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ABSTRACT 

The adoption of the Resource Description Framework (RDF) as a metadata 

representation standard is spurring the development of high-level mechanisms for storing and 

querying RDF data. Many of the proposed systems are built on Relational/Object-Relational 

Databases with a translation of queries posed in the supported RDF query language to SQL for 

processing by the database. Graph pattern matching which matches a query graph against a data 

graph, often require join operations. To process join operations, the database optimizer 

determines an optimal join order from a cost model which employs the expected cardinality of 

join results as a key parameter. This parameter is estimated from a statistical summary of the 

data maintained in memory. In this work, we argue that the data summarization technique 

employed by database systems are oblivious of the graph structure of RDF data and may lead to 

estimation errors which result in the choice of a sub-optimal query plan. We present and evaluate 

two techniques for estimating the frequency of subgraphs utilizing a small statistical summary of 

the graph, based on occurrences. In the first technique, we summarize the graph in the P-Tree by 

pruning small subgraphs based on a valuation scheme that blends information about their 

importance and estimation power. In the second technique, we assume that edge occurrences on 



 

edge sequences of length maxL are position independent. We then summarize the most 

informative dependencies in the MD-Tree. In both techniques, we assume conditional 

independence to estimate the frequencies of larger subgraphs. We present extensive experiments 

on real world and synthetic datasets which confirm the feasibility of our approach. Our 

experiments are geared towards showing that the estimates obtained from the proposed 

summaries are accurate as well as effective for optimizing graph pattern queries posed over RDF 

graphs. 
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1. Introduction 

The sheer mass of available documents on the current Web and the insufficient representation of 

knowledge contained in documents make it quite burdensome for humans to find the right 

documents. A major shortcoming of the current Web is that information is targeted towards 

human and as such a human always has to be in the loop to interpret the information given in 

documents. In 2001, Berners-Lee, Hendler and Lassila [5] presented a vision of the Web called 

the Semantic Web in which Web content will be given well defined semantics, thereby making it 

more machine processable, empowering machines to act more on behalf of humans. The 

Semantic Web is about developing technologies that will enable machines to make more sense of 

the Web, with the result of making the Web more useful for humans. The World Wide Web 

Consortium (W3C) has put forward a layered architecture for the Semantic Web that shows the 

hierarchy of languages where each layer exploits and uses the capabilities of the layers below. At 

the lowest level are Unicode and Uniform Resource Identifier (URI). Unicode is a standard that 

allows for a consistent representation and manipulation of textual data expressed in most of the 

world’s languages. URI is a compact string of characters used to identify or name a resource on 

the Web. On top of this layer is the Extensible Markup Language (XML) which allows for 

syntactic interoperability. The semantic layers then begin with the Resource Description 

Framework (RDF) [31] which sits on top of XML. The RDF schema (RDFS) provides basic 

vocabulary for RDF. On top of RDF sits the Web Ontology Language (OWL). OWL extends 

RDFS by making it possible to express complex relationships between different RDFS classes as 

well as to express more precise constraints on specific classes and properties. The rest of the 
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layers contain technologies that are not yet standardized or currently undergoing standardization 

efforts such as the Rule Interchange Format (RIF) or just ideas of what should be implemented to 

realize the Semantic Web. In this thesis, we focus on RDF, since it is the building block of the 

semantic layers of the Semantic Web. However, our work can also be applied to OWL. 

 

RDF provides a simple data model for describing entities in the Semantic Web in terms of named 

relationships and their values. The central notion of RDF is that of a resource which can be any 

entity that is uniquely identified by an IRI (Internationalized Resource Identifier) in the Semantic 

Web. IRIs are a general form of URIs that can be used to identify any entity. The fundamental 

construct in RDF is a statement. RDF allows for making statements about how resources in the 

Semantic Web are related, in the form of triples.  

Publication

Location

Professor

Course

teaches

Student Universityemploys

Project

project_director

Research_Area
related_to_project

string

name

spans

string

name

Author
authoredBy

located_in

advisesMentor

&r1 &r2
authoredBy

&r3
enrolled_in

enrolled_in

advises

&r4
teaches

advises

&r5

advises

 

 
Figure 1.1: RDF Schema and Instance Graphs 
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A statement (subject, property, object) asserts that a resource which is denoted as the subject has 

a property whose value is the object (the object may be another resource or a literal). For 

example, suppose we want to make an assertion that states that a resource (in this case a person) 

with unique identifier http://www.example.edu/authors/author1 is the author of another resource 

(in this case a publication) with unique identifier 

http://www.example.edu/publications/publication1. We assert this by the RDF statement (ex:-

publications/publication1, exterms:authoredBy, ex:authors/author1) where the prefixes ex and 

exterm are aliases for the namespaces http://www.example.edu and 

http://www.example.edu/terms (for the terms that are used by an example university). RDF 

statements can be represented graphically where labeled nodes represent the subject and object 

(labeled with their respective unique identifiers) while a labeled edge from the subject to the 

object, labeled by the value of the property, represents the property as shown in the bottom part 

of figure 1.1.  Similarly, RDF’s companion specification RDFS [7] provides special vocabulary 

for describing domain vocabularies. Domain vocabularies describe the types of entities, i.e., 

classes (e.g., Author) and types of relations or properties (e.g., authoredBy) in the domain, as 

shown in the top part of figure 1.1. RDFS also provides a special vocabulary of metaclasses and 

metaproperties for describing domain vocabularies. The metaclass rdfs:Class/rdfs:Property 

defines instances of Classes/Properties. Properties are further defined in terms of the classes 

whose instances they may apply to (called their domain) and those whose instances they may 

take as values (called their range). RDFS allows both classes and properties to be organized into 

subclassOf/subpropertyOf hierarchies. Thus, the definition of classes/properties may also contain 

information about which classes/properties they specialize using the 
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rdfs:subclassOf/rdfs:subpropertyOf  properties. Resources are also classified based on the classes 

they belong to, i.e., resource typing, using the same model and the rdf:type property.  

1.1. Managing and Querying RDF 

The growing interest in RDF with its accompanying schema language RDFS as a metadata and 

semantic data representation standard in the Semantic Web is spurring on the development of 

large-scale storage and high-level querying systems for RDF data. As observed at the 2008 

Semantic Technology conference, a number of commercial applications such as those from Talis 

and Twine already use and apply very large RDF datasets, and continue to seek techniques to 

manage ever increasingly larger datasets. A variety of systems have been proposed for storing 

RDF ranging from main memory systems such as Jena [11][55], BRAHMS [28], to disk-based 

systems such as Sesame [9], Jena [11], YARS [21], RSSDB [30], Oracle RDF [61]. In order to 

exploit the maturity and wealth of research that has been invested in Database Management 

Systems (DBMS), some of the proposed systems for storing and querying RDF such as Sesame 

[9], Jena [11], RSSDB [30], Oracle RDF [61] employ a Relational/Object Relational Database 

backend (also see [50] for a survey) that shred the RDF graph into relations. The two most 

common techniques of shredding RDF graphs into relations are the schema-oblivious technique 

and the schema-aware technique. The schema oblivious technique stores all triples in one 

relation as shown in figure 1.2a, while the schema-aware technique has one relation for each 

property type as shown in figure 1.2b (see [51] for a taxonomy). Other storage schemes augment 

the triple store with an additional column such as context in YARS [21] or model id in Oracle 

[61]. Native stores such as BRAHMS [28], designed specifically for the needs of the RDF data 

model have also been proposed. Typically, a high level query language for querying RDF 

[29][32][42][43] has also been proposed along with each of the proposals for storing RDF. Many 
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of the proposed query languages for querying RDF, support graph pattern matching as the 

primary query paradigm. In this paradigm, a query is a definition of a graph pattern that is to be 

matched in the database and the result of the query is the list of all occurrences or matchings of 

the graph pattern. Query processing techniques vary depending on the underlying storage 

techniques. For example, for systems that are built on relational database systems, queries are 

translated from an RDF query language such as SPARQL to SQL and then pushed to the 

underlying database for processing. One implication of the graph shredding storage approach 

with respect to query processing is that reconstructing subgraphs from database relations is done 

using join operations.  

&r3teaches&r4

&r2author&r1

enrolled_in

Predicate

&r3&r2

ObjectSubject

&r3&r2

ObjectSubject

&r2&r1

ObjectSubject

enrolled_in author

&r3&r4

ObjectSubject

teaches

• • •

.

.

.

.

.

.

.

.

.

(a)

(b)
 

 

 

This joining of triple patterns is often an expensive operation, necessitating an optimization step 

that helps reduce the query processing cost as much as possible. It is often the case that queries 

on RDF data will require several joins and unfortunately, these will often not be the primary key 

Figure 1.2: RDF Storage Mechanisms (a) Schema Oblivious Mechanism and 

(b) Schema aware Mechanism 
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– foreign key variety of joins. Therefore, optimizing the order of joins for queries on RDF data 

stores is arguably more important than it is for traditional relational databases.  

1.2. RDF Graph Pattern Query Optimization 

Independent of the technique in which the joins of the triple patterns is achieved in the different 

systems, the order in which the joins are performed is a crucial optimization step. Thus, the 

query optimizer needs to compare several alternative ways of computing the joins to determine 

the best way. Each way of executing the join is referred to as a query plan where a query plan is 

typically a tree of operators (including other operators besides the join operator). Each of the 

alternative query plans is associated with a processing cost so that the goal of the optimizer is to 

find the plan with the least cost which is referred to as an optimal plan. One of the key 

parameters the query optimizer needs to determine an optimal plan for executing the query is the 

size of the intermediate results. The estimation of the cardinality of intermediate join results is 

equivalent to estimating the frequency of sub-patterns of a query graph pattern. These 

cardinalities are estimated using a statistical summary of the data maintained by the optimizer. In 

many systems the exact nature of the statistical summary differs. In relational databases, the 

traditional approach is to keep the size of each relations and the number of distinct attribute 

values for each attribute of each relation. Further, histograms may be used to keep the 

distribution of values for each attribute in each relation. For the XML data model, several 

different summaries have been proposed (such as bloom histograms, XSketch synopses, 

correlated subpath tree, StatiX, etc), in the literature all of which exploit the tree nature of XML 

data as such, it is unclear how these techniques can handle graph structured data such as RDF. 

This thesis focuses on building statistical summaries of graph structured data needed for 

optimizing graph pattern queries and efficient techniques for estimating the frequency of patterns 
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in a graph database from the statistical summaries. We note that a graph pattern query may 

contain constraints in the sense that the components of the triples it contains may be bound to a 

particular value. In this work, we focus on graph pattern queries which contain triple patterns 

which may have constraints on the subjects and/or objects. As an example, figure 1.3a below 

shows a SPARQL [42] query (namespaces are omitted for brevity) that asks for professors 

employed in universities in the United States who direct a Semantic Web project. The 

corresponding graph pattern for this query is shown in figure 1.3b. In this case, two out of the six 

triple patterns of the graph pattern have the objects bound to literal values while. However, 

suppose we first evaluate the two “name” constraints on research area and location, then as 

shown in figure1.3c, three joins will be needed to process this query.  

?university

research_area location

?professor

?project

project_director employs

spans located_in

?university?project

employs

?professor

project_director
?project

research_area

?professor

project_director

spans

?professor

?university

lococation

employs

located_in

Select ?university ?professor where

{

?project project_director ?professor .

