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ABSTRACT 

 Measles is a very contagious disease that is the leading cause of death of children. 

Traditionally, the measles virus (MV) can be detected using qRT-PCR, ELISA, and IFA 

assays. However, these techniques often provide inconclusive information and do not 

allow for low-level detection. Since, viral shedding of an infected person can be from 1 to 

10,000 pfu, it is important to attain an assay capable of low level MV detection. Surface-

enhanced Raman spectroscopy (SERS) demonstrates a quick, label-free spectroscopic 

method for detection of low levels of molecular samples. In this study, SERS- Ag 

nanorods assays were used with the Partial Least Squares-Discriminant Analysis (PLS-

DA) chemometric method to classify D4, A, and H1 measles genotypes with 100% 

sensitivity and specificity. Additionally, the SERS assay was combined with Partial Least 

Squares (PLS) to accurately (RMSECV=0.024) estimate low molecular concentrations 

(103 -10 pfu/ml) of MV samples with high linearity (R2=0.99). 
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Chapter 1 

Introduction 

1.1 Summary.  

The measles can be deadly to both children and adults, particularly when it leads 

to pneumonia and encephalitis.  The infection is one of the leading causes of death among 

young children even though a safe and cost-effective vaccine is available.  In 2008, there 

approximately 10 million cases and 164,000 measles deaths globally.  More than 95% of 

these deaths occurred in low-income countries with weak health infrastructures and 

inaccessibility to vaccination. Nonetheless, the disease still affects populations in 

developed nations with access to vaccination due to virus importation. Therefore, a need 

for reliable laboratory surveillance of the measles remains an issue especially as disease 

prevalence declines.  

Laboratory surveillance for measles is based on detection of virus-specific 

antibodies and detection of viral proteins or viral RNA.1 Detection of virus-specific 

antibodies such as immunoglobin M (IgM) occurs using serologic methods like 

immunofluorescent antibody (IFA) and enzyme-linked immunosorbent assays (ELISA or 

EIA) by documentation of IgG seroconversion or four-fold rise in IgG EIA titer between 

acute- and convalescent-phase sera, and by isolation of MV or deletion of MV RNA from 

a clinical specimen. Serologic methods, however, are not measles specific, meaning they 
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cannot distinguish between wild-type infections and vaccine-associated cases because 

they merely measure levels of antibodies (IgG or IgM) that can be attributed to a number 

of infections.  Additionally, these tests are not time-efficient, have low sensitivity, poor 

detection limit, and frequently lead to false negatives.2-4   

Sensitive viral detection methods like reverse transcription-polymerase chain 

reaction (RT-PCR) also do not enable the capacity to detect low levels of viral sample 

even though the use of the technique (i.e., for the detection of MV RNA in a variety of 

clinical samples) has served as a valuable, alternative procedure for cases in which 

serologic testing results are inconclusive, inconsistent, or unavailable.1 RT-PCR is a 

technique carried out through the detection of viral RNA via nucleic acid extraction and 

amplification.  Low levels of virus typically found in clinical samples limit the sensitivity 

of this viral antigen detection method.  For example, previously vaccinated individuals 

who experience the reoccurrence of a measles outbreak have decreased amount of viral 

shedding, thereby low levels of RNA cannot be detected by RT-PCR.  In addition to its 

limitations with sensitivity, RT-PCR viral RNA or viral isolation samples are often 

inadequate because of improper collection, storage, and processing and transportation.5 

Sample preparation alone is a lengthy and requires much precision to produce consistent 

and conclusive results.  Likewise, it takes hours to obtain results.  Finding a method that 

increases the reliability and speed of viral detection assays is advantageous in the future 

of measles surveillance and to establish a basis for further studies concerning virus 

discrimination. 

One alternative to existing laboratory surveillance technique is surface-enhanced 

Raman spectroscopy (SERS), a nano-optical method that provides a fast, label free 
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method for the determination of the viral samples.  SERS is an extension of Raman 

spectroscopy, which is a vibrational spectroscopic technique used to provide high 

structural information useful in real-world applications in biochemistry and the life 

sciences.6 SERS differs from Raman scattering in that the incoming laser beam interacts 

with the oscillations of plasmonic electrons in metallic nanostructures to enhance, by 14 

orders of magnitude, the vibrational spectra of molecules adsorbed to the surface.7-9 

SERS is an extremely sensitive method that has been used for virus detection by either 

direct spectroscopic characterization of the intact virus,10 indirect detection of virus 

biomarkers,11 or by the use of reporter molecule assemblies.12 

Over the past few years, SERS has been used as a biomedical-sensing device to 

detect viruses and differentiate between various viral strains with the use of silver 

nanorods as biosensing platforms.  Nano-array surface-enhanced Raman spectroscopic 

substrates, created by an oblique angle deposition (OAD) technique,13 have been recently 

used for the detection and differentiation of closely related respiratory syncytial virus.10  

In these studies by Dluhy et al. SERS substrates have demonstrated extreme sensitivity 

with enhancement factors of greater than 108.14,15 These nano-array surface-enhanced 

Raman spectroscopic substrates, silver nanorod-based SERS (AgNR-SERS) substrates, 

demonstrated the possibility of rapidly (<60 sec) detection of various virus types in 

minute specimen volumes (0.75 ± 0.25 µL) without biochemical manipulation of the 

virus sample.16 The high signal enhancement obtained from the AgNR-SERS substrates, 

as well as the small amount of analyte is need for detection, proves that SERS has the 

potential of being a reliable method for low level virus detection. 
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While the SERS-AgNR substrates provide the sensitivity of the SERS method, 

they do not convey selectivity possibilities of SERS assays.1 The selectivity of the SERS 

technique can be provided by multivariate statistical analysis of the spectral data.17  In 

past studies, it has been shown that the SERS technique can be a qualitative methodology 

when combining the sensitivity and reproducibility of the AgNR-SERS substrates with 

the classification abilities of multivariate analytical tools (i.e. chemometrics). 1,18 In 

addition to being a qualitative methodology, SERS can be used for quantitative 

information about viral strains.  Specifically, combining SERS with chemometrics one 

can relate the relative intensity of spectral data to the change in viral concentration.  This 

cannot be accomplished by directly relating the intensity of one band to the concentration 

in a univariate form.  Thus, it is believed that AgNR-SERS substrates can be used to 

determine the limit of detection of MV strains using partial least squares (PLS), a 

chemometric method, because PLS is suitable for the analysis of complex mixtures since 

it is able to allow fast and simultaneous determination of each component in a mixture 

without time-consuming separations and with minimum sample preparation.    

In this two-part study, SERS measles detection was achieved with minimal 

sample preparation. First, it was demonstrated that the SERS methodology could be used 

as a highly sensitive qualitative technique.  This was expressed by the classification of 

various MV genotypes (viral strains A1, H, and D4) using Ag-SERS substrates, in 

conjunction with multivariate analytical methods (i.e. principle components analysis and 

partial least squares-discriminant analysis; PCA and PLS-DA).  In the second study, 

demonstrated was the possibility of using the SERS methodology as a quantitative tool 

that can provide a relationship between SERS spectral intensity to changes in measles 
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viral concentration for the determination of the limit of detection.  This was shown in 

PLS models, regression curves that relate the relative intensity of SERS spectral data to 

the change in viral concentration.  

1.2 Measles virus 

Background of the measles   

The measles is a very contagious disease known by a prodromal* illness of fever, 

coryza, cough, and conjunctivitis followed by the appearance of a generalized 

maculopapular rash.  It is an infection of the respiratory system caused by the measles 

virus (MV), which is spread by aerosol or respiratory droplets and enters by the 

respiratory route.  An infection has an average incubation period of 14 days and 

infectivity from 2 to 4 days prior, until 2 to 5 days following the onset of the rash.19 The 

onset of the rash coincides with the appearance of the immune response and initiation of 

virus clearance.20 The disease can often lead to pneumonia and encephalitis if not treated.  

The Centers for Disease Control and Prevention deem the disease the deadliest to 

unvaccinated children; the infection is one of the leading causes of death among young 

children throughout the world. Needless to say, availability of the MV vaccine in 

industrialized nations make it less fatal, however, endemic transmission of the disease 

into underdeveloped nations, populations with inadequate medical care, is associated with 

high mortality. Likewise, in industrialized nations, measles outbreaks reoccur due to the 

transmission and mutation of the virus, as well as the re-infection of people with failed 

immunity to the disease.21-24 Measles is a current global concern and attaining the 

                                                        

* up to four days before the rash 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quickest method of detection will aid diagnosis of the disease and contribute to the global 

measles surveillance.18 

Large numbers of people are needed to generate adequate susceptible individuals 

to maintain measles in a population.  It is postulated that the measles evolved in the early 

centers of civilization in the Middle East where populations attained sufficient densities 

to sustain continued transmission25.  Scientists assume that the disease evolved from 

animal morbillivirus mainly because, phylogenetically, MV is most closely related to 

Rinderpest virus (RPV), a pathogen of cattle (Figure 1.1), therefore it is assumed that MV 

evolved in an environment where cattle and humans lived in close proximity25.  Arabian 

physician Abu Becr is credited with distinguishing small pox from the measles in the 9th 

century. Becr referred to the measles as hasbah (eruption) and noted that it causes an 

“anxiety of mind, sick qualms and heaviness of heart, oppress more in the measles than in 

the smallpox”.26  Between 1 and 1200 A.D., numerous epidemics of illnesses 

characterized by a rash were recorded in European and Far Eastern populations.  In the 

8th century, it is recorded that the measles spread across the Pyrenees into France with the 

Saracen invasion.27  Continual epidemics identified as measles were recorded in the 11th 

and 12th centuries, and in 1224 it was considered a childhood disease.25   

Introduction of measles into previously unexposed populations has been 

associated with high morbidity and mortality.27,28  Epidemics of rash illnesses were 

associated with episodes of depopulation in China, India, and the Mediterranean region.  

Introduction of measles into the Fiji Islands in 1875 resulted in 26% morality27.  An 

estimated 56 million people died as a result of European exploration of the New World, 
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mainly due to the introduction into native Amerindian populations of Old World diseases, 

like smallpox and measles25.   

Peter Panum, a Danish physician, deduced the contagious nature of the disease in 

his visit to Faroe Islands in 1846.  In the large-scale measles epidemic, Panum observed 

many attributes of the virus from the 14-day incubation period, the lifelong immunity 

present in older residents, and postulated a respiratory route of transmission.  Within the 

pervious century, complications of the measles were first described.20  In 1790, James 

Lucas, an English surgeon, described the first case of post-measles encephalomyelitis in a 

woman who developed paraparesis as the rash was fading29.  In the nineteenth century, 

measles was associated with the exacerbation of tuberculosis and in 1908 a physician 

recorded the disappearance of delayed-type hypersensitivity skin test responses to 

tuberculin30. In 1933, Subacute sclerosing pan-encephalitis (SSPE) was first described by 

Dawson in a young boy with progressive neurologic deterioration.  Histologic 

examination of the brain showed eosinophilic intranuclear and intracytoplasmic 

inclusions in neurons and glial cells. Reports of paramyxoviruslike particles in the 

inclusions31 were followed rapidly by documentation of elevated MV antibody in serum 

and cerebrospinal fluid and staining of the inclusions with antibody to MV.32   

 In 1954, the measles virus was first grown in tissue culture by Enders and 

Peebles,33 who inoculated primary human kidney cells with the blood of David 

Edmonston, a child with measles.  MV isolates were also prepared from peripheral blood 

leukocytes or respiratory secretions inoculated onto primary monkey kidney cells.33  

Continuous monkey kidney cell lines subsequently replaced primary kidney cell cultures 

for MV isolation.34  Isolation of wild-type strains is most often successful, however, 
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using an Epstein-Barr virus-transformed marmoset B lymphocyte line, B95-835 or vero 

cells engineered to express the MV receptor signaling lymphocyte activation molecule 

(SLAM)36.  Generally, the first observable sign of virus growth is cell-cell fusion and 

syncytial formation.      

When MV is isolated in cell culture, it can be grown in a variety of cells in 

culture.  This method of growth, specifically growing MV in foreign hosts (e.g. chick 

embryo and canine and bovine kidney cells), led to the development of live-attenuated 

vaccine strains.37  Currently, virus stocks are grown in vero cells at a low multiplicity of 

infection to prevent accumulation of defective interfering particles. These tissue culture-

adapted strain lines are most useful for titration of adapted virus by plaque formation.38  

The virus replicates slowly and in 3 to 5 days it typically becomes visible on plaques.  

Longer time periods may be required to reach the endpoint of a titration.   

Molecular epidemiology of measles virus  

MV is an RNA virus in the Morbillivirus genus within the family of 

Paramyxovirdae that causes an infection of the respiratory system.5 Morbilliviruses form 

two genetically distinct groups of viruses related to either canine distemper virus (CDV) 

or RPV (Figure 1.1)39.  Although other members of the genus infect various animal 

species, measles only infects humans and nonhuman primates.5 Morbilliviruses are 

distinct from other paramyxoviruses in formation of intranuclear inclusion bodies.  

Virions are pleomorphic and range in size from 100 to 300 nm.  The genome consists of 

15,894 nucleotides, which code for the six structural proteins (nucleoprotein [N], 

phosphoprotein [P], and matrix [M], fusion [F], hemaggltinin [H], and large protein [L]).5  
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It is a nonsegmented, single—strained, negative-sense genomic material encapsidated by 

a N to form a helical nucleocapsid that reaches a length of 1.2 µm with the P and L 

proteins attached.  This ribonucleoproteic complex is the substrate for both transcription 

and replication.  The RNA-dependent RNA polymerase binds to the nucleocapsid 

template using its co-factor, the P.40 The envelope carries surface projections that are 

composed of the viral transmembrane H and F glycoproteins (Figure 1.2).  The M protein 

lines the interior of the virion envelope.39   

The MV remains an antigenically stable monotypic virus for the mere fact that the 

antisera† from individuals infected decades ago retain the ability to neutralize current 

wild-type strains of MV and vice versa, however with varying efficiencies.41 Variability 

in the N and H genes has been recognized by nucleotide sequence analysis42,43 and 

monoclonal antibody reactivity44-46.  The N proteins of wild-type viruses contain 

antigenic heterogeneity in that N genes differ by up to 7% in the C-terminal NTAIL 

region.44,47  Likewise, the H gene nucleotide sequence varies between residues 167 and 

241, where the five potential N-linked glycosylation sites are located.43  The apparent rate 

of mutation of H in virus circulating in defined geographic locations is low, 

approximately 5 x 10-4 per year for a selected nucleotide,42 whereas the rate of mutation 

during growth in vitro is higher, estimated at 9 x 10-5 per replication for a nucleotide48. 

Wild-type strains separate into eight different clades (A-H) and at least 22 different 

genotypes based on sequencing of the C-terminal 450 nucleotides of the N gene or the 

entire coding region of H.49  Genotypes are classified as distinctive of one another if the 

                                                        
† blood serum containing polyclonal antibodies 
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nucleotide sequence differs from the closest reference sequence by more than 2.5% in N 

or 2.0% in H.50  Some genotypes are found in one geographical region, others are co-

circulating, while other are inactive and may be extinct.  Many laboratories have 

conducted sequence analysis of wild type measles and demonstrated that molecular 

epidemiologic techniques could be used to study the transmission patterns of measles 

virus.51-56 

1.3 Conventional methods of detection. 

To confirm that a patient has measles, clinical diagnosis alone is not adequate, a 

reliable laboratory test is needed to examine serum samples obtained from the patient.57  

A confirmed case must have serologic affirmation or be epidemiologically associated to a 

confirmed measles case.58  It is recommended that a patient’s blood sample be collected 

at the first contact with a suspected case.59  Blood samples should be collected within 30 

days of rash onset for reliable laboratory results.  The sample should be handled 

aseptically and put on ice.  Afterwards, the sample should be centrifuged and the serum 

separated and delivered to an appropriate laboratory for testing.   

In the past, the laboratory diagnosis of MV has been detected with methods like 

Reverse transcription-polymerase chain reaction (RT-PCR), indirect immunofluorescent 

assay (IFA), and enzyme-linked immunosorbent assay (ELISA or EIA).  RT-PCR is a 

method used to amplify one or more copies of a segment of DNA several orders of 

magnitude using specific genome- and antigenome-sense primers, usually separated by 

200 to 400 nucleotides on the genome of interest for diagnostic reasons. This technique 

can be performed in a single tube due to the availability of thermostable DNA 
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polymerases derived from thermophillic bacteria.  The process is done through thermal 

cycling, a series of heating and cooling the DNA.  The cycle begins by heating the DNA 

to high temperature (94ºC) so as to dissociate the DNA duplex, and then cooling to allow 

annealing of the primers (37ºC to 50ºC) and finally heating to the optimum temperature 

(72ºC) for the polymerase to copy new DNA.  The cycles are repeated 25 to 35 times (25 

cycles is said to increase the initial DNA up to 107 times) to produce a DNA product that 

can be visualized by ethidium bromide staining on an agarose gel.  The size of the DNA 

product is defined by the location of the two primers on the virus genome and non-

specific DNA products can sometimes be produced and care is needed when interpreting 

these results.  The genome of all morbilliviruses consists of a single strand of negative 

sense RNA and therefore cannot be amplified directly by PCR but must first be copied 

into DNA by reverse transcription in a two-step reaction, reverse-transcription/ 

polymerase chain reaction (RT-PCR).60 Therefore, RT-PCR is a time consuming step.  

