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Abstract

Bandits constitute a classical framework for decision-making under uncertainty. Stochastic contex-

tual bandits are a variant of bandits, which consist of multiple arms with each own stochastic context.

In this setting, the goal is to learn the arms of highest reward subject to contextual information, while

the unknown reward parameter of each arm needs to be learned. To maximize cumulative reward, an

adaptive policy is required to manage the delicate trade-off between learning the best (i.e., exploration)

and earning the most (i.e., exploitation). To study this problem, the existing literature mostly considers

perfectly observed contexts. However, the setting of partial context observations remains unexplored to

date, despite being theoretically more general and practically more versatile. Thus, we consider partial

observations, which are noisy linear functions of the unobserved context vectors. Another important issue

for contextual bandits is to find the optimal algorithm for the exploration-exploitation trade-off based

on different reward structures. We suggest two different reward setups: shared across all arms and arm-

specific. We study two different policies, which are Greedy and Thompson sampling algorithms, for these

two different reward setups. This study shows that Greedy algorithm has the optimal rate performance in

the shared parameter setup, while Thompson sampling successfully balances exploration and exploitation



in the arm-specific reward parameter setup. Specifically, We establish the following primary results for

these algorithms in two reward setups: (i) Greedy algorithm has a high-probability upper bound for regret

in the shared parameter setup and (ii) Thompson sampling has poly-logarithmic high-probability upper

bounds for regret in both parameter setups. Extensive numerical experiments with both real and synthetic

data are presented as well, corroborating the efficacy of Thompson sampling and Greedy algorithm. To

establish the results, we utilize martingale techniques and concentration inequalities for dependent data

and also develop novel probabilistic bounds for time-varying suboptimality gaps, among others. These

techniques pave the road towards studying other decision-making problems with contextual information.

Index words: [Contextual Bandits, Greedy Algorithm, Partial Observability, Reinforcement

Learning, Thompson Sampling]
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Chapter 1

Introduction

1.1 Overview

In the realm of personalized decision-making, contextual bandits stand out as powerful tools for sequen-

tial actions in dynamic environments. This model leverages contextual information to tailor decisions to

individual users, striking a balance between exploration and exploitation to maximize long-term rewards.

The range of applications for contextual bandits is extensive and encompasses various scenarios where

time-varying and action-dependent information play a crucial role. These applications include personal-

ized recommendation systems for news articles, interventions in healthcare settings, targeted advertising

campaigns, and the optimization of clinical trials (Bouneffouf et al., 2012; Durand et al., 2018; Li et al.,

2010; Nahum-Shani et al., 2018; Ren & Zhou, 2020; Tewari & Murphy, 2017; Varatharajah et al., 2018).

However, in many real-world applications such as robot control and image processing (Åström, 1965;

Dougherty, 2020; Kaelbling et al., 1998; Kang et al., 2012; Lin et al., 2012; Nagrath, 2006), the full context

may not be directly observable. leading to uncertainty and challenges in decision-making. Neglecting the

imperfections in observations can compromise decisions, as seen in clinical scenarios where disregarding

uncertainty in the medical profiles of septic patients can lead to adverse outcomes (Gottesman et al., 2019).
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This dissertation investigates the application and enhancement of partially observable contextual bandit

algorithms to address contextual uncertainty in personalized decision-making contexts.

The ubiquity of partially observable contexts arises in various domains, ranging from online advertis-

ing to healthcare interventions and recommender systems. In these settings, certain contextual features

may be hidden or only partially observed, posing challenges for traditional contextual bandit algorithms

that assume complete observability. Failure to account for partial observability can lead to suboptimal

decisions and missed opportunities for learning from available data.

Decision-making policies for contextual bandits are extensively investigated in the literature, assuming

that the context vectors are fully observed. One popular policy for contextual bandits is Upper-Confdent-

Bounds (UCB) (Abbasi-Yadkori et al., 2011; Auer, 2002; Chu et al., 2011). The key idea behind UCB is to

maintain a reward model, where the uncertainty about reward parameters is captured using confidence in-

tervals. Thompson Sampling is another ubiquitous policy for contextual bandits (Agrawal & Goyal, 2013;

Chapelle & Li, 2011; Modi & Tewari, 2020). Thompson sampling is a Bayesian approach that samples

from a posterior distribution over the reward parameters, allowing for a more probabilistic exploration

strategy. In recent findings, it has emerged that Greedy policies exhibit near optimality in specific contex-

tual bandit scenarios such as the setup that a reward parameter is shared over all arms (Raghavan et al.,

2023), as well as two-armed contextual bandits (Bastani et al., 2021).

The performance of policies are evaluated based on the measurement called regret, which is the ex-

pected decrease in cumulative reward of a policy as compared to the optimal policy. Upper bounds for

regret of various algorithms for contextual bandits have been extensively studied in early literature about

adversarial contexts, particularly focusing on high-probability problem-independent regret. First, square

regret bounds of UCB-type algorithms have been established (Abbasi-Yadkori et al., 2011; Auer et al.,

2002). Next, regret bounds that grow as the square root of time were established for adversarial contextual

bandits (Abeille & Lazaric, 2017; Agrawal & Goyal, 2013; Russo & Van Roy, 2014).However, in the case

of the stochastic context assumption, which represents a special case within adversarial contexts, the effec-
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tiveness of the aforementioned bandit policies remains uncertain. Our study addresses this uncertainty,

leveraging the stochastic nature of contexts to derive tighter regret bounds.

1.2 Partially Observed Stochastic Contextual Bandits

In this dissertation, we study partially observable stochastic contextual bandits. The probabilistic structure

of the problem under study, as time progresses, is as follows: At every time step, there are N available arms,

each of which has an unobserved context denoted by xi(t) for arm i at time t. The context vectors are

generated independently of the previous contexts and the other arms from a distribution. Moreover, the

linear noisy transformed context of xi(t) is yi(t) generated based on

yi(t) = Axi(t) + ξi(t), (1.1)

whereA is the sensing matrix capturing the relationship betweenxi(t) andyi(t) andξi(t) is an observation

noise. The stochastic rewardri(t)of arm i is determined by the context vector and the unknown parameter

as follows:

ri(t) = fr(xi(t), i) + εi(t),

where fr is a linear function of context xi(t) and εi(t) is a reward noise. At each time t, the agent chooses

an arm a(t) given observations {yi(t)}Ni=1 and receives the reward ra(t)(t). Here, we consider two types

of fr: 1) fr(xi(t), i) = xi(t)
⊤µ⋆, where the reward parameterµ⋆ is shared over all arms; 2) fr(xi(t), i) =

xi(t)
⊤µi, where the parameter µi is the arm-specific reward parameter for the i-th arm.

It is worthwhile noting that contexts are not accessible for all policies including the optimal one.

Accordingly, the optimal policy is the one maximizing the expected reward given the observation y(t) =
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{yi(t)}Ni=1. The arm chosen by the optimal policy is the optimal arm, which is

a⋆(t) = argmax
i

E[ri(t)|y(t)].

The primary objective of this dissertation is to evaluate the performance of policies that are designed to

maximize the cumulative reward. To proceed, we consider a performance measure, regret, which is the

expected decrease in cumulative reward caused by uncertainty as compared to the optimal policy. Regret

of a policy is written as

Regret(T ) =
T∑
t=1

E[ra⋆(t)(t)− ra(t)(t)|y(t)],

where a(t) is the chosen arm at time t by the policy.

In this dissertation, we perform regret analysis under three different setups: 1) the sensing matrix A is

known and invertible, in a shared parameter setup where contexts, reward noises, and observation noises

have Gaussian distributions.; 2) Similar to the first setup, with the exception of a rectangular sensing

matrix A; 3) the sensing matrix A is unknown and can be rectangular, in the arm-specific parameter setup

where contexts, reward noises, and observation noises have sub-Gaussian distributions. Across these

setups, assumptions become progressively more relaxed. In the first setup, we analyze the Thompson

sampling algorithm, so-called the posterior sampling algorithm, which makes decisions as if samples from

the (pseudo) posterior distribution are the truth. In the second setup, we consider the greedy algorithm

taking action based on the current best estimates of reward for myopic reward without consideration

of exploration. Lastly, in the third setup, we again employ the Thompson sampling algorithm, as the

arm-specific parameter setup necessitates a delicate balance of exploration and exploitation.

The structure of this dissertation is outlined as follows: Chapter 2 presents an analysis indicating that

the Thompson sampling algorithm exhibits a logarithmic upper bound for expected regret within the first

setup. Following this, Chapter 3 illustrates how the Greedy algorithm possesses a high-probability upper

4



bound for regret in the second setup. Additionally, Chapter 4 demonstrates that Thompson sampling

yields a poly-logarithmic high-probability upper bound for regret in the third setup. Finally, Chapter 6

outlines avenues for future research.
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Chapter 2

Analysis of Thompson Sampling

for the Shared Parameter Setup

2.1 Introduction

Contextual Multi-Armed Bandits (CMAB) are canonical models in both theory and applications of

Reinforcement Learning (RL). In this setting, there is a set of arms whose rewards depend on their mul-

tidimensional context vectors as well as the underlying parameter that reflects the weights of each context

component. Thanks to their ability in modeling individual characteristics, CMAB models are widely

used in different areas of automation and decision-making. For example, in personalized recommenda-

tion of news articles, CMAB models can raise the click rate by 12.5%, compared to context-free bandit

algorithms (Li et al., 2010). In dynamic treatment of mice with skin tumors, adopting biological factors

as contexts, leads to a 50% increase in life duration (Durand et al., 2018). CMAB can also provide a useful

framework for sequential decision-making in precision health by incorporating contexts such as location,

calendar busyness, and heart-rate (Tewari & Murphy, 2017).
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The existing literature on bandit models for decision-making under uncertainty goes back at least to

the seminal work of Lai and Robbins (Lai & Robbins, 1985) that introduces Upper Confidence Bound

(UCB) algorithm. Broadly speaking, UCB prescribes acting based on optimism-based approximations of

the unknown parameters, and is efficient in both discrete and continuous spaces (Abbasi-Yadkori et al.,

2011; Faradonbeh et al., 2020c). Ensuing work establishes logarithmic regret bounds of UCB that hold

uniformly over time (Auer et al., 2002). The sequence of papers focusing on CMAB models and theoret-

ical performance guarantees of associated reinforcement learning policies continues by showing that the

UCB algorithm appropriately addresses the exploitation-exploration trade-off (Auer, 2002), followed by

a finer analysis that improves dependence on dimensions (Abbasi-Yadkori et al., 2011), and regret bounds

for linear payoffs (Chu et al., 2011).

Another ubiquitous reinforcement learning policy that is usually faster than UCB, yet performs

equally efficient, is Thompson Sampling (Chapelle & Li, 2011), (Russo & Van Roy, 2014). The main

idea of Thompson Sampling is to select actions based on samples drawn from a posterior distribution

over unknown parameters (Thompson, 1933). The posterior is updated by the observed rewards, and bal-

ances exploring for better options and more accurate learning, versus exploiting the available information

to maximize earning. Theoretical analyses start with a regret bound for multi-armed bandits (Agrawal

& Goyal, 2012), and continue to CMAB counterparts (Agrawal & Goyal, 2013). Moreover, Thompson

Sampling has favorable performances in continuous spaces (Faradonbeh et al., 2020b) and large-scale

problems (T. Hu et al., 2019). Other variants and more discussions can be found in a recent tutorial by

Russo et al. (Russo et al., 2017).

Further adaptive policies for CMAB models include greedy-type algorithms that are efficient if the

context distribution satisfies some diversity conditions (Raghavan et al., 2020), (Bastani et al., 2021).

Moreover, the existing literature consists of studies on non-linear reward functions (of the contexts)

under technical assumptions such as Lipschitz continuity. That includes, near-optimal regret bounds

obtained by using partitioning techniques on the context and action space (Slivkins, 2011), and utilizing
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non-parametric regression techniques for unknown non-linear reward functions (Y. Hu et al., 2020).

Finally, multi-agent settings and those with latent structure of users’ reward functions are studied, as well

as approaches aiming to provide personalized recommendations for new users (Hong et al., 2020; Maillard

& Mannor, 2014; Zhou & Brunskill, 2016).

In many applications, context vectors are observed in a partial, transformed, or noisy manner. For

example, it includes situations that inquiring the entire feature vector is too expensive, context variables

correspond to physically distant stations, data is provided by a network of sensors, or privacy consider-

ations restrict perfect context observations (Bensoussan, 2004). For restricted contexts, reinforcement

learning algorithms together with combinatorial search algorithms demonstrate competitive empirical

performance (Bouneffouf et al., 2017). In the presence of known side-information about unobserved

parts of the contexts, ridge regression methods together with projections and UCB algorithms lead to

improved efficiency (Tennenholtz et al., 2021). Another ubiquitous setting for studying control policies

under partial observations is the state space model (Durbin & Koopman, 2012; Nagrath, 2006; Roesser,

1975). In this setting, unobserved states are estimated based on output observations using methods such

as Kalman filter (Kalman, 1960; Stratonovich, 1959, 1960), and captures important applications such as

robot navigation (Howard et al., 2008; Surmann et al., 2020).

When the number of control actions is finite, CMAB models are widely used for data-driven control.

However, unlike the aforementioned frameworks with partial observations, proper designs and compre-

hensive analyses of decision-making algorithms in contextual bandits with imperfect observations are

not currently available. Accordingly, we study (a slightly modified) Thompson Sampling reinforcement

learning algorithm for CMAB models with partially observable contexts. Note that because contexts are

the main factors in determining the optimal arm, additional learning procedures are needed to estimate

unobserved contexts, and so modifications in the algorithm are inevitable.

Under minimal assumptions, we establish theoretical performance guarantees showing that the regret

(i.e., the cumulative decrease in rewards due to uncertainty) scales as the logarithm of time, the logarithm

8



of the number of arms, and the dimension. We present an effective method for estimating unobserved

contexts based on transformed noisy outputs, and use them to form the posterior belief about the un-

known parameter, which determines the optimal candidate arm at every time step. Furthermore, we

specify the rates at which Thompson Sampling learns the unknown parameter. To obtain the results,

certain technical tools from the theory of martingales are leveraged, and novel methods are developed

for precisely specifying the behavior of the posterior distribution and its effect on the efficiency of the

algorithm.

The remainder of this chapter is organized as follows. In Section 2.2, we formulate the problem and

discuss preliminary results. In Section 2.3, we present the reinforcement learning algorithm that utilizes

Thompson Sampling for partially observable CMAB models. Lastly, a theoretical analysis of the algorithm

is provided in Section 2.4, followed by numerical illustrations in Section 2.5.

The following notation will be used throughout this chapter. For a matrix A ∈ Cp×q, A⊤ denotes its

transpose, and the trace ofA is denoted by tr(A). For a vector v ∈ Cd, we use the Euclidean norm ||v|| =

(
∑d

i=1 |vi|2)1/2, and for matrices, we use the operator norm; ||A|| = sup||v||=1 ||Av||. Further, −→u =

u/||u|| is the unit vector indicating the direction of u, and C(A) denotes the column space of the matrix

A. Finally, the sigma-field generated by random vectors {X1, ..., Xn} is denoted by σ(X1, . . . , Xn).

2.2 Problem Statement

We consider the following partially observed contextual multi-armed bandit (POCMAB) problem. Sup-

pose that a slot machine with N arms is given, and each arm i ∈ {1, · · · , N} has the unobserved d-

dimensional contextxi(t), which is generated independently fromN(0d,Σx), whereΣx is the covariance

matrix of xi(t). These contexts determine the rewards: At each time step t = 1, 2, . . . , the arm a(t) is

selected, which generates the reward ra(t)(t) = xa(t)(t)
⊤µ⋆ + εa(t)(t), where xa(t)(t) is the context of

the selected arm, µ⋆ is the unknown true parameter, and εa(t)(t) is the reward observation noise with the

9



distribution N(0, σ2). The observations at time t consist of the output vectors {yi(t)}1≤i≤N , generated

according to yi(t) = Axi(t)+ ξi(t), where ξi(t) is the output observation noise that has the distribution

N(0d,Σξ) and Σξ is the covariance matrix of yi(t) given xi(t). Further, the matrix A ∈ Rd×d captures

the relationship between the output and the context. For ease of presentation, we assume that A is a

known non-singular square matrix.

The goal is to design a reinforcement learning policy to select an arm at every time step, such that

the expected reward is maximized, based on the information available at the time. That is, at time t, the

goal is to find the optimal arm a⋆(t) = argmax1≤i≤N E[ri(t)|yi(t)]. The data available at time t, based

on which we want to select a⋆(t), consists of the outputs yt = {yi(τ)}1≤i≤N, 1≤τ≤t, the rewards of the

arms selected so far rt−1 = {ra(τ)(τ)}1≤τ≤t−1, and the previously selected arms at−1 = {a(τ)}1≤τ≤t−1.

Note that since the context vectorsxi(t) are not observed, the optimal arma⋆(t)must be chosen according

to a context estimate x̂i(t), based on the observations {yi(t) : i = 1, . . . , N}. It is easy to see that it

suffices to select

a⋆(t) = argmax
1≤i≤N

x̂i(t)
⊤µ⋆, (2.1)

where x̂i(t) is the conditional expectation of xi(t) given yi(t) (the output observation of the ith arm at

time t).

Due to uncertainty about the true parameter µ⋆, a reinforcement learning algorithm incurs a perfor-

mance degradation compared to the optimal policy that knows the true parameter µ⋆, and selects the

optimal arms {a⋆(t)}t≥1, at every time step. Accordingly, the performance of reinforcement learning

algorithms is commonly assessed by the cumulative decrease in rewards, which is called regret, and is

defined as

Regret(T ) = E

[
T∑
t=1

ra⋆(t)(t)− ra(t)(t)

]
. (2.2)
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Above a(t) is the arm selected by the reinforcement learning policy under study. In the sequel, we present

the Thompson Sampling algorithm for POCMAB models (Algorithm 1), and establish a regret bound

for that based on d,N, T .

2.3 Reinforcement Learning Algorithm

Now, we explain a reinforcement learning algorithm that leverages Thompson Sampling to learn to maxi-

mize the reward in the POCMAB problem above, based on the output data at the time. At a high level,

the main idea of the algorithm is that we maximize the expected value of the reward ri(t) given the output

yi(t), because the contexts {xi(t)}1≤i≤N are not observed. To do so, using conditional expectation with

respect to the observations, the regret in (2.2) can be written as

Regret(T ) = E

[
T∑
t=1

E
[
ra⋆(t)(t)− ra(t)(t)

∣∣ {yi(t)}1≤i≤N

]]
. (2.3)

Note that depending on the problem understudy, technically different definitions of regret are considered

in the literature (Bubeck & Cesa-Bianchi, 2012). The objective of the proposed reinforcement learning

algorithm is to choose the arm a(t) that minimizes the conditional expected reward gap given the obser-

vations {yi(t)}1≤i≤N,;

E

[
T∑
t=1

ra⋆(t)(t)− ra(t)(t)

∣∣∣∣∣ {yi(t)}1≤i≤N

]
, (2.4)

at each time t, and thereby aims to minimize the regret in (2.2).

Technically, to find a(t) minimizing the conditional expected reward gap in (2.4), we use the con-

ditional distribution of the reward ri(t) given yi(t), which is derived in Appendix. The conditional

11



distribution of ri(t) given yi(t) is

N
(
(Dyi(t))

⊤µ⋆, µ
⊤
⋆ (A

⊤Σ−1
ξ A+ Σ−1

x )−1µ⋆ + σ2
)
, (2.5)

where D = (A⊤Σ−1
ξ A+ Σ−1

x )−1A⊤Σ−1
ξ is a matrix reflecting the average effect of yi(t) on ri(t). Next,

let

x̂i(t) = (A⊤Σ−1
ξ A+ Σ−1

x )−1A⊤Σ−1
ξ yi(t) = Dyi(t). (2.6)

In fact, x̂i(t) is the conditional expectationE[xi(t)|yi(t)]. Putting (2.5) and (2.6) together, the conditional

expected reward gap in (2.4) can be written as

E
[
ra⋆(t)(t)− ra(t)(t)

∣∣ {yi(t)}1≤i≤N

]
= E

[
E
[
ra⋆(t)(t)− ra(t)(t)|xi(t)

]∣∣ {yi(t)}1≤i≤N

]
= E

[
(xa⋆(t)(t)− xa(t)(t))

⊤µ⋆

∣∣ {yi(t)}1≤i≤N

]
= (x̂a⋆(t)(t)− x̂a(t)(t))

⊤µ⋆. (2.7)

Thus, a policy is designed to choose the arm maximizing x̂i(t)
⊤µ⋆. To ensure that the algorithm performs

enough exploration, we use the sample µ̃(t) from the posterior distribution

N(µ̂(t), B(t)−1), (2.8)

where the posterior mean µ̂(t) and the inverse of the covariance matrix B(t) are as follows:

B(t) = Σ−1 +
t−1∑
τ=1

x̂a(τ)(τ)x̂a(τ)(τ)
⊤, (2.9)

µ̂(t) = B(t)−1

t−1∑
τ=1

x̂a(τ)(τ)ra(τ)(τ). (2.10)
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Based on the estimates of the contexts and the sample µ̃(t), we select a(t) such that

a(t) = argmax
1≤i≤N

x̂i(t)
⊤µ̃(t). (2.11)

Then, we observe the reward ra(t)(t) of the arm a(t), and update the posterior according to

B(t+ 1) = B(t) + x̂a(t)(t)x̂a(t)(t)
⊤, (2.12)

µ̂(t+ 1) = B(t+ 1)−1(B(t)µ̂(t) + x̂a(t)(t)ra(t)(t)). (2.13)

The initial values are µ̂(1) = 0d and B(1) = Σ−1, where Σ is an arbitrary symmetric positive definite

matrix.

Algorithm 1 : Thomson Sampling RL policy for POCMAB
1: Set B(1) = Σ−1, µ̂(1) = 0d

2: for t = 1, 2, . . . , do
3: for i = 1, . . . , N do
4: Estimate context by x̂i(t) in (2.6)
5: end for
6: Sample µ̃(t) from N(µ̂(t), B(t)−1)
7: Select arm a(t) = argmax

1≤i≤N
x̂i(t)

⊤µ̃(t)

8: Gain reward ra(t)(t) = xa(t)(t)
⊤µ⋆ + ϵra(t)(t)

9: Update B(t+ 1) and µ̂(t+ 1) by (2.12) and (2.13)
10: end for

The pseudo-code of Thompson sampling for POCMAB is provided in Algorithm 1. At every time

and for each arm, Algorithm 1 calculates the context estimate x̂i(t) according to (2.6). Then, it chooses

the arm a(t) by (2.11), based on µ̃(t) generated from the posterior in (2.8), and updates µ̂(t) and B(t)

according to (2.12) and (2.13). So, Algorithm 1 selects the arm maximizing x̂i(t)
⊤µ̃(t) as a reliable estimate

of the unknown expected reward at time t.
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2.4 Analysis of Algorithm 1

In this section, we provide theoretical performance guarantees for the reinforcement learning policy in

Algorithm 1, establishing that it efficiently learns optimal decisions from the data of partial observations.

In the first result we show that Algorithm 1 learns the unknown parameter µ⋆, fast and accurately. Then,

in Theorem 2, we provide regret analysis, indicating that the regret of Algorithm 1 scales logarithmically

with both the number of arms N , as well as the time of interaction with the environment T , and scales

linearly with the dimension d.

The following result shows that µ̂(t) is a consistent estimator and its covariance matrix shrinks pro-

portionally to the inverse of the time of interacting with the environment in Algorithm 1. Therefore,

Theorem 1 provides sample efficiency for the Thompson Sampling reinforcement learning policy for

POCMAB in Algorithm 1.

Theorem 1. In Algorithm 1, let µ̂(t) be the parameter estimate at time t, defined by (2.13). Then, we have

lim
t→∞

µ̂(t) = µ⋆, as well as Cov (µ̂(t)) = O(t−1).

Proof. First, for the prior N(0d,Σ) of µ⋆, (2.9) and (2.10) imply that

E [µ̂(t)] = E

[
B(t)−1

t−1∑
τ=1

x̂a(τ)(τ)x̂a(τ)(τ)
⊤µ⋆

]
= (Id − E[B(t)−1]Σ−1)µ⋆. (2.14)

Further, let Ft = σ {{yi(τ)}1≤i≤N, 1≤τ≤t, {a(τ)}1≤τ≤t} be the sigma-field generated by the sequence

of all observations and actions by time t. Given the sigma-field Ft−1, we have

E [µ̂(t)|Ft−1] = E

[
B(t)−1

t−1∑
τ=1

x̂a(τ)(τ)x̂a(τ)(τ)
⊤µ⋆

∣∣∣∣∣Ft−1

]
= (Id −B(t)−1Σ−1)µ⋆,(2.15)

Cov (µ̂(t)|Ft−1) = B(t)−1

(
t∑

τ=1

Var
(
ra(τ)(τ)|Ft−1

)
x̂a(τ)(τ)x̂a(τ)(τ)

⊤

)
B(t)−1

= B(t)−1(B(t)− Σ−1)B(t)−1σ2
ry, (2.16)
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where σ2
ry = Var(ri(t)|yi(t)) = µ⊤

⋆ (A
⊤Σ−1

ξ A+ Σ−1
x )−1µ⋆ + σ2 is derived in Appendix. Using (2.14),

(2.15) and (2.16), we obtain

Cov(µ̂(t)) = Cov(E[µ̂(t)|Ft−1]) + E[Cov(µ̂(t)|Ft−1)]

= E
[
B(t)−1Σ−1µ⋆µ

⊤
⋆ Σ

−1B(t)−1
]
− E

[
B(t)−1

]
Σ−1µ⋆µ

⊤
⋆ Σ

−1E
[
B(t)−1

]
+ E

[
B(t)−1

]
σ2
ry − E

[
B(t)−1Σ−1B(t)−1

]
σ2
ry. (2.17)

Next, we show that lim
t→∞

t−1B(t) is a positive definite matrix. It implies that Cov(µ̂(t)) = O(t−1), since

the other terms in (2.17) are O(t−2), except E [B(t)−1]σ2
ry. For this purpose, let S = (DΣξD

⊤)1/2, and

define

Xt =
t∑

τ=1

(
S−1x̂a(τ)(τ)x̂a(τ)(τ)

⊤S−1 − E[S−1x̂a(τ)(τ)x̂a(τ)(τ)
⊤S−1|Fτ−1]

)
,

Yt =
t∑

τ=1

τ−1(Xτ −Xτ−1).

Then, Xt and Yt are matrix valued martingales adapted to the filtration {Ft}t≥1. To see that, observe

that the following two equivalences

E
[
S−1x̂a(τ)(τ)x̂a(τ)(τ)

⊤S−1
∣∣Ft−1

]
= S−1x̂a(τ)(τ)x̂a(τ)(τ)

⊤S−1, (2.18)

E
[
E
[
S−1x̂a(τ)(τ)x̂a(τ)(τ)

⊤S−1
∣∣Fτ−1

]∣∣Ft−1

]
= E

[
S−1x̂a(τ)(τ)x̂a(τ)(τ)

⊤S−1
∣∣Fτ−1

]
. (2.19)

15



lead to

E [Xt|Ft−1]

=
t∑

τ=1

(
E
[
S−1x̂a(τ)(τ)x̂a(τ)(τ)

⊤S−1
∣∣Ft−1

]
− E

[
E
[
S−1x̂a(τ)(τ)x̂a(τ)(τ)

⊤S−1
∣∣Fτ−1

]∣∣Ft−1

])
=

t∑
τ=1

(
E[S−1x̂a(τ)(τ)x̂a(τ)(τ)

⊤S−1|Ft−1]− E
[
S−1x̂a(τ)(τ)x̂a(τ)(τ)

⊤S−1
∣∣Fτ−1

])
= Xt−1,

(2.20)

for τ < t and

E
[
S−1x̂a(τ)(τ)x̂a(τ)(τ)

⊤S−1
∣∣Ft−1

]
− E

[
E
[
S−1x̂a(τ)(τ)x̂a(τ)(τ)

⊤S−1
∣∣Fτ−1

]∣∣Ft−1

]
= 0d×d,

for τ = t. Further, since E[Xτ |Ft−1] = Xτ , for τ < t, and we have E[Xt|Ft−1] − E[Xt−1|Ft−1] =

0d×d, it holds that

E [Yt|Ft−1] =
t∑

τ=1

τ−1 (E[Xτ |Ft−1]− E[Xτ−1|Ft−1]) =
t−1∑
τ=1

τ−1 (Xτ −Xτ−1) = Yt−1.

