public health training.  

Additional studies of the user interface are also needed, because a major limitation of the 

current application is that developers were limited to only communicating recommendation 

information via pop-up boxes. It is possible that other interface designs could be more useful, 

particularly for desktop users. These studies should also consider more fully if there are 

alternative design solutions which would be more useful for mobile device users, because the 

proportion of mobile web users is continually growing, and mobile-specific opportunities or 

challenges were not considered when the current application was developed. 
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This study contributes to the literature on the use of interactive mapping technology 

within public health, and offers a unique perspective given that the work was performed within a 

national public health agency during an outbreak response. The evidence presented herein clearly 

demonstrates that this type of mapping technology is useful for communicating geographically 

specific health information to the masses.  To make these types of maps available for other 

diseases in the future though, a renewed focus should be placed on the development of 

organizational geospatial capacity and public health spatial data infrastructure. In this vein, we 

hope most of all that the current interactive map proves to be both inspirational and motivational. 
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Figures 

Table 5.1. Date when a country’s Zika virus travel notice was issued by CDC 

Date  Country 

6/9/2015 Brazil* 

11/6/2015 Colombia*, Suriname 

12/10/2015 El Salvador*, Guatemala*, Panama*, Mexico*, Paraguay, Venezuela* 

12/18/2015 Honduras*, French Guiana 

12/31/2015 Puerto Rico 

1/15/2016 Haiti*, Martinique 

1/22/2016 Cape Verde, Barbados, Guadeloupe, Saint Martin, Samoa, Bolivia*, Ecuador*, Guyana*   

1/26/2016 Dominican Republic*, United States Virgin Islands 

2/1/2016 Curacao, Costa Rica*, Nicaragua*, American Samoa  

2/3/2016 Jamaica*, Tonga 

2/18/2016 Aruba, Bonaire 

2/23/2016 Trinidad and Tobago, Marshall Islands 

2/29/2016 Saint Vincent and the Grenadines, Sint Maarten 

3/9/2016 New Caledonia 

3/19/2016 Cuba 

3/22/2016 Dominica  

4/1/2016 Micronesia (Kosrae) 

4/4/2016 Fiji 

4/13/2016 Saint Lucia 

4/18/2016 Belize 

4/29/2016 Papau New Guinea* 

5/5/2016 Peru* 

5/9/2016 Saint Barthelemy 

5/12/2016 Grenada 

5/25/2016 Argentina* 

6/28/2016 Anguilla 

7/14/2016 Sint Eustatius 

7/25/2016 Saba 

8/3/2016 Antigua and Barbuda, Turks and Caicos Islands 

8/11/2016 Cayman Islands 

8/23/2016 Bahamas, The 

8/30/2016 Singapore, British Virgin Islands 

9/23/2016 Saint Kitts and Nevis 

11/16/2016 Palau 

11/21/2016 Montserrat 

3/10/2017 Angola*, Guinea-Bissau, Maldives, Salomon Islands 

 

* These countries contain regions with elevations greater than 2,000 meters 
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Figure 5.1 Mexico Travel Notice from March 21, 2016, after elevation-based travel 

recommendations were issued. 
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Figure 5.2. Example of the country-specific static elevation classification maps used to help 

communicate elevation-based travel health recommendations 
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Figure 5.3. CDC Webpage showing all countries and territories with active Zika virus 

transmission (as of July 26, 2016) 
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Figure 5.4 Interactive map application on the CDC Travelers’ Health Webpage (Centers 

for Disease Control and Prevention 2017h). 
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Table 5.2. Pop-up message content for the map 

Location Recommendation 

Area 

Example Text 

International Area with risk of 

Zika virus 

[Epidemic 

country] 

Mexico has a risk of Zika virus. Because Zika virus infection in 

a pregnant woman can cause severe birth defects, pregnant 

women should not travel here. Other travelers can visit 

the Mexico travel notice to learn more about Zika virus and 

how to stay healthy while traveling in Mexico. 

International Area with minimal 

risk of Zika virus 

[epidemic] 

Mexico has a risk of Zika virus. However, this is a high-

elevation area where mosquitoes that can spread Zika virus may 

not live. Travelers, including pregnant women, who never go 

below 2,000 meters elevation are at lower risk of getting Zika 

virus from a mosquito. Visit the Mexico travel notice to learn 

more about Zika virus and how to stay healthy while traveling 

in Mexico. 

International Area with risk of 

Zika virus 

[endemic country] 

Kenya has a risk of Zika virus. Because Zika virus infection in a 

pregnant woman can cause severe birth defects, pregnant 

women should not travel here. Other travelers can visit the 

Kenya page to learn more about Zika virus and how to stay 

healthy while traveling in Kenya. 