Additionally, the process may be constrained by the need for an adequate amount of input 

nucleic acids for quantitation purposeses.61  

Serologic assays are commonly used to detect virus samples.  The most widely 

used assays are ones that directly measure binding of molecules of antibodies to viral 

antigens.  Examples of these assays include ELISA (or EIA), radioimmunoassay, and the 

indirect immunofluorescent antibody assay (IFA) (Fields Ch 17 pg 582).  Binding assays 

like IFA can be used in many different formats and in one common format, a viral 

antigen—that can consist of virally infected cells, a purified viral preparation, or a 

recombinant viral protein—is attached to a solid surface such as the inner surface of the 

well of a microtiter tray, a plastic bead or a microscope slide in the case of IFA.  Serum is 
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then added to allow for the binding of antiviral antibodies that might be present in the 

serum.  After the incubation period, the serum is removed and the well is washed several 

times.  The next step includes the addition of a second antibody (i.e. detector antibody) 

with specificity for human immunoglobulins.  The second antibody is usually a mouse 

monoclonal or a polyclonal antibody from a nonhuman species.  The antibody is linked to 

an enzyme such as horseradish peroxidase.  The second antibody binds to any human 

antibody present.  The well is then washed again and the presence of a second antibody is 

detected based on a colorimetric or fluorescence signal.  An advantage of binding assays 

is that they can be modified to detect IgM or IgA-specific antiviral antibodies through the 

use of isotype-specific detector antibodies.62  

A serologic method very similar to IFA used commonly in immunology to detect 

the presence of an antibody or antigen in a blood sample is ELISA, also referred to as 

enzyme immunoassay (EIA).  The procedure is carried out by immobilizing a known 

amount of antigen to a solid support then washing a specific antibody over it, to bind the 

two.  The antibody is linked to an enzyme, and in the final step a substance is added that 

the enzyme can convert to some detectable signal. In fluorescence ELISA, when light of 

a certain wavelength is shown on the sample, the antigen/antibody complex will fluoresce 

so that the amount of antigen in the sample can be inferred through the magnitude of 

fluorescence.  A cut-off point maybe is determined by comparing the results by a known 

standard. For example, the cut-off concentration for drug screening in the workplace is 50 

ng/mL, a concentration higher than 50 ng/mL would be considered positive. The most 

controversial aspect of this test is the cut-off point in distinguishing a positive result from 

a negative one. 
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Commercial test kits that detect IgM class antibodies are commonly used and 

validated by the Global Measles Laboratory Network to be sensitive and specific.63-65  

Laboratory results can be obtained hours after sample collection, however, IgM titers 

become negative as time passes thereby producing more false-positive results.66  In fact, 

ELISA is a more sensitive method than IFA and has the sensitivity of only 50% for the 

first few weeks of infection.67 In previously vaccinated persons who become infected, the 

timing of the IgM response may be altered or the response is absent or undetectable.68  

When these tests fail several other laboratory tools can be used to validate the results.  

They include an IgM antibody-capture immunoassay, the measurement of IgM anti-

measles antibody levels in blood samples obtained from an individual at the onset of 

disease and at least 14 days after onset, and molecular techniques.  An IgM-positive 

result can occur for at least 6 weeks following vaccination, and seldomly IgM can be 

detected 2 months or more after vaccination.  A person with a rash 2 weeks after 

vaccination may really have the measles or might be having a reaction to some other 

disease or allergen.  In this case, the presence of IgM in the serum will not be helpful 

since one cannot distinguish between IgM response from vaccination and wild measles 

infection.  

Although many methods exist for the serological detection of the MV, this 

process can be long and costly.  Similar to IFA and ELISA, RT-PCR has the limitation of 

not being a low-limit detection method for viral detection.  This is an issue for those who 

have low levels of MV RNA shedding due to failed immunity or a reoccurrence of the 

virus.  In conclusion, a more dependable, inexpensive, and time efficient method of low-

level MV detection is desired.    
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1.4 Raman Spectroscopy. 

Raman spectroscopy is an analytical tool, used in chemistry and biology, which 

was discovered by C.V. Raman in 1928. Classical Raman spectroscopy is described as a 

vibrational spectroscopic technique produced by inelastic scattering.   It occurs when the 

monochromatic radiation of energy, via a photon, that strikes a molecule is not 

conserved.  In contrast, elastic scattering occurs when the radiation of energy that strikes 

a molecule is mostly scattered (>99.9%) at the same energy (i.e. Rayleigh scattering).  In 

the case of inelastic scattering it is much weaker than elastic scattering, therefore Raman 

scattering is weaker than Rayleigh scattering.   

In Rayleigh scattering, a photon strikes the molecule with excitation energy at 

€ 

˜ ν 0  

frequency. The molecule re-emits the light with energy at the same 

€ 

˜ ν 0  frequency. In 

Raman scattering, however, the energy of light is re-emitted at a frequency greater or less 

than the initial frequency of the molecule (

€ 

˜ ν 0 ± ˜ ν v).  When the re-emitted energy is less 

than the initial energy the scattering is known as Stokes Raman scattering.  It specifically 

occurs when the molecule absorbs energy from the photon and the transition of energy 

occurs from the ground state to the excited state. Thus, for absorbed energy at 

€ 

˜ ν v  

frequency, light is scattered at a frequency of 

€ 

˜ ν 0 − ˜ ν v .  In contrast, in anti-Stokes Raman 

scattering, molecules in the excited state are radiated and transition from the excited state 

to the ground state.  Therefore, the energy of the re-emitted light is at a higher frequency 

than the initial energy, 

€ 

˜ ν 0 + ˜ ν v .  Raman vibrational bands are defined by the wavenumber 

shifts from the excitation energy .  Since more molecules populate the ground state at 
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ambient temperature, Stokes scattering is more common than anti-Stokes scattering for 

Raman.  

In the Raman spectrum, the high structural information about various samples can 

be determined from the relative intensity of the Raman band and frequency.  Since 

Raman scattering is weak, the reduction of stray light contributed by Rayleigh scattering 

is essential. This is because elastic scattering is 104 to 106 times stronger than Raman 

scattering, Rayleigh scattering can overwhelm the Raman signal.  Rayleigh scattering 

occurs in each spectroscopic measurement since approximately 99.9% of the incident 

light scatters to produce elastic scattering.  Spectrometer filters are used to eliminate the 

band attributed to Rayleigh scattering, therefore allowing weak Raman bands to appear 

with higher signal-to-noise in the spectrum.69,70 After Rayleigh rejection, the detector 

measures the filtered Raman signal and structural information about one’s sample is 

obtained. 

One of the most commonly used detectors used in Raman spectroscopy is the 

charge-coupled device (CCD) detector.   The CCD is a type of multichannel detector 

capable of simultaneous detection of dispersed radiation in the focal plane.71 

Conventional CCD detectors are two-dimensional solid-state sensors in integrated-circuit 

form that contain as many as 106 pixels on a single silicon chip.  A pixel of the detector 

consists of a thin conducting electrode and p-type silicon body surrounded by an 

insulating oxide. Upon detection, charges are collected and then stored in the metal-oxide 

semiconductor (MOS) electrodes.  Following the generation of electron-hole pairs, about 

105 to 106 electrons are stored in each pixel, also known as a “potential” well.  The 

charge is moved from pixel to pixel to generate integrated and amplified signals. The 
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charge accumulation varies directly with the incident intensity and integration time. 71 

One disadvantage of CCD detectors is the “blooming” effect, one that occurs when 

charges from over-illuminated pixels are spread to adjacent pixels.  This effect occurs 

when the CCD is exposed to strong radiation, which limits the dynamic range at the 

upper end of the detector. Therefore, CCD detectors are more useful for weak sources of 

monochromatic light like Raman scattering. In addition, the CCD provides high quantum 

efficiency for light in the UV to near-IR range. The high sensitivity of the detector is 

useful in Raman spectroscopy and the use of CCD detectors greatly enhances the signal-

to-noise ratio of bands in Raman spectra. Other advantages of CCD include low read 

noise, low dark current, and readout flexibility.72 

The spectral image of the signal detected at the CCD detector depends on the type 

of Raman imaging selected.  There are three types of Raman imaging: single point 

microscopy, line imaging, and global illumination. In single point imaging, the Raman 

spectrum is acquired for one point at a time. Moving the sample stage allows one to 

perform point-by-point data collection of a sample.  Single point imaging acquires 

spatially resolved spectra in a sequential manner. In line imaging, the laser is focused so 

that spectral data is collected along a line focused on the sample. The product is a 2-

dimensional representation of the intensity versus the Raman shifts along the imaged line. 

The simultaneous measurement in line imaging generates a spatially resolved spectra 

along the focused line. In global illumination, the laser is defocused to generate an 

eclipse-like illumination on the sample. Thus, the illumination covers a larger area on the 

sample, and a spatially resolved spectra is obtained for the area. The scattered radiation is 

detected at the specific Raman shift wavelengths. If the detected shifts are characteristic 
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of the sample components, then the 2D image reflects the chemical composition. In 

global illumination, the laser is defocused to illuminate a larger area on the sample. This 

method expands the full view of the microscope.  

Line-focused lasers make line imagining possible.  In this imaging mode, a laser 

beam is scanned onto the image plane by a scanning mirror. The microscope objective 

then focuses the laser beam onto the sample in the shape of a line with an adjustable 

length. The light is scattered back into the same microscope objective and is focused 

along the entrance slit of the spectrograph. The CCD detector at the spectrometer 

simultaneously collects the spatial and spectral data. A process called binning sums the 

signal of all the pixels in the same column to increase the signal-to-noise (S/N). In 

conventional Raman spectroscopy, the x-axis of the CCD represents the wavelength, and 

the y-axis reflects the intensity. The spatial resolution is dependent on the laser spot size 

and the collection optics. These two factors, in turn, are limited by diffraction. The 

Gaussian laser beam diameter, dl, is directly related to the focal length, f, of the lens and 

inversely related to the effective diameter of the lens, D. The relationship is shown 

below.73  

€ 

dl =1.27λ f
D
 

 
 

 

 
     (1-1) 

where 

€ 

f
D is also equal to 

€ 

f
2NA, 

€ 

dl , is inversely related to the numerical aperture (NA) 

of the microscope objective.  For microscopes, a larger NA value corresponds to a higher 

resolving power and a higher magnification.73 
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dl =1.27λ f
2NA
 

 
 

 

 
    (1-2) 

In global imaging, the monochromatic radiation from the sample area scanned is 

scattered back into the microscope objective then filtered by, first, a Rayleigh band 

rejection filter and then a wavelength selector. The band filter rejects the scattered light 

produced from Rayleigh scattering.  Afterwards, the filtered light goes through a 

wavelength selector and undergoes step scanning for a range of Raman shifts.  A CCD 

image is then produced at each Raman shift.  Raman global illumination imaging collects 

the spatial data along the sample at the selected Raman shift for both the x- and the y- 

axes. Thus, the result is a so-called data cube of the spectral intensity versus the three 

dimensional position and the Raman shift wavenumbers.74 

The main advantage of the three Raman imaging techniques is the reduction in 

data collection time for a particular pixel dimension. The data collection time is shortest 

in Raman global imaging, however the spatial resolution received with line imaging is 

much improved because of the simultaneous detection available in line scan.  Therefore, 

the user determines which imaging technique to choose based on whether better 

resolution or collection time is preferred.   

In general, Raman scattering is very weak (~10-5 of the incident beam) and the 

low sensitivity obtained with Raman spectroscopy makes the technique inadequate of 

analyzing nanoparticles.  Raman spectroscopy, while providing spatial resolution and 

resistance from water, unlike Fourier transform infrared spectroscopy, is very limited by 

low scattering cross sections that translate to weak signals for detection. The differential 

Raman cross sections (dσ/dΩ)NRS are less than 10-29 cm2sr-1.75 Generally, the cross-
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sections are more than 10 orders of magnitude lower than that of infrared absorption and 

12-14 orders below fluorescence cross sections.  Therefore, the signal-to-noise (S/N) 

ratio of the surface Raman signal expected for one monolayer of absorbates is lower than 

the detection limit of a typical Raman spectrometer. Thus, low levels of detection cannot 

be achieved with normal Raman spectroscopy.76,77 However, for the past two decades, 

Raman techniques have been improving in many fields particularly due to an increase in 

enhancement for molecules adsorbed on special metallic surfaces.76 The development of 

an improved Raman spectroscopic technique called surface-enhanced Raman 

spectroscopy (SERS) allows for one to attain a Raman measurement with greater signal 

enhancement. In the following section, made will be introduction of the SERS method, as 

well as a brief discussion of the theories that explain its existence (i.e., classical and 

quantum mechanical theories). Following, the instrumentation of the method will 

generally be described.  

1.5 Surface-enhanced Raman Spectroscopy 

In 1974, Fleischman et al. reported the Raman spectrum of a monolayer of 

pyridine adsorbed on a silver electrode surface77; it was at this period that SERS was 

discovered.  In 1977, the enhancement of Raman scattering of adsorbed species (~105 to 

106 times stronger than the nonadsorbed species) was also observed by Jeanmaire and 

Van Duyne and Albrecht and Creighton, a technique called surface-enhanced Raman 

spectroscopy (SERS). Attainable with SERS are the nature of adsorbed molecules on 

specialized metal surfaces (e.g. silver nanorods, gold colloids) and the frequencies of 

bands associated with these molecules. Likewise, using this method attainable is 

information about the strength of the absorbate-surface interactions and the conformation 
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of the adsorbed molecules.77 Many molecules adsorbed on SERS substrates (‘rough’ 

metal surfaces) exhibit Raman cross-sections several orders of magnitude greater than the 

corresponding quantity for an isolated molecule or from solution, this effect can be 

explained using two theories, classical or quantum mechanics.78   

Surface enhanced Raman spectroscopy (SERS) is emerging as an important tool 

for numerous bioanalytical applications from identification of pathogenic organisms to 

the classification of microorganisms.10,16,79,80  It stems from Raman spectroscopy, 

providing one with the ability to carryout whole-organism fingerprinting with high spatial 

resolution without the limitation of low signals for detection experienced with classical 

Raman spectroscopy.81  The signal amplification results from the an electromagnetic field 

enhancement experienced by the molecules in close proximity to the roughened metallic 

surface of the SERS substrate.  When an electromagnetic wave hits the molecule the 

radiation perturbs the electron cloud surrounding the molecule creating a separation of 

charge within the molecule (i.e., induced dipole moment).  The oscillating dipole moment 

acts like a source of electromagnetic radiation causing an intensified scattering of light.  

As been studied in the literature, there are two effects that explain the SERS 

mechanism and estimate the power of the SERS signal. The electromagnetic 

enhancement theory was one proposed by David L. Jeanmaire and Richard P. Van Duyne 

in 1977.  The theory is a result of excitation of surface plasmons on the surface of the 

substrate.14 The other possible mechanism of the SERS effect is called the chemical 

enhancement mechanism (CE), which was also proposed in 1977 by M. Grant Albrecht 

and J. Alan Creighton.  The CE mechanism explains that the SERS effect can be 

described by the formation of a bond, a charge-transfer (C-T) or bond formation of the 
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metal and absorbate.  The attraction is not a stable chemical bond and is much weaker 

than covalent forces.  It is a weak electron resonance and therefore the excitation energy 

of this resonance occurs very frequently in the visible region.  The highest occupied 

molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) transition 

for the molecules requires more energy compared to the infrared and visible light 

involved in Raman experiments. A specific interaction of an absorbate with a 

nanoparticle’s surface leads to a charge transfer from the absorbate into the empty level 

on the metal surface or from the occupied surface levels to the absorbate.82-85 The bond 

formation can increase the molecular polarizability between the two, thereby the stronger 

the C-T bond the stronger the SERS spectrum. Since this theory relies on a formation of a 

bond between the absorbate and the surface, it therefore cannot explain the observed 

signal enhancement in all cases.  For molecules without a lone pair of electrons in which 

the molecules can bond to the surface, a different mechanism exists that involves surface 

plasmons.  The electromagnetic enhancement (EM) theory is one that can apply to even 

in cases where the specimen is only physisorbed to the SERS surface and thereby it is 

possible that the chemical mechanism most likely occurs in concert with the EM 

mechanism.86    

In 1977, Van Duyne and Jeanmaire proposed the EM mechanism as an alternative 

explanation of the SERS effect. This enhancement occurs when an excitation source hits 

a metal surface causing the local electromagnetic field at the metal surface to slightly 

changed from that of the incident field, especially so when fine metal particles or 

roughened metal surfaces are involved. The light excitation at the surface of these metals 

excites conduction electrons and generates a surface plasma resonance (SPR). SPR 



 22 

occurs because the electrons that are in motion create a strong EM field that form 

plasmons. Since plasmons have a natural, resonant frequency at which they oscillate best, 

if incoming light excites these plasmons into their resonant mode then we get an increase 

in the local EM field surrounding the metal. The applied field causes the roughness 

feature of the metal to be polarized and the electromagnetic field in the interior of the 

absorbate to increase greatly. Electromagnetic enhancement can also come from an 

enhancement factor of the polarizability in the following relationship 

µ=αE  (1-3) 

where α is the molecular polarizability, E is the electric field and µ is the induced electric 

dipole moment (polarity).  This is plausible because the intensity of Raman scattering is 

proportional to the square of the induced dipole moment and any enhancement of the 

dipole moment must be due to the enhancement of the α (molecular polarizability) or E 

(the electric field due to the incident radiation). Since the EM enhancement mechanism 

requires coupling of the incident radiation to the metal surface, scientists devote much 

theoretical and experimental effort to understanding surface plasmons that are created by 

the process.87-90   

SPR is a collective excitation mode of the plasma localized near the surface of the 

metal. Plasmons can be produced electrons on corrugated surfaces of nanoparticles and 

explained by localized surface plasmon resonance (LSPR) spectroscopy of metallic 

nanoparticles. 7 LSPR is responsible for the electromagnetic-field enhancement that leads 

to SERS and other surface-enhanced spectroscopic processes.  Researchers of this 

mechanism study the role of size, shape, material and local dielectric properties of metal 
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surfaces impacted by LSPR.91-96  These studies generally provide a fundamental 

understanding of how surface plasmons are influenced by local structure and 

environment, they also suggest the usefulness of plasmons as a sensing modality. For the 

theory behind LSPR, we will should consider a spherical nanoparticle of radius a that is 

irradiated by z-polarized light of wavelength λ (where a is much smaller than the 

wavelength of light λ). The electric field appears static around the nanoparticle (Figure 

1.3) allowing us to find the EM field distribution surrounding the nanoparticle by solving 

Maxwell’s equations using a quasi-static approximation.97,98   The resulting solution for 

the EM field outside the particle is given by   
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Eout (x, y,z) = E0 ˆ z − εin −εout

(εin − 2εout )
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 
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r
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 
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 

  
.  (1-4) 

where εout is the dielectric constant of the external environment and εin is the dielectric 

constant of the metal nanoparticle.  Since εin strongly depends on the wavelength, this 

first term determines the dielectric resonance condition for the particle.  When εin is close 

to or equal to -2εout, the EM field is enhanced relative to the incident field.  In regards to 

silver as the metal nanoparticle, this condition is met in the visible region of the 

spectrum, which has important implications for SERS. Consistent with experimental 

results, the size (a) and external dielectric constant (εout) also impact the EM field outside 

the particle.    

