
A Generalization of Bivariate Splines Over Polygonal Partitions

and Applications

by

James M. Lanterman

(Under the Direction of Ming-Jun Lai)

Abstract

There has recently been interest in extending various finite element methods to

more arbitrary partitions, particularly unstructured partitions of various polygons.

Various methods aimed at this task have arisen, but of particular note, in a paper

published in 2016, Floater and Lai produced a method for numerical solution of Pois-

son equations using polygonal splines, which are extensions of bivariate splines. This

work first presents a method for numerical solution of partial differential equations

which extends the method of Floater and Lai to solve very general second-order ellip-

tic equations, but can also be used to approximate solutions of some mixed hyperbolic

and parabolic equations. Next, this work will address a features common to many

polygonal finite elements: a lack of global differentiability. This work provides a con-

struction of C1 local basis functions, particularly over quadrangulations, with some

applications to function interpolation and smooth surface construction. The methods

used to construct these functions, while computationally difficult, can be extended to

higher regularity or to partitions of polygons with more vertices.

Index words: bivariate splines, partial differential equation, finite element
methods, local basis

A Generalization of Bivariate Splines Over Polygonal Partitions

and Applications

by

James M. Lanterman

B.S., Mercer University, 2013

A Dissertation Submitted to the Graduate Faculty

of The University of Georgia in Partial Fulfillment

of the

Requirements for the Degree

Doctor of Philosophy

Athens, Georgia

2018

c©2018

James M. Lanterman

All Rights Reserved

A Generalization of Bivariate Splines Over Polygonal Partitions

and Applications

by

James M. Lanterman

Major Professor: Ming-Jun Lai

Committee: Juan Gutierrez
Sa’ar Hersonsky
Jingzhi Tie

Electronic Version Approved:

Suzanne Barbour
Dean of the Graduate School
The University of Georgia
May 2018

Acknowledgments

I thank my advisor Ming-Jun Lai, who has been supportive and patient, and has

provided great insight and advice through the many difficulties encountered during

my time in graduate school and in the development of this work. I am extremely

fortunate to have had the opportunity to work under Dr. Lai’s direction and to learn

from him.

I thank the members of my committee for their patience and time, especially given

the length of this work.

The challenges of graduate school have been difficult to say the least, but my

friends have helped me through. I thank Eric Perkerson, the first friend I made

in Athens, and one who has helped me on more occasions than I can count, both

professionally and personally. I also thank Clay Mersmann, who has served as both

a friend and a source of growth. I am lucky to have a friend and colleague with the

same advisor, working in the same field, even in the same office. I especially thank

my oldest friend Matt Holton, whose friendship has done more to maintain my sanity

and keep up my spirits throughout graduate school than I can say.

Finally, I thank my beautiful wife Savannah. I could not have accomplished this

enormous task without her constant encouragement and endless support. Despite all

the challenges that graduate school has brought, you have stayed by my side and

made these the best years of my life. I love you.

iv

Contents

Acknowledgments iv

1 Introduction 1

1.1 Motivation . 1

1.2 Literature review . 2

2 Polygonal Spline Methods for Numerical Solution of General Second-

Order Elliptic Equations 5

2.1 Previous results . 5

2.2 A Novel polygonal spline method for numerical solution of PDEs . . . 11

3 A Degree-3 Construction of C1 Polygonal Vertex Splines on Skewed-

Grids 47

3.1 Preliminaries on vertex splines . 47

3.2 Degree-3 C1 polygonal spline construction 58

3.3 Approximation properties of Ψ1
3(P) 80

3.4 Increasing to degree 4 . 81

4 A Degree-5 Construction of C1 Polygonal Splines on Parallelogram

Partitions 82

4.1 Degree-5 C1 polygonal vertex splines 82

4.2 More degree-5 C1 polygonal splines 106

v

4.3 Approximation properties and numerical results 121

4.4 An application toward surface construction 126

4.5 Increasing to degree 6 . 130

5 A Degree-7 Construction of C1 Polygonal Splines on Arbitrary Quadri-

lateral Partitions 131

5.1 Degree-7 polygonal vertex splines . 131

5.2 Approximation properties and numerical results 165

6 Future Directions 168

6.1 More general polygons . 168

6.2 Higher smoothness . 169

6.3 Coefficient conditions . 169

Bibliography 171

vi

List of Figures

2.1 An illustration to show the areas C2 and A3(x) 7

2.2 An illustration to clarify the geometry used to show (2.2.16) 19

2.3 An illustration of the geometry used to show (2.2.19) 21

2.4 A partition of the unit square and a few refinements 34

2.5 A partition of Ω = [−1, 1]2 and a few refinements 45

3.1 An illustration of the degree-4 polygonal spline basis functions with

the associated domain points over a rectangle 55

3.2 A partition of quadrilaterals P . 56

3.3 A pair of adjacent quadrilaterals P and R 60

3.4 An updated figure which shows heights of each quadrilateral as dashed

lines . 65

3.5 A skewed grid . 66

3.6 The plot of a function ψ
(3)
v . 68

3.7 Plots of degree-3 gradient-adjustment basis splines 75

3.8 The plot of a function ψ
(3)

x2,v . 77

4.1 A partition of parallelograms . 91

4.2 The plot of a function ψ
(5)
v . 93

4.3 Plots of degree-5 gradient-adjustment vertex splines 99

4.4 Plots of degree-5 Hessian-adjustment vertex splines 107

vii

4.5 An illustration of the degree-5 polygonal spline basis functions with

the associated domain points . 109

4.6 The functions marked in red affect values at each vertex; those marked

in blue affect gradient, and those marked in grey affect the Hessian. . 110

4.7 A classification of remaining degree-5 functions into 2 classes illustrated

by domain points . 111

4.8 The plot of an edge spline ψ
(5)
e . 116

4.9 The plot of a face spline ψ
(5)
P . 121

4.10 A parallelogram partition used to numerically test the degree-5 polyg-

onal spline quasi-interpolation schemes 123

4.11 Views of a degree-5 C1 polygonal spline quasi-interpolant of a torus

parameterized by (x1, y1, z1) over the partition shown in the upper-left 127

4.12 Views of a degree-5 C1 polygonal spline quasi-interpolant of a modi-

fied torus parameterized by (x2, y2, z2) over the partition shown in the

upper-left . 128

4.13 Views of a degree-5 C1 polygonal spline quasi-interpolant of a modi-

fied torus parameterized by (x3, y3, z3) over the partition shown in the

upper-left . 128

4.14 Views of a degree-5 C1 polygonal spline quasi-interpolant of a modi-

fied torus parameterized by (x4, y4, z4) over the partition shown in the

upper-left . 129

4.15 Views of a degree-5 C1 polygonal spline quasi-interpolant of a modi-

fied torus parameterized by (x5, y5, z5) over the partition shown in the

upper-left . 130

5.1 A domain point illustration of the redundancy of the terms used in the

template (5.1.1 . 133

5.2 An unstructured quadrilateral partition 143

viii

5.3 The plot of a function ψ
(7)
v . 143

5.4 Plots of degree-7 gradient-adjustment basis splines 158

5.5 Plots of degree-7 Hessian-adjustment basis splines 164

ix

List of Tables

2.1 Degree-2 Polygonal spline approximation of solution to Example 2.2.1

with exact solution in (2.2.40) . 34

2.2 Degree-3 Polygonal spline approximation of solution to Example 2.2.1

with exact solution in (2.2.40) . 34

2.3 Degree-2 Bivariate spline approximation of solution to (2.2.1) with ex-

act solution in (2.2.40) . 34

2.4 Degree-3 Bivariate spline approximation of solution to (2.2.1) with ex-

act solution in (2.2.40) . 34

2.5 Polygonal splines’ degrees of freedom 35

2.6 Bivariate splines’ degrees of freedom 35

2.7 Degree-2 Polygonal spline approximation of solution to Example 2.2.2

with exact solution (2.2.42) . 36

2.8 Degree-3 Polygonal spline approximation of solution to Example 2.2.2

with exact solution (2.2.42) . 36

2.9 Degree-2 Bivariate spline approximation of solution to Example 2.2.2

with exact solution in (2.2.42) . 37

2.10 Degree-3 Bivariate spline approximation of solution to Example 2.2.2

with exact solution in (2.2.42) . 37

2.11 Degree-2 Polygonal spline approximation of solution to Example 2.2.3

with exact solution in (2.2.43) and ε = 10−3 38

x

2.12 Degree-3 Polygonal spline approximation of solution to Example 2.2.3

with exact solution in (2.2.43) and ε = 10−3 38

2.13 Degree-2 Polygonal spline approximation of solution to Example 2.2.3

with exact solution in (2.2.43) and ε = 10−5 38

2.14 Degree-3 Polygonal spline approximation of solution to Example 2.2.3

with exact solution in (2.2.43) and ε = 10−5 38

2.15 Degree-2 Polygonal spline approximation of solution to Example 2.2.3

with exact solution in (2.2.43) and ε = 10−10 38

2.16 Degree-3 Polygonal spline approximation of solution to Example 2.2.3

with exact solution in (2.2.43) and ε = 10−10 38

2.17 Degree-2 Bivariate spline approximation of solution to Example 2.2.3

with exact solution in (2.2.43) and ε = 10−3 38

2.18 Degree-3 Bivariate spline approximation of solution to Example 2.2.3

with exact solution in (2.2.43) and ε = 10−3 38

2.19 Degree-2 Bivariate spline approximation of solution to Example 2.2.3

with exact solution in (2.2.43) and ε = 10−5 39

2.20 Degree-3 Bivariate spline approximation of solution to Example 2.2.3

with exact solution in (2.2.43) and ε = 10−5 39

2.21 Degree-2 Bivariate spline approximation of solution to Example 2.2.3

with exact solution in (2.2.43) and ε = 10−10 39

2.22 Degree-3 Bivariate spline approximation of solution to Example 2.2.3

with exact solution in (2.2.43) and ε = 10−10 39

2.23 Weak Galerkin approximation of solution to Example 2.2.4 40

2.24 Degree-2 Polygonal spline approximation of solution to Example 2.2.4 40

2.25 Degree-3 Polygonal spline approximation of solution to Example 2.2.4 40

2.26 Degree-2 Polygonal spline approximation of solution to Example 2.2.4

over non-grid partition . 41

xi

2.27 Degree-3 Polygonal spline approximation of solution to Example 2.2.4

over non-grid partition . 41

2.28 Degree-2 Polygonal spline approximation of solution to Example 2.2.5

with ε = 10−3 . 42

2.29 Degree-3 Polygonal spline approximation of solution to Example 2.2.5

with ε = 10−3 . 42

2.30 Degree-2 Polygonal spline approximation of solution to Example 2.2.5

with ε = 10−5 . 42

2.31 Degree-3 Polygonal spline approximation of solution to Example 2.2.5

with ε = 10−5 . 42

2.32 Degree-2 Polygonal spline approximation of solution to Example 2.2.5

with ε = 10−10 . 43

2.33 Degree-3 Polygonal spline approximation of solution to Example 2.2.5

with ε = 10−10 . 43

2.34 Degree-2 Bivariate spline approximation of solution to Example 2.2.5

with ε = 10−3 . 43

2.35 Degree-3 Bivariate spline approximation of solution to Example 2.2.5

with ε = 10−3 . 43

2.36 Degree-2 Bivariate spline approximation of solution to Example 2.2.5

with ε = 10−5 . 43

2.37 Degree-3 Bivariate spline approximation of solution to Example 2.2.5

with ε = 10−5 . 43

2.38 Degree-2 Bivariate spline approximation of solution to Example 2.2.5

with ε = 10−10 . 44

2.39 Degree-3 Bivariate spline approximation of solution to Example 2.2.5

with ε = 10−10 . 44

xii

2.40 Degree-2 Polygonal spline approximation of solution to (2.2.5) with

exact solution (2.2.48) when η = 10−10, c1 = c2 = 0.1 46

2.41 Degree-2 Polygonal spline approximation of solution to (2.2.5) with

exact solution (2.2.48) when η = 10−10, C1 = 0.1, c2 = c1 + επ2/4 . . 46

2.42 Degree-2 Polygonal spline approximation of solution to (2.2.5) with

exact solution (2.2.48) when η = 10−10, C1 = 0.1, c2 = c1 + επ2/4 . . 46

4.1 Degree-5 C1 polygonal vertex spline quasi-interpolation of the function

u1(x, y) = sin(x) sin(y) . 124

4.2 Degree-5 C1 polygonal spline quasi-interpolation of the function u1(x, y) =

sin(x) sin(y) . 124

4.3 Degree-5 C1 polygonal vertex spline quasi-interpolation of the function

u2(x, y) = sin(πx) sin(πy) . 124

4.4 Degree-5 C1 polygonal spline quasi-interpolation of the function u2(x, y) =

sin(πx) sin(πy) . 124

4.5 Degree-5 C1 polygonal vertex spline quasi-interpolation of the function

u3(x, y) = sin(2πx) sin(2πy) . 124

4.6 Degree-5 C1 polygonal spline quasi-interpolation of the function u3(x, y) =

sin(2πx) sin(2πy) . 124

4.7 Degree-5 C1 polygonal vertex spline quasi-interpolation of the function

u4(x, y) = sin(π(x2 + y2)) . 125

4.8 Degree-5 C1 polygonal spline quasi-interpolation of the function u4(x, y) =

sin(π(x2 + y2)) . 125

4.9 Degree-5 C1 polygonal vertex spline quasi-interpolation of the function

u5(x, y) = (10 + x+ y)−1 . 126

4.10 Degree-5 C1 polygonal spline quasi-interpolation of the function u5(x, y) =

(10 + x+ y)−1 . 126

xiii

4.11 Degree-5 C1 polygonal vertex spline quasi-interpolation of the function

u6(x, y) = (1 + x2 + y2)−1 . 126

4.12 Degree-5 C1 polygonal spline quasi-interpolation of the function u6(x, y) =

(1 + x2 + y2)−1 . 126

5.1 Degree-7 C1 polygonal vertex spline quasi-interpolation of the function

u1(x, y) = sin(x) sin(y) . 166

5.2 Degree-7 C1 polygonal vertex spline quasi-interpolation of the function

u2(x, y) = sin(πx) sin(πy) . 166

5.3 Degree-7 C1 polygonal vertex spline quasi-interpolation of the function

u3(x, y) = sin(2πx) sin(2πy) . 167

5.4 Degree-7 C1 polygonal vertex spline quasi-interpolation of the function

u4(x, y) = sin(π(x2 + y2)) . 167

5.5 Degree-7 C1 polygonal vertex spline quasi-interpolation of the function

u5(x, y) = (10 + x+ y)−1 . 167

5.6 Degree-7 C1 polygonal vertex spline quasi-interpolation of the function

u6(x, y) = (1 + x2 + y2)−1 . 167

xiv

Chapter 1

Introduction

1.1 Motivation

The primary goal of this dissertation is to develop and apply novel generalizations of

splines. Multivariate splines are a well-studied space of piecewise functions, defined

over a polyhedral region of Rn which is partitioned into n-simplices. The results of

this work will focus particularly on bivariate splines, the case in which the dimension

n = 2.

In the bivariate case, then, splines are traditionally defined over partitions of

2-simplices; that is to say, triangulations. This dissertation aims to loosen this re-

striction by constructing analogous function spaces over more general partitions. This

is not without motivation; oftentimes, a natural partition of a region may not be a

triangulation, but perhaps a Voronoi diagram, or a grid. Moreover, this is not with-

out precedent: in 2016, Floater and Lai [16] constructed the first polygonal splines in

what might be called a ”proof of concept,” and they applied these functions toward

numerical solutions of Poisson equations.

We’ll extend on the kind of functions that Floater and Lai constructed: first, in the

development of a deeper application toward numerical solutions of partial differential

1

equations; second, we will explore a weakness of the Floater-Lai polygonal spline

construction: they are only continuous, and are not globally differentiable. We will

first define the ambient space of polygonal splines of arbitrary degree d, and then,

with a restriction to quadrilateral partitions, we will construct local polygonal spline

basis functions whose span is contained in C1 for a variety of degrees, along with

finding some conditions which partitions must satisfy in order to allow construction

of such bases.

1.2 Literature review

1.2.1 Numerical solution of PDEs

Numerical solution of partial differential equations (PDEs) is a field of mathemat-

ics which is not particularly old; many agree that the landmark paper by Courant,

Friedrichs, and Lewy in 1928 [11], which specifically addressed using finite difference

methods to approach some problems in mathematical physics, was the bridge between

older, more traditional differential equations, which are now distinguished as ordinary

differential equations (ODEs). While a variety of methods for numerical solution of

PDEs have been created and studied over the past century, multivariate spline meth-

ods fall into a category known as Finite Element Methods (FEMs). A detailed and

well-written history of the development of various methods for numerical solutions of

PDEs can be found in an article written by Thomée (see [29]), with a more detailed

study available in Evans’ well-known textbook [12]. The remainder of this section is

A highly related new method for numerical solution of PDEs that has arisen in

recent years is known as the Virtual Element Method (VEM), an evolution of a type

of method known as the Mimetic Finite Differences (MFD). VEM was pioneered by

Beirão da Veiga, Brezzi, Cangiani, Manzini, Marini, and Russo in 2013 (see [4]). VEM

uses local functions spaces defined over polygons with a reasonably small number of

2

degrees of freedom; more than the spaces defined used in the Floater-Lai polygonal

spline method (see Chapter 2 Section 2.1 of this dissertation). VEM is perhaps most

interesting in that its local basis functions are never explicitly computed, and instead

are defined by various degrees of freedom which allow for computation of local stiffness

and mass matrices without ever needing to know the functions themselves. See [1],

[4], [3], and [21] for more on VEM.

Quadratic serendipity finite elements are another related approach, with func-

tions defined over polygons which are very similar to the Floater-Lai polygonal spline

basis functions. Pioneered by Rand, Gillete, and Bajaj in 2014 (see [25]), quadratic

serendipity finite elements are local functions which are based on generalized barycen-

tric coordinates (GBCs), as are the polygonal splines which will be explored through-

out this dissertation, including the Floater-Lai basis.

While not quite as closely related as the previous two methods, another recently-

developed method is the Weak Galerkin method (WG), which was first introduced by

Wang and Ye in 2011; see [30]. Perhaps the most noteworthy feature of this method

is that the underlying finite elements are allowed to be totally discontinuous; in

particular, there are separate functions defined on the boundaries and the interiors of

each polygon. The Weak Galerkin method has been developed for many applications

since its introduction; see [23], [22], [31].

1.2.2 Construction of differentiable functions over polygons

using local basis functions

Solutions of higher-order PDEs usually must satisfy higher regularity conditions, so

it is desirable to have numerical solutions which are similarly regular. From the

perspective of FEMs, this means that we want to find a way to use our local basis

functions to ensure some kind of regularity, or perhaps to find a more regular subspace

of the local basis functions.

3

Another motivation for construction of more globally-differentiable local basis

functions comes from geometric surface design, like aircraft and car body design, or in

computer graphics. Over quadrilaterals, tensor-product B-splines are widely used to

this end, but they are only defined over highly-restrictive partitions of quadrilaterals

- most glaringly, the valence of every interior vertex of such a partition is exactly 4.

Historically, it is difficult to manage the behavior of locally-defined functions around

interior vertices with other valences, commonly known as extraordinary points. In

computer graphics, different methods of subdivision of surfaces, most based on the

well-known methods of Catmull and Clark (see [9]), are often used, as well as methods

based on NURBS (non-uniform rational basis splines) or their successors, T-splines

(see [8], [26], [27], [24]). Both methods, being based on subdivision, can result in

meshes with many underlying patches. Of course, a minimal number of patches is

preferable.

While the functions used in the aforementioned Virtual Element Method can be

globally Cr for any arbitrary r ≥ 0, recall that the basis functions themselves are

not explicitly constructed. However, the quadratic serendipity finite elements can

only ensure C0 continuity, while the functions used in the Weak Galerkin method are

generally not continuous at all.

Over triangulations, bivariate splines of sufficiently high degree can made be glob-

ally Cr by enforcing some constraints on its coefficients, but there are not yet any

such methods established for polygonal splines; even the Floater-Lai construction is

only continuous. For this reason, we aim to find various C1 subspaces of polygonal

splines in Chapters 3, 4, and 5 of this dissertation.

4

Chapter 2

Polygonal Spline Methods for

Numerical Solution of General

Second-Order Elliptic Equations

2.1 Previous results

In this chapter we extend the polygonal spline methods of Floater and Lai in [16] to

solve a larger class of partial differential equations. That paper laid some foundational

work, and served as proof of the viability of this type of numerical method, and focused

on the solution of Poisson equations of the form

 −∆u = f ; x ∈ Ω ⊂ R2,

u = g; x ∈ ∂Ω

for some polygonal region Ω.

We first give a brief overview of the Floater-Lai methods. Let us begin with the

construction of what we’ll call Floater-Lai polygonal splines.

5

2.1.1 Floater-Lai polygonal splines

Let P = 〈v1, v2, ..., vn〉 be a convex n-gon for some natural number n ≥ 3. We’ll

often refer to the vertices of P cyclically, so that vn+j = vj for any natural number

j. Any collection of n functions {φi}ni=1 defined over P is called a set of generalized

barycentric coordinates (GBCs) for P if, for all x ∈ P and i = 1, 2, ..., n,

φi(x) ≥ 0,
n∑
j=1

φj(x) = 1, and
n∑
j=1

vjφj(x) = x. (2.1.1)

A corollary property to those listed in (2.1.1) is that the GBCs of P are linear on

its edges: where xt = (1− t)vj + tvj+1 for some j ∈ N and t ∈ [0, 1],

φi(xt) = (1− t)φi(vj) + tφi(vj+1). (2.1.2)

A variety of particular choices of GBCs can be reviewed in an excellent survey by

Michael Floater; see [13]. For this work, though, we focus on perhaps the simplest-

formulated and most-studied choice of GBCs, known as Wachspress coordinates.

While the usual barycentric coordinates over triangles are polynomials, Wachs-

press coordinates over convex polygons are generally rational functions. A variety

of equivalent definitions of Wachspress coordinates have been used, but we will stick

to one in this paper which is highly related to the usual definition of barycentric

coordinates. First, we introduce some notation to express some geometric quantities.

For each i, denote by Ci the area of the subtriangle of P given by 〈vi−1, vi, vi+1〉.

Denote by Ai(x) the signed area of the triangle 〈x, vi, vi+1〉, positive for points x on

the interior of P . Notice that, while Ci are constants for a given quadrilateral P for

each i, Ai is a linear bivariate polynomial. It is worth noting that Ai(vi−1) = Ci,

Ai(vi+2) = Ci+1, and Ai(vi) = Ai(vi+1) = 0. Both of these notations use cyclic

indices, just as for the vertices. Figure 2.1 shows an illustration of C2 and A3(x) for

6

Figure 2.1: An illustration to show the areas C2 and A3(x)

a given quadrilateral.

Then the Wachspress coordinates of P are defined by

φi(x) =
wi(x)
n∑
j=1

wj(x)
, where wi(x) = Ci

∏
j=1,...,n
j 6=i,i−1

Aj(x).

Floater and Lai used Wachspress coordinates in the construction of spline func-

tions over convex polygons in the same role as the usual barycentric coordinates, first

by constructing Bernstein-Bézier functions. For a multi-index j = (j1, j2, ...jn) ∈ Nn
0

7

with |j| := j1 + ...+ jn = d ≥ 0, define

B
(d)
j (x) :=

d!

j1!...jn!

n∏
i=1

φjii (x)

for every point x ∈ P . A function of this type is known as a degree-d Bernstein-Bézier

function over P . Define a function space over P by the linear span of such functions:

Φd(P) :=

s : s(x) =
∑
|j|=d

cjB
(d)
j (x)


where the cj are real coefficients and x ∈ P . Where Πd is the space of polynomials of

degree ≤ d, one can directly show that Πd ⊆ Φd(P) using (2.1.1).

It is unfortunate that, in general, the set of functions
{
B

(d)
j

}
is not linearly inde-

pendent, and hence is not a true basis for Φd(P). Floater and Lai constructed a basis

for a subspace Ψd(P) ⊂ Φd(P), which is still robust enough to satisfy Πd ⊂ Ψd(P).

The remainder of this section will focus on the case d = 2: for i = −1, 0, 1 and

j = 1, ..., n, denote by λi,j the usual barycentric coordinate associated with vertex

vi+j with respect to the triangle 〈vj−1, vj, vi+1〉, and define the 2n functions

Fi(x) = φi(x)λi,0(x) and Fi,1(x) = φi(x)λi,1(x) + φi+1(x)λi+1,−1(x) (2.1.3)

for each i = 1, ..., n, and let Ψ2(P) be the linear span of the functions Fi and Fi,1 over

P . The reader can refer to [16] for some details which lead to the constructions of

Fi and Fi,1, along with a more general construction of a basis for Ψd(P) and a proof

that Πd ⊂ Ψd(P), but it is clear to see that these functions are linearly independent:

Fi is zero at every vertex except vi, at which its value is 1, and Fi,1 is zero at every

vertex and on every edge except the edge between vi and vi+1.

Now, for a polygonal region Ω ⊂ R2, let P be a partition of Ω into convex polygons.

8

To divert from Floater and Lai’s original notation a bit, we’ll write

SFLd (P) =
{
s ∈ C0(Ω) : s|P ∈ Ψd(P), ∀P ∈ P

}
.

We use this notation because, as we’ll see in the later chapters, there are ways to

construct a true basis for the full space which they’ve named Φd(P), with no need to

search for a subspace. Therefore, we’ll reserve the more general notation Sd(P) for

Sd(P) = {s : s|P ∈ Φd(P), ∀P ∈ P} , and

Srd(P) = {s ∈ Cr(Ω) : s|P ∈ Ψd(P), ∀P ∈ P} ,

so SFLd (P) ⊆ S0
d(P).

For a given polygon P ∈ P , Floater and Lai built an alternative basis

{Li,P , Li,1,P}ni=1 for Ψ2(P) which could be used to interpolate functions at the vertices

vi and the edge midpoints vi,1 =
vi + vi+1

2
by the function sf ∈ SFL2 (P) defined by

sf (x)|P =
n∑
i=1

f(vi)Li,P (x) + f(vi,1)Li,1,P (x),

for each P ∈ P . The function sf satisfies sf (vi) = f(vi) and sf (vi,1) = f(vi,1) for each

vertex vi and edge midpoint vi,1 of each polygon P ∈ P .

2.1.2 A Polygonal spline method for numerical solution of

Poisson equations

We are now ready to discuss the method of numerical solution of the Poisson equation

using Floater-Lai polygonal splines. We solve the weak form of the Poisson equation:

9

where

B(u, v) =

∫
Ω

∇u · ∇v dx,

solve for a function uh ∈ SFL2 (P)∩H1
0 (Ω) such that B(uh, vh) = 〈f, vh〉 for all functions

vh ∈ SFL2 (P) ∩H1
0 (Ω).

We mention that we can represent a spline by an ordered vector of its coefficients.

Therefore, our solution will be a vector c which will represent a polygonal spline

solution u.

The first step is to enforce continuity. Whenever two polygons share a common

edge, we need that the coefficients of the 3 basis functions which are supported on the

edge have the same value. Then we build a matrix H such that Hc = 0 represents

this continuity condition.

Next we form mass and stiffness matrices M and K. Both of these matrices are

block-diagonal; for example M = diag(MP , P ∈ P) where

MP,i,j =

∫
P

L̃iL̃jdx

for Li,P = L̃2i−1 and Li,1,P = L̃2i, i = 1, ...n. K is constructed similarly to form the

stiffness matrix.

We then form the interpolatory spline sf for the source function f , and approx-

imate the right-hand side of the Poisson equation 〈f, Li,P 〉 by 〈sf , Li,P 〉. Where the

spline sf can be represented by the vector of coefficients cf , we compute the vector

〈sf , Li,P 〉 = Mcf .

We can use the same interpolation scheme to interpolate the boundary-value func-

tion g by a spline sg with vector of coefficients cg. Denote by G the subvector of cg

which corresponds to coefficients of basis functions which are supported on the bound-

ary of Ω by G. Construct a matrix B such that Bcg = G, and enforce the condition

10

that Bc = g, where c is the solution vector.

Our goal, then, is to solve Kc = Mcf subject to the constraints Bc = G and

Hc = 0. This is solved by the constrained minimization

min
c

1

2
cTKc− cTfMc; Hc = 0, Bc = G.

An iterative approach to the above minimization is presented in [2]. Many numerical

solutions of Poisson equations retrieved using this method are given in the paper

[16]. We’re now ready to go on to the original content presented in this chapter: an

extension of this method to numerically solve more general second-order PDEs.

2.2 A Novel polygonal spline method for numeri-

cal solution of PDEs

2.2.1 Motivation

In this section we’ll present an extension of the Floater-Lai method presented above

to solve more general second-order partial differential equations, namely

 L(u) = f ; x ∈ Ω ⊂ R2,

u = g; x ∈ ∂Ω,
(2.2.1)

where L is a partial differential operator with the following form:

L(u) :=
2∑

i,j=1

∂

∂xj

(
Aij

∂

∂xi
u

)
+

2∑
k=1

Bk
∂

∂xk
u+ Cu,

with Aij ∈ L∞(Ω), Bk ∈ L∞(Ω), C ∈ L∞(Ω), f is a function in L2(Ω), and g ∈

L∞(∂Ω). These results were published in a work which I co-authored with my advisor,

Ming-Jun Lai, in Approximation Theory XV: San Antonio 2016.

11

When the matrix A = [Aij]1≤i,j≤2 is symmetric and positive definite over Ω, the

PDE in (2.2.1) is said to be elliptic. A typical PDE of this type can be given by

defining the operator L with the following weight functions: Let

A11 A12

A21 A22

 =

ε+ x xy

xy ε+ y

 , (2.2.2)

with ε > 0, B = (B1, B2) = (0, 0), and C = exp(−x2 − y2). Then the corresponding

PDE is elliptic in the first quadrant. Given the conditions listed above forAij, Bk, C, f,

and g, we know that this type of PDE has a unique solution. See Theorem 2.2.1 in a

later section.

There is a standard approach to use methods for solution of 2nd-order elliptic

PDE to study hyperbolic equations, transport equations, and mixed parabolic and

hyperbolic equations. Indeed, consider a singularly-perturbed elliptic PDE:

− ε∆u+ (2− y2)Dxu+ (2−x)Dyu+ (1 + (1 +x)(1 + y)2)u = f, (x, y) ∈ Ω, (2.2.3)

where Ω = (0, 1)× (0, 1),with u|∂Ω = g, where f and g are any appropriate functions.

When ε = 0, this is a hyperbolic test problem considered in [5, 18, 19]. One can

numerically solve (2.2.3) for ε > 0 very small to approximate the solution of the

hyperbolic problem with ε = 0.

For another example, the following is a singularly perturbed advection-diffusion

problem:

− ε∆u+Dxu+Dyu = f, (x, y) ∈ Ω = (0, 1)× (0, 1), (2.2.4)

with u|∂Ω = g, where f and g are appropriate functions. This example was studied

in [19].

Yet another example: the following problem is parabolic for y > 0 and hyperbolic

12

for y ≤ 0:

−εDyyu+Dxu+ c1u = 0, (x, y) ∈ (−1, 1)× (0, 1),

Dxu+ c2u = 0, (x, y) ∈ (−1, 1)× (−1, 0], (2.2.5)

with u|∂Ω = g, for any constants c1 > 0 and c2 > 0. It was also studied in [19]. We

can use the following general elliptic PDE to study the above problem by considering

−ηDxxu− εDyyu+Dxu+ c1u = f1, (x, y) ∈ (−1, 1)× (0, 1),

−η∆u+Dxu+ c2u = f2, (x, y) ∈ (−1, 1)× (−1, 0], (2.2.6)

with u|∂Ω = g and η > 0, where f1, f2 and g are appropriate functions. We can

approximate the solution to (2.2.5) by letting η > 0 go to zero and use spline functions

which are not necessarily continuous at y = 0.

These examples demonstrate that there is usefulness in a numerically solving the

model problem (2.2.1).

2.2.2 Existence, uniqueness, and stability of solutions

We will review some sufficient conditions such that the elliptic PDE in (2.2.1) admits

a unique weak solution with zero boundary condition; that is, g = 0 on ∂Ω. Of course,

it would be beneficial to find necessary conditions as well, but these can be hard to

pinpoint. In particular, it must be required that the associated homogeneous PDE,

where f = g = 0, has the unique solution u = 0; otherwise, when given a solution u∗

of the PDE above, we would be able to build a distinct solution using u∗ + Ku for

any constant K.

13

The weak formulation of this PDE is given by the following: for all v ∈ H1
0 (Ω),

2∑
i,j=1

∫
Ω

Aij
∂

∂xi
u
∂

∂xj
v +

2∑
k=1

∫
Ω

[
Bk

∂

∂xk
u

]
v +

∫
Ω

Cuv =

∫
Ω

fv (2.2.7)

We use the following norm and semi-norms on H1(Ω) for convenience:

‖u‖2,Ω = ‖u‖L2(Ω), |u|1,2,Ω = ‖∇u‖L2(Ω),

|u|2,2,Ω = |u|H2(Ω), and |u|d+1,2,Ω = |u|Hd+1(Ω).

Define by a(u, v) the bilinear form in the left-hand side of the equation in (2.2.7).

To find the weak solution in H1
0 (Ω), we must show that a(u, v) is bounded above and

coercive in order to use the Lax-Milgram theorem. Recall that the PDE in (2.2.1) is

said to be uniformly elliptic with ellipticity α if the coefficient matrix A is symmetric

and positive definite with smallest eigenvalue α > 0 over Ω. Then we have the

following theorem:

Theorem 2.2.1. Suppose that the second order PDE in (2.2.1) is uniformly elliptic

with ellipticity α > 0. Let β := ‖B‖∞,Ω < ∞ and C ≥ γ > 0. Suppose that there

exists a positive constant c such that

α >
β

2c
and γ ≥ cβ

2
. (2.2.8)

Then the PDE (2.2.1) has a unique weak solution u in H1
0 (Ω) satisfying the weak

formulation (2.2.7) for v ∈ H1
0 (Ω).

Many standard finite element method textbooks provide a proof of Theorem 2.2.1;

see, for example, [7] and [6].

When B1 is a function of y and B2 is a function of x, one can show that for all

14

u ∈ H1
0 (Ω),

∫
Ω

B1

(
∂

∂x1

u

)
u dxdy = −

∫
Ω

B1

(
∂

∂x1

u

)
u dxdy

using integration by parts and the zero boundary condition. Thus,∫
Ω
B1(∂

∂x1
u)udxdy = 0. Similarly,

∫
Ω
B2(∂

∂x2
u)udxdy = 0. Hence, the terms involving

first order derivatives in a(u, u) are zero and

a(u, u) =

∫
Ω

[
2∑

i,j=1

Aij
∂

∂xi
u
∂

∂xj
u+ Cu2

]
dxdy

≥α|u|21,2,Ω + γ‖u‖2
2,Ω

which implies that a(u, u) is coercive. Thus, we have established the following:

Corollary 2.2.1. Suppose that the second order PDE in (2.2.1) is uniformly elliptic

with ellipticity α > 0. Suppose that B1 is a function of y and B2 is a function of x.

If C ≥ 0, then the PDE (2.2.1) has a unique weak solution u in H1
0 (Ω) satisfying the

weak formulation (2.2.7) for v ∈ H1
0 (Ω).

By applying Theorem 2.2.1 and Corollary 2.2.1, we can establish the following

result:

Corollary 2.2.2. Suppose that the second order PDE in (2.2.1) is uniformly elliptic

with ellipticity α > 0. Suppose that B1(x, y) = B̂1(x, y) + B′1(y) and B2(x, y) =

B̂2(x, y) + B′2(x), where B′1(y) is a function of y and B′2 is a function of x. Let

β̂ := max{‖B̂1‖∞,Ω, ‖B̂2‖∞,Ω} < ∞ and C ≥ γ > 0. Suppose that there exists a

positive constant c such that

α >
β̂

2c
and γ ≥ cβ̂

2
. (2.2.9)

Then the PDE (2.2.1) has a unique weak solution u in H1
0 (Ω) satisfying the weak

15

formulation (2.2.7) for v ∈ H1
0 (Ω).

In particular, when B1 = B2 ≡ 0, the PDE in (2.2.1) has a unique weak solution

according to Theorem 2.2.1 and Corollary 2.2.2. In fact, we can establish the exis-

tence, uniqueness and stability of the solution of (2.2.1) without using Lax-Milgram

theorem. Indeed, in this case, it is easy to see that the weak form a(u, v) = 〈f, v〉 is

the Euler-Langrange equation of the following minimization:

min
u∈H1(Ω)
u|∂Ω=g

Jf (u), (2.2.10)

where Jf (u) =
1

2
a(u, u)− 〈f, u〉. To approximate the exact solution u ∈ H1(Ω) with

u|∂Ω = 0, we can instead find the minimum among u ∈ H1
0 (Ω). To numerically solve

the PDE, we can instead search for u in Sd := H1
0 (Ω)∩SFLd (P), where SFLd (P) is the

space of degree-d Floater-Lai polygonal splines which are defined over a polygonal

partition P of Ω as explained in the previous section. In the following analysis, we

will consider the minimization (2.2.10) for u ∈ Sd.

Using a standard convex analysis, one can show

Theorem 2.2.2. Suppose that A is symmetric and positive definite. Suppose that

B1 = B2 ≡ 0. If C ≥ γ ≥ 0, then Jf is strongly convex with convexity coefficient

µ which is independent of f ; therefore Jf has a unique minimizer uf . Hence, there

exists a unique weak solution uf satisfying (2.2.7).

Using another standard strong-convexity argument, one can further derive the

following result regarding the stability of the minimizer of Jf with respect to the

source function f :

Theorem 2.2.3. Suppose that the PDE in (2.2.1) satisfies the uniform ellipticity

conditions in the hypotheses of Theorem 2.2.1. For two functions f and g, denote

16

the minimizer of Jf by uf and the minimizer of Jg by ug. Then ||uf − ug||L2(Ω) ≤

µ−1||f − g||L2(Ω).

2.2.3 Convergence of polygonal spline solutions

Finally we discuss convergence of the numerical solutions. The discussion is divided

into two parts. The first part shows the approximation power of SFLd (P). The second

part is to apply the approximation property to establish the convergence of polygonal

splines to the weak solution.

