
Characterization of Structured Optical

Materials and Devices in the Visible,

Near Infrared, and Terahertz Regimes

by

Thomas Edwin Lanier

(Under the direction of William M. Dennis)

Abstract

In this dissertation, a range of structured materials and devices with unique optical

properties are characterized. Frequency-Resolved Optical Gating measurements of pulses

reflected from layered dielectrics designed to stretch femtosecond optical pulses by a fac-

tor of ∼ 10 are described and results are presented and analyzed. Finite-Difference Time-

Domain (FDTD) code written in Fortran 90 is used in an investigation of two-beam coupling

gain characteristics of hybrid organic-inorganic devices fashioned from a liquid crystal layer

sandwiched between two photorefractive windows. Commercial FDTD software is used to

investigate electromagnetic properties of various metallic nanostructures including the polar-

ization properties imparted to light scattered by chiral Ag nanostructures, the dependence

on morphology of the local field enhancement near the surface of Ag nanorods used for sur-

face enhanced Raman spectroscopy, and the terahertz transmission behavior of Ag nanorods

deposited on silicon.
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Chapter 1

Introduction

1.1 Background

Since the first appearance of the laser in 1960 [1], coherent, high-intensity light sources have

played an important role in many areas of science and technology. The consequent ad-

vancement of optical device technology has necessarily occurred simultaneously. Advances

in studies of thin film optics, the dynamics of organic dye molecules, semiconductors, and

nonlinear crystals both owe their existence to and share credit for advances in laser tech-

nology. During the same time period, computational power has dramatically increased and

the field of computational optics has developed and matured. There is currently significant

interest in the optical properties of materials engineered at the nanoscale and their use in

metamaterial applications. Modern electromagnetic systems constituted by structured opti-

cal materials and devices demand accurate numerical approximation schemes that have only

become practical in recent years. The topic of this dissertation is the interaction with such

structured materials of electromagnetic radiation (visible, near infrared, and terahertz) with

a view to a variety of optical applications.
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The behavior of classical electromagnetic phenomena is described by the macroscopic

Maxwell equations:

∇×H =
∂D

∂t
+ J ∇× E = −∂B

∂t
(1.1)

∇ ·B = 0 ∇ ·D = ρ (1.2)

These equations are closed by constitutive relations

D = D(E,B) and H = H(E,B) (1.3)

and J = J(E,B). These relations, to whatever extent they offer a mathematically viable

solution, or even exist in closed form, contain the effects that materials have on the time

evolution of the fields occurring in Eqs. 1.1 while maintaining Eqs. 1.2. Optics typically

avoids explicit reference to the free charge and current densities ρ and J, either because they

are zero or because they are otherwise modeled using Eqs. 1.3.

If a material may be described by

D = ε0E + P and H =
1

µ0

B (1.4)

where P = ε0χ
(1)E, with χ(1) a constant, then the optical properties of the non-magnetic

material are captured by a refractive index n ≡ √εr µr =
√
εr =

√
1 + χ(1). This treats the

material as responding instantaneously through a polarization that has a linear, isotropic

dependence on E. High-intensity lasers have brought about the need for inclusion of higher
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order terms in the polarization

P = ε0
[
χ(1)E + χ(2)E2 + χ(3)E3 + · · ·

]
(1.5)

so that, for example, the material response may depend on the intensity I ∝ E2. Another

possibility is that the material has a frequency-dependent response to E. Actually, the re-

quirement that a material response be causal implies, through the Kramers-Kronig relations

that all materials are dispersive. In other words, D(ω) = ε(ω) E(ω), where the electric per-

mittivity ε(ω) may, for example, be derived from considering a collection of damped, driven

oscillators that constitute radiating dipoles. The dependence on the vectorial nature of the

fields is captured by retaining the tensor nature of the permittivity so that Di =
∑

j εijEj,

and the coupling between orthogonal components of D and E occurs through non-zero off-

diagonal elements of ε̂. Additionally, effects non-local in space may be exhibited, rendering

the spatial Fourier transform of the permittivity a function of wave vector [2]. Considera-

tion of such spatial dispersion is particularly relevant in the context of materials containing

nanoscale units whose influence on the optical properties of a structure arise as a result of its

morphology [3]. Its combination with frequency dispersion and anisotropy is expressed ex-

plicitly by the notation ε̂(ω,k). Much of this dissertation consists of investigations of optical

devices and materials whose response may be conceptualized in this manner. In particular,

the following three types of optical system are investigated:

i) Deposited dielectric layer structures for femtosecond pulse shaping applications

ii) A liquid crystal layer positioned between two photorefractive windows for two-beam

coupling applications

iii) Metallic nanostructures for surface enhanced Raman spectroscopy and visible and ter-

ahertz metamaterial applications
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Figure 1.1: The Yee space lattice.

1.2 The Finite-Difference Time-Domain Method

Much of the work in this dissertation uses the Finite-Difference Time-Domain (FDTD)

method, which numerically time-integrates the Maxwell curl equations. Three-dimensional

space is discretized in units of ∆x, ∆y, and ∆z, and the components of the electric and

magnetic fields are interleaved on this grid resulting in discretized expressions for the spatial

derivatives in the Maxwell curl equations that are second-order accurate despite being first

order in ∆x. This arrangement, shown in Fig. 1.1, may also be shown to satisfy Eqs. 1.2

for the case ρ = 0. Similarly, a leap-frog field updating scheme is employed to achieve the

same second order accuracy in discretized expressions for the time derivatives that are first

order in ∆t. The field components as a function of space are stored in memory during the

simulation, with H being time-shifted relative to E by ∆t/2. The result is a simple algorithm

for time-marching the components of E and H with accuracy that improves as ∆x→ 0. For

the case of a uniform Cartesian grid, numerical stability requires that the Courant number
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be S = c∆t/∆x ≤ 1/
√
d, where d is the dimensionality of the Yee space lattice. This is how

the size of the time step is chosen for a given grid cell size ∆x.

The purpose of an FDTD calculation is to determine the electromagnetic response of

some material structure. The method has developed as a useful tool in, for example, design-

ing microelectromechanical systems, determining radar scatter from low-visibility aircraft,

and modeling very low-frequency pulse propagation around the Earth’s atmosphere. These

examples speak to the fact that the feasibility of this technique is determined by the relation-

ship between the spatial scale of the problem and the wavelengths of interest. The spatial

resolution of the grid must be chosen to be fine enough to resolve all wavelengths of interest,

and to adequately represent the particular material morphology. Materials are imposed at

particular points in space by implementing the corresponding constitutive relations for those

grid locations. In this way, the FDTD method accounts for spatial dispersion automatically

as long as the morphology of the material structure is adequately represented on the discrete

spatial grid.

Linear dispersion may be treated by multiple approaches [4]. The frequency-domain rela-

tionship D(ω) = ε(ω) E(ω) becomes a convolution in the time domain. The piecewise-linear

recursive-convolution method entails expressing this convolution in discrete form, inserting

it into the usual FDTD field-updating expression, and using a recursion relation to avoid

storing and evaluating the entire history of E(t) at each time step for the cases of Debye

and Lorentz media. The auxiliary differential equation method solves the time-domain re-

lationship between D, E, and P synchronously with the usual time-marching of E(t) and

H(t), yielding a self-consistent composite system. In Chapter 4 of this dissertation, material

dispersion is handled by the commercial software package XFdtd (Remcom). The numerical

formalism for implementation of a Debye material with relative permittivity at infinite fre-

quency ε∞, static relative permittivity εs, and relaxation time τ may be augmented to realize

a Drude material with plasma frequency ωp and scattering frequency γ by reassignment of
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the model parameters as follows:

εDebye(ω) → εDrude(ω)

ε∞ → 1

εs → 1−
(
ωp

γ

)2

(1.6)

τ → 1

γ

σ → ε0

ω2
p

γ

where σ is the conductivity that appears in FDTD updating equations that retain an Ohm’s

Law current density.

Anisotropy may be handled in the case of non-dispersive materials by assigning all nine

elements of a permittivity tensor ε̂ and inserting into the normal FDTD updating scheme

a step in which E is calculated as E = ε̂−1D. The permittivity tensor may be assigned an

arbitrary spatial dependence. Such an approach is useful when considering monochromatic

optical effects in liquid crystals, which may be treated as birefringent crystals with a spatially-

dependent symmetry axis.

A three-dimensional FDTD code was constructed in the Fortran 90 programming lan-

guage. The computational domain must be limited in order to contain the spatially finite

simulation. Waves perfectly reflect from the outer boundary because field variables are im-

plicitly zero outside it. This is called a “perfect electrical conductor” condition because

E = 0 in the interior of a conductor in the context of electrostatics. The outgoing waves

must not be allowed to reflect and interfere with the fields of interest. The outgoing waves

are removed from the simulation by implementing non-physical constitutive relations in a

thin layer surrounding the computational domain. This is called the “perfectly matched”

absorbing boundary because, within the absorber, the Maxwell curl equations + an Ohm’s
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Law conductivity are symmetrized by introducing a magnetic conductivity σ∗ at the interface

between the computational domain (CD) and the perfectly matched layer (PML):

ε0 εr
∂E

∂t
+ σE = ∇×H µ0

∂H

∂t
+ σ∗H = −∇× E (1.7)

Electrical and magnetic wave impedances are matched by imposing the matching condition

σ

ε0

=
σ∗

µ0

(1.8)

These conductivities increase as a function of depth in the PML, so that fields propagating

into them rapidly decay irrespective of wavelength, polarization, and propagation direction.

This reduces reflections from the CD-PML interface to a negligible level while allowing

electromagnetic waves to be attenuated as they propagate into the PML. The result is that

the fields stored in the CD correspond to those of the unbounded optical system.

Various types of PML exist [5]. A form must be chosen that suits the particular situation.

For example, the constitutive relations and numerical formalism must be modified for the

case of a PML that is in spatial contact with a dispersive medium. The uniaxial PML

(UPML) was chosen for simplicity, and to match the PML to a non-magnetic medium with

refractive index n ≥ 1.

The construction of the UPML may be summarized by writing the impedance-matching

condition in Eq. 1.8 as

σ̂(ξ)

ε0 εr

=
σ̂∗(ξ)

µ0

(1.9)

where n ≡ √εr µr =
√
εr is the refractive index of the non-magnetic medium adjacent to the

PML, ξ is a generalized coordinate representing depth into the PML, and the elements of the

diagonal tensors σ̂(ξ) and σ̂∗(ξ) are constructed as follows: If ξ represents variation of the

ith Cartesian coordinate xi, then σii and σ∗ii increase from zero as a function of ξ according
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to an mth-order monomial in xi, where the details of the monomial depend on the desired

reflectance R � 1 and the total PML thickness. Otherwise, σii = 0. The parameter m is

typically chosen to be 3 or 5. Implementing this absorbing boundary condition involves using

field-updating expressions distinct from those applied within the CD, so that the do loops

corresponding to 3D space are somewhat increased in complexity, and distinct subroutines

are called to update fields in the PML.

1.3 Layout of this dissertation

This dissertation is organized as follows: Chapter 2 describes measurements of ultrashort

pulses reflected from layered dielectrics that were designed with the help of FDTD calcu-

lations. In addition to traditional optical measurements, the full complex pulse fields E(t)

corresponding to incident and reflected pulses were measured using the Frequency-Resolved

Optical Gating technique. Chapter 3 presents the use of a two-dimensional version of the

Fortran FDTD code in an investigation of two-beam coupling in an organic liquid crystal

layer sandwiched between two inorganic photorefractive windows. The origin of gain coeffi-

cients measured for these devices is not well understood. The effects that the anisotropy and

spatial dependence of the liquid crystal permittivity have on beam coupling were simulated

by the FDTD method. Finally, Chapter 4 will present the use of XFdtd to investigate electro-

magnetic properties of various metallic nanostructures including the polarization properties

imparted to light scattered by helical Ag nanorods. In Section 4.2, the dependence on mor-

phology of the local field enhancement near the surface of Ag nanorods for surface enhanced

Raman spectroscopy is investigated. Experimental transmission spectra at THz frequencies

for similar nanostructures were calculated (described in Section 4.3), taking advantage of

the ability of FDTD calculations to produce broadband spectra from a single simulation.

Finally, Chapter 5 will provide a summary, state conclusions, and describe future work.
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Chapter 2

Experimental Characterization of

Femtosecond Pulse-stretching Devices

2.1 Introduction

Fabrication of optical devices consisting of deposited layers of dielectric materials is com-

monplace among optics manufacturers. Devices for many applications are realizable using

deposited materials that are effectively nondispersive, isotropic, and linear, in which case

the reflectivity and transmissivity of each layer interface is characterized by two refractive

indices alone. The optical properties of a device composed of a sequence of non-absorbing

material layers with refractive indices alternating between n1 and n2 are determined by the

set of interference conditions at the 1-2 and 2-1 interfaces. For a given incident wavelength,

these conditions are determined by the sequence of optical path lengths constituted by the

sequence of layer thicknesses. The reflectance spectrum R(ω) =
∣∣∣Er(ω)
E0(ω)

∣∣∣2 of such a layered

structure is determined by the set of boundary conditions imposed on Maxwell’s curl equa-

tions at each interface. The reflectance spectrum R(ω) may be calculated by, for example,

the Characteristic Matrix method [6]. This quantity describes the kinematics of a multilay-
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ered device in that no reference is made to any temporal structure exhibited by an incident

wave (apart from oscillation at frequency ω). The question of how a multilayered device

shapes an optical pulse is a dynamical one to which an answer may be given in terms of the

reflected intensity envelope I(t) ∝ |E(t)|2, where the complex electric field amplitude is

E(t) =
√
I(t) exp(−i φ(t)). (2.1)

These quantities are defined relative to the convention that states the time dependence of

the real-valued electric field as

E(t) =
1

2

√
I(t) exp(i [ω0t− φ(t) ]) + c.c. (2.2)

where ω0 is the carrier frequency and c.c. denotes the preceding term’s complex conjugate.

The phase φ(t) of an optical pulse contains information about which frequencies occur at what

time. The phase of a pulse incident upon a particular multilayered structure has significant

impact on the reflected pulse shape. This is demonstrated most clearly by considering the

action of a pulse-chirping mirror on two oppositely chirped incident pulses with the same

spectrum. Roughly speaking, one pulse will be stretched in time and the other compressed

by virtue of the fact that reflections from the layers closer to the front face of the structure

will occur at the front of the reflected pulse. The more precise details of each of the reflected

intensity envelopes I
(1)
r (t) and I

(2)
r (t) will have a strong dependence upon the particular

sequence of layer thicknesses. It is natural to compute these reflected pulses directly in

the time domain by the FDTD method, with all phase information implicitly contained

by real-valued data. Performing these calculations in a single spatial dimension has the

benefit of vastly reducing the computational resources necessary for simulation of a given

optical experiment, at the cost of being able to model only high-symmetry systems at normal

incidence. Such calculations have been used [7] as feedback to a genetic algorithm that
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Figure 2.1: The temporal intensity envelopes of the incident pulse (black) and reflected pulse
calculated by the FDTD method (blue) for the device whose performance is experimentally
evaluated in this chapter. The refractive index profile of the device is shown in the inset

searches for a sequence of layer thicknesses that best produces some desired intensity envelope

upon reflection. This chapter describes the experimental characterization of the performance

of a prototype device designed in this way to stretch Gaussian pulses with FWHM1 of

100 fs and 800 nm center wavelength at normal incidence. The refractive index profile of

the as-designed device and its performance as predicted by FDTD calculations are shown

in Fig. 2.1. These refractive indices correspond to deposited niobium pentoxide (Nb2O5)

and silicon dioxide (SiO2). A possible application of such a reduction of peak intensity is

the amplification of laser pulses. Laser systems that use grating-based modules to stretch,

amplify, and subsequently recompress ultrashort pulses while avoiding damage to the gain

1Full width at half maximum of the intensity
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medium are commonplace. As these modules contain many expensive optical elements that

require nontrivial alignment, their replacement by a single mirror would simultaneously

provide the benefits of cost-effectiveness and increased compactness. Traditional optical

measurements will be described in addition to measurements of the complex pulse field

corresponding to Eq. 2.1 using the Frequency-Resolved Optical Gating (FROG) technique,

which is described in Section 2.4.

2.2 Laser System

The ultrashort pulses used in this work were nominally 100 fs s-polarized pulses centered at

800 nm produced by a Tsunami (Spectra-Physics) titanium sapphire (Ti:Al2O3) oscillator

operating at 82 MHz with a nominal average power of 350 mW. These specifications corre-

spond to a peak power of 40 kW, which corresponds to a peak intensity of ∼ 1 MW/cm2 if

a 1/e2 beam radius w = 1 mm is assumed.

