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ABSTRACT 

In 1999 West Nile Virus (WNV) was first detected in the Western Hemisphere in New 

York City, NY and is now responsible for approximately 1.8 million human infections, 360000 

illnesses, and 1308 deaths.  Our objectives are to: 1) develop a geostatistical model to assess 

which covariates influence WNV distribution, 2) assess the predictive performance of the 

developed model, and 3) explore approaches to reduce the computational burden associated with 

fitting spatial models to large data sets.  We found a positive effect of land cover type, housing 

density, and distance to wetlands, and a negative effect of slope on the prevalence of WNV in 

New York City.  We found predicted WNV occurrence to be highest in Staten Island.  We 

believe the use of hierarchical modeling provides a useful approach to exploring the prevalence 

and distribution of WNV, but does not come without a cost regarding the difficulty of optimal 

implementation.   
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

Disease ecologists are interested in understanding the factors that drive the transmission 

of infectious diseases in order to prevent costly outbreaks.  Such outbreaks, particularly from 

new or reoccurring diseases, have been estimated to cost approximately 7.5 billion dollars 

annually (Pimentel et al. 2005) and are estimated to be responsible for about 15 million annual 

deaths worldwide not including the additional millions of deaths that occur as a consequence of 

past infections or complications with chronic infections (World Health Organization 2004).  

Emerging diseases or re-emerging diseases have been defined as “infections that have newly 

appeared in a population or have existed previously but are rapidly increasing in incidence or 

geographic range” (Morse 1995).  The classification of infectious diseases as emerging or re-

emerging is helpful because the control measures to prevent outbreaks differ between the groups 

(Morens et al. 2004).  Interest often lies in understanding the underlying causes of emergence or 

re-emergence and how the disease evolves in relation to its environment and hosts.  This 

evolution is complex as it depends on how the pathogen interacts, not only with its host and 

possibly new hosts, but with the ecosystem surrounding it.   Not only can pathogen-induced 

changes occur within host individuals, but these effects can be propagated through to ecosystem 

processes (e.g., productivity, nutrient cycling) and landscape level effects (e.g., land use).  The 

interplay between hosts and pathogens and their surrounding environment is an important avenue 

of infectious disease ecology research (Ostfeld et al. 2008).   
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An additional area of research is to understand how abiotic and biotic factors influence 

the severity and frequency of disease outbreaks.  Unfortunately, the prediction of the magnitude 

and duration of these impacts for a single pathogen is very difficult.  To make such predictions 

accurately requires the integration of different scientific tools with the ultimate goal of 

incorporating the role of disease into conceptual models of community, ecosystem, and 

landscape ecology.   

It has been recognized that there is often a form of spatial dependency in disease 

outbreaks (Chuang et al. 2012, Dowdy et al. 2012, Jones et al. 2008, Young and Jensen 2012).  

Often specific locations tend to have higher re-occurrences of certain diseases and once an 

outbreak occurs these disease “hotspots” propagate the transmission of the disease in a spatially 

dependent manner (Dowdy et al. 2012, Jones et al. 2008).  It is therefore critical to be able to 

identify these “hotspots” as well as to understand what factors are responsible for the spatial 

dependence of disease occurrences.  The field of spatial statistics is an area rich in techniques to 

effectively explore these types of relevant questions in disease ecology. 

Spatial Statistics 

 One of the key features of spatial data is the autocorrelation of observations in space.  

Observations in close spatial proximity tend to be more similar than observations that are farther 

apart.  Although this is not the defining feature of spatial data, the characterization of the spatial 

correlation is a common interest for many applications of spatial statistics.  Often the scientific 

question of interest evolves from simply “How many?” to “How many and where?” thus 

necessitating the use of specific methods.  Classical inference and estimation including 

estimating the parameters of the data-generating mechanism, testing hypotheses about these 
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parameters, estimating the mean vector, and predicting the response at unobserved locations, are 

still valid except that the location of individual observations is now important and comparisons 

among different locations in the study area can now be validly assessed. 

Traditionally, the appropriate statistical modeling framework is dependent upon the type 

of data collected.  Broadly speaking, three different types of spatial data have been classified 

based on the characteristics of their domain (Cressie 1993): geostatistical data or point-

referenced data, wherein the domain is a continuous fixed set such that the attributes of interest 

can be observed everywhere within the domain (i.e. theoretically an infinite number of samples 

can be placed within the fixed domain); lattice data or areal data, wherein the domain is fixed 

and discrete such that the number of locations can be enumerated; and point pattern data, 

wherein the  variable of interest is the location of events and thus the domain is stochastic (i.e., 

changes with each realization of the spatial process).  Although it is helpful to classify the 

different types of spatial data, they are not mutually exclusive and there are often cases that 

feature more than one type, for example, we may have ozone levels at specific sites within a 

region on a specific day.  These observations would come from fixed monitoring stations for 

which exact spatial coordinates are known.  A second component of this data set could be the 

number of children in the area’s zip codes that were reported at local emergency rooms with 

acute asthma symptoms on the following day.  Now we have both point-reference data (ozone 

levels) and lattice data (number of children at local emergency rooms) and we are interested in 

establishing a connection between high ozone and subsequent high pediatric emergency room 

asthma visits. 

The set of statistical tools and forms of analysis differ depending on the type of data 

collected as do the types of questions that can be answered.  Here we will focus on geostatistical 
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data because the data in our case study was collected in this fashion.  There are three important 

elements of geostatistical modeling: stationarity, variograms, and isotropy.  It is important to 

note the fundamental concept underlying the theory is a stochastic process {𝑌(𝑠): 𝑠 ∈ 𝐷} where 

D is a fixed subset of r-dimensional Euclidean space.  It is also important to recognize that the 

continuity refers to the domain, not necessarily to the attribute being measured.  Whether the 

attribute is continuous or discrete has no bearing on whether the data are geostatistical or not.  

For a more complete description of spatial statistical methods including underlying theory, 

proofs and derivation, please consult one of the texts devoted to the subject (e.g., Banerjee et al. 

2004, Cressie 1993, Schabenberger and Gotway 2005). 

Stationarity 

 First let us assume that our spatial process has a mean, 𝜇(𝒔) = 𝐸[𝑌(𝒔)], and that the 

variance of Y(s) exists for all 𝑠 ∈ 𝐷.  The process Y(s) is said to be Gaussian if, for any 𝑛 ≥ 1 

and any set of sites {𝒔1, … , 𝒔𝑛}, 𝒀 = [𝑌(𝒔1), … ,𝑌(𝒔𝑛)]T has a multivariate normal distribution.  

Strictly stationary is then defined for any given 𝑛 ≥ 1, any set of n sites  {𝒔1, … , 𝒔𝑛} and any 

𝐡 ∈ ℝ𝑑, such that the distribution of [𝑌(𝒔1), … ,𝑌(𝒔𝑛)] is the same as that of [𝑌(𝒔1 +

𝐡), …𝑌(𝒔𝑛 + 𝐡)].  Weak stationarity (or second-order stationarity) is defined as the process 

having a constant mean, 𝜇(𝒔) ≡ 𝜇, and 𝐶𝑜𝑣[𝑌(𝒔),𝑌(𝒔 + 𝐡)] = 𝐶(𝐡) for all 𝐡 ∈ ℝ𝑑 such that s 

and s + h both lie within D.  Weak stationarity implies that the covariance relationship between 

the values of the process at any two locations can be summarized by a covariance function C(h), 

and this function depends only on the separation vector h.  Strong stationarity implies weak 

stationarity when all variances are assumed to exist, but the converse is not necessarily true (it 

does hold for Gaussian processes). 
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Variograms 

 A third type of stationarity called intrinsic stationarity exists when we assume 𝐸[𝑌(𝒔 +

𝐡) − 𝑌(𝒔)] = 0 and define 𝐸[𝑌(𝒔 + 𝐡) − 𝑌(𝒔)]2 = 𝑉𝑎𝑟[𝑌(𝒔 + 𝐡) − 𝑌(𝒔)] = 2𝛾(𝐡) where the 

left-hand side depends only on h and not the particular choice of s.  2𝛾(𝐡) is then called the 

variogram, and 𝛾(𝐡) is called the semivariogram.  Note that intrinsic stationarity says nothing 

about the joint distribution of a collection of variables, [𝑌(𝒔1), … ,𝑌(𝒔𝑛)], and therefore provides 

no likelihood.  The relationship between the variogram and covariance function is: 𝛾(𝐡) =

𝐶(𝟎) − 𝐶(𝐡).  A valid variogram satisfies a negative definiteness condition such that for any set 

of locations {𝒔1, … , 𝒔𝑛} and any set of constants {𝑎1, … ,𝑎𝑛} where ∑ 𝑎𝑖 = 0𝑖  then 

∑ ∑ 𝑎𝑖𝑎𝑗𝛾(𝒔𝑖 − 𝒔𝑗) ≤ 0𝑗𝑖 .   

Isotropy 

 If the semivariogram function 𝛾(𝐡) depends upon the separation vector only through its 

length ‖𝐡‖, then we say that the process is isotropic and anisotropic if this condition does not 

hold.  The isotropic semivariogram rises from the origin and if C(h) decreases monotonically 

with increasing h, then 𝛾(𝐡) will approach 𝑉𝑎𝑟�𝑌(𝒔)� =  𝜎2 either asymptotically or exactly at 

a particular lag h*.  The asymptote itself is termed the sill and the lag at which the sill is reached 

is called the range.  Observations between locations for which the distance exceeds the lag h* are 

uncorrelated.  If the semivariogram does not pass through the origin the intercept is termed the 

nugget effect.  Figure 1.1 provides an example of an exponential semivariogram with sill = 1.2 

and nugget = 0.2 (technically speaking the range is infinite).  Isotropic processes are popular 

because of their simplicity, interpretability and because there are a number of relatively simple 

parametric forms available as candidates for semivariograms.  Common covariance functions for  
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Figure 1.1.  Semivariogram from an exponential correlation model with parameters 𝜎2 = 1, 𝜏2 =

0.2, 𝜙 = 2, sill of 1.2 (𝜎2 + 𝜏2) and nugget of 0.2.   
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parametric isotropic models include spherical, exponential, powered exponential, Gaussian, and 

Matérn (see Banerjee et al. 2004, Cressie 1993, Schabenberger and Gotway 2005 for a complete 

description).  In our case study we used the exponential covariance function:  

𝐶(𝑡) = �
𝜎2 exp(−𝜙𝑡)  if 𝑡 > 0

𝜏2 + 𝜎2 otherwise
 

where t = ‖𝐡‖.  Technically the sill is only reached asymptotically such that the range is infinite.  

In this case interest lies in the effective range, i.e., the distance at which there is essentially no 

lingering spatial correlation (≤ 0.05).  Estimating the three parameters: 𝜙,𝜎2, 𝜏2 is usually of 

interest. 

