
AN OPTIMISTIC APPROACH

TO COMPUTATIONAL STEERING

by

DAVID WADE MILLER

(Under the direction of Eileen Kraemer)

ABSTRACT

Computational Steering is the online, interactive allocation of resources and
adjustment of application parameters. Few computational steering systems support the
coordinated steering of multiple processes. Of those that do provide such support, our
system is unique in its optimistic approach; other systems take a conservative approach.
Because this requires global synchronization considerable perturbation can arise. We
focus on optimistic steering, which does not require global synchronization before a
steering event may take place. To achieve this requires not only the ability to determine
the consistency of steering transactions but also the ability to correct any inconsistencies
that may occur. To address these issues, we have developed algorithms for consistency
detection and a steering system that has the ability to correct inconsistencies through
computational rollback and re-execution. Presented in this thesis are both the details of
our steering system and a performance analysis of that system.

INDEX WORDS: Checkpoint, Conservative Steering, Consistent Cut,
Consistent Steering, Consistent Transaction, Happened
Before, Message Logging, Optimistic Steering, Program
Event, Program Transaction, Re-execution, Rollback,
Steering Event, Steering Transaction

AN OPTIMISTIC APPROACH

TO COMPUTATIONAL STEERING

by

DAVID WADE MILLER

B.S., The University of Georgia, 2000

B.S., The University of Georgia, 2001

A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial

Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE

ATHENS, GEORGIA
2002

©2002

David Wade Miller

All Rights Reserved

AN OPTMISTIC APPROACH

TO COMPUTATIONAL STEERING

by

DAVID WADE MILLER

Approved:

Major Professor: Eileen Kraemer

Committee: David Lowenthal
Maria Hybinette

Electronic Version Approved:

Gordhan L. Patel
Dean of the Graduate School
The University of Georgia
May 2002

iv

ACKNOWLEDGEMENTS

I would like to thank Dr. Eileen Kraemer for all of her support and guidance over

the past several years which has helped me to complete this phase of my life and

academic career. Also, I would like to thank my parents for their continued support

throughout my life, always encouraging me to pursue my goals. Finally, but certainly not

least, I want to thank my wife, Mandy, for her undying and ever devoted love and

support, without which none of this would have been possible. She has been my stability

even at a time when she too has been under enormous stress and pressure as she pursues

her dreams at UGA’s School of Law. Thank you all.

v

TABLE OF CONTENTS

Page

ACKNOWLEGMENTS... iv

LIST OF FIGURES.. vi

CHAPTER

1 INTRODUCTION AND LITERATURE REVIEW.. 1

Overview of Computational Steering.. 1

Literature Review.. 4

2 ON-THE-FLY CALCUATION AND VERIFICATION OF
CONSISTENT STEERING TRANSACTIONS.. 8

3 OPTIMISTIC COMPUTATIONAL STEERING.. 39

4 CONCLUSIONS.. 67

REFERENCES.. 69

vi

LIST OF FIGURES

Page

Figure 2.1 .. 15

Figure 2.2 .. 17

Figure 2.3 .. 17

Figure 2.4 .. 17

Figure 2.5 .. 22

Figure 2.6 .. 26

Figure 2.7 .. 27

Figure 2.8 .. 28

Figure 2.9 .. 28

Figure 2.10 .. 28

Figure 2.11 .. 29

Figure 2.12 .. 29

Figure 2.13 .. 30

Figure 2.14 .. 30

Figure 2.15 .. 31

Figure 2.16 .. 31

Figure 2.17 .. 32

Figure 2.18 .. 32

Figure 2.19 .. 33

vii

Figure 2.20 .. 33

Figure 2.21 .. 34

Figure 3.1 .. 45

Figure 3.2 .. 51

Figure 3.3 .. 52

Figure 3.4 .. 58

Figure 3.5 .. 59

Figure 3.6 .. 59

1

CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

Overview of Computational Steering

Computational steering is the online, interactive allocation of resources and

adjustment of application parameters. This interactivity can be useful for performance

optimization in systems where the demands on resources and the availability of those

resources may fluctuate over time. Another application of computational steering is the

adjustment of parameters in algorithms for which the execution behavior varies

randomly, is dependent upon characteristics of the input data, or for which the execution

behavior is not yet well understood. In the case of modeling and simulation codes, the

ability to observe and adjust model parameters in an online fashion allows researchers to

terminate unproductive executions early, and to develop intuition regarding interactions

among model parameters. Finally, computational steering can serve as a tool for

knowledge discovery, allowing viewers to more easily detect cause-and-effect

relationships, to localize bugs, and to better understand the behavior of algorithms and

characteristics of both the target problem and data set.

Tools for computational steering must provide a monitoring function, a user

interface with visualizations capabilities, and a mechanism for propagating steering

actions to the executing programs. To this end, we have developed an Exploratory

Visualization (EV) and Interactive Steering (IS) system. Through this system, the user

may monitor attributes and variables of distributed computations via queries and

visualizations and may dynamically manipulate program variables or adjust resource

2

allocation. Such a system must address issues including consistency, latency, and

overall computational perturbation. This thesis will focus on the computational

perturbation as it relates to the overhead introduced by the Interactive Steering (IS)

portion of the system.

Within the IS system, a global state change resulting from each user’s steering

request is a called a steering transaction. A steering transaction may be decomposed into

steering events, modifications of the local state of one process. Criteria for the

correctness of steering changes to the executing system can vary considerably depending

on the type of change to be made. Some steering changes may be applied at any of the

participating processes at any point in the computation. However, if a steering

transaction is intended to update critical control parameters or change the global

configuration, causal consistency is often required to maintain the correctness of the

computation. That is, all local steering changes must be applied concurrently across all

participating processes.

Globally consistent steering updates typically require that a computation reach

quiescence [2, 11] before a steering change is applied; the computation blocks before a

consensus decision is made and steering changes are applied. This is a nontrivial process

in a distributed, asynchronous environment in which centralized control of the

computation is required, and can result in considerable perturbation of the computation

and significant steering lag [7]. In contrast to this conservative or “pessimistic”

approach, we present another approach called optimistic steering. In optimistic steering,

the system invokes each steering event in the steering transaction at the respective

process without concern for or knowledge of the state of any other process. Therefore,

3

the consistency of the global state of the computation, and specifically, the consistency of

the steering transaction, must be checked. If the consistency is verified, the computation

continues. If the steering transaction is found to be inconsistent, then the earliest time at

which the steering event could be consistently applied at each process is calculated. The

system must then enter a recovery state, rollback to the state before the original steering

change(s) occurred, re-execute forward to the consistent time while replaying any

messages that may have been logged, apply the steering changes, and then continue re-

executing in recovery until all message logs have been emptied, after which normal

execution may resume.

The optimistic approach is expected to perform well in the case that steering is

relatively rare and that the processes of the computation tend to remain roughly

synchronized because of coordination at the application level. This is often the case, as

processes typically wait for messages from one another or synchronize at barriers. In this

case, the next steerable points will most likely be consistent since processes will receive

their steering request in the same global transaction.

Accordingly, while the overhead of state saving and some logging will be

incurred for each steering transaction, rollback and re-execution will be incurred only in

the case of inconsistent steering, and both logging and re-execution will be of limited

scope and duration.

The remainder of this thesis is organized as follows. The proceeding subsection

will provide a brief literature review covering both the causal dependencies found in

distributed computations and related computational steering research. My research into

causal dependencies found in distributed environments is the basis for the consistency

4

detection algorithm that will be presented in next the chapter. Chapter 2 will present a

conference paper detailing the points of consistent steering and an algorithm to detect

such. Next, Chapter 3 presents a conference paper in submission that provides not only

the implementation details for our IS system but also performance testing results and an

evaluation of those results. Finally, Chapter 4 provides conclusions to this research.

Literature Review

Causality is fundamental to many problems in distributed computing. For

example, determining a consistent global snapshot of a distributed computation [1, 4]

requires finding a set of local snapshots such that the causal relation between all events

included in the snapshots is respected in the following sense: if e’ is contained in the

global snapshot formed by the union of local snapshots, and e→ e’ holds, then e must

also be included in the global snapshot. Thus, the notion of consistency in distributed

systems is basically an issue of correctly reflecting causality. Many important

applications of causal consistency are summarized by Schwarz and Mattern in [18].

An important characteristic of distributed systems is that there is no global clock.

Consequently, ordering the events in a distributed system can be challenging. Lamport

[9] introduced an efficient mechanism called logical clocks for totally ordering the events

in a distributed system, but the mechanism is not sufficiently powerful to allow

concurrent events to be identified. Mattern [12] and Fidge [3] independently developed

vector clocks, which precisely capture the causal ordering between distributed events.

The main difference between Mattern and Fidge vector time schemes and ours is the way

in which the logical time of a process is measured. Under the Mattern and Fidge

schemes, the logical time of a process is measured in “number of past events” at that

5

process. However, under our scheme, the logical time of a process is measured in

“number of past local transactions” at that process.

The Z-path and Z-cycle notion, introduced by Netzer and Xu [14], generalizes the

notion of a causal path of messages defined by Lamport’s happened-before relation [9].

A local checkpoint is useless iff it is involved in a Z-cycle. In the transaction-based

computational model, if a checkpoint is taken, all participant processes in a global

transaction take the checkpoint at the end of transaction. In this way, no local checkpoint

will be involved in a Z-cycle because there is no message in transit at the end of

transaction.

The notion of computational steering is not a unique idea specific to this research

[13]. Rather, as you will see, our optimistic approach to computational steering is quite

unique in that it allows multiple processes to be steered simultaneously and does not

require global synchronization before such steering. The later is a result of our continued

research into the causality found in distributed computing and the extensions thereof to

verify steering consistency, detection steering inconsistencies, and calculate the earliest

consistent cuts (times) to rectify inconsistencies.

An early computational steering environment was VASE, the Visualization and

Application Steering Environment, developed at the University of Illinois [6, 8]. The

VASE system requires special annotation to existing Fortran code and permits the user to

alter the values of “key” parameters and to add code at “key” points. However, VASE

does not support the coordinated steering of multiple processes. SCIRun supports

computational steering in a multithreaded application that runs on a single multiprocessor

machine [15, 16]. However, it assumes that the underlying program consists of a number

6

of separate modules. The SCIRun system generates a script that controls the invocation

of these modules. The steering process involves altering these scripts—thus, changes

occur only between modules, not within modules. The script itself is executed

sequentially. No support for coordination of distributed changes is required. Progress

[19] and its successor Magellan [20] also provide interactive environments for

computational steering. Both these systems were designed to run on multiple

multiprocessor machines. Progess does not support coordinated steering of multiple

processes. Magellan was extended to support such coordinated steering of multiple

processes but requires synchronization points be placed in an application. Before a

steering change can take place the application must first halt. Thus, Magellan can be said

to support the conservative approach to the interactive steering of distributed

computations. CUMULVS was developed at Oak Ridge National Laboratory to support

the monitoring and steering of distributed computations [5]. To allow steering, the user

interface process creates a loosely synchronized connection with the application which

guarantees that all tasks apply the steering updates at the same time or point in the

application, also falling into a conservative steering model. Yet another computational

steering environment is the VIPER project [17]. VIPER is based on a client/server/client

architecture. One client is the parallel computation, the other client is the visualization

unit, and the server acts as a governing body for both information and data extraction and

steering application. Each application has synchronization points at which time the

server has the ability to consistently apply the steering changes requested by the user.