International Area with minimal 

risk of Zika virus 

[Endemic country] 

Kenya has a risk of Zika virus. However, this is a high-elevation 

area where mosquitoes that can spread Zika virus may not live. 

Travelers, including pregnant women, who never go below 

2,000 meters elevation are at lower risk of getting Zika virus 

from a mosquito. Visit the Kenya page to learn more about Zika 

virus and how to stay healthy while traveling in Kenya. 

International [country with] No 

known Zika virus 

Mozambique has no known risk of Zika virus from mosquitos. 

Visit the Mozambique page to learn more about staying healthy 

while traveling in Mozambique. 

Domestic State reporting 

Zika virus 

Texas has reported cases of Zika virus spread by local 

mosquitoes. Visit CDC's Advice for people living in or 

traveling to Brownsville, Texas page to learn more. 

Domestic Zika virus active 

red area 

The intensity of Zika virus transmission in this area presents a 

significant risk to pregnant women. Visit CDC’s Advice for 

people living in or traveling to [State Name] page to learn more. 

Domestic Zika virus 

cautionary yellow 

area 

Local spread of Zika virus has been identified here, but there is 

no current evidence of widespread transmission. Although the 

specific level of risk in yellow areas is unknown, there is still a 

risk to pregnant women. Visit CDC's Advice for people living 

in or traveling to South Florida page to learn more. 

Domestic Area previously 

designated as Zika 

virus active 

transmission (red) 

area 

For more information, visit Zika virus in Florida. 
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Domestic Area previously 

designated as Zika 

virus cautionary 

(yellow) area 

For more information, visit Zika virus in Florida. 

Domestic No known Zika 

virus 

Reports of local mosquitoes spreading Zika virus and infecting 

people have been limited to small areas in Florida and Texas. 

Visit the Areas with Zika virus page to learn more. 

International and 

Domestic 

Water Please click on a land area to see the appropriate Zika virus 

information message. 
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Table 5.3 Geographic datasets used to represent Zika virus risk areas 

Tileset Name 

Original Data 

Source Data Description 

Feature type: 

Properties 

Spatial extent 

Country 

polygons 

with 

territorial 

waters 

OSM Boundaries Polygon layer of 

countries (defined by 

CDC) with very 

generalized coastal 

boundaries 

Polygon: 

CDCName 

(filter); 

CDCUrl 

Global 

CDC 

Country 

labels 

NaturalEarthData.

com 

Point layer of country 

labels according the 

United States State 

Department/CDC 

Point: 

CDCName 

(filter) 

All Countries 

High-

Elevation 

Areas 

Earth 

Environment 90m 

DEM 

90m DEM which 

combines the best 

qualities of SRTM and 

ASTER DEMs 

Polygon: 

CDCName 

(filter); 

CDCUrl 

Global areas 

between 40N 

and 50S 

Continental 

United States 

polygon with 

detailed 

coastline 

OSM Boundaries Polygon layer of 

continental United 

States with a detailed 

coast line 

Polygon: Americas and 

Oceania 

United 

States’ State 

polygons 

with coastal 

waters 

OSM Boundaries Polygon layer of 

United States’ States 

with very generalized 

coastal waters 

Polygon: 

StateName 

US States 

Domestic 

Zika virus 

areas 

OSM; manual 

digitization of 

OSM data 

Polygon layer which is 

an agglomeration of 

open-source boundaries 

for various United 

States administrative 

areas representing 

current Zika virus 

status 

Polygon: 

Zika 

virusStatus 

(filter); 

CDCName; 

CDCUrl; 

Select United 

States’ States 
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Figure 5.5. Schematic of the application architecture for identifying the individual 

components of data, software, internet connections, and map functionalities. 
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Table 5.4 Zika virus data layers used in custom map style 

Recommendation area Data Source Name Layer Name 

Feature type: 

Properties 
Area with risk of Zika virus 

[epidemic country] 

Country polygons with 

territorial waters 

Epidemic Polygon: CDCName (filter); 

CDCUrl 

Area with minimal risk of Zika 

virus [epidemic] 

High-Elevation Areas EpidemicElevMask Polygon:  

Area with risk of Zika virus 

[endemic country] 

Country polygons with 

territorial waters 

Endemic Polygon: CDCName (filter); 

CDCUrl 

High-Elevation areas of 

endemic countries 

High-Elevation Areas EndemicElevMask Polygon: CDCName (filter); 

CDCUrl 

Area with no known risk of 

Zika virus [all other countries] 