Now, define the martingale difference sequence Zt = Xt −Xt−1, and let Xtij be the ijth entry of Xt,

to get

E
[
X2

tij

]
= E

( t∑
τ=1

Zτij

)2
 =

t∑
τ=1

E
[
Z2

τij

]
+ 2

∑
τ1<τ2

E [Zτ1ijZτ2ij] =
t∑

τ=1

E
[
Z2

τij

]
,

using the fact that E [Zτ1ijZτ2ij] = E [Zτ1ijE [Zτ2ij|Fτ2−1]] = 0 for all τ1 < τ2.
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Using the above, we show that Yt is a square-integrable martingale. To that end, since {Xt −Xt−1 :

t ≥ 1} is a martingale difference sequence, we have

E
[
Y 2
tij

]
=

t∑
τ=1

τ−2
(
E
[
X2

τij

]
− E

[
X2

(τ−1)ij

])
=

t∑
τ=1

τ−2E
[
Z2

τij

]
,

where X0 = 0d×d, and Ytij is the ijth entry of Yt. Since E
[
Z2

τij

]
≤ E

[
||S−1x̂a(t)(t)||4

]
, for all τ ,

i, and j, the expectation E[Y 2
tij] is finite. So, by Martingale Convergence Theorem (Doob, 1953), the

martingale Yt converges almost surely to a limit Y , such thatE[|Y |] < ∞. It is straightforward to see that

t−1Xt = Yt− t−1
∑t

τ=1 Yτ . Thus, since lim
t→∞

Yt = Y , the average of the sequence converges to the same

limit as well; lim
t→∞

t−1
∑t

τ=1 Yτ = Y . Thus, t−1Xt converges to 0d×d. To show that limt→∞ t−1B(t) is

a positive definite matrix, decompose Xt as follows:

Xt = S−1(B(t)− Σ−1)S−1 −
t∑

τ=1

E[S−1x̂a(τ)(τ)x̂a(τ)(τ)
⊤S−1|Fτ−1].

Since limt→∞ t−1Xt = 0d×d, we have

lim
t→∞

t−1S−1B(t)S−1 = lim
t→∞

t−1

t∑
τ=1

E[S−1x̂a(τ)(τ)x̂a(τ)(τ)
⊤S−1|Fτ−1]. (2.21)

To proceed, we express the following result about the matrix M =

lim
t→∞

E[S−1x̂a(t)(t)x̂a(t)(t)
⊤S−1|Ft−1], for which the proof is deferred to Appendix. Now, by

(2.21), we have

lim
t→∞

t−1S−1B(t)S−1 = M,
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which according to Lemma 1 is a positive definite matrix. Finally, the latter result, together with (2.17),

implies that

lim
t→∞

tCov (µ̂(t)) = lim
t→∞

tE[B(t)−1]σ2
ry = SM−1Sσ2

ry,

which is the desired result.

Lemma 1. The matrixM = lim
t→∞

E[S−1x̂a(t)(t)x̂a(t)(t)
⊤S−1|Ft−1] is deterministic and positive definite.

Theorem 1 establishes the square-root consistency of the parameter estimate µ̂(t), indicating the Algo-

rithm 1 effectively learns the unknown true parameter µ⋆. Here, the inverse of Cov(µ̂(t)) grows linearly

with time t, only when the smallest eigenvalue of A⊤A is non-zero. If A is singular, the maximum eigen-

value of Cov(µ̂(t)) does not decrease as t becomes larger. This also affects the consistency of learning the

unknown parameter. A similar result holds for the samples µ̃(t), as elaborated in the following corollary,

for which the details are provided in Appendix.

Corollary 1. For the samples {µ̃(t)}t≥1 in Algorithm 1, we have

lim
t→∞

µ̃(t) = µ⋆, Cov(µ̃(t)) = O(t−1).

The following result provides a regret bound, and states that Algorithm 1 is able to efficiently learn

optimal arms in POCMAB.

Theorem 2. For the regret of Algorithm 1, we have

Regret(T ) = O
(
d
√
logN log T

)
.

Before proceeding towards the proof of Theorem 2, we discuss the intuition it provides. Since the

regret at time t grows due to the difference between µ⋆ and µ̃(t), the growth rate of regret depends on
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the shrinkage rate of ||µ⋆ − µ̃(t)||2. According to Corollary 1, the shrinkage rate is O(dt−1). Thus,

aggregating the errors for the time period 1 ≤ t ≤ T , the scaling with respect to T becomes logarithmic

(see (2.31)), while the scaling with d is linear. On the other hand, the regret scales logarithmically slow with

the number of arms N , becauseN has two opposite effects. On the one hand, sinceN is the total number

of options, the probability of choosing a sub-optimal arms increases as N grows. On the other hand, the

difference between the reward of the optimal arm and that of the chosen arm becomes smaller as N grows.

The consequences of the two effects compensate each other, leading to the slow growth of the regret with

respect to N . As mentioned, the suggested regret bound works for non-singular A. If A is singular and

µ⋆ ∈ C
(
A⊤)⊥, the regret grows linearly with T .

Proof. First, for the regret of Algorithm 1, it holds that Regret(T ) = E
[∑T

t=1(x̂a⋆(t) − x̂a(t))
⊤µ⋆

]
,

according to (2.3) and (2.7). To proceed, we show that for an arbitrary µ⋆ ∈ Rd, it holds that

E

[
argmax

x̂i(t),1≤i≤N

{
x̂i(t)

⊤µ⋆

}]
= cN

−−→
Sµ⋆,

where the constant

cN = E
[
max
1≤i≤N

{Vi : Vi ∼ N(0, 1)}
]

(2.22)

captures the magnitude, and the unit vector
−−→
Sµ⋆ indicates the direction of the expected value of the vector

x̂i(t) that achieves the maximum value inside the expectation.

To show the above result, define

Z(µ,N) = argmax
Zi,1≤i≤N

{
Z⊤

i µ
}
, (2.23)

where Zi are independent standard d-dimensional normally distributed random vectors. The vector

Zi can be decomposed as Zi = PµZi + (Id − Pµ)Zi, where Pµ is the projection matrix onto
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C(µ), which is the 1-dimensional subspace of the vectors inline with µ. Then, we have Z(µ,N) =

argmax
Zi(t),1≤i≤N

{
(PµZi(t))

⊤µ
}

, because Pµµ = µ. This implies that only the first term, PµZi, affects the re-

sult of argmax
Zi,1≤i≤N

{
Z⊤

i µ
}

. This means thatZ(µ,N)has the same distribution asPµZ(µ,N)+(Id−Pµ)Zi,

which means

Z(µ,N)
d
= PµZ(µ,N) + (Id − Pµ)Zi, (2.24)

where d
= is used to denote equality of the probability distributions. Thus, since projection on a subspace

is a linear operator, it interchanges with expectation, and so we have

E[Z(µ,N)] = E [PµZ(µ,N) + (Id − Pµ)Zi] = PµE[Z(µ,N)] ∈ C(µ). (2.25)

Next, we claim that E[Z(µ,N)] = cN
−→µ , where cN is defined in (2.22), for which it is known that

(Cramér, 2016):

cN = O
(√

logN
)
. (2.26)

Because Z⊤
i
−→µ has the standard normal distribution N(0, 1), according to (2.22), we have

E
[
max
1≤i≤N

{
Z⊤

i
−→µ
}]

= cN . Based on the definition in (2.23), it holds that Z(µ,N)⊤−→µ =

max
1≤i≤N

{
Z⊤

i
−→µ
}

. Moreover, because E[Z(µ,N)] ∈ C(µ) by (2.25), we have cN = E[Z(µ,N)]⊤−→µ =

||E[Z(µ,N)]|| ||−→µ || = ||E[Z(µ,N)]||. Putting the above together, we obtain

E[Z(µ,N)] = cN
−→µ . (2.27)
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Next, we apply the result in (2.27) to x̂a⋆(t)(t) and x̂a(t)(t). The definition of Z(µ,N) in (2.23) implies

that S−1x̂a⋆(t)(t) can be written as

argmax
S−1x̂i(t),1≤i≤N

{
(S−1x̂i(t))

⊤Sµ⋆

}
= Z(Sµ⋆, N).

Similarly, it holds that

S−1x̂a(t)(t) = argmax
S−1x̂i,1≤i≤N

{
(S−1x̂i(t))

⊤Sµ̃(t)
}
= Z(Sµ̃(t), N).

Using (2.27), we can find the expected values as follows:

E[S−1x̂a⋆(t)] = cN
−−→
Sµ⋆,

E[S−1x̂a(t)|µ̃(t)] = cN
−−−→
Sµ̃(t).

Using the above equations, we have

E

[
T∑
t=1

(
S−1x̂a⋆(t)(t)− S−1x̂a(t)(t)

)⊤
Sµ⋆

]
= E

[
E

[
T∑
t=1

(
S−1x̂a⋆(t)(t)− S−1x̂a(t)(t)

)⊤
Sµ⋆

∣∣∣∣∣ µ̃(t)
]]

= E

[
T∑
t=1

(
cN

−−→
Sµ⋆ − cN

−−−→
Sµ̃(t)

)⊤
Sµ⋆

]
(2.28)

for the expected gap.

Now, let θt denote the angle between Sµ⋆ and Sµ̃(t), defined as

θt = cos−1 < Sµ⋆, Sµ̃(t) >

||Sµ⋆|| ||Sµ̃(t)||
∈ [0, π]. (2.29)
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Since the vectors
−−→
Sµ⋆ and

−−−→
Sµ̃(t) are of the same length, the angle between

−−→
Sµ⋆ −

−−−→
Sµ̃(t) and

−−→
Sµ⋆ is

(π − θt)/2, which leads to
∣∣∣∣∣∣−−→Sµ⋆ −

−−−→
Sµ̃(t)

∣∣∣∣∣∣ = 2 sin(θt/2). Thus, we get

(−−→
Sµ⋆ −

−−−→
Sµ̃(t)

)⊤
Sµ⋆ = ||Sµ⋆||

∣∣∣∣∣∣−−→Sµ⋆ −
−−−→
Sµ̃(t)

∣∣∣∣∣∣ cos(π − θt
2

)
= 2||Sµ⋆|| sin

(
θt
2

)
cos

(
π − θt

2

)
= 2||Sµ⋆|| sin2

(
θt
2

)
= 2||Sµ⋆||(1− cos θt).

On the other hand, using (2.29), we obtain

1− cos θt =
||Sµ⋆ − Sµ̃(t)||2 − (||Sµ⋆|| − ||Sµ̃(t)||)2

2||Sµ⋆|| ||Sµ̃(t)||
≤ ||Sµ⋆ − Sµ̃(t)||2

2||Sµ⋆|| ||Sµ̃(t)||
.

To proceed, define η(t) = Sµ̃(t) − Sµ⋆ + SE[B(t)−1]Σ−1µ⋆, and note that E[η(t)η(t)T ] =

SCov(µ̃(t))S. So, it holds that

E[1− cos θt] ≤ E
[
||η(t)− SE[B(t)−1]Σ−1µ⋆||2

2||Sµ⋆|| ||Sµ̃(t)||

]
≤ E

[
||η(t)||2 + ||SE[B(t)−1]Σ−1µ⋆||2

||Sµ⋆|| ||Sµ̃(t)||

]
.

By Corollary 1, we have

E[||η(t)||2] = tr
(
E[η(t)η(t)T ]

)
= tr(SCov(µ̃(t))S) = O(dt−1). (2.30)

Accordingly, we get

E
[
||η(t)||2 + ||SE[B(t)−1]Σ−1µ⋆||2

||Sµ⋆|| ||Sµ̃(t)||

]
= O(dt−1),
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because the expected value of the numerator is O(t−1) by (2.30) and Theorem 1, while the denominator

converges to ||Sµ⋆||2 as t → ∞, by Corollary 1. Thus, we have

T∑
t=1

E
[
||η(t)||2 + ||SE[B(t)−1]Σ−1µ⋆||2

||Sµ⋆|| ||Sµ̃(t)||

]
= O(d log T ). (2.31)

Putting the latter result together with (2.26), it yields to the desired result, since cN depends only on N ,

and ||Sµ⋆|| is a constant:

Regret(T ) =
T∑
t=1

cNE[2||Sµ⋆||(1− cos θt)] = O(d
√

logN log T ).

2.5 Numerical Illustrations

Figure 2.1: Plots ofE
[
||µ̂(t)− µ⋆||/

√
d
]

over time for different number of armsN = 5, 10, 20, 50, and
different dimensions of the contexts d = 10, 30.

We consider cases with different numbers of arms, N = 5, 10, 20, 50, and different dimensions of

the contexts d = 10, 30, repeating 50 times for each case, for every time step. We report two quantities,
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Figure 2.2: Plots of the regret normalized by d log t
√
logN , over time for different number of arms

N = 5, 10, 20, 50, and the dimension of the context d = 10, 30.

||µ̂(t) − µ⋆|| and Regret(t), over time, and take averages of the quantities for 50 scenarios. The true

parameter µ⋆ as well as each row of A, are randomly generated. Further, we let Σx = Id, Σξ = Id, and

σ2 = 1.

Figure 2.1 depicts the average norm of the normalized errors over time. We normalize the errors by
√
d,

since Cov(µ̃(t)) = O(t−1), by Corollary 1, and so tr(Cov(µ̃(t))) = O(dt−1). The curves in Figure 2.1

show that the errors decrease with the appropriate rates. Figure 2.2 illustrates the normalized regret over

time. The regret is normalized by its bound d log t
√
logN in Theorem 1. In Figure 2.2, the curves show

that the normalized regret is constant over time, corroborating the regret bound in Theorem 2.
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Chapter 3

Analysis of the Greedy Algorithm

for the Shared Parameter Setup

3.1 Introduction

Contextual bandits are ubiquitous models sequential decision making in environments with finite action

spaces. The range of applications is extensive and includes different problems that time-varying and action-

dependent information are important, such as personalized recommendation of news articles, healthcare

interventions, advertisements, and clinical trials (Bouneffouf et al., 2012; Durand et al., 2018; Li et al., 2010;

Nahum-Shani et al., 2018; Ren & Zhou, 2020; Tewari & Murphy, 2017; Varatharajah et al., 2018).

In many applications, consequential variables for decision making are not perfectly observed. Techni-

cally, the context vectors are often observed in a partial, transformed, and/or noisy manner (Bensoussan,

2004; Bouneffouf et al., 2017; Tennenholtz et al., 2021). In general, sequential decision making algorithms

under imperfect observations provide a richer class of models compared to those of perfect observations.

Accordingly, they are commonly used in different problems, including space-state models for robot control

and filtering (Kalman, 1960; Nagrath, 2006; Roesser, 1975; Stratonovich, 1960).
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We study contextual bandits with imperfectly observed context vectors. The probabilistic structure of

the problem under study as time proceeds, is as follows. At every time step, there are N available actions

(also referred to as ‘arms’), and the unobserved context of arm i at time t, denoted by xi(t) ∈ Rdx , is

generated according to a multivariate normal distribution N (0dx ,Σx). Moreover, the corresponding

observation (i.e., output) is yi(t) ∈ Rdy , while the stochastic reward ri(t) of arm i is determined by the

context and the unknown parameter µ⋆. Formally, we have

yi(t) = Axi(t) + ξi(t), (3.1)

ri(t) = xi(t)
⊤µ⋆ + εi(t), (3.2)

where ξi(t) and εi(t) are the noises of observation and reward, which are identically distributed and inde-

pendent following the distributions N (0dy ,Σξ) andN (0, γ2
r ), respectively. Further, the dy ×dx sensing

matrix A captures the relationship between xi(t) and the noiseless portion of yi(t). The above structure

holds for all arm i and time t. From a dynamical system point of view, the setting can be understood as

memoryless dynamical systems.

At each time, the goal is to learn to choose the optimal arm a⋆(t) maximizing the reward, by utilizing

the available information by time t. That is, the agent chooses an arm based on the data collected so

far from the model in (3.1); {yi(t)}1≤i≤N , {a(τ)}1≤τ≤t−1, {ya(τ)(t)}1≤τ≤t−1, {ra(τ)}1≤τ≤t−1. So, the

resulting reward will be provided to the agent according to the equation in (3.2). Clearly, to choose

high-reward arms, the agent needs accurate estimates of the unknown parameter µ⋆, as well as those of

the contexts xi(t), for i = 1, · · · , N . However, because xi(t) is not observed, the estimation of µ⋆ is

available only through the output yi(t). Thereby, design of efficient reinforcement learning algorithms

with guaranteed performance is challenging.

Bandits are thoroughly investigated in the literature, assuming that {xi(t)}1≤i≤N are perfectly ob-

served. Early papers focus on the method of Upper-Confident-Bounds (UCB) for addressing the
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exploitation-exploration trade-off (Abbasi-Yadkori et al., 2011; Abe & Long, 1999; Auer, 2002; Chu

et al., 2011; Lai & Robbins, 1985). UCB-based methods take actions following optimistic estimations

of the parameters, and are commonly studied in reinforcement learning (Abbasi-Yadkori & Szepesvári,

2011; Faradonbeh et al., 2020c). Another popular and efficient family of policies use randomized explo-

ration, usually in the Bayesian form of Thompson sampling (Agrawal & Goyal, 2013; Chapelle & Li,

2011; Faradonbeh et al., 2019, 2020a, 2020b; Modi & Tewari, 2020). For contextual bandits that contexts

are generated under certain conditions, exploration-free policies with Greedy nature can expose efficient

performance (Bastani et al., 2021).

Currently, theoretical results for bandits with imperfect context observations are incomplete. For

contextual bandits with noisy observations with the same dimension as that of contexts, asymptotic

analyses are available for a UCB-type algorithms (Yun et al., 2017), and Thompson sampling (Park &

Faradonbeh, 2021), or in presence of additional information (Tennenholtz et al., 2021). Moreover, the

relationship between the regret and gained information under the uncertainty of observations are ana-

lyzed (Lattimore, 2022; Lattimore & Gyorgy, 2021). However, analyses about contextual bandits with

noisy transformed observations, whose dimension can be different from that of contexts, are scarce. Lastly,

numerical analysis shows that Greedy algorithms outperform Thompson sampling under imperfect con-

text observations in the suggested framework (Park & Faradonbeh, 2022a). Therefore, this work focuses

on the non-asymptotic theoretical analysis of Greedy policies for imperfectly observed contextual bandits.

However, comprehensive analyses and non-asymptotic theoretical performance guarantees for general

output observations are not currently available and are adopted as the focus of this work. We perform

the finite-time worst-case analysis of Greedy reinforcement learning algorithms for imperfectly observed

contextual bandits. We establish efficiency and provide high probability upper bounds for the regret that

consists of poly-logarithmic factors of the time horizon and of the failure probability. Furthermore, the

effects of other problem parameters such as the number of arms and the dimension are fully characterized.

Illustrative numerical experiments showcasing the efficiency are also provided.
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To study the performance of reinforcement learning policies, different technical difficulties arise in the

high probability analyses. First, one needs to study the eigenvalues of the empirical covariance matrices,

since the estimation accuracy depends on them. Furthermore, it is required to consider the number of

times the algorithm selects sub-optimal arms. Note that both quantities are stochastic and so worst-case

(i.e., high probability) results are needed for a statistically dependent sequence of random objects. To

obtain the presented theoretical results, we employ advanced technical tools from martingale theory and

random matrices. Indeed, by utilizing concentration inequalities for matrices with martingale difference

structures, we carefully characterise the effects of order statistics and tail-properties of the estimation

errors.

The remainder of this chapter is organized as follows. In Section 3.2, we formulate the problem and

discuss the relevant preliminary materials. Next, a Greedy reinforcement learning algorithm for contextual

bandits with imperfect context observations is presented in Section 3.3. Lastly, in Section 3.4, we provide

theoretical performance guarantees for the proposed algorithm, followed by numerical experiments in

Section 3.5.

We use A⊤ to refer to the transpose of the matrix A ∈ Cp×q. For a vector v ∈ Cd, we denote the ℓ2

norm by ∥v∥ =
(∑d

i=1 |vi|2
)1/2

. Additionally, C(A) and C(A)⊥ are employed to denote the column-

space of the matrix A and its orthogonal subspace, respectively. Further, PC(A) is the projection operator

onto C(A). Moreover, λmin(A) and λmax(A) denote the minimum and maximum eigenvalues of the

symmetric matrix A, respectively. Finally, O(·) denotes the order of magnitude, {Xi}i∈E = {Xi : i ∈

E} and I(·) is the indicator function.

3.2 Problem Formulation

First, we formally discuss the problem of contextual bandits with imperfect context observations. A bandit

machine has N arms, each of which has its own unobserved context xi(t), for i ∈ {1, · · · , N}. Equa-
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tion (3.1) presents the observation model, where the observations {yi(t)}1≤i≤N are linearly transformed

functions of the contexts, perturbed by additive noise vectors {ξi(t)}1≤i≤N . Equation (3.2) describes the

process of reward generation for different arms, depicting that if the agent selects arm i, then the result-

ing reward is an unknown linear function of the unobserved context vector, subject to some additional

randomness due to the reward noise εi(t).

The agent aims to maximize the cumulative reward over time, by utilizing the sequence of observations.

To gain the maximum possible reward, the agent needs to learn the relationship between the rewards ri(t)

and the observations yi(t). For that purpose, we proceed by considering the conditional distribution of

the reward ri(t) given the observation yi(t), i.e., P(ri(t)|yi(t)), which is

N (yi(t)
⊤D⊤µ⋆, γ

2
ry), (3.3)

where D = (A⊤Σ−1
ξ A+ Σ−1

x )−1A⊤Σ−1
ξ and γ2

ry = µ⊤
⋆ (A

⊤Σ−1
ξ A+ Σ−1

x )−1µ⋆ + γ2
r .

Based on the conditional distribution in (3.3), in order to maximize the expected reward given the

observation, we consider the conditional expectation of the reward given the observations, yi(t)⊤D⊤µ⋆.

So, letting η⋆ = D⊤µ⋆ be the transformed parameter, we focus on the estimation of η⋆. The rationale

is twofold; first, the conditional expected reward can be inferred with only knowing η⋆, regardless of the

exact value of the true parameter µ⋆. Second, µ⋆ is not estimable when the rank of the sensing matrix A

in the observation model is less than the dimension of µ⋆. Indeed, estimability of µ⋆ needs the restrictive

assumptions of non-singular A and dy ≥ dx.

The optimal policy that reinforcement learning policies need to compete against knows the true

parameter µ⋆. That is, to maximize the reward given the output observations, the optimal arm at time t,

denoted by a⋆(t), is

a⋆(t) = argmax
1≤i≤N

yi(t)
⊤η⋆. (3.4)
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Then, the performance degradation due to uncertainty about the environment that the parameter µ⋆

represents, is the assessment criteria for reinforcement learning policies. So, we consider the following per-

formance measure, which is commonly used in the literature, and is known as regret of the reinforcement

learning policy that selects the sequence of actions a(t), t = 1, 2, · · · :

Regret(T ) =
T∑
t=1

(
ya⋆(t)(t)− ya(t)(t)

)⊤
η⋆. (3.5)

In other words, the regret at time T is the total difference in the obtained rewards, up to time T , where

the difference at time t is between the optimal arms a⋆(t) and the arm a(t) chosen by the reinforcement

learning policy based on the output observations by the time t. Note that this difference does not depends

on the unknown contexts {xi(t)}1≤i≤N . That is, the arm maximizing xi(t)
⊤µ⋆ is not guaranteed to be

a⋆(t), since yi(t)⊤η⋆ is a realized value of a random variable centered at xi(t)
⊤µ⋆.

3.3 Reinforcement Learning Policy

In this section, we explain the details of the Greedy algorithm for contextual bandits with imperfect obser-

vations. Although inefficient in some reinforcement learning problems, Greedy algorithms are known to

be efficient under certain conditions such as covariate diversity (Bastani et al., 2021). Intuitively, the latter

condition expresses that the context vectors cover all directions in Rdx with a non-trivial probability, so

that additional exploration is not necessary.

As discussed in Section 3.2, it suffices for the policy to learn to maximize

E[ri(t)|yi(t)] = yi(t)
⊤η⋆. (3.6)
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To estimate the quantity yi(t)⊤η⋆, we use the least-squares estimate

η̂(t) = argmax
η

t∑
τ=1

(ra(τ)(τ)− ya(τ)(τ)
⊤η)2, (3.7)

in lieu of the truth η⋆. So, the Greedy algorithm selects the arm a(t) at time t, such that

a(t) = argmax
1≤i≤N

yi(t)
⊤η̂(t). (3.8)

The recursions to update the parameter estimate η̂(t) and the empirical inverse covariance matrix B(t)

based on (3.7) are as follows:

B(t+ 1) = B(t) + ya(t)(t)ya(t)(t)
⊤ (3.9)

η̂(t+ 1) = B(t+ 1)−1
(
B(t)η̂(t) + ya(t)(t)ra(t)(t)

)
, (3.10)

where the initial values consist ofB(1) = Σ−1, for some arbitrary postitive definite matrixΣ, and η̂(1) =

η for an arbitrary vector η in Rdy . Algorithm 2 describes the pseudo-code for the Greedy algorithm.

Algorithm 2 : Greedy policy for contextual bandits with imperfect context observations
1: Set B(1) = Σ−1, η̂(1) = η
2: for t = 1, 2, . . . , do
3: Select arm a(t) = argmax

1≤i≤N
yi(t)

⊤η̂(t)

4: Gain reward ra(t)(t) = xa(t)(t)
⊤µ⋆ + εa(t)(t)

5: Update B(t+ 1) and η̂(t+ 1) by (3.9) and (3.10)
6: end for

3.4 Theoretical Performance Guarantees

In this section, we present a theoretical result for Algorithm 2 presented in the previous section. The

result provides a worst-case analysis and establishes a high probability upper-bound for the regret in (3.5).
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Theorem 3. Assume that Algorithm 2 is used in a contextual bandit withN arms and the output dimension

dy . Then, with probability at least 1− 4δ, we have

Regret(T ) =

O

(
(λa2 + λy2)γry

λa1 + λy1

Nd3/2y

(
log

NdyT

δ

)5/2

log
dyT

δ

)
,

where λa1 = λmin(AΣxA
⊤), λa2 = λmax(AΣxA

⊤), λy1 = λmin(Σξ), λy2 = λmax(Σξ) and γ2
ry is the

conditional variance in (3.3).

The regret bound above scales linearly with the number of arms N , with d
3/2
y for the dimension of

the observations dy, and poly-logarithmically with time T . The dimension of unobserved context vectors

does not affect the regret because the optimal policy in (3.4) does not have the exact values of the context

vectors. So, similar to the reinforcement learning policy, the optimal policy needs to estimate the contexts

as well, as yi(t)⊤η⋆ in (3.4) is an estimate of xi(t)
⊤µ⋆ for the optimal policy to find the optimal arm.