Finally, the CSE environment provides a computational steering environment similar to

those already described [10, 21]. In this system, there exist data manager and satellite

7

worker processes. The data manager is responsible for gathering the monitored data, all

communication, and application of steering changes. Like the other environments that

support simultaneous steering events, this system also requires its source code be

annotated with special synchronization variables. During synchronization, the data

manager can consistently apply the steering changes.

8

CHAPTER 2

ON-THE-FLY CALCULATION AND VERIFICATION OF

CONSISTENT STEERING TRANSACTIONS♣

♣ Miller, David W., Jinhua Guo, Eileen Kraemer, and Yin Xiong. 2001. SuperComputing 2001. Reprinted
here with permission of publisher.

9

On-the-Fly Calculation and Verification of
Consistent Steering Transactions∗

David W. Miller, Jinhua Guo, Eileen Kraemer, Yin Xiong
{miller, jinhua, eileen, xiong}@cs.uga.edu

Department of Computer Science
The University of Georgia

∗ This material is based on work supported by the National Science Foundation under Grant No. 9996082.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage, and that copies bear this notice and
the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. SC2001 November 2001, Denver (c) 2001 ACM 1-58113-293-X/01/0011 $5.00

Abstract

Interactive Steering can be a valuable tool for understanding and controlling a

distributed computation in real-time. With Interactive Steering, the user may change the

state of a computation by adjusting application parameters on-the-fly. In our system,

we model both the program’s execution and steering actions in terms of transactions. We

define a steering transaction as consistent if its vector time is not concurrent with the

vector time of any program transaction. That is, consistent steering transactions occur

“between” program transactions, at a point that represents a consistent cut. In this

paper, we present an algorithm for verifying the consistency of steering transactions.

The algorithm analyzes a record of the program transactions and compares it against the

steering transaction; if the time at which the steering transaction was applied is

inconsistent, the algorithm generates a vector representing the earliest consistent time at

which the steering transaction could have been applied.

10

Keywords: Program Transaction, Steering Transaction, Consistent Transaction,

Consistent Steering, Program Event, Steering Event, Happened Before, Consistent Cut

1. Introduction

Distributed computing is a powerful tool for performing large, computationally

intensive tasks quickly by sharing the work across a network of workstations. However,

the complexity of these programs can make it difficult for users to fully understand the

runtime behavior of many of these computations [15]. The ability to observe controlled

executions, interact with, and “steer” a running computation can aid understanding. We

have developed an Exploratory Visualization (EV) system that allows a user to pose

queries and visualize program data in a real-time fashion. Through this system, the user

may monitor attributes and variables of the distributed computation. In addition, we are

developing an Interactive Steering (IS) environment through which users may

dynamically manipulate program variables or adjust resource allocation.

Consider a system for performing molecular mechanics calculations that contains

modules for functions including distance geometry calculation, energy minimization, and

free energy perturbation calculation, with the overall goal of 3D protein structure

determination. The user might begin with an input file containing the approximate

pairwise distances between atoms, as produced by an NMR study. An initial pass with a

distance geometry model would produce a rough 3D structure. This structure would then

be refined during a long-running energy minimization phase.

The standard protocols involved in this calculation may produce a structure that is

overconstrained in one area and underconstrained in another area, or become trapped in a

local energy minimum and fail to produce a reasonable 3D structure. The user might

11

wish to visualize the intermediate results of these calculations and interact to turn

constraints off or down in some areas of the molecule, and to apply or increase

constraints in another area. It might be desirable to phase in the constraints rather than

apply them all at once. (Note: a variety of ad-hoc protocols exist for the phasing-in of

forces, but no one protocol is universally accepted.) In addition, the user might wish to

load balance or make other performance adjustments during this long-running energy

minimization phase.

The IS environment would allow the user to view the 3D structures, the state of

the constraints, graphs of the change in total energy as the minimization runs, as well as

performance statistics, and permit the user to select from a variety of protocols, to write a

"steering agent" to implement a new protocol based on the data gathered from the energy

calculations, or to rebalance the computational load by moving the computation

associated with some atoms from one processor to another.

Both the visualizations and the steering activities rely on consistency. In the case

of visualization, consistency guarantees that the visualization represents a valid state of

the computation. In the case of steering, consistency guarantees that the steering

operations are applied in a way that maintains the correctness of the computation(i.e., are

causally consistent). For example, when moving an atom from one processor to another,

consistency would guarantee that the energy calculation included each atom once and

only once, that the atom being moved would not be either excluded or double-counted in

the energy calculation. More subtly, consistency would guarantee that the new

constraints would be phased in at all targeted atoms in the same way, unaffected by

differences in speed of communications or processing at the participating processes. In

12

this paper, we address the problems of detecting inconsistency, verifying consistency, and

calculating consistent states.

2. Exploratory Visualization (EV) Environment

Given the size and complexity of distributed computations, it is important to have a

presentation that provides a simple, accurate, and flexible view of an execution. To

simplify the problem, in the EV environment, the overall computation is abstracted to an

interleaving of atomic state changes involving one or more processes – by analogy to

databases, such state changes are referred to as transactions. From a computational

standpoint, transaction processing applications are a natural choice for obtaining global

state information, since their structure matches the logical actions performed by the

application [6]. For example, a money transfer may involve two processes located at

different points of the network. It is desirable to treat the debit to one account and credit

to another account as an atomic operation on the state of two bank accounts. Many

multi-phased computations also fall into this category of applications whose structure

reflects the logical computation. For example, the N-body problem employs alternating

phases of communication and computation in which information about the state of

neighboring regions is exchanged, and the forces on each body and the body’s new

position in space is then calculated. These phases may be modeled as transactions.

Further, the transaction concept can often be superimposed on computations that

otherwise execute in an unstructured manner.

The formal definition of transaction can be defined as follows:

Definition A transaction relation is an equivalence relation satisfying the following

conditions:

13

1. A local transaction boundary is specified explicitly by end of transaction (EOT)

annotations in an application program. A local transaction is a sequence of events

between EOTs (or between the start of the program and the first EOT).

2. Two local transactions of different processes belong to the same global

transaction if one local transaction sends at least one message to the other local

transaction.

3. A global transaction consists of all local transactions in the same equivalence

class.

We then view the local computation of a process as a sequence of local transactions

and a distributed computation as a set of partially ordered global transactions.

The EV environment is a monitoring system that allows users to view and control a

distributed computation in real-time. At present, the system supports PVM, MPI, and

socket communication. Use of the EV system with a distributed computation requires

that all communication calls be replaced by their EV counterparts and that the code be

annotated with two types of statements: watch and end-of-transaction. The watch

statement is used to indicate the variables of possible interest for monitoring or steering,

and the end-of-transaction statement is used to logically group the code into blocks of

computation, transactions, that represent logical actions performed by the application.

Currently, this annotation is performed manually; interactive tools that largely automate

this process could be implemented in a straightforward manner.

14

3. The Pathfinder Architecture

The EV environment is viewed as a three part architecture, known as the

Pathfinder Architecture [5], composed of Interaction Managers (IM), a Snapshot

Manager (SM), and a User Interface (UI), seen in figure 2.1.

The IM is composed of communication layers between the process and its

communication environment. The IM implements a transaction labeling protocol. The IM

collects information (local snapshots) from the processes that participate in each

transaction, as well as the communication relationships between processes (membership),

and forwards that information to the SM, which then calculates the dependence

relationships between transactions (ordering). Processes that communicate with one

another during the execution of a logical block of code that forms a transaction are

considered members of the same transaction. However, each process typically knows

only of its neighboring processes, those with which it directly communicated. Based on

the transitive communication patterns, the complete membership within a transaction can

be determined [18]. An example is seen in figure 2.2.

At the SM, globally consistent snapshots are generated based on the local

snapshots from the IMs and the transaction labeling information. This labeling

information may consist of neighbor lists, message counts, vector clocks, or other means

[18]. In this paper, we use the vector clock approach as our basis for discussion. The

transaction labeling information relies on a set of vector clocks that encode the inter-

process communication that occurred during the represented transactions. This

information can be used to group local snapshots into global snapshots that represent the

global state of the computation at one instant in time [18]. Note that the existence of

15

these vector clocks for purposes of visualization provides the foundation for the relatively

low-cost addition of consistent steering.

Figure 2.1 – Pathfinder Architecture
Application processes are “wrapped” in Interaction Manager libraries. The Snapshot

Manager merges local snapshots into global snapshots. Contents of the global snapshots are
visualized at the User Interface

Finally, the global snapshots are sent to the UI to be visualized. Through the UI,

the user may pose queries to the system in order to gather application-specific and

system-specific values to aid in overall understanding. The UI also provides the interface

through which users may directly steer the distributed computation in real-time. The

steering request will be issued directly to the SM for processing.

Once the SM receives a steering command, it will issue a steering request to the

IM at each process involved in the steering action. Each participating IM will report

back to the SM the local process time at which the steering event occurred. The SM will

16

use the event times to form a vector timestamp for the steering transaction. Based on the

TLP information already present at the SM, together with steering transaction’s vector

time, the SM can determine if a steering command was applied consistently or not. The

algorithm for determining consistency of steering transactions is the focus of this paper.

To illustrate the notion of consistent versus inconsistent steering actions, assume

the energy minimization calculation described in the Introduction, and imagine that

processors 1 and 2 are heavily loaded, while processor 4 is lightly loaded. The user

issues a steering command, directing that some atoms be transferred from processors 1

and 2 to processor 4. Figures 2.3 and 2.4 illustrate the times at which the steering events

of this steering transaction occurred at each involved process. In figure 2.3, since all the

steering events took place either fully before or fully after each represented transaction,

the steering command was applied consistently. However, in figure 2.4, the steering

event for processes P1 and P2 occurred before transaction Pt1, but the steering event for

process P4 occurred after transaction Pt1. Thus, an energy calculation performed during

Pt1 might exclude the transferred atoms from consideration in the total energy, resulting

in an incorrect energy calculation. In other words, because the steering events did not

occur fully before or after each transaction, the steering command was applied

inconsistently. Section 5.1 will expand upon the notion of consistent steering.

17

-- Indicates the end-of-transaction

Figure 2.2 – Based on the end-of-transaction events and the communication pattern, three
program transactions, Pt1, Pt2, and Pt3, can be formed.

P1 P2 P3 P4

Pt1

Pt2 Pt3

P1 P2 P3 P4 P1 P2 P3 P4

Pt1 Pt1

Pt2 Pt3 Pt2

Pt3

Figure 2.3 – Consistent Figure 2.4 – Inconsistent
Steering Transaction SteeringTransaction

4. Model and Definitions

A distributed computation consists of a set of dynamic processes that work

together to achieve a common goal. In our system, each process exports two sets of

attributes: one that reflects the subset of the process state available for monitoring and

-- Indicates the end-of-transaction
-- Indicates the steering event

18

one that reflects the subset of the process state that is available for steering. The state of

the process changes when a program event occurs or when a user-specified steering event

occurs. Program events of interest are sends, receives, and events that mark the end of a

process’s participation in a transaction, known as end-of-transaction events. Steering

events are those actions directly issued by the user to make changes to the state of a

computation. The change may be specified to occur at each process in the computation at

which a variable resides or may instead affect multiple processes.

