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ABSTRACT 

   In modern times, more and more multimedia applications are implemented on wireless 

computer networks and used to entertain users through mobile devices.  In power-constrained 

environments such as pocket PCs, PDAs, and cellular telephones, the large amount of video 

information transmitted from the server-end to the user-end is often compressed to reduce the 

power and band width consumption. This thesis introduces an efficient method for the 

construction of motion panoramas and panoramic videos from streaming video. The technique 

involves the extraction of motion components from the background mosaic which is generated 

by a hybrid algorithm that combines both feature-based methods and direct methods. 

Experimental results show this heuristic approach reduces the size of the video information 

transmitted and summarizes the entire contents of the motion video for the mobile end users. 
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CHAPTER 1 

INTRODUCTION 

 

Transmission of video streams of large size is always a bottleneck in multimedia applications on 

computer networks. The requirement of efficient video transmission is a key factor in improving 

overall system performance, especially in the power-constrained multimedia environments 

consists of mobile devices such as PDAs, pocket PCs, and cellular telephones.  

    Automatic construction of large and high quality image mosaics is an active research area in 

the fields of computer vision, image processing, and artificial intelligence. Efficient methods for 

mosaic generation can be widely used in networked or mobile applications with the expanded 

requirement of transmission, storage and manipulation of multimedia information.  

    The problem of acquiring panoramic images can be solved mainly in two ways, namely: 

• Using wide field of view lenses and imaging devices. 

• Mosaic construction techniques. 

    Wide field of view lenses or imaging devices can be used to capture the whole scene of the 

video sequences, such as Columbia’s OmniCam [1, 2]. One shortcoming of this technique is that 

panoramic images acquired are of low image quality because of the mapping of the entire scene 

into a fixed resolution video camera. The distortion in the shape of the objects in the scene is 

another problem introduced by this method. 

    Mosaic construction technique, which is also called panorama construction, is another 

approach to display the entire scene. This is an efficient and convenient representation of the 

1 



 2

motion video by stitching the individual frames into a unique wide-angle panoramic image. It 

does not require any special imaging devices or hardware. The final panoramic image, which 

covers the entire scene, does not lose any image quality either. Former works on panoramic 

mosaics can be divided into two major categories:  

• Mosaic construction from static scenes. 

• Mosaic construction from dynamic scenes under two situations: 

- Dynamic scenes captured with a static camera. 

- Dynamic Scenes captured with a moving camera. 

    Static-scene based mosaic construction deals with the situation where the video sequences 

have static foreground and background. In another words, no obvious motion object is included 

in the video sequences. A number of papers, e.g. [3], concentrate on this case. Figure 1.1 and 

figure 1.2 give an example of a panoramic mosaic constructed from a static scene. Figure 1.1 

shows several original frames extracted from a video captured in the Visual and Parallel 

Computing Laboratory (VPCL). The final panoramic mosaic is illustrated in figure 1.2. This 

panoramic mosaic is generated using a subset of the algorithm implemented in this thesis. 

    Other researchers have explored efficient methods to represent the dynamic scenes situation 

where the video sequences of moving objects captured by a static or a moving camera are 

analyzed. In this case, the scenes are dynamic containing motion or deformation within. Many 

real-life video sequences are instances of this situation. 

The mosaics of dynamic scenes captured by a static camera have been studied for many years 

and several approaches have been developed [4, 5, 6]. The main idea is to segment the frame into 

two parts or two layers: foreground and background or dynamic layer and static layer. The 

moving objects can be extracted by pixel-to-pixel comparison between the pre-stored 
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background and the current frame. These methods work satisfactorily only when the background 

information is already available which means that the scene should be sampled first. 

 

Figure 1.1: The extracted original frames from video sequence 

 

Figure 1.2: The panoramic mosaic constructed from the original frames 
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    To create panoramic mosaics for dynamic scenes captured by a moving camera, [7] [8], and [9] 

have presented several effective methods. In [9] the authors use the blocking motion detection 

technique to compute a motion vector field which is then clustered to find the dominant motion 

regions. In [8], the authors propose a direct method to acquire the motion parameters, align the 

frames using these parameters, and locate the frame regions which do not observe the motion 

parameters. 

    The last case, namely, mosaic construction for dynamic scenes captured by a moving camera, 

is the most popular situation in real life. In general, two major methods can be applied to this 

category of problems: feature-based methods [10] and direct methods [11]. The former treats 

pairs of interest points as features and uses the correspondences of these features in video 

sequences to estimate the homography between frames. The latter aligns the frame intensity 

values to acquire the best mapping between frames. 

    Feature-based methods were introduced by P. H. S. Torr and A. Zisserman in 2000 [10]. These 

methods involve a strategy for the initial estimation of frame matching which is also called inter-

frame homography based on the detection of point features. In other words, the recovery of the 

entire scene should be achieved by first extracting the features, and then using these features to 

compute the relations or homographies between the frames. The feature-based methods can also 

be combined with outlier-rejection techniques such as Random Sample Consensus (RANSAC) 

[12]. Since the combined methods can estimate the frame matching corresponding to the motion 

of the camera while rejecting the moving parts of the frame which correspond to a different 

motion, the technique is quite robust to many real-life situations. However, many alignment 

problems are caused by the cases where the detected features are not homogeneously distributed 

across the frames.  
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    Direct methods [11] deal with problems of camera motion and correspondence of every pixel 

simultaneously. The motion estimation is obtained by this class of methods using measurable 

information such as brightness variants or image cross-correlation measures. It finds the mapping 

relations between frames by minimizing the discrepancy between every pixel value in the frame. 

This category of methods is in contrast to the feature-based methods that rely on the 

correspondence of a sparse set of highly reliable image features. Since the information of every 

pixel in the frame is used to estimate frame matching which corresponds to the motion of the 

camera, the direct methods have better performance in terms of the final mosaic quality. 