?project spans ?research_area .

?research_area name “Semantic Web” .

?university employs ?professor .

?university located_in ?location . 

?location name “USA” . 

} 

?university?project

?research_area ?location

?professor

Semantic Web USA

namename

project_director

located_inspans

employs

(d)

(b)
(a)

(c)

(e) (f)

 

 
Figure 1.3: (a) A SPARQL Query Involving Several Join Operations (b) Its 

Corresponding Graph Pattern and (c,d,e,f) Sub-graph Patterns 
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One possible join order is to first join the necessary triples of property type “spans” to those of 

“project_director”, then joining the result from the first operation to the necessary triples of 

property type “employs” and then finally joining the result from the second operation to the 

necessary triples of property type “located_in”. However, to optimize this query, accurate 

estimates of the intermediate patterns leading up to the actual graph pattern of the query, such as 

those shown in figures 1.3d, e and f, are needed. 

 

Noting that (1) the number of possible subgraphs in a graph database could be exponential and 

(2) it is more expedient if the estimates are computed without disk accesses, since they are 

needed at optimization time, we focus on techniques that summarize subgraphs in the graph 

database so as to fit in the available memory budget. Obviously, such a summary will be useful 

only if it captures the interactions among subgraphs. Our choice of subgraphs for capturing 

interactions amongst graphs is strengthened by the observations in [52], [59] and [60], where it is 

shown that subtrees and subgraphs perform better than paths in capturing interactions among 

graphs and trees, respectively. However, the number of unique subgraphs greatly exceeds the 

number of paths in a graph. It is thus infeasible to examine all subgraphs so we consider 

examining only subgraphs of size at most maxL. If the number of subgraphs is still too large, 

efficient pruning techniques will be needed. We propose two summaries that differ in their 

representation of subgraphs and pruning techniques: the Pattern Tree (P-Tree) and the Maximal 

Dependence Tree (MD-Tree).  

 

Given a list of patterns and their frequencies, a simple way of representing the patterns is through 

the use of a hash table. However, we can more concisely maintain this information using our P-
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Tree technique which organizes the patterns in a prefix tree to save space needed for storing the 

patterns. The pruning technique of the P-Tree is based on two insights: (1) the frequency of a 

graph may be close to that of a function of its subgraph; and (2) information about the 

importance of subgraphs could lead to characterizing some as more important than others. For 

example, frequent subgraphs from a query workload are more important than infrequent ones for 

tuning purposes. We prune the P-Tree by blending the significance of patterns for estimation and 

for tuning purposes. 

 

The MD-Tree is based on the observation that edge types in certain positions in patterns may 

largely determine the frequencies of the patterns. The idea then, is to assess the edge position 

with the greatest influence on the frequencies of the patterns. If no position of great influence 

exists, we assume that edges occur independently at each position. The pruning technique of the 

MD-Tree is based on the observation that high-order statistical dependencies often exist among 

subgraphs. It may be prohibitive to keep all such dependencies; thus, we attempt to capture the 

most informative dependencies in the given space.  

 

To estimate the frequency of a pattern that is larger than maxL, we systematically divide it into 

patterns of length maxL and maxL-1 and combine the frequencies of these patterns to obtain an 

estimate for the frequency of the large pattern. Given a pattern p of length k, we divide p into k-

maxL+1 patterns of length maxL where each succeeding pattern of length maxL overlaps the 

preceding one in all but one edge. We then estimate p as follows: 

)(

)(
*...*

)(

)(
*)(

1max

1max

2

2
1

+−

+−

′′ Lk

Lk

pfreq

pfreq

pfreq

pfreq
pfreq  
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where s)'( ipfreq are the frequencies of the patterns of length maxL and s')( ipfreq ′ are the 

frequencies of the overlapping patterns of length maxL-1. This is illustrated in the following 

example. 

prof3dept2

prof1dept1

ProfDept

head

article6prof3

article5prof2

article4prof2

article3prof1

article2prof1

article1prof1

ArticleProf

author

journal4article6

journal3article5

journal2article4

journal2article3

journal1article2

journal1article1

JournalArticle
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ArticleDept
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article5

article4
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journal2prof2
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?dept ?prof ?article ?journal
head author in_journal

(a)

(b)

(c) (d)

(e)

(f)

(g)  

 

Given the graph pattern query shown in figure 1.4a and suppose the database contains the tables 

shown in figures 1.4b, c and d. Suppose also that our summaries contain patterns of length at 

most 2, then our summaries will have the cardinality 4 for the join of “head” and “author” and 6 

for the join of “author” and “in_journal” as shown in figures 1.4e and f. Since the query pattern 

is of length 3, we estimate the cardinality of the result of the query using the cardinalities of the 

patterns of length 2 and 1 in the summaries by dividing the query pattern into overlapping 

patterns of length 2 where the overlap is in all but one edge. In this case, the overlap is in one 

edge. Then we take the products of the cardinalities of the patterns of length two and then divide 

by the cardinalities of the overlap. In this case we will estimate the result of the query as (4 * 6) 

Figure 1.4: Estimating the cardinality of Large Patterns 
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/6 since the overlap is the “author” edge which has a cardinality of 6. In this example, our 

estimate is the exact cardinality of the result as shown in figure 1.4g. 

 

In particular, this work makes the following contributions: 

1. Generic Representation for an RDF Graph Pattern. With the multiple classification of 

resources allowed in the RDF data model, graph patterns may exist in the instance graph that 

are not explicitly represented in the schema graph. We create a Semantic and Structural 

Summary for RDF/S by adding structural information from the RDF instance graph to a 

Semantic Summary [3] created from the RDF schema.  

2. Graph Sequencialization. Using the Semantic and Structural Summary, we adapt a technique 

described in [58] for creating a partial ordering of edges in an undirected graph to obtain a 

variable length sequence for RDF graph patterns.  

3. Summarization Framework. Given that the number of unique graph patterns may be 

exponential, we develop heuristics for pruning patterns of at most size maxL to fit a given 

memory budget.  

4. Estimation Framework. Using the proposed summaries, we show how to obtain estimates of 

the cardinality of both patterns that are represented in the summary and those that are not 

explicitly represented in the summary. The estimates obtained help guide a query optimizer in 

choosing an optimal query plan. 

5. Experimental Validation. We conduct experiments on real-life and synthetic datasets which 

validate our approach. Our experiments show the efficiency of the proposed summaries in 

providing estimates that help in optimizing both unconstrained join queries and constrained 

join queries over RDF graphs 
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2. Related Work 

2.1. Optimizing RDF Graph Pattern Queries 

An optimization approach for RDF Graph patterns that is based on the selectivity of RDF triples 

was proposed in [49]. To determine the selectivity of resources, they simply adapted the 

techniques developed for Relational Databases to RDF. They first define a selectivity measure 

for resources, based on this selectivity for resources, they define the selectivity for a triple 

pattern and then a graph pattern. Similar to our approach, they determine the selectivity of graph 

patterns of size 2 (i.e., two joined triple patterns) by enumerating and storing all possible graph 

patterns of size 2 and their frequencies. However, unlike in our approach, they only consider 

joined patterns of size 2 that are obtainable from the schema and as such, may miss some 

patterns. Furthermore, they do not consider approaches for pruning the summary such that it fits 

a given memory budget as well as techniques for tuning the summary to favor certain patterns.  

 

The optimization unit of an implementation of the SPARQLeR query language [32], adopts a 

greedy approach for optimizing supported graph pattern queries. Given the graph pattern for a 

query such that edges in the graph pattern are annotated with the cardinality of triples that satisfy 

the triple pattern it represents, a query plan is constructed by beginning with the edge which has 

the least cardinality and examining its adjacent edges for the edge with the next smallest 

cardinality, using an algorithm similar to that used for growing a minimum spanning tree. Each 

time a new edge is added to the plan, its adjacent edges are added to the pool of adjacent edges 

from which the next edge with the smallest cardinality is chosen. This process is repeated until 
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all edges of the graph have been visited. In contrast to our approach, this does not provide for nor 

utilize the estimates of the cardinality of larger patterns in constructing the query plan. As such, 

this technique may be less effective in finding optimal plans.  

RDF Systems such as [11][30][61] which utilize a Relational/Object Relational Database 

backend translates the query in the supported RDF query language into SQL which is then 

pushed down to the underlying Database backend for processing. As such, the task of query 

optimization is essentially pushed down to the optimizer of the Database backend.  

 

2.2. Statistical Summaries for Cardinality Estimation 

The problem of summarizing data for the purposes of estimating the cardinality of join results 

has been studied for the Relational data model and can be largely categorized into 1) those which 

summarize the attribute values and their correlations for attributes within a single relation such as 

the one-dimensional and multi-dimensional histogram-based techniques of [26][27] and [41], 

respectively, and the Statistical Interaction Models proposed in [15],  2) those which attempt to 

capture the join dependencies across attribute values of attributes in multiple relations such as the 

Probability Relational Model proposed in [18].  

 

In the former case, the correlations of attribute values maintained are mainly targeted at 

estimating the cardinality of tuples in a single relation which satisfy some predicate. The 

cardinality of joins is estimated by combining the statistics maintained for the join attributes in 

their respective relations with the assumption that the values of the join attributes are uniformly 

distributed across the tables. The typical statistics maintained in this approach is the size of each 

relations and the number of distinct attribute values for each attribute of each relation. Further, 
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histograms may be used to keep the distribution of values for each attribute in each relation. This 

approach proves inadequate in capturing the join dependencies that exist amongst RDF triples. 

To capture the joint frequency distribution of multiple attributes across multiple relations, the use 

of Probability Relational Models (PRMs) was proposed in [18]. PRMs rely on a Bayesian 

network that exploits conditional independence to approximate the joint frequency distribution of 

attributes of tuples across tables, joined via a foreign key. Since this approach only considers 

foreign-key to primary-key joins, it proves inadequate for capturing many-to-many dependencies 

that exist amongst attribute values of tables, which is typically the case in semi-structured data. 

Further, if RDF triples are stored in relations using a schema-aware technique, then both 

attributes in all relations form the key. In such a scenario, this technique does not clearly specify 

how the join dependencies can be achieved. If however, a schema-oblivious technique is used, it 

becomes even more unclear how the join dependencies can be achieved since all attributes form 

the key of the single relation. The Tuple Graph Synopses (TUGS) was proposed in [47] as a 

graph-based summary for cardinality estimation for relational databases. Given a schema graph 

which defines the join relationships amongst relations, this technique constructs a graph of the 

data contained in all relations and their join dependencies with respect to the schema graph. The 

TUGS synopsis for the data is then constructed by a systematic summarization of the instance 

graph. However, it is unclear how this approach may be applied to RDF graph stored using the 

schema-oblivious approach, nor RDF graph patterns which require self-joins, since the TUGS 

model does not consider self-joins of a relation. A technique that seamlessly copes with RDF 

patterns, regardless of the storage model used to map the data into relations is desirable. 
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The Jena property Table approach [55] proposes a technique that utilizes certain frequently 

occurring patterns in RDF data for creating a Relational schema for RDF in such a way that 

query patterns which would otherwise have been translated into join operations now amount to 

select operations on a single table. In effect, they pre-compute and store the joins of the 

frequently occurring patterns so that this approach attempts to optimize join operations over RDF 

data by avoiding the joins at run time where possible. However, the usefulness of this approach 

is limited to the particular frequently occurring patterns stored in a relational table. The join 

operations can not be avoided for arbitrary patterns. 