Any distributed computation can be decomposed into sets of program events. A program

transaction is a set of program events collected at one or more processes and representing

the same logical point in the program’s execution. The events in the set are related

through a direct or transitive communication pattern. The time of a program transaction

is represented as a vector in which each process involved in a transaction has a timestamp

representing its local time when it participated in the transaction. Program transactions

are deemed consistent if

• the program events within the set belong to one and only one transaction,

• all related send-receive events are in the same transaction,

• for two program transactions Pt1 and Pt2, if the local events at one process in Pt1

occurred before the local events in the same process in Pt2, then, in every other

process, all the local events of Pt1 must have occurred before all the local events

of Pt2.

Finally, a group of related steering events can be organized into a set, a steering

transaction, that represents the set of steering events resulting from a single request.

19

These transactions are represented by vectors containing the local timestamps of the

processes when they participated in the steering actions.

5. Optimistic versus Pessimistic Steering

Interactive steering may be implemented in two ways: as pessimistic steering or

as optimistic steering. Pessimistic steering requires that a computation reach quiescence

[2, 10] before a steering change is applied. This is a nontrivial process in a distributed,

asynchronous environment in which centralized control of the computation is required.

This model can result in considerable perturbation of the computation and significant

steering lag [8].

In optimistic steering, the system receives a user-initiated set of steering events,

grouped into a steering transaction, to make some application-specific modification. The

system invokes each steering event in the steering transaction at the respective process

without concern for or knowledge of the state of any other process. Therefore, the

consistency of the global state of the computation, and specifically, the consistency of the

steering transaction, must be checked. If the consistency is verified, the computation

continues. If the steering transaction is found to be inconsistent, the computation must

roll back to its state prior to the application of the steering change. In our approach, a

new steering transaction is calculated; the process then executes forward to the new

steering transaction time, applies the steering changes, and continues under normal

execution. In this paper, we address the problem of verifying the consistency of a

steering transaction, and, if needed, calculating a new consistent steering transaction.

Note that other systems for interactive steering typically do not address the

problem of coordinated, distributed changes to general computations(Falcon[5]), perform

20

steering only between iterations of some main loop(Cumulvs[14]), or leave the problem

of consistency to be addressed by the programmer on a per-object basis (Magellan[16],

Progress[17]). This third approach, however, provides the opportunity to go beyond

causal consistency, and to perform other types of consistency checking as well. Note also

that the work described here is part of a larger investigation of optimistic steering.

Whether optimistic steering is preferable to these other approaches, and if so, under what

circumstances, remains to be seen and is an important element of our ongoing work.

5.1 Optimistic Steering

Let m = # processes participating in a distributed computation.

Let u, v be vectors of dimension m, each element a local timestamp of a process.

(1) u ≤ v iff u[k] ≤ v[k] for k = 1, …, m

(2) u < v iff u ≤ v and u ≠ v

(3) u || v iff ¬ (u < v) and ¬ (v < u) [15].

That is, in cases (1) and (2), when applying the causality relationship defined by

Schwarz and Mattern [15], the transaction represented by vector u happened before the

transaction represented by vector v (u < v) if each process in u has a local timestamp less

than or equal to that of the corresponding process in v, but the vectors are not identical.

While, in case (3), the transaction represented by vector u does not happen before the

transaction represented by vector v, nor does the transaction represented by vector v

happen before the transaction represented by vector u. That is, the transactions

correlating with vectors u and v are concurrent, represented

by u || v.

21

In our system, a steering transaction may involve a subset of processes, with the

result that vector elements representing non-participating processes will be undefined.

For example, figure 2.5 contains an initial vector representing a steering transaction in

which process P2 participated at its local time 2 and process P4 participated at its local

time 3. However, processes P1 and P3 did not participate, and, therefore, their entries are

undefined. In addition, for participating processes, a steering event at time t is assumed

to have happened prior to a program event at time t. For example, in figure 2.5, the

program transaction shows process P2 participated at its local time 2 and process P3

participated at its local time 4. In both the steering transaction and the program

transaction, process P2 has a corresponding timestamp of 2. For the purposes of our

algorithm, it is assumed that steering transactions are applied immediately prior to

program transactions with the same timestamp. Therefore, a steering event is said to

happen before a program event with the same timestamp. For example, in figures 2.3

and 2.4, the steering event and program event representing the send of a message during

Pt1 are both recorded with the same timestamp for process P1.

To correctly represent the transitive dependencies between a steering transaction

and a program transaction, we must create an updated vector clock for the steering time.

The elements representing the non-participating processes in the steering transaction are

updated to represent the time of the earliest program transaction after the steering

transaction at which those processes could have been affected. Figure 2.5 shows the

update of the steering transaction that indicates process P3 was affected by the steering

transaction at local time 4.

22

We define consistent steering such that a steering transaction represented by

vector v is consistent if and only if it is not concurrent with any program transaction

represented by vector u, denoted ¬(v || u). In section 6, the algorithm presented iterates

over each program transaction beginning with the most recent and verifies that it is not

concurrent with the steering transaction being checked. If during this process, the

steering transaction is found to be concurrent with any program transaction, the algorithm

will calculate the earliest, non-concurrent steering transaction that can occur after the

present steering transaction

Steering Transaction Program Transaction

Updated Steering Transaction

Figure 2.5 – Demonstrates the updating of a steering transaction to
indicate an indirect affects a steering

6. Algorithm for Consistency Verification

6.1 Idea behind Algorithm

In order to determine the consistency of a steering transaction, the system

maintains a list of vectors representing a partial ordering of the program transaction

history. In fact, the TLP algorithm used at the SM determines this total ordering.

Transaction ordering ensures that the total ordering of snapshots is consistent with the

partial order over program transactions. The algorithm described takes as inputs this

P1 P2 P3 P4
2 3

P1 P2 P3 P4
2 4

P1 P2 P3 P4
2 4 3

23

history and a vector representing the time of the steering transaction. If the steering

transaction is consistent, the algorithm returns TRUE. If the steering transaction is

inconsistent, the algorithm returns a vector representing the earliest consistent time after

the given steering transaction at which a steering transaction could occur.

To accomplish consistency detection, the algorithm creates a consistency vector

representing a consistent cut [13] at which a steering transaction could be applied. The

algorithm works backward, generating vector times for consistent cuts based on

comparisons between the program transaction being analyzed and the steering

transaction. The algorithm completes once the present steering transaction is reached or

an inconsistency has been detected.

To determine membership, the algorithms tag each message sent with the local

snapshot id. Receiving processes keep track of this information by a vector time and

associate it with the current transaction. At the end of transaction, this vector time

information will be exchanged between IMs or sent to the SM for the transaction

membership assembly and transaction ordering. Since the vector time information is

needed only at the end of a transaction and assembly of the transaction information does

not block continued execution of the application processes, this should result in relatively

low perturbation [18].

6.2 Algorithm

This algorithm, seen in figure 2.6, requires six data structures and one Boolean

variable. First, a TLP (Transaction Labeling Protocol) table is used to maintain the

chronological history of program transactions. Next, there are four vector times, a

Boolean vector, and a Boolean variable: TV (Transaction Vector), SV (Steering Vector),

24

CV (Consistency Vector), CVTemp, Verified, and consistent, respectively. Figure 2.7

shows an example of the initialized data structures. The TV vector holds the row of the

TLP table currently being analyzed. The SV vector contains the timestamps representing

the steering transaction. The CV vector represents the time of a consistent steering

transaction. The CVtemp vector provides a temporary holder of possible new timestamps

for the CV vector. The values of CVtemp should not be committed to the CV vector until

all elements of the SV vector have been compared against corresponding elements in the

TV vector. Both the CV vector and CVtemp vector are initially empty. The Boolean

Verified vector contains flags signifying that the earliest timestamp for a steering event to

occur at each respective process has been verified. If a TRUE flag is present, then no

new timestamp for that process should be added to the CV vector. Verified is initialized

with all elements set to FALSE. Finally, the Boolean variable consistent indicates

whether the values stored in CVtemp should be committed to the CV vector.

At the beginning of each iteration of the WHILE loop beginning on line 16,

consistent is set to TRUE. This WHILE loop is used to determine the stopping point for

the algorithm. The algorithm terminates once all elements of the Verified vector that

correspond to elements of the SV vector have been set to TRUE. The key point of

analysis occurs in the FOR loop starting on line 20. Here, each non-empty element of the

TV vector is compared with the corresponding non-empty element of the SV vector. If

the element compared in the TV vector holds a timestamp equal to or later than that of the

element in the SV vector, then that timestamp is entered into the corresponding element in

CVtemp. If consistent remains TRUE through all iterations of the FOR loop, then the

values of CVtemp are committed to the CV vector. However, if any element of the TV

25

vector occurred earlier than the corresponding element in the SV vector, then consistent

will be changed to FALSE and the loop will terminate, as seen in lines 33 and 34. All

entries in CVtemp are then purged and all elements of the Verified vector corresponding

to elements of TV are marked as TRUE. This later action indicates that the present TV

vector was concurrent with the SV vector. As explained, any concurrency implies an

inconsistent steering transaction.

One other condition will cause the FOR loop to terminate without completing all

iterations. If any element of the TV vector corresponding to an element of the Verified

vector has already been set to TRUE, then all elements of the Verified vector

corresponding to elements of the TV vector will be set to TRUE, and the loop terminates.

As above, if any element of the TV vector has already been verified, then the earliest time

at which a steering event could have occurred for that process has happened. Therefore,

no other process having direct or transitive communication with that process could

consistently apply a steering action during the program transaction represented by that TV

vector or any earlier TV vector.

Once the condition has been satisfied that all elements of the Verified vector

corresponding to elements of the SV vector have been set to TRUE, the WHILE loop will

terminate and a comparison between the CV vector and SV vector occurs. If the CV

vector and SV vector are found to be identical, the algorithm returns TRUE. The IS

system can then purge all checkpoints and stop any message logging. If the CV vector is

not equal to the SV vector, then the algorithm returns the CV vector. The IS system can

then issue a command for each process to rollback to the checkpoint at the time specified

26

1. Table TLP /*Table containing transaction history*/
2. Vector TV /*Vector holding information about present transaction in TLP*/
3. Vector SV /*Steering Vector containing list of processes involved in steering transaction*/
4. Vector CV /*Consistent Vector representing when the steering transaction should take place*/
5. Vector CVtemp /*Temporary vector to hold information until it is verified SV has not made TV
6. inconsistent*/
7. Vector Verified /*A Vector of Boolean values set to true when a process listed in SV is at its
8. earliest logical time to have invoked the steering command*/
9. Boolean consistent /*Boolean flag to indicate if SV has made TV inconsistent*/
10.
11. BEGIN
12.
13. set all elements of Verified to FALSE
14. set TV equal to last vector of TLP table
15.
16. WHILE (all processes in SV have not been set to true in Verified)
17. BEGIN
18. consistent set to TRUE
19.
20. FOR (compare each corresponding, non-empty cell in TV and SV)
21. BEGIN
22. IF(any non-empty cell in TV corresponds to a cell marked TRUE
23. in Verified)
24. THEN mark all cells in Verified corresponding to non-
25. empty cells in TV TRUE
26. set consistent to FALSE
27. break
28.
29. IF(TV is greater than or equal to SV)
30. THEN set corresponding cell of CVtemp to TV
31. ELSE
32. Mark Verified cells corresponding to non-empty TV cells
to TRUE
33. and mark consistent to FALSE
34. break
35. END
36.
37. IF(consistent)
38. THEN
39. FOR(each non-empty element of CVtemp)
40. set corresponding cells of CV to CVtemp
41.
42. IF(all cells of Verified corresponding to all cells SV are marked true)
43. break
44. ELSE
45. set TV equal to previous vector in TLP
46. END
47.
48. IF(SV equals CV)
49. Return Consistent
50. ELSE
51. Return CV
52.
53. END

Figure 2.6 – Consistency Verification Algorithm

27

in the SV vector, execute forward to the timestamps in the CV, then apply the steering

command. Again, checkpoints can be purged and message logging may cease.