The rationale of the linear growth of the regret with N is that a policy is more likely to choose one of

sub-optimal arms, when more sub-optimal arms exist, incurring more regret. In addition, the quadratic

term of dy and the maximum eigenvalue λa2 are generated by the use of truncation for the ℓ2 norm

of vector (∥yi(t)∥22 = O(λa2dyvT (δ)
2)) as well as the matrix Azuma’s inequality. Further, the poly-

logarithmic terms of T , N , dy and δ, (log(NdyT/δ))
5/2 log(dyT/δ), are originated in the truncation

event and the Azuma’s inequality. Lastly, the minimum eigenvalueλa1 and the conditional reward variance

γ2
ry are associated with the variance of the estimator η̂(t), whose larger value causes a greater regret.

Proof. We use the following intermediate results, whose proofs are delegated to Appendices. For simplicity,

let η̂(1) be a random variable with E[η̂(1)] = η⋆ and Cov(η̂(1)) = Σ−1γ2
ry so that E[η̂(t)] = η⋆ and

Cov(η̂(t)|B(t)) = B(t)−1γ2
ry for all t. First, for T > 0 and 0 < δ < 0.25, we define

WT =

{
max

{1≤τ≤t and 1≤i≤N}
||S−1/2

y yi(τ)||∞ ≤ vT (δ)

}
, (3.11)
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where vT (δ) = (2 log(NdyT/δ))
1/2.

Lemma 2. For the event WT defined in (3.11), we have P(WT ) ≥ 1− δ.

Lemma 2 guarantees that all the observation up to time T are generated in the truncation event WT

with the probability at least 1− δ.

Lemma 3. Let σ{X1, . . . , Xn} be the sigma-field generated by random vectors X1, . . . , Xn. For the obser-

vation of chosen arm ya(t)(t) at time t, the estimator η̂(t) defined in (3.10), and the filtration {Ft}1≤t≤T

defined according to

Ft = σ{{a(τ)}1≤τ≤t, {yi(τ)}1≤τ≤t,1≤i≤N , {ra(τ)(τ)}1≤τ≤t},

we have

E[Vt|Ft−1] = P
C(S

1/2
y η̂(t))

(kN − 1) + Idy ,

where Vt = S
−1/2
y ya(t)(t)ya(t)(t)

⊤S
−1/2
y and kN = E

[(
max
1≤i≤N

{Zi}
)2
]

for N independent Zi with

the standard normal distribution and Sy = Cov(yi(t)). That is, kN is the expected maximum of N

independent standard normal random variables.

Lemma 3 sets the stage for analysis of the (unnormalized) empirical inverse covariance B(t) in (3.9)

Lemma 4. (Matrix Azuma Inequality Tropp, 2012) Consider the sequence {Mk}1≤k≤K of symmetric d×d

random matrices adapted to some filtration {Gk}1≤k≤K , such that E[Mk|Gk−1] = 0. Assume that there

is a deterministic sequence of symmetric matrices {Ak}1≤k≤K that satisfy M2
k ⪯ A2

k , almost surely. Let

σ2 = ∥
∑

1≤k≤K A2
k∥. Then, for all ε ≥ 0, it holds that

P

(
λmax

(
K∑
k=1

Mk

)
≥ ε

)
≤ d · e−ε2/8σ2

.
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Lemma 5 provides a high probability lower bound for the minimum eigenvalue ofB(t). Then, Lemma

6 bounds the estimation error.

Lemma 5. For B(t) in (3.9) and t ≤ T , on the event WT defined in (3.11), by Lemma 3 and 3, with the

probability at least 1− δ, we have

λmin(B(t)) ≥ λs1(t− 1)

(
1−

√
32vT (δ)4

t− 1
log

dyT

δ

)
.

Lemma 6. In Algorithm 2, let η̂(t) be the parameter estimate, as defined in (3.10). Then, for t ≤ T , on the

event WT defined (3.11), we have

P (∥η̂(t)− η⋆∥ > ε|B(t)) ≤ 2e
− ε2

2dyλmax(B(t)−1)γ2ry .

Next, Lemma 7 gives an upper bound for the probability that Algorithm 2 does not choose the optimal

arm at time t. Finally, Lemma 8 studies the weighted sum of indicator functions I(a⋆(t) ̸= a(t)) that

count the effective number of times that the algorithm chooses sub-optimal arms.

Lemma 7. Given B(t), an upper bound of probability of choosing a sub-optimal arm is bounded as follows:

P(a⋆(t) ̸= a(t)|B(t)) ≤ 2Nλ
1/2
s2 dyvT (δ)γry√
ηT⋆ Syη⋆

λ
1/2
t ,

where λt = λmax(B(t)−1).
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Lemma 8. For I(a⋆(t) ̸= a(t)), on the event WT , with the probability at least 1− δ, we have

∑
t∗≤t≤T

1√
t− 1

I(a⋆(t) ̸= a(t)) ≤
√

32 log T log(Tδ−1) +
∑

t∗≤t≤T

1√
t− 1

P(a∗(τ) ̸= a(τ)|B(t)),

where t∗ = 128vT (δ)
4 log dyT

δ
+ 1.

Note that Regret(T ) is the sum of the conditional expected reward difference(
ya⋆(t)(t)− ya(t)(t)

)⊤
η⋆ for 1 ≤ t ≤ T . The difference

(
ya⋆(t)(t)− ya(t)(t)

)⊤
η⋆ at

time t is greater than 0, only when a⋆(t) ̸= a(t). Thus, the regret can be rewritten as

Regret(T ) =
∑T

t=1

(
ya⋆(t)(t)− ya(t)(t)

)⊤
η⋆I(a

⋆(t) ̸= a(t)). To find an upper bound of the

regret, we find high probability upper bounds for
(
ya⋆(t)(t)− ya(t)(t)

)⊤
η⋆ and I(a⋆(t) ̸= a(t)),

respectively. For both upper bounds, the inverse of the (unnormalized) empirical covariance matrix B(t)

in (3.9) matters in that the matrix determines the size of estimation error ∥η̂(t)− η⋆∥.

By, Lemma 5, we have

λmin(B(t)) ≥ λs1(t− 1)

(
1−

√
32vT (δ)4

t− 1
log

dyT

δ

)
, (3.12)

for all 1 ≤ t ≤ T with the probability at least 1 − 2δ. This implies that B(t) grows linearly with the

horizon almost surely. Next, we investigate the estimation error ∥η⋆ − η̂(t)∥ based on the above result of

the minimum eigenvalue of B(t). Using ∥yi(t)∥∞ ≤ λ
1/2
s2 vT (δ) on the event WT , we have

(ya⋆(t)(t)− ya(t)(t))
⊤η⋆ ≤ λ

1/2
s2 vT (δ)∥η̂(t)− η⋆∥, (3.13)

where λs2 = λmax(Sy). So, we write the regret in the following form:

Regret(T ) ≤
T∑
t=1

λ
1/2
s2 vT (δ)∥η̂(t)− η⋆∥I(a⋆(t) ̸= a(t)). (3.14)
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Here, we denote λt = λmax(B(t)−1) = (λmin(B(t)))−1. By (3.12), we can find t∗ =

128vT (δ)
4 log dyT

δ
+ 1, such that

λt ≤
2

λs1(t− 1)
, (3.15)

with the probability at least 1− δ, for all t∗ < t ≤ T . By Lemma 6 and (3.15), for all t∗ < t ≤ T , with

the probability at least 1− 3δ, we have

λ
1/2
s2 vT (δ)∥η̂(t)− η⋆∥ ≤ a1(t− 1)−1/2, (3.16)

where a1 = 4(λs2/λs1)
1/2vT (δ)

√
2dy log(2Tδ−1). Thus, with (ya⋆(t) − ya(t))

⊤η⋆ ≤ 2λ
1/2
s2 vT (δ)∥η⋆∥

for t < t∗, the regret can be represented

Regret(T ) ≤
∑
t<t∗

2λ
1/2
s2 vT (δ)∥η⋆∥+

∑
t∗≤t≤T

a1(t− 1)−1/2I(a⋆(t) ̸= a(t)), (3.17)

with the probability at least 1− 3δ. Now, we consider the probability to choose the optimal arm at time

t. By Lemma 7, we have

∑
t∗≤t≤T

P(a⋆(t) ̸= a(t)|B(t))√
t− 1

≤ 23/2Nλ
1/2
s2 dyvT (δ)γry

∥η⋆∥λ1/2
s1

log T. (3.18)

Now, we construct an upper bound about the indicator function I(a⋆(t) ̸= a(t)) in (3.14), by Lemma 8.

∑
t∗≤t≤T

1√
t− 1

I(a⋆(t) ̸= a(t)) ≤
√
32 log T log(Tδ−1) +

∑
t∗≤t≤T

1√
t− 1

P(a∗(τ) ̸= a(τ)|B(τ)),

(3.19)
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with the probability at least 1− δ. Therefore, by (3.18) and (3.19), with the probability at least 1− 4δ, the

following inequalities hold for the regret of the algorithm, which yield to the desired result:

Regret(T ) =
T∑
t=1

(ya⋆(t)(t)− ya(t)(t))
⊤η⋆I(a

⋆(t) ̸= a(t))

≤ 2λ
1/2
s2 vT (δ)∥η⋆∥t∗ +

∑
t∗≤t≤T

a1
1√
t− 1

I(a⋆(t) ̸= a(t))

= O

(
λs2

λs1

γryNd2/3y

(
log

NdyT

δ

)5/2

log
dyT

δ

)
. (3.20)

Finally, using Sy = AΣxA
⊤ + Σξ, λs2/λs1 = O((λa2 + λy2)/(λa1 + λy1)), with the probability at

least 1− 4δ, we have

Regret(T ) = O

(
(λa2 + λy2)γry

λa1 + λy1

Nd3/2y

(
log

NdyT

δ

)5/2

log
dyT

δ

)
. (3.21)

This bound is relatively looser in terms of N, dy and tighter in terms of T as compared to the bound

O(polylog(N)
√
dxT ) for fully observable contexts Agrawal and Goyal, 2013; Chu et al., 2011. But, this

looser bound in terms of N, dy is created to improve the regret bound in terms of T .

3.5 Numerical Illustrations

In this section, we perform numerical analyses for the theoretical result in the previous section. We

simulate cases for N = 10, 20, 50 and different dimensions of the observations dy = 5, 20, 50 with a

fixed context dimension dx = 20. Each case is repeated 100 times and the average and worst quantities

of 100 scenarios are reported.

For Figure 3.1, the left plot depicts the average (solid) and worst-case (dashed) regret among all scenarios,

normalized by log t. The number of arms N varies as shown in the graph, while the dimension is fixed to

dy = 10. Next, the right one illustrates that the normalized regrets increase over time for different dy at
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the fixed number of arms N = 5. For both plots, the worst-case regret curves are well above the average

ones, but the slopes of curves for both cases become flat as time goes on, implying that the worst-case

regret grows logarithmically in terms of t as well. Figure 3.2 presents the average and worst-case regret

(non-normalized) at time T = 2000 for different N = 10, 20, 50 and dy = 5, 20, 50. The plot shows

that the regret at T = 2000 increase as N and dy become larger. In addition, it shows that the dimension

of observations dy has a greater effect on the regret than that of the number of arms N .

Figure 3.1: Plots of Regret(t)/ log t over time for the different number of arms N = 10, 20, 100 and
dy = 5, 20, 50. The solid and dashed lines represent average and worst regret curves, respectively.
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Figure 3.2: Plot of average and worst-case Regret(T ) at T = 2000 for different number of arms N =
10, 20, 50 and dimension of observations dy = 5, 20, 50.
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Chapter 4

Analysis of Thompson Sampling

for the Arm-specific Parameter

Setup

4.1 Introduction

Contextual bandits have emerged in the recent literature as widely-used decision-making models involving

time-varying information. In this setup, a policy takes action after (perfectly or partially) observing the

contexts at each time. The data collected by the time is utilized, aiming to maximize cumulative rewards

determined by both the contexts and unknown parameters. So, any desirable policy needs to manage the

trade-off between learning the best (i.e., exploration) and earning the most (i.e., exploitation). For this

purpose, Thompson sampling stands-out among various competitive algorithms, thanks to its perfor-

mance guarantees as well as computationally favorable implementations. Its main idea is to explore based

on samples from a data-driven posterior belief about the unknown parameters. However, comprehensive
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studies are currently unavailable for imperfectly observed contexts, and this is adopted as the focus of this

work.

Letting the time-varying components of the decision options (e.g., contexts) be observed partially

only, is known to be advantageous in various real-world problems (Åström, 1965; Dougherty, 2020; Kael-

bling et al., 1998; Kang et al., 2012; Lin et al., 2012; Nagrath, 2006). On the other hand, overlooking

imperfections in observations can lead to compromised decisions, for example in clinical treatment of

septic patients (Gottesman et al., 2019). The study of partial observation models includes linear systems

(Kargin et al., 2023), Markov decision processes (Bensoussan, 2004; Krishnamurthy & Wahlberg, 2009),

and partial monitoring (Kirschner et al., 2020; Lattimore, 2022; Tsuchiya et al., 2023). Note that in the

latter setting, partiality pertains to the bandit feedback of the rewards, whereas in this work partiality

relates to the context observations. Further, partial observability has recently motivated some work on

contextual bandits that do not involve the exploration-exploitation dilemma (Kim et al., 2023; Park &

Faradonbeh, 2021, 2022a, 2022b, 2022c, 2024, n.d.-a, n.d.-b, n.d.-c).

The common bandit setting is the so-called linear one, where the expected reward of each arm is the

inner product of (adversarial or stochastic) context(s) and reward parameter(s). The latter in stochastic

contextual bandits can be either arm-specific (Bastani & Bayati, 2020; Goldenshluger & Zeevi, 2013), or

shared across all arms (Chakraborty et al., 2023; Dani et al., 2008). We analyze both settings, with the

focus being on the more general and challenging one of the former. For the sake of completeness, the

authors also refer to a (non-exhaustive) variety of extant approaches in the realm of contextual bandits.

That includes (possibly infinite but bounded) action sets in a Euclidean space (Abbasi-Yadkori et al.,

2011; Abeille & Lazaric, 2017), as well as those with adversarial contexts (Agarwal et al., 2014; Dani et al.,

2008), together with non-linear or non-parametric reward functions (Dumitrascu et al., 2018; Guan &

Jiang, 2018; Wanigasekara & Yu, 2019). Notably, all of these references assume fully observed contexts, in

contradistinction to this work.
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Efficient policies for contextual bandits are diverse, including the popular family of policies based on

Optimism in the Face of Uncertainty (OFU) that have theoretical guarantees for balancing exploration

and exploitation (Abbasi-Yadkori et al., 2011; Auer, 2002; Dani et al., 2008). Besides, Thompson sampling

is recognized as a pioneer, first via excelling empirical performance (Chapelle & Li, 2011), and then sup-

plemented with theoretical analyses (Abeille & Lazaric, 2017; Agrawal & Goyal, 2013; Russo & Van Roy,

2014). More recently, it is shown that Greedy policies can be nearly optimal in contextual bandits with

one or two reward parameter(s) (Bastani et al., 2021; Park & Faradonbeh, 2022c; Raghavan et al., 2023).

In contrast, for contextual bandits with multiple arm-specific reward parameters, it is known that vanilla

Greedy is non-optimal (Bastani et al., 2021). That is caused by some arms dominating the rest, leaving

them unexplored, and is also illustrated in our numerical experiments.

The study of theoretical performance guarantees for Thompson sampling made significant progress

in the recent literature with an emphasis on instance-independent regret analysis. First, minimax regret

bounds growing as square-root of time were shown for adversarial contextual bandits (Abeille & Lazaric,

2017; Agrawal & Goyal, 2013; Russo & Van Roy, 2014) and for settings with an Euclidean action set

(Hamidi & Bayati, 2020). Logarithmic regret bounds for stochastic contextual bandits with a shared

reward parameter are established as well (Chakraborty et al., 2023). However, for the arm-specific reward

parameters, efficient bandit policies remain unavailable. In this case, the analysis is significantly more

challenging since the policy needs to delicately address the trade-off between exploration and exploitation,

(unlike the setting with a shared reward parameter).

Instance-dependent regret analysis for classical (non-contextual) bandits has been extensively studied

(Garivier et al., 2016, 2019; Kaufmann et al., 2016; Lattimore, 2018). In contrast, in contextual bandits it

remains largely unexplored, albeit with a few positive results under specific conditions, improving from

square-root to logarithmic regret bounds (Abbasi-Yadkori et al., 2011; Dani et al., 2008). However, these

studies have two limitations: the assumption that a suboptimality gap (i.e., expected reward difference be-

tween the best and second best arms) is greater than a positive constant over time and instance-dependent
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algorithms. To address these challenges, we propose a novel approach that utilizes a probabilistic sub-

optimality gap, which is a suboptimality gap attained with a positive probability, for analyzing instance-

independent Thompson sampling, working without knowledge of the reward parameter, the covariance

matrices, and the observation structure.

We analyze the Thompson sampling policy in partially observable contextual bandits focusing on the

high-probability frequentist regret. Our analysis demonstrates that the error in estimating the reward

parameters decays with square-root of time, and the worst-case regret grows at most as fast as a poly-

logarithmic function of time. Further, the effect of the ambient dimension d is of the order of
√
d on the

estimation, while it exacerbates the regret bound as d4. Lastly, scalings of the above two quantities with

the number of arms N are O(
√
N) and O(N), respectively.

For regret analysis in partially observed contextual bandits, it is crucial to examine the effects of the

partiality of information, the suboptimality gaps, and the probabilities of pulling such suboptimal arms.

The existing technical approaches often fail to provide useful results mainly due to the inter-dependencies

of the numbers of arm pulls, which is referred to as the sample size of an arm in this chapter. This challenge

is addressed in this work by developing novel technical tools, as follows. First, we take into account an

instance-dependent probabilistic suboptimality gap. Next, incorporating this with the aspect of partial

observability, we analyze the suggested Thompson sampling with an appropriate exploration mechanism

ensuring that the probability of pulling suboptimal arms decays as O
(
t−1/2

)
as time proceeds. Given

the interdependence of sample sizes across arms, we delicately construct some martingale sequences and

employ useful stochastic bounds for them, in order to derive our regret bound.

The organization is as follows. In Section 4.2, we formulate the problem and discuss preliminaries.

Then, the Thompson sampling policy for partially observable contextual bandits is presented in Section 4.3.

We provide its theoretical performance guarantees in Section 4.4, followed by real-data experiments in

Section 4.5. Further technical discussions and intermediate lemmas are delegated to appendices.
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For an integer i, [i] represents {1, 2, . . . , i}. M⊤ is the transpose of the matrix M ∈ Cp×q, and

C(M) denotes the column space of M . In addition, Id represents the identity matrix with dimension d,

where d is an integer. For a vector v ∈ Cd, we let the ℓ2 norm denote ∥v∥ =
(∑d

i=1 |vi|2
)1/2

and the

weighted ℓ2 norm with a positive definite matrix A by ∥v∥A =
√
v⊤Av. Finally, λmin(·) and λmax(·) are

the minimum and maximum eigenvalues.

4.2 Problem Formulation

In this section, we state the partially observable contextual bandit problem and provide its formulation.

A policy aims to maximize cumulative reward by selecting one from N arms, the reward of arm i ∈ [N ]

at time t being

ri(t) = xi(t)
⊤µi + εi(t). (4.1)

Here, xi(t) is the unobserved dx-dimensional stochastic context of arm i, independently generated over

time and across arms, from a distribution with E [xi(t)] = 0dx and unknown covariance Cov(xi(t)) =

Σx. Further, µi ∈ Rdx is the unknown arm-specific reward parameter of the i-th arm, and εi(t) is the

noise in the realization of the reward value. We assume that each coordinate of a context and the reward

noise, both have sub-Gaussian tails. That is, there exists a fixed constant R1 > 0, that for all real λ, we

have

E
[
eλεi(t)

]
≤ exp

(
λ2R2

1

2

)
. (4.2)

The policy observes the following transformed noisy version yi(t) of the context xi(t):

yi(t) = Axi(t) + ξi(t), (4.3)
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where A is the unknown dy × dx sensing matrix, and ξi(t) is the sensing (or measurement) noise, its

unknown covariance matrix being denoted by Σξ. We assume that each element of ξi(t) is sub-Gaussian

as well. At each time t, the policy chooses an arm, denoted by a(t), given the history of actions

{a(τ)}τ∈[t−1], rewards {ra(τ)(τ)}τ∈[t−1], past observations {yi(τ)}τ∈[t−1],i∈[N ], and the current ones

{yi(t)}i∈[N ]. Once choosing the arm a(t), we obtain a reward ra(t)(t) according to (4.1), whereas rewards

of other arms are not realized.

Note that (fully observable) contextual bandits consider a class of policies {π : X → [N ]} for the

space of contexts X . However, in our case when the context vectors {xi(t)}i∈[N ] are unknown, we take

into account a class of policies {π : Y → [N ]} for the space of observations Y . Policies of this class

account for yi(t) to infer xi(t)
⊤µi for decision.

Remark 1 (Best Linear Unbiased Prediction (BLUP) (Harville, 1976; Robinson, 1991)). Let x ∈ Rdx and

y ∈ Rdy be stochastic observation and unobserved context related as in (4.3). Then, for a linear function

x⊤µ of x, its BLUP is y⊤b, where b is chosen to minimize the prediction error Var(x⊤µ− y⊤b) subject to

unbiasedness E[x⊤µ − y⊤b] = 0. This linear prediction is invariant to x, and is given by b = D⊤µ for

D = (A⊤Σ−1
ξ A+ Σ−1

x )−1A⊤Σ−1
ξ . Accordingly, yi(t)⊤D⊤µi is the BLUP of xi(t)

⊤µi.

So, BLUP is the best reward estimator even for a policy that has access to A,Σξ,Σx, {µi}i∈[N ]. This

reflects the optimal policy to compete against, as will be discussed in detail shortly in Remark 2.

For ease of presentation, we set

ηi = D⊤µi, (4.4)

for i ∈ [N ], which is a transformed parameter corresponding to the model parameters one can (at best)

hope to learn by using the partial observations of the contexts. The transformed parameter ηi represents

the projected information of the original reward parameter µi that we can learn through the lens of yi(t).

Thus, the optimal policy that fully knows D and µi for i ∈ [N ] and uses this knowledge to select the arm
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of highest expected reward, is

a⋆(t) = argmaxi∈[N ] yi(t)
⊤ηi,

where a⋆(t) is referred to as an optimal arm at time t.

Similarly to other problems in sequential decision-making, regret is the performance measure, which

is the loss of cumulative reward compared to the optimal policy. So, at time T , the regret of the policy

that pulls a(t) ∈ [N ] at round t is

Regret(T ) =
T∑
t=1

(
ya⋆(t)(t)

⊤ηa⋆(t) − ya(t)(t)
⊤ηa(t)

)
.

Remark 2. As above, we aim to compete against an optimal policy a⋆(t) that knows A,Σξ,Σx, as well as

{µi}i∈[N ], which all are unknown to the bandit policy.

However, exact knowledge of contexts changes the setting essentially and nullifies the problem, be-

cause the regret with respect to such policy, cannot grow sublinearly with time. This relies on the fact

that even with fully known reward parameters, bandit policies might select sub-optimal arms due to their

uncertainty about the contexts. So, since contexts vary with time, such suboptimal pulls persist as we pro-

ceed, causing a linear regret (with positive probability). Moreover, the above-mentioned optimal policy

aligns with the existing literature of partially observed contextual bandits (Jose & Moothedath, 2024; Kim

et al., 2023).

Now, we describe the assumptions for the upcoming theoretical analyses. Note that the bandit al-

gorithm in Section 4.3 does not need knowledge of the quantities introduced below. First, we define

exhaustive and exclusive events in the observation space that correspond to each arm being optimal.

Definition 1 (Optimality Regions). Concatenate the observations in y(t) =
(
y1(t)

⊤, . . . , yN(t)
⊤)⊤ and

let A⋆
i ⊂ RNdy be the region in the space of y(t) that makes arm i optimal. That is, as long as y(t) ∈ A⋆

i ,
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it holds that a⋆(t) = i. Further, denote the optimality probability of arm i by

pi = P(y(t) ∈ A⋆
i ) = P(a⋆(t) = i).

The assumption below states a margin condition and properly modifies a similar assumption in (Bas-

tani et al., 2021) to the setting of partially observable contextual bandits.

Assumption 1 (Margin Condition). Consider the normalized observation vectors ẏi(t) = yi(t)/∥y(t)∥

for i ∈ [N ] and the transformed parameters {ηi}i∈[N ] in (4.4). There is C > 0 such that for all u > 0 and

all i ∈ [N ] of positive optimality probability pi in Definition 1, it holds that

max
j∈[N ],j ̸=i

P
(
0 < ẏi(t)

⊤ηi − ẏj(t)
⊤ηj ≤ u

∣∣∣y(t) ∈ A⋆
i

)
≤ Cu.

This expression bounds the conditional probability of ẏi(t)⊤ηi−ẏj(t)
⊤ηj , which is the suboptimality

gap of the j-th arm if arm i is optimal. The assumption states that optimal arms are highly likely to be

distinguishable. More precisely, it expresses that the likelihood of suboptimality gaps being smaller than

u is proportional to u. The above inequality holds, for example, if the sensing noise or the context vectors

have bounded probability density functions all over their Euclidean spaces (Faradonbeh et al., 2018; Wong

et al., 2020). By Assumption 1, for all i, j ∈ [N ], there exists a subset Aκ
i ⊆ A⋆

i for κ = 2/C > 0 such

that

P(y(t) ∈ Aκ
i ) >

pi
2

and P(ẏi(t)⊤ηi − ẏj(t)
⊤ηj > κ|y(t) ∈ Aκ

i ) = 1. (4.5)

Following the previous paragraph, (4.5) implies that κ is the minimum value that the suboptimality

gap can have given the event y(t) ∈ Aκ
i , which happens with probability 1/2 given y(t) ∈ A⋆

i . Here, κ is

an instance-dependent constant, which is referred to as a probabilistic suboptimality gap in this chapter, as
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it is probabilistically satisfied. Moreover, the role ofκ in the analysis of Algorithm 3 for partially observable

contextual bandits of this work, is intrinsically similar to the role of the well-known gap in multi-armed

bandits1 (Lattimore & Szepesvári, 2020). However, this differs from the instance-dependent gap discussed

in the literature on contextual bandits (Abbasi-Yadkori et al., 2011; Dani et al., 2008), where it serves as

a positive hard threshold, above which the suboptimality gap consistently remains over time. Note that

our policy in the next section, does not need any information about κ.

The assumption above is typical in the bandit literature. On the other hand, the next assumption is

adopted for simplifying expressions in the probabilistic analysis of how the reward values are affected by

the information lost in the sensing process (i.e., the imperfectness of context observations).

Assumption 2 (Sub-Gaussianity). For the context vectors xi(t) and the corresponding observations yi(t) in

(4.3), there is a constant R2 > 0 such that for all µi ∈ Rdx , ηi ∈ Rdy , and λ ∈ R, it holds that

max
i∈[N ]

E
[
exp

(
λ
(
xi(t)

⊤µi − yi(t)
⊤ηi
)) ∣∣∣yi(t)] ≤ exp

(
λ2R2

2

2

)
.

The above expression can be interpreted as conditional sub-Gaussianity of the error xi(t)
⊤µi −

yi(t)
⊤ηi, given the observation yi(t). Therefore, its role is similar to the degree of tail heaviness in fi-

nite sample analysis of estimation accuracy (Abbasi-Yadkori et al., 2011; Agrawal & Goyal, 2013). This

assumption holds for a general class of stochastic measurement errors and contexts, including Gaussian

and bounded random vectors, and rules out heavy-tailed distributions and those that the covariance of

xi(t)
∣∣yi(t) grows with ∥yi(t)∥.

Remark 3. Equivalents of the presented algorithms and results for perfectly observed contextual bandits

can be obtained by simply letting A = Idx and Σξ → 0dy×dy .
1Technically, it is the difference between the expected reward of the best arm, and that of the second best arm.
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4.3 Thompson Sampling with Partial Contextual Observations

In this section, we outline a version of the well-known Thompson sampling algorithm that can be imple-

mented using only the observation vectors. Originially Thompson sampling is built on posterior distribu-

tions resulting from prior and reward distributions. However, it is recognized for its robust performance

in absence of exact probability distributions and performs effectively if there exist mismatches between

actual distributions and hypothetical ones.