The energy source for this laser is a Millennia (Spectra-Physics) diode-pumped laser

providing a 5 W continuous-wave output at 532 nm. The gain medium of this laser is

neodymium yttrium vanadate (Nd:YVO4). The 1064 nm emission from this crystal is

intracavity-frequency-doubled by a lithium triborate (LBO) crystal, providing a 5 W pump

to the Ti:Al2O3 at 532 nm. In the sapphire host, electronic states associated with ground

state absorption of pump photons by Ti3+ ions couple to vibrational states associated with

the ion-host system, resulting in the appreciable radiative transition linewidth that provides

the frequency content necessary for the construction of ultrashort optical pulses [8].

Pulsed operation in this laser cavity is induced by an acousto-optic modulator, which uses

the acoustic standing wave in an intracavity crystal driven transversely by a piezoelectric

transducer at frequency νa to produce a refractive index modulation that switches on and

off with frequency 2νa. This dynamic transmission grating diffracts light out of the cavity,

12



providing a time-dependent loss that may be used to constrain the oscillator to longitudinal

modes with frequency spacing equal to the round trip transit time of the cavity. This is

achieved when the condition 2νa = c
2L

is satisfied, where L is the cavity length and c is the

speed of light in vacuum. Stable operation requires that this condition be precisely main-

tained despite inherent variations in L. The driving frequency νa is therefore dynamically

corrected by a feedback circuit that monitors modulation of the laser output arising from

mode beating associated with the phase mismatch caused by waver of L. Thus, regenerative

mode-locking derives the appropriate νa from the laser cavity itself.

The preceding discussion considers all mode-locked frequency components in the cavity to

have the same round trip transit time. Dispersion in the intracavity materials (including air)

was neglected. The inherent wavelength dependence of the refractive indices of these materi-

als produces positive group velocity dispersion (GVD), delaying higher frequency components

relative to lower ones. In addition, an intensity-dependent refractive index experienced in

the Ti:Al2O3 rod perturbs the phase velocity near the peak of the instantaneous intensity en-

velope. This causes self-phase modulation, which adds to the positive GVD. The nominally

100 fs bandwidth-limited output of the oscillator is accomplished by compensating for these

effects through the introduction of negative GVD to the cavity. Inserting a set of prisms

into the cavity results in a wavelength-dependent cavity length L(λ), facilitating round trip

transit times that are approximately uniform across the cavity pass band.
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2.3 Preliminary Measurements

Before discussing measurements of the complex field amplitude of pulses incident upon and

reflected from the pulse-stretching mirrors, several supplementary optical measurements

made using more traditional methods will be presented. In what follows, the prototypes

will be referred to by the serial numbers F120309-2 and F120309-3 assigned by those respon-

sible for the fabrication at Teledyne Scientific & Imaging, LLC.

Firstly, the nominal reflectivity was measured using a Spectra-Physics 407A power meter

at a 0.36◦ angle of incidence, which is the incidence angle that was used for subsequent

ultrashort pulse measurements2. Since the incident and reflected beams were nearly collinear,

the power meter head could not be directly used to measure the power of the reflected beam

without blocking the incident beam. The reflectivity was therefore measured by monitoring

the ratio of the power reflected from the next mirror in the beam path (> 99% reflectivity)

to the incident power. The resulting reflectivities were found to be R = 0.77 for F120309-2

and R = 0.71 for F120309-3; somewhat lower than the reflectivity of R = 0.82 predicted for

the as-designed mirror.

During preliminary measurements, it was noted that both F120309-2 and F120309-3

were convex rather than planar. The radius of curvature of each mirror was measured by

reflecting a HeNe laser from the mirror and measuring the reflected beam spot sizes at fixed

distances from the mirror. The divergence of the HeNe laser beam was accounted for by

first characterizing it by using a New Focus 5103 planar metal mirror in place of the pulse-

stretching mirrors. The results for the radii of curvature are RC = +1.62 m for F120309-2

and RC = +2.68 m for F120309-3. These properties are summarized in Table 2.1.

The reflectance spectra for the pulse-stretching mirrors were calculated from pulse spectra

measured using an IST-Rees spectrometer model E201LSA03A. The measured reflectance

2This choice of incidence angle is explained in Section 2.4
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Table 2.1: Reflectivity and radius of curvature of pulse-stretching mirrors

Mirror Nominal reflectivity – R Radius of curvature – RC (m)
As designed 0.82 ∞
F120309-2 0.77 +1.62
F120309-3 0.71 +2.68

spectrum of each prototype is shown in Fig. 2.2 along with the reflectance spectra calculated

from Fourier-transformed FDTD results for the as-designed mirror as well as a design with

0.5% random error introduced to the layer thicknesses. The pulse spectra shown in the inset

of Fig. 2.2 have been intensity calibrated using the reflectivity data in Table 2.1. Specifically,

the measured incident pulse spectrum was first normalized so that its peak is unity, and each

reflected pulse spectrum is subsequently scaled by the product formed by the corresponding

nominal reflectivity listed in Table 2.1 and the ratio of the integrated incident spectrum to

the integrated reflected spectrum.

The experimental reflectances were calculated by taking the point-by-point ratio of the

reflected laser pulse spectra to incident laser pulse spectrum. Reflectance values > 1 arise

from the combined effects of error in the wavelength calibration� 1 nm and the low precision

of the measurement of the reflectivity used to calibrate the vertical scale of each pulse

spectrum.

It is evident that there are features in the measured and calculated reflectance spectra

that do not overlap, and that the mismatch is quite similar to that between the spectra of

the as-designed mirror and the mirror with error introduced. In order to ensure that the

non-normal incidence measurement of the reflectance was not responsible for the deviation

of the measured spectra from that of the original design, the spectrum of one of the devices
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Figure 2.2: Reflectance spectra of F120309-2 (blue) and F120309-3 (red), the mirror design
calculated by the FDTD method (green), and the mirror design incorporating a 0.5% error
calculated by the FDTD method (orange). Inset: The measured pulse spectra used to
compute reflectances. See text for details.

was measured as a function of the angle of incidence between 0.21◦ and 0.52◦. The spectrum

was found to be independent of incidence angle over this range.

The time-dependence of an ultrashort optical pulse has been traditionally expressed in

terms of its second-order intensity autocorrelation, which uses a copy of the pulse to gate

itself in time. By crossing two copies of the pulse in an appropriate3 nonlinear medium, a

third pulse with spectrum containing the summed frequencies is produced and propagates

in a direction determined by conservation of momentum. This is depicted schematically in

3This will be elaborated in Section 2.4
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nonlinear medium

Figure 2.3: Schematic of an autocorrelation measurement with noncollinear beam geometry.

Fig. 2.3. The time-integrated intensity of the nonlinear signal pulse is measured as a function

of delay τ , thus providing a crude measurement of ultrashort laser pulse duration. While

the functional form of the pulse shape must be presumed to extract a pulse duration ∆τpulse

from such a measurement, an autocorrelation trace provides some qualitative indication

of the duration of a pulse with unknown shape. Furthermore, the autocorrelation data

can be compared to the delay marginal of a Frequency-Resolved Optical Gating (FROG)

measurement (see Section 2.4) as an aid to ascertaining the reliability of that measurement.

Autocorrelations of the incident pulse and pulses reflected from both F120309-2 and F120309-

3 were measured using a Spectra-Physics Model 409 rotating-block autocorrelator. This

device measures the quantity

A(τ) =

∫ ∞
−∞

I(t) I(t− τ) dt (2.3)
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Table 2.2: Standard deviations of autocorrelation measurements of both incident and re-
flected pulses.

Laser pulse σA (fs)
Incident pulse 53.8

Reflected pulse: F120309-2 409.0
Reflected pulse: F120309-3 402.9

whose FWHM ∆τA is related to the FWHM of a Gaussian pulse intensity by

∆τpulse =
1√
2

∆τA = 2
√

ln 2 σA (2.4)

where σA is the standard deviation of the autocorrelation. This instrument is calibrated by

inserting a fused silica etalon into one of the beam paths, which shifts the autocorrelation

trace by a known optical time delay. Fig. 2.4 shows the normalized autocorrelations of

pulses reflected from each of the mirrors as well as that of the incident pulse. The standard

deviations of these distributions are given in Table 2.2. The assumption of Gaussian intensity

is reasonable for the incident pulse, which yields a FWHM of 89.6 fs.

2.4 FROG Measurements

2.4.1 The FROG technique

The autocorrelation measurements presented in Section 2.3 clearly indicate that the incident

Gaussian pulse has been stretched significantly in time upon reflection from the prototype

devices. In addition, the ripples in the reflected pulse autocorrelation data indicate significant

structure in the reflected intensity envelope. In order to fully characterize the electric field of
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Figure 2.4: Measured intensity autocorrelations of incident and reflected pulses. (a) Pulse
reflected from F120309-2 (green) and the incident pulse (black). (b) Pulse reflected from
F120309-3 (green) and the incident pulse (black).

the pulse, it is necessary to obtain information about the amplitude and phase of the pulse

electric field. This information is contained in the functions I(t) and φ(t) in Eq. 2.1. One

way of obtaining this information is by spectrally analyzing the pulses whose intensity vs.

delay produced the autocorrelation. Spectra of the delay-dependent nonlinear signal pulses

may be measured, resulting in a two-dimensional data set referred to as the FROG trace:

IFROG(ω, τ) = |Esig(ω, τ)|2 =

∣∣∣∣∫ ∞
−∞

Esig(t, τ) exp(−iωt) dt
∣∣∣∣2 (2.5)

where in this work,

Esig(t, τ) = E(t)E(t− τ) (2.6)

is the nonlinear signal pulse produced for a particular delay τ in the autocorrelation geometry.

The combination of spectral and time information contained in this data set overdetermines

the I(t) and φ(t) sought for the complex amplitude E(t) which can be extracted by means

of a phase retrieval process. Although Eq. 2.5 cannot be solved directly for the pulse field
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E(t), this relationship provides the retrieval algorithm with the constraint that the squared

magnitude of the Fourier transform of Esig(t, τ) must be in agreement with the FROG trace

data. That Esig(t, τ) must be generated by the functional form E(t)E(t − τ) provides an

additional constraint on the E(t) being sought4. This technique was first applied to the mea-

surement of ultrafast pulses by Trebino, et al. [9] and is called Frequency-Resolved Optical

Gating (FROG). The FROG technique was used to time-resolve the complex amplitude of

the pulse both before and after the reflection from pulse-stretching mirrors F120309-2 and

F120309-3.

The form of Esig(t, τ) in Eq. 2.6 corresponds to SHG-FROG, or FROG “in an SHG

geometry”, where SHG refers to the nonlinear optical process of second harmonic generation.

This is because the signal pulse field is generated by the polarization term that is second

order in the instantaneous electric field: P (2) = ε0χ
(2)E2. For the case of two non-collinear

beams (“1” and “2”) overlapping in the nonlinear medium, E2 has many terms, one being

the sum-frequency generation term

1

2
E1E2 exp( i [ (ω1 + ω2) t− (k1 + k2) · r ] ) + c.c. (2.7)

This term is responsible for the signal pulse measured in the autocorrelation geometry with

propagation vector k1 + k2 (see [10], pgs. 40, 279 and [11], pg. 249).

The SHG-FROG data trace is symmetric about τ = 0, which is the delay setting at which

the pulse copies are perfectly overlapped in time. As a consequence, the pulse resulting from

the retrieval algorithm is ambiguous with respect to the direction of time. In other words,

any given pulse and a time-reversed version of it would produce the same FROG trace, so

an SHG-FROG trace cannot not determine which pulse was actually measured. Additional

measurements or assumptions may be made to argue for a particular choice of the direction of

4See Appendix A for description of the retrieval algorithm.
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time. Here, this ambiguity is considered to be removed in the stretched pulse measurements

by knowledge of the pulse reflected by the mirror design in FDTD simulations.

The integral of the FROG trace over either of its dimensions results in a marginal that

can be measured independently. Specifically, the delay marginal is the one-dimensional

curve resulting from integration of the FROG trace data over all frequencies and equals the

autocorrelation A(τ). The frequency marginal is the one-dimensional curve resulting from

integration over the delay coordinate, and equals the autoconvolution of the spectrum of the

pulse being measured. These marginals provide consistency checks of the pulse measurement,

and comparisons between them and independent measurements accompany all of the pulse

measurement results presented in Section 2.4.3. It should be noted that the autoconvolutions

depicted in Section 2.4.3 have not been manually shifted onto frequency marginals. Instead,

the pulse spectra used to calculate them are first zero-padded down to zero frequency, lending

meaning to the relative shift between these two curves. This can be accounted for by the

day-to-day center wavelength of operation of the laser, which in a few instances was allowed

to drift by < 0.5 nm. The absolute offset of the autoconvolution is sensitive to such shifts.

2.4.2 Experimental details and considerations

The pulses reflected from the mirrors were measured using the FROG technique in an SHG

geometry. The experimental setup for these measurements is shown in Fig. 2.5. In order

to compensate for the convex surfaces of F120309-2 and F120309-3, the incident pulse was

first passed through a beam-expanding telescope (BET), which was used to collimate the

reflection from the stretcher mirrors and ensure that the beam diameter was kept within the

clear aperture of subsequent optics. Light reflected at normal incidence from a sample is

traditionally measured using a beam splitter placed in collinear incident and reflected beam

paths. Associated with that approach is a loss of 75% of the pulse intensity. The small-

angle geometry was chosen for this experiment with a mind to the intensity dependence
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Figure 2.5: Schematic of the SHG-FROG experiment. BET=Beam Expanding Telescope;
BS=Beam Splitter; SPEC=Spectrometer; L1=80 mm focal length lens; CC=Corner Cube
reflector

of the nonlinear process required to measure the unamplified, stretched pulses with low

peak intensity. Since the pulse-stretching mirrors were designed for normal incidence, it was

necessary to estimate the effect of using a 0.36◦ angle of incidence. The use of a non-zero

incidence angle in the experimental design is validated by considering the fractional change

in the optical path length Λm in a layer caused by a non-zero angle of incidence,

∆Λm

Λm

= sec θm − 1 (2.8)

where θm is the angle of refraction in the medium. The fractional changes in the optical

path length for Nb2O5 and SiO2 are 4 × 10−6 and 9 × 10−6 respectively, which amounts to
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an absolute change in optical path length of less than λ/4200 for the thickest layers. The

robustness of this mirror design with respect to detuning of the center wavelength from

790 nm to 815 nm was investigated elsewhere [7]. Since this wavelength detuning introduces

a much larger fractional error than that introduced by the non-normal incidence geometry

used in the experiment, any effects associated with the nonzero 0.36◦ incidence angle may

be regarded as negligible. After reflection from a pulse-stretching mirror, the pulse was

amplitude-split using a beam splitter (BS). One of these pulses was propagated through a

fixed optical delay, while the second pulse was propagated through a variable delay line.

This resulted in a gate pulse E(t− τ), which is delayed relative to the probe pulse E(t). An

f = 80 mm lens (L1) was used to focus the beams into a thin Beta-Barium Borate (BBO)

crystal. The resulting nonlinear signal pulse was collimated and imaged onto the slit of the

spectrometer (SPEC), which recorded its wavelength spectrum for each value of the time

delay between pulses.

The thickness L of the nonlinear medium is the most important parameter of a FROG

experiment. A FROG measurement is only valid insofar as the nonlinear process is uni-

formly phase-matched over the entire bandwidth of the pulse. The crystal phase-matching

bandwidth scales as 1/L, whereas the intensity of the phase-matched signal pulse, and there-

fore the signal-to-noise ratio of the FROG trace, is proportional to L2. There is therefore a

narrow range of crystal thicknesses appropriate for this measurement [10]. In order to select

an appropriate crystal, the phase-matching bandwidth

δλFWHM ≈
0.44 λ0/L∣∣∣[dndλ]λ=λ0
− 1

2

[
dn
dλ

]
λ=λ0/2

∣∣∣ (2.9)

was calculated from Sellmeier equations for the refractive index of BBO [12] and compared

with the spectral bandwidth of a 100 fs bandwidth-limited Gaussian pulse centered at 800 nm.

A thickness of L = 200 µm was selected to best accommodate the bandwidth and peak
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intensity of the unamplified laser output, while also taking into consideration the fact that

the pulses reflected from the stretcher mirrors have a significantly lower peak intensity and

thus will generate a weaker signal pulse. The two additional spatial dimensions of the BBO

crystal were each 5 mm.

Spectra were measured by an Oriel MS125TM 1/8 m spectrograph (Model 77400) with

10 µm slit (Model 77222), 1200 grooves/mm grating, and LineSpecTM 1024 pixel CMOS

linear array (Model 78866) installed5. This instrument was wavelength-calibrated using

the known spectral lines [13] of an Oriel Hg “pencil” calibration lamp (Model 6035) inserted

into the BBO crystal position. The instrument function (intensity calibration) was calculated

from spectra gathered using the spectrograph and a calibrated photodiode (one for which the

wavelength-dependent quantum efficiency is known) for a common tunable source. However,

the associated correction to the spectra comprising the FROG traces measured in this work

was found to be negligible.