 

The data summarization and result cardinality estimation problem has gained significant research 

interest for the XML data model for simple path expressions [1][12][34][36][40][54][57][52], 

branching path expressions [12][40][57] and twig patterns [12][39][57][52]. Although all these 

efforts propose ingenuous summarization and estimation framework for XML, most of these 

techniques assume that the XML data is modeled as a tree, so that they are unsuitable for RDF 

data which is modeled as a directed labeled graph. More importantly, all these techniques are 

targeted at queries which exhibit tree patterns so that it is unclear how they apply to arbitrary 

graph-structured queries. Although the proposals of [40][52] assume graph structured XML data 

(considering idrefs), the queries are still assumed to be either simple path expressions or twigs, 

which are modeled as trees, so that it is unclear how queries with a more complex structure can 

be handled using these techniques. The estimation value which we defined for pruning patterns 

in the P-Tree is similar in spirit to the notion of δ-derivable twigs introduced in [52] for pruning 

twigs whose estimated frequencies are within δ error of their true frequencies. However, using 

the pruning technique of [52] may cause the pruning of a pattern that, if not pruned, may have 
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resulted in an even larger reduction of the size of the summary by causing the pruning of even 

more patterns. In contrast, our value-based approach makes a more informed choice of patterns 

to be pruned. 

 

Research in Data Mining such as in [6][37] have investigated the problem of computing a 

condensed frequent pattern base for estimating the cardinality of frequently occurring patterns in 

a large item base. However, the construction technique of the pattern bases used for this purpose 

does not cope with the challenging aspect of fitting a size budget. Further in contrast to our work, 

these efforts focus only on estimating the cardinality of frequently occurring patterns. 

 

2.3. Graph Indexing 

Our work is also related to research in the area of graph indexing, which indexes fragments of 

graphs in a database consisting of a collection of many disconnected graphs, for optimizing 

graph containment queries. In this setting, given a query graph, all graphs which contain the 

query graph are returned as the result of the query. A graph containment query is processed in 

two steps. The first step retrieves a candidate set of graphs that contain the indexed fragments of 

the query graph. The second step uses subgraph isomorphism to validate each candidate graph. 

Several efforts have been made in using graph-indexing schemes to reduce the cost of processing 

graph containment queries. GraphGrep [46] uses a path-based indexing approach that selects all 

paths of up to length lp as the indexing feature. The size of the candidate set obtained in the first 

step could be large, since path fragments do not maintain the overall structure of graphs. Since 

the size of the candidate set is large, many isomorphism tests have to be performed for validating 

the graphs it contains. To cope with this, GIndex [59] uses frequent graph fragments as the 
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indexing feature. To reduce the large (potentially exponential) number of frequent fragments, 

only discriminative frequent fragments are kept. Although GIndex performs the index 

construction as a pre-processing step, the index construction time may be large since it uses a 

mining approach which requires performing graph and subgraph isomorphisms, for discovering 

the discriminative frequent fragment. Noting that the set of frequent graph fragments contain 

many more tree than non-tree structures, Tree+∆ [60] indexes frequent trees, which it discovers 

using a frequent tree mining algorithm that avoids the expensive graph and subgraph 

isomorphisms, thereby reducing the large index construction time of GIndex due to graph 

mining. On demand, Tree+∆ further reduces the size of the candidate set by selecting a small 

portion of discriminative non-tree features related to query graphs only. As a complement to 

these efforts, our work allows for optimizing the subgraph isomorphism tests, in the second step, 

using estimates of the cardinalities of both indexed and non-indexed fragments of the query. In 

addition, our technique can also be applied to a large connected graph. 

 

The rest of this work is as follows. In section 3, we give the preliminaries and background 

needed for our work. In particular, we formally discuss our notion of the RDF data model (RDF 

Schema and RDF instance graphs). We also formulate the problem addressed in this work. In 

section 4, we discuss the construction, pruning and estimation algorithms for our statistical 

summaries, the Pattern Tree (P-Tree) summary and the Maximal Dependence Tree (MD-Tree) 

Summary. In section 5, we show the results of experiments we conducted to evaluate the 

performance of our summaries in terms of the accuracy of the estimates obtained from them and 

the effectiveness of these estimates for query optimization. In section 6, we conclude our work 

and give directions for future work. 
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3. Preliminaries and Background 

3.1. RDF Data Model 

Let C, P, I and L be the sets of class Universal Resource Identifiers (URIs), property URIs, 

instance URIs and literal values, respectively; the concepts of RDF schemas and instances can be 

formalized as follows.                                                                                                                                                                                                                                                                                                                                                                                                             

Definition 1. RDF Schema Graph: An RDF schema graph GS = (VS, ES, λS, C, P) is a directed 

labeled graph where VS is the set of nodes of GS and ES is the set of edges (i.e. subset of 

cartesion product of VS) of GS and λS:  (VS ∪ ES) → C ∪ P is a surjective labeling function that 

maps vertices and edges of GS to class and property URIs, respectively, such that λS(v) ∈ C and 

λS(e) ∈ P for any v ∈ VS and e ∈ ES 

Definition 2. RDF  Instance Graph: An RDF instance graph GI = (VI, EI, λI, τ, I, P, L) defined 

on a schema graph GS is a directed labeled graph where VI and EI are sets of vertices and edges 

of GI, respectively; λI : (VI ∪ EI) → I ∪ L ∪ P is a surjective function that maps vertices and 

edges of GI to instance URIs or literals or property URIs, respectively such that λI(v) ∈ I ∪ L for 

any v ∈ VI and λI(e) ∈ P for any e ∈ EI. On the other hand, τ : VI → SV
2  is a function which 

maps nodes of GI to sets of nodes of GS. This typing of nodes is such that for any edge e = (u, v) 

in GI, if λI(e) = p, then there is an edge e′ = (u′, v′) in ES for which λs(e′) = p, τ(u) = {u′} and τ(v) 

= {v′}.  

 

Note that our model of the instance graph consists of only ground RDF graphs which do not 

contain reified statements (i.e. assertions about statements).  
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Definition 3. RDF Graph Pattern: An RDF graph pattern or simply a pattern GP = (VP, EP, λP, 

P) is a connected edge-labeled directed graph where VP ⊆ N and EP ⊆ ES and λP: EP → P and for 

e ∈ EP λP(e) = λS(e). 

Problem Formulation. This work focuses on exploiting information in an RDF graph to 

improve the statistics needed for cost-based query optimization of both unconstrained and 

constrained join queries posed over RDF data stores. In particular, we focus on improving the 

statistics needed for estimating the cardinality of equi-join operations. This amounts to obtaining 

information about the frequencies of patterns in an RDF graph. 

 

Our approach is to model a query as a graph pattern defined by edge labels and topology (i.e., the 

nodes are considered variables and thus are not bound to any particular label). 

Definition 4. Given an instance graph GI and a query pattern GP, we say that GP has a matching 

in GI if we can map every edge in GP to an edge in GI with the same label i.e., for e ∈ EP, λP(e) = 

λI(e′) where e′ ∈ EI. This matching is such that the topology of the nodes and edges in GP are 

preserved. Thus, a matching of a query pattern in an instance graph constitutes a result of the 

query. 

 

GI1 and GI2 are two unique subgraphs in GI matching GP, if at least one node in GI1 is different 

(labeled with a different URI) from its corresponding node in GI2. From the foregoing, it is clear 

that all unique matchings of a query pattern constitute the result of the query. Thus, our goal is to 

obtain the frequency or cardinality of all unique matchings of a particular pattern. 

Definition 5. The frequency of a query pattern is the number of matchings it has in the instance 

graph. 
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Unfortunately, it is prohibitive to count all matchings of a pattern from GI at query optimization 

time so that the use of a summary of GI is necessary. Thus, the problem we address in this work 

can be stated more precisely as follows:  

Given an RDF schema graph and a corresponding instance graph, and a memory budget B, 

create a summary of size at most B, from which we can obtain accurate estimates of the number 

of unique matchings of a pattern from the instance graph. 

3.2. Canonical Labeling of Graphs 

In order to count the frequencies of patterns, we need an efficient way to uniquely enumerate the 

patterns. In other words, we need a canonical label for patterns. In this section, we discuss the 

DFS Coding canonical labeling and the gSpan algorithm which we adopt in this work for 

labeling and counting the frequencies of matchings of a pattern. 

 

With minimal modifications, efficient pattern mining algorithms, such as gSpan [58] and [53] 

(which uses disk-based indexes for limited memory settings) can be used to discover subgraphs 

matching patterns and count their frequencies. In general, these techniques first develop a 

canonical label (i.e., unique code) for a graph; then subgraph frequencies are computed based on 

the canonical label. In the next paragraph, we briefly review the minimum Depth First Search 

(DFS) code [58] of a graph as its canonical label that we adopt in this work. 

3.2.1. DFS Coding 

This technique uses a Depth First Search (DFS) traversal of a graph to transform it into an edge 

sequence called DFS code. Each edge (u, v) in the graph is represented by a 5-tuple <i, j, li, l(i,  j), 

lj>, where i and j are integers denoting the DFS discovery times of nodes u and v  and  li, lj and l(i, 

j) are the labels of u, v, and the edge (u,v) respectively. The edges are then ordered by listing 
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those in the DFS tree (tree edges) in the order in which they were discovered, then inserting the 

remaining edges into the ordered list as follows: Given a tree edge (u, v), all non-tree edges from 

v are listed immediately after (u, v); if (ui, vj) and (ui, vk) are two such non-tree edges, (ui, vj) is 

listed before (ui, vk) only if j < k. Since a graph can have multiple DFS codes, the minimum, 

obtained based on a linear ordering of all its DFS codes is chosen as its canonical label. 

3.2.2. gSpan Algorithm 

Given an undirected graph G and an integer F, the gSpan algorithm allows for enumerating all 

subgraphs of G whose frequencies are at least F, where the minimal DFS code of each subgraph 

is its canonical label. The algorithm iteratively generates and counts all unique subgraphs of 

length i+1 from those of length i, whose frequencies are at least F (the length of a subgraph is 

defined as the number of edges it contains). Each generated subgraph of length i+1 with 

frequencies less than F is pruned on the assumption that it cannot lead to the generation of any 

new frequent subgraph (i.e., with frequency at least F). Details of the algorithm can be found in 

[58]. 
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4. Summarization and Estimation Framework 

In this section, we discuss our summarization and estimation framework for graph patterns. We 

begin by first discussing the Semantic and Structural Summary, then we discuss the P-Tree 

summary and how to obtain estimates of patterns from it. Next we discuss the MD-Tree 

summary and how to obtain estimates of patterns from the MD-Tree, then we discuss how to 

obtain estimates for patterns with length greater than maxL.  