6.3 Examples of Algorithm in Use

6.3.1 Inconsistency Detection

TLP TABLE SV VECTOR

TV VECTOR

CV VECTOR VERIFIED VECTOR

Figure 2.7 – Represents the initialization of the primary data structures at the
beginning of the algorithm for a hypothetical execution of a distributed computation

Given the initial input above, we trace the updates to the CV and Verified vector as the

algorithm proceeds. The following figures show the updates to the vectors CV and

Verified after each iteration of the while loop.

Iteration 1

All non-empty cells of T5 are greater than the corresponding cells of the SV. The CV is

updated to contain these values. The Verified vector is unchanged.

P1 P2 P3 P4
T1 0 0 0 0

T2 1 1 1
T3 2 1
T4 3 2
T5 2 2

P1 P2 P3 P4
1 1 2

P1 P2 P3 P4
2 2

P1 P2 P3 P4
- - - -

P1 P2 P3 P4
F F F F

28

CV Vector
P1 P2 P3 P4
2 2

Verified Vector
P1 P2 P3 P4
F F F F

Figure 2.8 – Represents the updated states of
the CV vector and Verified vector

Iteration 2

Again, the non-empty cells of T4 are greater than or equal to the corresponding cells of

the SV. CV is updated accordingly.

CV Vector
P1 P2 P3 P4
2 2 3

Verified Vector
P1 P2 P3 P4
F F F F

Figure 2.9 – Represents the updated states of the CV and Verified Vector

Iteration 3

All cells of T3 are greater than or equal to their corresponding cells of the SV. Again, the

CV is updated.

CV Vector
P1 P2 P3 P4
2 2 2

Verified Vector
P1 P2 P3 P4
F F F F

Figure 2.10 – Represents the updated states of the CV and Verified Vector

29

Iteration 4

Unlike the previous iterations, all the cells of T2 are not greater than or equal to the

corresponding cells in the SV. In fact, the value in the cell for P3 is less than that in the

SV. Therefore, all cells of processes in the Verified vector corresponding to cells of

processes in T2 are marked TRUE. The CV vector remains unchanged.

CV Vector
P1 P2 P3 P4
2 2 2

Verified Vector
P1 P2 P3 P4
T T T F

Figure 2.11 – Represents the updated states of the CV and Verified Vector

Iteration 5

Finally, we make a comparison between T1 and SV and discover that the cells of T1

contain lesser values than the corresponding cells of the SV. We mark the corresponding

cells of the Verified vector TRUE. Each cell of the Verified vector is now marked TRUE.

CV Vector
P1 P2 P3 P4
2 2 2

Verified Vector
P1 P2 P3 P4
T T T T

Figure 2.12 – Represents the updated states of the CV and Verified Vector

30

The SV is not equal to the CV. Thus, the algorithm returns the CV. A rollback to the SV

is issued and the steering action will be applied at the CV, both seen in figure 2.13.

SV Vector
P1 P2 P3 P4
1 1 2

CV Vector

Figure 2.13 – Represents the original SV vector
and the new consistent steering vector time CV

6.3.2 Consistency Verification

Given the initial input belowe, we trace the updates to the CV and Verified vector as the

algorithm proceeds.

TLP Table SV Vector

TV Vector

CV Vector Verified Vector

Figure 2.14 – Represents the initialization of the primary data structures at the beginning
of the algorithm for a hypothetical execution of a distributed computation.

P1 P2 P3 P4
2 2 2

P1 P2 P3 P4
T1 0 0 0

T2 1 0 1
T3 1 2
T4 1 2
T5 2 2 3

P1 P2 P3 P4
1 1 2

P1 P2 P3 P4
2 2 3

P1 P2 P3 P4
- - - -

P1 P2 P3 P4
F F F F

31

Iteration 1

Since all the non-empty cells of T5 are greater than corresponding cells of the SV, we

update the cells of the CV vector. The Verified vector remains unchanged.

CV Vector
P1 P2 P3 P4

2 3

Verified Vector
P1 P2 P3 P4
F F F F

Figure 2.15 – Represents the updated states of the CV and Verified Vector

Iteration 2

Again, the non-empty cells of T4 are greater than or equal to the corresponding cells of

the SV. The CV vector is updated. Verified is unchanged.

CV Vector
P1 P2 P3 P4

1 2 3

Verified Vector
P1 P2 P3 P4
F F F F

Figure 2.16 – Represents the updated states of the CV and Verified Vector

Iteration 3

All cells of T3 are greater than or equal to the corresponding cells of the SV. The CV is

updated. Verified remains unchanged.

32

CV Vector
P1 P2 P3 P4

1 1 2

Verified Vector
P1 P2 P3 P4
F F F F

Figure 2.17 – Represents the updated states of the CV and Verified Vector

Iteration 4

Unlike the previous iterations, all the cells of T2 are not greater than or equal to the

corresponding cells in the SV. In fact, the values in the cell for P3 and P4 are less than

the corresponding values in the SV. Therefore, all cells of processes in the Verified

vector corresponding to cells of processes in T2 are marked TRUE. The CV vector

remains unchanged.

CV Vector
P1 P2 P3 P4

1 1 2

Verified Vector
P1 P2 P3 P4
T F T T

Figure 2.18 – Represents the updated states of the
CV and Verified Vector

Iteration 5

Finally, we make a comparison between T1 and SV; the cells of T1 contain lesser values

than the corresponding cells of the SV. We mark the corresponding cells of the Verified

vector TRUE. Each cell of the Verified vector is now marked TRUE. Since SV is equal

33

to CV, the algorithm returns TRUE. The IS system is now able to purge all checkpoints

and cease all logging.

CV Vector
P1 P2 P3 P4

1 1 2

Verified Vector
P1 P2 P3 P4
T T T T

Figure 2.19 – Represents the updated states of the
CV and Verified Vector

6.4 Explanation of Algorithm Correctness

To clarify the point that the original SV in section 6.3.1 was not consistent,

consider figure 2.20 containing the original TLP table. A bold line represents the points at

which the steering transaction was applied. Note that program transaction T2 is cut by

the original steering transaction; the steering transaction did not happen fully before or

after program transaction T2, but rather was concurrent with T2.

P1 P2 P3 P4
T1 0 0 0 0
T2 1 1 1
T3 2 1
T4 3 2
T5 2 2

Figure 2.20 – Original SV cutting
Program Transaction T2

Figure 2.21 contains the original TLP table from section 6.3.1 but illustrates the

new steering transaction generated by the CV vector. In this figure, it can be seen that no

program transaction is cut by the steering transaction, and thus the steering transaction

either happened before or after every program transaction but is not concurrent with any

34

of them. Therefore, this steering transaction is consistent. This same reasoning can be

applied to the steering transaction in section 6.3.2 to verify that it too is consistent.

P1 P2 P3 P4
T1 0 0 0 0
T2 1 1 1
T3 2 1
T4 3 2
T5 2 2

Figure 2.21 – Consistent SV not cutting
any Program Transactions

7. Related Work

Causality is fundamental to many problems in distributed computing. For

example, determining a consistent global snapshot of a distributed computation [1, 3]

requires finding a set of local snapshots such that the causal relation between all events

included in the snapshots is respected in the following sense: if e’ is contained in the

global snapshot formed by the union of local snapshots, and e→ e’ holds, then e must

also be included in the global snapshot. Thus, the notion of consistency in distributed

systems is basically an issue of correctly reflecting causality. Many important

applications of causal consistency are summarized by Schwarz and Mattern in [15].

An important characteristic of distributed systems is that there is no global clock.

Consequently, ordering the events in a distributed system can be challenging. Lamport

[9] introduced an efficient mechanism called logical clocks for totally ordering the events

in a distributed system, but the mechanism is not sufficiently powerful to allow

concurrent events to be identified. Mattern [11] and Fidge [4] independently developed

vector clocks, which precisely capture the causal ordering between distributed events.

The main difference between Mattern and Fidge vector time schemes and ours is the way

35

in which the logical time of a process is measured. Under the Mattern and Fidge

schemes, the logical time of a process is measured in “number of past events” at that

process. However, under our scheme, the logical time of a process is measured in

“number of past local transactions” at that process.

The Z-path and Z-cycle notion, introduced by Netzer and Xu [13], generalizes the

notion of a causal path of messages defined by Lamport’s happened-before relation [9].

A local checkpoint is useless iff it is involved in a Z-cycle. In the transaction-based

computational model, if a checkpoint is taken, all participant processes in a global

transaction take the checkpoint at the end of transaction. In this way, no local checkpoint

will be involved in a Z-cycle because there is no message in transit at the end of

transaction.

8. Conclusion

The EV and IS systems offers a real-time environment through which users may

gain understanding and perform on-the-fly program manipulation. However, with the

ability to adjust application parameters on-the-fly, comes the necessity to verify that

changes are made in a logically consistent manner, at consistent cuts [13]. Through the

notions of steering transactions, program transactions, and consistent steering, the

algorithm presented here provides a means to verify consistency, detect inconsistency,

and calculate the earliest consistent cuts. Consistency guarantees that visualizations

presented to the users represent a valid state of the computation and that the steering

operations are applied in a way that maintains the correctness of the computation.

The currently developed EV environment and the prototyped IS environment

permit users to configure the environments to provide the desired balance among

36

consistency, lag, and perturbation of the underlying program execution. Included in this

research is the development of a variety of modular algorithms for the collection of

snapshots with varying degrees of consistency, for either selective or comprehensive

monitoring, as well as the development of algorithms that permit the consistent

application of changes to the program in execution while minimizing the lag and

perturbation that result. Also under study are techniques for improving the scalability of

these algorithms. As the number of processes participating in steering transactions and

the number of steering transactions increases, the message and processing load at the SM

will increase significantly and the the SM will become a bottleneck. To address this

problem, a hierarchical combination of SMs has been designed, but not yet implemented.

Further, as the number of processes participating in steering transactions increases, the

probability that a steering transaction will be consistent will likely decrease. Techniques

to dynamically cluster related (steered together) processes under the same SM in the SM

hierarchy are being considered to address this problem.

References

[1] K.M. Chandy and L. Lamport, “Distributed Snapshots: Determining Global
States of Distributed Systems,” ACM Transactions on Computer Systems,
February 1985, 3(1):63-75.