A 100 fs pulse has longitudinal spatial extent of ∼ 30 µm. The generation of the nonlinear

signal pulse depends on positional and orientational degrees of freedom of the both the beams

and the BBO crystal, as well as the arrival time of the gate pulse E(t− τ). When τ = 0, the

optical distances from BS to BBO of the probe E(t) and gate E(t−τ) are equal, overlapping

them in time. It is therefore beneficial to have a method, independent of any signal pulse, of

determining what position of the corner cube reflector (CC) achieves the time overlap and

defines τ = 0. This was done by inserting in front of L1 a single gold mirror large enough

to reflect the parallel beams toward a screen ∼ 12 meters away. After propagating through

this distance, the diverging beams, crossed at a small angle and overlapping somewhat in

space, create a visible interference pattern when τ ∼ 0. By optimizing the visibility of this

interference pattern through fine adjustment of the delay, the optical path difference between

two 100 fs pulse copies traveling from BS to L1 may be reduced to ∼ 1 µm.

5This configuration gives ∆λ
∆pixel = 0.048590 nm/pixel.
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One might expect that the optical system for collection of the signal pulses is designed

according to those considerations common to all spectroscopic measurements. However, in

a FROG measurement two subtle issues are alleviated by careful choice and placement of

all components following the BBO crystal (see [10], pg. 278). The finite spatial extent of

the beam crossing in the focal plane of L1 results in a range of delay values for any given

CC position because the wavefronts of the two pulse copies are not parallel. This is called

transverse geometrical time-smearing and results in distortions in the FROG trace if not

minimized. The second effect involves the direction of propagation of the signal pulse. A

pulse whose phase φ(t) is asymmetric (in time) about the pulse peak has frequency content

which varies in time as it passes through the crystal6. The signal pulse, whose propagation

vector ksp = k1 + k2 is given by momentum conservation, spreads into a solid angle that

depends on which frequency components are overlapped in time for a particular CC position.

A valid and complete FROG trace is produced only when all signal pulse rays corresponding

to a particular value of delay reach the CMOS detector without being clipped. This is

accomplished by careful imaging of the signal pulse onto the spectrometer slit such that rays

corresponding to unwanted delay values associated with the first effect are blocked, but all

spatial components associated with the second effect are collected. The relationship between

the actual image size and the slit width determines the effective image size, which may be

reduced to limit the effective object size to correspond to a narrowed range of delay values.

See Fig. 2.6 and [10], chapter 7. All rays originating from this effective object are collected

at the plane of the effective image. The use of two lenses as shown in Fig. 2.5 is a matter of

convenience.

A FROG trace data set is considered properly sampled when its smallest values are

10−4 × the peak of the trace or less [10]. Many detectors, including the CMOS array of the

spectrometer used in this work, do not have sufficient dynamic range for this criterion to be

6Simple example: a chirped pulse.
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Figure 2.6: Left: The red arrow represents the spatial overlap of beams 1 and 2 in the
nonlinear crystal. The blue arrow represents the signal pulse spot size at the plane of the
spectrometer entrance slit. Right: The red arrow represents the effective image after being
clipped by the slit. The blue arrow represents the effective object size corresponding to a
narrower range of delay values and less time-smearing.

satisfied by a single FROG trace. For a given exposure time setting, a signal pulse spectrum

may have regions that are (i) below the detection threshold, (ii) linear (and therefore contain

useful data), or (iii) in saturation. In this work, the portions of individual FROG trace data

sets corresponding to the linear response regime are identified, extracted, scaled accordingly,

and then merged to form a high dynamic range FROG trace [14]. An example of this

construction is given in Appendix B.

A computer algorithm incorporating the method of generalized projections was used to

retrieve E(t) from the high dynamic range FROG trace7. Comparison of the measured FROG

trace with the FROG trace generated by the retrieved electric field aids the interpretation

of the pulse measurement results. The FROG trace derived from the field retrieved by the

algorithm will be referred to as the “retrieved FROG trace” in the discussion below.

7See Appendix A for description of the retrieval algorithm.
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Convergence of the retrieval algorithm, which operates on a Nω ×Nτ grid, is quantified

by the FROG error:

Gk =

√√√√ 1

NωNτ

Nω∑
i=1

Nτ∑
j=1

∣∣Im
FROG(ωi, τj)− µ IkFROG(ωi, τj)

∣∣2 (2.10)

where m indicates the measured FROG trace, k indicates the retrieved FROG trace at the

kth iteration of the algorithm, and µ is a real normalization constant that minimizes the

error Gk.

2.4.3 Results and Discussion

The incident laser pulse source is described in Section 2.2. The incident pulse was first

characterized in terms of FROG measurements for comparison with those taken for the case

of stretched pulses. It should be noted that the ambiguity in the direction of time of the

electric fields retrieved from SHG-FROG traces results in a time axis whose meaning is

limited to the size of its increment. Each FROG measurement result presented below retains

this feature, whereas Fig. 2.10 will summarize results more intuitively in that later times

have more positive values.

Shown in Fig. 2.7 is the result of a reference measurement of the incident pulse made by

inserting a general purpose silver mirror (New Focus Model 5103) in the sample position. The

FROG trace derived from E(t) as retrieved by the algorithm is presented for comparison with

the measured FROG trace. The deviation of the incident laser pulse from an ideal Gaussian

pulse is manifested in the red-shifted, low-level features in the FROG trace (particularly

visible in the raw data shown in Appendix B) and is an indication of excessively large

negative group-delay dispersion occurring in the laser cavity [10, 15]. It is possible that the

occurrence of these lower-level pulse features affects the interference conditions at the layer
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interfaces and correspondingly degrades the performance of the pulse-shaping devices, as

they were optimized for a purely Gaussian incident pulse.

The experimentally measured FROG trace and the resulting retrieved fields from the

pulse after reflection from F120309-2 are shown in Fig. 2.8. Data for the pulse after reflection

from F120309-3 are shown in Fig. 2.9. Shown in Fig. 2.10 is a comparison between the

predicted mirror performance and the measured intensities already presented in Figs. 2.7, 2.8,

and 2.9 but with the measured reflectivities taken into account. Specifically, the measured

incident pulse data are first normalized so that its peak is unity, and the measured reflected

pulse data are subsequently scaled by the product formed by the corresponding nominal

reflectivity listed in Table 2.1 and the ratio of the time-integrated incident intensity to

the time-integrated reflected intensity. Also, time axes have been shifted and inverted for

convenient comparison with the simulated result depicted in Fig. 2.1 and reproduced in

Fig. 2.10 (a). In Figs. 2.10 (a), (b), and (c), the ratios of peak reflected intensity to peak

incident intensity are 0.146, 0.210, and 0.192 respectively.

As can be seen in Figs. 2.10 (b) and 2.10 (c), both F120309-2 and F120309-3 stretch

the incident pulse from ∼100 fs to ∼1 ps in a manner similar to the predicted behavior

shown in Fig. 2.10 (a). However, the reflected pulses from both F120309-2 and F120309-3

exhibit a temporal profile that is more structured than the predicted reflected pulse. This

is a comparison of an FDTD calculation of the reflection from an ideal device design of an

assumed Gaussian incident pulse with FROG measurements of the laboratory incident and

reflected pulses using actual prototypes. Possible causes of this discrepancy include imperfect

layer thicknesses associated with statistical fabrication errors (see Fig. 2.2), the non-planar

mirror surfaces (see Table 2.1) and the associated compensatory beam manipulation (see

Section 2.4.2, first paragraph), and deviation of the incident pulse from the assumed Gaus-

sian, as well as deviation of the refractive indices of the actual deposited materials from

the assumed non-dispersive values. There are many potential sources of error in the FROG
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Figure 2.7: Reference pulse measurement. (a) The measured FROG trace (Trace dimensions:
256×512; G = 0.00290974). (b) The retrieved FROG trace. (c) Autocorrelation (green) and
delay marginal (black). (d) Autoconvolution of the pulse spectrum (violet) and frequency
marginal (black). (e) The retrieved E(t). (f) The retrieved intensity (black) and the incident
intensity used in the mirror design (blue) for comparison.
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Figure 2.8: Measurement of the laser pulse reflected from F120309-2. (a) The measured
FROG trace (Trace dimensions: 256 × 512; G = 0.0121446). (b) The retrieved FROG
trace. (c) Autocorrelation (green) and delay marginal (black). (d) Autoconvolution of the
pulse spectrum (violet) and frequency marginal (black). (e) The retrieved E(t). (f) The
retrieved intensity (black) and the predicted intensity envelope (blue) for comparison.
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Figure 2.9: Measurement of the laser pulse reflected from F120309-3. (a) The measured
FROG trace (Trace dimensions: 256 × 512; G = 0.0132273). (b) The retrieved FROG
trace. (c) Autocorrelation (green) and delay marginal (black). (d) Autoconvolution of the
pulse spectrum (violet) and frequency marginal (black). (e) The retrieved E(t). (f) The
retrieved intensity (black) and the predicted intensity envelope (blue) for comparison.
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Figure 2.10: Comparison of predicted and measured intensity temporal profiles:
(a) The incident (black) and reflected (blue) intensity calculated by the FDTD method.
(b) The measured incident (black) and reflected (blue) intensity for the case of F120309-2.
(c) The measured incident (black) and reflected (blue) intensity for the case of F120309-3.
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Figure 2.11: Comparison of results in the time-frequency domain. (a) FROG trace generated
by the pulse field reflected from the as-designed mirror in an FDTD calculation. (b) FROG
trace generated by the pulse field retrieved from the measured FROG trace for the case of
F120309-2.

pulse measurement as discussed in Section 2.4.2. Most notably, the nonlinear crystal qual-

ity, thickness, and orientation relative to the crossed beam geometry all have bearing on

the reliability of the results. Insight into whether the discrepancy is due to deficient device

performance or errors in the FROG pulse measurement may be gained from considering

additional quantities derivable from the result predicted by FDTD calculations, and further

examining the data already presented.

A FROG trace may be generated from the FDTD data corresponding to the pulse re-

flected from the ideal design using Eqs. 2.5 and 2.6. In Fig. 2.11, this trace is compared with

the retrieved trace for the case of mirror F120309-2, which is reproduced from Fig. 2.8 (b).

This corresponds to a comparison of the blue curves in Fig. 2.10 (a) and (b). The traces share

many of the same features. However, the trace corresponding to the measurement contains a

red-shifted peak, and lacks the strong features near 399 nm. There are two likely causes for
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this trend. The first is the use of a nonlinear crystal with insufficient phase-matching band-

width. Indeed, the recommended crystal thickness for such a measurement is 100 µm – one

half the thickness of the crystal used in this work (see [10], pg. 129). However, the FROG

trace frequency marginal and independently measured pulse spectrum autoconvolution are

seen to be in excellent agreement in Fig. 2.8 (d). The ratio of these quantities may be used

to correct a FROG trace exhibiting this flaw [10]. The fact that this ratio is approximately

constant here suggests that this measurement was not significantly hindered by insufficient

phase-matching bandwidth. The other likely cause is a neglect of the spectral response of

the spectrometers used. If their instrument functions each happen to exhibit an increasing

sensitivity with wavelength in the relevant spectral regions (around 400 nm for the nonlinear

signal pulse spectrum, around 800 nm for the fundamental pulse spectrum), then the quan-

tities plotted in Fig. 2.8 (d) may agree while suffering from a mutual flaw. This possibility

was eliminated by measuring the instrument function of the spectrograph used to measure

all FROG traces, with hopes of correcting them. However, a visual comparison of FROG

traces with and without the measured instrument function correction determined it to be

negligible.

2.5 Conclusions

The preceding results and considerations led to the conclusion that the noticeable disparity

between predicted and measured temporal intensity profiles for the stretched pulses is due

primarily to the characteristics of the particular specimens as opposed to flaws in the pulse

measurement. Specifically, the curved surfaces may result from the use of relatively thin

substrates. Thicker, more expensive substrates are commonly found in more robust optics

with better operating parallelism. In addition, the prototypes may have been fabricated

with the substrate very close to the deposition source in order to increase the flux density,
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Figure 2.12: Comparison of intensity autocorrelations: Autocorrelation of the temporal
intensity envelope calculated by the FDTD method (blue) and measured autocorrelations
(green) for the device prototypes F120309-2 (a) and F120309-3 (b).

providing savings in terms of time and material. This would be expected to produce a curved

surface if the separation between the deposition source and a point on the substrate surface

(and therefore the local flux density) varies appreciably as a function of radial distance from

the center of the optic.

FROG trace delay marginals have been compared to independently measured autocor-

relations in Figs. 2.8 and 2.9. As a final remark, the autocorrelations measured using the

commercial device are reproduced in Fig. 2.12 along with the autocorrelation calculated us-

ing the temporal intensity profile calculated by the FDTD method, which is the blue curve

shown in Figs. 2.1 and 2.10 (a). Each curve is normalized to its peak. The point here is that

additional structure in the experimental intensity profile is manifested in the measured au-

tocorrelations by their additional structure and the associated “coherence spike” [10]. Also,

these data are not derived from FROG measurements and are therefore not subject to the

same scrutiny. While the intensity autocorrelation does not determine the form of the inten-

sity structure, it does reveal which pulse (simulated or measured) is more structured. This
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observation lends additional credence to the measurements presented in this chapter that do

in fact provide the complete intensity structure – the FROG traces and pulse fields retrieved

from them.
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Chapter 3

Computational Studies of Laser Beam

Coupling in Hybrid

Liquid Crystal-Photorefractive Cells

3.1 Introduction

Photorefractive effects were first reported in 1966 by Ashkin et al. [16], who observed

optically-induced spatial inhomogeneities in the refractive index of LiNbO3 and LiTaO3.

That discovery would lead to a branch of nonlinear optics that has motivated extensive

studies in optical engineering and materials research and continues to develop [17].

Nonlinear optical effects are often interesting from an applied science/optical engineering

standpoint in that they may be utilized to control or otherwise modify light by virtue of

self-action. For example, an intensity-dependent refractive index change n(I) = n0 + ∆n(I)

may cause self-focusing and affect the propagation of a beam, which has higher intensity at

its spatial center. However, these effects, having their origins in higher-order terms of a
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polarization P = ε0

∑
i χ

(i)Ei, generally have very small coefficients and require high inten-

sities.

Photorefractive behavior in materials cannot be cast in the traditional formalism of non-

linear optics described briefly in Section 1.1 [18]. This is demonstrated most clearly by the

fact that the field E directly responsible for ∆n is not the optical field. E arises from a

fortuitous sequence of physical processes that happens to have as its origin a spatially mod-

ulated optical intensity. For this reason, photorefractivity is independent of the overall light

intensity (barring extreme conditions), but dependent on the degree to which it is spatially

modulated. The basic requirements are that the material be photoconductive and exhibit

the linear electro-optic effect. High intensities are not required. This research field maintains

the attention of optical scientists and engineers because 1) the effects are self-induced and

2) the coefficients that determine the magnitude of the underlying optical effect are large as

compared with those that determine, for example, the optical Kerr effect.

The photorefractive effect, which will be described in more detail in Section 3.3, has found

application in many technological settings. Optical data storage is facilitated by holographic

memory [19]. Weak optical images may be coupled in a photorefractive to a stronger pump

beam and therefore amplified [20]. Photorefractive phase conjugate mirrors are capable of

correcting beam distortions occurring in laser cavities due to unwanted nonlinear effects at

high intensities [21]. Self-organized laser cavities have been achieved using a photorefractive

crystal [22] as an adaptive Fabry-Pérot filter to select and lock-in particular longitudinal or

transverse cavity modes [23]. Because the change imparted by the crystal to the cavity is

optically-induced, the wavelength of a cavity can be selected by temporary injection from

a master laser [24]. Thus, the stable operation of several slave lasers at a given wavelength

may be set by a common tunable master laser. The value of the self-induced optical effects

occurring in photorefractives is reflected by the breadth of these adaptive technologies.
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Two-beam coupling, which is the subject of the rest of this chapter, is derived from the

refractive index grating written to a photorefractive, and is optimized when a device can

operate in the Bragg diffraction regime such that one beam interferes constructively with

the Bragg reflection of another. Hybrid devices may be constructed from layers of organic

and inorganic crystals and glasses, photoconductive polymers, and/or liquid crystals. This

chapter describes a numerical investigation into the two-beam coupling gain characteristics

of such a device. The exponential gain coefficient is defined as

g =
1

L
lnG (3.1)

where L is the sample thickness and G is the gain, which may be defined differently in

different contexts. Theoretical calculations might considerG to be a ratio of beam amplitudes

before and after passing through a sample, while experiments might consider G to be the

ratio of the signal beam’s power before and after adding the pump beam, whose energy is

coupled into the signal beam.

3.2 Liquid Crystals

Liquid crystals were discovered in the late 19th century by Reinitzer and Lehmann [25–27].

