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ABSTRACT

There has recently been interest in extending various finite element methods to
more arbitrary partitions, particularly unstructured partitions of various polygons.
Various methods aimed at this task have arisen, but of particular note, in a paper
published in 2016, Floater and Lai produced a method for numerical solution of Pois-
son equations using polygonal splines, which are extensions of bivariate splines. This
work first presents a method for numerical solution of partial differential equations
which extends the method of Floater and Lai to solve very general second-order ellip-
tic equations, but can also be used to approximate solutions of some mixed hyperbolic
and parabolic equations. Next, this work will address a features common to many
polygonal finite elements: a lack of global differentiability. This work provides a con-
struction of C! local basis functions, particularly over quadrangulations, with some
applications to function interpolation and smooth surface construction. The methods
used to construct these functions, while computationally difficult, can be extended to

higher regularity or to partitions of polygons with more vertices.
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Chapter 1

Introduction

1.1 Motivation

The primary goal of this dissertation is to develop and apply novel generalizations of
splines. Multivariate splines are a well-studied space of piecewise functions, defined
over a polyhedral region of R" which is partitioned into n-simplices. The results of
this work will focus particularly on bivariate splines, the case in which the dimension
n=2.

In the bivariate case, then, splines are traditionally defined over partitions of
2-simplices; that is to say, triangulations. This dissertation aims to loosen this re-
striction by constructing analogous function spaces over more general partitions. This
is not without motivation; oftentimes, a natural partition of a region may not be a
triangulation, but perhaps a Voronoi diagram, or a grid. Moreover, this is not with-
out precedent: in 2016, Floater and Lai [16] constructed the first polygonal splines in
what might be called a ”proof of concept,” and they applied these functions toward
numerical solutions of Poisson equations.

We'll extend on the kind of functions that Floater and Lai constructed: first, in the

development of a deeper application toward numerical solutions of partial differential



equations; second, we will explore a weakness of the Floater-Lai polygonal spline
construction: they are only continuous, and are not globally differentiable. We will
first define the ambient space of polygonal splines of arbitrary degree d, and then,
with a restriction to quadrilateral partitions, we will construct local polygonal spline
basis functions whose span is contained in C! for a variety of degrees, along with
finding some conditions which partitions must satisfy in order to allow construction

of such bases.

1.2 Literature review

1.2.1 Nwumerical solution of PDEs

Numerical solution of partial differential equations (PDEs) is a field of mathemat-
ics which is not particularly old; many agree that the landmark paper by Courant,
Friedrichs, and Lewy in 1928 [I1], which specifically addressed using finite difference
methods to approach some problems in mathematical physics, was the bridge between
older, more traditional differential equations, which are now distinguished as ordinary
differential equations (ODEs). While a variety of methods for numerical solution of
PDEs have been created and studied over the past century, multivariate spline meth-
ods fall into a category known as Finite Element Methods (FEMs). A detailed and
well-written history of the development of various methods for numerical solutions of
PDEs can be found in an article written by Thomée (see [29]), with a more detailed
study available in Evans’ well-known textbook [12]. The remainder of this section is

A highly related new method for numerical solution of PDEs that has arisen in
recent years is known as the Virtual Element Method (VEM), an evolution of a type
of method known as the Mimetic Finite Differences (MFD). VEM was pioneered by
Beirdo da Veiga, Brezzi, Cangiani, Manzini, Marini, and Russo in 2013 (see [4]). VEM

uses local functions spaces defined over polygons with a reasonably small number of



degrees of freedom; more than the spaces defined used in the Floater-Lai polygonal
spline method (see Chapter [2| Section of this dissertation). VEM is perhaps most
interesting in that its local basis functions are never explicitly computed, and instead
are defined by various degrees of freedom which allow for computation of local stiffness
and mass matrices without ever needing to know the functions themselves. See [1J,
[], [3], and [21] for more on VEM.

Quadratic serendipity finite elements are another related approach, with func-
tions defined over polygons which are very similar to the Floater-Lai polygonal spline
basis functions. Pioneered by Rand, Gillete, and Bajaj in 2014 (see [25]), quadratic
serendipity finite elements are local functions which are based on generalized barycen-
tric coordinates (GBCs), as are the polygonal splines which will be explored through-
out this dissertation, including the Floater-Lai basis.

While not quite as closely related as the previous two methods, another recently-
developed method is the Weak Galerkin method (WG), which was first introduced by
Wang and Ye in 2011; see [30]. Perhaps the most noteworthy feature of this method
is that the underlying finite elements are allowed to be totally discontinuous; in
particular, there are separate functions defined on the boundaries and the interiors of
each polygon. The Weak Galerkin method has been developed for many applications

since its introduction; see [23], [22], [31].

1.2.2 Construction of differentiable functions over polygons

using local basis functions

Solutions of higher-order PDEs usually must satisfy higher regularity conditions, so
it is desirable to have numerical solutions which are similarly regular. From the
perspective of FEMs, this means that we want to find a way to use our local basis
functions to ensure some kind of regularity, or perhaps to find a more regular subspace

of the local basis functions.



Another motivation for construction of more globally-differentiable local basis
functions comes from geometric surface design, like aircraft and car body design, or in
computer graphics. Over quadrilaterals, tensor-product B-splines are widely used to
this end, but they are only defined over highly-restrictive partitions of quadrilaterals
- most glaringly, the valence of every interior vertex of such a partition is exactly 4.
Historically, it is difficult to manage the behavior of locally-defined functions around
interior vertices with other valences, commonly known as extraordinary points. In
computer graphics, different methods of subdivision of surfaces, most based on the
well-known methods of Catmull and Clark (see [9]), are often used, as well as methods
based on NURBS (non-uniform rational basis splines) or their successors, T-splines
(see [8], [26], [27], [24]). Both methods, being based on subdivision, can result in
meshes with many underlying patches. Of course, a minimal number of patches is
preferable.

While the functions used in the aforementioned Virtual Element Method can be
globally C" for any arbitrary » > 0, recall that the basis functions themselves are
not explicitly constructed. However, the quadratic serendipity finite elements can
only ensure C° continuity, while the functions used in the Weak Galerkin method are
generally not continuous at all.

Over triangulations, bivariate splines of sufficiently high degree can made be glob-
ally C" by enforcing some constraints on its coefficients, but there are not yet any
such methods established for polygonal splines; even the Floater-Lai construction is

only continuous. For this reason, we aim to find various C' subspaces of polygonal

splines in Chapters [3, 4, and [5] of this dissertation.



Chapter 2

Polygonal Spline Methods for
Numerical Solution of General

Second-Order Elliptic Equations

2.1 Previous results

In this chapter we extend the polygonal spline methods of Floater and Lai in [16] to
solve a larger class of partial differential equations. That paper laid some foundational
work, and served as proof of the viability of this type of numerical method, and focused

on the solution of Poisson equations of the form

~Au=f; x€QcCR?

u=g; x € 00

for some polygonal region (2.
We first give a brief overview of the Floater-Lai methods. Let us begin with the

construction of what we’ll call Floater-Lai polygonal splines.



2.1.1 Floater-Lai polygonal splines

Let P = (v, vg,...,v,) be a convex n-gon for some natural number n > 3. We'll
often refer to the vertices of P cyclically, so that v,;; = v; for any natural number
j. Any collection of n functions {¢;}"; defined over P is called a set of generalized

barycentric coordinates (GBCs) for P if, for all x € P and i = 1,2, ..., n,
$i(%) >0, > ¢i(x) =1 and Y v¢;(x) = x. (2.1.1)
=1 =1

A corollary property to those listed in ([2.1.1)) is that the GBCs of P are linear on

its edges: where x; = (1 — t)v; + tv;4, for some j € N and ¢ € [0, 1],
Gi(x) = (1 — t)di(v;) + tdi(vj41)- (2.1.2)

A variety of particular choices of GBCs can be reviewed in an excellent survey by
Michael Floater; see [13]. For this work, though, we focus on perhaps the simplest-
formulated and most-studied choice of GBCs, known as Wachspress coordinates.

While the usual barycentric coordinates over triangles are polynomials, Wachs-
press coordinates over convex polygons are generally rational functions. A variety
of equivalent definitions of Wachspress coordinates have been used, but we will stick
to one in this paper which is highly related to the usual definition of barycentric
coordinates. First, we introduce some notation to express some geometric quantities.

For each i, denote by C; the area of the subtriangle of P given by (v;_1,v;, vi11).
Denote by A;(x) the signed area of the triangle (x,v;,v;11), positive for points x on
the interior of P. Notice that, while C; are constants for a given quadrilateral P for
each i, A; is a linear bivariate polynomial. It is worth noting that A;(v;—;) = C;
Ai(viya) = Ciyq, and A;(v;)) = A;(vii1) = 0. Both of these notations use cyclic

indices, just as for the vertices. Figure shows an illustration of Cy and Az(x) for



Figure 2.1: An illustration to show the areas Cy and Aj(x)

a given quadrilateral.

Then the Wachspress coordinates of P are defined by

w; (x)

¢i(x) = ————, where w;(x)=C; H A;(x).
>, wj(x) J=ln
j=1 JF#4i—1

Floater and Lai used Wachspress coordinates in the construction of spline func-
tions over convex polygons in the same role as the usual barycentric coordinates, first

by constructing Bernstein-Bézier functions. For a multi-index j = (ji, jo, ...jn) € Nj



with [j| :=j1 + ... + jn = d > 0, define

a ' Tr o
B0 = [T o1 ™)
=1

for every point x € P. A function of this type is known as a degree-d Bernstein-Bézier

function over P. Define a function space over P by the linear span of such functions:

Oy (P):=(s:s(x)= Z chj(d)(x)
li|=d
where the ¢; are real coefficients and x € P. Where Il is the space of polynomials of
degree < d, one can directly show that II; C ®4(P) using (2.1.1)).

It is unfortunate that, in general, the set of functions {Bj(d)} is not linearly inde-
pendent, and hence is not a true basis for ®4(P). Floater and Lai constructed a basis
for a subspace Uy(P) C ®4(P), which is still robust enough to satisfy I1; C ¥4(P).

The remainder of this section will focus on the case d = 2: for ¢ = —1,0,1 and
j = 1,...,n, denote by A;; the usual barycentric coordinate associated with vertex

v;1; with respect to the triangle (v;_1,v;, v;11), and define the 2n functions
Fi(x) = ¢i(x)Aio(x) and Fii(x) = ¢i(x)Ni1(X) + Gip1(X) Nig1,-1(x) (2.1.3)

for each i =1, ...,n, and let U5(P) be the linear span of the functions F; and F;; over
P. The reader can refer to [16] for some details which lead to the constructions of
F, and F;;, along with a more general construction of a basis for ¥;(P) and a proof
that I1; C W4(P), but it is clear to see that these functions are linearly independent:
F; is zero at every vertex except v;, at which its value is 1, and Fj; is zero at every
vertex and on every edge except the edge between v; and v; 1.

Now, for a polygonal region  C R?, let P be a partition of {2 into convex polygons.



To divert from Floater and Lai’s original notation a bit, we’ll write
SiH(P) ={s € CQ):s|p € Vy(P), VP € P}.

We use this notation because, as we’ll see in the later chapters, there are ways to
construct a true basis for the full space which they’ve named ®4(P), with no need to

search for a subspace. Therefore, we’ll reserve the more general notation Sy(P) for

Sa(P) ={s: s|p € D4(P), VP € P}, and

SH(P)={se€C"(Q) :s|p € Vy(P), VP € P},

so SKE(P) C SY(P).
For a given polygon P € P, Floater and Lai built an alternative basis

{Lip,Li1 p}, for ¥o(P) which could be used to interpolate functions at the vertices

V; + Vig1

v; and the edge midpoints v;; = by the function s; € S¥%(P) defined by

sp(x)|p = Z f(ui)Lip(x) + f(vi1)Liap(x),

for each P € P. The function s satisfies s¢(v;) = f(v;) and sg(v;1) = f(v;1) for each

vertex v; and edge midpoint v; ; of each polygon P € P.

2.1.2 A Polygonal spline method for numerical solution of

Poisson equations

We are now ready to discuss the method of numerical solution of the Poisson equation

using Floater-Lai polygonal splines. We solve the weak form of the Poisson equation:



where
B(u,v) = / Vu - Vv dx,
Q

solve for a function u;, € SIL(P)NHL(Q) such that B(uy,vs) = (f,vy,) for all functions
vy € SFL(P) 1 HL ().

We mention that we can represent a spline by an ordered vector of its coefficients.
Therefore, our solution will be a vector ¢ which will represent a polygonal spline
solution wu.

The first step is to enforce continuity. Whenever two polygons share a common
edge, we need that the coefficients of the 3 basis functions which are supported on the
edge have the same value. Then we build a matrix H such that Hc = 0 represents
this continuity condition.

Next we form mass and stiffness matrices M and K. Both of these matrices are

block-diagonal; for example M = diag(Mp, P € P) where

Mp7i7j:/f/iZjdX
P

for L; p = Loi1 and Liip = Egi, 1t =1,..n. K is constructed similarly to form the
stiffness matrix.

We then form the interpolatory spline sy for the source function f, and approx-
imate the right-hand side of the Poisson equation (f, L; p) by (sf, L; p). Where the
spline sy can be represented by the vector of coefficients cy, we compute the vector
(sf,L;p) = Mcy.

We can use the same interpolation scheme to interpolate the boundary-value func-
tion g by a spline s, with vector of coefficients c,. Denote by G the subvector of ¢,
which corresponds to coefficients of basis functions which are supported on the bound-

ary of {2 by G. Construct a matrix B such that Bc, = G, and enforce the condition
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that Bc = g, where c is the solution vector.
Our goal, then, is to solve Kc = Mcy subject to the constraints Bc = G and

Hc = 0. This is solved by the constrained minimization
1 g T
min §C Kc—cyMc; He=0, Bec=G.

An iterative approach to the above minimization is presented in [2]. Many numerical
solutions of Poisson equations retrieved using this method are given in the paper
[16]. We're now ready to go on to the original content presented in this chapter: an

extension of this method to numerically solve more general second-order PDEs.

2.2 A Novel polygonal spline method for numeri-

cal solution of PDEs

2.2.1 Motivation

In this section we’ll present an extension of the Floater-Lai method presented above

to solve more general second-order partial differential equations, namely

_ f. 2
L(u)=f;, x€QCR (2.2.1)

u=g; x € 06,

where £ is a partial differential operator with the following form:
2

] ] 9

1,j=1

with A;; € L>®(Q), B, € L*(Q), C € L*(Q), f is a function in L*(Q), and g €
L>(052). These results were published in a work which I co-authored with my advisor,

Ming-Jun Lai, in Approximation Theory XV: San Antonio 2016.
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When the matrix A = [A;;]1<i j<o is symmetric and positive definite over €, the
PDE in (2.2.1)) is said to be elliptic. A typical PDE of this type can be given by

defining the operator £ with the following weight functions: Let

All A12 - €e+x Ty (2 9 2)

Ag Ago Ty €+y

with € > 0, B = (By, By) = (0,0), and C = exp(—2? — y*). Then the corresponding
PDE is elliptic in the first quadrant. Given the conditions listed above for A;;, By, C, f,
and g, we know that this type of PDE has a unique solution. See Theorem [2.2.1]in a
later section.

There is a standard approach to use methods for solution of 2nd-order elliptic
PDE to study hyperbolic equations, transport equations, and mixed parabolic and

hyperbolic equations. Indeed, consider a singularly-perturbed elliptic PDE:

—eAu+(2-y*)Dyu+ (2—z)Dyu+ 1+ (1 +z)1+y)*u=f, (2,y) €Q, (2.2.3)

where 2 = (0,1) x (0, 1),with u|sq = g, where f and g are any appropriate functions.
When e = 0, this is a hyperbolic test problem considered in [5, I8, 19]. One can
numerically solve for € > 0 very small to approximate the solution of the
hyperbolic problem with € = 0.

For another example, the following is a singularly perturbed advection-diffusion
problem:

—eAu+Dyu+Dyu=f, (r,y) € Q=(0,1)x(0,1), (2.2.4)

with ulsn = g, where f and g are appropriate functions. This example was studied
in [19].

Yet another example: the following problem is parabolic for y > 0 and hyperbolic

12



for y < 0:

—eDyu+ Dyu+cu=0, (x,y) e (—1,1) x(0,1),

Dyu+cou=0, (x,y)e€(—1,1)x(—=1,0], (2.2.5)

with u|pg = ¢, for any constants ¢; > 0 and ¢ > 0. It was also studied in [19]. We

can use the following general elliptic PDE to study the above problem by considering

—UszU - EDyyu + Dzu + aQu = f17 (Ia y) € (_17 1) X (07 1)7

—nAu+ Dyu+ cou = fo, (z,y) € (—1,1) x (—1,0], (2.2.6)

with u|pg = ¢ and n > 0, where fi, fo and g are appropriate functions. We can
approximate the solution to (2.2.5)) by letting > 0 go to zero and use spline functions
which are not necessarily continuous at y = 0.

These examples demonstrate that there is usefulness in a numerically solving the

model problem ([2.2.1]).

2.2.2 Existence, uniqueness, and stability of solutions

We will review some sufficient conditions such that the elliptic PDE in admits
a unique weak solution with zero boundary condition; that is, g = 0 on 0€2. Of course,
it would be beneficial to find necessary conditions as well, but these can be hard to
pinpoint. In particular, it must be required that the associated homogeneous PDE,
where f = g = 0, has the unique solution u = 0; otherwise, when given a solution u*
of the PDE above, we would be able to build a distinct solution using u* + Ku for

any constant K.
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The weak formulation of this PDE is given by the following: for all v € H}(1),

Z/A”axz axjv—l—Z/ {Bka—xku]v—l—/QCuvz/ﬂfv (2.2.7)

i,7=1

We use the following norm and semi-norms on H'(Q) for convenience:

HU||2,Q = ||UHL2(Q)7 |U|1,2,Q = ||VU||L2(Q)

ulo2.0 = |ulg2(9), and ular12.0 = |u]geri (o).

Define by a(u,v) the bilinear form in the left-hand side of the equation in (2.2.7]).
To find the weak solution in H} (), we must show that a(u,v) is bounded above and
coercive in order to use the Lax-Milgram theorem. Recall that the PDE in is
said to be uniformly elliptic with ellipticity « if the coefficient matrix A is symmetric
and positive definite with smallest eigenvalue o > 0 over ). Then we have the

following theorem:

Theorem 2.2.1. Suppose that the second order PDE in 1s uniformly elliptic
with ellipticity o« > 0. Let 5 := ||B|loco < 00 and C > v > 0. Suppose that there

exists a positive constant ¢ such that

p B
— and vy > —. 2.2.8
a> - andy > - ( )
Then the PDE has a unique weak solution w in HY(S) satisfying the weak

formulation forv e H}(Q).

Many standard finite element method textbooks provide a proof of Theorem [2.2.1};
see, for example, [7] and [6].

When B is a function of y and By is a function of x, one can show that for all
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u € Ho(Q),

/31 iu udxdy:—/Bl iu u dxdy
0xq 04

using integration by parts and the zero boundary condition. Thus,
Jo Bi(guw)udedy = 0. Similarly, [, By(57-u)udrdy = 0. Hence, the terms involving

first order derivatives in a(u,u) are zero and

MMMZL;

Zaluli, o +7llulze

2

g 0
A,
Z Y o, 093] ot O

i,j=1

dxdy

which implies that a(u,u) is coercive. Thus, we have established the following:

Corollary 2.2.1. Suppose that the second order PDE in s uniformly elliptic
with ellipticity o > 0. Suppose that By is a function of y and Bs is a function of x.
If C >0, then the PDE has a unique weak solution u in H}(Q) satisfying the

weak formulation forv e Hy(Q).

By applying Theorem and Corollary [2.2.1, we can establish the following

result:

Corollary 2.2.2. Suppose that the second order PDE in is uniformly elliptic
with ellipticity o > 0. Suppose that By (x,y) = Bi(x,y) + B,(y) and Bsy(z,y) =
By(z,y) + By(x), where B,(y) is a function of y and B} is a function of x. Let
B = max{||Billse; | B2lls} < 00 and C > v > 0. Suppose that there exists a

positive constant ¢ such that

~

a > Qé and v > —ﬁ (2.2.9)
c

Then the PDE has a unique weak solution w in HY(Q) satisfying the weak
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formulation forv e Hy(Q).

In particular, when By = By, = 0, the PDE in has a unique weak solution
according to Theorem and Corollary 2.2.2] In fact, we can establish the exis-
tence, uniqueness and stability of the solution of without using Lax-Milgram
theorem. Indeed, in this case, it is easy to see that the weak form a(u,v) = (f,v) is

the Euler-Langrange equation of the following minimization:

in Jg(u), 2.2.10
A 7(u) ( )
ulon=g

1
where Jy(u) = §a(u, u) — (f,u). To approximate the exact solution v € H'(Q) with

ulaq = 0, we can instead find the minimum among u € H}(Q2). To numerically solve
the PDE, we can instead search for u in Sy := H}(Q) NSEE(P), where STL(P) is the
space of degree-d Floater-Lai polygonal splines which are defined over a polygonal
partition P of ) as explained in the previous section. In the following analysis, we
will consider the minimization for u € 9,.

Using a standard convex analysis, one can show

Theorem 2.2.2. Suppose that A is symmetric and positive definite. Suppose that
By =By, =0. IfC >~ >0, then J; is strongly convex with convezity coefficient
i which is independent of f; therefore J; has a unique minimizer uy. Hence, there

exists a unique weak solution uy satisfying .

Using another standard strong-convexity argument, one can further derive the
following result regarding the stability of the minimizer of J; with respect to the

source function f:

Theorem 2.2.3. Suppose that the PDE in satisfies the uniform ellipticity

conditions in the hypotheses of Theorem |2.2.1. For two functions f and g, denote
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the minimizer of Jg by uy and the minimizer of Jy by ug. Then |lup — ugl|r2@) <

w = gl

2.2.3 Convergence of polygonal spline solutions

Finally we discuss convergence of the numerical solutions. The discussion is divided
into two parts. The first part shows the approximation power of S¥Z(P). The second
part is to apply the approximation property to establish the convergence of polygonal

splines to the weak solution.

Approximation power of interpolatory polygonal splines

Proving the approximation power of this space is more complicated than in the cases
of finite elements and splines over triangulations due to difficulties in bounding the
gradients of the Wachspress coordinates. Fortunately, it has been shown in [I5] and

[13] that

- 4
sup > [V (%)l < -~ (2.2.11)
xeP J=1 *
where h* is the shortest perpendicular distance from any vertex of a convex polygon

P € P to a non-incident edge of P. To control this quantity, we’ll have to assume

that P satisfies
0<OZ1<9P7Z'<CY2<7T, 221,,H(P),VPEP (2212)

for two given positive constants o and ap, where 0p; is the interior angle of P at its
ith vertex, and n(P) stands for the number of sides of P.

We shall assume that there exists a positive integer ny such that n(P) < ng for
all P € P. For each P € P, let |P| be the diameter of P (that is, the diameter of the
smallest circle containing P) and pp be the radius of the largest circle contained in

P. We denote by kp = % the shape parameter, also known as the chunkiness, of P
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(see [20] and [7]). We define |P| := max | P|; this is in contrast to the usual use of this
€

notation to mean the longest edge in the partition P. Where e(P) is the length of

the shortest edge of P, let e¢(P) = mine(P). Finally, we will assume that the global

pPcp

shape parameter vp satisfies

Yp e( ) < o0 ( 3)

for a given v > 0.

As SI'E(P) is a space of continuous functions over €2, we can not simply apply the
Bramble-Hilbert lemma to establish the approximation property of Sy(P). Instead,
we follow the ideas in [20]. For simplicity, let us focus ourselves to the case d = 2;
the case d > 3 can be done similarly.

First we prove the following lemma:

Lemma 2.2.1. Let P be a convexr n-gon in P. Let L; be one of the Floater-Lai

interpolatory basis functions which s supported on P. Then
||Lj||2,P S Cn,ag,'y|P| (2214)

and

1Ljli2,p < Crarasny (2.2.15)
for two positive constants C’nm,7 and Cn,al,az,’Y'
Proof. Since the functions L; are built from linear combinations of the functions Fj,

and Fj; given in (2.1.3)), we have for some constant C),, which depends only on n

||L;

2.p < Cp max {[|Fillo.p, || Frallzp}-
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Thus we really need to bound ||F||2.p and ||F}1||2,p. By the definition of Fy,

[ Fll2,p < [|@idio

2,2 < || Xiolloo,Pl| @il l2,p < | P Nio

|oo,P

To estimate ||Aio||co,p, let hy; be the perpendicular distance from v; to the line
connecting v; 1 to v;11, and denote by m; the point on this line which is a distance
h, ; from v;. Then since A, is a linear function, we have ||V ;|2 = hl’li.

Let |e;_1| be the length of the edge between v;_; and v;, and similarly define
le;]. Without loss of generality, suppose that |e;] < |e;_1|. If we draw the triangle
T = (03, Vg1, m;) (see Figure 2.2), we can see that by ; = |e;| cos(n), where 7 is the
interior angle of 7 at v;. Since |e;] < |e;_1|, we have that n < %Hpﬂ-. By ,

1
0< 59]3’1‘ < %, SO

cos(n) > cos (95) - \/%S(HP) > \/H%S(O‘Z) — C,, (2.2.16)

for a constant C,, which depends on as.

Vitl
v; leil

Figure 2.2: An illustration to clarify the geometry used to show (2.2.16))
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Therefore we have that
hy; > Cy,leil > Coye(P). (2.2.17)

Now [|Aiol|so,p Will be achieved by A;o at the point in P which has the largest
perpendicular distance from the line connecting v;_; and v;,1, which is of course a
distance at most | P| from this line. Since ;¢ is linear, we have that

Pl _ |7

H ,OH P hJ_,i Ca2€<P)

< Coyy- (2.2.18)

Therefore we have ||F||2,p < Cn(py,as4|P|- A similar argument shows that

2P|

K < —
1Fiallor < & i

S O’n,QQ,'Y’P’?

which completes the proof of (2.2.14)).
To prove (2.2.15]), we will follow a similar strategy. As

-----

we need to bound |Fj|i2p and |Fg|12p. We compute the following using (2.2.11))
and ([2.2.17)):

| F%l3 0. p = /()\i,ODbei + ¢ Dy Nio)? + (NioDydi + ¢:Dyio)? dz dy
P

< 25y [V 3 [ X2y do dy+ 25up [ VAo [ o i dy
P xX€E P

xeP

< 250 VoGOl (ol e ) PP + -1 PP

,T

2 (1PL)? | pp2 Pl
< Cuysup [V x)[ (#22) 1P + Cury (#2)

16|P|? P 2 P 2 P 2 16|P|?
< Cogp) 9 (%) + Cn(p) (%) = Cn(P)az (%) (14 2925).

Now we will show that h, is comparable to e(P). In particular, since P is convex,
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h. ought to be realized by a line drawn from a vertex of P, say vy, to an edge to an

edge which is a graph-distance of 2 from v, say the edge between v, and v 9. If

we draw in this line (see Figure , a right triangle is formed which shows that
(2.2.19)

hi = sin O41|ex| > min{sin oy, sin as fe(P).
X

T V42

/
/
/
/
/
/
/

/

{

Or+1 /
exl b
— *\Jg” - , Vi+1

Figure 2.3: An illustration of the geometry used to show (|2.2.19)

(2.2.20)

Therefore we can say

=y
I
2
=
[N}

sup ||V (x)[]; <

xeP

Combining ([2.2.20)) and our above analysis shows that
P 2 P 2
25 (1 4 16C0, 0, 757)

\
e(P)?

P P
(1 + 275) Canaan-

|Fxlfop < Cup
e(P)

= [Filigr < Cojon
Il

A similar argument will show that |Fj 1]12.p < Ca, 0., S0 we have that |L;|1 2 p <

Ch,o1,00 as desired in (2.2.15)).
Our main

We are nearly ready to establish the approximation power of Sy(P)
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result is the following theorem:

Theorem 2.2.4. Suppose that P satisfies four assumptions: yp <, 0 < oy < 0p; <
g < 7, kp < k < 0o and n(P) < ng. Then for any u € H(Q), there exists a

polygonal spline Q(u) € Sy(P) such that

u— U)|12,9 > Ung,ar,00,6,7 U|d+1,2,0Q <4
lu = Q(u)[l20 < C. [P ul (2.2.21)

and

lu — Q(U”LZQ < Cno,a1,0c2,n,v|P|d|uld+1,279 (2.2.22)

for constant C(ng, oy, g, K,7y) which is independent of u, but may be dependent the

Lipschitz constant of the boundary of 2 if Q is nonconvexz.

We will require bit more discussion, along with another lemma, to prove this
theorem. For convenience, we focus on the case d = 2. We will construct a quasi-
interpolatory spline Q(u) € SYL(P).

We first extend any u € H?*(Q) to a function in H3(R?) with the property
|| g3m2)y < El|u gy with a positive constant £ dependent only on the Lipschitz
constant of the boundary of 2 (cf. [28] Chapter 6§3) and call it u again for conve-
nience.