    Both feature-based methods and direct methods contribute to the estimation of motion 

parameters of the camera between frames. These parameters are essential for the alignment 

procedure. In particular, feature based methods are more robust in many real-life situations 

where several motions different from the camera motion, namely outliers, are present in frames. 

On the other hand, direct methods provide more accurate frame alignment by taking into account 

every pixel in the frames.  

Considering the complementary characters of these two categories of methods, the combined 

technique that includes both of them is obviously appealing. In this thesis, a combined approach 

based on both feature-based methods and direct methods is proposed. In practice, a feature-based 

method is implemented for the static background generation while the direct method is used to 

segment the dynamic foreground. Some original contributions for amending the drawbacks of 

these two categories of methods are also provided. The static background generation and 

dynamic foreground extraction are performed at the server end. During the last phase, the static 

background and the dynamic foregrounds along with the associated information of their relative 

locations in the final motion panorama are transmitted to the user-end. At the user-end, the 
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dynamic foregrounds corresponding to each frame in the video sequence are pasted back onto the 

static background. Finally, a motion panorama or a panoramic video is constructed under user-

specified requirements. Experimental results show that the size of the information transmitted is, 

on average, from 1/8 to 1/10 of the original motion video. The savings in computation time and 

memory storage at the user-end are very useful and efficient in power-constrained multimedia 

environments. 

 



 

 

 

CHAPTER 2 

OVERVIEW OF THE PROJECT 

 

The method of motion panorama construction proposed in this thesis is described in three major 

phases: static background generation, background/foreground (moving objects) segmentation, 

and motion panorama construction. The first two phases are performed at the server-end. The last 

phase is performed at the user-end. 

    The first phase is static background generation. Based on the video sequence extracted from 

the original motion video, the homographies corresponding to the motion of the cameras are 

computed for each frame. The static background of the entire scene expressed in the video 

sequence is generated by stitching the individual frames into a large wide-angle panoramic 

image using the homographies.  

    The dynamic foreground which includes regions of both moving objects and false detections 

existing in the scene is segmented by warping together three consecutive frames in the video 

sequence and consequently detecting the intensity discrepancy at each pixel. The dynamic 

foreground is smoothed of noise using a Gaussian filter and then filtered of false motion using a 

size filter to generate the components of real moving objects. These components are small in size 

compared to the original frames and hence convenient for network transmission. 

After the static background, foreground objects and their location information are received at 

the user-end, the foreground objects are pasted back to the static background using their location 

information such as homographies and position coordinates which were computed at the server-

7 
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end. The final output can be constructed in the form of a motion panorama or a panoramic video 

determined by the user requirements. 

From the perspective of practical application, the whole procedure of motion panorama 

generation at the server-end, transmission through the mobile network and construction at the 

user-end is illustrated in figure 2.1. 
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CHAPTER 3 

STATIC BACKGROUND GENERATION 

 

3.1 The Detection of Interest Points 

Knowing the corresponding points between frames enables one to estimate the mathematical 

expressions for the geometric transformations of frames caused by the motion of the camera such 

as pan and tilt. The same motion usually holds for most of the pixels in the frames except for 

these associated with the moving objects. If all possible corresponding points are scanned, the 

computational complexity usually is very expensive.  The process can be simplified by 

examining only the smaller number of points called interest points. Interest points have some 

local property. For example, the corners of the objects are good examples of interest points. 

    Interest points can be detected by a corner detector. Instead of using the Harris corner detector 

[13] used in feature based registration, the Moravec corner detector [14] is implemented in this 

thesis. The reasons for using this detector are: 

• The detector is effective. Based on the auto-correlation function, it captures the intensity 

change around a point. A point is detected as an interest point if the change is big enough. 

This property is helpful to a subsequent cross-correlation matching algorithm which can 

find the correspondences for the current interest points. 

• The detector is simple and computationally inexpensive. The Harris corner detector, 

another widely used corner detector, calculates the eigen values which usually involves 

10 
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complex matrix computation. In comparison, the Moravec corner detector is 

computationally more efficient. 

    The Moravec corner detector works in the following manner: 

(1) The interest value of each pixel in the frame can be calculated by the following equation 
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where and ),( ji ),( lk  are the coordinates of the pixels in the frame. In the current 

implementation, 7×7 windows are used to calculate the interest values of every pixel in the 

frame. 

(2) A threshold should be set to filter out the points with relatively small interest value. Only 

points with large enough interest values can be treated as interest points. In practice, a 

value of σ3+E  is used as the threshold, where E  andσ  are the mean and standard 

deviation of the interest values of all the pixels in a frame. 

(3) To solve the problem of detected interest points that are not homogeneously distributed 

across the frames, an amended method is adopted. Each frame to be processed is divided 

into a number of neighbored and non-overlapping 30×30 windows. For each window, 

the pixel with maximum interest value is extracted as the interest point of this region. 

    Another issue that needs to be mentioned here is that the interest points extracted by the 

above method are also called interest features or point features [10]. Since this category of 

points constitute the basic registration information for frame alignment and the subsequent 

frame mosaic generation, the so approaches to generate panoramic mosaics based on these 
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point features are called feature-based methods. Figure 3.1 shows the interest points detected 

by the Moravec corner detector. 

 

 

 

 

Figure 3.1: Interest points (features) detected by the Moravec corner detector 

 

 

3.2 Point-to-point Correspondences 

The interest points extracted from the frames by the corner detector are then tracked over the 

video sequence in order to establish the point-to-point correspondences. Template matching [15] 

is one of widely used method to detect instances of a template in an image frame.  

    Given a template ],[ jit , in order to detect its instances in a frame ],[ jif , an obvious method 

is to place the template in the frame and compare the intensity values in the template with the 
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corresponding values in the frame. In many cases, the intensity value will not match exactly. 

Hence, the sum of squared errors is the most popular matching measure.  