These “mesomorphic phases” constitute a distinct state of molecular aggregation intermedi-

ate between crystalline solids and amorphous liquids from which they may be distinguished

on a basic level in terms of their spontaneous order: Solids possess, and liquids lack, both

translational and orientational order, whereas liquid crystals possess orientational but lack

full translational order. They are classified most broadly in terms of the dimensionality

of the translational order they do possess, which is generally determined by temperature,

concentration, etc. for a given molecular species or mixture of species. Columnar phases are
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N-(p-methoxybenzylidene)-p-butylaniline
(MBBA)

Figure 3.1: Nematic liquid crystal. The nematic phase of the MBBA molecule occurs between
20◦ C and 47◦ C.

distinct from solid-state crystals in that one-dimensional mutually parallel channels exist in

the bulk material through which the molecules may flow. Liquid crystal (LC) molecules in

a smectic phase retain long-range orientational order, but have freedom to flow in planes

normal to some direction. When the flow of orientationally-ordered LC molecules is not

limited in any particular direction, the phase is referred to as nematic. Nematics were used

in the first observation of photorefractivity in liquid crystals by Rudenko and Sukhov in

1993 [28–30]. An example of a nematic mesogen is MBBA and is shown in Fig. 3.1. These

distinctions have bearing on the optical properties of these materials in that a LC mate-

rial at steady state behaves as an anisotropic solid with a spatially-dependent optical axis.

This local optical axis is a unit vector termed the “director”, and determines the spatial

dependence of the relative permittivity tensor

εij = ε⊥ δij + εa ninj (3.2)

where n is the director, δij is the Kronecker delta, and εa = ε‖−ε⊥ is the dielectric anisotropy

of the LC with distinct permittivities being experienced by components of a propagating
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electric field along (ε‖) and normal to (ε⊥) the director. Typical values for εa are on the

order of 5 to 10 [31]. Choosing the director to lie in the yz-plane in an experimental geometry

with no x-dependence, this becomes

ε̂ =


ε⊥ 0 0

0 ε⊥ + εa cos2 ϑ(y, z) εa
2

sin 2ϑ(y, z)

0 εa
2

sin 2ϑ(y, z) ε⊥ + εa sin2 ϑ(y, z)

 (3.3)

where ϑ(y, z) is the angle ∈ [−π, π ] between n and ŷ. The director n = n(y, z) is subject to

highly non-local effects. Forces and torques at one side of a container may be communicated

across the bulk material via local interactions between clumps of molecules. Van der Waals

interactions between the container surface and LC molecules may cause a pretilt at the

container surface. To calculate the steady-state solution for the director angle field (“director

profile”) throughout the container, an appropriate free energy functional must be minimized

subject to boundary conditions imposed, for example, by the pretilt induced by the container

walls. This free energy functional may include terms like the flexoelectric energy

Ff = −
∫

(Pf · E) dV (3.4)

where Pf is written in terms of the n(y, z) as

Pf = e11 n (∇ · n)− e33 n× (∇× n) (3.5)

with coefficients e11 and e33 generally being determined empirically: and E = E(y, z) is some

externally applied field.

41



y

z
k1k2

L

δ

Figure 3.2: Beam geometry and spatial coordinates used throughout this chapter.

3.3 The Photorefractive Space-charge Field and its In-

fluence on the Nematic LC Director

The interference pattern between two crossed laser beams may be described in terms of a

modulation parameter M ∈ C as follows: The electric field vectors of the two waves are

represented as (see Fig. 3.2):

E1 = A1 e
i(k1·r−ω1t) ( cos(δ) ŷ − sin(δ) ẑ ) (3.6)

and

E2 = A2 e
i(k2·r−ω2t) ( cos(δ) ŷ + sin(δ) ẑ ) (3.7)

where A1 and A2 are complex beam amplitudes. If the waves have the same frequency

ω1 = ω2, then the spatial distribution of the intensity corresponding to the total electric field

is stationary [18] and may be written as

I =
1

2
cnε0 (E1 + E2) · (E1 + E2)∗ ∝ (I1 + I2)

[
1 +

1

2

(
M eiqy +M∗

e−iqy
) ]

(3.8)
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where I1 = A1A
∗
1, I2 = A2A

∗
2, q = k1y − k2y = 2k sin(δ) andM = 2 cos(2δ)

I1 + I2
A1A

∗
2. Writing the

modulation parameter asM = meiφ and ignoring the prefactors in the relationship between

intensity and electric field magnitude, Eq. 3.8 becomes

I = (I1 + I2) [ 1 +m cos(qy + φ) ] (3.9)

which has maxima and minima

I(max) = (I1 + I2) [ 1 +m ] (3.10)

and

I(min) = (I1 + I2) [ 1−m ] (3.11)

so that the real parameter m is given by

m =
I(max) − I(min)

I(max) + I(min)
(3.12)

and it is clear that the phase φ ofM determines the phase of the interference pattern, which

varies in a sinusoidal manner as a function of y, relative to the coordinate origin.

A grating vector may be defined as q = 2π
Λ

ŷ to describe the direction and spatial period

of a y-directed refractive index modulation with spatial period Λ. Maximal coupling between

beams is achieved for a Bragg-matched diffraction geometry, which refers to the condition

that the grating vector satisfies

q = k1 − k2. (3.13)

Eq. 3.13 holds when the refractive index modulation ∆n = ∆n(y) constituting the phase

grating has the same spatial periodicity as does the interference pattern created by the

crossed beams. This relationship was suggested by the introduction of the symbol q in

43



Eq. 3.8, and inherently applies when the refractive index modulation is derived from the

intensity distribution in the beam crossing. For example, the optical Kerr effect may induce

a refractive index n = n0 + ∆n(y) with ∆n(y) ∝ I. However, this alone is not enough to

result in energy transfer between beams. It can be shown [18] that there is no energy transfer

between beams with ω1 = ω2 in such a material. In this Kerr medium the spatial phase of the

refractive index modulation equals the phase φ of the interference pattern. Energy transfer

between beams of the same frequency is facilitated by the phase shift between these patterns

that arises from the distinct physical processes occurring in photorefractive materials.

Photorefractive behavior may arise in a material that exhibits photoconductivity and the

linear electro-optic effect [32]. See Fig. 3.3. In regions of comparatively high intensity, pho-

toionization occurs at donor impurity sites with density Nd. Charge carriers subsequently

diffuse to acceptor sites with density Na in the lower-intensity regions, leaving behind pos-

itively charged holes. This charge separation gives rise to an electric field that is static in

time, oscillating as a function of position, and referred to as the “space-charge field”. The

magnitude of this field depends on the specific material properties and geometry. In this

work1, the space-charge field magnitude takes the diffusion-dominated form [33]:

E0sc(q) =
− iEd

1 + Ed

Eq

, Ed = q
kBT

e
, Eq =

(
1− Na

Nd

)
eNa

ε0 εPh q
(3.14)

where the diffusion field Ed is determined for a given grating wave number q = |q| and

temperature T by the elementary charge e and Boltzman’s constant kB, and the saturation

field Eq depends on εPh, the material’s dielectric constant. The space-charge field, according

to the linear electro-optic effect [34], induces a refractive index modulation ∆n(y) that is

sensitive to the sign of Esc and therefore has the same spatial period as does the interference

1The minus sign in E0sc(q) corresponds to negative charge carriers and the particular coordinate system
used in this work.
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Figure 3.3: Schematic of the construction of a space-charge electric field Esc (blue arrows)
due to photoionization and diffusion of charge carriers (electrons here) from high-intensity
regions (red) to low-intensity regions(white).

pattern, but phase-shifted by π
2
. It is this modification of the refractive index as a function

of space that is responsible for the many applications that utilize photorefractive materials.

For the case of a finite material slab, the space-charge field also permeates to the region

of space surrounding the slab. This field can influence the properties of a material placed

adjacent to the photorefractive. Shown in Fig. 3.4 is a schematic of a hybrid organic-inorganic

device fashioned from a liquid crystal (LC) layer sandwiched between two photorefractive

windows. This device has demonstrated gain coefficients of 600 cm−1 as compared with 10

– 100 cm−1 typical for purely inorganic photorefractive devices [35]. The beam and sample
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Beam 1Beam 2

Photorefractive material

Liquid crystal molecules

Esc

Figure 3.4: Hybrid organic-inorganic beam coupling device. The liquid crystal director
is reoriented by the space-charge field Esc such that the free energy associated with this
mesomorphic material is minimized. The magnitude of the reorientation is exaggerated
here, and Esc(y, z) is depicted in the abstract.

geometry are such that the problem may be treated in two spatial dimensions, and effects

associated with finite spatial beams are not expected to have any importance. Despite these

simplifications, accounting for this gain theoretically has proven difficult. The equations that

describe the space-charge field’s influence on the LC material, the resulting influence the

LC material has on beam propagation, and the resulting modifications to the interference

patterns in each window constitute a complex coupled problem that must be solved self-

consistently. For example, neglecting the feedback on Esc due to the reorientation it produces

in the LC director and the associated flexopolarization, which itself would, strictly speaking,
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require a self-consistent approach, the space-charge field takes the form [35]

Esc(y, z) =

E0sc(q)

4

[
(MF +MB)

cosh(q̃z)

cosh(q̃L/2)
+ (MB −MF)

sinh(q̃z)

sinh(q̃L/2)

]
exp(iqy) ŷ

+
E0sc(q)

4i

[
(MF +MB)

sinh(q̃z)

cosh(q̃L/2)
+ (MB −MF)

cosh(q̃z)

sinh(q̃L/2)

]√
ε̃‖
ε̃⊥

exp(iqy) ẑ

+ c.c.

(3.15)

where subscripts on complex modulation parameters refer to the “Front” (entrance) and

“Back” (exit) photorefractive windows, and all other parameters are defined in Section 3.4.

This field should in principle be used in the expression for the appropriate free energy to

yield the director profile, which in turn determines the LC permittivity tensor that effects

beam propagation and therefore the interference pattern in the photorefractive. Rendering

such a problem tractable requires making various approximations at various stages of the

calculation. In order to shed light on the effect of approximations associated with the

evolution of the electromagnetic fields corresponding to the propagation of and coupling

between beams, the experiment was simulated via finite-difference time-domain (FDTD)

calculations of two beam coupling in the LC layer. Methods used and results obtained are

the subject of the remainder of this chapter.
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3.4 Liquid Crystal Director Profile

The director n = n(y, z) is obtained from minimization of the total free energy functional

F =
∑

i Fi, thus balancing the torques associated with the Frank-Oseen elastic energy

Fel =
1

2

∫ [
K11 (∇ · n)2 +K22 (n ·∇× n)2 +K33 (n×∇× n)2 ] dV (3.16)

and the applied field Esc(y, z). Here, K11, K22, and K33 are the splay, twist, and bend

elastic constants, respectively. The two-dimensional system geometry, which confines n to

the yz-plane, makes the second term in this expression identically zero. The influence of Esc

is dominated by the flexoelectric energy term

Ff = −
∫

(Pf · Esc) dV

= −
∫

[ e11 (Esc · n) (∇ · n) + e33 Esc · (n ·∇) n ] dV

(3.17)

where e11 and e33 are the flexoelectric coefficients. See [35] for details. Expanding the

direction cosines and keeping terms in small ϑ up to first order, the y-dependence of the

solution to the Euler-Lagrange equation

∂F

∂ϑ
− d

dy

∂F

∂ϑy
− d

dz

∂F

∂ϑz
= 0 with ϑy ≡

dϑ

dy
, ϑz ≡

dϑ

dz
(3.18)

is Fourier expanded as

ϑ(y, z) = θ0(z) + [ θ(z) exp(iqy) + c.c. ] (3.19)

where higher-order Fourier components for the modulation in y are neglected according to

the so-called “first spatial harmonic approximation” [36]. The resulting solution, which
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assumes infinitely strong anchoring of the pretilts θF and θB at the front and back window

surfaces bounding the LC layer of thickness L, is given by

θ0(z) = s+ pz with s =
θF + θB

2
, p =

θB − θF

L
(3.20)

and

θ(z) =
E0sc(q)

2
[MFGF(z) +MBGB(z) ] (3.21)

where

GF(z) =
rq̃

q̃2 − q2
1

{(
1 +

i2p (q̃2 + q2)

q (q̃2 − q2
1)

)[
e−q1(z+L/2) − e−q̃(z+L/2)

]
− i (q̃2 + q2)

qq̃

[
θ0(z)e−q̃(z+L/2) − θFe

−q1(z+L/2)
]}

,

(3.22)

GB(z) =
rq̃

q̃2 − q2
1

{(
1 +

i2p (q̃2 + q2)

q (q̃2 − q2
1)

)[
e q̃(z−L/2) − e q1(z−L/2)

]
− i (q̃2 + q2)

qq̃

[
θ0(z) e q̃(z−L/2) − θB e

q1(z−L/2)
]}

,

(3.23)

and where the quantities r, q̃, and q1 are defined as

r =
e11 + e33

K11

, q̃ = q

√
ε̃‖
ε̃⊥
, q1 = q

√
K33

K11

. (3.24)

ε̃‖ and ε̃⊥ are the low-frequency permittivities of the LC material along and normal to the

director, respectively. After expanding Eq. 3.19 using Eqs. 3.20 – 3.24 in order to work with

real quantities2 in the context of an FDTD numerical calculation, the director profile ϑ(y, z)

2This expansion is given for reference in Appendix D.
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L

Figure 3.5: Vector field depiction of the LC director profile ϑ(y, z). Note that the y-
dependence is too weak to be visible.

is used in Eq. 3.3 to close the Maxwell curl equations according to

D = ε̂ E and H =
1

µ0

B (3.25)

and thus propagate beams through the LC material with spatially-dependent anisotropy.

The director profile is plotted as a vector field in Fig. 3.5. The effect of the pretilt boundary

conditions on the z-dependence is evident, but the modulation in y is too small to be visible.

3.5 Finite-Difference Time-Domain Calculations

3.5.1 General Considerations and Reduction to 2D

The purpose of this investigation was to explore beam coupling effects occuring in the LC

layer. The cell windows are treated as an isotropic medium with refractive index nPh. The

photorefractive effects occurring therein are already well-understood and were not modeled.
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The space-charge field of Eq. 3.15 determines the director profile in terms of material pa-

rameters, beam incidence angle δ, and the complex modulation parameters MF and MB.

The strength (magnitude m) and position (phase φ) of the front and back window interfer-

ence patterns created by the beams as they interact with the LC layer are unknowns to be

interrogated from FDTD data and used to update the material in a self-consistent manner.

The resulting steady-state relative permittivity tensor ε̂(y, z) diffracts the continuous-wave

beams which may be “measured” and used to determine the beam coupling gain G.

The three-dimensional FDTD code described in Section 1.2 was reduced to two dimen-

sions for propagation in the yz-plane. Essentially, this is done by reducing the rank of all

arrays whose dimensions correspond to real space by one, and imposing on the discretized

Maxwell curl equations that all electromagnetic field components Fi have no x-dependence:

∂Fi
∂x
→ 0. This is not to say that the fields F have no x-components. Circularly polarized

light, for example, may still be simulated using this code, but only for propagation directions

in the yz-plane, and for spatial beam profiles with infinite extent in the x-direction. The

choice of incident beam polarizations (in the yz-plane) and the form of ε̂(y, z) in Eq. 3.3,

however, prevent fields from developing any x-components in these numerical beam coupling

experiments.

3.5.2 Total-Field Scattered-Field Incident Wave Formulation

The incident beams were “fed into” the computational domain (CD) via a Fortran imple-

mentation of the Total-Field Scattered-Field (TFSF) incident wave formulation [4]. This

technique facilitates the simulation of optical interactions at arbitrary angle of incidence and

relies on the fact that the Maxwell equations are linear on the interface between two distinct

subdomains of the CD. In the inner domain the total electric and magnetic fields are stored

in memory as usual. This is where the material interactions of interest to the user take place.

In a domain surrounding the total-field region, the fields stored in memory and updated at

51



each time step are the “scattered fields”:

Escat(r) = Etotal(r)− Einc(r, t) and Hscat(r) = Htotal(r)−Hinc(r, t) (3.26)

which are computationally available because incident fields are designed by the user and

hence known for all r and t. The operators in the Maxwell equations distribute across these

relations, leaving the algorithm unchanged except on the interface between the partitions.

The Yee grid cells traditionally must be “sewn together” on this interface such that the

incident excitation propagates across the inner region and is subtracted from the interface

opposite where it was inserted. However, since the total (as opposed to scattered) fields

transmitted/diffracted from the LC layer were of interest here, this operation was imposed

only on the TFSF “slit” positioned in the front photorefractive window, as shown in Fig. 3.6.

The fact that there is a disconnect in the field updating scheme, and an associated ambiguity

as to which fields (total or scattered) are stored near the disconnect, creates no numerical ar-

tifacts as long as the incident fields near that disconnect are sufficiently small. The ambiguity

is irrelevant as seen from Eqs. 3.26 with Einc(r, t) = Hinc(r, t) = 0 for all t.