Bayesian Hierarchical Modeling 

 Estimation and model fitting of variograms has traditionally been done “by eye” or using 

trial and error to choose values of the nugget, sill, and range parameters that provide a good 

match to the empirical semivariogram.  There have been other attempts to find parameter values 

(e.g., method of moments, estimators based on order statistics and quantiles) as well as nonlinear 

maximization routines to find the parameter values that minimize some goodness-of-fit criterion 

(Banerjee et al. 2004, Schabenberger and Gotway 2005).   More recently, parametric approaches 

have been used such as least squares, maximum likelihood, restricted maximum likelihood, 

composite likelihood or generalized estimating equations (e.g., see Schabenberger and Gotway 

2005). 

 Although frequentist methods exist, maximum likelihood is usually no longer feasible 

when complex dependencies or hierarchical structure within the data exist (Cressie and Wikle 

2011).  It is often very natural to view data exhibiting spatial dependency in a hierarchical or 
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multi-level framework (Banerjee et al. 2004) which makes them particularly suitable for 

Bayesian modeling using Markov Chain Monte Carlo (MCMC) algorithms.   

 In Bayesian modeling, the goal is to compute the form of the posterior distribution of the 

parameters, given the data and prior information.  The posterior distribution thus contains all of 

the relevant information for making inference including predictions at unobserved locations.  

The posterior distribution can be obtained by solving the following equation  

𝑝(𝜽|𝒚) = 𝑓(𝒚|𝜽)𝑝(𝜽)
∫𝑓(𝒚|𝜽)𝑝(𝜽)𝑑𝜽

, 

where 𝑝(𝜽|𝒚) is the posterior density, 𝑓(𝒚|𝜽) is the likelihood of the data and 𝑝(𝜽) is a prior 

density through which previous knowledge about θ can be incorporated.  Unfortunately, the 

solution to the above equation for most spatial models does not usually have a closed form and 

instead we rely on MCMC algorithms to generate samples from the posterior distributions of the 

parameters.  Fortunately there has been rapid development in the area of MCMC methods and 

once these algorithms have converged, with sufficiently large samples we may compute any 

statistic from the posterior distribution such as posterior means, standard deviations, quantiles, or 

correlations between the parameters. 

 We must take care to ensure that the algorithms converge and that we only analyze 

samples generated after convergence.  Convergence itself can be assessed by generating samples 

from multiple Markov chains, begun with widely dispersed initial values, and comparing the 

behavior of the chains.  We can do this visually by making simultaneous plots of the values of 

the multiple chains for each parameter, with good mixing of the chains implying convergence.  

In addition we can also compute the Gelman-Rubin scale-reduction factor (Gelman et al. 2004), 
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which compares variation within the chains to variation across the chains.  Convergence will 

lead to values of this factor close to 1. 

 There is an important practical limitation in using geostatistical models within Bayesian 

MCMC modeling.  At each step of the algorithm we must sample from the full conditional 

distribution which requires computing the inverse of the N x N covariance matrix where N is the 

number of unique locations.  In practice, we can actually solve a system of N equations, but this 

still becomes an enormous drain on computer time when N is large and the operation must be 

repeated for thousands of MCMC iterations.  Things look even worse when our goal is spatial 

prediction (“kriging”, Cressie 1993, Diggle et al. 1998) at a large number of unsampled 

locations.  Fortunately, there has been an increase in the number of available methods to handle 

large spatial data sets (e.g., Latimer et al. 2006, Illian et al. 2007, Banerjee et al. 2008, Latimer et 

al. 2009, Sang and Huang 2012).  Different approaches provide different techniques to reduce 

complexity and the computational burden.  Several authors have explored methods that are more 

efficient by approximating complex likelihoods instead of dealing with the full likelihood 

directly.  Vecchia (1988) suggested approximating the likelihood through products of conditional 

distributions while Fuentes (2007) used spectral representations of the spatial process to 

approximate the likelihood.  A second approach is to modify the correlation structure to enable 

more efficient computation.  For example, Sang and Huang (2012) developed an approach that 

takes advantage of more efficient sparse matrix solvers by using compacted correlation functions 

that yield sparse correlation structures.  A third approach is to represent the spatial process in a 

lower-dimensional subspace (Stein 2007, Cressie and Johannesson 2008, Banerjee et al. 2008).  

The general idea behind these methods is to express the spatial process realization over a small 

set of locations (i.e. “knots”) where the number of “knots” is much smaller than the number of 
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observed sites.  Ideally there will be insignificant loss of spatial information when using the 

smaller set of knots given that there is adequate domain coverage.  The critical issue for these 

types of models is selecting the number and location of the knots, which is a challenging 

problem.   

Chapter Description 

Chapter 2 –  

 In late summer 1999 the first known case of West Nile Virus (WNV) was detected in the 

Western Hemisphere, specifically New York City, NY in the northeastern United States 

(Anderson et al. 1999, Lanciotti et al. 1999).  WNV is a mosquito-borne flavivirus native to 

Europe, Asia, and Africa (Lanciotti et al. 1999).  Birds serve as the vertebrate reservoir hosts in 

the transmission cycle of WNV, while humans and other mammals are incidental hosts (Lanciotti 

et al. 1999).  The initial exposure resulted in an outbreak of human encephalitis with 589 patients 

suspected of having WNV in New York City, four of which were fatal (Nash et al. 2001).  In 

only 4 years WNV reached the west coast and is now responsible for approximately 1.8 million 

human infections, 360000 illnesses, and 1308 deaths (Kilpatrick 2011).   

 Our objective in Chapter 2 is to develop a geostatistical model to effectively assess which 

covariates influence WNV distribution and occurrence while accounting for spatial dependence 

in the data, to assess the predictive performance of the developed model, and to explore 

approaches to reduce the computational burden associated with fitting spatial models to large 

data sets.    
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Chapter 3 – 

I provide a synthesis and conclusion of the previous chapter.  In addition I highlight 

major contributions and discuss future research needs.   
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CHAPTER 2 

A BAYESIAN HIERARCHICAL SPATIAL MODEL FOR WEST NILE VIRUS IN NEW 
YORK CITY: EVALUATING AN APPROACH TO HANDLE LARGE SPATIAL DATA 

SETS1 
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Abstract 

Infectious diseases are responsible for extensive costs to society both in terms of dollars 

and human losses.  In 1999 West Nile Virus (WNV) was first detected in the Western 

Hemisphere in New York City, NY and reached the west coast in 4 years.  It is now responsible 

for approximately 1.8 million human infections, 360000 illnesses, and 1308 deaths.  The WNV 

epidemic was unprecedented and underscored the ease with which pathogens can move among 

population centers.  In order to fully understand the dynamics of WNV and prevent transmission 

through control measures, it is important to identify covariates that drive the spatial distribution 

and occurrence of WNV through the use of statistical spatial models.  Computational challenges 

become highly relevant when fitting spatially explicit models to large data sets.  Fortunately, 

there has been a rise in the development of approaches to handle large spatial data sets including 

the use of predictive process models to reduce the dimension of the problem.  Our objectives are 

to: 1) develop a geostatistical model to effectively assess which covariates influence WNV 

distribution and occurrence while accounting for spatial dependence in the data, 2) assess the 

predictive performance of the developed model, and 3) explore approaches to reduce the 

computational burden associated with fitting spatial models to large data sets.  We found a 

positive effect of wetlands land cover, housing density, and distance to wetlands, and a negative 

effect of slope on the prevalence of WNV in New York City.  The effective range of correlation 

between two locations is approximately 560 meters suggesting small-scale local dependence.  

We found predicted WNV occurrence to be highest in Staten Island and that this was highly 

dependent on land cover type specifically areas with wetlands.  Model validation for our model 

resulted in a correct classification rate of 68% when using a cut-point of 0.5.  The ability to 

predict disease outbreaks as a function of covariates can be an important step to reducing the 
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spread of diseases and lessening the associated costs.  Furthermore, the identification of specific 

covariates that have a positive effect on the occurrence of WNV (i.e. land cover type, distance to 

wetlands, and housing density) allow land managers to focus control efforts on areas that are 

more likely to propagate disease transmission.  We believe the use of hierarchical modeling 

provides a useful approach to exploring the prevalence and distribution of WNV, but does not 

come without a cost regarding the difficulty of optimal implementation.   
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INTRODUCTION 

 Understanding the environmental factors that help explain and ultimately drive disease 

dynamics and transmission is an important step in reducing the negative costs associated with 

many infectious diseases.  Human diseases have been estimated to have an associated cost of 7.5 

billion dollars annually (Pimentel et al. 2005) and an estimate exceeding 25% of all annual 

human deaths worldwide have been attributed to infectious diseases (Morens et al. 2004).  In late 

summer 1999 the first known case of West Nile Virus (WNV) was detected in the Western 

Hemisphere, specifically New York City, NY in the northeastern United States (Anderson et al. 

1999, Lanciotti et al. 1999).  WNV is a mosquito-borne flavivirus native to Europe, Asia, and 

Africa (Lanciotti et al. 1999).  Birds serve as the vertebrate reservoir hosts in the transmission 

cycle of WNV, while humans and other mammals are incidental hosts (Lanciotti et al. 1999).  

The initial exposure resulted in an outbreak of human encephalitis with 589 patients suspected of 

having WNV in New York City, four of which were fatal (Nash et al. 2001).  In only 4 years 

WNV reached the west coast and is now responsible for approximately 1.8 million human 

infections, 360000 illnesses, and 1308 deaths (Kilpatrick 2011).   

 The WNV epidemic was unprecedented and underscored the ease with which pathogens 

can move among population centers.  Because of the extreme health risks associated with the 

virus and the lack of understanding related to how the virus was introduced, the New York City 

Department of Health and Mental Hygiene (NYCDOHMH) established a multi-faceted program 

to detect and prevent the spread of WNV in New York City and the surrounding metropolitan 

area (NYCDOHMH 2009).  As part of the effort a vector surveillance system for monitoring 

mosquitoes was implemented consisting of trapping and testing mosquitoes at numerous sites 

throughout the five boroughs of the city.  The number of sites, the frequency of trap placement, 
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and the number of traps per site varied depending on where a pathogen was most likely to be 

present based on avian and mosquito surveillance data from 1999 onward.  Although establishing 

a rigorous surveillance program is the first step in combatting WNV, it is essential for the data to 

directly inform control actions in order to effectively prevent future outbreaks.  It is therefore 

necessary to examine past data in order to precisely understand what covariates affect the 

occurrence of WNV and are accurate predictors for the spatial distribution of the disease. 