For each vertex v, let €2, be the collection of all polygons in P sharing the vertex
v. Let B, be largest disk contained in €2, if v is an interior vertex. If v is a boundary
vertex, we let B, be the largest disk contained in the convex hull of Q,. Let F,(u) be
the averaged Taylor polynomial of degree 2 associated with u based in the disk B,
(cf. [20]). Define by

co(u) = Fy(u)ly. (2.2.23)

Let T, € €, be a triangle with vertex v. We simply use the polynomial property

[pllos,r < = |Ipll2r for any triangle T along with the property that || F,(u)ll20, <
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Ki||lull2,0, (cf. [20]) to have

1 K,
[co(@)] < 1Fo (W) loor, < —m=1Fu(w)ll2z, <

[[ul2,0
Ar, Az, °

(2.2.24)

for a constant K, independent of u and T,,.
The triangle T, is contained within some polygon € P, and in particular two of its
edges are edges of P; say e; and es. Then A, = |e1||ea]sin(f) where 6 is the interior

angle of P at the vertex joining e; and e;. Then
Ar, > e(P)?*sin(0) = \/Ar, > Ky e(P) > K e(P)

for a constant Ky depending only on «; and as, so we have

K\ K.
ev(w)] < Ty lulea (2.2.25)

Similarly, for edges e € P, let 2. be the union of the two polygons sharing e in P if e
is an interior edge. Let B, be a largest disk contained in €2.. If e is a boundary edge,
we can choose a disk B, contained in the polygon with edge e. Then we let F,(u) be
the averaged Taylor polynomial of degree d based on B.. Choose ¢, to be the value
at F,.(u) evaluated at the midpoint w, of e. Choose a good triangle T, containing w..
Then c.(u) will satisfy a similar property in . Our quasi-interpolatory spline
is defined by

Qu) = Z co(u)Ly + Z Ce(u)Le. (2.2.26)

vEP ecP

Let us show that Q(u) is a bounded operator on L?*(€2). That is,

Lemma 2.2.2. For any u € L*(Q), we have

Q)20 < Kslull20 (2.2.27)
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for a positive constant K3 independent of u, depending only on ng, aq, s, 7y, and the
Lipschitz constant of the boundary of 2. In addition, for nonnegative integers «, 3
with a + 5 =1,

Ky

102D Q)0 < 5

(2.2.28)

for another positive constant K4 independent of u, depending only on the same quan-

tities as Ks3.

Proof. For each polygon P € P, denote by (2p the union of polygons which share an
edge or a vertex of P. Note that L,|p is just L; for some j and so is L¢|p. Then, we

use Lemma 2.2.1] to have

1/2
1Q(u ||2p—[/|zcv Y e L|da:dy]

veP ecP

<l ([ |L|dxdy)1 £ Jeclw (/P|Le|2dxdy)l/2

veP ecP

KK KK,
< [ L, L.
>~ ’U&Z]:D 6(7)) ||U||27QU|| ||2,P+e€ZP—€(P) HUHZQeH ||27P

1P|
< Cn(P),aLaQ,’YTz]D) | |U| |27QP

P
< Cn07al,a2,’yﬁ“u"2,ﬂp < Cno,aham’yHuH?,QP (2'2'29)

for a constant Ch, a, .., Hence,

HQ Z HQ HQ,P = no,al,ag,'y Z ||UH2 Qp
PeP pPePpP
< CZO,al,ag,’y = Cso,al,ag,'y“ H%,SD (2230)

PeP

< Chgon 2_pep ||ull3 p for a positive
constant C, o, since each polygon ¢ € P, ¢ € Qp for at most ng2mw/a; polygons

PeP.
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Similarly, for nonnegative integers o and [ such that o + § = 1, we have

1/2
1020700 ar = | [ 1 02031, + e DED}L i

veP ecP
1/2
SWAC AL |2) + Y latwl ([ 10208 s ay)
veEP e€P P
KK, KK,
<> — = lull2a, — = |lullz.a.
U; e(P) ~ ¢(P)
|ull2,0
< C’n a1, : P‘
— 0,081,002, 6(73)

Hence, we have

IDIDIQW)3.0 =D IDSDIQu)I3 p

PeP
2
< 07210 Y2,y Z ||U||2 QP - Cn()’al’o;ﬁHU”gQ. (2231)
PcP ) e(P) ’
By taking the square root of both sides, we finish the proof of ([2.2.2§]). O

Now we are ready to prove the main result:

Proof (of Theorem M) For simplicity, let us consider the approximation in L?((2)

first. It is easy to see

Ju = Q) = 3 Il = Q)

<2 PZP lu = Fra(u)llf2p) + 1 Fp2(u) = Qu)ll7:p)
S

(2.2.32)

where Fpo(u) is the averaged Taylor polynomial of degree 2 associated with u based

on the largest disk Bp inside P. We know from [20] that

[t = Fpa(w)lla.p < Cop | PPlulszp. (2.2.33)
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For v € P, F,(Fpa(u)) = Fpa(u) and for e € P, F.(Fpa(u)) = Fpa(u). We have
Q(Fpa2(u)) = Fpa(u) and hence, by Lemma [2.2.2]

1Ep2(u) = Qu)l2p = [|Q(Fpa(u) = u)ll2p

< Kslju — Fpa(u) o, < K3Cw, |p)?|ul32.0,-

Combining this with (2.2.32) and (2.2.33)), we have the following:

lu— Q)50 <2 llu— Fpa(w)[3 5 + [ Fra(u) — Q)3 p
Pep

<D Cr Pl lulisp + K°CF 120 lul} 50,
PecP

< K3(1+CR) Y 1Qp[ uli o0 < KE(L+ C)IPLlul3 0,
pep

where we have noted that the number of polygons containing each vertex is bounded
by 27 /aq, and hence the number of polygons P € P such that P C Qp is bounded

by no2m/ay, and that [Qp| < 3|P|. Therefore

[l = Q(u)l|2.0 < CilPP[uls 0.

Now we consider |u — Q(u)|120. Recall that the averaged Taylor polynomial

has the property that DYD?Fpy(u) = Fpa_a—ps(D2D5u), so we use Lemma [2.2.2]
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particularly (2.2.28)), to have

u= Q)i a0 =Y IIDID)(u— Q)0

a+p=1
= > > IDED)(u—Qu))ll3,p
PeP a+p=1

< 23 > IDeD)u— Fea(DiDJu)ll3 p+ || Dg Dy (Fpa(u) = Q)3 p

PeP a+p=1

a a 2 Kéf 2
= 2) Y IDiDJu— Fpy(DiDyu)ll3 p+ — s | Fpa(u) — ul3,
e(P)
PeP a+p=1 )
N K

< 2) ) CulPlIDIDJul3s0, + 6(—7;)2@1:!13!6\“!3,91,

PeP a+p=1

which completes the proof of ([2.2.22]). O]

Convergence of polygonal splines to weak solutions

We are now ready to prove the convergence of polygonal splines toward the weak

solution of (2.2.1)).

Theorem 2.2.5. Suppose that the PDE in satisfies the assumptions in The-

orem and P satisfies and . Suppose that the weak solution u
of the PDE in M is in H¥Y(Q). Let ug € Sy be the weak solution satisfying

a(ug,v) = (f,v) for allv € S,. Then
lu — us|2.0 < Kl|ulgr1.2.0|P (2.2.34)

where here, we denote by |P| is the length of the longest edge in P, and K is a posi-
tive constant depending on [, ||C|ls., |2, i, 70, 01, a2, 5,7y, the smallest and largest

eigenvalues of A, and the Lipschitz constant of the boundary of €).

Proof. We must prove some preliminary results in order to prove the results in this
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Theorem. First, notice that in the proof of Theorem [2.2.1] we actually have

a(v,0) = plof? 5, (2.2.35)

B

where y = o — % for ¢ > 0 such that v — % > 0. In addition, we can show that
c

a(u,v) is bounded. Indeed,

ou Ov 2 ou
B_
/z Sarn 2 Bt ow

AIVull2|[Voll 2 + Bl Va2 |v] 2 + [|Cllcollul| 2] 0]] 22

IN

IN

My ([[Vull2[[Voll 2 + [[Vul|2[[o] |2 + [[ul] 2 [v]] 22)

IN

M (Jul12.0]v)12.0 + |uli20(Ki|v)120) + (Kiuli20) (K |v|i2.0))
3max{ M, M1 K1, M1 K} } ul|12.0|v]120

IN

where A > 0 is the largest eigenvalue of [A;j]1<; j<2, M1 = max{A, 3, |C||wa}, and
K is the constant given by Poincaré’s inequality, which depends only on |Q2|. That
is,

a(u,v) < Mluly20v|i20- (2.2.36)

for another positive constant M. By definition of weak solution, we know that for all
v € H} (), a(u,v) = (f,v), and for all v € Sy, a(ug,v) = (f,v). Since Sy C Hy(Q),

we can say that for all v € Sy,

a(u —ug,v) =0, YveS,. (2.2.37)
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Now, define upes := arg nelgn |u — s|12.0. Then we have
SESq

tbest — usi o0 < a(Upest — Us, Upest — Us)

= a(Upest — U, Upest — Ug)

< M |upest — ul12.0 |[Ubest — Us|12.0
= pltpest — uslio0 < M|upest — ul12.0
plu—usligo < plu — Upest|r,2,0 + ptUpest — us|i 2,0
< plu = upest|1,2,0 + Mupesr — uli20
= lu — ugli20 < M_;M|U_Ubest|1,2,§2
< e MCno,a1,o¢2,mv‘u|d+1,2,9’P|d'
This completes the proof. n

We next show convergence in the L? norm. When (Q is a convex domain, the
convergence rate ||t — Upest||1,() should be optimal based on a generalization of the

well-known Aubin-Nitsche technique (see [I0]) for Poisson equation. That is, we have

Theorem 2.2.6. Suppose that the conditions of Theorem |2.2.5 are satisfied, and

further suppose that the underlying Lipschitz domain ) is convex. Let ug be the weak

solution of . Then ford > 1,
[u = sl o) < CIPI™ ulari 2.0 (2.2.38)

for a constant C' depending on the same quantities as the constant K from Theorem

2.2.4

Proof. For u — ug € Ly()), we can find the weak solution w € H}(Q) satisfying

a(v,w) = (u—ug,v), Y& Hy(Q). (2.2.39)

29



Indeed, let a(u,v) = a(v,u) be a new bilinear form. By using the same proof of
Theorem [2.2.1] we can show a(u,v) is a bounded bilinear form and a(u, u) is coercive
since a(u,u) = a(u,u). By the Lax-Milgram theorem, there exists a weak solution
w satisfying (2.2.39). It is known that w € H?(Q2) when 2 is convex (cf. [I7]) and
satisfies w220 < Cl|lu—ugl|2() for a positive constant C' > 0 independent of u and
Ug.

Thus, we use ([2.2.36)) and (2.2.37]) with an appropriate v € Sy,

||u — us|]%2(9) = (u—ug,u—us) = a(u —ug,w)
=alu—ug,w—v) < Mlu—ug|i20 |w—"2120
< MK|P|d|U’d+1,2,90no,a1,a2,mv|7D||w|2,2,9

< C|P|™ M ulgsr 2.0l — usl| o),

where the constant K is the one in the statement of Theorem [2.2.5] and M is the
one from the proof of the same Theorem; therefore the final constant C' has the same
dependence as K from Theorem [2.2.5

It now follows that
lu = us]| Loy < CIPI™ ulag120

for another positive constant C' with the same dependence. This completes the proof.

]

2.2.4 Description of our numerical method

In this section we explain our implementation to numerically solve general second-
order elliptic PDEs.

Our goal will be to solve for a vector of coefficients u. We can begin in the same

30



place as in [16], first constructing a matrix H to determine continuity conditions by
Hu = 0. We can similarly represent our boundary conditions by a linear system
Bu =G.

An important difference arises from here: we will need to form a different ”stiff-
ness” matrix than in the simpler Poisson case. In particular, in R”, using degree
d polygonal splines, the new left-hand side of the weak form of the problem can be

simplified to the following:

Ov OL
Z Zuk Z/ 1]8;] 81‘; /chk

PreP k=1 1,j= 1P

n

dn
where we have expressed u ~ ug = > uxLy, for some coefficients uy, where Lj, is an
k=1

ordering of the interpolatory basis of S¥'*(P) (Which when restricted to an n-gon P,,

is simply Wy(F,)). Similarly write f ~ sy = Z frLy and notice that the right-hand
k=t

side of the weak form will be equal to Y Z fx [ vLy, for any v € SFE(P)N HY ().
P.ePk=1 P,

Hence, it must be true for v = L,, for m = 1,2, ...,dn. We can thus construct the

following matrices:

M = [Mp,)p,ep, where Mp, = (Mp, po)" ., and Mp, ,, = / L,L,

pg=1"
P
D ..
K =[Kp,]p,ep, where Kp, = > ’C% and
i,j=1
Ky = (’CPi,,p,q)p, _ where ICP i /AZ] o ax] :

Pr

Mp = (Mp, pq) where Mp, ,,, = /C’Lqu :

Py

p,q=1

K =[Kp)per + Mplper; u=(uw)o; £=(f)l;

where the integrals are numerically computed by first decomposing each polygon into
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quadrilaterals, and then using the tensor product of the Gauss quadrature formula
of high order, say order 5 x 5, on each quadrilateral, with some modified weights
determined by the inverse of a rational bilinear map of the quadrilateral to the unit
square (see [14]). This type of quadrature was used in [I6] to compute the integrals
associated with numerically solving Poisson equations using polygonal splines.

Then notice that we can rewrite our weak formulation as
Ku = MTt.
Our minimization in (2.2.10)) can be recast in terms of polygonal splines as

m&n 1uTKu — " Mu
Hu=0,Bu=g
which is a constrained minimization problem which can be solved using the itera-
tive method described in [2]. We have implemented the computational scheme in
MATLAB and experimented with many second order elliptic PDEs. Some numerical
results will be shown in the next section. Some of these results also involve first
derivatives; these are implemented as another stiffness matrix added to K: first we

define
2
Tp. = T,
k=1

oL

P and T g = / B’“Lpa_xZ’ where B, is the appropriate
Py

p,q=1

where jﬁn - (jl"@cn,pvq)
coefficient function. Then we instead use K = [Kp,|p,.ep + [Tp.]p.er + [Mp,]p,ep-
It is worth mentioning that other finite element methods accommodate continuity
conditions directly rather than solving a linear system, which saves computational
power and time. However, our approach is designed conveniently to implement more

complex continuity conditions; see Example [2.2.6]
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2.2.5 Numerical results of our method on elliptic PDEs

In all the following examples, we denote by ug the spline solution, and by u the exact

solution. To approximate the L? error, we report the root mean squared (RMS)

error Erys = ||u — us||rus of the spline solution based on 1001 x 1001 equally-
spaced points over €. Since V(u — ug) = <%(u — Uug), %(u - us)>, we report the

RMS error VEgys = ||V(u — ug)||rms, which is the average of the RMS error of
%(u — ug) and (%(u — ug). We also report the mesh size (that is, the longest edge
length) of the partition at each iteration, and the computed rate of convergence in
reference to the mesh size - in light of Theorems and [2.2.6] we expect the rates
to be 4 for degree 3 in the L? norm, 3 for degree 2 in the L? norm and degree 3 in

the H' norm, and 2 for degree 2 in the H! norm.

Let us begin with numerical solutions of some standard second-order elliptic PDEs.

Example 2.2.1. We return to example (2.2.2]) on the unit square 2 = (0,1) x (0, 1)
to demonstrate convergence of the method. We’ll set e = 107 and choose f and g so

that
(1 + x)?

1 sin(2mwzy) (2.2.40)

u(r,y) =

is the exact solution. We use the polygonal partition shown in Figure [2.4]

We employ our polygonal spline method to solve with exact solution in
. Our numerical results are shown below in Tables and

The numerical results in Tables and show that the polygonal spline method
works very well. We compare with the solution retrieved using degree-2 and degree-
3 bivariate splines over a triangulation of the same domain. We chose a grid-based

initial triangulation with close to the same number of elements as our initial polygonal

partition; see these results in Tables and [2.4]
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Figure 2.4: A partition of the unit square and a few refinements

Table 2.1: Degree-2 Polygonal spline ap- Table 2.2: Degree-3 Polygonal spline ap-
proximation of solution to Example proximation of solution to Example

with exact solution in ([2.2.40)) with exact solution in ([2.2.40))
# P| mesh Erygl|rate|V ERyg|rate # P| mesh Erygl|rate|V ERyg|rate
39|2.50e-01|5.47e-03|0.00|1.34e-01/0.00 39|2.50e-01(9.01e-04/0.00|1.61e-02|0.00
219|1.25e-01|4.16e-04|3.72|2.60e-02|2.36 219|1.25e-01|2.74e-05|5.04|1.41e-03|3.52

1251(6.25e-02|3.68e-05|3.50(5.17e-03|2.33 1251(6.25e-02|1.25e-06|4.45|1.31e-04|3.43
7251|3.13e-02|3.29e-06{3.48|1.03e-03(2.33 725113.13e-02]6.92e-08|4.18|1.22e-05|3.43

Table 2.3: Degree-2 Bivariate spline ap- Table 2.4: Degree-3 Bivariate spline ap-
proximation of solution to (2.2.1)) with ex- proximation of solution to (2.2.1)) with ex-

act solution in act solution in
# T| mesh Erus|rate|VERyg|rate # T| mesh Eryg|rate [VERys|rate
40(3.54e-0116.94e-03]0.00|2.09e-01{0.00 4013.54e-01{7.16e-04| 0.00 |3.15e-02|0.00
160|1.77e-01|8.29e-04|3.06|5.38¢e-02|1.96 160]1.77e-01|4.43e-05| 4.01 |3.96e-03|2.99
640(8.84¢-02|1.00e-04|3.05|1.34¢-02|2.00 640(8.84¢-02|5.33¢-06| 3.06 [4.96e-04|3.00
2560(4.42e-02|1.22e-05|3.03(3.32e-03|2.01 2560(4.42e-02|5.52e-06{-0.05|7.22e-05(2.78

34



From Tables 2.1, 2.2] 2.3] and [2.4] we can see that polygonal splines can pro-

duce a more accurate solution on polygonal partitions containing a similar number of
polygons as a triangulation of the same domain.

It is worth noting the difference in degrees of freedom in this example. In par-
ticular, the polygonal splines have significantly more degrees of freedom than each
iteration of triangular spline. However, this doesn’t seem representative in general,
and is simply an artifact of the convenient triangulation we chose for our numerical
trials. For example, one could imagine retrieving a triangulation from a polygonal
partition by adding some diagonals to triangulate each polygon; however, this would
substantially increase the number of degrees of freedom in this case. Regardless, there
is no doubt that our polygonal spline methods are more numerically taxing than tra-
ditional bivariate spline methods. At each iteration we have the following numbers

of degrees of freedom:

Table 2.5: Polygonal splines’ Table 2.6: Bivariate splines’
degrees of freedom degrees of freedom
# P[DoF (d = 2)[DoF (d = 3) % T[DoF (d = 2)[DoF (d = 3)
39 179 313 40 97 205
219 886 1657 160 353 769
1251 4958 9313 640 1345 2977
7251 28654 53857 2560 5249 11713

As we’ll use the same partitions for each example in this paper, the reader can

refer back to these tables.

Example 2.2.2. Here is another example of an elliptic second order PDE: let

A11 Alg 1 + € 1
A21 A22 1 1+4+€

35



for some € > 0, and let C' = 1, and solve the PDE given by

2
0 (ij%>+%+%+0u: fin Q;
Or;)  Oxy  Oxg (2.2.41)

u = ¢ on 0S.

ig=1 0%;

To test our method, we choose f and ¢ so that
uw=(1+2%+9%)"" (2.2.42)

is the exact solution.

According to Corollary 2.2.1], this elliptic PDE has a unique weak solution. In fact,
we can even use € = 0, which makes this PDE non-elliptic, and still produce good
solutions. We use the same partition as in Example to solve this PDE. Tables

and [2.8 show the results of our minimization, using the non-elliptic condition € = 0:

Table 2.7: Degree-2 Polygonal spline ap- Table 2.8: Degree-3 Polygonal spline ap-
proximation of solution to Example proximation of solution to Example

with exact solution ([2.2.42) with exact solution ([2.2.42)
# P| mesh Erus|rate|VERyg|rate # P| mesh Erygl|rate|V ERyrs|rate
39]2.50e-01{1.30e-04|0.00|3.82e-03|0.00 39|2.50e-01|7.64e-06|0.00|2.41e-04|0.00
219|1.25e-01|1.08e-05|3.59|7.47e-04|2.35 219|1.25e-01|3.70e-07|4.37|2.41e-05|3.32

1251(6.25e-02{1.09e-06|3.30|1.54e-04|2.28 1251(6.25e-02{1.99e-08|4.21|2.36e-06|3.35
7251(3.13e-02|1.57e-07|2.80|3.40e-05|2.18 7251(3.13e-02|1.25e-09|4.00|2.41e-07|3.29

Similarly, the minimization ([2.2.10]) with first-order derivatives based on bivariate
splines can also produce good numerical results. For comparison, Tables and
tabulate the results of the same computation using bivariate splines of degree 2 and

degree 3 over grid-based right triangulations of the same domain.
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Table 2.9: Degree-2 Bivariate spline ap- Table 2.10: Degree-3 Bivariate spline ap-
proximation of solution to Example proximation of solution to Example [2.2.2

with exact solution in with exact solution in
# T| mesh Erus|rate|VERyg|rate # T| mesh Eryglrate|VERyrs|rate
40|3.54e-01]4.80e-04/0.00|1.14e-02{0.00 40|3.54e-01|2.43e-05|0.00]9.87e-04|0.00
160|1.77e-01{5.23e-05(3.20|2.70e-03|2.07 160|1.77e-01{1.81e-06|3.75|1.44e-04|2.77
640(8.84e-02(6.21e-06(3.07|7.14e-04]1.92 640(8.84e-02(1.29e-07(3.81|2.01e-05|2.84
2560(4.42e-02(8.53e-07(2.86|2.29¢-04(1.64 2560(4.42¢-02]9.69e-09(3.74|2.97e-06(2.76

2.2.6 Numerical results of our method on parabolic and

hyperbolic PDEs

Example 2.2.3. We return again to example (2.2.2)) on the unit square 2 = (0, 1) x
(0,1), but this time with € = 0. We’ll choose f and g so that

(1+ x)?

1 sin(2mzy) (2.2.43)

u(x,y) =

is the exact solution. Notice that, in this case, the PDE is not elliptic. However, our

method still approximates the true solution quite well. We’ll show the convergence of

our approximations for decreasing values of ¢; see Tables [2.11] [2.12] [2.13] [2.14] [2.15]
and 2.16l

For comparison, we’ll also show the results of the same PDE using bivariate splines

over a triangulation of the same domain instead; see Tables|2.17] [2.18] [2.19] [2.20} [2.21],

and [2.22] These numerical results show that the polygonal spline method is efficient

in approximating the solutions of non-elliptic PDEs.
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Table 2.11: Degree-2 Polygonal spline ap-
proximation of solution to Example

with exact solution in (2.2.43]) and ¢ =
1073

Table 2.12: Degree-3 Polygonal spline ap-
proximation of solution to Example

with exact solution in (2.2.43]) and ¢ =
1073

# P| mesh Eryg|rate [VERys|rate # P| mesh Frus|rate [VERys| rate

39|2.50e-01{5.27e-03| 0.00 |1.33e-01{0.00 39|2.50e-01{1.39e-03| 0.00 |1.71e-02| 0.00
219(1.25e-01|6.41e-04| 3.04 |2.61e-02|2.35 219(1.25e-01|5.71e-04| 1.29 |3.70e-03| 2.21
1251]6.25e-02|5.54e-04|0.21 |6.14e-03|2.09 1251(6.25e-02|5.56e-04| 0.04 |3.55e-03| 0.06
7251(3.13e-02|5.56e-04|-0.00{3.71e-03|0.73 7251|3.13e-02|5.56e-04|-0.00|3.65e-03|-0.04

Table 2.13: Degree-2 Polygonal spline ap-
proximation of solution to Example [2.2.3

with exact solution in (2.2.43) and € =
107°

Table 2.14: Degree-3 Polygonal spline ap-
proximation of solution to Example [2.2.3

with exact solution in (2.2.43) and € =
107°

# P| mesh Eryglrate|V ERyrs|rate # P| mesh Egryglrate|V ERyrs|rate
39(2.50e-01(5.47e-03|0.00|1.34e-01|0.00 39(2.50e-01]9.06e-04|0.00|1.61e-02|0.00
219|1.25e-01|4.15e-04|3.72|2.60e-02|2.36 219|1.25e-01|3.11e-05|4.86|1.41e-03|3.52
1251(6.25e-02{3.69e-05(3.49(5.17e-03|2.33 1251(6.25e-02|6.10e-06|2.35(1.37e-04(3.37
7251|3.13e-02(6.45e-06(2.52|1.03e-03|2.33 7251|3.13e-02(5.62e-06{0.12{4.29e-05(1.67

Table 2.15: Degree-2 Polygonal spline ap-
proximation of solution to Example
with exact solution in ([2.2.43]) and €
10—10

Table 2.16: Degree-3 Polygonal spline ap-
proximation of solution to Example
with exact solution in ([2.2.43]) and €
10—10

# P| mesh Erygl|rate|V ERyg|rate # P| mesh Erygl|rate|V ERyg|rate
39/2.50e-01{5.47e-03]0.00{1.34e-01{0.00 39/2.50e-01{9.01e-04/0.00{1.61e-02{0.00
219(1.25e-01|4.16e-04|3.72(2.60e-02|2.36 219(1.25e-01|2.74e-05|5.04(1.41e-03|3.52
1251(6.25e-02|3.68e-05|3.50(5.17e-03|2.33 1251(6.25e-02|1.25e-06|4.45(1.31e-04|3.43
7251|3.13e-02|3.29e-06(3.48(1.03e-03(2.33 7251|3.13e-02|6.92e-08(4.18|1.22e-05(3.43

Table 2.17: Degree-2 Bivariate spline ap-
proximation of solution to Example [2.2.3
with exact solution in ([2.2.43]) and €
1073

Table 2.18: Degree-3 Bivariate spline ap-
proximation of solution to Example [2.2.3
with exact solution in ([2.2.43]) and €
1073

# T| mesh Erus|rate|VERyg|rate # T| mesh Eryg|rate [VERys| rate
40(3.54e-01]6.91e-03{0.00|2.09e-01|0.00 40(3.54e-01|7.40e-04| 0.00 {3.14e-02| 0.00
160{1.77e-01]9.63e-04|2.84(5.38e-02|1.96 160(1.77e-01(5.37e-04| 0.46 [4.99¢e-03| 2.66
640|8.84e-02|5.55e-04|0.80(1.37e-02(1.97 640|8.84e-02|5.52e-04|-0.04|3.36e-03| 0.57
2560(4.42e-02|5.53e-04|0.00|4.68e-03|1.55 2560(4.42e-02]5.55e-04|-0.01{3.60e-03|-0.10
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Table 2.19: Degree-2 Bivariate spline ap- Table 2.20: Degree-3 Bivariate spline ap-
proximation of solution to Example proximation of solution to Example

with exact solution in (2.2.43) and ¢ = with exact solution in ([2.2.43]) and ¢ =
107° 107°
# T| mesh Erygl|rate|V ERyg|rate # T| mesh Eryg|rate [VERyg|rate
40(3.54e-01]6.94e-03|0.00|2.09e-01|0.00 40(3.54e-01|7.16e-04| 0.00 |3.15e-02{0.00
160(1.77e-01{8.29e-04|3.06|5.38e-02{1.96 160(1.77e-01{4.43e-05| 4.01 [3.96e-03]2.99
640|8.84e-02|1.00e-04|3.05|1.34e-02|2.00 640|8.84e-02|5.33e-06| 3.06 |4.96e-04|3.00
2560(4.42e-02|1.32e-05|2.92(3.32e-03|2.01 2560(4.42e-02|5.52e-06|-0.05|7.22e-05(2.78

Table 2.21: Degree-2 Bivariate spline ap- Table 2.22: Degree-3 Bivariate spline ap-
proximation of solution to Example [2.2.3] proximation of solution to Example [2.2.3

with exact solution in (2.2.43) and ¢ = with exact solution in (2.2.43) and ¢ =

10710 10710
# T| mesh Eryglrate|VERys|rate # T| mesh Egryglrate|V ERys|rate
40(3.54e-01{6.94e-03]0.00{2.09e-01/0.00 40(3.54e-01|7.18e-04]0.00{3.15e-02/0.00
160(1.77e-01{8.29e-04|3.06(5.38e-02|1.96 160(1.77e-01{4.59¢e-05(3.97|3.96e-03|2.99
640(8.84e-02{1.00e-04(3.05(1.34e-02|2.00 640|8.84e-02|2.93e-06|3.97(4.95e-04|3.00
2560(4.42¢e-02|1.22e-05|3.03(3.32¢-03(2.01 2560(4.42¢e-02]1.85e-07(3.98|6.19e-05|3.00
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Example 2.2.4. Let

All A12

Ay Ay 0

and C' = 0. Choose f and ¢ so that

u=u2x(l—2)y(l—y) (2.2.44)

is the exact solution. This was studied in [23]. As in Example [2.2.3] this is a “nearly-
elliptic’” PDE, but with some degeneracy at the origin. We shall use a different
partition of the unit square this time, simply using a uniform grid of squares, as was

the case in the original paper [23]. The Weak Galerkin method presented in this

paper retrieved the following results:

Table 2.23: Weak Galerkin approximation of solution to Example

# Poly’s | mesh | ||lu—uwg||r2 | rate | ||Vu — Vuwe|| g rate
64 | 1.25e-01 1.46e-03 | 0.00 2.52e-02 0.00
256 | 6.25e-02 3.74e-04 | 1.96 1.23e-02 | 9.98e-01
1024 | 3.13e-02 9.47e-05 | 1.98 6.31e-03 | 9.98e-01
4096 | 1.56e-02 2.39e-05 | 1.99 3.16e-03 | 9.98e-01

We use our method with polygonal splines to solve the PDE above and find that

our method can produce much better results.