A fourth-order super Gaussian beam shape,

Einc(ρ) ∝
√
I0 exp

(
− ln(2) 2n−1

( ρ
w

)n)
(3.27)

with n = 4 was used for a number of reasons. Here, I0 = 1 (arb. units) is the intensity at

the center of the beam shape, w = 28 µm is the FWHM of the beam intensity, and ρ is the

spatial coordinate transverse to the propagation direction for the beam. Most importantly,

the extraction of the phases φF and φB of the complex modulation parameters3 requires

an interference pattern that varies in a sinusoidal manner as in Eq. 3.9. The interference

pattern formed by ordinary Gaussian beams is gated spatially, which would complicate the

3This will be described in Section 3.5.3
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implementation of the LC material model. Additionally, higher-order super Gaussians decay

faster at the edges of the beam profile, which conveniently prevents overlap of the incident

beams and the TFSF slit edge that would cause the artifacts just mentioned. On the other

hand, higher-order shapes aperture the beam more severely, causing it to diffract. This is

minimized by choosing n = 4 in Eq. 3.27, while retaining a sufficiently non-gated interference

pattern for the sake of implementing the LC material model.

Simulations begin with zero E and H fields throughout the CD. The beams are introduced

on the TFSF slit and ramped up according to a Gaussian time profile with 1/e field width

of 5 fs. As the continuous-wave (cw) beams were continuously excited at the TFSF slit, and

because no material updating occurs until after all aspects of the beams associated with this

time profile have propagated through to the PML and been absorbed, the choice was fairly

arbitrary.

It should be noted that the incidence angles (δ) that were used as input parameters

are significantly smaller than the beam angles as constructed on an optical table in the

experiments. This is because the numerical simulations are confined to the photorefractive

windows. Beams crossed at larger angles in air refract by Snell’s law upon entry into the

higher-index front photorefractive window. This was accounted for by the experimenters in

their determination of values for grating spacings (Λ) within the photorefractive in terms of

beam angles on the optical table. Incidence angles (δ) within the photorefractive window

will be quoted in what follows.

3.5.3 Implementation of the LC Permittivity

The space-charge field develops in a cw-illuminated photorefractive according to a charac-

teristic time that depends not only on material parameters like charge carrier mobility and

recombination time, the structure of donor and acceptor levels, and its effective dielectric

constant, but also on experimental parameters like grating spacing Λ = 2π/q, temperature
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PML TFSF slit

NTFF contour

LC layer

Beam 1 Beam 2

Figure 3.6: Geometry of FDTD simulations of two-beam coupling described in this chapter.
The blue boxes represent the “zones” where modulation parameters are determined from
electric field data.

Figure 3.7: Example intensity data corresponding to beams crossed in the geometry shown
in Fig. 3.6 for the case Λ = 3 µm.
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T , and the intensities of the overlapped beams [37]. A fundamental lower limit to the pho-

torefractive response time based on the time required to transport a charge carrier by Λ/2

was proposed by Glass et al. [38], though it is not viewed as being extremely useful because

of the large discrepancy between the values it produces (from 10−12 s to 10−9 s depending

on charge carrier mobility) and the much larger values observed experimentally. Regardless,

the hybrid cell response is bottlenecked by the response time of the nematic LC director

reorientations, which is on the order of 10−3 s or longer [39]. This is much longer than

the ∼ 10−13 time scale on which the interference patterns are modified by the optical fields

propagating through a LC layer with L = 10 µm.

The LC material model described in Section 3.4 is kinematic in nature. Transient and/or

dispersive effects requiring a causal approach to the relationship between D and E are ignored

from the outset. The LC material model was imposed in the context of the FDTD updating

scheme by inserting into the middle of the leap-frog time-updating scheme the computation

of E from D according to

E = ε̂−1 D (3.28)

so that the response is treated mathematically as being instantaneous. The continuous-wave

beams propagate initially through the LC layer with zero space-charge field (MF =MB = 0),

and the LC material is later “turned on” by computing MF and MB continuously at each

time step and inserting them into the model, thus driving the optical fields to their steady

state.

The magnitudes mF and mB of the complex modulation parameters are computed using

Eq. 3.12 in each photorefractive window. The regions where these are calculated will be

referred to as the “front zone” and “back zone”, and are indicated by the blue boxes in

Fig. 3.6. The modulated intensity distributions IF(y) and IB(y) at time t are computed in

each window as follows:
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For each zone,

• In a rank 3 array with dimensions corresponding to y, z, and time t, store the value of

|E|2 = E2
x + E2

y + E2
z , for the past nT/2 time steps, where nT/2 is the number of time

steps corresponding precisely4 to half the period T of one optical cycle5.

• Sum the array over it’s t dimension and divide by nT/2. This gives the time average of

|E|2, which is ∝ I.

• Sum the array over it’s z dimension and divide by the number of grid cells that defines

the zone size in the z-direction. This results in the intensity spatially averaged over z.

The resulting one-dimensional data set describes the interference pattern as depicted by the

red curve in Fig. 3.3, from which the magnitude and phase of the modulation parameters

MF = mF e
iφF and MB = mB e

iφB (3.29)

are determined. The magnitudes mF and mB are computed from IF(y) and IB(y) using

Eq. 3.12. The phase φF is extracted from IF(y) as follows:

• Construct I ′F(y) =
[
2 IF(y)−

(
I

(max)
F + I

(min)
F

)]
/
(
I

(max)
F − I(min)

F

)
, which vertically

shifts and scales IF(y) to a sinusoid oscillating between 1 and −1.

• Perform a fit of I ′F(y) to cos(q*y(j)+phi) using the Levenberg-Marquardt method [40],

where phi is the variable to be optimized and y(j) is a ∆y-spaced abscissa constructed

to have a common origin6 with yLC(j), the ∆y
2

-spaced y-coordinates of the director

profile ϑ(y, z). The optimized phi is returned as φF.

4The size of the time step ∆t is chosen such that T/2
∆t is an integer.

5The quantity |E|2 ocsillates at twice the frequency as E. Therefore, the extent of the array dimension
corresponding to time may be halved.

6A less restrictive requirement on the coordinate sets is that their origins are separated by an integer
multiple of 2π/q.
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This procedure is repeated in the back zone to extract φB, and ε̂(y, z) is subsequently updated

according to ϑ(y, z) given in Appendix D.

Example optical properties of the LC layer are depicted in Fig. 3.8 for the case of

Λ = 3 µm, L = 10 µm, and incident beams with equal intensity. The refractive indices

plotted here are the extraordinary refractive index variation in the y-direction for particular

z-positions indicated by red, blue, and green coloring. This quantity is given by [34]

ne(β) =
1√

cos2 β
ε⊥

+ sin2 β
ε‖

(3.30)

where β is the angle between the director n and the nominal propagation vector k. The angle

β takes on a separate set of values for the two beams, which are assumed to be approximately

constant during propagation through the first ∼ 2 µm of the LC layer in order to create the

refractive index plots. Because all propagation vectors, incident wave polarizations, and LC

directors lie in the same plane, all waves are extraordinary and therefore experience the

directionally-dependent extraordinary index ne(β), as opposed to the ordinary index no.

The grating spacings investigated ranged from 0.5 µm to 5.5 µm, which corresponds to

incidence angles between 1.155◦ and 12.81◦. The beam crossing angle depicted in Fig. 3.6

is exaggerated. In addition, the beams used in simulations had a spot size defined by a

intensity FWHM of 28 µm, which caused them to diverge7 more so than would realistic

but computationally expensive beam spot sizes of a few millimeters. Direct determination

of the gain G from interrogated electric field values was frustrated by these features to

the point that the problem was rendered impractical in terms of required CPU time, and

unmanageable in terms of memory requirements. Noting that after the beams have exited

the LC layer their propagation through the upper medium is trivial, a Near-To-Far-Field

7While use of the term “diffract” to describe how a beam with finite extent develops spatially according
to the Maxwell curl equations would be technically more accurate, it is misplaced in the context of this
discussion of beam coupling by diffraction.
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Figure 3.8: Optical properties of the LC layer for the case Λ = 3 µm, L = 10 µm, and
incident beams with equal intensity: The 22-component of ε̂ as a function of space, and
refractive index variation in y for the z-positions indicated by red, blue, and green labels.
Note that the aspect ratio in the upper plot is not 1:1.
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Figure 3.9: Geometry of Green’s Theorem as applied to the NTFF Transformation. Arbitrary
fields radiating from two sources are represented in red and blue.

(NTFF) transformation was implemented to construct the far-field intensity distribution

produced by the beams diffracted by the LC layer.

3.6 Near-to-Far-Field Transformation

It is well known that Green’s Theorem may be applied to a wave function and the Green

function corresponding to radiation from a point source at r′ to an observation point r,

and thus construct the wave function at r in terms of sources at various r′ in the limit

k |r− r′| → ∞ [2, 41]. See Fig. 3.9. In the context of computational electromagnetics, the

boundary conditions imposed on the fields may be used to construct hypothetical electric and

magnetic current distributions on the contour C ′, with E and H set equal to zero inside C ′.

This is called the surface equivalence theorem and states that any radiating field distribution

within C ′ may be replaced by equivalent electric and magnetic current distributions on C ′,
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and that these current distributions may be used as sources to compute the fields in the

radiation zone. For the problem at hand, this procedure is performed in order to spatially

separate beams crossed at a small angle.

Time-domain expressions for the far fields in terms of the sources can be derived from

Lorentz gauge scalar and vector potentials, each satisfying the inhomogeneous wave equa-

tion [42]. Cast in terms of the hypothetical sources J and M of the surface equivalence

theorem, the electric field is [43]

Erad(r, t) =
µ0

4π

∫
S′

([
J̇(r′, t)

]
τ
×R

)
×R

R3
dS ′

− 1

4πc

∫
S′

[
Ṁ(r′, t)

]
τ
×R

R2
dS ′

(3.31)

with the equivalent sources

J(r′, t) = n̂(r′)×H(r′, t) and M(r′, t) = −n̂(r′)× E(r′, t). (3.32)

Here, [ ]τ represents evaluation at the retarded time τ = t − R/c, the dot (.) represents

differentiation with respect to time, n̂(r′) is the unit vector normal to S ′, and R = r− r′.

In reference [43], a two-dimensional problem is formulated in terms of a three-dimensional

one with infinite extent in the spatial dimension on which fields have no dependence. The

surface S ′ extends from x′ = −∞ to +∞. This was done to express the integral over x′ in

terms of a time integral because the time-retarded contributions at various x′ correspond

to various times in the history of a transient waveform. For the case of the two-beam

coupling system investigated here, the integration may be performed on the open contour

C ′ as illustrated in Fig. 3.6. The use of such an open contour is discussed in [4] and has

proved beneficial in the context of computing the radiation fields scattered in a particular
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direction [44]. In addition, the Fresnel-Kirchhoff diffraction formula is derived by carrying

out a mathematical procedure that is nearly identical to the NTFF transformation. There,

the contour is chosen as the semi-infinite hemisphere into which light is transmitted by an

aperture, and the outer (curved) integration surface is placed at a distance greater than the

diffracting light has had time to travel, and thus contributes nothing to the integral [6]. The

use of the open NTFF contour as shown in Fig. 3.6 is equally justified.

Eqs. 3.31 and 3.32 were reduced to the following expressions for the components of the

electric field at r, which is chosen to lie in the yz-plane (x = 0):

Ex(r, t) =
1

2π

∫ ∞
0

dx′
∫
C′
dC ′

(
nPh

c

(z − z′)
R2

Ėτ
x + µ0

(y − y′)2 + (z − z′)2

R3
Ḣτ
y

)
(3.33)

Ey(r, t) =
1

2π

∫ ∞
0

dx′
∫
C′
dC ′

(
nPh

c

(z − z′)
R2

Ėτ
y − µ0

(x′)2 + (z − z′)2

R3
Ḣτ
x

)
(3.34)

Ez(r, t) =
1

2π

∫ ∞
0

dx′
∫
C′
dC ′

(
−nPh

c

(y − y′)
R2

Ėτ
y + µ0

(y − y′) (z − z′)
R3

Ḣτ
x

)
(3.35)

where nPh is the refractive index assumed in the back photorefractive window and the no-

tation Ḟ τ
i represents the ith-component of the time derivative of the field F at position r′,

evaluated at the retarded time τ . The spatial uniformity of the E and H fields in the x-

direction and using n̂(r′) = ẑ for all points on C ′ provides this level of simplification. These

integrals are computed numerically using a trapezoid rule, and choosing r to correspond to

a far-field screen such that 2πnPh

λ
× z = 106.

The quantities Ḟ τ
i are time-dependent complex functions with phase corresponding to

k · r′. Insertion of FDTD data into Eqs. 3.33 – 3.35 requires the determination of the rel-

ative phases between the Fi on the NTFF contour. Additionally, evaluation at various

retarded times τ requires some sort of interpolation of the FDTD data, which are stored
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at discrete time steps. Both of these features were addressed using a modified version of

the Levenberg-Marquardt fitting routine used to extract the phases of the modulation pa-

rameters and invoking linear superposition: The Huygens-Fresnel principle states that, for

a (linear) material structure with arbitrarily complicated spatial dependence illuminated by

light at frequency ω, the electromagnetic disturbance at some position r′ is the coherent sum

of spherical wavelets with amplitudes Ai and the same frequency:

F (r′, t) =
∞∑
i=1

Ai e
i(ki·r′−ωt) + c.c. (3.36)

The e−iωt time-dependence factors out of the sum, yielding a wave oscillating at frequency

ω for all r′. It follows that the components of E and H at all r′ have frequency ω,

so that fits to the function A(r′) cos (ωt+ φ(r′)) provide the continuous function Ḟi =

iωA(r′) exp (i (ωt+ φ(r′))) to be inserted into Eqs. 3.33 – 3.35 and evaluated at τ = t−R/c

during the integration. The full history (and future) of the steady state is determined by

data stored for a single cycle at each point r′ on C ′.

The NTFF transformation described above was tested by calculating the far-field diffrac-

tion pattern of λ = 532 nm light transmitted by a single slit [45] of width d = 4.84 µm using

near-field data on C ′. The resulting normalized far-field intensity distribution is plotted in

Fig. 3.10 along with the analytical result I = sinα/α with α = 1
2
kd sin θ, where k = 2π

λ
and

θ is the angle between ẑ and a vector from the center of the slit to the observation point

(y, z).

As all information about the system with no x-dependence is contained in a single

x = constant plane, the consideration of the x-dependence of the integrands in Eqs. 3.33

– 3.35 evaluated at retarded times, which do actually depend on x′, seems to be an unnec-

essary adherence to a NTFF transformation derived in 3D for a 2D system. However, a

proof that the contributions from individual terms integrated over C ′ for x′ = x1 are pro-
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Figure 3.10: Single-slit diffraction pattern calculated analytically (red curve) and by the
FDTD code (black curve) incorporating the near-to-far-field transformation described in the
text.

portional to the corresponding contribution from x′ = x2 was not found. The integrands

in Eqs. 3.33 – 3.35 decrease to 0 as x′ → ∞. The NTFF transformation was coded with

the idea of evaluating the x′ integrals from 0 to some xmax such that contributions from

x′ > xmax are negligible. However, not only the intensities, but also the components of E

in the far field were found to be completely independent of the choice of xmax apart from a

scale factor. This, and the fact that Ex is necessarily zero in this problem, means that the

far-field intensity distribution may be computed from E(r) · E∗(r) using the components of

Eqs. 3.34 and 3.35 and any particular numerical value8 for t, where the integrals over x′ are

dropped.

8t = 0 was used in all far-field calculations.
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3.7 Results and Discussion

The results described in this section were computed using beams with wavelength λ = 532 nm

and a Yee grid cell size ∆y = ∆z = λ/(Nλ nmax), choosing Nλ = 10 as the grid sampling

resolution and nmax = nPh = 2.4, since the ordinary and extraordinary indices associated

with the LC were both < 2. This assignment results in waves and material features spatially

resolved by grid points separated by λ/10 at most. The size of the time step was chosen

as ∆t = ∆z/(2 c), corresponding to a Courant number S = c∆t/∆z = 0.5 < 1√
2
. A 60-cell

(1.33 µm thickness) PML absorbing boundary was used. Additional simulation parameters

associated with LC and photorefractive materials are listed in Appendix C.

The gain G vs. Λ attributed to the LC layer for incident beams with wavelength

λ0 = 532 nm was determined as follows:

For each grating spacing Λ = λ0/(2nPh sin δ),

• Propagate the incident beams into the LC director configuration corresponding to

Esc = 0 and wait for the steady state to be reached in which the beams are reflected,

deflected, etc. by the pretilted director and then absorbed by the PML.

• Compute the far field diffraction pattern using the NTFF transformation. The Esc = 0

director has no y-dependence and thus cannot result in coupling between beams and

corresponds to a power measurement of Beam 1 with Beam 2 blocked as in experi-

ments [46]. Define the spatially-integrated far-field intensity pattern of Beam 1 for this

case as I0.

• Turn on the LC material updating as described in Section 3.5.3 and allow the system

to converge to the steady state. The parameters mF, φF, mB, and φB at each time step

were written to files and plotted to verify convergence.