Approximation power of interpolatory polygonal splines

Proving the approximation power of this space is more complicated than in the cases

of finite elements and splines over triangulations due to difficulties in bounding the

gradients of the Wachspress coordinates. Fortunately, it has been shown in [15] and

[13] that

sup
x∈P

n∑
j=1

||∇φj(x)||2 ≤
4

h∗
, (2.2.11)

where h∗ is the shortest perpendicular distance from any vertex of a convex polygon

P ∈ P to a non-incident edge of P . To control this quantity, we’ll have to assume

that P satisfies

0 < α1 < θP,i < α2 < π, i = 1, · · · , n(P),∀P ∈ P (2.2.12)

for two given positive constants α1 and α2, where θP,i is the interior angle of P at its

ith vertex, and n(P) stands for the number of sides of P .

We shall assume that there exists a positive integer n0 such that n(P) ≤ n0 for

all P ∈ P . For each P ∈ P , let |P | be the diameter of P (that is, the diameter of the

smallest circle containing P) and ρP be the radius of the largest circle contained in

P . We denote by κP = |P |
ρP

the shape parameter, also known as the chunkiness, of P

17

(see [20] and [7]). We define |P| := max
P∈P
|P |; this is in contrast to the usual use of this

notation to mean the longest edge in the partition P . Where e(P) is the length of

the shortest edge of P , let e(P) = min
P∈P

e(P). Finally, we will assume that the global

shape parameter γP satisfies

γP =
|P|
e(P)

≤ γ <∞ (2.2.13)

for a given γ > 0.

As SFLd (P) is a space of continuous functions over Ω, we can not simply apply the

Bramble-Hilbert lemma to establish the approximation property of Sd(P). Instead,

we follow the ideas in [20]. For simplicity, let us focus ourselves to the case d = 2;

the case d ≥ 3 can be done similarly.

First we prove the following lemma:

Lemma 2.2.1. Let P be a convex n-gon in P. Let Lj be one of the Floater-Lai

interpolatory basis functions which is supported on P . Then

||Lj||2,P ≤ Cn,α2,γ|P | (2.2.14)

and

|Lj|1,2,P ≤ Cn,α1,α2,γ (2.2.15)

for two positive constants Cn,α2,γ and Cn,α1,α2,γ.

Proof. Since the functions Lj are built from linear combinations of the functions Fk

and Fk,1 given in (2.1.3), we have for some constant Cn which depends only on n

||Lj||2,P ≤ Cn max
k=1,...,n

{||Fk||2,P , ||Fk,1||2,P}.

18

Thus we really need to bound ||Fk||2,P and ||Fk,1||2,P . By the definition of Fk,

||Fk||2,P ≤ ||φiλi,0||2,P ≤ ||λi,0||∞,P ||φi||2,P ≤ |P |||λi,0||∞,P

To estimate ||λi,0||∞,P , let h⊥,i be the perpendicular distance from vi to the line

connecting vi−1 to vi+1, and denote by mi the point on this line which is a distance

h⊥,i from vi. Then since λi,0 is a linear function, we have ||∇λi,0||2 = h−1
⊥,i.

Let |ei−1| be the length of the edge between vi−1 and vi, and similarly define

|ei|. Without loss of generality, suppose that |ei| ≤ |ei−1|. If we draw the triangle

τ = 〈vi, vi+1,mi〉 (see Figure 2.2), we can see that h⊥,i = |ei| cos(η), where η is the

interior angle of τ at vi. Since |ei| ≤ |ei−1|, we have that η < 1
2
θP,i. By (2.2.12),

0 < 1
2
θP,i <

π
2
, so

cos(η) ≥ cos

(
θP,i
2

)
=

√
1 + cos(θP,i)

2
≥
√

1 + cos(α2)

2
= Cα2 (2.2.16)

for a constant Cα2 which depends on α2.

Figure 2.2: An illustration to clarify the geometry used to show (2.2.16)

19

Therefore we have that

h⊥,i ≥ Cα2 |ei| ≥ Cα2e(P). (2.2.17)

Now ||λi,0||∞,P will be achieved by λi,0 at the point in P which has the largest

perpendicular distance from the line connecting vi−1 and vi+1, which is of course a

distance at most |P | from this line. Since λi,0 is linear, we have that

||λi,0||∞,P ≤
|P |
h⊥,i
≤ |P |
Cα2e(P)

≤ Cα2γ. (2.2.18)

Therefore we have ||Fk||2,P ≤ Cn(P),α2,γ|P |. A similar argument shows that

||Fk,1||2,P ≤
2|P |2

Cα2e(P)
≤ Cn,α2,γ|P |,

which completes the proof of (2.2.14).

To prove (2.2.15), we will follow a similar strategy. As

|Lj|1,2,P ≤ Cn max
k=1,...,n

{|Fk|1,2,P , |Fk,1|1,2,P},

we need to bound |Fk|1,2,P and |Fk,1|1,2,P . We compute the following using (2.2.11)

and (2.2.17):

|Fk|21,2,P =

∫
P

(λi,0Dxφi + φiDxλi,0)2 + (λi,0Dyφi + φiDyλi,0)2 dx dy

≤ 2 sup
x∈P
||∇φi(x)||22

∫
P

λ2
i,0 dx dy + 2 sup

x∈P
||∇λi,0(x)||22

∫
P

φ2
i dx dy

≤ 2 sup
x∈P
||∇φi(x)||22(||λi,0||2∞,P)|P |2 + 2

h2
⊥,i
|P |2

≤ Cn(P) sup
x∈P
||∇φi(x)||22

(
|P |
h⊥,i

)2

|P |2 + Cn(P)

(
|P |
h⊥,i

)2

≤ Cn(P)
16|P |2
h2
∗

(
|P |
h⊥,i

)2

+ Cn(P)

(
|P |
h⊥,i

)2

= Cn(P),α2

(
|P |
e(P)

)2

(1 + 16|P |2
h2
∗

).

Now we will show that h∗ is comparable to e(P). In particular, since P is convex,

20

h∗ ought to be realized by a line drawn from a vertex of P , say vk, to an edge to an

edge which is a graph-distance of 2 from vk, say the edge between vk+1 and vk+2. If

we draw in this line (see Figure 2.3), a right triangle is formed which shows that

h∗ = sin θk+1|ek| ≥ min
x
{sinα1, sinα2}e(P). (2.2.19)

Figure 2.3: An illustration of the geometry used to show (2.2.19)

Therefore we can say

sup
x∈P
||∇φi(x)||22 ≤

16

h2
∗
≤ Cα1,α2

e(P)2
. (2.2.20)

Combining (2.2.20) and our above analysis shows that

|Fk|21,2,P ≤ Cn(P)
|P |2
e(P)2 (1 + 16Cα1,α2

|P |2
e(P)2)

⇒ |Fk|1,2,P ≤ Cα1,α2

|P |
e(P)

(1 + |P |
e(P)

)Cα1,α2,γ.

A similar argument will show that |Fk,1|1,2,P ≤ Cα1,α2,γ, so we have that |Lj|1,2,P ≤

Cn,α1,α2,γ as desired in (2.2.15).

We are nearly ready to establish the approximation power of Sd(P). Our main

21

result is the following theorem:

Theorem 2.2.4. Suppose that P satisfies four assumptions: γP ≤ γ, 0 < α1 ≤ θP,i ≤

α2 < π, κP ≤ κ < ∞ and n(P) ≤ n0. Then for any u ∈ Hd+1(Ω), there exists a

polygonal spline Q(u) ∈ Sd(P) such that

‖u−Q(u)‖2,Ω ≤ Cn0,α1,α2,κ,γ|P|d+1|u|d+1,2,Ω (2.2.21)

and

|u−Q(u)|1,2,Ω ≤ Cn0,α1,α2,κ,γ|P|d|u|d+1,2,Ω (2.2.22)

for constant C(n0, α1, α2, κ, γ) which is independent of u, but may be dependent the

Lipschitz constant of the boundary of Ω if Ω is nonconvex.

We will require bit more discussion, along with another lemma, to prove this

theorem. For convenience, we focus on the case d = 2. We will construct a quasi-

interpolatory spline Q(u) ∈ SFL2 (P).

We first extend any u ∈ H3(Ω) to a function in H3(R2) with the property

‖u‖H3(R2) ≤ E‖u‖H3(Ω) with a positive constant E dependent only on the Lipschitz

constant of the boundary of Ω (cf. [28] Chapter 6§3) and call it u again for conve-

nience.

For each vertex v, let Ωv be the collection of all polygons in P sharing the vertex

v. Let Bv be largest disk contained in Ωv if v is an interior vertex. If v is a boundary

vertex, we let Bv be the largest disk contained in the convex hull of Ωv. Let Fv(u) be

the averaged Taylor polynomial of degree 2 associated with u based in the disk Bv

(cf. [20]). Define by

cv(u) = Fv(u)|v. (2.2.23)

Let Tv ∈ Ωv be a triangle with vertex v. We simply use the polynomial property

‖p‖∞,T ≤ 1√
AT
‖p‖2,T for any triangle T along with the property that ‖Fv(u)‖2,Ωv ≤

22

K1‖u‖2,Ωv (cf. [20]) to have

|cv(u)| ≤ ‖Fv(u)‖∞,Tv ≤
1√
ATv
‖Fv(u)‖2,Tv ≤

K1√
ATv
‖u‖2,Ωv (2.2.24)

for a constant K1 independent of u and Tv.

The triangle Tv is contained within some polygon ∈ P , and in particular two of its

edges are edges of P ; say e1 and e2. Then ATv = |e1||e2| sin(θ) where θ is the interior

angle of P at the vertex joining e1 and e2. Then

ATv ≥ e(P)2 sin(θ)⇒
√
ATv ≥ K2 e(P) ≥ K2 e(P)

for a constant K2 depending only on α1 and α2, so we have

|cv(u)| ≤ K1K2

e(P)
||u||2,Ωv . (2.2.25)

Similarly, for edges e ∈ P , let Ωe be the union of the two polygons sharing e in P if e

is an interior edge. Let Be be a largest disk contained in Ωe. If e is a boundary edge,

we can choose a disk Be contained in the polygon with edge e. Then we let Fe(u) be

the averaged Taylor polynomial of degree d based on Be. Choose ce to be the value

at Fe(u) evaluated at the midpoint we of e. Choose a good triangle Te containing we.

Then ce(u) will satisfy a similar property in (2.2.25). Our quasi-interpolatory spline

is defined by

Q(u) =
∑
v∈P

cv(u)Lv +
∑
e∈P

ce(u)Le. (2.2.26)

Let us show that Q(u) is a bounded operator on L2(Ω). That is,

Lemma 2.2.2. For any u ∈ L2(Ω), we have

‖Q(u)‖2,Ω ≤ K3‖u‖2,Ω (2.2.27)

23

for a positive constant K3 independent of u, depending only on n0, α1, α2, γ, and the

Lipschitz constant of the boundary of Ω. In addition, for nonnegative integers α, β

with α + β = 1,

‖Dα
xD

β
yQ(u)‖2,Ω ≤

K4

e(P)
‖u‖2,Ω (2.2.28)

for another positive constant K4 independent of u, depending only on the same quan-

tities as K3.

Proof. For each polygon P ∈ P , denote by ΩP the union of polygons which share an

edge or a vertex of P . Note that Lv|P is just Lj for some j and so is Le|P . Then, we

use Lemma 2.2.1 to have

‖Q(u)‖2,P =

[∫
P

|
∑
v∈P

cv(u)Lv +
∑
e∈P

ce(u)Le|2dx dy

]1/2

≤
∑
v∈P

|cv(u)|
(∫

P

|Lv|2dx dy
)1/2

+
∑
e∈P

|ce(u)|
(∫

P

|Le|2dx dy
)1/2

≤
∑
v∈P

K1K2

e(P)
‖u‖2,Ωv ||Lv||2,P +

∑
e∈P

K1K2

e(P)
‖u‖2,Ωe||Le||2,P

≤ Cn(P),α1,α2,γ
|P |
e(P)

||u||2,ΩP

≤ Cn0,α1,α2,γ
|P|
e(P)

||u||2,ΩP
≤ Cn0,α1,α2,γ||u||2,ΩP

(2.2.29)

for a constant Cn0,α1,α2,γ. Hence,

‖Q(u)‖2
2,Ω =

∑
P∈P

‖Q(u)‖2
2,P ≤ C2

n0,α1,α2,γ

∑
P∈P

||u||22,ΩP

≤ C2
n0,α1,α2,γ

∑
P∈P

‖u‖2
2,P = C2

n0,α1,α2,γ
‖u‖2

2,Ω, (2.2.30)

where we have used the fact that
∑

P∈P ||u||22,ΩP
≤ Cn0,α1

∑
P∈P ||u||22,P for a positive

constant Cn0,α1 since each polygon q ∈ P , q ∈ ΩP for at most n02π/α1 polygons

P ∈ P .

24

Similarly, for nonnegative integers α and β such that α + β = 1, we have

‖Dα
xD

β
yQ(u)‖2,P =

[∫
P

|
∑
v∈P

cv(u)Dα
xD

β
yLv +

∑
e∈P

ce(u)Dα
xD

β
yLe|2dx dy

]1/2

≤
∑
v∈P

|cv(u)|
(∫

P

|Dα
xD

β
yLv|2

)1/2

+
∑
e∈P

|ce(u)|
(∫

P

|Dα
xD

β
yLe|2dx dy

)1/2

≤
∑
v∈P

K1K2

e(P)
‖u‖2,Ωv |Lv|1,2,Ωv +

∑
e∈P

K1K2

e(P)
‖u‖2,Ωe|Le|1,2,Ωe

≤ Cn0,α1,α2,γ
||u||2,ΩP

e(P)
.

Hence, we have

‖Dα
xD

β
yQ(u)‖2

2,Ω =
∑
P∈P

‖Dα
xD

β
yQ(u)‖2

2,P

≤ C2
n0,α2,γ

∑
P∈P

||u||22,ΩP

1

e(P)2
=
C2
n0,α1,α2,γ

e(P)2
‖u‖2

2,Ω. (2.2.31)

By taking the square root of both sides, we finish the proof of (2.2.28).

Now we are ready to prove the main result:

Proof (of Theorem 2.2.4). For simplicity, let us consider the approximation in L2(Ω)

first. It is easy to see

‖u−Q(u)‖2
L2(Ω) =

∑
P∈P
‖u−Q(u)‖2

L2(P)

≤ 2
∑
P∈P
‖u− FP,2(u)‖2

L2(P) + ‖FP,2(u)−Q(u)‖2
L2(P),

(2.2.32)

where FP,2(u) is the averaged Taylor polynomial of degree 2 associated with u based

on the largest disk BP inside P . We know from [20] that

||u− FP,2(u)||2,P ≤ CκP |P |3|u|3,2,P . (2.2.33)

25

For v ∈ P , Fv(FP,2(u)) = FP,2(u) and for e ∈ P , Fe(FP,2(u)) = FP,2(u). We have

Q(FP,2(u)) = FP,2(u) and hence, by Lemma 2.2.2,

‖FP,2(u)−Q(u)‖2,P = ‖Q(FP,2(u)− u)‖2,P

≤ K3‖u− FP,2(u)‖2,ΩP
≤ K3CκP |ΩP |3|u|3,2,ΩP

.

Combining this with (2.2.32) and (2.2.33), we have the following:

‖u−Q(u)‖2
2,Ω ≤ 2

∑
P∈P

||u− FP,2(u)||22,P + ‖FP,2(u)−Q(u)‖2
2,P

≤
∑
P∈P

C2
κP
|P |6|u|23,2,P +K2C2

κP
|ΩP |6|u|23,2,ΩP

≤ K2
3(1 + C2

κ)
∑
P∈P

|ΩP |6|u|23,2,Ω ≤ K2
3(1 + C2

κ)|P|6|u|23,2,Ω,

where we have noted that the number of polygons containing each vertex is bounded

by 2π/α1, and hence the number of polygons P ∈ P such that P ⊂ ΩP is bounded

by n02π/α1, and that |ΩP | ≤ 3|P|. Therefore

||u−Q(u)||2,Ω ≤ Cκ|P|3|u|3,2,Ω.

Now we consider |u − Q(u)|1,2,Ω. Recall that the averaged Taylor polynomial

has the property that Dα
xD

β
yFP,d(u) = FP,d−α−β(Dα

xD
β
yu), so we use Lemma 2.2.2,

26

particularly (2.2.28), to have

|u−Q(u)|21,2,Ω =
∑
α+β=1

||Dα
xD

β
y (u−Q(u))||22,Ω

=
∑
P∈P

∑
α+β=1

||Dα
xD

β
y (u−Q(u))||22,P

≤ 2
∑
P∈P

∑
α+β=1

||Dα
xD

β
yu− FP,1(Dα

xD
β
yu)||22,P + ||Dα

xD
β
y (FP,1(u)−Q(u))||22,P

= 2
∑
P∈P

∑
α+β=1

||Dα
xD

β
yu− FP,1(Dα

xD
β
yu)||22,P +

K2
4

e(P)2
‖FP,2(u)− u||22,ΩP

≤ 2
∑
P∈P

∑
α+β=1

CκP |P |4|Dα
xD

β
yu|22,2,ΩP

+
K2

4

e(P)2
CκP |P |6|u|23,ΩP

which completes the proof of (2.2.22).

Convergence of polygonal splines to weak solutions

We are now ready to prove the convergence of polygonal splines toward the weak

solution of (2.2.1).

Theorem 2.2.5. Suppose that the PDE in (2.2.1) satisfies the assumptions in The-

orem 2.2.1 and P satisfies (2.2.13) and (2.2.12). Suppose that the weak solution u

of the PDE in (2.2.1) is in Hd+1(Ω). Let uS ∈ Sd be the weak solution satisfying

a(uS, v) = 〈f, v〉 for all v ∈ Sd. Then

|u− uS|1,2,Ω ≤ K|u|d+1,2,Ω|P|d, (2.2.34)

where here, we denote by |P| is the length of the longest edge in P, and K is a posi-

tive constant depending on β, ‖C‖∞,Ω, |Ω|, µ, n0, α1, α2, κ, γ, the smallest and largest

eigenvalues of A, and the Lipschitz constant of the boundary of Ω.

Proof. We must prove some preliminary results in order to prove the results in this

27

Theorem. First, notice that in the proof of Theorem 2.2.1, we actually have

a(v, v) ≥ µ|v|21,2,Ω, (2.2.35)

where µ = α − cβ

2
for c > 0 such that γ − β

2c
≥ 0. In addition, we can show that

a(u, v) is bounded. Indeed,

a(u, v) =

∫
Ω

2∑
i,j=1

Aij
∂u

∂xi

∂v

∂xj
+

∫
Ω

2∑
k=1

Bk
∂u

∂xk
v +

∫
Ω

Cuv

≤ Λ||∇u||L2||∇v||L2 + β||∇u||L2||v||L2 + ‖C‖∞||u||L2||v||L2

≤ M1 (||∇u||L2||∇v||L2 + ||∇u||L2||v||L2 + ||u||L2||v||L2)

≤ M1 (|u|1,2,Ω|v|1,2,Ω + |u|1,2,Ω(K1|v|1,2,Ω) + (K1|u|1,2,Ω)(K1|v|1,2,Ω))

≤ 3 max{M1,M1K1,M1K
2
1}|u|1,2,Ω|v|1,2,Ω

where Λ > 0 is the largest eigenvalue of [Aij]1≤i,j≤2, M1 = max{Λ, β, ‖C‖∞,Ω}, and

K1 is the constant given by Poincaré’s inequality, which depends only on |Ω|. That

is,

a(u, v) ≤M |u|1,2,Ω|v|1,2,Ω. (2.2.36)

for another positive constant M . By definition of weak solution, we know that for all

v ∈ H1
0 (Ω), a(u, v) = 〈f, v〉, and for all v ∈ Sd, a(uS, v) = 〈f, v〉. Since Sd ⊂ H1

0 (Ω),

we can say that for all v ∈ Sd,

a(u− uS, v) = 0, ∀v ∈ Sd. (2.2.37)

28

Now, define ubest := arg min
s∈Sd

|u− s|1,2,Ω. Then we have

µ|ubest − uS|21,2,Ω ≤ a(ubest − uS, ubest − uS)

= a(ubest − u, ubest − uS)

≤ M |ubest − u|1,2,Ω |ubest − uS|1,2,Ω

⇒ µ|ubest − uS|1,2,Ω ≤ M |ubest − u|1,2,Ω

µ|u− uS|1,2,Ω ≤ µ|u− ubest|1,2,Ω + µ|ubest − uS|1,2,Ω

≤ µ|u− ubest|1,2,Ω +M |ubest − u|1,2,Ω

⇒ |u− uS|1,2,Ω ≤
µ+M

µ
|u− ubest|1,2,Ω

≤ µ+M

µ
Cn0,α1,α2,κ,γ|u|d+1,2,Ω|P|d.

This completes the proof.

We next show convergence in the L2 norm. When Ω is a convex domain, the

convergence rate ||u− ubest||L2(Ω) should be optimal based on a generalization of the

well-known Aubin-Nitsche technique (see [10]) for Poisson equation. That is, we have

Theorem 2.2.6. Suppose that the conditions of Theorem 2.2.5 are satisfied, and

further suppose that the underlying Lipschitz domain Ω is convex. Let uS be the weak

solution of (2.2.1). Then for d ≥ 1,

‖u− uS‖L2(Ω) ≤ C|P|d+1|u|d+1,2,Ω (2.2.38)

for a constant C depending on the same quantities as the constant K from Theorem

2.2.5.

Proof. For u− uS ∈ L2(Ω), we can find the weak solution w ∈ H1
0 (Ω) satisfying

a(v, w) = 〈u− uS, v〉, ∀v ∈ H1
0 (Ω). (2.2.39)

29

Indeed, let â(u, v) = a(v, u) be a new bilinear form. By using the same proof of

Theorem 2.2.1, we can show â(u, v) is a bounded bilinear form and â(u, u) is coercive

since â(u, u) = a(u, u). By the Lax-Milgram theorem, there exists a weak solution

w satisfying (2.2.39). It is known that w ∈ H2(Ω) when Ω is convex (cf. [17]) and

satisfies |w|2,2,Ω ≤ C‖u−uS‖L2(Ω) for a positive constant C > 0 independent of u and

uS.

Thus, we use (2.2.36) and (2.2.37) with an appropriate v ∈ Sd,

‖u− uS‖2
L2(Ω) = 〈u− uS, u− uS〉 = a(u− uS, w)

= a(u− uS, w − v) ≤M |u− uS|1,2,Ω |w − v|1,2,Ω

≤MK|P|d|u|d+1,2,ΩCn0,α1,α2,κ,γ|P||w|2,2,Ω

≤ C|P|d+1|u|d+1,2,Ω‖u− uS‖L2(Ω),

where the constant K is the one in the statement of Theorem 2.2.5, and M is the

one from the proof of the same Theorem; therefore the final constant C has the same

dependence as K from Theorem 2.2.5.

It now follows that

‖u− uS‖L2(Ω) ≤ C|P|d+1|u|d+1,2,Ω

for another positive constant C with the same dependence. This completes the proof.

2.2.4 Description of our numerical method

In this section we explain our implementation to numerically solve general second-

order elliptic PDEs.

Our goal will be to solve for a vector of coefficients u. We can begin in the same

30

place as in [16], first constructing a matrix H to determine continuity conditions by

Hu = 0. We can similarly represent our boundary conditions by a linear system

Bu = G.

An important difference arises from here: we will need to form a different ”stiff-

ness” matrix than in the simpler Poisson case. In particular, in RD, using degree

d polygonal splines, the new left-hand side of the weak form of the problem can be

simplified to the following:

∑
Pn∈P

dn∑
k=1

uk

 D∑
i,j=1

∫
Pn

Aij
∂v

∂xi

∂Lk
∂xj

+

∫
Pn

cvLk



where we have expressed u ≈ uS =
dn∑
k=1

ukLk for some coefficients uk, where Lk is an

ordering of the interpolatory basis of SFLd (P) (which, when restricted to an n-gon Pn,

is simply Ψd(Pn)). Similarly write f ≈ sf =
dn∑
k=1

fkLk and notice that the right-hand

side of the weak form will be equal to
∑
Pn∈P

dn∑
k=1

fk
∫
Pn

vLk for any v ∈ SFLd (P)∩H1
0 (Ω).

Hence, it must be true for v = Lm for m = 1, 2, ..., dn. We can thus construct the

following matrices:

M = [MPn]Pn∈P , where MPn = (MPn,p,q)
D
p,q=1 , and MPn,p,q =

∫
Pn

LpLq ;

K = [KPn]Pn∈P , where KPn =
D∑

i,j=1

Ki,jPn
and

Ki,jPn
=
(
Ki,jPn,p,q

)D
p,q=1

where Ki,jPn,p,q
=

∫
Pn

Aij
∂Lp
∂xi

∂Lq
∂xj

;

MPn = (MPn,p,q)
D
p,q=1 where MPn,p,q =

∫
Pn

CLpLq ;

K = [KPn]Pn∈P + [MPn]Pn∈P ; u = (uk)
D
k=1 ; f = (fk)

D
k=1 ;

where the integrals are numerically computed by first decomposing each polygon into

31

quadrilaterals, and then using the tensor product of the Gauss quadrature formula

of high order, say order 5 × 5, on each quadrilateral, with some modified weights

determined by the inverse of a rational bilinear map of the quadrilateral to the unit

square (see [14]). This type of quadrature was used in [16] to compute the integrals

associated with numerically solving Poisson equations using polygonal splines.

Then notice that we can rewrite our weak formulation as

Ku = M f .

Our minimization in (2.2.10) can be recast in terms of polygonal splines as

min
u

Hu=0,Bu=g

1

2
uTKu− fTMu

which is a constrained minimization problem which can be solved using the itera-

tive method described in [2]. We have implemented the computational scheme in

MATLAB and experimented with many second order elliptic PDEs. Some numerical

results will be shown in the next section. Some of these results also involve first

derivatives; these are implemented as another stiffness matrix added to K: first we

define

JPn =
2∑

k=1

J k
Pn

where J k
Pn

=
(
J k
Pn,p,q

)D
p,q=1

and J k
Pn,p,q

=

∫
Pn

BkLp
∂Lq
∂xk

, where Bk is the appropriate

coefficient function. Then we instead use K = [KPn]Pn∈P + [JPn]Pn∈P + [MPn]Pn∈P .

It is worth mentioning that other finite element methods accommodate continuity

conditions directly rather than solving a linear system, which saves computational

power and time. However, our approach is designed conveniently to implement more

complex continuity conditions; see Example 2.2.6.

32

2.2.5 Numerical results of our method on elliptic PDEs

In all the following examples, we denote by uS the spline solution, and by u the exact

solution. To approximate the L2 error, we report the root mean squared (RMS)

error ERMS = ||u − uS||RMS of the spline solution based on 1001 × 1001 equally-

spaced points over Ω. Since ∇(u − uS) =
(
∂
∂x

(u− uS), ∂
∂y

(u− uS)
)

, we report the

RMS error ∇ERMS = ||∇(u − uS)||RMS, which is the average of the RMS error of

∂
∂x

(u − uS) and ∂
∂y

(u − uS). We also report the mesh size (that is, the longest edge

length) of the partition at each iteration, and the computed rate of convergence in

reference to the mesh size - in light of Theorems 2.2.5 and 2.2.6, we expect the rates

to be 4 for degree 3 in the L2 norm, 3 for degree 2 in the L2 norm and degree 3 in

the H1 norm, and 2 for degree 2 in the H1 norm.

Let us begin with numerical solutions of some standard second-order elliptic PDEs.

Example 2.2.1. We return to example (2.2.2) on the unit square Ω = (0, 1)× (0, 1)

to demonstrate convergence of the method. We’ll set ε = 10−5 and choose f and g so

that

u(x, y) =
(1 + x)2

4
sin(2πxy) (2.2.40)

is the exact solution. We use the polygonal partition shown in Figure 2.4.

We employ our polygonal spline method to solve (2.2.1) with exact solution in

(2.2.40). Our numerical results are shown below in Tables 2.1 and 2.2.

The numerical results in Tables 2.1 and 2.2 show that the polygonal spline method

works very well. We compare with the solution retrieved using degree-2 and degree-

3 bivariate splines over a triangulation of the same domain. We chose a grid-based

initial triangulation with close to the same number of elements as our initial polygonal

partition; see these results in Tables 2.3 and 2.4.

33

Figure 2.4: A partition of the unit square and a few refinements

Table 2.1: Degree-2 Polygonal spline ap-
proximation of solution to Example 2.2.1
with exact solution in (2.2.40)

P mesh ERMS rate ∇ERMS rate

39 2.50e-01 5.47e-03 0.00 1.34e-01 0.00

219 1.25e-01 4.16e-04 3.72 2.60e-02 2.36

1251 6.25e-02 3.68e-05 3.50 5.17e-03 2.33

7251 3.13e-02 3.29e-06 3.48 1.03e-03 2.33

Table 2.2: Degree-3 Polygonal spline ap-
proximation of solution to Example 2.2.1
with exact solution in (2.2.40)

P mesh ERMS rate ∇ERMS rate

39 2.50e-01 9.01e-04 0.00 1.61e-02 0.00

219 1.25e-01 2.74e-05 5.04 1.41e-03 3.52

1251 6.25e-02 1.25e-06 4.45 1.31e-04 3.43

7251 3.13e-02 6.92e-08 4.18 1.22e-05 3.43

Table 2.3: Degree-2 Bivariate spline ap-
proximation of solution to (2.2.1) with ex-
act solution in (2.2.40)

T mesh ERMS rate ∇ERMS rate

40 3.54e-01 6.94e-03 0.00 2.09e-01 0.00

160 1.77e-01 8.29e-04 3.06 5.38e-02 1.96

640 8.84e-02 1.00e-04 3.05 1.34e-02 2.00

2560 4.42e-02 1.22e-05 3.03 3.32e-03 2.01

Table 2.4: Degree-3 Bivariate spline ap-
proximation of solution to (2.2.1) with ex-
act solution in (2.2.40)

T mesh ERMS rate ∇ERMS rate

40 3.54e-01 7.16e-04 0.00 3.15e-02 0.00

160 1.77e-01 4.43e-05 4.01 3.96e-03 2.99

640 8.84e-02 5.33e-06 3.06 4.96e-04 3.00

2560 4.42e-02 5.52e-06 -0.05 7.22e-05 2.78

34

From Tables 2.1, 2.2, 2.3, and 2.4, we can see that polygonal splines can pro-

duce a more accurate solution on polygonal partitions containing a similar number of

polygons as a triangulation of the same domain.

It is worth noting the difference in degrees of freedom in this example. In par-

ticular, the polygonal splines have significantly more degrees of freedom than each

iteration of triangular spline. However, this doesn’t seem representative in general,

and is simply an artifact of the convenient triangulation we chose for our numerical

trials. For example, one could imagine retrieving a triangulation from a polygonal

partition by adding some diagonals to triangulate each polygon; however, this would

substantially increase the number of degrees of freedom in this case. Regardless, there

is no doubt that our polygonal spline methods are more numerically taxing than tra-

ditional bivariate spline methods. At each iteration we have the following numbers

of degrees of freedom:

Table 2.5: Polygonal splines’
degrees of freedom

P DoF (d = 2) DoF (d = 3)

39 179 313

219 886 1657

1251 4958 9313

7251 28654 53857

Table 2.6: Bivariate splines’
degrees of freedom

T DoF (d = 2) DoF (d = 3)

40 97 205

160 353 769

640 1345 2977

2560 5249 11713

As we’ll use the same partitions for each example in this paper, the reader can

refer back to these tables.

Example 2.2.2. Here is another example of an elliptic second order PDE: let

A11 A12

A21 A22

 =

1 + ε 1

1 1 + ε



35

for some ε > 0, and let C = 1, and solve the PDE given by

−
2∑

i,j=1

∂

∂xj

(
Aij

∂u

∂xi

)
+

∂u

∂x1

+
∂u

∂x2

+ Cu = f in Ω;

u = g on ∂Ω.

(2.2.41)

To test our method, we choose f and g so that

u = (1 + x2 + y2)−1 (2.2.42)

is the exact solution.

According to Corollary 2.2.1, this elliptic PDE has a unique weak solution. In fact,

we can even use ε = 0, which makes this PDE non-elliptic, and still produce good

solutions. We use the same partition as in Example 2.2.1 to solve this PDE. Tables 2.7

and 2.8 show the results of our minimization, using the non-elliptic condition ε = 0:

Table 2.7: Degree-2 Polygonal spline ap-
proximation of solution to Example 2.2.2
with exact solution (2.2.42)

P mesh ERMS rate ∇ERMS rate

39 2.50e-01 1.30e-04 0.00 3.82e-03 0.00

219 1.25e-01 1.08e-05 3.59 7.47e-04 2.35

1251 6.25e-02 1.09e-06 3.30 1.54e-04 2.28

7251 3.13e-02 1.57e-07 2.80 3.40e-05 2.18

Table 2.8: Degree-3 Polygonal spline ap-
proximation of solution to Example 2.2.2
with exact solution (2.2.42)

P mesh ERMS rate ∇ERMS rate

39 2.50e-01 7.64e-06 0.00 2.41e-04 0.00

219 1.25e-01 3.70e-07 4.37 2.41e-05 3.32

1251 6.25e-02 1.99e-08 4.21 2.36e-06 3.35

7251 3.13e-02 1.25e-09 4.00 2.41e-07 3.29

Similarly, the minimization (2.2.10) with first-order derivatives based on bivariate

splines can also produce good numerical results. For comparison, Tables 2.9 and 2.10

tabulate the results of the same computation using bivariate splines of degree 2 and

degree 3 over grid-based right triangulations of the same domain.

36

Table 2.9: Degree-2 Bivariate spline ap-
proximation of solution to Example 2.2.2
with exact solution in (2.2.42)

T mesh ERMS rate ∇ERMS rate

40 3.54e-01 4.80e-04 0.00 1.14e-02 0.00

160 1.77e-01 5.23e-05 3.20 2.70e-03 2.07

640 8.84e-02 6.21e-06 3.07 7.14e-04 1.92

2560 4.42e-02 8.53e-07 2.86 2.29e-04 1.64

Table 2.10: Degree-3 Bivariate spline ap-
proximation of solution to Example 2.2.2
with exact solution in (2.2.42)

T mesh ERMS rate ∇ERMS rate

40 3.54e-01 2.43e-05 0.00 9.87e-04 0.00

160 1.77e-01 1.81e-06 3.75 1.44e-04 2.77

640 8.84e-02 1.29e-07 3.81 2.01e-05 2.84

2560 4.42e-02 9.69e-09 3.74 2.97e-06 2.76

2.2.6 Numerical results of our method on parabolic and

hyperbolic PDEs

Example 2.2.3. We return again to example (2.2.2) on the unit square Ω = (0, 1)×

(0, 1), but this time with ε = 0. We’ll choose f and g so that

u(x, y) =
(1 + x)2

4
sin(2πxy) (2.2.43)

is the exact solution. Notice that, in this case, the PDE is not elliptic. However, our

method still approximates the true solution quite well. We’ll show the convergence of

our approximations for decreasing values of ε; see Tables 2.11, 2.12, 2.13, 2.14, 2.15,

and 2.16.

For comparison, we’ll also show the results of the same PDE using bivariate splines

over a triangulation of the same domain instead; see Tables 2.17, 2.18, 2.19, 2.20, 2.21,

and 2.22. These numerical results show that the polygonal spline method is efficient

in approximating the solutions of non-elliptic PDEs.

37

Table 2.11: Degree-2 Polygonal spline ap-
proximation of solution to Example 2.2.3
with exact solution in (2.2.43) and ε =
10−3

P mesh ERMS rate ∇ERMS rate

39 2.50e-01 5.27e-03 0.00 1.33e-01 0.00

219 1.25e-01 6.41e-04 3.04 2.61e-02 2.35

1251 6.25e-02 5.54e-04 0.21 6.14e-03 2.09

7251 3.13e-02 5.56e-04 -0.00 3.71e-03 0.73

Table 2.12: Degree-3 Polygonal spline ap-
proximation of solution to Example 2.2.3
with exact solution in (2.2.43) and ε =
10−3

P mesh ERMS rate ∇ERMS rate

39 2.50e-01 1.39e-03 0.00 1.71e-02 0.00

219 1.25e-01 5.71e-04 1.29 3.70e-03 2.21

1251 6.25e-02 5.56e-04 0.04 3.55e-03 0.06

7251 3.13e-02 5.56e-04 -0.00 3.65e-03 -0.04

Table 2.13: Degree-2 Polygonal spline ap-
proximation of solution to Example 2.2.3
with exact solution in (2.2.43) and ε =
10−5

P mesh ERMS rate ∇ERMS rate

39 2.50e-01 5.47e-03 0.00 1.34e-01 0.00

219 1.25e-01 4.15e-04 3.72 2.60e-02 2.36

1251 6.25e-02 3.69e-05 3.49 5.17e-03 2.33

7251 3.13e-02 6.45e-06 2.52 1.03e-03 2.33

Table 2.14: Degree-3 Polygonal spline ap-
proximation of solution to Example 2.2.3
with exact solution in (2.2.43) and ε =
10−5

P mesh ERMS rate ∇ERMS rate

39 2.50e-01 9.06e-04 0.00 1.61e-02 0.00

219 1.25e-01 3.11e-05 4.86 1.41e-03 3.52

1251 6.25e-02 6.10e-06 2.35 1.37e-04 3.37

7251 3.13e-02 5.62e-06 0.12 4.29e-05 1.67

Table 2.15: Degree-2 Polygonal spline ap-
proximation of solution to Example 2.2.3
with exact solution in (2.2.43) and ε =
10−10

P mesh ERMS rate ∇ERMS rate

39 2.50e-01 5.47e-03 0.00 1.34e-01 0.00

219 1.25e-01 4.16e-04 3.72 2.60e-02 2.36

1251 6.25e-02 3.68e-05 3.50 5.17e-03 2.33

7251 3.13e-02 3.29e-06 3.48 1.03e-03 2.33

Table 2.16: Degree-3 Polygonal spline ap-
proximation of solution to Example 2.2.3
with exact solution in (2.2.43) and ε =
10−10

P mesh ERMS rate ∇ERMS rate

39 2.50e-01 9.01e-04 0.00 1.61e-02 0.00

219 1.25e-01 2.74e-05 5.04 1.41e-03 3.52

1251 6.25e-02 1.25e-06 4.45 1.31e-04 3.43

7251 3.13e-02 6.92e-08 4.18 1.22e-05 3.43

Table 2.17: Degree-2 Bivariate spline ap-
proximation of solution to Example 2.2.3
with exact solution in (2.2.43) and ε =
10−3

T mesh ERMS rate ∇ERMS rate

40 3.54e-01 6.91e-03 0.00 2.09e-01 0.00

160 1.77e-01 9.63e-04 2.84 5.38e-02 1.96

640 8.84e-02 5.55e-04 0.80 1.37e-02 1.97

2560 4.42e-02 5.53e-04 0.00 4.68e-03 1.55

Table 2.18: Degree-3 Bivariate spline ap-
proximation of solution to Example 2.2.3
with exact solution in (2.2.43) and ε =
10−3

T mesh ERMS rate ∇ERMS rate

40 3.54e-01 7.40e-04 0.00 3.14e-02 0.00

160 1.77e-01 5.37e-04 0.46 4.99e-03 2.66

640 8.84e-02 5.52e-04 -0.04 3.36e-03 0.57

2560 4.42e-02 5.55e-04 -0.01 3.60e-03 -0.10

38

Table 2.19: Degree-2 Bivariate spline ap-
proximation of solution to Example 2.2.3
with exact solution in (2.2.43) and ε =
10−5

T mesh ERMS rate ∇ERMS rate

40 3.54e-01 6.94e-03 0.00 2.09e-01 0.00

160 1.77e-01 8.29e-04 3.06 5.38e-02 1.96

640 8.84e-02 1.00e-04 3.05 1.34e-02 2.00

2560 4.42e-02 1.32e-05 2.92 3.32e-03 2.01

Table 2.20: Degree-3 Bivariate spline ap-
proximation of solution to Example 2.2.3
with exact solution in (2.2.43) and ε =
10−5

T mesh ERMS rate ∇ERMS rate

40 3.54e-01 7.16e-04 0.00 3.15e-02 0.00

160 1.77e-01 4.43e-05 4.01 3.96e-03 2.99

640 8.84e-02 5.33e-06 3.06 4.96e-04 3.00

2560 4.42e-02 5.52e-06 -0.05 7.22e-05 2.78

Table 2.21: Degree-2 Bivariate spline ap-
proximation of solution to Example 2.2.3
with exact solution in (2.2.43) and ε =
10−10

T mesh ERMS rate ∇ERMS rate

40 3.54e-01 6.94e-03 0.00 2.09e-01 0.00

160 1.77e-01 8.29e-04 3.06 5.38e-02 1.96

640 8.84e-02 1.00e-04 3.05 1.34e-02 2.00

2560 4.42e-02 1.22e-05 3.03 3.32e-03 2.01

Table 2.22: Degree-3 Bivariate spline ap-
proximation of solution to Example 2.2.3
with exact solution in (2.2.43) and ε =
10−10

T mesh ERMS rate ∇ERMS rate

40 3.54e-01 7.18e-04 0.00 3.15e-02 0.00

160 1.77e-01 4.59e-05 3.97 3.96e-03 2.99

640 8.84e-02 2.93e-06 3.97 4.95e-04 3.00

2560 4.42e-02 1.85e-07 3.98 6.19e-05 3.00

39

Example 2.2.4. Let A11 A12

A21 A22

 =

xy 0

0 xy


and C = 0. Choose f and g so that

u = x(1− x)y(1− y) (2.2.44)

is the exact solution. This was studied in [23]. As in Example 2.2.3, this is a “nearly-

elliptic” PDE, but with some degeneracy at the origin. We shall use a different

partition of the unit square this time, simply using a uniform grid of squares, as was

the case in the original paper [23]. The Weak Galerkin method presented in this

paper retrieved the following results:

Table 2.23: Weak Galerkin approximation of solution to Example 2.2.4

Poly’s mesh ||u− uWG||L2 rate ||∇u−∇uWG||H1 rate
64 1.25e-01 1.46e-03 0.00 2.52e-02 0.00

256 6.25e-02 3.74e-04 1.96 1.23e-02 9.98e-01
1024 3.13e-02 9.47e-05 1.98 6.31e-03 9.98e-01
4096 1.56e-02 2.39e-05 1.99 3.16e-03 9.98e-01

We use our method with polygonal splines to solve the PDE above and find that

our method can produce much better results.