4.1. Semantic and Structural Summary 

Recall that at least a node URI distinguishes two unique matchings of a query pattern in the 

instance graph so that to summarize the matchings of patterns in the instance graph, we need a 

general representation that encompasses all unique matchings of any given query pattern.  We 

achieve this by refining the RDF Schema graph to include all patterns that exist and may exist in 

the RDF instance graph and derive our representation from the refined schema graph. In a 

previous work [3], we introduced the RDF Semantic Summary as a data structure that captures all 

possible paths which can be obtained from the RDF schema based on either explicit definitions 

in or deductions from the schema.  

Definition 6. Given an RDF Schema graph GS = (VS, ES, λS, C, P), a Semantic Summary GSS = 

(VSS, ESS, λSS) is a directed labeled graph where ESS the set of edges of the graph is given by  

ESS = {ei | ei ∈ ES, λS(ei) ≠ λS(ej), i ≠ j}.  

VSS the set of nodes of the graph is given by  
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VSS = {domain(u) ∪ domain(v) | u ∈ ES, v ∈ ES, λS(u) = λS(v)} ∪ {range(u) ∪ range(v) | u ∈ ES, 

v ∈ ES, λS(u) = λS(v)} where the functions domain/range gives the domain/range classes of an 

edge in ES. 

λSS(e) = λS(e) for e in ES  

In other words, if multiple edges have the same label, these edges are merged into one by 

merging their respective source and destination nodes. If u and v are two nodes of GS merged 

into w and if u′ and v′ are two nodes of the instance graph that are types of u and v, u′ and v′ are 

types of w in GSS. The edges emergent from or incident on a node w in GSS is the union of the 

respective edges emergent from or incident on all nodes in GS that were merged into w.  
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 Figure 4.1: Sample RDF Schema Graph, Instance Graph, Graph Patterns and 

Semantic and Structural Summary. 
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Although GSS captures all possible paths defined in the RDF schema, it may not describe the 

structure of all patterns in the instance graph. This stems from the multiple classifications of 

resources allowed in the RDF data model. We enhance GSS with this capability by merging 

nodes in GSS which have any instance nodes in common. The resultant nodes are then annotated 

with unique integer ids. Each edge in GSS is also annotated with a unique integer id. We refer to 

this data structure as an RDF Semantic and Structural Summary. Essentially, a node in the 

Semantic and Structural Summary represents either a single node or a collection of nodes in the 

Semantic Summary. Example 1 illustrates the merging of nodes in the Semantic and Structural 

Summary to reflect all subgraphs in the instance graph 

Example 1. In the RDF schema graph shown in figure 4.1a above, the property type 

“advises” is defined on the domains “Mentor” and “Professor”. A Semantic Summary of figure 

4.1a represents these two classes by the same schema object with respect to the property 

“advises” as shown in figure 4.1e. Figure 4.1c and figure 4.1d show two subgraphs drawn from 

the instance graph shown in figure 4.1b. While the former subgraph is reflected in the schema, 

the latter is not because the resource &r2 is multiply classified as an “Author” and a “Student”. 

A Semantic and Structural Summary of figure 4.1a will incorporate this subgraph by 

representing these two classes with the same schema object as shown in figure 4.1e.  

 

Formally, if extent(u) is a function that gives the nodes in the instance graph GI which are 

mapped to a node u in GSS, we define the RDF Semantic and Structural Summary as follows. 

Definition 7. RDF Semantic and Structural Summary: Given an RDF Semantic Summary 

GSS = (VSS, ESS, λSS), an RDF Semantic and Structural Summary is a directed labelled graph 

GSSS = (VSSS, ESSS, α, λSSS) where λSSS : ESSS → P is a labelling function that maps elements of 

ESSS to the set of property URIs, VSSS the set of nodes of the graph is given by  
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VSSS = {u ∪ v | u ∈VSS, v ∈VSS, extent(u) ∩ extent(v) ≠ ∅} 

ESSS the set of edges of the graph is given by  

ESSS = {e = (u, v) | u ∈VSSS, v ∈VSSS, ∃e′ = (u′, v′), λSSS(e) = λSS(e′), u′ ⊆ u, v′ ⊆ v} 

α : (VSSS ∪ ESSS) → N is a numbering function such that α : VSSS → N and α : ESSS → N are 

injections. 

In other words, if two nodes of the Semantic Summary have a common member in the instance 

graph, the Semantic and Structural Summary merges the two nodes. Also every edge of the 

Semantic and Structural Summary is either an edge of the Semantic Summary or an edge 

resulting from the merging of nodes of the Semantic Summary. 

 

The Semantic and Structural Summary differs from the structural summaries described in 

[1][19][40] in the sense that it may contain properties defined in the RDF schema which do not 

exist at all in the instance base. We allow the representation of such properties so that updates to 

the instance graph that eventually introduce them can be accommodated gracefully. Furthermore, 

the Semantic and Structural Summary may introduce spurious paths and cycles in the data 

summary. For example, if resource &r5 in figure 4.1b is also defined as an instance of the class 

Author, incorporating this in the Semantic and Structural Summary will cause the classes 

Student, Author, Professor and Mentor to be merged. The merged node will have the edge 

advises as a self loop so that the spurious pattern shown in figure 4.1f is seen as valid. We will 

investigate possible solutions to this problem in the future. 

 

Having discussed the Semantic and Structural Summary, we now direct our attention to our 

proposed P-Tree and MD-Tree summaries. To create each of the proposed summary, we begin 
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by generating all subgraphs of length at most maxL and counting their frequencies using a slight 

modification of the gSpan algorithm with input graph G = (V, E, λI, τ) and the frequency 

threshold set to one. However, we represent each edge e = (u, v) in G by a 5-tuple <i, j, λI(e), 

τ(u), τ(v)>, where i and j are integers that denote the DFS discovery times of nodes u and v and 

λI and τ are the functions defined in section 3.1, with λI(.) and τ(.) (i.e., the ranges of λI and τ) 

mapped to integers in accordance with the RDF Semantic and Structural Summary. The 

sequence of edges/quintuples obtained after the algorithm is run represents the structure of 

subgraphs of G; thus, given any two edges e1 = (u1, v1) and e2 = (u2, v2) for which v1 = v2, it 

follows that τ(v1) = τ(v2). While gSpan discusses the minimum DFS code in the context of 

undirected labeled graphs, for directed labeled graphs, we ignore edge directions during DFS 

traversal so as to maintain the connectivity of the graph, however the directions are kept 

implicitly in the quintuples. Example 2 explains how to obtain the minimal DFS code of a 

pattern. 

Example 2. Figure 4.2a shows a directed labeled graph that models conference information. 

All publication authors are classified as members of the class “Author”, publications as 

“Publication” and so on. Concepts and edge labels are assigned integer ids as shown in figure 

4.2c. To obtain the edge sequence for the subgraph au1 authorOf pub1, pub1 submittedTo conf1, 

pc1 pcMember of conf1, we begin DFS with the edge authorOf as it is lexicographically the 

smallest label. Traversal proceeds as shown by the boxed subscripts associated with the nodes to 

yield the pattern (1,2,5,1,4) (2,3,7,4,3) (4,3,6,3,2). Note that the direction of the edge labeled 

“pcMemberOf” is implicit in the sequence. Figure 4.2d shows all patterns of length at most 3 

and their frequencies from the graph in figure 4.2c. 
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Note that, in our directed graph model, an edge, for example (5, 1, 4) in figure 4.2, may appear in 

a pattern of length at least two, in one of three possible directions: forward, as in (1, 2, 5, 1, 4); 

backward, as in (3, 2, 5, 1, 4); or potentially in a self-loop, as in (2, 2, 5, 1, 4). 

 

At this point, we have the necessary summary data to make accurate estimates for the sizes of 

joins (intermediate or final).  If the number of joins is less than or equal to maxL, the estimate 

may be exact (and from empirical testing is always very close).  Note, estimates are not always 

exact, since the gSpan algorithm provides an efficient way to determine frequency counts, they 

may differ slightly from a more straightforward, though very inefficient, technique of pre-

computing all joins. When the number of joins is greater than maxL, formulas must be used to 

provide somewhat less accurate estimates 

 

4.2. Pattern Tree (P-Tree) 

Given the set of patterns and their frequencies, the P-Tree is a prefix tree representation of the 

patterns that achieves more compactness than the list of patterns. Its nodes are labeled with edge 

patterns (patterns of length 1) such that any pattern in P can be obtained by a concatenation of 

Figure 4.2: Unique Edge Sequences for Subgraphs 
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node labels on a path from the root. Also, each node is associated with the frequency of the 

pattern it represents. 
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Definition 8. Given two patterns Pi and Pj with sequence(Pi) = e1, e2, …, ek and sequence(Pj) = 

e
′
1, e

′
2, …, e

′
m of lengths k and m respectively, we say that Pi is a sub-pattern of Pj and 

respectively Pj is a super-pattern of Pi if m > k and ei = e
′
i for 1 ≤ i ≤ k. Further, we say that Pi is a 

maximal sub-pattern of Pj and respectively Pj is a minimal super-pattern of Pi if k equals m-1. 

 

Lemma 1. Given a set P of patterns of length at most maxL, every pattern P in P of length m, 

m ≥ 2 has exactly one unique maximal sub-pattern in P. 

Proof. The canonical representation of patterns is a linearization of the patterns so that every 

pattern of length at least 2 has only one maximal sub-pattern.  

By Lemma 1, pattern Pi is the parent of pattern Pj in the P-Tree, if Pi is its maximal sub-pattern. 

The root of the tree is an empty node whose children are patterns of length 1. We illustrate this 

with an example. 

Example 3. Figure 4.3b shows the P-Tree for the patterns in figure 4.3a, which are the same 

patterns introduced in figure 4.2a. Except for the root, each node is associated with an edge 

Figure 4.3: Pattern Tree 
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pattern and the frequency of the pattern it represents. Thus the frequency of the pattern 

(1,2,5,1,4) (3,2,5,1,4) (4,2,5,1,4) can be obtained by traversing the leftmost branch of the tree. 

Pruning the Pattern Tree. 

To motivate the pruning of the P-Tree, we observe that given to two patterns Pi  and Pj which 

have almost the same edge patterns, the frequency of Pi may be within δ of that of Pj, where δ is 

a small non-zero positive integer. The idea of our P-Tree approach then is to identify sets of 

patterns which have almost the same edge patterns such that for a set say P, the frequencies of 

patterns in P are within δ of at least one pattern in P say Pi. Thus, given Pi, the frequencies of all 

other patterns in P can be estimated within δ error so that we can safely eliminate all other 

patterns in P from the summary. In this section, we discuss how we construct a P-Tree that fits 

the given summary budget. 

 

If the size of the P-Tree exceeds the budget, it has to be systematically pruned so as to avoid a 

large increase in its overall estimation error. The question then is; which nodes are to be pruned 

and in what order? To answer this question, we develop the concepts of preference and 

estimation values of patterns. We begin by introducing some notations. 

 

Notations. 

We denote a set of patterns of length k by PK and we define the function freq whose domain is 

the power set of patterns of length at most maxL and whose range is the set of positive integers, 

such that if X is a single pattern, freq(X) maps to the frequency of the pattern. If however, X 

contains more than one pattern, freq(X) maps to the sum of the frequencies of all patterns in X. 

Formally, we have that  
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We define function children whose domain and range are the set of patterns of length at most 

maxL and the power set of patterns of length at most maxL, respectively, such that for a pattern 

Pi, children(Pi) maps to the set of children of Pi in the P-Tree. 