• Compute the Esc 6= 0 far-field diffraction pattern using the NTFF. Define the spatially-
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integrated far-field intensity pattern of Beam 1 for this case as I.

• Compute the gain G = I/I0.

The liquid crystal TL205 was used in the experiments simulated during this numerical

investigation. The photorefractive windows were constructed from cerium-doped strontium

barium niobate (SBN:Ce). Results from experiments conducted by Evans and Cook and

the result calculated by analytical methods by Reshetnyak are taken from [35] and shown

in Fig. 3.11 (a). The poor agreement between these results, as reflected by the plotting of

the natural logarithm of g as opposed to g itself, motivated the investigation by the FDTD

method. Neither the overall magnitude, nor the decrease in gain coefficient for Λ > 2 µm,

are captured in the analytical solution.

Results from a large number of simulations are shown in Fig. 3.11 (b). The gain coefficient

obtained from FDTD simulations using the most reliable estimates available for the LC and

photorefractive material parameters (solid curve) fails to explain the overall magnitude of the

gain coefficient measured in experiments. The magnitude of the effect is the same whether

calculated by FDTD or analytically. The small difference, which is revealed by a careful

comparison of the solid curves in Fig. 3.11, is attributable to the 1◦ difference in pretilt

angles used.

There are clear oscillations in the FDTD result that are absent from the analytical result.

These oscillations bear a noticeable resemblance to the oscillations in the experimental data

and may be explained as follows: The beams were seen to bend continuously as they propa-

gate through the LC layer in a manner dominated by the θ0(z) part of ϑ(y, z), which arises

from the pretilts. This may be qualitatively seen in the intensity data shown in Fig. 3.7. The

actual coupling would depend on constructive and destructive interference between diffrac-

tion orders at the back face of the LC layer. However, steady-state modulation parameters

resulting from a completed run may be manually assigned to a subsequent auxiliary run
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Figure 3.11: FDTD numerical results computed as part of this dissertation and the corre-
sponding experimental measurements and theoretical calculations. (a) Experimental results
(black boxes) and the theoretical calculation (solid curve) using θF = 12◦, θB = −12◦ as
reported in [35]. (b) FDTD result obtained using accepted LC and photorefractive material
parameters and θF = 11◦, θB = −11◦ (solid curve) and the FDTD result obtained using
LC material parameters adjusted as described on pg. 68 (black boxes), each labeled by the
corresponding plot of ε22(y, z).
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Figure 3.12: Exponential gain coefficient derived from FDTD simulations performed using
θF = −θB = 5◦ (red), 11◦ (black), and 20◦ (blue).

using a single beam, simply to get an idea of what effect the steady-state LC layer has on it.

The beam paths are arced to various extents depending on incidence angle, and therefore,

grating spacing. Though subject to the intricate details of the anisotropic permittivity that

varies continuously in space, it may be argued on geometrical grounds that there is a varia-

tion in the phase relationship between the transmitted portion of one beam and the Bragg

reflection of the other beam that is monotonic in δ according to the optical path difference

associated with the variation of these arc lengths.

Shown in Fig. 3.12 are plots of g vs. Λ calculated by the FDTD method for various

pretilts. In addition to the overall magnitude of the beam coupling effect, the size of the

pretilt determines the initial refraction angle of the beams upon their entry into the LC

layer, and thus shifts the influence of the effect on beams simulated using the same incidence
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angle δ. The oscillations are less rapid as grating spacing increases. This is largely a matter

of the relationship between grating spacing and incidence angle: Λ = λ0/ (2nPh sin δ) ≈

λ0/ (2nPhδ), which results in an abscissa that distorts the oscillation that is fairly constant

as a function of δ.

Also plotted in Fig. 3.11 (b) is a gain curve (black boxes) derived from simulations that

used LC material parameters that were adjusted to produce the relative permittivity distri-

bution labeling that curve. Each of the flexoelectric coefficients e11 and e33 were increased

by a factor of 12.5, and the LC bend elastic constant K33 was decreased by two orders of

magnitude. The flexoelectric effect has been strengthened relative to the LC bend restoring

force. These values are justified neither by experimental measurements nor by theoretical

considerations. The fact that this curve indicates an overall gain magnitude similar to that

of the experimental data as well as a negative slope at large grating spacings indicates that

additional physical effects need to be incorporated into the model [35] in order to produce a

larger LC permittivity modulation in the y-direction.

3.8 Conclusions

The FDTD calculations presented in this chapter have validated the analytical calculation

of beam coupling in the LC layer, with director given by Eqs. 3.19 – 3.23, in terms of overall

gain magnitude. The analytical calculation assumes constant propagation directions for

the beams as they pass through the LC layer. There are additional approximations [35]

associated with solving a vector wave equation that are made between deriving the director

expression ϑ(y, z) and obtaining an expression for the exponential gain coefficient g(Λ). It is

clear from a comparison between numerical and analytical calculations that the failure of the

analytical approach to capture the measured magnitude of the gain in the LC hybrid device

was not due to these approximations. Those approximations do, however, fail to capture the
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oscillatory behavior revealed by the FDTD numerical investigation conducted as part of this

dissertation.
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Chapter 4

Finite-Difference Time-Domain

Studies of Ag Nanostructures

4.1 Introduction

The turn of the century has seen tremendous increases in the ability to manipulate matter

on the scale of nanometers. Nanotechnology is expected to result in advances in a broad

range of technologies, including optics. Electromagnetic wave engineering entails either the

manipulation of the electric and magnetic properties of a device arising from its morphol-

ogy or the selection of materials with appropriate properties. The first strategy refers to

the manipulation of the arrangement of materials, an example being the antenna used to

transmit and receive radio transmissions. A radio-frequency antenna may be tuned and op-

timized by adjusting its morphology on the length scale of meters because the wavelength

of the radiation is on the length scale of meters. The second strategy is a matter of the

device’s constituent materials. An example is the Pockels cell, which is used to rotate the

polarization of a wave during its transmission according to an applied voltage. Considering

wavelengths in the visible and infrared regimes, the absorption, dispersive, birefringent, and
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nonlinear characteristics of a material are determined by polarizabilities at the molecular

level as well as characteristics of crystal and quantum mechanical energy level structure.

“Metamaterials” may be designed with the first idea in mind, but to operate at infrared and

visible wavelengths [47]. Control over the optical properties of these metamaterials at these

wavelengths is a function of our level of control over material morphology at nanoscopic

length scales. Such control is increasingly afforded by nanotechnology.

This chapter presents numerical investigations of the optical properties of Ag nanostruc-

tures fabricated by Oblique Angle Deposition (OAD). This method entails the deposition of

atoms onto a substrate whose orientation relative to the atomic source is precisely controlled.

The Ag vapor is created by boiling off atoms from a solid Ag sample using an electron beam

in an evacuated chamber maintained at ∼ 5 × 10−7 torr [48]. Within this chamber, the

substrate may be held at a particular orientation relative to the source so that rods with

morphological features on the scale of nanometers result from competition between surface

diffusion and a shadowing effect [49]. The growth of these “nanorods” is controlled by the

substrate orientation and depends on its type of material, surface quality, and temperature.

Calculations were performed using the commercial FDTD software package XFdtd (Rem-

com). Commercial software was used primarily because of the need to reliably and efficiently

construct the intricate geometrical objects corresponding to nanostructure morphology. This

is accomplished conveniently within XFdtd by its 3D drawing capabilities. Once drawn, var-

ious “parts” may be assigned a material by the user, which imposes in the region of space

occupied by the part a particular set of constitutive relations assumed by the FDTD field-

updating scheme. A screen shot of the XFdtd user interface is shown in Fig. 4.1.

The Drude model for the conductivity of metals was employed by way of the frequency-

domain permittivity

ε(ω) = 1−
ω2

p

ω (i γ + ω)
(4.1)
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where ωp is the plasma frequency and γ is the scattering frequency. This permittivity

may be derived by taking the ω0 → 0 limit in a damped, driven oscillator model for the

response of D to E, where ω0 is the resonance frequency [2]. Qualitatively, charges in this

model are being driven in a fluid with viscosity associated with γ. At frequencies below the

plasma frequency, a propagating field incident upon the metal’s surface does not appreciably

penetrate it and is almost entirely reflected. However, the size and shape of a material

structure may be comparable to the wavelength in such way as to excite surface plasmons

that conform spatially to the material morphology1. The transient response, as described

by Eq. 4.1, may result in plasmon resonances, not fundamental to the underlying material

model, but rather, associated with the geometry of the material surface.

Fabrication techniques have been advanced recently, resulting in nanostructures with a

range of morphologies. Among the methods used is “dynamic shadowing” growth, which

entails rotating the substrate either continuously or intermittently during Ag deposition [51].

One of the resulting structures is a “bent nanorod array”; the substrate is rotated intermit-

tently to result in helical structures constructed from straight rod segments. Such a structure

may be drawn within XFdtd, and periodic boundary conditions surrounding the structure

may be imposed such that a perfectly-ordered, infinite 2D array of idealistic helices may be

modeled using a computational domain corresponding to a single “nanohelix”. This simula-

tion scheme is depicted in the screen shot in Fig. 4.1. The helix shown is constructed from

four segments each with length 200 nm, diameter 50 nm, and rotated out of a z=constant

plane by 20◦. The translational symmetry in the x- and y-directions is given by the respective

sizes of the computational domain, each of which are 400 nm here.

1The work function of Ag [50] is sufficiently large to exclude photoelectric ejection for all wavelengths
considered in this work.
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1 µm

Figure 4.1: XFdtd graphical user interface. The computational domain is indicated by the
blue box. The incident wave (indicated by the red guide) is polarized in the x-direction and
propagates in the negative z-direction. The inset is a side-view SEM image of an actual
nanohelix array.
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Structures with helical pitch on this length scale are expected to exhibit optically-relevant

chirality. This was explored using the FDTD method by calculating the Stokes parameters

S0 = A2
x + A2

y (4.2)

S1 = A2
x − A2

y (4.3)

S2 = 2AxAy cos (φy − φx) (4.4)

S3 = 2AxAy sin (φy − φx) (4.5)

for reflected and transmitted waves using incident wavelengths ranging from 500 nm to

900 nm. Here, Ax and φx are the amplitude and phase of the x-component of the electric

field propagating in the negative z-direction, and likewise for the y-component. The meanings

of these quantities are [52]:

• S0 ↔ Total irradiance

• S1 ↔ Irradiance transmitted by a linear polarizer oriented to pass waves polarized in

the x-direction, less the irradiance transmitted by a linear polarizer oriented to pass

waves polarized in the y-direction

• S2 ↔ Irradiance transmitted by a linear polarizer oriented to pass waves polarized in

the direction of x̂ + ŷ, less the irradiance transmitted by a linear polarizer oriented to

pass waves polarized in the direction of −x̂ + ŷ

• S3 ↔ Irradiance transmitted by a device that is transparent only to right-hand circu-

larly polarized waves, less the irradiance transmitted by a device that is transparent

only to left-hand circularly polarized waves

The laboratory measurement of Stokes parameters is treated in [53].
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Figure 4.2: (a) Stokes parameters S0 (black), S1 (blue), S2 (green), S3 (red) of the light
transmitted by the nanohelix array. (b) Stokes parameters (same color scheme) of the light
reflected by the nanohelix array.

The Stokes parameters were calculated by propagating linear-polarized continuous waves

(in separate calculations) toward the array until the transverse components of the transmitted

and reflected fields, recorded at a single point in space far from the array, converged to

steady-state sinusoids. The late-time components were then post-processed by fitting them

to extract the amplitudes and phases for each case. The Stokes parameters are normalized

by virtue of the fact that normalized incident fields were used.

The results are shown in Fig. 4.2. A variety of polarization states can be identified

in the transmitted fields. Near λ = 500 nm the array is highly transmissive and rotates

the polarization slightly off the x-axis. As λ = 700 nm is approached, the behavior shifts

wildly as reflectance increases. At λ = 900 nm, the array transmittance is ∼ 0.5, and the

transmitted wave is essentially right-hand circularly polarized.

The remainder of this chapter describes FDTD studies of systems for which there were

experimental data. The actual nanohelix arrays fabricated by Zhao et al. are much more
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dense, and reflect much more light than they transmit. The measurement of Stokes param-

eters corresponding to Fig. 4.2 is planned for the future, and follow-up FDTD simulations

using densely packed helices2 may be performed for comparison.

4.2 FDTD Investigation of the Increased Electromag-

netic Contribution to Surface-enhanced Raman Scat-

tering in Ag Nanorod Arrays Deposited at Low

Temperature

4.2.1 Introduction

Raman scattering refers to the inelastic scattering between photons and optical phonons that

results in photons with shifted frequency. If sufficiently strong, this effect may be detected

by irradiating molecules with a laser and resolving the scattered light with a spectrometer.

Surface-enhanced Raman scattering (SERS) refers to the vast increase in the magnitude of

this effect when the scattering species are positioned on a metallic surface. It is expected

that single molecule detection by SERS, which has been reported [54] for the special case

of a particular dye molecule, can be made feasible by modest improvements to these metal-

lic SERS substrates. The high surface-to-volume ratios and distinguishing electromagnetic

properties of metallic nanostructures make them a promising candidate.

The SERS enhancement factor of a substrate is known to depend on surface morphology.

The SERS characteristics of Ag nanorod arrays have been studied in detail [48, 55]. These

nanostructures are deposited at room temperature. At lower temperatures, the Ag atoms

are less likely to be thermally dislodged from their initial landing site, leading to rougher

2The use of periodic boundary conditions does not limit in any way the density of helices that may be
simulated.
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Figure 4.3: SEM top-view images of Ag nanorod SERS substrates grown at (a) room tem-
perature, and (b) 140 K substrate temperature.

morphology. As a result, nanostructures deposited onto substrates held at low temperature

have a rough, porous morphology. It was concluded by previous studies that the porous

features of Ag films (no nanorods) deposited at low temperatures are active Raman scattering

sites [56]. Scanning electron microscope (SEM) images of Ag nanorod arrays deposited onto

substrates by Oblique Angle Deposition held at room temperature and a temperature of 140

K are shown in Figs. 4.3 (a) and (b), respectively. The FDTD calculations presented in this

section are specific to these structures, and meant to capture the increased SERS sensitivity

measured by Singh et al. using a laser operating at a wavelength of 785 nm [57].

A widely accepted contribution to the measured enhancement of Raman scattering from

molecules deposited on metallic nanostructures is the concentration of the electric field in

particular localized regions of the surface morphology [58]. These regions are referred to as

“hot spots”, and their significance is attributed to a scaling of the electromagnetic contri-

bution to the detected Raman-shifted radiation as the fourth power of the ratio of the local
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electric field near the metallic surfaces to the incident electric field [59]:

ISERS ∼
∣∣∣∣Elocal(ω)

E0(ω)

∣∣∣∣4 (4.6)

Here, it is assumed that the nanostructure has approximately the same optical properties at

frequencies ω and ω ± ωvib, and supposed that the nanostructure 1) scatters the incident

electric field onto hot spots and 2) scatters the Raman-shifted radiation towards the detec-

tion system by the same proportion [60–62]. Note that this local field enhancement makes

no reference to any particular scattering molecule. In order to investigate the effect the

manifestly distinct surface morphology of nanorod arrays deposited at low temperature has

on local field enhancement, SERS enhancement factors of the form in Eq. 4.6 were computed

from data generated by XFdtd.

4.2.2 FDTD Calculations

The FDTD method integrates Maxwell’s curl equations directly in the time domain. As such,

the electric field vector may be interrogated at arbitrary points in space and time and then

post-processed to quantify the local field enhancement for various Ag nanorod morphologies.

The incident laser beam used in the experiments modeled was unpolarized. FDTD source

excitations are vectors which have definite polarization states. In reality, an unpolarized

electromagnetic wave is characterized by orthogonal electric field vector components with

random, rapidly-varying phase difference and equal magnitude [63] regardless of the choice of

coordinate basis. Rather than simulate this statistical behavior directly, separate calculations

were performed using mutually orthogonal (“s” and “p”), linearly polarized incident waves

and the results were summed incoherently. The square of the electric field magnitude for the
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Figure 4.4: Two of the morphologies used in FDTD simulations. The red box indicates
the unit cell of each staggered array and defines the computational domain. See text for
geometrical parameters. (a) Ag nanorods deposited at room temperature. (b) Porous Ag
nanorods deposited at 140 K.

case of an unpolarized beam was taken as the arithmetic mean of the individual results:

|Eunpol(r, t)|2 =
1

2

(
|Es(r, t)|2 + |Ep(r, t)|2

)
(4.7)

The Ag nanorods deposited at room temperature shown in Fig. 4.3 (a) have, on aver-

age, length 900 nm, diameter 100 nm, and make an angle of 71◦ with the substrate nor-

mal. These parameters were used to construct an idealization of the morphology grown at

room temperature, which is staggered to correspond to a less-ordered array and is shown

in Fig. 4.4 (a). The separations between positions of the nanorods for the room temper-

ature case are Lx = 177 nm and Ly = 862 nm. More precisely, there are two 2D arrays

with lattice vectors Lx x̂ and Ly ŷ, one of which is displaced by (Lx x̂ + Ly ŷ) /2 to form a
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two-dimensional rhombic Bravais lattice in the xy-plane. The porous nanorods deposited at

low temperature and shown in Fig. 4.4 (b) have length 1 µm, diameter 70 nm, and make an

angle of 63◦ with the substrate normal. For this case, Lx = 400 nm and Ly = 500 nm. The

porosity of the nanorods deposited at low temperature was modeled by inserting pores with

diameter 50 nm as well as 50 nm × 200 nm slits into the nanorods as shown in Fig. 4.4 (b).