Now, we introduce Thompson sampling for partially observable contextual bandits. It is noteworthy

that this algorithm does not require any information about the parameters such as A, D, Σx, and Σξ.

In Section 4.2, we show that the best conditional prediction of the reward of the i-th arm given yi(t), is

yi(t)
⊤ηi, regardless of all the probability distributions. Similarly, Thompson sampling learns to choose

an optimal arm as if the rewards are generated from a Gaussian distribution with the variance v2. The

policy fixes the posterior dispersion parameter v2 subject to v2 ≥ R2, where

R2 = R2
1 +R2

2, (4.6)

and R1 and R2 are introduced in (4.2) and Assumption 2, respectively. Intuitively, the above constraint

is to guarantee sufficient exploration.

The policy starts with the initial values η̂i(1) = 0dy and Bi(1) = Idy , which represent the mean and

(unscaled) inverse covariance matrix of a hypothetical prior distribution of ηi for arm i ∈ [N ], respectively.

Then, we sample from the following posterior belief about ηi:

η̃i(t) ∼ N (η̂i(t), v
2Bi(t)

−1), i = 1, 2 . . . , N. (4.7)
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Algorithm 3 : Thompson sampling for contextual bandits with partial context observations
1: Set Bi(1) = Idy , η̂i(1) = 0dy for i = 1, 2, . . . , N
2: for t = 1, 2, . . . , do
3: for i = 1, 2, . . . , N do
4: Sample η̃i(t) from N (η̂i(t), v

2Bi(t)
−1)

5: end for
6: Select arm a(t) = argmaxi∈[N ]yi(t)

⊤η̃i(t)

7: Gain reward ra(t)(t) = xa(t)(t)
⊤µa(t) + εa(t)(t)

8: Update Bi(t+ 1) and η̂i(t+ 1) by (4.8) and (4.9) for i = 1, 2, . . . , N
9: end for

Subsequently, the policy pulls the arm a(t) as if the samples above are the true values of {ηi}i∈[N ];

a(t) = argmax
1≤i≤N

yi(t)
⊤η̃i(t).

Once the algorithm gains the reward of the chosen arm a(t), it updates the posterior parameters:

Bi(t+ 1) = Bi(t) + yi(t)yi(t)
⊤I(a(t) = i), (4.8)

η̂i(t+ 1) = Bi(t+ 1)−1
(
Bi(t)η̂i(t) + yi(t)ra(t)(t)I(a(t) = i)

)
. (4.9)

Note that based on the bandit feedback, the quantities are updated only for the chosen arm a(t), and

those of the other arms remain unaltered. The pseudo-code is provided in Algorithm 3.

4.4 Theoretical Performance Analyses

In this section, we establish the theoretical results of Algorithm 3 for partially observable contextual bandits

with arm-specific parameters. The following results provide estimation error bounds of the estimators

defined in (4.9) and a high-probability regret bound for Algorithm 3. It is worth noting that the accuracy

of parameter estimation and regret growth are closely related because higher estimation accuracy leads

50



to lower regret. Thus, we build the estimation accuracy first and then construct a regret bound based on

it. The first theorem presents the estimation error bound, which scales with the rate of the inverse of the

square root of t.

To proceed, we present auxiliary lemmas that serve as building blocks for the main results, Theorem 4

and 5. To begin, Lemma 9 establishes a truncation bound for the following steps of proofs. Next, Lemma

10, supported by Lemma 11, guarantees the sub-Gaussian tail property for the reward prediction error

given an observation. Additionally, Lemma 12 demonstrates that the minimum eigenvalue ofBi(t) grows

linearly with the sample size ni(t) with a high probability. Furthermore, Lemma 13 is Azuma’s inequality.

Lastly, Lemma 14 and 15 provide upper bounds for the estimation error and sample bias, respectively.

First, we define the parameter space, where the norm of an element is bound. This bounded pa-

rameter space is commonly adapted in the antecedent literature (Bastani et al., 2021; Dani et al., 2008;

Goldenshluger & Zeevi, 2013; Kargin et al., 2023).

Definition 2 (Parameter Bounds). For the transformed reward parameters {ηi}i∈[N ], there exists a positive

constant cη such that ∥ηi∥ ≤ cη , for all i = 1, . . . , N .

Note that according to the transformed parameter space above, a similar bound also holds for the

parameters {µi}i∈[N ] so that their norms are bounded by a positive constant cµ. This expresses that the

unknown reward parameters live in an unknown bounded region. Intuitively, this enables us to control

the effect of parameter sizes on regret growth.

Since each element of a context and observation noise is sub-Gaussian and the sum of two sub-

Gaussian random variables is sub-Gaussian as well, based on (4.3), a positive number cy exists such that

E
[
eλyij(t)

]
≤ exp

(
λ2c2y
2

)
, (4.10)

51



for all realλ > 0, where yij(t) is the j−th element of yi(t). Next, we find a high-probability upper bound

for the norm of observations for the following steps. To find the high-probability bound for ∥yi(t)∥ for

a confidence level δ > 0, we define WT such that

WT =

{
max

{i∈[N ],τ∈[T ]}
||yi(τ)||∞ ≤ vT (δ)

}
, (4.11)

where vT (δ) = cy
√

2 log(2TNdy/δ). In the next lemma, we show that the event WT happens with

probability at least 1− δ.

Lemma 9. For the event WT defined in (4.11), we have P(WT ) ≥ 1− δ.

Proof. By (4.10) and the properties of sub-Gaussian random variables,

P (|yij(t)| ≥ ε) ≤ 2 · e
− ϵ2

2c2y ,

is satisfied for given i, j ∈ [N ]. Accordingly, we have

P (∥yi(t)∥∞ ≥ ε) ≤ 2dy · e
− ε2

2c2y .

By taking the union of the events over time and arms, we get

P
(

max
i∈[N ],τ∈[T ]

∥yi(t)∥∞ ≥ ε

)
≤ 2TNdy · e

− ε2

2c2y

By plugging cy(2 log(2TNdy/δ))
1/2 in ε, we have

P
(

max
i∈[N ],τ∈[T ]

∥yi(t)∥∞ ≥ cy(2 log(2TNdy/δ))
1/2

)
≤ 2TNdy · exp

(
−
2c2y log(2TNdy/δ)

2c2y

)
= δ.
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Thus,

P(WT ) ≥ 1− P
(

max
i∈[N ],τ∈[T ]

∥yi(t)∥ ≥ vT (δ)

)
≥ 1− δ.

By Lemma 9, we have a positive constant L such that

∥yi(t)∥ ≤
√

dyvT (δ) := L = O
(√

dy log(TNdy/δ)

)
, (4.12)

for all 1 ≤ i ≤ N and 1 ≤ t ≤ T with probability at least 1− δ.

The next lemma presents that reward prediction errors given observations have the sub-Gaussian

property when observations and rewards have sub-Gaussian distributions, and thereby, a confidence

ellipsoid is constructed for the estimator in (4.9). This result is built on Theorem 1 in the work of Abbasi-

Yadkori et al., 2011 with proper modifications.

Lemma 10. Let wt = ra(t)(t)− ya(t)(t)
⊤ηa(t) and Ft−1 = σ{{y(τ)}tτ=1, {a(τ)}tτ=1, {ra(τ)(τ)}t−1

τ=1}.

Then, wt is Ft−1-measurable and conditionally R-sub-Gaussian for some R > 0 such that

E[eνwt |Ft−1] ≤ exp

(
ν2R2

2

)
.

In addition, for any δ > 0, with probability at least 1− δ, we have

∥η̂i(t)− ηi∥Bi(t) =

∥∥∥∥∥
t−1∑
τ=1

yi(τ)wτ I(a(τ) = i)

∥∥∥∥∥
Bi(t)−1

≤ R

√
dy log

(
1 + L2ni(t)

δ

)
+ cη.

This lemma provides the sub-Gaussianity for the reward prediction error wt given yi(t), and shows a

self-normalized bound for a vector-valued martingale
∑t−1

τ=1 yi(τ)wτ I(a(τ) = i). The reward estimation
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error wt can be decomposed into two parts. The one is the reward error εi(t) given (4.1) due to the

randomness of rewards. This error is created even if the context xi(t) is known. The other is the reward

mean prediction error xi(t)
⊤µi − yi(t)ηi caused by unknown contexts. The first step of the proof for

this lemma is to show the sub-Gaussian property of wt based on the decomposition. Next, using the sub-

Gaussian property of reward prediction errors, we construct a confidence ellipsoid for the transformed

reward estimator in (4.9) with some martingale techniques.

Proof. To show the sub-Gaussianity ofwt given the observation y(t), we use the following decomposition

of ri(t)− yi(t)
⊤D⊤µi:

ri(t)− yi(t)
⊤D⊤µi = (ri(t)− xi(t)

⊤µi) + (xi(t)
⊤µi − yi(t)

⊤D⊤µi). (4.13)

The first and second terms on the RHS are R1 and R2-sub-Gaussian by (4.2) and Assumption 2, respec-

tively. Because the two terms are independent of each other, we have

E[eν(ri(t)−yi(t)
⊤D⊤µi)|y(t)] = E[eνεi(t)]E[eν(xi(t)

⊤µi−yi(t)
⊤D⊤µi)|y(t)]

≤ exp

(
−ν2R2

1

2

)
exp

(
−ν2R2

2

2

)
.

Thus, we have

E[eν(ri(t)−yi(t)
⊤D⊤µi)|y(t)] ≤ exp

(
−ν2R2

2

)
, (4.14)

where R2 = R2
1 + R2

2. Now, we construct a confidence ellipsoid of the transformed reward parameter

based on the sub-Gaussian property of the reward prediction error.
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Lemma 11. Let

Dη
it = exp

(
(ra(t)(t)− ya(t)(t)

⊤ηa(t))ya(t)(t)
⊤ηa(t)

R
− 1

2
(ya(t)(t)

⊤ηa(t))
2

)I(a(t)=i)

,

Mη
it =

∏t
τ=1D

η
iτ and t⋆ be a stopping time. Then, E[Mη

it⋆ ] ≤ 1.

Proof. First, we take the expected value of Dη
it conditioned on Ft−1 and arrange it as follows:

E[Dη
it|Ft−1]

= E

[
exp

(
(ra(t)(t)− ya(t)(t)

⊤ηa(t))ya(t)(t)
⊤ηa(t)

R
− 1

2
(ya(t)(t)

⊤ηa(t))
2

)I(a(t)=i)
∣∣∣∣∣ y(t), a(t)

]

= E

[
exp

(
ζa(t)(t)ya(t)(t)

⊤ηa(t)
R

)I(a(t)=i)
∣∣∣∣∣ y(t), a(t)

]
exp

(
−1

2
(ya(t)(t)

⊤ηa(t))
2

)I(a(t)=i)

.

Then, by (4.14), we have

E

[
exp

(
ζa(t)(t)ya(t)(t)

⊤ηa(t)
R

)I(a(t)=i)
∣∣∣∣∣ y(t), a(t)

]
exp

(
−1

2
(ya(t)(t)

⊤ηa(t))
2

)I(a(t)=i)

≤
(
exp

(
1

2
(ya(t)(t)

⊤ηa(t))
2

)
exp

(
−1

2
(ya(t)(t)

⊤ηa(t))
2

))I(a(t)=i)

= 1.

Thus, we have

E[Mη
it|Ft−1] = E[Mη

i1D
η
i2 · · ·D

ηi
i(t−1)D

η
it|Ft−1] = Dη

1 · · ·D
η
i(t−1)E[D

η
it|Ft−1] ≤ Mη

i(t−1),

showing that {Mη
iτ}∞τ=1 is a supermartingale and accordingly

E[Mη
it] = E[E[Mη

it|Ft−1]] ≤ E[Mη
i(t−1)] ≤ · · · ≤ E[E[Dη

i1|F1]] ≤ 1.
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Next, we examine the quantity Mη
it⋆ . Since Mη

it is a nonnegative supermartingale, by Doob’s martin-

gale convergence theorems (Doob, 1953), Mη
it converges to a random variable, which is denoted by Mη

i .

Let Qη
it = Mη

imin(t,t⋆) be the stopping time version of {Mη
it}t. Then, by Fatou’s Lemma (Rudin et al.,

1976), we have

E[Mη
it⋆ ] = E[liminft→∞Qη

it] ≤ liminft→∞E[Qη
it] ≤ 1.

Now, we continue the proof of Lemma 10. Letϕηi be the probability density function of multivariate

Gaussian distribution of ηi with the mean 0dy and the covariance matrix v2Idy . By Lemma 9 in the work

of Abbasi-Yadkori et al., 2011, we have

Pϕηi

(
∥Sit⋆∥2Bi(t⋆)−1 > 2R2 log

(
det(Bi(t

⋆))1/2

δ

))
≤ δ, (4.15)

where Pϕηi
denotes the probability measure associated with ϕηi representing the distribution of ηi and

Sit =
∑t−1

τ=1 ya(τ)(τ)wτ I(a(τ) = i). Lemma 11 and (4.15) are sufficient conditions for the use of Theorem

1 in the work of Abbasi-Yadkori et al., 2011, thus we get

Pϕηi

(
∃t⋆ < ∞ s.t. ∥Sit⋆∥2Bi(t⋆)−1 > 2R2 log

(
det(Bi(t

⋆))1/2

δ

))
≤ δ. (4.16)

By Lemma 10 in the work of Abbasi-Yadkori et al., 2011, we have

det(Bi(t)) ≤ (1 + ni(t)L
2/dy)

dy ,
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and subsequently, we have

2 log

(
det(Bi(t))

1/2

δ

)
≤ dy log

(
1 + L2ni(t)

δ

)
.

Thus, with probability at least 1− δ, we get

∥Sit∥2Bi(t)−1 < R

√
dy log

(
1 + L2ni(t)

δ

)
+ cη,

for all t > 0. Because Sit can be written as

Sit =
t−1∑

τ=1:a(τ)=i

ya(τ)(τ)(ra(τ)(τ)− ya(τ)(τ)
⊤ηa(τ))I(a(τ) = i) = Bi(t)(η̂i(t)− ηi),

we have

∥η̂i(t)− ηi∥Bi(t) = ∥Sit∥Bi(t)−1 .

Therefore, with probability of at least 1− δ, for all t > 0, we have

∥η̂i(t)− ηi∥Bi(t) ≤ R

√
dy log

(
1 + L2ni(t)

δ

)
+ cη,

which is a similar result to Theorem 2 in the work of Abbasi-Yadkori et al., 2011.

Lemma 10, together with Lemma 12 and 14, provides theoretical foundations for the square-root

estimation accuracy, which will be showcased in Theorem 4. The next lemma guarantees the linear growth

of eigenvalues of covariance matrices {Bi(t)}i∈[N ] defined in (4.8) with respect to the number of samples

of each arm.
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Lemma 12. Let ni(t) be the count of i-th arm chosen up to the time t. For Bi(t) in (4.8), with probability at

least 1− δ, if ν(1) ≤ ni(t) ≤ T , we have

λmax

(
Bi(t)

−1
)
≤ 2

λm

ni(t)
−1,

where ν(1) = 8L4 log(TN/δ)/λ2
m.

Proof. We investigate the (unscaled) inverse covariance matrix Bi(t), whose eigenvalues are closely related

to estimation accuracy. It is worth noting that the matrix Bi(t) is the sum of mutually dependent rank 1

matrices. Due to the dependence of the matrices, classical techniques for independent random variables

cannot be applied to them. To address this issue, we construct a martingale sequence and use the next

lemma (Azuma’s inequality), which provides a high-probability bound for a sum of martingale sequences.

Lemma 13. (Azuma’s Inequality) Consider the sequence {Xt}1≤t≤T random variables adapted to some

filtration {Gt}1≤t≤T , such that E[Xt|Gt−1] = 0. Assume that there is a deterministic sequence {ct}1≤t≤T

that satisfies X2
t ≤ c2t , almost surely. Let σ2 =

∑T
t=1 c

2
t . Then, for all ε ≥ 0, it holds that

P

(
T∑
t=1

Xt ≥ ε

)
≤ e−ε2/2σ2

.

The proof of Lemma 13 is provided in the work of Azuma, 1967. We use the above lemma and construct

a martingale via its difference sequence. Then, we establish a lower bound for the smallest eigenvalue of

Bi(t), which we show is crucial in the analysis of the worst-case estimation error. Let the sigma-field

generated by the contexts and chosen arms up to time t be

Gt−1 = σ{{xi(τ)}τ∈[t],i∈[N ], {a(τ)}τ∈[t]}.
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Consider V i
t = ya(t)(t)ya(t)(t)

⊤I(a(t) = i) in order to study the behavior of Bi(t). Since

Var(yi(t)|Gt−1) = E[yi(t)yi(t)⊤|Gt−1]− E[yi(t)|Gt−1]E[yi(t)|Gt−1]
⊤

= E[Vt|Gt−1]− Axi(t)xi(t)
⊤A⊤,

we have

E[V i
t |Gt−1] =

(
Var(yi(t)|Gt−1) + Axi(t)xi(t)

⊤A⊤) I(a(t) = i)

⪰ ΣξI(a(t) = i) ⪰ λmIdyI(a(t) = i), (4.17)

where M1 ⪰ M2 for square matrices M1 and M1 represents that M1 − M2 is a semi-positive definite

matrix and λm = λmin(Σξ), i.e., for all t > 0 and ∥z∥ = 1, it holds that

z⊤

(
t−1∑
τ=1

E[V i
τ |Gτ−1]

)
z ≥ λmni(t). (4.18)

Now, we focus on a high-probability lower bound for the smallest eigenvalue ofBi(t). To proceed, define

the martingale difference X i
t and martingale Y i

t such that

X i
t = V i

t − E[Vt|Gt−1], (4.19)

Y i
t =

t∑
τ=1

(
V i
τ − E[Vτ |Gτ−1]

)
. (4.20)

Then, X i
t = Y i

t − Y i
t−1 and E [X i

t |Gt−1] = 0. Thus, z⊤X i
tz is a martingale difference sequence. Here,

we are interested in the minimum eigenvalue of
∑t−1

τ=1 V
i
τ . Because (z⊤X i

tz)
2 ≤ ∥yi(t)∥4I(a(t) =

i) ≤ L4I(a(t) = i) and thereby
∑t−1

τ=1

(
z⊤X i

τz
)2 ≤ ni(t)L

4, using Lemma 13, we get the following
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inequality

P

(
z⊤

(
t−1∑
τ=1

X i
τ

)
z ≤ ε

)
≤ exp

(
− ε2

2ni(t)L4

)
,

for ε ≤ 0. By plugging ni(t)ε into ε above, we have

P

(
z⊤

(
t−1∑
τ=1

X i
τ

)
z ≤ ni(t)ε

)
≤ exp

(
−ni(t)ε

2

2L4

)
(4.21)

for ε ≤ 0. Because

z⊤

(
t−1∑
τ=1

(
V i
τ − E[V i

τ |Gτ−1]
))

z ≤ z⊤

(
t−1∑
τ=1

(
V i
τ − λmIdyI(a(τ) = i)

))
z

based on (4.17), we have the following inequality

P

(
z⊤

(
t−1∑
τ=1

(
V i
τ − E[V i

τ |Gτ−1]
))

z ≤ ni(t)ε

)

≥ P

(
z⊤

(
t−1∑
τ=1

(
V i
τ − λmIdyI(a(τ) = i)

))
z ≤ ni(t)ε

)
. (4.22)

Putting (4.21) and (4.22) together, we obtain

P

(
z⊤

(
t−1∑
τ=1

V i
τ

)
z ≤ ni(t)(λm + ε)

)
≤ exp

(
−ni(t)ε

2

2L4

)
, (4.23)

where −λm ≤ ε ≤ 0 is arbitrary. Because z⊤Bi(t)z ≥ z⊤
(∑t−1

τ=1 V
i
τ

)
z based on Bi(t) = Idy +∑t−1

τ=1 V
i
τ , we have

P
(
z⊤Bi(t)z ≤ ni(t)(λm + ε)

)
≤ exp

(
−ni(t)ε

2

2L4

)
, (4.24)
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for −λm ≤ ε ≤ 0. By putting exp (−ni(t)ε
2/(2L4)) = δ/(TN), (4.24) can be written as

z⊤Bi(t)z ≥ ni(t)

(
λm −

√
2L4

ni(t)
log

TN

δ

)
, (4.25)

for any z ∈ Rdy such that ∥z∥ = 1 and all 1 ≤ t ≤ T with probability at least 1− δ. That is, we have

ni(t)

(
λm −

√
2L4

ni(t)
log

TN

δ

)
≤ λmin(Bi(t)),

because the inequality (4.25) is achieved for any z ∈ Rdy . If ni(t) ≥ ν(1) := 8L4 log(TN/δ)/λ2
m =

O(L4 log(TN/δ)), we have

λmax

(
Bi(t)

−1
)
≤ 2

λm

ni(t)
−1.

In the lemma above, the minimum sampling size ν(1) is required to guarantee the linear growth of the

eigenvalues of Bi(t) based on (4.25). The next lemma shows that the estimate in (4.9) has the square-root

estimation accuracy regarding ni(t).

Lemma 14. Let η̂i(t) be the estimate in (4.9). Then, if ν(1) < ni(t) ≤ T , with probability at least 1− δ,

for all i ∈ [N ], we have

∥η̂i(t)− ηi∥ ≤
√

2

λm

(
R

√
dy log

(
1 + TL2

δ

)
+ cη

)
ni(t)

−1/2.
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Proof. First, it is given that

∥η̂i(t)− ηi∥Bi(t) = ∥Bi(t)
1/2(η̂i(t)− ηi)∥ ≤ R

√
dy log

(
1 + TL2

δ

)
+ cη

by Lemma 10. Then, because
√

λmni(t)/2 ≤ λmin(Bi(t)
1/2) for ni(t) ≥ ν(1) by Lemma 12, we have

√
λmni(t)

2
∥η̂i(t)− ηi∥ ≤ λmin(Bi(t)

1/2)∥η̂i(t)− ηi∥ ≤ ∥Bi(t)
1/2(η̂i(t)− ηi)∥.

Therefore, putting the two inequalities above together, we have

∥η̂i(t)− ηi∥ ≤
√

2

λm

(
R

√
dy log

(
1 + TL2

δ

)
+ cη

)
ni(t)

−1/2,

if ni(t) ≥ ν(1).

The next lemma provides an upper bound for the norm of sample bias, η̃i(t)−ηi, which is represented

as the sum of the degree of exploration η̃i(t)− η̂i(t) and estimation error η̂i(t)− ηi. This lemma is used

to find the bound for the contribution of sample bias to the regret growth. This lemma is built on the

linear growth of eigenvalues of Bi(t) along with the confidence ellipsoid of the estimates, {η̂i(t)}i∈[N ],

in Lemma 10.

Lemma 15. Consider η̃i(t), a sample of the i-th arm in (4.7). Then, if ν(1) < ni(t) ≤ T , with probability

at least 1− δ, for all i ∈ [N ], we have

∥η̃i(t)− ηi∥ ≤
√

2

λm

(
v

√
2dy log

2TN

δ
+R

√
dy log

(
1 + TL2

δ

)
+ cη

)
ni(t)

−1/2.

Proof. First, we consider the distribution of η̃i(t) − η̂i(t). Note that we sample η̃i(t) from

N (η̂i(t), v
2Bi(t)

−1). Using P (∥η̃i(t)− η̂i(t)∥ > ϵ|Bi(t)) ≤ P
(√

dyZ > ϵ|Bi(t)
)

for Z|Bi(t) ∼
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N (0, v2λmax(Bi(t)
−1)), we have

P (∥η̃i(t)− η̂i(t)∥ > ϵ|Bi(t)) < 2 · exp
(
− ϵ2

2dyv2λmax(Bi(t)−1)

)
.

By putting 2 · exp (−ϵ2/(2v2λmax(Bi(t)
−1))) = δ/(TN), we have

∥η̃i(t)− η̂i(t)∥ < v

√
2dyλmax(Bi(t)−1) log

2TN

δ
.

If ni(t) > ν(1), by Lemma 12, we have λmax(Bi(t)
−1) ≤

√
2/(λmni(t)) and subsequently

∥η̃i(t)− η̂i(t)∥ < v

√
2

λm

√
2dy log

2TN

δ
ni(t)

−1/2.

Therefore, by putting the above inequality together with Lemma 14, for ν(1) < ni(t) ≤ T , we have

∥η̃i(t)− ηi∥ ≤
√

2

λm

(
v

√
2dy log

2TN

δ
+R

√
dy log

(
1 + TL2

δ

)
+ cη

)
ni(t)

−1/2.

Now, we are ready to prove the following theorem that guarantees a square-root estimation accuracy

of transformed parameters.

Theorem 4 (Estimation Accuracy). For all arms i ∈ [N ] such that pi > 0, let ηi and η̂i(t) be the true

parameter in (4.4) and its estimate in (4.9), respectively. Then, with probability at least 1− δ, Algorithm 3

guarantees

∥η̂i(t)− ηi∥2 = O
(
R2dy
t pi

log
TNdy

δ

)
,
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if τ (1)i < t ≤ T and v ≥ R, where R is defined in (4.6) and τ
(1)
i = O(v2p−2

i Nd3.5y κ−5 log5(TNdy/δ))

is the minimum time the algorithm is run.

The theorem above indicates that the estimation error bound decreases in t. This is not straightforward

since the estimation accuracy of the parameter for the i-th arm generally increases with the sample size

of the i-th arm, ni(t), instead of the overall horizon t. Further, R2 reflects the total variance including

reward and observation errors exacerbating the estimation accuracy. Lastly, the term p−1
i implies that an

arm with a larger pi is more likely to be chosen, resulting in more pulls and a better estimation accuracy.

Proof sketch. To prove the theorem, we first find the high-probability upper bound for the observation

vectors and employ martingale concentration inequalities. Next, leveraging sub-Gaussianity, we construct

confidence ellipsoids for the transformed parameters via self-normalized martingales. Then, based on the

martingale property of the eigenvalues ofBi(t), we show that the minimum eigenvalue of it grows linearly

with the random number of pulls of i-th arm, ni(t), which itself is proven to have a linear growth with

time. In the proof process for the linear growth of ni(t), the minimum time τ (1)i is required to remove

sub-linear terms of t. Putting together the above steps, we obtain the square-root consistency for the

estimates of the transformed parameters. □

Before starting the proof, remind the constants described in the statement in Theorem 4. L is the

bound for the ℓ2-norm of observations. pi is the probability of optimality of the i-th arm, as defined in

Definition 1. κ is the minimum value of suboptimality gap with a positive probability (0.5) defined in

(4.5).