 

To prune the P-Tree, we consider that in some scenarios, certain patterns may be considered 

more important than others. For example, frequent patterns in a query workload, for tuning the 

summary. Our preference value for a pattern captures this notion. 

Definition 9. Preference Value of a Pattern. Given a set of patterns P = (p1, p2, …, pm) with 

frequencies (freq(p1), freq(p2), …, freq(pm)). Let PPI = (pPI1, pPI2, …, pPIm) be a vector such that 0 

≤ pPIi ≤ 1 for every pPIi ∈ pPI. If pPIi defines the importance of pattern pi, we define the preference 

value of pi (pPVi) as the number of patterns which are less important than pi, i.e., number of 

patterns pj in P such that pPIi > pPIj. 

In Definition 9 above, we do not assume any particular technique for computing the importance 

of a pattern. However for the purpose of tuning the summary to favour frequent patterns, the 

importance of a pattern can simply be computed as the ratio of its frequency to that of the most 

frequent patternyes. Our testing did not include preference values, so we will defer further 

treatment of them until the appendix. 

 

To motivate the estimation value of patterns, we note that if there is a match for a pattern p 

where sequence(p) = e1, e2, …, ek in the tree, its frequency freq(p), is the integer associated with 

the matched node labeled ek. If ek is pruned in the tree, we guess freq(p) from freq(p′), where 

sequence (p′) = e1, e2, …, ek-1 is the parent of p in the tree, under the assumption that children of 
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p′ in the tree have a uniform frequency distribution. Thus if p′ has m children with total 

frequency N, the frequency of each child is estimated as N/m. When the children of p′ are 

contracted, we compute and associate the ratio N/(m × freq(p′)) with p′. We keep this ratio 

(rounded to the nearest integer) and not N/m for ease of frequency propagation as we will discuss 

later. We refer to this ratio as the growth rate of p′, denoted by p′GR. We compute one growth 

rate for p′ for all its children, to avoid overly increasing the size of the tree as patterns are 

pruned. 

 

Our estimate for a contracted pattern p will be inaccurate if the frequency distribution of the 

children of its parent p′ is not uniform. To exploit the uniformity assumption, we attempt to 

prune the P-Tree by deleting the children of patterns for which the assumption holds. To do this, 

we let the probability of the occurrence of any child p of a pattern p′ be its proportion with 

respect to the total frequency of all children of p′ (i.e. freq(p)/N, where N is the sum of freq(pj) 

for all pj in children(p′)). If the random variable Υ defines the occurrence of a child of p′, we can 

measure the evenness of the probability distribution of Υ using its entropy [45] H(PrΥ) given by: 

H(PrΥ) = - ∑j PrΥ(pj)log2(PrΥ(pj)) 

The entropy of a probability distribution gives a sense of the unpredictability of any value from 

the distribution. The entropy of a probability distribution is maximized if the distribution is 

uniform. Thus, to measure how uniformly distributed Υ is, we normalize H(PrΥ) by dividing by 

its maximum entropy. We denote this ratio as p′ENT for pattern P′ in the tree. If p′ has one child, 

we set p′ENT to 1. 
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Definition 10. cEstimation Value of a Pattern. Given a set of patterns P = (p1, p2, …, pm) with 

frequencies (freq(p1), freq(p2), …, freq(pm)) and some δ ≥ 0, the estimation value of pi (pEVi) is 

given by: 

( )
 )children(P

 } δ    | )freq(p   )p )(freq(p |  and )children(P  p  | p {  
  P

i

h 

jGRiiijj

iENT

≤−∈
 

By definition, for a pattern p, pENT is at most 1. It is 1, if the frequency distribution of the 

children of p is uniform. If the exponent h is set to 1, the second term of the product measures 

how closely p estimates all its children with at most δ error. Thus if pi and pj both have three 

children, if pi estimates only two within δ error while pj estimates just one also within δ, this 

value will be higher for pi (2/3) than for pj (1/3). However, if pi has six children and estimates 

only two within δ error, then the value will be 1/3 for both pi and pj, although pi estimates more 

of its children outside δ than pj. To cope with this, we set h to 1.5 so that the numerator will not 

overly dominate the denominator. To find the optimal value for δ i.e. the smallest integer for 

which the pruned P-Tree fits the given budget, we recursively increase a small integer 

exponentially in powers of 2 until enough patterns can be pruned to meet the budget. Suppose 

this occurs at ε = 2
i
, then we find the optimal δ which lies between 2

i-1 
and 2

i 
using binary search.  

We now show how the observed and estimation values of patterns are combined to obtain a 

single value with which the P-Tree is pruned. 

 

As we noted before, when the size of the unpruned P-Tree exceeds the budget, we reduce the 

size of the P-Tree by systematically selecting some nodes of the P-Tree which are to be pruned. 

We compute the value of each node of the P-Tree (the combination of its preference and 
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estimation values, or simply the latter if the former is not given) and select nodes to be pruned as 

shown in the Prune P-Tree algorithm shown below. 

1. Prune P-Tree

2. Input: P-Tree T, Budget B, constant c

3. Output: Pruned P-Tree T

4. δ ← 0; inc ← 0; Set estimable ←∅; done ← false

5. while done = false do 

6. estimable ← ∅
7. for each internal node v in T in bottom – up order do

8. compute estimation value at δ
9. if v’s estimation value > 0 then

10. insert all its children into estimable 

11. end if

12. end for

13. if sizeof(T) - sizeof(estimable) ≤ B and δ is optimal then
14. compute estimation values of patterns in T

15. prune all patterns in estimable

16. done ← true

17. else 

18. adjust δ
19. end if

20.end while 

 

 

 

As lines 4-8 of the Prune-Tree algorithm show, estimation values are used to select the patterns 

to be pruned. The running time of the algorithm O(Ld
maxL

log(maxi{freq(pi)})), is reasonable 

since logarithm is a slowly growing function and maxL will typically be small. The running time 

stems from the loops in lines 7-12 and 2-17. Lines 7-12 run in O(Ld
maxL

) time, where L and d are 

the numbers of unique edge labels and the maximum degree of nodes in the graph respectively. 

Recall that the root of the P-Tree has a child for each unique edge label in the graph while 

internal nodes have at most d children. Lines 5-20 will be executed at most log(maxi{freq(Pi)}) 

times, since all patterns are estimable at δ = maxi{freq(Pi)}.  

 

Figure 4.4: Pattern Tree Construction Algorithm 
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We illustrate the pruning process with an example. In the example below, we assume that 

information about the preference values of patterns are not provided. 
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Example 4. Figure 4.5a shows a subtree of a P-Tree. The 2-tuple (PZ, PV) associated with 

each internal node is its growth rate and its value, computed at δ = 1 and c = 0 and assuming no 

importance information is given so that PPVi is zero for all patterns. We show how the values are 

computed using node “a”. Its growth rate is given by (10+10+11)/(3×12), which rounds to 1, so 

its frequency (12) estimates that of one child (11). With exponent 1.5, the second term of the 

equation in Definition 16 is 0.333. The entropy of the frequency distribution of its children is 

given by 10/31 × log2(31/10) + 10/31 × log2(31/10) + 11/31×log2(31/11), or 1.583, with a 

maximum entropy (log2(3)) of 1.585 and ratio 0.999. Its estimation value is then 0.999(0.333) = 

0.333. In figure 4.5b, the values are computed at  δ = 2. In figures 4.5c, d, and e, the children of 

Figure 4.5: Pruning Nodes of the Pattern Tree 
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nodes b, a, and c have been pruned at δ = 2, with total estimation errors of 4, 5, and 6. Our 

technique will result in the pruning of figure 4.5c since b has the largest value. 

 

We note that when a set of internal nodes children(Pi) with parent Pi are to be pruned, if the 

children of any node in children(Pi) have been pruned, the average of the growth rates of such 

nodes are computed and associated with Pi.  Thus, a node P in the pruned P-Tree may have at 

most maxL growth rates, ordered in increasing order of the original depths of their source in the 

P-Tree. 

 

Frequency Estimation Using the Pattern Tree. 

Having discussed the construction and pruning technique of the P-Tree, we now discuss how to 

estimate the frequencies of patterns of at most maxL from the P-Tree.  

Given a pattern GP = (VP, EP, λP, P), we obtain its edge sequence p = e1, e2, …, ek and check that 

each pair of edges ei and ej in p is connected in the semantic and structural summary. If they are, 

we match p against the P-Tree. If we find a complete match for p in the Pattern Tree, we return 

the frequency of the matched node ek in the P-Tree. If we find a partial match, we consider the 

last matched node vj in the P-Tree. If it matches ek, we return its associated frequency which is 

the exact cardinality of p if no descendant of vj was pruned. If it matches ei i < k, we use its 

frequency to estimate that of the pruned node which originally matched ek. We note that 

estimating the frequency of ek requires estimating and propagating those of its k-i-1 immediate 

pruned ancestors. If ξ1, ξ2 , …, ξr, k ≤ r ≤ maxL are the growth rates associated with vj and 

freq(pj) is the frequency associated with vj, we estimate the frequency of ek as: 

∏
=

×
i -k 

1 r 

rFj ξ  P  
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For ease of exposition, we illustrate the estimation process with an example. 

Example 5. To estimate the frequency of pattern (a, b, c, d) using the pruned P-Tree of figure 

4.5c, we find the partial match (a, b, _, d), we return 12 since node d is matched. With the P-Tree 

of figure 4.5e, we find the match (a, b, c, _). We return 9, since the growth rate of c is 1. 

 

4.3. Maximal Dependence Tree (MD-Tree) 

To construct our MD-Tree summary, we adapted the Maximal Dependence Decomposition 

(MDD) technique that was proposed in [10]. The MDD was proposed as a technique that 

captures the most informative dependencies that exists amongst a set of DNA sequences of the 

same length, where it is impossible, due to limited data, to obtain a satisfactory estimate of all 

dependencies in the sequences. In our setting, we observe that even if it is possible to obtain 

accurate estimates of all dependencies that exist amongst a set of patterns of the same length, the 

space overhead that will be incurred in maintaining these dependencies will be very large. Our 

goal therefore, is to capture the most informative dependencies that exist amongst patterns of the 

same length, while incurring as small a space overhead as possible. 

To motivate the MD-Tree, we observe that edges in certain positions in patterns may largely 

determine the probabilities of the occurrence of the patterns. For example, the three patterns of 

length 3 in figure 4.2d have the edge in the first (leftmost) position in common so that the edge in 

the second (middle) position, likely exerts a greater influence on the frequency of each of these 

patterns. The idea behind our adaptation of the MDD [10] approach then, is to assess the edge 

position with the greatest influence on the frequencies of the patterns. If no position of great 

influence exists, we assume that edges occur independently at each position. Thus, given a set of 

patterns of length at most maxL, we capture the probabilities with which edges occur at any 
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position p ≤ maxL in the patterns in a tree data structure, which we call the MD-Tree. The next 

paragraphs discuss how to construct the MD-Tree through an adaptation of the Maximal 

Dependence Decomposition [10] technique. First, we give notations used in this discussion. 

Notations. 