 The extinction spectrum of the metal nanoparticle can be calculated  
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3 / 2

λ ln(10)
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where εr and εi are the real and imaginary variables of the metal dielectric function, 

respectively.  Important in this equation, is χ.  This factor has a parallel relationship to 

the aspect factor and can have a value of 2 for the case of a sphere, and take on a value as 

high as 20 to account for particles with geometries with high aspect ratios.99  This 

variable, however, can only be solved analytically for spheres and spheroids, and 

therefore must be approximated for all other geometries.98,99  In this case the 

approximations can be solved using two methods, the discrete-dipole approximation 

method, modeled in the frequency domain, and the finite-difference time-domain method, 

evaluated in the time domain.100-105 

 In addition to modeling the extinction of particles, several equations illustrate how 

the LSPR are used for both sensing and spectroscopic experiments.  For example, the 

LSPR extinction (or scattering) wavelength maximum, λmax, is sensitive to the dielectric 

constant, as well as the refractive index n (since ε and n are related by ε=n2).  Therefore, 

changes in the presence of an adsorbed species, should cause a shirt in λmax.  This can be 

explained by the following relationship: 106,107 

€ 

Δλmax = mΔn 1− exp −2d
ld( )[ ].  (1-6) 

In the equation above, m is the bulk refractive-index response of the nanoparticle(s); Δn 

is the change in refractive index induced by the adsorbate; d is the effective adsorbate 

layer thickness; and ld is the characteristic EM-field-decay length (approximated as an 

exponential decay).  As experiments have proven, when the thickness of the adsorbate 

increases, the intensity of the nanoparticle will shift to shorter wavelengths (i.e. higher 



 25 

energy levels).108  We can describe the enhancement factor for SERS using the following 

formula:  

€ 

EFSERS (ωυ ) =
Eout (ω)

2 Eout (ω −ωυ )
2

E0
4 =

I SERS (ω )
Nsurf[ ]

I NRS (ω )
Nvol[ ]

.  (1-7) 

The equation demonstrates how the Raman enhancement effect is influenced by the 

incident excitation, Eout (ω), and the resulting Stokes’ shifted Raman, Eout (ω-ωυ), EM 

fields.  The experimental enhancement factor can be obtained using the right-hand side of 

the above equation—i.e., the SERS-enhanced Raman intensity, ISERS(ωυ)—normalized by 

the number of the molecules bound to the enhancing metallic substrate, Nsurf, divided by 

the normal Roman intensity, INRS(ωυ), normalized by the number of molecules in the 

excitation volume, Nvol.  This equation is important because it exemplifies the enhancing 

ability of substrates of various material, geometry, and LSPR wavelength.   

Due to the enhancement factor contributed by both the electromagnetic field and 

the chemical adsorption, SERS has the capability of detecting on the single molecule 

level.77  Unlike other detection methods, SERS  does not require amplification steps, 

which is a quality that makes it an advanced biomedical sensing technique that can be 

rapidly applied to the detection of a variety of pathogens, especially viruses.109-116  The 

potential of SERS as a sensitive detection technique for high levels of molecular 

specificity has be recognized for years.117  

1.6 Oblique angle deposition of silver nanorods 

Fabrication methods that result in highly ordered arrays of high aspect ratio 

nanostructures with control over surface morphology are highly desirable.  High aspect 
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ratio Ag and Au SERS nanostructured substrates like nanorods and nanowires have been 

produced in the past using chemical and electrochemical methods like seeding 

growth,118,119 electrochemical etching, and electroplating.120-122  However, the data 

produced by these SERS active substrates are challenging to interpret because of 

contributions from plasmon coupling from aggregates or underlying films.  Of recent 

interest has been the method of substrate preparation called nanosphere lithography, 

developed by Van Duyne et al. to fabricate increasingly complex periodic particle arrays 

comprised of Ag nanoparticles.123  With this method the following optical properties of 

SERS active substrates were controllable: size, shape, inter particle spacing, 

nanoparticle—substrate interaction, etc.  Similar optical properties can be investigated in 

the fabrication of nanoparticle arrays by DeJesus et al. using the method of electron-beam 

lithography (EBL) to produce substrates that demonstrate the strong dependence of 

particle size and array density on SERS performance.      

Nonetheless, fabrication methods that result in highly ordered arrays with control 

over surface morphology are highly desirable.  EBL has been used to produce SERS 

active nanorod arrays of varying aspect ratios by controlling the spacing between the 

nanoparticles.124  However, this method suffers from many disadvantages like elaborate 

preparation protocols, issues of stability and aggregation, in the case of the chemical and 

electrolytic methods, while lithography is an expensive process that requires highly 

skilled operators and accessible instrumentation.     

Oblique angle deposition (OAD) is a method that gets away from the 

disadvantages of the previously mentioned methods by producing SERS active substrates 

using a physical vapor deposition technique.  This method involves positioning of a solid 
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substrate at a specific angle such that the vapor from the source is incident on the 

substrate close to the grazing angle (Figure 1.5).48,125  Depositing metals at an angle 

results in the preferential growth of nanorods on the substrate in the direction of 

deposition.14  This surface morphology occurs because of a shadowing effect where the 

initial metal nucleation sites are the places of growth of the nanostructues aligned in a 

specific direction.126  The major advantages of this technique include the following: 

computer-enabled control over size, shape, and density of the nanostrctures all factors of 

temperature, deposition angle, and duration and rate of the deposition; the capability of 

using multiple metals during a deposition if a multiple pocketed crucible is available and 

if the metal can be evaporated; any standard thermal or electron beam evaporation system 

equipped with a holder capable of rotation in the polar direction can be utilized.127  Ag 

nanorod substrates prepared by the OAD method (Figure 1.4) have been shown to 

provide SERS enhancement factor of ~ 108.14  

Along with the sensitivity enhancement factor provided by SERS-AgNR 

substrates, another advantage of producing these substrates via the OAD method is that  

there is the possibility of rapidly (<60 sec) detection of various virus types in minute 

specimen volumes (0.75 ± 0.25 µL) without biochemical manipulation of the virus 

sample.16  The high signal enhancement obtained from the AgNR-SERS substrates, as 

well as the small amount of analyte is need for detection, proves that SERS has the 

potential of being a reliable method for low level virus detection. With the high sensitive 

provided by the SERS-AgNR substrates, the selectivity possibilities of SERS assays1 can 

be expressed with combing SERS with chemometrics.  
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1.7 Chemometrics.  

Although, silver nanorod substrates provide a high level of sensitivity, they do not 

convey selectivity possibilities of SERS assays.1  The selectivity of the SERS technique 

can be provided by multivariate statistical analysis of the spectral data.17  Currently, 

chemometrics serves as this method of classification especially for the exploitation of 

data compression or reduction methods.128 Chemometrics is a statistical method used in 

chemical data analysis.  Statistical methodology has been suitable for applications in 

chemical problems for many years.  Specifically, experimental design techniques have 

had a strong impact on understanding and improving industrial chemical processes.129 

Effective analytical techniques like spectroscopic methods allow one to obtain high 

dimensional data sets from which we may obtain valuable information using multivariate 

analyses.130,131 

Quantitative chemometric strategies are suitable for analysis of complex mixtures 

because they allow fast and simultaneous determination of each component in a mixture 

without time-consuming separations and with minimum sample preparation.132 Among 

these methods, PLS is a factorial multivariate calibration method that decomposes 

spectral data into loadings and scores, building the corresponding calibration methods 

from these new variables. 133,134 An alternative method of extracting relevant components 

for classification based on the PLS principle is of maximizing covariance using PLS-

DA.135,136 The fundamentals of PLS-DA consist in the application of a PLS regression 

model on variables which are indicators of the groups.136  PLS-DA is mainly used to 

classify observations from the results of PLS regression on indicator variables. Both PLS 

and PLS-DA offer high selectivity of SERS data,1 thus coupling these techniques with the 
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sensitivity and reproducibility of the SERS substrates provides one with close to optimal 

conditions for low level measles detection.  In fact, in this section chemometric strategies 

will be introduced with the purpose of showing how PLS is the best method for 

determining the limit of detection of the measles vaccine strain (Edmonston).  In 

following chapters, we will assign the actual measured spectra to categories in a training 

set using PLS and PLS-DA, however in the following section the methods of PLS and 

PLS-DA will be explained through the evolution of a few pre-existing chemometric 

techniques like MLR, HCA and PCA. 

Classification is the technique of arranging samples into a group with similar 

characteristics.  Most of the time, data sets contain samples that belong to several 

different groups or “classes.”  Classes can differ for many different reasons including 

variations in sample preparation and chemical composition (i.e aromatic, carbonyl, ester, 

etc.), or variations in process state.  Many methods exist that help one to classify samples 

based on these measured responses.  Methods that attempt to cluster data into groups or 

classes without using pre-established class memberships are called unsupervised pattern 

recognition (UPR), or cluster analysis. Classifying data in distinguishable groups 

(clusters) can be done in an unsupervised way, given that no information is known about 

the classes initially, using techniques like principal component analysis (PCA) and 

hierarchical cluster analysis (HCA). Clustering techniques are based on the assumption 

that samples that are close together in the measurement space are similar and therefore 

belong to the same class.137  In this case the distance between samples can be expressed 

by simple Euclidean distance where dij between samples xi and xj is defined as 



 30 

€ 

dij = (xi − x j )(xi − x j )
T  (1-9) 

which is just the square root of the sum of squared differences of the samples.  Distance 

can be illustrated based on PCA scores instead of raw data; in doing so the data is noise-

filtered therefore eliminating the deviations between samples contributed by instrumental 

noise. In this case, the normalized (by unit variance) distance, dij, between samples xi and 

xj with scores ti and tj is given by 

  

€ 

dij = (ti − t j )λ
−1(ti − t j )

T  (1-10) 

in this case the principle component scores are normalized and the distance is weighted 

by the inverse of the eigenvalues, 

€ 

λ .  The distance defined in equation 1-10 is one type 

of Mahalanobis distance, a distance that accounts for data sets having varying distances 

in their variation.  Therefore, distance in some directions is weighted more than distance 

in other directions, as seen in Figure 1.6.  Figure 1.6 illustrates a data set (stars) with lines 

representing contant Euclidean and Mahalanobis distances from the centroid.  If the oval 

surrounding the stars represented a class then the data point shown as the sun would be 

outside the Mahalanobis line but inside the Euclidean distance line.   

 In cluster analysis, each sample is clustered based on principle components (PCs), 

orthogonal basis vectors that are used to model statistically significant variations in the 

dataset.  This can best be described by the method of PCA (Figure 1.7).  PCA builds 

linear multivariate models using PCs where each spectrum is assigned a score for each 

PC.  Each spectrum can be plotted as a single point in a 2D PCA scores plot to reveal 
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clustering of similar spectra.  PCs reduce the dimensionality of the sample matrix prior to 

clustering.   

 PCA is a chemometric tool used for data compression and information extraction.  

PCA finds groupings of variables, or factors, that illustrate major trends in a data matrix.  

If X is a data matrix with m row and n columns, and with each variable being a column 

and each sample a row, PCA decomposes X as the sum of r 

€ 

ti  and 

€ 

pi , where r is the rank 

of the matrix X:137 

€ 

X = t1p
T1 + t2p

T2 + ...+ tk p
Tk + ...+ tr p

Tr   (1-11) 

where rank is a number expressing the true underlying dimensionality of a matrix and the 

pi factors are the loadings and the ti the scores and the superscripted Ti symbolizes that the 

variable has been transposed‡;137 or the expression can be expressed as the equivalent 

€ 

X = TPT1  (

€ 

PT1  is made up of the 

€ 

pT  as rows and T of the t as columns).134  In the above 

equation, the data matrix is written as outer products of the loadings and scores vectors.  

Loadings contain information about the relationship of a set of variables while the scores 

contain information about how the samples relate to each other.  Normally the model is 

truncated after k components and the remaining small variance factors are consolidated 

into a residual matrix E:137 
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X = t1p
T1 + t2p

T2 + ...+ tk p
Tk + E   (1-12) 

                                                        

‡ a dataset will switch columns and rows to get pure spectra rather than pure 
variables. 
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Equation 1-11 can also be expressed as the matrix X of rank r as a sum of r matrices of 

rank 1:134 

€ 

X = M1 + M2 + M3 + ...+ Mr  (1-13) 

Here r must be less than or equal to the smaller dimension of X, i.e., 

€ 

r ≤min{m,n} .  To 

illustrate what the ti and 

€ 

pi
T  mean, an example for the two variables, in the two-

dimensional plane, is given in Figure 1.8.  For the illustrate of the two variables, Figure 

1.8A shows how the principle component is the line of best fit for the data points that are 

shown in Figure 1.8B.  Best fit meaning that the sum of squares of x1 and x2 residuals is 

minimized.  This line is also the average of both regression lines.  It goes from negative 

to positive infinity.  The 

€ 

pi
T  is a 1x2 row vector. Its elements, 

€ 

p1 and 

€ 

p2 are the direction 

cosines, or the projections of a unit vector along the principle component on the axes of 

the plot.   The scores vector, 

€ 

ti , is a 

€ 

nx1 column vector.  Its elements are the coordinates 

of the respective points on the principle component line (Figure 1.8B).134  It is ideal to 

have an operator that places the columns of X onto a single dimension and an operator 

that projects the rows of X onto a single dimension (Figure 1.9).  In this representation, 

each column of X is denoted by a scalar.  Each row is represented by a scalar.   

PCA relies on eigenvector decomposition of the covariance or correlation matrix 

of the process variables.  For a data matrix X with m rows and n columns, the covariance 

matrix of X is expressed as 

€ 

cov(X) =
XT x
m −1

  (1-14) 
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provided that the columns of X have been “mean-centered” (i.e., the data has been shifted 

to the center of the data population see Figure 1.10) by subtracting off the original mean 

of each column.  If the columns have been “auto-scaled” (i.e., adjusted to zero mean and 

unit variance by dividing each column by its standard deviation), Equation 1-12 gives the 

correlation matrix of X.  In the PCA decomposition, the 

€ 

pi  vectors are eigenvectors of 

the covariance matrix; that is, for each 

€ 

pi  

€ 

cov(X)pi = λi pi   (1-15) 

where 

€ 

λi  is the eigenvalue associated with the eigenvector 

€ 

pi .  The 

€ 

ti  form an orthogonal 

set (

€ 

ti
T t j = 0  for 

€ 

i ≠ j), while the pi are orthonormal (

€ 

pi
T p j = 0  for 

€ 

i ≠ j , 

€ 

pi
T p j =1 for 

€ 

i = j).  Note that for X and any 

€ 

ti , 

€ 

pi  pair,  

€ 

Xpi = ti  (1-16) 

that is, the score vector 

€ 

ti  is the linear combination of the original X variables defined by 

€ 

pi .  To receive a more detailed description of the variables 

€ 

ti , 

€ 

pi  please visit Adams 

2004 and Wise 2006 137,138. 