Table 2.24: Degree-2 Polygonal spline ap- Table 2.25: Degree-3 Polygonal spline ap-
proximation of solution to Example proximation of solution to Example

# P| mesh Erygl|rate|V ERyg|rate # P| mesh Eryg|rate [VERys| rate
64/1.25e-01{1.83e-06/0.00{1.39e-04/0.00 64|2.50e-01{3.59e-12{ 0.00 |5.63e-11|0.00
256(6.25e-02(9.85e-08(4.22(1.60e-05|3.12 256(1.25e-01|1.40e-11|-1.96|2.07e-10|-1.88
1024(3.13e-02|5.65e-09(4.12{1.91e-06|3.07 1024|6.25e-02|2.34e-11|-0.74|2.71e-10|-0.39
4096|1.56e-02(3.42e-10(4.05(2.33e-07(3.04 4096|3.13e-02(4.47e-11|-0.93|5.61e-10(-1.05

Comparison of Tables 2.24) and shows that our polygonal spline method




produces a much more accurate solution. These results call for some remarks. First,
it is worth pointing out that our MATLAB code can only achieve le-11 accuracy. In
Table the rates of convergence become negative due to round-off errors. That is,
polygonal splines of degree-3 converged to the solution wvirtually instantly. Similarly,
the degree-2 splines also appear to have an increased order of convergence O(h*). Of
course, we are interested in why the convergence rate of polygonal splines is often
better than triangular splines. Although we know that the degree-2 GBC functions
contain more than quadratic polynomials and the degree-3 GBC functions contain
more than cubic polynomials, our investigation shows that the partition also plays a
significant role. If we run a few iterations to solve the same problem over the unit
square based on the partition from Example 2, we retrieve the following standard

convergence results:

Table 2.26: Degree-2 Polygonal spline ap- Table 2.27: Degree-3 Polygonal spline ap-
proximation of solution to Example proximation of solution to Example

over non-grid partition over non-grid partition
# P| mesh Erys|rate|VEgyg|rate # P| mesh Erys|rate|VEgyg|rate
39/2.50e-013.66e-05(0.00{1.19e-03/0.00 39/2.50e-01|3.10e-06{0.00{9.17e-05/0.00
219|1.25e-01|3.09e-06|3.57|2.29e-04|2.38 219|1.25e-01|1.22e-07|4.66|7.07e-06|3.70
1251]6.25e-02|2.75e-07|3.49|4.59¢e-05|2.32 1251]6.25e-02|4.59e-09(4.74|5.96e-07|3.57

We can see that this time the numerical solutions are closer to the expected rate of
convergence. Thus, the grid partition plays a role in the solution of this problem. In
particular, while triangulation-based degree-d bivariate splines have a span of exactly
IT; over a triangle, degree-d polygonal spline space over an n-gon has a dimension
higher than Il;, and hence has a greater span. It would be interesting to know how
one can exert any control over these additional degrees of freedom by choosing a good

partition.
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Example 2.2.5. Consider the following example:

—eAu+ (2—y*)Dyu+ (2—2)Dyu+ (1+ (1 +2)(1+y)*)u = f,(z,y) € Q (2.2.45)

with Q = (0,1)?, and u|pn = g. The function f is so chosen that the exact solution is

u(z,y) = 1 +sin(x(1 + 2)(1 +y)?/8).

When € = 0, this is a hyperbolic test problem considered in [5, [I8], 19]. However, for
positive values of ¢, this is an elliptic PDE. We can well-approximate a solution to

the hyperbolic problem by using very small positive values of e:

Table 2.28: Degree-2 Polygonal spline ap- Table 2.29: Degree-3 Polygonal spline ap-
proximation of solution to Example proximation of solution to Example

with e = 1073 with e = 1073
# P| mesh Erus|rate|VERyg|rate # P| mesh Eryglrate|VERys| rate
39(2.50e-01{1.28e-03(0.00|5.58e-02|0.00 39(2.50e-01(4.62e-04]0.00{2.02e-02| 0.00
219(1.25e-01|4.22e-041.60(2.38¢e-02|1.23 219(1.25e-01|4.07e-04|0.18(2.24e-02|-0.15

1251(6.25e-02|4.04e-04|0.07|2.28e-02|0.06 1251(6.25e-02|4.00e-04|0.02|2.18e-02| 0.04
7251(3.13e-02|3.99¢-04|0.02|2.15e-02|0.09 7251(3.13e-02|3.99¢-04|0.01|1.81e-02| 0.26

Table 2.30: Degree-2 Polygonal spline ap- Table 2.31: Degree-3 Polygonal spline ap-
proximation of solution to Example proximation of solution to Example

with € = 107 with € = 107
# P| mesh Erygl|rate|V ERyg|rate # P| mesh Eryglrate|VERys| rate
39(2.50e-01]1.83e-03|0.00|7.70e-02|0.00 39(2.50e-01{3.71e-05{0.00{2.50e-03| 0.00
219(1.25e-01|2.97e-04/2.62(3.03e-02|1.35 219(1.25e-01|6.66e-06|2.48(8.58e-04| 1.54

1251(6.25e-02|4.51e-05|2.72|1.25e-02|1.28 125116.25e-02(5.19e-06|0.36{1.42e-03|-0.72
7251(3.13e-02(6.32e-06|2.84|3.67e-03|1.77 7251(3.13e-02]4.36e-06|0.25|2.02e-03|-0.51
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Table 2.32: Degree-2 Polygonal spline ap- Table 2.33: Degree-3 Polygonal spline ap-
proximation of solution to Example [2.2.5] proximation of solution to Example [2.2.5
with e = 10710 with e = 10710

# P| mesh Erysirate| VEgrys|rate] |# P| mesh Eruslrate| VEgyg|rate
39|2.50e-01{1.84e-03]0.00|7.73e-02|0.00 39|2.50e-01{3.49¢-05]0.00|2.37¢-03/0.00
219(1.25e-01|3.05e-04(2.59|3.10e-02|1.32| | 219|1.25e-01|2.00e-06(4.13|3.46e-04|2.78
125116.25e-02]5.26e-05|2.54|1.43e-02|1.12| |1251|6.25e-02(1.24e-07]4.01|5.26e-05|2.72
7251|3.13e-02(8.46e-06(2.63|5.60e-03|1.35| [7251(3.13e-02|1.84e-08|2.75|1.88e-05(1.49

For comparison, here are the results of the same computation using bivariate

splines over a triangulation of the same domain:

Table 2.34: Degree-2 Bivariate spline ap- Table 2.35: Degree-3 Bivariate spline ap-
proximation of solution to Example proximation of solution to Example [2.2.5

with e = 1073 with e = 1073
# T| mesh Erus|rate|VERys| rate # T| mesh Eryglrate|VERys| rate
40(3.54e-01|1.52e-04]0.00{4.07e-03| 0.00 40(3.54e-01]3.08e-05{0.00{7.95e-04| 0.00
160{1.77e-01{4.58e-05{1.73|1.70e-03| 1.26 160[1.77e-01|2.82e-05]0.13(1.03e-03|-0.37
640(8.84e-02(2.87e-05]0.67|1.13e-03| 0.58 640(8.84e-02{2.69e-05[0.07|1.13e-03|-0.13
2560(4.42e-02|2.67e-05|0.10{1.13e-03{-0.00 2560(4.42e-02|2.66e-05|0.02{1.21e-03(-0.10

Table 2.36: Degree-2 Bivariate spline ap- Table 2.37: Degree-3 Bivariate spline ap-
proximation of solution to Example proximation of solution to Example [2.2.5

with € = 1075 with € = 1075
# T| mesh Egrus|rate|VERgyg|rate # T| mesh Erys|rate|VERys| rate
40(3.54e-01|1.58e-04]0.00{4.64e-03/0.00 40(3.54e-01]5.36e-06{0.00|2.65e-04| 0.00
160(1.77e-01{3.93e-05|2.01{2.21e-03|1.07 160(1.77e-01{6.10e-07|3.13|5.66e-05| 2.23
640(8.84e-02(9.81e-06(2.00(1.08e-03|1.04 640|8.84e-02|3.13e-07(0.96|3.86e-05| 0.55
2560(4.42¢-02|2.40e-06|2.03|5.04e-04[1.09 2560(4.42¢e-02(2.99¢-07(0.07|6.72e-05|-0.80
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Table 2.38: Degree-2 Bivariate spline ap- Table 2.39: Degree-3 Bivariate spline ap-
proximation of solution to Example proximation of solution to Example [2.2.5

with e = 10719 with e = 10710
# T| mesh Erus|rate|VERyg|rate # T| mesh Eryglrate|VERyrs|rate
40(3.54¢e-01|1.58¢-04|0.00{4.65e-03/0.00 40(3.54¢-01(5.43e-06|0.00{2.67e-04/0.00
160(1.77e-01{3.94e-05(2.01|2.22e-03|1.06 160(1.77e-01(5.68e-07{3.26|5.57e-05|2.26
640(8.84e-02(9.90e-06(1.99|1.10e-03|1.01 640(8.84e-02(6.93e-08(3.03|1.42e-05|1.97
2560|4.42e-02|2.46e-06|2.01|5.48e-04|1.01 2560(4.42e-02|8.55e-09|3.02|3.40e-06|2.06

We can see that the polygonal spline solutions approximate the exact solution
very well. However, as in (2.2.43)), we see that this PDE has a unique weak solution,
but does not satisfy the assumptions of Theorem [2.2.3] Nevertheless, our method

works well as shown in Tables and

Example 2.2.6. For another example, the following problem is parabolic for y > 0

and hyperbolic for y < 0:

—eDyyu+ Dyu+cu=0, (zr,y)e(—1,1)x(0,1)

Dyu+cou=0, (z,y)€ (—1,1)x (=1,0] (2.2.46)

with u|gq = g, for any constants ¢; > 0 and ¢ > 0. This PDE was studied in [19)].
Note that the solution is discontinuous at y = 0. We can solve the following general

elliptic PDE to estimate the solution to this problem:

—nDypu — €Dyyu+ Dyu+cu=0, (z,y) € (—1,1) x (0,1)

—nAu+ Dyu+cou=0, (z,y)€ (-1,1)x(-1,0] (2.2.47)

with u|gq = g and n > 0. We can approximate the solution to (2.2.5|) by letting n > 0

go to zero and use spline functions which are not necessarily continuous at y = 0. Let
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the exact solution, u(z,y), of (2.2.5)) be the following piecewise function:

sin(m(1+y)/2)exp(—(c; + en?/4)(1+x)), -1<z<1,0<y<1 (2.2.48)
sin(m(1 + y)/2) exp(—co(1 + x)), -1<2<1,-1<y<0.
We set e = 0.05 and use a similar partition to the one from Example [2.2.1] scaled to

cover the domain 2 = [—1, 1]? and with an added edge to account for the discontinuity

at y = 0:

05

1
05 b \ 0.5
1 -0.5

=
=

1

05
0.5

-0.5

Figure 2.5: A partition of 2 = [—1,1]? and a few refinements

This extra edge will allow us to conveniently control the continuity (or lack thereof)
of our solution across the line y = 0. In particular, the solution to this PDE is gener-
ally discontinuous across this line, and so to find a continuous solution is undesirable.
Instead, we can very easily modify the continuity matrix H (see section 4.1) by chang-
ing the elements of H which are associated with this edge to zeros, and then we solve
the same minimization problem as always. This allows us to avoid any difficulties

which arise in deciding which elements affect continuity across this edge; by using
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Hc = 0 as a side constraint, modifying H allows for a quick adjustment in this way.

While adjusting continuity across one line is not the most complex of conditions,
one could consider controlling a discontinuous solution’s jump across an edge, or even
controlling various continuity conditions across many edges in the partition. Being
able to adjust H allows us to make changes like this more readily, without having to
heavily modify our code.

Numerical results for the solution of using degree-2 polygonal splines are
shown in Table 2.40l

Table 2.40: Degree-2 Polygonal spline approximation of solution to (2.2.5)) with exact
solution (2.2.48)) when n =1071% ¢; = ¢, = 0.1

# P mesh Erus | rate | VEgRys | rate
40 | 6.67e-01 | 6.80e-03 | 0.00 | 2.13e-01 | 0.00
208 | 3.33e-01 | 2.45e-03 | 1.46 | 2.10e-01 | 0.02
1120 | 1.67e-01 | 1.15e-03 | 1.10 | 2.03e-01 | 0.05
6208 | 8.33e-02 | 4.98e-04 | 1.21 | 1.76e-01 | 0.20

If we change the value of ¢y to 0.1 + ex?/4, so that the solution is continuous,
we retrieve the results in Table (without forcing continuity over the line y = 0).
Enforcing continuity over the line y = 0 leads to the results in Table 2.42] We can
see that the computational results in Tables and are very similar.

Table 2.41: Degree-2 Polygonal spline Table 2.42: Degree-2 Polygonal spline
approximation of solution to (2.2.5) approximation of solution to ([2.2.5))
with exact solution (2.2.48) when n = with exact solution (2.2.48) when n =

10_10, Cl = 01, Co =+ €7T2/4 10_10, Cl = 01, Co =01+ €7T2/4
# P| mesh Erygl|rate|V ERyg|rate # P| mesh Erygl|rate|V ERyg|rate
40(6.67e-01]1.64e-03|0.00|2.82e-02|0.00 40(6.67e-01]1.65e-03|0.00|2.62e-02|0.00
208|3.33e-01|2.61e-04/2.65(1.03e-02|1.45 208|3.33e-01|2.48e-04(2.73(8.87e-03|1.56

1120|1.67e-01{3.86e-05|2.76|3.60e-03|1.52 1120|1.67e-01{3.80e-05|2.71|3.33e-03|1.42
6208|8.33e-02|5.68e-06{2.76(1.23e-03(1.55 6208|8.33e-02|5.65e-06(2.75|1.20e-03|1.47
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Chapter 3

A Degree-3 Construction of C1
Polygonal Vertex Splines on
Skewed-Grids

3.1 Preliminaries on vertex splines

While the Floater-Lai polygonal splines are clearly useful for PDE applications, the
particular spline spaces they use are poorly suited for differentiability. Multivariate
splines are well-known for their ability to ensure C" smoothness for any » > 0, at
least given sufficiently large degree d relative to r, so an analogous function space
over polygons should at least have some analogous feature. We focus the remainder
of this dissertation, then, on constructions of C* polygonal splines as a first venture
toward the overall goal of arbitrarily smooth polygonal splines.

The reader will see that the computations involved are extremely complex and
lengthy, and that makes this work slow and difficult. To at least slightly reduce these
issues, we will make a simplifying assumption for now: we’ll assume that we work

over a quadrangulation; that is, a partition of only quadrilaterals.
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Our constructions will depend on a variety of geometric features of the under-
lying quadrilaterals. We introduce some notation for this geometry now. Let P =
(v1,v9,v3,v4) be a quadrilateral with vertices vy, va, v3, v4, listed in counterclockwise
order. We will refer to its vertices cyclically; that is, v; = v; whenever j =7 mod 4.
Oftentimes, we’ll implicitly choose a value i, and consider P = (v;, V11, Viya, Vi—1).
This will allow us to focus on a single arbitrary vertex, and to make conclusions for
all vertices by simply shifting indices.

We’ll often abuse some notation and consider each vertex v; as a Cartesian point
v; = (Viz, Viy) OF as a vector (v; ., v;,). We write e; to mean the ith edge of P, which
is between v; and v; 41, and write €; = (€; 4, €iy) = Viz1 —Vi = (Vit1,2—Vig, Vit1,y—Viy)
to represent e; as a vector quantity. We’ll write |e;| to represent the length of the ith
edge, and denote by n; the outward unit normal to €; that is, 17; = |&;| 7 {e; ,, —€; ).

For each i, denote by C; the area of the subtriangle of P given by (v;_1,v;, vi11),
and denote by 6; the interior angle of P at v;. Finally, define A;(x) to be the signed
area of the triangle (x, v;, v;11), positive for points x on the interior of P. Notice that,
while Cj, 60;, e;, and n; are constants for a given quadrilateral P for each 7, A; is a
linear bivariate polynomial. It is worth noting that A;(v;_1) = C;, A;(vis2) = Ciyq,
and A;(v;) = A;(vir1) = 0. All of these notations use cyclic indices, just as for the
vertices. Please refer back to Figure [2.1|for an illustration of Cy and A3(x) for a given
quadrilateral.

As in the Floater-Lai case, we’ll construct our polygonal splines from Wachspress
coordinates. We first analyze the behavior of these coordinates. For a quadrilateral
P, recall that the Wachspress coordinate with respect to the vertex v; is given by the

rational function

¢i(x) = ———, (3.1.1)



where w; is the bivariate quadratic polynomial

wz(x) = CZ'AH_l(X)Ai_,_Q(X). (312)

As we are interested in construction of functions which are globally C*, we should
pay special attention to the gradients of the Wachspress coordinates on the edges
of each quadrilateral. Since Wachspress coordinates are linear on edges, the edge

direction derivatives are easy to compute. Where we suppress the arguments of the
i

functions ¢; and write €; = , we have the following derivatives:

€3
a(bz —1
= el 7, 3.1.3
i =l 3.13)
0¢; 1
= —|€i— y 314
0€i-1],, , ei-1] ( )
00| _ 00} _y (3.1.5)
0€iy1 it 0Cira eit2
0" p;
=0 3.1.6

where (3.1.6)) holds for any j whenever n > 1.
We’ll also be interested in the outward normal derivatives of Wachspress coor-
dinates on the edges of each quadrilateral. This will require more work than the

edge-direction derivatives.

Lemma 3.1.1. Given a quadrilateral P = (vi,v9,v3,v4), then the outward normal
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derivatives of the Wachspress coordinates of P on edge e; are given by

= ¢ii] |eiy1] cos(fit1) — & lei—1] cos(6;)
e e 2041 tes 2C;

|€i| 2 Ciq Ci+2
(L) (1 (S) oo (82)

29,
on;

0Pip1| 5 leim1]cos(0:) ) 41 |€iy1] cos(0it1)
on; |, e 2C; e 20541
|€z‘| 2 Cito . Ci
" (2A1+2 ¢i+1’ei Cin T Gibirale, Ci 7

Op; 1 _ Ciy el il

871_; e; N CZ QAH_Q tei’
8¢i+2‘ _ Cito |€i’ &;

oni |, Cit1 2449 e

Proof. We first compute

4 4
Vw; > w, —w; Y Vwg
k=1 k=1

4
Vw; w; Vuwy,
Vi = A 2 ~ 4 T Z 4
W we | k=1 "y
(g; wj) J; ’ J; ’ j; ’
Then we write
4
Vo, = R; — ¢ ZRk, (3.1.7)
k=1
where

4
> w
j=1
It is worth mentioning that this notation is inspired by that found in the gradient
analysis of Wachspress coordinates in [I3], but is not quite the same. In particular,

this expression of the gradient is well-defined on the boundary of the polygon, which

is where we are most concerned.
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The gradients Vw; are fairly simple:

Vw; = C; (VA1 Aizs + VA0 Ai)

(3.1.8)

Moreover, when we are on an edge, we can simplify the sums in the denominators by

exploiting the behavior of the area functions on the edges. Since the area functions

are linear polynomials, we note that an arbitrary point on edge e; can be expressed

as (1 — t)v; + tv;qq for some ¢ € [0, 1], and so we can see that

Azl - O,

Ail,, = (1= 8)Cip,

A4, =1tC;

€i

Using the properties above, we can see that

4

ijsz = Wy + W1 = Apy2(CrAitr + Cri1Ai—1) = CpClir Apro.

j=1
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Then we have the following expressions for R; on each edge:

Ci; (VA1 Aire + VA 0A )

R;| =
2 CiCit1Aits
VA (Ai-i-l) <VAi+2) VA (VAHz)
= + = + ¢il, | —/— 3.1.10
Cit1 Cita Aito Cit1 4 i\ Ao ( )
R _ Ci; (VA1 Aire + VA 10A )
teim Ci1CiAi
VAito (Ai+2> <VAi+1) VAiis (VAiJrl)
— + = ——+ ¢, _— 3.1.11
Cia Ci Aipr Ci ¢ ot A ( )

Ci (VA1 Aia + VAiaAi) Ci (VAi1Ais)

citt Cit1Ci124i1 Cit1Cip24i 1

7

C; Az’+2) (vAi+1) ( C; ) (VAi+1)
_ _ il (3112
(Ci+1> (Ci+2 A Cit1 A Gitlens, ( )
‘ _ Ci (VA1 Aia + VAi2Ai) _ Ci (VAi2Ain)
Hleite Cit2Ci1 Ay Cit2Ci1 A,
C; Aina VAito C; VAito
_ _ @31
(C“) (Cm) ( A; ) (C“) ( A Pictlesy - (3113)

4
We will also need to know values of > Ry on each edge. Using (3.1.10))-(3.1.13)),
k=1

along with the fact that (¢; + ¢iy1)|., = 1, we see that

“  Cin Cj Ajpa

VAZ Cifl Ci+2
+ (AH-Q) (( C. ) ?il,, + (m) ¢i+1|ei) : (3.1.14)

It is easy to see that VA; = —1|e;|n;. Moreover, note that

4

A; A A;
ZRk| VvV ;+1+V j 1+V j+2
k=1

nj_1.n; = cos(m —6;) = —cos(f;). Using these two observations, along with (3.1.10))-
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(3.1.14]), we compute the outward normal derivatives:

i .
87’2 . - R ’ ¢Z Z Rk n’L
. |6i+1| COS(QH_l) VAH_Q nz
B 2Ci11 @il — ¢ Z Ry n’
_ |€i41] cos(bi41) — & (\€z+1|005(9z+1) i \6171|003(9z)
2041 ! 2Ci 2GC;
|€i’ Ci Ciyo
<2Ai+2 C; Gile, + Cita “i
= il |€iv1| cos(Bir1) ) 41 |€i—1] cos(6;)
i+1le; 201+1 ile; 20
) (G + oo (52))
+ + ¢ ;
(2Ai+2 @ ‘ Pidinle, Cit1
p;
gﬁ—;l . - Rz+1 nz ¢2+1 Z Rk nz
e;i_1| cos VA i.n;
|1|QT() <Z5z+1| ( A:FQ ) Git1 ZRk nk|
_ _lei—1] cos(8;) . leir1] cos(bi41) N |ez,1|cos(91)
20, o 2C; 41 2C;

lei Ci1 Cita
(i) (&) ol (G2) 21
|€i—1] cos(6;) o] |€41] cos(0i11)
€i 201 e 201_;,_1

% Cz
+ <2A|:Z_|’_2) (¢12+1‘ei (O+2) ¢z¢z+1‘ ( Z )> )

= i

Oi—
on;

4
= Ri_l.ﬁ;}ei + i1 Z Rk'ﬁilei

e k=1

. Ciq el '
(@) (i)
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OPis2
on;

4
= Ri+2-ﬁz’}ei + iv2 Z Rk-ﬁz’|ei
k=1

_ (Ci+2> < |es] )¢ .
Cita 2A;49) e

€

]

We mention one more brief lemma, which is trivial to prove, but has important

consequences.
Lemma 3.1.2.
Gidiva _ Pin10i1
CiCiva  CiaCiy
Proof.
Sirriy = Ci+1Ai+2/ii10i21AiAi+l
j=1
GGy CiAi 11 A2 Cip Ay 1 Ay
CiCiya 4 2
> wj
j=1
GGy
Division by C;,1C;_1 completes the proof. O

The implications of this lemma are important: using this relationship, we can

determine which monomials of Wachspress coordinates are linearly independent. Be-
4
cause of its connection with the bubble function [] A;, we often write

7j=1
_ PiPit2 _ Pit10i-1
CiCira  Cip1Cig
Using the Lemma [3.1.2] we can now say with certainty that the full space of

B
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Figure 3.1: An illustration of the degree-4 polygonal spline basis functions with the
associated domain points over a rectangle

degree-d polygonal splines over a single quadrilateral P, S;(P), has as a basis

4
By(P) = U{B“(bf S1ta,b,c>0;2a+b+c=d}. (3.1.15)

i=1

This particular basis is convenient in that it permits an identification to domain
points in an analogous way to the case of bivariate splines over triangles; in particular,
Figure [3.1] shows how to lay out the degree-4 polygonal spline basis functions with
their associated domain points over a rectangle with v, at its lower-left corner.
Now we discuss our overall strategy. For a given partition of convex quadrilaterals
P. define
Si(P) :=={s: s|pep € span{By(P)} } (3.1.16)

How can we construct a polygonal spline s in such a way to ensure that it is C'1?
While some coefficient conditions to ensure C' smoothness might be desirable, as are

available in the traditional triangular case, after some initial investigation we deemed
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Figure 3.2: A partition of quadrilaterals P

this problem too difficult to tackle at the outset of this project. Instead, we opted for
a different approach: to construct a basis for a C'! subspace of Sy(P). In doing so,
we opted to make this basis as locally-supported as possible; in fact, along the way
we will create a basis for a C! polygonal vertex spline space, where a vertex spline is
defined as one which is a linear combination of splines which are supported only in
the ring of polygons €2, containing a single vertex v.

Consider the following partition of quadrilaterals P:

We wish to construct a C!' polygonal spline 1), over this partition which can
interpolate values at the vertex v, while having value 0 at the other vertices (i.e.
y(w) = dy, for vertices w). Since we’ll be doing this piecewise across each quadri-
lateral, we’ll need to ensure that both the values and gradients match on shared edges
and vertices. In particular, we’ll enforce that Vi, (v) = 0 for some simplicity. More-
over, to maintain some locality, we’d like v, to be 0 outside €,; that is, since v is
not included in the quadrilateral @, we would like 1, o = 0. Notice that this implies
that Vi[5, = 0; we can summarize this by saying that we want supp(¢,) C €,
Uolpq, = 0, and Vb, |yo = 0.

Now, where P = (v1,vs,v3,74), let v = v; be the ith vertex of P. Consider
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Yip = ,|p. While we restrict our attention to only the quadrilateral P, we will
suppress the additional subscript and merely refer to this function as ¢;. Then we

want

Vi(vs) = 04y, (3.1.17)
Vi(v;) =0, (3.1.18)
bil,.., = il,,,, =0, and (3.1.19)
Vil = Vi, =0. (3.1.20)

We can enforce properties and by simply requiring that 1); has a
factor of ¢?, since ng,~|ei+1 = ¢i|ei+2 = 0. This will also ensure that properties
and are satisfied for all vertices except v;.

Now consider the values of 1; on edges e¢; and e;_;. Since the Wachspress coor-
dinates of P are linear on its edges, if we build v; as a polynomial of Wachspress
coordinates then it will have polynomial values on the edges of P.

Write p(t) = ¥i(v; + t(viyr — v;)) for t € [0,1]. Then we want p to satisfy the

following;:

p(0) =1, (3.1.21)
p(1) =0, (3.1.22)
p'(0) =0, and (3.1.23)
p'(1) = 0. (3.1.24)

Given that 1); interpolates values at a single vertex, it can be used not entirely unlike

a GBC, so we might wish to enforce a new property

4
Y =1, (3.1.25)
j=1
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which will in turn yield a new property for p:

p(t) +p(1—t)=1 (3.1.26)

As p is a univariate polynomial, properties (3.1.21))-(3.1.24) imply that we need p to

be at least degree 3. A natural question is whether we can accomplish our goals with

p being precisely degree 3.

3.2 Degree-3 C' polygonal spline construction

3.2.1 Construction of wf,g)

Using the basis Bs(P) and the knowledge that we desire a factor of ¢? by properties

(13.1.19) and (3.1.20]), we can form a template for ¢i(3), where the superscript is merely

used to distinguish the degree:

2/}1(3) = (ﬁ?(e]o,@(ﬁ@ + Jl,i¢i+1 + J2,i¢i71 + KO,i¢i+2>a (3'2'1)

where Jy;, J1, Jo,i, Ko are constants.

There is a unique univariate polynomial p of degree 3 satisfying properties —
(3.1.24), namely p(t) = (1 —t)*(1 +2t) = (1 — )*((1 — ¢) + 3t). Recall that p(t) is
defined as ¥;(v; + t(vi1 — v;)). We have that ¢;(v; + t(vie1 — v;)) = 1 — ¢, and
Gis1(vi + t(vig1 — v;)) = t, so we'll say i, = ¢7(¢i + 3¢i11). Similarly, we can say
Vil = 2 (¢; + 3¢;_1). This is enough to inform us that Jo,; = 1, J;; = Jo; = 3.

We will be able to solve for K ; by enforcing property . First, we strategi-

cally express 1 as a cubic polynomial of Wachspress coordinates, using the fact that
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= ¢} + 3T + 3T d3 + 3T ds + 3P1B3 + 6010203 + 601 Pada + 30103

+ 601304 + 39107 + O3 + 323 + 3¢2h4 + 3P0 + 6Padada + 36a]

+ @3 + 3p304 + 3d30] + P

We can simplify this using our prior notation B, from Lemma |3.1.2}

1 =7 + 3¢5 2 + 3¢5 4 + 3105 + 3163 + b
+ 30303 + 3d203 + 3 + 30504 + 30305 + &

+ B((3C1C5 + 6CoCy)by + (6C1C5 + 3C2C)

+ (3C1C5 4 6C5Cy) 3 + (6C1C5 4 3C2C4) ¢a).

We can rewrite 1/1(3)

i

as

U = 6 + 3670141 + 367611 + Ko,C.Cisa B,

so it’s easy enough to see that

4 1
1= =B (3= Ko:)CiCits+6Cis1Ci1) .
=1

k=1

CiJrl Cifl

Then we’'ll set Ky; =3+ 6 CiCiya

, so we'll have

CiCie
0 =62 (61 +3(0ua +61) +3 (1425257 ) 611 )
CiCito
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While this satisfies our initial set of conditions, it remains to see whether this
definition will ensure that the piecewise function f is C! over P.