In addition to the notations introduced in section 4.2, we now introduce more notations used in 

the discussions in this section. Given an instance graph GI = (VI, EI, λI, τ, I, P, L), we let NE 

denote the number of unique edge labels in G, i.e., NE is size of the mapping (λI(e), τ(u), τ(v)), 

for each edge e = (u, v) in EI. Further, we let β be an integer in the range [1, 3] such that: 1) β is 

1 if all edges in EI are forward edges (in a depth first search traversal of the graph) only, 2) β is 2 

if in addition to forward edges, EI also contains backward edges only, 3) β is 3 if in addition to 

forward edges, EI also contains self loop edges only or both backward and self loop edges. This 

is based on the assumption that a graph which contains a self loop edge is likely to contain a 

backward edge. We denote the probability with which edge ei (its label and directionality) occurs 

at position j in the pattern by Pr(ei, j). 

 

Having established the notations used in the discussion, we begin the discussion of the MD-Tree 

by introducing our notion of edge occurrence probability matrix. Given a set PK of patterns of 

length k, suppose it is known that edges occur independently at any position in the patterns, then 

we can estimate the frequency of any pattern Pj with edge sequence (e1, e2, …, ek) as the product 

of the total frequency of patterns in PK and the probability with which an edge ei occurs at 

position j that is:   

freq(Pj) = freq(PK) × Pr(e1, 1) × Pr(e2, 2) × … × Pr(ek, k) 
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To this effect, we pre-compute and maintain these probabilities in a probability matrix where 

Pr(ei, j) is given by the ratio of the total frequencies of patterns in PK such that edge ei occurs at 

position j and the total frequencies of all patterns in PK, i.e., 

{ }( )
( )K

K

P

P

freq

jposition at  occurs e edge and   p | pfreq
  )j,Pr(e i

i

∈
=  

Definition 11. Edge Occurrence Probability Matrix. A probability matrix PMK for a set PK of 

patterns of length k with k > 0, is a βNE × k matrix whose rows represent the possible edge sub-

patterns that may appear in any pattern in PK and whose columns represent the positions in 

which the edge sub-patterns may occur. The (i, j)
th
 entry of PMK contains the probability that 

edge ei occurs at position j. 

 

To construct the probability matrix PMK for patterns in PK, we first obtain the row indices by 

assigning unique integer ids to the possible edge sub-patterns that may appear in any pattern of 

length at least two, in multiples of β, corresponding with the possible edge directions (forward, 

backward and self-loop). To ascertain that edge patterns are uniquely identified, we assign 

integer x to edge sub-pattern ei such that if x modulo β is zero, one or two then x identifies ei in 

the forward direction, backward direction or self-loop, respectively. The column indices are 

simply the k positions in which edge patterns may occur. Next, if edge sub-pattern ei is assigned 

integer x, and ei occurs at position j, we store Pr(ei, j) in cell (x, j) of PMK. Example 6 explains 

how the probability matrix in figure 4.6c is created  

Example 6. Figure 4.6a below shows the set P2 of patterns of length two from figure 4.2d. The 

dimension of the probability matrix PM2 for patterns in P2 is 6×2 (i.e. β is 2, since there are no 

self loop edges). To construct PM2, we assign integer ids to the edge types (5, 1, 4), (6, 3, 2) and 
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(7, 4, 2) as shown in figure 4.6b. Next, we compute the entries for each cell (i, j) in PM2 as 

shown in figure 4.6c. Thus, cell (1, 1) holds the probability that edge type (5, 1, 4) occurs in a 

forward direction at position 1 in the patterns i.e.  6/7, cell (2, 2) holds the probability that edge 

type (5, 1, 4) occurs in a backward direction at position 2 of the patterns i.e. 3/7 etc. Under the 

independence assumption, the frequency of the pattern (1, 2, 5, 1, 4)(3, 2, 5, 1, 4) is estimated as 

7(6/7)(2/7) i.e. 12/7, which rounds to 2. 

1(1, 2, 6, 3, 2) (3, 2, 7, 4, 2)

3(1, 2, 5, 1, 4) (2, 3, 7, 4, 2)
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(7, 4, 2)6

(7, 4, 2)5

4

3

2

1

(6, 3, 2)

(6, 3, 2)

(5, 1, 4)

(5, 1, 4)

(a)

(b) (c)

0

0

0

1/7

0

6/7

1

1/76

3/75

04

3

2

1

0

3/7

0

2

 

 

 

If the independence assumption holds for all sets of patterns of length k, 1 ≤ k ≤ maxL, then 

probability matrices PM1, PM2, ..., PMmaxL will suffice for estimating the frequency of these 

patterns. This assumption gives rise to our notion of the Base MD-Tree. 

Definition 12. Base MD-Tree. Given the sets P1, P2, …, PmaxL of patterns of length at most 

maxL, a base MD-Tree for the patterns in Pi 1 ≤ i ≤ maxL is a triple (RT, VT, ET) where RT ∈ VT 

is the root of the tree and VT and ET are the sets of nodes and edges of the tree, such that |VT - RT| 

Figure 4.6: A Probability Matrix for Patterns of Length 2 
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= |ET| = maxL. All nodes in VT - RT are ordered children of RT such that child i is associated with 

the probability matrix PMi, for patterns in Pi. Each edge (RT, i) is labeled with freq(Pi), the total 

frequency of all patterns in Pi. 

Example 7. Figure 4.7a shows the base MD-Tree for the patterns of figure 4.2d.  

Under the assumption that edge types appear independently in patterns, the base MD-Tree holds 

sufficient information for estimating the frequency of patterns.  As we saw in Example 6, this 

assumption may not always hold. Thus a refinement process on the base MD-Tree is required to 

capture dependency information that may exist among edge types with respect to the positions at 

which they occur in the patterns. 

 

Given PK, the set of all patterns of length k, suppose it is known that the occurrence of any edge 

at position i, 1 ≤ i ≤ k and i ≠ m, depends on the edge at position m. We estimate the frequency 

of a pattern Pj = (e1, e2, …, ek) in PK as: 

∏
≠=
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where Pr((ei, i) | (em, m)) is the conditional probability that ei occurs at position i given that em 

occurred at position m. To refine the base MD-Tree to reflect this dependence, let node vK be the 

node in the base MD-Tree that is associated with probability matrix PMK. We create βNE ordered 

children nodes rooted at vK, where each child is associated with a new probability matrix PMK of 

dimension βNE × k-1. Cell (a, b) of the probability matrix associated with child i of vK contains 

the conditional probabilities that the edge type with integer id “a” occurs at position “b” given 

that the edge type with integer id “i” occurs at position m. The ith edge from vK to its ith child is 

labeled with the probability that the edge type with integer id “i” occurs at position m in patterns 
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in PK. After the refinement process, the probability matrix associated with node vK is deleted and 

the integer “m” is associated with vK. 
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For ease of exposition, we illustrate the refinement process with an example. 

Example 8. Given the base MD-Tree of figure 4.7a, suppose we know that edge types 

occurring at position 1 for patterns of length 2 has the greatest influence on the edge types at 

position 2, we refine the second child node (which we denote as v2 in this example) of the root of 

the base MD-Tree as follows. First, we create 6 new children nodes for node v2, one for each 

edge type. Next, we obtain the length 2 patterns which were used to create the probability matrix 

associated with v2 i.e. the patterns shown in figure 4.6a.  Next, we partition these patterns with 

respect to the occurrence of the 6 edge types at position 1. As shown in figure 4.7b, only the 

partitions for edge types 1 and 3 are non-empty. Using the patterns in the partition 1 and 3, we 

Figure 4.7: Refining the Base MD-Tree 
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create two new probability matrices which we associate with child nodes 1 and 3 of v2 

respectively. Figure 4.7c shows the MD-Tree after the refinement process.  

 

When one or more nodes of a base MD-Tree are refined as described above, we call the modified 

tree a refined MD-Tree. 

Definition 13. Refined MD-Tree. A refined MD-Tree for the sets P1, P2, …, PmaxL of patterns of 

length at most maxL, is a triple (RT, VT, ET) where RT ∈ VT is the root of the tree, VT and ET are 

the sets of nodes and edges of the tree respectively. The set of nodes VT can be partitioned into 

two disjoint non-empty sets VTleaf and VTnon-leaf such that every node in v ∈ VTleaf or VTnon-leaf is a 

leaf node or non-leaf node respectively. Further, a node v is associated with a probability matrix 

if and only if v is a leaf node and every non-leaf node v, v ≠ RT has exactly βNE children. The 

root node RT has exactly maxL children. 

 

Finding the Position of Maximal Dependence.  

As we noted earlier, we refine a node of the base MD-Tree by determining the position in 

patterns of length k that exerts the greatest influence on the others. We now discuss how we 

determine this position. 

Given the set PK of patterns of length k, we find the position that greatly influences the others by 

performing chi-square association tests for edge types that occur at all pairs of positions i and j, 1 

≤ i,j ≤ k, i ≠ j, using the chi-square test statistic given by: 
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In the equation above, Om,n is the sum of the frequency of patterns in PK for which edge types m 

and n occur at positions i and j respectively and Em,n, the expected mean of Om,n is given by: 
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Thus, for the set PK of patterns of length k, we find the position that greatly influences the others 

by performing chi-square association tests for edge types which occur at all pairs of positions i 

and j, 1 ≤ i,j ≤ k, i ≠ j. For each position i, we sum the values obtained from the chi-square 

association tests for positions i and j, 1 ≤ j ≤ k, j ≠ i. We refer to this sum as the aggregated chi-

square value (ACV) of position i. If m is the position which has the maximum ACV (MACV), 

then position m exerts the greatest influence on all other positions if at least one of the chi-square 

values of positions m and j, 1 ≤ j ≤ k, j ≠ m, is statistically significant i.e. if the probability that 

positions m and j are associated by chance is less than a given level of significance. We clarify 

this with an illustration. 

Example 9. Suppose we wish to find a position of maximal dependence for a set of patterns of 

length 3. First, we create a 3×4 matrix as shown in figure 4.7d. To compute CV1,2 for example, 

we create a 6×6 matrix as shown in figure 4.7e, such that cell i,j contains the number of times the 

edge types with integer ids i and j occur at positions 1 and 2 in the patterns respectively. CV1,2 is 

then the value of the chi-square test statistic for the 6×6 matrix. Next, we store the sum of all 

entries of each row of the 3×4 matrix to the fourth column, then we find the maximum of the sums 

over the three rows. Suppose the maximum sum is ACV2, we conclude that position 2 has the 

greatest influence on others but only if at least one of CV2,j is statistically significant 

Definition 14. Significant Node. Let v be a leaf node of a base or refined MD-Tree T, let PMK 

be the probability matrix associated with v and let PK be the set of patterns from which PMK was 
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created. We say that v is a significant node in T if there is a position j of maximal dependence in 

the patterns in PK. 

Definition 15. Complete MD-Tree. A complete MD-Tree is a refined MD-Tree T that has no 

significant leaf nodes. 

Finding the Optimal MD-Tree. 