 PCA is shown graphically in a three-dimensional model in Figure 1.11, where the 

values of three variables are measured on a collection of samples.  It is explicit that the all 

points (i.e. samples) lie in the plane and can be encased by an ellipse.  The points vary 

more along the axis of the ellipse than in the other direction.  The first PC describes the 

direction of the greatest variation in the dataset, which is the major axis of the ellipse.  

The second PC represents the second largest variation, which is the minor axis of the 

ellipse.  A PCA model with two principle components adequately describes all the 
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variation in the measurements. Similar to PCA, the method of Hierarchical Clustering 

Analysis (HCA) uses PCs to illustrate the variation between classes.  In this technique, 

the samples with the smallest distance are found and linked together using a dendogram. 

 In HCA, the samples with the closest chemical make-up cluster near one another 

and therefore the smallest distance occurs within these samples, which are linked 

together.  The procedure is repeated for all samples and the results are displayed as a 

connection dendogram (Figure 1.12).  For example, in a data set containing the points 1 

through 7 (left image in Figure 1.12) point 4 is related most to point 5.  In the dendogram 

this can be illustrated by the vertical line that connects the 4 to the 5.  Point 6 is the 

nearest neighbor to the points 4 and 5.  Therefore, on the dendogram point 6 is connected 

to the 4th and 5th points.  The biggest limitation of PCA and HCA is that that they are 

two-dimensional techniques that cannot classify data that has a greater within-class 

variance than between-class variance.  Therefore, multi-dimensional multivariate 

chemometric methods are better for more complex data sets.  

Supervised pattern recognition techniques, methods that use pre-established class 

membership, are multivariate tools that are better suited to study complex data sets.  

Complex data sets like spectroscopic data have provided the means of attaining better 

estimates of chemical compositions.  These measurements are indirect and rely on the 

ability to develop a model that relates the dataset of measured variables to the chemical 

composition of the system (or an unmeasured property of interest).  One way of 

analyzing this type of data is through the development of regression models produced by 

multivariate regression tools like multiple linear regression (MLR).   
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MLR is a tool that is useful when one wants to know the relationship between a 

single outcome variable to two or more explanatory variables simultaneously.  For 

example, MLR can be used to study the effects of explanatory variables (sometimes 

called independent variables), x1, x2,…, xk, on a response variable y.  If we take a sample 

of n paintballs, and measure the value of each of the variables on every paintball. The 

MLR equation that estimates the relationships in the sample population is given by 

€ 

Y = a + b1x1 + b2x2 + ...+ bkxk  (1-17) 

The goal of MLR is to create a linear, first-order relationship between the m variables 

€ 

x j ( j =1−m)  and for a variable y.  Mathematically this can be expressed as follows 

€ 

y = b1x1 + b2x2 + b3x3 + ...bmxm + e  (1-18) 

In the equation above, the xj are the independent variables and y is the dependent 

variable, the bj variables are sensitivities, and e is the error or residual.  From MLR, the 

method of Principal Component Regression (PCR) was created—a regression analysis 

that uses PCA when estimating regression coefficients—which led to the invention of 

Partial Least Squares (PLS), a statistical method similar to PCR that finds a linear 

regression model by projecting the predicted variable and the measured variable in new 

space instead of finding hyperplanes of maximum variance between the response and 

independent variables.139 

Today PLS is a good alternative to MLR and PCR methods because it is more 

robust.  Robust meaning the model parameters do not change a lot when new calibration 

samples are withheld from the total samples.134 A PLS model consists of two 
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components: a structural part that reflects the relationships between the latent variables 

and a measurement component (one that illustrates how the latent variables and their 

indicators—items, manifest variables, or observed measures—are related), and the weight 

relations that are used to estimate case values for the latent variables.140  The first 

component of the PLS model, the unobservable variables, are estimated as exact linear 

combinations of their empirical indicators141  PLS treats these estimated proxies as 

perfect substitutes for the latent variables. 142  The second component of PLS, the weights 

used to estimate case values, are estimated so that the resulting case values capture most 

of the variance of the independent variables that is useful for predicting the dependent 

variable.143  This is based on the assumption that all measured variance of the variables in 

the model is useful variance that should be explained.144  Using this weight component, it 

is possible to determine a value for each unobservable variable by calculating a weighted 

average of its indicators.  This results in a model in which all unobservable variables are 

approximated by a set of case values that can be estimated by a set of simple ordinary 

least squares regressions.  To summarize these ideas, first, the weight relations, which 

link the indicators (i.e. observable measures) to their respective unobservable variables, 

are estimated.  Second, case values for each unobservable variable are calculated based 

on a weighted average of its indicators, using the weight relations as an input.  Finally, 

these case values are used in a set of regression equations to determine the parameters for 

the structural relations.141 

From the explanation of the PLS model, it is apparent that the most important 

part of a PLS analysis is the estimation of the weight relations.  It would be easy to 

assume equal weights for all indicators, however this approach has two disadvantages: 
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First, there is no theoretical rationale for all indicators to have the same weighting.  This 

is true because it can be assumed that the resulting parameter estimates of the structural 

model depend on the type of weighting used, at least as long as the number of indicators 

is not excessively large 145, the assumption of equal weights makes the results highly 

arbitrary.  Second, such a procedure does not take into account the fact that some 

indicators may be more reliable than others and should receive higher weights.146  

Consequently, PLS uses more complex, two-step estimation process to determine the 

weights (

€ 

ω i): First, an outside approximation is made, in which case values for each 

latent variable (e.g. 

€ 

ηi) are estimated based on a weighted average of their respective 

indicators:  

€ 

′ η i =ω iyi +ω i+1yi+1  (1-17) 

where 

€ 

′ η 2  is the average of the latent variables, 

€ 

ω  is the weight and 

€ 

y  is the endogenous 

(i.e. independent) variable.  The weights used to calculate this aggregation are determined 

in a manner similar to a principle-components analysis for reflective or regression 

analysis for formative indicators.147  Next, the inside approximation, improved case 

values are determined as a weighted average of neighboring latent variables: 

€ 

′ ′ η i =ω i ′ η i + wi+1ξ i + wi+2ξ i+1 + wi+3ξ i+2   (1-18) 

where 

€ 

ξ  is the latent exogenous (independent) variable.  The latent exogenous variable is 

inversely related to the indicators of the exogenous variable (x) relative to the associated 

measurement error (

€ 

δ ) and the loadings of indicators of exogenous variable (

€ 

λxi ) factors, 

which are mathematically related as follows:  
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€ 

xi = λxiξ i + δi  (1-19) 

Likewise, the similar mathematical expression exists for the indicators of the endogenous 

variables (

€ 

y) to its associated measurement error (

€ 

ε) and the latent endogenous variables 

(

€ 

η ) and loadings of indicators of endogenous variable (

€ 

λyi ). 

€ 

yi = λyiηi + εi  (1-20) 

For the case of the weighted variables, there are three different weighting schemes 

available (centroid, factor, and path weighting scheme148), but one can demonstrate that 

the choice between them has only a minor impact on the final results.  Using the factor 

weighting scheme, the weight relations are modified (e.g. 

€ 

′ ′ η i =ω iyi + wi+1yi+1) and the 

process of inside and outside approximation starts from the beginning again and is 

repeated until convergence of the case values is achieved.   

PLS includes a dependent variable in the data compression and decomposition 

operations, i.e. both y and x data are actively used in the data analysis.  Including these 

factors minimizes the potential of x variables having large error.  Although, the 

concurrent use of x and y data makes the method more complex, the two loading vectors 

are required to provide orthogonality of the factors.138  The x variables represent the two-

dimensional data set also called the x-block, in the case of spectroscopy it signifies the 

spectral data of multiple samples.  The y variables represent the y-block, which signifies 

the change in concentration of the data set.  Once an x- and y-block are loaded into a PLS 

model, the relationship between the two can be expressed in a predicted concentration 

verses measured concentration (Figure 1.13).  This regression model like the one shown 

in Figure 1.8 can allow one to test the linearity of the data set by analyzing parameters 
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like the correlation coefficient (r).  In this example, the linearity between the measured 

and predicted terms (=95% linearity) was high.  This demonstrates the ability of PLS 

models to express the linearity of spectroscopic data as in the study of Lyng et al. in 

quantitatively relating high-resolution magic angle proton magnetic resonance 

spectroscopic (HR 1H MAS MRS) data to apoptotic cell density.149   

The disadvantage of PLS models is the validation of these predictive models.  The 

big question is whether a model is valid for a particular application.150 Controversial in 

model validation is simultaneously testing the y-intercept (at zero) and the slope (at 

unity) when regressing outputs of a given predictive model on real-system values.151 The 

debate about the validity of this test has centered mainly on possible bias in the estimated 

slope and intercept or on autocorrelated errors in which one variable can be wrongly 

regressed over the other.152,153 The validity of this test stems from its conceptual 

formulation.  When outputs of a predictive model agree completely with actual-system 

values, their corresponding linear regression will have an intercept of zero and a slope of 

unity.  Therefore, the test is evaluating the degree of relationship between actual-world 

data and model input.154 Nonetheless, PLS seems to be an integral tool in the analysis of 

data where univariate techniques like simple Beer-Lambert regression curves fail. PLS is 

helpful because it is a multivariate tool that can be used to quickly analyze complex 

mixtures since the simultaneous determination of each component in a mixture can be 

performed without time-consuming separations and with minimum sample preparation.  

For this reason it can be used in this study of the measles virus in clinical samples by 

providing a relationship between the relative intensity of spectral data to the change in 

viral concentration.   
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An alternative method of extracting relevant components for classification based 

on the PLS principle is of maximizing covariance using PLS-DA.135,136 The fundamentals 

of PLS-DA consist in the application of a PLS regression model on variables which are 

indicators of the groups.136  PLS-DA is mainly used to classify observations from the 

results of PLS regression on indicator variables.  PLS-DA models focus on the variation 

between classes rather than the variation within the class. PLS-DA searches for factors, 

also called latent variables, to maximize the variations in the sample data from the x-

block (data set) that can be used to predict the class from the y-block.  Unlike with PLS, 

in PLS-DA the y-block is made of y variables, enough for each class, that indicate if the 

samples are in one of the classes by setting the value to 1 if it is in the class and 0 if it is 

not. A 1 indicates a sample belongs to a class, and a 0 indicates that it does not. The 

model, of course, will not predict either a 1 or 0 perfectly, so a limit must be set, called 

the threshold, above which the sample is estimated as a 1 and below which it is estimated 

as a 0. A threshold value is also calculated for each class prediction model.  In Figure 

1.14, the circled data, points belonging to Class 1, indicate that the PLS-DA model can 

confidently classify Class 1 data from the remainder of the data set since the points all lie 

above the threshold and are near 1 on the y-axis. The primary goal of PLS-DA is to give 

a calibration model that maximizes the sensitivity and specificity of the training set, 

where sensitivity is defined as the The sensitivity is defined as the number of predicted 

samples in a class divided by the actual number of samples in the class and specificity is 

given as the number of samples predicted not in the class divided by the actual number of 

samples not in the class. A calibration model with high sensitivity and specificity will 

most likely predict the class effectively. 
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In the past, the use of PLS-DA, SERS has been deemed a qualitative 

methodology.  This is the case of the qualitative analysis performed by Hoang et al. in 

2005 when four genotypes of the measles virus was classified when applying SERS 

spectral data to a PLS-DA model. However, SERS has never been used as a quantitative 

methodology, however it is believed that the application of SERS spectral data to PLS 

models can provide quantitative data. Using PLS, one can create linear regression curves 

that will enable them to obtain measured versus predicted measurements for various 

concentrations of viral samples. The predicted values are most important for analyzing 

the limit of detection (LOD) of viral samples because they can for lower levels of 

detection of a particular assay. Since viral shedding of an infected host can be anywhere 

from 1 to about 10,000 pfu/ml, it is beneficial to have a detection technique that can 

detect samples at that level. Since Ag nanorod-SERS is an extremely sensitive assay, it is 

believed that the technique can be used with PLS to determine the limit of detection of 

measles samples.  

1.8 The importance of finding the limit of detection 

Current bio-analytical methods show an interest in trace level detection. Such 

methods are central to public health, medical, and environmental control sectors. The 

sensitivity of these analytical tools is of importance in such diverse fields as diagnosis of 

infectious diseases; trace detection of DNA in forensics; bacterial contamination in public 

water supplies; and viral infection of blood in transfusion services.155    

With the increased demand for rapid trace detection and high throughput methods, 

modern bio-analytical techniques are being challenged on their capabilities of analytical 
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sensitivity.  Sensitivity can described as the smallest concentration of target analyte that 

can be detected and distinguished from a zero result (background).156 The sensitivity of 

an assay is dependent upon factors including sampling procedures, presence of 

competitors and inhibitors, detection methods and other features, which may be unique to 

different assays.157  

The sensitivity of a method is associated with the lower limit of applicability of 

that method.158  In regards to chemicals, the minimum detectable value frequently refers 

to the minimum detectable net concentration or amount. The minimum detectable values 

help one determine the “fitness for purpose” of a certain assay (i.e. measurement 

process).  This value can thus be analyte and assay specific, as it also refers to predicting 

the detectable value based on the capability of a process.       

One of the best reasons for the desire to determine the limit of detection (LOD) is 

to identify where the method performance becomes insufficient for acceptable detection 

of the analyte, defining the problematic areas that subsequent analytical measurements 

should stay away from.  The evaluation of the LOD of an assay is essential for trace 

detection methods, particularly where the result will be used for public health 

applications.   

Finding the LOD of measles viral strains is desired because of the prevalence of 

cases where vaccinated individuals and ones who have been infected have low levels of 

viral shedding.  This is a limitation even for sensitive viral detection methods like RT-

PCR.  Likewise, serologic assays for the detection of IgM, in cases with previously 

vaccinated populations, provide low sensitivity.  In previously vaccinated persons who 
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have become infected, the timing of the IgM reponse may be altered or the response 

absent or undetectable.1  Since the laboratory surveillance of the measles virus remains a 

controversial issue because of the false-positive results2-4 and lower sensitivity66 provided 

by conventional techniques, a more reliable and more sensitive method of detection for 

low-level samples is desired.  The use of SERS with multivariate analytical tools seems 

to offer the possibility of low-level measles virus detection.  The method of SERS, an 

extension to the vibrational spectroscopic technique Raman spectroscopy, will be 

discussed later to show how the method can be used to analyze minute volumes of 

samples like the measles virus in clinical samples. The validation of MV RNA present in 

the measles samples will be performed via Quantitative Reverse Transcription-

Polymerase Chain Reaction (qRT-PCR), or Real Time PCR, which will be further 

discussed in the next section.  

1.9 Real-time Polymerase Chain Reaction. 

Polymerase chain reaction (PCR) is a method used to amplify one or more copies 

of a segment of DNA several orders of magnitude using specific genome- and 

antigenome-sense primers, usually separated by 200 to 400 nucleotides on the genome of 

interest for diagnostic reasons. The size of the DNA product is defined by the location of 

the two primers on the virus genome and non-specific DNA products can sometimes be 

produced and care is needed when interpreting these results.  The genome of all 

morbilliviruses consists of a single strand of negative sense RNA and therefore cannot be 

amplified directly by PCR but must first be copied into DNA by reverse transcription in a 

two-step reaction, reverse-transcription/ polymerase chain reaction (RT-PCR).60  
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Therefore, PCR is a time consuming step.  Additionally, the process may be constrained 

by the need for an adequate amount of input nucleic acids for quantization purposeses.159  

For the case of this study, quantitative Real Time -PCR (qRT-PCR) will be used 

to analyze the measles samples.  This technique can be performed in a single 96-well 

plate due to the availability of thermostable DNA polymerases derived from 

thermophillic bacteria.  Within the well plate, samples of the known MV concentration 

(series of ten-fold dilutions), non-infected samples containing only the reagents and the 

other MV samples (analyte).  The process is done through thermal cycling, a series of 

heating and cooling the DNA.  The cycle begins by heating the DNA to high temperature 

(94ºC) so as to dissociate the DNA duplex, and then cooling to allow annealing of the 

primers (37ºC to 50ºC) and finally heating to the optimum temperature (72ºC) for the 

polymerase to copy new DNA.  The cycles are repeated 25 to 35 times (25 cycles is said 

to increase the initial DNA up to 107 times) to produce quantitative data that can be 

analyzed on a computer program.  Applied Biosystems makes a software program that 

allows one to obtain an amplification plot of the cyclic process.  From the amplification 

plot, one can chose the fluorescence threshold, a constant value amongst the different 

cycles where the amount of amplified DNA is significant enough to provide accurate 

quantitative data.  The cycle threshold (Ct) is equal to the fluorescence threshold in each 

cycle, the point where the cycle number (x axis) and rate of change of the relative 

fluorescence units (y axis) intersect.  A linear regression plot of the Ct values verses the 

RNA quantity (dilution concentration defined by the known samples) is plotted for each 

sample thereby allowing one to determine the RNA concentration of the unknown 

samples.   
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In determining the RNA concentration of the unknown samples we can verify the 

presence of MV in the measles samples that were purified and applied to our Ag-SERS 

substrates for viral detection.  Therefore, it is assumed that any classification or 

regression that is achieved through chemometric techniques is valid. 