[2] Dijkstra and B.P. Scholten, “Termination Detections for Diffusing
Computations,” Information Processing Letters, 1980, 11(1): 1-4.

[3] J. Fowler and W. Zwaenepoel, “Casual Distributed Breakpoints,” in Proceedings,
10th International Conference on Distributed Computing Systems, Paris, France,
May 1990, pp. 134-141.

[4] C.J. Fidge, “Timestamps in Message-Passing Systems that Preserve the Partial
Ordering”, Australian Computer Science Communications, February 1988, pp.
56-66.

37

[5] W. Gu, G. Eisenhauer, E. Kraemer, K. Schwan, J. Stasko and J. Vetter, “Falcon:
On-line Monitoring and Steering of Large-Scale Parallel Programs,” in
Proceedings of the Fifth Symposium on the Frontiers of Massively Parallel
Computation, McClean, VA Feb 1995, pp. 422-429.

[6] D. Hart, E. Kraemer, and G.C. Roman, “Interactive Visual Exploration of
Distributed Computations,” in Proceedings, 11th International Parallel Processing
Symposium, Geneva, Switzerland, April 1997, pp. 121-127.

[7] D. Hart, E. Kraemer, “An Agent-Based Perspective of Distributed Monitoring and
Steering,” in Proceedings, 2nd Sigmetrics Symposium on Parallel and Distributed
Tools, Welches, Oregon, August 1998, pp. 151.

[8] E. Kraemer, D. Hart, and G.C. Roman, “Balancing Consistency and Lag in
Transaction-Based Computational Steering,” in Proceedings, 35th Annual Hawaii
International Conference on Software Specification and Design, January 1998,
pp. 137-147.

[9] L. Lamport, “Time, Clocks, and the Ordering of Events in a Distributed System,”
Communications of the ACM 21, 1978, 7(558-565).

[10] Lynch, N., Distributed Algorithms, Morgan Kaufmann Publishers, Inc., San
Francisco, California, 1996.

[11] F. Mattern, “Virtual Time and Global States of Distributed Systems,” Parallel
and Distributed Algorithms, North-Holland, 1989, pp. 215-226.

[12] F. Mattern, “Efficient Algorithms for Distributed Snapshots and Global Virtual
Time Approximation.” Journal of Parallel and Distributed Computing, 18:423-
424, 1993.

[13] Robert H. B. Netzer and J. Xu, “Necessary and Sufficient Conditions for
Consistent Global Snapshots,” IEEE Transactions on Parallel and Distributed
Systems, February 1995, 6(2):165-169.

[14] P. M. Papadopoulos, J. A. Kohl, B. D. Semeraro, “CUMULVS: Extending a
Generic Steering and Visualization Middleware for Application Fault-Tolerance,”
Proceedings of the 31st Hawaii International Conference on System Sciences
(HICSS-31), Kona, Hawaii, January 1998

[15] Reinhard Schwarz and Friedemann Mattern, “Detecting Causal Relationships in
Distributed Computations: In Search of the Holy Grail,” Distributed Computing,
1994, 7(3): 149-174.

38

[16] J. Vetter and K. Schwan, “High Performance Computational Steering of Physical
Simulations,” in Proceedings of the 11th International Parallel Processing
Symposium, Geneva, Switzerland, April 1997, pp127-132.

[17] J. Vetter and K. Schwan. “Progress: A Toolkit for Interactive Program Steering,”
Proceedings of the 1995 International Conference on Parallel Processing,
Urbana, IL, Aug 1995, pp. 139-142.

[18] H. Vuppula, E. Kraemer, and D. Hart, “Algorithms for Collection of Global
Snapshots: An Empirical Evaluation,” Proceedings in, ICSA Conference on
Parallel and Distributed Computing Systems, August 2000, pp. 197-204.

39

CHAPTER 3

OPTIMISTIC COMPUTATIONAL STEERING♦

♦ Miller, David W., Eileen Kraemer, and Jinhua Guo. Extended Abstract Submitted to SuperComputing
2002, 4/26/02.

40

Optimistic Computational Steering*

David W. Miller, Eileen Kraemer†, Jinhua Guo
{miller, eileen, jinhua} @cs.uga.edu

Department of Computer Science
The University of Georgia

Abstract

Computational steering is the online, interactive allocation of resources and

adjustment of application parameters. Although several systems for steering distributed

computations have been developed, few support the coordinated steering of multiple

processes. Of those that do provide such support, most take a conservative approach.

Our system is unique in its optimistic approach. Coordinated steering of either type has

the potential to introduce significant perturbation. We focus on optimistic steering,

which does not require global synchronization before a steering event may take place.

Such an approach requires both the ability to determine the consistency of steering

transactions and the ability to correct any inconsistencies that may occur. To address

these issues, we have developed algorithms for consistency detection and a steering

system that has the ability to correct inconsistencies through computational rollback and

re-execution. Presented in this paper are the details of our steering system and a

performance analysis of that system.

Keywords: Checkpoint, Conservative Steering, Message Logging, Optimistic Steering,

Program Transaction, Re-execution, Rollback, Steering Transaction

* This work is supported by the National Science Foundation under Grant No. 9996082.
† Primary contact author.

41

1. Introduction

Computational steering is the online, interactive allocation of resources and

adjustment of application parameters. This interactivity can be useful for performance

optimization in systems where the demands on resources and the availability of those

resources may fluctuate over time. Another application of computational steering is the

adjustment of parameters in algorithms for which the execution behavior varies

randomly, is dependent upon characteristics of the input data, or for which the execution

behavior is not yet well understood. In the case of modeling and simulation codes, the

ability to observe and adjust model parameters in an online fashion allows researchers to

terminate unproductive executions early, and to develop intuition regarding interactions

among model parameters. Finally, computational steering can serve as a tool for

knowledge discovery, allowing viewers to more easily detect cause-and-effect

relationships, to localize bugs, and to better understand the behavior of algorithms and

characteristics of both the target problem and data set.

Tools for computational steering must provide a monitoring function, a user

interface with visualizations capabilities, and a mechanism for propagating steering

actions to the executing programs. To this end, we have developed an Exploratory

Visualization (EV) and Interactive Steering (IS) system. Through this system, the user

may monitor attributes and variables of distributed computations via queries and

visualizations and may dynamically manipulate program variables or adjust resource

allocation. Such a system must address issues including consistency, latency, and overall

computational perturbation. This paper will focus on the computational perturbation as it

relates to the overhead introduced by the Interactive Steering (IS) portion of the system.

42

Within the IS system, a global state change resulting from each user’s steering

request is a called a steering transaction. A steering transaction may be decomposed into

steering events, modifications of the local state of one process. Criteria for the

correctness of steering changes to the executing system can vary considerably depending

on the type of change to be made. Some steering changes may be applied at any of the

participating processes at any point in the computation. However, if a steering

transaction is intended to update critical control parameters or change the global

configuration, causal consistency is often required to maintain the correctness of the

computation. That is, all local steering changes must be applied concurrently across all

participating processes.

Towards the goal of computational steering, we introduce an approach called

optimistic steering. In optimistic steering, the system invokes steering events at the

processes, without stopping the computation or checking for initial consistency.

Therefore, the consistency of the global state of the computation, and specifically, the

consistency of the steering transaction, must be checked. If the steering transaction is

consistent, the computation continues under normal execution. However, if the steering

transaction is found to be inconsistent, then the earliest time at which the steering event

could be consistently applied at each process is calculated. The system must then enter a

recovery state, rollback to the state before the original steering change(s) occurred, re-

execute forward to the consistent time while replaying any messages that may have been

logged, apply the steering changes, and then continue re-executing in recovery until all

message logs have been emptied, after which normal execution may resume.

43

In this paper, we describe our implementation of this approach and an evaluation

of its performance. In section 2, we provide our rationale for optimistic steering. Section

3 defines the computational model supported in the EV/IS system and associated

terminology. Following, Section 4 provides an overview of our system architecture. In

section 5, we discuss the components of the IS system, including consistency detection,

checkpointing, message logging, rollback, re-execution, and message replay. Section 6

describes our experiments to evaluate system performance and discusses the results of

those experiments. Section 7 provides an overview of related research projects in the

area of computational steering. Finally, section 8 provides conclusions and future work.

2. Why Optimistic Steering

Globally consistent steering updates typically require that a computation reach

quiescence [1, 9] before a steering change is applied; the computation blocks before a

consensus decision is made and steering changes are applied. This is a nontrivial process

in a distributed, asynchronous environment in which centralized control of the

computation is required, and can result in considerable perturbation of the computation

and significant steering lag [6]. In contrast to this conservative or “pessimistic”

approach, we present another approach called optimistic steering. In optimistic steering,

the system invokes each steering event in the steering transaction at the respective

process without concern for or knowledge of the state of any other process. Therefore,

the consistency of the global state of the computation, and specifically, the consistency of

the steering transaction, must be checked. If consistency is verified, the computation

continues. If the steering transaction is found to be inconsistent, then the earliest time at

which the steering event could be consistently applied at each process is calculated. The

44

computation must then rollback to its state prior to the application of the steering change,

execute forward, and then apply the steering change at the consistent time.

The optimistic approach is expected to perform well in the case that steering is

relatively rare and that the processes of the computation tend to remain roughly

synchronized because of coordination at the application level. This is often the case, as

processes typically wait for messages from one another or synchronize at barriers. In this

case, the next steerable points will most likely be consistent since processes will receive

their steering request in the same global transaction.

Accordingly, while the overhead of state saving and some logging will be

incurred for each steering transaction, rollback and re-execution will be incurred only in

the case of inconsistent steering, and both logging and re-execution will be of limited

scope and duration.

3. Models and Definitions

A distributed computation consists of a set of dynamic processes that work

together to achieve a common goal. In our system, each process exports a set of

attributes that are available for monitoring and steering. The state of the process changes

when a program event occurs or when a user-specified steering event occurs. Program

events of interest are sends, receives, and events that mark the end of a process’s

participation in a transaction, known as end-of-transaction events. A Steering event is

the result of steering request, which makes changes to the state of a process thus affecting

the overall computation.

Any distributed computation can be decomposed into sets of program events. A

program transaction is a set of program events collected at one or more processes and

45

representing the same logical point in the program’s execution. The events in the set are

related through a direct or transitive communication pattern. The time of a program

transaction is represented as a vector in which each process involved in a transaction has

a timestamp representing its local time when it participated in the transaction.

Finally, a group of related steering events can be organized into a set, a steering

transaction that represents the set of steering events resulting from a single request.

These transactions are represented by vectors containing the local timestamps of the

processes when they participated in the steering actions.

4. EV/IS Architecture

The EV/IS environment is viewed as a three-part architecture, known as the

Pathfinder Architecture [3], composed of Interaction Managers (IM), a Snapshot/Steering

Manager (SM), and a User Interface (UI), seen in figure 3.1.