Proof. First, we show that the number of selections of each arm scales linearly with a high probability. We

utilize the inequality below to find a high-probability upper bound for ni(t).

ni(t) ≥
t∑

τ=1

I(a(τ) = i, Aκ
iτ ).
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We construct a martingale sequence I(a(t) = i, Aκ
it)−P(a(τ) = i, Aκ

it|G⋆
t−1)with respect to a filtration

{G⋆
t}∞t=1, where G⋆

t = σ{{a(τ)}tτ=1} and Aκ
it = {y(t) ∈ Aκ

i }. By Azuma’s inequality, we have

t∑
τ=1

I(a(t) = i, Aκ
it) ≥ −

√
2t log δ−1 +

t∑
τ=1

P(a(τ) = i|G⋆
τ−1, A

κ
iτ )P(Aκ

iτ ). (4.26)

Since P(a(t) = i|G⋆
t−1, A

κ
it) can be written as P(a(t) = i|G⋆

t−1, A
κ
it) = 1 −

∑
j ̸=i P(a(t) =

j|G⋆
t−1, A

κ
it), we focus on an upper bound for

∑t
τ=1

∑
j ̸=i P(a(τ) = j|G⋆

τ−1, A
κ
iτ ). To proceed, we

rewrite the probability P(a(t) = j|G⋆
t−1, A

κ
it) as follows:

P(a(t) = j|G⋆
t−1, A

κ
it)

= P(a(t) = j, E1
jt, E

2
jt|G⋆

t−1, A
κ
it) + P(a(t) = j, (E1

jt)
c, E2

jt|G⋆
t−1, A

κ
it)

+ P(a(t) = j, (E2
jt)

c|G⋆
t−1, A

κ
it), (4.27)

where E1
jt = {yj(t)⊤η̃j(t) < yj(t)

⊤ηj + 0.5(yi(t)
⊤ηi − yj(t)

⊤ηj)} and E2
jt = {yj(t)⊤η̂j(t) ≤

yj(t)
⊤ηj+0.5(yi(t)

⊤ηi−yj(t)
⊤ηj)}. Based on the decomposition above, we will show the upper bound

for
∑t

τ=1 P(a(τ) = j|Aκ
iτ , F

⋆
τ−1) by establishing upper bounds of the above three terms in Lemmas 19,

20, and 21. Moving forward, we will find an upper bound for the first term in (4.27).

Lemma 16. For all 1 ≤ t ≤ T and instantiations of F ⋆
t−1 = σ{{y(τ)}tτ=1, {a(τ)}t−1

τ=1, {ra(τ)(τ)}t−1
τ=1},

we have

P(a(t) = j, E1
jt, E

2
jt|Aκ

it, F
⋆
t−1) ≤

1− pijt
pijt

P(a(t) = i, E1
jt, E

2
jt|Aκ

it, F
⋆
t−1),

where pijt = P(yi(t)⊤η̃i(t) > 0.5(yj(t)
⊤ηj + yi(t)

⊤ηi)|Aκ
it, F

⋆
t−1).

Proof. We consider upper and lower bounds of the probabilities P
(
a(t) = j|Aκ

it, E
1
jt, F

⋆
t−1

)
and P

(
a(t) = i|Aκ

it, E
1
jt, F

⋆
t−1

)
, respectively. First, we aim to find an upper bound for
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P
(
a(t) = j|Aκ

it, E
1
jt, F

⋆
t−1

)
. Given E1

jt, if arm j is selected, yk(t)⊤η̃k(t) ≤ 0.5(yj(t)
⊤ηj + yi(t)

⊤ηi)

for all k including j. Using this fact, we get

P
(
a(t) = j|Aκ

it, E
1
jt, F

⋆
t−1

)
≤ P

(
yk(t)

⊤η̃k(t) ≤ 0.5(yj(t)
⊤ηj + yi(t)

⊤ηi),∀k|Aκ
it, E

1
jt, F

⋆
t−1

)
.

Since the sample of each arm is generated independently given F ⋆
t−1, the term on the RHS above can

be written as

P
(
yk(t)

⊤η̃k(t) ≤ 0.5(yj(t)
⊤ηj + yi(t)

⊤ηi),∀k ̸= i|Aκ
it, E

1
jt, F

⋆
t−1

)
= (1− pijt) · P

(
yk(t)

⊤η̃k(t) ≤ 0.5(yj(t)
⊤ηj + yi(t)

⊤ηi), ∀k ̸= i|Aκ
it, E

1
jt, F

⋆
t−1

)
. (4.28)

Similarly, we have an upper bound for P
(
a(t) = i|Aκ

it, E
1
jt, F

⋆
t−1

)
as follows.

P
(
a(t) = i|Aκ

it, E
1
jt, F

⋆
t−1

)
≥ P

(
yi(t)

⊤η̃i(t) > 0.5(yj(t)
⊤ηj + yi(t)

⊤ηi) ≥ yk(t)
⊤η̃k(t), ∀k ̸= i|Aκ

it, E
1
jt, F

⋆
t−1

)
= pijt · P

(
yj(t)

⊤η̃k(t) ≤ 0.5(yj(t)
⊤ηj + yi(t)

⊤ηi),∀k ̸= i|Aκ
it, E

1
jt, F

⋆
t−1

)
. (4.29)

Putting the two inequalities (4.28) and (4.29) together, we have

P
(
a(t) = j|Aκ

it, E
1
jt, F

⋆
t−1

)
≤ 1− pijt

pijt
P
(
a(t) = i|Aκ

it, E
1
jt, F

⋆
t−1

)
.

Since whether E2
jt is true is determined by F ⋆

t−1, we get

P(a(t) = j, E1
jt, E

2
jt|Aκ

it, F
⋆
t−1) ≤

1− pijt
pijt

P(a(t) = i, E1
jt, E

2
jt|Aκ

it, F
⋆
t−1).
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By Lemma 16, we have

T∑
t=1

P(a(t) = j, E1
jt, E

2
jt|G⋆

t−1, A
κ
it)

=
T∑
t=1

E[P(a(t) = j, E1
jt, E

2
jt|Aκ

it, F
⋆
t−1)|G⋆

t−1, A
κ
it]

≤
T∑
t=1

E
[
1− pijt
pijt

P(a(t) = i, E1
jt, E

2
jt|Aκ

it, F
⋆
t−1)

∣∣∣∣G⋆
t−1, A

κ
it

]
.

By simple calculation, we get

T∑
t=1

E
[
1− pijt
pijt

P(a(t) = i, E1
jt, E

2
jt|Aκ

it, F
⋆
t−1)

∣∣∣∣G⋆
t−1, A

κ
it

]

=
T∑
t=1

E
[
E
[
1− pijt
pijt

I(a(t) = i, E1
jt, E

2
jt)

∣∣∣∣Aκ
it, F

⋆
t−1

]∣∣∣∣G⋆
t−1, A

κ
it

]

=
T∑
t=1

E
[
1− pijt
pijt

I(a(t) = i, E1
jt, E

2
jt)

∣∣∣∣G⋆
t−1, A

κ
it

]

≤
T∑
t=1

E
[
1− pijt
pijt

∣∣∣∣G⋆
t−1, A

κ
it

]
.

Thus, we have

T∑
t=1

P(a(t) = j, E1
jt, E

2
jt|G⋆

t−1, A
κ
it) ≤

T∑
t=1

E
[
1− pijt
pijt

∣∣∣∣G⋆
t−1, A

κ
it

]
. (4.30)

The next lemma provides a lower and upper bound for probabilities about normal distribution, which

will be used to find a lower bound for pijt.

Lemma 17. For a Gaussian distributed random variable Z with mean m and variance σ2, for any z ≥ 1,

1

2
√
πz

e−z2/2 ≤ P(|Z −m| > zσ) ≤ 1√
πz

e−z2/2.
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The lemma above is Lemma 5 in the work of Agrawal and Goyal, 2013, which can be derived from

Formula 7.1.13 in the work of Abramowitz and Stegun, 1964. The next lemma suggests an upper bound

for the term on RHS in (4.30).

Lemma 18. For pijt defined in Lemma 16 and Aκ
it in (4.5), we have

E
[
1− pijt
pijt

∣∣∣∣G⋆
t−1, A

κ
it

]
≤ 2

√
π

v

(
16v4

κ3
+

1

2
cη
√

1 + L2ni(t)

)
+ 63.

Proof. First, we rewrite pijt as follows:

pijt = P(yi(t)⊤(η̃i(t)− η̂i(t)) > yi(t)
⊤(ηi − η̂i(t)) + 0.5(yj(t)

⊤ηj − yi(t)
⊤ηi)|Aκ

it, F
⋆
t−1).

Let θit = yi(t)
⊤(ηi − η̂i(t)). Note that yi(t)⊤(η̃i(t) − η̂i(t)) ∼ N (0, v2yi(t)

⊤Bi(t)
−1yi(t))

given yi(t) and Bi(t). Let Φit(·) be the CDF of the normal distribution with mean 0 and variance

v2yi(t)
⊤Bi(t)

−1yi(t). For ease of presentation, let κijt = −0.5(yj(t)
⊤ηj − yi(t)

⊤ηi) and σ2
it =

yi(t)
⊤Bi(t)

−1yi(t). Then, we write P(yi(t)⊤(η̃i(t)− η̂i(t)) > θit − κijt|Aκ
it, F

⋆
t−1) = Φit(−θ+ κijt).

Since Φit(−θ + κijt) ≥ (vσit/2
√
π(θ − κijt)) exp (−(θ − κijt)

2/(2v2σ2
it)) for θ > κijt + vσit by

Lemma 17, we have

p−1
ijt = Φit(−θ + κijt)

−1

≤ I(κijt + vσit < θ)
2
√
π(θ − κijt)

vσit

exp

(
(θ − κijt)

2

2v2σ2
it

)
+ I(κijt + vσit ≥ θ)Φit(vσit)

−1.

Thus, we get
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E[p−1
ijt |Aκ

it, F
⋆
t−1] ≤

∫ ∞

κijt+vσit

2
√
π

vσit

(
1 +

(θ − κijt)
2

v2σ2
it

)
exp

(
(θ − κijt)

2

2v2σ2
it

)
Sit(θ)dθ + Φ(−1)−1,

(4.31)

where Φ(·) is the CDF of standard normal distribution and Sit is the survival function of θit. Note

that

yi(t)
⊤(η̂i(t)− ηi) = yi(t)

⊤Bi(t)
−1

t∑
τ=1:a(τ)=i

ya(τ)(τ)(ra(τ)(t)− ya(τ)(τ)
⊤ηa(τ))

and

Var(yi(t)
⊤(η̂i(t)− ηi)|{y(τ)}1≤τ≤t, {a(τ)}1≤τ≤t−1)

= yi(t)
⊤Bi(t)

−1yi(t)Var(ra(t)(t)− ya(t)(t)
⊤ηa(t)|{y(τ)}1≤τ≤t, {a(τ)}1≤τ≤t−1)

≤ yi(t)
⊤Bi(t)

−1yi(t)R
2.

Since ra(τ)(t)− ya(τ)(τ)
⊤ηa(τ) is R-sub-Gaussian by Lemma 10 and v2 ≥ R2, we have

Sθit(θ) = P(yi(t)⊤(η̂i(t)− ηi) > θ|{y(τ)}1≤τ≤t, {a(τ)}1≤τ≤t−1)

≤ exp

(
− θ2

2yi(t)⊤Bi(t)−1yi(t)v2

)
, (4.32)

for θ > 0. Then, we have
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∫ ∞

κijt+vσit

2
√
π

vσit

(
1 +

(θ − κijt)
2

v2σ2
it

)
exp

(
(θ − κijt)

2

2v2σ2
it

)
Sit(θ)dθ

≤
∫ ∞

κijt+vσit

2
√
π

vσit

(
1 +

(θ − κijt)
2

v2σ2
it

)
exp

(
(θ − κijt)

2

2v2σ2
it

)
exp

(
− θ2

2v2σ2
it

)
dθ

=

∫ ∞

κijt+vσit

2
√
π

vσit

(
1 +

(θ − κijt)
2

v2σ2
it

)
exp

(−2κijtθ + κ2
ijt

2v2σ2
it

)
dθ

Using the first and second moments of the shifted exponential distribution with the scale parameter

v2σ2
it/κijt and location parameter κijt/2, we have

2
√
π

vσit

∫ ∞

κijt+vσit

(
1 +

(θ − κijt)
2

v2σ2
it

)
exp

(
−2κijt(θ − (κijt/2))

2v2σ2
it

)
dθ

≤ 2
√
πvσit

κijt

∫ ∞

κijt/2

(
(θ − κijt/2)

2 − κijt(θ − κijt/2) + κ2
ijt/4 + v2σ2

it

v2σ2
it

)
×

1

v2σ2
it/κijt

exp

(
−(θ − (κijt/2))

v2σ2
it/κijt

)
dθ

=
2
√
π

κijtvσit

(2(v2σ2
it/κijt)

2 − κijt(v
2σ2

it/κijt) + κ2
ijt/4 + v2σ2

it). (4.33)

Note that σ2
it = yi(t)

⊤Bi(t)
−1yi(t) and κijt = 0.5(yi(t)

⊤ηi − yj(t)
⊤ηj) given Aκ

it. The term

σ3
it/κ

3
ijt can be bounded as follows:

σ3
it

κ3
ijt

=
(yi(t)

⊤Bi(t)
−1yi(t))

3/2/∥y(t)∥3

(0.5(yi(t)⊤ηi − yj(t)⊤ηj))3/∥y(t)∥3
≤ 8

κ3
, (4.34)

because λmax(Bi(t)
−1) ≤ 1 and (yi(t)

⊤ηi − yj(t)
⊤ηj)/∥y(t)∥ ≥ κ given Aκ

it by Assumption 1. In

addition, because 1/(1 + L2ni(t)) ≤ λmin(Bi(t)
−1) for all t and ∥ηi∥ ≤ cη for all i by Definition 2, we

have
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κijt

σit

=
(0.5(yi(t)

⊤ηi − yj(t)
⊤ηj))/∥y(t)∥

(yi(t)⊤Bi(t)−1yi(t))0.5/∥y(t)∥
≤ 2cη

√
1 + L2ni(t). (4.35)

Then, putting (4.33) together with (4.34) and (4.35), we have

2
√
π

κijtvσit

(2(v2σ2
it/κijt)

2 − κijt(v
2σ2

it/κijt) + κ2
ijt/4 + v2σ2

it)

=
2
√
π

v

(
2v4

σ3
it

κ3
ijt

+
κijt

4σit

)
≤ 2

√
π

v

(
16v4

κ3
+

1

2
cη
√

1 + L2ni(t)

)
.

By (4.31) and the intermediate result above, we get

E
[
1− pijt
pijt

∣∣∣∣G⋆
t−1, A

κ
it

]
≤ 2

√
π

v

(
16v4

κ3
+

1

2
cη
√

1 + L2ni(t)

)
+ 63, (4.36)

because Φ(−1) > 1/8.

Lemma 19. For the events E1
jt and E2

jt defined in (4.27) and Aκ
it in (4.5), we have

T∑
t=1

P(a(t) = j, E1
jt, E

2
jt|G⋆

t−1, A
κ
it)

≤ ν(2)

(
(2
√
π)/v

(
16v4/κ3 + 0.5cη

√
1 + L2ν(2)

)
+ 63

)
+ 4,

where ν(2) = max(ν(1), 64v
2/(κ2λm) log T ).

Proof. We rewrite pijt to decompose the components of it into independent terms as follows:

pijt = P(yi(t)⊤η̃i(t) > 0.5(yj(t)
⊤ηj + yi(t)

⊤ηi)|Aκ
it, F

⋆
t−1)

= P(yi(t)⊤(η̃i(t)− η̂i(t)) > −yi(t)
⊤(η̂i(t)− ηi)− 0.5(yi(t)

⊤ηi − yj(t)
⊤ηj)|Aκ

it, F
⋆
t−1).
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Let Aη
it = {|yi(t)⊤(η̂i(t)− ηi)| < (1/4)(yi(t)

⊤ηi − yj(t)
⊤ηj)}, which represents an event where the

estimator of a transformed parameter is close to the parameter. Then, we have

P
(
yi(t)

⊤(η̃i(t)− η̂i(t)) > −yi(t)
⊤(η̂i(t)− ηi)−

1

2
(yi(t)

⊤ηi − yj(t)
⊤ηj)

∣∣∣∣Aκ
it, F

⋆
t−1, A

η
it

)
×

P(Aη
it|Aκ

it, F
⋆
t−1)

≥ P(yi(t)⊤(η̃i(t)− η̂i(t)) > −(1/4)(yi(t)
⊤ηi − yj(t)

⊤ηj)|Aη
it, A

κ
it, F

⋆
t−1)P(A

η
it|Aκ

it, F
⋆
t−1)

≥
(
1− exp

(
−((1/4)(yi(t)

⊤ηi − yj(t)
⊤ηj))

2

2v2σ2
it

))
P(Aη

it|Aκ
it, F

⋆
t−1),

using yi(t)⊤(η̃i(t)− η̂i(t)) ∼ N (0, v2σ2
it). By Lemma 12, if ni(t) > ν(1), we have

σ2
it/∥y(t)∥2 = yi(t)

⊤Bi(t)
−1yi(t)/∥y(t)∥2 ≤

2

λm

ni(t)
−1 (4.37)

In addition, if ni(t) > ν(2) := max(ν(1), 64v
2/(κ2λm) log T ) = O (κ−2L4 log(TN/δ)), we have

((1/4)(yi(t)
⊤ηi − yj(t)

⊤ηj)/∥y(t)∥)2

2v2σ2
it/∥y(t)∥2

≥ λmni(t)κ
2

64v2
≥ log T, (4.38)

and thereby we have exp
(
−((1/4)(yi(t)

⊤ηi − yj(t)
⊤ηj))

2/(2v2σ2
it)
)
≤ T−1. Accordingly, if ni(t) >

ν(2), we get

(
1− exp

(
−((1/4)(yi(t)

⊤ηi − yj(t)
⊤ηj))

2

2v2σ2
it

))
P(Aη

it) ≥
(
1− 1

T

)
P(Aη

it|Aκ
it, F

⋆
t−1).

Thus, we get
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E
[

1

pijt

∣∣∣∣G⋆
t−1, A

κ
it

]
− 1 ≤ 1(

1− 1
T

)
P(Aη

it|Aκ
it, F

⋆
t−1)

− 1,

for ni(t) > ν(2). Note that

P(Aη
it|Aκ

it, F
⋆
t−1) = P(|yi(t)⊤(η̂i(t)− ηi)| < (1/4)(yi(t)

⊤ηi − yj(t)
⊤ηj)|F ⋆

t−1)

≤ 1− exp

(
−((1/4)κ)2

2v2σ2
it

)
.

Since P(Aη
it|Aκ

it, F
⋆
t−1) > 1− T−1 for ni(t) > ν(2) by (4.38), we have

E
[
1− pijt
pijt

∣∣∣∣G⋆
t−1, A

κ
it

]
≤ 1(

1− 1
T

)2 − 1 ≤ 4

T
. (4.39)

Thus, putting (4.36) and (4.39) together, we have

T∑
t=1

P(a(t) = j, E1
jt, E

2
jt|G⋆

t−1, A
κ
it)

≤
∑

t:ni(t)≤ν(2)

E
[
1− pijt
pijt

I(a(t) = i)

∣∣∣∣Aκ
it, F

⋆
t−1

]
+

∑
t:ni(t)>ν(2)

E
[
1− pijt
pijt

I(a(t) = i)

∣∣∣∣Aκ
it, F

⋆
t−1

]

≤ ν(2)

(
2
√
π

v

(
16v4

κ3
+

1

2
cη

√
1 + L2ν(2)

)
+ 63

)
+ 4.

We showed an upper bound for the first term in (4.27). Now, we aim to establish an upper bound for

the second term in (4.27).
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Lemma 20. For the events E1
jt and E2

jt defined in (4.27) and Aκ
it in (4.5), for t ∈ [T ] with probability at

least 1− δ, we have

t∑
τ=1

P
(
a(τ) = j, (E1

jτ )
c, E2

jτ

∣∣G⋆
t−1, A

κ
it

)
≤ ν(2) + 2.

Proof. To start, we decompose the summation of P(a(τ) = j, (E1
jτ )

c, E2
jτ |G⋆

τ−1, A
κ
iτ ) into two based

on the sample size nj(t) as follows:

t∑
τ=1

P(a(τ) = j, (E1
jτ )

c, E2
jτ |G⋆

τ−1, A
κ
iτ )

=
t∑

τ=1

E[I(a(τ) = j, nj(τ) < ν(2), (E
1
jτ )

c, E2
jτ )

+ I(a(τ) = j, nj(τ) ≥ ν(2), (E
1
jτ )

c, E2
jτ )|G⋆

τ−1, A
κ
iτ ]

≤ ν(2) +
t∑

τ :nj(τ)≥⌈ν(2)⌉

E[E[I(a(τ) = j, nj(τ) ≥ ν(2), (E
1
jτ )

c, E2
jτ )|Aκ

iτ , F
⋆
τ−1]|G⋆

τ−1, A
κ
iτ ]. (4.40)

Now, we investigate the case with nj(t) ≥ ν(2). We consider P
(
(E1

jt)
c
∣∣nj(t) ≥ ν(2), A

κ
it, F

⋆
t−1

)
to

find an upper bound for the second term in (4.40). To do so, we rewrite

P
(
(E1

jt)
c
∣∣nj(t) ≥ ν(2), A

κ
it, F

⋆
t−1

)
= P

(
(E1

jt)
c, (E2

jt)
c
∣∣nj(t) ≥ ν(2), A

κ
it, F

⋆
t−1

)
+ P

(
(E1

jt)
c, E2

jt

∣∣nj(t) ≥ ν(2), A
κ
it, F

⋆
t−1

)
≤ P

(
(E2

jt)
c
∣∣F ⋆

t−1, nj(t) ≥ ν(2), A
κ
it

)
+ P

(
(E1

jt)
c, E2

jt

∣∣F ⋆
t−1, nj(t) ≥ ν(2), A

κ
it

)
.

By (4.32), (4.37), and (4.38), if nj(t) ≥ ν(2), we have
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P
(
(E2

jt)
c, nj(t) ≥ ν(2)

∣∣F ⋆
t−1, A

κ
it

)
≤ P(yj(t)⊤η̂j(t) > yj(t)

⊤ηj + (1/4)(yi(t)
⊤ηi − yj(t)

⊤ηj)|F ⋆
t−1, nj(t) ≥ ν(2), A

κ
it)

≤ exp

(
−nj(t)λmκ

2

64v2

)
≤ 1

T
. (4.41)

Similarly, we have

P((E1
jt)

c, E2
jt|F ⋆

t−1, nj(t) ≥ ν(2), A
κ
it)

= P(yj(t)⊤η̃j(t) > 0.5(yj(t)
⊤ηj + yi(t)

⊤ηi), E
2
jt|F ⋆

t−1, nj(t) ≥ ν(2), A
κ
it)

≤ P(yj(t)⊤(η̃j(t)− η̂j(t)) > (1/4)(yi(t)
⊤ηi − yj(t)

⊤ηj)|F ⋆
t−1, nj(t) ≥ ν(2), A

κ
it)

≤ exp

(
−nj(t)λmκ

2

64v2

)
≤ 1

T
. (4.42)

Putting (4.41) and (4.42) together, we have

P
(
(E1

jt)
c
∣∣F ⋆

t−1, nj(t) ≥ ν(2), A
κ
it

)
≤ P

(
(E2

jt)
c|F ⋆

t−1, nj(t) ≥ ν(2), A
κ
it

)
+ P

(
(E1

jt)
c, E2

jt|F ⋆
t−1, nj(t) ≥ ν(2), A

κ
it

)
≤ 2

T
. (4.43)

Since the part of summation for ni(t) < ν(2) is bounded by ν(2), it suffices to show a bound for the

other part. Based on the fact that whether E2
jτ is true determined by F ⋆

t−1, we have

E[I(a(τ) = j, nj(τ) ≥ ν(2), (E
1
jτ )

c, E2
jτ )|Aκ

iτ , F
⋆
τ−1] = I(E2

jτ )P(a(τ) = j, (E1
jτ )

c|Aκ
iτ , F

⋆
τ−1).
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Using the equation above, we have

t∑
τ :nj(τ)≥⌈ν(2)⌉

E[E[I(a(τ) = j, nj(τ) ≥ ν(2), (E
1
jτ )

c, E2
jτ )|Aκ

iτ , F
⋆
τ−1]|G⋆

τ−1, A
κ
iτ ]

=
t∑

τ :nj(τ)≥⌈ν(2)⌉

E[I(E2
jτ )P(a(τ) = j, (E1

jτ )
c|Aκ

iτ , F
⋆
τ−1)|G⋆

τ−1, A
κ
iτ ].

Because I(E2
jτ ) = I(E2

jτ , nj(τ) ≥ ν(2)) given nj(τ) ≥ ⌈ν(2)⌉ and P(a(τ) =

j, (E1
jτ )

c|Aκ
iτ , F

⋆
τ−1) ≤ P((E1

jτ )
c|Aκ

iτ , F
⋆
τ−1), we have

t∑
τ :nj(τ)≥⌈ν(2)⌉

E[I(E2
jτ )P(a(τ) = j, (E1

jτ )
c|Aκ

iτ , F
⋆
τ−1)|G⋆

τ−1, A
κ
iτ ]

≤
t∑

τ :nj(τ)≥⌈ν(2)⌉

E[I(E2
jτ , nj(τ) ≥ ν(2))P((E1

jτ )
c|Aκ

iτ , F
⋆
τ−1)|G⋆

τ−1, A
κ
iτ ].

If τ ≥ ν(2), by (4.43), we have P((E1
jτ )

c|Aκ
iτ , F

⋆
τ−1) ≤ 2/T . Accordingly, we get

t∑
τ :nj(τ)≥⌈ν(2)⌉

E[I(E2
jτ , nj(τ) ≥ ν(2))P((E1

jτ )
c|Aκ

iτ , F
⋆
τ−1)|G⋆

τ−1, A
κ
iτ ]

≤
t∑

τ :nj(τ)≥⌈ν(2)⌉

E
[
I(E2

jτ , nj(τ) ≥ ν(2))

(
2

T

)∣∣∣∣G⋆
τ−1, A

κ
iτ

]
.

Because I(E2
jτ , nj(τ) ≥ ν(2)) ≤ 1, we have
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t∑
τ :nj(τ)≥⌈ν(2)⌉

E
[
I(E2

jτ , nj(τ) ≥ ν(2))

(
2

T

)∣∣∣∣G⋆
τ−1, A

κ
iτ

]

≤ 2

T

t∑
τ :nj(τ)≥⌈ν(2)⌉

1

≤ 2.

Therefore, we have

t∑
τ=1

P(a(τ) = j, (E1
jτ )

c, E2
jτ |G⋆

τ−1, A
κ
iτ ) ≤ ν(2) + 2.

Now, we show an upper bound for the sum of third term in (4.27).

Lemma 21. For t ∈ [T ], with probability at least 1− δ, we have

t∑
τ=1

P(a(τ) = j, (E2
jτ )

c|G⋆
τ−1, A

κ
iτ ) ≤ ν(2) + 1.

Proof. We consider E[I(a(t) = j, (E2
jτ )

c)|G⋆
t−1, A

κ
it].

T∑
t=1

E[I(a(t) = j, (E2
jτ )

c)|G⋆
t−1, A

κ
it]

=
T∑
t=1

E[I(a(t) = j, (E2
jτ )

c, ni(t) < ν(2)) + I(a(t) = j, (E2
jτ )

c, ni(t) ≥ ν(2))|G⋆
t−1, A

κ
it]

≤ ν(2) +
T∑

t=⌈ν(2)⌉

P(a(τ) = j, (E2
jτ )

c, ni(t) ≥ ν(2))|G⋆
τ−1, A

κ
iτ )
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By (4.41), we have

P(a(τ) = j, (E2
jτ )

c, ni(t) ≥ ν(2))|G⋆
τ−1, A

κ
iτ ) ≤ P((E2

jτ )
c, ni(t) ≥ ν(2))|G⋆

τ−1, A
κ
iτ )

≤ 1

T
.

Therefore, we have

t∑
τ=1

P(a(τ) = j, (E2
jτ )

c|G⋆
τ−1, A

κ
iτ ) ≤ ν(2) + 1.

Now, we are ready to show an upper bound for (4.27) with Lemma 19, 20, and 21.

Lemma 22. For t ∈ [T ], with probability at least 1− δ, we have

t∑
τ=1

P(a(τ) = i|G⋆
t−1, A

κ
it)P(Aκ

it)

≥ pi
2

(
t−N

(
ν(2)

(
2
√
π

v

(
16v4

κ3
+

1

2
cη

√
1 + L2ν(2)

)
+ 65

)
+ 7

))
,

where ν(2) is the sample size defined in Lemma 19.