From the foregoing discussion, it is obvious that the complete MD-Tree is the ideal choice 

amongst MD-Trees for obtaining accurate estimates of the frequency of patterns. However, the 

size of the complete MD-Tree may exceed the budget. Thus, given the sets of patterns P1, P2, .., 

PmaxL, our optimal MD-Tree is a refined MD-Tree whose size does not exceed B and from which 

the best estimates of the frequency of patterns in P1, P2, .., PmaxL can be obtained. The idea is to 

choose a sub-tree of the complete MD-Tree that fits the budget and maximizes the MACV values 

of the refined nodes in the sub-tree. Our objective of selecting nodes with high MACV values is 

because a high MACV value indicates a strong position of maximal dependence. Given a 

complete MD-Tree (rT, VT, ET), let S = (sv1, sv2, …, svm) be the size increment induced on the 

MD-Tree when node vi was refined. Note that svi is zero for the root and leaf nodes since they are 

not refined. Also let I = (iv1, iv2, … ivm) be the impact of node vi, given by MACVi/Cvi, rounded 

to the nearest integer, where Cv is the number of columns of the probability matrix associated 

with vi. We normalize the MACV values to avoid favoring nodes of larger patterns. Note also 

that ivj is zero for the root and leaf nodes since they are not refined. The problem is to find a tree 

T′ = (V′, E′), V′ ⊆ VT and E′ ⊆ ET rooted at rT, such that ∑j (svj) ≤ B and ∑j (ivj) is maximized. 

This problem is an instance of the Tree Knapsack Problem (TKP) which is known to be NP-hard. 

Given xj, an indicator variable with value 1 if vj is selected as part of the optimal solution or 0 

otherwise, TKP is formulated as the following integer programming problem: Maximize 
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where pred(j) denotes the predecessor (parent) of j in T′. With this reformulation, several 

pseudo-polynomial time solutions based on dynamic programming (DP) have been proposed 

such as [13] with Ο(|V′|B) running time. We employ a greedy approximation with Ο(|V′|) 

running time. Given the complete MD-Tree, the vectors S and I and the summary size budget B, 

our greedy approximation creates the tree T′ = (V′, E′) by choosing maximal impact subtrees of 

T′ which fit the budget, as shown in the Prune MD-Tree algorithm. 

1. Prune MD-Tree

2. Input: Tree Knapsack TK, Budget B 

3. Output: Pruned Tree TK

4. V = (v1, v2, …, vm) //vector of nodes of TK in decreasing order of impacts

5. tree_capacity← 0

6. while V not empty do

7. v ← extract first element of V

8. v_ancestors_size← sizes of v and its ancestors 

9. if tree_capacity + v_ancestors_size ≤ B then
10. initialize node v′ to v
11. while u ≠ rT do 
12. contract v′ into u for edge (u, v′)
13. delete v′ from V
14. increment tree_capacity with v_ancestors_size

15. else 

16. prune subtree at v, delete its nodes from V

17.end while 

 

 

 

 

Figure 4.8: MD-Tree Construction Algorithm 
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Frequency Estimation Using the MD-Tree. 

Given an optimal MD-Tree (rT, VT, ET), we define λV as a function that maps nodes in VT to 

integers (for internal nodes) or probability matrices (for leaf nodes) with which they are 

associated. The integers associated with internal nodes denote the position at which the node was 

split. We also define λE as a function which maps edges in ET to integers (for edges emanating 

from the root) or real numbers (for all other edges) with which they are associated. The integer 

on edge i emanating from the root denotes the total frequency of patterns of length i, while the 

real numbers on all other edges denote the conditional probability of the occurrence of its 

incident node given the edge pattern at the split position. We also define the function id on edge 

patterns that return the integer id assigned to the edge type of the pattern.  

Let P = e1, e2, …, ek be the edge sequence of a graph pattern GP = (VP, EP, λP, P) of length k. To 

estimate the frequency of P, we check that each pair of edges ei and ej in P is connected in the 

semantic and structural summary. If so, beginning from the k
th
 child (say v) of rT, we estimate 

freq(P) as: 

















= ∏∏

∉=
+

=
+

k

 r  1, r 
r) ),r(id(e1jv

j

1  i
))iv(vλid(e1iiE1TE  ))(v(λ ) v,v(λ ) v,(rλ  freq(P)

S

 

In the product above, given an edge (v, v′)r subscripted with r, the subscript r denotes the r
th
 edge 

of node v. The integer j is the number of edges of the optimal MD-Tree found on the path from 

the root to a leaf node as defined by the subscripts on the edges, so that the node vj+1 is a leaf. 

The subcripts (r, r′) are integer indices for accessing cell (r, r′) of the probability matrix 

associated with node λV(vj+1). The set S holds labels of all nodes on the path from RT to vj+1
 
so 

that at vj+1, any integer in the range [1, maxL] not in the set S did not label any node on this path. 

We keep elements of S sorted as they are inserted, so that at the leaf vj+1, we can check for 
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elements of [1, maxL] not contained in S in Ο(maxL) time. The depth of the MD-Tree is at most 

maxL; thus, the time complexity for estimating pattern frequencies is given by: 

Ο(maxL log(maxL)) 

We illustrate the estimation process by an example. 

Example 10. To estimate the frequency of the pattern P = e1, e2 of length 2 given by (1,2,5,1,4) 

(3,2,5,1,4) from the MD-Tree of figure 4.7,  we first access the second child node of the root. Let 

this node be denoted v1.  Since λV(v1) = 1, we insert 1 into set S and set the frequency of P 

(freq(P)) to freq(P2) which is 7. Recall from figure 4.6b that id(e1) = id(1, 2, 5, 1, 4) is 1. So, we 

access the node on which the first edge of v1 is incident. Let this node be v2. Next, we multiply 

freq(P) by λE(v1, v2) given by 6/7, resulting in 6. Then, we obtain λV(v2) which yields the 

probability matrix PM2 associated with v2 which must have only one column. Since the set S 

contains the integer 1, the lone column of PM2 must index position 2 of patterns in P2. Further, 

id(e2) = id(3,2,5,1,4) is 2, thus we access cell which represents the index (2, 2) in PM2 to obtain 

1/2. We then multiply freq(P) which is currently 6 by 1/2 to obtain 3, the final estimate for the 

frequency of P. 

4.4. Estimating the Frequency of Large Patterns 

Given a large pattern whose length is greater than maxL, the idea is to use smaller patterns 

whose frequencies are known, to estimate the frequency of the large pattern. Thus we break up 

the large pattern into smaller patterns whose frequencies are known and then combine the 

frequencies of the small patterns to obtain an estimate for that of the large pattern. There are 

several possible ways of breaking up the large pattern starting from one in which the smaller 

patterns are disjoint to one in which the smaller patterns have overlaps in all but one edge. In [1], 

the authors demonstrated that breaking up a large path into non-disjoint smaller paths that 
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intersect in all but one edge work well in estimating the frequency of large path. Further, the 

authors in [17] have also shown that breaking up a large twig into non-disjoint smaller twigs 

which intersect in all but one edge work well in estimating the frequency of the large twig. In the 

light of these works, we estimate the frequency of a large pattern by breaking it up into non-

disjoint smaller patterns which intersect in all but one edge. We break up a large pattern by a 

traversal that visits all edges in the pattern as few times as possible. More formally, given a large 

pattern GP = (VP, EP, λP, P) with |EP| > maxL, as always, we check that its edge sequence p = e1, 

e2, …, ek is connected in the semantic and structural summary. If so, we break up GP into G′1, 

G′2, …, G′|E|-maxL+1 non-disjoint connected patterns such that G′i intersects G′i-1 in all but one 

edge. Let G′′i denote the intersecting edges of G′i and G′i-1. Next, we obtain the edge sequences 

p′1, p′2, …, p′|E|-maxL+1 and p′′2, p′′3, …, p′′|E|-maxL+1 for the patterns G′1, G′2, …, G′|E|-maxL+1 and 

G′′2, G′′3, …, G′′|E|-maxL+1, respectively. Like in [17], we assume conditional independence to 

estimate the frequency of GP as follows: 

∏
+

= ′′
′

×′=
1 -maxL  |E|

2 r r  

r 
1 

)pfreq(

)pfreq(
   )pfreq( )freq(p  

Since GP may be broken up into G′1, G′2, …, G′|E|-maxL+1 in several different ways, we  select that 

for which frequency estimates of the patterns p′1, p′2, …, p′|E|-maxL+1 are obtained along the 

deepest paths, i.e., paths which have the maximum total split nodes in the MD-Tree or along 

paths with the least pruned nodes in the P-Tree. 

Example 11. Figure 4.9a shows a large pattern of length 4. The exact matchings of this pattern 

in the sample graph database shown in figure 4.9b is 4. Suppose maxL is 2, we estimate this 

pattern by subdividing it into the sub-patterns (a) 1—head→2,2—teacherOf→3, (b) 2—

teacherOf→3,2—author→4, (c) 2—author→4,4—inJournal→5. Sub-pattern (a) has 3 
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matchings, (b) has 5 matchings and (c) also has 5 matchings. Sub-pattern (a) overlaps with (b) 

on the edge 2—teacherOf→3 which has 3 matchings, while sub-pattern (b) overlaps with (c) on 

the edge 2—author→4 which has 6 matchings. Therefore, the estimate for the pattern is 

3(5/3)(5/6) which is 4.167 which rounds to 4. 

journal1dept1 prof1

course1

article1

journal2article2

journal3dept2 prof2

course2

article3

journal4article4

journal5prof4 article6

dept3 prof3

course3

article5

head

head

head

author

author

author

author

author

author
teac

herO
f

teac
herO

f

teac
herO

f

inJournal

inJournal

inJournal

inJournal

inJournal

b

1 2

3

54

head
author

teac
herO

f

inJournal

a

 

 

 

Using the example shown in figure 4.9, we compare our combining function to the traditional 

database join formula given by NANB/max(VA, VB) where NA is the number of tuples in relation 

A, NB is the number of tuples in relation B, VA and VB are the numbers of distinct join attribute 

values in relation A and relation B, respectively. 

 

Example 12. For the traditional database formula, there are several ways to subdivide the 

pattern of figure 4.9a. We show only 2 ways here. One possible subdivision is 1—head→2,2—

teacherOf→3 and 2—author→4,4—inJournal→5. The first sub-pattern has 3 matchings, while 

Figure 4.9: (a) A Large pattern and (b) A Sample Graph Database 
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the second sub-pattern has 5 matchings and node 2 which is the join node (prof) has 3 distinct 

matchings for both. Applying the formula, we have 3(5/3) which is 5. Another possible 

subdivision is 1—head→2,2—teacherOf→3, 2—author→4 and 4—inJournal→5. The first sub-

pattern has 3 matchings, the second (author relation) has 6 matchings and the third (inJournal 

relation) has 5 matchings. Node 2 (prof) which is the join node for the first and second sub-

patterns has 3 matchings for the first and 4 matchings for the second. Node 4 (article) which is 

the join node for the second and third sub-patterns has 6 matchings for the second and 5 

matchings for the third. Applying the formula recursively we have 3(6/4)(5/6) which is 3.75 

which rounds to 4. 
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5. Experimental Evaluation 

In this section, we present the results of the experimental study we conducted based on the 

proposed techniques described in this thesis. The goal of our experimental evaluation is to show 

that the estimates obtained from the proposed summaries are indeed more accurate than 

commonly used techniques and more importantly effective for optimizing join queries posed 

over RDF graphs. We also demonstrate that the pruned summaries perform nearly as well as the 

unpruned summaries in terms of accuracy and query optimization. We show this by comparing 

the running time of several join queries optimized using our techniques to those optimized using 

other techniques. 