1.10 Summary of Presented Work 

Chapter II describes the use of SERS as an identification technique for measles 

detection.  Presented is qualitative data about individual MV strains A1, H, and D4 using 

Ag-SERS substrates, in conjunction with Partial Least Squares- Discriminant Analysis 

(PLS-DA), to demonstrate the sensitivity of differentiating between different strains 

using the SERS method.  

Chapter III demonstrates the use of SERS for low-level measles detection.  

Presented is quantitative data was acquired about on MV strain using Ag-SERS 

substrates and PLS regression curves to test the possibility of using SERS for low-level 

virus detection and to determine the limit of detection of MV samples. 

Chapter IV includes conclusions on the studies summarized in previous chapters 

as well as includes area for future research on the quantitative study of the measles virus. 
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Figure 1.1 Genetic relationships between morbilliviruses based on comparison of the 
nucleotide sequences of the N genes.  The branch lengths are proportional to the 
mutational differences between the viruses and the hypothetical common ancestor that 
existed at the nodes in the tree.39  
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Figure 1.2 Schematic of the MV particle (diameter ~120-250nm) and its receptor-
binding H protein. MV is an enveloped virus and possesses 2 types of glycoprotein 
spikes, designated H and F proteins. The F protein mediates membrane fusion between 
the viral envelope and the host cell plasma membrane, while the H protein that forms 
homodimers on the viral envelope is responsible for binding of virus to receptors on 
target cells. The head domain of the H protein exhibits a six-bladed b-propeller fold.160  
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Figure 1.3 Schematic diagrams illustrating a localized surface plasmon. The metal 
sphere is surrounded by an electron cloud (surface plasmons) all within an electric field.90 
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Figure 1.4 The method of Oblique Angle Deposition for the creation of silver 
nanorods array substrates involves (a) positioning of a solid substrate at a specific angle, 
θ, such that the vapor from the source is incident on the substrate close to the grazing 
angle, α.  The method creates silver rods that are at an angle, β, normal to the substrate 
surface and where the flux angle, α, or the angle of the plume that impacts the surface is 
nearly 86°.13 
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Figure 1.5 Representing a scanning electron micrograph of the Ag nanorod arrays 
deposited with average lengths of 860 ± 5 nm, a typical SERS substrate used for virus 
detection. 15  
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Figure 1.6 Contrast between Mahalanobis and Euclidean distance measures. This 
illustration shows a data set (the stars) with lines representing constant Euclidean 
and Mahalanobis distances from the centroid. If these lines represented class 
boundaries, the data point shown as the sun would be clearly outside the 
Mahalanobis line, but would be inside a Euclidean distance line (especially if it were 
expanded to encompass all the data points). 137  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Figure 1.7 A PCA model expressed as orthogonal basis vectors called principle 
components where the spectra of a data set is repressed by a point in the PCA model. 
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Figure 1.8 A principle component in the form of two variables: (A) loadings are the 
angle cosines of the direction vector; (B) scores are the projections of the sample points 
(1-6) on the principal component direction. Note that the data are mean-centered.134   
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Figure 1.9 Scores and loadings are obtained by projecting X into vectors.  Each 
column of X, loadings, are projected into an element of the vector p, whereas the scores, 
each row of X, is projected into an element of the vector t.134  
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Figure 1.10 Data preprocessing. The data for each variable are represented by a 
variance bar and its center. (A) Most raw data look like this. (B) The result after mean-
centering only. 134  
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Figure 1.11 Graphical representation of Principal Components Analysis. Shown here 
are the values of three variables measured on a collection of samples. When plotted 
in three dimensions, it is apparent that the samples all lie on a plane and can be 
enclosed by an 101 ellipse. It is also apparent that the samples vary more along one 
axis of the ellipse than along the other. The first PC describes the direction of the 
greatest variation in the data set, which is the major axis of the ellipse. The second 
PC describes the direction of second greatest variation, which is the minor axis of 
the ellipse. In this case, a PCA model (the scores and loadings vectors and associated 
eigenvalues) with two principal components adequately describes all the variation 
in the measurements. 137  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Figure 1.12 Example of linking in cluster analysis and resulting dendogram. Here the 
group of samples (with two measured parameters x1 and x2) are linked together, 
starting with the closest two, numbers 4 and 5, followed by the next closest samples, 
1 and 2. Sample 6 is then linked to sample 5, which is already linked to sample 4, 
and so on. The results are shown in the dendogram at right. The vertical bars 
indicate which samples or groups are linked, while the horizontal position of the bar 
indicates the length of the link, i.e., the distance between the linked samples or 
groups.137  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Figure 1.13 An example of a calibration plot created in PLS. The plot demonstrates the 
ability of PLS to measure the linearity of the actual (y-measured) and predicted (y-
predicted) apopotic cell density predicted versus measured apoptotic cell density . Each 
point represents the data of a single biopsy. Shown are the Pearson correlation coefficient 
(r) and p-value are marked (p). 137 
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Figure 1.14 A PLS-DA model demonstrating that the circled data belongs to Class 1 
because it is clustered above the threshold and near 1. 
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Chapter 2 

Surface-enhanced Raman Spectroscopy: A qualitative tool for measles virus 
identification1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                        

1 Lynch, T., R.A. Dluhy, P. Rota, Y. Zhao, and R. Tripp. To be submitted to Applied 
Spectroscopy. 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2.1 Abstract 

Measles is a very contagious disease known by a prodromal illness of fever, 

cough, and conjunctivitis followed by the appearance of a generalized maculopapular 

rash. Traditionally, the measles virus (MV) can be detected using tests such as 

polymerase chain reaction (PCR), enzyme-linked immunosorbent assay (ELISA), and 

immunofluorescent antibody (IFA) assay. However, these techniques might not be 

reliable for low limits of detection, seldom cannot provide conclusive information and, in 

most cases, are not time efficient. The difficulties in MV detection have driven the search 

for new methods that overcome the limitations associated with conventional techniques. 

Surface-enhanced Raman spectroscopy (SERS) demonstrates a quick, label-free 

spectroscopic method that is desirable for determining the detection limit of viral 

samples. Silver (Ag) nanorods SERS substrates, prepared by the oblique angle deposition 

method, were created for the detection of three measles genotypes: D, A, and H1. The 

chemometric analysis method Partial Least Squares Discriminant Analysis (PLS-DA) 

was used to provide specificity of the SERS-Ag nanorods assay, specifically by 

classifying all analyzed MV genotypes with 100% specificity.  
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2.2 Introduction 

The measles virus (MV) is a RNA type monotypic§ virus that belongs to the 

Paramyxoviridae family and Morbillivirus genus. The virus is extremely contagious and 

is spread between hosts via the respiratory system. During the initial, an infected host will 

develop antibodies against the viral nucleocapsid (N) and the virulent transmembrane 

proteins, hemagglutinin (H) and fusion (F) proteins. The immune system will then try to 

prevent viral replication by removing the pathogens. The infection normally occurs once 

in a lifetime, as the host develops immunity. Attaining the measles vaccine will also 

enable lifetime immunity. However, the measles mortality rate remains significant, 

especially in underdeveloped countries, partially due to the lack of modern technologies 

and good health-care.  In order to control the spread of the virus, initiatives have been 

implemented like the supplementary immunization activities (SIAs) implemented by the 

World Health Organization (WHO) and United Nations Children’s Fund (UNICEF). 

However, with MV undergoing numerous mutations over time, the creation of 

vaccinations for the various genotypes presents a challenge for measles surveillance. 

Therefore it is important that a technique be available which enables one to distinguish 

viral strains.  

The preliminary diagnosis of the measles is the review of the exposure history of 

the host, including a physical exam that focuses on the presence of symptoms like rash 

and fever.18 Laboratory surveillance for measles is based on detection of virus-specific 

antibodies and detection of viral proteins or viral RNA.1 Detection of virus-specific 

antibodies such as immunoglobin M (IgM) occurs using serologic methods like 
                                                        
§ Being a single species representative in a genus 
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immunofluorescent antibody (IFA) and enzyme-linked immunosorbent assays (ELISA or 

EIA) by documentation of IgG seroconversion or four-fold rise in IgG EIA titer between 

acute- and convalescent-phase sera, and by isolation of MV or deletion of MV RNA from 

a clinical specimen. Serologic methods, however, are not measles specific, meaning they 

cannot distinguish between wild-type infections and vaccine-associated cases because 

they merely measure levels of antibodies (IgG or IgM) that can be attributed to a number 

of infections.  Additionally, these tests are not time-efficient, have low sensitivity, poor 

detection limit, and frequently lead to false negatives.2-4   

Highly viral detection sensitive methods like reverse transcription-polymerase 

chain reaction (RT-PCR) are utilized for the detection of MV RNA in a variety of clinical 

samples. RT-PCR is a technique carried out through the detection of viral RNA via 

nucleic acid extraction and amplification. Although this method has served as a valuable, 

alternative procedure for cases in which serologic testing results are inconclusive, 

inconsistent, or unavailable1, it does not have the capacity to detect low levels of viral 

sample. Low levels of virus typically found in a clinical samples limit the sensitivity of 

this viral antigen detection method.  For example, previously vaccinated individuals who 

experience the reoccurrence of a measles outbreak have decreased amount of viral 

shedding, thereby low levels of RNA cannot be detected by RT-PCR.  In addition to its 

limitations with sensitivity, RT-PCR viral RNA or viral isolation samples are often 

inadequate because of improper collection, storage, and processing and transportation.5  

Sample preparation alone is a lengthy and requires much precision to produce consistent 

and conclusive results.  Likewise, it takes hours to obtain results.  Finding a method that 

increases the reliability and speed of viral detection assays is advantageous in the future 
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of measles surveillance and to establish a basis for further studies concerning virus 

discrimination. 

Surface-enhanced Raman spectroscopy (SERS) serves as an alternative for viral 

detection enabling one to quickly obtain viral information with low sample preparation 

and high sensitivity and specificity. The signal enhancement of SERS, compared to 

classical Raman spectroscopy, is on average on the order of 105 to 106, with the 

maximum at 1014, which allow for the analysis of single-molecule detection. SERS is 

also a highly sensitive method due to the fact that the detected SERS vibrational 

frequencies correspond directly to the various molecules bound to the surface of the 

substrate. In previous studies, Shanmukh et al. discovered that SERS silver (Ag) 

nanorods substrates could be used to effectively identify different strains of respiratory 

syncytial virus (RSV) in cell culture media at samples volumes of 0.5 to 1.0 µL.10 

Likewise, Hoang et al. used Ag nanorods substrates to classify three various MV 

genotype strains with nearly 100% sensitivity. The majority of enhancing materials used 

in past SERS studies have provided sufficient enhancement, provided the analyte could 

be brought to the enhancing surface. The choice between enhancing materials not only 

lies in the surface chemistry but also ease of use for a particular application as in the 

electromagnetic properties of the enhancing substrate.  

SERS substrate fabrication methods that result in highly ordered arrays of high 

aspect ratio nanostructures with control over surface morphology are highly desirable.  

High aspect ratio Ag and Au SERS nanostructured substrates, like nanorods and 

nanowires, have been produced in the past using chemical and electrochemical methods 

like seeding growth,118,119 electrochemical etching, electroplating, and thermal 
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evaporation.120-122 However, the data produced by these SERS active substrates are 

challenging to interpret because of contributions from plasmon coupling from aggregates 

or underlying films. Oblique angle deposition (OAD) is a method that gets away from the 

disadvantages of other SERS substrate fabrication methods producing SERS active 

substrates using a physical vapor deposition technique.  This method involves positioning 

of a solid substrate at a specific angle such that the vapor from the source is incident on 

the substrate close to the grazing angle.48,125 Depositing metals at an angle results in the 

preferential growth of nanorods on the substrate in the direction of deposition.14  This 

surface morphology occurs because of a shadowing effect where the initial metal 

nucleation sites are the places of growth of the nanostructues aligned in a specific 

direction.126  The major advantages of this technique include the following: computer-

enabled control over size, shape, and density of the nanostrctures all factors of 

temperature, deposition angle, and duration and rate of the deposition; the capability of 

using multiple metals during a deposition if a multiple pocketed crucible is available and 

if the metal can be evaporated; any standard thermal or electron beam evaporation system 

equipped with a holder capable of rotation in the polar direction can be utilized.127  

Ag nanorod substrates prepared by the OAD method have been shown to provide 

SERS enhancement factor of ~ 108.  In this chapter, discussed will be the capabilities of 

using SERS to detect three MV strains: D4, H1, and A. The specificity of the SERS assay 

will be reflected by the additional use of chemometric methods like Hierarchical Cluster 

Analysis (HCA), Partial Least Squares Discriminant Analysis (PLS-DA), and Principle 

Component Analysis (PCA). These methods allow one to view inconsistencies between 

spectra of different strains, with the differences between individual strains themselves 
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being greater than the variance due to inconsistencies in sample preparation and substrate 

morphology.10  

2.3 Methods 

Measles samples had to be diluted to ensure that SERS could be done on the 

chosen nanomaterials.  If the samples were too thick an unknown scattering effect would 

be carried out and spectroscopic data unrepresentative of the MV samples would be 

obtained. PLS is a multivariate calibration method that decomposes spectral data into 

loadings and scores.  Using this technique, regression curves can be created.  These PLS 

models were used to show the dilution to spectral intensity relationship of various 

measles virus. This was specifically used to determined what dilution factor was suitable 

for analyzing further samples of MV. 

SERS substrate preparation. The silver nanorod used in this study were created 

using the OAD method using a custom-designed electron-beam evaporation system (Torr 

International, New Windsor, NY) that has been described previously.161  Before the 

deposition, glass substrates were cleaned using a heated Piranha solution (1:4 ratio 

hydrogen peroxide to sulfuric acid, respectively).  The metal used for the evaporation was 

Ag pellets (Alfa Aesar, Ward Hill, MA, 99.999%).  The metal film layers were monitored 

using a quartz crystal microbalance positioned at normal incidence to the vapor source.  

For this study two types of substrates were produced, 1x1 cm chips and 3x1 in slides.  

The 1x1 cm chips were prepared from larger 3x1 in glass slides and cut to size using a 

metal scriber.  In each case, the glass pieces were mounted side-by-side onto the substrate 

holder for OAD. On the substrates, three layers of metal were deposited: 20 nm Ti, 500 

nm Ag, and 2,000 nm Ag (when the vapor incident angle was tuned to 86°) when the 
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background pressure was approximately 4 x 10-6 Torr.  Previous studies using scanning 

electron microscope (SEM) images were used to analyze Ag nanorod surfaces.  Driskell 

et al. determined that average overall rod length of the nanorod substrates to be 868 ± 95 

nm, while the diameter of the nanorods were 99 ± 29 nm.  The density of the nanorods 

was calculated to be 13.3 ± 0.5 rods/µm-2 with an average tilt angle of 71.3 ° ± 4.0 °.   

Measles virus propagation. The following measles viruses were used in the 

analyses: measles virus (MV) strains H1, A, and D4.  Viral strains all are clarified cell 

culture supernatants from Vero/hSLAM cells in Dulbecco’s Modified Eagles Medium 

(DMEM; GIBCO BRL Laboratories, Grand Island, NY) without antibiotics or fetal 

bovine serum (FBS; Hyclone Laboratories, Salt Lake City, UT).  Measles were harvested 

in serum-free DMEM followed by two freeze—thaws (-70 °C/4 °C), after which the 

contents were collected and vortex for 1 min.  The virus titers were approximated 106 

PFU/mL, determined by immunostaining plaque array (CDC MMR Laboritories, Atlanta, 

GA).  The control for these studies was uninfected Vero cell lysate cleared.    

Sample prepation. Serial dilutions in the cellular media were performed ranging 

from 1:10 to 1:1000. To prevent the formation of a thick cellular layer on the surface of 

the Ag nanorods, MV samples were diluted in HyPure™ Molecular Biology Grade Water 

(Thermo Scientific, Waltham, MA) before they were placed on Ag nanorod substrates 

and SERS spectral collections were made.  

SERS measurement. SERS spectra were collected using a Renishaw inVia 

confocal Raman microscope system (Hoffman Estates, IL) with a 785 nm near-infrared 

diode laser as the excitation source. Attenuated light, from a high power (300 ± 30 mW) 

laser, was set to ~7mW at the sample surface using a series of neutral density filters.  The 
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laser spot was focused into a ~115 µm x 11 µm spot using a 5 x objective. SERS spectra 

were collected from 400 to 800 cm-1 in the ExtendedScan mode using six coadded 10 s 

collection times. A 3.0-µL aliquot of the sample (i.e., intact virus or cell lysate control 

media) was applied to the Ag nanorod array substrate and allowed to dry overnight at 

room temperature prior to spectrum acquisition.  

Data analysis. It is important for SERS to have the ability to differentiate between 

various strains (i.e. genotypes) of the MV since the virus has the capability of mutating, 

which is the common instigator of reoccurring outbreaks. Secondly, most genotypes 

differ in nucleotide sequence by as little as 2.5%. We analyzed the H1, A, and D4 

genotypes by first diluting the viruses in molecular grade water (solvent). After the 

spectral data was collected, PLS-DA was utilized as a classification method, which 

maximizes the sensitivity and the specificity of the data set.   Using this technique, it was 

possible to classify the genotypes of MV (into their respective classes) based on their 

genetic differences.  