Cross-correlation is an operation that can be used to achieve template-matching. Given the 

interest points extracted from the original frames, the point-to-point correspondences of these 

interest points are matched using proximity and similarity of the intensity value in their 

neighborhood. The intensity values of all neighbors of each interest point are used to rank 

possible matches by computing a normalized cross-correlation. For an m×n template ],[ jit , the 

match measure M can be computed using 
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    In the experiment, this method is implemented by using a 15×15 template in the current frame 

with the interest point at the top left corner. Then a 45×45 region in the next frame is considered 

as the search area. By moving the template window column by column in the search area, the 

local maxima where the matching point is the putative correspondence of the interest point under 

can be found. The point-to-point correspondences between two consecutive frames in the video 

sequence are illustrated in figure 3.2. 
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Figure 3.2: The putative point-to-point correspondences between two consecutive frames 

 

 

    The word putative indicates that the correspondences detected by the cross-correlation 

operation are not necessary the real correspondences. It has been reported that more than 40% of 

the putative correspondences obtained by the best cross-correlation score and proximity are 

incorrect [10]. Hence robust estimation methods, such as RANSAC which will be described and 

applied later, are an essential part of the whole procedure of static background generation.  

 

3.3 Computation of Homography 

 

3.3.1 Initial Homography estimation 

In real life, people usually use the pin-hole camera to capture the world. This camera model 

projects the 3-dimensional world onto a 2-dimensional image plane. Let each image to be 

considered to lie in a projective plane 2Ρ . Given a set of interest points x  in i
2Ρ and a 
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corresponding set of points x '
i  likewise in 2Ρ , the 2-dimensional homography is the projective 

transformation that maps x i = ( , , )  onto x '
i = ( , , ) . In practice, x i and x '

i are 

points in two distinct frames. For a set of point correspondences x i

ix iy iw T '
ix '

iy '
iw T

↔  x '
i , the problem can be 

described as being required to compute a 3×3 homography matrix H for each i such that 

 

H x i = x '
i                                                                     (4) 

 

    The above equation involves homogeneous vectors and hence the 3-vectors x '
i and H x i are not 

equal. They have the same direction but may differ in magnitude by a non-zero scale factor. The 

equation can be expressed by vector cross product as x '
i ×H x i = 0. If the j-th row of matrix H is 

denoted by h , then a simple linear solution for H can be derived as follows: Tj
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    Suppose x '
i = ( , , ) . The cross product may then be given as '
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iy '
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    Since h  x i = x T
i  h for j = 1, 2, 3, this gives a set of three equations in the entries of H, 

which may be written in the form 

Tj j
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    These equations all have the form A i h = 0, where A i is a 3×9 matrix, and h is a 9 vector 

made up of the entries of matrix H. 

Although there are three equations in (5), only two of them are linearly independent. In other 

words, each point-to-point correspondence gives two equations in the entries of H. The third 

equation is usually omitted in computing H [16]. Then the set of equations becomes 
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    The set of equations (6) holds for all points expressed in homogeneous coordinates x = 

( , , ) T , where = 1, and  ( , ) are the coordinates of the point in the image.  

'
i

'
ix '

iy '
iw '

iw '
ix '

iy

Given n corresponding points, 2× n such equations can be obtained. A set of four point 

correspondences yields a set of eight equations which can be written as: 

 

Ah = 0, 
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where A is the matrix of coefficients built from the matrix rows A i contributed by each point-to-

point correspondence, and h is the vector of unknown entries of H. So four point 

correspondences are the minimum number needed to solve the problem. 

    In general, given n≥4 point correspondences {x i ↔  x '
i }, the homography matrix H such that 

H x i = x '
i  can be computed by the Direct Linear Transformation (DLT) Algorithm [17] described 

by the following steps: 

(1) For each correspondence {x i ↔  x '
i } compute the matrix A i  using equation (6). 

(2) Generate a single 2n×9 matrix A from the n 2×9 matrices A i . 

(3) Compute the Singular Value Decomposition (SVD) of A [18]. The unit singular vector 

corresponding to the smallest singular value is the solution of h. In detail, if A = 

UDV with D a diagonal matrix with positive diagonal entries, arranged in descending 

order down the diagonal, then h is the last column. 

T

(4) The matrix H is determined from h as following: 

 

h = ,        H = . 
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3.3.2 Robust Estimation 

For a set of correspondences {x i ↔  x } obtained by the cross-correlation algorithm, the 

assumption up to now is that the only error is in the measurement of the point’s position, which 

follows a Gaussian distribution. However, in practical situations, two other categories of 

'
i
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mismatched correspondences, also called outliers, exist. One category represents the spurious 

correspondences caused by miscalculation in some special cases. The other consists of the point 

matches corresponding to moving objects in the scene and not to the motion of the camera. The 

outliers can severely disturb the estimated homography, and hence should be identified. In real-

life applications, robust estimation can deal with the situation where less than 50% of the points 

in the frame are outliners. Robust estimation is an essential part of homography computation 

process. 

    One popular robust estimation technique called the Random Sample Consensus (RANSAC) 

[12] is used in this thesis. Unlike the classical techniques for parameter estimation such as least-

squares that only average the measurement errors, RANSAC has a heuristic mechanism for 

detecting and rejecting gross errors caused by outliers. For the correspondences detection 

problem, the faulty measurement of a point’s position is a measurement error and follows a 

Gaussian distribution. This category of errors can be averaged out by classical least-squares 

techniques. The other two categories of mismatched correspondence, namely spurious 

correspondence and point matches corresponding to moving objects, are gross errors and can 

only be filtered out by the RANSAC technique. 

    The implementation of the RANSAC technique in this project is described by the following 

steps: 

(1) Randomly select 4 correspondences which may include both the correct ones and the 

mismatched ones to compute a homography H. This step constitutes an initial 

homography computation which has already been described previously in detail in the 

chapter 3.3.1. 
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(2) Compute the Euclidean distance for every correspondence {x  x }using the 

following function: 

i ↔
'
i

 

),(2
i

'
id Hxx .                                                             (7) 

 

(3) Compute the number of inliers whose Euclidean distance is less than a threshold D. 