The idealized morphologies used in FDTD calculations meant to correspond to nanorods

deposited on substrates held at 140 K will be indicated by “LT”, and those deposited at

room temperature will be indicated by “RT” in this chapter. In each case, the nanorods are

positioned on a 200 nm Ag base layer. The RT and LT morphologies were discretized on a

spatial grid with cell edge lengths ∼ 4 nm for preliminary calculations and then ∼ 2 nm.

The ∼ 5 and 2.5 attosecond time steps that result from these choices according to the

Courant stability condition [4] ensure numerical stability for the plane wave excitation with

785 nm wavelength. The nanorod arrays are infinite in the plane of the substrate by virtue

of periodic boundary conditions imposed on the sides of the of the Lx × Ly unit cell of

each staggered geometry. The incident wave travels in the negative z-direction, and the

perfectly matched layer absorbing boundary condition is employed on the faces bounding

the z-directed dimension of the computational domain, which is indicated by the red boxes

in Fig. 4.4.

Drude behavior in the Ag base layer is implemented according Eq. 4.1 with plasma

frequency ωp = 1.37×1016 rad/s and scattering frequency γ = 2.73×1013 rad/s corresponding

to bulk Ag [64]. The scattering frequency in the Ag nanorods is increased by a factor of

3 to account for increased surface scattering [65]. Note that Eq. 4.7 is not the average of

two intensities. The time-averaged Poynting vector depends on E and H, which are not in

proportion near surfaces by virtue of the complicated spatial dependence of electromagnetic

wave fields interacting with a metallic structure with morphological features on this length
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Figure 4.5: Example local field enhancement from simulations using the morphologies shown
in Fig. 4.4. The incident wave is polarized in the y-direction and propagates in the negative
z-direction. The ratio of local to incident electric field magnitude is shown in a yz-plane
that bisects one of the rods in each case. Note that values greater than 15 saturate the color
scale.

scale. However, the Raman molecules are regarded as dipole scatterers that respond to E.

The squared magnitude of E is therefore the correct quantity to consider.

Previous numerical investigations of the local field enhancement have indicated the mag-

nitudes of the local electric field in various regions of similar Ag nanostructures [55], to which

the results for the RT nanorods, depicted in Fig 4.5 (a), are comparable. For example, a

steady-state hot spot may be identified near the small-angle point of contact between tilted

nanorods and base layer for the case of a y-polarized incident wave. The electric field magni-

tude reaches a strong maximum (∼ 60× the incident amplitude) precisely at the intersection

between nanorod and base layer. The field reaches this magnitude only within a very small

volume of the idealized surface morphology. The morphology shown in Fig. 4.4 (b) exhibits

hot spots in and around the pores and slits, with a decreased enhancement at the base ow-

ing in part to the smaller tilt angle in the LT case. Again, maxima (∼ 20× the incident
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Figure 4.6: The integration volume V considered to contain Raman probe molecules is the
10 nm shell coating the porous nanorods and the base layer (not shown).

amplitude) are found in small volumes located near the sharp material features. Note that

the data in Fig 4.5 correspond to calculations that used a grid cell edge length ∼ 4 nm,

and to a steady-state time value for which the local electric fields are maximally enhanced.

It is clear that the two case morphologies have local field enhancements with very different

and complicated spatial dependence. Spatial averaging is therefore necessary to compare

in a more meaningful way the electromagnetic contribution to the detected Raman signal

computed for the two morphologies [58,66].

It is reasonable to assume that the Raman molecules may be located between the surfaces

of the nanorods + base layer and an imaginary surface that coats the metallic morphology,

creating a shell with thickness 10 nm. This construction is depicted in Fig. 4.6 for the case of

the morphology shown in Fig. 4.4 (b). The electric field magnitude as a function of position

is stored for all grid points located within this shell, and for each of 50 time values separated

by T/50 that occur at the end of the simulation after convergence has been reached. Here,

T is the duration of one cycle of the 785 nm wavelength incident wave. These data were

gathered from calculations using orthogonally polarized incident waves and used to compute

|Eunpol(r, t)|2 according to Eq. 4.7 for the cases of RT and LT idealized morphologies. The
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Raman scattering enhancement is calculated as

ISERS(r) =

[
〈|Eunpol(r, t)|2〉
〈|E0(r, t)|2〉

]2

(4.8)

where E0 refers to the incident wave and the angle brackets 〈 〉 denote a time average over

one period of the steady-state oscillation. The quantity 〈|E0(r, t)|2〉 = 1
2

for the case of a

sinusoidal incident electric field with amplitude 1.0 (arbitrary units). The Raman scattering

enhancement is then averaged over the volume V of the 10 nm shells coating the nanorods

for each case:

ISERS
avg =

1

V

∫
V

ISERS(r) dx dy dz → 1

N

N∑
i=1

ISERS(i) (4.9)

where i indexes the N discrete field points in the shell volume within which all FDTD

grid cells have the same volume. The ratio of these quantities calculated for two distinct

surface morphologies provides a quantitative measure of their relative electromagnetic SERS

enhancement.

The SERS signal measured for nanorod arrays deposited at low temperature is increased

relative to that of the room temperature case by a factor ∼ 2 [57]. The structure shown

in Fig. 4.4 (b) was constructed to investigate the effect of pores added to the morphology,

and uses the somewhat different geometrical parameters estimated using SEM images. Note

that these calculations used a grid cell edge length ∼ 2 nm. It is known that rough and/or

porous features on metallic nanostructures lead to enhanced local fields [67]. While the field

was seen to be enhanced in and around the pores of the structure shown in Fig. 4.4 (b),

this enhancement does not result in ISERS
avg (LT) that is superior to ISERS

avg (RT). In fact, the

ratio formed by these quantities is 0.091. Clearly, the attributes of the surface morphology

shown in Fig. 4.4 (b) do not result in a local field enhancement superior to that of the RT

nanorods.
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To investigate the origin of the difference between the two results, two variations on the

parameters defining the structure in Fig. 4.4 (b) were explored: Firstly, it was supposed

that an inter-rod field coupling may be stronger and that the regions where the field is en-

hanced lie more within the integration volume V for the thicker, more densely packed RT

morphology of Fig. 4.4 (a). The parameters Lx and Ly were therefore reduced to 320 nm

and 400 nm respectively for the LT case, resulting in ISERS
avg (LT)/ISERS

avg (RT) = 0.041. In

other words, the performance of the LT morphology was further degraded. Secondly, the

dependence of ISERS
avg (LT) on the angle the nanorods make with the base layer was briefly

explored. The components of the incident wave electric field vector are in the plane of the

base layer and therefore more prone to excite currents along the RT nanorods which are

closer to in-plane alignment. Setting the LT rod angle equal to the RT rod angle resulted

in ISERS
avg (LT)/ISERS

avg (RT) = 0.634, which is a large increase. These observations led to the

hypothesis that the connective Ag matter evident in the SEM image in Fig. 4.3 (b) and

situated predominantly at the rod tips, plays an important role. To test this, the morphol-

ogy of Fig. 4.4 (b) was modified by adding connective rod segments which lie in a plane

normal to the incident propagation vector and connect nanorods that are staggered with

respect to each other. This morphology is shown in Fig. 4.7. This construction resulted in

ISERS
avg (LT)/ISERS

avg (RT) = 2.030, which is in agreement with the experimental result. These

results are summarized in Table 4.1. Pairs of spatial slices with x = constant of the steady-

state electric field magnitude in the integration volume and at a time value corresponding to

maximally enhanced local fields3 are shown in Figs. 4.8 and 4.9 for the case of a y-polarized

incident wave. Note that the incident electric field amplitude is normalized to unity. It is

clear that this addition has produced a morphology whose electromagnetic SERS enhance-

ment is superior to that of the idealized RT morphology.

3Note that the local peaks of |E| do not all occur at precisely the same time.
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Figure 4.7: The LT morphology with connective rod segments added.

It is important to note that the contribution to Eq. 4.9 from the shell added to account for

the added connective rod segment, which is not indicated in Figs. 4.8 and 4.9, was noticeably

smaller than the contribution from the other portions of the integration volume V . This is

meaningful in that it reveals the fact that the local field is not enhanced on the added

segment, but rather, that the added segment is on average more strongly driven by each

orthogonal component of the unpolarized incident field. It is also relevant that the fields in

this case took significantly longer to converge to steady-state, as revealed by time-dependent

data visualization within XFdtd. The added rod tips provide conductive pathways between

nanorods such that surface plasmon modes associated with the geometry of the connected

morphology may develop over time and lead to superior local field enhancement near the

pores and other sharp features.
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Figure 4.8: Local field enhancement in a slice of the integration volume that bisects the
rods for the case of the connected morphology shown in Fig. 4.7. The incident wave is y-
polarized in this case. Because this system lacks the symmetry possessed by the morphology
of Fig. 4.4 (b), the local field enhancement is not the same in all rods. (a) corresponds to
the rods used to indicate Lx in Fig. 4.7. (b) corresponds to the rods used to indicate Ly in
Fig. 4.7. Note that values greater than 15 saturate the color scale.

(a) (b)

|E| / |Einc|

0 15105

Figure 4.9: Local field enhancement data from the same simulation as Fig. 4.8, but in a slice
of the integration volume near the edge of the pores.
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Table 4.1: Summary of ratios of spatially-averaged electromagnetic contribution to the de-
tected Raman signal for various modifications of the LT morphology.

Morphology Rod Angle (◦) Lx (nm) Ly (nm) ISERS
avg (LT)/ISERS

avg (RT)

RT - Fig. 4.4 (a) 71 177 862 –
LT - Fig. 4.4 (b) 63 400 500 0.091
LT - Fig. 4.4 (b) 63 320 400 0.041
LT - Fig. 4.4 (b) 71 400 500 0.634
LT - Fig. 4.7 63 400 500 2.030

4.2.3 Conclusion

This FDTD investigation took as its basis the validity of Eq. 4.6, which is rarely considered to

capture the entire effect of SERS in metallic nanostructures [60,67]. The remarkable agree-

ment between the reported experimental result (∼ 2) and the numerical result (2.030) was

unexpected. On the other hand, the experimental result is a relative increase in SERS sen-

sitivity measured using nanorods deposited in the same lab, using the same probe molecule,

and differing only in the deposition temperature (which results in modified morphology).

Contributions depending on, for example, the changes to the quantum chemistry of the

probe molecule arising from the presence of the Ag surface therefore play far less a role, if

any role at all.

The pores have been identified as electric field hot spots in FDTD calculations, which in

addition have demonstrated the significance of the blade-like rod tips to the electromagnetic

contribution to SERS enhancement. This interpretation is not considered to be expressed

by “2 ≈ 2.030”, but rather, by the sequence of simulations leading up to that result, which

is discussed in the preceding text and summarized in Table 4.1.
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4.3 FDTD Modeling of the Transmission of Terahertz

Radiation by Ag Nanorod Arrays

4.3.1 Introduction

Terahertz (THz) optics is an active field of research. The weak response of dielectric mate-

rials to radiation in this 1011–1013 Hz regime is distinct from that in other frequency bands

and facilitates non-destructive inspection, imaging through otherwise opaque materials, and

chemometrics of pharmaceuticals [68]. However, it is these very aspects of the material

responses to THz that make its control difficult. The range of possible applications is be-

ing expanded by the increasing ability to manipulate the radiation in ways analogous to

techniques established in the visible and IR regimes. Examples include bandpass filters [69],

wave plates [70], and linear polarizers. The latter would require a material with polarization-

dependent transmittance in the THz regime.

This section describes FDTD modeling of transmission of THz pulses by Ag nanorod

arrays fabricated by OAD on silicon wafers. Experimental data for the range 0.2–4 THz

show a transmission coefficient with magnitudes ∼ 0.5% for polarization parallel to and

∼ 5% for polarization normal to the deposition direction4.

4.3.2 FDTD Simulations

Transmission spectra at normal incidence were calculated using XFdtd. Recall that the

time-domain nature of FDTD allows the broadband optical response of a material struc-

ture composed of linear media to be obtained from a single calculation that uses a pulsed

excitation source. The sample transmission coefficient as a function of frequency may be

calculated over the bandwidth of the incident pulse by Fourier transforming the incident

4Data are plotted in Figs. 4.13 and 4.14
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Figure 4.10: (a) SEM image of the Ag nanorods deposited on a silicon wafer. (b) The
staggered base morphology derived from the SEM image, and coordinate frame used in
FDTD simulations. The nanorods have diameter 100 nm, length 1 µm, and make a 72◦

angle with the substrate normal. Lx = 250 nm, Ly = 893 nm.

and transmitted pulses, and taking the ratio. The simulations described here use ∼ 1 ps

pulses centered at ∼ 1 THz.

Shown in Fig. 4.10 (a) is an SEM image of the nanostructure. On average, the nanorods

have length 1 µm, diameter 100 nm, and make an angle of 72◦ with the substrate normal.

These parameters were used to construct what will be referred to as the “base morphology”,

which is staggered in the same way as the idealized nanorods of the previous section (4.2)

with Lx = 250 nm and Ly = 893 nm. See Fig. 4.10 (b).

The computational expense in terms of the run time and memory footprint of an FDTD

calculation is largely determined by the choice of the size of the grid on which space is

discretized. A grid cell size of 8 nm was chosen with a mind to resolving the base morphology

while maintaining reasonable computation size, and noting that the resulting “staircased”

meshing of the rod geometry results in features that are at most 10−4×λmin, where λmin refers
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to the shortest wavelength contributing to the excitation spectrum. Note that not all mesh

points are separated by precisely 8 nm, as the software’s meshing engine may modify this

slightly in order to better represent the various curved surfaces. The ∼ 10 attosecond time

step that results from this choice according to the Courant stability condition [4] ensures

numerical stability for all frequencies and materials considered. The size of the computational

domain required was reduced by imposing periodic boundary conditions at the edges of the

893 nm × 250 nm unit cell of the staggered geometry, which corresponds to a physical system

that is infinite in the plane of the substrate. The incident pulse travels in the negative z-

direction, and the perfectly matched layer absorbing boundary condition is employed in the

z-direction as before.

Special care was taken to ensure that the absorbing boundary was located sufficiently far

from the structure such that the transmitted electric field interrogated near it corresponded

to the propagating transmitted field. The center wavelength of the incident pulse (∼ 300 µm)

is much longer than the thickness of the rod array < 1 µm. The propagating electromagnetic

field must be interrogated in order to compute the relevant transmittance. Simulations using

a computational domain extended in the z-direction by 640 µm were performed initially. A

spatial grid gradually tapered to 8 µm was employed to speed up the simulations with such

a large computational domain. However, this led to non-physical dispersive effects caused by

the varying spatial grid, which caused the pulse to be erroneously stretched in time during

propagation through vacuum. The issue was settled by using a constant grid size of 8 nm

and computational domain length of ∼ 152 µm in a computationally expensive run, and

observing that the electric field interrogated relatively close to the nanorods propagated

unchanged after reaching a distance ∼ 1 µm from the nanorods. A convention was gradually

adopted of observing the near-field z-component of E as a function of position in the xz- and

yz-planes in order to verify that the field interrogated as the transmitted field propagating

in the negative z-direction had no z-component.
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Drude behavior in the material Ag is implemented according to the permittivity in Eq. 4.1

with ωp = 1.37×1016 rad/s is the plasma frequency and γ = 8.20×1013 rad/s is the scattering

frequency in the nanorods [64,65]. This plasma frequency is three orders of magnitude larger

than the frequencies investigated in this work, which are < 4 THz. The peak of the incident

spectrum is at ∼ 1 THz, corresponding to a wavelength of 300 µm. Absorption features

due to plasmon resonances in metallic nanostructures typically occur at wavelengths which

differ from the spatial extent of the nanostructure by a factor of ∼ 10 or less [71–73].

The 100 nm × 1 µm Ag nanorods do not constitute a combination of morphology and

material parameters that may exhibit plasmon resonance effects in the few-terahertz regime.

Indeed, this was born out by preliminary simulations in which the nanorod array depicted in

Fig. 4.10 (b) transmitted essentially all of the incident radiation regardless of it’s polarization,

as will be described in the Section 4.3.3.

The actual nanorods are deposited on a silicon substrate with a thickness of 640 µm.