Suppose we have the following subpartition, where v = v; p = v; :

Figure 3.3: A pair of adjacent quadrilaterals P and R

We require that the function v, is C! over the union of P and R, and since
Wachspress coordinates are smooth on the interior of the polygon over which they

are defined, then we need only check the shared edge e; p = €;,_1 g. In particular,

o) o)
we’ll check the outward normal derivatives on this edge :’P and :’R Since
37%,13 57%71,1%
Mi—1,r = —1; p, then we will need to enforce
ol ey
Vir + Vin _g, (3.2.5)

O, p O R
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Let us take the relevant derivatives. We suppress the specific quadrilateral sub-

scripts.
o 0¢;
;é—;» = 2¢2 ¢ ((bz + 3¢2+1)
0¢; Cit1Ci21 0ito
+ ¢ ( 8* (¢z+1 + @it + Qip2) +6 CiCr O,
8@ Ci1Ci1 5 00iq2
302 + 6¢;0; 3 1—¢;)+6 2
( ¢ + ¢¢+1) + (ﬁzaﬁ( ¢)+ CiCi+2 7 aﬁz
. agbz z—l—IOz 1 a¢1+2
= 69 (@“ CiCiio )
e (2 |€z+1| cos(bis1) |€i—1] cos(6;)
= 6@257, (¢i+1 2014_1 (bz(lerl ZCZ
|€i| Ciq 2, Ci+2 2 Ci1 L
+ <2Az+2 C ¢z ¢7«+1 + C ¢Z¢i+1 OZ ¢Z¢Z+1
P leivifcos(0ir1) \ez’—1|COS(9i)
— 6¢z¢2+1 (sz—i—l 2Cz+1 ¢z 202‘
’61\ Ciyz Cia .
* (2Ai+2 Con G, ) %0 ) (3.26)
P 96
o, | = 20, o, (i + 3pi1)
a¢1 0 Cz 101;1 8(]51 2
2 4 ‘ . + +

. ) ) 8¢z z+lc — ) a¢i+2
= 6¢; (@ Bh + CCns L R

B leira] cos(6;_1) |ei| cos(6;)
- 6¢z¢zfl <¢zl 202 . (bz QCZ
|€i—1| Cirz2 Cina
- i Pi— . 2.
* (2Ai+l Ci1 Ci bifict (3.2.7)

Keeping in mind that ¢; g| = ¢i7p|€i7p and ¢;_1 g| = ¢i+1’p|ei,P, we have

€i—1,R €i—1,R
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(3) (3)
o;'p oLURy) _
on; p On;_1,r
€i,p €i—1,R
leiv1,p|cos(0iv1.p) | |eivar|cos(0i1r)
6¢;,pdi i ’ — + ’ ’
e ot
& lei—1.p| cos(b; p) N lei r| cos(0;.r)
ur 2C; p 2C; r
|€z‘ P| Ci+2 P Cic1p
+ ¢i.pPit1,P ( : — — :
i 2A;10p \Ciz1,p Cip
i Ci Ci
L el ( 2R _ “’R») . (328)
2Ai11r \Ci-1r Cig
©)
In the special case that P is a rectangle, 8;’}3 = 0, so to ensure C'! smoothness
L
ol €i,p
)
we would need 57 L = 0. However, this is easily checked numerically on an
Ni—1,R

€i—1,R
arbitrary quadrilateral R, and we see that this is not generally the case. In order

to force (3.2.8) to be zero, we’ll need to enforce some particular geometry on the
partition P.
First of all, note that ¢; p and ¢;1 p are linearly independent polynomials on the

shared edge. Then we need each coefficient in (3.2.8]) to be zero. Then we must have

leis1.p[cos(Oirp) _  |eiva.r|cos(bi-1.r)
2CZ'+1,P 2Ci—1,R
We can rewrite this by noting that |e; p| = |e;_1 | and C; = ]e;_1||e;|sin(6;):
COt(@i_H’p) = — COt(ei—l,R)- (329)

Since we require that P and R are convex quadrilaterals, 0 < 0,41 p,0;—1 r < 7. Then
(3.2.9) is only true whenever 6,11 p = m — 0,_; g which is equivalent to the condition

that e;41 p and e;;9 g are collinear. Similarly, we’ll require that e;_; p and e;;1 g are
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collinear - equivalently, §; p = m — 0; g - to make the second term of (3.2.8) have a
coefficient of zero.

The last term is harder.

( 1 ) (|€i+27p|) (sin(@iﬂ,p) _ Siﬂ(&in))
2Ai+27p |€i,p’ Sin(elqu’p) sin(Gi,p)
+ ( ! ) (le”l’R’) (S%H(GHQ’R) —~ Sn.lwi“’R)) (3.2.10)
2Ai+1,R |€i,17R’ sm(@i,LR) sm(Gi,R)
Since we've enforced that 0, p = 7 — 0, g and 0,41 p = ™ — 0;_1 g, which implies that

sin(6; p) = sin(0; g) and sin(0;+1 p) = sin(6;_1 ), so we can rewrite (3.2.10]) as

( 1 ) |:( ‘€i+27p|) (sin(QHQ,p) _ sin(@i_Lp))
|6i7p| 2Ai+2,P sin(9¢+17p) Sin(0i7p>
n (|€i+1,R|> <Sin<9i+2,R) _ Siﬂ(@ﬂ,R))} ' (3.2.11)

2Ai+1,R Sin(0i+17p) Sin(Qi,p)

Now this should be zero for every point on the shared edge, so consider the point

xp = (1 —t)vip +tvis1 p = (1 — t)v; g + tv;—1 g for some ¢ € [0,1]. Then

2A; 0 p(2) = (1 —1)2C;_1,p + t2C;40 p

= ‘6i+27p|((1 — t)]ei,l,p\ Sil’l(ez‘,l’p) + t|€i+1,p’ sin(9i+2,p)), (3212)

and

2Ai+1’R(ZL’t> = (1 — t>20i+1,R -+ t2C¢+27R

= |6i+1,R|((1 — t>|6i’R| sin(QHLR) + t|€i+2,R| sin(@HzR)). (3213)

Denote by p; ;1 the univariate polynomial given in (3.2.12)) divided by |e;42 p|, and by
p12 the univariate polynomial given in (3.2.13) divided by |e;11.r|, so we can further
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simplify (3.2.11)) evaluated at the point x; as

( 1 ) K 1 ) (sm(em,P) - sin(eil,P))
|€Z'7p| p171 sin(9i+1,p) Sin(9i7p)
( 1 ) (Sin(eHZR) Sin(ei-i-l,R))}
+ | — - - —
P12 sm(@iﬂ,pl) Sln(gﬁp)
. < 1 ) |: (Sin(9i+27p) _ sin(@i_Lp))
lei p|P1,1p1,2 PL2 sin(6;11,p) sin(6; p)
in(6; sin(6;
tpis (Sm( +2,R) B ( +1,R))} '

SiIl(HH_LP) Sin(eivp)

Define a vector V' by

Vo= Sin(9i+27p) B sin(Gi_l,p) sin(@HZ,R) B Sin(9i+17R>
’ Sin(QHLP) Sin(0i7p) ’Sin<0i+17p) Sin(0i7p) ’

and rewrite (3.2.11]) as

1 . )
(W) (L= )V - (Jesrl sin(Brar ), ler—v. | sin(6s.))

+t V- (|eia,r| sin(0iror), l€ir1,p|sin(firop))) -

We require this to be equal to 0 for every t € [0,1]. Since ¢ and 1 —t are independent

linear polynomials, this implies that we must have

V- (leir|sin(@it1.r), |€i—1,p|sin(@;—1 p)) =0 (3.2.14)

and V - (|eiro,r|sin(bi42.r), l€ix1,p|sin(bi42.p)) = 0. (3.2.15)

Then both of the right-hand vectors must be orthogonal to V', and hence are

parallel to each other. Then we must have

|6i,R| Sin(QiH,R) = K|€i+2,R| Sin(0i+2,3)

and |6i_17p| sin(@i_Lp) = K|€i+17p| Sin(9i+2,p),
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for the same positive constant K, or, equivalently,

lei,r|sin(0;y1 r) _ lei—1,p|sin(b;,_1,p)
|eivo,r| sin(0iror)  |€is1,p|sin(firop)

(3.2.16)

These terms are heights of each quadrilateral. We use the updated Figure [3.4] to

make some new notation:

Figure 3.4: An updated figure which shows heights of each quadrilateral as dashed
lines

Then we can rewrite (3.2.16]) as the following:

hivir  hic1p

= ) 3.2.17
hivo,r  hiyop ( )

This is a hard condition to enforce across an entire partition. In particular, the
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Figure 3.5: A skewed grid

other edges of P and R will generally be shared with other quadrilaterals as well,
which means that more edges must remain collinear and more heights must have a
common ratio.

However, consider the case K = 1. When applied to all heights of each quadri-
lateral, this implies that each quadrilateral is a parallelogram. Combined with the
fact that the edges adjacent to shared edges must be collinear, this implies that an
admissible partition must be a subpartition of a skewed grid, which is quite easy to
enforce.

Within parallelograms, the areas C; are all equal, so we may simplify the expres-

sion of %(3) in 1} as follows:
U = 6 (9 3B+ i1 +30142) (3.2.18)

For each vertex v in P, we define the basis spline zbgg) by ¢,§il for each P € Q,,
where v = v; in P, and 0 otherwise, and by construction, 7%(13) is globally C*. The

discussion in this section serves as a proof of the following:
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Theorem 3.2.1. Let Q be a polygonal region in R? which permits a skewed-grid
partition as in Figure[3.5, and let P be such a skewed-grid partition of Q. For every

vertex v in the partition P, define a polygonal spline d}f’) over €, by

@/inl(x) xeEPCQiuv=uvp

0 x & €,

where ¢fil is the function in (3.2.18).

Then ¢1()3) satisfies the following properties:
(1) %(}3) (w) = Sy for any vertex w of P;
(2) Vw(3)( ) =0 for any vertex w of P;

(3) W e C(Q); and

4) Yo =

vEP
Figure shows the plot of the function %(}3) which smoothly interpolates values

at a single vertex v over the partition shown in Figure [3.5]

3.2.2 Construction of 1/)9, and @bl(,gl),

We’d like to have a greater span than just that of the functions 1/11(,3). While the con-
dition (3.1.25) ensures that constant functions are in Span{wgg)}, we can be sure that
even linear functions are not. In particular, the gradient of any linear combination
of the functions ¢£3) vanishes at every vertex, a behavior which is both unusual and,
possibly, undesirable. To augment our function space, it seems reasonable to give

ourselves a tool with which to adjust the gradient at the vertices. To that end, we’ll
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Figure 3.6: The plot of a function zpff’)

design functions wf’?, and 1/}3(,32, which satisfy the following for every vertex w:

Vi) = (Bow, 0), VY] = (0, 80)-

We'll first focus on the construction of the function wg(f’q)); the wg(,?’q)) case is very similar.
As in the previous section, we’ll first focus our attention on a single quadrilateral

P € Q, such that v = v; in P. Let ng’g,P = wg(cgg

pi again, we'll suppress the subscript
P while we are focused on solely this quadrilateral. In terms of the geometry of P,

we need 1/19(631) to satisfy

Y, =0, (3.2.19)
Vi, = (6;,0). (3.2.20)

First, to ensure locality, we will again require that ¢? is a factor of ¢, ;. Then we
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have the same template as in (3.2.1)):
%09(33@) = ¢ (Joihi + J1ibir1 + Jridio1 + Koidira), (3.2.21)

where the notation Jy;, Ji,, J2,;, and Ky, is reused to represent the constant coeffi-

cients of 1/13(631) .

Since wg(f”v = Jo,, the condition (3.2.19)) is enough to inform us that Jy,; = 0.

We use ([3.2.20)) to determine J;; and Jy; by taking edge-direction derivatives at v;.

We require that

6wxz €ix
— == d 3.2.22
aél v; |€”L| o ( )
a,lvbcc €i—1,x
— = =, 3.2.23
|, ~ Ter] (3.2.23)

We take these edge-direction derivatives from (3.2.21)):

Oy 0pi1  Jii
= = Jl,i—~ = s and
662' s aei |ez|
i | 0pi 1 —Joy
o= | T J2iaz = .
0¢;_1 v 0¢;_1 |€i71‘
Thus we set Jy; = e;, and Jy; = —€;_1 4.

We can find Kj; by considering the same scenario as is illustrated in Figure ,
but using the new requirements we set at the end of the previous section - especially
that both P and R are parallelograms. In this case, we can substantially simplify

the normal derivatives computed in Lemma [3.1.1} In particular, we take advantage
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of the following geometric conveniences of parallelograms:

—

€ = —€i42; €ir1 = €i—1;
Op=m—0ip1 =00 =7 —0;_y;

C:=0C; = Cz'+1 = Ci+2 =Ci_1.
Then we can see that
Ai+2|ei = Cim10i + Cipadipr = Cdi + ¢i1) = C,

and finally we see that

00| _ Ll el cos(f)
on; e e 20 )
0biv1| _ lei]  |ei—1] cos(6;)
@ﬁz . - ¢Z+1% + T’
O0pi—1 _ —gb-@
aﬁz N 1207
0dito . |el|
o |, - _@“%' (3.2.24)

Now we use (3.2.24) along with the fact that (¢; + ¢i+1)‘ei = 1 to compute the

outward normal derivatives of @Dﬁ) :

8¢;33 aqbl 8¢Z+1 2 a¢’i—1 9 8¢’L+2 )
aﬁ, . - a_ﬁi(2€i,r¢i¢i+1) + aﬁz (ei,mqbi) + aﬁz <_€z‘—1,x¢i> + 8ﬁz (KO,zQSz)

s el leisa|cos(6:)
- ¢z (ez—l,az 20 + ez,:c 20

2 e alal o Jeia| cos(6:)
+ ¢z ¢z+1 ((362790 KO,Z)2C ez,oc 20 +
lei_1] cos(6;)
+ ¢idi, <—2€i,xT :
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3)
awr,i o o ei,y
o = Njz = T 5
T; ‘61’
Ui
exactly what we have. If we consider the unit vectors €; and é;_;, we see we can

We ought to have

since V@DSZ-) = (1,0). In fact, that’s

rotate one to the other by the angle m — 6;, which informs us that

e 1 —cos(6;)  sin(6;) e;
€1 —sin(#;) —cos(6;) el
1 —e; 5 cos(6;) + e;, sin(6;)
=Tl , (3.2.25)
1\ —eigsin(f;) — e;y cos(6;)
and, similarly,
e; 1 —e€i_1,4€08(6;) — €;_1,sin(;)
|€Z‘| |6i—1| €l Sin(Qi) —€i—1y COS(@i)
Then we have
3)
81/11,1' _ ¢3 ei,y
o | " \ed]
€; ei—1| cos(6;
+ ¢?¢i+1 ((3€i,z - KO,i) |2C’ - 61’@%) +
i—1| cos(6;
+ iy (—2@@%) : (3.2.26)
Similarly, we compute
3
ad)g(ﬁ’l) _ ¢3 61‘_14]
aﬁz_l ¢ |61_1|
€i—1
€;_ e;| cos(0;
T ¢ ((—3e“,x el eil,x%)
i 0;
+ ¢t} <2€i1,x%> ; (3.2.27)
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so in terms of the quadrilaterals P and R from Figure 3.3 we have

(3)
awx,i,P wx,z,R
8ﬁi,P 87%—1,1%
€;,p €i—1,R

3 €iyP , €i-1y,R
. +
P <|6i,P| |€¢—1,R|)

|es,p| le;—1,p| cos(6; p)
+ 2 ) 3€i:p K ) — Cig
O; pPit1,p (( P — Koip) 54— o0, CimP 2C
| €i— 1R| |6iR|COS<9iR)
(=3€i12r — Koir)—~5— 20, tTerler T oa
9 lei—1.p| cos(0; p) lei r| cos(0; r)
i, PO; —2€; 7 ’ 20, 1o R~
+ Qi pOii1p ( €ix,P 20, +2¢;_12,R 5Ch
B ¢?,P¢H—LP <3€z‘,x,P — Koip n —3€i—1,2,R — Ko,i,R>
sin(6;,p) lei—1,p| lei.R| ‘

There’s not a unique solution for Kj;, but in the interest of having each function

defined only by the geometry of the quadrilateral it’s defined over, we’ll set Ky; =

3(eix — €i—1) to have

alﬁgp 8¢x R
aﬁi,P anzq,R
€, P €i—1,R
B ¢12,P¢i+1,P <36i—1,$,P _ 361‘,:5,1%)
~ sin(@ip) \ lei—1,pl lei.R|

302 Lo,
= —QS.Z’P@H’P (Eic1a,p — €ia,R) -
sin(6; p) . ”

Since we required that €;_; p and €; g are collinear, then their unit vectors are parallel,

and based on the counter-clockwise orientation of P and R, in fact we have €;_; p =

€i,r, s0 that
(3) (3)
awx,i,P a¢x,i,R
s - =0.
ani,P 5’”171,3
€, P €i—1,R
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Conveniently, this choice of Kj; also satisfies

4
> v + 9l =2, (3.2.28)
=1

which we can check using similar steps as we took in (3.2.2) and (3.2.3). First we

compute x as a cubic Wachspress function:

4
= 028 + (2010 + Vj412) 05001 + (20 + Vj12) D11
j=1

+ (41)]@ + 2(@j+1,x + Uj—l,x) + vj+27x)B¢j. (3.2.29)

Expanding the sum on the left-hand side of (3.2.28)) will reveal the same expression
as (13.2.29).

Therefore, we conclude

?/13(531) = ¢} (€iphis1 — €ic100i-1 + 3(€iw — €im1.0)Pit2)- (3.2.30)

A nearly identical analysis will yield

lﬁﬁ) = ¢} (eiyPir1 — €im1,yPi1 + 3(€iy — €im1y)Pisa), (3.2.31)

which has the analogous property that
4
Z v + %?3 =y. (3.2.32)

=1

As in the previous section, for each vertex v in P, we define the C' basis splines

w;(f’l), and ¢§33 by wg(;’l) p and %(,31) p, respectively, in each P € 2, where v = v; in P, and
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0 otherwise. Then by construction, we have the following:

Theorem 3.2.2. Let Q be a polygonal region in R* which permits a skewed-grid
partition as in Figure and let P be such a skewed-grid partition of (). For every

vertex v in the partition P, define polygonal splines w;(fq), and wﬁ over €2, by

(

@DS%P(X) xeEPCQiuv=up

0 x & €,
\
(

1/152713()() xeEPCQuuv=up

0 x & €,

\

where w i p s the function given in (3.2.50) and w( )P is the function given in

3.2.31)).

Then 1#;32, and wﬁ satisfy the following properties:
(1) ¢§;31)J(w) = (w) = 0 for any vertex w of P;
(2) V@Z)(?’)( ) = (0vw,0) and V@/};Sgg(IU) = (0,0y.) for any vertex w of P;
(3) W, vin € CH(Q); and

(4) 3 0 + %) = and ¥ 0,0 + ) = y.

veP veP
Flgures H and |3 b show plots of the functions 1/196 » and ¢y » at the same vertex

v of the same partition used in Figure

3.2.3 Construction of zpf;)v, ng;’)v, and wg({? v

It’s reasonable to expect to be able to extend further. After all, the full span of
all degree-3 Wachspress functions over a polygon P contains all degree-3 bivariate
polynomials over P, so it is at least plausible that we could extend our span to

contain this polynomial subspace as well. In fact, we can do just that.
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(a) The plot of a function 1/1;31),

N -
., N

o i x N

(b) The plot of a function wz(,?’g

Figure 3.7: Plots of degree-3 gradient-adjustment basis splines

We'll start by extending our span to include z%. Again, let’s first restrict our
attention to a single quadrilateral P.
As things stand, the most natural approximation of the function 2% over P using

our current basis functions is

4
18 = okl + 20,00,

i=1

2

It is simple to check that Ig(;’) is not equal to #%; we can express 22 as a cubic Wachs-

press function as we did for the constant function 1 in (3.2.2)) and for the function =
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in (3.2.29), and then evaluate the difference % — [S):

4

2 3) _ 2

=15 = E —2€; 2€i_1,20; Pito.
i—1

The obvious choice to make is to define a function

P = —€intio1 a0l ira, (3.2.33)

4
so that 22 = U§x¢§3) + 2vi7xwfi) + 2¢$)i. Similar analyses of zy and y* produce
i=1 ’

functions

wf,?i = _ei,yei—l,y¢?¢i+2 (3.2.34)

and ’ll)my i = —(6i7x62‘_17y + ei,yei—l,x)¢?¢i+2- (3235)

These functions disappear on the boundary of the quadrilateral, so they will cer-
tainly join continuously across shared edges. In fact, they join C'-smoothly. We’ll

check ws;)l

awaﬂz . a¢z+2
ani — eza: i— 1x¢z a—»
€;
el
= Qéezxez 1x¢
_ €i—1z Cix 9252'
’61'_1| Sln(@) v
aniil 1,xb1—1x laﬁz;l
€i—1
|€i-1]
= 21—061'@61‘—1@@2
o Cix Ci—1x ¢2
e sin(6;)
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Then, if we return to the adjacent quadrilaterals P and R in Figure [3.3, we use

the facts that 0, p =7 — 0, g, €, p = —€i_1.r, and é;,_1 p = €; r to show
(3) (3)
awa,i,P wmQ,i,R - (bg <6i—1,$,P €izx,P i €iz,R €i—1,z,R >
- = =@ p - .
an@p . 8ni_1 R b |€z'—1,P| SlIl(Q@p) |ei,R| sm(HZ-,R)
i, P i—1,
6‘7 7P = =
= (bz?,P |;$P| (ei—l,x,P - ei,m,R)
2

=0.

We can similarly show that @b;?;)i and w:i?;)z join smoothly over shared edges.

®3)

3
)2 and ¢§3y),v as we

Hence, for each vertex v in P, we define C! splines ng)v, P
did for 1p1€3), %i),, and 151(133 Figure shows a plot of the function wf;)v at the same
vertex v of the same partition P used for the plots in Figures and3.7] However,

we can’t add each of these as basis splines, because they are in fact constant multiples

of each other, so we simply include one of them.

Figure 3.8: The plot of a function ¢$)U

Note that it’s possible one or more of these functions may be zero. In fact, on
rectangular grid partitions which are aligned with the x and y axes, all three of them
will be zero. For convenience, we’ll still use the distinct notation for each of the 3
functions, but keep in mind that the total dimension of our space is only 4 times the

number of vertices - or 3 times the number of vertices for rectangular grid partitions
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which are aligned with the x and y axes.
By construction, we can use our previously built vertex splines along with these

functions wxg ) ¢ and @D@U to recover degree-2 polynomials, but we can actu-

Y20
ally use them to recover degree-3 polynomials as well. It’s not difficult to show the

following:

3 = Z vgz/}ff)’) + 31}33%(31)} + 6%7#55),”,

y3 — Z 3,¢(3) + 3U ¢ + 6Uy¢y "

v

By = Z vivy by ®) + 20,0 wx ot 1/’ +2v yw + 2%1@),@7 and

v

xy? = Z V¥ 2¢ + zﬂww )+ 2vxvywy .+ QUIwy w1 Qinbmy v

The discussions in this section, along with the rest of this chapter, serves as a

proof of the following:

Theorem 3.2.3. Let Q be a polygonal region in R?* which permits a skewed-grid
partition as in Figure and let P be such a skewed-grid partition of (2. For every

vertex v in the partition P, define polygonal splines ¢ 2 ¢ and wf;),,, over €, by

Y2’
®3) wa(t?;)zP(X) xePC Qy; UV =Y;p
1/1332’U(X) = ™
0 x & €,

w(‘;’)i (x) xePCQy v=up
U (x) =5

0 x & (,
\
@Z)S’)i x) xe PCQ,; v=u;
and 98, 0) = { Vr ) Lo "
0 X .

where wxz WP %(,3)1 p, and wi‘?’if are the functions defined in (3.2.55

:

, (3.2.34), and
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Then wf;)v, wf;’v, and wg(f;),v satisfy the following properties:
(1) 1/’5:?;),1)(1”) = 1/’53),@(“)) = ;(cz)v(w) = 0 for any vertex w of P;
(2) ng)v(w) = V@/J?(f;?v(w) = Vzbg),v(w) =0 for any vertex w of P;

(3) vl ) e 1 (Q);

(4) 3 o2 + 20,08 + 200 =2, 3 020 + 20,08 + 20 =4

veP veP

3 3 3 3
) 0,08 + 0,050 + v+ D8 = ay,
ve

(5) The functions wi«z)w z/z(‘z) and 2/13%)7@ are constant multiples of each other, with

y 7,U;

the exception that some of them may be zero depending on the geometry of P;

(6) Where 5(P) := span{us? v, o2 03 w2 0 }ep, dim(Us(P)) = |V,
where ¢ = 3 if P 1s a rectangular grid aligned with the x and y azes, and ¢ = 4

otherwise;
(7) Tz € W3(P).
Over parallelograms, an interesting phenomenon arises:

Theorem 3.2.4. Let P be a parallelogram. Then the Wachspress coordinates of P

are not rational functions, but in fact are degree-2 polynomials.

Proof. Since all areas C; of a parallelogram P are equal, we may as well label them

all C'. This, combined with the facts that e; and e; 5 are parallel and the functions
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A, are linear and zero on the edge e;, makes it easy to see that A, = C'— A;. Then

Qbi _ CiAi+1Ai+2

4
CiAjr1A s
7=1
_ Ai1Ais
AiAir + Aipi Aipo + AjoAi 1 + A1 A
_ A1 i
(Ai + Ai2) (Aipr + Aimr)
A1 Aipo
cz

(3.2.36)

[]

Therefore, our space W3(P) is actually the same space as the space of tensor-
product C! bicubic splines over P. While it would be nice if this were a truly new
space, this work so far has two main benefits. First, ¥3(£2) has a nice basis which
eases some of the workload when using tensor-product C' bicubic splines. Second,
the techniques we used will be useful in the upcoming cases, where we use higher-
degree polynomials of Wachspress coordinates to allow ourselves the flexibility to
extend which partitions are admissible, along with increasing polynomial approxima-

tion power.

3.3 Approximation properties of V}(P)

Let Q C R? be a polygonal region which admits a skewed-grid partition, and let P
be such a skewed-grid partition of 2. We consider a series of uniform refinements of
P; denote by Py the kth uniform refinement of P.

Using techniques from [20] and Chapter , we can show the following:

Theorem 3.3.1. For any function f € C3(Q), there exists a polygonal spline 8503]1 €

Ui(Py) such that

1f = 59 loog < Clf 30002~
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where C' is a positive constant independent of f.

Theorem 3.3.2. For any function f € C3(Q), there exists a polygonal spline 8303])6 €

UL(Py) such that

1f - 3;3;1\‘29 < O|f]3 2027

and

\f = 353]1’1,2,9 < O|flz2027%

for a constant C'" which is independent of u, but may be dependent on the boundary of

Q if Q 1s nonconvex.

See Chapter [4] Section for some numerical results using an improvement of the

polygonal spline space detailed in this Chapter.

3.4 Increasing to degree 4

Let us now consider building a similar space, this time using degree-4 Wachspress
functions. We’d start by building functions w7§4) functions from the previous section.
The natural next step would be to build ;bé?%, wg(fl), and the like to construct a new
function space W4(P). However, it happens that W,(P) is not a C' linear space over
any more general partitions than our already-constructed space W3(P) - the interested
reader is welcome to complete the similar calculations, and will see that, while @/1754)
does permit more general partitions, adding analogous functions w;(fq)} and wg(,ﬁ), will
force us to resort to the same partition restrictions as in the degree-3 case. However,
U, (P) could allow us to extend our span to contain all degree-4 polynomials. We’'ll
skip the details of this case and move on to the more interesting case of U5(P), which

permits more general partitions.
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Chapter 4

A Degree-5 Construction of C1
Polygonal Splines on Parallelogram

Partitions

4.1 Degree-5 C! polygonal vertex splines

4.1.1 Construction of zp,,(f’)

We’ll build a degree-5 polygonal spline function which is analogous to 1[11(,3). As before,
we start by first focusing on a single quadrilateral P where v = v; in P, and let

¢£5) ‘P = 1/12(75;, with the requirement that ¢? divides %(5) to ensure locality. A template

for our function, then, can be given by

1/),(5) = ¢7 (Jo.9} + 07 (11041 + Jo,i0i-1)
+ Gi(Jsiiy + Jaadi 1) + Jsidii + Jeidi
+ Gita (Koid; + ¢i( K1 i0i1 + Koydio1) + K307, + Kaid7 )

+ @2, (Soi0i + S1idir1 + Saidi1 + Ss.idir2) ) (4.1.1)
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We choose different letters to name coefficients of terms which are divisible by different
powers B. In particular, terms which have no factors of B are given coefficients J;
these terms affect values on the edge, and thus are used to enforce continuity and to
manipulate edge-direction derivatives at vertices. Terms which have a single factor of
B are given coefficients K; these terms affect C*' smoothness on edges. Terms which
have two factors of B (the maximum possible using degree 5) are given coefficients
S; these terms are more or less free, but we’ll be able to determine them (at least to
some extent) by sum conditions.

To remind the reader, we wish for our function wz@ to satisfy the following prop-

erties:

V| =4y, (4.1.2)

vj
vy =0, (4.1.3)

. J
>yl =1. (4.1.4)

j=1

Since ¢§5)‘U_ = Jos, property (4.1.2)) informs us that Jy; = 1. To determine J;;

and Jy;, we take edge-direction derivatives at v;:

o -5

W J—5

0€;_1 B ’61'71‘ ’

i

and

By property , both these derivatives should be equal to zero. Therefore, we’ll
set J; = Jo; = 5.