Proof. Note that P(a(t) = i|G⋆
t−1, A

κ
it) = 1−

∑
j ̸=i P(a(t) = j|G⋆

t−1, A
κ
it). To find an upper bound

for (4.27), we showed upper bounds of the three terms in (4.27) in Lemma 19, 20, and 21. Putting them

together, we have

t∑
t=1

P(a(τ) = j|G⋆
t−1, A

κ
it) ≤ ν(2)

(
2
√
π

v

(
16v4

κ3
+

1

2
cη

√
1 + L2ν(2)

)
+ 63

)
+ 4 + 2ν(2) + 3.

By summing the probabilities above over all arms except for i, we have
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∑
j ̸=i

P(a(τ) = j|G⋆
t−1, A

κ
it) ≤ N

(
ν(2)

(
2
√
π

v

(
16v4

κ3
+

1

2
cη

√
1 + L2ν(2)

)
+ 65

)
+ 7

)
.

Therefore, we get

t∑
τ=1

P(a(τ) = i|G⋆
t−1, A

κ
it)P(Aκ

it) =
t∑

τ=1

(
1−

∑
j ̸=i

P(a(τ) = i|G⋆
t−1, A

κ
it)

)
P(Aκ

it)

≥ pi
2

(
t−N

(
ν(2)

(
2
√
π

v

(
16v4

κ3
+

1

2
cη

√
1 + L2ν(2)

)
+ 65

)
+ 7

))
.

Lemma 23. If t > τ
(1)
i for given i,

ni(t) ≥
pi
4
t.

where the minimum time τ (1)i is

τ
(1)
i = max(4ℓ(δ, T,N, κ), (32/p2i ) log δ

−1)

and

ℓ(δ, T,N, κ) = N

(
ν(2)

(
2
√
π

v

(
16v4

κ3
+

1

2
cη

√
1 + L2ν(2)

)
+ 65

)
+ 7

)
.

Proof. Consider a martingale sequence I(a(t) = i, Aκ
it) − P(a(t) = i, Aκ

it|G⋆
t−1) with respect to the

filtration {G⋆
t−1}∞t=1 defined in . By Azuma’s inequality, with probability at least 1− δ

t∑
τ=1

I(a(t) = i, Aκ
it) ≥ −

√
2t log δ−1 +

t∑
τ=1

P(a(t) = i|G⋆
t−1, A

κ
it)P(Aκ

it).
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By Lemma 22, we have

t∑
τ=1

I(a(t) = i, Aκ
it)

≥ −
√

2t log δ−1 +
pi
2

(
t−N

(
ν(2)

(
2
√
π

v

(
16v4

κ3
+

1

2
cη

√
1 + L2ν(2)

)
+ 65

)
+ 7

))
.

For ease of presentation, let

ℓ(δ, T,N, κ) = N

(
ν(2)

(
2
√
π

v

(
16v4

κ3
+

1

2
cη

√
1 + L2ν(2)

)
+ 65

)
+ 7

)
.

Because
√
2t log δ−1 ≤ (pit)/8 for t ≥ (128/p2i ) log δ

−1 and (pi/2) (t− ℓ(δ, T,N, κ)) ≥ 3pit/8

for t ≥ 4ℓ(δ, T,N, κ), we have

−
√

2t log δ−1 +
pi
2
(t− ℓ(δ, T,N, κ)) ≥ pit

4
,

if t ≥ τ
(1)
i := max(4ℓ(δ, T,N, κ), (128/p2i ) log δ

−1) = O(p−2
i Nκ−5L7 log1.5(TNdy/δ)). There-

fore, if t ≥ τ
(1)
i , we have

ni(t) ≥
pit

4
, (4.44)

with probability at least 1− δ.

Now, we are ready to prove Theorem 4. From Lemma 10, we have

∥η̂i(t)− ηi∥ ≤ R

√
2

λm

(√
dy log

(
1 + TL2

δ

)
+ cη

)
ni(t)

−1/2, (4.45)
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if ni(t) > ν(1). Since we have ni(t) ≥ (pit)/4 by (4.44) for t > τ
(1)
i , we get

∥η̂i(t)− ηi∥ ≤ R

√
8

λmpi

(√
dy log

(
1 + TL2

δ

)
+ cη

)
t−1/2.

if ni(t) > ν(1) and t > τ
(1)
i . Thus, putting the two sample conditions together, if t > τi :=

max(4p−1
i ν(1), τ

(1)
i ), we have

∥η̂i(t)− ηi∥ ≤ R

√
8

λmpi

(√
dy log

(
1 + TL2

δ

)
+ cη

)
t−1/2.

Thus, if t > τM := maxi∈[N ] τi = O(v2p+min
−2
Nκ−5L7 log1.5(TNdy/δ)), with probability at

least 1− δ, we have the following estimation accuracy

∥η̂i(t)− ηi∥ ≤ R

√
8

λmpi

(√
dy log

(
1 + TL2

δ

)
+ cη

)
t−1/2.

Corollary 2. For all arms i ∈ [N ] such that pi > 0, let η̃i(t) be a sample generated by Algorithm 3. Then,

with probability at least 1− δ, if t > τi, Algorithm 3 satisfies

∥η̃i(t)− ηi∥ ≤
√

8

piλm

(
v

√
2dy log

2TN

δ
+R

√
dy log

(
1 + TL2

δ

)
+ cη

)
t−1/2.

Proof. By Lemma 15, with probability 1− δ, if ni(t) ≥ ν(1), we have

∥η̃i(t)− ηi∥ ≤
√

2

λm

(
v

√
2dy log

2TN

δ
+R

√
dy log

(
1 + TL2

δ

)
+ cη

)
ni(t)

−1/2 (4.46)
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As ni(t) > pit/4 if t ≥ τi with probability 1− δ by (4.44), we have

∥η̃i(t)− ηi∥ ≤
√

8

piλm

(
v

√
2dy log

2TN

δ
+R

√
dy log

(
1 + TL2

δ

)
+ cη

)
t−1/2.

Built on Theorem 4, the next theorem expresses that the regret scales poly-logarithmically with time.

Theorem 5 (Regret Bound). Suppose thatv ≥ R and letp+min = mini∈[N ]:pi>0 pi. The regret of Algorithm

3 satisfies the following with probability at least 1− δ:

Regret(T ) = O

(
v2Nd4y

p+min
2
κ5

log5.5
(
TNdy

δ

))
.

This theorem demonstrates that the regret scales at most log5.5 T with time and proportionally to at

most inverse square with p+min. In addition, the term N is caused by the derivation of the union bound of

the events that suboptimal arms are chosen over time. Next, scaling d4y is imposed by the high-probability

magnitude O(
√

dy log TNdy/δ)) of sub-Gaussian observation vectors, which excludes cases, where re-

gret increases due to scaling of the observation magnitude. Furthermore, the regret increases at rate κ−5 as

the probabilistic suboptimality gap κ shrinks, because the minimum time τM is required for the applica-

tion of Theorem 4. Finally, an excessive exploration expectedly exacerbates the regret, which corresponds

to the posterior dispersion v2 being overly large.

Proof sketch. For this proof outline, we focus on the effects of T , N , L, and τM . First, we show

that the regret grows with log2 T over time when T is greater than the minimum sample size τM =

O
(
L7N log1.5(TNdy/δ)

)
. Note that regret is the sum of reward gaps, which is incurred when a subop-

timal arm is chosen. For t > τM , the reward gap is O
(
LNdyt

−1/2 log(TNdy/δ)
)

and the probability
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of choosing a suboptimal arm decreases at rate t−1/2, resulting in their product decreasing at rate t−1 over

time. Accordingly, the sum of product terms diminishing as t−1 is O
(
LNdy log

2(TNdy/δ)
)

. Then, we

split the regret as:

Regret(T ) =

⌊τM ⌋∑
t=1

gap(t)I(a⋆(t) ̸= a(t)) +
T∑

t=⌈τM ⌉

gap(t)I(a⋆(t) ̸= a(t)), (4.47)

where gap(t) = ya⋆(t)(t)
⊤ηa⋆(t)(t) − ya(t)(t)

⊤ηa(t)(t). By the intermediate result above, we have

a bound for the second term, which is O(LNdy log
2(TNdy/δ)). As the first term is bounded by

τMLmaxi∈[N ] ∥ηi∥, which is O
(
L8N log1.5(TNdy/δ)

)
, by applying L = O(

√
dy log(TNdy/δ)),

we get the order of the first term O(Nd4y log
5.5(TNdy/δ)), which dominates the second one. Conse-

quently, we get the result of Theorem 5. □

Proof. Note that the regret can be written as

Regret(T ) =
T∑
t=1

(ya⋆(t)(t)
⊤ηa⋆(t)(t)− ya(t)(t)

⊤ηa(t)(t))

≤ 2cηLτM +
T∑

t=⌈τM ⌉

(ya⋆(t)(t)
⊤ηa⋆(t)(t)− ya(t)(t)

⊤ηa(t)(t))I(a⋆(t) ̸= a(t)),

because ∥yi(t)∥ ≤ L for all i ∈ [N ] and t ∈ [T ] and ∥ηi∥ ≤ cη for all i ∈ [N ]. The order of first term is

O(p+min
−2
NL8κ−5 log1.5(TNdy/δ)). Now, we aim to show an upper bound for the second term. The

second term can be written as

T∑
t=⌈τM ⌉

(ya⋆(t)(t)
⊤ηa⋆(t)(t)− ya(t)(t)

⊤ηa(t)(t))I(a⋆(t) ̸= a(t))

≤
T∑

t=⌈τM ⌉

(ya⋆(t)(t)
⊤(ηa⋆(t)(t)− η̃a⋆(t)(t))− ya(t)(t)

⊤(ηa(t)(t)− η̃a⋆(t)(t)))I(a⋆(t) ̸= a(t)),
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because ya(t)(t)⊤η̃a(t) − ya⋆(t)(t)
⊤η̃a⋆(t)(t) ≥ 0. Since ∥yi(t)∥ ≤ L for all t ∈ [T ], we have

T∑
t=⌈τM ⌉

(ya⋆(t)(t)
⊤(ηa⋆(t)(t)− η̃a⋆(t)(t))− ya(t)(t)

⊤(ηa(t)(t)− η̃a⋆(t)(t)))I(a⋆(t) ̸= a(t))

≤ L
T∑

t=⌈τM ⌉

(∥η̃a⋆(t)(t)− ηa⋆(t)∥+ ∥η̃a(t)(t)− ηa(t)∥)I(a⋆(t) ̸= a(t)).

By Corollary 2, if t > τM , we have

∥η̃a⋆(t)(t)− ηa⋆(t)∥+ ∥η̃a(t)(t)− ηa(t)∥ ≤ g(1)(δ)t−1/2,

where

g(1)(δ) = 2

√
8

p+minλm

(
v

√
2dy log

2TN

δ
+R

√
dy log

(
1 + TL2

δ

)
+ cη

)

= O
(
vp+min

−1/2
√

dy log(TNdy/δ)

)
.

Accordingly, the regret can be written as

Regret(T ) ≤ 2cηLτM + Lg(1)(δ)
T∑

t=⌈τM ⌉

t−1/2I(a⋆(t) ̸= a(t)).

Thus, it suffices to show an upper bound for
∑T

t=⌈τM ⌉ t
−1/2I(a⋆(t) ̸= a(t)). To proceed, we apply

Lemma 13 to find a high-probability upper-bound for the summation of the martingale difference sequence

{t−0.5I(a⋆(t) ̸= a(t)) − t−0.5P(a⋆(t) ̸= a(t)|G⋆
t−1)}Tt=⌈τM ⌉ with respect to the filtration {G⋆

t−1}∞t=1,

and get the following inequality with probability at least 1− δ:

T∑
t=⌈τM ⌉

1√
t
I(a⋆(t) ̸= a(t)) ≤

√
4 log T log δ−1 +

T∑
t=⌈τM ⌉

1√
t
P(a⋆(t) ̸= a(t)). (4.48)
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To find a bound for P(a⋆(t) ̸= a(t)), we consider P(yj(t)⊤η̃j(t)− yi(t)
⊤η̃i(t)) > 0|A⋆

it). With

{yi(t)⊤η̃i(t) < yj(t)
⊤η̃j(t)} ⊂{

yj(t)
⊤(η̃j(t)− ηj) >

1

2
(yi(t)

⊤ηi − yj(t)
⊤ηj)

}
∪
{
yi(t)

⊤(η̃i(t)− ηi) < −1

2
(yi(t)

⊤ηi − yj(t)
⊤ηj)

}
,

we decompose the following probability as follows:

P(yj(t)⊤η̃j(t)− yi(t)
⊤η̃i(t)) > 0|G⋆

t−1, A
⋆
it)

≤ P(yi(t)⊤(η̃i(t)− η̂i(t)) > −yi(t)
⊤(η̂i(t)− ηi) + 0.5(yi(t)

⊤ηi − yj(t)
⊤ηj)|G⋆

t−1, A
⋆
it)

+ P(yj(t)⊤(η̃j(t)− η̂j(t)) > −yj(t)
⊤(η̂j(t)− ηj) + 0.5(yi(t)

⊤ηi − yj(t)
⊤ηj)|G⋆

t−1, A
⋆
it).

(4.49)

By Theorem 4, with probability of at least 1− δ, we have

yi(t)
⊤(η̂i(t)− ηi) ≤

h(δ, T )∥y(t)∥
t1/2

,

for all i ∈ [N ], if τM < t ≤ T and i ∈ [N ], where

h(δ, T ) = R

√
8

p+minλm

(√
dy log

(
1 + TL2

δ

)
+ cη

)
= O

(
R
√

dy log(TNdy/δ)

)
.
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Accordingly, we have

P
(
yi(t)

⊤η̃j(t)− yj(t)
⊤η̃i(t) > 0

∣∣∣G⋆
t−1, A

⋆
it

)
≤ P

(
yi(t)

⊤(η̃i(t)− η̂i(t)) > −h(δ, T )∥y(t)∥t−1/2 + 0.5(yi(t)
⊤ηi − yj(t)

⊤ηj)
∣∣∣G⋆

t−1, A
⋆
it

)
+ P

(
yj(t)

⊤(η̃j(t)− η̂j(t)) > −h(δ, T )∥y(t)∥t−1/2 + 0.5(yi(t)
⊤ηi − yj(t)

⊤ηj)
∣∣∣G⋆

t−1, A
⋆
it

)
.

(4.50)

Now, let Eijt = {h(δ, T )t−1/2 < 0.25(ẏi(t)
⊤ηi − ẏj(t)

⊤ηj)} ∩ A⋆
it, where ẏi(t) = yi(t)/∥y(t)∥.

Then, we can decompose the first term on the RHS in (47) as follows:

P
(
ẏi(t)

⊤(η̃i(t)− η̂i(t)) > −h(δ, T )

t1/2
+ (ẏi(t)

⊤ηi − ẏj(t)
⊤ηj)

∣∣∣∣G⋆
t−1, A

⋆
it

)
= P

(
ẏi(t)

⊤(η̃i(t)− η̂i(t)) > −h(δ, T )

t1/2
+ 0.5(ẏi(t)

⊤ηi − ẏj(t)
⊤ηj)

∣∣∣∣G⋆
t−1, Eijt, A

⋆
it

)
× P(Eijt|G⋆

t−1, A
⋆
it)

+ P
(
yi(t)

⊤(η̃i(t)− η̂i(t)) > −h(δ, T )

t1/2
+ 0.5(ẏi(t)

⊤ηi − ẏj(t)
⊤ηj)

∣∣∣∣G⋆
t−1, E

c
ijt, A

⋆
it

)
× P(Ec

ijt|G⋆
t−1, A

⋆
it). (4.51)

We aim to show that the above probability is O(t−0.5) by showing each term in the RHS of (48) is

O(t−0.5). By Assumption 1, if t > τM , we have

P(Ec
ijt|G⋆

t−1, A
⋆
it) = P

(
4h(δ, T )t−1/2 > (ẏi(t)

⊤ηi − ẏj(t)
⊤ηj)

∣∣G⋆
t−1, A

⋆
it

)
≤ 4h(δ, T )C

t1/2
. (4.52)
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Thus, the second term in (48) is O(t−0.5). Now, we aim to show that the first term in (48) is O(t−0.5).

Note that

P
(
ẏi(t)

⊤(η̃i(t)− η̂i(t)) > −h(δ, T )

t1/2
+ 0.5(ẏi(t)

⊤ηi − ẏj(t)
⊤ηj)

∣∣∣∣G⋆
t−1, Eijt, A

⋆
it

)
≤ P

(
ẏi(t)

⊤(η̃i(t)− η̂i(t)) > 0.25(ẏi(t)
⊤ηi − ẏj(t)

⊤ηj)
∣∣G⋆

t−1, A
⋆
it

)
.

Now it suffices to show that the first term in the RHS of the inequality above is O(t−1/2). Using

ẏi(t)
⊤(η̃i(t) − η̂i(t)) ∼ N (0, v2ẏi(t)

⊤Bi(t)
−1ẏi(t)) given yi(t) and λmin(Bi(t)

−1) ≤ 8/(λmpit)

by Lemma 12 and (4.44), we have

P(ẏi(t)⊤(η̃i(t)− η̂i(t)) > 0.25(ẏi(t)
⊤ηi − ẏj(t)

⊤ηj)|y(t), G⋆
t−1, A

⋆
it)

≤ exp

(
−tpiλm(ẏi(t)

⊤ηi − ẏj(t)
⊤ηj)

2

256v2

)
.

Thus, the first term on the RHS of the above inequality can be written as

P(ẏi(t)⊤(η̃i(t)− η̂i(t)) > 0.25(ẏi(t)
⊤ηi − ẏj(t)

⊤ηj)|G⋆
t−1, A

⋆
it)

= E[P(ẏi(t)⊤(η̃i(t)− η̂�(t)) > 0.25(ẏi(t)
⊤ηi − ẏj(t)

⊤ηj)|y(t), G⋆
t−1, A

⋆
it)|G⋆

t−1, A
⋆
it]

≤ E
[
exp

(
−tpiλm(ẏi(t)

⊤ηi − ẏj(t)
⊤ηj)

2

256v2

)∣∣∣∣G⋆
t−1, A

⋆
it

]
.

By integration by part, we have

E
[
exp

(
−tpiλm(ẏi(t)

⊤ηi − ẏj(t)
⊤ηj)

2

256v2

)∣∣∣∣G⋆
t−1, A

⋆
it

]
=

∫ ∞

0

2tpiλmu

256v2
exp

(
−tpiλmu

2

256v2

)
P(ẏi(t)⊤ηi − ẏj(t)

⊤ηj < u|G⋆
t−1, A

⋆
it)du.

Since P(ẏi(t)⊤ηi− ẏj(t)
⊤ηj < u|G⋆

t−1, A
⋆
it) = P(ẏi(t)⊤ηi− ẏj(t)

⊤ηj < u|A⋆
it) ≤ Cu for C > 0

based on Assumption 1, the term above can be written as
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E
[
exp

(
−tpiλm((ẏi(t)

⊤ηi − ẏj(t)
⊤ηj)

2

256v2

)∣∣∣∣G⋆
t−1, A

⋆
it

]
≤

∫ ∞

0

2u

256v2/(tpiλm)
exp

(
− u2

256(v2/tpiλm)

)
P(ẏi(t)⊤ηi − ẏj(t)

⊤ηj < u|A⋆
it)du

≤
√
π√

256v2/(tpiλm)

∫ ∞

0

2u√
256πv2/(tpiλm)

exp

(
− u2

256v2/(tpiλm)

)
Cudu = 8vC

√
π

λmpit
,

where we used the following result about one-sided Gaussian integrals

∫ ∞

0

x2 1√
2πσ2

e−
x2

2σ2 dx = σ2/2.

Accordingly, we have

P(yi(t)⊤(η̃i(t)− η̂i(t)) > −yi(t)
⊤(η̂i(t)− ηi) + 0.5(yi(t)

⊤ηi − yj(t)
⊤ηj)|G⋆

t−1, A
⋆
it)

≤ C

√
4

pit

(
8v

√
π

λm

+ 4h(δ, T )

)
, (4.53)

where

h(δ, T ) =

√
2

λm

(
R

√
dy log

(
1 + TL2

δ

)
+ cη

)
= O

(
R
√
dy log(TNdy/δ)

)
.

Similarly, we get

P(yj(t)⊤(η̃j(t)− η̂j(t)) > −yj(t)
⊤(η̂j(t)− ηj) + 0.5(yi(t)

⊤ηi − yj(t)
⊤ηj)|G⋆

t−1, A
⋆
it)

≤ C

√
4

pjt

(
8v

√
π

λm

+ 4h(δ, T )

)
, (4.54)
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if t > τM . Accordingly, based on (4.49), (4.53), and (4.54), we obtain the following bounds for the

probabilities

P(yj(t)⊤η̃j(t)− yi(t)
⊤η̃i(t)) > 0|G⋆

t−1, A
⋆
it)

≤ 2C√
p+min

(
v

(
8

√
π

λm

+ 8

√
π

λm

)
+ 4h(δ, T ) + 4h(δ, T )

)
t−1/2.

By simple calculations, we get

P(yj(t)⊤η̃j(t)− yi(t)
⊤η̃i(t) > 0|G⋆

t−1, A
⋆
it) ≤

16C√
p+min

(
2v

√
π

λm

+ h(δ, T )

)
t−1/2.

By summing the above probability up over i, j ∈ [N ], if t > τM , we get an upper bound for the proba-

bility of choosing a sub-optimal arm at time t

P(a⋆(t) ̸= a(t)|G⋆
t−1) =

N∑
i=1

∑
j ̸=i

P(a(t) = j|G⋆
t−1, A

⋆
it)P(A⋆

it)

≤
N∑
i=1

∑
j ̸=i

P(yj(t)⊤η̃j(t)− yi(t)
⊤η̃i(t) > 0|G⋆

t−1, A
⋆
it)P(A⋆

it)

≤ N

(
16C√
p+min

(
2v

√
π

λm

+ h(δ, T )

)
t−1/2

)
.

By plugging the inequality above to (4.48), with probability at least 1− δ, we have

T∑
t=⌈τM ⌉

1√
t
I(a⋆(t) ̸= a(t))

≤
√

4 log T log δ−1 +
T∑

t=⌈τM ⌉

N

(
16C√
p+min

(
2v

√
π

λm

+ h(δ, T )

)
t−1

)

≤
√
4 log T log δ−1 +

16CN√
p+min

cM(δ, T ) log T,
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where

cM(δ, T ) = 8v
√

π/λm + 4h(δ, T ) = O
(
v
√

dy log(Tdy/δ)

)
.

Therefore, putting together L = O(
√
dy log(TNdy/δ)), g(1)(δ) =

O
(
v

√
p+min

−1
dy log(TNdy/δ)

)
, cM(δ, T ) = O(

√
dy log(TNdy/δ)), and τM =

O(v2p+min
−2
NL7κ−5 log1.5(TNdy/δ)),

Regret(T ) ≤ 2cηLτM + Lg(1)(δ)

(√
4 log T log δ−1 +

16cM(δ, T )CN√
p+min

log T

)

= O
(
(p+min)

−2L8 log1.5
(
TNdy

δ

)
+ vLNdyp

+
min

−0.5
log2(TNdy/δ)

)
= O

(
v2Nd4y

(p+min)
2κ5

log5.5
(
TNdy

δ

))
.

This regret bound is inflated by d3y log
3.5 (TNdy/δ) due to the order of maximum magnitude of

observation norm L. If the support of observations is bounded by a positive constant so that L is a

positive constant unrelated to other factors (N, dy, T , and δ), the upper bound can be reduced to

O
(
v2Ndy(p

+
min)

−2κ−5 log2 (TNdy/δ)
)

.

As discussed in the proof sketch of Theorem 5, the high-probability boundL for an observation norm

significantly affects the regret bound. As such, in the next corollary, we suggest a tighter regret bound for

observations with bounded support.

Corollary 3. If the observations are assumed to be generated from a distribution with bounded support, the

regret of Algorithm 3 is

Regret(T ) = O
(
v2Ndyp

+
min

−2
κ−5 log2 (TNdy/δ)

)
.
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If observations are generated from bounded support, the orders of first and second terms in the above

proof sketch in (4.47) are reduced toO
(
N log1.5(TNdy/δ)

)
andO

(
Ndy log

2(TNdy/δ)
)

, respectively.

Subsequently, we get the result of the corollary above from Theorem 5.

The above results are unprecedented even for fully observable contextual bandits as well as partially

observed ones with the arm-specific parameter setup to the best of our knowledge. Especially, a high-

probability poly-logarithmic regret bound for Thompson sampling with respect to the time horizon has

not been shown for contextual bandits, even though the previously available minimax regret bound for

Thompson sampling has a square-root order with respect to time for the adversarially chosen contexts

(Agrawal & Goyal, 2013). Meanwhile, the suggested regret bound is a special case of the minimax regret

bound, where a positive probabilistic suboptimality gap is not guaranteed due to the existence of an

adversary. A logarithmic regret bound for contextual bandits is shown to be achieved by the greedy-first

algorithm that takes a greedy action if a criterion is met and explores otherwise (Bastani et al., 2021).

However, the above regret bound is valuable in that the greedy first algorithm needs another standard

algorithm such as Thompson sampling and OFU-type algorithms for exploration.

4.5 Numerical Experiments

Simulation Experiments: In this sub-section, we numerically show the results in Section 4.4 with syn-

thetic data. First, to explore the relationships between the regret and dimension of observations and con-

texts, we simulate various scenarios for the model with arm-specific parameters with N = 5 arms and dif-

ferent dimensions of the observations dy = 10, 20, 40, 80 and context dimension dx = 10, 20, 40, 80.

Each case is repeated 50 times and the average and worst quantities amongst all 50 scenarios are reported.

Figure 4.1 illustrates regret normalized by (log t)2, which is the regret growth that the minimum time

effect is removed. Second, Figure 4.2 showcases the average estimation errors of the estimates in (4.9) for

five different arm-specific parameters defined in (4.4), changing dimensions of observations and contexts.
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Figure 4.1: Plots of Regret(t)/(log t)2 over time for the different dimensions of context at N = 5 and
dy = 10, 20, 40, 80. The solid and dashed lines represent the average-case and worst-case regret curves,
respectively.

These errors are normalized by t−1/2 based on Theorem 4. Since the error decreases with a rate t−1/2, the

normalized errors for all the arms are flattened over time. This demonstrates that the square-root accuracy

estimations of {ηi}Ni=1 are available regardless of whether the dimension of observations is greater or less

than that of contexts.

Moving on, Figure 4.3 provides insights into the average and worst-case regrets of Thompson sampling

compared to the Greedy algorithm, with variations in the number of arms (N = 10, 20, 30). It is worth

noting that the Greedy algorithm is considered optimal for the model with a shared parameter, but the
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Figure 4.2: Plots of normalized estimation errors
√
t∥η̂i(t)− ηi∥ of Algorithm 3 over time for partially

observable stochastic contextual bandits with five arm-specific parameters and dimensions of observations
and contexts dy = 20, dx = 10, 20, 40.

worst-case regret of it exhibits linear growth in the model with arm-specific parameters. The worst-case

linear regret growth of the greedy algorithm can occur when some arms, which are totally dominated by

other arms, are missing in potential action because of no explicit exploration scheme. In Figure 4.3, the

plots represent the average and worst-case regrets of the models with arm-specific parameters, showing that

the greedy algorithm has greater worst-case regret for the model with arm-specific parameters, especially

for the case with a large number of arms.