Country polygons with 

territorial waters 

NoRisk Polygon: CDCName (filter); 

CDCUrl 

*Outline of the Continental 

United States 

Country polygon with 

detailed coastline 

Us-Outline Polygon: 

*Outline of State reporting Zika 

virus 

US States polygon UsZika 

virusStates_outline 

Polygon: StateName (filter); 

State reporting Zika virus US States polygon UsZika virusStates Polygon: StateName (filter); 

CDCUrl; RefName 

Zika virus active red area Domestic Zika virus 

area polygons 

UsActive Polygon: Zika virusStatus 

(filter); CDCName; 

CDCUrl; BoudaryType 

Zika virus cautionary yellow 

area 

Domestic Zika virus 

area polygons 

UsCaution Polygon: Zika virusStatus 

(filter); CDCName; 

CDCUrl; BoudaryType 

Area previously designated as 

Zika virus active transmission 

(red) area 

Domestic Zika virus 

area polygons 

UsHistoric Polygon: Zika virusStatus 

(filter); CDCName; 

CDCUrl; BoudaryType 

Area previously designated as 

Zika virus cautionary (yellow) 

area 

Domestic Zika virus 

area polygons 

UsHistoric-Outline Line: Zika virusStatus 

(filter); CDCName; 

CDCUrl; BoudaryType 

No Know Zika virus US States polygon UsNoZika virusStates Line: Zika virusStatus 

(filter); CDCName; 

CDCUrl; BoudaryType 

Labels for large area epidemic 

countries 

CDC Country labels country-label-lg 

Epidemic 

Point: CDCName (filter) 

Labels for medium area 

epidemic countries 

CDC Country labels country-label-md 

Epidemic 

Point: CDCName (filter) 

Labels for small area epidemic 

countries 

CDC Country labels country-label-sm 

Epidemic 

Point: CDCName (filter) 

Labels for United States States 

with Zika virus 

CDC Country labels UsState-label Point: CDCName (filter) 

*These data layers do not have a corresponding Zika virus travel health recommendation pop-up 

message because they are polygons formatted to be just the outline of the corresponding area. 
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Figure 5.6 Use Case for a traveler searching for a Zika virus information for Saint Lucia, 

and then Martinique 
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Figure 5.8 Geographic distribution of page views by user country, March 12 - June 30, 

2017 
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Table 5.5. Diversity and frequency of different types of referral web pages 

Referrer Categories Referrer Types 
Count of 

webpages 

Government Government, Federal 22 

 Government, County 10 

 Government, State 7 

 Total 39 

   

Healthcare Providers Healthcare Provider 13 

 Clinical Information Provider 10 

 Healthcare provider (Canada) 3 

 Healthcare provider (Switzerland) 1 

 Total 27 

   

Blogs and Trade 

News 
Maternal Information Provider 5 

 Health Information Provider 4 

 Travel Industry 3 

 Maternal Information Provider (Spanish) 1 

 Paternal Information providers 1 

 Trainer for healthcare providers 1 

 Total 15 

   

Message Boards Message board (pregnant women) 5 

 Message Board (travelers) 4 

 Message board (scientists) 3 

 Message Board (travelers; Spanish language) 1 

 Total 13 

   

Other News Media News Media (French language) 2 

 News Media, Africa 1 

 News Media, Asia 1 

 News Media, Canada 1 

 News Media, Europe 1 

 
News Media, United States (Spanish 

language) 
1 

 Total 7 
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Table 5.6 Summary of comments and questions reported from users via email 

Topic of comment or question Count 

Reporting that the map is not loading 15 

Questions about data classification and interpretation 10 

Requesting Zika virus testing recommendation 

information 
5 

Requesting Zika virus epidemiologic case information 

needed 
2 

Requesting printable poster size map 2 

Reporting broken hyperlink 1 

Unable to find Hawaii on the map 1 

Unable to download map 1 

Requesting permission to reuse map 1 

Requesting the map be translated into Spanish 1 

Total 39 
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Figure 5.9 Example of the PDF map made for users who could not load the interactive map 

The full PDF document is available for download at https://wwwnc.cdc.gov/travel/files/Zika 

virus-areas-of-risk.pdf  
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Figure 5.10 Labels for purple areas on the map that were confusing when the map was first 

deployed, and were subsequently revised on June 15, 2017 

The labeling of dark purple and light purple areas as “Low elevation” and “High elevation” 

referred to the elevation based Zika virus travel recommendations. Some users reported, 

however, that they thought these labels were referring to Zika virus risk however, and not 

physical geographic elevation. The label for “Low elevation” was changed to “Areas with risk of 
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Zika virus”, and the “High elevation” label was changed to “Areas with minimal risk of Zika 

virus”. 
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CHAPTER 6 

CONCLUSIONS 

The broad question that this dissertation aimed to answer was: Can the implementation of 

geographic information science and technology (GIS&T) improve international disease 

surveillance and prevention activities when applied within a national public health institution?  