Skipping a bit of experimentation which was required in the development of these
functions, we simply mention that the additional flexibility which comes with in-

creasing the degree to 5 affords us the ability to control the Hessian at the vertices
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with a C! basis. With this in mind, we anticipate the construction of some functions
wii{i,wéi?i, and wi‘z)z which will allow us to control second derivatives at a vertex.
To make the implementation of these functions easier, we will include an additional

property for 1/12-(5):
V2| =0 (4.1.5)

To satisfy this additional property, we will check some second derivatives of 1&55).
The second derivatives in each edge direction are easy to compute, since Wachspress

coordinates are linear on the edges:

0y 9 (¢
o | = oa ( ge, (591 + 2000101 + 313,670, + 2J5.i0i6%4)
a¢i+1 5 4 2J' 3 J 2 12
+ 9%, ( ¢; +2J3:9;iy1 + 3J5,9; i+1)
_ (99 ’ 3 2. 2 43
=\ 2z, (2097 4 6097 i1 + 6.J3,:¢:07 1 + 2J5:67,,)
0¢; Opit1
+ 9. o6, (4097 + 12J5,,07 is1 + 12J5,:05% 1)
01\’
+ (%) (2J3,i¢§ + 6J5,i¢?¢i+l)
_ PO 205, —20
oe | e
PP 2,
86? N |€i’2 ’
Vit1

This informs us that we should set Js;; = 10 and J5; = 0. A similar computation in

the direction ¢€,_; informs us that Js; = 10 and Js; = 0.
a2¢(5)
8éiaéi_1

computation is not particularly difficult either, but it does require that we know

There remains the computation of the mixed-direction derivative, . This

the mixed-direction derivatives of the Wachspress coordinates at the vertices. We

compute these now, starting with the edge-direction derivatives of the functions w;
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given in (3.1.2)):

ow;
de;
Oe;
Ow;_y
Oe;
Oz

861‘

Vs

)

CH

v;
ow;

Oe;

Z

CiCin dw; CiCi
C; 2C;_ — 201 — Cias):
|es| (Civa ! deirl,  lem] (2Cin1 +2)
_ Gl Juin| _,,
|€i| 86171 v
awi—l Oici—l
0; _ —Cii):
’ dei-1 |, lei_1] (=Cit)
QWi o
0; IWita | _ .
’ dei-1 |, ’
CiCia - ow; | CiCiy i
|67;| (Cz+2 Cz 1) Jz_; 867;_1 N - |6i_1| (C/[/+1 CZ+2)7
32wi CZ
de;0ei1],, N m(@@w = 2CinCiy);
aQwi+1 CZ
| =1 Ci-10it;
de;dei1 |, leillei—1] it
azwz’—l Cz
deidei v; leillei1] e
D*Wiys C;
a A, —(=C;C;
Beder 1, Jedlera] OO
Z (92111] 0
deide; 1|, o

We use the above to compute the following mixed-direction derivatives of the Wach-

spress coordinates at the vertices:

P | —C2s _
W v B |€i’|6i71|02+10@'717
D*is1 . Ciyo
Oe;0e;_1 v B |€i||€z'—1|ci+17
P i1 _ Ciya
Oe;de; v leillei1]Cia’
O | _ -Gl (4.1.6)
de;0e;1 |, leillei-1|Cir1Cia
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Using (4.1.6]), we can compute the mixed-direction derivatives in edge directions. We

can save ourselves some work by noting that, since ¢i‘6_+1 = Qﬁi‘e“ =0 and ¢? is a
factor of 1/155), then the following derivatives are all zero:
82w(5) 82w(5) a2w(5)
i i A T
851;16@1#2 /Ui717 8ézﬁél+1 vi+17 6éi+1aéi+2 Vit

It remains to compute the mixed-direction derivative at v; - this will involve the

coefficient K ;.

| = (2 ot 0k + 20000
ey () G (000) + G2 ()
2 2
= e Ve s e e e
S R

. 20 5Ci1+2(Ciz1 + Ciy1 — Ciga) — Ko ,CiCiga
leillei] Cit1Ci1eil|ei—]

It is clear that the full area of the quadrilateral P is given by C; +C;0 = Ciiq — Ci_q,

so we note that Cj,1 + C;_1 — C;1 9 = C;. Then we have

82¢£5) _ 2OCi+1Ci—1 + (5 - KO,i)CiCi+2
0€,0¢;1 v Cit1Ci—1leillei1] '
Ci1Ciy

Thus, in order to satisfy (4.1.5)), we set Ky; = 5+ 20 Our results so far

CiCiya
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have yielded the following:

4 = g (¢? 562 (bunn + Gi) + 100462, + 62)
Cizq1Ci
+ Qi | [ 5+ 20— 0F + ¢i( K1 ihiv1 + Ko idiy)
CiCiyo
+ K3,i¢?+1 + K4,i¢§—1)

+ 7.0 (S0i¢i + S1idit1 + Soidio1 + S3idit2) > . (4.1.7)

The remainder of the K coefficients will be determined by C! smoothness over

(5)
shared edges. We start by taking the usual outward normal derivatives —= and
n; e
oy
842 ; after substantial simplification, we retrieve
i1 €i—1
W _ jeil _ lei-a| cos(6:) ei|Ci
o, | = %% 2C, 20, + W36 O
2,3 |€it1] cos(Bit1) €]
oy 30 — K3,
Ci-1 —Ciz2\ lei| 5.3 30 20— Ky,
05 Ks; +C; ~t+t—1);
+< Cit1 2Ai+2¢l w1 i T G C; * Cia
0" 3,2 Jeima| _ Jei] cos(8:) jei-1|Ciss
i — B3 _ 20 — Ky,
aﬁi_l - ¢z¢2—1 30 20@ 207, +( 0 271)201‘—101‘-}—1
2,3 |€i2] cos(bi—1) l€i—1]
oy 30 — Ky,
+ (bl (bzfl ( 207j—1 4, zci_l

Cit1 — Ciza\ leim1| 55 30 20— Ky,
* < Cia 2Ai+1¢l i1 i T e C; * Ci1

Considering two adjacent quadrilaterals P and R as before, we’ll want the following
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sum to be zero:

O O
57 57 = (4.1.8)
i,p €;,p i-1,R €i—1,R
3 2 lei Pl lei-1p|cos(0ip) | leicir|  leir|cos(0;r)
¢P¢i+1,P 30 — , o .
2C; p 2C; p 205 r 2C; r
|6iP|Ci+2P |€i—1 R|Ci+2R
+20 - Ki;p)——"—+ (20— K9, p) ——"—""—
( L) 2C;_1.pCit1p ( 2i.) 2C;-1,rCit1.R

2 .3 leir1,p| cos(0ii1,p) | |eiya,r|cos(0i 1 r)
- ; 30
+ ¢17P¢1+1,P ( ( 2Ci+1,P + 2Ci—1,R

|€z‘ P| |€z'—1 R|
_K 74 9 _ K ,L 9
sl 2Cip b ’RQCFLR
Ci—lP_Ci+2P) leip| 3 3 ( 30 20— Ky,p
+ ’ ’ ’ i pPi Ksip+ Citop + =
( Ciy1,p 2A; 10 p PTHP ¥ i Cip Cic1p

Civ1,r — Civor\ leiirl 5 3 30 20— Ko, R
: - ’ ; ; K Z C’L = .
* ( Cicir 24,415 WTTHLP 4k T LR Cir * Cis1R

The last two lines here are rational terms, with linear denominators, with their nu-
merators both gbf’ pd? .1,p times a constant. There are 3 cases to consider here.

If the linear functions A; o, p|ei,P and A, R|€i71,R are not constant multiples of
each other, then there is no hope of any cancellation in . Therefore, if we
want to be zero, the coefficients on these rational terms must be zero. One
possibility is to require that C;_; p = Ciyo p and Ci11 g = Cipo g. Using the notation

in Figure this is equivalent to requiring that
hz’—l,P = hz‘+2,P and hi-i—l,R = hi+2,R-

Applied to an entire partition P of many quadrilaterals, this is equivalent to requiring
that all quadrilaterals in P are parallelograms. Technically, this results in A; o P‘ei‘P
and Ai+1’R|€i—1,R remaining constant on the shared edge, which means they are of
course constant multiples of each other, which is not in the spirit of this case. There-

fore, we’ll save this as our last case.
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Otherwise, we’ll need to require that the coefficients written at the end of the lines

with rational terms in (4.1.8)) are zero, so we require

C; C;
Ks,; = (Ky; — 20) Cf — 30 ij and
Cita Cito
Ky = (Ky; — 20 — 30 ,
1= (K )Ci+1 C;
which allows us to simplify (4.1.8]) to retrieve
o MR _ (4.1.9)
on; p e p Omi—1,r - o
3 2 leip|  leiciplcos(fip) | leiir| |eir|cos(bir)
iP¢i+1,P 30 T , + o .
2C'z,P 2C'z,P 2Cz,R QCz,R
|eiP|Cz'+2P |€i—1R Cz'+2R)
F(20 — Ky p) e PEERE 00 [y, )i BATHRR
( L) 2C;21.pCit1p ( 2i.) 20;-1,rCit1,R
|€i+1 P| COS(9i+1 P) |6¢ PlCi+2 P
+ &7 p; (30 < 2 2 : :
OipPisp 2Cinp 2C; pCit1,p
|€i+2,R| COS(ei—l,R) \6¢—1,R’Cz‘+2,R
2C; 1R 20 rRCi_1 R
|€¢P|C¢+2P |€ze1 R|Ci+2R
200-Kq;,p)——""—"— 20— Ko, p)———————|.
* Li.p) 20,21, pCita p * 2i.) 20;-1,rCi41,R

The terms involving K ; and K, in (4.1.9) are identical in both coefficients, so both
these coefficients can simultaneously be zero only if the remaining terms are equal;

we need to enforce

|6z‘,P| (C¢+1,P - Ci+2,P) . |6i—1,P| COS(@‘,P) . |€i+1,P| COS(9i+1,P)

2C; p Cit1,p 2C; p 2Ci11,p
_ lei—i,r| (Cita,r — Cicir n |es,r| cos(0;r) n |€it2,r| cOS(0i—1,R)
20 R Cicir 2C; r 2C;_1.r .

While there are some geometric assumptions on P which can satisfy this, we weren’t
able to find anything intuitive or more minimal than the aforementioned possibility

of forcing all quadrilaterals in P to be parallelograms. Therefore, we’ll dismiss this
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case.
We now consider the case that Ai+2 Pl, i = mAZ-+1 R|, " for some constant m.
’ i, ’ i—1,

We can solve for this constant m at each vertex:

Ci
+L,R
A¢+2,P‘U_P = Ci_1,p, Ai+1,R|v,R = CitR m=s
b B i—1,P

Ci
+2,R
A¢+2,P|UA = Cit2p, Ai+1,R| _ = Cit2,R =>m= 4
i+1,P Vi—1,R C’i+2 P

)

Therefore, this case only occurs when

Civor  Citor

Cicip Citir
leiv1.psin(0isor)  |eivor|sin(0isr)
le;—1,p|sin(6;_1.p) s,z sin(b;41.r)

hitop  hitar

b
hi-ip hitir

which is the same condition as we set in . As discussed there, we must require
that the ratio of the heights shown in Figure be the same in P and R. As before,
this condition is too abstract and non-intuitive to enforce unless we require the ratio
to be 1, which in general forces all quadrilaterals in P to be parallelograms.

All signs point us to require that P is a partition of parallelograms. While any
geometric restriction is undesirable, this situation is at least more robust than the
partitions which our degree-3 analysis permitted: with the absence of any requirement
of collinearity of edges, we see far more robust behavior, and even admit extraordinary
points - vertices on the interior of P which have a valence not equal to 4. An example

of such a partition is shown in Figure [4.1]
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Figure 4.1: A partition of parallelograms

Exploiting parallelogram geometry, we are able to simplify (4.1.8]) to

oL,

8711‘71,}2

oL,

D

€, P €i—1,R

;.| |€i—1,R|

3 2 9 )
z,P¢z+1,P (( K, ,P) 20, + ( K, ,R) 20,

lei—1.p|cos(b;p)  |eir|cos(f;r)
30 < 20, 20n

lei—1.p|cos(b;p)  |eir|cos(b;r)
¢ P¢z+lP ( 30 ( 2CP + QCR

|6iP| |6i—1R|
ip—— — Ky, ’ . 4.1.10
A To T ( )

We can make (4.1.10)) zero by setting

Ky ; =50 — 30| |cos(0) Ky; =50 — 30| il cos(6;),

|€z| |61 1|
Ks; = —30|€i_1‘ cos(6;), K,; =—-30 e cos(6;).
lei] lei1]
) (5) 81/}(5)

= 0.

In fact, these choices of coefficients will give us that

('3711 87%;1 i1

4
The S coefficients can be found by computing the difference 1 — %@, using the
j=1
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5
4

fact that 1 = (Z qﬁj) :
7j=1

4

4
1= ¢ = —B2C*> " ¢; (100 — Soj — S1js1 — Sajor — Ssgia) . (4.1.11)
j=1 j=1
Of course, there is not a unique set of values for the S coefficients to make (4.1.11])
zero. We'll simply put everything into the Sy; coefficients, setting Sp,; = 100.

Then we retrieve the final result

Y = g7 (¢f + 507 (Gi1 + Gi1) + 100, (07, + 67y)

|€z‘—1|

+ Qito <25¢@2 + ¢ ((50 — 30 el cos(@i)> Git1
+ (50 _ 5014 cos(&,»)) @_1)
|€i-1]
€]

—qb?_l) + 100¢i¢i+2)). (4.1.12)

leia]

— 30 cos(6;) (%gbfﬂ +

As with our prior constructions, for every vertex v in P, define the C! vertex splines
1/155) by zpfil in each parallelogram P € (), where v = v; in P, and zero otherwise.

The discussion in this section serves as a proof of the following:

Theorem 4.1.1. Let Q be a polygonal region in R? which permits a partition by
parallelograms as in Figure[/. 1], and let P be such a parallelogram partition of Q. For

every vertex v in the partition P, define a polygonal spline ¢£5) over €, by

wS};(x) xePCQ;v=up

0 x & Q,,

where %(51; is the function in (4.1.13).

Then %5) satisfies the following properties:
(1) ¢£5) (w) = 8y for any vertex w of P;
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(2) Vi (w) = 0 for any vertez w of P;
(3) V2 (w) = 0 for any vertez w of P;
(4) v € CHQ); and
(5) S =1.

=

The plot of a function 7,&1()5) over the paralellogram partition shown in Figure

is shown in Figure

N

Figure 4.2: The plot of a function wff)

4.1.2 Construction of ¢§52, and wﬁ

As in the degree-3 case, we’ll proceed from here to build functions wﬁf’i and @Z)ﬁ to
extend the span of our C'! vertex spline space to include linear polynomials. Just like
before, we’ll focus on @D;(Ci), first, and we’ll begin by restricting our attention to a single

parallelogram P in €),, with v = v; in P and @Z);SZ)P = wg(ci),‘P
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To remind the reader, we aim to satisfy the properties

v, =0, (4.1.13)
3y Uj
V%bg(fi)lv. = (045, 0), (4.1.14)
4
> v + ) =, (4.1.15)
j=1
and we add the additional condition
v, =0 (4.1.16)

We can use the same template given in (4.1.1]), and the condition (4.1.13]) informs

us that Jy; = 0. We can compute the edge-direction derivatives at v; by

I WOy
Qéz v - |€i|’ 8éz‘_1 v a |€i—1| '
(5) . o .
By (4.1.14)), we should have dji“ — 52 and ?N%,z = 61—1,907 so we'll set
de; |€z‘| 0€;1 v |€i—1|

Jl,i = €Cix and JQ,’L’ = —€i—1z-
To satisfy (4.1.16)), we need to consider the second edge-direction derivatives at

the vertices. First, notice that

62@09(52 2Js,

8(5? - = W, and
PUS | 2
& |, ., leial*
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so we should set J5; = Js; = 0. Next, we compute

8210;52 . 2<]3,i - 86i,m
o¢ |, el 7
82¢;52  2Jy;+ 861,
9&_4 |, leia?
so we'll set J3; = 4e; , and Jy; = —4e;_1 4.

Finally, we’ll compute the mixed-direction derivative at v;. After some simplifica-

tion, we retrieve

5
62¢:§~,2 _ 5(ein—€im12) — Ko
0€,0¢;1 |, leillei-1] 7

which is zero exactly when Ko, =5 (s —€i—14) -

So far, then, we have

%(552 = ¢7 (¢?<€i,x¢i+1 — €i—12Pi-1) + 4¢i(ei,x¢z2+1 — €i1007 1)
+ Qito (5 (€iz — €im14) Qf
+¢i(K1,ipiv1 + Koii1) + Ks,icbfﬂ + K4,i¢1271)

+¢7.5(S0,i0i + S1.iPis1 + Saii1 + S3,z‘¢z‘+2)) . (4.1.17)

As usual, we determine the rest of the K coefficients by enforcing smoothness

across shared edges. We compute the outward normal derivatives of "gbfz) on edge e;
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and e;_1, which can be simplified using parallelogram geometry and (3.2.25)) to

MWt _ g ()
on; |, "\ el
+ 50} hia <Té—j)
+ 22, ((20% K1) |2€C| 8%%)
+ P28, (—Kg,i |260| _ 1261.@'@—1'2%(91‘)) ;
oy

€i—1,
=)
€i_1 6z—1|

+ 561 1(|Z lj)
€i—1
e e;| cos(0;
+ ¢jor ((_206i—1,z — Ky;) | 201| + 862’-1@%)

le;| cos(6;)
2C ’

01ty

[

12¢; 1,4
20-1— 1

+ ¢12¢§—1 (_K4 i

Considering two adjacent parallelograms P and R sharing an edge as before, we

compute the sum of their outward normal derivatives on the shared edge by

(5) (5)
ad}x,i,P awac,i,R
ani’P €, P ani_LR €i—1,R

|€z Pl lei—1,p| cos(0; p)
P¢Z+1 P <(20€Z T Kl )% P) QCP 861'73;7_[:’ 2CP

|€¢—1 R| ‘eiR|COS(ei R)
+(—20€;_1,.r — Ko, — 4+ 8¢, 1 p——————=
( €i-Lla.R % ’R) 2Ck Ci-la.R 2Ckr

|€ZP| |€i—1 P|COS(02‘ P)
Ks; —12¢; » : :
+ (b P¢z+1P < 3,0,P 5~ 2CP 6: P 2CP
iy, el o, leirl cos(6ir) (4.1.18)
4,i,R QOR i—1,2,R QCR . 1.

There aren’t unique choices for the K coefficients to make (4.1.18]) zero, but with

respect to the condition (4.1.15)), which we’ll discuss in more detail shortly as we find

96



the S coefficients, we’ll set

lei]
el

Kl,i = (20 — ]_8 COS(@Z‘)) 61‘,$ — 1061‘_171,, K3,i = —12‘62.71’ COS(@Z‘)GZ'J,

el
i

leii]

i

leial

Ky, =— (20 — 18 COS(ei)) eic1o+10e;,, Ky; =12 cos(6;)e;—1.4-

Finally, to find the remaining S coefficients, we expand

and compute the difference
4
5 5
T — (Z Uj7z¢§ ) + 7@;3) =
j=1

4
D BC'; (40 (€10 — €50) — (S0 + S1j-1 + S2j41 + Ssj42)) -

j=1

Again, there is not a unique set of solutions, but we’ll make a similar decision as
we did for ¢§5), and set Sp; =40 (€;, —€i—14), and Sy ; = Sz, = S5, = 0.

Then we finally retrieve the lengthy expression

1/13(651) = ¢@2 (¢?(€i,x¢i+1 - ei—l,x¢i—1) + 4¢i<€i,:p¢z2+1 - ei—l,zﬁb?q)

+ Givo (5 (Ciw — €i1.2) OF

+ @ (((20 — 18‘e|f;|l| COS(Q,-)) Ciz — 10€i_1,z> Pit1
— ((20 — 18|iei‘ | COS(Qz‘)> Cila — 106i,x) ¢i—1)
i—1

€31 cos(0;)e; o 07,1 + 12 il cos(0;)e;—1,.07
e O] o

+40 (€10 — €ic12) O ?+2)- (4.1.19)

—12
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We can retrieve the expression for "gbfz) by simply replacing each x by ¥ in

1.1.19)),

and for each vertex v in P we define ¢§53 and 1/13551), piecewise over €2, as usual. By

construction, we have the following:

Theorem 4.1.2. Let Q be a polygonal region in R? which permits a parallelogram

partition as in Figure[{.1, and let P be such a parallelogram partition of Q). For every

vertex v in the partition P, define polygonal splines @/J;m and @D

) (x) :

and ¢(5)( )

\

\

where w:(ji)yp is the function given in

[ 40,00 x€PC O v=up
0 X & Q,,
W) (%) xe PC Qs v=up
0 x ¢ Q,,
4.1.20

retrieved by replacing every x in wg(fzp by y.

Then wg(f’z), and 1/11(,51)} satisfy the following properties:

(1) 1/19(:51);(10) = ﬁ,(w) = 0 for any vertex w of P;

(2) Vibia(w) =
(3) V? :(551))(’(1))
(4) %03(051);, (5) e CY(Q); and

(5) 3 v, + )

veEP

veEP

(0pw,0) and Vl/}l(fg = (0, 6yw) for any vertex w of P;

= qubﬂ(w) = 0 for any vertex w of P;

=z and Y v, + i) = y.

Plots of these functions are shown in Figure [4.3]
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(a) The plot of a function 1#9(51),

04

03

(b) The plot of a function 1/}5?,

Figure 4.3: Plots of degree-5 gradient-adjustment vertex splines
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4.1.3 Construction of 7/)?@, wéi)v, and @Dg,),v

We’ll extend the span of these vertex splines to include degree-2 polynomials. We’ll
do so by constructing new C! vertex splines to assert Hessian control. We’ll construct

functions wa " w and wé@{v which satisfy the following properties for every vertex

Y20

w in P:

wg)’v{w _ %(,2),@‘ @ny)v - (4.1.20)
vl |, =Vl |, = WS},U w=0; (4.1.21)
dpw 0
Vil = |
0 O
0 O
0 51},10
) 0 dyw
V)|, = , (4.1.22)
dpw O
along with the additional conditions that
Sl + 20,00 + 208, = o,
veEP
> o2y® + 20,00 + 200 =y,
veEP
> vty + 0,080 + v + 0, = vy (4.1.23)

veEP

We'll first construct the function wxy ». Again, we first restrict our attention to a

single parallelogram P in €),, with v = v; in P and define %:y P wxy U‘ P

We begin with the same template given in , and note that conditions ({4.1.20))
and (4.1.21)) imply that Jo; = J1; = Jo; = 0. Using the simplifications that come
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with the restriction to parallelograms, it is not difficult to compute

2

Pl 2, PUS) | 2 wWh | —K,

¢ |, lel*’ 0e; ., |, leial®  0€0& 1], leilleial
32¢§;5y),i _ 254 82@59(02),1' _ 2,

e |,., lel* 08 4 |, leial®

(5) (5)
I
86i86i+1 Vit 8617186i+2 -

Using condition (4.1.22)), we see that we should have

2
2,/,(5) 2,/,(5)
% _ 2eiaCiy d ¢wy7i _ 2ei12€im1y
~ — T 19 ~9 -
e |, lei]? ey |, l€i-1]?
(5)
ad)xy,i o €ix€i—1,y + Ciy€i—1,x
~ ~ )
de;0e; 4 v leillei—1]
2,/,(5) 2,/,(5)
8 wa:y,i -0 8 ¢xy,i -0
~9 — Yy ~9 - Y
861 Vig1 ael_l Vi1
(5) (5)
awmy,i -0 awa:y,i -0
~ A~ — Y A~ A~ — Y.
861062-“ Vit (961',1(‘9€i+2 Vi1

Therefore, we'll set Js; = €; 265y, J1i = €i—12€i—14, J5,; = Jo,; = 0, and
Ko = —(€ix€i—1y + €iy€i—12)-
We determine the remaining K coefficients as usual, by enforcing C! smoothness

on shared edges. We take outward normal derivatives of %D;E;By)z on edges e; and e€;_1.
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Using (3.2.25)) and some parallelogram geometry, we can simplify the derivatives to

2 2
es — e
= 0 ir1 (—l’y m)
e l€i

|ez| lei_1] cos(6;)
+¢3 i1 (5ei,xei,y K, z) e, ei,xei,yT

€; €;-1| COS Qz
+ ¢2 i+1 (_K3’L| | - Bei,xei,yw> )

(%)
awxy,i
on;

m20 2C

i . ¢4¢ . (e?—l,x - eg—l,y)
— = Q:Q;_ —_— 7
€i—1 Z |€i*1’
e e;| cos(6;
((562 1,z€i—-1y — KZ,’i) % - ei—l,xei—l,y%)

lei_1]| |ei| cos(6;)
+ ¢7o) 1( Ky 250 _3ei71,xei71,yT .

If we consider two adjacent parallelograms P and R in P as we have before, we

can add their outward normal derivatives on the shared edge to retrieve

Wiir|  Win|
O p eip i1, -
?,P¢12+1,P ((5€i,x,R€¢,y,p — Kiip) |26ic’f;| — €i2.PCiy.P |6i—17P2|g;S(9i,P)
+(5¢i-10,rCi15,R = K2 R) |€;_T1;:¢R| - Gi—l,x,Rei—Ly,RW)
7 P¢z+1 P ( Ksip ’2101;‘ 3€i.z.PCiy.p ’eilvljgj(@if)
_K4,i,R|e;CII7%R| — 36i—1,x,R@—Ly,RW) . (4.1.24)

As usual, there are not unique choices of coefficients to ensure that (4.1.24) is zero.

However, just as when we were building 1/1 we can refer to the condition (4.1.23

xﬂ
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to choose

lei 1]
el

Ky = 5¢e; €, (1 — COS(Qi)) —2(€ig€i1y + €iyei14);

lei]

i1l

Ky; =5ei_14€i-1y (1 - COS(Hi)> —2(€ig€im1y + €iy€i1a):

€;_
Ks; = ei,xei,y% cos(0i) + 2 (eini1y + €iyei14);
1

|€z‘|

leiil

Ky =ei—14€i-1y cos(6;) +2(eiz€im1y + €iyeio1z)-

)

Finally, we use the same condition (4.1.23]) to find the S coefficients. We first

evaluate the difference

expand

4
5 5 5 5
vy — (Z 0,20+ 050 0y wi;-) =
j=1

4
B*C* (Z 10(€; v€iy + €im10€i—1y) — 16(€; z€i 1y + €iy€io14) — So,i) ;

=1

)
so we'll set SOJ‘ = 10(62":561'@ + ei_l,xei_Ly) - 16(61‘@61‘_14/ + ei,yei—l,x)'
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The result follows:

5 2 9 )
@ng(cy)’i — (¢i(ei’x6i’y¢i+l + €i1.2€i-1,yPi_1)
2
+ ¢i+2 ( - (ei,xei—l,y + €j7y€i_17x)¢i

€i—
+ ¢2 ((5€i,xei,y (1 — ’ 1| COS(Gi)) — 2(61'@61',1@ —+ ei,yeil,x)) ¢i+1

leil

€;
(562'1@61'1,@/ (1 — e COS(@')) — 2(€; i1y + ei,yeil,x)) <Z5z'1)

|€z‘—1|

el

+
+ ( eize m(:03(9-) + 2(€; €51y + €iy€io1z) | OF
1,2C%,y ’61| [ ,xCi—1y ez,yezfl,x i+1
< F— COS(@Z') + 2(62',3362'_173,, + ei,yei_l,m)) qb?l)

6i—1|

—I— (10(€i,$ei,y —f- ei—lwei—l,y) — 16(61‘@61'_1@ —f- ei’yei_17x))¢i¢?+2> . (4125)

In a similar manner to how we could retrieve ¢l(/51) from @/JS‘Z) by simply replacing

each x in (4.1.19) by y, we can retrieve wéi)i and wi«?i from (4.1.25) by replacing each

x by y or each y by x, respectively, in addition to multiplying by a factor of % Then

we’ll have

1
o= g0t (0ot + i)

+ Pira| — 2€i5€i 107

(56?@ (1 — |€’1€‘1’ cos(@i)) — 4ei,xei_17x> Git1

567,2—1,30 <1 - |6|62|1| Cos(ei)) - 462’,3:61'1,90)) ¢z’1)

_.I_
+ (e lei_1|cos(9-)+4e< e b3
1,T |€ ’ ? ,2Ci—1,x i+1

)

eA
6121795|€|—Z| COS(GZ') + 461'71«61'_1’@) ¢121)

i1

+ (10(6?’1 + ef_lyx) — 32ei,$ei_1,$)¢i¢§+2>, and (4.1.26)
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1
%(fz)),l = §¢12 (¢i(eiy 22+1 + e?—l,y ?—1)

+ Gira| — 2ei 611,07

[
<5eiy (1 - | |e-|1| COS(@Z')) — 4€z‘,y€i—1,y> Git1
5

€;
612_17?; <]_ — |e|z_|1| COS(QZ‘)) — 46i,yei—1,y)> Qbi—l)

+
+ [ € |ei71‘cos(9-)—|—4e- e P
1,y |6z| 7 1,yti—1y i+1

€
e ’ | Cos(ei)+4ei7yei—l,y> Cb?—l)

+ (1O(€§7y -+ 612_17y) — 32€i,y6i1,y)¢i¢?+2) . (4127)

For each vertex v in P, we define the functions wg(;)w ;‘Z)v, and ngv piecewise

over (), as usual. This section, combined with the 2 preceding it, serve as a proof of

the following:

Theorem 4.1.3. Let Q be a polygonal region in R? which permits a parallelogram
partition as in Figure[{.1, and let P be such a parallelogram partition of 2. For every

vertex v in the partition P, define polygonal splines wy(;)v, wﬁ)v, and wg(;?,)v over ), by

)
¢(5) (x) == wiz)zp(x) xePCQy; v=up
2w -
0 X & by,
\
()
¢(5) (x) = wa,i,P(X) xePCQ;uv=up
2 v —
\
([
w P(X> XGPgQU;U:’UiP
5 . Y3, ,
P8, (x) =
0 x ¢ €1y,
\

where ¢$)’LP, ¢g(c52)ip, and @Z)l(g)ip are the functions defined in (4.1.25), (4.1.26)), and

Tz,

Then wg)v, @D?S“Z)U, and @ng),y satisfy the following properties:
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(1) 68, (w) = 02, () = ¢(w) = 0 for any verter w of P;

2
y=,v

(2) wa;)’v(w) = Vz/zﬁ)’v(w) = Vzﬁ@v(w) =0 for any vertex w of P;

vw 0 0
(3) V23, (w) = V20 (w) = ,
0 0 0 duw
2, 0w
and V2gy(w) = for any vertex w of P;
dpw 0

4) vQ, w8 el e 1 (@),

(5) Sl + 20480 + 200, = %, Sodul® + 20,00+ 203, = o2

> Ux“wagg)) + vng’% + Uziﬂz(/i)) + ¢£‘?jv = 2y,

(6) Where \Ifé,V(P) = span {1/11(,5)7 1#5;51)1, 1/1;(/51))7 wﬁ)v, w;?v, ¢§:5y),v}vep,
dim(V3 \,(P)) = 6|V,

(7) 1y C \Ifé’v('P).