Real Data Experiments: In this sub-section, we assess the performance of the proposed algorithm

using two healthcare datasets: Eye Movement and EEG2. These two datasets are presented in previous

studies by (Bastani & Bayati, 2020; Bietti et al., 2021) using contextual bandits with arm-specific parameters

and shared context. These datasets involve classification tasks based on patient information. The Eye

Movement and EEG data sets are comprised of 26 and 14-dimensional (shared) contexts, respectively,

with the corresponding patient class. Also, the number of class for Eye Movement and EEG datasets

are 3 and 2, respectively, and each category of patient class is considered an arm in the perspective of the
2The datasets are publicly available at: https://www.openml.org/
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Figure 4.3: Plots of regrets over time with the different number of arms N = 10, 20, 30 for Thomson
sampling versus the Greedy algorithm. The solid and dashed lines represent the average-case and worst-
case regret curves, respectively.

bandit problem. We analyze these datasets under the logistic linear regression assumption, where reward

is assumed to be generated based on (4.1) and

log
P(l(t) = i)

1− P(l(t) = i)
= x(t)⊤µi = E[ri(t)], (4.55)

where l(t) is the true label of the patient at time t. Because the datasets do not have rewards based on this

setup, we generated rewards based on (4.1) and (4.55) with artificial noises.

For evaluation, we generate 100 scenarios for each dataset. We calculate the average correct decision rate

defined as t−1
∑t

τ=1 I(a(τ) = l(τ)). We compare the suggested algorithm against the regression oracle

with the estimates trained on the entire data in hindsight, which are not updated over time. We artificially

create observations of the patients’ contexts based on the structure given in (4.3) with a sensing matrix

A consisting of 0 and 1 only. We reduce the dimension of the patient contexts from 26 to 13 for the Eye

movement dataset and from 14 to 10 for the EEG dataset. Figure 4.4 displays the average correct decision

rates of the regression oracle and Thompson sampling for the two real datasets. We evaluate the mean

correct decision rates over every 100 patients and then average them across 100 scenarios. Accordingly, each
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Figure 4.4: Plots of average correct decision rates of the regression oracle and Thompson sampling for
Eye movement (left) and EEG dataset (right).

dot represents the sample mean of 10,000 results. For both data sets, the correct decision rate of Thompson

sampling converges to that of the regression oracle over time. More results of real data experiments are

provided in Appendix .3.2.
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Chapter 5

Concluding Remarks

In this dissertation, we introduce partially observable stochastic contextual bandits with two different

reward parameter setups and investigate the performance of Thompson sampling and Greedy algorithm

for them.

First, in the shared parameter setup, we show that Thompson sampling learns the unknown true

parameter accurately. Further, we establish theoretical performance guarantees showing that the regret

of the proposed algorithm scales linearly with dimension, and logarithmically with time and the number

of arms. Next, we construct a high-probability regret bound for Greedy algorithms, which grows poly-

logarithmically with the horizon T .

Subsequently, in the arm-specific parameter setup, we focused exclusively on Thompson sampling, as

the numerical experiments presented in Chapter 4 illustrated that Greedy algorithm can incur a worst-case

linear regret. We show that Thompson sampling with an appropriate exploration scheme guarantees the

square-root consistency for partial estimation of reward parameters. Further, we prove regret bounds

that grow poly-logarithmically with time, linearly with N , and d4y with the dimension of observations.

Our analysis techniques can be applied to analogous reinforcement learning problems involving partial
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observations, thanks to generality of technical assumptions and tight quantification of the exploration

Thompson sampling performs by leveraging the partial observations.
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Chapter 6

Future Works

In partially observable stochastic contextual bandits, the uncertainty of contexts is modeled as stochasticity

in the contexts associated with different actions. On the other hand, in partially observable adversarial

contextual bandits, where transformed noisy contexts are observed, the uncertainty of contexts is modeled

as an adversary that actively tries to counteract the learning algorithm by selecting the most unfavorable

contexts. In adversarial contexts, we do not have any probabilistic assumptions for context distributions

as the adversary has control over context generation. Thus, we need different estimation methods for this

adversarial setup, whereas an agent takes advantage of the distribution of contexts to estimate the mean

reward of each arm. We used BLUP to estimate mean rewards in Chapter 4, but we need to consider a

different estimation method for the adversarial setup.

We consider the same reward and observation model for arm i as that of our previous study as follows:

ri(t) = xi(t)
⊤µ⋆ + εi(t), (6.1)

yi(t) = Axi(t) + ξi(t), (6.2)

where µ⋆ is the reward parameter, xi(t) is an adversarial unobserved context of arm i, yi(t) is the noisy-

transformed observation of xi(t) of arm i, and ξi(t) is the noise of observation of arm i. Here, we do not
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consider arm-specific parameters {µi}Ni=1, because the adversary can create a setup identical to the arm-

specific parameter setup described in the previous section based on the given setup above by artificially

generating contexts in a particular way. Since the context xi(t) is not observed, we aim to find the optimal

policy such that

a⋆(t) = argmax
i∈[N ]

E[xi(t)
⊤µ⋆|y(t)], (6.3)

where y(t) is a concatenation of observations such that y(t) = (y1(t), y2(t), . . . , yN(t)). Thus, we focus

on the estimation of E[xi(t)
⊤µ⋆|y(t)]. To do so, by multiplying Σ−0.5

ξ on both side of (6.2), we get

Σ−0.5
ξ yi(t) = Σ−0.5

ξ Axi(t) + Σ−0.5
ξ ξi(t), (6.4)

where each element of noise ξi(t) has the same finite variance. Consideringxi(t) as an unknown constant,

we can find the least square estimator of xi(t)
⊤µ⋆, the close form of which is is as follows:

̂xi(t)⊤µ⋆ := ((A⊤Σ−1
ξ A)−A⊤Σ−1

ξ yi(t))
⊤µ⋆ = yi(t)

⊤D⊤µ⋆,

where D = (A⊤Σ−1
ξ A)−A⊤Σ−1

ξ and M− represents a pseudo-inverse matrix of a square matrix M .

Then, by the Gauss-Markov theorem, ̂xi(t)⊤µ⋆ is the best linear unbiased estimate (BLUE) of xi(t)
⊤µ⋆

if µ⋆ is in C(A⊤Σ−1
ξ A), which is the column space of A⊤Σ−1

ξ A.

Here,xi(t)
⊤µ⋆ is not estimable ifµ⋆ is not inC(A⊤Σ−1

ξ A). In other words, the value of this estimator

is not invariant with the choice of the pseudo-inverse matrix (A⊤Σ−1
ξ A)−. In this case, the adversary can

manipulate contexts without providing the agent with any reward information, rendering it an unfair

game for the agent and resulting in any policies unable to attain sub-linear regret. Consequently, we focus

only on cases where sub-linear regret may be attainable for potentially effective policies.
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Similarly to the previous discussion, we consider the transformed parameter η⋆ such that

η⋆ = D⊤µ⋆ (6.5)

Because we consider µ⋆ ∈ C(A⊤Σ−1
ξ A), we have

A⊤η⋆ = A⊤D⊤µ⋆ = µ⋆. (6.6)

Thus, using (6.2) and (6.6), we get

ri(t) = yi(t)
⊤η⋆ + ζi(t)

where ζi(t) = (Axi(t)− yi(t))
⊤η⋆ + εi(t) = ξi(t)

⊤η⋆ + εi(t) is a noise independent from the others.

In fact, given the assumption that the observation yi(t) is of a positive definite covariance matrix Σξ, the

estimation of η⋆ is guaranteed to be available. Accordingly, the optimal arm in (6.3) can be written as

a⋆(t) = argmax
i∈[N ]

yi(t)
⊤η⋆.

In future work, we plan to develop the Thompson sampling algorithm, designed to choose the action

a⋆(t). In addition, we analyze the algorithm with a focus on regret minimization.
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.1 Appendices for Chapter 2

.1.1 Derivation of the conditional distribution P(xi(t)|yi(t))

Note thatyi(t) = Axi(t)+ξi(t), where the distributions ofξi(t) andxi(t) areN(0d,Σξ) andN(0d,Σx),

respectively. The conditional distribution of xi(t) given yi(t) can be calculated as follows.

P(xi(t)|yi(t)) ∝ P(yi(t)|xi(t))P(xi(t))

∝ exp
(
(yi(t)− Axi(t))

⊤Σ−1
ξ (yi(t)− Axi(t))

)
exp

(
xi(t)

⊤Σ−1
x xi(t)

)
∝ N((A⊤Σ−1

ξ A+ Σ−1
x )−1A⊤Σ−1

ξ yi(t), (A
⊤Σ−1

ξ A+ Σ−1
x )−1) (7)

.1.2 Derivation of the conditional distribution P(ri(t)|yi(t))

Let Σxy = (A⊤Σ−1
ξ A+ Σ−1

x )−1 and recall x̂i(t) = (A⊤Σ−1
ξ A+ Σ−1

x )−1A⊤Σ−1
ξ yi(t) = Dyi(t).

P(ri(t)|µ, yi(t))

=

∫
Rd

P(ri(t)|µ, xi(t))P(xi(t)|yi(t))dxi(t)

∝
∫
Rd

exp

(
−(ri(t)− xi(t)

⊤µ)2

2σ2

)
exp

(
−1

2
(xi(t)− x̂i(t))

⊤Σ−1
xy (xi(t)− x̂i(t))

)
dxi(t)

∝ exp

(
−
(
ri(t)− ((A⊤Σ−1

ξ A+ Σ−1
x )−1A⊤Σ−1

ξ yi(t))
⊤µ
)2

2(µ⊤Σxyµ+ σ2)

)

∝ N
(
x̂i(t)

⊤µ, σ2
ry

)
. (8)
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.1.3 Derivation of the posterior P(µ|rt−1,yt−1)

Let P(µ), the pdf of N(0, σ2
ryΣ), be the prior of µ⋆. We can decompose the posterior as follows.

P(µ|rt−1,yt−1) ∝ P(rt−1,yt−1|µ)P(µ)

∝ P(rt−1|yt−1, µ)P(µ).

Using the prior and the conditional distribution in (8), we have

P(µ|rt−1,yt−1) ∝
t−1∏
τ=1

exp

(
−
(ra(τ)(τ)− x̂a(τ)(τ)

⊤µ)2

2σ2
ry

)
exp

(
− 1

2σ2
ry

µ⊤Σ−1µ

)
∝ exp

(
− 1

2σ2
ry

(µ− µ̂(t))⊤ B(t) (µ− µ̂(t))

)
, (9)

which is the kernel of the pdf of N(µ̂(t), σ2
ryB(t)−1), where µ̂(t) = B(t)−1

∑t−1
τ=1 x̂a(t)(t)ra(t)(t) and

B(t) =
t−1∑
τ=1

x̂a(τ)(τ)x̂
⊤
a(τ)(τ) + Σ−1.

Thus, the posterior distribution is N(µ̂(t), σ2
ryB(t)−1). But, to allow for the possibility that σ2

ry is

unknown, we use a re-scaled posterior distribution, N(µ̂(t), B(t)−1), which does not depend on σ2
ry.

.1.4 Derivation of the recursion formula to update the parameter.

Note that we can decompose the posterior as follows.

P(µ|rt,yt) ∝ P(rt,yt, µ)

∝ P(ra(t)(t)|ya(t)(t), µ)P(µ|rt−1,yt−1).
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Using the conditional distribution (8) and the posterior in (9), we get

P(µ|rt,yt) ∝ P(ra(t)(t)|ya(t)(t), µ)P(µ|rt−1,yt−1)

∝ exp

(
−
(ra(t)(t)− x̂a(t)(t)

⊤µ)2

2σ2
ry

)
exp

(
− 1

2σ2
ry

(µ− µ̂(t))⊤B(t)−1 (µ− µ̂(t))

)
∝ exp

(
− 1

2σ2
ry

(µ− µ̂(t+ 1))⊤B(t+ 1)−1 (µ− µ̂(t+ 1))

)
,

where µ̂(t+1) = B(t+1)−1
(
B(t)µ̂(t) + x̂a(t)(t)ra(t)(t)

)
and B(t+1) = B(t)+ x̂a(t)(t)x̂a(t)(t)

⊤.

.1.5 Proof of Lemma 1

Proof. Recall that we used the notation S = Var(x̂i(t))
0.5 = (DΣξD

⊤)0.5 and Z(µ,N) =

argmaxZi,1≤i≤N{Z⊤
i µ}. Note that S−1x̂i(t) has the distribution N(0d, Id) and S−1x̂a(t)(t) =

Z(Sµ̃(t), N). S−1x̂i(t) can be decomposed as

S−1x̂i(t) = PSµ̃(t)S
−1x̂i(t) + PSµ̃(t)⊥S

−1x̂i(t),

where PSµ̃(t)⊥ denotes the projection matrix onto a subspace orthogonal to the column-space C(Sµ̃(t)),

which we denote C(Sµ̃(t))⊥. As shown in (2.24), we have

S−1x̂a(t)(t)
d
= PSµ̃(t)S

−1x̂a(t)(t) + PSµ̃(t)⊥S
−1x̂i(t),

where d
= expresses that the two quantities have an identical distribution. Further, based on the fact that

the functionZ(µ,N) defined in (2.23) is affected only by {PµZi}1≤i≤N , but not by {(Id−Pµ)Zi}1≤i≤N ,

we established that PSµ̃(t)S
−1x̂a(t)(t) and PSµ̃(t)⊥S

−1x̂i(t) are statistically independent. Now, consider
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the following decomposition.

E[S−1x̂a(t)(t)x̂a(t)(t)
⊤S−1|µ̃(t)]

= PSµ̃(t)E[S−1x̂a(t)(t)x̂a(t)(t)
⊤S−1]PSµ̃(t) + PSµ̃(t)⊥E[S−1x̂a(t)(t)x̂a(t)(t)

⊤S−1|µ̃(t)]PSµ̃(t)⊥

+ PSµ̃(t)E[S−1x̂a(t)(t)x̂a(t)(t)
⊤S−1|µ̃(t)]PSµ̃(t)⊥ + PSµ̃(t)⊥E[S−1x̂a(t)(t)x̂a(t)(t)

⊤S−1|µ̃(t)]PSµ̃(t).

By replacing PSµ̃(t)S
−1x̂a(t)(t) with PSµ̃(t)⊥S

−1x̂i(t) based on the independence and the equivalence of

the distribution, we get

PSµ̃(t)⊥E[S−1x̂a(t)(t)x̂a(t)(t)
⊤S−1|µ̃(t)]PSµ̃(t)⊥ = PSµ̃(t)⊥E[S−1x̂i(t)x̂i(t)

⊤S−1|µ̃(t)]PSµ̃(t)⊥

= PSµ̃(t)⊥ , (10)

and

PSµ̃(t)E[S−1x̂a(t)(t)x̂i(t)
⊤S−1|µ̃(t)]PSµ̃(t)⊥ + PSµ̃(t)⊥E[S−1x̂i(t)x̂a(t)(t)

⊤S−1|µ̃(t)]PSµ̃(t)

= PSµ̃(t)E[S−1x̂a(t)(t)|µ̃(t)]E[x̂i(t)
⊤S−1|µ̃(t)]PSµ̃(t)⊥

+ PSµ̃(t)⊥E[S−1x̂i(t)|µ̃(t)]E[x̂a(t)(t)
⊤S−1|µ̃(t)]PSµ̃(t)

= 0, (11)

because E[x̂i(t)|µ̃(t)] = 0. Thus, by putting (10) and (11) together, we have

E[S−1x̂a(t)(t)x̂a(t)(t)
⊤S−1|µ̃(t)] = PSµ̃(t)E[S−1x̂a(t)(t)x̂a(t)(t)

⊤S−1|µ̃(t)]PSµ̃(t) + PSµ̃(t)⊥ .
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On the other hand, PSµ̃(t)E[S−1x̂a(t)(t)x̂a(t)(t)
⊤S−1|µ̃(t)]PSµ̃(t) can be written as

PSµ̃(t)E[S−1x̂a(t)(t)x̂a(t)(t)
⊤S−1|µ̃(t)]PSµ̃(t)

=
Sµ̃(t)µ̃(t)⊤S

µ̃(t)⊤S2µ̃(t)
E[S−1x̂a(t)(t)x̂a(t)(t)

⊤S−1|µ̃(t)]Sµ̃(t)µ̃(t)
⊤S

µ̃(t)⊤S2µ̃(t)

=
Sµ̃(t)

µ̃(t)⊤S2µ̃(t)
E[(µ̃(t)⊤SS−1x̂a(t)(t))

2|µ̃(t)] µ̃(t)⊤S

µ̃(t)⊤S2µ̃(t)

= PSµ̃(t)E
[((

S−1x̂a(t)(t)
)⊤−−−→

Sµ̃(t)
)2∣∣∣∣ µ̃(t)] . (12)

Since x̂i(t)
⊤S−1

−−−→
Sµ̃(t) has a standard normal distribution, we have

E
[(

x̂⊤
a(t)(t)S

−1
−−−→
Sµ̃(t)

)2∣∣∣∣ µ̃(t)] = E

[(
max
1≤i≤N

({Vi : Vi ∼ N(0, 1)}
)2
]
. (13)

We define the quantity in (13) as kN ,

kN = E

[(
max
1≤i≤N

({Vi : Vi ∼ N(0, 1)}
)2
]
, (14)

which is greater than 1 and grows as N gets larger, because E[V 2
i ] = 1 <

E

[(
max
1≤i≤N

({Vi : Vi ∼ N(0, 1)}
)2
]

. Thus, E[S−1x̂a(t)(t)x̂a(t)(t)
⊤S−1|µ̃(t)] can be written

as

E[S−1x̂a(t)(t)x̂a(t)(t)
⊤S−1|µ̃(t)] = PSµ̃(t)kN + PSµ̃(t)⊥ = PSµ̃(t)(kN − 1) + Id. (15)

Because the column-spaces of the matrices PSµ̃(t) and PSµ̃(t)⊥ are orthogonal, the non-zero

eigenvalues of PSµ̃(t)E[S−1x̂a(t)(t)x̂a(t)(t)
⊤S−1|µ̃(t)]PSµ̃(t) and PSµ̃(t)⊥ are the eigenvalues of

E[S−1x̂a(t)(t)x̂a(t)(t)
⊤S−1|µ̃(t)]. That is, (d− 1) eigenvalues of E[S−1x̂a(t)(t)x̂a(t)(t)

⊤S−1|µ̃(t)] are

1, and the other eigenvalue is kN . This means that E[S−1x̂a(t)(t)x̂a(t)(t)
⊤S−1|µ̃(t)] is positive definite,

since kN > 1.
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Next, for the true parameter µ⋆, we claim limt→∞ µ̃(t) = µ⋆. With (2.14), (2.17), and the fact that

µ̃(t) is generated from the posterior N(µ̂(t), B(t)−1), we have

E [µ̃(t)] = E [E[µ̃(t)|Ft−1]] = E [µ̂(t)] = (Id − E[B(t)−1]Σ−1)µ⋆, (16)

Cov(µ̃(t)) = Cov(E[µ̃(t)|Ft−1]) + E[Cov(µ̃(t)|Ft−1)]

= Cov(µ̂(t)) + E[B(t)−1]

= E
[
B(t)−1Σ−1µ⋆µ

⊤
⋆ Σ

−1B(t)−1
]
− E

[
B(t)−1

]
Σ−1µ⋆µ

⊤
⋆ Σ

−1E
[
B(t)−1

]
+ E

[
B(t)−1

]
σ2
ry − E

[
B(t)−1Σ−1B(t)−1

]
σ2
ry + E

[
B(t)−1

]
= E

[
B(t)−1Σ−1µ⋆µ

⊤
⋆ Σ

−1B(t)−1
]
− E

[
B(t)−1

]
Σ−1µ⋆µ

⊤
⋆ Σ

−1E
[
B(t)−1

]
+ E

[
B(t)−1

]
(σ2

ry + 1)− E
[
B(t)−1Σ−1B(t)−1

]
σ2
ry. (17)

Since limt→∞B(t)−1 = 0d×d and thereby limt→∞ Cov(µ̃(t)) = 0d×d, µ̃(t) is a consistent estimator

of µ⋆. That is,

lim
t→∞

µ̃(t) = µ⋆. (18)

Thus, limt→∞ PSµ̃(t) = PSµ⋆ . Using

E[S−1x̂a(t)(t)x̂a(t)(t)
⊤S−1|Ft−1] = E[E[S−1x̂a(t)(t)x̂a(t)(t)

⊤S−1|µ̃(t)]|Ft−1]

and (15), we get

lim
t→∞

E[S−1x̂a(t)(t)x̂a(t)(t)
⊤S−1|Ft−1] = lim

t→∞
E[PSµ̃(t)(kN − 1) + Id|Ft−1] = PSµ⋆(kN − 1) + Id.

Because the eigenvaluesPSµ⋆(kN −1)+Id are (d−1) 1s and kN , which is greater than 1, PSµ⋆(kN −

1) + Id is positive definite. Therefore, limt→∞ E[S−1x̂a(t)(t)x̂a(t)(t)
⊤S−1|Ft−1] is positive definite.
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.1.6 Proof of Corollary 1

Proof. Recall Cov(µ̃(t)) in (17)

Cov(µ̃(t)) = E
[
B(t)−1Σ−1µ⋆µ

⊤
⋆ Σ

−1B(t)−1
]
− E

[
B(t)−1

]
Σ−1µ⋆µ

⊤
⋆ Σ

−1E
[
B(t)−1

]
+ E

[
B(t)−1

]
(σ2

ry + 1)− E
[
B(t)−1Σ−1B(t)−1

]
σ2
ry.

Since B(t)−1 = O(t−1) by Lemma 1 and the other terms are negligible except E [B(t)−1] (σ2
ry + 1)

in above terms, we have Cov(µ̃(t)) = O(t−1). In addition, we already showed that limt→∞ µ̃(t) = µ⋆

in (18).Therefore,

lim
t→∞

µ̃(t) = µ⋆, Cov(µ̃(t)) = O(t−1).

.2 Appendices for Chapter 3

.2.1 Proof of Lemma 2

Note that S−0.5
y yi(t) has the normal distribution N(0, Idy). Then, we have

P (|yij(t)| ≥ ε) ≤ 2 · e−
ε2

2 (19)

where yij(t) is the jth component of yi(t). By plugging vT (δ) to ε, we have

P (|yij(t)| ≥ vT (δ)) ≤ 2 · e−
vT (δ)2

2 = 2 · e− log
2NdyT

δ =
δ

NdyT
. (20)
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Thus,

P(WT ) ≥ 1−
T∑
t=1

N∑
i=1

dy∑
j=1

P (|yij(t)| ≥ vT (δ)) ≥ 1− δ. (21)

.2.2 Proof of Lemma 3

We use the following decomposition

S−0.5
y ya(t)(t) = PC(S0.5

y η̂(t))S
−0.5
y ya(t)(t) + PC(S0.5

y η̂(t))⊥S
−0.5
y ya(t)(t). (22)

We claim that PC(S0.5
y η̂(t))S

−0.5
y ya(t) and PC(S0.5

y η̂(t))⊥S
−0.5
y yi(t) are statistically independent. To

show it, define

Z(ν,N) = argmax
Zi,1≤i≤N

{
Z⊤

i ν
}
, (23)

where Zi has the distribution N(0dy , Idy) and ν is an arbitrary vector in Rdy . The vector Zi can be

decomposed as Zi = PC(ν)Zi + (Id − PC(ν))Zi.Then, we have Z(ν,N) = argmax
Zi,1≤i≤N

{
(PC(ν)Zi)

⊤ν
}

,

because PC(ν)ν = ν. This implies that only the first term of the decomposed terms, PC(ν)Zi, affects the

result of argmax
Zi,1≤i≤N

{
Z⊤

i ν
}

. This means that Z(ν,N) has the same distribution as PC(ν)Z(ν,N)+ (Id−

PC(ν))Zi, which means

Z(ν,N)
d
= PC(ν)Z(ν,N) + (Id − PC(ν))Zi, (24)
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where d
= is used to denote the equality of the probability distributions. Note that

S−0.5
y ya(t) = argmax

S−0.5
y yi,1≤i≤N

(S−0.5
y yi(t))

⊤S0.5
y η̂(t).

Thus, S−0.5
y ya(t) has the same distribution as PC(S0.5

y η̂(t))S
−0.5
y ya(t) + PC(S0.5

y η̂(t))⊥S
−0.5
y yi(t), where

PC(S0.5
y η̂(t))S

−0.5
y ya(t) and PC(S0.5

y η̂(t))⊥S
−0.5
y yi(t) are statistically independent. By the decomposition

(22) and the independence,

E
[
S−0.5
y ya(t)(t)ya(t)(t)

⊤S−0.5
y |Ft−1

]
can be written as

E
[
S−0.5
y ya(t)(t)ya(t)(t)

⊤S−0.5
y |Ft−1

]
= E

[
(PC(S0.5

y η̂(t)) + PC(S0.5
y η̂(t))⊥)S

−0.5
y ya(t)(t)ya(t)(t)

⊤S−0.5
y (PS0.5

y η̂(t) + PS0.5
y η̂(t)⊥)|Ft−1

]
= E

[
PC(S0.5

y η̂(t))S
−0.5
y ya(t)(t)ya(t)(t)

⊤S−0.5
y PC(S0.5

y η̂(t))|Ft−1

]
+ PC(S0.5

y η̂(t))⊥ . (25)

To proceed, we show that the first term above,E[PS0.5
y η̂(t)S

−0.5
y ya(t)(t)ya(t)(t)

⊤S−0.5
y PS0.5

y η̂(t)|η̂(t)] =

aPS0.5
y η̂(t) for some constant a > 1. Using PC(ν) = νν⊤/ν⊤ν for an arbitrary vector ν ∈ Rdy , we have

PS0.5
y η̂(t)E[S−0.5

y ya(t)(t)ya(t)(t)
⊤S−0.5

y |η̂(t)]PS0.5
y η̂(t)

=
S0.5
y η̂(t)η̂(t)⊤S0.5

y

η̂(t)⊤Syη̂(t)
E[S−0.5

y ya(t)(t)ya(t)(t)
⊤S−0.5

y |η̂(t)]
S0.5
y η̂(t)η̂(t)⊤S0.5

y

η̂(t)⊤Syη̂(t)

=
S0.5
y η̂(t)

η̂(t)⊤Syη̂(t)
E[(η̂(t)⊤S0.5

y S−0.5
y ya(t)(t))

2|η̂(t)]
η̂(t)⊤S0.5

y

η̂(t)⊤Syη̂(t)

= PS0.5
y η̂(t)E

[((−−−−−→
S0.5
y η̂(t)

)⊤
S−0.5
y ya(t)(t)

)2
∣∣∣∣∣ η̂(t)

]
, (26)
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where
−−−−−→
S0.5
y η̂(t) = S0.5

y η̂(t)/∥S0.5
y η̂(t))∥ is the unit vector aligned linearly with S0.5

y η̂(t). Now, it

suffices to prove that

E

[((−−−−−→
S0.5
y η̂(t)

)⊤ (
S−0.5
y ya(t)(t)

))2
∣∣∣∣∣ η̂(t)

]
> 1.