These inliers constitute a consensus set S. 

(4) If the size of S is larger than a threshold T, re-compute H from the inliers in S and 

terminate. 

(5) If the size of S is smaller than T, repeat the above steps from (1)-(4) for N samples. 

(6) After N samples, recompute H from the consensus set with the largest number of inliers. 

    Several parameters need to be determined here: 

• The sampling number N. If one chooses to try all possible samples, then N = C , where n 

is number of correspondences. Even for a modest value of n, the total number of 

possibilities could be huge, which implies very expensive computation. Since the try-all-

possibilities method is infeasible, N can be chosen according to probability p which 

makes that at least one of the random samples of s points is not an outlier. Suppose w is 

the probability that any selected data point is an inlier, and hence

n
4

ε = 1 – w is the 

probability that it is an outlier. At least N samples can make (1 – w ) = 1 – p, so that s N

 

N = log (1 – p) / log (1 – w s ).                                          (8) 
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    Because the w and ε  are usually unknown, they can be determined adaptively [17] by 

the following procedure: 

(1) N = , sample_count = 0. ∞

(2) While N > sample_count Repeat 

- Choose a sample and count the number of inliers. 

- Calculate ε = 1 – w. 

- Compute N using equation (8) with p = 0.99. 

- Increase sample_count by 1. 

(3) Terminate 

• The Euclidean distance threshold D. Hartley and Zisserman [17] assume that the 

measurement error is a Gaussian random variable with zero mean and standard 

deviationσ  , and, in this situation, that d is a 2 2χ distribution. The probability that a 

2χ random variable is less than any given number k is given by the cumulative chi-

squared distribution, F (k ), which can be found in any standard mathematical table. If 

k is set to 0.95, D = 5.99

2

2

2 σ 2 . In practical experiments, this threshold value is too large 

and hence not practical. Also, the distribution of measurement error is certainly not 

Gaussian, since many outliers exist. So a relatively small value of D = 1.25 is chosen, 

which works well for the experiments. 

• The threshold T for the size of an acceptable consensus set. To ensure that the correct 

model can be found and to satisfy the final smoothing procedure, for n sample points, T = 

(1 - ε ) n is a good choice. For the situation whereε is unknown, a T with value a little 

larger than that necessary for a smoothing computation can be used.  
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3.3.3 Optimal Estimation 

The homography obtained by robust estimation can be used as a guideline for further optimal 

estimation. All correspondences {x i ↔  x '
i } between any two frames are calculated by the 

function given in equation (7). The outliers of these correspondences are filtered out using the 

same threshold value used in RANSAC procedure. 

    The correspondences classified as inliers are then used to determine a maximum likelihood 

estimate of H by minimizing the following object function: 
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In the experiment, a linear least squares method is used to obtain the optimal H which best 

satisfies all the inliers.  

 

3.4 Image Blending 

Based on the optimal homography H, the frames can be well aligned. However, there are still 

differences in the intensity values of pixels, which are caused by the changing of the camera’s 

internal parameters during different periods of the capturing process, especially in the regions 

where the frames overlap. To solve this problem, a function to weight each pixel in all frames is 

introduced: 
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where h and w are the height and the width of the frame. Heuristically, the pixels at the edge of 

the frames are given less weight. 

 

3.5 Background Mosaic Generation 

The homography H of any two non-consecutive frames is obtained exactly by the composition of 

homographies of all the frames between them. For example, the homography of the first and the 

third frame H 13  can be computed by the composition of the homography between the first frame 

and the second frame and the second frame and the third frame as H 13  = H H 12 . By using a 

special frame as the reference frame such as the first frame or the last frame, the homographies 

between all frames in the video sequence and this reference frame can be computed. 

Consequently, all frames can be mapped onto the reference frame to generate the background 

mosaic. 

23

    It should be noted that the origin of the generated background mosaic image is different from 

the frame origin. The origin of the background mosaic shifts during the frame warping procedure. 

A bounding box for the current mosaic origin should be recorded during the processing of 

homographies computation. When the computation of homographies between all frames and the 

reference frame is completed, the lower left corner of the bounding box of the entire mosaic 

namely (x , y ) is obtained. This origin of the entire background mosaic is used to calculate 

the inverse of the homography matrix used to generate a background mosaic from the frame 

located at the origin of the entire mosaic. The shifted inverse of any homography is computed by 

the composition of the inverse of the homography and a translation matrix. For example, H = 

H T, where T is given by: 

min min

21
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    A sample of the static background panorama generated by the algorithm implemented in this 

thesis is illustrated in figure 3.3.  The main steps of background mosaic generation can be 

summarized as follows: 

(1) Detect the interest points using the Moravec corner detector in each frame. 

(2) Find the correspondences between frames using these interest points by a cross-

correlation operation. 

(3) Compute the initial homographies between frames using the Direct Linear 

Transformation (DLT) Algorithm. 

(4) Use the RANSAC technique to filter out outliers of correspondences for each pair of 

frames. 

(5) Compute a maximum likelihood estimate to obtain the optimal homographies over all 

frame pairs. Specifically, the linear least squares algorithm is implemented to compute 

the maximum likelihood estimate based on the inliers of the correspondences. 

(6) Use the estimated optimal homographies to stitch all the frames onto a reference frame to 

generate the static background mosaic. 
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CHAPTER 4 

FOREGROUND AND BACKGROUND SEGMENTATION 

 

4.1 Dynamic Foreground and Static Background 

The frames extracted from the original motion video can be segmented into two layers: static 

background and dynamic foreground. The static background generated by the procedure 

described in the previous chapter includes all relatively static objects in the scene such as 

buildings or mountains. The dynamic foreground that needs to be segmented, on the other hand, 

is associated with the moving objects such as walking people or moving cars. 