Table 2.24: Degree-2 Polygonal spline ap-
proximation of solution to Example 2.2.4

P mesh ERMS rate ∇ERMS rate

64 1.25e-01 1.83e-06 0.00 1.39e-04 0.00

256 6.25e-02 9.85e-08 4.22 1.60e-05 3.12

1024 3.13e-02 5.65e-09 4.12 1.91e-06 3.07

4096 1.56e-02 3.42e-10 4.05 2.33e-07 3.04

Table 2.25: Degree-3 Polygonal spline ap-
proximation of solution to Example 2.2.4

P mesh ERMS rate ∇ERMS rate

64 2.50e-01 3.59e-12 0.00 5.63e-11 0.00

256 1.25e-01 1.40e-11 -1.96 2.07e-10 -1.88

1024 6.25e-02 2.34e-11 -0.74 2.71e-10 -0.39

4096 3.13e-02 4.47e-11 -0.93 5.61e-10 -1.05

Comparison of Tables 2.23, 2.24, and 2.25 shows that our polygonal spline method

40

produces a much more accurate solution. These results call for some remarks. First,

it is worth pointing out that our MATLAB code can only achieve 1e-11 accuracy. In

Table 2.25, the rates of convergence become negative due to round-off errors. That is,

polygonal splines of degree-3 converged to the solution virtually instantly. Similarly,

the degree-2 splines also appear to have an increased order of convergence O(h4). Of

course, we are interested in why the convergence rate of polygonal splines is often

better than triangular splines. Although we know that the degree-2 GBC functions

contain more than quadratic polynomials and the degree-3 GBC functions contain

more than cubic polynomials, our investigation shows that the partition also plays a

significant role. If we run a few iterations to solve the same problem over the unit

square based on the partition from Example 2, we retrieve the following standard

convergence results:

Table 2.26: Degree-2 Polygonal spline ap-
proximation of solution to Example 2.2.4
over non-grid partition

P mesh ERMS rate ∇ERMS rate

39 2.50e-01 3.66e-05 0.00 1.19e-03 0.00

219 1.25e-01 3.09e-06 3.57 2.29e-04 2.38

1251 6.25e-02 2.75e-07 3.49 4.59e-05 2.32

Table 2.27: Degree-3 Polygonal spline ap-
proximation of solution to Example 2.2.4
over non-grid partition

P mesh ERMS rate ∇ERMS rate

39 2.50e-01 3.10e-06 0.00 9.17e-05 0.00

219 1.25e-01 1.22e-07 4.66 7.07e-06 3.70

1251 6.25e-02 4.59e-09 4.74 5.96e-07 3.57

We can see that this time the numerical solutions are closer to the expected rate of

convergence. Thus, the grid partition plays a role in the solution of this problem. In

particular, while triangulation-based degree-d bivariate splines have a span of exactly

Πd over a triangle, degree-d polygonal spline space over an n-gon has a dimension

higher than Πd, and hence has a greater span. It would be interesting to know how

one can exert any control over these additional degrees of freedom by choosing a good

partition.

41

Example 2.2.5. Consider the following example:

− ε∆u+ (2− y2)Dxu+ (2− x)Dyu+ (1 + (1 + x)(1 + y)2)u = f, (x, y) ∈ Ω (2.2.45)

with Ω = (0, 1)2, and u|∂Ω = g. The function f is so chosen that the exact solution is

u(x, y) = 1 + sin(π(1 + x)(1 + y)2/8).

When ε = 0, this is a hyperbolic test problem considered in [5, 18, 19]. However, for

positive values of ε, this is an elliptic PDE. We can well-approximate a solution to

the hyperbolic problem by using very small positive values of ε:

Table 2.28: Degree-2 Polygonal spline ap-
proximation of solution to Example 2.2.5
with ε = 10−3

P mesh ERMS rate ∇ERMS rate

39 2.50e-01 1.28e-03 0.00 5.58e-02 0.00

219 1.25e-01 4.22e-04 1.60 2.38e-02 1.23

1251 6.25e-02 4.04e-04 0.07 2.28e-02 0.06

7251 3.13e-02 3.99e-04 0.02 2.15e-02 0.09

Table 2.29: Degree-3 Polygonal spline ap-
proximation of solution to Example 2.2.5
with ε = 10−3

P mesh ERMS rate ∇ERMS rate

39 2.50e-01 4.62e-04 0.00 2.02e-02 0.00

219 1.25e-01 4.07e-04 0.18 2.24e-02 -0.15

1251 6.25e-02 4.00e-04 0.02 2.18e-02 0.04

7251 3.13e-02 3.99e-04 0.01 1.81e-02 0.26

Table 2.30: Degree-2 Polygonal spline ap-
proximation of solution to Example 2.2.5
with ε = 10−5

P mesh ERMS rate ∇ERMS rate

39 2.50e-01 1.83e-03 0.00 7.70e-02 0.00

219 1.25e-01 2.97e-04 2.62 3.03e-02 1.35

1251 6.25e-02 4.51e-05 2.72 1.25e-02 1.28

7251 3.13e-02 6.32e-06 2.84 3.67e-03 1.77

Table 2.31: Degree-3 Polygonal spline ap-
proximation of solution to Example 2.2.5
with ε = 10−5

P mesh ERMS rate ∇ERMS rate

39 2.50e-01 3.71e-05 0.00 2.50e-03 0.00

219 1.25e-01 6.66e-06 2.48 8.58e-04 1.54

1251 6.25e-02 5.19e-06 0.36 1.42e-03 -0.72

7251 3.13e-02 4.36e-06 0.25 2.02e-03 -0.51

42

Table 2.32: Degree-2 Polygonal spline ap-
proximation of solution to Example 2.2.5
with ε = 10−10

P mesh ERMS rate ∇ERMS rate
39 2.50e-01 1.84e-03 0.00 7.73e-02 0.00

219 1.25e-01 3.05e-04 2.59 3.10e-02 1.32
1251 6.25e-02 5.26e-05 2.54 1.43e-02 1.12
7251 3.13e-02 8.46e-06 2.63 5.60e-03 1.35

Table 2.33: Degree-3 Polygonal spline ap-
proximation of solution to Example 2.2.5
with ε = 10−10

P mesh ERMS rate ∇ERMS rate
39 2.50e-01 3.49e-05 0.00 2.37e-03 0.00

219 1.25e-01 2.00e-06 4.13 3.46e-04 2.78
1251 6.25e-02 1.24e-07 4.01 5.26e-05 2.72
7251 3.13e-02 1.84e-08 2.75 1.88e-05 1.49

For comparison, here are the results of the same computation using bivariate

splines over a triangulation of the same domain:

Table 2.34: Degree-2 Bivariate spline ap-
proximation of solution to Example 2.2.5
with ε = 10−3

T mesh ERMS rate ∇ERMS rate

40 3.54e-01 1.52e-04 0.00 4.07e-03 0.00

160 1.77e-01 4.58e-05 1.73 1.70e-03 1.26

640 8.84e-02 2.87e-05 0.67 1.13e-03 0.58

2560 4.42e-02 2.67e-05 0.10 1.13e-03 -0.00

Table 2.35: Degree-3 Bivariate spline ap-
proximation of solution to Example 2.2.5
with ε = 10−3

T mesh ERMS rate ∇ERMS rate

40 3.54e-01 3.08e-05 0.00 7.95e-04 0.00

160 1.77e-01 2.82e-05 0.13 1.03e-03 -0.37

640 8.84e-02 2.69e-05 0.07 1.13e-03 -0.13

2560 4.42e-02 2.66e-05 0.02 1.21e-03 -0.10

Table 2.36: Degree-2 Bivariate spline ap-
proximation of solution to Example 2.2.5
with ε = 10−5

T mesh ERMS rate ∇ERMS rate

40 3.54e-01 1.58e-04 0.00 4.64e-03 0.00

160 1.77e-01 3.93e-05 2.01 2.21e-03 1.07

640 8.84e-02 9.81e-06 2.00 1.08e-03 1.04

2560 4.42e-02 2.40e-06 2.03 5.04e-04 1.09

Table 2.37: Degree-3 Bivariate spline ap-
proximation of solution to Example 2.2.5
with ε = 10−5

T mesh ERMS rate ∇ERMS rate

40 3.54e-01 5.36e-06 0.00 2.65e-04 0.00

160 1.77e-01 6.10e-07 3.13 5.66e-05 2.23

640 8.84e-02 3.13e-07 0.96 3.86e-05 0.55

2560 4.42e-02 2.99e-07 0.07 6.72e-05 -0.80

43

Table 2.38: Degree-2 Bivariate spline ap-
proximation of solution to Example 2.2.5
with ε = 10−10

T mesh ERMS rate ∇ERMS rate

40 3.54e-01 1.58e-04 0.00 4.65e-03 0.00

160 1.77e-01 3.94e-05 2.01 2.22e-03 1.06

640 8.84e-02 9.90e-06 1.99 1.10e-03 1.01

2560 4.42e-02 2.46e-06 2.01 5.48e-04 1.01

Table 2.39: Degree-3 Bivariate spline ap-
proximation of solution to Example 2.2.5
with ε = 10−10

T mesh ERMS rate ∇ERMS rate

40 3.54e-01 5.43e-06 0.00 2.67e-04 0.00

160 1.77e-01 5.68e-07 3.26 5.57e-05 2.26

640 8.84e-02 6.93e-08 3.03 1.42e-05 1.97

2560 4.42e-02 8.55e-09 3.02 3.40e-06 2.06

We can see that the polygonal spline solutions approximate the exact solution

very well. However, as in (2.2.43), we see that this PDE has a unique weak solution,

but does not satisfy the assumptions of Theorem 2.2.3. Nevertheless, our method

works well as shown in Tables 2.36 and 2.37.

Example 2.2.6. For another example, the following problem is parabolic for y > 0

and hyperbolic for y ≤ 0:

−εDyyu+Dxu+ c1u = 0, (x, y) ∈ (−1, 1)× (0, 1)

Dxu+ c2u = 0, (x, y) ∈ (−1, 1)× (−1, 0] (2.2.46)

with u|∂Ω = g, for any constants c1 > 0 and c2 > 0. This PDE was studied in [19].

Note that the solution is discontinuous at y = 0. We can solve the following general

elliptic PDE to estimate the solution to this problem:

−ηDxxu− εDyyu+Dxu+ c1u = 0, (x, y) ∈ (−1, 1)× (0, 1)

−η∆u+Dxu+ c2u = 0, (x, y) ∈ (−1, 1)× (−1, 0] (2.2.47)

with u|∂Ω = g and η > 0. We can approximate the solution to (2.2.5) by letting η > 0

go to zero and use spline functions which are not necessarily continuous at y = 0. Let

44

the exact solution, u(x, y), of (2.2.5) be the following piecewise function:

sin(π(1 + y)/2) exp(−(c1 + επ2/4)(1 + x)), −1 ≤ x ≤ 1, 0 ≤ y ≤ 1

sin(π(1 + y)/2) exp(−c2(1 + x)), −1 ≤ x ≤ 1,−1 < y ≤ 0.
(2.2.48)

We set ε = 0.05 and use a similar partition to the one from Example 2.2.1, scaled to

cover the domain Ω = [−1, 1]2 and with an added edge to account for the discontinuity

at y = 0:

Figure 2.5: A partition of Ω = [−1, 1]2 and a few refinements

This extra edge will allow us to conveniently control the continuity (or lack thereof)

of our solution across the line y = 0. In particular, the solution to this PDE is gener-

ally discontinuous across this line, and so to find a continuous solution is undesirable.

Instead, we can very easily modify the continuity matrix H (see section 4.1) by chang-

ing the elements of H which are associated with this edge to zeros, and then we solve

the same minimization problem as always. This allows us to avoid any difficulties

which arise in deciding which elements affect continuity across this edge; by using

45

Hc = 0 as a side constraint, modifying H allows for a quick adjustment in this way.

While adjusting continuity across one line is not the most complex of conditions,

one could consider controlling a discontinuous solution’s jump across an edge, or even

controlling various continuity conditions across many edges in the partition. Being

able to adjust H allows us to make changes like this more readily, without having to

heavily modify our code.

Numerical results for the solution of (2.2.48) using degree-2 polygonal splines are

shown in Table 2.40.

Table 2.40: Degree-2 Polygonal spline approximation of solution to (2.2.5) with exact
solution (2.2.48) when η = 10−10, c1 = c2 = 0.1

P mesh ERMS rate ∇ERMS rate
40 6.67e-01 6.80e-03 0.00 2.13e-01 0.00

208 3.33e-01 2.45e-03 1.46 2.10e-01 0.02
1120 1.67e-01 1.15e-03 1.10 2.03e-01 0.05
6208 8.33e-02 4.98e-04 1.21 1.76e-01 0.20

If we change the value of c2 to 0.1 + επ2/4, so that the solution is continuous,

we retrieve the results in Table 2.41 (without forcing continuity over the line y = 0).

Enforcing continuity over the line y = 0 leads to the results in Table 2.42. We can

see that the computational results in Tables 2.41 and 2.42 are very similar.

Table 2.41: Degree-2 Polygonal spline
approximation of solution to (2.2.5)
with exact solution (2.2.48) when η =
10−10, C1 = 0.1, c2 = c1 + επ2/4

P mesh ERMS rate ∇ERMS rate

40 6.67e-01 1.64e-03 0.00 2.82e-02 0.00

208 3.33e-01 2.61e-04 2.65 1.03e-02 1.45

1120 1.67e-01 3.86e-05 2.76 3.60e-03 1.52

6208 8.33e-02 5.68e-06 2.76 1.23e-03 1.55

Table 2.42: Degree-2 Polygonal spline
approximation of solution to (2.2.5)
with exact solution (2.2.48) when η =
10−10, C1 = 0.1, c2 = c1 + επ2/4

P mesh ERMS rate ∇ERMS rate

40 6.67e-01 1.65e-03 0.00 2.62e-02 0.00

208 3.33e-01 2.48e-04 2.73 8.87e-03 1.56

1120 1.67e-01 3.80e-05 2.71 3.33e-03 1.42

6208 8.33e-02 5.65e-06 2.75 1.20e-03 1.47

46

Chapter 3

A Degree-3 Construction of C1

Polygonal Vertex Splines on

Skewed-Grids

3.1 Preliminaries on vertex splines

While the Floater-Lai polygonal splines are clearly useful for PDE applications, the

particular spline spaces they use are poorly suited for differentiability. Multivariate

splines are well-known for their ability to ensure Cr smoothness for any r ≥ 0, at

least given sufficiently large degree d relative to r, so an analogous function space

over polygons should at least have some analogous feature. We focus the remainder

of this dissertation, then, on constructions of C1 polygonal splines as a first venture

toward the overall goal of arbitrarily smooth polygonal splines.

The reader will see that the computations involved are extremely complex and

lengthy, and that makes this work slow and difficult. To at least slightly reduce these

issues, we will make a simplifying assumption for now: we’ll assume that we work

over a quadrangulation; that is, a partition of only quadrilaterals.

47

Our constructions will depend on a variety of geometric features of the under-

lying quadrilaterals. We introduce some notation for this geometry now. Let P =

〈v1, v2, v3, v4〉 be a quadrilateral with vertices v1, v2, v3, v4, listed in counterclockwise

order. We will refer to its vertices cyclically; that is, vi = vj whenever j ≡ i mod 4.

Oftentimes, we’ll implicitly choose a value i, and consider P = 〈vi, vi+1, vi+2, vi−1〉.

This will allow us to focus on a single arbitrary vertex, and to make conclusions for

all vertices by simply shifting indices.

We’ll often abuse some notation and consider each vertex vi as a Cartesian point

vi = (vi,x, vi,y) or as a vector 〈vi,x, vi,y〉. We write ei to mean the ith edge of P , which

is between vi and vi+1, and write ~ei = 〈ei,x, ei,y〉 := vi+1−vi = 〈vi+1,x−vi,x, vi+1,y−vi,y〉

to represent ei as a vector quantity. We’ll write |ei| to represent the length of the ith

edge, and denote by ~ni the outward unit normal to ~ei; that is, ~ni = |~ei|−1〈ei,y,−ei,x〉.

For each i, denote by Ci the area of the subtriangle of P given by 〈vi−1, vi, vi+1〉,

and denote by θi the interior angle of P at vi. Finally, define Ai(x) to be the signed

area of the triangle 〈x, vi, vi+1〉, positive for points x on the interior of P . Notice that,

while Ci, θi, ei, and ni are constants for a given quadrilateral P for each i, Ai is a

linear bivariate polynomial. It is worth noting that Ai(vi−1) = Ci, Ai(vi+2) = Ci+1,

and Ai(vi) = Ai(vi+1) = 0. All of these notations use cyclic indices, just as for the

vertices. Please refer back to Figure 2.1 for an illustration of C2 and A3(x) for a given

quadrilateral.

As in the Floater-Lai case, we’ll construct our polygonal splines from Wachspress

coordinates. We first analyze the behavior of these coordinates. For a quadrilateral

P , recall that the Wachspress coordinate with respect to the vertex vi is given by the

rational function

φi(x) =
wi(x)

4∑
j=1

wj(x)

, (3.1.1)

48

where wi is the bivariate quadratic polynomial

wi(x) = CiAi+1(x)Ai+2(x). (3.1.2)

As we are interested in construction of functions which are globally C1, we should

pay special attention to the gradients of the Wachspress coordinates on the edges

of each quadrilateral. Since Wachspress coordinates are linear on edges, the edge

direction derivatives are easy to compute. Where we suppress the arguments of the

functions φj and write ẽi =
~ei
|~ei|

, we have the following derivatives:

∂φi
∂ẽi

∣∣∣∣
ei

= |ei|−1, (3.1.3)

∂φi
∂ẽi−1

∣∣∣∣
ei−1

= −|ei−1|−1, (3.1.4)

∂φi
∂ẽi+1

∣∣∣∣
ei+1

=
∂φi
∂ẽi+2

∣∣∣∣
ei+2

= 0, (3.1.5)

∂nφi
∂ẽj

n

∣∣∣∣
ej

= 0, (3.1.6)

where (3.1.6) holds for any j whenever n > 1.

We’ll also be interested in the outward normal derivatives of Wachspress coor-

dinates on the edges of each quadrilateral. This will require more work than the

edge-direction derivatives.

Lemma 3.1.1. Given a quadrilateral P = 〈v1, v2, v3, v4〉, then the outward normal

49

derivatives of the Wachspress coordinates of P on edge ei are given by

∂φi
∂ ~ni

∣∣∣∣
ei

= φi+1|ei

(
|ei+1| cos(θi+1)

2Ci+1

)
− φi|ei

(
|ei−1| cos(θi)

2Ci

)
+

(
|ei|

2Ai+2

)(
φ2
i

∣∣
ei

(
Ci−1

Ci

)
+ φiφi+1|ei

(
Ci+2

Ci+1

))
,

∂φi+1

∂ ~ni

∣∣∣∣
ei

= φi|ei

(
|ei−1| cos(θi)

2Ci

)
− φi+1|ei

(
|ei+1| cos(θi+1)

2Ci+1

)
+

(
|ei|

2Ai+2

)(
φ2
i+1

∣∣
ei

(
Ci+2

Ci+1

)
+ φiφi+1|ei

(
Ci−1

Ci

))
,

∂φi−1

∂ ~ni

∣∣∣∣
ei

= −
(
Ci−1

Ci

)(
|ei|

2Ai+2

)
φi|ei ,

∂φi+2

∂ ~ni
|
∣∣∣∣
ei

= −
(
Ci+2

Ci+1

)(
|ei|

2Ai+2

)
φi+1|ei .

Proof. We first compute

∇φi =

∇wi
4∑

k=1

wk − wi
4∑

k=1

∇wk(
4∑
j=1

wj

)2 =
∇wi
4∑
j=1

wj

− wi
4∑
j=1

wj


4∑

k=1

∇wk
4∑
j=1

wj

 .

Then we write

∇φi = Ri − φi
4∑

k=1

Rk, (3.1.7)

where

Ri :=
∇wi
4∑
j=1

wj

.

It is worth mentioning that this notation is inspired by that found in the gradient

analysis of Wachspress coordinates in [13], but is not quite the same. In particular,

this expression of the gradient is well-defined on the boundary of the polygon, which

is where we are most concerned.

50

The gradients ∇wi are fairly simple:

∇wi = Ci (∇Ai+1Ai+2 +∇Ai+2Ai+1) . (3.1.8)

Moreover, when we are on an edge, we can simplify the sums in the denominators by

exploiting the behavior of the area functions on the edges. Since the area functions

are linear polynomials, we note that an arbitrary point on edge ei can be expressed

as (1− t)vi + tvi+1 for some t ∈ [0, 1], and so we can see that

Ai|ei = 0,

Ai+1|ei = (1− t)Ci+1,

Ai−1|ei = tCi,

Using the properties above, we can see that

4∑
j=1

wj
∣∣
ek

= wk + wk+1 = Ak+2(CkAk+1 + Ck+1Ak−1) = CkCk+1Ak+2. (3.1.9)

51

Then we have the following expressions for Ri on each edge:

Ri|ei =
Ci (∇Ai+1Ai+2 +∇Ai+2Ai+1)

CiCi+1Ai+2

=
∇Ai+1

Ci+1

+

(
Ai+1

Ci+1

)(
∇Ai+2

Ai+2

)
=
∇Ai+1

Ci+1

+ φi|ei

(
∇Ai+2

Ai+2

)
(3.1.10)

Ri|ei−1
=
Ci (∇Ai+1Ai+2 +∇Ai+2Ai+1)

Ci−1CiAi+1

=
∇Ai+2

Ci−1

+

(
Ai+2

Ci−1

)(
∇Ai+1

Ai+1

)
=
∇Ai+2

Ci−1

+ φi|ei−1

(
∇Ai+1

Ai+1

)
(3.1.11)

Ri|ei+1
=
Ci (∇Ai+1Ai+2 +∇Ai+2Ai+1)

Ci+1Ci+2Ai−1

=
Ci (∇Ai+1Ai+2)

Ci+1Ci+2Ai−1

=

(
Ci
Ci+1

)(
Ai+2

Ci+2

)(
∇Ai+1

Ai−1

)
=

(
Ci
Ci+1

)(
∇Ai+1

Ai−1

)
φi+1|ei+1

(3.1.12)

Ri|ei+2
=
Ci (∇Ai+1Ai+2 +∇Ai+2Ai+1)

Ci+2Ci−1Ai
=
Ci (∇Ai+2Ai+1)

Ci+2Ci−1Ai

=

(
Ci
Ci−1

)(
Ai+1

Ci+2

)(
∇Ai+2

Ai

)
=

(
Ci
Ci−1

)(
∇Ai+2

Ai

)
φi−1|ei+2

. (3.1.13)

We will also need to know values of
4∑

k=1

Rk on each edge. Using (3.1.10)-(3.1.13),

along with the fact that (φi + φi+1)|ei = 1, we see that

4∑
k=1

Rk

∣∣
ej

=
∇Aj+1

Cj+1

+
∇Aj−1

Cj
+
∇Aj+2

Aj+2

+

(
∇Ai
Ai+2

)((
Ci−1

Ci

)
φi|ei +

(
Ci+2

Ci+1

)
φi+1|ei

)
. (3.1.14)

It is easy to see that ∇Aj = −1
2
|ej|nj. Moreover, note that

nj−1.nj = cos(π− θj) = − cos(θj). Using these two observations, along with (3.1.10)-

52

(3.1.14), we compute the outward normal derivatives:

∂φi
∂ ~ni

∣∣∣∣
ei

= Ri.~ni|ei − φi
4∑

k=1

Rk.~ni
∣∣
ei

=
|ei+1| cos(θi+1)

2Ci+1

+ φi|ei

(
∇Ai+2.~ni
Ai+2

)
− φi

4∑
k=1

Rk.~ni
∣∣
ei

=
|ei+1| cos(θi+1)

2Ci+1

− φi
(
|ei+1| cos(θi+1)

2Ci+1

+
|ei−1| cos(θi)

2Ci

−
(
|ei|

2Ai+2

)((
Ci−1

Ci

)
φi|ei +

(
Ci+2

Ci+1

)
φi+1|ei

))
= φi+1|ei

(
|ei+1| cos(θi+1)

2Ci+1

)
− φi|ei

(
|ei−1| cos(θi)

2Ci

)
+

(
|ei|

2Ai+2

)(
φ2
i

∣∣
ei

(
Ci−1

Ci

)
+ φiφi+1|ei

(
Ci+2

Ci+1

))
,

∂φi+1

∂ ~ni

∣∣∣∣
ei

= Ri+1.~ni
∣∣
ei
− φi+1

4∑
k=1

Rk.~ni
∣∣
ei

=
|ei−1| cos(θi)

2Ci
+ φi+1

∣∣
ei

(
∇Ai+2.~ni
Ai+2

)
− φi+1

4∑
k=1

Rk.nk
∣∣
ei

=
|ei−1| cos(θi)

2Ci
− φi+1

(
|ei+1| cos(θi+1)

2Ci+1

+
|ei−1| cos(θi)

2Ci

−
(
|ei|

2Ai+2

)((
Ci−1

Ci

)
φi
∣∣
ei

+

(
Ci+2

Ci+1

)
φi+1

∣∣
ei

))
= φi

∣∣
ei

(
|ei−1| cos(θi)

2Ci

)
− φi+1

∣∣
ei

(
|ei+1| cos(θi+1)

2Ci+1

)
+

(
|ei|

2Ai+2

)(
φ2
i+1

∣∣
ei

(
Ci+2

Ci+1

)
+ φiφi+1

∣∣
ei

(
Ci−1

Ci

))
,

∂φi−1

∂ ~ni

∣∣∣∣
ei

= Ri−1.~ni
∣∣
ei

+ φi−1

4∑
k=1

Rk.~ni
∣∣
ei

= −
(
Ci−1

Ci

)(
|ei|

2Ai+2

)
φi
∣∣
ei
,

53

∂φi+2

∂ ~ni

∣∣∣∣
ei

= Ri+2.~ni
∣∣
ei

+ φi+2

4∑
k=1

Rk.~ni
∣∣
ei

= −
(
Ci+2

Ci+1

)(
|ei|

2Ai+2

)
φi+1

∣∣
ei
.

We mention one more brief lemma, which is trivial to prove, but has important

consequences.

Lemma 3.1.2.

φiφi+2

CiCi+2

=
φi+1φi−1

Ci+1Ci−1

.

Proof.

φi+1φi−1 =
Ci+1Ai+2Ai−1Ci−1AiAi+1(

4∑
j=1

wj

)2

=
Ci+1Ci−1

CiCi+2

CiAi+1Ai+2Ci+2Ai−1Ai(
4∑
j=1

wj

)2

=
Ci+1Ci−1

CiCi+2

φiφi+2.

Division by Ci+1Ci−1 completes the proof.

The implications of this lemma are important: using this relationship, we can

determine which monomials of Wachspress coordinates are linearly independent. Be-

cause of its connection with the bubble function
4∏
j=1

Aj, we often write

B =
φiφi+2

CiCi+2

=
φi+1φi−1

Ci+1Ci−1

.

Using the Lemma 3.1.2, we can now say with certainty that the full space of

54

Figure 3.1: An illustration of the degree-4 polygonal spline basis functions with the
associated domain points over a rectangle

degree-d polygonal splines over a single quadrilateral P , Sd(P), has as a basis

Bd(P) =
4⋃
i=1

{Baφbiφ
c
i+1 : a, b, c ≥ 0; 2a+ b+ c = d}. (3.1.15)

This particular basis is convenient in that it permits an identification to domain

points in an analogous way to the case of bivariate splines over triangles; in particular,

Figure 3.1 shows how to lay out the degree-4 polygonal spline basis functions with

their associated domain points over a rectangle with v1 at its lower-left corner.

Now we discuss our overall strategy. For a given partition of convex quadrilaterals

P , define

Sd(P) := {s : s|P∈P ∈ span{Bd(P)} } (3.1.16)

How can we construct a polygonal spline s in such a way to ensure that it is C1?

While some coefficient conditions to ensure C1 smoothness might be desirable, as are

available in the traditional triangular case, after some initial investigation we deemed

55

Figure 3.2: A partition of quadrilaterals P

this problem too difficult to tackle at the outset of this project. Instead, we opted for

a different approach: to construct a basis for a C1 subspace of Sd(P). In doing so,

we opted to make this basis as locally-supported as possible; in fact, along the way

we will create a basis for a C1 polygonal vertex spline space, where a vertex spline is

defined as one which is a linear combination of splines which are supported only in

the ring of polygons Ωv containing a single vertex v.

Consider the following partition of quadrilaterals P :

We wish to construct a C1 polygonal spline ψv over this partition which can

interpolate values at the vertex v, while having value 0 at the other vertices (i.e.

ψv(w) = δv,w for vertices w). Since we’ll be doing this piecewise across each quadri-

lateral, we’ll need to ensure that both the values and gradients match on shared edges

and vertices. In particular, we’ll enforce that ∇ψv(v) = 0 for some simplicity. More-

over, to maintain some locality, we’d like ψv to be 0 outside Ωv; that is, since v is

not included in the quadrilateral Q, we would like ψv|Q ≡ 0. Notice that this implies

that ∇ψv|∂Q ≡ 0; we can summarize this by saying that we want supp(ψv) ⊆ Ωv,

ψv|∂Ωv
= 0, and ∇ψv|∂Ωv

= 0.

Now, where P = 〈v1, v2, v3, v4〉, let v = vi be the ith vertex of P . Consider

56

ψi,P := ψv|P . While we restrict our attention to only the quadrilateral P , we will

suppress the additional subscript and merely refer to this function as ψi. Then we

want

ψi(vj) = δij, (3.1.17)

∇ψi(vj) = 0, (3.1.18)

ψi|ei+1
= ψi|ei+2

≡ 0, and (3.1.19)

∇ψi|ei+1
= ∇ψi|ei+2

≡ 0. (3.1.20)

We can enforce properties (3.1.19) and (3.1.20) by simply requiring that ψi has a

factor of φ2
i , since φi|ei+1

= φi|ei+2
≡ 0. This will also ensure that properties (3.1.17)

and (3.1.18) are satisfied for all vertices except vi.

Now consider the values of ψi on edges ei and ei−1. Since the Wachspress coor-

dinates of P are linear on its edges, if we build ψi as a polynomial of Wachspress

coordinates then it will have polynomial values on the edges of P .

Write p(t) = ψi(vi + t(vi+1 − vi)) for t ∈ [0, 1]. Then we want p to satisfy the

following:

p(0) = 1, (3.1.21)

p(1) = 0, (3.1.22)

p′(0) = 0, and (3.1.23)

p′(1) = 0. (3.1.24)

Given that ψi interpolates values at a single vertex, it can be used not entirely unlike

a GBC, so we might wish to enforce a new property

4∑
j=1

ψj ≡ 1, (3.1.25)

57

which will in turn yield a new property for p:

p(t) + p(1− t) = 1. (3.1.26)

As p is a univariate polynomial, properties (3.1.21)-(3.1.24) imply that we need p to

be at least degree 3. A natural question is whether we can accomplish our goals with

p being precisely degree 3.

3.2 Degree-3 C1 polygonal spline construction

3.2.1 Construction of ψ
(3)
v

Using the basis B3(P) and the knowledge that we desire a factor of φ2
i by properties

(3.1.19) and (3.1.20), we can form a template for ψ
(3)
i , where the superscript is merely

used to distinguish the degree:

ψ
(3)
i = φ2

i (J0,iφi + J1,iφi+1 + J2,iφi−1 +K0,iφi+2), (3.2.1)

where J0,i, J1,i, J2,i, K0,i are constants.

There is a unique univariate polynomial p of degree 3 satisfying properties (3.1.21)-

(3.1.24), namely p(t) = (1 − t)2(1 + 2t) = (1 − t)2((1 − t) + 3t). Recall that p(t) is

defined as ψi(vi + t(vi+1 − vi)). We have that φi(vi + t(vi+1 − vi)) = 1 − t, and

φi+1(vi + t(vi+1 − vi)) = t, so we’ll say ψi|ei = φ2
i (φi + 3φi+1). Similarly, we can say

ψi|ei−1
= φ2

i (φi + 3φi−1). This is enough to inform us that J0,i = 1, J1,i = J2,i = 3.

We will be able to solve for K0,i by enforcing property (3.1.25). First, we strategi-

cally express 1 as a cubic polynomial of Wachspress coordinates, using the fact that

58

4∑
k=1

φk = 1:

1 =

(
4∑

k=1

φk

)3

= φ3
1 + 3φ2

1φ2 + 3φ2
1φ3 + 3φ2

1φ4 + 3φ1φ
2
2 + 6φ1φ2φ3 + 6φ1φ2φ4 + 3φ1φ

2
3

+ 6φ1φ3φ4 + 3φ1φ
2
4 + φ3

2 + 3φ2
2φ3 + 3φ2

2φ4 + 3φ2φ
2
3 + 6φ2φ3φ4 + 3φ2φ

2
4

+ φ3
3 + 3φ2

3φ4 + 3φ3φ
2
4 + φ3

4.

We can simplify this using our prior notation B, from Lemma 3.1.2:

1 =φ3
1 + 3φ2

1φ2 + 3φ2
1φ4 + 3φ1φ

2
2 + 3φ1φ

2
4 + φ3

2

+ 3φ2
2φ3 + 3φ2φ

2
3 + φ3

3 + 3φ2
3φ4 + 3φ3φ

2
4 + φ3

4

+B((3C1C3 + 6C2C4)φ1 + (6C1C3 + 3C2C4)φ2

+ (3C1C3 + 6C2C4)φ3 + (6C1C3 + 3C2C4)φ4). (3.2.2)

We can rewrite ψ
(3)
i as

ψ
(3)
i = φ3

i + 3φ2
iφi+1 + 3φ2

iφi−1 +K0,iCiCi+2Bφi,

so it’s easy enough to see that

1−
4∑
j=1

ψi = B

4∑
k=1

((3−K0,i)CiCi+2 + 6Ci+1Ci−1)φi. (3.2.3)

Then we’ll set K0,i = 3 + 6
Ci+1Ci−1

CiCi+2

, so we’ll have

ψ
(3)
i =φ2

i

(
φi + 3(φi+1 + φi−1) + 3

(
1 + 2

Ci+1Ci−1

CiCi+2

)
φi+2

)
. (3.2.4)

59

While this satisfies our initial set of conditions, it remains to see whether this

definition will ensure that the piecewise function f is C1 over P .

Suppose we have the following subpartition, where v = vi,P = vi,R:

Figure 3.3: A pair of adjacent quadrilaterals P and R

We require that the function ψv is C1 over the union of P and R, and since

Wachspress coordinates are smooth on the interior of the polygon over which they

are defined, then we need only check the shared edge ei,P = ei−1,R. In particular,

we’ll check the outward normal derivatives on this edge
∂ψ

(3)
i,P

∂ ~ni,P
and

∂ψ
(3)
i,R

∂ ~ni−1,R

. Since

~ni−1,R = −~ni,P , then we will need to enforce

∂ψ
(3)
i,P

∂~ni,P
+

∂ψ
(3)
i,R

∂~ni−1,R

= 0. (3.2.5)

60

Let us take the relevant derivatives. We suppress the specific quadrilateral sub-

scripts.