2.4 Results 

Using PLS-DA to find the dilution factor. In previous studies, molecular samples 

have been diluted in a solvent to prevent the aggregation of a film created by cellular 

debris on Ag nanorods substrates. In Figure 2.1, the thick layer caused by depositing the 

MV sample “as is” onto the bare Ag nanorods substrate has been known to decrease 

SERS enhancement and lower spot to spot reproducibility. Therefore, it was necessary to 

find the dilution factor for MV samples. The cell lysate media was diluted in water using 

ten-fold dilutions from 1:10 to 1:1000. Approximately 1µL of the diluted samples were 

individually deposited onto Ag nanorod substrates and SERS spectra were collected. The 

spectral data was initially interpreted by visually examining SERS spectra (Figure 2.2). 
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However, no quantitative data could be inferred from analyzing the raw spectra, 

specifically no linear relationship could be made between any individual bands with 

respect to the amount the lysate media was diluted into the solvent (not shown). 

Therefore, Partial Least Squares (PLS) was used to create a y-measured versus y- 

predicted linear regression curve of the dilution factors (Figure 2.3). Three classes 

(denoting the three dilution factors of the lysate media—1:10, 1:100, and 1:1000) are 

show in Figure 2.3 with the green line denoting a completely linear fit (R2=1.0) and the 

red line expressing the actual fit of the curve (R2=0.719). The 1:10 class appeared to have 

the least variance from looking at the logarithmic plot. The averages for the y-measured 

versus y-predicted data for each class were calculated, as well as the standard deviation 

(SD) and relative standard deviation (RSD), and then displayed in Table 2.1. In this table 

one can see that the 1:100 class had the lowest SD and the 1:1000 class had the highest. 

The RSD, however, is a better measurement of the variance when comparing the 

uncertainty between different measurements of varying absolute magnitude.152,162 RSD is 

the absolute value of the standard deviation expressed as a percentage of the mean 

(RSD=

€ 

100(s / x )). It is a statistical measure of the reliability of an assay. Therefore, the 

1:10 dilution factor was chosen as ideal for so-called thinning out viral and cell lysate 

media for future studies. 

Differentiating SERS data of three MV strains (D4, A and H1). The need for 

measles surveillance includes the monitoring viral mutations over time and in different 

regions of the world.59 Consequently, it is important to be able to detect slight genetic 

differences in viral samples. SERS was used to gather spectral data about three MV 

genotypes at which chemometric analysis was later used to classify the samples based on 
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their genetic differences. Initially, the SERS spectra of the genotypes were visually 

analyzed (Figure 2.4-2.6). A comparison between the spectra of measles samples with 

literature references of Raman band assignments of proteins, peptides, and nucleic acid 

bases as references, the prominent bands were assigned to components of the virus and 

the cell culture media.163 For example, the Raman shifts detected at 1650 and 1230-1295 

cm-1 were assigned to amide (I and III), 1061 cm-1 C-N and C-C stretching, 1606 and 620 

cm-1 phenylalanine, 1440-1460 C-H deformation, 1290 cm-1 CH2 deformation, 850 cm-1 

“buried” tyrosin, 785 cm-1 cytosine and uracil ring/stretching, 720 cm-1 adenine, and 620 

cm-1 guanine, respectively (Table 2.2).163 

 
The differentiation of viral genotypes using their SERS spectra requires that the 

inconsistency between spectra of the individual strains themselves be greater than the 

variance due to inconsistencies in sample preparation and substrate morphology.10 The 

spectra of the D4, A, and H1 gentypes of MV are shown in Figures 2.4 to 2.6, which have 

been baseline corrected. There were observable variations in the spectral data of the virus 

samples, the cell lysate media control, and the solvent (Figure 2.4-2.7). These spectral 

variations included the appearance or disappearance of bands and changes in bandshape. 

For example, the 1000 cm-1  band for C-C stretching and/or phenylalanine appeared in all 

spectra but was most prominent in the spectra of the media control (Figure 2.2). The 

amide I and III protein bands around 1650 and 1230 cm-1
 only appeared in the sample 

spectra, and not in the solvent spectrum. The presence of different ratios of amino acids 

and nucleic acid bases in the viral samples may have given rise to the changes in band 

intensities among spectra; this is the case for the spectra of the three genotypes that had 

varying band intensities for the nucleotides adenine, cytosine, uracil and guanine at 720, 
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785, and 665 cm-1, respectively. It is not expected to obtain high intensities for the 

nucleotides since measles virus nucleocaspids contain on average 5% RNA164 but around 

six higher molecular weight polypeptides (40-80 daltons)165. 

Visually, it is difficult to differentiate amongst the spectra of the genotypes and 

cell media control because of fluctuations of some spectral variations. These variations 

did not give a distinct classification of samples. Therefore, chemometric analysis was 

applied to provide a consistent and visually clear model for separation of genotypes base 

on detectable statistical variations in the data. Used was Partial Least Squares 

Discriminant Analysis (PLS-DA), a chemometric method used to cluster data based on 

genetic similarities. In PLS-DA analysis, y-predicted versus samples scores plot 

illustrated the capability of separating measles genotypes (classes) (n=4) based on their 

spectral data (Fig. 2.8-2.10). This was assumed based on the red dash line represented the 

threshold for the prediction model.  The threshold value defined the cut-off point for the 

class assignment.  Samples that belonged to the A genotype class had a calculated y-

predicted value that clustered above the 0.73 threshold (Figure 2.8). Whereas, the D4 and 

H1 classes had values approximately close to 0 since samples with y-predicted values 

below that threshold were identified as not belonging to the A genotype class. According 

to the y-predicted plot, all the samples from the A genotype class were correctly 

identified by PLS-DA.  Likewise, for classes D4 and H1 this was also accurate in Figures 

2.9 to 2.10. A PLS-DA model was tested by Venetian blinds cross-validation (CV), using 

9 data splits. The model was able to predict the class with 100% sensitivity and 

specificity, meaning that all samples were correctly predicted as in-the-class when chosen 

to be and vice versa (Table 2.3). 
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2.5 Discussion 

The results from this study show that SERS has the ability to provide a rapid and 

reliable means of detecting very low levels of viruses, which is the leading death of 

children to-date. Current viral diagnostic methods are not time efficient and lack the 

sensitivity of SERS. Advances in nanofabrication allow for the development of 

biosensing devices like Ag nanorods that allow for rapid, reproducible and sensitive 

detection of infectious diseases. Ag nanorods substrates were successfully used to detect 

the presence of amino acids and nucleotides in infectious and cell control media samples 

with great signal-to-noise such as the bands at 1650 and 1230-1295 cm-1 for amide I and 

III, 1606 and 620 cm-1 phenylalanine, 850 cm-1 “buried” tyrosin, 785 cm-1 cytosine and 

uracil ring/stretching, 720 cm-1 adenine, and 620 cm-1 guanine, respectively.163 The viral 

and cell control media samples could confidently be differentiated from the background 

and solvent spectra as well; amino acids and/or polypeptides that comprise the measles 

virus were not identified in the spectra of the background nor solvent. Additionally, the 

ability of Ag nanorods to differentiate between measles genotypes, which have minute 

genetic variations (~5-7% sequence diversity), with 100% sensitivity can contribute to 

low-level detection of measles. Likewise, chemometric analysis increases the benefits of 

the SERS-Ag nanorods assay in providing a method that can differentiate amongst 

measles genotypes with 100% specificity.  
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Table 2.1 Average y-measured and y-predicted values of the PLS processed and 
cross-validated prediction model for vero cell lysate samples that were diluted in water. 
Averages were obtained from a PLS regression model of three cell lysate media classes 
(samples diluted in water ten-fold from 1:10, 1:100, to 1:1000). The table illustrates that 
the 1:10 dilution is the optimum dilution factor since it has a low standard deviation (SD) 
and the smallest relative standard deviation (%RSD). (relative standard deviation is a 
statistical estimate of the reliability of an assay)  
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Table 2.2 Band assignments for prominent Raman shifts detected for the virus 
samples. a The presence of proteins, amino acids, and RNA contributed to the Raman 
shifts observed in the spectra. 
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Table 2.3 The sensitivity and specificity of the PLS-DA processed and cross-
validated prediction model for the MV genotypes A, H1 and D4 and the cell media. Data 
was cross-validated with venetian blinds (9 splits). a The sensitivity is defined as the 
number of predicted samples in the class divided by the number of total samples.b The 
specificity regarded as the number of predicted samples that are not in the class divided 
by the total number of samples. 
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Figure 2.1 Microscopic images of Ag nanorod substrates (A) before the sample was 
deposited and (B) after 1µ L of the cell lysate media was applied to the SERS substrate.  
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Figure 2.2 SERS spectra of the cell lysate media on a bare Ag nanorod substrate. 
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Figure 2.3 A PLS regression model illustrating the linearity between the y-measured 
and y-predicted values of three cell lysate media classes (samples diluted in water ten-
fold from 1:10, 1:100, to 1:1000). The model was created to find the optimum dilution 
factor necessary for thinning out viral and media samples. Dilution of samples was 
necessary to prevent the formation a thick cellular layer on the nanorod surface, which 
would inhibit the enhancement normally exhibited by SERS.  
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Figure 2.4 SERS spectra the A genotype of the measles virus on a bare Ag nanorod 
substrate. 
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Figure 2.5 SERS spectra the H1 genotype of the measles virus on a bare Ag nanorod 
substrate. 
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Figure 2.6 SERS spectra the D4 genotype of the measles virus on a bare Ag nanorod 
substrate. 
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Figure 2.7 SERS spectra of molecular biological grade water (top) and the 
background of the bare Ag nanorod substrate. 
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Figure 2.8 Y-predicted plot for the A genotype class prediction of SERS data. The 
red dash line represented the threshold for the prediction model. The threshold value 
defined the cut-off point for the class assignment. Samples that belonged to the A 
genotype class had a calculated y-predicted value that falls between the threshold (0.75) 
and a value that is approximately 1. Samples with y-predicted values below the threshold 
were identified as not belonging to the class. According to the y predicted plot, all the 
samples from the A genotype class were correctly identified by PLS-DA. 
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Figure 2.9  Y-predicted plot for the D4 genotype class prediction of SERS data. The 
red dash line represented the threshold for the prediction model. The threshold value 
defined the cut-off point for the class assignment. Samples that belonged to the D4 
genotype class had a calculated y-predicted value that falls between the threshold (0.35) 
and a value that is approximately 1. Samples with y-predicted values below the threshold 
were identified as not belonging to the class. According to the y predicted plot, all the 
samples from the D4 genotype class were correctly identified by PLS-DA. 
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Figure 2.10 Y-predicted plot for the H1 genotype class prediction of SERS data. The 
red dash line represented the threshold for the prediction model. The threshold value 
defined the cut-off point for the class assignment. Samples that belonged to the H1 
genotype class had a calculated y-predicted value that falls between the threshold (0.69) 
and a value that is approximately 1. Samples with y-predicted values below the threshold 
were identified as not belonging to the class. According to the y predicted plot, all the 
samples from the H1 genotype class were correctly identified by PLS-DA. 
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Figure 2.11 Y-predicted plot for the cell media (vcl) class prediction of SERS data. 
The red dash line represented the threshold for the prediction model. The threshold value 
defined the cut-off point for the class assignment. Samples that belonged to the vcl 
genotype class had a calculated y-predicted value that falls between the threshold (0.50) 
and a value that is approximately 1. Samples with y-predicted values below the threshold 
were identified as not belonging to the class. According to the y predicted plot, all the 
samples from the vcl genotype class were correctly identified by PLS-DA
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Chapter 3 

Surface-enhanced Raman Spectroscopy: A tool for the quantitative analysis of the 

Edmonston strain of the measles virus 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                        

2 Lynch, T., R.A. Dluhy, P. Rota, Y. Zhao, and R. Tripp. To be submitted to Applied 
Spectroscopy. 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3.1 Abstract 

Measles is a very contagious disease known by a prodromal illness of fever, 

cough, and conjunctivitis followed by the appearance of a generalized maculopapular 

rash. Traditionally, the measles virus (MV) can be detected using tests such as reverse 

transcriptase-polymerase chain reaction, enzyme-linked immunosorbent assay, and 

immunofluorescent antibody assay. However, these techniques might not be reliable for 

low limits of detection, seldom cannot provide conclusive information and, in most cases, 

are not time efficient. The difficulties in MV detection have driven the search for new 

methods that overcome the limitations associated with conventional techniques. Surface-

enhanced Raman spectroscopy (SERS) demonstrates a quick, label-free spectroscopic 

method that is desirable for determining the detection limit of viral samples. In this study, 

SERS spectra of the MV were analyzed using Partial Least Squares (PLS). PLS was used 

to create regression plots that illustrate the relationship between spectral intensity and 

concentration of MV samples. PLS regression curves showed nearly linear relationships 

(R2=0.995 ± 0.03) between y-predicted and y-measured data of purified MV samples at 

various concentrations (103 -101 pfu/ml). Information obtained using PLS suggests that 

SERS can potentially be used as a reliable assay finding the limit of detection of measles 

samples without sample amplification or labeling. 
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3.2 Introduction 

The measles is a contagious disease that initiates in the respiratory system caused 

by the measles virus, spread by aerosol or respiratory droplets entering the respiratory 

route. An infection has an average incubation period of 14 days and infectivity from 2 to 

4 days prior, until 2 to 5 days following the onset of the rash17. The onset of the rash 

coincides with the appearance of the immune response and initiation of virus clearance18. 

The disease circulates worldwide with estimates of over 30 million cases and 770,000 

deaths every year57 and remains the leading cause of vaccine-preventable child mortality. 

The underutilization of measles vaccine is the principal attributable cause to the current 

high measles morbidity and mortality57. In more than 95% of these deaths, they occur in 

low-income countries with weak health infrastructures and inaccessibility to vaccination. 

Its high level of infectivity and scientific evidence of the impact of measles vaccination 

on child survival initiates the importance of having accelerated measles detection 

methods.  

Conventional laboratory surveillance for measles is based on detection of virus-

specific antibodies and detection of viral proteins or viral RNA1.  Detection of virus-

specific antibodies such as immunoglobin M (IgM) occurs using serologic methods like 

immunofluorescent antibody (IFA) and enzyme-linked immunosorbent assays (ELISA or 

EIA) by documentation of IgG seroconversion or four-fold rise in IgG EIA titer between 

acute- and convalescent-phase sera, and by isolation of MV or deletion of MV RNA from 

a clinical specimen. Serologic methods, however, are not measles specific, meaning they 

cannot distinguish between wild-type infections and vaccine-associated cases because 

they merely measure levels of antibodies (IgG or IgM) that can be attributed to a number 
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of infections.  Additionally, these tests are not time-efficient, have low sensitivity, poor 

detection limit, and frequently lead to false negatives.2-4   

Highly viral detection sensitive methods like reverse transcription-polymerase 

chain reaction (RT-PCR) also do not enable the capacity to detect low levels of viral 

sample even though the use of the technique (i.e., for the detection of MV RNA in a 

variety of clinical samples) has served as a valuable, alternative procedure for cases in 

which serologic testing results are inconclusive, inconsistent, or unavailable1.  RT-PCR is 

a technique carried out through the detection of viral RNA via nucleic acid extraction and 

amplification. Low levels of virus typically found in a clinical samples limit the 

sensitivity of this viral antigen detection method.  For example, previously vaccinated 

individuals who experience the reoccurrence of a measles outbreak have decreased 

amount of viral shedding, thereby low levels of RNA cannot be detected by RT-PCR.  In 

addition to its limitations with sensitivity, RT-PCR viral RNA or viral isolation samples 

are often inadequate because of improper collection, storage, and processing and 

transportation5. Sample preparation alone is a lengthy and requires much precision to 

produce consistent and conclusive results.  Likewise, it takes hours to obtain results.  

Finding a method that increases the reliability and speed of viral detection assays is 

advantageous in the future of measles surveillance and to establish a basis for further 

studies concerning virus discrimination. 

One alternative to existing laboratory surveillance technique is surface-enhanced 

Raman spectroscopy (SERS), a nano-optical method that provides a fast, label free 

method for the determination of the viral samples.  SERS is an extension of Raman 

spectroscopy, which is a vibrational spectroscopic technique used to provide high 
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structural information useful in real-world applications in biochemistry and the life 

sciences6. SERS is an extremely sensitive method that has been an emerging technique 

for viral pathogen detection 10,16,79,80. In the past, Fourier transform infrared spectroscopy 

(FTIR) and Raman scattering have been used as vibrational spectroscopic techniques for 

the detection and differentiation of infectious agents 163,166-174. These methods allow one 

to collect spectra that display the chemical composition of pathogens, which serve as 

fingerprints for detection and identification. Although both methods have been deemed 

successful at providing whole-organism fingerprinting, it has been found that each suffers 

from inherent limitations. For instance, FTIR is limited by interference from water; while 

Raman spectroscopy is resistant to water, it is severely limited to low scattering cross 

sections that translate to weak signals for pathogen detection81. SERS overcomes the 

limitation of both conventional spectroscopic methods by providing high cross sections 

and resistance to water.86 SERS provides greater spectral signals to that of Raman 

scattering because the incoming laser beam interacts with the oscillations of plasmonic 

electrons in metallic nanostructures to enhance the vibrational spectra of molecules 

adsorbed to the surface by 14 orders of magnitude, with respect to normal Raman 

intensities7-9.  