    Dynamic foreground segmentation is relatively easier for the cases where the dynamic scenes 

are captured by static cameras. Since the camera is always located in the same position and there 

is no motion of the camera such as pan and tilt, the moving objects in the scene can be extracted 

by pixel-to-pixel comparison between the pre-stored background and the current frame being 

processed. This strategy works well only when the background information is available 

beforehand. 

The foreground segmentation for dynamic scenes captured by moving cameras is 

computationally much more complex. The camera motions such as pan and tilt usually 

compensate for the motion of the moving objects in the scene such that these objects remain in 

the center of the frame. For example, actors or athletes always stay in the center of the images or 

frames of the movie sequence because the camera is panned or tilted in order to follow them. So 
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a more sophisticated background/foreground separation technique is required to deal with this 

complex situation.  

 

4.2 Mahalanobis Distance 

In the video sequence, the previous and the next frames can be mapped onto the current frame 

using the estimated homographies. The color values of every pixel in the frame are then 

compared at each pixel location. The pixels belonging to the static background follow the 

estimated camera motion and hence the changes of intensity value between the corresponding 

pixels are relatively small. On the other hand, large discrepancy in intensity values occurs at 

pixels which do not conform to the estimated homography. The comparison of color values at 

each pixel location is achieved by the following distance function: 

 

))(),(())(),(( 1111 iiiiii-i-i qΓqΓdqΓqΓd +++                                  (9) 

 

where is the intensity value of the pixel q in the frame  , and i is the number of frames 

in the video sequence. Note that d is the Mahalanobis distance [19] which represents the 

discrepancy of in color values between the two pixels when they appear in two consecutive 

frames. The Mahalanobis distance is given by 

)( ii qΓ iΓ
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where C is the covariance matrix for the RGB color space, and is estimated using red, green, and 

blue color values for all the pixels and for each frame in the video sequence. 
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4.3 Probability Image 

Based on the values obtained for each pixel location in the frame computed using the function in 

equation (9), a probability image is generated. It is made up of the likelihood of every pixel in 

the frame belonging to the dynamic foreground. For example, a large discrepancy in color value 

at the same pixel position q in three consecutive frames has a large probability of being the 

dynamic foreground. Here the three consecutive frames are any set of previous frame, current 

frame and next frame in the video sequence. The pixels belonging to moving objects which do 

not conform to the homography between consecutive frames have a greater probability of 

possessing larger discrepancy in color values.  

 

4.4 False Motion Detection 

Although the above approach, which borrows ideas from the direct method to mosaic 

reconstruction, can detect the dynamic layer of the frame, there are still problems with it. Two 

categories of false detection of moving objects exist in the video frames.  One is caused by a 

certain level of pixel-level noise which is introduced by the camera capture or the video 

production process. The other category is caused by the presence of large homogeneous regions 

and complex motions such as articulated body motions which are widely present in many real-

life videos. Large homogeneous regions are the interior of the moving objects. The articulated 

body motions are characterized by the fact that some body parts move while some other body 

parts remain still.  

The problem of the presence of false motion can be solved by performing a Gaussian filtering 

on the probability image. The Gaussian smoothing filter is very well suited for removing noise 
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that is drawn from a normal distribution. In the context of image processing, the two-dimensional 

zero-mean discrete Gaussian filter is given by 
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and is used as a smoothing filter. A typical two-dimensional Gaussian filter is illustrated in figure 

4.1. 

 

 

 

Figure 4.1: A typical two-dimensional Gaussian filter 
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The smoothing procedure is performed on the probability image instead of the original frame. 

Although Gaussian smoothing is essentially a procedure to blur the image, applying the filter on 

the probability image can retain the image quality as well as filter out the noise. The detected 

regions corresponding to the moving objects prior to smoothing and the regions corresponding to 

the moving objects after smoothing by a Gaussian filter are illustrated in figure 4.2. 

 

4.5 Segmentation of Dynamic Foreground 

To detect the motion foreground from the original frames, a probability threshold is set to 

optimistically segment the dynamic layer from the static layer. The threshold is applied onto the 

probability image which has been smoothed by the Gaussian filter.  

In general, a probability value of less than half of the maximum in the probability image is 

suggested as the threshold. In the experiment, the recommended threshold is so large that many 

parts of motion objects were deleted. So in practice, a value of 1/8 of the maximum value is used. 

When applying this threshold to the probability images, the pixels with the probability value 

larger than the threshold were classified as the dynamic foreground and kept. At the same time, 

the pixels which are smaller than the threshold were classified as the static background and 

removed. 

Though the dynamic foregrounds have been segmented, they are still stored with the 

background in the image file. The only difference is that all the pixels belonging to the 

background change from the original color to black. In order to reduce the multimedia 

information transmitted through the mobile network, the detected dynamic foreground within 

each frame could be divided further into several connected components and then extracted from 

the background. 
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(a) 

 

(b) 

Figure 4.2:  (a) The frame showing the detected regions corresponding to the moving objects 

prior to smoothing; (b) The detected regions corresponding to the moving objects after 

smoothing by a two-dimensional Gaussian filter. 
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4.6 Connected Components Detection 

All the frames in the video sequence are now divided into two layers: the static background layer 

and the dynamic foreground layer. To find all the connected components in the dynamic 

foreground which includes both real moving objects and the noisy or spurious regions, each 

frame is converted to a binary image where the value “1” is assigned to the pixels of the dynamic 

foreground and the value “0” is assigned to the pixels of the static background. Here a connected 

component is a set of pixels in which each pixel is connected to all other pixels in that set.  

    Unlike the gray scale image, binary image contains only two gray levels. The advantages of 

binary image include they are well understood and tend to be less expensive and faster during the 

procedure of image processing than the gray level or color images. Binary images are used in 

binary vision systems to reduce the memory and computing power requirement. Traditionally, 

pixels of assumed objects which could include both moving objects and static objects are set to 

white while the other pixels belonging to background are set to black.   