∂ψ
(3)
i

∂~ni

∣∣∣∣∣
ei

= 2φi
∂φi
∂~ni

(φi + 3φi+1)

+ φ2
i

(
∂φi
∂~ni

+ 3
∂

∂~ni
(φi+1 + φi−1 + φi+2) + 6

Ci+1Ci−1

CiCi+2

∂φi+2

∂~ni

)
= (3φ2

i + 6φiφi+1)
∂φi
∂~ni

+ 3φ2
i

∂

∂~ni
(1− φi) + 6

Ci+1Ci−1

CiCi+2

φ2
i

∂φi+2

∂~ni

= 6φi

(
φi+1

∂φi
∂~ni

+
Ci+1Ci−1

CiCi+2

φi
∂φi+2

∂~ni

)
= 6φi

(
φ2
i+1

|ei+1| cos(θi+1)

2Ci+1

− φiφi+1
|ei−1| cos(θi)

2Ci

+

(
|ei|

2Ai+2

)(
Ci−1

Ci
φ2
iφi+1 +

Ci+2

Ci+1

φiφ
2
i+1 −

Ci−1

Ci
φiφi+1

))
= 6φiφi+1

(
φi+1
|ei+1| cos(θi+1)

2Ci+1

− φi
|ei−1| cos(θi)

2Ci

+

(
|ei|

2Ai+2

)(
Ci+2

Ci+1

− Ci−1

Ci

)
φiφi+1

)
; (3.2.6)

∂ψ
(3)
i

∂~ni−1

∣∣∣∣∣
ei−1

= 2φi
∂φi
∂~ni−1

(φi + 3φi−1)

+ φ2
i

(
∂φi
∂~ni−1

+ 3
∂

∂~ni−1

(φi+1 + φi−1 + φi+2) + 6
Ci+1Ci−1

CiCi+2

∂φi+2

∂~ni−1

)
= 6φi

(
φi−1

∂φi
∂~ni−1

+
Ci+1Ci−1

CiCi+2

φi
∂φi+2

∂~ni−1

)
= 6φiφi−1

(
φi−1
|ei+2| cos(θi−1)

2Ci−1

− φi
|ei| cos(θi)

2Ci

+

(
|ei−1|
2Ai+1

)(
Ci+2

Ci−1

− Ci+1

Ci

)
φiφi−1

)
. (3.2.7)

Keeping in mind that φi,R|ei−1,R
= φi,P |ei,P and φi−1,R|ei−1,R

= φi+1,P |ei,P , we have

61

∂ψ
(3)
i,P

∂~ni,P

∣∣∣∣∣
ei,P

+
∂ψ

(3)
i,R

∂~ni−1,R

∣∣∣∣∣
ei−1,R

=

6φi,Pφi+1,P

(
φi+1,P

(
|ei+1,P | cos(θi+1,P)

2Ci+1,P

+
|ei+2,R| cos(θi−1,R)

2Ci−1,R

)
− φi,P

(
|ei−1,P | cos(θi,P)

2Ci,P
+
|ei,R| cos(θi,R)

2Ci,R

)
+ φi,Pφi+1,P

(
|ei,P |

2Ai+2,P

(
Ci+2,P

Ci+1,P

− Ci−1,P

Ci,P

)
+
|ei−1,R|
2Ai+1,R

(
Ci+2,R

Ci−1,R

− Ci+1,R

Ci,R

)))
. (3.2.8)

In the special case that P is a rectangle,
∂ψ

(3)
i,P

∂~ni,P

∣∣∣∣∣
ei,P

= 0, so to ensure C1 smoothness

we would need
∂ψ

(3)
i,R

∂~ni−1,R

∣∣∣∣∣
ei−1,R

= 0. However, this is easily checked numerically on an

arbitrary quadrilateral R, and we see that this is not generally the case. In order

to force (3.2.8) to be zero, we’ll need to enforce some particular geometry on the

partition P .

First of all, note that φi,P and φi+1,P are linearly independent polynomials on the

shared edge. Then we need each coefficient in (3.2.8) to be zero. Then we must have

|ei+1,P | cos(θi+1,P)

2Ci+1,P

= −|ei+2,R| cos(θi−1,R)

2Ci−1,R

.

We can rewrite this by noting that |ei,P | = |ei−1,R| and Cj = 1
2
|ej−1||ej| sin(θj):

cot(θi+1,P) = − cot(θi−1,R). (3.2.9)

Since we require that P and R are convex quadrilaterals, 0 < θi+1,P , θi−1,R < π. Then

(3.2.9) is only true whenever θi+1,P = π − θi−1,R which is equivalent to the condition

that ei+1,P and ei+2,R are collinear. Similarly, we’ll require that ei−1,P and ei+1,R are

62

collinear - equivalently, θi,P = π − θi,R - to make the second term of (3.2.8) have a

coefficient of zero.

The last term is harder.

(
1

2Ai+2,P

)(
|ei+2,P |
|ei,P |

)(
sin(θi+2,P)

sin(θi+1,P)
− sin(θi−1,P)

sin(θi,P)

)
+

(
1

2Ai+1,R

)(
|ei+1,R|
|ei−1,R|

)(
sin(θi+2,R)

sin(θi−1,R)
− sin(θi+1,R)

sin(θi,R)

)
(3.2.10)

Since we’ve enforced that θi,P = π − θi,R and θi+1,P = π − θi−1,R, which implies that

sin(θi,P) = sin(θi,R) and sin(θi+1,P) = sin(θi−1,R), so we can rewrite (3.2.10) as

(
1

|ei,P |

)[(
|ei+2,P |
2Ai+2,P

)(
sin(θi+2,P)

sin(θi+1,P)
− sin(θi−1,P)

sin(θi,P)

)
+

(
|ei+1,R|
2Ai+1,R

)(
sin(θi+2,R)

sin(θi+1,P)
− sin(θi+1,R)

sin(θi,P)

)]
. (3.2.11)

Now this should be zero for every point on the shared edge, so consider the point

xt := (1− t)vi,P + tvi+1,P = (1− t)vi,R + tvi−1,R for some t ∈ [0, 1]. Then

2Ai+2,P (xt) = (1− t)2Ci−1,P + t2Ci+2,P

= |ei+2,P |((1− t)|ei−1,P | sin(θi−1,P) + t|ei+1,P | sin(θi+2,P)), (3.2.12)

and

2Ai+1,R(xt) = (1− t)2Ci+1,R + t2Ci+2,R

= |ei+1,R|((1− t)|ei,R| sin(θi+1,R) + t|ei+2,R| sin(θi+2,R)). (3.2.13)

Denote by p1,1 the univariate polynomial given in (3.2.12) divided by |ei+2,P |, and by

p1,2 the univariate polynomial given in (3.2.13) divided by |ei+1,R|, so we can further

63

simplify (3.2.11) evaluated at the point xt as

(
1

|ei,P |

)[(
1

p1,1

)(
sin(θi+2,P)

sin(θi+1,P)
− sin(θi−1,P)

sin(θi,P)

)
+

(
1

p1,2

)(
sin(θi+2,R)

sin(θi+1,P1)
− sin(θi+1,R)

sin(θi,P)

)]
=

(
1

|ei,P |p1,1p1,2

)[
p1,2

(
sin(θi+2,P)

sin(θi+1,P)
− sin(θi−1,P)

sin(θi,P)

)
+p1,1

(
sin(θi+2,R)

sin(θi+1,P)
− sin(θi+1,R)

sin(θi,P)

)]
.

Define a vector V by

V :=

〈
sin(θi+2,P)

sin(θi+1,P)
− sin(θi−1,P)

sin(θi,P)
,
sin(θi+2,R)

sin(θi+1,P)
− sin(θi+1,R)

sin(θi,P)

〉
,

and rewrite (3.2.11) as

(
1

|ei,P |p1,1p1,2

)
((1− t)V · 〈|ei,R| sin(θi+1,R), |ei−1,P | sin(θi−1,P)〉

+t V · 〈|ei+2,R| sin(θi+2,R), |ei+1,P | sin(θi+2,P)〉) .

We require this to be equal to 0 for every t ∈ [0, 1]. Since t and 1− t are independent

linear polynomials, this implies that we must have

V · 〈|ei,R| sin(θi+1,R), |ei−1,P | sin(θi−1,P)〉 = 0 (3.2.14)

and V · 〈|ei+2,R| sin(θi+2,R), |ei+1,P | sin(θi+2,P)〉 = 0. (3.2.15)

Then both of the right-hand vectors must be orthogonal to V , and hence are

parallel to each other. Then we must have

|ei,R| sin(θi+1,R) = K|ei+2,R| sin(θi+2,R)

and |ei−1,P | sin(θi−1,P) = K|ei+1,P | sin(θi+2,P),

64

for the same positive constant K, or, equivalently,

|ei,R| sin(θi+1,R)

|ei+2,R| sin(θi+2,R)
=
|ei−1,P | sin(θi−1,P)

|ei+1,P | sin(θi+2,P)
. (3.2.16)

These terms are heights of each quadrilateral. We use the updated Figure 3.4 to

make some new notation:

Figure 3.4: An updated figure which shows heights of each quadrilateral as dashed
lines

Then we can rewrite (3.2.16) as the following:

hi+1,R

hi+2,R

=
hi−1,P

hi+2,P

. (3.2.17)

This is a hard condition to enforce across an entire partition. In particular, the

65

Figure 3.5: A skewed grid

other edges of P and R will generally be shared with other quadrilaterals as well,

which means that more edges must remain collinear and more heights must have a

common ratio.

However, consider the case K = 1. When applied to all heights of each quadri-

lateral, this implies that each quadrilateral is a parallelogram. Combined with the

fact that the edges adjacent to shared edges must be collinear, this implies that an

admissible partition must be a subpartition of a skewed grid, which is quite easy to

enforce.

Within parallelograms, the areas Cj are all equal, so we may simplify the expres-

sion of ψ
(3)
i in (3.2.4) as follows:

ψ
(3)
i = φ2

i (φi + 3(φi+1 + φi−1 + 3φi+2)) . (3.2.18)

For each vertex v in P , we define the basis spline ψ
(3)
v by ψ

(3)
i,P for each P ∈ Ωv,

where v = vi in P , and 0 otherwise, and by construction, ψ
(3)
v is globally C1. The

discussion in this section serves as a proof of the following:

66

Theorem 3.2.1. Let Ω be a polygonal region in R2 which permits a skewed-grid

partition as in Figure 3.5, and let P be such a skewed-grid partition of Ω. For every

vertex v in the partition P, define a polygonal spline ψ
(3)
v over Ωv by

ψ(3)
v (x) :=

 ψ
(3)
i,P (x) x ∈ P ⊆ Ωv; v = vi,P

0 x 6∈ Ωv

,

where ψ
(3)
i,P is the function in (3.2.18).

Then ψ
(3)
v satisfies the following properties:

(1) ψ
(3)
v (w) = δv,w for any vertex w of P;

(2) ∇ψ(3)
v (w) = 0 for any vertex w of P;

(3) ψ
(3)
v ∈ C1(Ω); and

(4)
∑
v∈P

ψ
(3)
v = 1.

Figure 3.6 shows the plot of the function ψ
(3)
v which smoothly interpolates values

at a single vertex v over the partition shown in Figure 3.5.

3.2.2 Construction of ψ
(3)
x,v and ψ

(3)
y,v

We’d like to have a greater span than just that of the functions ψ
(3)
v . While the con-

dition (3.1.25) ensures that constant functions are in span{ψ(3)
v }, we can be sure that

even linear functions are not. In particular, the gradient of any linear combination

of the functions ψ
(3)
v vanishes at every vertex, a behavior which is both unusual and,

possibly, undesirable. To augment our function space, it seems reasonable to give

ourselves a tool with which to adjust the gradient at the vertices. To that end, we’ll

67

Figure 3.6: The plot of a function ψ
(3)
v

design functions ψ
(3)
x,v and ψ

(3)
y,v which satisfy the following for every vertex w:

ψ(3)
x,v

∣∣
w

= 0, ψ(3)
y,v

∣∣
w

= 0,

∇ψ(3)
x,v|w = 〈δv,w, 0〉, ∇ψ(3)

y,v|w = 〈0, δv,w〉.

We’ll first focus on the construction of the function ψ
(3)
x,v; the ψ

(3)
y,v case is very similar.

As in the previous section, we’ll first focus our attention on a single quadrilateral

P ∈ Ωv such that v = vi in P . Let ψ
(3)
x,i,P := ψ

(3)
x,v

∣∣
P

; again, we’ll suppress the subscript

P while we are focused on solely this quadrilateral. In terms of the geometry of P ,

we need ψ
(3)
x,i to satisfy

ψ
(3)
x,i |vj = 0, (3.2.19)

∇ψ(3)
x,i |vj = 〈δij, 0〉. (3.2.20)

First, to ensure locality, we will again require that φ2
i is a factor of ψx,i. Then we

68

have the same template as in (3.2.1):

ψ
(3)
x,i = φ2

i (J0,iφi + J1,iφi+1 + J2,iφi−1 +K0,iφi+2), (3.2.21)

where the notation J0,i, J1,i, J2,i, and K0,i is reused to represent the constant coeffi-

cients of ψ
(3)
x,i .

Since ψ
(3)
x,i

∣∣
vi

= J0,i, the condition (3.2.19) is enough to inform us that J0,i = 0.

We use (3.2.20) to determine J1,i and J2,i by taking edge-direction derivatives at vi.

We require that

∂ψx,i
∂ẽi

∣∣∣∣
vi

=
ei,x
|ei|

, and (3.2.22)

∂ψxi
∂ẽi−1

∣∣∣∣
vi

=
ei−1,x

|ei−1|
. (3.2.23)

We take these edge-direction derivatives from (3.2.21):

∂ψx,i
∂ẽi

∣∣∣∣
vi

= J1,i
∂φi+1

∂ẽi
=
J1,i

|ei|
, and

∂ψx,i
∂ẽi−1

∣∣∣∣
vi

= J2,i
∂φi−1

∂ẽi−1

=
−J2,i

|ei−1|
.

Thus we set J1,i = ei,x and J2,i = −ei−1,x.

We can find K0,i by considering the same scenario as is illustrated in Figure 3.3,

but using the new requirements we set at the end of the previous section - especially

that both P and R are parallelograms. In this case, we can substantially simplify

the normal derivatives computed in Lemma 3.1.1. In particular, we take advantage

69

of the following geometric conveniences of parallelograms:

~ei = −~ei+2; ~ei+1 = ~ei−1;

θi = π − θi+1 = θi+2 = π − θi−1;

C := Ci = Ci+1 = Ci+2 = Ci−1.

Then we can see that

Ai+2

∣∣
ei

= Ci−1φi + Ci+2φi+1 = C(φi + φi+1) = C,

and finally we see that

∂φi
∂~ni

∣∣∣∣
ei

= φi
|ei|
2C
− |ei−1| cos(θi)

2C
,

∂φi+1

∂~ni

∣∣∣∣
ei

= φi+1
|ei|
2C

+
|ei−1| cos(θi)

2C
,

∂φi−1

∂~ni

∣∣∣∣
ei

= −φi
|ei|
2C

,

∂φi+2

∂~ni

∣∣∣∣
ei

= −φi+1
|ei|
2C

. (3.2.24)

Now we use (3.2.24) along with the fact that (φi + φi+1)|ei = 1 to compute the

outward normal derivatives of ψ
(3)
x,i :

∂ψ
(3)
x,i

∂~ni

∣∣∣∣∣
ei

=
∂φi
∂~ni

(2ei,xφiφi+1) +
∂φi+1

∂~ni
(ei,xφ

2
i) +

∂φi−1

∂~ni
(−ei−1,xφ

2
i) +

∂φi+2

∂~ni
(K0,iφ

2
i)

= φ3
i

(
ei−1,x

|ei|
2C

+ ei,x
|ei−1| cos(θi)

2C

)
+ φ2

iφi+1

(
(3ei,x −K0,i)

|ei|
2C
− ei,x

|ei−1| cos(θi)

2C

)
+

+ φiφ
2
i+1

(
−2ei,x

|ei−1| cos(θi)

2C

)
.

70

We ought to have
∂ψ

(3)
x,i

∂~ni

∣∣∣∣∣
vi

= ni,x =
ei,y
|ei|

, since ∇ψ(3)
x,i = 〈1, 0〉. In fact, that’s

exactly what we have. If we consider the unit vectors ẽi and ẽi−1, we see we can

rotate one to the other by the angle π − θi, which informs us that

ei−1

|ei−1|
=

 − cos(θi) sin(θi)

− sin(θi) − cos(θi)

 ei
|ei|

=
1

|ei|

 −ei,x cos(θi) + ei,y sin(θi)

−ei,x sin(θi)− ei,y cos(θi)

 , (3.2.25)

and, similarly,

ei
|ei|

=
1

|ei−1|

 −ei−1,x cos(θi)− ei−1,y sin(θi)

ei−1,x sin(θi)− ei−1,y cos(θi)

 .

Then we have

∂ψ
(3)
x,i

∂~ni

∣∣∣∣∣
ei

= φ3
i

(
ei,y
|ei|

)
+ φ2

iφi+1

(
(3ei,x −K0,i)

|ei|
2C
− ei,x

|ei−1| cos(θi)

2C

)
+

+ φiφ
2
i+1

(
−2ei,x

|ei−1| cos(θi)

2C

)
. (3.2.26)

Similarly, we compute

∂ψ
(3)
x,i

∂~ni−1

∣∣∣∣∣
ei−1

= φ3
i

(
ei−1,y

|ei−1|

)
+ φ2

iφi−1

(
(−3ei−1,x −K0,i)

|ei−1|
2C

+ ei−1,x
|ei| cos(θi)

2C

)
+ φiφ

2
i−1

(
2ei−1,x

|ei| cos(θi)

2C

)
, (3.2.27)

71

so in terms of the quadrilaterals P and R from Figure 3.3, we have

∂ψ
(3)
x,i,P

∂~ni,P

∣∣∣∣∣
ei,P

+
∂ψ

(3)
x,i,R

∂~ni−1,R

∣∣∣∣∣
ei−1,R

=

φ3
i,P

(
ei,y,P
|ei,P |

+
ei−1,y,R

|ei−1,R|

)
+ φ2

i,Pφi+1,P

(
(3ei,x,P −K0,i,P)

|ei,P |
2CP

− ei,x,P
|ei−1,P | cos(θi,P)

2CP

+(−3ei−1,x,R −K0,i,R)
|ei−1,R|

2CR
+ ei−1,x,R

|ei,R| cos(θi,R)

2CR

)
+ φi,Pφ

2
i+1,P

(
−2ei,x,P

|ei−1,P | cos(θi,P)

2CP
+ 2ei−1,x,R

|ei,R| cos(θi,R)

2CR

)
=
φ2
i,Pφi+1,P

sin(θi,P)

(
3ei,x,P −K0,i,P

|ei−1,P |
+
−3ei−1,x,R −K0,i,R

|ei,R|

)
.

There’s not a unique solution for K0,i, but in the interest of having each function

defined only by the geometry of the quadrilateral it’s defined over, we’ll set K0,i =

3(ei,x − ei−1,x) to have

∂ψ
(3)
x,i,P

∂~ni,P

∣∣∣∣∣
ei,P

+
∂ψ

(3)
x,i,R

∂~ni−1,R

∣∣∣∣∣
ei−1,R

=
φ2
i,Pφi+1,P

sin(θi,P)

(
3ei−1,x,P

|ei−1,P |
− 3ei,x,R
|ei,R|

)
=

3φ2
i,Pφi+1,P

sin(θi,P)
(ẽi−1,x,P − ẽi,x,R) .

Since we required that ~ei−1,P and ~ei,R are collinear, then their unit vectors are parallel,

and based on the counter-clockwise orientation of P and R, in fact we have ẽi−1,P =

ẽi,R, so that

∂ψ
(3)
x,i,P

∂~ni,P

∣∣∣∣∣
ei,P

+
∂ψ

(3)
x,i,R

∂~ni−1,R

∣∣∣∣∣
ei−1,R

= 0.

72

Conveniently, this choice of K0,i also satisfies

4∑
i=1

vi,xψ
(3)
i + ψ

(3)
x,i = x, (3.2.28)

which we can check using similar steps as we took in (3.2.2) and (3.2.3). First we

compute x as a cubic Wachspress function:

x =

(
4∑
j=1

vj,xφj

)(
4∑

k=1

φk

)2

=
4∑
j=1

vj,xφ
3
j + (2vj,x + vj+1,x)φ

2
jφj+1 + (2vj,x + vj−1,x)φ

2
jφj−1

+ (4vj,x + 2(vj+1,x + vj−1,x) + vj+2,x)Bφj. (3.2.29)

Expanding the sum on the left-hand side of (3.2.28) will reveal the same expression

as (3.2.29).

Therefore, we conclude

ψ
(3)
x,i = φ2

i (ei,xφi+1 − ei−1,xφi−1 + 3(ei,x − ei−1,x)φi+2). (3.2.30)

A nearly identical analysis will yield

ψ
(3)
y,i = φ2

i (ei,yφi+1 − ei−1,yφi−1 + 3(ei,y − ei−1,y)φi+2), (3.2.31)

which has the analogous property that

4∑
i=1

vi,yψ
(3)
i + ψ

(3)
y,i = y. (3.2.32)

As in the previous section, for each vertex v in P , we define the C1 basis splines

ψ
(3)
x,v and ψ

(3)
y,v by ψ

(3)
x,i,P and ψ

(3)
y,i,P , respectively, in each P ∈ Ωv where v = vi in P , and

73

0 otherwise. Then by construction, we have the following:

Theorem 3.2.2. Let Ω be a polygonal region in R2 which permits a skewed-grid

partition as in Figure 3.5, and let P be such a skewed-grid partition of Ω. For every

vertex v in the partition P, define polygonal splines ψ
(3)
x,v and ψ

(3)
y,v over Ωv by

ψ(3)
x,v(x) :=

 ψ
(3)
x,i,P (x) x ∈ P ⊆ Ωv; v = vi,P

0 x 6∈ Ωv

and ψ(3)
y,v(x) :=

 ψ
(3)
y,i,P (x) x ∈ P ⊆ Ωv; v = vi,P

0 x 6∈ Ωv

where ψ
(3)
x,i,P is the function given in (3.2.30) and ψ

(3)
y,i,P is the function given in

(3.2.31).

Then ψ
(3)
x,v and ψ

(3)
y,v satisfy the following properties:

(1) ψ
(3)
x,v(w) = ψ

(3)
y,v(w) = 0 for any vertex w of P;

(2) ∇ψ(3)
x,v(w) = 〈δv,w, 0〉 and ∇ψ(3)

y,v(w) = 〈0, δv,w〉 for any vertex w of P;

(3) ψ
(3)
x,v, ψ

(3)
y,v ∈ C1(Ω); and

(4)
∑
v∈P

vxψ
(3)
v + ψ

(3)
x,v = x and

∑
v∈P

vyψ
(3)
v + ψ

(3)
y,v = y.

Figures 3.7a and 3.7b show plots of the functions ψ
(3)
x,v and ψ

(3)
y,v at the same vertex

v of the same partition used in Figure 3.6.

3.2.3 Construction of ψ
(3)
x2,v, ψ

(3)
y2,v, and ψ

(3)
xy,v

It’s reasonable to expect to be able to extend further. After all, the full span of

all degree-3 Wachspress functions over a polygon P contains all degree-3 bivariate

polynomials over P , so it is at least plausible that we could extend our span to

contain this polynomial subspace as well. In fact, we can do just that.

74

(a) The plot of a function ψ
(3)
x,v

(b) The plot of a function ψ
(3)
y,v

Figure 3.7: Plots of degree-3 gradient-adjustment basis splines

We’ll start by extending our span to include x2. Again, let’s first restrict our

attention to a single quadrilateral P .

As things stand, the most natural approximation of the function x2 over P using

our current basis functions is

I
(3)

x2 :=
4∑
i=1

v2
i,xψ

(3)
i + 2vi,xψ

(3)
x,i .

It is simple to check that I
(3)

x2 is not equal to x2; we can express x2 as a cubic Wachs-

press function as we did for the constant function 1 in (3.2.2) and for the function x

75

in (3.2.29), and then evaluate the difference x2 − I(3)

x2 :

x2 − I(3)

x2 =
4∑
i=1

−2ei,xei−1,xφ
2
iφi+2.

The obvious choice to make is to define a function

ψ
(3)

x2,i = −ei,xei−1,xφ
2
iφi+2, (3.2.33)

so that x2 =
4∑
i=1

v2
i,xψ

(3)
i + 2vi,xψ

(3)
x,i + 2ψ

(3)

x2,i. Similar analyses of xy and y2 produce

functions

ψ
(3)

y2,i = −ei,yei−1,yφ
2
iφi+2 (3.2.34)

and ψ
(3)
xy,i = −(ei,xei−1,y + ei,yei−1,x)φ

2
iφi+2. (3.2.35)

These functions disappear on the boundary of the quadrilateral, so they will cer-

tainly join continuously across shared edges. In fact, they join C1-smoothly. We’ll

check ψ
(3)

x2,i.

∂ψ
(3)

x2,i

∂~ni

∣∣∣∣∣
ei

= −ei,xei−1,xφ
2
i

∂φi+2

∂~ni

=
|ei|
2C

ei,xei−1,xφ
2
i

=
ei−1,x

|ei−1|
ei,x

sin(θi)
φ2
i ;

∂ψ
(3)

x2,i

∂~ni−1

∣∣∣∣∣
ei−1

= −ei,xei−1,xφ
2
i

∂φi+2

∂~ni−1

=
|ei−1|
2C

ei,xei−1,xφ
2
i

=
ei,x
|ei|

ei−1,x

sin(θi)
φ2
i .

76

Then, if we return to the adjacent quadrilaterals P and R in Figure 3.3, we use

the facts that θi,P = π − θi,R, ~ei,P = −~ei−1,R, and ẽi−1,P = ẽi,R to show

∂ψ
(3)

x2,i,P

∂~ni,P

∣∣∣∣∣
ei,P

+
∂ψ

(3)

x2,i,R

∂~ni−1,R

∣∣∣∣∣
ei−1,R

= φ2
i,P

(
ei−1,x,P

|ei−1,P |
ei,x,P

sin(θi,P)
+
ei,x,R
|ei,R|

ei−1,x,R

sin(θi,R)

)
= φ2

i,P

ei,x,P
|ei,P |

(ẽi−1,x,P − ẽi,x,R)

= 0.

We can similarly show that ψ
(3)

y2,i and ψ
(3)
xy,i join smoothly over shared edges.

Hence, for each vertex v in P , we define C1 splines ψ
(3)

x2,v, ψ
(3)

y2,v, and ψ
(3)
xy,v as we

did for ψ
(3)
v , ψ

(3)
x,v, and ψ

(3)
y,v. Figure 3.8 shows a plot of the function ψ

(3)

x2,v at the same

vertex v of the same partition P used for the plots in Figures 3.6 and3.7. However,

we can’t add each of these as basis splines, because they are in fact constant multiples

of each other, so we simply include one of them.

Figure 3.8: The plot of a function ψ
(3)

x2,v

Note that it’s possible one or more of these functions may be zero. In fact, on

rectangular grid partitions which are aligned with the x and y axes, all three of them

will be zero. For convenience, we’ll still use the distinct notation for each of the 3

functions, but keep in mind that the total dimension of our space is only 4 times the

number of vertices - or 3 times the number of vertices for rectangular grid partitions

77

which are aligned with the x and y axes.

By construction, we can use our previously built vertex splines along with these

functions ψ
(3)

x2,v, ψ
(3)

y2,v, and ψ
(3)
xy,v to recover degree-2 polynomials, but we can actu-

ally use them to recover degree-3 polynomials as well. It’s not difficult to show the

following:

x3 =
∑
v

v3
xψ

(3)
v + 3v2

xψ
(3)
x,v + 6vxψ

(3)

x2,v,

y3 =
∑
v

v3
yψ

(3)
v + 3v2

yψ
(3)
y,v + 6vyψ

(3)

y2,v,

x2y =
∑
v

v2
xvyψ

(3)
v + 2vxvyψ

(3)
x,v + v2

xψ
(3)
y,v + 2vyψ

(3)

x2,v + 2vxψ
(3)
xy,v, and

xy2 =
∑
v

vxv
2
yψ

(3)
v + v2

yψ
(3)
x,v + 2vxvyψ

(3)
y,v + 2vxψ

(3)

y2,v + 2vyψ
(3)
xy,v.

The discussions in this section, along with the rest of this chapter, serves as a

proof of the following:

Theorem 3.2.3. Let Ω be a polygonal region in R2 which permits a skewed-grid

partition as in Figure 3.5, and let P be such a skewed-grid partition of Ω. For every

vertex v in the partition P, define polygonal splines ψ
(3)

x2,v, ψ
(3)

y2,v, and ψ
(3)
xy,v over Ωv by

ψ
(3)

x2,v(x) :=

 ψ
(3)

x2,i,P (x) x ∈ P ⊆ Ωv; v = vi,P

0 x 6∈ Ωv

ψ
(3)

y2,v(x) :=

 ψ
(3)

y2,i,P (x) x ∈ P ⊆ Ωv; v = vi,P

0 x 6∈ Ωv

and ψ(3)
xy,v(x) :=

 ψ
(3)
xy,i,P (x) x ∈ P ⊆ Ωv; v = vi,P

0 x 6∈ Ωv

where ψ
(3)

x2,i,P , ψ
(3)

y2,i,P , and ψ
(3)
xy,i,P are the functions defined in (3.2.33), (3.2.34), and

(3.2.35).

78

Then ψ
(3)

x2,v, ψ
(3)

y2,v, and ψ
(3)
xy,v satisfy the following properties:

(1) ψ
(3)

x2,v(w) = ψ
(3)

y2,v(w) = ψ
(3)
xy,v(w) = 0 for any vertex w of P;

(2) ∇ψ(3)

x2,v(w) = ∇ψ(3)

y2,v(w) = ∇ψ(3)
xy,v(w) = 0 for any vertex w of P;

(3) ψ
(3)

x2,v, ψ
(3)

y2,v, ψ
(3)
xy,v ∈ C1(Ω);

(4)
∑
v∈P

v2
xψ

(3)
v + 2vxψ

(3)
x,v + 2ψ

(3)

x2,v = x2,
∑
v∈P

v2
yψ

(3)
v + 2vyψ

(3)
y,v + 2ψ

(3)

y2,v = y2∑
v∈P

vxvyψ
(3)
v + vyψ

(3)
x,v + vyψ

(3)
y,v + ψ

(3)
xy,v = xy,

(5) The functions ψ
(3)

x2,v, ψ
(3)

y2,v, and ψ
(3)
xy,v are constant multiples of each other, with

the exception that some of them may be zero depending on the geometry of P;

(6) Where Ψ1
3(P) := span{ψ(3)

v , ψ
(3)
x,v, ψ

(3)
y,v, ψ

(3)

x2,v, ψ
(3)

y2,v, ψ
(3)
xy,v}v∈P , dim(Ψ3(P)) = c|V |,

where c = 3 if P is a rectangular grid aligned with the x and y axes, and c = 4

otherwise;

(7) Π3 ⊆ Ψ1
3(P).

Over parallelograms, an interesting phenomenon arises:

Theorem 3.2.4. Let P be a parallelogram. Then the Wachspress coordinates of P

are not rational functions, but in fact are degree-2 polynomials.

Proof. Since all areas Cj of a parallelogram P are equal, we may as well label them

all C. This, combined with the facts that ei and ei+2 are parallel and the functions

79

Aj are linear and zero on the edge ej, makes it easy to see that Ai+2 = C −Ai. Then

φi =
CiAi+1Ai+2

4∑
j=1

CjAj+1Aj+2

=
Ai+1Ai+2

AiAi+1 + Ai+1Ai+2 + Ai+2Ai−1 + Ai−1Ai

=
Ai+1Ai+2

(Ai + Ai+2)(Ai+1 + Ai−1)

=
Ai+1Ai+2

C2
. (3.2.36)

Therefore, our space Ψ3(P) is actually the same space as the space of tensor-

product C1 bicubic splines over P . While it would be nice if this were a truly new

space, this work so far has two main benefits. First, Ψ3(Ω) has a nice basis which

eases some of the workload when using tensor-product C1 bicubic splines. Second,

the techniques we used will be useful in the upcoming cases, where we use higher-

degree polynomials of Wachspress coordinates to allow ourselves the flexibility to

extend which partitions are admissible, along with increasing polynomial approxima-

tion power.

3.3 Approximation properties of Ψ1
3(P)

Let Ω ⊂ R2 be a polygonal region which admits a skewed-grid partition, and let P

be such a skewed-grid partition of Ω. We consider a series of uniform refinements of

P ; denote by Pk the kth uniform refinement of P .

Using techniques from [20] and Chapter 2, we can show the following:

Theorem 3.3.1. For any function f ∈ C3(Ω), there exists a polygonal spline s
(3)
f,k ∈

Ψ1
3(Pk) such that

||f − s(3)
f,k||∞,Ω ≤ C|f |3,∞,Ω2−3k

80

where C is a positive constant independent of f .

Theorem 3.3.2. For any function f ∈ C3(Ω), there exists a polygonal spline s
(3)
f,k ∈

Ψ1
3(Pk) such that

||f − s(3)
f,k||2,Ω ≤ C|f |3,2,Ω2−3k

and

|f − s(3)
f,k|1,2,Ω ≤ C|f |3,2,Ω2−2k

for a constant C which is independent of u, but may be dependent on the boundary of

Ω if Ω is nonconvex.

See Chapter 4 Section 4.3 for some numerical results using an improvement of the

polygonal spline space detailed in this Chapter.

3.4 Increasing to degree 4

Let us now consider building a similar space, this time using degree-4 Wachspress

functions. We’d start by building functions ψ
(4)
v functions from the previous section.

The natural next step would be to build ψ
(4)
x,v, ψ

(4)
y,v and the like to construct a new

function space Ψ4(P). However, it happens that Ψ4(P) is not a C1 linear space over

any more general partitions than our already-constructed space Ψ3(P) - the interested

reader is welcome to complete the similar calculations, and will see that, while ψ
(4)
v

does permit more general partitions, adding analogous functions ψ
(4)
x,v and ψ

(4)
y,v will

force us to resort to the same partition restrictions as in the degree-3 case. However,

Ψ4(P) could allow us to extend our span to contain all degree-4 polynomials. We’ll

skip the details of this case and move on to the more interesting case of Ψ5(P), which

permits more general partitions.

81

Chapter 4

A Degree-5 Construction of C1

Polygonal Splines on Parallelogram

Partitions

4.1 Degree-5 C1 polygonal vertex splines

4.1.1 Construction of ψ
(5)
v

We’ll build a degree-5 polygonal spline function which is analogous to ψ
(3)
v . As before,

we start by first focusing on a single quadrilateral P where v = vi in P , and let

ψ
(5)
v

∣∣
P

= ψ
(5)
i,P , with the requirement that φ2

i divides ψ
(5)
i to ensure locality. A template

for our function, then, can be given by

ψ
(5)
i = φ2

i

(
J0,iφ

3
i + φ2

i (J1,iφi+1 + J2,iφi−1)

+ φi(J3,iφ
2
i+1 + J4,iφ

2
i−1) + J5,iφ

3
i+1 + J6,iφ

3
i−1

+ φi+2

(
K0,iφ

2
i + φi(K1,iφi+1 +K2,iφi−1) +K3,iφ

2
i+1 +K4,iφ

2
i−1

)
+ φ2

i+2 (S0,iφi + S1,iφi+1 + S2,iφi−1 + S3,iφi+2)
)
. (4.1.1)

82

We choose different letters to name coefficients of terms which are divisible by different

powers B. In particular, terms which have no factors of B are given coefficients J ;

these terms affect values on the edge, and thus are used to enforce continuity and to

manipulate edge-direction derivatives at vertices. Terms which have a single factor of

B are given coefficients K; these terms affect C1 smoothness on edges. Terms which

have two factors of B (the maximum possible using degree 5) are given coefficients

S; these terms are more or less free, but we’ll be able to determine them (at least to

some extent) by sum conditions.

To remind the reader, we wish for our function ψ
(5)
i to satisfy the following prop-

erties:

ψ
(5)
i

∣∣∣
vj

= δij, (4.1.2)

∇ψ(5)
i

∣∣∣
vj

= 0, (4.1.3)

4∑
j=1

ψ
(5)
j = 1. (4.1.4)

Since ψ
(5)
i

∣∣
vi

= J0,i, property (4.1.2) informs us that J0,i = 1. To determine J1,i

and J2,i, we take edge-direction derivatives at vi:

∂ψ
(5)
i

∂ẽi

∣∣∣∣∣
vi

=
J1,i − 5

|ei|
and

∂ψ
(5)
i

∂ẽi−1

∣∣∣∣∣
vi

=
J2,i − 5

|ei−1|
,

By property (4.1.3), both these derivatives should be equal to zero. Therefore, we’ll

set J1,i = J2,i = 5.

Skipping a bit of experimentation which was required in the development of these

functions, we simply mention that the additional flexibility which comes with in-

creasing the degree to 5 affords us the ability to control the Hessian at the vertices

83

with a C1 basis. With this in mind, we anticipate the construction of some functions

ψ
(5)

x2,i, ψ
(5)

y2,i, and ψ
(5)
xy,i which will allow us to control second derivatives at a vertex.

To make the implementation of these functions easier, we will include an additional

property for ψ
(5)
i :

∇2ψ
(5)
i

∣∣
vj

= 0. (4.1.5)

To satisfy this additional property, we will check some second derivatives of ψ
(5)
i .

The second derivatives in each edge direction are easy to compute, since Wachspress

coordinates are linear on the edges:

∂2ψ
(5)
i

∂ẽ2
i

∣∣∣∣∣
ei

=
∂

∂ẽi

(
∂φi
∂ẽi

(
5φ4

i + 20φ3
iφi+1 + 3J3,iφ

2
iφ

2
i+1 + 2J5,iφiφ

3
i+1

)
+
∂φi+1

∂ẽi

(
5φ4

i + 2J3,iφ
3
iφi+1 + 3J5,iφ

2
iφ

2
i+1

))
=

(
∂φi
∂ẽi

)2 (
20φ3

i + 60φ2
iφi+1 + 6J3,iφiφ

2
i+1 + 2J5,iφ

3
i+1

)
+
∂φi
∂ẽi

∂φi+1

∂ẽi

(
40φ3

i + 12J3,iφ
2
iφi+1 + 12J5,iφiφ

2
i+1

)
+

(
∂φi+1

∂ẽi

)2 (
2J3,iφ

3
i + 6J5,iφ

2
iφi+1

)
⇒ ∂2ψ

(5)
i

∂ẽ2
i

∣∣∣∣∣
vi

=
2J3,i − 20

|ei|2
;

∂2ψ
(5)
i

∂ẽ2
i

∣∣∣∣∣
vi+1

=
2J5,i

|ei|2
.