The field of spatial statistics provides a vast array of approaches for effectively exploring 

the spatial dynamics of WNV.   Traditionally, the appropriate statistical modeling framework is 

dependent upon the type of data collected.  Broadly speaking, three different types of spatial data 

have been classified based on the characteristics of their domain (Cressie 1993): geostatistical 

data or point-referenced data, wherein the domain is a continuous fixed set such that the 

attributes of interest can be observed everywhere within the domain (i.e. theoretically an infinite 

number of samples can be placed within the fixed domain); lattice data or areal data, wherein the 

domain is fixed and discrete such that the number of locations can be enumerated; and point 

pattern or point process data, wherein the  variable of interest is the location of events and thus 

the domain is stochastic (i.e., changes with each realization of the spatial process).  Although it is 

helpful to classify the different types of spatial data, they are not mutually exclusive and there 

are often cases that feature more than one type of spatial data. 

 Regardless of the nature of the collection of spatial data, ecological studies often neglect 

to model spatial relationships (Beale et al. 2007) and we can assume that this is often due to the 

computational burden of running spatially explicit models for large data sets (Banerjee et al. 

2004, Christman 2008).  Recent advances in remote sensing technology (e.g., Geographical 

Information Systems and Global Positioning Systems) and an interest in large-scale long-term 
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ecological inventories (e.g., National Ecological Observatory Network; NEON, Inc.) have 

resulted in an increase in the number of large spatially-referenced data sets.  The challenge lies in 

dealing with the increased number of matrix decompositions (increases as O(n3) in the number of 

locations, n) that are required and this is often referred to as the “big n” problem for large data 

sets.  Fortunately, there has been an increase in the number of available methods to handle large 

spatial data sets (e.g., Latimer et al. 2006, Illian et al. 2007, Banerjee et al. 2008, Latimer et al. 

2009, Sang and Huang 2012).  Different approaches provide different techniques to reduce 

complexity and the computational burden.  Several authors have explored methods that are more 

efficient by approximating complex likelihoods instead of dealing with the full likelihood 

directly.  Vecchia (1988) suggested approximating the likelihood through products of conditional 

distributions while Fuentes (2007) used spectral representations of the spatial process to 

approximate the likelihood.  A second approach is to modify the correlation structure to enable 

more efficient computation.  For example, Sang and Huang (2012) developed an approach that 

takes advantage of more efficient sparse matrix solvers by using compacted correlation functions 

that yield sparse correlation structures.  A third approach is to represent the spatial process in a 

lower-dimensional subspace (Stein 2007, Cressie and Johannesson 2008, Banerjee et al. 2008).  

The general idea behind these methods is to express the spatial process realization over a small 

set of locations (i.e. “knots”) where the number of “knots” is much smaller than the number of 

observed sites.  Ideally there will be insignificant loss of spatial information when using the 

smaller set of knots given that there is adequate domain coverage.  The critical issue for these 

types of models is selecting the number and location of the knots, which is a challenging 

problem.    
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 Given the large scale nature of many infectious diseases including West Nile Virus, and 

the increasing availability of data, our goal is to explore and evaluate one methodological 

approach to model spatial data efficiently.  Banerjee et al. (2008) proposed an approach, 

predictive process modeling, which attempts to express the original spatial process (i.e. parent 

process) over a lower-dimensional subspace (“knots”).  This approach has many advantages 

(e.g., requires no additional tuning parameters in the model) and we believe an illustration of the 

approach will provide researchers with a valuable tool.  Specifically, our objectives are to: 1) 

develop a geostatistical model to effectively assess which covariates are responsible for 

influencing WNV distribution and occurrence, 2) assess the predictive performance of the 

developed model, 3) explore the use of predictive process models to reduce the computational 

burden associated with fitting spatial models to large data sets, and 4) evaluate four alternative 

ways to select knots in order to maximize the accuracy and precision of the predictive process 

models.  We illustrate this approach with one year of data from New York City, NY, USA. 

METHODS 

The data were collected by the New York City Department of Health and Mental 

Hygiene (NYCDHMH) in 2008 across the five boroughs of New York City, New York, USA 

(Bronx, Brooklyn, Manhattan, Queens, and Staten Island, Fig. 2.1).  Mosquitoes were collected 

weekly in CDC light and Reiter’s gravid traps at 225 sites from May 2008 – September 2008 

(Fig. 2.1).  Trap catch was separated in the lab to species, and grouped into pools of up to 50 

individuals from the same species, on the same date and collected from the same trap.  These 

pools were then tested for WNV using PCR.  The results of the test (positive or negative for 

WNV) were used as the binary response variable for the statistical models described below.  We 

only used results from Culex pipiens and Culex pipiens-restuans as most virus isolations have 
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been made from various Culex species mosquitoes (Turell et al. 2001).  Each trap location was 

mapped according to the geographic coded record from the NYCDOHMH and converted to the 

NAD 1983 State Plane New York Long Island FIPS 3104 coordinate system for further analysis.  

Eleven covariates thought to influence WNV distribution and variability were collected.  The 

covariates were land cover type (Land cover), distance to water (Distance water), distance to 

open space (Distance openspace), distance to building (Distance building), population density 

(Population density), lot density (Lot density), housing density (House density), distance to 

wetlands (Distance wetlands), aspect (Aspect), slope (Slope), and land surface temperature (Land 

surface temp).  The covariates were either provided by the NYCDOHMH or obtained using the 

National Land Cover Database 2006 (http://www.mrlc.gov/nlcd2006.php).  We treated Land 

Cover type as a factor variable and used six levels because our study area was predominantly 

covered by these six land classifications: Developed open space, Developed Low Intensity, 

Developed Medium Intensity, Developed High Intensity, “Forest” (Deciduous Forest and 

Evergreen Forest combined), and “Wetlands” (Woody Wetlands and Emergent Herbaceous 

Wetlands combined). 

  

http://www.mrlc.gov/nlcd2006.php
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Figure 2.1.  Mosquito trap locations in New York City, NY, USA with five boroughs identified.  

Black circles represent cases where a positive test for WNV occurred and white circles represent 

cases where a negative test result occurred during mosquito sampling from May – September 

2008.  See text for more description. 
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Statistical Model 

We were interested in exploring the influence of the eleven covariates on the occurrence 

and distribution of WNV in New York City, NY, USA.  To do so we developed a multi-stage 

hierarchical geostatistical model that allows for spatial correlation among observations.  We first 

discuss a basic logistic model that can accommodate the non-normal distribution of WNV 

(binary response) and then add in spatial random effects.  Suppose we have i = 1,…, n locations.  

We set yi = 1 if location i tested positive for WNV and yi = 0 otherwise. Conditional upon our m 

predictor variables, xi for site i, we assume that the yi’s follow a Bernoulli distribution, 

𝑦𝑖 𝑖.𝑖.𝑑.
~  𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝(𝐱𝑖)) with P(yi = 1|xi) = p(xi).  A logistic link is used to model the 

relationship between the response data vector y = (y1, . . ., yn),  and the matrix of predictor 

variables X =  [𝒙1𝑇 , . . . ,𝒙𝑛𝑇], where 𝒙𝑖𝑇 is the 1 x m vector of covariates for the i-th point,  

𝑝(𝐱𝑖) =  exp (𝐱𝑖
𝑇𝜽)

1+exp (𝐱𝑖
𝑇𝜽)

,                                                      (1) 

where 𝜽 = (𝜃1, . . . ,𝜃𝑚) is the vector of parameters to be estimated.  Classical inference would 

typically use iterative methods to obtain estimates of the parameters, 𝜽�, by maximizing the 

likelihood function,  

∏ exp (𝐱𝑖
𝑇𝜽)

1+exp (𝐱𝑖
𝑇𝜽)

𝑛
𝑖=1 .                                                          (2) 

Spatial Random Effects 

It has been suggested that West Nile Virus outbreaks occur with some form of spatial 

dependence (e.g., Chuang et al. 2012, Young and Jensen 2012); unfortunately the mean function 

in (1) does not accommodate spatial correlation among observations.  Not accounting for 



28 
 

 
 

existing spatial dependence can impair the estimates of precision and often times leads to a false 

sense of confidence when evaluating the significance of important predictors.  Therefore we used 

a multi-stage hierarchical model that explicitly incorporates spatial structure to ensure our 

estimates of uncertainty were accurate.  Multi-stage models provide more modeling flexibility 

which often results in a better model fit compared to simpler single-stage models.  In our case the 

first stage of the hierarchical model assumes that the observed responses over the locations are 

conditionally independent given the spatial effects and adds spatially correlated random effects 

to the mean structure in (1).  The second stage specifically models the nature of the association 

between the random effects.  We adopt a Bayesian approach to estimation and inference (e.g., 

Gelman et al. 2004) therefore we require prior distributions of the model parameters for full 

specification of the hierarchical model. 

 Specifically, suppose the trap collection sites are spatially referenced as 𝑆 =  {𝑠1, . . . , 𝑠𝑁}.  

We can envision the response as y(si) = 1 or 0 depending on whether the test for WNV was 

positive or not at site si.  The probability that y(si) = 1 depends on spatially-referenced predictor 

variables, x(si) for site si, the regression slope parameters 𝜽, and the location-specific random 

effects 𝑤(𝑠𝑖)to yield: 

𝑝(𝑠𝑖) =  exp (𝐱(𝑠𝑖)𝑇𝜽+𝑤(𝑠𝑖))
1+exp (𝐱(𝑠𝑖)𝑇𝜽+𝑤(𝑠𝑖))

.                                             (3) 

Here we assume 𝑠 ∈ 𝐷, where D is a fixed subset of ℜ2. 

 The second stage of the hierarchical model specifies the association in the random 

effects.  We chose to use a Gaussian Process to specify the random effect, denoted by 

𝑤(𝑠)~ 𝐺𝑃(𝜇(𝑠),𝐾(∙)) where 𝜇(𝑠) is the process mean and 𝐾(∙) is a positive definite covariance 
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function (see Cressie 1993 or Banerjee et al. 2004 for more details).  The Gaussian Process 

provides several advantages, most notably very convenient distribution theory (Banerjee et al. 

2004).  By specifying the mean and covariance structure we can obtain the joint, conditional and 

all other distributions with little work (Banerjee et al. 2004).  The Gaussian Process is also a 

popular choice for modeling spatial variation due to its ability to directly model spatial 

correlation.  