    In this thesis, the binary image such as figure 4.3 was generated by set the color of pixels 

belonging to static background to black and the color of pixels belonging to dynamic foreground 

to white. 

   The iterative connected-component labeling algorithm is applied to the binary image and 

usually requires two passes over the image. This algorithm checks the two neighbors of a current 

pixel, namely, the one above and to the left of the current pixel and tries to assign an already 

used label to the current pixel. When the two neighbors have different labels, an equivalence 

table is used to keep track of all labels that are deemed equivalent. This table is used in the 

second pass to assign a unique label to all the pixels of a connect component. 
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a 

b 

Figure 4.3: (a) The original frame; (b) The corresponding binary image 
which has already been smoothed by a Gaussian filter. 
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The algorithm divides the neighborhood relation of pixels into three cases and assigns 

different labels for them. The equivalence table includes the information of unique labels for 

each connected component. During the first scan, all labels assigned to one component are 

claimed as equivalent. In the second pass, the smallest corresponding label from the equivalence 

table is selected to be assigned to all pixels of a certain component.  

When all connected components have been detected, the equivalence table is renumbered to 

eliminate the gaps between labels. The connected components in the image are then reassigned 

the new label under the direction of the equivalence table. 

The main steps of the iterative connected-component labeling algorithm are summarized as 

follows: 

(1) Scan the binary image from left to right, top to bottom. 

(2) If the current pixel is “1”, then 

(a) If only one of its upper and left neighbors has a label then copy that label. 

(b) If both of them have the same label, then copy the label. 

(c) If both of them have different labels, then copy the label of upper pixel and note in a 

equivalence table that label (upper) = label (left). 

(d) Otherwise assign a new label to the pixel and note the label in the equivalent table. 

(3) Repeat steps (2) (a) - (2) (d) until all “1”-pixel have been visited. 

(4) For each equivalence class in the equivalence table, assign a unique label, typically the 

lowest. 

(5) Rescan the image and replace the label of each “1”-pixel by the label of its equivalence 

class. 
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    The above algorithm detects all the connected components in an image. Many properties of 

the component such as size, position and bounding box can then be computed for each 

component for later processing.  

 

4.7 Size Filtering 

Even after the segmented dynamic foreground has been smoothed by the Gaussian filtering, a 

certain number of noisy or spurious regions still persist. The motion components are found by 

the Mahalanobis distance method which detects the motion based on the color discrepancies of 

the corresponding pixels in the consequent frames. Sometimes the small changes in reflectance 

and illumination characteristics of other objects in the scene can lead to incorrect detections of 

the motion. One important property of these spurious regions is that their sizes are small 

compared with those of the real moving objects in the scene and hence can be removed by a size 

filter.  

The connected components detected by the iterative connected-component labeling algorithm 

consist of components belonging to both the real moving objects in the scene and the unexpected 

noises. In order to remove these noises, a size filter is used based on the size property of this 

category of noise outlined above. When all connected components have been found in the 

dynamic foreground, the size filter is used to suppress the noisy artifacts with relatively small 

size in terms of number of pixels.  

The threshold of the size filter can not be set to large, which will remove the real moving 

components. At the same time, the threshold can not be set too small, which will keep too many 

noises. Considering the different applications, the algorithm should be robust to different cases. 
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In the experiments presented in this thesis, a threshold of 1/3 or 1/4 of the maximum size of the 

component in the dynamic foreground is used. The result is illustrated in figure 4.4. 

 

4.8 Motion Components Extraction 

After the size filtering operation, only large components corresponding to moving objects are 

kept. A bounding box which is composed of the minimum and maximum coordinates of a certain 

component in the frame is recorded into an information file for later transmission. The 

thresholded components are extracted from the original frames and used to generate a set of 

small image files which store only the pixels corresponding to regions in the bounding boxes. 

The procedure for the extraction of these small images corresponding to moving components is 

shown in figure 4.5. 

    Based on the experimental observations, the small image files representing the moving 

components in the frame are only, on average, 1/4 to 1/5 of the original frame in terms of size. 

The compression rate is satisfactory. This implies a very good compression ratio for multimedia 

information and is really convenient for mobile networked transmission. 

    The main steps of the foreground and background segmentation procedure which is performed 

at the server-end can be summarized as follows: 

(1) Compute the Mahalanobis distance in color space for every pixel in all the frames using 

any three consecutive frames. 

(2) Generate the probability image for each frame in the video sequence based on the 

Mahalanobis distance and equation (9). 

(3) Use the Gaussian filter to smooth out regions of false motion caused by large 

homogeneous regions and complex motions. 
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a 

b 

Figure 4.4: (a) The original binary image; (b) The binary image filtered by the 
size filter. 
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(4) Set a probability threshold to classify each pixel in the frame as belonging to the dynamic 

foreground or the static background. 

(5) Use iterative connected-component labeling algorithm to detect connected components in 

the binary image of the segmented dynamic foreground. 

(6) Apply the size filter to remove the noisy artifacts and identify components belonging to 

the real moving objects in the video stream by the application of Mahalanobis distance. 

(7) Generate certain numbers of sets of small image files corresponding to motion 

components of real moving objects in each frame in the video sequence. Find the 

bounding box of the detected motion components and extract the related location 

information for the later mobile networked transmission. 
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c 

Figure 4.5:  (a) The original frame; (b) The bounding box for a moving component; 
(c) The extracted small image of the region belonging to the moving object. 



 

 

 

CHAPTER 5 

MOTION PANORAMA CONSTRUCTION 

 

5.1 Network Transmission 

Three categories of files are transmitted through the network, namely: 

• A single large image file containing the static background. The file includes all 

background information in the scene captured by the moving camera. 