This informs us that we should set J3,i = 10 and J5,i = 0. A similar computation in

the direction ẽi−1 informs us that J4,i = 10 and J6,i = 0.

There remains the computation of the mixed-direction derivative,
∂2ψ

(5)
i

∂ẽi∂ẽi−1

. This

computation is not particularly difficult either, but it does require that we know

the mixed-direction derivatives of the Wachspress coordinates at the vertices. We

compute these now, starting with the edge-direction derivatives of the functions wj

84

given in (3.1.2):

∂wi
∂ei

∣∣∣∣
vi

=
CiCi+1

|ei|
(Ci+2 − 2Ci−1);

∂wi
∂ei−1

∣∣∣∣
vi

=
CiCi−1

|ei−1|
(2Ci+1 − Ci+2);

∂wi+1

∂ei

∣∣∣∣
vi

=
CiCi+1

|ei|
Ci−1;

∂wi+1

∂ei−1

∣∣∣∣
vi

= 0;

∂wi−1

∂ei

∣∣∣∣
vi

= 0;
∂wi−1

∂ei−1

∣∣∣∣
vi

=
CiCi−1

|ei−1|
(−Ci+1);

∂wi+2

∂ei

∣∣∣∣
vi

= 0;
∂wi+2

∂ei−1

∣∣∣∣
vi

= 0;

4∑
j=1

∂wj
∂ei

∣∣∣∣
vi

=
CiCi+1

|ei|
(Ci+2 − Ci−1);

4∑
j=1

∂wj
∂ei−1

∣∣∣∣
vi

=
CiCi−1

|ei−1|
(Ci+1 − Ci+2);

∂2wi
∂ei∂ei−1

∣∣∣∣
vi

=
Ci

|ei||ei−1|
(CiCi+2 − 2Ci+1Ci−1);

∂2wi+1

∂ei∂ei−1

∣∣∣∣
vi

=
Ci

|ei||ei−1|
Ci−1Ci+1;

∂2wi−1

∂ei∂ei−1

∣∣∣∣
vi

=
Ci

|ei||ei−1|
Ci−1Ci+1;

∂2wi+2

∂ei∂ei−1

∣∣∣∣
vi

=
Ci

|ei||ei−1|
(−CiCi+2);

4∑
j=1

∂2wj
∂ei∂ei−1

∣∣∣∣
vi

= 0.

We use the above to compute the following mixed-direction derivatives of the Wach-

spress coordinates at the vertices:

∂2φi
∂ei∂ei−1

∣∣∣∣
vi

=
−C2

i+2

|ei||ei−1|Ci+1Ci−1

;

∂2φi+1

∂ei∂ei−1

∣∣∣∣
vi

=
Ci+2

|ei||ei−1|Ci+1

;

∂2φi−1

∂ei∂ei−1

∣∣∣∣
vi

=
Ci+2

|ei||ei−1|Ci−1

;

∂2φi+2

∂ei∂ei−1

∣∣∣∣
vi

=
−CiCi+2

|ei||ei−1|Ci+1Ci−1

. (4.1.6)

85

Using (4.1.6), we can compute the mixed-direction derivatives in edge directions. We

can save ourselves some work by noting that, since φi
∣∣
ei+1

= φi
∣∣
ei+2

= 0 and φ2
i is a

factor of ψ
(5)
i , then the following derivatives are all zero:

∂2ψ
(5)
i

∂ẽi−1∂ẽi+2

∣∣∣∣
vi−1

,
∂2ψ

(5)
i

∂ẽi∂ẽi+1

∣∣∣∣
vi+1

,
∂2ψ

(5)
i

∂ẽi+1∂ẽi+2

∣∣∣∣
vi+2

It remains to compute the mixed-direction derivative at vi - this will involve the

coefficient K0,i.

∂2ψ
(5)
i

∂ẽi∂ẽi−1

∣∣∣∣
vi

=
∂

∂ẽi

(
∂φi
∂ẽi−1

(
5φ4

i + 20φ3
iφi+1 + 20φ3

iφi−1

)
+
∂φi+1

∂ẽi−1

(
5φ4

i

)
+
∂φi−1

∂ẽi−1

(
5φ4

i

)
+
∂φi+2

∂ẽi−1

(
K0,iφ

4
i

))
= 5

∂2φi
∂ẽi∂ẽi−1

+ 20
∂φi
∂ẽi

∂φi
∂ẽi−1

+ 20
∂φi
∂ẽi−1

∂φi+1

∂ẽi
+ 5

∂2φi+1

∂ẽi∂ẽi−1

+ 20
∂φi
∂ẽi

∂φi−1

∂ẽi−1

+ 5
∂2φi−1

∂ẽi∂ẽi−1

+K0,i
∂2φi+2

∂ẽi∂ẽi−1

=
20

|ei||ei−1|
+

5Ci+2(Ci−1 + Ci+1 − Ci+2)−K0,iCiCi+2

Ci+1Ci−1|ei||ei−1|
.

It is clear that the full area of the quadrilateral P is given by Ci+Ci+2 = Ci+1−Ci−1,

so we note that Ci+1 + Ci−1 − Ci+2 = Ci. Then we have

∂2ψ
(5)
i

∂ẽi∂ẽi−1

∣∣∣∣
vi

=
20Ci+1Ci−1 + (5−K0,i)CiCi+2

Ci+1Ci−1|ei||ei−1|
.

Thus, in order to satisfy (4.1.5), we set K0,i = 5 + 20
Ci+1Ci−1

CiCi+2

. Our results so far

86

have yielded the following:

ψ
(5)
i = φ2

i

(
φ3
i + 5φ2

i (φi+1 + φi−1) + 10φi(φ
2
i+1 + φ2

i−1)

+ φi+2

((
5 + 20

Ci+1Ci−1

CiCi+2

)
φ2
i + φi(K1,iφi+1 +K2,iφi−1)

+K3,iφ
2
i+1 +K4,iφ

2
i−1

)
+ φ2

i+2 (S0,iφi + S1,iφi+1 + S2,iφi−1 + S3,iφi+2)

)
. (4.1.7)

The remainder of the K coefficients will be determined by C1 smoothness over

shared edges. We start by taking the usual outward normal derivatives
∂ψ

(5)
i

∂~ni

∣∣∣∣
ei

and

∂ψ
(5)
i

∂~ni−1

∣∣∣∣
ei−1

; after substantial simplification, we retrieve

∂ψ
(5)
i

∂~ni

∣∣∣∣
ei

= φ3
iφ

2
i+1

(
30

(
|ei|
2Ci
− |ei−1| cos(θi)

2Ci

)
+ (20−K1,i)

|ei|Ci+2

2Ci−1Ci+1

)
+ φ2

iφ
3
i+1

(
30
|ei+1| cos(θi+1)

2Ci+1

−K3,i
|ei|

2Ci+1

)
+

(
Ci−1 − Ci+2

Ci+1

)
|ei|

2Ai+2

φ3
iφ

3
i+1

(
K3,i + Ci+2

(
30

Ci
+

20−K1,i

Ci−1

))
;

∂ψ
(5)
i

∂~ni−1

∣∣∣∣
ei−1

= φ3
iφ

2
i−1

(
30

(
|ei−1|
2Ci

− |ei| cos(θi)

2Ci

)
+ (20−K2,i)

|ei−1|Ci+2

2Ci−1Ci+1

)
+ φ2

iφ
3
i−1

(
30
|ei+2| cos(θi−1)

2Ci−1

−K4,i
|ei−1|
2Ci−1

)
+

(
Ci+1 − Ci+2

Ci−1

)
|ei−1|
2Ai+1

φ3
iφ

3
i−1

(
K4,i + Ci+2

(
30

Ci
+

20−K2,i

Ci+1

))
.

Considering two adjacent quadrilaterals P and R as before, we’ll want the following

87

sum to be zero:

∂ψ
(5)
i,P

∂~ni,P

∣∣∣∣
ei,P

+
∂ψ

(5)
i,R

∂~ni−1,R

∣∣∣∣
ei−1,R

= (4.1.8)

φ3
i,Pφ

2
i+1,P

(
30

(
|ei,P |
2Ci,P

− |ei−1,P | cos(θi,P)

2Ci,P
+
|ei−1,R|
2Ci,R

− |ei,R| cos(θi,R)

2Ci,R

)
+(20−K1,i,P)

|ei,P |Ci+2,P

2Ci−1,PCi+1,P

+ (20−K2,i,R)
|ei−1,R|Ci+2,R

2Ci−1,RCi+1,R

)
+ φ2

i,Pφ
3
i+1,P

(
30

(
|ei+1,P | cos(θi+1,P)

2Ci+1,P

+
|ei+2,R| cos(θi−1,R)

2Ci−1,R

)
−K3,i,P

|ei,P |
2Ci+1,P

−K4,i,R
|ei−1,R|
2Ci−1,R

)
+

(
Ci−1,P − Ci+2,P

Ci+1,P

)
|ei,P |

2Ai+2,P

φ3
i,Pφ

3
i+1,P

(
K3,i,P + Ci+2,P

(
30

Ci,P
+

20−K1,i,P

Ci−1,P

))
+

(
Ci+1,R − Ci+2,R

Ci−1,R

)
|ei−1,R|
2Ai+1,R

φ3
i,Pφ

3
i+1,P

(
K4,i,R + Ci+2,R

(
30

Ci,R
+

20−K2,i,R

Ci+1,R

))
.

The last two lines here are rational terms, with linear denominators, with their nu-

merators both φ3
i,Pφ

3
i+1,P times a constant. There are 3 cases to consider here.

If the linear functions Ai+2,P

∣∣
ei,P

and Ai+1,R

∣∣
ei−1,R

are not constant multiples of

each other, then there is no hope of any cancellation in (4.1.8). Therefore, if we

want (4.1.8) to be zero, the coefficients on these rational terms must be zero. One

possibility is to require that Ci−1,P = Ci+2,P and Ci+1,R = Ci+2,R. Using the notation

in Figure 3.4, this is equivalent to requiring that

hi−1,P = hi+2,P and hi+1,R = hi+2,R.

Applied to an entire partition P of many quadrilaterals, this is equivalent to requiring

that all quadrilaterals in P are parallelograms. Technically, this results in Ai+2,P

∣∣
ei,P

and Ai+1,R

∣∣
ei−1,R

remaining constant on the shared edge, which means they are of

course constant multiples of each other, which is not in the spirit of this case. There-

fore, we’ll save this as our last case.

88

Otherwise, we’ll need to require that the coefficients written at the end of the lines

with rational terms in (4.1.8) are zero, so we require

K3,i = (K1,i − 20)
Ci+2

Ci−1

− 30
Ci+2

Ci
and

K4,i = (K2,i − 20)
Ci+2

Ci+1

− 30
Ci+2

Ci
,

which allows us to simplify (4.1.8) to retrieve

∂ψ
(5)
i,P

∂~ni,P

∣∣∣∣
ei,P

+
∂ψ

(5)
i,R

∂~ni−1,R

∣∣∣∣
ei−1,R

= (4.1.9)

φ3
i,Pφ

2
i+1,P

(
30

(
|ei,P |
2Ci,P

− |ei−1,P | cos(θi,P)

2Ci,P
+
|ei−1,R|
2Ci,R

− |ei,R| cos(θi,R)

2Ci,R

)
+(20−K1,i,P)

|ei,P |Ci+2,P

2Ci−1,PCi+1,P

+ (20−K2,i,R)
|ei−1,R|Ci+2,R

2Ci−1,RCi+1,R

)
+ φ2

i,Pφ
3
i+1,P

(
30

(
|ei+1,P | cos(θi+1,P)

2Ci+1,P

+
|ei,P |Ci+2,P

2Ci,PCi+1,P

+
|ei+2,R| cos(θi−1,R)

2Ci−1,R

+
|ei−1,R|Ci+2,R

2Ci,RCi−1,R

)
+(20−K1,i,P)

|ei,P |Ci+2,P

2Ci−1,PCi+1,P

+ (20−K2,i,R)
|ei−1,R|Ci+2,R

2Ci−1,RCi+1,R

)
.

The terms involving K1,i and K2,i in (4.1.9) are identical in both coefficients, so both

these coefficients can simultaneously be zero only if the remaining terms are equal;

we need to enforce

|ei,P |
2Ci,P

(
Ci+1,P − Ci+2,P

Ci+1,P

)
− |ei−1,P | cos(θi,P)

2Ci,P
− |ei+1,P | cos(θi+1,P)

2Ci+1,P

=
|ei−1,R|
2Ci,R

(
Ci+2,R − Ci−1,R

Ci−1,R

)
+
|ei,R| cos(θi,R)

2Ci,R
+
|ei+2,R| cos(θi−1,R)

2Ci−1,R

.

While there are some geometric assumptions on P which can satisfy this, we weren’t

able to find anything intuitive or more minimal than the aforementioned possibility

of forcing all quadrilaterals in P to be parallelograms. Therefore, we’ll dismiss this

89

case.

We now consider the case that Ai+2,P

∣∣
ei,P

= mAi+1,R

∣∣
ei−1,R

for some constant m.

We can solve for this constant m at each vertex:

Ai+2,P

∣∣
vi,P

= Ci−1,P , Ai+1,R

∣∣
vi,R

= Ci+1,R ⇒ m =
Ci+1,R

Ci−1,P

Ai+2,P

∣∣
vi+1,P

= Ci+2,P , Ai+1,R

∣∣
vi−1,R

= Ci+2,R ⇒ m =
Ci+2,R

Ci+2,P

Therefore, this case only occurs when

Ci+2,P

Ci−1,P

=
Ci+2,R

Ci+1,R

⇒ |ei+1,P | sin(θi+2,P)

|ei−1,P | sin(θi−1,P)
=
|ei+2,R| sin(θi+2,R)

|ei,R| sin(θi+1,R)

⇒ hi+2,P

hi−1,P

=
hi+2,R

hi+1,R

,

which is the same condition as we set in (3.2.17). As discussed there, we must require

that the ratio of the heights shown in Figure 3.4 be the same in P and R. As before,

this condition is too abstract and non-intuitive to enforce unless we require the ratio

to be 1, which in general forces all quadrilaterals in P to be parallelograms.

All signs point us to require that P is a partition of parallelograms. While any

geometric restriction is undesirable, this situation is at least more robust than the

partitions which our degree-3 analysis permitted: with the absence of any requirement

of collinearity of edges, we see far more robust behavior, and even admit extraordinary

points - vertices on the interior of P which have a valence not equal to 4. An example

of such a partition is shown in Figure 4.1.

90

Figure 4.1: A partition of parallelograms

Exploiting parallelogram geometry, we are able to simplify (4.1.8) to

∂ψ
(5)
i,P

∂~ni,P

∣∣∣∣
ei,P

+
∂ψ

(5)
i,R

∂~ni−1,R

∣∣∣∣
ei−1,R

=

φ3
i,Pφ

2
i+1,P

(
(50−K1,i,P)

|ei,P |
2CP

+ (50−K2,i,R)
|ei−1,R|

2CR

−30

(
|ei−1,P | cos(θi,P)

2CP
+
|ei,R| cos(θi,R)

2CR

))
+ φ2

i,Pφ
3
i+1,P

(
−30

(
|ei−1,P | cos(θi,P)

2CP
+
|ei,R| cos(θi,R)

2CR

)
−K3,i,P

|ei,P |
2CP

−K4,i,R
|ei−1,R|

2CR

)
. (4.1.10)

We can make (4.1.10) zero by setting

K1,i = 50− 30
|ei−1|
|ei|

cos(θi), K2,i = 50− 30
|ei|
|ei−1|

cos(θi),

K3,i = −30
|ei−1|
|ei|

cos(θi), K4,i = −30
|ei|
|ei−1|

cos(θi).

In fact, these choices of coefficients will give us that
∂ψ

(5)
i

∂~ni

∣∣∣∣
ei

=
∂ψ

(5)
i

∂~ni−1

∣∣∣∣
ei−1

= 0.

The S coefficients can be found by computing the difference 1−
4∑
j=1

ψ
(5)
j , using the

91

fact that 1 =

(
4∑
j=1

φj

)5

:

1−
4∑
j=1

ψ
(5)
j = −B2C4

4∑
j=1

φj (100− S0,j − S1,j+1 − S2,j−1 − S3,j+2) . (4.1.11)

Of course, there is not a unique set of values for the S coefficients to make (4.1.11)

zero. We’ll simply put everything into the S0,i coefficients, setting S0,i = 100.

Then we retrieve the final result

ψ
(5)
i = φ2

i

(
φ3
i + 5φ2

i (φi+1 + φi−1) + 10φi
(
φ2
i+1 + φ2

i−1

)
+ φi+2

(
25φ2

i + φi

((
50− 30

|ei−1|
|ei|

cos(θi)

)
φi+1

+

(
50− 30

|ei|
|ei−1|

cos(θi)

)
φi−1

)
− 30 cos(θi)

(
|ei−1|
|ei|

φ2
i+1 +

|ei|
|ei−1|

φ2
i−1

)
+ 100φiφi+2

))
. (4.1.12)

As with our prior constructions, for every vertex v in P , define the C1 vertex splines

ψ
(5)
v by ψ

(5)
i,P in each parallelogram P ∈ Ωv where v = vi in P , and zero otherwise.

The discussion in this section serves as a proof of the following:

Theorem 4.1.1. Let Ω be a polygonal region in R2 which permits a partition by

parallelograms as in Figure 4.1, and let P be such a parallelogram partition of Ω. For

every vertex v in the partition P, define a polygonal spline ψ
(5)
v over Ωv by

ψ(5)
v (x) :=

 ψ
(5)
i,P (x) x ∈ P ⊆ Ωv; v = vi,P

0 x 6∈ Ωv,

where ψ
(5)
i,P is the function in (4.1.12).

Then ψ
(5)
v satisfies the following properties:

(1) ψ
(5)
v (w) = δv,w for any vertex w of P;

92

(2) ∇ψ(5)
v (w) = 0 for any vertex w of P;

(3) ∇2ψ
(5)
v (w) = 0 for any vertex w of P;

(4) ψ
(5)
v ∈ C1(Ω); and

(5)
∑
v∈P

ψ
(5)
v = 1.

The plot of a function ψ
(5)
v over the paralellogram partition shown in Figure 4.1

is shown in Figure 4.2

Figure 4.2: The plot of a function ψ
(5)
v

4.1.2 Construction of ψ
(5)
x,v and ψ

(5)
y,v

As in the degree-3 case, we’ll proceed from here to build functions ψ
(5)
x,v and ψ

(5)
y,v to

extend the span of our C1 vertex spline space to include linear polynomials. Just like

before, we’ll focus on ψ
(5)
x,v first, and we’ll begin by restricting our attention to a single

parallelogram P in Ωv, with v = vi in P and ψ
(5)
x,i,P := ψ

(5)
x,v

∣∣
P

.

93

To remind the reader, we aim to satisfy the properties

ψ
(5)
x,i

∣∣
vj

= 0, (4.1.13)

∇ψ(5)
x,i

∣∣
vj

= 〈δij, 0〉, (4.1.14)

4∑
j=1

vj,xψ
(5)
j + ψ

(5)
j,x = x, (4.1.15)

and we add the additional condition

∇2ψ
(5)
x,i

∣∣
vj

= 0. (4.1.16)

We can use the same template given in (4.1.1), and the condition (4.1.13) informs

us that J0,i = 0. We can compute the edge-direction derivatives at vi by

∂ψ
(5)
x,i

∂ẽi

∣∣∣∣
vi

=
J1,i

|ei|
;

∂ψ
(5)
x,i

∂ẽi−1

∣∣∣∣
vi

=
−J2,i

|ei−1|
.

By (4.1.14), we should have
∂ψ

(5)
x,i

∂ẽi

∣∣∣∣
vi

=
ei,x
|ei|

and
∂ψ

(5)
x,i

∂ẽi−1

∣∣∣∣
vi

=
ei−1,x

|ei−1|
, so we’ll set

J1,i = ei,x and J2,i = −ei−1,x.

To satisfy (4.1.16), we need to consider the second edge-direction derivatives at

the vertices. First, notice that

∂2ψ
(5)
x,i

∂ẽ2
i

∣∣∣∣
vi+1

=
2J5,i

|ei|2
, and

∂2ψ
(5)
x,i

∂ẽ2
i−1

∣∣∣∣
vi−1

=
2J6,i

|ei−1|2
,

94

so we should set J5,i = J6,i = 0. Next, we compute

∂2ψ
(5)
x,i

∂ẽ2
i

∣∣∣∣
vi

=
2J3,i − 8ei,x
|ei|2

,

∂2ψ
(5)
x,i

∂ẽ2
i−1

∣∣∣∣
vi

=
2J4,i + 8ei−1,x

|ei−1|2
,

so we’ll set J3,i = 4ei,x and J4,i = −4ei−1,x.

Finally, we’ll compute the mixed-direction derivative at vi. After some simplifica-

tion, we retrieve

∂2ψ
(5)
x,i

∂ẽi∂ẽi−1

∣∣∣∣
vi

=
5 (ei,x − ei−1,x)−K0,i

|ei||ei−1|
,

which is zero exactly when K0,i = 5 (ei,x − ei−1,x) .

So far, then, we have

ψ
(5)
x,i = φ2

i

(
φ2
i (ei,xφi+1 − ei−1,xφi−1) + 4φi(ei,xφ

2
i+1 − ei−1,xφ

2
i−1)

+ φi+2

(
5 (ei,x − ei−1,x)φ

2
i

+φi(K1,iφi+1 +K2,iφi−1) +K3,iφ
2
i+1 +K4,iφ

2
i−1

)
+φ2

i+2(S0,iφi + S1,iφi+1 + S2,iφi−1 + S3,iφi+2)
)
. (4.1.17)

As usual, we determine the rest of the K coefficients by enforcing smoothness

across shared edges. We compute the outward normal derivatives of ψ
(5)
x,i on edge ei

95

and ei−1, which can be simplified using parallelogram geometry and (3.2.25) to

∂ψ
(5)
x,i

∂~ni

∣∣∣∣
ei

= φ5
i

(
ei,y
|ei|

)
+ 5φ4

iφi+1

(
ei,y
|ei|

)
+ φ3

iφ
2
i+1

(
(20ei,x −K1,i)

|ei|
2C
− 8ei,x

|ei−1| cos(θi)

2C

)
+ φ2

iφ
3
i+1

(
−K3,i

|ei|
2C
− 12ei,x

|ei−1| cos(θi)

2C

)
;

∂ψ
(5)
x,i

∂~ni−1

∣∣∣∣
ei−1

= φ5
i

(
ei−1,y

|ei−1|

)
+ 5φ4

iφi−1

(
ei−1,y

|ei−1|

)
+ φ3

iφ
2
i−1

(
(−20ei−1,x −K2,i)

|ei−1|
2C

+ 8ei−1,x
|ei| cos(θi)

2C

)
+ φ2

iφ
3
i−1

(
−K4,i

|ei−1|
2C

+ 12ei−1,x
|ei| cos(θi)

2C

)
.

Considering two adjacent parallelograms P and R sharing an edge as before, we

compute the sum of their outward normal derivatives on the shared edge by

∂ψ
(5)
x,i,P

∂~ni,P

∣∣∣∣
ei,P

+
∂ψ

(5)
x,i,R

∂~ni−1,R

∣∣∣∣
ei−1,R

=

φ3
i,Pφ

2
i+1,P

(
(20ei,x −K1,i,P)

|ei,P |
2CP

− 8ei,x,P
|ei−1,P | cos(θi,P)

2CP

+ (−20ei−1,x,R −K2,i,R)
|ei−1,R|

2CR
+ 8ei−1,x,R

|ei,R| cos(θi,R)

2CR

)
+ φ2

i,Pφ
3
i+1,P

(
−K3,i,P

|ei,P |
2CP

− 12ei,x,P
|ei−1,P | cos(θi,P)

2CP

−K4,i,R
|ei−1,R|

2CR
+ 12ei−1,x,R

|ei,R| cos(θi,R)

2CR

)
. (4.1.18)

There aren’t unique choices for the K coefficients to make (4.1.18) zero, but with

respect to the condition (4.1.15), which we’ll discuss in more detail shortly as we find

96

the S coefficients, we’ll set

K1,i =

(
20− 18

|ei−1|
|ei|

cos(θi)

)
ei,x − 10ei−1,x, K3,i = −12

|ei−1|
|ei|

cos(θi)ei,x,

K2,i = −
(

20− 18
|ei|
|ei−1|

cos(θi)

)
ei−1,x + 10ei,x, K4,i = 12

|ei|
|ei−1|

cos(θi)ei−1,x.

Finally, to find the remaining S coefficients, we expand

x =

(
4∑
j=1

vj,xφj

)(
4∑

k=1

φk

)4

and compute the difference

x−

(
4∑
j=1

vj,xψ
(5)
j + ψ

(5)
x,j

)
=

4∑
j=1

B2C4φj (40 (ej−1,x − ej,x)− (S0,j + S1,j−1 + S2,j+1 + S3,j+2)) .

Again, there is not a unique set of solutions, but we’ll make a similar decision as

we did for ψ
(5)
i , and set S0,i = 40 (ei,x − ei−1,x), and S1,i = S2,i = S3,i = 0.

Then we finally retrieve the lengthy expression

ψ
(5)
x,i = φ2

i

(
φ2
i (ei,xφi+1 − ei−1,xφi−1) + 4φi(ei,xφ

2
i+1 − ei−1,xφ

2
i−1)

+ φi+2

(
5 (ei,x − ei−1,x)φ

2
i

+ φi

(((
20− 18

|ei−1|
|ei|

cos(θi)

)
ei,x − 10ei−1,x

)
φi+1

−
((

20− 18
|ei|
|ei−1|

cos(θi)

)
ei−1,x − 10ei,x

)
φi−1

)
−12
|ei−1|
|ei|

cos(θi)ei,xφ
2
i+1 + 12

|ei|
|ei−1|

cos(θi)ei−1,xφ
2
i−1

)
+ 40 (ei,x − ei−1,x)φiφ

2
i+2

)
. (4.1.19)

97

We can retrieve the expression for ψ
(5)
y,i by simply replacing each x by y in (4.1.19),

and for each vertex v in P we define ψ
(5)
x,v and ψ

(5)
y,v piecewise over Ωv as usual. By

construction, we have the following:

Theorem 4.1.2. Let Ω be a polygonal region in R2 which permits a parallelogram

partition as in Figure 4.1, and let P be such a parallelogram partition of Ω. For every

vertex v in the partition P, define polygonal splines ψ
(5)
x,v and ψ

(5)
y,v by

ψ(5)
x,v(x) :=

 ψ
(5)
x,i,P (x) x ∈ P ⊆ Ωv; v = vi,P

0 x 6∈ Ωv,

and ψ(5)
y,v(x) :=

 ψ
(5)
y,i,P (x) x ∈ P ⊆ Ωv; v = vi,P

0 x 6∈ Ωv,

where ψ
(5)
x,i,P is the function given in (4.1.26) and ψ

(5)
y,i,P is the associated function

retrieved by replacing every x in ψ
(5)
x,i,P by y.

Then ψ
(5)
x,v and ψ

(5)
y,v satisfy the following properties:

(1) ψ
(5)
x,v(w) = ψ

(5)
y,v(w) = 0 for any vertex w of P;

(2) ∇ψ(5)
x,v(w) = 〈δv,w, 0〉 and ∇ψ(5)

y,v = 〈0, δv,w〉 for any vertex w of P;

(3) ∇2ψ
(5)
x,v(w) = ∇2ψ

(5)
y,v(w) = 0 for any vertex w of P;

(4) ψ
(5)
x,v, ψ

(5)
y,v ∈ C1(Ω); and

(5)
∑
v∈P

vxψ
(5)
v + ψ

(5)
x,v = x and

∑
v∈P

vyψ
(5)
v + ψ

(5)
y,v = y.

Plots of these functions are shown in Figure 4.3.

98

(a) The plot of a function ψ
(5)
x,v

(b) The plot of a function ψ
(5)
y,v

Figure 4.3: Plots of degree-5 gradient-adjustment vertex splines

99

4.1.3 Construction of ψ
(5)
x2,v, ψ

(5)
y2,v, and ψ

(5)
xy,v

We’ll extend the span of these vertex splines to include degree-2 polynomials. We’ll

do so by constructing new C1 vertex splines to assert Hessian control. We’ll construct

functions ψ
(5)

x2,v, ψ
(5)

y2,v, and ψ
(5)
xy,v which satisfy the following properties for every vertex

w in P :

ψ
(5)

x2,v

∣∣
w

= ψ
(5)

y2,v

∣∣
w

= ψ(5)
xy,v

∣∣
w

= 0; (4.1.20)

∇ψ(5)

x2,v

∣∣
w

= ∇ψ(5)

y2,v

∣∣
w

= ∇ψ(5)
xy,v

∣∣
w

= 0; (4.1.21)

∇2ψ
(5)

x2,v

∣∣
w

=

 δv,w 0

0 0


∇2ψ

(5)

y2,v

∣∣
w

=

 0 0

0 δv,w


∇2ψ(5)

xy,v

∣∣
w

=

 0 δv,w

δv,w 0

 , (4.1.22)

along with the additional conditions that

∑
v∈P

v2
xψ

(5)
v + 2vxψ

(5)
x,v + 2ψ

(5)

x2,v = x2;

∑
v∈P

v2
yψ

(5)
v + 2vyψ

(5)
y,v + 2ψ

(5)

y2,v = y2;

∑
v∈P

vxvyψ
(5)
v + vyψ

(5)
x,v + vxψ

(5)
y,v + ψ(5)

xy,v = xy. (4.1.23)

We’ll first construct the function ψ
(5)
xy,v. Again, we first restrict our attention to a

single parallelogram P in Ωv, with v = vi in P and define ψ
(5)
xy,i,P := ψ

(5)
xy,v

∣∣
P

.

We begin with the same template given in (4.1.1), and note that conditions (4.1.20)

and (4.1.21) imply that J0,i = J1,i = J2,i = 0. Using the simplifications that come

100

with the restriction to parallelograms, it is not difficult to compute

∂2ψ
(5)
xy,i

∂ẽi

2∣∣∣∣
vi

=
2J3,i

|ei|2
,

∂2ψ
(5)
xy,i

∂ẽ2
i−1

∣∣∣∣
vi

=
2J4,i

|ei−1|2
,

∂ψ
(5)
xy,i

∂ẽi∂ẽi−1

∣∣∣∣
vi

=
−K0,i

|ei||ei−1|
,

∂2ψ
(5)
xy,i

∂ẽ2
i

∣∣∣∣
vi+1

=
2J5,i

|ei|2
,

∂2ψ
(5)
xy,i

∂ẽ2
i−1

∣∣∣∣
vi−1

=
2J6,i

|ei−1|2
,

∂ψ
(5)
xy,i

∂ẽi∂ẽi+1

∣∣∣∣
vi+1

= 0,
∂ψ

(5)
xy,i

∂ẽi−1∂ẽi+2

∣∣∣∣
vi−1

= 0.

Using condition (4.1.22), we see that we should have

∂2ψ
(5)
xy,i

∂ẽi

2∣∣∣∣
vi

=
2ei,xei,y
|ei|2

,
∂2ψ

(5)
xy,i

∂ẽ2
i−1

∣∣∣∣
vi

=
2ei−1,xei−1,y

|ei−1|2
,

∂ψ
(5)
xy,i

∂ẽi∂ẽi−1

∣∣∣∣
vi

=
ei,xei−1,y + ei,yei−1,x

|ei||ei−1|
,

∂2ψ
(5)
xy,i

∂ẽ2
i

∣∣∣∣
vi+1

= 0,
∂2ψ

(5)
xy,i

∂ẽ2
i−1

∣∣∣∣
vi−1

= 0,

∂ψ
(5)
xy,i

∂ẽi∂ẽi+1

∣∣∣∣
vi+1

= 0,
∂ψ

(5)
xy,i

∂ẽi−1∂ẽi+2

∣∣∣∣
vi−1

= 0.

Therefore, we’ll set J3,i = ei,xei,y, J4,i = ei−1,xei−1,y, J5,i = J6,i = 0, and

K0,i = − (ei,xei−1,y + ei,yei−1,x).

We determine the remaining K coefficients as usual, by enforcing C1 smoothness

on shared edges. We take outward normal derivatives of ψ
(5)
xy,i on edges ei and ei−1.

101

Using (3.2.25) and some parallelogram geometry, we can simplify the derivatives to

∂ψ
(5)
xy,i

∂~ni

∣∣∣∣
ei

= φ4
iφi+1

(
e2
i,y − e2

i,x

|ei|

)
+ φ3

iφ
2
i+1

(
(5ei,xei,y −K1,i)

|ei|
2C
− ei,xei,y

|ei−1| cos(θi)

2C

)
+ φ2

iφ
3
i+1

(
−K3,i

|ei|
2C
− 3ei,xei,y

|ei−1| cos(θi)

2C

)
,

∂ψ
(5)
xy,i

∂~ni−1

∣∣∣∣
ei−1

= φ4
iφi−1

(
e2
i−1,x − e2

i−1,y

|ei−1|

)
+ φ3

iφ
2
i−1

(
(5ei−1,xei−1,y −K2,i)

|ei−1|
2C

− ei−1,xei−1,y
|ei| cos(θi)

2C

)
+ φ2

iφ
3
i−1

(
−K4,i

|ei−1|
2C

− 3ei−1,xei−1,y
|ei| cos(θi)

2C

)
.

If we consider two adjacent parallelograms P and R in P as we have before, we

can add their outward normal derivatives on the shared edge to retrieve

∂ψ
(5)
xy,i,P

∂~ni,P

∣∣∣∣
ei,P

+
∂ψ

(5)
xy,i,R

∂~ni−1,R

∣∣∣∣
ei−1,R

=

φ3
i,Pφ

2
i+1,P

(
(5ei,x,Rei,y,P −K1,i,P)

|ei,P |
2CP

− ei,x,P ei,y,P
|ei−1,P | cos(θi,P)

2CP

+ (5ei−1,x,Rei−1,y,R −K2,i,R)
|ei−1,R|

2CR
− ei−1,x,Rei−1,y,R

|ei,R| cos(θi,R)

2CR

)
φ2
i,Pφ

3
i+1,P

(
−K3,i,P

|ei,P |
2CP

− 3ei,x,P ei,y,P
|ei−1,P | cos(θi,P)

2CP

−K4,i,R
|ei−1,R|

2CR
− 3ei−1,x,Rei−1,y,R

|ei,R| cos(θi,R)

2CR

)
. (4.1.24)

As usual, there are not unique choices of coefficients to ensure that (4.1.24) is zero.

However, just as when we were building ψ
(5)
x,i , we can refer to the condition (4.1.23)

102

to choose

K1,i = 5ei,xei,y

(
1− |ei−1|

|ei|
cos(θi)

)
− 2 (ei,xei−1,y + ei,yei−1,x) ;

K2,i = 5ei−1,xei−1,y

(
1− |ei|
|ei−1|

cos(θi)

)
− 2 (ei,xei−1,y + ei,yei−1,x) ;

K3,i = ei,xei,y
|ei−1|
|ei|

cos(θi) + 2 (ei,xei−1,y + ei,yei−1,x) ;

K4,i = ei−1,xei−1,y
|ei|
|ei−1|

cos(θi) + 2 (ei,xei−1,y + ei,yei−1,x) .

Finally, we use the same condition (4.1.23) to find the S coefficients. We first

expand

xy =

(
4∑
j=1

vj,xφj

)(
4∑
j=1

vj,yφj

)(
4∑
j=1

φj

)3

evaluate the difference

xy −

(
4∑
j=1

vj,xvj,yψ
(5)
i + vj,yψ

(5)
x,i + vj,xψ

(5)
y,i + ψ

(5)
xy,i

)
=

B2C4

(
4∑
j=1

10(ei,xei,y + ei−1,xei−1,y)− 16(ei,xei−1,y + ei,yei−1,x)− S0,i

)
,

so we’ll set S0,i = 10(ei,xei,y + ei−1,xei−1,y)− 16(ei,xei−1,y + ei,yei−1,x).

103

The result follows:

ψ
(5)
xy,i = φ2

i

(
φi(ei,xei,yφ

2
i+1 + ei−1,xei−1,yφ

2
i−1)

+ φi+2

(
− (ei,xei−1,y + ei,yei−1,x)φ

2
i

+ φi

((
5ei,xei,y

(
1− |ei−1|

|ei|
cos(θi)

)
− 2(ei,xei−1,y + ei,yei−1,x)

)
φi+1

+

(
5ei−1,xei−1,y

(
1− |ei|
|ei−1|

cos(θi)

)
− 2(ei,xei−1,y + ei,yei−1,x)

)
φi−1

)
+

(
ei,xei,y

|ei−1|
|ei|

cos(θi) + 2(ei,xei−1,y + ei,yei−1,x)

)
φ2
i+1

+

(
ei−1,xei−1,y

|ei|
|ei−1|

cos(θi) + 2(ei,xei−1,y + ei,yei−1,x)

)
φ2
i−1

)
+ (10(ei,xei,y + ei−1,xei−1,y)− 16(ei,xei−1,y + ei,yei−1,x))φiφ

2
i+2

)
. (4.1.25)

In a similar manner to how we could retrieve ψ
(5)
y,i from ψ

(5)
x,i by simply replacing

each x in (4.1.19) by y, we can retrieve ψ
(5)

y2,i and ψ
(5)

x2,i from (4.1.25) by replacing each

x by y or each y by x, respectively, in addition to multiplying by a factor of 1
2
. Then

we’ll have

ψ
(5)

x2,i =
1

2
φ2
i

(
φi(e

2
i,xφ

2
i+1 + e2

i−1,xφ
2
i−1)

+ φi+2

(
− 2ei,xei−1,xφ

2
i

+ φi

((
5e2

i,x

(
1− |ei−1|

|ei|
cos(θi)

)
− 4ei,xei−1,x

)
φi+1

+

(
5e2

i−1,x

(
1− |ei|
|ei−1|

cos(θi)

)
− 4ei,xei−1,x)

)
φi−1

)
+

(
e2
i,x

|ei−1|
|ei|

cos(θi) + 4ei,xei−1,x

)
φ2
i+1

+

(
e2
i−1,x

|ei|
|ei−1|

cos(θi) + 4ei,xei−1,x

)
φ2
i−1

)
+ (10(e2

i,x + e2
i−1,x)− 32ei,xei−1,x)φiφ

2
i+2

)
, and (4.1.26)

104

ψ
(5)

y2,i =
1

2
φ2
i

(
φi(e

2
i,yφ

2
i+1 + e2

i−1,yφ
2
i−1)

+ φi+2

(
− 2ei,yei−1,yφ

2
i

+ φi

((
5e2

i,y

(
1− |ei−1|

|ei|
cos(θi)

)
− 4ei,yei−1,y

)
φi+1

+

(
5e2

i−1,y

(
1− |ei|
|ei−1|

cos(θi)

)
− 4ei,yei−1,y)

)
φi−1

)
+

(
e2
i,y

|ei−1|
|ei|

cos(θi) + 4ei,yei−1,y

)
φ2
i+1

+

(
e2
i−1,y

|ei|
|ei−1|

cos(θi) + 4ei,yei−1,y

)
φ2
i−1

)
+ (10(e2

i,y + e2
i−1,y)− 32ei,yei−1,y)φiφ

2
i+2

)
. (4.1.27)

For each vertex v in P , we define the functions ψ
(5)

x2,v, ψ
(5)

y2,v, and ψ
(5)
xy,v piecewise

over Ωv as usual. This section, combined with the 2 preceding it, serve as a proof of

the following:

Theorem 4.1.3. Let Ω be a polygonal region in R2 which permits a parallelogram

partition as in Figure 4.1, and let P be such a parallelogram partition of Ω. For every

vertex v in the partition P, define polygonal splines ψ
(5)

x2,v, ψ
(5)

y2,v, and ψ
(5)
xy,v over Ωv by

ψ
(5)

x2,v(x) :=

 ψ
(5)

x2,i,P (x) x ∈ P ⊆ Ωv; v = vi,P

0 x 6∈ Ωv,

ψ
(5)

y2,v(x) :=

 ψ
(5)

y2,i,P (x) x ∈ P ⊆ Ωv; v = vi,P

0 x 6∈ Ωv,

ψ(5)
xy,v(x) :=

 ψ
(5)
xy,i,P (x) x ∈ P ⊆ Ωv; v = vi,P

0 x 6∈ Ωv,

where ψ
(5)
xy,i,P , ψ

(5)

x2,i,P , and ψ
(5)

y2,i,P are the functions defined in (4.1.25), (4.1.26), and

(4.1.27).