Figure [4.4] shows plots of all three of these functions.

4.2 More degree-5 C! polygonal splines

4.2.1 Motivation to extend

Or course there is interest in maximizing the span of our C! polygonal spline space,
and the linear span of degree-5 polynomials of Wachspress coordinates includes all
bivariate polynomial functions of degree up to 5. Since polynomials are C!, an ideal
degree-5 C! polygonal spline space should include up to degree-5 polynomials, but so
far we’ve only guaranteed inclusion of polynomials up to degree 2. We can check cubic

polynomials manually; for example, if we have any hope of including 23, it would be
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x,ﬁ )YJI f )Y‘/\“

(a) The plot of a function 1,/)3(052)”

(b) The plot of a function 1/)3(;)”

X&ffﬁfffx

. 5
(c) The plot of a function @[)g(gy),v

Figure 4.4: Plots of degree-5 Hessian-adjustment vertex splines

107



with the function

> w3® 4+ 30200) + 60,9, (4.2.1)

veEP

Within a single parallelogram P € P, we can express z° by

P (Soa) (30 422

j=1

We can compute the difference of (4.2.2) and the restriction of (4.2.1) to P, and
unfortunately, this difference is nonzero, which shows that the span of our vertex

splines thus far does not include cubic polynomials:

4
5 5
2], = Do + 307,00 + 60,007
j=1
. lej—1]
i1
= C’ZB;%? (¢j+1€?,x (ejl,x + |;j| COS(ej)ej,x)

e.
_¢j71€?_17x (ej,z + ’ J‘ COS(@j)ejo))

— 1202B¢j(6]‘@ — €j_17z)€j,m€j—1,z‘

A reasonable thought is to control third derivatives at each vertex, but not only
are third derivatives cumbersome to compute, it is also questionable how useful third-
derivative information is to an interpolation scheme - currently, we can define a quasi-

interpolant Qv (f) for any function f which is C? at the vertices by

of af
_ E (5) (5) (5)
QV(f) - Uepf‘vwf + ax‘vwx?v + ay ‘va?v
o*f

da?

Pfl
| Y (4.2.3)

Y20

+

2
e, 9 F |
¢x2,v + &an way,v +

v v

but it seems unlikely that third-derivative information would be available - it might
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¢; &3

ds & &3 &5 &3 ¢3 b4
& (ﬁ e * k k &, Cﬁa‘
B, B s ¢; B3 ¢y B &;
1 63 . . . . &3 63
B ¢} B ¢ B ¢ B,
on . . . . & 3
Bd7 ¢y B ¢, B ¢, B &3 s
1 b4 . - . . 3 b
By Bé1 ¢ B¢ ¢ Bé;
¢ %
¢l ¢ 41 ¢3 1 b3 ¢1 &3

Figure 4.5: An illustration of the degree-5 polygonal spline basis functions with the
associated domain points

be ambitious to even hope for second-derivative information. Moreover, even using
polygonal splines of degree 5, we don’t have enough flexibility to fully control third
derivatives. At this point, it is helpful for us to consider the degree-5 monomials by
their domain-point interpretation; see Figure [4.5

In order to avoid disturbing the properties of our previous vertex splines - namely,
the value, gradient, and Hessian at each vertex - we must be sure to avoid using the
marked functions in Figure [4.6]

By Figure [4.6] we can see that the functions which would affect third derivatives
at each vertex would include some which would interfere with the second derivatives
of other vertices; for example, the functions which would affect the third derivatives
at vertex vy include ¢33, B¢y, B2y, and ¢3¢

The functions associated with the unmarked points in Figure are still free to
manipulate without disrupting our previously established properties, but it is worth-

while to separate these into two classes. In particular, some of the functions are free
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Q4
2 6

4144 52 8

1 ¢33

1 ¢4

s

¢1: & &3 ¢1 ¢3 ¢143

Figure 4.6: The functions marked in red affect values at each vertex; those marked
in blue affect gradient, and those marked in grey affect the Hessian.

to manipulate without affecting C* smoothness on the edges, while some do affect
the gradients on the edges. See Figure [4.7]

Finding some quantities we can use for quasi-interpolation in relation to the func-
tions indicated in Figure is worth considering. The functions marked in Figure
[4.7a] are more complex to consider on the scale of the entire partition P, because
we must ensure that they interact in a manner which maintains C' smoothness over
shared edges.

From Figure consider particularly the functions B¢2¢, and B¢i¢3. Since
the function B is zero on every edge, and the product ¢,¢y is zero on every edge
except e;, these functions only affect the gradient on edge e;. We can still make C*
local basis splines using these, but instead of being based in the neighborhood 2, of
a vertex v, these functions should be based in the neighborhood 2, of an edge e. For
this reason, it would be inappropriate to call such functions vertex splines. Instead,

we will call them edge splines.
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(b) Domain points associated with degree-5 basis functions which are free with respect to
C' smoothness

Figure 4.7: A classification of remaining degree-5 functions into 2 classes illustrated
by domain points
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4.2.2 Degree-5 C' edge splines

We’ll use the spline functions constructed in this section to control gradients on edges.
Since the values along each edge are fully determined by the already-constructed ver-
tex splines, the derivative in the edge directions can’t be manipulated at all. We’ll
focus on the outward normal direction. However, if we’re to use the outward nor-
mal derivative on the edges for quasi-interpolation, we should know how our other
functions are affecting it. Fortunately, the functions 1/)7(,5) have zero outward normal
derivative on edges, but the other functions generally do not. Focusing on a single

parallelogram P, the other vertex splines have the following normal derivatives on

the edges:
5?#(5-) Ciy 13 (.2
x,i LY 8 2 5¢;0; 10 2 :
on; |6i|(Zsz (¢Z Fo00 ¢H1) ,
6%(653 €i—
el | Gl (62 4 5,y + 1062, ;
o1, el
Ot | —Cin 5o
5T [aX - ) 5 i Di 10 2 ;
0, |, = Ted % F P00+ 1000);
oy’ —€i 14
vl = LG (82 g+ 1002) ;
01t ei1 | z‘fl‘
Wl e
T, — 1, Y 2 ; 2 2 Hox —2 2 N
87_1’1 § |ez‘ ¢z¢+1<¢l -+ ¢¢+1 ¢z+1>7
). €i1uCio
S = R (6F + 201 — 207);
oni—1|,, | lei1]
61/)(2)2 —€; 264
v = LY ¢f¢,+1(¢? + 2¢ipiy1 — 2¢§+1)?
o e €]
o). —ei_1 a0
LR o TOLelioly g2 (62 4 2 — 202 1)
O 1|, |€i—1]
81/)(5?/) ezy—ez 2 2
wi ) o [ Y BT 424 (92 4 2bidiss — 202 4);
o, |., ( e )W“(“’Z EC

o).

lei1]

€ 1y~ €1a
— (y—> O di1 (D7 + 2051 — 2¢7_1);
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and the functions which we will use to build our edge splines have the following normal

derivatives on edge e;:

_led

2C

_ _led

0
LR a_ﬁ»i<¢i+2¢?¢?+l> e

i

0
%(¢i+2¢?¢i+l) = 92512(/5?“-

7

We consider where these functions are maximized (in magnitude) on edge e;. The

3 2
(5) ._ —v; + —v;41, while the latter is maximized

former is maximized at the point e;; : 5 5

2
at the point e§i.)+1 = =V + —Viy1-

5 5

We evaluate the outward normal derivative of the quasi-interpolatory vertex spline

Qv (f) at the points e;; and e;;41:

8%Vﬁif ) = 5% ((9929 /7], + 213397, )
+6 (39V2f\w - 4V2f\vm> é;-T> ;
a%vﬁif ) T 5707 ((9029 /7], + 2133V /7], )

+6 (3092/],,, —4v*f], ) &").

Our goal is to find a revised quasi-interpolant Qg(f) such that

9,
on;

0
on;

0Qe(/f)

on;

0Qe(f)

on;

, and

€i,i

iy €i,it1 €i,it1

Where the parallelograms P and R share the edge e = e; p = €;_1 g, define the
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functions

U p(f) = Gisard pbivie (Kiap(£rp + Koop(f)bir)
¢éi)—1,R(f) = ¢z‘+2,R¢?,R¢?—1,R (Kai,r(f)ir + Kair(f)bi-1,R) ;

i, P X), T P
VO (f)(x) = @j (Nx), =€ |
09 (), zER

Qu(f) = Qv(f)+ > _vP(f)

ecP

(4.2.4)

(4.2.5)

(4.2.6)

for constants K1 ; p(f), Ko r(f), Ks:p(f) and K4, g(f) which depend on the function

f. We compute the normal derivative of w(s') f) at the points e;;.p and €;;41.p:
€7Z,P [Ag) ) )

5¢(5)P(f) _eip]
— ; 2K, Ko .
87?@ P €5 ip QCP o 3657 ( 1717P<f) + 3 3,1,P(f)) X
V) p(f) eirl s
o |, 20,05 PRl +2Ksirn(f).
We want
w _(Of 9Qv(f) and
aﬁl P €i.i:P aﬁi,P 8ﬁi7p e i'P7
) p(f) (0 0Qu(f)
87%,19 Csiitp on; p Oni; p . ¢+1-p’
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so we require that

_ 5°2Cp [0Qv(f of
2K 3K3; , and
1, 7P(f) + 31, P 36 |€Z ( anl P anz Ple;, o
_5%2Cp (0 9
3K17i7p(f) + 2K3,1P Z QV N _)f » 0
36 ‘61 anzP €iit1:p ani»P €iit1;P

<3Qv(f ) of )
2 3 Ky, p(f) 50 20p on; p of; p

390 )\ Kpp(y) ) Olearl (8Qv<f>_ af)

8ﬁi7p 6n,7p

€ii

€iit1;P

S Kplf) = 2 27 (3((8Qf<f)— o)

36 |€1 P’ O, p ani’P €i,i+1;P
oQv(f) of
8711 P aﬁi,P €ii:P
2CP S
2 2 > T
16 (25v fl,.. —18V1],, 1P) p)

54 2Cp (. Of of
= 2— — 3= ;
36 |6i,P| aniﬁp €i,ip 8711'713 €i,it1;P

K?),i,P(f) =

5_42013 <3<5Qv(f) of )

36 |6i,P| 8771:171:’ an’b P s
L (9 of
aﬁi,P anz,P e
i,i+1; P
_ 2%k ﬁzp( 883Vf] —258Vf} )
36|esp| e
+6 (25V2f}vi+1 ~18v3],. ) 511;)
54 20p of of
— (2= — 3= :
36 ’ei,P‘ ani:P €i,i+1;P ani’P €i,i; P
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Similarly, we must set

2CR

Ky, — 2

( (883V f} vl_LR)

+6(25V2f}% ~18v3f, ) leR)

+ 50 2Cx o Of 3 0f and
36 |e;—1r| \ ONi—ir civin Ofi—1,r Citionn ’
2Ckr
Ki;r(f) = m( (883Vf], , ,—258Vf[, )

+6<25V2f|vi_1’ —18V2f], ) &l 1R)

of )
€i—1,i;R

-3
Omi—1,r
Conveniently, this does give us that the functions wgi’ p(f) and @béi-)fl’R( f) join

5 20k (2 of

% |€¢—1,R’ aﬁi—l,R

€i—1,i—1;R

C'-smoothly over the shared edge e; p = e;_1 r. The plot of an edge spline w£5) is
shown in Figure

P S Y

Figure 4.8: The plot of an edge spline ¢é5)

We can create an improved quasi-interpolatory spline which utilizes both vertex
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and edge splines, defined by

Qu(f) =Qv(f) + > _vP(f). (4.2.7)

ecP

We should make some comments about degrees of freedom gained to incorporate
this improved method. We first define some special edge splines which can act as
basis functions. Where e is an edge in P with P € (), and e = ¢; p, denote by @Dfl)

the edge spline which results from the conditions

of

i

of

=1
D,

)

Qv(f)=0; =0,

€i,i; P €i,i+1;P

and denote by wf’g) the edge spline which results from the similar conditions

of of

The dimension of the C" vertex spline space W} (P) defined in Theorem is
6|V|, where |V| is the number of vertices in P. We can define an augmented space
Ui p(P) = Wi, (P) @Span{lpfl),wgz)}eep which has all the degrees of freedom of
\IJL},,V(P), along with 2 additional degrees of freedom for each edge in P, so that
dim(V3 (P)) = 6|V| 4 2|E|, where |E| is the number of edges in P. Unfortunately,
in general the space W} ;(P) does not in general contain a polynomial space of a de-
gree higher than 2 - in particular, even degree 3 polynomials incur errors associated
with the functions indicated in Figure 4.7b| and in fact these functions don’t affect
C! smoothness at all. For this reason, we can manipulate them freely in each paral-
lelogram, and so we will create another class of new polygonal splines which could be

called face splines.
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4.2.3 Degree-5 face splines

For a given parallelogram P, define the function

5
V) b= B3R,

We'll construct a quasi-interpolatory face spline over P by

HOED BRI 4 (4:28)

for some constants S; p(f).
We'll determine the constants S; p(f) as follows. First, we find points pp; € P
which maximize the functions wﬁg”z p-  Exploiting parallelogram geometry, we can

. . 5
compute a nice expression of V%(wz p

ng,P = ¢} bir2 3012V i + 20,V i)

G Pira
C4

(Ai(C — A)(2C —5A; 1)V Ay

+ A 1(C = A 1)(2C — BA)VA,).

Since VA; and VA,_; are linearly independent, it’s necessary that we enforce both

of the following:

We can ignore the cases when A; =0, A;, =C, A;_1 =0, or A;_; = C, as these all
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happen on 0P, where wﬁ?i p = 0. Thus, we really should enforce

C C 5
Then we’ll have
b = Ai1Ais _ 9. Biar = Ao Aiy _ 6
T 02 255 i+1 02 25;
biy = AiAin _ 6 Bivs = A1 A _ 4
i—1 02 257 i+2 02 25

Thus, for ©+ = 1,2, 3,4, we’ll define the points

1
pp; = % (9?)1 + 6Ui+1 -+ 61}1'71 + 4’Ui+2) ,

and we’ll interpolate the values of f at these points. We have the following values of

face spline functions at these points:

5 05

e _ 392t e _ 32
Fyi,p PP,i 510 ) Fya,p PPi+1 510 ’
(5) 3020 (5) _ 32
q/)F7i7P}pp,i+1 = Tgi0 VP PPtz HI0 -

Then, for each i, we’ll have

34 21
Uiply, = 0 950p(F) + 6Susnp(f) + 6Simp(f) +4Si2p(f))
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We aim to construct a new quasi-interpolant Q(f) such that

Qr(f) = Qe(f) + > ¢eh, (4.2.9)

PePpP

so for each P and i = 1,2, 3,4, we’ll need

Vipl,,, = (f = Qu(M),,

|pP,i

Then we can solve for the coefficients S; p(f) by the following linear system:

96 4 6\ ( Sur(f) (f = Qs
3120 69 6 4[| Sp(f) [ | (F=Qe(,,,
Ml a6 96 || Sl (f = QN
6 46 9 )\ Sip(f) (f = Qu(f))]

While it might be preferable to compute some closed form of Qg( f)‘pp,j (and,
indeed, it can be done), the expression is perhaps best described as abominable.
Instead, since this is only value-based, we can simply construct Qg(f) in full as
an intermediate step in the construction of Qr(f), and then evaluate Qg(f) at the
relevant points. In fact, in numerical trials, direct evaluation of Qg(f) has proven to
be faster than evaluation of various simplifications of the closed form due to the large
number of operations in its expression.

After solving the linear system above for the coefficients S; p(f), we complete
the construction of the face spline 1[)1(5) in , and the quasi-interpolatory spline
Qr(f) in (4.2.9)). The plot of a face spline wg’) is shown in Figure .

We have exhausted all degrees of freedom, and it is easy to show the following

result, especially using a computer algebra system like Mathematica:

Theorem 4.2.1. Qr(f) = f for any bivariate polynomial f of total degree 5 or less.
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Figure 4.9: The plot of a face spline zpjf)

Our final result is an easy corollary of the theorem.

Corollary 4.2.1. Let Q C R? be a region which permits a parallelogram partition,

and let P be such a parallelogram partition of ).

Define V3 (P) .=V, ,(P) P span{@ijZ,P;i =1,2,3,4}pep.
Then dim(V} p(P)) = 6|V| + 2|E| 4 4| F|, where |F| is the number of parallelograms
in P, and II; C ¥} o(P) € CHQ).

4.3 Approximation properties and numerical re-
sults

Using the same notation and techniques as mentioned in Chapter [3| Section [3.3] we
can show the following result on the approximation power of degree-5 C! polygonal

vertex splines:

Theorem 4.3.1. For any function f € C3(Q), the quasi-interpolatory C* polygonal
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vertex spline Qv (f) € Ui (Pr) satisfies

1f = Qua(Hllooa < Clfl3.0,027*"

where C' is a positive constant independent of f.

For any function u € H3(QY), the quasi-interpolatory C* polygonal vertex spline

Qui(u) € W}, (Pr) satisfies

273745

[u — Qvx(u)

2.0 < Clulszq

and

lu— Qup(u)|i20 < Cluls202™ %
where C' is a positive constant independent of u, but which may depend on the bound-
ary of Q if Q is nonconvex.

If we use the full degree-5 C! polygonal spline space \I/é »(P), we can similarly

show the following;:

Theorem 4.3.2. For any function f € H®(Q), the quasi-interpolatory polygonal

spline Qri(f) € Vi p(Pr) satisfies

If = Qrr(Hllon < Ol fle2a2 %

and

6,2,9275]6

\f = Qri(flizo < C|f

where C'is a positive constant independent of f, but which may depend on the bound-

ary of  is € is nonconvex.

We devote the rest of this section to showing numerical examples of

quasi-interpolation by the degree-5 C' polygonal splines developed in this chapter.
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Figure 4.10: A parallelogram partition used to numerically test the degree-5 polygonal
spline quasi-interpolation schemes

Let P be the partition shown in Figure .10 and let h be the largest diameter of any
parallelogram in P. For each example, we’ll report the root mean square error ||-||gars
of the quasi-interpolants computed over approximately 500 x 500 points on the interior
of the partition, along with the convergence rate in terms of h. We denote the errors
by Ev(u) = |jlu — Qv (u)||rms and Er(u) = ||lu — Qr(u)||rms. We expect that the
degree-5 C' polygonal vertex spline quasi-interpolants Qv (u) should converge in the
L? norm at order O(h3), while the degree-5 C' polygonal spline quasi-interpolants
Qr(u) should converge in the L? norm at order O(h®).

We display the numerical error of the quasi-interpolants in the tables below. We
first attempt quasi-interpolation of a few trigonometric functions; in order of in-
creasing frequency, we set ui(x,y) = sin(x)sin(y), us(x,y) = sin(7rz)sin(7y), and
ug(z,y) = sin(27z)sin(27y). We measure the error of the quasi-interpolants con-

structed over the partition in Figure [4.10] along with 3 of its uniform refinements.
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Table 4.1: Degree-5 C! polygonal vertex Table
spline quasi-interpolation of the function spline quasi-interpolation of the function
uy(z,y) = sin(x) sin(y)

uy(z,y) = sin(x) sin(y)

4.2:

Degree-5 O

polygonal

# Quads h Ey(uy) | rate # Quads h Er(uy) | rate
6 | 2.06e+00 | 1.14e-03 | 0.00 6 | 2.06e+00 | 1.89¢-05 | 0.00
24 | 1.03e4+00 | 1.38e-04 | 3.05 24 | 1.03e+00 | 3.07e-07 | 5.94
96 | 5.15e-01 | 1.67e-05 | 3.05 96 | 5.15e-01 | 4.86e-09 | 5.98
384 | 2.58e-01 | 2.03e-06 | 3.04 384 | 2.58e-01 | 7.68e-11 | 5.98
Table 4.3: Degree-5 C* polygonal vertex Table 4.4:  Degree-5 C! polygonal

spline quasi-interpolation of the function spline quasi-interpolation of the function

us(x,y) = sin(mwz) sin(my)

us(x,y) = sin(mwz) sin(my)

# Quads h Ey(us) | rate # Quads h Er(ug) | rate
6 | 2.06e400 | 4.37e-02 | 0.00 6 | 2.06e+00 | 1.31e-02 | 0.00
24 | 1.03e+400 | 3.42e-03 | 3.68 24 | 1.03e400 | 3.07e-04 | 5.41
96 | 5.15e-01 | 4.59e-04 | 2.89 96 | 5.15e-01 | 4.93e-06 | 5.96
384 | 2.58e-01 | 5.20e-05 | 3.14 384 | 2.58e-01 | 7.88e-08 | 5.97
Table 4.5: Degree-5 C! polygonal vertex Table 4.6: Degree-5 C! polygonal

spline quasi-interpolation of the function spline quasi-interpolation of the function

us(x,y) = sin(27z) sin(27y)

us(x,y) = sin(27z) sin(27y)

# Quads h Ey(u3) | rate # Quads h Er(us) | rate
6 | 2.06e+00 | 5.02¢-01 | 0.00 6 | 2.06e+00 | 2.51e-01 | 0.00

24 | 1.03e400 | 4.55e-02 | 3.46 24 | 1.03e+00 | 1.44e-02 | 4.13

96 | 5.15e-01 | 3.41e-03 | 3.74 96 | 5.15e-01 | 2.87e-04 | 5.64

384 | 2.58e-01 | 4.51e-04 | 2.92 384 | 2.58e-01 | 4.84e-06 | 5.89
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Notice that, for functions which oscillate more quickly, we require a finer mesh
before any convergence can be observed. In the cases of u; and uy, we see convergence
immediately, but in the case of uz, we do not see the appropriate convergence using
the full quasi-interpolant Qg(u3) until the partition has been refined an additional
time or two.

We interpolate a few more examples of different function types: set u4(x,y) =
sin(m(2? + y?)), us(z,y) = (10 + z + y) 1, and ug(z,y) = (1 + 2% +¢y*)~L. In the
case of uy, we see again that, since the frequency rises quickly away from zero, we
require a fine mesh before we can observe the asymptotic convergence. This function

would be well-suited to using an adaptively-refined mesh, but we are not aware of

such methods for parallelogram meshes.

4.8: Degree-5 C! polygonal
spline quasi-interpolation of the function
ug(z,y) = sin(w (2 + y?))

Table 4.7: Degree-5 C! polygonal vertex Table
spline quasi-interpolation of the function
ug(z,y) = sin(w (2 + y?))

# Quads h Ey(uy4) | rate # Quads h Er(uy) | rate
6 | 2.06e+00 | 3.83e+00 | 0.00 6 | 2.06e+00 | 2.04e+00 | 0.00

24 | 1.03e4+00 | 7.71e-01 | 2.31 24 | 1.03e+00 | 3.61e-01 | 2.50

96 | 5.15e-01 7.95e-02 | 3.28 96 | 5.15e-01 1.73e-02 | 4.38

384 | 2.58e-01 4.66e-03 | 4.09 384 | 2.58e-01 3.37e-04 | 5.68
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Table 4.9: Degree-5 C'! polygonal vertex
spline quasi-interpolation of the function

us(z,y) = (10 +z +y)™!

Table 4.10:

Degree-5 C!
spline quasi-interpolation of the function

us(z,y) = (10 +z +y)™!

polygonal

# Quads h Ey(us) | rate # Quads h Er(us) | rate
6 | 2.06e+00 | 1.81e-06 | 0.00 6 | 2.06e+00 | 2.91e-09 | 0.00
24 | 1.03e4+00 | 2.10e-07 | 3.11 24 | 1.03e400 | 4.57e-11 | 5.99
96 | 5.15e-01 | 2.56e-08 | 3.04 96 | 5.15e-01 | 7.18e-13 | 5.99
384 | 2.58e-01 | 3.11e-09 | 3.04 384 | 2.58e-01 | 1.13e-14 | 5.98
Table 4.11: Degree-5 C*! polygonal vertex Table 4.12:  Degree-5 C' polygonal

spline quasi-interpolation of the function

ug(z,y) = (1+2° +y°)~"

spline quasi-interpolation of the function

ug(z,y) = (1+2° +y°)~"

# Quads h Ey(ug) | rate # Quads h Er(ug) | rate
6 | 2.06e+00 | 1.01e-03 | 0.00 6 | 2.06e+00 | 1.46e-04 | 0.00

24 | 1.03e4-00 | 8.28e-05 | 3.61 24 | 1.03e400 | 2.51e-06 | 5.86

96 | 5.15e-01 | 8.85e-06 | 3.23 96 | 5.15e-01 | 4.34e-08 | 5.85

384 | 2.58e-01 | 1.03e-06 | 3.10 384 | 2.58e-01 | 7.78e-10 | 5.80

4.4 An application toward surface construction

We can use these polygonal splines to construct C! surfaces so long as we avoid self-
intersection. Of course, if we can express such a surface as the plot of a function,
we can simply interpolate that function with our C* polygonal splines. On the other
hand, we can also create parametric surfaces by choosing a region  C R? which
permits a parallelogram partition, and constructing three C* polygonal splines x(u, v),
y(u,v), and z(u,v) over P, which we use as parameters. Below are some examples
of some strange tori we can create over a grid partition of the unit square. To be
clear: the torus surfaces plotted are parametric, where all parameters x,y, z are C*
polygonal splines over the partitions shown.

First we quasi-interpolate a plain torus, parameterized over the square [—m, 7]* in

the plane which has parameters z(u,v) = (1.5 4 cos(v)) cos(u),

126



Figure 4.11: Views of a degree-5 C' polygonal spline quasi-interpolant of a torus
parameterized by (z1,y1, z1) over the partition shown in the upper-left

y1(u,v) = (1.5 + cos(v)) sin(u), and 2 (u,v) = sin(v). We show three views of the
interpolated surface, which has parameters Qp(z1), Qr(y1), and Qr(z1). Note that,
in this case, we only use 4 patches and still retrieve a nice, smooth quasi-interpolant.
See Figure [4.11]

Now we’ll quasi-interpolate some modified tori. The torus shown in Figure is
parameterized over the same square [—, 7] in the plane, this time with parameters
xo(u,v) = (sin(v) + cos(v) + 2) cos(u), ya2(u,v) = (sin(v) + cos(v) + 2)sin(u), and
29(u,v) = sin(v). The interpolated surface with parameters Qr(x2), Qr(y2), and
Qr(29) is constructed over 16 patches this time, shown in Figure m

The torus shown in Figure is again parameterized over the same square, this
time with parameters z3(u,v) = (sin(u) + 2 4 0.5(2 + sin(u)) cos(v)) cos(u),
y3(u,v) = (sin(u) + 2 + 0.5(2 + sin(u)) cos(v)) sin(u), and
z3(u,v) = 0.5(2 + sin(u)) sin(v). The interpolated surface with parameters Qp(z3),

Qr(ys), and Qr(z3) is again constructed over 16 patches, shown in Figure .13
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40

Figure 4.12: Views of a degree-5 C'! polygonal spline quasi-interpolant of a modified
torus parameterized by (22, ya, 22) over the partition shown in the upper-left

i,
4 \\\\\\\\\\\\\\\\\\“\‘\\\\\\ y
N
: r

Figure 4.13: Views of a degree-5 C'* polygonal spline quasi-interpolant of a modified
torus parameterized by (z3,ys, z3) over the partition shown in the upper-left
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Figure 4.14: Views of a degree-5 C'* polygonal spline quasi-interpolant of a modified
torus parameterized by (x4, Y4, z4) over the partition shown in the upper-left

The torus shown in Figure is parameterized over the same square with pa-
rameters z4(u,v) = (cos(u) + 2 + 0.3(2 + sin(u)) cos(v)) cos(u),
Ya(u,v) = (cos(u) + 2 + 0.3(2 + sin(u)) cos(v)) sin(u), and
z4(u,v) = 0.3(2 + sin(u)) sin(v). The interpolated surface with parameters Qp(z4),
Qr(ys), and Qp(z4) is again constructed over 16 patches, shown in Figure

The torus shown in Figure 4.15|is parameterized by

5(u,v)

5(u, v)

x (sin(v) 4+ 2+ 0.5(2 + sin(u)) cos(v)) cos(u),

Y

z5(u,v) = 0.5(2 + sin(u)) sin(v). The interpolated surface with parameters Qp(zs),
Q

(sin(v) 4+ 2 + 0.5(2 + sin(u)) cos(v)) sin(u), and

r(ys), and Qr(z5) is again constructed over 16 patches, shown in Figure [4.15]
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Figure 4.15: Views of a degree-5 C'* polygonal spline quasi-interpolant of a modified
torus parameterized by (x5, ys, z5) over the partition shown in the upper-left

4.5 Increasing to degree 6

Again we try increasing the degree in order to further loosen the restrictions on the
underlying partition, but we encounter a similar situation as when increasing from
degree 3 to degree 4: the space WUg(P) is not a C* linear space over any more general
partitions P than the space W5(P). For this reason, we move on to construct some

vertex splines in degree 7.
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Chapter 5

A Degree-7 Construction of C1
Polygonal Splines on Arbitrary

Quadrilateral Partitions

5.1 Degree-7 polygonal vertex splines

5.1.1 Construction of zp,,(f)

We will now build a degree-7 polygonal spline function @Df,?) which is analogous to @/)1(,5)
and wf]?’), but we’ll see that the flexibility we gain by using this high degree allows
us to construct quasi-interpolatory vertex spline functions which do not impose any
additional conditions on the underlying partition of quadrilaterals P.