• A certain number of small image files containing the dynamic foreground. These files 

include all the various components corresponding to moving objects in the scene for each 

frame in the video sequence. 

• An information file for each frame. The file includes all associated parameters such as 

bounding boxes of dynamic components and the homography between each frame in the 

video stream and the reference frame. 

 

5.2 Motion Panorama Reconstruction at the User-end   

When all the information has been transmitted from the server to the user-end, it is used to 

reconstruct a motion panorama. The static background image and the dynamic foreground for 

each frame in the video sequence are available now. The dynamic foregrounds are then pasted 

onto the static background based on the parameters in the information file to reconstruct the 

motion panorama.  
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    The homographies between each frame in the video sequence and a reference frame are 

computed during the procedure of static background generation. The dynamic foreground of 

each individual frame is mapped onto the background mosaic using these homographies. This is 

almost the same procedure as the previous generation of background mosaic except that only the 

extracted regions of foreground are now pasted instead of the entire original frames. 

    In [10], the authors propose a method to build the background panorama by considering each 

potential pixel in the background image plane. For each of these pixel locations, the 

contributions from a certain number of frames are accumulated and weighted to obtain the final 

intensity value for that pixel. The individual frames are then mapped onto the background and 

consequently used to extract the dynamic foreground. This method entails a significant amount 

of computation because all pixels in the large background image, which includes the pixels from 

both the static background and the dynamic foreground, are determined via the computation of 

an average of the corresponding pixels from 20 related frames in the video sequence.  

    In this thesis, the regions comprising the dynamic foreground in each individual frame are 

segmented from the background. Subsequently, only these foreground regions are pasted onto 

the static background to reconstruct the motion panorama. More specifically, the segmented 

components of the dynamic foreground in each frame are mapped onto the background using 

both, the bounding boxes which include the location information of the dynamic components in 

each frame, and the homography between that frame and the reference frame. In the static 

background image, when the intensities of pixels in the mapped regions of dynamic components 

are the same as those of corresponding pixels in the background, the intensity of the 

corresponding pixel in the background image does not change. Otherwise, the intensity of a pixel 

in the background image is replaced by the intensity of the corresponding pixel in the mapped 
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regions representing the dynamic components. In other words, the regions corresponding to the 

dynamic foreground or moving objects are pasted onto the static background image. 

    Following the video sequence, if the dynamic foreground is pasted onto the static background 

once in every few frames, a motion panorama is generated. A static representation of this form 

containing a large background image with a series of motion objects in it expresses the content of 

original motion video with much less space. For the application where the panoramic video is 

required, an alternative strategy is implemented. The dynamic foreground of each individual 

frame in the video sequence is pasted onto the background separately. Each frame in the video 

sequence generates one motion panorama. When the generation of panorama images from all 

frames is completed, one can combine all these images of panorama together to create an MPEG 

or AVI format file for viewing. 

 



 

 

 

CHAPTER 6 

EXPERIMENTAL RESULTS 

 

The technique for motion panorama construction described in this thesis is applied to several 

motion videos captured by a digital camcorder. The scenes of these motion videos were acquired 

on the campus of the University of Georgia. A typical sample used in the experiment is a 10 

second video with multiple persons walking in front of Dawson Hall. The video, which includes 

around 210 frames, is 41.25 M bytes in size. The results shown in figure 6.1 and figure 6.2 

consist of the procedure of the motion panorama construction using the proposed approach. The 

panorama is constructed with both the large static background and dynamic foregrounds 

extracted for every 40 frames. 

    The panoramic video which consists of a single static background and a certain number of 

foregrounds corresponding to each frame of the original motion video can also be constructed at 

the user-end using the similar technique. In this form of representation, the dynamic foregrounds 

move in a single large background without losing any information from the original motion 

video. 

In table 6.1, three forms of motion representation, namely, original motion video, motion 

panorama and panoramic video are compared in terms of the type and the size of files based on 

the multimedia information transmitted through the mobile computer network. The results are 

satisfactory with an average compression rate of around 0.1. The technique of motion panorama 

or panoramic video construction can greatly reduce the amount of information transmitted and 
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hence conserve the power consumed at the user-end in power-constrained mobile networked 

environments. 
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Table 6.1: The comparison of three forms of motion representation based on the type and the size 

of files transmitted through computer networks 

 

 Original Motion Video Motion Panorama Panoramic Video 

1 file of the static 

background mosaic-

JPG (165 K Bytes) 

1 file of the static 

background mosaic-

JPG (165 K Bytes) 

5 set of files of the 

dynamic foreground-

JPG (49.9 K Bytes, 

average 9.98 K Bytes 

per file) 

210 set of files of 

dynamic foreground-

JPG (3.92 M Bytes, 

average 18.7 K Bytes 

per file) 

 

 

 

 

 

Transmitted 

File(s) with Type 

and Size 

 

 

 

 

 

1 file of the motion 

video-AVI  (41.25 M 

Bytes) or 210 files of 

original frame-JPG 

(17.85 M Bytes, average 

85 K Bytes per file) 

5 files of  associated 

location information-

TXT (0.42 K Bytes, 

average 84 Bytes per 

file) 

210 files of associated 

location information-

TXT (20.6 K Bytes, 

average 98 Bytes per 

file) 

Total Size 41.25 M Bytes / 17.85 M 

Bytes 

215.32 K Bytes 4.11 M Bytes 
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a b 

d 
c 

e 

Figure 6.1: (a) An original frame (138); (b) The detected moving components and 
their location information; (c) and (d) Extracted small images of moving component; 
(e) The single image of static background. (c), (d) and (e) are the actual files 
transmitted from the server-end to the user-end.  
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CHAPTER 7 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

7.1 Concluding Remarks 

The motion panorama or motion mosaic is a compact and convenient representation for 

videos of a dynamic scene. In the preceding chapters, a combined method for motion 

panorama construction and its application in power-constrained environments is described.  