Then ψ
(5)

x2,v, ψ
(5)

y2,v, and ψ
(5)
xy,v satisfy the following properties:

105

(1) ψ
(5)

x2,v(w) = ψ
(5)

y2,v(w) = ψ
(5)
xy,v(w) = 0 for any vertex w of P;

(2) ∇ψ(5)

x2,v(w) = ∇ψ(5)

y2,v(w) = ∇ψ(5)
xy,v(w) = 0 for any vertex w of P;

(3) ∇2ψ
(5)

x2,v(w) =

 δv,w 0

0 0

 ,∇2ψ
(5)

y2,v(w) =

 0 0

0 δv,w

 ,

and ∇2ψ
(5)
xy,v(w) =

 0 δv,w

δv,w 0

 for any vertex w of P;

(4) ψ
(5)

x2,v, ψ
(5)

y2,v, ψ
(5)
xy,v ∈ C1(Ω);

(5)
∑
v

v2
xψ

(5)
v + 2vxψ

(5)
x,v + 2ψ

(5)

x2,v = x2,
∑
v

v2
yψ

(5)
v + 2vyψ

(5)
y,v + 2ψ

(5)

y2,v = y2,∑
v

vxvyψ
(5)
v + vyψ

(5)
x,v + vxψ

(5)
y,v + ψ

(5)
xy,v = xy;

(6) Where Ψ1
5,V (P) := span

{
ψ

(5)
v , ψ

(5)
x,v, ψ

(5)
y,v, ψ

(5)

x2,v, ψ
(5)

y2,v, ψ
(5)
xy,v

}
v∈P

,

dim(Ψ1
5,V (P)) = 6|V |;

(7) Π2 ⊆ Ψ1
5,V (P).

Figure 4.4 shows plots of all three of these functions.

4.2 More degree-5 C1 polygonal splines

4.2.1 Motivation to extend

Or course there is interest in maximizing the span of our C1 polygonal spline space,

and the linear span of degree-5 polynomials of Wachspress coordinates includes all

bivariate polynomial functions of degree up to 5. Since polynomials are C1, an ideal

degree-5 C1 polygonal spline space should include up to degree-5 polynomials, but so

far we’ve only guaranteed inclusion of polynomials up to degree 2. We can check cubic

polynomials manually; for example, if we have any hope of including x3, it would be

106

(a) The plot of a function ψ
(5)
x2,v

(b) The plot of a function ψ
(5)
y2,v

(c) The plot of a function ψ
(5)
xy,v

Figure 4.4: Plots of degree-5 Hessian-adjustment vertex splines

107

with the function

∑
v∈P

v3
xψ

(5)
v + 3v2

xψ
(5)
x,v + 6vxψ

(5)

x2,v. (4.2.1)

Within a single parallelogram P ∈ P , we can express x3 by

x3
∣∣
P

=

(
4∑
j=1

vj,xφj

)3(4∑
j=1

φj

)2

. (4.2.2)

We can compute the difference of (4.2.2) and the restriction of (4.2.1) to P , and

unfortunately, this difference is nonzero, which shows that the span of our vertex

splines thus far does not include cubic polynomials:

x3
∣∣
P
−

4∑
j=1

v3
j,xψ

(5)
j + 3v2

j,xψ
(5)
x,j + 6vj,xψ

(5)

x2,j

= C2B
4∑
j=1

9φ2
j

(
φj+1e

2
j,x

(
ej−1,x +

|ej−1|
|ej|

cos(θj)ej,x

)
−φj−1e

2
j−1,x

(
ej,x +

|ej|
|ej−1|

cos(θj)ej−1,x

))
− 12C2Bφj(ej,x − ej−1,x)ej,xej−1,x.

A reasonable thought is to control third derivatives at each vertex, but not only

are third derivatives cumbersome to compute, it is also questionable how useful third-

derivative information is to an interpolation scheme - currently, we can define a quasi-

interpolant QV (f) for any function f which is C2 at the vertices by

QV (f) =
∑
v∈P

f
∣∣
v
ψ(5)
v +

∂f

∂x

∣∣∣∣
v

ψ(5)
x,v +

∂f

∂y

∣∣∣∣
v

ψ(5)
y,v

+
∂2f

∂x2

∣∣∣∣
v

ψ
(5)

x2,v +
∂2f

∂x∂y

∣∣∣∣
v

ψ(5)
xy,v +

∂2f

∂y2

∣∣∣∣
v

ψ
(5)

y2,v, (4.2.3)

but it seems unlikely that third-derivative information would be available - it might

108

Figure 4.5: An illustration of the degree-5 polygonal spline basis functions with the
associated domain points

be ambitious to even hope for second-derivative information. Moreover, even using

polygonal splines of degree 5, we don’t have enough flexibility to fully control third

derivatives. At this point, it is helpful for us to consider the degree-5 monomials by

their domain-point interpretation; see Figure 4.5.

In order to avoid disturbing the properties of our previous vertex splines - namely,

the value, gradient, and Hessian at each vertex - we must be sure to avoid using the

marked functions in Figure 4.6.

By Figure 4.6, we can see that the functions which would affect third derivatives

at each vertex would include some which would interfere with the second derivatives

of other vertices; for example, the functions which would affect the third derivatives

at vertex v1 include φ2
1φ

3
4, Bφ

2
1φ4, Bφ

2
1φ2, and φ2

1φ
3
2.

The functions associated with the unmarked points in Figure 4.6 are still free to

manipulate without disrupting our previously established properties, but it is worth-

while to separate these into two classes. In particular, some of the functions are free

109

Figure 4.6: The functions marked in red affect values at each vertex; those marked
in blue affect gradient, and those marked in grey affect the Hessian.

to manipulate without affecting C1 smoothness on the edges, while some do affect

the gradients on the edges. See Figure 4.7.

Finding some quantities we can use for quasi-interpolation in relation to the func-

tions indicated in Figure 4.7 is worth considering. The functions marked in Figure

4.7a are more complex to consider on the scale of the entire partition P , because

we must ensure that they interact in a manner which maintains C1 smoothness over

shared edges.

From Figure 4.7a, consider particularly the functions Bφ2
1φ2 and Bφ1φ

2
2. Since

the function B is zero on every edge, and the product φ1φ2 is zero on every edge

except e1, these functions only affect the gradient on edge e1. We can still make C1

local basis splines using these, but instead of being based in the neighborhood Ωv of

a vertex v, these functions should be based in the neighborhood Ωe of an edge e. For

this reason, it would be inappropriate to call such functions vertex splines. Instead,

we will call them edge splines.

110

(a) Domain points associated with degree-5 functions which affect gradients on the edges

(b) Domain points associated with degree-5 basis functions which are free with respect to
C1 smoothness

Figure 4.7: A classification of remaining degree-5 functions into 2 classes illustrated
by domain points

111

4.2.2 Degree-5 C1 edge splines

We’ll use the spline functions constructed in this section to control gradients on edges.

Since the values along each edge are fully determined by the already-constructed ver-

tex splines, the derivative in the edge directions can’t be manipulated at all. We’ll

focus on the outward normal direction. However, if we’re to use the outward nor-

mal derivative on the edges for quasi-interpolation, we should know how our other

functions are affecting it. Fortunately, the functions ψ
(5)
v have zero outward normal

derivative on edges, but the other functions generally do not. Focusing on a single

parallelogram P , the other vertex splines have the following normal derivatives on

the edges:

∂ψ
(5)
x,i

∂~ni

∣∣∣∣
ei

=
ei,y
|ei|

φ3
i

(
φ2
i + 5φiφi+1 + 10φ2

i+1

)
;

∂ψ
(5)
x,i

∂~ni−1

∣∣∣∣
ei−1

=
ei−1,y

|ei−1|
φ3
i

(
φ2
i + 5φiφi−1 + 10φ2

i−1

)
;

∂ψ
(5)
y,i

∂~ni

∣∣∣∣
ei

=
−ei,x
|ei|

φ3
i

(
φ2
i + 5φiφi+1 + 10φ2

i+1

)
;

∂ψ
(5)
y,i

∂~ni−1

∣∣∣∣
ei−1

=
−ei−1,x

|ei−1|
φ3
i

(
φ2
i + 5φiφi−1 + 10φ2

i−1

)
;

∂ψ
(5)

x2,i

∂~ni

∣∣∣∣
ei

=
ei,xei,y
|ei|

φ2
iφi+1(φ2

i + 2φiφi+1 − 2φ2
i+1);

∂ψ
(5)

x2,i

∂~ni−1

∣∣∣∣
ei−1

=
ei−1,xei−1,y

|ei−1|
φ2
iφi−1(φ2

i + 2φiφi−1 − 2φ2
i−1);

∂ψ
(5)

y2,i

∂~ni

∣∣∣∣
ei

=
−ei,xei,y
|ei|

φ2
iφi+1(φ2

i + 2φiφi+1 − 2φ2
i+1);

∂ψ
(5)

y2,i

∂~ni−1

∣∣∣∣
ei−1

=
−ei−1,xei−1,y

|ei−1|
φ2
iφi−1(φ2

i + 2φiφi−1 − 2φ2
i−1);

∂ψ
(5)
xy,i

∂~ni

∣∣∣∣
ei

=

(
e2
i,y − e2

i,x

|ei|

)
φ2
iφi+1(φ2

i + 2φiφi+1 − 2φ2
i+1);

∂ψ
(5)
xy,i

∂~ni−1

∣∣∣∣
ei−1

=

(
e2
i−1,y − e2

i−1,x

|ei−1|

)
φ2
iφi−1(φ2

i + 2φiφi−1 − 2φ2
i−1);

112

and the functions which we will use to build our edge splines have the following normal

derivatives on edge ei:

∂

∂~ni
(φi+2φ

3
iφi+1)

∣∣∣∣
ei

= −|ei|
2C

φ3
iφ

2
i+1;

∂

∂~ni
(φi+2φ

2
iφ

2
i+1)

∣∣∣∣
ei

= −|ei|
2C

φ2
iφ

3
i+1.

We consider where these functions are maximized (in magnitude) on edge ei. The

former is maximized at the point e
(5)
i,i :=

3

5
vi +

2

5
vi+1, while the latter is maximized

at the point e
(5)
i,i+1 :=

2

5
vi +

3

5
vi+1.

We evaluate the outward normal derivative of the quasi-interpolatory vertex spline

QV (f) at the points ei,i and ei,i+1:

∂QV (f)

∂~ni

∣∣∣∣
ei,i

= 5−5~ni

((
992∇fT

∣∣
vi+1

+ 2133∇fT
∣∣
vi

)
+6
(

39∇2f
∣∣
vi
− 4∇2f

∣∣
vi+1

)
~e T
i

)
;

∂QV (f)

∂~ni

∣∣∣∣
ei,i+1

= 5−5~ni

((
992∇fT

∣∣
vi

+ 2133∇fT
∣∣
vi+1

)
+6
(

39∇2f
∣∣
vi+1
− 4∇2f

∣∣
vi

)
~e T
i

)
.

Our goal is to find a revised quasi-interpolant QE(f) such that

∂QE(f)

∂~ni

∣∣∣∣
ei,i

=
∂f

∂~ni

∣∣∣∣
ei,i

, and
∂QE(f)

∂~ni

∣∣∣∣
ei,i+1

=
∂f

∂~ni

∣∣∣∣
ei,i+1

.

Where the parallelograms P and R share the edge e = ei,P = ei−1,R, define the

113

functions

ψ
(5)
e,i,P (f) = φi+2,Pφ

2
i,Pφi+1,P (K1,i,P (f)φi,P +K3,i,P (f)φi+1,P) ; (4.2.4)

ψ
(5)
e,i−1,R(f) = φi+2,Rφ

2
i,Rφ

2
i−1,R (K2,i,R(f)φi,R +K4,i,R(f)φi−1,R) ;

ψ(5)
e (f)(x) =

 ψ
(5)
e,i,P (f)(x), x ∈ P

ψ
(5)
e,i−1,R(f)(x), x ∈ R

; (4.2.5)

QE(f) = QV (f) +
∑
e∈P

ψ(5)
e (f). (4.2.6)

for constantsK1,i,P (f), K2,i,R(f), K3,i,P (f) andK4,i,R(f) which depend on the function

f . We compute the normal derivative of ψ
(5)
e,i,P (f) at the points ei,i;P and ei,i+1;P :

∂ψ
(5)
e,i,P (f)

∂~ni,P

∣∣∣∣
ei,i;P

= −|ei,P |
2CP

36 · 5−5 (2K1,i,P (f) + 3K3,i,P (f)) ;

∂ψ
(5)
e,i,P (f)

∂~ni,P

∣∣∣∣
ei,i+1;P

= −|ei,P |
2CP

36 · 5−5 (3K1,i,P (f) + 2K3,i,P (f)) .

We want

∂ψ
(5)
e,i,P (f)

∂~ni,P

∣∣∣∣
ei,i;P

=

(
∂f

∂~ni,P
− ∂QV (f)

∂~ni,P

) ∣∣∣∣
ei,i;P

, and

∂ψ
(5)
e,i,P (f)

∂~ni,P

∣∣∣∣
ei,i+1;P

=

(
∂f

∂~ni,P
− ∂QV (f)

∂~ni,P

) ∣∣∣∣
ei,i+1;P

,

114

so we require that

2K1,i,P (f) + 3K3,i,P (f) =
55

36

2CP
|ei|

(
∂QV (f)

∂~ni,P

∣∣∣∣
ei,i;P

− ∂f

∂~ni,P

∣∣∣∣
ei,i;P

)
, and

3K1,i,P (f) + 2K3,i,P (f) =
55

36

2CP
|ei|

(
∂QV (f)

∂~ni,P

∣∣∣∣
ei,i+1;P

− ∂f

∂~ni,P

∣∣∣∣
ei,i+1;P

)
; so

 2 3

3 2


 K1,i,P (f)

K3,i,P (f)

 =
55

36

2CP
|ei,P |


(
∂QV (f)

∂~ni,P
− ∂f

∂~ni,P

) ∣∣∣∣
ei,i;P(

∂QV (f)

∂~ni,P
− ∂f

∂~ni,P

) ∣∣∣∣
ei,i+1;P



⇒ K1,i,P (f) =
54

36

2CP
|ei,P |

(
3

((
∂QV (f)

∂~ni,P
− ∂f

∂~ni,P

) ∣∣∣∣
ei,i+1;P

− 2

(
∂QV (f)

∂~ni,P
− ∂f

∂~ni,P

) ∣∣∣∣
ei,i;P

)
=

2CP
36|ei,P |

~ni,P

(
(883∇f

∣∣
vi,P
− 258∇f

∣∣
vi+1,P

)

+ 6
(

25∇2f
∣∣
vi,P
− 18∇2f

∣∣
vi+1,P

)
~e T
i,P

)
+

54

36

2CP
|ei,P |

(
2
∂f

∂~ni,P

∣∣∣∣
ei,i;P

− 3
∂f

∂~ni,P

∣∣∣∣
ei,i+1;P

)
;

K3,i,P (f) =
54

36

2CP
|ei,P |

(
3

(
∂QV (f)

∂~ni,P
− ∂f

∂~ni,P

)∣∣∣∣
ei,i;P

− 2

(
∂QV (f)

∂~ni,P
− ∂f

∂~ni,P

) ∣∣∣∣
ei,i+1;P

)
=

2CP
36|ei,P |

~ni,P

(
(883∇f

∣∣
vi+1,P

− 258∇f
∣∣
vi,P

)

+ 6
(

25∇2f
∣∣
vi+1,P

− 18∇2f
∣∣
vi,P

)
~e T
i,P

)
+

54

36

2CP
|ei,P |

(
2
∂f

∂~ni,P

∣∣∣∣
ei,i+1;P

− 3
∂f

∂~ni,P

∣∣∣∣
ei,i;P

)
.

115

Similarly, we must set

K2,i,R(f) =
2CR

36|ei−1,R|

(
(883∇f

∣∣
vi,R
− 258∇f

∣∣
vi−1,R

)

+ 6
(

25∇2f
∣∣
vi,R
− 18∇2f

∣∣
vi−1,R

)
~e T
i−1,R

)
+

54

36

2CR
|ei−1,R|

(
2

∂f

∂~ni−1,R

∣∣∣∣
ei−1,i;R

− 3
∂f

∂~ni−1,R

∣∣∣∣
ei−1,i−1;R

)
, and

K4,i,R(f) =
2CR

36|ei−1,R|

(
(883∇f

∣∣
vi−1,R

− 258∇f
∣∣
vi,R

)

+ 6
(

25∇2f
∣∣
vi−1,R

− 18∇2f
∣∣
vi,R

)
~e T
i−1,R

)
+

54

36

2CR
|ei−1,R|

(
2

∂f

∂~ni−1,R

∣∣∣∣
ei−1,i−1;R

− 3
∂f

∂~ni−1,R

∣∣∣∣
ei−1,i;R

)
.

Conveniently, this does give us that the functions ψ
(5)
e,i,P (f) and ψ

(5)
e,i−1,R(f) join

C1-smoothly over the shared edge ei,P = ei−1,R. The plot of an edge spline ψ
(5)
e is

shown in Figure 4.8.

Figure 4.8: The plot of an edge spline ψ
(5)
e

We can create an improved quasi-interpolatory spline which utilizes both vertex

116

and edge splines, defined by

QE(f) = QV (f) +
∑
e∈P

ψ(5)
e (f). (4.2.7)

We should make some comments about degrees of freedom gained to incorporate

this improved method. We first define some special edge splines which can act as

basis functions. Where e is an edge in P with P ∈ Ωe and e = ei,P , denote by ψ
(5)
e,1

the edge spline which results from the conditions

QV (f) = 0;
∂f

∂~ni,P

∣∣∣∣
ei,i;P

= 1;
∂f

∂~ni,P

∣∣∣∣
ei,i+1;P

= 0,

and denote by ψ
(5)
e,2 the edge spline which results from the similar conditions

QV (f) = 0;
∂f

∂~ni,P

∣∣∣∣
ei,i;P

= 0;
∂f

∂~ni,P

∣∣∣∣
ei,i+1;P

= 1.

The dimension of the C1 vertex spline space Ψ1
5,V (P) defined in Theorem 4.1.3 is

6|V |, where |V | is the number of vertices in P . We can define an augmented space

Ψ1
5,E(P) := Ψ1

5,V (P)
⊕

span{ψ(5)
e,1 , ψ

(5)
e,2}e∈P which has all the degrees of freedom of

Ψ1
5,V (P), along with 2 additional degrees of freedom for each edge in P , so that

dim(Ψ1
5,E(P)) = 6|V | + 2|E|, where |E| is the number of edges in P . Unfortunately,

in general the space Ψ1
5,E(P) does not in general contain a polynomial space of a de-

gree higher than 2 - in particular, even degree 3 polynomials incur errors associated

with the functions indicated in Figure 4.7b, and in fact these functions don’t affect

C1 smoothness at all. For this reason, we can manipulate them freely in each paral-

lelogram, and so we will create another class of new polygonal splines which could be

called face splines.

117

4.2.3 Degree-5 face splines

For a given parallelogram P , define the function

ψ
(5)
F,i,P = φ3

iφ
2
i+2.

We’ll construct a quasi-interpolatory face spline over P by

ψ
(5)
P (f) =

4∑
i=1

Si,P (f)ψ
(5)
F,i,P (4.2.8)

for some constants Si,P (f).

We’ll determine the constants Si,P (f) as follows. First, we find points pP,i ∈ P

which maximize the functions ψ
(5)
F,i,P . Exploiting parallelogram geometry, we can

compute a nice expression of ∇ψ(5)
F,i,P :

∇ψ(5)
F,i,P = φ2

iφi+2 (3φi+2∇φi + 2φi∇φi+2)

=
φ2
iφi+2

C4

(
Ai(C − Ai)(2C − 5Ai−1)∇Ai−1

+ Ai−1(C − Ai−1)(2C − 5Ai)∇Ai
)
.

Since ∇Ai and ∇Ai−1 are linearly independent, it’s necessary that we enforce both

of the following:

Ai(C − Ai)(2C − 5Ai−1) = 0

Ai−1(C − Ai−1)(2C − 5Ai) = 0.

We can ignore the cases when Ai = 0, Ai = C, Ai−1 = 0, or Ai−1 = C, as these all

118

happen on ∂P , where ψ
(5)
F,i,P = 0. Thus, we really should enforce

Ai
C

=
Ai−1

C
=

2

5
.

Since Ai+1 = C − Ai−1 and Ai+2 = C − Ai, we can also see that we’ll have

Ai+1

C
=
Ai+2

C
=

3

5
.

Then we’ll have

φi =
Ai+1Ai+2

C2
=

9

25
; φi+1 =

Ai+2Ai−1

C2
=

6

25
;

φi−1 =
AiAi+1

C2
=

6

25
; φi+2 =

Ai−1Ai
C2

=
4

25
.

Thus, for i = 1, 2, 3, 4, we’ll define the points

pP,i =
1

25
(9vi + 6vi+1 + 6vi−1 + 4vi+2) ,

and we’ll interpolate the values of f at these points. We have the following values of

face spline functions at these points:

ψ
(5)
F,i,P

∣∣
pP,i

=
36 24

510
; ψ

(5)
F,i,P

∣∣
pP,i+1

=
35 25

510
;

ψ
(5)
F,i,P

∣∣
pP,i+1

=
35 25

510
; ψ

(5)
F,i,P

∣∣
pP,i+2

=
34 26

510
.

Then, for each i, we’ll have

ψ
(5)
F,P

∣∣
pP,i

=
34 24

510
(9Si,P (f) + 6Si+1,P (f) + 6Si−1,P (f) + 4Si+2,P (f)) .

119

We aim to construct a new quasi-interpolant QF (f) such that

QF (f) = QE(f) +
∑
P∈P

ψ
(5)
F,P , (4.2.9)

so for each P and i = 1, 2, 3, 4, we’ll need

ψ
(5)
F,P

∣∣
pP,i

= (f −QE(f))
∣∣
pP,i
.

Then we can solve for the coefficients Sj,P (f) by the following linear system:

34 24

510



9 6 4 6

6 9 6 4

4 6 9 6

6 4 6 9





S1,P (f)

S2,P (f)

S3,P (f)

S4,P (f)


=



(f −QE(f))
∣∣
pP,1

(f −QE(f))
∣∣
pP,2

(f −QE(f))
∣∣
pP,3

(f −QE(f))
∣∣
pP,4


While it might be preferable to compute some closed form of QE(f)

∣∣
pP,j

(and,

indeed, it can be done), the expression is perhaps best described as abominable.

Instead, since this is only value-based, we can simply construct QE(f) in full as

an intermediate step in the construction of QF (f), and then evaluate QE(f) at the

relevant points. In fact, in numerical trials, direct evaluation of QE(f) has proven to

be faster than evaluation of various simplifications of the closed form due to the large

number of operations in its expression.

After solving the linear system above for the coefficients Sj,P (f), we complete

the construction of the face spline ψ
(5)
P in (4.2.8), and the quasi-interpolatory spline

QF (f) in (4.2.9). The plot of a face spline ψ
(5)
P is shown in Figure 4.9.

We have exhausted all degrees of freedom, and it is easy to show the following

result, especially using a computer algebra system like Mathematica:

Theorem 4.2.1. QF (f) = f for any bivariate polynomial f of total degree 5 or less.

120

Figure 4.9: The plot of a face spline ψ
(5)
P

Our final result is an easy corollary of the theorem.

Corollary 4.2.1. Let Ω ⊂ R2 be a region which permits a parallelogram partition,

and let P be such a parallelogram partition of Ω.

Define Ψ1
5,F (P) := Ψ1

5,E(P)
⊕

span{ψ(5)
F,i,P ; i = 1, 2, 3, 4}P∈P .

Then dim(Ψ1
5,F (P)) = 6|V | + 2|E| + 4|F |, where |F | is the number of parallelograms

in P, and Π5 ⊂ Ψ1
5,F (P) ⊂ C1(Ω).

4.3 Approximation properties and numerical re-

sults

Using the same notation and techniques as mentioned in Chapter 3 Section 3.3, we

can show the following result on the approximation power of degree-5 C1 polygonal

vertex splines:

Theorem 4.3.1. For any function f ∈ C3(Ω), the quasi-interpolatory C1 polygonal

121

vertex spline QV,k(f) ∈ Ψ1
5,V (Pk) satisfies

||f −QV,k(f)||∞,Ω ≤ C|f |3,∞,Ω2−3k

where C is a positive constant independent of f .

For any function u ∈ H3(Ω), the quasi-interpolatory C1 polygonal vertex spline

QV,k(u) ∈ Ψ1
5,V (Pk) satisfies

||u−QV,k(u)||2,Ω ≤ C|u|3,2,Ω2−3k

and

|u−QV,k(u)|1,2,Ω ≤ C|u|3,2,Ω2−2k

where C is a positive constant independent of u, but which may depend on the bound-

ary of Ω if Ω is nonconvex.

If we use the full degree-5 C1 polygonal spline space Ψ1
5,F (P), we can similarly

show the following:

Theorem 4.3.2. For any function f ∈ H6(Ω), the quasi-interpolatory polygonal

spline QF,k(f) ∈ Ψ1
5,F (Pk) satisfies

||f −QF,k(f)||2,Ω ≤ C|f |6,2,Ω2−6k

and

|f −QF,k(f)|1,2,Ω ≤ C|f |6,2,Ω2−5k

where C is a positive constant independent of f , but which may depend on the bound-

ary of Ω is Ω is nonconvex.

We devote the rest of this section to showing numerical examples of

quasi-interpolation by the degree-5 C1 polygonal splines developed in this chapter.

122

Figure 4.10: A parallelogram partition used to numerically test the degree-5 polygonal
spline quasi-interpolation schemes

Let P be the partition shown in Figure 4.10, and let h be the largest diameter of any

parallelogram in P . For each example, we’ll report the root mean square error ||·||RMS

of the quasi-interpolants computed over approximately 500×500 points on the interior

of the partition, along with the convergence rate in terms of h. We denote the errors

by EV (u) := ||u − QV (u)||RMS and EF (u) := ||u − QF (u)||RMS. We expect that the

degree-5 C1 polygonal vertex spline quasi-interpolants QV (u) should converge in the

L2 norm at order O(h3), while the degree-5 C1 polygonal spline quasi-interpolants

QF (u) should converge in the L2 norm at order O(h6).

We display the numerical error of the quasi-interpolants in the tables below. We

first attempt quasi-interpolation of a few trigonometric functions; in order of in-

creasing frequency, we set u1(x, y) = sin(x) sin(y), u2(x, y) = sin(πx) sin(πy), and

u3(x, y) = sin(2πx) sin(2πy). We measure the error of the quasi-interpolants con-

structed over the partition in Figure 4.10 along with 3 of its uniform refinements.

123

Table 4.1: Degree-5 C1 polygonal vertex
spline quasi-interpolation of the function
u1(x, y) = sin(x) sin(y)

Quads h EV (u1) rate
6 2.06e+00 1.14e-03 0.00

24 1.03e+00 1.38e-04 3.05
96 5.15e-01 1.67e-05 3.05

384 2.58e-01 2.03e-06 3.04

Table 4.2: Degree-5 C1 polygonal
spline quasi-interpolation of the function
u1(x, y) = sin(x) sin(y)

Quads h EF (u1) rate
6 2.06e+00 1.89e-05 0.00

24 1.03e+00 3.07e-07 5.94
96 5.15e-01 4.86e-09 5.98

384 2.58e-01 7.68e-11 5.98

Table 4.3: Degree-5 C1 polygonal vertex
spline quasi-interpolation of the function
u2(x, y) = sin(πx) sin(πy)

Quads h EV (u2) rate
6 2.06e+00 4.37e-02 0.00

24 1.03e+00 3.42e-03 3.68
96 5.15e-01 4.59e-04 2.89

384 2.58e-01 5.20e-05 3.14

Table 4.4: Degree-5 C1 polygonal
spline quasi-interpolation of the function
u2(x, y) = sin(πx) sin(πy)

Quads h EF (u2) rate
6 2.06e+00 1.31e-02 0.00

24 1.03e+00 3.07e-04 5.41
96 5.15e-01 4.93e-06 5.96

384 2.58e-01 7.88e-08 5.97

Table 4.5: Degree-5 C1 polygonal vertex
spline quasi-interpolation of the function
u3(x, y) = sin(2πx) sin(2πy)

Quads h EV (u3) rate
6 2.06e+00 5.02e-01 0.00

24 1.03e+00 4.55e-02 3.46
96 5.15e-01 3.41e-03 3.74

384 2.58e-01 4.51e-04 2.92

Table 4.6: Degree-5 C1 polygonal
spline quasi-interpolation of the function
u3(x, y) = sin(2πx) sin(2πy)

Quads h EF (u3) rate
6 2.06e+00 2.51e-01 0.00

24 1.03e+00 1.44e-02 4.13
96 5.15e-01 2.87e-04 5.64

384 2.58e-01 4.84e-06 5.89

124

Notice that, for functions which oscillate more quickly, we require a finer mesh

before any convergence can be observed. In the cases of u1 and u2, we see convergence

immediately, but in the case of u3, we do not see the appropriate convergence using

the full quasi-interpolant QF (u3) until the partition has been refined an additional

time or two.

We interpolate a few more examples of different function types: set u4(x, y) =

sin(π(x2 + y2)), u5(x, y) = (10 + x + y)−1, and u6(x, y) = (1 + x2 + y2)−1. In the

case of u4, we see again that, since the frequency rises quickly away from zero, we

require a fine mesh before we can observe the asymptotic convergence. This function

would be well-suited to using an adaptively-refined mesh, but we are not aware of

such methods for parallelogram meshes.

Table 4.7: Degree-5 C1 polygonal vertex
spline quasi-interpolation of the function
u4(x, y) = sin(π(x2 + y2))

Quads h EV (u4) rate
6 2.06e+00 3.83e+00 0.00

24 1.03e+00 7.71e-01 2.31
96 5.15e-01 7.95e-02 3.28

384 2.58e-01 4.66e-03 4.09

Table 4.8: Degree-5 C1 polygonal
spline quasi-interpolation of the function
u4(x, y) = sin(π(x2 + y2))

Quads h EF (u4) rate
6 2.06e+00 2.04e+00 0.00

24 1.03e+00 3.61e-01 2.50
96 5.15e-01 1.73e-02 4.38

384 2.58e-01 3.37e-04 5.68

125

Table 4.9: Degree-5 C1 polygonal vertex
spline quasi-interpolation of the function
u5(x, y) = (10 + x+ y)−1

Quads h EV (u5) rate
6 2.06e+00 1.81e-06 0.00

24 1.03e+00 2.10e-07 3.11
96 5.15e-01 2.56e-08 3.04

384 2.58e-01 3.11e-09 3.04

Table 4.10: Degree-5 C1 polygonal
spline quasi-interpolation of the function
u5(x, y) = (10 + x+ y)−1

Quads h EF (u5) rate
6 2.06e+00 2.91e-09 0.00

24 1.03e+00 4.57e-11 5.99
96 5.15e-01 7.18e-13 5.99

384 2.58e-01 1.13e-14 5.98

Table 4.11: Degree-5 C1 polygonal vertex
spline quasi-interpolation of the function
u6(x, y) = (1 + x2 + y2)−1

Quads h EV (u6) rate
6 2.06e+00 1.01e-03 0.00

24 1.03e+00 8.28e-05 3.61
96 5.15e-01 8.85e-06 3.23

384 2.58e-01 1.03e-06 3.10

Table 4.12: Degree-5 C1 polygonal
spline quasi-interpolation of the function
u6(x, y) = (1 + x2 + y2)−1

Quads h EF (u6) rate
6 2.06e+00 1.46e-04 0.00

24 1.03e+00 2.51e-06 5.86
96 5.15e-01 4.34e-08 5.85

384 2.58e-01 7.78e-10 5.80

4.4 An application toward surface construction

We can use these polygonal splines to construct C1 surfaces so long as we avoid self-

intersection. Of course, if we can express such a surface as the plot of a function,

we can simply interpolate that function with our C1 polygonal splines. On the other

hand, we can also create parametric surfaces by choosing a region Ω ⊂ R2 which

permits a parallelogram partition, and constructing three C1 polygonal splines x(u, v),

y(u, v), and z(u, v) over P , which we use as parameters. Below are some examples

of some strange tori we can create over a grid partition of the unit square. To be

clear: the torus surfaces plotted are parametric, where all parameters x, y, z are C1

polygonal splines over the partitions shown.

First we quasi-interpolate a plain torus, parameterized over the square [−π, π]2 in

the plane which has parameters x1(u, v) = (1.5 + cos(v)) cos(u),

126

Figure 4.11: Views of a degree-5 C1 polygonal spline quasi-interpolant of a torus
parameterized by (x1, y1, z1) over the partition shown in the upper-left

y1(u, v) = (1.5 + cos(v)) sin(u), and z1(u, v) = sin(v). We show three views of the

interpolated surface, which has parameters QF (x1), QF (y1), and QF (z1). Note that,

in this case, we only use 4 patches and still retrieve a nice, smooth quasi-interpolant.

See Figure 4.11.

Now we’ll quasi-interpolate some modified tori. The torus shown in Figure 4.12 is

parameterized over the same square [−π, π]2 in the plane, this time with parameters

x2(u, v) = (sin(v) + cos(v) + 2) cos(u), y2(u, v) = (sin(v) + cos(v) + 2) sin(u), and

z2(u, v) = sin(v). The interpolated surface with parameters QF (x2), QF (y2), and

QF (z2) is constructed over 16 patches this time, shown in Figure 4.12.

The torus shown in Figure 4.13 is again parameterized over the same square, this

time with parameters x3(u, v) = (sin(u) + 2 + 0.5(2 + sin(u)) cos(v)) cos(u),

y3(u, v) = (sin(u) + 2 + 0.5(2 + sin(u)) cos(v)) sin(u), and

z3(u, v) = 0.5(2 + sin(u)) sin(v). The interpolated surface with parameters QF (x3),

QF (y3), and QF (z3) is again constructed over 16 patches, shown in Figure 4.13.

127

Figure 4.12: Views of a degree-5 C1 polygonal spline quasi-interpolant of a modified
torus parameterized by (x2, y2, z2) over the partition shown in the upper-left

Figure 4.13: Views of a degree-5 C1 polygonal spline quasi-interpolant of a modified
torus parameterized by (x3, y3, z3) over the partition shown in the upper-left

128

Figure 4.14: Views of a degree-5 C1 polygonal spline quasi-interpolant of a modified
torus parameterized by (x4, y4, z4) over the partition shown in the upper-left

The torus shown in Figure 4.14 is parameterized over the same square with pa-

rameters x4(u, v) = (cos(u) + 2 + 0.3(2 + sin(u)) cos(v)) cos(u),

y4(u, v) = (cos(u) + 2 + 0.3(2 + sin(u)) cos(v)) sin(u), and

z4(u, v) = 0.3(2 + sin(u)) sin(v). The interpolated surface with parameters QF (x4),

QF (y4), and QF (z4) is again constructed over 16 patches, shown in Figure 4.14.

The torus shown in Figure 4.15 is parameterized by

x5(u, v) = (sin(v) + 2 + 0.5(2 + sin(u)) cos(v)) cos(u),

y5(u, v) = (sin(v) + 2 + 0.5(2 + sin(u)) cos(v)) sin(u), and

z5(u, v) = 0.5(2 + sin(u)) sin(v). The interpolated surface with parameters QF (x5),

QF (y5), and QF (z5) is again constructed over 16 patches, shown in Figure 4.15.

129

Figure 4.15: Views of a degree-5 C1 polygonal spline quasi-interpolant of a modified
torus parameterized by (x5, y5, z5) over the partition shown in the upper-left

4.5 Increasing to degree 6

Again we try increasing the degree in order to further loosen the restrictions on the

underlying partition, but we encounter a similar situation as when increasing from

degree 3 to degree 4: the space Ψ6(P) is not a C1 linear space over any more general

partitions P than the space Ψ5(P). For this reason, we move on to construct some

vertex splines in degree 7.

130

Chapter 5

A Degree-7 Construction of C1

Polygonal Splines on Arbitrary

Quadrilateral Partitions

5.1 Degree-7 polygonal vertex splines

5.1.1 Construction of ψ
(7)
v

We will now build a degree-7 polygonal spline function ψ
(7)
v which is analogous to ψ

(5)
v

and ψ
(3)
v , but we’ll see that the flexibility we gain by using this high degree allows

us to construct quasi-interpolatory vertex spline functions which do not impose any

additional conditions on the underlying partition of quadrilaterals P .