As usual, we’ll restrict our attention to a single quadrilateral P in €,, and write

w1(,7) ‘ p= @/)1(7; where v = v; in P. In this degree-7 case, a (lengthy) template for our
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function is given by

U = 02 (S0} + 6F(Jridint + Jaidir) + 62 (J3i02y + Juid?y)
+ 07 (J5303 1 + Jo.:05 1) + & (Jridig + Jsidi1) + Joi07 + Jioidr
+ Gir2(Koidi + &7 (K1idi + Koiior) + 07 (Ksid7 ) + Kol )
+ ¢i(K5,i¢?+1 + Kﬁ,i¢§_1) + K?,i¢?+1 + K87i¢?—1)
+ 75 (800} + 07 (S1,iPir1 + Soidi1) + ¢i(Ss,:07,1 + Suii )
+ S5,z¢?+1 + Sﬁ,i¢?—1)
+ &35 (Loid; + ¢i(L1idir1 + Loggior) + L7y + Ladi_y)

+ ¢?+2 (NO,i¢v: + Nii@iy1 + Noii—1 + N3,i¢i+2))- (5.1.1)

Before beginning our analysis to solve for the coefficients in (5.1.1)), it’s worth
considering its terms from a domain point perspective. As we can see from Figure
(.1} there is much overlap.

To be able to exert Hessian control locally at each vertex as we did in degree 5,
we'll need to set Jy; = Jig; = 0. We'll leave all the K coefficients intact, as these allow
us to ensure C'' smoothness over the edges, but since the functions with S, L, and N
coefficients are more or less free, we choose to set as zero all the remaining coefficients

except So, 514,52, and Lg;. We retrieve the following simplified template:

@Ui(?) = ¢7 (Jou9; + 0 (1,011 + Joidi1) + &} (J3:07 1 + Jui07 1)
+ ¢?(J5,i¢§+1 + Joi®2_1) + & (J7,i¢?+1 + J&igb;l—l)
+ Git2 (Koi0] + 03 (K1idir1 + Koidi1) + 07 (Kz 07,1 + K07 ,)
+ ¢i(K5,i¢?+1 + Kei00 1) + K7,i¢?+1 + K&iaf—l)

+ ¢?+2 (SO,iCb? + ¢?(Sl,i¢i+1 + 5271'@—1)) + LO,i¢§+2¢?)- (5.1.2)
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¢1 6 2 45 3 4 4 43 5 52 6 ¢§
&3 &y &35 ¢, &3y &3y &3 &4 &3 &y
¢ ¢6 . . . . . . é ¢6
e B4 Béoi  BES  BHESE  Boie B4 o
5 L] L] L] L] L] . 2 5
hies By} B # Béd B B $ B, ¢ Gt
3 4 - L] L] L] L] L] 3 4
P B# & B ¢, &7 B¢, B¢ B¢ 43 Bé &3 i
4 j . L] . - . . 4 3
ity B & B ¢ o, B¢ B¢, B ¢1 s B} & Vel
5 2 L] L] L] L] L] . 5 2
e Béi 4, B ¢} B&s,  Bod B ¢ B %
6 L] L] L] L] L] . 6
Fedh B B4} 6, B} 62 B 6} B4, 4! B s
¢;[ 6 5 12 4 13 314 2 15 6 ¢l;
¢7 b2 & 3 ¢7 b3 &7 &3 ¢1 &3 ¢1 &3
(a) Domain points associated with degree-7 basis functions
JIO.I L ] - [ ] L ] L ] L] L ] L ]
K Sb.i Ly; Nypi N3 ;
JSJ L ] L ] L ] L ] L ] L] L ] L ]
: Ks,i S4i L Noi Nii
Jﬁ.i [ ] [ ] [ ] [ ] . [ ] [ ] [ ]
K4.i SE.: LO.: Ll.t L3_.1
J4J [ ] L ] L ] L ] L ] L] L ] L ]
KZ.E SO_.: Sl.: SS.: SS.:
JZ.I [ ] L ] ’ L ] L ] [ ] L ] L ]
KO.I' Kl.f KB..‘E KS.f K?.f
Jo.i . . . . . .
J]_j JS.:’ JS.E JT._I JQ,:

(b) Domain points and the associated coefficients in 1)

Figure 5.1: A domain point illustration of the redundancy of the terms used in the

template (5.1.1
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The function wi(7) should satisfy w§7)|v, = 0i;, so we’'ll need wf)}v = Jo; = 1.
J (2
We'll also need that V¢§7)|U_ = 0, so we’ll compute the edge direction derivatives at

V;:

oy 00, D¢,
ge " 782- s g(;
i =T
(7) o
oy’ 09 01
Déi1,, B 7851‘—1 * JME
a leia|

sowe'll set Jy; = Jo; = 7.

To enforce the condition V2w§7) ’vv = 0, we'll take the second edge-direction deriva-

tives:

2,.(7) 2 2
852 = 42 (gf) +84g?: aggl +2J3, (8ggl)
2J3; — 42
- lei|? !
0" 06 \* . ., 06 0dini 06 1\’
20y — 42
a leia|?
" _7< 0 +_W@H_+a%il)
06,06, |, 06:06,_1 = 08:06,_1 08061

a2 (8(57; 061 06 des | 06, 06

D?Pio
Koi——
+ 0 861'361'_1
! CiCin >
rei||ei_1r< CrnCr o  Hod)

Ci1Cia

so we'll set Jy; = Ju; = 21 and Ko; = 7+ 42 CiCia
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At this point, we have the following:

@”=¢%}?wwﬂwﬂ+¢Fn+zwﬂﬁﬂ+¢ig
+ @7 (J5,i0i1 + Joidi 1) + &i (Jridins + Jsaidi 1)
Ci1Ci
+ Qiyo 74427 ¢? + ¢?(K1,i¢i+1 + Ko ii—1)
CiCi+2
+ 7 (K307 1 + K1) + 0i( K503 + Keidy_y)

+ K70t + K&iqb?l)

+ ¢?+2 (So,i¢? + ¢?(S1,i¢z‘+1 + 52,i¢z‘—1)) + LO,i¢?+2¢?)' (5.1.3)

We are still missing some of the J coefficients. A reasonable first thought is to consider

4
the sum condition z/}zm = 1 on a single edge; say e;:
j=1

(1—§3¢P>
j=1

- <<¢z + 1) — ol + @Z)gf)l) ‘ei

€

= (35 — (J5 + Jr,41))0i 0211 + (35 — (Js 41 + J10)) 0} bpy .-

)

., and thus far in %(7), we

Since the J coefficients are absolute constants in zpf’), P
assume that Js; and J7; shouldn’t break this trend, so that J;; = Js ; and J7; = J7;
for any ¢,7. Then we set J;; = 35 — J5;. Unfortunately, we aren’t yet able to
determine a set value for J5; - we’ll have to leave it for now, but we can solve for the
K coefficients in terms of J5; by enforcing C'* smoothness over shared edges.

First, we need to take the outward normal derivatives on edges e; and e; ;. These

expressions are long and complicated. Fortunately, we are still able to force that
0" ouy”

on; Oni—1

= 0, as we did for 1/12(3) and ¢§5)~ We'll show the computation

€; €i—1
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for the normal derivative on the edge e;:

ou” 1 Cios
o |, =94, (¢?¢3+1 ((105(3@- + (3J5; — 105)|e;_1]| cos(6;)) c
Cito
42 — Kq;)lei|l =—
02— Kol 2 )
5,3 Ciga
+ 07 b <(147 — K1 — Kz;)lei] Crcr
Ci1
+ (71]571'62‘ + (140 — 8J5,i)|€i—1| COS(Qi» C
Ciyo
+ (3J5; — 105)|e;—1] cos(;) 8
Ciq
+ (105 - 3J5,i)|€i+1| COS(eiJrl)
Cis1
C;
+ ¢l <((7J5,i — K3, — Ks5;)|e;| + (105 — 3J5;)|€i11] cos(6i41)) Ci
Ci_
+ ((245 — 7J5.)|ei| + (354 — 105)|e;_1] cos(6;)) C?
Ciya
+ (140 — 8:]5,1')‘61',1’ COS(el’) C
Ci—1
+ (8J57i - 140)|€%+1| COS(@i_H)
Cit1
+ ¢} ?+1 (((245 — 5 — Ks; — Kq;)|ei)|
Cita
+ (8;]571' - 14O>|61+1‘ COS(@H_l)) C
i+1
Ciyo
+ (3J5; — 105)|e;—1] cos(6;) 8
Ciq
+ (105 - 3J5,i)|€i+1| COS(eiJrl)—)
Cis1
Ci
+ @il <(—K7,Z-|ez-| + (105 — 3J53)|€iq1] cos(fit1)) Ci)) (5.1.4)

Moving from bottom to top, we can choose the following choices of K coefficients to
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set each term zero one at a time:

K7,i = (105 — 3J5,i) ’€|:r|1‘ COS(QZ'_H);

Ci— i
Ks; =245 — TJs,; + (11{]57,- — 245+ (105 - 3J5,) 5 1) |6‘ +|1| cos(041)
i+2 €;

+ (35 — 10519 G o,

‘€¢| C;
Ci- i
Ks;=14J5,; — 245 + (350 —14J5,; + (11J57i — 245) 1> ]e +1‘ cos(9i+1)
Cita |€i|
Ci—1\ Citt ’6i71|
* ( s + > )Oi+2) Ci el cos(th)
Ci— i
Ky; =392 —14Js,; + (14J5,i =350 + (350 — 14J5,) 1) ’e‘ *,1‘ cos(0;41)
i+2 €;

cos(0;).

Ciir\ Cin |es
—|—(14J572-—350+3J57Z- 1) s feii]

Ciya Ci el
With these choices, we can simplify (5.1.4)) to

0y,”

on;

Cia1
Cit1

= 2901 350 14750)( (e lexalc05(09) 222 — [eseal con(fusn)
) 2Ai+2 J i i i CZ i i

— (led] = leis] cos(9i+1))—g:j + |ei—1| 008(91)08;2),

which is zero when J5; = 25. Then we deduce the following:

J7i = 10;
Ky = 42415 (7 —2 |e|€‘|1| cos(ei)) %
Ko = 5<21 + (14 - 6|€|;|1| cos(ei>> %
oG omn - Grom) )
w5 = (14 3 ) e omtren) )

K7, = 30|€|i+|1’ cos(0i11).
€;
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A similar analysis on edge e;_; provides us with the remaining J and K coefficients:

J&i = 25, JS,i = 10,

Kp; =42+ 15 (7 _p el COS(ei)> CiniCit.

|€z‘—1| Ci0i+2 ’

‘6i| Cit1Ci1

44 = - i) | =~ ~

K, 5<21—|—(14 6| lcos(Q) e

€i—1 A ED)

’ei+2‘ci+1 ’€i| Cia

6 0i—1) — 0; ;
y (!ei_ncﬁz costlir) = i, )

lei] Cia Cit1 ) leiral
1 _ V(1 - )
K 0(7 3(!@1! C cos(6;) + Cons ) e cos(b;i-1) | );

KS,i =30 |€i+2’ COS(ei_l).
|€i1]
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We now have the following expression for wzm:

Y = ¢? (¢5 TGN Disr + dim1) + 2103 (82,, + 67))

+ 2507 (63,1 + ¢71) + 1095 (671 + 6iy)
Ci—i—lci—l 4
. g ZiHI izl )
+¢’+2< (” CiCrrs )d’l
_ C,1C;_
3142 4+1 _2‘61 d g,) ) ZHLm ) g
+ ¢’L (( + 5 (7 ’ez‘ COS( ’L) CiCiJ,_Q ¢’L+1

|ei| Cit1Ci1
42415 (72 ) Gl o
+ ( + 15 (7 o] cos(0;) CCra bi1
+ 5¢)2 ((21 + (14 _gleiml cos(0¢)> Cialin

’€i| CzCz+2
leit1] Cin lei 1] Ciga ,
+6 ( o] Cima cos(Bi41) ol G cos(6;) ) |7,
|€Z > Cit1Ciy
21 g,) | izt
" < " ( |ez 1| S( ) OiCi+2

eirz| Cit1 lei] Cima 2
0;_1) — 0; 4
+6 <|ez~_1| Cons cos(0i1) el G cos(6;) | | éiy
lei—1] Cita ( Cil) leit1] )) 3
+100;( (7—3 cos(6;) — | 1+ cos(0; i
’ (( ( lei] G (®:) Cita) el (i) o
lei] Cia Cis1 |eit2] 3
_ N1 . A
+ (7 3 471’ C COS(QZ) + Ci+2 ’6171‘ COS(QZ 1) i—1

€
€; €;
+ 30(’ | +’1| cos(0;41)Prey + ’e-+2| cos(0;_1) f_l))

€;

+ ¢§+2 (SO 1¢ + (b (Sl z¢z+1 + S2 z¢z 1) + LO 1¢1+2¢2) . (515>

4
The remaining coefficients can be determined by the condition ) @blm = 1. The
j=1
technique is identical to that used in the degree-3 and degree-5 cases; we write
7
4
= (Z Cbz) , simplify the difference between this and the sum of the functions
=1

¢§7), and isolate terms with S and L coefficients. The actual expression of this

difference is not particularly illuminating, so we merely report the deduced values of
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the coefficients:

Cit1Ci Cit1Ci_
Sos =3 (7+ 10—t (7+ 5L>) ;

CiCita CiCito
Cit1Ci1 Cit1Ci1
= Sy =105 (1427 E L (o Titibicl) )
14 = Sa 05 ( * CiCito ( * CiCita )) 7
Cit1Cia ( Cit1Ci1 < Ci+107;1)))
Ly, =3 |142————— |6+ —— 9+ 2——— .
* ( CiCito CiCiya CiCiya

140



The final expression of 1/157), then, is

Y = ¢? (¢5 TGN Disr + dim1) + 2103 (82,, + 67))

+2502(¢%, + 62 )) + 106 (¢, + 61 1)

Cit1Cic1\ 4
; 42—~ -
- ¢Z+2( (7 - CiCiyo ) g

- C..1C._
3 49 1 _2‘61 1| 0 +1Vi—1 A
w(( * 5(7 e ) e, )om

|ei| ) CiJrICil) )
+ 142+ 15(7—2 cos(8;) | ——— | i
( ( leii] (6) CiCito Pi-1

- C._.C.
562 ( (21 + (14— 6191 cog(gy) | CtCint
59 (( " ( e cos(®) CiCiya

|6’5 1|O’i—1 |€i—1|0i 1
—|—6< |;| Crra cos(fi1) — i Ct cos(6;) ) |7,

|€i| > Cit1Cima
+121+(14—-6 cos(b;) | —————
< ( lei1] (6 CiCiya

‘€i+2| Oi+1 |€z| Ci—l ) ) 2 >
+ 6 cos(0;_1) — cos(6; i
( 6z‘—1| Cita ( 1) |€i—1| C; ( ) P

|
e Cz Cif €; |

0(
C 1 O 10-_1
3 o oCinCin ( CinCit )
+ ¢2+2(< + CC7J+2 ( + C'Z.C'Z,+2 >> l
CZ+ICZ—1 Oi-l—lCi—l 9
2= 2t o (@i i
+35( T ( Morom ))¢1(¢+1+¢ )

Ciy1Ci Ci1Ciy CiiiCiy
b2 2 1.
- < " Ci0i+2 <6 * OiCi—i-Q (9 T CiCi+2 ¢z+2 (5 6)

As usual, we define the vertex spline 1/11(,7) piecewise in €2, by wg;l within each

quadrilateral P in €2,, where v = v; in P.

Since any polygonal region can be triangulated, and any triangle can be parti-
tioned by convex quadrilaterals, the polygonal splines built in this section are useful

over extremely general regions. The discussion in this section serves as a proof of the
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following;:

Theorem 5.1.1. Let Q2 be any polygonal region in R?, and let P be a partition of Q
by quadrilaterals. For every vertex v in the partition P, define a polygonal spline zpff)

over §2, by

where 1/11(7; 1s the function in (5.1.6]).

Then 1/J1(17) satisfies the following properties:
(1) 7 (w) = 8y for any vertex w of P;
(2) Vw(7)( ) =0 for any vertex w of P;

(3) V257 (w) = 0 for any vertez w of P;
(4) v € CY(Q); and

(5) S =

veEP
Figure shows an unstructured quadrilateral partition, and Figure shows

the plot of a function wq(f) over this partition.

5.1.2 Construction of wﬂ and 1/11(,73

We now construct the gradient adjustment polygonal vertex splines ¢;(E7q), and ¢3(,73

As before, we’ll explicitly construct w:@,, and we’ll start by focusing on a single

(7)

quadrilateral P in €,, where v = v; in P, and define wxv‘ P @/J“ P

While most of the following calculations will be familiar, we’ll need the following

lemma:

142



Figure 5.2: An unstructured quadrilateral partition

Figure 5.3: The plot of a function wq(;)

143



Lemma 5.1.1.

Ci€iy1 + Cit1€i-1 + (Ciy1 — Ci2) € =0

Proof. Using two-dimensional vector cross products to express triangle areas, one can

write
20; = €j1 X ¢
= € X (€1 + €j12) .
Using this expression, along with the fact that €; + €;,0 = — (€;_1 + €;41), we have

2(01(34-1 + Ciy1€i-1 + (Cizr — Ciya) é%)
= (€1 X €) €111+ (€ X €i41) €1 + (€ X €41 — €1 X €i42) €
= (€_1 X &) €141 + (6 X €i41) €i_1 + ((€; + €i42) X €;41) €
= (€i—1 X ) €141 + (& X €i41) €i—1 — ((Ei—1 + €i41) X €iy1) €

= (€;_1 X €) €11+ (€; X €;41) €i—1 — (Ei—1 X €i41) €.

Expanding the x and y components of this vector sum along with easy simplification

immediately yields that the sum is zero. O]

We're now ready to construct the function wfj We'll use the template from

5.1.2)), and start by computing the J coefficients. Since we want wg(jl) |v~ =0, we set

Joi = 0. We require that V@/)gi) = (1, 0), so we compute the edge-direction derivatives:

7
O
361 v |€z| ’
7
oWl —h,
0€i1l,, leial’
so we'll set Jl,i = €z, JQ’z‘ = —€i—1x- We can determine Jgﬂ', J47Z', and KO,i by the

144



requirement that Vngi) ‘v' = 0. We compute the second edge-direction derivatives:

821/)9([;‘) 23— 12,

@é? |6i|2 ’
321#5:3 2yt 12e 0,
0e7 leia>
7
Pul 1 ((MC@-H)E, - <6+cz+2)e, 1 _KOCMOH)_
0€,0¢,_1  |eillei—1| Citn) " Cia) Y CiCiyn )
which are all zero precisely when
J3,z’ = 661‘,90;
J4,'i = —66171@;
Cis1\ Ciza Ci—1\ Cin
Ko;i= (146 ity (146 b2 PN
* ( * Ci+2) C; i * Citva) C; it

As was the case when we constructed %(7)7 we can’'t determine the remaining
J terms directly yet. However, it seems safe to assume that J5; = jseiq, Joi =
J6€i—1.z, J7i = Jr€ix, and Js; = jse;_1, for some constants js, js, j7, and js. We can

use the sum condition
4
7 7
S vl + ol =2 (5.1.7)
j=1

restricted to edges e; and e;_; to conclude that j5+ 75 = 5 and jg+ 77 = 5. We'll make

an additional assumption, based on our previous results: j5 = —jg, and j; = —Js.
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Then, if we put all of these in terms of j;, we’ll have

YT = ¢ (qb?(ei,xasm — Cii1aio1) + 603 (€100 | — 1207 1)

+ (J7 + 5) 07 (€1.003 41 — Cim1.00p_1) + Jr0i (Ciadiiy — €im1,007_1)

Cz‘+1 Ci_1 Ci—l 4
i L6t ) 2t (146 1 |6
+¢+2<(( i Cm) a ( i Ci+2>e 1’)¢Z

+ (K1 i¢in1 + Kot 1) + ¢?(K3,i¢?+1 + K67 1)

+ ¢i(K5,:071 + Koi0) 1) + Kridjy, + Ks,z‘¢?1)
+ ¢?+2 (SO,i¢? + ¢?(51,z¢z‘+1 + S2,i¢z‘—1)) + LO,i¢?+2¢12)' (5.1.8)

We can determine the K constants by enforcing C'' smoothness over shared edges.

We'll first compute the outward normal derivative of wf} on edge e;. Using the fact

that Ai+2 = Oi—1¢i + Oi+2¢i+1a along with 3225 and

C; = lej_1]lej|sin(f;), we compute the following normal derivative:
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awg(gz) o ¢7 €iy
on; e " el
617
+ ¢S [ 7 y 20 C’ ) ———(Cieit10 + Cipr€im15 + (Ciy1 — Cipa) ei,x))
i+

4.2 cos(6;
+ ¢3¢ 1| 30 6= ( H))

0:;)
0:;) lei sin(fi1)

( (
(
eZ . cos(9i+1) €.z cos(6;)
+oi0in (3 |62| nl0) e s (6))
3
9 _
+ 9 Hl ( O Tsm(e ) |e;] sin Z+1) 3J1 |lei] sin(6;)
€ 5 COS z+1) e A
|€z| sin z+1) 20¢+1 !

€;,2 COS z—i—l) . Cix COS(Qi))

+ @7 ¢Z+1 371

Ci
H—l( (662x+62 1x)_ 52(661 1J:+ezx)
C’L+2
Cit

C; Ciza
4 ¢5 Th1 (C’lij (4261',1 — K K3 1) + 7(5 + j?) C )
Ci-

2A
Cito

* CiCrn

(Teir — Kv;) + (Ciyo — Ci—l)ei,x)

+ ¢ ¢z+1 ( e (7(5 + j7)€i,z - K KE) 1) + 7]7 C )

H—
C; , C;_
+ @22 H (Ci (Tjrein — K5 — Kr4) + C’-J: K?,i)-

It seems best to consider this in parts: the top few lines correspond to polynomials of
Wachspress coordinates, but the latter part is rational in Wachspress coordinates due
to the linear function A; o in the denominator. When considering smoothness, these
Wachspress-rational terms are especially concerning, as the function A; s depends on
the geometry of the quadrilateral within which it is defined. Our focus, then, is to
“move” these terms into the Wachspress-polynomial realm (in fact, if the reader is
attempting to reproduce the result above, it should be noted that we have actually
“moved” two sets of terms); more on this later.

The Wachpress-polynomial terms are those which we are looking to cooperate

across shared edges, and we ought to only allow dependence on the geometry of the
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shared edge itself. The first term satisfies this, but the second term does not at first
glance, and (as we’ll elaborate on soon), there aren’t any more Wachspress-rational

terms which can interact. This is where we’ll need our result from Lemma [5.1.1]

which tells us that all terms on this line except 7 are zero.

|61|
Focus now on the last Wachspress-polynomial term:

. €iqcos(b; e;
o ZH( (¢ +1)) €] Kﬂj)

|ez|sm( i1 2C;41
. ¢2 ( . Cix COS(HZH) _ Kr; )
A\ el sin(0i1)  eiya|sin(0;01) )
Now we really aim for this to be in terms of | y| the z-coordinate of the vector ;.
e’L
With (3.2.25)) in mind, we let K7; remain unsolved, but we allow it to take the form
K7 = —=3jr€it10 + k7| |Z+|1| sin(0;41)e;, for some constant k7, so we retrieve
61/
81#53 €; .
877; “ = e y‘ (0] + T b1 — (3j7 + k)i ¢7,1)
5 ewcos( i) €.z c0S(0i+1)
3(y —6
- dtdta (30 =9 e ST
A ez x COS(QZ_H) e; » cos(6;)
3(5 —20———=
o Z+1 < |€Z| sin(0;y1) |ei| sin(6;)
3 €iz cos(6;11) . €4 cos(6;)
20 -3
- dtot (O s,
Ci
2A ( z+1 ( (662 et €1 :c) - C«JTQ (6€i—1,x + ez‘,x)

Cita Cito
K ) 2 on O e
* Cit1 (Teia 1) + CiCiyq (Cise = Ci 1)62796)

Cy Cia
-+ ¢5 i+1 <_C +2 (4261'71« — K Kg 1) + 7(5 + j7) C )
i+l

Ci . . Oi—
+ Qfﬁb?ﬂ( +2 (75 + jr)eiw — K3 — K5,) + 7]77'161',1)

Cit1
Ci . Ci—
+ ¢ g7 i1 <Ci (Tgr€i0 — K5 — K74) + C’»J: KM) , (5.1.9)

where we don’t substitute for every instance of K7; yet to save space.
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Now we’ll elaborate on “moving” terms from the Wachspress-rational realm to

the Wachspress-polynomial. Start by focusing on the first Wachspress-rational term
Using the fact that C;,o — C;—y = Ciy1 — C;, we will retrieve a factor of A;,o from
this term, and have a polynomial remainder

Ci_ C;
¢z‘6¢22+1 (671<661,$ + ei—l,:v) - C-’F? (661 1,z + €; w)

Cito Civa  Cipa
+Oi+1(67 L)+(Oz' C; %
1 Cz+2 Cita
= Ai 129} ,H( c, — (660 + €i—12) — C Yo 167, 1zt m(6ei,x - Kl,i))
C’i C? C?
_ ¢5 z+1< %(662'@ + 61—1,1) —6 i+2 i+2

Oin—le ta ¥ Ci—i—loi—l( 6’ b ))

Using this result, we can rewrite (5.1.9) by

Wall _ (6] + TO)bivr — (357 + k1) 87674
i, . |€i| i i Pi+1 — (97 7 i+1
R G T Rl e R e R 8
4_g?%(2gilm A;J-—6;?ellz)>
et (10 - G o)

; 0i11) . €5 cos(6;)
3 4 206171' COS( i+1 2,2 7
+ ‘W%“( le:] s (0,41 37 le:] sin(0;)

21|4 (¢5 i1 <Ci (42€;, — K1 ; — K3,;) — 6%(662‘@ +ei14)
Cz 1 2

C" C?
,r 6 2 i—1,x Z—+2 6 ,r K 7
C@ ’ Cicifle Lo Ci+1Ci71( %, 1)

i . CCi
+ ¢; @H( +2 (T(5+jgr)ein — Ks; — K5,) + 7]7—.162‘95)

+7(5+ j7r)——

2+

C;
CZ . Ci—
+ 67074 (Ci (Tjreia — Ksi — K73) + C~+1 Km)‘
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Now focus on the Wachspress-polynomial terms divisible by ¢?¢7, ;:

Cix ({05(@) G 095(9i+1) +6 ei,ljx +gelel ]e,\
|le;| sin(6;) lei] sin(f;41) lei—1] sin(6;) 20

Cito |es] i
6 T K i) 6 i—1,x
* Cia <20i+1( “ 1) 2C; cit

O (3(1'7 —5)

B 5 _3 eigy 3 7_ . |e| i 6 ‘ | 7, . 36|el| .
= 0562 (30 = )72 + 30— ) [ errra + O35 + 3002,
Cz+2 |ez| |€Z|
6 — K1) — 6150, 1 5.1.10
+ — C. (201+1( 1 ) 206 1 ( )

we can retrieve a satisfactory result if we set

C; C;

+1 i—1

Kl,i = 6<€i,:p — — €1zt 5 Citlaz
C; Cito

Ci+1 Cz 1

+ C’ZTH_; (36612; + 3(7 ]7)61 1,z + ]{31

lei-1]
|61|

sm(&i)ei,y)

for some constant ki, which reduces (5.1.10f) to

¢?¢22+1 ((3(]7 —3) — ]ﬁ) Té’j) .