    Many research articles have reported great success in generation of static image mosaics. 

Feature-based methods and direct methods are two categories of static image mosaic 

generation techniques which have been widely accepted and used. However, the mosaic of 

motion video and its application are novel research issues in the fields of computer vision 

and artificial intelligence. In this thesis, a modified approach combining the advantages of 

both feature-based methods and direct methods is proposed to construct a motion panorama 

from the original motion video. A practical moving-components-extraction technique is also 

implemented with excellent information compression results compared to the size of the 

original motion video. In this procedure, the feature-based method and the direct method are 

applied in different phases at the server-end to segment the dynamic foreground and static 

background while the motion panorama is constructed by combining the information from 

both the background and the foreground at the user-end. Some updated and improved 

algorithms are also implemented during the experiments. 
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    The method for motion panorama construction in power-constrained mobile networked 

environments described in this thesis involves three major processing phases.  

    The technique starts with the generation of a static background image at the server-end. 

The features or interest points are first detected in individual frames using the Moravec 

corner detector. Based on the correspondences of features identified by the cross-correlation 

operation, the estimated homographies between frames are computed by using the DLT 

algorithm with the feature outliers filtered out using the RANSAC procedure. The maximum 

likelihood estimate of these homographies is then computed using the linear least squares 

algorithm. Using these optimal homographies, the static background is generated by warping 

all frames onto a reference frame. In the background generation phase, the feature-based 

method is applied with several improvements. The Moravec corner detector is used instead of 

the Harris detector for the purpose of reducing computational complexity. Unlike traditional 

methods which consider only an abstract interest value, the detection of interest points is 

achieved using a certain number of small windows which are distributed uniformly across the 

frame. This property is very important for homography estimation, because it takes the 

possible motion from all pixel locations into consideration. 

    The second phase consisting of foreground and background segmentation is also 

implemented at server-end. First, the Mahalanobis distances are computed for every pixel in 

each frame using three consecutive frames. Every frame in the video sequence then generates 

a probability image based on the sum of the Mahalanobis distances between the previous 

frame and current frame, and the current frame and next frame. A Gaussian smoothing filter 

of certain width is applied on the probability images in order to filter out the regions of false 

motion. Each smoothed probability image is classified as the dynamic layer or the static layer 
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using a threshold value that is selected to be less than half of the maximum probability value 

in each frame. The connected components corresponding to both real moving objects and 

noisy artifacts are extracted from the binary image of the segmented dynamic layer. A size 

filter is then applied on the connected components to remove the noisy artifacts which have 

not been smoothed out by the Gaussian filter. Finally, only the components belonging to the 

real significant moving objects are extracted.  

Given the static background and segmented components of moving objects and their 

associated location information transmitted from the server-end, the final phase of panorama 

generation is implemented at the user-end by pasting components belonging to the dynamic 

foreground onto the static background under the guidance of the associated location 

information. For different application requirements, the final output could be a motion 

panorama or a panoramic video. 

 

7.2 The Original Contributions of This Thesis 

This thesis applies the techniques for motion panorama construction from streaming video to 

the mobile networked transmission in power-constrained environments. The following 

original contributions have been made in this project. 

• Based on static image mosaic generation techniques such as feature-based methods and 

direct methods, a combined approach for motion panorama construction is introduced. 

This technique performs the static background generation using the feature-based method 

and the dynamic foreground segmentation using the direct method.  

• Some improved algorithms are implemented compared with the original technique 

introduced by feature-based methods and direct methods. The Moravec corner detector is 
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applied to detect feature points instead of the Harris detector and hence reduces the 

computation complexity. A certain number of small neighbored and non-overlapping 

windows which are uniformly distributed across the image are used to extract the features 

from all pixel locations. This algorithm solves the problem that the features detected by 

feature-based methods are not homogeneously distributed in the images which may cause 

alignment problems.  

• For the purpose of reducing the amount of information transmitted through the mobile 

network, the iterative connected-component labeling algorithm is performed to detect the 

connected moving components within the image. A size filter is used to remove the noisy 

artifacts which have not been smoothed out by the Gaussian filter and mistakenly 

detected as the moving objects. This method can significantly eliminate the number of 

noises which are not corresponding to components of the real moving objects. 

• The single static background image and segmented components of moving objects and 

their associated location information are transmitted from the server-end to the user-end. 

An algorithm is proposed to construct the motion panorama using the above information 

at the user-end. An alternative panoramic video can also be constructed under user-

specified requirements. 

• The amount of information transmitted through the mobile network is, on average, from 

1/8 to 1/10 of the original motion video. This compression ratio for multimedia 

information greatly reduces the time and space requirements at the user-end.  In other 

words, the techniques used in this thesis conserve the computation time and memory 

storage at the user-end in power-constrained multimedia environments. 
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7.3 Future Work and Directions 

Although the compression rates of the information for network transmission are satisfactory, 

the motion panorama can still be improved in terms of image quality. The major 

characteristics of usually moving objects such as people, animals and mobiles can be stored 

beforehand and checked during the procedure for dynamic foreground extraction. Using this 

heuristic method, the moving objects can be differentiated from noisy artifacts more easily 

and precisely. 

    In general, since the internal parameters of the camera such as the focal length and aspect 

ratio are not required to be known, the technique for motion panorama construction is general 

and flexible and can be used in a wide range of real-life applications.  The possible 

application areas include: 

• Robots download the panorama from control headquarters and study the motion 

information. They can simulate various human actions and execute them in several 

scenarios such as industrial production, family service and crime detection/prevention. 

• Image mosaic and motion mosaic can be used to reconstruct dynamic scenes under 

various illumination conditions for virtual reality applications. 

• Motion panorama techniques can also be applied to the reconstruction of the planet 

surface during space exploration and in biomedical imaging where a detailed anatomical 

atlas can be generated by mosaicing a series of snapshots with limited field of view. 
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