 We assume 𝑤(𝑠)~ 𝐺𝑃(0,𝐾(𝜙)), where 𝐾(𝑠 − 𝑠′;𝜙) = 𝜎2𝜌(𝑠 − 𝑠′;𝜙) such that the 

process realization 𝐰 =  [𝑤(𝒔𝑖)]𝑖=1𝑁  ~ 𝑀𝑉𝑁(𝟎,𝜎2𝐻(𝜙)), where 𝐻(𝜙) =  �𝜌(𝑠𝑖 − 𝑠𝑗;𝜙)�
𝑖,𝑗=1
𝑁

 is 

the N x N spatial correlation matrix.  If the w(si) were i.i.d., then we would have the usual 

generalized linear mixed effects model, but instead we have a generalized linear mixed model 

with spatial structure in the random effects (Banerjee et al. 2004).  The spatial correlation 

function, 𝜌(𝑠𝑖 − 𝑠𝑗;𝜙),  captures the strength of spatial association and is also known as a 

positive definite function because it must ensure that the matrix 𝐻(𝜙) is positive definite for any 

collection of sites (Banerjee et al. 2004).  Here we use the exponential correlation function, 

𝜌(𝑠 − 𝑠′;𝜙) = exp (−𝜙‖𝑠 − 𝑠′‖) with two parameters, the spatial decay parameter 𝜙 and the 

spatial effect variance 𝜎2.  We also describe the effective range r of the spatial process by 

solving exp(−𝜙𝑟) = 0.05 (i.e., 𝑟 ≈ 3/𝜙) which describes the range at which the spatial 

correlation drops to 0.05 (Banerjee et al. 2004). 

 To complete the full specification of the model we need to assign prior distributions for 

the parameters.  We chose a non-informative flat prior for the fixed effects 𝜽 (i.e., 𝑝(𝜃) ∝ 1).  

Following Gelman et al. (2004) we assumed the spatial effect variance parameter, 𝜎2 follows an 

inverse-Gamma distribution, 𝜎2~ 𝐼𝐺(𝑎, 𝑏).  We fixed a = 2 such that the distribution has mean b 
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and an infinite variance.  The large variance should allow for the data to overwhelm the prior 

beliefs and dominate the inference.  The spatial decay parameter was distributed as Uniform, 

𝜙~𝑈(𝑐,𝑑).  As other authors have noted (Berger et al. 2001; Banerjee et al. 2004), we required a 

fairly informative prior to ensure proper and well-identified posteriors and sufficient 

convergence of the algorithm.  We set d as the maximum intersite distance between locations in 

our data set and specified c as a minimal distance that we believed would always be exceeded.   

Predictive Process Models 

  Estimation and prediction of the above parameters involves evaluating the likelihood and 

the N x N matrix.  Although there are fast linear solvers to conduct such explicit inversions it is 

still expensive for big N.  This problem becomes exacerbated for Bayesian inference which 

requires repeated evaluation as needed in Markov Chain Monte Carlo (MCMC) algorithms. 

 Recently, Banerjee et al. (2008) suggested a class of models known as predictive process 

models that operate on an identified lower-dimensional subspace.  By projecting the original 

process to the lower-dimensional subspace the dimension of the matrix which needs to be 

evaluated is reduced thus decreasing computational time.  Following Banerjee et al. (2008) a set 

of “knots” are specified 𝑆∗ = {𝑠1∗, . . . , 𝑠𝑚∗ }, which may or may not form a subset of the entire 

collection of observed locations 𝑆.  The Gaussian Process is now defined as 

𝒘∗ =  [𝑤(𝒔𝑖∗)]𝑖=1𝑚  ~ 𝑀𝑉𝑁(𝟎,𝜎2𝐻∗(𝜙)), where 𝐻∗(𝜙) =  �𝜌(𝑠𝑖∗ − 𝑠𝑗∗;𝜙)�
𝑖,𝑗=1

𝑚
 is the 

corresponding m x m spatial correlation matrix.  The predictive process 𝑤�(𝒔) derived from the 

parent process 𝑤(𝒔) is defined as 𝑤�(𝒔) = 𝐸[𝑤(𝒔)|𝒘∗] = 𝒉𝑇(𝒔;𝜙)𝐻∗−1(𝜙)𝒘∗, where 𝐻∗(𝑠 −

𝑠′;𝜙) = 𝜎2𝜌(𝑠 − 𝑠′;𝜙) = 𝐻∗(𝜙) and 𝒘∗ is defined above.  The process is completely specified 
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given the covariance function of the parent process and 𝑆∗.  The probability of a positive WNV 

detection at a site now depends on the predictive process model, 

𝑝(𝑠𝑖) =  exp (𝐱(𝑠𝑖)𝑇𝜽+𝑤�(𝑠𝑖))
1+exp (𝐱(𝑠𝑖)𝑇𝜽+𝑤�(𝑠𝑖))

.                                       (4) 

The dimension reduction is seen by replacing the N random effects [𝑤(𝒔𝑖)]𝑖=1𝑁 , with m random 

effects in 𝒘∗ where we work with an m-dimensional joint distribution involving only m x m 

matrices. Finley et al. (2009a) and Finley et al. (2009b) point out the predictive process 

systematically underestimates the variance of the parent process w(s) at any location s and this is 

observed in the results from Banerjee et al. (2008).  To fix this problem Finley et al. (2009b) 

propose a modified predictive process, defined as 𝑤̈(𝒔) =  𝑤�(𝒔) + 𝜖̃(𝒔), where 

𝜖̃(𝒔) 𝑖𝑛𝑑𝑒𝑝~ 𝑁(0,𝐻(𝒔, 𝒔) − 𝒉𝑇(𝒔;𝜙)𝐻∗−1(𝜙)𝒉(𝒔;𝜙) is a process of independent variables with 

spatially adaptive variances.  This allows the modified predictive process 𝑤̈(𝒔), to have the same 

properties of the predictive process 𝑤�(𝒔), while reducing the systematic bias in estimating the 

variance of the parent process w(s).  More details of the predictive process model including 

derivations and theoretical results can be found in Banerjee et al. (2008), while details of the 

modified predictive process can be found in Finley et al. (2009a) and Finley et al. (2009b).   

Selection of knots 

 The selection of knots for the modified predictive process model is an important and 

difficult step.  Essentially the problem comes down to a spatial design problem except that we 

already have samples collected at N locations.  Two common approaches for obtaining optimal 

spatial designs are design-based approaches and model-based approaches (see Xia et al. 2006 for 

review).  The design-based approaches attempt to obtain optimal placement of locations and are 



32 
 

 
 

evaluated by how well the given set of points covers the study region irrespective of the assumed 

covariance function.  Common design-based approaches include using a regular grid of locations 

that are spatially balanced (Stevens and Olsen 2004), space-filling knot selection based on the 

designs of Nychka and Saltzman (1998) or modifying a regular grid by augmenting the lattice 

with close pairs or infill (e.g., Diggle and Lophaven 2006).  Alternatively, model-based 

approaches rely on an assumed spatial model and either focus on optimizing the placement of 

locations in regards to the ability to make predictions (e.g., Zhu 2002), to estimate model 

parameters (e.g., Müller and Zimmerman 1999), or a mixture of both (e.g., Zhu and Stein 2005).   

The selection of the number of knots is governed by computational cost regardless of the 

choice of approach for optimizing knot-selection.  This requires implementing the analysis over 

different choices for the number of knots and must include run time along with the stability of 

estimated parameters.  We chose to explore four different design-based approaches and 

conducted each approach at eight different numbers of knots ranging from 15% - 60% of the 

total number of observed locations.  The four different design-based approaches were: (1) a 

systematic grid covering the entire study area, (2) random placement of knots throughout the 

study area, (3) proportional placement of knots in relation to observed locations, i.e. areas with 

more observed locations had more knots, and (4) an optimal spatial design which minimized a 

geometric space-filling design (Nychka and Saltzman 1998).  We ensured the same number of 

total knots were used for each of the four approaches and increased the number of knots from a 

minimum of 34 (15% of total number of observed locations) to a maximum of 141 (63% of total 

number of observed locations) for each run. 
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Model validation and prediction  

 In addition to fitting the model to the full data set, we randomly sampled 20% of the data 

and excluded them in order to validate the model (holdout data set).  The remaining 80% of the 

data were then used for model construction.  Using the model constructed with 80% of the data 

we predicted the response (probability of positive infection) at the locations in the holdout data 

set and evaluated the model’s performance.   

We were interested in predicting WNV prevalence throughout the entire study area as well as 

using predicted responses to compare knot-placement and intensity approaches.  To facilitate this 

we required predictions at new unsampled locations based on the model fit to the full data.  We 

obtained new covariate information at 434 sites within the study area (Fig. 2.2) and predicted 

probability of infection using the posterior predictive distribution (e.g., Gelman et al. 2004) at 

each new location. 

Convergence diagnostics   

 All analyses were conducted using the software program R (R Development Core Team 

2011).  MCMC was implemented via the R package spBayes (Finley et al. 2007) using adaptive 

MCMC (Roberts and Rosenthal 2009).  Three independent chains were run for 250,000 

iterations for each trial.  Each chain was given dispersed initial values for each parameter in the 

model and the posterior samples were thinned to keep every 20th iteration.  Convergence was 

assessed by examining posterior samples using the software package CODA (Plummer et al. 

2006) available in R and consisted of graphing trace plots, assessing autocorrelation and 

computing Gelman-Rubin diagnostics (Gelman et al. 2004). 
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Figure 2.2.  New locations for prediction of West Nile virus from Bayesian hierarchical spatial 

model in New York City, NY, USA. 
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RESULTS 

 The average distance between sites is approximately 19780 meters with a maximum 

distance of 54711 meters and a minimum distance of 21 meters.   Table 2.1 provides parameter 

estimates (50, 2.5, 97.5 percentiles) for the multi-stage hierarchical spatial model fit to the full 

data set which consisted of 225 sites.  The credible intervals suggest that there is a positive effect 

of land cover type (specifically wetlands), housing density, and distance to wetlands and a 

negative effect of slope on the occurrence of WNV in New York City (Table 2.1).  The medians 

of 𝜎2and 𝜙 are 242.19 and 602.84, respectively.  The effective range (≈ 3/ϕ) for the spatial 

model is approximately 560 meters suggesting that at this distance the correlation between two 

locations is 0.05.  There is a large amount of variability around the estimate of 𝜙 and the 

associated effective range, however, suggesting that there is quite a bit of uncertainty regarding 

the strength of spatial dependence among sites.  Furthermore the upper estimate of the credible 

interval (1499.56 meters) suggests relatively small-scale local dependence given the average 

distance between sites and distribution of sites.   

Figures 2.3 and 2.4 provide the probability map and associated error for the predicted 

probability of WNV in New York City based on the multi-stage hierarchical model using all of 

the data.  It is apparent that the model predicts a high probability of WNV in Staten Island which 

corresponds to the large number of observed cases found in Staten Island.  It is also evident that 

uncertainty is lowest in Staten Island due in part to the large amount of information collected in 

this borough.  The model does a poor job of predicting observed cases in the middle of Queens 

and the northern region of the Bronx and Manhattan.  There are also high levels of uncertainty 

with the predictions in the middle of Queens, but the uncertainty is lower in the northern region 

of the Bronx.  Examining maps of the distribution of land cover type (Fig. 2.5) and housing unit  
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Table 2.1. Parameter estimates (median and 95% credible intervals) from Bayesian hierarchical 

spatial model fit to the full data set exploring the influence of eleven covariates on the 

distribution and occurrence of WNV in New York City, NY.  Effective range is defined as 

distance at which the correlation among locations drops to 0.05.  Italicized variables represent 

covariates that have support and are considered important to understanding the distribution or 

prediction of WNV occurrence. 