Continuing in this manner, moving one set of terms from Wachspress-rational to

Wachspress-polynomial at a time, we can set

Ci
Ks3; = 36¢€;, — 6€j11, — 51 (72€zz +3(7 — jr)ei—12 + Fa Jes- | | | (@‘)&‘,y)
1 el
Ci— {
+ ! (3(]7 7)624_1 z k3| +1| sm(@iﬂ)ei,y)
Civa |€i|
Cit1Ciy . . ‘61'—1| .
+ CiCra (747 — 1)eis + (3jr — 1)ei—1. — k1 e sin(6;)e;y |;
|ez+1| Cit1
K - 7.776217 + <3j7 - 20)€Z+1 T (kS k7) |6 | Sln<ez+l)ezy + 3 )7~ C €i— 1,z
Ciq |€i+1| . .
+ Oi+2 ( 7 |€z| Sln( +1)€ Y J7€i+1,

for two more constants k3 and ks, which gives us
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7
3%(0,2 _ Ciy
0@ e |€l|

07 (0 + T} i1 + (3(jir — 3) — k1)l o7,

+ (357 — 35 — k)¢ ¢7,+1 (3g7 + ks + 20)@@5?“ (357 + k7)¢z+1)

| | Z+2 | Z+1|
2A z+1 H_ 116i+1,x — em + (k? ]{35 + k’7) |ez| 5111(0”1)62-’1,
OH—Q |

CZ sin(@i)ei,y>

Ci— )
+ ! <€z’+1,x + (k’ k’g - k’7)| +1| SlH(9i+1)€i7y)
Cit1 leil

Ci—
+ Cil (€zx +€i-1 T + kl‘ |€l| ’ Sln(ei)ei,y>)-

((6]7 — 41)62 1,z 7262'@ — k‘l |€i_

|€z‘|

Then we must find constants j7, k1, k3, ks, and k7 that make the remaining Wachspress-
rational term 0, will cooperate with the choices we’ll make for the constants Ks;, Ky,
K, and Ky, and also satisfy (5.1.7)). A similar analysis on edge e;_; to that which

we've just completed on edge e; will result in choosing

Ky; = —6 (ei—l,x —

Cit1Ci1 ‘
— —— | 36,1, + 3(7 — iz Tk
o (300k-10 4300 s + b

Ci—le n Ci+1e )
— €zt 5 €42z
C; Cito

e

leia]

sin(&i)ei_w) X

Ci_
Ky, = —36€,_14 + 6ei10, + c (7261 12 +3(7T—Jr)eis + k:2| il | sin(Gi)ei_Ly)
) €i—1
Cit1 |€ital
— 3(jr — Teitoe + ks sin(6;—1)ei—1,
Cita |€z—1’

Cip1Ci : . .
- é:ITH; ((7J7 - 1)61;71,1 + (3J7 - 1>€im ko |6|z |1‘ Sln(‘gi)eil,y)§

| z+2| . Ci—l

Ko = —Tjrei—12 — (347 — 20)€i12, — (k6 — ks) o] sin(f;-1)ei—1, — 3377611
i—1 i
Cit |€iyal .
— k Oi—1)€i-1y — 3J7€itaz |;
Cl+2( 8|€z N sin(f;-1)ei1,y J7€i+2,
KS,i = 3‘].76“_273; — k’s :€l+2: sin(@i_l)ei_w;
i—1

for more constants ks, k4, kg, and kg, which will yield
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(7)
8ww,i _ Gi—1y
01ty i1 ’61'—1|

282 + Tl dins + (3(jr — 3) — ko)l o7,
+ (357 — 35 — k)@l | — (357 + ko + 20) ity — (37 + ks)o}_;)

’61 1‘ z+2
11 7 z = Gi—-1lx
2Az+ gb ¢z_ Cz 1 ‘ 2 c b

+ (kg — ke + k’g)‘ €i2| Sln(Qi_l)ei_l,y)

lei]
e

1+2
6j7 —41)e;, — 72€i—15 — ko——
C, (( J7 )6 €i—1, 2|€i71’

Q

sin(Gi)eiLy>

: (€i+2 x (kﬁ — kg — kS)l Z+2| Sin<eil)€i1,y)

_|_
SIS
+

i—1 |6171|

Q

i+1

€3]
i—1,x 1,2 k 91 i— .
C) <e 1z + €zt 2|€Z 1|S1n( )ei—ty

+

We can refine our solutions of the K coefficients using the sum condition (5.1.7)

along with the consideration that the coefficients of the single remaining rational

aw(?) 8w(7)
T, d T,
o, M oR

for example, K ; and Ky, interact; the remaining terms will set up a linear system

terms in each of

must be zero. We can see from Figure [5.1b| that,

which we can solve for the constants k; in terms of j;. The following is the result:
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Cin Ci
Ki;=6{¢€,——F—€i-1.+ O Citla
C; i+2

+ 3% ((12 — 10| i1l COS(Qi))em — (7 + 3)61'—1@)5
Ci

CiCita lei]
C 1
K o e — ~i—1 1 i+ ; .
2,i <6<€ 1 Cz Cz+2€ +2, )
z+IC— (( ) ; ))
12 — 10 cos(0;) )ei—1.— (Jr +3)ein | |;
CCz+2 |ez 1| ( ) 1, (37 ) ;

K3 = 35€; 5 + 5€i11

Cz-i-l |1 1| Cl_l :

_ 347 +10)e;_14 + 30— cos(fi)eir | + —— (357 — 20)€i11.0
C) (( Jr - 10)eir0 + 3057 cos(Br)ens |+ (3 = 20)einn,
C’i+1C’z'71 ‘ ’ -

2 (74, — 30 0;) |eix + 3(J7r — 10)ei14 |;

T J7 lei] costh) Jeiz + 3(jr = 10)eir,

Ky = — (3567L—1,x +5€i104

Ciy i Cip
Ci lei1] Cita

Cit1Ci (( : lei] ) ; ))
4+ ——|(7j- =30 cos(0;) |ei—1. +3(jr —10)e; . ) );
CiCito I lei1] (6. " o .

Ks; = Tjreix + (37 — 20)€it14

<(3j7 +10)e; . + 30 cos(@i)eiLI) + —(3j7 — 20)eit2,

Oz—i—l |6i—1| CZ 1
3 —10)e;_1, — 10 0:)ein | —3J i1,z
+ C. ((]7 )6 1, B cos( )6 , J7 C,HQ@ +1,
Ke; = — (7j76i—1,a: + (357 — 20)e; 40+
Ci—1 . !6 \ Cerl
3 — 10 s 10 91 i—1,x —3J 1 x |5
35 ((]7 )éi, o] cos(f;)e;, I G

K7 = —3j7€it1.2;

Kg; = 3j7€i42,2-

For two adjacent quadrilaterals P and R which share the edge e; p = €;_1 g, it turns

| | | Dy p Do
out that this set of K coefficients also satisfies that —= = = 0.
an’P €, P an’ LRle; 1 g

In effect, then, jr is free. We choose to set j; = 0, which gives us that J5,; = be;,,

Joi = —d€;_1,, and, conveniently, that J;;, = Jg; = K;; = Kg; = 0. Then we
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retrieve the following final determinations of the other K coefficients:

C; C;

+1 1—1

K= 6(61',1’ — —€ilz T 5 Citia
C; Cito

+ 3%((12 — 10| 1| COS(@Q)BLJ; - 3€i—1,x)§
C;

CiCita ‘ez’

C 1
K i — 6 i—lx — TN - 1 as i+2,x
2, ( (6 1 Cz Cz+26 +2, )

Ci_4
z+1

12 —-10 cos(6;) |ei1. —3€ix | );
CCH—2 (( |ez 1| ( )> " ))

K3,i 5(761 z T €itlx — é——:l (2 €i—1,x -+ 6| |6Z| | cos(@i)em)

Ci1 Ci-i—loi—l (|€i—1|

——€iy12 — 0 cos(0;)eir +ei1a | |5
Cz‘+2€+1’ CiCito les] (Bo)eia + eia, )>

Ci_
Ky; = —5(761'—1@ + €t — 1 (2 iz T+ 6| el Cos(ei)ei—l,x>

Ci €i— 1|
Cit1 60i+lci1< ’61“

€422 —
Cita CiCita \|ei-1]

C; i
KS,i = —2061'_*_17;Ij —30 CJZI (61‘_1@ + |e|€Z|1| cos(@i)ei@);

Ci— i
Kg; =20€;49, + 30——L (em + ﬂ cos(ﬁi)eil’z).
C; |ei71‘

—4

—4—

cos(6;)ei—1,. + ei,:c) ) ;

Finally, using the same sum condition (5.1.7)), we determine the S and L coeffi-

clents:

154



Ciy
So;i=6(14+b——— Cin1Cie )em%—el z)
" (( CiCia i

C; C;
z+1 i—1 z+1 1—1

1 2——— e — Ci—lx ;
" CiCn ( "0 )(e’ o >)

Ci1
Si;i=15((14+2——— CitCir )36196—#261 "
1, <( CC@+2 +1, )

C; C;
H—l i—1 z+1 1—1
CCH-Q ( - CCH-2 )( . o ))

CiaCi_
Sy = —15 ( (1 + 2L> (3ei_1.0 + 2€it0.)

CiCiio
N 2% (1 + %) (3ei—10 — 26i,x));
Lo; =15 ( (1 + 2% (4 + 3%)) (€10 + €itra)

With this, our construction of ¢§7j is complete. Unfortunately, the expression is

so long that we will have to reduce the font size to have it fit on a single page.
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%(072 ¢2 <¢ (ez ac¢z+1 61‘—1,x¢¢—1) + 6¢?(€i,x¢22+1 - 6i—1,x¢?—1)

+ 5@512(61-@(;3?“ - 6i—1,z¢’?71)

Ci+1) Ci—l < Cz 1
+ 0i 1+6 €z 1+ 6
Yie2 ( ( ( Ci2) Ci ° Cita

C;
+ 3(25? ( (2 (ei,a: - ileifl x ez+1 a:)

Ci z+2

Cit1Ci_ i
+ S (- ) s
_ <2(e, L f%e, l+16+2 >
i—1,x Cz i, ¢+2 i+2,1

Cit1Cima
12— 10 ) )it o —3ein ) ) die
T i (( |ez 1|C°‘“‘ )>e : e’))¢ 1)

Cz 7 i—
+ 5<b ( Teiq (1 - 41)ez+1 o — —-H (Qeilﬂ + 6|e 1 cos(@i)em)

Cz—i—l 4
Cz €i—1,x i

CH_Q Ci ‘61|
Cit1Ci1 < lei—1] )) 9
—b6———— (€12 + cos(0;)e;—1 4 ;
Ci0i+2 1, |ei‘ ( ) 1, +1
Ci+1 Cifl | ‘
- 7i—m 1-4 ) x = zz 6 01 1—1,x
< i1, +( Ci+2>e 12, c, + |€%1|COS( )ei—1,

Cit1Ci1 ( |e;] )) 2 )
—6———— e+ cos(0;)e;—1. i
Cici+2 5 |ei71| ( ) 1, QS 1

C;
— 10¢; (261-‘4-1 «+3 C+1 < €i—1,z + ‘ | ‘ | Cos(ei)ei,1)> ?Jrl

Cia le:] 3
— 12 i x 1,2 91 i—1,x i —
< eit2,z +3 c, (e’ + o] cos(6;)e;—1, ))?bz 1

Cii1Ci
+3¢2,, (2 ( (1 + 50“0+21> (iz+ €it12)

Ci+1ci—1 C’H—lci—l 3
1 2 i,z — Ci—lx i
+ 5 Cici+2 < + CiCiJ,»Q ) (6 El € 17 )) (rbz

Ci+1Ci—1
5¢2 14220220 ) (36, 4 + 26541 0
(1425552 ) Bers + 20000)
Cit1C;1 Cit1Ci1

1 ez —2€i_1z) | O
Cioi+2 < Oici+2 ( €4, €i—1, ) ¢+1

Cit1Ci—
— ((1 + 2%) (36i,1’x -+ 2€i+2,z)

Cit+1Ci—1 Cit1Ci1
2 1 i—1z — 2€i ) | Di—
* CiCiso < * CiCit2 )(36' b o )>¢ 1))

Cit1Cia Cit1Ci1
15 142 4+3 iz il
(( - CiCit2 ( - CiCiy2 >>(e’ Teirta)

Ciy1Ci1 Ciy105-1 Ciy1Ci1 3 9
gzl (g 3 = i1a) |30 5.1.11
+aSfm (14 St (54 S0 ) e, i) Jotac?) G111

+2

156



We can retrieve the function w by replacing every z in (5.1.11)) with y, and

we can define the vertex splines @/}m and @Dyy piecewise in {2, as usual: for each
quadrilateral P in €, let wz )| p= wx 1> where v = v; in P. This section serves as a

proof of the following:

Theorem 5.1.2. Let Q be a polygonal region in R?, and let P be a quadrilateral
partition of Q). For every vertex v in the partition P, define polygonal splines %(572,

and 1/11(/73 over €, by

7
o0 wiyg’P(x) xePCQ,; v=up
’ 0 x & Q,
\
w7 (x) xe P CQ, v=1
and zpﬁ — - nr
’ 0 x & (,

\

where @D;?Z)P 1s the function giwen in (5.1.11) and 1/1 i p 1s the associated function

retrieved by replacing every x in wg’P by y.

Then %(572, and ¢£,71), satisfy the following properties:
(1) wg(:l),(w) = 1(,71),(10) =0 for any vertex w of P;
(2) Vwm( ) = (dpw,0) and ngg(w) = (0, 6y) for any vertex w of P;
(3) VQw:(Qv(w) = V2 (w) = 0 for any vertez w of P;
(4) i i) e C*(Q); and
4% vt + ¥l = o and ) v + T = y.
ve ve

Figure shows the plot of the functions wg(fi and wﬁ over the partition shown
in Figure
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(a) The plot of a function 1/};(371),

N

N

(b) The plot of a function 1#1(,71);

Figure 5.4: Plots of degree-7 gradient-adjustment basis splines

5.1.3 Construction of wg)v, @bg)v, and @Dg(c?,v

Frankly, there’s not much insight to be gained from the details of these computations
which couldn’t be gained from the computations in the previous section. The overall

flavor and repertoire of techniques are nearly identical, merely applied to a different
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set of constraints:

O, =], = e[, =0

Vi, = VO], = Ve, =0

220w Y,V [

vw O 0 Ouw
va@ =1 " L VR = s VAL = :
0 0 0 dyuw dpw O
along with the sum conditions
4
2 = 027 + 20,007 + 200 ;
j=1
4
7
= 3 2l 2,
j=1
4
vy =D oo, + v + v + U0,
j=1

As in the construction of the three degree-5 Hessian manipulation functions, the

general strategy is to explicitly construct the function wg)z over a single quadrilateral

P, then retrieve the functions @bg)i and %52‘ by replacing each x by y or y by z,

respectively, and dividing the result by 2.
(7)

vy We follow nearly the same steps as in the previous section:

To construct ¥
we use the template given in (5.1.2)), and we set Jo; = J1; = Jo; = 0 to satisty

the value and gradient conditions. We set J3; = €€y, J1i = €i—12€i—1,, and

Ky, = _ CiiCina
’ CiCiya

Even with the sum conditions, we still can’t quite solve for the remaining J

(€in€i—1y + €iy€i1) to satisfy the Hessian conditions.

coefficients, but we can reduce the degrees of freedom with some symmetry as-
sumptions - namely, that Js5; = js€;2€iy, Joi = Js€im12€i—1y, J7i = J7€iz€iy, and
Jsi = Jr€i—1z€i—1, for some constants js and j7, which the sum conditions tell us

must satisfy j5 + j» = —b.

159



From here, we can take outward normal derivatives on edges e; and e;_1, and follow

the same kind of analysis as before, including using the sum condition, to retrieve:

J5i = —9€i4€iy; Joi = —D€i—14€i—1y; J7i =0; Jg;=0;

)

Ci_ C;
Kl,i = —CZ - <€i,x6i+1,y + ei,y€i+1,x) - é_+1(€i,xei—1,y + ei,yei—l,w)
i+2 i
Cit1C1 le; 1]
+ éiCi—‘rQ T30 |Z€z| cos(6h) |eineiy — 4(€intiry + €iyei1a) |;
Ci 3
K2,7; = ClJrl (ei—l,xei-i-?,y -+ 67;_173/61'_;,_2737) — T(ei,xei—l,y + ei,yei—l,x)
i+2 i
Ci1Ci €;
" é’tlcwzl ((7 - !€|@l’1\ COS(QZ-)) Civta€i-ty — A€istioty + ei,yei—l,x));
Ci_1 e
K3,i = 761’,:{:67;,2/ + (ei,xei—i-l,y + ei,yei—i—l,x) + 22 C:; | ’:r‘l’ COS(9i+1)€i,xei,y
(3 (2
G e
o gl (4<€7j,xei—1,y + ei,yei—l,x) + 30| |Ze|1| COS(Qi)emeLy)
? 7
Cit1Ciy |€i—1|
— 42 1— cos(0;) | €i w€iv;
CiCH-Q |€Z| ( z) LETLY
K. = Te, . , , . , Citt |eir| 0. e ,
4 = (€i-12€i-1y + <ez—1,z€z+2,y + ez—l,yez+2,m) + 22 COS( z_l)ez_l’zez_l,y
Ci+2 |6¢—1|
C'f €;
_ é*il (4(€i,z€i—1,y +eiyei—12) +30 |€|ZZ|1’ COS<9i)€i—1,x€i—1,y)

— 42

Ci+1C'—1 (1 |€i|

— cos(6;) )e;—1.€i—14;
CiCito ’61‘71‘ ( Z)) el
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’€¢+2 ‘

e.
Kgm' = —20| l+1’ COS<0i+1)ei,x6i,y; Kﬁ,i = _20’6 ‘
i—1

€
K?,z' = 0; KS,i = 0;

coS(0;-1)€i—1,2€i—1,4:

Ci-i—l Ci—l

m ((ei,ax —€is1z)(€iy + €it1y)

S()’i = (61‘@ + €i+1,z)(ei,y + 6i—i—l,y) +5
+ (eiy — €ic1y)(Cix + Cit12) — (CiwCio1y + €iyi—1a)

Cit1Ci1

+ 2 ClCl+2 ((ei,x - 6i—1,x)<ei7y - ei_17y) — (8i,a:€i—1,y + ei,yei—l,x))) ’

S1i=5 (361',9;6@',3; + €it12€it1y T 2(€i2€it1y T €iyCitiy)

Ci—i—l Oi— 1

+ 2
CiCisa

(2<3€i,zei,y +eip(eit1y —€i1y) Feiy(€it1e —€ic12))
— (eic1g(iy + €it1y) + €ic1y(€in+ €it14))
Cit1Ci

—C‘C‘H (ei—l,wei—l,y + 3(ei,$ei7y — (eiwei_l,y + ei,yei_lﬂ)))) );
3 A

Ssi =15 (3ei—1,wei—1,y + €ir2,0€ir2y + 2(€im1,2€ir2y T €ic1yCitoz)

Cit1Cia

2
T,

(2<3€i—1,x€i—1,y +eim1z(€iroy — €iy) +ei1y(€iton —€iz))
— (eiz(€ic1y + €ivay) +eiy(€im1e + €ivas))
Ci11C5_
M(ei,xei,y + 3(6171@61‘71,3; - (ei,xeifl,y + ei,yeil,m>>)>> ;
CiCita
Cit1Ci

— (66i,z€z‘,y + 2€i41,2€i41,y
CiCiya

Ly; =5 ((61‘,9; +eir10)(€iy + €it1y) + 2

+ 4(ei,m€i+1,y + ei,yeiJrl,z) — (eifl,x(3ei,y + 262’+1,y) + eifl,y(gei,x +eit1z))

Ci1Cia

LYo

(3(3672,9062',1/ + €i—1,2€i—1y + (ei,xei—i-l,y + ei,yei—‘rl,x)

— (€i—12(3€iy + €ix1y) T €im14(3€in + €it12)))

Ci1Ci_
+ CTIC"_;_QI <2<ei,xei,y + 61',1’336@',1’?}) — 3(62‘@61,1@ + ei,yeil,z))) > ) .

(7)

TY,t"

There is no point in listing the full expression of the function It is long
enough that it would either span multiple pages, or we would have to reduce the font

size so far as to be unreadable.
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We define 1/13(:72)1. and 1/15?2, by the aforementioned substitutions, and then define
7 7
(M @Z)( )

. .
20 Uy and @Déy),y piecewise over (2, as usual. The

the polygonal vertex splines

chapter thus far serves as a proof of the following:

Theorem 5.1.3. Let Q be a polygonal region in R?, and let P be a partition of Q by
quadrilaterals. For every verter v in the partition P, define polygonal splines w:(c?v,

1/)(7) and ngv over §2, by

y2 v’

1/1(7) (x) xePCQy v=up

Y, = @i P
| 0 x ¢ 9,
)
e wg(jz),i,P(X) xcePCQ;v=uvp
o=
o x#0,
;
¢(7) L ¢§;)1P(X) xePCQ,;v=uvp
TY,v

0 x & €,,

where wg/)’iyp is the function which follows the template given in (5.1.4) with the

coefficients given in this section, 1[13(;)1.1, 18 the function retrieved by replacing every

Yy m zﬁgjmp by x and then multiplying by %, and w;?ip is the function retrieved by

(7)
zy,i, P

Then ¢(7) w(7) and z/Jg/)v satisfy the following properties:

:1:2,1)’ y2,’u7

replacing every x in 1) by y and then multiplying by %

(1) ¢§;)U(w) = (D (w) = g(gz)v(w) = 0 for any vertex w of P;

Y2

(2) V@/):(Cz)v(w) = V@b;)’v(w) = Vil (w) = 0 for any vertez w of P;

v,w 0 0
(3) V20, (w) = VR, (w) = :
0 0 0 Ovw
m 0 dvu
and V2 o(w) = for any vertex w of P;
Opw O
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(4) ©2, 00, vl € CHQ);

(5) Z;)v§¢§7)+2vx¢g%+2¢;?m =a?, z;vgwf,7>+2vy¢§?3+2¢$v =7 Z;)vxvyd}f}%r
ve ve veE

7 7 7
vywé,g + vmg(/,g + wg(cy),v = zy,

(6) Where \I/%V(P) = span{ 1(,7)7 ¢§7z);,¢z(/7z)), 109(;)”, ;Qw w:(;y),v}vepy
dim(V7 \,(P)) = 6|V;

(7) Ty € W7 (P).

Figure [5.5] shows plots of all three of these functions.
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(a) The plot of a function Q,bg(;)v

-
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(b) The plot of a function wz(/?v
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<
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(c) The plot of a function dzg(gy),v

Figure 5.5: Plots of degree-7 Hessian-adjustment basis splines
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5.2 Approximation properties and numerical re-
sults

As usual, let  be a polygonal region in R? and let P be a partition of € by convex
quadrilaterals. We (slightly abusively) reuse the notation Qv (f) in this section to

mean the degree-7 quasi-interpolatory C*! polygonal vertex spline given by

of of
_ § (M 2 (D oo 2| (D)
QV(f) - ~ f‘v¢v + ax ‘vwx;l} _'_ ay ‘U¢y,v
0 f

d?

9% f

+ -
oy? |,

7
Uiy

2
(7 o f (7)
2/)xz,v + dx:dy ‘way,v +

(2

Using the notation and techniques referenced in Chapter [3]Section[3.3]and Chapter
Section[4.3] we can show the following result on the approximation power of degree-7

C'! polygonal vertex splines:
Theorem 5.2.1. For any function f € C3(Q), the quasi-interpolatory C* polygonal

vertex spline Qv (f) € Vi (Pr) satisfies

1f = Qva(Hllocn < Clfl3.0002 %

where C' is a positive constant independent of f.
For any function u € H3(QY), the quasi-interpolatory C' polygonal vertex spline

Qvi(u) € W7y (Py) satisfies

lu = Qu(w)

20 < C|U|3,2,92_3k

and

lu— Quihze < Clulz202
where C' is a positive constant independent of u, but which may depend on the bound-
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ary of Q if Q is nonconvex.

We devote the rest of this section to numerical examples of quasi-interpolation
by degree-7 C' polygonal vertex splines developed in this chapter. Let P be the
quadrilateral partition shown in Figure[5.2] and see the notation in Chapter {4 Section
. We expect that the quasi-interpolants should converge in the L? norm at rate
O(h?).

We display the numerical error of the quasi-interpolants of the same functions as
in Chapter [4] Section [4.3} for convenience, we restate the functions below:

uy(z,y) = sin(x) sin(y), us(z,y) = sin(mx) sin(7y),
ug(z,y) = sin(27x) sin(27y), uy(z,y) = sin(m(2? + 9?)),

us(z,y) = (10+z +y)~ ', ug(z,y) = (1+2° +y*) "

Table 5.1: Degree-7 C! polygonal vertex Table 5.2: Degree-7 C! polygonal vertex
spline quasi-interpolation of the function spline quasi-interpolation of the function

uy(z,y) = sin(x) sin(y) us(z,y) = sin(mx) sin(my)

# Quads h Ey(uy) | rate # Quads h Evy(us) | rate
5 | 2.00e+00 | 7.41e-03 | 0.00 5 | 2.00e+00 | 2.67e-01 | 0.00

20 | 1.44e+00 | 8.74e-04 | 3.08 20 | 1.44e+00 | 4.11e-02 | 2.70

80 | 7.21e-01 | 1.01e-04 | 3.11 80 | 7.21e-01 | 4.18e-03 | 3.30

320 | 3.61e-01 | 1.21e-05 | 3.06 320 | 3.61e-01 | 4.33e-04 | 3.27
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Table 5.3: Degree-7 C! polygonal vertex
spline quasi-interpolation of the function

ug(z,y) = sin(27x) sin(27y)

ug(x,y) = sin(m(2? + 3?))

Table 5.4: Degree-7 C! polygonal vertex
spline quasi-interpolation of the function

# Quads h Ey(u3) | rate # Quads h Ey(uy) | rate
5 | 2.00e+00 | 1.28e+00 | 0.00 5 | 2.00e+00 | 2.39e+00 | 0.00

20 | 1.44e+00 | 3.90e-01 | 1.72 20 | 1.44e+400 | 4.71e-01 | 2.34

80 | 7.21e-01 | 3.31e-02 | 3.56 80 | 7.21e-01 | 5.71e-02 | 3.04

320 | 3.61e-01 | 4.12e-03 | 3.00 320 | 3.61e-01 | 4.98e-03 | 3.52

Table 5.5: Degree-7 C! polygonal vertex
spline quasi-interpolation of the function

us(z,y) = (10+z +y)~!

ug(z,y) = (1+2° +y°)~"

Table 5.6: Degree-7 C! polygonal vertex
spline quasi-interpolation of the function

# Quads h Ey(us) | rate # Quads h Ey(ug) | rate
5 | 2.00e+00 | 6.75e-06 | 0.00 5 | 2.00e+00 | 1.97e-02 | 0.00

20 | 1.44e4-00 | 7.96e-07 | 3.08 20 | 1.44e4-00 | 3.16e-03 | 2.64

80 | 7.21e-01 | 9.58e-08 | 3.05 80 | 7.21e-01 | 2.93e-04 | 3.43

320 | 3.61e-01 | 1.19e-08 | 3.01 320 | 3.61e-01 | 3.10e-05 | 3.24

As in the degree-5 cases, we see that, after achieving a sufficiently fine mesh, we

observe the expected rate of convergence.
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Chapter 6

Future Directions

6.1 More general polygons

The original aim for this work was to find a way to ensure smoothness for polygonal
splines in general, but even restriction to quadrilaterals has been computationally
intensive. Moving up to pentagons brings the primary challenge of determining linear
independence of terms which vanish on edges. By Theorem 1 in [16], the number of
linearly independent degree-2 Bernstein-Bezier functions of Wachspress coordinates
on an n-gon is 2n + (";2). There are 2n functions supported on the edge, so on the
interior there are (”52) degrees of freedom; on a quadrilateral (n = 4), this gives us

only one degree of freedom, which corresponds to the fact that

ete
P1¢3 = e

freedom - but there are 5 degree-2 Bernstein-Bezier functions which are zero on the

¢204. However, on a pentagon (n = 5), we instead have 3 degrees of

boundary: ¢1¢3, ¢1¢4, P24, P25, and ¢3¢s5. In the same way that we used ¢;¢3 and
¢4 interchangeably, it seems that the best strategy to construct C* vertex splines
would be to choose a certain triple of these functions for each vertex, but it’s not
immediately clear if there is any advantage to any of them. Moreover, when moving

up to degree 3, there are 20 Bernstein-Bezier functions which vanish on the boundary
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of a pentagon. It is not clear how many of these can be chosen linearly independently,
and at first glance it is perhaps even less clear how to choose them.

If the issue of linear independence was resolved, then the techniques used to de-
termine C! local basis polygonal splines over quadrilaterals should be able to be

extended to other polygonal partitions.

6.2 Higher smoothness

Higher smoothness could be desirable, and the techniques discussed in this work
should suffice to construct C” local basis polygonal splines over quadrilaterals at
least. The primary issue in this direction is computational complexity: the compu-
tations done in this work were already extremely complex and cumbersome, but C?
computations on the edges would obviously be much harder. First and foremost,

while we only needed to compute one outward normal derivative per edge, o

—, t
on,;

to ensure

2 82
d
o2 " B8,

C? smoothness, both of which would be extremely cumbersome and lengthy.

ensure C' smoothness, we would need to compute both

6.3 Coefficient conditions

The derivation of coefficient conditions for varying levels of smoothness in traditional
bivariate splines over triangles has allowed for development and successful implemen-
tation of arbitrarily smooth functions over triangulations. These conditions allow
for construction of a smoothness matrix which can directly enforce a predetermined
level of smoothness, and for anything higher than C*-smoothness I think that finding
similar coefficient conditions for polygonal splines is the right strategy. Implementing
this over arbitrary polygonal partitions will still require some analysis of linear in-

dependence; for this reason, I think the primary task which should be accomplished

169



in order to extend polygonal splines further is to construct a “correct” basis for the

span of the Bernstein-Bezier functions.
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