Note that
(−−−−−→
S0.5
y η̂(t)

)⊤
S−0.5
y yi(t) has the standard normal distribution, since S−0.5

y yi(t) has the distri-

bution N(0, Idy). Thus,
(−−−−−→
S0.5
y η̂(t)

)⊤
S−0.5
y ya(t)(t) is the maximum variable of N variables with the

standard normal density. Thus, using

a(t) = argmax
1≤i≤N

{yi(t)⊤η̂(t)} = argmax
1≤i≤N

{
yi(t)

⊤S−0.5
y

−−−−−→
S0.5
y η̂(t)

}
,

we have

ya(t)(t)
⊤S−0.5

y

−−−−−→
S0.5
y η̂(t)

d
= max

1≤i≤N
{Vi : Vi ∼ N(0, 1)}. (27)

where d
= denotes the equality in terms of distribution. As such, we have

E
[(

ya(t)(t)
⊤S−0.5

y

−−−−−→
S0.5
y η̂(t)

)2∣∣∣∣ η̂(t)] = E

[(
max
1≤i≤N

({Vi : Vi ∼ N(0, 1)}
)2
]
. (28)

We define the quantity in (28) as kN ,

kN = E

[(
max
1≤i≤N

({Vi : Vi ∼ N(0, 1)}
)2
]
, (29)
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which is greater than 1 for N ≥ 2 and grows as N gets larger, because E[V 2
i ] = 1 <

E

[(
max
1≤i≤N

({Vi : Vi ∼ N(0, 1)}
)2
]

. Therefore,

E[S−0.5
y ya(t)(t)ya(t)(t)

⊤S−0.5
y |η̂(t)] = PC(S0.5

y η̂(t))kN + PC(S0.5
y η̂(t))⊥

= PC(S0.5
y η̂(t))(kN − 1) + Idy . (30)

.2.3 Proof of Lemma 5

Consider Vt = S
−1/2
y ya(t)(t)ya(t)(t)

⊤S
−1/2
y defined in Lemma 3 to identify the behavior of B(t). By

Lemma 3, the minimum eigenvalue of E[Vt|Ft−1] is greater than 1 for all t. Thus, for all t > 0, it holds

that

λmin

(
t−1∑
τ=1

E[Vτ |η̂(τ)]

)
≥ t− 1. (31)

Now, we focus on a high probability lower-bound for the smallest eigenvalue of B(t). On the event WT ,

the matrix v2T (δ)I − Vt is positive semidefinite for all i and t. Let

Xτ = Vτ − E[Vτ |Fτ−1],

Yτ =
τ∑

j=1

(Vj − E[Vj|Fj−1]) . (32)

Then, Xτ = Yτ − Yτ−1 and E [Xτ |Fτ−1] = 0. Thus, Xτ is a martingale difference sequence.

Because v2T (δ)I − Vt ⪰ 0 for all t ≤ T , 4v4T (δ)I −X2
τ ⪰ 0, for all τ ≤ T , on the event WT . By Lemma

4, we get

P

(
λmin

(
t−1∑
τ=1

Xτ

)
≤ (t− 1)ε

)
≤ dy · exp

(
−(t− 1)ε2

32v4T (δ)

)
, (33)
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for ε ≤ 0. Now, using
∑t−1

τ=1Xτ =
∑t−1

τ=1 Vτ −
∑t−1

τ=1 E[Vτ |Fτ−1], together with

λmin

(
t−1∑
τ=1

Vτ −
t−1∑
τ=1

E[Vτ |Fτ−1]

)

≤ λmin

(
t−1∑
τ=1

Vτ

)
− λmin

(
t−1∑
τ=1

E[Vτ |Fτ−1]

)
(34)

and (31), we obtain

P

(
λmin

(
t−1∑
τ=1

Vτ

)
≤ (t− 1)(1 + ε)

)

≤ dy · exp
(
−(t− 1)ε2

32v4T (δ)

)
, (35)

where −1 ≤ ε ≤ 0 is arbitrary, and we used the fact that λmin

(∑t−1
τ=1 Vτ

)
≥ 0. Indeed, using∑t−1

τ=1 Vτ = S−0.5
y B(t)S−0.5

y , on the event WT defined in (3.11), for −1 ≤ ε ≤ 0 we have

P (λmin(B(t)) ≤ λs1(t− 1)(1 + ε))

≤ dy · exp
(
−(t− 1)ε2

32v4T (δ)

)
, (36)

where λs1 = λmin(Sy). In other words, by equating dy · exp (−(t− 1)ε2/(32v4T (δ)) to δ/T , (36) can

be written as

λmin(B(t)) ≥ λs1(t− 1)

(
1−

√
32vT (δ)4

t− 1
log

dyT

δ

)
,

for all 1 ≤ t ≤ T with the probability at least 1− 2δ.
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.2.4 Proof of Lemma 6

Note that η̂(t) has the distribution N (E[η̂(t)|Ft−1],Cov(η̂(t)|Ft−1)) given the observations up to

time t, where

E[η̂(t)|Ft−1] = B(t)−1

(
Σ−1 +

t−1∑
τ=1

ya(τ)(τ)ya(τ)(τ)
⊤

)
η⋆ = η⋆

Cov(η̂(t)|Ft−1) = B(t)−1γ2
ry. (37)

For Z ∼ N(0, λmax(B(t)−1)γ2
ry), using the Chernoff bound, we get

P (∥η̂(t)− η⋆∥ > ε|B(t)) ≤ P
(
dyZ

2 > ε2
)

≤ 2 · exp
(
− ε2

2dyλmax(B(t)−1)γ2
ry

)
, (38)

where ε ≥ 0.

.2.5 Proof of Lemma 7

Let a�(t) be the arm with the second largest expected reward at time t and η� be a vector such that

ya⋆(t)(t)
⊤η� = ya�(t)(t)

⊤η� and θ(ya⋆(t)(t)− ya�(t)(t), η⋆ − η�) = 0, where θ(x, y) is the angle between

two vectors x and y. Then,

(ya⋆(t)(t)− ya�(t)(t))
⊤η⋆ = (ya⋆(t)(t)− ya�(t)(t))

⊤η� + (ya⋆(t)(t)− ya�(t)(t))
⊤(η⋆ − η�)

= ∥ya⋆(t)(t)− ya�(t)(t)∥ ∥η⋆ − η�∥ cos θ(ya⋆(t)(t)− ya�(t)(t), η⋆ − η�)

= ∥ya⋆(t)(t)− ya�(t)(t)∥ ∥η⋆ − η�∥. (39)
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If ∥ya⋆(t)(t)− ya�(t)(t)∥ ∥η⋆ − η̂(t)∥ ≤ (ya⋆(t)(t)− ya�(t)(t))
⊤η⋆, we can guarantee a⋆(t) = a(t).

Thus, the probability not to choose the optimal arm at time t given the observations and B(t) is

P(a⋆(t) ̸= a(t)|{yi(t)}1≤i≤N , B(t))

= P
(
∥η̂(t)− η⋆∥ >

(ya⋆(t)(t)− ya�(t)(t))
⊤η⋆

∥ya⋆(t)(t)− ya�(t)(t)∥

∣∣∣∣ {yi(t)}1≤i≤N , B(t)

)

≤ 2 · exp

−

(
(ya⋆(t)(t)−ya�(t)(t))

⊤η⋆

∥ya⋆(t)(t)−ya�(t)(t)∥

)2
2dyλmax(B(t)−1)γ2

ry

 . (40)

Using ∥ya⋆(t)(t)− ya�(t)(t)∥2 ≤ λa2dyvT (δ)
2 on the event WT , we have

2 · exp

−

(
(ya⋆(t)(t)−ya�(t)(t))

⊤η⋆

∥ya⋆(t)(t)−ya�(t)(t)∥

)2
2dyλtσ2

ry

 ≤ 2 · exp
(
−
((ya⋆(t)(t)− ya�(t)(t))

⊤η⋆)
2

2d2yvT (δ)
2λa2λtσ2

ry

)
. (41)

Let X1 . . . , XN be the order statistics of variables with the standard normal density. The joint distri-

bution of the maximum, XN , and the second maximum variable, XN−1, of N independent ones with

the standard normal density is

fX(N−1),X(N)
(xN−1, xN) = N(N − 1)ϕ(xN)ϕ(xN−1)Φ(xN−1)

N−2, (42)

where ϕ and Φ are the pdf and cdf of the standard normal distribution, respectively. The density of

D = XN − XN−1, which is the difference between the maximum and second largest variable, can be

bounded by Nϕ(0) as follows:
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fD(d) =

∫
fD,XN−1

(d, xN−1)dxN−1

=

∫
N(N − 1)ϕ(xN−1 + d)ϕ(xN−1)Φ(xN−1)

N−2dxN−1

≤ Nϕ(0). (43)

Thus, the density γD is bounded by Nϕ(0)/γ = N/
√
2πγ2.

We denote ∆t = (ya⋆(t)(t) − ya�(t)(t))
⊤η⋆. The term on the right hand side is the upper bound

P(a⋆(t) ̸= a(t)|B(t),∆t). Thus, by marginalizing ∆t from it, we have

P(a⋆(t) ̸= a(t)|B(t)) =

∫ ∞

−∞
P(a⋆(t) ̸= a(t)|B(t),∆t)f∆t(∆t)d∆t

≤ 2

∫ ∞

−∞
exp

(
− ∆2

t

2d2yλa2vT (δ)2λtσ2
ry

)
f∆t(∆t)d∆t

≤ 2Ndyλ
1/2
a2 vT (δ)λ

1/2
t γry/

√
ηT⋆ Syη⋆,

where the density of ∆t, f∆t(∆t), is bounded by N/
√
2πη⊤⋆ Syη⋆ by (43).

.2.6 Proof of Lemma 8

We construct a martingale difference sequence that satisfies the conditions in Lemma 4. To that end, let

G1 = H1 = 0,

Gτ = (t− 1)−1/2I(a⋆(t) ̸= a(t))− (t− 1)−1/2P(a⋆(t) ̸= a(t)|F ∗
t−1),

and Ht =
∑t

τ=1Gτ , where

F ∗
t−1 = σ{{B(τ)}1≤τ≤t−1}.
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SinceE[Gτ |F ∗
τ−1] = 0, the above sequences {Gτ}τ≥0 and {Hτ}τ≥0 are a martingale difference sequence

and a martingale with respect to the filtration {F ∗
τ }1≤τ≤T , respectively. Let cτ = 2(τ − 1)−1/2. Since∑T

τ=1 |Gτ | ≤
∑T

τ=2 c
2
τ ≤ 4 log T , by Lemma 4, we have

P(HT −H1 > ε) ≤ exp

(
− ε2

8
∑T

t=1 c
2
t

)
≤ exp

(
− ε2

32 log T

)
.

Thus, with the probability at least 1− δ, it holds that

∑
t∗T≤t≤T

1√
t− 1

I(a⋆(t) ̸= a(t)) ≤
√

32 log T log δ−1 +
∑

t∗T≤t≤T

1√
t− 1

P(a∗(τ) ̸= a(τ)|F ∗
τ−1).

.3 Appendices for Chapter 4

.3.1 Organization of Appendices

The appendices are organized as follows. First, we provide additional experiments with real datasets, which

are not shown in Section 4.4. Second, Appendix .3.3 describes the shared parameter setup and Thompson

sampling algorithm for it. Lastly, Appendix .3.4 provides the worst-case regret upper bounds for the model

with a shared parameter, accompanied by its detailed proof.

.3.2 Real Data Experiments

In this section, we analyze two realdata sets used in Section 4.4 under two different assumptions. The

first assumption is a simple linear regression, where a decision-maker gets a reward of 1 for successful

classification and 0 otherwise. The reward is assumed to be generated as follows:

ri(t) = x(t)⊤µi + εi(t) = I(l(t) = i),
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Figure 1: Plots of average correct decision rates of the regression oracle and Thompson sampling for
Eye Movement (top left) and EEG dataset (top right) under the simple linear regression setup and Eye
Movement (bottom left) and EEG dataset (bottom right) under the logistic linear regression setup.

where l(t) is the true label of the patient randomly chosen at time t and x(t)⊤µi represents P(l(t) =

i|x(t)). This assumption is prone to a reward model misspecification since the expected value P(l(t) =

i|x(t)) is constrained to be between 0 and 1. Next, the second assumption is a logistic linear regression,

introduced in Section 4.4.

For evaluation, we generate 100 scenarios for each dataset. We calculate the (average and worst case)

regret as well as the average correct decision rate introduced in Section 4.4 for Thompson sampling versus
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Figure 2: Plots of normalized regret of the regression oracle and Thompson sampling for Eye Movement
(top left) and EEG dataset (top right) under the simple linear regression setup and Eye Movement (bottom
left) and EEG dataset (bottom right) under the logistic linear regression setup.

regression oracle. We consider the estimates of regression oracle as the truth for regret evaluation for

Thompson sampling. The observations are generated in the same manner introduced in Section 4.4.

Figure 1 displays the average correct decision rates of the regression oracle and Thompson sampling

for the two real datasets under the two assumptions. We evaluate the mean correct decision rates over

every 100 patients and then average them across 100 scenarios. Accordingly, each dot represents a sample

mean of 10,000 results. For both data sets, the correct decision rate of Thompson sampling converges
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to that of the regression oracle over time. In addition, Figure 2 illustrates the average and worst cases of

normalized regret of Thompson sampling against the regression oracle. Regret grows slightly faster than

log2 t for the simple linear model, but seems to scale with at most log2 t in the logistic regression model.

The over growth of regret in the first model can be caused by a potential model misspecification (Foster

et al., 2020).
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.3.3 Shared Parameter Setup

In Section 4.2, we describe the arm-specific parameter setup. In this section, we introduce the shared

parameter setup, where the reward is generated

ri(t) = xi(t)
⊤µ� + εi(t).

In this setup, the parameter µ� is shared across all arms. Accordingly, the parameter can be learned regard-

less of the actions taken. Thus, the transformed parameter can be written as

η� = D⊤µ�.

The optimal arm is

a⋆(t) = argmaxi∈[N ] yi(t)
⊤η�

and subsequently regret is

Regret(T ) =
T∑
t=1

(ya⋆(t)(t)− ya(t)(t))
⊤η�.

The Thompson sampling algorithm for the shared parameter setup is basically the same as Algorithm

3, but simpler than it in that the estimate of transformed parameters and (unscaled) inverse covariance

matrices are the same for all arms. Thus, we use the notation η̂�(t) andB�(t) for the estimate and (unscaled)

inverse covariance, respectively. The update procedure for estimators is

B�(t+ 1) = B�(t) + ya(t)(t)ya(t)(t)
⊤, (44)

η̂�(t+ 1) = B�(t+ 1)−1
(
B�(t)η̂�(t) + ya(t)(t)ra(t)(t)

)
, (45)
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Algorithm 4 : Thompson sampling algorithm for partially observable contextual bandits with a shared
parameter

1: Set B�(1) = Idy , η̂�(1) = 0dy for i = 1, 2, . . . , N
2: for t = 1, 2, . . . , T do
3: for i = 1, 2, . . . , N do
4: Sample η̃i(t) from N (η̂�(t), v

2B�(t)
−1)

5: end for
6: Select arm a(t) = argmaxi∈[N ]yi(t)

⊤η̃i(t)

7: Gain reward ra(t)(t) = xa(t)(t)
⊤µ� + εa(t)(t)

8: Update B�(t+ 1) and η̂�(t+ 1) by (44) and (45)
9: end for

which is similar to (4.8) and (4.9), but there is not the indicator function I(a(t) = i). This implies that a

decision-maker can learn the entire reward parameter regardless of the chosen arm in the shared parameter

setup, while it learns an arm-specific parameter only given the arm chosen in the arm-specific parameter

setup. The pseudo-code for the Thompson Sampling algorithm is described in Algorithm 4.

121



.3.4 Results for the shared parameter setup

In this section, we present the theoretical result of the model with a shared parameter described in Ap-

pendix .3.3. For this setup, we have ni(t) = t for all i ∈ [N ], which means that a decision-maker can

learn the shared parameter regardless of the chosen arm. The next theorem provides a high probability

regret upper bound for Thompson sampling for partially observable contextual bandits with a shared

parameter.

Theorem 6. Assume that Algorithm 4 is used in partially observable contextual bandits with a shared

parameter. Then, the following regret bound holds with probability at least 1− δ:

Regret(T ) = O
(
vNd2.5y log3.5

(
TNdy

δ

))
.

The regret bound scales at most log3.5 T with respect to the time horizon and linearly with N .√
dy log(TNdy/δ) and d2y log

3(TNdy/δ) are incurred by the estimation errors and the minimum time,

respectively. Lastly, N is resulted by the use of the inclusion-exclusion formula to find the bound for the

sum of probabilities that the optimal arms are not chosen over time.

Note that a high probability logarithmic (with respect to time) upper bound for regret for the greedy

algorithm under the normality assumption has been found for the model with a shared parameter by Park

and Faradonbeh, 2022c. As compared to the setting in Park and Faradonbeh, 2022c, the result above is

constructed based on less strict assumptions, in which contexts, observation noise, and reward noise have

sub-Gaussian distributions for observation noise, contexts, and reward noise.

Proof. To begin with, as mentioned in Appendix .3.3, we have the following equalities in the shared

parameter setting:

ni(t) = t, ηi = η�, η̂i(t) = η̂�(t), and Bi(t) = B�(t),
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for all i ∈ [N ]. So, we decompose the regret as follows:

Regret(T ) =
T∑
t=1

(ya⋆(t)(t)− ya(t)(t))
⊤η�

≤
⌊ν(1)⌋∑
t=1

2cηL+
T∑

t=⌈ν(1)⌉

(
(ya⋆(t)(t)− ya(t)(t))

⊤η� + (ya(t)(t)− ya⋆(t)(t))
⊤η̃a(t)(t)

)
I(a⋆(t) ̸= a(t)).

Now, because ∥yi(t)∥ ≤ L for all i ∈ [N ] and t ∈ [T ], the above regret bound leads to

Regret(T ) ≤ 2L

cην(1) +
T∑

t=⌈ν(1)⌉

∥η̃⋆(t)− η⋆∥I(a⋆(t) ̸= a(t))

 .

By Lemma 15, if t > ν(1), with probability at least 1− δ, we have

∥η̃⋆(t)− η�∥ ≤ g(δ)t−1/2,

where

g(δ) = 2

(
v

√
2dy log

2TN

δ
+R

√
dy log

(
1 + TL2/λ

δ

)
+ cη

)

= O
(√

dy log(TNdy/δ)

)
.

Now, we use Azuma’s inequality to find a high probability upper bound for
∑T

t=⌈ν(1)⌉ t
−1/2I(a⋆(t) ̸=

a(t)). For that purpose, consider the martingale sequence
∑t

τ=1(τ
−1/2I(a⋆(τ) ̸= a(τ)) −

τ−1/2P(a⋆(τ) ̸= a(τ))) with respect to a filtration {σ{∅}}t−1
τ=1, where ∅ is the empty set. Since

t−1/2I(a⋆(t) ̸= a(t)) ≤ t−1/2 and
∑T

t=⌈ν(1)⌉ 2t
−1 ≤ 4 log T (assuming ⌈ν(1)⌉ ≥ 2), we have

P

 T∑
t=⌈ν(1)⌉

1√
t
I(a⋆(t) ̸= a(t))−

T∑
t=⌈ν(1)⌉

1√
t
P(a⋆(t) ̸= a(t)) > ε

 ≤ exp

(
− ε2

4 log T

)
.
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By putting δ = exp (−ε2/(4 log T )), with probability at least 1− δ, we have

T∑
t=⌈ν(1)⌉

1√
t
I(a⋆(t) ̸= a(t)) ≤

√
4 log T log δ−1 +

T∑
t=⌈ν(1)⌉

1√
t
P(a⋆(t) ̸= a(t)). (46)

Now, we proceed towards establishing an upper bound for the second term on the right side in (46).

Denote A⋆
it = {y(t) ∈ A⋆

i }, where A⋆
i is defined in Definition 1. By using the fact that

{yi(t)⊤η̃i(t) < yj(t)
⊤η̃j(t)}

⊂
{
yj(t)

⊤(η̃j(t)− η�) >
1

2
(yi(t)− yj(t))

⊤η�

}⋃{
yi(t)

⊤(η̃i(t)− η�) < −1

2
((yi(t)− yj(t))

⊤η�)

}
,

we get

P(yj(t)⊤η̃j(t)− yi(t)
⊤η̃i(t) > 0|G⋆

t−1, A
⋆
it)

≤ P(yj(t)⊤(η̃j(t)− η̂�(t)) > −yj(t)
⊤(η̂�(t)− η�) + 0.5(yi(t)− yj(t))

⊤η�|G⋆
t−1, A

⋆
it)

+ P(yi(t)⊤(η̃i(t)− η̂�(t)) > −yi(t)
⊤(η̂�(t)− η�) + 0.5(yi(t)− yj(t))

⊤η�|G⋆
t−1, A

⋆
it).

By Lemma 14, with probability of at least 1− δ, we have

yi(t)
⊤(η̂�(t)− η�) ≤

h(δ, T )∥y(t)∥
t1/2

,

for all ν(1) < t ≤ T and i ∈ [N ], where

h(δ, T ) =

√
2

λm

(
R

√
dy log

(
1 + TL2

δ

)
+ cη

)
= O

(
R
√
dy log(TNdy/δ)

)
.
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Accordingly, we have

P
(
yi(t)

⊤η̃j(t)− yj(t)
⊤η̃i(t) > 0

∣∣∣A⋆
it

)
≤ P

(
yi(t)

⊤(η̃i(t)− η̂�(t)) > −h(δ, T )∥y(t)∥t−1/2 + 0.5(yi(t)− yj(t))
⊤η�

∣∣∣A⋆
it

)
+ P

(
yj(t)

⊤(η̃j(t)− η̂�(t)) > −h(δ, T )∥y(t)∥t−1/2 + 0.5(yi(t)− yj(t))
⊤η�

∣∣∣A⋆
it

)
. (47)

Now, let Eijt = {h(δ, T )∥y(t)∥t−1/2 < 0.25(yi(t) − yj(t))
⊤η�}. Then, we can decompose the first

term on the RHS in (47) as follows:

P
(
yi(t)

⊤(η̃i(t)− η̂�(t)) > −h(δ, T )∥y(t)∥
t1/2

+ (yi(t)− yj(t))
⊤η�

∣∣∣∣A⋆
it

)
= P

(
yi(t)

⊤(η̃i(t)− η̂�(t)) > −h(δ, T )∥y(t)∥
t1/2

+ 0.5(yi(t)− yj(t))
⊤η�

∣∣∣∣Eijt, A
⋆
it

)
P(Eijt|A⋆

it)

+ P
(
yi(t)

⊤(η̃i(t)− η̂�(t)) > −h(δ, T )∥y(t)∥
t1/2

+ 0.5(yi(t)− yj(t))
⊤η�

∣∣∣∣Ec
ijt, A

⋆
it

)
P(Ec

ijt|A⋆
it).

(48)

We aim to show that the above probability is O(t−0.5) by showing each term in the RHS of (48) is

O(t−0.5). By Assumption 1, if t > ν(1), we have

P(Ec
ijt|A⋆

it) = P
(
4h(δ, T )t−1/2 > (yi(t)− yj(t))

⊤η�/∥y(t)∥
∣∣A⋆

it

)
≤ 4h(δ, T )C

t1/2
. (49)

Thus, we showed that the second term in (48) is O(t−0.5). Now, we aim to show that the first term in (48)

is O(t−0.5). Note that

P
(
ẏi(t)

⊤(η̃i(t)− η̂�(t)) > −h(δ, T )

t1/2
+ 0.5(ẏi(t)− ẏj(t))

⊤η�

∣∣∣∣Eijt, A
⋆
it

)
≤ P

(
ẏi(t)

⊤(η̃i(t)− η̂�(t)) > 0.25(ẏi(t)− ẏj(t))
⊤η�
∣∣A⋆

it

)
, (50)
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where ẏi(t) = yi(t)/∥y(t)∥. Now it suffices to show that the first term in the RHS of the inequality

above is O(t−1/2). Using ẏi(t)⊤(η̃i(t)− η̂�(t)) ∼ N (0, v2ẏi(t)
⊤B�(t)

−1ẏi(t)) given y(t) and G ⋆
t−1 and

λmin(B�(t)
−1) ≤ 2/(λmt) by Lemma 12, we have

P(ẏi(t)⊤(η̃i(t)− η̂�(t)) > 0.25(ẏi(t)− ẏj(t))
⊤η�|y(t), A⋆

it) ≤ exp

(
−tλm((ẏi(t)− ẏj(t))

⊤η�)
2

64v2

)
.

Thus, the first term on the RHS of the above inequality can be written as

P(ẏi(t)⊤(η̃i(t)− η̂�(t)) > 0.25(ẏi(t)− ẏj(t))
⊤η�|A⋆

it)

= E[P(ẏi(t)⊤(η̃i(t)− η̂�(t)) > 0.25(ẏi(t)− ẏj(t))
⊤η�|y(t), A⋆

it)|A⋆
it]

≤ E
[
exp

(
−tλm((ẏi(t)− ẏj(t))

⊤η�)
2

64v2

)∣∣∣∣A⋆
it

]
.

By integration by part, we have

E
[
exp

(
−tλm((ẏi(t)− ẏj(t))

⊤η�)
2

64v2

)∣∣∣∣A⋆
it

]
=

∫ ∞

0

2tλmu

64v2
exp

(
−tλmu

2

64v2

)
P((ẏi(t)− ẏj(t))

⊤η� < u|A⋆
it)du.

Since P((ẏi(t)− ẏj(t))
⊤η� < u|A⋆

it) ≤ Cu for C > 0 based on Assumption 1, the term above can

be written as

E
[
exp

(
−tλm((ẏi(t)− ẏj(t))

⊤η�)
2

64v2

)∣∣∣∣A⋆
it

]
≤ 2

√
π√

64v2/(λmt)

∫ ∞

0

2tλmu√
64πv2/(λmt)

exp

(
− u2

64v2/(tλm)

)
Cudu = 8vC

√
π

λmt
,
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where we used the following result about one-sided Gaussian integrals

∫ ∞

0

x2 1√
2πσ2

e−
x2

2σ2 dx = σ2/2.

Thus, combining (49) and (50), we get

P(ẏi(t)⊤(η̃i(t)− η̂�(t)) > −ẏi(t)
⊤(η̂�(t)− η�) + 0.5(ẏi(t)− ẏj(t))

⊤η�|A⋆
it)

≤ Ct−1/2

(
8v

√
π

λm

+ 4h(δ, T )

)
.

Similarly, we have

P(ẏj(t)⊤(η̃j(t)− η̂�(t)) > −ẏj(t)
⊤(η̂�(t)− η�) + 0.5(ẏi(t)− ẏj(t))

⊤η�|A⋆
it)

≤ Ct−1/2

(
8v

√
π

λm

+ 4h(δ, T )

)
.

Using (47), we have

P(ẏj(t)⊤η̃j(t)− ẏi(t)
⊤η̃i(t)) > 0|A⋆

it)

≤ LCt−1/2

(
v

(
8

√
π

λm

+ 8

√
π

λm

)
+ 4h(δ, T ) + 4h(δ, T )

)
. (51)

By summing the probabilities in (51) over i, j ∈ [N ], we have

N∑
i=1

N∑
j=1

P(ẏj(t)⊤η̃j(t)− ẏi(t)
⊤η̃i(t) > 0|A⋆

it)P(A⋆
it)

≤ 2C√
t

N∑
i=1

N∑
j=1

P(A⋆
it)

(
8v

√
π

λm

+ 4h(δ, T )

)
≤ 2cM(δ, T )CN√

t
, (52)
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where

cM(δ, T ) = 8v
√

π/λm + 4h(δ, T ) = O
(
v
√

dy log(Tdy/δ)

)
. (53)

Note that by using the inclusion-exclusion formula, we can bound the probability of pulling a sub-

optimal arm as follows

P(a⋆(t) ̸= a(t)) ≤
N∑
i=1

N∑
j=1

P(y(t)⊤(η̃j(t)− η̃i(t)) > 0|A⋆
it)P(A⋆

it). (54)

Putting (52), (54), and the minimal sample size ν(1) together, we obtain the following inequality

T∑
t=⌈ν(1)⌉

1√
t
P(a⋆(t) ̸= a(t)) ≤ 2cM(δ, T )CN log T.

Then, according to (46), with probability at least 1− δ, it holds that

T∑
t=⌈ν(1)⌉

1√
t
I(a⋆(t) ̸= a(t)) ≤

√
4 log T log δ−1 + 2cM(δ, T )CN log T.

Therefore, using ν(1) = 8L4 log(T/δ)/λ2
m and L = cy

√
2dy log(TNdy/δ), with probability at

least 1− δ, the regret bound below holds true

Regret(T ) ≤ 2cηLν(1) + Lg(δ)
(√

4 log T log δ−1 + 2cM(δ, T )CN log T
)

= O
(
vNd2.5y log3.5

(
TNdy

δ

))
.
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