Parameter 50% 2.50% 97.50% 

𝜎2 242.19 116.09 451.50 

𝜙 602.84 221.76 979.72 

Effective range (meters) 560.33 343.58 1499.56 

Developed Low Intensity 3.90 -4.84 13.67 

Developed Med. Intensity 1.22 -8.96 11.57 

Developed High Intensity 0.35 -10.54 11.79 

Forest 1.69 -10.52 14.06 

Wetlands 20.08 5.59 36.74 

Distance water -1.06 -4.57 2.07 

Distance open space 0.14 -3.12 3.37 

Distance building 2.10 -1.07 5.56 

Aspect -1.07 -4.04 1.73 

Slope -2.20 -5.79 0.92 

Population density -1.38 -8.34 4.64 

Lot density -4.35 -14.98 3.38 

House density 6.03 1.57 11.70 
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Distance wetlands 3.70 -0.65 8.74 

Land surface temp -0.27 -3.49 2.92 
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Figure 2.3.  Mean predicted occurrence of WNV in New York City, NY, USA.  Predictions are 

made from a Bayesian hierarchical spatial model fit to the full data set of detected and 

nondetected cases of WNV collected from May – September 2008.  Black circles represent cases 

where a positive test for WNV occurred and white circles represent cases where a negative test 

result occurred during mosquito sampling from May – September 2008.   
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Figure 2.4.  Estimated uncertainty from mean predictions of WNV occurrence in New York City, 

NY, USA.  Predictions are made from a Bayesian hierarchical spatial model fit to the full data 

set of detected and nondetected cases of WNV collected from May – September 2008.  Black 

circles represent cases where a positive test for WNV occurred and white circles represent cases 

where a negative test result occurred during mosquito sampling from May – September 2008.   
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Figure 2.5.  Distribution of six land cover types in New York City, NY, USA based on the 

National Land Cover Database 2006.  The six land cover types are: 21 – Developed open space, 

22 – Developed low intensity, 23 – Developed medium intensity, 24 – Developed high intensity, 

41 and 42 – Deciduous forest and Evergreen forest, referred to as “Forest”, and 90 and 95 – 

Woody wetland and Emergent herbaceous wetland, referred to as “Wetlands”. 
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density (Fig. 2.6) suggests the model’s predictions are highly dependent on these two covariates; 

high predicted probability in areas classified as wetlands and with high housing unit density.  

The majority of locations with high predicted probability of WNV correspond to areas that have 

a higher number of observed positive cases relative to negative cases, for instance in Brooklyn 

and Queens.  This result makes intuitive sense because the ratio of positive to negative cases is 

the dominant type of information to inform the model.  Model validation for the multi-stage 

hierarchical model fit to the full data set resulted in a correct classification rate of 68% when 

using a cut-point of 0.5.  Model construction for validation used 185 sites to estimate parameters 

and predict to the 46 sites in the hold-out data set.   

Banerjee et al. (2008) and Finley et al. (2009b) suggest that the best way to evaluate knot 

performance is by comparing the covariance function of the parent process to the predictive 

process.  Table 2.2 displays estimates of 𝜎2and 𝜙 for a combination of knot intensities and 

placement strategies for the multi-stage hierarchical model fit using a modified predictive 

process.  We only report levels of knot intensity when the total computing time was less than that 

of the model fit to the full data set (i.e., number of knots < 40% of full data set).  Three of the 

four approaches (random allocation, proportional allocation, and optimal design) did a sufficient 

job of estimating 𝜎2 regardless of the number of knots used while the systematic grid did a poor 

job of estimation for all of the levels of knots.  The systematic grid routinely underestimated the 

uncertainty in 𝜎2 and often the estimate of the median was significantly biased low.  There is 

very little variation among the other three approaches (random, proportional, and optimal) 

regarding the ability to accurately represent 𝜎2 with a variety of knot intensities.  Based on 

computing time it appears as though choosing any of the three approaches (random, proportional, 
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Figure 2.6.  Distribution of housing unit density in New York City, NY, USA.  The measurement 

unit has been centered and re-scaled to have mean equal to zero and variance equal to one with 

higher numbers representing higher housing unit density. 
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Table 2.2.  Median and 95% credible intervals for estimates of the parameters of the covariance 

function from a Bayesian hierarchical spatial model for the full data set (in italics) and predictive 

process model using different levels of knots and knot placement approaches.  Note that the 

numbers of knots are in percentages of the total number of sites (225 total sites): 15% - 34 knots, 

20% - 46 knots, 25% - 58 knots, 28% - 65 knots, 34% - 79 knots, 37% - 86 knots.  The four knot 

placement approaches are systematic grid (Grid), randomly placed (Random), proportional to 

observed locations (Proportional), and an optimal space-filling design (Optimal).  Computing 

time represents the total amount of time to complete estimation of parameters in hours. 

  
𝜎2 𝜙 Computing 

Model 

Knots 
% of 
Total Median 2.50% 97.50% Median 2.50% 97.50% 

Time 
(hours) 

Full - 242.19 116.09 451.50 602.84 221.76 979.72 14.02 

Grid 15 194.97 194.96 195.23 465.01 77.08 974.48 4.05 

 

20 252.02 234.83 281.46 449.25 11.14 973.98 5.56 

 

25 219.28 181.30 249.91 446.79 32.97 972.66 6.75 

 

28 196.02 64.69 378.52 552.21 128.03 978.31 8.71 

 

34 207.10 202.98 210.02 489.19 96.35 974.67 10.05 

 

37 164.47 134.02 168.18 481.49 89.18 974.39 11.44 

Random 15 233.39 104.34 450.01 542.89 89.84 975.09 3.65 

 

20 237.84 107.37 443.88 559.85 149.44 976.24 5.71 

 

25 236.85 110.65 436.89 573.87 123.28 978.08 7.28 

 

28 236.74 102.76 451.50 553.68 110.28 977.28 8.48 

 

34 234.83 103.82 444.17 575.28 146.97 977.65 10.19 

 

37 236.03 111.22 426.24 554.84 124.96 978.94 10.64 
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Proportional 15 235.62 108.15 440.58 437.18 48.67 971.08 4.24 

 

20 231.61 103.95 439.51 540.02 57.02 975.77 5.99 

 

25 230.89 103.91 439.82 539.07 71.79 975.08 7.14 

 

28 239.39 103.80 450.27 542.75 74.81 979.14 8.42 

 

34 245.44 114.08 445.49 473.56 67.57 975.39 10.16 

 

37 240.34 111.85 449.51 475.43 78.58 972.53 11.70 

Optimal 15 235.07 103.24 438.17 349.27 51.05 964.72 3.50 

 

20 238.23 103.30 447.57 518.03 114.68 975.36 5.55 

 

25 234.49 103.94 424.21 579.25 118.88 979.77 7.16 

 

28 240.00 111.64 444.93 451.13 71.42 973.27 7.45 

 

34 242.71 113.59 458.10 609.21 159.59 981.18 10.30 

 

37 236.68 102.30 454.75 548.05 101.65 980.15 12.37 
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and optimal) with 34 knots should be the optimal balance of accuracy and efficiency because 

very little is gained by increasing the number of knots. 

Estimation of 𝜙 appeared to pose a greater challenge for all four approaches.  All of the 

approaches did a poor job of capturing the estimated variability around 𝜎2 (using the full data 

set) and instead overestimated the uncertainty.  The performance did not appear to improve with 

any of the four approaches when increasing knot intensity.  It appears as though there were 

different optimal knot intensities for the four approaches.  The systematic grid and proportional 

allocation approach performed the best when using 65 knots, while the random allocation of 

knots and optimal design allocation of knots performed best when using 79 knots.  Overall the 

optimal design allocation with 79 knots was closest to representing the estimate and associated 

uncertainty from the full data set.  This ambiguity suggests that the modified predictive process 

model had a difficult time estimating 𝜎2 regardless of the approach or number of knots and there 

was not an increase in performance as knot intensity was increased as would be expected.  

In addition we can examine the performance of the modified predictive process to 

estimate the influence of covariates.  Table 2.3 provides parameter estimates for the four 

covariates with evidence of support for all four approaches and knot intensities.  It is clear that 

performance does not vary much among the random allocation, proportional allocation and 

optimal design allocation while the systematic grid performed much worse when knot intensity 

was low. 

DISCUSSION 

 Our goal was to explore the influence of several covariates on the prevalence of WNV in 

New York City while evaluating a recently developed approach to handle large spatial datasets.   
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Table 2.3.  Parameter estimates (median and 95% credible intervals) for the four covariates with support from the Bayesian 

hierarchical spatial model fit to the full data set (in italics) and predictive process model using different levels of knots and knot 

placement approaches.  Note that the numbers of knots are in percentages of the total number of sites (225 total sites): 15% - 34 knots, 

20% - 46 knots, 25% - 58 knots, 28% - 65 knots, 34% - 79 knots, 37% - 86 knots.  The four knot placement approaches are systematic 

grid (Grid), randomly placed (Random), proportional to observed locations (Proportional), and an optimal space-filling design 

(Optimal).   