Figure 3.1 – Pathfinder Architecture

The IM is composed of communication layers between the process and its

communication environment. The IM implements a transaction labeling protocol. The IM

46

collects information (local snapshots) from the processes that participate in each

transaction, as well as the communication relationships between processes (membership),

and forwards that information to the SM, which then calculates the dependence

relationships between transactions (ordering). Additionally, the IM is responsible for

invoking steering requests, reporting process steering event times to the SM,

checkpointing, message logging, and process recovery. Processes that communicate with

one another during the execution of a logical block of code that forms a transaction are

considered members of the same transaction. However, each process typically knows

only of its neighboring processes, those with which it directly communicated. Based on

the transitive communication patterns, the complete membership within a transaction can

be determined [17].

At the SM, globally consistent snapshots are generated based on the local

snapshots from the IMs and the transaction labeling information. This labeling

information may consist of neighbor lists, message counts, vector clocks, or other

means—herein, we focus on vector clocks [17]. The transaction labeling information

relies on a set of vector clocks that encode the inter-process communication that occurred

during the represented transactions. This information can be used to group local

snapshots into global snapshots that represent the global state of the computation at one

instant in time [17]. Note that the existence of these vector clocks for purposes of

visualization provides the foundation for the relatively low-cost addition of consistent

steering.

Finally, the global snapshots are sent to the UI to be visualized. Through the UI,

the user may pose queries to the system in order to gather application-specific and

47

system-specific values to aid in overall understanding. The UI also provides the interface

through which users may steer the distributed computation in real-time. The steering

request will be issued to the SM for processing. Once the SM receives a steering request,

it will issue a steering command to the IM at each process involved in the steering action.

Each participating IM will report back to the SM the local process time at which the

steering event occurred. The SM will use the event times to form a vector timestamp for

the steering transaction. Based on the TLP information already present at the SM, and

the steering transaction’s vector time, the SM can determine if a steering command was

applied consistently [10][4]. If not, the SM will issue a rollback and a consistent steering

time to each process.

5. Interactive Steering Implementation Aspects

For a system to have the capability to apply steering changes in an optimistic fashion

so that each process immediately applies a steering request without concern for or

knowledge of any other process, requires not only the ability to confirm consistency and

detect inconsistency but also the mechanism to correct inconsistencies. Consistency

confirmation requires the capability for the system to determine concurrency relations

between steering events. Section 5.1 will briefly discuss two algorithms for consistency

confirmation. Correcting inconsistencies is more complicated.

Inconsistency correction requires not only the ability to checkpoint a computation’s

state before applying a steering change, but also the ability to log messages while

steering, recover from checkpoints, re-execute to a consistent point, reapply steering

changes, and replay messages that will not be resent, all while maintaining transparency

48

to both the user and the running computation. Each of these aspects will be discussed in

the remaining subsections.

5.1 Consistency Detection

A straightforward approach to confirming consistency is to identify the concurrency

relation between all steering events. If all steering events are concurrent, then the

steering transaction is consistent; otherwise, it is inconsistent. To this end, we have

derived two algorithms, history-based and vector time based, to determine the

concurrency of steering events and thus the consistency of a steering transaction. Section

5.1.1 discusses the history-based algorithm [10] and section 5.1.2 covers the vector time

based algorithm [4]. One key feature of each of these algorithms is their ability to

identify all consistent cuts in a program’s execution, or subset thereof, for which a

steering transaction could take place. If the original steering transaction occurred at one

of those cuts, consistency is verified. Otherwise, the system will determine the earliest

consistent cut for which a steering transaction can be reapplied, thus alleviating any

possibility for cascading rollbacks and numerous consistency re-verifications.

5.1.1 History-Based Algorithm

The history-based algorithm [10] depends on a specific subset of the computation

history that contains all program transactions that occurred immediately after the earliest

steering event and before the latest steering event. If a steering transaction can be clearly

inserted between any two of these program transactions, it is consistent.

Specifically, in order to determine the consistency of a steering transaction, the

system maintains a list of vectors representing a partial ordering of the program

transaction history. In fact, the algorithm for transaction ordering installed at the SM

49

determines a valid total ordering of these transactions. To accomplish consistency

detection, the algorithm creates a consistency vector representing a consistent cut at

which a steering transaction could be applied. The algorithm works backwards,

generating vector times for consistent cuts based on comparisons between the program

transactions being analyzed and the steering transaction. The algorithm terminates once

the present steering transaction is reached or an inconsistency has been detected. If an

inconsistency is detected, the last consistent cut stored in the consistency vector contains

the earliest consistent times for the steering transaction and represents the point at which

the steering changes will be reapplied.

5.1.2 Vector Time Based Algorithm

Unlike the history-based algorithm that takes a steering transaction as a whole and

relies on the history of the inter-transactional relations between a steering transaction and

the program transactions, the vector time based algorithm [4] focuses on the relations

among the steering events in a steering transaction. In the vector time based algorithm,

the consistency of a steering transaction is detected by directly comparing the vector

timestamps of steering events. Further, the earliest consistent transaction can be obtained

by checking the vector time of each steering event in a steering transaction.

In the vector time based algorithm, each process is associated with a vector clock

V of size N, where N is the number of processes in the system. Each element in the

vector corresponds to a process in the system. The value of V[i] denotes the number of

past local transactions at that process, as known by this process. The vector time of a

steering event in process Pi is the vector time that results from the occurrence of a

steering event in process Pi.

50

In the vector time based algorithm, we decide whether or not two steering events are

concurrent by directly comparing the vector timestamps of steering events [4]. If the

steering events in a steering transaction are not concurrent, we know that there exists

some causal relation between at least two of the steering events. To avoid violating such

causal relations, the simplest method is to apply the steering action at the later time of the

two. If we can find the latest time for each process involved in the steering transaction

and apply the steering at that time, the new steering transaction will be consistent and it

will be the earliest consistent transaction, as any steering transaction applied before it is

inconsistent.

5.2 Process State

Within the IS system, each process of the distributed computation may be executing

in one of three computational states, as seen in the figure 3.2. A normal computational

state implies that neither the consistency of a steering change is in question nor is the

correction of an inconsistency underway. Note that both directly affected and indirectly

affected processes can lead to an overall inconsistency in a steering transaction. Thus, a

process enters a steering state when either a steering request is issued to that process1 or a

message is received from a process already in a steering state; such a message is known

as a tainted message. [10],[4] provides further insight into the various aspects of steering

consistency detection. Finally, a process may only enter a recovering state if it was in a

steering state relative to a steering transaction that was determined to be inconsistent.

1 Presently, a process may only receive a steering request if it is in a normal state.

51

Figure 3.2 – Computation State Model

5.3 Checkpointing

In order to allow complete transparency to an application during recovery, the entire

computational state of a process must be recorded in the form of a checkpoint before a

steering change can be invoked or before a tainted message can be processed. Thus,

before a process may enter a steering state, a checkpoint must be taken. Doing so will

later allow a process, if necessary, to rollback to the identical state before a steering

change affected the process state, in order to correct an inconsistent steering transaction.

To accomplish this, the IS system maintains a checkpoint that includes the state of all

static variables, all dynamic variables explicitly listed for protection by the programmer,

the execution stack, and key registry values, including but not limited to the program

counter (PC) and stack pointer (SP). Maintaining the execution stack and PC allows the

IS system to seamlessly restart a process’s execution at the exact point at which the

checkpoint was taken.

52

As described in Section 4, in the EV/IS system each process in a distributed

computation is “wrapped” by an IM, communication layers between the process and its

communication environment. Included in these layers is the optimistic steering module,

which maintains process state, message logs, and checkpoint file handles. Each layer of

the IM is loaded dynamically at runtime and is thus not part of the static set of variables.

Rather, each layer resides in the program heap at each process. During a checkpoint, it is

neither desirable nor necessary to record the state of the IM, as this would introduce both

wasted storage for the checkpoint and excessive checkpoint restoration time during a

recovery. Therefore, to allow dynamic memory protection, the IS system provides the

programmer with an explicit protocol through which dynamic variables created during a

process’s execution can be specified for inclusion in checkpoints. Figure 3.3 provides a

code sample illustrating this.

QBV *qbv = new QBV(…); //Allocate first IM layer

char *mem = new char[100]; //Dynamically allocate an array of chars

qbv->protectMem(mem, sizeof(char) * 100);//Memory to include in checkpoints

Figure 3.3 – Memory Protection Example

At present, all checkpoint data is written to two binary files per process. The static

variables and execution stack are written into one file while all protected dynamic

memory is written to a second file. Since the static set of variables and execution stack

both lie contiguously in the program’s stack, a direct memory dump can be made from

the program stack to file during a checkpoint. However, since all data in the program’s

53

heap is not maintained in a checkpoint, a slightly more elaborate scenario exists for

dynamic memory checkpointing.

As mentioned, through an IS protocol, a programmer can explicitly protect any

dynamic memory that needs to be checkpointed. Through this protocol, the programmer

simply specifies the base memory address for a variable and the number of contiguously

associated bytes, as seen in figure 3.3. This information is then stored in a data structure.

During a checkpoint, the data structure of each process is traversed and all specified

memory is contiguously dumped to the second binary file.

Finally, to provide a robust checkpoint, the state of the stack context/environment

must be stored out so that on a rollback the process state is just as it was when the

checkpoint was taken. Fortunately, the setjmp.h library provides an API for both storing

out and recovering such environmental states. As such, the IS system makes full use of

this standard Unix/Linux library during checkpointing.

5.4 Message Logging

Within the EV/IS system, communication traffic exists between the executing

processes and between the various control modules that form the EV/IS system. We refer

to these messages, respectively, as application messages and control messages. Every

application message piggybacks the sending process’s current state, as modeled in figure

3.2, which will include the present steering transaction number that is underway if that

process is in a steering state. For the purposes of message logging, the application’s state

can be grouped into one of two sets, either steering or normal/recovering.

If a process is in a steering state, then it must begin actively logging any message that

will not automatically be resent during recovery–each receiving process maintains a

54

separate message queue for each sending process. The system determines which

messages to log based on the state information that has been incorporated by the sending

process. Any message sent by a process whose state is indicated to be normal/recovering

should be logged. The reason for such action is that if a process indicates that it is in a

normal/recovering state then it does not have the potential to rollback; thus, any such

message will not be resent if the receiving process is forced to rollback. On the other

hand, if a process that is presently steering receives a tainted message from another

process that is also steering, it can be assumed that on a rollback both the receiving and

sending processes will have to recover and thus any such message will be resent and

should not be logged. Message replay will be covered in the next section.

5.5 Recovery – Rollback and Re-execution

Because the IS system employs an optimistic steering approach to computational

steering, the system must have the ability to not only restore the state to what it was

before the inconsistency occurred but to also re-execute a portion of the computation to a

consistent state and reapply the steering changes. In order to accomplish this, as

previously mentioned, the SM is responsible for verifying the consistency of each

steering transaction. If the steering transaction is determined to be consistent, the SM

will simply issue a SteeringOK message to all processes at which point all checkpoints

may be discarded, message queues cleared, and a process will transition back into a

normal state. On the other hand, if the steering transaction is determined to be

inconsistent, the SM must issue a SteeringRecovery message to all processes, at which

55

time any process presently in a steering state will begin the recovery process and

transition into a recovery state2.