Its inclusion in simulations would require an increase of the necessary computational space

volume by a factor > 275. It is known that the presence of a dielectric material encompassing

metallic nanostructures influences plasmon resonance and leads to a shift and change of shape

of absorption features in the visible frequency range as its refractive index is varied [74,

75]. In this work however, the Ag nanorods and the silicon substrate constitute distinct

layers excited by comparatively low-frequency fields. Absorption features associated with

plasmon resonance are not augmented by the presence of the dielectric substrate because

there are no absorption features to speak of. It is unlikely for the silicon, having band gap

frequency > 200 THz and being transmissive in the incident frequency band, to have bearing

on a dependence of the transmittance on incident polarization. Such a dependence was the

motivation for this investigation, and simulation results are compared with experimental

data that are normalized to measurements made using blank silicon substrates. The silicon

substrate was ignored in this study on these grounds.
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It is clear that the morphology constructed for simulations shown in Fig. 4.10 (b) is an

idealization of general features of the array shown in the SEM image Fig. 4.10 (a). The

actual samples show nanorods that are connected by various areas of contact and separated

to various extents. It may be hypothesized that the nanorods are coupled by material

connections that may be resistive or capacitive in nature. If the point of contact between

nanorods is significantly smaller than the rod diameter, then the connection is resistive. If

protuberances on nanorods are in very close proximity but not actually in contact, then

the coupling is capacitive. These small features would demand a finer spatial grid in the

context of FDTD calculations. The 8 nm grid cell size corresponds to a grid sampling

density Nλ = 104 at frequency 3.75 THz, which is at the upper edge of the frequency range

of interest. This grid sampling density is already three orders of magnitude larger than that

which is considered necessary for numerical stability [4]. Seeing as the computational memory

requirement scales as N3 for a total number of grid cells N , and the computational run time

for a given propagation distance scales as N4, attempts to accurately resolve the fine material

structure would be rather crude. Furthermore, the far-field, statistically significant terahertz

transmission properties realized experimentally must be determined by the properties of some

simplified morphology that captures those effects which survive a suitable spatial average.

Supposing that the relevant transmission behavior can be captured by adding resistive and

capacitive connections to the 2D unit cell of the base morphology shown in Fig. 4.10 (b),

numerical transmission “experiments” were performed using the resulting nanostructure with

periodic boundary conditions imposed along its transverse dimensions. In this way, a search

of the parameter space of connective geometries was avoided by instead varying resistivities

and dielectric constants of the added connective elements. The former is parameterized by

the scattering frequency used in implementing the Drude model in a given element, while

the latter is adjusted by the dielectric constant of the material placed between metallic

surfaces. The dependence of the transmission on incident polarization measured by Zhang
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et al. [76] motivated an exploration of the various arrangements and material parameters of

the additional connective elements in FDTD simulations. Results of this investigation are

presented in the next section.

4.3.3 Results and Discussion

Freestanding nanorods of the base morphology and impedance-matched connec-

tions

The transmittance of the base morphology is essentially unity regardless of the polarization of

the incident pulse. This can be understood by viewing the array as a collection of scatterers

in the long-wavelength regime. A collection of small scatterers infinite and periodic in the

transverse directions has a scattering structure factor which vanishes in all but the forward

direction [2]. The 1 µm rod length is not expected to exhibit absorption associated with

plasmon resonance at the frequencies of interest. This was verified by calculations of the base

morphology transmittance and reflectance at higher frequencies, which revealed a lowest-

frequency absorptance peak of 0.15 at 163 THz for the case of y-polarized incidence. Recalling

that the frequencies of interest are < 4 THz, it is clear that the base morphology does

not exhibit the transmission behavior found in the experiments (see Figs. 4.13 and 4.14).

If the nanorods in the unit cell are connected along the y-direction by an additional rod

segment with equal diameter and material parameters, then an incident pulse polarized in

that direction is essentially completely attenuated because the impedance is matched along

the length of rods that are of infinite extent by virtue of the periodic boundary condition.

On the other hand, an incident wave polarized orthogonal to the infinite rods (in a separate

calculation) is essentially completely transmitted because the very low frequency current

along the infinite rods is not excited. This structure behaves like a high-efficiency wire

grid polarizer. These results are summarized in Table 4.2, where the magnitudes of the
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Table 4.2: Summary of transmitted electric field magnitudes at 1 THz.

Incident Polarization Base Morphology Connected along y-direction

x-direction 0.99995 0.9993
y-direction 0.99898 0.00424

transmitted electric field amplitudes at 1 THz are listed for each case. At this point it is clear

that the measured polarization dependence of the nanorod array’s terahertz transmission

must be attributed to less trivial inter-rod connections.

Freestanding nanorods coupled by resistive connections

The results summarized in Table 4.2 suggested a hypothesis of orthogonal resistive connec-

tions between nanorods in order to account for experimental results. Shown in Fig. 4.11,

the blue connections use a Drude model with scattering frequency increased relative to that

used by the nanorods of the base morphology by a factor of 16. The green rods supply

connectivity in the x-direction and have their scattering frequency increased by a factor of

3.5. The transmitted amplitudes for various incident polarization angle φ are plotted in

Fig. 4.13, along with the experimental results obtained by Zhang et al. [76].

Freestanding nanorods coupled by resistive and capacitive connections

Although it is not obvious from the data plotted in Fig. 4.13, the transmission spectra calcu-

lated by the FDTD method exhibit weak high/low-pass behavior depending on polarization

angle φ. When normalized to the incident spectrum, the y-polarized transmittance is seen to

decrease with frequency, while the x-polarized transmittance increases with frequency. This

behavior can be augmented by the addition of a capacitive element that leads to high- or
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Figure 4.11: The base morphology of Fig. 4.10 with resistive connections added. The unit
cell is a 250 nm × 893 nm cross-section of the computational domain, which is indicated by
the red box. The blue Drude metal has its scattering frequency increased by a factor of 16.
The green Drude metal has its scattering frequency increased by a factor of 3.5.

Figure 4.12: The connected morphology of Fig. 4.11 with a capacitive connection added to
the unit cell. The relative permittivity of the dielectric layer (yellow) is 800.

95



Tr
an

sm
is

si
on

 A
m

pl
itu

de
 O

rig
in

al

Experiment
1.0

0.5

0.0 E
le

ct
ric

 F
ie

ld
 A

m
pl

itu
de

 (a
rb

. u
ni

ts
)

4.03.02.01.0
 Frequency (THz)

Simulation

Figure 4.13: Measured and simulated transmitted electric field amplitude for various incident
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scales are arbitrary. Color – φ correspondence (top to bottom): Red – 0◦, Green – 15◦, Blue
– 30◦, Cyan – 45◦, Magenta – 60◦, Yellow – 75◦, Black – 90◦.

Tr
an

sm
is

si
on

 A
m

pl
itu

de
 N

or
m

al
iz

ed

Experiment Simulation

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0.00

 N
or

m
al

iz
ed

 A
m

pl
itu

de

3.02.01.0
 Frequency (THz)

Figure 4.14: Measured and simulated normalized transmitted electric field amplitude for
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low-pass behavior that depends on the polarization of the incident pulse and the arrange-

ment and material parameters of the connective elements. This is analogous to a simple RC

circuit that forms a voltage filter that preferentially transmits high or low frequencies de-

pending on whether the output voltage is taken across the resistor or the capacitor. Shown in

Fig. 4.14 alongside corresponding experimental results are normalized transmission spectra

calculated for the case of the morphology shown in Fig. 4.12, where a capacitive element has

been incorporated into the unit cell such that the array accentuates the high-pass behavior

of the x-component of the terahertz field. The resistive elements use the same scattering

frequencies as before. The capacitive element is constructed from the same metal as the rods

of the base morphology, with equal diameter (100 nm), but incorporating a dielectric layer

with relative permittivity 800 and thickness 20 nm. If the simplistic form of capacitance in

terms of parallel plates of area A separated by a dielectric with thickness d is assumed, then

the dielectric constant of the capacitive element can be reduced to correspond to that of air

while keeping the capacitance constant if A/d is increased by a factor of 800. Taking A to

be the surface area of one of the nanorods and d = 1 nm constitutes one set of geometrical

parameters that results in the same capacitance with unit dielectric constant. Note that the

experimental data are normalized to measured transmission data corresponding to a blank

silicon substrate, whereas the FDTD calculation includes no substrate and is normalized to

the incident spectrum.

The agreement between the simulation and experimental results shown in Fig. 4.14 is

limited by the constraint to morphologies with translational symmetry of such short lat-

tice vectors. In other words, the investigation of connections within the smallest unit cell

of the staggered base morphology is computationally convenient, but limits the accessible

spatial extent of impedance-matched electrical pathways. With this limitation, the spatial

confinement of uniformly damped oscillations on the metallic surfaces is limited by the unit

cell size. Longer-range impedance-matched electrical pathways are thought to be respon-
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sible for the non-monoticity occurring in the normalized transmission spectra measured in

the experiments at intermediate incident polarization angles as shown in Fig. 4.14. More

computationally expensive calculations which used a unit cell area expanded by a factor of

8 were performed to explore this briefly, resulting in the identification of non-monoticity on

this ∼ 1 THz frequency scale. Given the sample-to-sample variation in current experimental

results, and the significantly expanded parameter space search that would be necessary to

capture the intermediate-φ non-monoticity, a detailed investigation of this effect was not

conducted.

4.3.4 Conclusion

The results of this numerical study suggest that the spatially-averaged inter-rod coupling

exhibited by ∼ 1 µm nanorods in the ∼ 300 µm wavelength regime may be described in

terms of anisotropic R-C coupling between the nanorods. This anisotropy is attributable to

the anisotropy of the Ag nanorods fabricated by Oblique Angle Deposition as manifested by

SEM images. It is important to note that the arrangement of the added connections is not

arbitrary. The choice depicted in Fig. 4.12 was the result of exhaustive efforts to replicate

the experimental result with minimal deviation from the base morphology. The high-pass

behavior shown in Fig. 4.14, in particular, relies completely on the chosen placement of the

x-directed capacitive and resistive connective segments. It is possible that these results shed

light on the nature of inter-rod coupling that generalizes to nanorod arrays fabricated with

somewhat different deposition parameters (leading to, for example, a different nanorod tilt

angle). This could offer guidance as to what sort of nanoscale materials should be selected

for micro-patterning and subsequent use in THz optics.
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Chapter 5

Summary, Conclusions, and Future

Work

The investigations conducted as part of this dissertation have fostered a knowledge spanning

several disciplines of optics. The ultrashort pulse measurements described in Chapter 2 have

demonstrated that standard fabrication techniques can produce monolithic optical devices

capable of stretching femtosecond pulses in a fairly predictable and controlled manner. The

analysis led to the conclusion that the disparity between predicted and measured temporal

intensity profiles for the stretched pulses is most likely due to the combination of small

fabrication errors of the first-time production of only a few specimens and the deviation of

the laboratory incident pulse from the ideal, flat-phase Gaussian pulse used in the device

design. Furthermore, FDTD simulation results described in [7] strongly suggest that a very

wide range of reflected pulse shapes are possible using the design scheme. Future work could

include the design and optimization of paired devices to stretch and subsequently compress

a measured pulse, whose deviation from an ideal Gaussian could be accounted for at the

design stage.
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Chapter 3 described the FDTD numerical investigation of two-beam coupling in liquid

crystals under the influence of a photorefractive space-charge field. The main finding was

that the standard treatment of flexoelectricity in the anisotropic liquid crystal layer does not

account for the overall magnitude of the measured gain, but that it does predict oscillations

present in the experimental data that are absent from the analytical beam propagation result.

Future work includes implementation of the director profile corresponding to cholesterics for

the purpose of conducting a follow-up investigation of beam coupling in these mesogens.

Finally, heuristic yet satisfying models for the coupling between Ag nanorods have been

constructed in Chapter 4. The pores in Ag nanorods deposited at low temperatures were

identified as electric field hot spots in FDTD calculations, which further demonstrated the

significance of the blade-like rod tips to the electromagnetic contribution to SERS enhance-

ment. An investigation of the transmission properties of similar nanorod arrays in the

few-THz regime resulted in the conclusion that the spatially-averaged inter-rod coupling

exhibited by the ∼ 1 µm nanorods may be described in terms of anisotropic R-C cou-

pling between the nanorods. Future work includes retrieving effective medium parameters

for the anisotropic nanorods at THz frequencies. The extraction of effective permittivities

and permeabilities corresponding to orthogonal polarizations would enable the simulation

of lithographically-patterned structures with arbitrarily-shaped apertures. This would facil-

itate the optimization of optical properties that depend on aperture shape, resulting in a

useful computational design scheme.
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Appendix A

SHG-FROG Retrieval Algorithm

Extraction of the pulse field E(t) from the FROG trace is equivalent to a two-dimensional

phase retrieval problem. The method of generalized projections entails projecting between

two subsets of the set of all complex functions of two variables. These two subsets correspond

to constraints applied during an iteration of the algorithm (see Fig. A.1):

• Eq. 2.5 provides the (data) constraint that the squared magnitude of the Fourier trans-

form of Esig(t, τ) must be in agreement with the FROG trace data. This is an empirical

statement.

• Eq. 2.6 provides the (nonlinear optical) constraint that Esig(t, τ) must be generated

by the functional form E(t)E(t− τ) for the case of SHG-FROG. This is a theoretical

statement.

The intersection of these two sets represents the solution which uniquely yields E(t). In this

work, a set of pseudorandom complex numbers was used as the initial guess for E(t) needed

to start the algorithm.
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Figure A.1: Flowchart of the SHG-FROG retrieval algorithm with generalized projections
(adapted from [10]).
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Appendix B

High Dynamic Range FROG trace

Figure B.1: Construction of a high dynamic range FROG trace measured for the inci-
dent pulse described in section 2.2. FROG traces acquired using (a) 3 ms, (b) 12 ms, and
(c) 384 ms integration times, and (d) the resulting high dynamic range FROG trace. White
pixels indicate values that saturate the color scales.
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Appendix C

Liquid Crystal TL205 and

Photorefractive SBN:Ce Material

Parameters

Table C.1: Parameters used in the FDTD simulations described in Chapter 3 unless stated
otherwise in the text. “Ph” refers to the SBN:Ce photorefractive windows.

Symbol Value Units Description
L 10 µm Thickness of the LC layer
Na 3.8× 1021 m−3 Density of acceptor impurities in Ph windows
Nd 1.328× 1025 m−3 Density of donor impurities in Ph windows
εPh 200 (unitless) Dielectric constant of Ph windows
nPh 2.4 (unitless) Refractive index used in the Ph windows
T 293.15 K Ambient temperature
e11 10−11 C/m LC flexoelectric coefficient
e33 10−11 C/m LC flexoelectric coefficient
K11 1.73× 10−11 N LC splay elastic constant at room T
K33 2.04× 10−11 N LC bend elastic constant at room T
ε‖ 2.3317 (unitless) Rel. perm. ‖ director at optical frequencies
ε⊥ 3.0433 (unitless) Rel. perm. ⊥ director at optical frequencies
ε̃‖ 9.1 (unitless) Static rel. perm. ‖ director
ε̃⊥ 4.1 (unitless) Static rel. perm. ⊥ director
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Appendix D

Expansion of ϑ(y, z) from Eq. 3.19 in

Terms of Real Quantities

In this expansion, the complex modulation parameters in the front and back photorefractive

windows are written as

MF = mF e
iφF and MB = mB e

iφB (D.1)

See Section 3.3 for a discussion of their meaning.

(continued next page)
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The director profile is

ϑ(y, z) = θ0(z) +
(−1) r Ed

q (q̃2 − q2
1)

2
(

1 + Ed

Eq

)×
{
mF

[
Qq sin(qy + φF)

(
e−q̃(z+L/2) − e−q1(z+L/2)

)
+

+ cos(qy + φF)
(
H+

0 (z) e−q̃(z+L/2) −HF e
−q1(z+L/2)

) ]
+

+mB

[
Qq sin(qy + φB)

(
e q1(z−L/2) − e q̃(z−L/2)

)
+

+ cos(qy + φB)
(
H−0 (z) e q̃(z−L/2) −HB e

q1(z−L/2)
) ] }

(D.2)

where

H+
0 (z) =

(
q̃2 + q2

) (
q̃2 − q2

1

)
θ0(z) + 2pq̃

(
q̃2 + q2

)
, (D.3)

H−0 (z) =
(
q̃2 + q2

) (
q̃2 − q2

1

)
θ0(z)− 2pq̃

(
q̃2 + q2

)
, (D.4)

HF =
(
q̃2 + q2

) (
q̃2 − q2

1

)
θF + 2pq̃

(
q̃2 + q2

)
, (D.5)

HB =
(
q̃2 + q2

) (
q̃2 − q2

1

)
θB − 2pq̃

(
q̃2 + q2

)
, (D.6)

Qq = q q̃
(
q̃2 − q2

1

)
, (D.7)

and the quantities q, Ed, Eq, θF, θB, p, θ0(z), r, q̃, q1, are defined in Sections 3.3 and 3.4.
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