 
Knots Wetlands land cover Slope House density Distance wetlands 

  
% of 
Total 50% 2.50% 97.50% 50% 2.50% 97.50% 50% 2.50% 97.50% 50% 2.50% 97.50% 

Full 

 

20.08 5.59 36.74 -2.20 -5.79 0.92 6.03 1.57 11.70 3.70 -0.65 8.74 

Grid 15 19.23 5.41 33.55 -2.11 -4.99 0.73 5.60 1.43 9.95 3.43 -0.51 7.52 

 

20 3.91 1.40 7.66 -0.32 -0.76 0.07 0.79 0.23 1.39 0.46 -0.08 1.00 

 

25 4.20 1.45 8.15 -0.36 -0.85 0.08 0.91 0.27 1.61 0.54 -0.08 1.17 

 

28 5.96 2.14 10.83 -0.54 -1.30 0.15 1.38 0.39 2.39 0.82 -0.12 1.78 

 

34 19.03 5.44 32.94 -2.26 -5.30 0.71 5.58 1.45 9.95 3.34 -0.63 7.59 

 

37 18.21 5.41 31.27 -1.91 -4.67 0.69 5.28 1.31 9.21 3.23 -0.50 6.93 

Random 15 19.67 5.36 36.83 -2.21 -5.77 0.82 5.91 1.47 11.50 3.50 -0.83 8.75 
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20 19.80 4.78 35.99 -2.22 -5.81 0.91 6.21 1.86 11.83 3.78 -0.19 8.92 

 

25 19.64 4.70 36.31 -2.20 -5.71 0.87 5.89 1.40 11.25 3.59 -0.53 8.48 

 

28 20.06 5.62 36.17 -2.15 -5.71 0.87 5.94 1.59 11.51 3.56 -0.57 8.47 

 

34 20.04 5.46 36.55 -2.11 -5.77 1.00 5.83 1.43 11.79 3.54 -0.56 8.57 

 

37 19.97 5.63 35.83 -2.18 -5.62 0.99 6.08 1.62 11.58 3.67 -0.56 8.76 

Proportional 15 20.14 5.16 36.25 -2.23 -5.82 0.91 6.11 1.65 11.81 3.65 -0.51 8.61 

 

20 19.65 5.12 35.68 -2.20 -5.81 0.74 5.84 1.65 11.61 3.48 -0.58 8.55 

 

25 19.80 5.53 35.25 -2.14 -5.76 0.84 5.88 1.50 11.58 3.50 -0.48 8.53 

 

28 20.09 5.32 36.65 -2.10 -5.93 0.97 6.24 1.65 11.50 3.77 -0.50 8.60 

 

34 20.08 5.20 37.07 -2.28 -6.15 0.81 6.18 1.63 11.51 3.73 -0.76 8.48 

 

37 20.22 5.67 37.11 -2.11 -5.64 0.91 6.25 1.70 12.06 3.74 -0.57 9.02 

Optimal 15 19.55 5.58 35.73 -2.20 -5.72 0.89 5.90 1.59 11.28 3.52 -0.53 8.67 

 

20 20.23 5.68 36.20 -2.08 -5.59 0.95 5.91 1.51 11.71 3.60 -0.66 8.47 

 

25 19.46 5.64 34.92 -2.13 -5.69 0.88 5.95 1.64 11.00 3.59 -0.56 8.29 

 

28 19.50 5.91 35.42 -2.11 -5.60 1.09 6.17 1.67 11.96 3.73 -0.46 8.96 

 

34 20.44 5.91 36.61 -2.14 -5.82 0.95 6.01 1.51 11.67 3.58 -0.67 8.68 



53 
 

 
 

  37 19.93 5.12 36.59 -2.15 -5.88 1.00 6.02 1.57 11.72 3.69 -0.66 8.74 
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In order to do so we developed a hierarchical Bayesian model that incorporated spatial structure 

in the random effects and permitted accurate estimates of the associated uncertainty.  We found 

four covariates (land cover type, distance to wetlands, slope, and housing density) to have a 

significant influence on the distribution of WNV.   The hierarchical model using the full data set 

did a sufficient job of predicting WNV throughout the study area with a few exceptions.  The 

most notable exceptions were in Staten Island and northern regions of the Bronx and Manhattan 

where the model appeared to over predict WNV occurrence.  The model’s predictions do, 

however, align with other authors’ assertion that disease transmission and occurrence are driven 

by the distribution of land cover type (Bowden et al. 2011, Magori et al. 2011) and urban density 

(Gibbs et al. 2006, Ruiz et al. 2007).  Not surprisingly, Staten Island and the northern region of 

the Bronx have high levels of both of these types of land cover (Figures 2.5 and 2.6).   

The model also appeared to underrepresent disease prevalence in some interior portions 

of Brooklyn and Queens.  We believe that this was a result of very small scale spatial structure 

that may not have been fully captured by the model.   The average inter-site distance was large 

(19780 m) while the spatial range was estimated to be relatively small (560 m) suggesting that 

the spatial dependence occurs at a small scale, but the observed locations are more often than not 

very far away.  With enough data this would not be problematic as the correlation could be 

estimated with few data points existing close together, unfortunately, with only 225 sites this 

may not have been the case in our study.  If identifying small scale spatial structure is the 

primary focus, for instance because control measures may be implemented at a neighborhood or 

smaller scale wherein understanding individual transmission is important (e.g., Salje et al. 2012), 

then other approaches such as statistical agent-based models (Hooten and Wikle 2010) may 

characterize the process better and provide greater insight.  In our study we now have evidence 
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to suggest that small scale spatial structure is important so perhaps a future step would be to 

explore models that scale up starting with a mechanistic model that describes the small-scale 

processes.   

An additional limitation that we observed was that the data were not collected according 

to a probability-based sampling survey and were instead collected in a haphazard manner 

resulting in large variation in the placement of sampling locations.  Ideally, an optimal spatial 

sampling design could be implemented that would prioritize areas of concern and allow for 

smaller scale spatial structure to be accurately estimated (e.g., Xia et al. 2006).  In addition, we 

did notice a small level of discrepancy between the sampling coverage allocated to different 

boroughs relative to the amount of area in the borough.  Although this was not a prevalent issue 

it was most evident in Staten Island which makes up roughly 22% of the land area in New York 

City (265.5 km2/1213 km2), but approximately 29% of the sampling locations occurred in this 

borough (66/225 total sites).  We could envision a spatial sampling design that allocates 

sampling locations proportional to land area as one approach that may improve model 

performance.  Often it is not possible to redesign surveys for various reasons (i.e. too costly, 

logistical constraints, project already initiated) and so a second suggestion would be to explicitly 

account for the preferential sampling in the model directly.  Diggle et al. (2010) develop a 

geostatistical model that accounts for the stochastic dependence between the process that 

determines the data locations and the response being modeled.  This could potentially alleviate 

some of the difficulties that we observed and perhaps improve overall model performance.  

Our hierarchical model introduced spatial effects into the transformed mean allowing for 

similar mean responses at proximate locations after adjusting for covariates.  An alternative 

direct or first-stage model could have been considered that would only focus on the spatial 
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relatedness of observations, but we were interested in spatial explanation in the mean response as 

a function of covariates.  An additional constraint was that data had been collected and 

aggregated over a relatively large window of time (May – Sept.) so that the actual observations 

of proximate locations may really occur weeks apart.  Therefore we believed it was necessary to 

restrict our interest to the mean response and add in spatial dependence at this stage of the model.   

A more complex model could be fit that addressed the temporal nature of the data and attempted 

to explore the spatial and temporal dynamics of WNV (e.g. Cressie and Wikle 2011), but that 

was not the focus here.  If data were available for multiple years it would be possible to 

investigate the temporal variability occurring at multiple scales: within a single year, perhaps 

using monthly or weekly slices of the data, and among years exploring the spatial dynamics 

across different years.  One can imagine that the data requirements for such an analysis would 

increase dramatically emphasizing the value of an approach like predictive process modeling.  

Sahu and Bakar (in press) provide a useful framework and example of using predictive process 

modeling for a large spatiotemporal data set. 

Overall we found the modified predictive process models to adequately capture most 

attributes of the parent process.  All of the models did a decent job of estimating 𝜎2 and the 

coefficients for the covariates when the number of knots was greater than 20% of the total 

number of locations, but had difficulties in estimating ϕ regardless of the number of knots.  

Interestingly, there was little evidence of increased performance in estimating parameters of the 

covariance function as the number of knots increased above 20% of the total number of sites.  

Banerjee et al. (2008) showed that the accuracy of the predictive process models gets worse as 

the separation between knots increases.  Finley et al. (2009b) also found that predictive process 

models fail to capture local, small-scale dependence accurately and that the smaller the spatial 
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range the denser the locations of knots need to be to pick up the spatial effect.  In our setting we 

had a small spatial range (560 m) and even with high numbers of knots relative to the number of 

locations (> 40%) there was poor coverage of the entire study region.  So although we were 

increasing knot intensity, in relation to the study region it was not enough to sufficiently capture 

the fine scale spatial dependency.  We therefore observed an increase in uncertainty surrounding 

the estimation of ϕ even as the number of knots increased.   

The difficulty with estimating ϕ could also simply be due to lack of information in the 

sample.  We believe two sources contribute to the lack of information in the sample: 1) lack of 

data given the large number of covariates and spatial effects we are trying to estimate, and 2) 

spatial signal weakened because of control efforts by NYCDOHMH.  Although our sample size 

was not small there may not have been sufficient information available to estimate ϕ accurately 

along with the associated covariates and spatial effects.   

A more serious consideration is that the NYCDOHMH is interested in minimizing the 

impact of mosquito-borne diseases.  They implement an aggressive program to eliminate 

potential breeding sites via the elimination of standing water and the application of larvicide, and 

the curtailment of adult mosquitos when necessary, through the use of adulticide (NYCDOHMH 

2009).  These direct control measures are based on surveillance data and are used to specifically 

target neighborhoods and communities where the virus is reappearing.  Although these 

approaches are undoubtedly beneficial, they can present a problem when trying to model the 

spatial distribution and dynamics of WNV.  Because areas with reappearing WNV outbreaks are 

treated quickly it becomes difficult to collect data that contain enough information about WNV 

distribution and the spatial signal necessary for accurate estimation.  If there is strong 

dependence among locations or specific site-level covariates that are driving WNV occurrence 
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some of the information to estimate those effects accurately is lost when sites are sprayed or 

otherwise treated.  Ultimately, it is important to understand these geographic hotspots as they are 

often most responsible for propagating disease epidemics (Dowdy et al. 2012).  Overall 

immediate response control measures are an effective approach to reducing the human related 

risk of WNV, but the recognition of the challenges it creates for modeling is worth mentioning. 

We found very little variation in the performance of three of the four different approaches 

to selecting knot locations.  Overall the random, proportional and optimal design approaches to 

selecting knot locations performed better than the systematic grid approach and this difference 

was most evident when using a specified number of knots that was less than 30% of the total 

number of locations.  Although we found very little discrepancy among the three approaches we 

evaluated, which all performed sufficiently well, there are other approaches to selecting knots 

that may provide more accurate estimates given the nature of this study.  We only chose to focus 

on design-based approaches, but a mixed approach that maximizes study coverage while taking 

estimation and/or prediction of the covariance parameters into account may be optimal.  An 

additional approach that could provide improvements is to not select the knots prior to 

estimation.  Instead a form of adaptive knot selection where the knot locations are not fixed, but 

are a stochastic component of the model and can be added in an adaptive fashion as estimation 

takes place (Guhaniyogi et al. 2011), may be useful.  For this study such an approach could allow 

for a more directed effort in coverage of the study area and potentially provide better estimates of 

the fine scale spatial structure given the ad-hoc placement of observations.  For example, as 

Guhaniyogi et al. (2011) found, knot locations can be adaptively placed such that the knots 

divide the domain of interest into equal portions to maximize the ability to estimate the 

covariance parameters.  Issues surrounding knot placement are critical to effectively using 
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predictive process models and should be considered carefully.  Ultimately, the decision for 

where to place knots may depend on the objectives of the modeling (estimation/prediction vs. 

full study area coverage), but it appears as though when there is fine scale spatial structure and 

interest lies in estimating that spatial structure then the four design-based approaches we 

explored could be improved upon.  