Because the SM has no knowledge of processes that have been indirectly affected by

a steering change through the receipt of a tainted message, it must issue a

SteeringRecovery message to all processes within the system. Processes have the ability

to receive SteeringRecovery messages at either a transaction boundary or during a

Receive. Because the scenario exists that a process A may receive a SteeringRecovery

message, and thus rollback, before another process B that is dependent on a message from

A, the system must never allow a blocking Receive to occur—this fact is transparent to

the user. Rather, the system first attempts a non-blocking Receive of an application

message. If that is successful, the system returns control to the application. If there is no

message available, the system then checks for a SteeringRecovery control message. If a

SteeringRecovery message is available, process recovery will begin; otherwise, the

system then performs another non-blocking Receive for the application message. This

mechanism prevents system deadlock caused by unsynchronized rollbacks.

Once a process that is in a steering state receives a SteeringRecovery message, it then

transitions into a recovery state and restores the previously taken checkpoint. At this

point, the system will resume execution at the exact point the checkpoint was initially

taken, which could either have been at a transaction boundary or during the receipt of a

message. Once a process begins re-executing, on each Receive it first attempts to replay

a logged message from the queue associated with the sender. If no logged message

exists, the system then resorts to performing a normal Receive.

2 No process has the ability to transition into a recovery state unless it is presently in a steering state.

56

An interesting scenario exists in which a process may send a tainted message, which

the receiving process does not attempt to process until after the SM has issued either a

SteeringOK or SteeringRecovery message. Therefore, each process maintains a mapping

indicating which steering transactions it knows of, and whether they have been

determined to be consistent or inconsistent. If a process receives a tainted message

associated with a steering transaction that was already deemed consistent, it processes the

message as normal and will not take a checkpoint. On the other hand, if a process

receives a tainted message associated with a steering transaction determined to be

inconsistent, it knows that message has or will be resent and thus throws away the present

message and performs another Receive in order to receive the resent message.

Each recovering process will re-execute forward to the transaction time that was

determined to be a consistent cut by the SM. At that time, it will reapply the steering

changes that were originally requested by the user. Each process may transition back into

a normal state of execution once the steering changes have been reapplied and all of its

message queues have been emptied.

6. Performance

To measure the performance of the EV/IS system and particularly the overhead

associated with both monitoring and steering, we ran a set of tests that encompass four

variables that affect our system overhead: communication pattern, transaction size,

number of processes, and monitoring/steering status. Three basic types of distributed

computation communication patterns were tested: one in which all processes

communicate during each transaction and synchronize at the end of each transaction

(Global); one in which processes communicate pair wise during each transaction and

57

every ten transactions all processes communicate and synchronize (Mixed); finally, one

in which processes perform only pair wise communication and no global communication

or synchronization takes place (Pairwise). For each communication type, we considered

short transactions in which each process had roughly a .25 second computation and large

transactions in which each process had roughly a 2.5 second computation. Each test was

run on 2, 4, and 8 processes, taking the average execution time of 5 runs of 150

transactions for an unmonitored computation, a monitored computation, and a monitored

and steered computation. For each of the runs that included steering, 5 steering

transactions took place. Except for the tests containing only 2 processes, during each run

2 steering transactions contained all the processes, 2 steering transactions contained 75%

of the processes and one steering transaction contained 50% of the processes. Note that

processes may be indirectly affected by a steering transaction. For the 2 processes runs,

all processes were contained in each steering transaction. This is because steering only 1

process would guarantee consistency, and thus would introduce very little overhead and

provide less meaningful performance results. Within the EV/IS, there exist two extra

control processes during each run, one for the SM and one for a daemon process

responsible for establishing all UI and SM communication channels.

Each test was run on a cluster of 4 Pentium II 450 Mhz workstations with 128 Mg of

RAM and running RedHat Linux 7.2. Only the application and control processes were

executed on the workstations during the tests, and the GUI was run on a separate server,

to avoid further workstation load imbalance.

In figure 3.4, the average execution times for unmonitored, monitored, and steered

test sets with small transactions are presented. Also presented in figure 3.4 is the

58

percentage of execution overhead. In the figure, each bar corresponds to the average

execution time in seconds of the test set indicated by the legend. Above each bar

corresponding to a monitored test set, a percentage is given representing the execution

overhead experienced between the monitored and corresponding unmonitored average

execution times. Similarly, above each bar corresponding to a steered test set, a

percentage is given representing the execution overhead between the monitored and

corresponding steered average execution times.

Execution Times and Overhead Percentages
for Small Transactions

0

25

50

75

100

Global Mixed Pairwise

Communication Pattern

T
im

e
in

S
ec

o
n

d
s

Unmonitored Monitored Steered

1.
17

%

0.
39

%

1.
24

%

0.
12

%

6.
68

%

3.
8%

4.
31

%

0.
45

%

1.
51

%
1.

37
% 3.
99

%

15
.7

8%

4.
85

%
0.

22
%

2.
08

%

2.
75

%

3.
54

%

4.
69

%
Number
Procs

2 2 24 4 48 8 8

Figure 3.4 – Execution Times and Overhead for Small Transactions

Figure 3.5 presents execution times for unmonitored, monitored, and steered test

sets with large transactions. As in figure 3.4, both average executions times and

percentage of execution overhead are presented. Finally, figure 3.6 presents the average

59

percentage of steering transactions applied consistently on the first attempt based on the

number of application processes, size of transaction, and communication pattern.

Execution Times and Overhead Percentages
for Large Transactions

300

350

400

450

Global Mixed Pairwise

Communication Pattern

T
im

e
in

S
ec

o
n

d
s

Unmonitored Monitored Steered

0.
33

%

0.
00

3%

0.
29

%

0.
95

%

1.
23

%

0.
28

%

0.
51

%

0.
05

%

0.
59

%

0.
12

%

0.
53

%
1.

24
%

0.
38

%

0.
01

%

0.
45

%
0.

05
%

0.
38

%

0.
39

%

Number
Procs

2 2 24 4 48 8 8

Figure 3.5 – Execution Times and Overhead for Large Transactions

Consistency Percentages Related to Communication
Pattern and Transaction Size

0
20
40
60
80

100

2 Procs 4 Procs 8 Procs

Number of Processes

P
er

ce
n

ta
g

es
(%

)

Global Mixed Pairwise

Small Small SmallLarge Large Large

Transaction
Size

Figure 3.6 – Consistency Percentages

60

As can be seen from figure 3.6, steering consistency is affected by the average

length of time a transaction spends performing computation, the number of possible

processes that can be steered, and the communication pattern between the processes. As

we expected, the tests with only two processes were highly consistent. But, as the

number of steerable processes increases so does the likelihood of inconsistency.

Similarly, mixed communication patterns also increase the likelihood of steering

inconsistencies, with an average consistency of slightly above 80% while the other two

communication patterns were over 90% consistent. [10] points out that steering

inconsistencies can be easily visualized as a program transaction boundary being cut by a

steering transaction─some steering events occurred before or during the program

transaction while others took place after. With mixed communication patterns where

faster processes or process sets are allowed to progress uninterrupted and then forced to

synchronize with slower processes, this scenario becomes more likely as can be seen in

the mixed communication tests for 8 processes.

Transaction computation size also has a large bearing on the frequency of steering

consistency. The consistency average for large transactions is over 95% while small

transactions barely surpass an 80% average. Large transactions provide a greater window

of opportunity for steering requests to be received within the same global transactions.

Conversely, small transactions reduce the size of the window and decrease the likelihood

for consistency.

Based on these trends, large process sets with small transactions and a mixed

communication pattern are expected to have the largest overhead associated with

optimistic steering, since this is the case in which the greatest number of inconsistencies

61

can be found. In fact, only 28% of the time did a consistent steering transaction occur in

this case leading to approximately a 16% overhead for steering. With large transactions

the overhead dramatically drops to just over 1%.

All in all, the system provides reasonable performance for monitoring and

steering, both introducing an average overhead of less than 2%. As was hoped, the

percentage of consistent steering transactions was quite high, averaging nearly 90% over

all cases. While these test cases are not all encompassing, they represent some basic

communication patterns. The transaction sizes are meant to serve as benchmarks for

performance testing. While the .25 second transactions size is smaller than we expect in

practice, the 2.5 second transaction represents a reasonable, though still conservative,

value. One the other hand, by performing 5 steering transactions per run, thus steering

approximately every minute in the case of the large transactions, is far more frequent than

will exist in practical use. The user must have the ability to comprehend and process

what is occurring in a computation to make informed and meaningful steering decisions.

Steering is more likely on the scale of once every 1000 transactions so as to observe

meaningful patterns within the computation. In practice, we expect the overhead to be

lower than observed in our study.

One interesting fact should be pointed out; these are actually the second set of

tests. Our initial monitoring performance for 8 processes sometimes presented a 95%

overhead, prompting us to investigate the cause of such poor performance. As we

mentioned in Section 5.5, our system cannot allow blocking receives because of the

possibility of deadlock. Therefore, we utilize MPI_Iprobe to search for both application

and control messages. Because of the load imbalance in our tests (up to 10 processes

62

over 4 processors), processes, at times, would have to wait for a requested application

message, which we search for by polling using MPI_Iprobe. It was discovered that

MPI_Iprobe is in fact a very expensive operation causing over 85% of the excess

overhead. By inserting a 1-millisecond sleep between each probe, we were able to

dramatically reduce the overhead as reflected in figures 3.4 and 3.5.

7. Related Work

Over the years, several computational steering environments have been proposed

[11]. The optimistic approach to computational steering we have developed differs from

these systems in that it both allows simultaneous steering of multiple processes and does

not require global synchronization before steering.

An early computational steering environment was VASE, the Visualization and

Application Steering Environment, developed at the University of Illinois [5, 7]. The

VASE system requires special annotation to existing Fortran code and permits the user to

alter the values of “key” parameters and to add code at “key” points. However, VASE

does not support the coordinated steering of multiple processes. SCIRun supports

computational steering in a multithreaded application that runs on a single multiprocessor

machine [12, 13]. However, it assumes that the underlying program consists of a number

of separate modules. The SCIRun system generates a script that controls the invocation

of these modules. The steering process involves altering these scripts—thus, changes

occur only between modules, not within modules. The script itself is executed

sequentially. No support for coordination of distributed changes is required. Progress

[15] and its successor Magellan [16] also provide interactive environments for

computational steering. Both these systems were designed to run on multiple

63

multiprocessor computers. Progess does not support coordinated steering of multiple

processes. Magellan was extended to support such coordinated steering of multiple

processes but requires synchronization points be placed in an application. Before a

steering change can take place the application must first halt. Thus, Magellan can be said

to support the conservative approach to the interactive steering of distributed

computations. CUMULVS was developed at Oak Ridge National Laboratory to support

the monitoring and steering of distributed computations [2]. To allow steering, the user

interface process creates a loosely synchronized connection with the application, which

guarantees that all tasks apply the steering updates at the same time or point in the

application, also falling into a conservative steering model. Yet another computational

steering environment is the VIPER project [14]. VIPER is based on a client/server/client

architecture. One client is the parallel computation, the other client is the visualization

unit, and the server acts as a governing body for both information and data extraction and

steering application. Each application has synchronization points at which time the

server has the ability to consistently apply the steering changes requested by the user.

Finally, the CSE environment provides a computational steering environment similar to

those already described [8, 18]. In this system, there exist data manager and satellite

worker processes. The data manager is responsible for gathering the monitored data, all

communication, and application of steering changes. Like the other environments that

support simultaneous steering events, this system also requires its source code be

annotated with special synchronization variables. During synchronization, the data

manager can consistently apply the steering changes.