To investigate this broad question more thoroughly, answers to three more specific questions 

were sought: 1) Can GIS&T methods be used to accurately geocode legacy disease surveillance 

data for foreign locations where geographic reference datasets are poor or non-existent?; 2) Is 

there a need for GIS&T-enabled applications  to help international travelers and their clinicians 

discover location specific health recommendation and disease prevention information?; and 3) 

Can a GIS&T-based interactive map be developed and deployed to deliver the type of location 

specific travel health recommendation described above, thereby helping to prevent disease? The 

conclusions to these questions will be discussed in greater detail below. This section will 

conclude with recommendations for future research studies on the application of GIS&T within 

applied public health. 

 The first study investigates a historic monkeypox surveillance database of human cases in 

Central and West Africa in the 1980s to see how accurately these surveillance data could be 

mapped using modern GIS&T. This study found that the spatial accuracy of geocoded data 

varied as a result of the different ways in which the information was recorded and stored, as well 

as the availability of accurate and reliable reference data. The locational accuracy and utility of 

the geocoded data could be improved if the geocoding toolkit was expanded to include not only 
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digital gazetteer data, but archival map data as well. Finally, this study suggests that disease 

surveillance data could be more accurately preserved if in addition to collecting location data on 

case forms using a hierarchy of nested place names (e.g., town, district, province, country), the 

reference maps of the study area are available, stored and preserved at the time the data are 

collected. 

While the first study focused on the challenge of accurately geocoding foreign place 

names recorded in primary disease surveillance data, the second and third studies examined the 

ways in which geocoding services of could be used to make searching for and communicating 

public health recommendations and disease prevention messages easier. In the second study, we 

sought to better understand the types of place names that travelers and travel health clinicians use 

when they are searching for travel health recommendations. This question sought to understand 

if the political geographic approach to reporting this recommendation information by public 

health agencies was useful, or if the information might be accessed in other ways, namely, 

geocoding services connected to interactive maps. We found that travelers and clinicians are 

using city names as the primary means of structuring their travel itineraries, and not state or 

country names currently used in CDC recommendations. This study is the first of its kind to 

collect data on the limitations and potential burdens that current health recommendation 

reporting methods appear to place on travelers and travel health clinicians. The results of this 

study contributed to the justification of additional investment by public health agencies in 

improving their GIS&T capacity.  Specifically, it is anticipated that public health organizations 

will improve the effectiveness of outreach and communication of travel recommendations if they 

begin to generate and publish recommendation information in readily available and interpretable 
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digital geospatial formats. Use of these data to build GIS&T applications that could help deliver 

this important recommendation information ultimately benefits both travelers and clinicians. 

Finally, the third study sought to develop and deploy a novel GIS&T-based application, 

an interactive web map, to help travelers identify location-specific Zika virus travel health 

recommendations. Building on the findings of the second study, this third study specifically 

aimed to compile public health recommendation information into digital geospatial formats, and 

to use a geocoding service to help users find the location-specific recommendation for their 

destination of choice. The latest technology in web-based map-making software and data 

services were used to develop a system architecture which could be maintained with the 

available personal and technical infrastructure. Once deployed, the user analytics for this 

interactive map have shown that such a tool is frequently accessed with many visitors returning 

more than once. 

This dissertation research has demonstrated contributions of applied GIS&T within 

public health, along with the need for further investment of GIS&T implementation, training and 

incorporation into global policies of public health analysis and information dissemination. 

Although historical and contemporary examples of the successful use of mapping and map 

making can be found in public health, these current studies show that there remain numerous 

opportunities for expanding the GIS&T capacity within public health. Future studies should seek 

to assess and improve the public health spatial data infrastructure across all levels of 

government. Doing so requires a greater appreciation and more honest appraisal of the people, 

policies, standards, and technologies that are in practice today and which may become available 

in the future. Trained personnel, regular professional development (as in training updates) and 

appreciation of GIS&T knowledge are critically important across all administrative and 
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programmatic levels. Hopefully in the future, all public health programs will be knowledgeable 

and capable of collecting, storing, and reporting public health data in commonly accessible 

digital formats using established and commonly agreed upon best practices. If this is achieved, 

public health professionals will be better able to monitor, identify, and respond to disease 

outbreaks, and thereby improve global health. 
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