Recently, SERS has been used as a biomedical-sensing device to detect 

viruses10,16,80,175-177 and quantify micro and nanometric molecules 81,178. The sensitivity 

and analytical utility of the SERS methodology has been proven in numerous studies 

14,16,80,81,175,176.  For example, the sensitivity of the SERS technique for low level detection 

has been published for respiratory syncytial virus (RSV)16 where several titers of the 

RSV ΔG viral strain was prepared by dilution with deionized water and small amounts of 
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the samples were applied to silver nanorods array (AgNR) substrates.  Chemometrics was 

utilized in combination with SERS spectral data to produce PLS plots of the peak area at 

1045 cm-1 verses concentration of the viral solution.  PLS regression plots decreased 

linearly from 103 PFU/ml over 2 orders of magnitude therefore providing evidence of the 

quantitative capabilities of the SERS method when paired with chemometrics.  

Scientist have previously reported the difficulties of using univariate techniques 

(i.e., Beer-Lambert relationship) of relating changes in spectral band intensities to 

changes in pathogen concentration16,81. It is important to analyze the entire spectrum, or 

use specialized feature selection algorithms, since discrete patterns of multiple bands, 

rather than a single peak, are important for the identification81 and quantitation. Principle 

least squares (PLS) is a statistical method that produces a linear regression model from 

large data matrices (i.e. spectral data) by projecting the predicted variable and the 

measured variable in new space 139. To overcome the limitation of univariate methods, 

PLS is suitable for the fast and simultaneous analysis of complex mixtures with minimum 

sample preparation and without time-consuming separations.  The use of a quantitative 

method based on PLS regression analysis for the identification of several viruses has 

been very helpful for low level detection 175.   

Previously, we have demonstrated the extreme sensitivity of AgNR-SERS 

substrates produced using an oblique angle deposition with enhancement factors of 

greater than 108 14,179. Likewise, we have established the capability of using AgNR-

SERS-based detection and quantitation of the RSV pathogen in combination with PLS10. 

The SERS methodology demonstrated the possibility of rapid (<60 sec) detection of 

various virus types on AgNR-SERS substrates in minute specimen volumes (0.50 - 1.0 
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µL) without biochemical manipulation of the virus sample16. In these previous studies 

SERS assays were performed with purified viruses in water and buffer.  In this report, the 

sensitivity and specificity of the SERS method is evaluated for the measles virus in and 

outside a cell lysate matrix. The Edmonston strain of the measles virus was purified to 

isolate the viral material from the cell lysate to demonstrate the ability to achieve lower 

level of SERS detection. As a control, the Edmonston strain was evaluated in a cell lysate 

matrix. These studies indicate that the SERS methodology can be used with chemometric 

for measles detection, a necessary proponent for low-level measles laboratory 

surveillance.   

3.3 Methods  

Measles virus propagation. The Edmonston strain of the MV strain was used in 

this analysis (positive control). The strain was from a collection of samples that were 

clarified cell culture supernatants from Vero cells in Dulbecco’s Modified Eagles 

Medium (DMEM; GIBCO BRL Laboratories, Grand Island, NY) without antibiotics or 

fetal bovine serum (FBS; Hyclone Laboratories, Salt Lake City, UT) prepared by the 

CDC.  Measles were harvested in serum-free DMEM followed by a freeze—thaw (-70 

°C/22 °C), after which the contents were vortex for 1 min.  The virus titer was 

approximately 106 PFU/mL, determined by immunostaining plaque array (CDC MMR 

Laboratories, Atlanta, GA).  The control for this study was uninfected Vero cell lysate. 

The control for these studies was uninfected Vero cell lysate.   

Virus Purification. In trying to assess the limit of detection of MV samples using 

SERS- Ag nanorods substrates we postulated that large cellular debris or crystal forming 

buffers in the samples could interfere with the SERS signal. In the past, we have noticed 
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that crystal structures appear on the surface of Ag nanorods surfaces, which led to the 

irreproducibility of MV spectra. Two purifying materials were used to eliminate the 

formation of large cellular debris and crystal structures on the Ag nanorods surfaces; 

centrifuge tube filters (Corning Inc. Life Sciences, Lowell, MA) and micro spin desalt 

columns (Pierce, Rockford, IL). Aliquots of 10 µl MV samples and cell lysate control 

media were stored in a -70°C freezer.MV samples were thawed, vortexed and then put 

inside the purifying materials and centrifuged. Samples that were not used for SERS 

measurments were used for qRT-PCR to determine the RNA content of the purified 

samples. 

  Sample Preparation. Serial dilutions in the cellular media were performed 

ranging from 1:10 to 1:1000. To prevent the formation of a thick cellular layer on the 

surface of the Ag nanorods, MV samples were diluted in HyPure™ Molecular Biology 

Grade Water (Thermo Scientific, Waltham, MA) before they were placed on Ag nanorod 

substrates and SERS spectral collections were made.  

SERS substrate preparation.The SERS substrates were created using a custom-

designed electron beam evaporation (E-beam) system (Torr International, New Windsor, 

NY), as previously described.179   Using oblique angle deposition (OAD), the angle of 

depositing vapor and the surface normal of the substrate is set to 86° where typically a 

base layer of 20 nm Ti and 500 nm Ag thin films are deposited, respectively.  With 

increasing deposition time, randomly distributed but aligned nanorod arrays develop on 

the substrate.  Figure 3 shows a scanning electron microscopy (SEM) image of an Ag 

nanorod surface of average length 860 ± 5 nm.  In past studies, the overall rod length of 
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the nanorod substrates were 868 ± 95 nm, the diameter 99 ± 29 nm, the density 13.3 ± 0.5 

rods µm-2, when the average tilt angle was 71.3° ± 4.0°.16  

SERS measurement. SERS spectra were collected using a Renishaw inVia 

confocal Raman microscope system (Hoffman Estates, IL) with a 785 nm near-infrared 

diode laser as the excitation source. Attenuated light, from a high power (300 ± 30 mW) 

laser, was set to ~7mW at the sample surface using a series of neutral density filters.  The 

laser spot was focused into a ~115 µm x 11 µm spot using a 5 x objective. SERS spectra 

were collected from 400 to 800 cm-1 in the ExtendedScan mode using six coadded 10 s 

collection times. A 3.0-µL aliquot of the sample (i.e., intact virus or cell lysate control 

media) was applied to the Ag nanorod array substrate and allowed to dry overnight at 

room temperature prior to spectrum acquisition.  

Data analysis. In the past, Ag nanorod substrates created by the oblique angle 

deposition (OAD) method have been used to carry out quantitative studies on microRNA 

mixtures.178  However, the ability of SERS as a biosensing technique for finding the limit 

of detection of the measles virus (MV) has never been evaluated.  For the current study, 

SERS spectra were collected for the Edmonson strain (positive control), cell lysate 

(negative control), and four dilutions (10%, 7%, 4%, and 1% concentration of the 

positive control). In this study, each sample was applied to several SERS substrates, and 

a total of fifteen spectra were collected from each sample. Each sample was then diluted 

in water (1:10) to thin the sample, and applied to separate substrates and allowed to dry 

for at least 24 hours. By visually inspecting SERS spectra, Raman band assignments of 

biological components were made and spectral reproducibility within and among 

substrates were examined.  Prior to this step, the spectra were baseline corrected using 
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GRAMS/32 AI (v6.00, Galactic Industries Corp., Salem, NH) with 2 points and then 

autoscaled.  

Partial Least Squares (PLS) analysis, a chemometric technique, was utilized to 

quantify different concentrations of the Edmonston strain of the MV. Prior to PLS, the 

raw SERS spectra were derivatized (1st order derivative; 9-point, 2nd order polynomial 

Savitzky-Golay algorithm), normalized (unit vector normalization length), and mean-

centered. The processing of spectral data eliminates useless variance contributed by 

variation in the baseline or slight heterogeneities in the Ag nanorods substrates.144,178 

Preprocessing was carried out using PLS Toolbox v4.2 (Eigen Vector Research Inc., 

Wenatchee, WA) combined with the MATLAB v7.10 software (The Mathworks Inc., 

Natick, MA).   

3.4 Results 

Initial spectral analysis. Previous studies have demonstrated that silver (Ag) 

nanorods substrates created using oblique angle deposition (OAD) methods provided 

spectral reproducibility for small molecules14 and viruses10,16. Hoang et al. has used Ag 

nanorods substrates to detect measles virus (MV) strains.18 For the current study, SERS 

spectra were collected for the Edmonston strain of MV (positive control), the cell media 

control (negative control), and dilutions made from these samples (at 1, 4, 7, and 10% of 

the positive control).  In this study, each sample was applied to separate SERS substrates 

and fifteen spectra were collected from each substrate. The instrument was set to 

optimum conditions (e.g., microscope objective, laser power) to allow the maximum 

signal-to-noise ratio without detector saturation. The spectra for each sample were 

baseline corrected using the GRAMS/32 program. Figure 3.1 shows the overlaid spectra 
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for each sample. Within this figure, the assignment of multiple bands can be made as the 

one at 1600 cm-1 for phenylalanine, the multiple bands in the 520 to 540 cm-1 range for S-

S stretching and 1260 to 1420 cm-1 for amine III and C-N and C-C stretching. The spectra 

of the positive and negative controls are somewhat similar, however, for the spectra of 

the dilutions are unique and lack the reproducible desired for these samples. The spectra 

in this figure illustrate the difficulty of using a single band from each spectrum to show 

the change in intensity relative to the change in MV concentration. For example, let us 

examine the band at 660 cm-1. The intensity increases from the first dilution to the second 

dilution but decreases from the second dilution to the third (Figures 3.1). However, at 

1600 cm-1, the intensity of the band increases from the first to the third dilution but not 

linearly (Figure 3.2). The plot in Figure 3.2 illustrates the misinformation that can be 

obtained from a concentration versus intensity plot of any spectral band. Since no single 

band in the SERS spectra can be used to relate the change in MV concentration, a 

multivariate method must be used. In the past, SERS-Ag nanorods assays have been used 

with chemometrics as a qualitative methodology to differentiate various genotypes of 

MV.18 We assumed that using SERS and chemometrics, in a similar manner to gathering 

quantitative data (i.e. PCA, HCA, PLS-DA), would allow us to quantify MV samples. 

Partial Least Squares (PLS) analysis, a chemometric technique, was utilized to quantify 

different concentrations of the Edmonston strain of the MV.  

PLS is a multivariate chemometric technique that decomposes spectral data into 

loadings and scores, building the corresponding calibration methods from these new 

variables. 

X=t1pT
1 + t2pT

2 + … + tkpT
k + … + trpT

r   (3-1) 
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Equation 1-1illustrates how PLS decomposes the spectral data set (X) into loadings (pi) 

and scores (ti), which tell one about the sets of variables and how the samples relate to 

each other, respectively. PLS is advantageous for the analysis of complex mixtures 

because it allows for the fast and simultaneous determination of each component in the 

mixture without time-consuming separations. Using PLS, the regression curve in Figure 

3.3 was created, which displays the spectral data using two parameters, y-measured 

versus y-predicted. Each spectrum is displayed as a single point (score) where the y-

predicted value is determined by the loading. The y-measured values were chosen as the 

fraction of the positive control, which had a y-measured value of 1.0. For example, the 

dilution-1 class (10% of the concentration of the positive control) has a y-measured value 

of 1.0E-01 since it is this times the concentration of the positive control. The negative 

control class had a y-measured value of 0 since it contained no infectious particles. It is 

ideal for each class to have a y-predicted value equal to the y-measured value since the y-

predicted parameter measures the ability of the PLS model to accurately estimate the 

concentration of the sample. In Table 3.1, notice how the y-predicted value for the 

positive control class (0.661) has a small relative standard deviation (RSD; 25%). The 

relative standard deviation (RSD) is absolute value of the standard deviation expressed as 

a percentage of the mean (RSD= ). The RSD is a measure of a statistical estimate 

of the reliability of an assay. From analyzing the RSD values of each sample, it was 

assumed that the model was extremely erroneous. Supporting this conclusion, the root-

mean-square error of cross-validation (RMSECV), the parameter that measures the total 

“fitting” error of predicted values in a PLS model, was high (14%). This could be due to 

the inability of PLS to predict the concentration of the MV samples (R2=0.63) or that the 
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spectra of the MV samples contained variances from sampling. We assumed that the vast 

RMSECV value within the model was due to sampling since large cellular debris could 

be seen on the surface of Ag nanorods substrates (Figure 3.4), a feature that could 

decrease spectral reproducibility and the sensitive of SERS.  

 We suspected that the non-reproducibility seen in the MV spectra (Figure 3.1) 

was caused by either large cellular debris or crystal-forming substances in the MV 

samples. Particles (~100 µm) can be seen on the surfaces of the Ag nanorods that contain 

1 µL of a MV sample (Figure 3.4b). To test this hypothesis, MV samples were purified 

using two methods: one that would remove cellular debris greater than 0.22 microns and 

another that would remove salts and other small molecules less than 1,000 molecular 

weight. The former method was carried out using centrifuge tube filters, which removed 

much of the larger cellular debris from the MV samples and left behind smaller 

molecules that created large crystalline structures on the surface of the Ag nanorods 

substrate (Figure 3.4c). The latter method, desalt spin columns, removed the smaller 

molecules that caused the formation of crystalline structures on the Ag nanorods surface 

(Figure 3.4d). To assess whether MV RNA remained in both purified samples, Real-time 

Polymerase Chain Reaction (qRT-PCR also known as Quantitative Reverse Transcription 

Polymerase Chain Reaction) was used to measure the amount of RNA in each sample.  

Quantitative Polymerase Chain Reaction. As with many purification techniques, 

abundant proteins or salts may be partially or totally removed, although sometimes at the 

expenses of losing less abundant proteins which are trapped in the precipitates or 

adsorbed to column packings, precluding their detection.180 To determine wheather MV 

RNA remained in purified MV samples, qRT-PCR experiments were performed. qRT-



 118 

PCR of purified MV samples proved that purification does not remove significant 

amounts of measles RNA (Table 3.2). The RNA composition of the MV samples purified 

with desalt spin columns was (5.40 ± 0.2) x103 pfu/ml, relative to the non-purified 

samples that has a concentration of (6.0 ± 1.0) x103 pfu/ml. Centrifuge tube filters, in 

contrast, removed nearly 62% of MV RNA (3.7 ± 0.2) x103 pfu/ml). It was assumed that 

MV RNA particles adhere to the cellulose containing filters during the purification 

process, whereas little MV RNA is retained in the resin of the desalt spin columns. Using 

SERS to analyze desalt column-purified samples, we were able to detect and identify 

Raman band assignments for prominent Raman shifts previously detected for MV (Figure 

3.5). However, spectra obtained for the MV samples purified with centrifuge filter tubes 

were not reproducible and had bands low signal-to-noise ratios (not shown). Therefore 

for future studies, desalt spin columns were used for MV purification. 

Spectral analysis. For the proceeding study, we assessed that SERS-Ag nanorods 

substrates and chemometrics would enable us to detect low levels of MV samples and 

therefore accurately predict the limit of detection of a single MV strain. SERS spectra 

were collected for the purified Edmonson strain (positive control) and cell lysate 

(negative control) media samples (Figure 3.5). Firstly, these spectra demonstrate the 

ability of Ag nanorods substrates as a sensing platform. Secondly, the spectra illustrate 

the possibility of gaining spectral reproducibility using SERS to detect the measles virus.  

As seen in Figure 3.5, the spectra of the positive and negative control differ greatly. One 

can notice the broad band at 1600 cm-1 for the positive control spectra, which is possibly 

a combination of two unresolved bands.  In the spectra of the negative control, two 



 119 

resolved bands are identified at the region of 1650 cm-1 and 1606 cm-1 for the amide and 

phenylalanine bands, respectively.   

Additionally, dilutions of the positive control were made at 1, 4, 7, and 10% of 

the positive control sample concentration. The SERS spectra of the dilutions were 

compared to the spectrum for the positive control and negative control to assess the 

ability of SERS to capture spectra differences amongst different concentrations of 

measles samples (Figure 3.5). The 1650 cm-1 and 1606 cm-1 bands for amide and 

phenylalanine can be seen in the spectra of the dilutions much like the positive and 

negative controls. Amongst the dilution spectra, there are many similar characteristics 

including the CH2 deformation band at 1295 cm-1 and the C-N and C-C stretching band at 

1061 cm-1. Overall, the spectral reproducibility of the purified MV samples is much 

higher than the raw MV samples (Figure 3.1). It is additionally essential to recognize that 

the negative control, which consists only of cell lysate media, produces a SERS spectrum. 

Since the MV samples are harvested in cell lysate, all samples should have this 

background signal in common, this is apparent in the first, third and fourth dilutions of 

the positive control (Figure 3.5). Although the spectra are similar for the dilution 

mixtures, the relative intensities of each band are different and do not increase or 

decrease in a recognizable pattern from one dilution to the next. Therefore, it would be 

impossible to use a univariate technique like a Beer-Lambert plot to analyze the change 

in spectral intensity relative to the change in MV concentration.  