64

8. Conclusions and Future Work

The EV/IS system offers a real-time environment through which users may gain

understanding and perform on-the-fly program manipulation. Although numerous

systems exists that provide these functionalities, as discussed in section 7, few support

coordinated steering of multiple processes; of those, a conservative steering model is

applied. We believe that a more optimistic approach to steering can provide reduced

perturbation, as global synchronization is not required before steering events.

While optimistic steering is more complex than conservative steering, the

performance shown in section 6 demonstrates that an average overhead of less than 2% is

introduced into the monitoring system. Further, the monitoring system itself has an

average overhead of less than 2%. While cases exists in which optimistic steering can

produce a large amount of overhead due to rollback, the average case shows that nearly

90% of all steering transactions can occur consistently on the first attempt, thus

introducing minimal overhead.

In some situations, conservative steering may be a more ideal model for steering. To

explore this possibility, we are presently implementing a conservative steering module

into the EV/IS system. Based on the results we obtain from the testing of that system, we

will be able to provide a more definitive discussion of the relative costs and benefits of

the two approaches.

65

References

1. Dijkstra and B.P. Scholten, “Termination Detections for Diffusing
Computations,” Information Processing Letters, 1980, 11(1): 1-4.

2. G.A. Geist II, J.A. Kohl, and P.M. Papadopoulos, “CUMULVS: Providing Fault
Tolerance, Visualization, and Steering of Parallel Applications.” The
International Journal of Supercomputer Applications and High Performance
Computing, 11(2):224-235, 1997.

3. W. Gu, G. Eisenhauser, E. Kraemer, K. Schwan, J. Stasko and J. Vetter, “Falcon:
On-line Monitoring and Steering of Large-Scale Parallel Programs,” in
Proceedings of the Fifth Symposium of the Frontiers of Massively Parallel
Computation, Mclean, VA Feb. 1995, pp. 422-429.

4. Jinhua Guo, Eileen Kraemer, and David W. Miller, “Consistency Detection in a
Transaction Based Model.” In submission PODC 2002.

5. R. Haber, B. Bliss, D. Jablonowski, and C. Jog, “A Distributed Environment for
Running Time Visualization and Application Steering in Computational
Mechanics.” Computing Systems in Engineering, 3(1-4):501-515, 1992.

6. E. Kraemer, D. Hart, and G.-C. Roman, “Balancing Consistency and Lag in a
Transaction-Based Computational Steering Environment,” in Proceedings, Thirty-
First Annual Hawaii International Conference on System Sciences, 137-147, Jan.
1998.

7. D.J. Jablonowski, J.D. Bruner, B. Bliss, and R.B. Haber, “VASE: The
Visualization and Application Steering Environment.” In Proceedings of
SuperComputing ’93, pages 560-569, 1993.

8. R. van Liere, J.D. Mulder, and J.J. van Wijk, “Computational Steering.” Future
Generation Computer Systems, 12(5):441-450, April 1997.

9. N. Lynch, “Distributed Algorithms,” Morgan Kaufmann Publishers, Inc., San
Francisco, California, 1996.

10. David W. Miller, Jinhua Guo, Eileen Kraemer, and Yin Xiong, “On-the-Fly
Calculation and Verification of Consistent Steering Transactions.” In
Proceedings SuperComputing 2001, Denver, CO. November 2001.

11. Jurriaan D. Mulder, Jarke J. van Wijk, and Robert van Liere, “A Survey of
Computational Steering Environments.” Technical Report SEN-R9816, Stichting
Mathematisch Centrum. September 1998.

66

12. S.G. Parker and C.R. Johnson, “SCIRun: A Scientific Programming Environment
for Computational Steering.” In Proceedings of SuperComputing ’95, 1995.

13. S.G. Parker, D.M. Weinstein, and C.R. Johnson, “The SCIRun Computational
Steering Software System.” In E. Arge, A.M. Bruaset, and H.P. Langtangen,
editors, Modern Software Tools for Scientific Computing, pages 1-40. Birkauser
Verlag AG, Switzerland, 1997.

14. S. Rathmayer and M. Lenke, “A Tool for On-line Visualization and Interactive
Steering of Parallel HPC Applications.” In Proceedings of the 11th International
Parallel Processing Symposium, IPPS 97, pages 181-186, 1997.

15. J. Vetter. Computational Steering annotated Bibliogragy. SIGPLAN Notices,
32(6):40-44, June 1997.

16. J. Vetter and K. Schwan, “High Performance Computational Steering of Physical
Simulations.” In Proceedings of the 11th International Parallel Processing
Symposium, IPPS 97, pages 128-132, 1997.

17. H. Vuppula, E. Kramer, and D. Hart, “Algorithms for Collection of Global
Snapshots: An Empirical Evaluation,” in Proceedings, ICSA Conference on
Parallel and Distributed Computing Systems, August 2000, pp. 197-204.

18. J.J. van Wijk and R. van Liere, “An Environment for Computational Steering.”
In G.M. Nielson, H. Muller, and H. Hagen, editors, Scientific Visualization:
Overviews, Methodologies, and Techniques, pages 89-110. Computer Society
Press, 1997.

67

CHAPTER 4

CONCLUSIONS

The EV/IS system offers a real-time environment through which users may gain

understanding and perform on-the-fly program manipulation. However, with the ability

to adjust application parameters on-the-fly in an optimistic manner, comes the necessity

to verify the changes are made in a logically consistent manner, at consistent cuts [14].

Through the notions of steering transactions, program transactions, and consistent

steering, the history-based algorithm presented in Chapter 2 and the vector time based

algorithm discussed in Chapter 3 provide a means to verify consistency, detect

inconsistency, and calculate the earliest consistent cuts. However, simply finding these

inconsistencies is not enough in a robust computational steering system.

As the IS system applies an optimistic approach to computational steering, it must

possess the ability to correct any inconsistencies that may occur as a result of a steering

transactions. To accomplish this, the IS system has the means to checkpoint the state of a

computation, log messages, rollback, re-execute, replay messages, and reapply steering

changes at consistent cuts. While the complexities of this approach are large and the

perturbation can be significant when encountering numerous inconsistencies, in many

cases, the benefits of not requiring global synchronization before steering outweigh this

fact. To always require that a computation reach quiescence [2, 11] before a steering

change takes place guarantees significant computational perturbation as it relates to

runtime overhead. As was shown in Chapter 3, based on the tests performed, this system

68

performs relatively well introducing an average overhead of less than 2%. Coupled

together with the fact that we found an average steering consistency of nearly 90%, the IS

system’s optimistic approach can be ideal.

Future work in the area of computational steering will focus the on development

of a conservative steering module within the IS system. The results of comparison

testing between these approaches will allow this research to provide more definitive

discussion as to when one steering approach is more ideal than another based on the

number of processes, communication patterns, and transaction size, to name just a few

variables of a distributed computation.

69

REFERENCES

1. K.M. Chandy and L. Lamport, “Distributed Snapshots: Determining Global
States of Distributed Systems,” ACM Transactions on Computer Systems,
February 1985, 3(1):63-75.

2. Dijkstra and B.P. Scholten, “Termination Detections for Diffusing
Computations,” Information Processing Letters, 1980, 11(1): 1-4.

3. C.J. Fidge, “Timestamps in Message-Passing Systems that Preserve the Partial
Ordering”, Australian Computer Science Communications, February 1988, pp.
56-66.

4. J. Fowler and W. Zwaenepoel, “Casual Distributed Breakpoints,” in Proceedings,
10th International Conference on Distributed Computing Systems, Paris, France,
May 1990, pp. 134-141.

5. G.A. Geist II, J.A. Kohl, and P.M. Papadopoulos, “CUMULVS: Providing Fault
Tolerance, Visualization, and Steering of Parallel Applications.” The
International Journal of Supercomputer Applications and High Performance
Computing, 11(2):224-235, 1997.

6. R. Haber, B. Bliss, D. Jablonowski, and C. Jog, “A Distributed Environment for
Running Time Visualization and Application Steering in Computational
Mechanics.” Computing Systems in Engineering, 3(1-4):501-515, 1992.

7. E. Kraemer, D. Hart, and G.-C. Roman, “Balancing Consistency and Lag in a
Transaction-Based Computational Steering Environment,” in Proceedings, Thirty-
First Annual Hawaii International Conference on System Sciences, 137-147, Jan.
1998.

8. D.J. Jablonowski, J.D. Bruner, B. Bliss, and R.B. Haber, “VASE: The
Visualization and Application Steering Environment.” In Proceedings of
SuperComputing ’93, pages 560-569, 1993.

9. L. Lamport, “Time, Clocks, and the Ordering of Events in a Distributed System,”
Communications of the ACM 21, 1978, 7(558-565).

10. R. van Liere, J.D. Mulder, and J.J. van Wijk, “Computational Steering.” Future
Generation Computer Systems, 12(5):441-450, April 1997.

11. N. Lynch, “Distributed Algorithms,” Morgan Kaufmann Publishers, Inc., San
Francisco, California, 1996.

70

12. F. Mattern, “Virtual Time and Global States of Distributed Systems,” Parallel
and Distributed Algorithms, North-Holland, 1989, pp. 215-226.

13. Jurriaan D. Mulder, Jarke J. van Wijk, and Robert van Liere, “A Survey of
Computational Steering Environments.” Technical Report SEN-R9816, Stichting
Mathematisch Centrum. September 1998.

14. Robert H. B. Netzer and J. Xu, “Necessary and Sufficient Conditions for
Consistent Global Snapshots,” IEEE Transactions on Parallel and Distributed
Systems, February 1995, 6(2):165-169.

15. S.G. Parker and C.R. Johnson, “SCIRun: A Scientific Programming Environment
for Computational Steering.” In Proceedings of SuperComputing ’95, 1995.

16. S.G. Parker, D.M. Weinstein, and C.R. Johnson, “The SCIRun Computational
Steering Software System.” In E. Arge, A.M. Bruaset, and H.P. Langtangen,
editors, Modern Software Tools for Scientific Computing, pages 1-40. Birkauser
Verlag AG, Switzerland, 1997.

17. S. Rathmayer and M. Lenke, “A Tool for On-line Visualization and Interactive
Steering of Parallel HPC Applications.” In Proceedings of the 11th International
Parallel Processing Symposium, IPPS 97, pages 181-186, 1997.

18. Reinhard Schwarz and Friedemann Mattern, “Detecting Causal Relationships in
Distributed Computations: In Search of the Holy Grail,” Distributed Computing,
1994, 7(3): 149-174.

19. J. Vetter. Computational Steering annotated Bibliogragy. SIGPLAN Notices,
32(6):40-44, June 1997.

20. J. Vetter and K. Schwan, “High Performance Computational Steering of Physical
Simulations.” In Proceedings of the 11th International Parallel Processing
Symposium, IPPS 97, pages 128-132, 1997.

21. J.J. van Wijk and R. van Liere, “An Environment for Computational Steering.”
In G.M. Nielson, H. Muller, and H. Hagen, editors, Scientific Visualization:
Overviews, Methodologies, and Techniques, pages 89-110. Computer Society
Press, 1997.