As usual, we’ll restrict our attention to a single quadrilateral P in Ωv, and write

ψ
(7)
v

∣∣
P

= ψ
(7)
i,P where v = vi in P . In this degree-7 case, a (lengthy) template for our

131

function is given by

ψ
(7)
i = φ2

i

(
J0,iφ

5
i + φ4

i (J1,iφi+1 + J2,iφi−1) + φ3
i (J3,iφ

2
i+1 + J4,iφ

2
i−1)

+ φ2
i (J5,iφ

3
i+1 + J6,iφ

3
i−1) + φi

(
J7,iφ

4
i+1 + J8,iφ

4
i−1

)
+ J9,iφ

5
i+1 + J10,iφ

5
i−1

+ φi+2

(
K0,iφ

4
i + φ3

i (K1,iφi+1 +K2,iφi−1) + φ2
i (K3,iφ

2
i+1 +K4,iφ

2
i−1)

+ φi(K5,iφ
3
i+1 +K6,iφ

3
i−1) +K7,iφ

4
i+1 +K8,iφ

4
i−1

)
+ φ2

i+2

(
S0,iφ

3
i + φ2

i (S1,iφi+1 + S2,iφi−1) + φi(S3,iφ
2
i+1 + S4,iφ

2
i−1)

+ S5,iφ
3
i+1 + S6,iφ

3
i−1

)
+ φ3

i+2

(
L0,iφ

2
i + φi(L1,iφi+1 + L2,iφi−1) + L3,iφ

2
i+1 + L4,iφ

2
i−1

)
+ φ4

i+2

(
N0,iφi +N1,iφi+1 +N2,iφi−1 +N3,iφi+2

))
. (5.1.1)

Before beginning our analysis to solve for the coefficients in (5.1.1), it’s worth

considering its terms from a domain point perspective. As we can see from Figure

5.1, there is much overlap.

To be able to exert Hessian control locally at each vertex as we did in degree 5,

we’ll need to set J9,i = J10,i = 0. We’ll leave all the K coefficients intact, as these allow

us to ensure C1 smoothness over the edges, but since the functions with S, L, and N

coefficients are more or less free, we choose to set as zero all the remaining coefficients

except S0,i, S1,i, S2,i and L0,i. We retrieve the following simplified template:

ψ
(7)
i = φ2

i

(
J0,iφ

5
i + φ4

i (J1,iφi+1 + J2,iφi−1) + φ3
i (J3,iφ

2
i+1 + J4,iφ

2
i−1)

+ φ2
i (J5,iφ

3
i+1 + J6,iφ

3
i−1) + φi

(
J7,iφ

4
i+1 + J8,iφ

4
i−1

)
+ φi+2

(
K0,iφ

4
i + φ3

i (K1,iφi+1 +K2,iφi−1) + φ2
i (K3,iφ

2
i+1 +K4,iφ

2
i−1)

+ φi(K5,iφ
3
i+1 +K6,iφ

3
i−1) +K7,iφ

4
i+1 +K8,iφ

4
i−1

)
+ φ2

i+2

(
S0,iφ

3
i + φ2

i (S1,iφi+1 + S2,iφi−1

))
+ L0,iφ

3
i+2φ

2
i

)
. (5.1.2)

132

(a) Domain points associated with degree-7 basis functions

(b) Domain points and the associated coefficients in (5.1.1)

Figure 5.1: A domain point illustration of the redundancy of the terms used in the
template (5.1.1

133

The function ψ
(7)
i should satisfy ψ

(7)
i

∣∣
vj

= δij, so we’ll need ψ
(7)
i

∣∣
vi

= J0,i = 1.

We’ll also need that ∇ψ(7)
i

∣∣
vi

= 0, so we’ll compute the edge direction derivatives at

vi:

∂ψ
(7)
i

∂ẽi

∣∣∣∣
vi

= 7
∂φi
∂ẽi

+ J1,i
∂φi+1

∂ẽi

=
J1,i − 7

|ei|
;

∂ψ
(7)
i

∂ẽi−1

∣∣∣∣
vi

= 7
∂φi
∂ẽi−1

+ J2,i
∂φi−1

∂ẽi−1

=
7− J2,i

|ei−1|
;

so we’ll set J1,i = J2,i = 7.

To enforce the condition∇2ψ
(7)
i

∣∣
vi

= 0, we’ll take the second edge-direction deriva-

tives:

∂2ψ
(7)
i

∂ẽ2
i

∣∣∣∣
vi

= 42

(
∂φi
∂ẽi

)2

+ 84
∂φi
∂ẽi

∂φi+1

∂ẽi
+ 2J3,i

(
∂φi+1

∂ẽi

)2

=
2J3,i − 42

|ei|2
;

∂2ψ
(7)
i

∂ẽ2
i−1

∣∣∣∣
vi

= 42

(
∂φi
∂ẽi−1

)2

+ 84
∂φi
∂ẽi−1

∂φi+1

∂ẽi−1

+ 2J4,i

(
∂φi−1

∂ẽi−1

)2

=
2J4,i − 42

|ei−1|2
;

∂2ψ
(7)
i

∂ẽi∂ẽi−1

∣∣∣∣
vi

= 7

(
∂2φi

∂ẽi∂ẽi−1

+
∂2φi+1

∂ẽi∂ẽi−1

+
∂2φi−1

∂ẽi∂ẽi−1

)
+ 42

(
∂φi
∂ẽi

∂φi
∂ẽi−1

+
∂φi
∂ẽi

∂φi−1

∂ẽi−1

+
∂φi
∂ẽi−1

∂φi+1

∂ẽi

)
+K0,i

∂2φi+2

∂ẽi∂ẽi−1

=
1

|ei||ei−1|

(
42 +

CiCi+2

Ci+1Ci−1

(7−K0,i)

)
;

so we’ll set J3,i = J4,i = 21 and K0,i = 7 + 42
Ci+1Ci−1

CiCi+2

.

134

At this point, we have the following:

ψ
(7)
i = φ2

i

(
φ5
i + 7φ4

i (φi+1 + φi−1) + 21φ3
i (φ

2
i+1 + φ2

i−1)

+ φ2
i (J5,iφ

3
i+1 + J6,iφ

3
i−1) + φi

(
J7,iφ

4
i+1 + J8,iφ

4
i−1

)
+ φi+2

((
7 + 42

Ci+1Ci−1

CiCi+2

)
φ4
i + φ3

i (K1,iφi+1 +K2,iφi−1)

+ φ2
i (K3,iφ

2
i+1 +K4,iφ

2
i−1) + φi(K5,iφ

3
i+1 +K6,iφ

3
i−1)

+K7,iφ
4
i+1 +K8,iφ

4
i−1

)
+ φ2

i+2

(
S0,iφ

3
i + φ2

i (S1,iφi+1 + S2,iφi−1

))
+ L0,iφ

3
i+2φ

2
i

)
. (5.1.3)

We are still missing some of the J coefficients. A reasonable first thought is to consider

the sum condition
4∑
j=1

ψ
(7)
i = 1 on a single edge; say ei:

(
1−

4∑
j=1

ψ
(7)
i

)∣∣∣∣
ei

=
(

(φi + φi+1)7 − ψ(7)
i + ψ

(7)
i+1

) ∣∣
ei

= (35− (J5,i + J7,i+1))φ4
iφ

3
i+1 + (35− (J5,i+1 + J7,i))φ

3
iφ

4
i+1.

Since the J coefficients are absolute constants in ψ
(3)
i , ψ

(5)
i , and thus far in ψ

(7)
i , we

assume that J5,i and J7,i shouldn’t break this trend, so that J5,i = J5,j and J7,i = J7,j

for any i, j. Then we set J7,i = 35 − J5,i. Unfortunately, we aren’t yet able to

determine a set value for J5,i - we’ll have to leave it for now, but we can solve for the

K coefficients in terms of J5,i by enforcing C1 smoothness over shared edges.

First, we need to take the outward normal derivatives on edges ei and ei−1. These

expressions are long and complicated. Fortunately, we are still able to force that

∂ψ
(7)
i

∂~ni

∣∣∣∣
ei

=
∂ψ

(7)
i

∂~ni−1

∣∣∣∣
ei−1

= 0, as we did for ψ
(3)
i and ψ

(5)
i . We’ll show the computation

135

for the normal derivative on the edge ei:

∂ψ
(7)
i

∂~ni

∣∣∣∣
ei

=
1

2Ai+2

(
φ6
iφ

2
i+1

(
(105ei + (3J5,i − 105)|ei−1| cos(θi))

Ci−1

Ci

+ (42−K1,i)|ei|
Ci+2

Ci+1

)
+ φ5

iφ
3
i+1

(
(147−K1,i −K3,i)|ei|

Ci+2

Ci+1

+ (7J5,iei + (140− 8J5,i)|ei−1| cos(θi))
Ci−1

Ci

+ (3J5,i − 105)|ei−1| cos(θi)
Ci+2

Ci

+ (105− 3J5,i)|ei+1| cos(θi+1)
Ci−1

Ci+1

)
+ φ4

iφ
4
i+1

(
((7J5,i −K3,i −K5,i)|ei|+ (105− 3J5,i)|ei+1| cos(θi+1))

Ci+2

Ci+1

+ ((245− 7J5,i)|ei|+ (3J5,i − 105)|ei−1| cos(θi))
Ci−1

Ci

+ (140− 8J5,i)|ei−1| cos(θi)
Ci+2

Ci

+ (8J5,i − 140)|ei+1| cos(θi+1)
Ci−1

Ci+1

)
+ φ3

iφ
5
i+1

((
(245− 7J5,i −K5,i −K7,i)|ei|

+ (8J5,i − 140)|ei+1| cos(θi+1)
)Ci+2

Ci+1

+ (3J5,i − 105)|ei−1| cos(θi)
Ci+2

Ci

+ (105− 3J5,i)|ei+1| cos(θi+1)
Ci−1

Ci+1

)
+ φ2

iφ
6
i+1

(
(−K7,i|ei|+ (105− 3J5,i)|ei+1| cos(θi+1))

Ci+2

Ci+1

))
. (5.1.4)

Moving from bottom to top, we can choose the following choices of K coefficients to

136

set each term zero one at a time:

K7,i = (105− 3J5,i)
|ei+1|
|ei|

cos(θi+1);

K5,i = 245− 7J5,i +

(
11J5,i − 245 + (105− 3J5,i)

Ci−1

Ci+2

)
|ei+1|
|ei|

cos(θi+1)

+ (3J5,i − 105)
|ei−1|
|ei|

Ci+1

Ci
cos(θi);

K3,i = 14J5,i − 245 +

(
350− 14J5,i + (11J5,i − 245)

Ci−1

Ci+2

)
|ei+1|
|ei|

cos(θi+1)

+

(
245− 11J5,i + (140− 4J5,i)

Ci−1

Ci+2

)
Ci+1

Ci

|ei−1|
|ei|

cos(θi);

K1,i = 392− 14J5,i +

(
14J5,i − 350 + (350− 14J5,i)

Ci−1

Ci+2

)
|ei+1|
|ei|

cos(θi+1)

+

(
14J5,i − 350 + 3J5,i

Ci−1

Ci+2

)
Ci+1

Ci

|ei−1|
|ei|

cos(θi).

With these choices, we can simplify (5.1.4) to

∂ψ
(7)
i

∂~ni

∣∣∣∣
ei

=
φ6
iφ

2
i+1

2Ai+2

(350− 14J5,i)

((
|ei| − |ei−1| cos(θi)

)Ci−1

Ci
− |ei+1| cos(θi+1)

Ci−1

Ci+1

−
(
|ei| − |ei+1| cos(θi+1)

)Ci+2

Ci+1

+ |ei−1| cos(θi)
Ci+2

Ci

)
,

which is zero when J5,i = 25. Then we deduce the following:

J7,i = 10;

K1,i = 42 + 15

(
7− 2

|ei−1|
|ei|

cos(θi)

)
Ci−1Ci+1

CiCi+2

;

K3,i = 5

(
21 +

(
14− 6

|ei−1|
|ei|

cos(θi)

)
Ci−1Ci+1

CiCi+2

+ 6

(
|ei+1|
|ei|

Ci−1

Ci+2

cos(θi+1)− |ei−1|
|ei|

Ci+1

Ci
cos(θi)

))
;

K5,i = 10

(
7− 3

(
|ei−1|
|ei|

Ci+1

Ci
cos(θi)−

(
1 +

Ci−1

Ci+2

)
|ei+1|
|ei|

cos(θi+1)

))
;

K7,i = 30
|ei+1|
|ei|

cos(θi+1).

137

A similar analysis on edge ei−1 provides us with the remaining J and K coefficients:

J6,i = 25; J8,i = 10;

K2,i = 42 + 15

(
7− 2

|ei|
|ei−1|

cos(θi)

)
Ci+1Ci−1

CiCi+2

;

K4,i = 5

(
21 +

(
14− 6

|ei|
|ei−1|

cos(θi)

)
Ci+1Ci−1

CiCi+2

+ 6

(
|ei+2|
|ei−1|

Ci+1

Ci+2

cos(θi−1)− |ei|
|ei−1|

Ci−1

Ci
cos(θi)

))
;

K6,i = 10

(
7− 3

(
|ei|
|ei−1|

Ci−1

Ci
cos(θi)−

(
1 +

Ci+1

Ci+2

)
|ei+2|
|ei−1|

cos(θi−1)

))
;

K8,i = 30
|ei+2|
|ei−1|

cos(θi−1).

138

We now have the following expression for ψ
(7)
i :

ψ
(7)
i = φ2

i

(
φ5
i + 7φ4

i (φi+1 + φi−1) + 21φ3
i (φ

2
i+1 + φ2

i−1)

+ 25φ2
i (φ

3
i+1 + φ3

i−1) + 10φi
(
φ4
i+1 + φ4

i−1

)
+ φi+2

((
7 + 42

Ci+1Ci−1

CiCi+2

)
φ4
i

+ φ3
i

((
42 + 15

(
7− 2

|ei−1|
|ei|

cos(θi)

)
Ci+1Ci−1

CiCi+2

)
φi+1

+

(
42 + 15

(
7− 2

|ei|
|ei−1|

cos(θi)

)
Ci+1Ci−1

CiCi+2

)
φi−1

)
+ 5φ2

i

((
21 +

(
14− 6

|ei−1|
|ei|

cos(θi)

)
Ci−1Ci+1

CiCi+2

+ 6

(
|ei+1|
|ei|

Ci−1

Ci+2

cos(θi+1)− |ei−1|
|ei|

Ci+1

Ci
cos(θi)

))
φ2
i+1

+

(
21 +

(
14− 6

|ei|
|ei−1|

cos(θi)

)
Ci+1Ci−1

CiCi+2

+ 6

(
|ei+2|
|ei−1|

Ci+1

Ci+2

cos(θi−1)− |ei|
|ei−1|

Ci−1

Ci
cos(θi)

))
φ2
i−1

)
+ 10φi

((
7− 3

(
|ei−1|
|ei|

Ci+1

Ci
cos(θi)−

(
1 +

Ci−1

Ci+2

)
|ei+1|
|ei|

cos(θi+1)

))
φ3
i+1

+

(
7− 3

(
|ei|
|ei−1|

Ci−1

Ci
cos(θi)−

(
1 +

Ci+1

Ci+2

)
|ei+2|
|ei−1|

cos(θi−1)

))
φ3
i−1

)
+ 30

(
|ei+1|
|ei|

cos(θi+1)φ4
i+1 +

|ei+2|
|ei−1|

cos(θi−1)φ4
i−1

))
+ φ2

i+2

(
S0,iφ

3
i + φ2

i (S1,iφi+1 + S2,iφi−1

)
+ L0,iφ

3
i+2φ

2
i

)
. (5.1.5)

The remaining coefficients can be determined by the condition
4∑
j=1

ψ
(7)
i = 1. The

technique is identical to that used in the degree-3 and degree-5 cases; we write

1 =

(
4∑
j=1

φi

)7

, simplify the difference between this and the sum of the functions

ψ
(7)
i , and isolate terms with S and L coefficients. The actual expression of this

difference is not particularly illuminating, so we merely report the deduced values of

139

the coefficients:

S0,i = 3

(
7 + 10

Ci+1Ci−1

CiCi+2

(
7 + 5

Ci+1Ci−1

CiCi+2

))
;

S1,i = S2,i = 105

(
1 + 2

Ci+1Ci−1

CiCi+2

(
2 +

Ci+1Ci−1

CiCi+2

))
;

L0,i = 35

(
1 + 2

Ci+1Ci−1

CiCi+2

(
6 +

Ci+1Ci−1

CiCi+2

(
9 + 2

Ci+1Ci−1

CiCi+2

)))
.

140

The final expression of ψ
(7)
i , then, is

ψ
(7)
i = φ2

i

(
φ5
i + 7φ4

i (φi+1 + φi−1) + 21φ3
i (φ

2
i+1 + φ2

i−1)

+ 25φ2
i (φ

3
i+1 + φ3

i−1) + 10φi
(
φ4
i+1 + φ4

i−1

)
+ φi+2

((
7 + 42

Ci+1Ci−1

CiCi+2

)
φ4
i

+ φ3
i

((
42 + 15

(
7− 2

|ei−1|
|ei|

cos(θi)

)
Ci+1Ci−1

CiCi+2

)
φi+1

+

(
42 + 15

(
7− 2

|ei|
|ei−1|

cos(θi)

)
Ci+1Ci−1

CiCi+2

)
φi−1

)
+ 5φ2

i

((
21 +

(
14− 6

|ei−1|
|ei|

cos(θi)

)
Ci−1Ci+1

CiCi+2

+ 6

(
|ei+1|
|ei|

Ci−1

Ci+2

cos(θi+1)− |ei−1|
|ei|

Ci+1

Ci
cos(θi)

))
φ2
i+1

+

(
21 +

(
14− 6

|ei|
|ei−1|

cos(θi)

)
Ci+1Ci−1

CiCi+2

+ 6

(
|ei+2|
|ei−1|

Ci+1

Ci+2

cos(θi−1)− |ei|
|ei−1|

Ci−1

Ci
cos(θi)

))
φ2
i−1

)
+ 10φi

((
7− 3

(
|ei−1|
|ei|

Ci+1

Ci
cos(θi)−

(
1 +

Ci−1

Ci+2

)
|ei+1|
|ei|

cos(θi+1)

))
φ3
i+1

+

(
7− 3

(
|ei|
|ei−1|

Ci−1

Ci
cos(θi)−

(
1 +

Ci+1

Ci+2

)
|ei+2|
|ei−1|

cos(θi−1)

))
φ3
i−1

)
+ 30

(
|ei+1|
|ei|

cos(θi+1)φ4
i+1 +

|ei+2|
|ei−1|

cos(θi−1)φ4
i−1

))
+ 3φ2

i+2

((
7 + 10

Ci+1Ci−1

CiCi+2

(
7 + 5

Ci+1Ci−1

CiCi+2

))
φ3
i

+ 35

(
1 + 2

Ci+1Ci−1

CiCi+2

(
2 +

Ci+1Ci−1

CiCi+2

))
φ2
i

(
φi+1 + φi−1

))
+ 35

(
1 + 2

Ci+1Ci−1

CiCi+2

(
6 +

Ci+1Ci−1

CiCi+2

(
9 + 2

Ci+1Ci−1

CiCi+2

)))
φ3
i+2φ

2
i

)
. (5.1.6)

As usual, we define the vertex spline ψ
(7)
v piecewise in Ωv by ψ

(7)
i,P within each

quadrilateral P in Ωv, where v = vi in P .

Since any polygonal region can be triangulated, and any triangle can be parti-

tioned by convex quadrilaterals, the polygonal splines built in this section are useful

over extremely general regions. The discussion in this section serves as a proof of the

141

following:

Theorem 5.1.1. Let Ω be any polygonal region in R2, and let P be a partition of Ω

by quadrilaterals. For every vertex v in the partition P, define a polygonal spline ψ
(7)
v

over Ωv by

ψ(7)
v :=

 ψ
(7)
i,P (x) x ∈ P ⊆ Ωv; v = vi,P

0 x 6∈ Ωv,

where ψ
(7)
i,P is the function in (5.1.6).

Then ψ
(7)
v satisfies the following properties:

(1) ψ
(7)
v (w) = δv,w for any vertex w of P;

(2) ∇ψ(7)
v (w) = 0 for any vertex w of P;

(3) ∇2ψ
(7)
v (w) = 0 for any vertex w of P;

(4) ψ
(7)
v ∈ C1(Ω); and

(5)
∑
v∈P

ψ
(7)
v = 1.

Figure 5.2 shows an unstructured quadrilateral partition, and Figure 5.3 shows

the plot of a function ψ
(7)
v over this partition.

5.1.2 Construction of ψ
(7)
x,v and ψ

(7)
y,v

We now construct the gradient adjustment polygonal vertex splines ψ
(7)
x,v and ψ

(7)
y,v.

As before, we’ll explicitly construct ψ
(7)
x,v, and we’ll start by focusing on a single

quadrilateral P in Ωv, where v = vi in P , and define ψ
(7)
x,v

∣∣
P

= ψ
(7)
x,i,P .

While most of the following calculations will be familiar, we’ll need the following

lemma:

142

Figure 5.2: An unstructured quadrilateral partition

Figure 5.3: The plot of a function ψ
(7)
v

143

Lemma 5.1.1.

Ci~ei+1 + Ci+1~ei−1 + (Ci+1 − Ci+2)~ei = 0

Proof. Using two-dimensional vector cross products to express triangle areas, one can

write

2Cj = ~ej−1 × ~ej

= ~ej × (~ej+1 + ~ej+2) .

Using this expression, along with the fact that ~ei + ~ei+2 = − (~ei−1 + ~ei+1), we have

2
(
Ci~ei+1 + Ci+1~ei−1 + (Ci+1 − Ci+2)~ei

)
= (~ei−1 × ~ei)~ei+1 + (~ei × ~ei+1)~ei−1 + (~ei × ~ei+1 − ~ei+1 × ~ei+2)~ei

= (~ei−1 × ~ei)~ei+1 + (~ei × ~ei+1)~ei−1 + ((~ei + ~ei+2)× ~ei+1)~ei

= (~ei−1 × ~ei)~ei+1 + (~ei × ~ei+1)~ei−1 − ((~ei−1 + ~ei+1)× ~ei+1)~ei

= (~ei−1 × ~ei)~ei+1 + (~ei × ~ei+1)~ei−1 − (~ei−1 × ~ei+1)~ei.

Expanding the x and y components of this vector sum along with easy simplification

immediately yields that the sum is zero.

We’re now ready to construct the function ψ
(7)
x,i . We’ll use the template from

(5.1.2), and start by computing the J coefficients. Since we want ψ
(7)
x,i

∣∣
vi

= 0, we set

J0,i = 0. We require that∇ψ(7)
x,i = 〈1, 0〉, so we compute the edge-direction derivatives:

∂ψ
(7)
x,i

∂ẽi

∣∣∣∣
vi

=
J1,i

|ei|
;

∂ψ
(7)
x,i

∂ẽi−1

∣∣∣∣
vi

=
−J2,i

|ei−1|
;

so we’ll set J1,i = ei,x, J2,i = −ei−1,x. We can determine J3,i, J4,i, and K0,i by the

144

requirement that ∇2ψ
(7)
x,i

∣∣
vi

= 0. We compute the second edge-direction derivatives:

∂2ψ
(7)
x,i

∂ẽ2
i

=
2J3,i − 12ei,x
|ei|2

;

∂2ψ
(7)
x,i

∂ẽ2
i−1

=
2J4,i + 12ei−1,x

|ei−1|2
;

∂2ψ
(7)
x,i

∂ẽi∂ẽi−1

=
1

|ei||ei−1|

((
6 +

Ci+2

Ci+1

)
ei,x −

(
6 +

Ci+2

Ci−1

)
ei−1,x −K0,i

Ci+1Ci−1

CiCi+2

)
;

which are all zero precisely when

J3,i = 6ei,x;

J4,i = −6ei−1,x;

K0,i =

(
1 + 6

Ci+1

Ci+2

)
Ci−1

Ci
ei,x −

(
1 + 6

Ci−1

Ci+2

)
Ci+1

Ci
ei−1,x.

As was the case when we constructed ψ
(7)
i , we can’t determine the remaining

J terms directly yet. However, it seems safe to assume that J5,i = j5ei,x, J6,i =

j6ei−1,x, J7,i = j7ei,x, and J8,i = j8ei−1,x for some constants j5, j6, j7, and j8. We can

use the sum condition

4∑
j=1

vj,xψ
(7)
j + ψ

(7)
x,j = x (5.1.7)

restricted to edges ei and ei−1 to conclude that j5 +j8 = 5 and j6 +j7 = 5. We’ll make

an additional assumption, based on our previous results: j5 = −j6, and j7 = −j8.

145

Then, if we put all of these in terms of j7, we’ll have

ψ
(7)
x,i = φ2

i

(
φ4
i (ei,xφi+1 − ei−1,xφi−1) + 6φ3

i (ei,xφ
2
i+1 − ei−1,xφ

2
i−1)

+ (j7 + 5)φ2
i (ei,xφ

3
i+1 − ei−1,xφ

3
i−1) + j7φi

(
ei,xφ

4
i+1 − ei−1,xφ

4
i−1

)
+ φi+2

(((
1 + 6

Ci+1

Ci+2

)
Ci−1

Ci
ei,x −

(
1 + 6

Ci−1

Ci+2

)
ei−1,x

)
φ4
i

+ φ3
i (K1,iφi+1 +K2,iφi−1) + φ2

i (K3,iφ
2
i+1 +K4,iφ

2
i−1)

+ φi(K5,iφ
3
i+1 +K6,iφ

3
i−1) +K7,iφ

4
i+1 +K8,iφ

4
i−1

)
+ φ2

i+2

(
S0,iφ

3
i + φ2

i (S1,iφi+1 + S2,iφi−1

))
+ L0,iφ

3
i+2φ

2
i

)
. (5.1.8)

We can determine the K constants by enforcing C1 smoothness over shared edges.

We’ll first compute the outward normal derivative of ψ
(7)
x,i on edge ei. Using the fact

that Ai+2 = Ci−1φi + Ci+2φi+1, along with (3.2.25) and

Cj = |ej−1||ej| sin(θj), we compute the following normal derivative:

146

∂ψ
(7)
x,i

∂~ni

∣∣∣∣
ei

= φ7
i

ei,y
|ei|

+ φ6
iφi+1

(
7
ei,y
|ei|

+
|ei|

2CiCi+1

(
Ciei+1,x + Ci+1ei−1,x + (Ci+1 − Ci+2) ei,x

))
+ φ5

iφ
2
i+1

(
3(j7 − 5)

ei,x cos(θi)

|ei| sin(θi)
− 6

ei,x cos(θi+1)

|ei| sin(θi+1)

)
+ φ4

iφ
3
i+1

(
3(5− j7)

ei,x cos(θi+1)

|ei| sin(θi+1)
− 20

ei,x cos(θi)

|ei| sin(θi)

)
+ φ3

iφ
4
i+1

(
20
ei,x cos(θi+1)

|ei| sin(θi+1)
− 3j7

ei,x cos(θi)

|ei| sin(θi)

)
+ φ2

iφ
5
i+1

(
3j7

ei,x cos(θi+1)

|ei| sin(θi+1)
− |ei|

2Ci+1

K7,i

)
+
|ei|

2Ai+2

(
φ6
iφ

2
i+1

(
6
Ci−1

Ci
(6ei,x + ei−1,x)−

Ci+2

Ci
(6ei−1,x + ei,x)

+
Ci+2

Ci+1

(7ei,x −K1,i) +
Ci+2

CiCi+1

(Ci+2 − Ci−1)ei,x

)
+ φ5

iφ
3
i+1

(
Ci+2

Ci+1

(42ei,x −K1,i −K3,i) + 7(5 + j7)
Ci−1

Ci
ei,x

)
+ φ4

iφ
4
i+1

(
Ci+2

Ci+1

(7(5 + j7)ei,x −K3,i −K5,i) + 7j7
Ci−1

Ci
ei,x

)
+ φ3

iφ
5
i+1

(
Ci+2

Ci+1

(7j7ei,x −K5,i −K7,i) +
Ci−1

Ci+1

K7,i

)
.

It seems best to consider this in parts: the top few lines correspond to polynomials of

Wachspress coordinates, but the latter part is rational in Wachspress coordinates due

to the linear function Ai+2 in the denominator. When considering smoothness, these

Wachspress-rational terms are especially concerning, as the function Ai+2 depends on

the geometry of the quadrilateral within which it is defined. Our focus, then, is to

“move” these terms into the Wachspress-polynomial realm (in fact, if the reader is

attempting to reproduce the result above, it should be noted that we have actually

“moved” two sets of terms); more on this later.

The Wachpress-polynomial terms are those which we are looking to cooperate

across shared edges, and we ought to only allow dependence on the geometry of the

147

shared edge itself. The first term satisfies this, but the second term does not at first

glance, and (as we’ll elaborate on soon), there aren’t any more Wachspress-rational

terms which can interact. This is where we’ll need our result from Lemma 5.1.1,

which tells us that all terms on this line except 7
ei,y
|ei|

are zero.

Focus now on the last Wachspress-polynomial term:

φ2
iφ

5
i+1

(
3j7

ei,x cos(θi+1)

|ei| sin(θi+1)
− |ei|

2Ci+1

K7,i

)
= φ2

iφ
5
i+1

(
3j7

ei,x cos(θi+1)

|ei| sin(θi+1)
− K7,i

|ei+1| sin(θi+1)

)
.

Now we really aim for this to be in terms of
ei,y
|ei|

, the x-coordinate of the vector ~ni.

With (3.2.25) in mind, we let K7,i remain unsolved, but we allow it to take the form

K7,i = −3j7ei+1,x + k7
|ei+1|
|ei|

sin(θi+1)ei,y for some constant k7, so we retrieve

∂ψ
(7)
x,i

∂~ni
|ei =

ei,y
|ei|
(
φ7
i + 7φ6

iφi+1 − (3j7 + k7)φ2
iφ

5
i+1

)
+ φ5

iφ
2
i+1

(
3(j7 − 5)

ei,x cos(θi)

|ei| sin(θi)
− 6

ei,x cos(θi+1)

|ei| sin(θi+1)

)
+ φ4

iφ
3
i+1

(
3(5− j7)

ei,x cos(θi+1)

|ei| sin(θi+1)
− 20

ei,x cos(θi)

|ei| sin(θi)

)
+ φ3

iφ
4
i+1

(
20
ei,x cos(θi+1)

|ei| sin(θi+1)
− 3j7

ei,x cos(θi)

|ei| sin(θi)

)
+
|ei|

2Ai+2

(
φ6
iφ

2
i+1

(
6
Ci−1

Ci
(6ei,x + ei−1,x)−

Ci+2

Ci
(6ei−1,x + ei,x)

+
Ci+2

Ci+1

(7ei,x −K1,i) +
Ci+2

CiCi+1

(Ci+2 − Ci−1)ei,x

)
+ φ5

iφ
3
i+1

(
Ci+2

Ci+1

(42ei,x −K1,i −K3,i) + 7(5 + j7)
Ci−1

Ci
ei,x

)
+ φ4

iφ
4
i+1

(
Ci+2

Ci+1

(7(5 + j7)ei,x −K3,i −K5,i) + 7j7
Ci−1

Ci
ei,x

)
+ φ3

iφ
5
i+1

(
Ci+2

Ci+1

(7j7ei,x −K5,i −K7,i) +
Ci−1

Ci+1

K7,i

)
, (5.1.9)

where we don’t substitute for every instance of K7,i yet to save space.

148

Now we’ll elaborate on “moving” terms from the Wachspress-rational realm to

the Wachspress-polynomial. Start by focusing on the first Wachspress-rational term.

Using the fact that Ci+2 − Ci−1 = Ci+1 − Ci, we will retrieve a factor of Ai+2 from

this term, and have a polynomial remainder

φ6
iφ

2
i+1

(
6
Ci−1

Ci
(6ei,x + ei−1,x)−

Ci+2

Ci
(6ei−1,x + ei,x)

+
Ci+2

Ci+1

(7ei,x −K1,i) +

(
Ci+2

Ci
− Ci+2

Ci

)
ei,x

)
= Ai+2φ

5
iφ

2
i+1

(
6

1

Ci
(6ei,x + ei−1,x)− 6

Ci+2

CiCi−1

ei−1,x +
Ci+2

Ci+1Ci−1

(6ei,x −K1,i)

)
− φ5

iφ
3
i+1

(
6
Ci+2

Ci
(6ei,x + ei−1,x)− 6

C2
i+2

CiCi−1

ei−1,x +
C2
i+2

Ci+1Ci−1

(6ei,x −K1,i)

)
.

Using this result, we can rewrite (5.1.9) by

∂ψ
(7)
x,i

∂~ni

∣∣∣∣
ei

=
ei,y
|ei|
(
φ7
i + 7φ6

iφi+1 − (3j7 + k7)φ2
iφ

5
i+1

)
+ φ5

iφ
2
i+1

(
3(j7 − 5)

ei,x cos(θi)

|ei| sin(θi)
− 6

ei,x cos(θi+1)

|ei| sin(θi+1)
+ 6

ei−1,x

|ei−1| sin(θi)
+ 36

|ei|
2Ci

ei,x

+
Ci+2

Ci−1

(
|ei|

2Ci+1

(6ei,x −K1,i)− 6
|ei|
2Ci

ei−1,x

))
+ φ4

iφ
3
i+1

(
3(5− j7)

ei,x cos(θi+1)

|ei| sin(θi+1)
− 20

ei,x cos(θi)

|ei| sin(θi)

)
+ φ3

iφ
4
i+1

(
20
ei,x cos(θi+1)

|ei| sin(θi+1)
− 3j7

ei,x cos(θi)

|ei| sin(θi)

)
+
|ei|

2Ai+2

(
φ5
iφ

3
i+1

(
Ci+2

Ci+1

(42ei,x −K1,i −K3,i)− 6
Ci+2

Ci
(6ei,x + ei−1,x)

+ 7(5 + j7)
Ci−1

Ci
ei,x − 6

C2
i+2

CiCi−1

ei−1,x +
C2
i+2

Ci+1Ci−1

(6ei,x −K1,i)

)
+ φ4

iφ
4
i+1

(
Ci+2

Ci+1

(7(5 + j7)ei,x −K3,i −K5,i) + 7j7
Ci−1

Ci
ei,x

)
+ φ3

iφ
5
i+1

(
Ci+2

Ci+1

(7j7ei,x −K5,i −K7,i) +
Ci−1

Ci+1

K7,i

)
.

149

Now focus on the Wachspress-polynomial terms divisible by φ5
iφ

2
i+1:

φ5
iφ

2
i+1

(
3(j7 − 5)

ei,x cos(θi)

|ei| sin(θi)
− 6

ei,x cos(θi+1)

|ei| sin(θi+1)
+ 6

ei−1,x

|ei−1| sin(θi)
+ 36

|ei|
2Ci

ei,x

+
Ci+2

Ci−1

(
|ei|

2Ci+1

(6ei,x −K1,i)− 6
|ei|
2Ci

ei−1,x

))
= φ5

iφ
2
i+1

(
3(j7 − 3)

ei,y
|ei|

+ 3(7− j7)
|ei|
2Ci

ei−1,x + 6
|ei|

2Ci+1

ei+1,x + 36
|ei|
2Ci

ei,x

+
Ci+2

Ci−1

(
|ei|

2Ci+1

(6ei,x −K1,i)− 6
|ei|
2Ci

ei−1,x

))
; (5.1.10)

we can retrieve a satisfactory result if we set

K1,i = 6

(
ei,x −

Ci+1

Ci
ei−1,x +

Ci−1

Ci+2

ei+1,x

)
+
Ci+1Ci−1

CiCi+2

(
36ei,x + 3(7− j7)ei−1,x + k1

|ei−1|
|ei|

sin(θi)ei,y

)

for some constant k1, which reduces (5.1.10) to

φ5
iφ

2
i+1

((
3(j7 − 3)− k1

)ei,y
|ei|

)
.

Continuing in this manner, moving one set of terms from Wachspress-rational to

Wachspress-polynomial at a time, we can set

K3,i = 36ei,x − 6ei+1,x −
Ci+1

Ci

(
72ei,x + 3(7− j7)ei−1,x + k1

|ei−1|
|ei|

sin(θi)ei,y

)
+
Ci−1

Ci+2

(
3(j7 − 7)ei+1,x + k3

|ei+1|
|ei|

sin(θi+1)ei,y

)
+
Ci+1Ci−1

CiCi+2

(
(7j7 − 1)ei,x + (3j7 − 1)ei−1,x − k1

|ei−1|
|ei|

sin(θi)ei,y

)
;

K5,i = 7j7ei,x + (3j7 − 20)ei+1,x + (k5 − k7)
|ei+1|
|ei|

sin(θi+1)ei,y + 3j7
Ci+1

Ci
ei−1,x

+
Ci−1

Ci+2

(
k7
|ei+1|
|ei|

sin(θi+1)ei,y − 3j7ei+1,x

)

for two more constants k3 and k5, which gives us

150

∂ψ
(7)
x,i

∂~ni

∣∣∣∣
ei

=
ei,y
|ei|

φ2
i

(
φ5
i + 7φ4

iφi+1 + (3(j7 − 3)− k1)φ3
iφ

2
i+1

+ (3j7 − 35− k3)φ2
iφ

3
i+1 − (3j7 + k5 + 20)φiφ

4
i+1 − (3j7 + k7)φ5

i+1

)
+
|ei|

2Ai+2

φ4
iφ

4
i+1

(
Ci+2

Ci+1

(
11ei+1,x − ei,x + (k3 − k5 + k7)

|ei+1|
|ei|

sin(θi+1)ei,y

)
− Ci+2

Ci

(
(6j7 − 41)ei−1,x − 72ei,x − k1

|ei−1|
|ei|

sin(θi)ei,y

)
+
Ci−1

Ci+1

(
ei+1,x + (k5 − k3 − k7)

|ei+1|
|ei|

sin(θi+1)ei,y

)
+
Ci−1

Ci

(
ei,x + ei−1,x + k1

|ei−1|
|ei|

sin(θi)ei,y

))
.