The ability to predict disease outbreaks as a function of covariates can be an important 

step to reducing the spread of diseases and lessening the associated costs.  Furthermore, the 

identification of specific covariates that have a positive effect on the prevalence of WNV (i.e. 

land cover type, distance to wetlands, and housing density) allows land managers to recognize 

areas that can potentially be disease hotspots and to focus control efforts on these specific 

locations.  This type of information permits more effective and efficient measures to combat the 

spread of WNV.   We believe the use of hierarchical modeling which permits accurate estimation 

of uncertainty while incorporating important covariates of interest and spatial dependence 

provides a useful approach to exploring the prevalence and distribution of WNV.  The use of 

predictive process modeling offers a useful approach to reduce computational burdens associated 

with large spatial data sets.  The use of these models, however, does not come without a cost 

regarding the selection of the number of knots and knot locations.  We have shown several of 

these approaches perform sufficiently well and hope that the illustration of predictive process 

modeling enables other researchers to explore the use of these methods for their own work.  
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CHAPTER 3 

CONCLUSION 

Disease ecologists are faced with the difficult task of understanding the proximate and 

ultimate factors influencing disease transmission and outbreaks.  This problem becomes 

exacerbated as the number of recognized infectious diseases increases and the potential for 

perilous outcomes becomes more probable (Daszak et al. 2000).   It is necessary that scientists 

have a suite of sophisticated and effective tools to aid in disease prevention and control.  It is 

often the case that substantial data exist for many diseases resulting in very large data sets which 

increase the computational burden even when fitting the simplest models.  Scientific interest, 

however, often requires exploring more complicated models that recognize the inherent 

dependencies and hierarchical structure in the data.  In this thesis I have evaluated a tool that 

permits accurate predictions of disease outbreaks while evaluating the influence of important 

covariates on the occurrence of a disease.  I have used a case study of West Nile Virus in New 

York City to explore the use of hierarchical multi-stage models to address scientifically valid 

questions about disease ecology while overcoming complications of model fitting with large 

spatial data sets.   

In chapter 2 I developed a multi-stage hierarchical spatial model that explored the 

influence of several covariates on the prevalence of West Nile Virus in New York City while 

evaluating a recently developed approach to handle large spatial data sets.  I found that four 

covariates (land cover type, distance to wetlands, slope and housing density) had a significant 
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influence on the distribution of West Nile Virus.  I found that the effective range of spatial 

correlation among sites is approximately 560 meters although there is substantial uncertainty 

around this parameter and the 95% credible interval ranges from 344 meters to 1500 meters.  

This still suggests that there is significant small scale spatial correlation and sites that are 

separated by a distance greater than 560 meters can be considered independent if one site 

becomes infected.  Staten Island had the highest levels of predicted probability of occurrence of 

West Nile Virus with select other areas having predicted probabilities exceeding 0.6.  The 

uncertainty in these estimates was also lowest in Staten Island suggesting that control efforts 

should be focused in these areas and that Staten Island can be potentially regarded as a West Nile 

Virus hotspot.  I found that with a relatively low number of knots (<30% of total number of 

observations) and using one of three knot allocation approaches (random, proportional, or 

optimal) the spatial process can be estimated accurately.  The systematic grid allocation approach 

performed poorly under almost all scenarios and is not recommended. 

Chapter 2 highlighted the advantages of using a hierarchical modeling framework to 

incorporate spatial dependence and propagate uncertainty into the estimates of interest.  In our 

case study data were collected over a large window of time (May – Sept.) so that the actual 

observations of proximate locations may really occur weeks apart.  A traditional first-stage 

model that only focuses on the spatial relatedness of the observations would have falsely 

assumed that the observations were collected at a single instance resulting in an upwardly biased 

estimate of spatial correlation.  By including spatial dependence at the second-stage of the model 

(the mean response included spatial dependence) we overcame this difficulty and therefore 

accounted for the underlying spatial dependence in the data.   
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I found several key limitations in this study that influenced the model’s ability to 

accurately predict West Nile Virus occurrence.  The most relevant limitation was that the 

NYCDOHMH actively implements a program to eliminate potential mosquito breeding sites and 

adult mosquitoes (NYCDOHMH 2009).  These actions inhibit the estimation of the spatial signal 

because information is lost when one site tests positive and surrounding locations are 

subsequently sprayed with larvicide.  Of course these measures are appropriate and necessary to 

prevent outbreaks, but it requires the collection of more data to fully capture the spatial process.  

Future research should be focused on determining the effectiveness of the control measures.   

A second major avenue of future research should be the incorporation of time into the 

spatial model.  The statistical analysis of spatial data recognizes the fact that the configuration of 

observations carries important information about the relationship of the data points.  By this 

same token the argument can be made that the temporal relationship of the data is equally 

important to acknowledge and provides useful information regarding the underlying processes of 

interest.  It is therefore not a surprise that recent advances have been made to accommodate both 

spatial and temporal variation in data acquisition and modeling.  This is also supported by the 

increase in data that are indexed by both time and space.  Examples include environmental 

monitoring such as wind monitoring (Cressie and Huang 1999) and climate data (Fasso and 

Cameletti 2009, Wikle et al. 1998) where data are collected over a spatial domain and 

customarily monitored over long periods of time.  Other specific examples include changes in 

real estate markets (Gelfand et al. 2003) over space and time or the spatial relationship of brain 

activity monitored via multiple brain scans (Bowman 2007) thus producing a dynamic spatio-

temporal process.  The West Nile Virus case study contains data for nine years (1999-2008) and 

this information should be included in the analysis.  It is therefore necessary to develop some of 
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the ideas regarding space-time modeling and how they are relevant for West Nile Virus 

prevention in New York City. 

 The introduction of time into spatial modeling brings a substantial increase in the scope 

of work forcing the analyst to make several critical decisions regarding spatial correlation, 

temporal correlation, and how space and time interact in the data.  First, one must make a 

distinction between the types of data collected, as in any spatial analysis.  This requires 

determining if the spatial process and spatial data are to be viewed as geostatistical data (point 

level), lattice data (areal level) or point process data.  A parallel distinction must be made for 

temporal data to determine if the temporal scale is to be viewed as continuous or discrete.  If it is 

viewed as being discrete the analyst must further determine if the measurements are to be viewed 

as a block average over the time interval or whether they should be viewed merely as a count 

attached to an associated time interval.  Furthermore if time is discretized it is important to 

distinguish between observing a time series of spatial data (e.g., the same points are being 

sampled in each time unit) and a cross-section of the data where the locations change with each 

time step.  Additional complications involve missing data and the prediction of new locations 

both spatially and temporally as some time points will be missing spatial information and spatial 

points will be missing temporal information.  Worse is the case when predictions are being made 

without either spatial or temporal information.  For the West Nile Virus case study, data can be 

thought of as geostatistical where the temporal component represents a cross-section of the data 

(i.e., the locations change with each time step) although some of the same locations are used 

throughout the duration of the study. 

 Current approaches to modeling spatio-temporal data can be broken into three main 

categories: (1) conditional approaches, (2) methods for random fields in Rd+1, and (3) joint 
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analysis of spatio-temporal data.  The third option contains the majority of the current research 

including the development of separable and non-separable covariance functions along with the 

use of hierarchical modeling.  I will briefly outline the first two approaches and the associated 

difficulties and then spend the majority of the time discussing the third and most useful 

approach. 

 Conditional approaches specifically isolate a particular time point (or location) and apply 

standard techniques for the type of data that results.  Essentially it is a separate analysis for time 

at different spatial locations or separate analysis of spatial data at different time points.  These 

sorts of analyses are obviously conditional on the approach taken and have been used mainly 

because of their simplicity.  Often a two stage approach is taken wherein the second stage is to 

combine the results from the conditional analyses in the first stage.  This is a somewhat common 

practice in statistics where multiple sources of variation are at work but methodology and/or 

software are unavailable for joint modeling.  An example is nonlinear mixed model applications 

for clustered data (Schabenberger and Gotway 2005).  Two important sources of variation are the 

changes in response as a function of covariates for each cluster and cluster-to-cluster 

heterogeneity.  The first source is captured by a nonlinear regression model and the second 

source is expressed by using random effects among clusters.  The two-stage approach here is to 

model each cluster separately and then to combine the regression coefficients into a set of overall 

coefficients in the second stage (Davidian and Giltinan 1995). 

 Although conditional approaches are appealing because of their simplicity several serious 

shortcomings arise that further limit their application.  Data that are sparse in time or space can 

present difficulties.  If it is not possible to analyze the data spatially for a time point then data 

collected at that time will not contribute in the second stage when the spatial analyses are 
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combined.  The integration of observations over time or space (as a solution to this problem) can 

confound the spatial or temporal effects making it difficult to understand the process at hand.  

Alternatively too many spatial or temporal locations may result in an unwieldy number of 

analyses.  If the locations are unique (cross-sectional data) then there is no suitable way to 

conduct a conditional analysis.  An additional difficulty is that there may be multiple ways to 

summarize the results from the first-stage analysis and often an accurate summary would require 

the temporal or spatial correlation between the statistics of interest.  Finally there is no approach 

to model space-time interactions and allow for predictions in time and space.  Separate analyses 

in time (space) allow predictions in time (space) only.  As we will see this is also a problem 

when using separable covariance functions in joint space-time analyses. 

 To treat spatio-temporal data as spatial data with an extra dimension (Rd+1), the second 

approach, is not encouraged specifically because time and space are not directly comparable.  

Spatial coordinates are not directly comparable to temporal units because space has no past, 

present, or future.  It is possible to circumvent this problem by using valid separable covariance 

structures as Gneiting (2002) points out.  Strictly from a mathematical point of view the space-

time domain Rd x R is no different than the spatial domain Rd+1.  This is not the same, however, 

as modeling spatio-temporal data as “3-D”data.  A spatio-temporal process with a spatial 

component in R2 may be separable, but it is not a process in R3.  Gneiting (2002) further argues a 

valid spatio-temporal covariance function is also a valid spatial covariance function although the 

difference between space and time must be acknowledged.  Specifically there are two distances 

between points in a space-time process: the Euclidean distance between points in space and the 

Euclidean distance between points in time.  If time is considered an “added” dimension, then the 

anisotropy must be taken into account.  An example of a valid separable covariance function is if 
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the time points are evenly spaced, then the temporal process has an AR(1) structure and the 

spatial component has an exponential structure.  Mitchell and Gumpertz (2003) used this to 

model CO2 released over time on rice plots. 