Chemometric analysis. Partial least squares (PLS) regression models was 

executed for quantitative analysis of the six measles samples.  This chemometric 

analytical tool is a multivariate calibration tool that is more robust than univariate 
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methods and is able to find commonalities amongst complex datasets.  Note that we 

realized that the relative intensities of the bands in the dilution mixtures did not have a 

recognizable pattern relative to the change in concentration. For example, in Figure 3.5 

the intensity of the 1295 cm-1 for the CH2 deformation in the spectra of the MV samples 

does not change linearly from the highest viral concentration to the lowest.  The intensity 

of the band is approximately 10,000 counts for the positive control and 68,000 counts for 

the negative control. The band however does not decrease from dilution-1 to dilution-4, 

in this case it goes from 135,000, 150,000, 85,000, to 80,000 counts, respectively. 

Likewise, this pattern was earlier explained in Figure 3.1 for raw MV samples. Therefore, 

univarate techniques like the Beer-Lambert law would not be sufficient for determining a 

linear relationship between the change in MV concentration and change in spectral 

intensity of a single band. Consequently, PLS was used to create linear regression models 

by inputting the spectral data in the 400 to 800 cm-1 range.  

A PLS model was created using the purified spectral data, seen in Figures 3.6. In 

this model, six classes were included representing the six MV samples: positive control, 

negative control, and dilutions 1-4. The PLS models were generated using cross 

validation (Venetian blinds, 9 splits). Cross validation builds a classification model with 

90% of the spectra and then test the remaining 10% to measure the integrity of the model. 

The process is performed iteratively, for a total of 10 iterations, until each sample is 

withheld from the model and tested as an unknown. In Figure 3.6, each data point (score) 

is representative of a single SERS spectrum at various concentrations. The measured 

values were chosen at ratios relative to the amount of positive control (1.0) and negative 

control (0.0) sample within the mixture. The regression curve illustrates the linearity 
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between the measured and predicted values of each sample. The linearity of the purified 

MV sample data in Figure 3.6 is high (R2=0.99) and the RMSECV value is low 

(RMSECV=0.024). This is particularly impressive given that the linearity of the raw 

sample data is considerable lower (R2=0.63) than that of the purified sample data 

(R2=0.99). 

The validity of the PLS model can also be analyzed by looking at the average y-

predicted values and its associated error (i.e. RSD). In Table 3.3, the average y-measured 

and y-predicted values for the purified MV samples are given, as well as the standard 

deviation (SD) and RSD. In Table 3.3, the SD is lower for dilution-4 than dilution-1; 

however, the RSD is much lower. This occurs because lower dilutions are closer to being 

zero and a standard of 0.01 will have a greater influence the closer the concentration. It is 

noticeable that the RSD becomes greater with each dilution. In contrast, the RSD for the 

raw data is much higher than the purified data since the reproducibility of the spectra is 

much lower (Table 3.1).  This was expected since the crystal structures that form on the 

surface for the Ag nanorods substrates, due to the presence of the buffer, usually cause 

the reproducibility of SERS spectra to decrease along with the intensity of the spectral 

bands. Overall, the spectral reproducibility and PLS model linearity of the purified 

spectral data is much higher than the raw data. Therefore, it is advantageous to purify 

MV samples to allow for increased spectral reproducibility, as well as low-level detection 

of viral sample. Having the ability of detecting low-levels of MV samples with low error 

(i.e. RMSECV) suggests that one can use SERS-Ag nanorods substrates and PLS to 

estimate the limit of detection of MV samples. 
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Statistical analysis. The limit of detection (LOD) is defined as the smallest 

amount of an analyte that can clearly be distinguished from the blank.155,162 The LOD of 

molecular substances can be estimated using statistical methods like the Student’s T-test 

as described in previous methods.162 In this portion of the study, only purified MV 

sample data was considered. Likewise, a null hypothesis was made: that the predicted 

concentration of the lowest dilution in Figure 3.5 (concentration= 5.4x101 ± 0.2 x101 

pfu/ml) was near the LOD. From Table 3.1, the y-predicted values for the 15 scores of 

the lowest dilution were compared to the values for the negative control. The Data 

Analysis toolbar in Microsoft Excel (For Windows XP, Microsoft Corporation, Santa 

Rosa, CA) was used to analyze the data using the Student’s T-Test: Two-Sample 

Assuming Equal Variances. According to the t-test, if t stat < t critical two-tail the null is 

rejected. In Table 3.4, since t stat (3.64) > t critical two-tail (2.76) it was valid to assume 

that the mean y-predicted concentration of the lowest MV dilution (dilution-4) was near 

the mean y-predicted negative control, and thereby also near the LOD. Using the 

relationship that the LOD is equal to the estimated mean of the blank sample plus 2 or 3 

standard deviations (LOD=  + σt) and inputting this LOD value into the y-value of 

equation of the fit line (Figure 3.6), the actual LOD was determined to be (7.07 ± 0.4) x 

101 pfu/ml.  

3.5 Discussion  

The study reported here illustrates the utility of SERS for the fast and accurate 

detection and quantification of measles virus samples at various concentrations. This 

experiment demonstrates that SERS can be used as a label-free technique to detect the 

measles virus, and that the method could possibly provide useful quantitative information 
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about varying concentrations of measles virus samples. In the past, SERS has been 

coupled with chemometrics as a qualitative methodology. It has been used for the 

differentiation of virus genotypes using multivariate chemometric methods like PLS-DA, 

PCA, and HCA.10,18,81 Univariate methods, however, cannot be used to relate the changes 

in spectral intensity with concentration amongst molecular samples. Such a concept can 

be seen in Figure 3.1 where the change in intensity of the 1295 cm-1 band is not related to 

the variation in viral concentration. SERS, nonetheless, can be utilized as a quantitative 

method when combined with chemometric methods like PLS.178  

PLS is a multivariate technique that decomposes complex spectral data into 

corresponding models using newly acquired variables. Using PLS for our study, the 

noticeable contributions of each sample to the variance were visually observed by 

looking at the standard deviation (SD) in each class (Figure 3.2). The relative standard 

deviation (RSD) for rose with the decrease of viral concentration. For example, the RSD 

of dilution-1 class (6.0 x102 ± 9.6 x102 pfu/ml) was 52% whereas the RSD of the dilution-

3 class (2.4 x102 ± 0.4 x102 pfu/ml) was 191% (Figure 3.2). It was expected that the RSD 

would increase with a decrease in viral concentration but not to a value larger than the 

RSD of the negative control (65%). Judging by the large RSD values of the sample 

dilutions, and RMSECV of the model (0.14), it was concluded that the PLS could not 

accurately estimate the concentration of the raw samples. It was hypothesized that 

sampling issues caused the error of the model. This theory was formulated by visual 

inspection of Ag nanorods substrate surfaces that contained MV samples. Apparent on 

these samples were large particles caused either by large cellular debris and crystal-
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forming small molecules within the MV samples. Purifying MV samples using various 

methods tested the hypothesis.   

Initially, two purification methods were used to remove substances that were 

thought to lower the sensitivity of the SERS assay: centrifuge filter tubes and desalt spin 

columns. qRT-PCR was used to verify the presence of MV RNA in purified samples. 

PCR results confirmed that RNA was present in purified samples but highest for samples 

purified using desalt spin columns (Table 3.3). In a comparison between the spectra of 

purified measles samples with literature references of Raman band assignments, the 

major bands were assigned to components of the virus and cell culture media (Figure 

3.).163 For example, bands at 1650, 1606, and 1290 cm-1 could be visualized for the 

presence of amide I, phenylalanine, and amide III, respectively, in the purified samples. 

Likewise, bands in the range of 600 and 800 cm-1 were representative of nucleotides (i.e. 

cytosine, guanine) present in measles samples. A PLS model was created using the 

spectral data of the purified MV samples. This model gave high linearity (R2=0.99) and a 

low RMSECV value (0.024). Additionally, the RSD values of the dilutions were less than 

33%, excluding dilution-4. The RSD value of the dilution-4 was expected to be high 

because it exceeding the limit of detection. When comparing the y-predicted data of 

dilution-4 with the negative control, it was concluded that the limit of detection (LOD) of 

this assay was (7.07 ± 0.4) x 101 pfu/ml. This estimation of the LOD is epidemiologically 

relevant because viral shedding of measles by an infected host can be within the range of 

1 to about 104 pfu/ml and scientists can seroconvert with as little as 10 pfu of the virus 

although the vaccine dosage is approximately 103 pfu/ml.  Nonetheless, more testing 

should be done to measure lower levels of the virus using the SERS-AgNR assay.   
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Table 3.1 PLS regression model parameters and results for raw MV samples at 
various concentrations. A Venetian blinds algorithm with 9 splits was used for cross 
validation.  
 

 
 



 131 

 
 
 
 
 
 
Table 3.2 Real time Polymerase Chain Reaction results for MV samples that were 
purified using centrifuge tube filters (filter) and desalt spin columns (column), compared 
to samples that were not purified (raw). The cyclic threshold and quantity of each 
samples is given and were obtained from a calibration plot of the MV standards 1-4. 
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Table 3.3 PLS regression model parameters and results for purified MV samples at 
various concentrations. A Venetian blinds algorithm with 9 splits was used for cross 
validation.  
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Table 3.4 The limit of detection, the smallest amount that is clearly distinguishable 
from the blank, can be estimated using statistical measures like the student’s t-test. The 
lowest dilution (dilution-4) was estimated to be near the limit of detection. The Student’s 
T-Test: Two-Sample Assuming Equal Variances was used used to test the null 
hypothesis, that the predicted concentration of dilution-4 was near that of the negative 
control. Since t stat > t critical two-tail the null was not rejected.  
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Figure 3.1 Fifteen SERS spectra of raw ( A) positive control (6.0 x103 ± 1.0 x103 
pfu/ml), (B) negative control, (C) Dilution-1 (6.0 x102 ± 9.6 x102 pfu/ml), (D) Dilution-2 
(4.2 x102 ± 0.7 x102 pfu/ml), (E) Dilution-3 (2.4 x102 ± 0.4 x102 pfu/ml), and (F) 
Dilution-4 (6. 0 x101 ± 1.0 x101 pfu/ml) samples. Individual spectra collected from 
separate substrates are presented to illustrate the spectral reproducibility. All spectra have 
been baseline corrected. 
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Figure 3.2  The intensity at two different Raman shifts  (A) 660 and  (B)1600 cm-

1relative to the dilutions of the Edmonston strain.  The plots demonstrate the difficulty of 
using a single band from the spectra of the diluted MV samples to show the change in 
intensity relative to the concentration. At 600 cm-1, the band increases in intensity from 
dilution-1 to diluiton-2 but decreases from dilution-2 to dilution-3. However, at 1600 cm-

1, the intensity of the band increases from dilution-1 to dilution-3 but not linearly. 
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Figure 3.3 PLS results for raw Edmonston strain (MV) samples at various 
concentrations. The first to last classes go from left to right and represent the positive 
control, dilution-1, dilution-2, dilution-3, dilution-4, and negative control.  Solid line is 
the equation of the line formed by the various classes. 
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Figure 3.4 Microscopic images of (A) a bare Ag nanorod substrate and substrates 
containing 1 µL of a MV sample  (B) that was not purified, (C) purified with a centrifuge 
tube filter, and (B) purified with a desalt spin column. The sample purified with the 
centrifuge tube filter is darker in color and contains a crystal-forming substance. 
Whereas, the sample purified with the desalt spin column is fairly clear and contains no 
crystal-forming substances.    
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Figure 3.5 Fifteen SERS spectra of purified (A) positive control (5.4 x103 ± 0.2 x103 

pfu/ml), (B) negative control, (C) Dilution-1 (5.4 x102 ± 0.2 x102 pfu/ml), (D) Dilution-2 
(3.8x102 ± 0.6 x102 pfu/ml), (E) Dilution-3 (2.2x102 ± 0.3 x102 pfu/ml), and (F) Dilution-
4 (5.4x101 ± 0.2 x101 pfu/ml) Edmonston strain samples . Individual spectra collected 
from separate substrates are presented to illustrate the spectral reproducibility. All spectra 
have been baseline corrected. 
 
 
 
 
 
 
 
 
 
 
 
 
 



 139 

 
Figure 3.6 PLS results for purified Edmonston strain (MV) samples at various 
concentrations. The first to last classes go from left to right and represent the positive 
control, dilution-1, dilution-2, dilution-3, dilution-4, and negative control.  Solid line is 
the equation of the line formed by the various classes.  
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Chapter 4 

Conclusion and Future Work 

Measles is a very contagious disease known by a prodromal illness of fever, 

cough, and conjunctivitis followed by the appearance of a generalized maculopapular 

rash. The disease initiates in the respiratory system caused by the measles virus, which is 

spread by aerosol or respiratory droplets entering the respiratory tract.  Traditionally, the 

MV can be detected using polymerase chain reaction (PCR), enzyme-linked 

immunosorbent assay (ELISA), and indirect immunofluorescent antibody assay (IFA).2,62 

However, each technique is not time efficient and can lead to false negative results.  The 

difficulties in MV detection have driven the search for new methods for detection that 

overcome the limitations associated with conventional methods. In 2004, Hoang et al. 

demonstrated that SERS may be used as a label-free spectroscopic method for detecting 

individual MV strains.  Since SERS is a spectroscopic technique in which the analyte is 

adsorbed onto a nanometrically roughened metal surface that serves as a platform to 

enhance the Raman scattered signal by up to 14 orders of magnitude.7,181 Hoang et al. 

established that Ag nanorod arrays fabricated by an oblique angle deposition method 

produce highly sensitive and reproducible SERS substrates with enhancements >108.14,179 

The fast and low-level detection of the virus is so pertinent because the measles infection 

has an average incubation period of 14 days and infectivity from 2 to 4 days prior, until 2 

to 5 days following the onset of the rash. The onset of the rash coincides with the 

appearance of the immune response and initiation of virus clearance. Therefore, a 
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sensitive, quick, and low-level detection technique is important for the surveillance of the 

measles.  

In the past, studies have demonstrated the capability of using Ag nanorod-based 

SERS to detect the measles virus.18 In these studies, Hoang et al. proved that the SERS 

technique is sufficiently sensitive to identify the molecular spectra of individual MV 

strains.182 The selectivity of the technique was illustrated by chemometric analysis of the 

spectral data.  Chemometrics is a multivariate statistics pattern recognition technique 

used to group variables together rather than focus on only one variable at a time. For the 

case of studying the measles, dimension reduction methods like principle components 

analysis (PCA), Hierarchical Cluster Analysis (HCA) and Principle Component Analysis 

(PCA) were used to differentiate amongst various genotypes of the measles, specifically 

the H1, D4, and A strains. Since the measured Raman shifts were also characteristic of 

the chemical composition of the samples, SERS presented a helpful method for 

vibrational analysis of the virus samples. 

Although, Ag nanorods-based SERS has been employed with chemometrics to 

provide qualitative data, it has been recently utilized to perform quantitative analysis.178 

Using Partial Least Squares (PLS) to analyze SERS spectral data, PLS models (i.e. 

regression curves) can be produced and used to determine the limit of detection of 

measles viral samples. PLS is a supervised multivariate analytical technique that 

decomposes spectral data into loadings and scores, building corresponding predicted 

plots of the sample concentrations. This multivariate technique is suitable for the analysis 

of viral samples because complex mixtures—especially ones containing proteins, RNA, 
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and amino acids—allow for fast and simultaneous determination of each component in a 

mixture without time-consuming separations and with minimum sample preparation.  

The use of Ag nanorods-based SERS with chemometrics is particularly important 

in regards to achieving low-level detection. It was initially assumed that low-level 

detection and consequently the limit of detection for common strains of the measles could 

be determined because of the sensitivity and selectivity available with the Ag nanorods-

SERS assay and chemometric PLS method, respectively. In past studies SERS substrates 

have demonstrated extreme sensitivity (~109 enhancement factor) and with minute 

specimen volumes (0.8 ± 0.3 µL) without biochemical manipulation.14 In this study we 

have used Ag nanorods-based SERS assays with PLS to quantify MV samples. PLS 

regression curves accurately (RMSECV=0.024) estimated low molecular concentrations 

(103 -10 pfu/ml) of MV samples with high linearity (R2=0.99). We estimated the limit of 

detection (LOD) using this model to be (7.07 ± 0.4) x 101 pfu/ml, which using lower 

concentrations to train the PLS model may lead to even lower detection limits.178 This is 

epidemiologically relevant because viral shedding of measles by an infected host can be 

within the range of 1 to about 104 pfu/ml and scientists can seroconvert with as little as 

10 pfu of the virus although the vaccine dosage is approximately 103 pfu/ml.     

In conclusion, the data from the Ag nanorod-SERS based assays and chemometric 

studies proved that the two methods, when used together, could serve as potential 

spectroscopic techniques for measles quantification. Specifically, the high sensitivity of 

the SERS technique allows for the quick and accurate detection of the MV at low viral 

concentration.  In the past, chemometrics (i.e. PLS-DA) has proven to be a selective 

technique for the classification of various MV genotypes. PLS, the chemometric 
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technique that PLS-DA was based on, will therefore offer the same selectivity. Therefore, 

the detection of the measles virus at various concentrations demonstrates the ability of Ag 

nanorod substrates and PLS to provide the sensitivity and selectivity essential for low-

level viral detection of the MV.  
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