Then we must find constants j7, k1, k3, k5, and k7 that make the remaining Wachspress-

rational term 0, will cooperate with the choices we’ll make for the constants K2,i, K4,i,

K6,i, and K8,i, and also satisfy (5.1.7). A similar analysis on edge ei−1 to that which

we’ve just completed on edge ei will result in choosing

K2,i = −6

(
ei−1,x −

Ci−1

Ci
ei,x +

Ci+1

Ci+2

ei+2,x

)
− Ci+1Ci−1

CiCi+2

(
36ei−1,x + 3(7− j7)ei,x + k2

|ei|
|ei−1|

sin(θi)ei−1,y

)
;

K4,i = −36ei−1,x + 6ei+2,x +
Ci−1

Ci

(
72ei−1,x + 3(7− j7)ei,x + k2

|ei|
|ei−1|

sin(θi)ei−1,y

)
− Ci+1

Ci+2

(
3(j7 − 7)ei+2,x + k4

|ei+2|
|ei−1|

sin(θi−1)ei−1,y

)
− Ci+1Ci−1

CiCi+2

(
(7j7 − 1)ei−1,x + (3j7 − 1)ei,x − k2

|ei|
|ei−1|

sin(θi)ei−1,y

)
;

K6,i = −7j7ei−1,x − (3j7 − 20)ei+2,x − (k6 − k8)
|ei+2|
|ei−1|

sin(θi−1)ei−1,y − 3j7
Ci−1

Ci
ei,x

− Ci+1

Ci+2

(
k8
|ei+2|
|ei−1|

sin(θi−1)ei−1,y − 3j7ei+2,x

)
;

K8,i = 3j7ei+2,x − k8
|ei+2|
|ei−1|

sin(θi−1)ei−1,y;

for more constants k2, k4, k6, and k8, which will yield

151

∂ψ
(7)
x,i

∂~ni−1

∣∣∣∣
ei−1

=
ei−1,y

|ei−1|
φ2
i

(
φ5
i + 7φ4

iφi−1 + (3(j7 − 3)− k2)φ3
iφ

2
i−1

+ (3j7 − 35− k4)φ2
iφ

3
i−1 − (3j7 + k6 + 20)φiφ

4
i−1 − (3j7 + k8)φ5

i−1

)
− |ei−1|

2Ai+1

φ4
iφ

4
i−1

(
Ci+2

Ci−1

(
11ei+2,x − ei−1,x

+ (k4 − k6 + k8)
|ei+2|
|ei−1|

sin(θi−1)ei−1,y

)
− Ci+2

Ci

(
(6j7 − 41)ei,x − 72ei−1,x − k2

|ei|
|ei−1|

sin(θi)ei−1,y

)
+
Ci+1

Ci−1

(
ei+2,x + (k6 − k4 − k8)

|ei+2|
|ei−1|

sin(θi−1)ei−1,y

)
+
Ci+1

Ci

(
ei−1,x + ei,x + k2

|ei|
|ei−1|

sin(θi)ei−1,y

))
.

We can refine our solutions of the K coefficients using the sum condition (5.1.7)

along with the consideration that the coefficients of the single remaining rational

terms in each of
∂ψ

(7)
x,i

∂~ni
and

∂ψ
(7)
x,i

∂~ni−1

must be zero. We can see from Figure 5.1b that,

for example, K1,i and K8,i+1 interact; the remaining terms will set up a linear system

which we can solve for the constants kj in terms of j7. The following is the result:

152

K1,i = 6

(
ei,x −

Ci+1

Ci
ei−1,x +

Ci−1

Ci+2

ei+1,x

)
+ 3

Ci+1Ci−1

CiCi+2

((
12− 10

|ei−1|
|ei|

cos(θi)

)
ei,x − (j7 + 3)ei−1,x

)
;

K2,i = −
(

6

(
ei−1,x −

Ci−1

Ci
ei,x +

Ci+1

Ci+2

ei+2,x

)
+ 3

Ci+1Ci−1

CiCi+2

((
12− 10

|ei|
|ei−1|

cos(θi)

)
ei−1,x − (j7 + 3)ei,x

))
;

K3,i = 35ei,x + 5ei+1,x

− Ci+1

Ci

(
(3j7 + 10)ei−1,x + 30

|ei−1|
|ei|

cos(θi)ei,x

)
+
Ci−1

Ci+2

(3j7 − 20)ei+1,x

+
Ci+1Ci−1

CiCi+2

((
7j7 − 30

|ei−1|
|ei|

cos(θi)

)
ei,x + 3(j7 − 10)ei−1,x

)
;

K4,i = −
(

35ei−1,x + 5ei+2,x

− Ci−1

Ci

(
(3j7 + 10)ei,x + 30

|ei|
|ei−1|

cos(θi)ei−1,x

)
+
Ci+1

Ci+2

(3j7 − 20)ei+2,x

+
Ci+1Ci−1

CiCi+2

((
7j7 − 30

|ei|
|ei−1|

cos(θi)

)
ei−1,x + 3(j7 − 10)ei,x

))
;

K5,i = 7j7ei,x + (3j7 − 20)ei+1,x

+ 3
Ci+1

Ci

(
(j7 − 10)ei−1,x − 10

|ei−1|
|ei|

cos(θi)ei,x

)
− 3j7

Ci−1

Ci+2

ei+1,x;

K6,i = −
(

7j7ei−1,x + (3j7 − 20)ei+2,x+

+ 3
Ci−1

Ci

(
(j7 − 10)ei,x − 10

|ei|
|ei−1|

cos(θi)ei−1,x

)
− 3j7

Ci+1

Ci+2

ei+2,x

)
;

K7,i = −3j7ei+1,x;

K8,i = 3j7ei+2,x.

For two adjacent quadrilaterals P and R which share the edge ei,P = ei−1,R, it turns

out that this set of K coefficients also satisfies that
∂ψ

(7)
x,i,P

∂~ni,P

∣∣∣∣
ei,P

+
∂ψx,i,R
∂~ni−1,R

∣∣∣∣
ei−1,R

= 0.

In effect, then, j7 is free. We choose to set j7 = 0, which gives us that J5,i = 5ei,x,

J6,i = −5ei−1,x, and, conveniently, that J7,i = J8,i = K7,i = K8,i = 0. Then we

153

retrieve the following final determinations of the other K coefficients:

K1,i = 6

(
ei,x −

Ci+1

Ci
ei−1,x +

Ci−1

Ci+2

ei+1,x

)
+ 3

Ci+1Ci−1

CiCi+2

((
12− 10

|ei−1|
|ei|

cos(θi)

)
ei,x − 3ei−1,x

)
;

K2,i = −
(

6

(
ei−1,x −

Ci−1

Ci
ei,x +

Ci+1

Ci+2

ei+2,x

)
+ 3

Ci+1Ci−1

CiCi+2

((
12− 10

|ei|
|ei−1|

cos(θi)

)
ei−1,x − 3ei,x

))
;

K3,i = 5

(
7ei,x + ei+1,x −

Ci+1

Ci

(
2ei−1,x + 6

|ei−1|
|ei|

cos(θi)ei,x

)
− 4

Ci−1

Ci+2

ei+1,x − 6
Ci+1Ci−1

CiCi+2

(
|ei−1|
|ei|

cos(θi)ei,x + ei−1,x

))
;

K4,i = −5

(
7ei−1,x + ei+2,x −

Ci−1

Ci

(
2ei,x + 6

|ei|
|ei−1|

cos(θi)ei−1,x

)
− 4

Ci+1

Ci+2

ei+2,x − 6
Ci+1Ci−1

CiCi+2

(
|ei|
|ei−1|

cos(θi)ei−1,x + ei,x

))
;

K5,i = −20ei+1,x − 30
Ci+1

Ci

(
ei−1,x +

|ei−1|
|ei|

cos(θi)ei,x

)
;

K6,i = 20ei+2,x + 30
Ci−1

Ci

(
ei,x +

|ei|
|ei−1|

cos(θi)ei−1,x

)
.

Finally, using the same sum condition (5.1.7), we determine the S and L coeffi-

cients:

154

S0,i = 6

((
1 + 5

Ci+1Ci−1

CiCi+2

)
(ei,x + ei+1,x)

+ 5
Ci+1Ci−1

CiCi+2

(
1 + 2

Ci+1Ci−1

CiCi+2

)
(ei,x − ei−1,x)

)
;

S1,i = 15

((
1 + 2

Ci+1Ci−1

CiCi+2

)
(3ei,x + 2ei+1,x)

+ 2
Ci+1Ci−1

CiCi+2

(
1 +

Ci+1Ci−1

CiCi+2

)
(3ei,x − 2ei−1,x)

)
;

S2,i = −15

((
1 + 2

Ci+1Ci−1

CiCi+2

)
(3ei−1,x + 2ei+2,x)

+ 2
Ci+1Ci−1

CiCi+2

(
1 +

Ci+1Ci−1

CiCi+2

)
(3ei−1,x − 2ei,x)

)
;

L0,i = 15

((
1 + 2

Ci+1Ci−1

CiCi+2

(
4 + 3

Ci+1Ci−1

CiCi+2

))
(ei,x + ei+1,x)

+ 4
Ci+1Ci−1

CiCi+2

(
1 +

Ci+1Ci−1

CiCi+2

(
3 +

Ci+1Ci−1

CiCi+2

))
(ei,x − ei−1,x)

)
.

With this, our construction of ψ
(7)
x,i is complete. Unfortunately, the expression is

so long that we will have to reduce the font size to have it fit on a single page.

155

ψ
(7)
x,i = φ2i

(
φ4i (ei,xφi+1 − ei−1,xφi−1) + 6φ3i (ei,xφ

2
i+1 − ei−1,xφ

2
i−1)

+ 5φ2i (ei,xφ
3
i+1 − ei−1,xφ

3
i−1)

+ φi+2

(((
1 + 6

Ci+1

Ci+2

)
Ci−1

Ci
ei,x −

(
1 + 6

Ci−1

Ci+2

)
Ci+1

Ci
ei−1,x

)
φ4i

+ 3φ3i

((
2

(
ei,x −

Ci+1

Ci
ei−1,x +

Ci−1

Ci+2
ei+1,x

)
+
Ci+1Ci−1

CiCi+2

((
12− 10

|ei−1|
|ei|

cos(θi)

)
ei,x − 3ei−1,x

))
φi+1

−
(

2

(
ei−1,x −

Ci−1

Ci
ei,x +

Ci+1

Ci+2
ei+2,x

)
+
Ci+1Ci−1

CiCi+2

((
12− 10

|ei|
|ei−1|

cos(θi)

)
ei−1,x − 3ei,x

))
φi−1

)
+ 5φ2i

((
7ei,x +

(
1− 4

Ci−1

Ci+2

)
ei+1,x −

Ci+1

Ci

(
2ei−1,x + 6

|ei−1|
|ei|

cos(θi)ei,x

)
− 6

Ci+1Ci−1

CiCi+2

(
ei−1,x +

|ei−1|
|ei|

cos(θi)ei−1,x

))
φ2i+1

−
(

7ei−1,x +

(
1− 4

Ci+1

Ci+2

)
ei+2,x −

Ci−1

Ci

(
2ei,x + 6

|ei|
|ei−1|

cos(θi)ei−1,x

)
− 6

Ci+1Ci−1

CiCi+2

(
ei,x +

|ei|
|ei−1|

cos(θi)ei−1,x

))
φ2i−1

)
− 10φi

((
2ei+1,x + 3

Ci+1

Ci

(
ei−1,x +

|ei−1|
|ei|

cos(θi)ei,x

))
φ3i+1

−
(

2ei+2,x + 3
Ci−1

Ci

(
ei,x +

|ei|
|ei−1|

cos(θi)ei−1,x

))
φ3i−1

))
+ 3φ2i+2

(
2

((
1 + 5

Ci+1Ci−1

CiCi+2

)
(ei,x + ei+1,x)

+ 5
Ci+1Ci−1

CiCi+2

(
1 + 2

Ci+1Ci−1

CiCi+2

)
(ei,x − ei−1,x)

)
φ3i

+ 5φ2i

(((
1 + 2

Ci+1Ci−1

CiCi+2

)
(3ei,x + 2ei+1,x)

+ 2
Ci+1Ci−1

CiCi+2

(
1 +

Ci+1Ci−1

CiCi+2

)
(3ei,x − 2ei−1,x)

)
φi+1

−
((

1 + 2
Ci+1Ci−1

CiCi+2

)
(3ei−1,x + 2ei+2,x)

+ 2
Ci+1Ci−1

CiCi+2

(
1 +

Ci+1Ci−1

CiCi+2

)
(3ei−1,x − 2ei,x)

)
φi−1

))
15

((
1 + 2

Ci+1Ci−1

CiCi+2

(
4 + 3

Ci+1Ci−1

CiCi+2

))
(ei,x + ei+1,x)

+ 4
Ci+1Ci−1

CiCi+2

(
1 +

Ci+1Ci−1

CiCi+2

(
3 +

Ci+1Ci−1

CiCi+2

))
(ei,x − ei−1,x)

)
φ3i+2φ

2
i

)
(5.1.11)

156

We can retrieve the function ψ
(7)
y,i by replacing every x in (5.1.11) with y, and

we can define the vertex splines ψ
(7)
x,v and ψ

(7)
y,v piecewise in Ωv as usual: for each

quadrilateral P in Ωv, let ψ
(7)
x,v

∣∣
P

= ψ
(7)
x,i , where v = vi in P . This section serves as a

proof of the following:

Theorem 5.1.2. Let Ω be a polygonal region in R2, and let P be a quadrilateral

partition of Ω. For every vertex v in the partition P, define polygonal splines ψ
(7)
x,v

and ψ
(7)
y,v over Ωv by

ψ(7)
x,v :=

 ψ
(7)
x,i,P (x) x ∈ P ⊆ Ωv; v = vi,P

0 x 6∈ Ωv

and ψ(7)
y,v :=

 ψ
(7)
y,i,P (x) x ∈ P ⊆ Ωv; v = vi,P

0 x 6∈ Ωv

where ψ
(7)
x,i,P is the function given in (5.1.11) and ψ

(7)
y,i,P is the associated function

retrieved by replacing every x in ψ
(7)
x,i,P by y.

Then ψ
(7)
x,v and ψ

(7)
y,v satisfy the following properties:

(1) ψ
(7)
x,v(w) = ψ

(7)
y,v(w) = 0 for any vertex w of P;

(2) ∇ψ(7)
x,v(w) = 〈δv,w, 0〉 and ∇ψ(7)

y,v(w) = 〈0, δv,w〉 for any vertex w of P;

(3) ∇2ψ
(7)

x2,v(w) = ∇2ψ
(7)
y,v(w) = 0 for any vertex w of P;

(4) ψ
(7)
x,v, ψ

(7)
y,v ∈ C1(Ω); and

(5)
∑
v∈P

vxψ
(7)
v + ψ

(7)
x,v = x and

∑
v∈P

vyψ
(7)
v + ψ

(7)
y,v = y.

Figure 5.4 shows the plot of the functions ψ
(7)
x,v and ψ

(7)
y,v over the partition shown

in Figure 5.2.

157

(a) The plot of a function ψ
(7)
x,v

(b) The plot of a function ψ
(7)
y,v

Figure 5.4: Plots of degree-7 gradient-adjustment basis splines

5.1.3 Construction of ψ
(7)
x2,v, ψ

(7)
y2,v, and ψ

(7)
xy,v

Frankly, there’s not much insight to be gained from the details of these computations

which couldn’t be gained from the computations in the previous section. The overall

flavor and repertoire of techniques are nearly identical, merely applied to a different

158

set of constraints:

ψ
(7)

x2,v

∣∣
w

= ψ
(7)

y2,v

∣∣
w

= ψ(7)
xy,v

∣∣
w

= 0;

∇ψ(7)

x2,v

∣∣
w

= ∇ψ(7)

y2,v

∣∣
w

= ∇ψ(7)
xy,v

∣∣
w

= 0;

∇2ψ
(7)

x2,v

∣∣
w

=

 δv,w 0

0 0

 ; ∇2ψ
(7)

y2,v

∣∣
w

=

 0 0

0 δv,w

 ; ∇2ψ(7)
xy,v

∣∣
w

=

 0 δv,w

δv,w 0

 ;

along with the sum conditions

x2 =
4∑
j=1

v2
xψ

(7)
v + 2vxψ

(7)
x,v + 2ψ

(7)

x2,v;

y2 =
4∑
j=1

v2
yψ

(7)
v + 2vyψ

(7)
y,v + 2ψ

(7)

y2,v;

xy =
4∑
j=1

vxvyψ
(7)
v + vyψ

(7)
x,v + vxψ

(7)
y,v + ψ(7)

xy,v.

As in the construction of the three degree-5 Hessian manipulation functions, the

general strategy is to explicitly construct the function ψ
(7)
xy,i over a single quadrilateral

P , then retrieve the functions ψ
(7)

x2,i and ψ
(7)

y2,i by replacing each x by y or y by x,

respectively, and dividing the result by 2.

To construct ψ
(7)
xy,i, we follow nearly the same steps as in the previous section:

we use the template given in (5.1.2), and we set J0,i = J1,i = J2,i = 0 to satisfy

the value and gradient conditions. We set J3,i = ei,xei,y, J4,i = ei−1,xei−1,y, and

K0,i = −Ci+1Ci−1

CiCi+2

(ei,xei−1,y + ei,yei−1,x) to satisfy the Hessian conditions.

Even with the sum conditions, we still can’t quite solve for the remaining J

coefficients, but we can reduce the degrees of freedom with some symmetry as-

sumptions - namely, that J5,i = j5ei,xei,y, J6,i = j5ei−1,xei−1,y, J7,i = j7ei,xei,y, and

J8,i = j7ei−1,xei−1,y for some constants j5 and j7, which the sum conditions tell us

must satisfy j5 + j7 = −5.

159

From here, we can take outward normal derivatives on edges ei and ei−1, and follow

the same kind of analysis as before, including using the sum condition, to retrieve:

J5,i = −5ei,xei,y; J6,i = −5ei−1,xei−1,y; J7,i = 0; J8,i = 0;

K1,i =
Ci−1

Ci+2

(ei,xei+1,y + ei,yei+1,x)−
Ci+1

Ci
(ei,xei−1,y + ei,yei−1,x)

+
Ci+1Ci−1

CiCi+2

((
7− 30

|ei−1|
|ei|

cos(θi)

)
ei,xei,y − 4(ei,xei−1,y + ei,yei−1,x)

)
;

K2,i =
Ci+1

Ci+2

(ei−1,xei+2,y + ei−1,yei+2,x)−
Ci−1

Ci
(ei,xei−1,y + ei,yei−1,x)

+
Ci+1Ci−1

CiCi+2

((
7− 30

|ei|
|ei−1|

cos(θi)

)
ei−1,xei−1,y − 4(ei,xei−1,y + ei,yei−1,x)

)
;

K3,i = 7ei,xei,y + (ei,xei+1,y + ei,yei+1,x) + 22
Ci−1

Ci+2

|ei+1|
|ei|

cos(θi+1)ei,xei,y

− Ci+1

Ci

(
4(ei,xei−1,y + ei,yei−1,x) + 30

|ei−1|
|ei|

cos(θi)ei,xei,y

)
− 42

Ci+1Ci−1

CiCi+2

(
1− |ei−1|

|ei|
cos(θi)

)
ei,xei,y;

K4,i = 7ei−1,xei−1,y + (ei−1,xei+2,y + ei−1,yei+2,x) + 22
Ci+1

Ci+2

|ei+2|
|ei−1|

cos(θi−1)ei−1,xei−1,y

− Ci−1

Ci

(
4(ei,xei−1,y + ei,yei−1,x) + 30

|ei|
|ei−1|

cos(θi)ei−1,xei−1,y

)
− 42

Ci+1Ci−1

CiCi+2

(
1− |ei|
|ei−1|

cos(θi)

)
ei−1,xei−1,y;

160

K5,i = −20
|ei+1|
|ei|

cos(θi+1)ei,xei,y; K6,i = −20
|ei+2|
|ei−1|

cos(θi−1)ei−1,xei−1,y;

K7,i = 0; K8,i = 0;

S0,i = (ei,x + ei+1,x)(ei,y + ei+1,y) + 5
Ci+1Ci−1

CiCi+2

(
(ei,x − ei−1,x)(ei,y + ei+1,y)

+ (ei,y − ei−1,y)(ei,x + ei+1,x)− (ei,xei−1,y + ei,yei−1,x)

+ 2
Ci+1Ci−1

CiCi+2

(
(ei,x − ei−1,x)(ei,y − ei−1,y)− (ei,xei−1,y + ei,yei−1,x)

))
;

S1,i = 5

(
3ei,xei,y + ei+1,xei+1,y + 2(ei,xei+1,y + ei,yei+1,y)

+ 2
Ci+1Ci−1

CiCi+2

(
2(3ei,xei,y + ei,x(ei+1,y − ei−1,y) + ei,y(ei+1,x − ei−1,x))

− (ei−1,x(ei,y + ei+1,y) + ei−1,y(ei,x + ei+1,x))

+
Ci+1Ci−1

CiCi+2

(ei−1,xei−1,y + 3(ei,xei,y − (ei,xei−1,y + ei,yei−1,y)))

))
;

S2,i = 5

(
3ei−1,xei−1,y + ei+2,xei+2,y + 2(ei−1,xei+2,y + ei−1,yei+2,x)

+ 2
Ci+1Ci−1

CiCi+2

(
2(3ei−1,xei−1,y + ei−1,x(ei+2,y − ei,y) + ei−1,y(ei+2,x − ei,x))

− (ei,x(ei−1,y + ei+2,y) + ei,y(ei−1,x + ei+2,x))

+
Ci+1Ci−1

CiCi+2

(ei,xei,y + 3(ei−1,xei−1,y − (ei,xei−1,y + ei,yei−1,x)))

))
;

L0,i = 5

(
(ei,x + ei+1,x)(ei,y + ei+1,y) + 2

Ci+1Ci−1

CiCi+2

(
6ei,xei,y + 2ei+1,xei+1,y

+ 4(ei,xei+1,y + ei,yei+1,x)− (ei−1,x(3ei,y + 2ei+1,y) + ei−1,y(3ei,x + ei+1,x))

+
Ci+1Ci−1

CiCi+2

(
3(3ei,xei,y + ei−1,xei−1,y + (ei,xei+1,y + ei,yei+1,x)

− (ei−1,x(3ei,y + ei+1,y) + ei−1,y(3ei,x + ei+1,x)))

+
Ci+1Ci−1

CiCi+2

(2(ei,xei,y + ei−1,xei−1,y)− 3(ei,xei−1,y + ei,yei−1,x))

)))
.

There is no point in listing the full expression of the function ψ
(7)
xy,i. It is long

enough that it would either span multiple pages, or we would have to reduce the font

size so far as to be unreadable.

161

We define ψ
(7)

x2,i and ψ
(7)

y2,i by the aforementioned substitutions, and then define

the polygonal vertex splines ψ
(7)

x2,v, ψ
(7)

y2,v, and ψ
(7)
xy,v piecewise over Ωv as usual. The

chapter thus far serves as a proof of the following:

Theorem 5.1.3. Let Ω be a polygonal region in R2, and let P be a partition of Ω by

quadrilaterals. For every vertex v in the partition P, define polygonal splines ψ
(7)

x2,v,

ψ
(7)

y2,v, and ψ
(7)
xy,v over Ωv by

ψ
(7)

x2,v :=

 ψ
(7)

x2,i,P (x) x ∈ P ⊆ Ωv; v = vi,P

0 x 6∈ Ωv,

ψ
(7)

y2,v :=

 ψ
(7)

y2,i,P (x) x ∈ P ⊆ Ωv; v = vi,P

0 x 6∈ Ωv,

ψ(7)
xy,v :=

 ψ
(7)

x2,i,P (x) x ∈ P ⊆ Ωv; v = vi,P

0 x 6∈ Ωv,

where ψ
(7)
xy,i,P is the function which follows the template given in (5.1.2) with the

coefficients given in this section, ψ
(7)

x2,i,P is the function retrieved by replacing every

y in ψ
(7)
xy,i,P by x and then multiplying by 1

2
, and ψ

(7)

y2,i,P is the function retrieved by

replacing every x in ψ
(7)
xy,i,P by y and then multiplying by 1

2
.

Then ψ
(7)

x2,v, ψ
(7)

y2,v, and ψ
(7)
xy,v satisfy the following properties:

(1) ψ
(7)

x2,v(w) = ψ
(7)

y2,v(w) = ψ
(7)
xy,v(w) = 0 for any vertex w of P;

(2) ∇ψ(7)

x2,v(w) = ∇ψ(7)

y2,v(w) = ∇ψ(7)
xy,v(w) = 0 for any vertex w of P;

(3) ∇2ψ
(7)

x2,v(w) =

 δv,w 0

0 0

 , ∇2ψ
(7)

y2,v(w) =

 0 0

0 δv,w

 ,

and ∇2ψ
(7)
xy,v(w) =

 0 δv,w

δv,w 0

 for any vertex w of P;

162

(4) ψ
(7)

x2,v, ψ
(7)

y2,v, ψ
(7)
xy,v ∈ C1(Ω);

(5)
∑
v∈P

v2
xψ

(7)
v +2vxψ

(7)
x,v+2ψ

(7)

x2,v = x2,
∑
v∈P

v2
yψ

(7)
v +2vyψ

(7)
y,v+2ψ

(7)

y2,v = y2,
∑
v∈P

vxvyψ
(7)
v +

vyψ
(7)
x,v + vxψ

(7)
y,v + ψ

(7)
xy,v = xy;

(6) Where Ψ1
7,V (P) := span

{
ψ

(7)
v , ψ

(7)
x,v, ψ

(7)
y,v, ψ

(7)

x2,v, ψ
(7)

y2,v, ψ
(7)
xy,v

}
v∈P

,

dim(Ψ1
7,V (P)) = 6|V |;

(7) Π2 ⊆ Ψ1
7,V (P).

Figure 5.5 shows plots of all three of these functions.

163

(a) The plot of a function ψ
(7)
x2,v

(b) The plot of a function ψ
(7)
y2,v

(c) The plot of a function ψ
(7)
xy,v

Figure 5.5: Plots of degree-7 Hessian-adjustment basis splines

164

5.2 Approximation properties and numerical re-

sults

As usual, let Ω be a polygonal region in R2 and let P be a partition of Ω by convex

quadrilaterals. We (slightly abusively) reuse the notation QV (f) in this section to

mean the degree-7 quasi-interpolatory C1 polygonal vertex spline given by

QV (f) =
∑
v∈P

f
∣∣
v
ψ(7)
v +

∂f

∂x

∣∣∣∣
v

ψ(7)
x,v +

∂f

∂y

∣∣∣∣
v

ψ(7)
y,v

+
∂2f

∂x2

∣∣∣∣
v

ψ
(7)

x2,v +
∂2f

∂x∂y

∣∣∣∣
v

ψ(7)
xy,v +

∂2f

∂y2

∣∣∣∣
v

ψ
(7)

y2,v.

Using the notation and techniques referenced in Chapter 3 Section 3.3 and Chapter

4 Section 4.3, we can show the following result on the approximation power of degree-7

C1 polygonal vertex splines:

Theorem 5.2.1. For any function f ∈ C3(Ω), the quasi-interpolatory C1 polygonal

vertex spline QV,k(f) ∈ Ψ1
7,V (Pk) satisfies

||f −QV,k(f)||∞,Ω ≤ C|f |3,∞,Ω2−3k

where C is a positive constant independent of f .

For any function u ∈ H3(Ω), the quasi-interpolatory C1 polygonal vertex spline

QV,k(u) ∈ Ψ7,V (Pk) satisfies

||u−QV,k(u)||2,Ω ≤ C|u|3,2,Ω2−3k

and

|u−QV,k|1,2,Ω ≤ C|u|3,2,Ω2−2k

where C is a positive constant independent of u, but which may depend on the bound-

165

ary of Ω if Ω is nonconvex.

We devote the rest of this section to numerical examples of quasi-interpolation

by degree-7 C1 polygonal vertex splines developed in this chapter. Let P be the

quadrilateral partition shown in Figure 5.2, and see the notation in Chapter 4 Section

4.3. We expect that the quasi-interpolants should converge in the L2 norm at rate

O(h3).

We display the numerical error of the quasi-interpolants of the same functions as

in Chapter 4 Section 4.3; for convenience, we restate the functions below:

u1(x, y) = sin(x) sin(y), u2(x, y) = sin(πx) sin(πy),

u3(x, y) = sin(2πx) sin(2πy), u4(x, y) = sin(π(x2 + y2)),

u5(x, y) = (10 + x+ y)−1, u6(x, y) = (1 + x2 + y2)−1.

Table 5.1: Degree-7 C1 polygonal vertex
spline quasi-interpolation of the function
u1(x, y) = sin(x) sin(y)

Quads h EV (u1) rate
5 2.00e+00 7.41e-03 0.00

20 1.44e+00 8.74e-04 3.08
80 7.21e-01 1.01e-04 3.11

320 3.61e-01 1.21e-05 3.06

Table 5.2: Degree-7 C1 polygonal vertex
spline quasi-interpolation of the function
u2(x, y) = sin(πx) sin(πy)

Quads h EV (u2) rate
5 2.00e+00 2.67e-01 0.00

20 1.44e+00 4.11e-02 2.70
80 7.21e-01 4.18e-03 3.30

320 3.61e-01 4.33e-04 3.27

166

Table 5.3: Degree-7 C1 polygonal vertex
spline quasi-interpolation of the function
u3(x, y) = sin(2πx) sin(2πy)

Quads h EV (u3) rate
5 2.00e+00 1.28e+00 0.00

20 1.44e+00 3.90e-01 1.72
80 7.21e-01 3.31e-02 3.56

320 3.61e-01 4.12e-03 3.00

Table 5.4: Degree-7 C1 polygonal vertex
spline quasi-interpolation of the function
u4(x, y) = sin(π(x2 + y2))

Quads h EV (u4) rate
5 2.00e+00 2.39e+00 0.00

20 1.44e+00 4.71e-01 2.34
80 7.21e-01 5.71e-02 3.04

320 3.61e-01 4.98e-03 3.52

Table 5.5: Degree-7 C1 polygonal vertex
spline quasi-interpolation of the function
u5(x, y) = (10 + x+ y)−1

Quads h EV (u5) rate
5 2.00e+00 6.75e-06 0.00

20 1.44e+00 7.96e-07 3.08
80 7.21e-01 9.58e-08 3.05

320 3.61e-01 1.19e-08 3.01

Table 5.6: Degree-7 C1 polygonal vertex
spline quasi-interpolation of the function
u6(x, y) = (1 + x2 + y2)−1

Quads h EV (u6) rate
5 2.00e+00 1.97e-02 0.00

20 1.44e+00 3.16e-03 2.64
80 7.21e-01 2.93e-04 3.43

320 3.61e-01 3.10e-05 3.24

As in the degree-5 cases, we see that, after achieving a sufficiently fine mesh, we

observe the expected rate of convergence.

167

Chapter 6

Future Directions

6.1 More general polygons

The original aim for this work was to find a way to ensure smoothness for polygonal

splines in general, but even restriction to quadrilaterals has been computationally

intensive. Moving up to pentagons brings the primary challenge of determining linear

independence of terms which vanish on edges. By Theorem 1 in [16], the number of

linearly independent degree-2 Bernstein-Bezier functions of Wachspress coordinates

on an n-gon is 2n +
(
n−2

2

)
. There are 2n functions supported on the edge, so on the

interior there are
(
n−2

2

)
degrees of freedom; on a quadrilateral (n = 4), this gives us

only one degree of freedom, which corresponds to the fact that

φ1φ3 =
C1C3

C2C4

φ2φ4. However, on a pentagon (n = 5), we instead have 3 degrees of

freedom - but there are 5 degree-2 Bernstein-Bezier functions which are zero on the

boundary: φ1φ3, φ1φ4, φ2φ4, φ2φ5, and φ3φ5. In the same way that we used φ1φ3 and

φ2φ4 interchangeably, it seems that the best strategy to construct C1 vertex splines

would be to choose a certain triple of these functions for each vertex, but it’s not

immediately clear if there is any advantage to any of them. Moreover, when moving

up to degree 3, there are 20 Bernstein-Bezier functions which vanish on the boundary

168

of a pentagon. It is not clear how many of these can be chosen linearly independently,

and at first glance it is perhaps even less clear how to choose them.

If the issue of linear independence was resolved, then the techniques used to de-

termine C1 local basis polygonal splines over quadrilaterals should be able to be

extended to other polygonal partitions.

6.2 Higher smoothness

Higher smoothness could be desirable, and the techniques discussed in this work

should suffice to construct Cr local basis polygonal splines over quadrilaterals at

least. The primary issue in this direction is computational complexity: the compu-

tations done in this work were already extremely complex and cumbersome, but C2

computations on the edges would obviously be much harder. First and foremost,

while we only needed to compute one outward normal derivative per edge,
∂

∂~ni
, to

ensure C1 smoothness, we would need to compute both
∂2

∂~n2
i

and
∂2

∂~ni∂ẽi
to ensure

C2 smoothness, both of which would be extremely cumbersome and lengthy.

6.3 Coefficient conditions

The derivation of coefficient conditions for varying levels of smoothness in traditional

bivariate splines over triangles has allowed for development and successful implemen-

tation of arbitrarily smooth functions over triangulations. These conditions allow

for construction of a smoothness matrix which can directly enforce a predetermined

level of smoothness, and for anything higher than C1-smoothness I think that finding

similar coefficient conditions for polygonal splines is the right strategy. Implementing

this over arbitrary polygonal partitions will still require some analysis of linear in-

dependence; for this reason, I think the primary task which should be accomplished

169

in order to extend polygonal splines further is to construct a “correct” basis for the

span of the Bernstein-Bezier functions.

170

Bibliography

[1] L. B. ao da Veiga, K. Lipnikov, and G. Manzini. Arbitrary-order nodal mimetic

discretizations of elliptic problems on polygonal meshes. SIAM Journal on Nu-

merical Analysis, 49:1737–1760, 2011.

[2] G. Awanou, M.-J. Lai, and P. Wenston. The multivariate spline method for

scattered data fitting and numerical solution of partial differential equations. In

Wavelets and Splines: Athens, pages 24–74, 2006.

[3] L. Beirão da Veiga and G. Manzini. A virtual element method with arbitrary

regularity. IMA Journal of Numerical Analysis, 34:759–781, 2014.

[4] L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. Marini, and A. Russo.

Basic principles of virtual element methods. Mathematical Models and Methods

in Applied Sciences, 23, 2013.

[5] K. Bey and J. Oden. hp-version discontinuous galerkin methods for hyperbolic

conservation laws. Computer Methods in Applied Mechanics and Engineering,

133:259–286, 1996.

[6] D. Braess. Finite elements. Cambridge University Press, 1997.

[7] S. Brennet and L. Scott. The mathematical theory of finite element methods.

Springer, 1994.

171

[8] T. J. Cashman, U. H. Augsdörfer, N. A. Dodgson, and M. A. Sabin. Nurbs with

extraordinary points: high-degree, non-uniform, rational subdivision schemes.

ACM Transactions on Graphics, 28, 2009.

[9] E. Catmull and J. Clark. Recursively generated b-spline surfaces on arbitrary

topological meshes. Computer-Aided Design, 10:350–355, 1978.

[10] P. Ciarlet. The finite element method for elliptic problems. North-Holland, 1978.

[11] R. Courant, K. Friedrichs, and H. Lewy. Über die partiellen differenzengleichun-

gen der mathematischen physik. Mathematische Annalen, 1928.

[12] L. Evans. Partial differential equations. American Math. Society, 1998.

[13] M. Floater. Generalized barycentric coordinates and applications. Acta Numer-

ica, 24:161–214, 2015.

[14] M. Floater. The inverse of a rational bilinear mapping. Comp. Aided Geom.

Design, 33:46–50, 2015.

[15] M. Floater, A. Gillette, and N. Sukumar. Gradient bounds for wachspress coor-

dinates on polytopes. SIAM Journal of Numerical Analysis, 52:515–532, 2014.

[16] M. Floater and M.-J. Lai. Polygonal spline spaces and the numerical solution of

the poisson equation. SIAM Journal of Numerical Analysis, 54:797–824, 2016.

[17] P. Grisvard. Elliptic problems in nonsmooth domains. Pitman Advanced Pub.

Program, 1985.

[18] P. Houston, C. Schwab, and E. Suli. Stabilized hp-finite element methods for

first-order hyperbolic problems. SIAM J. Numerical Analysis, 37:1618–1643,

2000.

172

[19] P. Houston, C. Schwab, and E. Suli. Discontinuous hp-finite element methods

for advection-diffusion problems. SIAM J. Numerical Analysis, 39:2133–2163,

2002.

[20] M.-J. Lai and L. Schumaker. Spline functions over triangulations. Cambridge

University Press, 2007.

[21] G. Manzini, A. Russo, and N. Sukumar. New perspectives on polygonal and

polyhedral finite element methods. Math. Models Methods Appl. Sci, 24:1665–

1699, 2014.

[22] L. Mu, J. Wang, Y. Wang, and X. Ye. A computational study of the weak galerkin

method for second-order elliptic equations. Numerical Algorithms, 63:753–777,

2013.

[23] L. Mu, J. Wang, and X. Ye. Weak galerkin finite element methods on polytopal

meshes. International Journal of Numerical Analysis, 12:31–53, 2015.

[24] H. Prautzsch. Smoothness of subdivision surfaces at extraordinary points. Ad-

vances in Computational Mathematics, 9:377–389, 1998.

[25] A. Rand, A. Gillette, and C. Bajaj. Quadratic serendipity finite elements on

polygons using generalized barycentric coordinates. Mathematics of computation,

83:2691–2716, 2014.

[26] T. W. Sederberg, G. T. Finnigan, X. Li, H. Lin, and H. Ipson. Watertight

trimmed nurbs. ACM Transactions on Graphics, 27, 2008.

[27] T. W. Sederberg, J. Zheng, A. Bakenov, and A. Nasri. T-splines and t-nurccs.

ACM Transactions on Graphics, 22, 2003.

[28] E. Stein. Singular integrals and differentiability properties of functions. Princeton

University Press, 1970.

173

[29] V. Thomée. From finite difference to finite elements: A short history of numerical

analysis of partial differential equations. J. Comp. Appl. Math., 128:1–54, 2001.

[30] J. Wang and X. Ye. A weak galerkin finite element method for second-order

elliptic problems. J. Comp. Appl. Math., 241:103–115, 2013.

[31] J. Wang and X. Ye. A weak galerkin finite element method for the stokes equa-

tions. Advances in Computational Mathematics, 42:155–174, 2016.

174

	Acknowledgments
	Introduction
	Motivation
	Literature review

	Polygonal Spline Methods for Numerical Solution of General Second-Order Elliptic Equations
	Previous results
	A Novel polygonal spline method for numerical solution of PDEs

	A Degree-3 Construction of C1 Polygonal Vertex Splines on Skewed-Grids
	Preliminaries on vertex splines
	Degree-3 C1 polygonal spline construction
	Approximation properties of 31(P)
	Increasing to degree 4

	A Degree-5 Construction of C1 Polygonal Splines on Parallelogram Partitions
	Degree-5 C1 polygonal vertex splines
	More degree-5 C1 polygonal splines
	Approximation properties and numerical results
	An application toward surface construction
	Increasing to degree 6

	A Degree-7 Construction of C1 Polygonal Splines on Arbitrary Quadrilateral Partitions
	Degree-7 polygonal vertex splines
	Approximation properties and numerical results

	Future Directions
	More general polygons
	Higher smoothness
	Coefficient conditions

	Bibliography