 The joint modeling of spatial and temporal data has seen a recent influx of methods over 

the last decade.  All of the approaches can be based on the basic necessities needed to describe a 

spatio-temporal random field; three simple expressions are needed: (1) a simple stochastic 

representation, (2) a closed-form spectral density function and (3) a closed form of the 

covariance function.  Based on one of these three forms, statistical inference and prediction of 

the model can be made.  Unfortunately only one or two simple forms may be available for a 

spatio-temporal stationary random field.  Often the case is that for a particular situation only one 

of these expressions can be formulated.  Specific methods are developed loosely based on one or 

more of these simple components to characterize the spatio-temporal random field.  A further 

division is that of hierarchical modeling which is used characterize a spatio-temporal random 

field and often bypasses limitations or constraints of other approaches.  This approach appears to 

hold the most promise for the West Nile Virus case study.  The division between frequentist and 

Bayesian inference is often blurred among these approaches although the majority of hierarchical 

modeling approaches utilize Bayesian inference while the other approaches often resort to 

frequentist estimation techniques (e.g., Restricted Maximum Likelihood Estimation).  I will 

further make the distinction between estimation techniques as I discuss the specific models.  It 

should be reiterated that none of these approaches based on the components of a spatio-temporal 

random field are necessarily mutually exclusive, for example several hierarchical models are 

used to describe covariance functions as well as in the representation of spectral density 
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functions, but the separation of these techniques in this fashion helps to illuminate the 

approaches and their subtle differences.   

Space-time Covariance Functions 

 Let {𝑍(𝑠; 𝑡): 𝑠 ∈ 𝐷 ⊂ ℝ𝑑; 𝑡 ∈ [0,∞)} denote a spatio-temporal random process observed 

at N space-time coordinates (s1;t1),…(sN;tN).  Optimal prediction (in space and time) of the 

unobserved parts of the process, based on the observations is often the ultimate goal, but to 

achieve this goal, a model is needed for how various parts of the process co-vary in space and 

time.  If we assume that variance is finite (regularity condition) then we can define the mean 

function as μ(s;t) = E(Z(s;t)) and the covariance function as Cov(Z(s;t),Z(r;q)); ,s r D∈ , t>0, 

q>0.  It is then necessary (with the exception of some of the hierarchical models) to assume 

second-order stationary in space and time such that  

( ( ; ), ( ; )) ( ; )Cov Z s t Z r q C s r t q= − −  

for certain functions C.  This assumption is often made so that the covariance function can be 

estimated from data.  The function C must satisfy a positive-definiteness condition to be a valid 

covariance function; that is for any real a1,…,am and any positive m, C must satisfy 

1 1
( ; ) 0

m m

i j i j i j
i j

a a C r r q q
− =

− − ≥∑∑ . 

Then and only then is the covariance function valid to be used in spatio-temporal prediction.  We 

will further assume that C is continuous, therefore positive-definiteness is equivalent to the 

process having a spectral distribution function (Cressie 1993).  To ensure positive-definiteness it 
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is common to specify a parametric family of distributions for C whose members are known to be 

positive definite.   

 One common class of covariance functions is separable covariance functions where a 

valid spatial covariance and a valid temporal covariance function are combined in product form.  

A separable spatio-temporal covariance function decomposes the covariance into purely spatial 

and purely temporal components.  The components usually have different parameters to allow 

for space-time anisotropy.  The final spatio-temporal covariance function is then the result of 

addition and multiplication operators.  Separable covariance functions are easy to work with and 

valid, provided the components are valid covariance functions.  However the class of separable 

covariance functions is severely limited because they do not model space-time interaction. 

 The other class of covariance functions is that of non-separable covariance functions.  

Typically non-separable covariance functions are more complicated than separable models but 

incorporate space-time interactions.  Some non-separable models reduce to separable ones for 

particular values of model parameters and allow a test of separability (also see Li et al. 2007 and 

Crujeiras et al. 2010 for two different nonparametric tests of separability).  Methods for 

constructing valid covariance functions with spatio-temporal interactions include the monotone 

function approach of Gneiting (2002), the spectral method (Cressie and Huang 1999; Fuentes 

2002), the mixture approach (Ma 2002), partial differential equation approach (Jones and Zhang 

1997), and several other approaches (Ma 2008).  I will give a brief overview of each of these 

approaches including the method of estimation. 
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Monotone function approach (Gneiting 2002) 

This method is powerful because it builds valid covariance functions from elementary 

components whose validity is easily checked.  It is also useful because it avoids operations in the 

spectral domain and does not rely on Fourier inversions (such as Cressie and Huang 1999).  The 

general idea is to choose two functions such that one is completely monotone and the other is 

positive with a completely monotone derivative (Tables 1 and 2 in Gneiting 2002 provide a list 

of such functions).  A valid non-separable covariance function can then be built and a test of 

separability can also be conducted.  Estimation of the parameters in the model can be conducted 

via restricted maximum likelihood estimation. 

Spectral density approach (Cressie and Huang 1999; Fuentes 2002) 

Earlier we mentioned that valid covariance functions (continuous and positive-definite) 

have a spectral representation.  This is confirmed by Bochner’s theorem (see Cressie 1993) and 

suggests the following method for constructing valid covariance functions: determine a valid 

spectral density and take its inverse Fourier transform.  Unfortunately, this approach can be 

limited if there is no explicit expression for the covariance function.  Cressie and Huang (1999) 

apply the following method: determine a valid spatio-temporal spectral density and integrate.  

But they note that because the covariance function and spectral density are a Fourier transform 

pair, integration of the spatial and temporal components can be separated in the frequency 

domains and thus the spatio-temporal spectral density is obtained with a one-dimensional Fourier 

transform although complicated integration is still needed from there.  Estimation can be 

conducted by likelihood methods although the complicated integration introduces difficulties.  

Fuentes (2002) uses the convolution of local stationary processes to propose various parametric 
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approaches for estimating the spectral density of a nonstationary spatial process and applies this 

to air pollution data.  Several nonparametric approaches are suggested including a new algorithm 

for fitting such models.   

Mixture approaches (Ma 2002) 

Instead of integration in the frequency domain, non-separable covariance functions can 

also be constructed by summation or integration in the spatio-temporal domain.  Space-time 

interactions can be incorporated by “mixing” the product of the covariance functions or 

correlation functions.  Ma (2002) goes on to further describe several approaches (positive power 

mixture and scale mixture) using bivariate random vectors with a joint distribution function 

independent of both the spatial and temporal covariance functions.   

Stochastic partial differential equations (Jones and Zhang 1997) 

 A dynamic or stochastic model may be formally described by a stochastic (partial) 

differential equation.  Jones and Zhang (1997) consider a separable spatio-temporal random field 

as  

� 𝜕2

𝜕𝑠1
2 + 𝜕2

𝜕𝑠2
2 − 𝜙2� � 𝜕

𝜕𝑡
+ 𝛼�𝑍(𝑠; 𝑡) = 𝜀(𝑠; 𝑡), 𝑠 ∈ ℝ2, 𝑡 ∈ ℝ, 

where ( ; )s tε  is a zero mean Gaussian white noise field with variance σ2 .  This results in a 

theoretically valid correlation function, but is limited by the difficulty in imagining a physical 

mechanism which would lead to such a relation.  In addition the correlation function does not 

have the partial derivative with respect to t or s, so that the partial derivatives in the above 

equation do not exist in the usual sense.  Alternatively, Brown et al. (2000) use a “blur” approach 
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where the model operates successively in time; the spatial field at time t + 1 is obtained by 

“blurring” the field at time t and adding a spatial random field.   

 Although both of these approaches can be useful the complexity in the analysis 

specifically in the setup of the stochastic partial differential equation to represent a physical (or 

biological) process limits their utility.   

Hierarchical Models 

Although I have outlined several approaches to calculate valid covariance functions for a 

spatio-temporal random field these approaches are limited by the need to completely specify the 

joint space-time covariance structure.  In addition such covariance functions are often not 

realistic for complicated dynamical processes and dimensionality can prohibit practical 

implementation.  Alternatives to this problem exist and rely heavily on hierarchical modeling.  

Hierarchical modeling is a broad class of models in which the components of the model are 

defined by submodels at different hierarchical stages.  The advantage is mainly in flexibility and 

allowing for allocation of the total uncertainty to the various components or levels.  

A natural approach to spatio-temporal hierarchical modeling for complex dynamical 

processes is a combination of spatial and time series techniques, which is accomplished by a 

spatio-temporal dynamic (hierarchical) model formulation.  However, estimation in this context 

can still be problematic due to the high dimensionality of the state process.  Several modeling 

strategies have been proposed to address this problem.  One approach is to reduce the 

dimensionality by projecting the state-process on some set of spectral basis functions (Wikle and 

Cressie 1999) or by projecting onto a lower subspace (Banerjee et al. 2008; Sahu and Bakar in 

press).  Alternatively, one might specify very simple, random walk dynamics or incorporate 
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dynamical biological models directly into the parameterization (Wikle et al. 2001).  Estimation 

in hierarchical models uses either the Expectation-Maximization algorithm (Bolin et al. 2009; 

Fasso and Cameletti 2009; Xu and Wikle 2007) or a Bayesian approach that allows for the 

complicated structure to be modeled in terms of means at various stages, rather than a model for 

a massive joint covariance matrix (Cressie and Wikle 2002; Huang and Cressie 1996; Wikle et 

al. 1998; Wikle et al. 2001).  Furthermore, hierarchical models offer the analyst various 

opportunities to explore and employ trade-offs between large and small scale dynamics, and 

space-time dynamics.  

Numerous examples exist in the literature that rely on hierarchical modeling of spatio-

temporal processes including spatially varying coefficients (time series of spatial processes; 

Banerjee et al. 2004; Gelfand et al. 2003), estimating vegetation trends using the EM algorithm 

(Bolin et al. 2009), estimation of snow melt using Kalman filtering (Cressie and Wikle 2002; 

Huang and Cressie 1996), modeling the dependence in fMRI data by using a two stage 

autoregressive approach (Derado et al. 2009), agent based models (Hooten and Wikle 2010), and 

a regime switching model for wind energy (Gneiting et al. 2006).  Although all of these 

approaches vary slightly in their model formulation and each have attributes specific to their 

problem at hand the basic hierarchical formulation is as follows with levels being added or 

subtracted as needed: 

i. Data: specifies a measurement error model for the observation data 

ii. Process: specifies models for the response and the incorporation of space-time dynamics 

iii. Large and small scale and space-time dynamics: provides parameters for the process 

models that generate the spatial dependence structure and includes dynamical terms as 

well 
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iv. Model parameters (measurement variances, model variances, dynamical parameters): 

setting priors for the parameters 

v. Hyperparameters: any additional parameters for prior distributions 

Moving forward with the West Nile Virus case study I envision that a hierarchical space-time 

model using Bayesian inference would be most appropriate.  This framework would allow for a 

flexible approach to model the spatio-temporal dynamics of West Nile Virus while accounting 

for the various sources of uncertainty.  It will be necessary and relevant to explore approaches 

that can efficiently handle large amounts of data.  I believe the research contained within this 

thesis provides a stepping stone for more sophisticated analyses while also providing a useful 

tool to help disease ecologists understand and control costly disease outbreaks.   
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