5.1. Methodology 

Techniques. We considered the following techniques in our experimental study, depending on 

how cardinality estimates are obtained for query optimization: 

� Proposed Graph Summaries (GSummaries): We implemented the P-Tree and MD-Tree 

summaries proposed in this work. We implemented a main memory execution engine that 

uses the classic dynamic programming technique [44] for enumerating query plans. We used 

the schema-aware model [51] for shredding RDF graphs into relational tables. 

� Simple Greedy Technique (SGT): We implemented a simple greedy technique that builds a 

left deep query plan by beginning with the relationship with the smallest cardinality and 

extending to its adjacent relationships using an algorithm similar to that for growing a 

minimum spanning tree.  
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� Traditional Query Optimization Technique (TQOT): We also implemented another execution 

engine that simulates a main memory relational database execution, using the same dynamic 

programming enumeration as the execution engine for our graph summaries. The difference 

however is in the way the result cardinality estimates are obtained. While for our proposed 

techniques, the graph summaries supply the cardinalities, for the main memory relational 

database, we used the well known uniformity assumptions employed by relational databases 

to compute the cardinality estimates. If n1 and n2 are the sizes of the two relations to be 

joined and if v1 and v2 are the number of distinct values of the join attributes, the cardinality 

of the join of the two relations is estimated as n1n2/max{v1, v2} 

Implementation Details. We implemented the proposed techniques (P-Tree and MD-Tree 

summaries) in C++ with experiments performed on a 1.8GHz Dual AMD Opteron processors 

and 16GB RAM. We created sparse matrices using sparseLib++ [25] libraries and used 

BRAHMS [23] to parse the graphs. We used the schema-aware model for shredding RDF graphs 

into tables and the B+Tree implementation of [22] for indexes. To compare the techniques, we 

implemented the joins using hash join algorithm with intermediate tables materialized in 

memory. We also implemented the joins using piped iterators on left deep plans only. Although 

our work is mainly targeted towards optimizing join queries without constraints, in our 

experiments, we show that with a combination of equi-depth [26] histograms and our proposed 

summaries, our techniques perform well for join queries with uri constraints or literal constraints. 

The histograms provide cardinality information for the constraints, based on which we compute 

the selectivity of the constraint, which we propagate to estimates of unconstrained joins from our 

graph summaries. If the value obtained from the histogram for a particular constrained 

relationship is f and the cardinality of that relationship when unconstrained is n, we compute the 
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selectivity as f/n. If the estimate of an unconstrained join from our graph summaries is c, we then 

propagate the constraint to the unconstrained join by the product c(f/n). 

Datasets. For our experiments, we used one synthetic dataset and one real life dataset. The real 

life dataset which we used is the Mondial dataset. The Mondial dataset is a rich compilation of 

geographical Web data sources on global statistics of world countries, cities, provinces, seas, and 

international organizations. We converted an OWL version of the Mondial dataset into RDF 

using protégé. For the synthetic dataset, we further enriched the Lehigh University Benchmark 

(LUBM) dataset with new classes and relationships. To do so, we followed the model used by 

LUBM in determining the sizes of instances of classes and relationships such that the generated 

dataset models a real life university domain. For scalability experiments, we generated three 

LUBM datasets with 10, 15 and 20 universities. The table below shows the properties of these 

datasets. 

 

 Mondial LUBM10 LUBM15 LUBM20 

# Instance nodes 5841 248880 385530 528334 

# Instance edges 18565 3021748 4677928 6416925 

# Literal Nodes 12450 106300 164795 225209 

# Literal edges 14002 429927 668110 915398 

# Unique Instance edges 28 31 31 31 

 

Summaries. Stored as a list, the size of all patterns of length up to three for the Mondial dataset 

is 378534 bytes and the size of the unpruned P-Tree and MD-Tree are 164792 and 128690 bytes, 

with the P-Tree giving about a 56% reduction in size and the MD-Tree giving about a 66% 

Table 5.1: Dataset Properties 
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reduction in size. We pruned the P-Tree and MD-Tree, by constructing summaries which are 

50% of the original unpruned summary sizes.  

Mondial Dataset
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On the other hand, the size (as a list) of all patterns of length two for the LUBM dataset is 9614 

bytes. Its unpruned P-Tree and MD-Tree are 5582 and 9422 bytes, with the P-Tree giving about 

a 42% reduction in size and the MD-Tree giving a minimal reduction in size. Once again, we 

pruned the P-Tree and MD-Tree, by constructing summaries which are 50% of the original 

unpruned summaries. For both datasets, we used a 5% significance level and a β value of 3 for 

constructing the MD-Tree summaries. 

Figure 5.1: The sizes of the unpruned and pruned summaries for the Mondial dataset 
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Time Analysis. The time for discovering all patterns of length maxL is the most time-consuming 

part of our approach. Fortunately, it is a preprocessing step and depends on the connectedness of 

the dataset. The time needed for constructing the P-Tree and MD-Tree summaries is in the order 

of tenths of seconds.   

Queries. As we noted earlier, our proposed summaries are targeted towards join queries posed 

over RDF databases where relationships are specified in the joins but without constraints on the 

nodes. However, in our experiments, we also evaluated the efficiency of our techniques when 

combined with histograms for join queries which may have constraints on the nodes. To make 

our evaluations as realistic as possible, we avoided choosing queries which are a random 

concatenation of relationships in the data graph. While doing so could have led us to test queries 

with larger sizes, we made the choice of queries which are meaningful and are as close as 

possible to real life queries that users are likely to pose over the datasets. First, we chose queries 

which have no constraints on the nodes, then we also chose queries which have uri constraints on 

the nodes as well as those which have literal constraints on the nodes. For this reason, our 

Figure 5.2: The sizes of the unpruned and pruned summaries for the LUBM10 dataset 
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queries can be grouped into three categories. 1) Join queries with no constraints at all, i.e., for 

which relationships are specified and all nodes are variables. 2) Join queries with uri constraints, 

i.e., those for which relationships are specified but some nodes are constrained to be of a 

particular uri. 3) Join queries with literal constraints, i.e., those for which relationships are 

specified but some nodes are constrained to be a particular literal value. We have included the 

queries in SPARQL in the appendix of this paper. Queries 1 – 4 are posed over the Mondial 

dataset while queries 5 – 8 are posed over the LUBM dataset.  

Error metric. We used the relative error metric |freq(p) – freq(p^)|/freq(p) to measure the 

estimation error where freq(p) and freq(p^) are the true and estimated frequencies of p. Since the 

nature of the SGT is such that it does not provide estimates for patterns, we do not include it in 

our comparison of the estimation error of the techniques. 

Results. We first show the results of queries over the Mondial dataset for the hash join 

implementation with intermediate table materialization. Figure 5.3 shows the accuracy of the 

techniques for query 1, which is an unconstrained join query with three relationships. The 

cardinality of the result of this query is 4916. The unpruned P-Tree and the pruned P-Tree both 

estimate the cardinality of the result of this query as 4915 with an estimation error of 0.0002. The 

pruned P-Tree exhibits a good performance for this query. On the other hand, the unpruned MD-

Tree estimates it as 4934 with an estimation error of 0.0037 while the pruned MD-Tree estimates 

it as 3276 with an estimation error of 0.3336. The TQOT estimates it as 3445 with an estimation 

error of 0.2992. The pruned MD-Tree estimates the cardinality of this query with the highest 

error amongst all the techniques. This is for the case where a maximal impact subtree is pruned 

because it does not fit the budget, leading to estimation using the independence assumption. 
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As figure 5.4 shows, the unpruned P-Tree, pruned P-Tree, the unpruned MD-Tree and the TQOT 

all performed equally well while the pruned MD-Tree and SGT did not perform as well. We note 

that although the size of the pruned P-Tree is about half the size of the unpruned P-Tree, the 

pruned P-Tree has the same performance as the unpruned P-Tree. This is an indication of the 

efficiency of the pruning technique. As indicated by its estimation error, the performance of the 

pruned MD-Tree is not as good as its unpruned counterpart. As mentioned earlier, this is because 

of the pruning of a maximal impact subtree that does not fit the budget. For the TQOT, this is the 

case where the estimation error is not high enough to cause it to choose a sub-optimal plan. 

Figure 5.3: The estimation errors of the techniques for Query 1 
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Figure 5.5 shows the estimation errors of the evaluated techniques for query 2, which is another 

unconstrained join query involving three relationships. For this query, the cardinality of the 

result is 877. The unpruned P-Tree and the pruned P-Tree both estimate the cardinality of the 

result as 865, with an estimation error of 0.0137. The effectiveness of the pruning technique of 

the P-Tree is shown by the fact that although the pruned P-Tree is about half the size of the 

unpruned P-Tree, its estimation error is the same as that of the unpruned P-Tree. The unpruned 

MD-Tree estimates it as 868 with an estimation error of 0.0103. The pruned MD-Tree estimates 

the result cardinality as 3276 with an estimation error of 2.7355, while the TQOT estimates the 

result cardinality as 2005 with an estimation error of 1.2862. Again, the unpruned P-Tree and 

pruned P-Tree have the best performance with the least estimation error, followed by the 

unpruned MD-Tree. The pruned MD-Tree has the worst performance  

Figure 5.4: Result of Query 1: An Unconstrained Join Query over the Mondial Dataset 
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As figure 5.6 shows, the TQOT exhibits the worst performance, while all the other techniques 

exhibit the same performance. For the TQOT, this is the case where the join uniformity 

assumption does not hold and the estimation errors are large enough to cause it to choose a sub-

optimal query plan. Although the estimation error of the pruned MD-Tree is larger than that of 

the unpruned MD-Tree as well as the TQOT, the pruned MD-Tree still performs as well as the 

unpruned MD-Tree and better than the TQOT. This is because the intermediate estimates 

obtained from the pruned MD-Tree are more accurate than the overall estimate, as such it still 

finds the optimal plan. 

 

Figure 5.5: The estimation errors of the techniques for Query 2 
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Figure 5.7 shows the estimation errors of the techniques for query 3, a join query involving three 

relationships, with a uri constraint. The cardinality of the result of this query is 1033. The 

unpruned P-Tree, pruned P-Tree and unpruned MD-Tree all estimate the cardinality of the result 

of this query as 429, with an estimation error of 0.5847. For this query, once again, the pruning 

technique for the P-Tree prunes effective as the estimation error for the P-Tree is the same as that 

of the unpruned P-Tree. The pruned MD-Tree estimates the cardinality of this query as 0 with an 

estimation error of 1. The estimation error of the pruned MD-Tree is greater than that of the 

unpruned MD-Tree, reflecting the case when a maximal impact subtree of the MD-Tree is 

pruned in order to meet the budget. The TQOT estimates it as 289, with an estimation error of 

0.7202.  

Figure 5.6: Result of Query 2: An Unconstrained Join Query over the Mondial Dataset 
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Figure 5.8 shows the query processing performances of the techniques for query 3. For this 

query, all the techniques find the optimal query plan and thus exhibit the same performance. This 

is due to the constraint on the query which causes the techniques to find an optimal query plan, 

even though their estimation errors differ. 
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Figure 5.7: The estimation errors of the techniques for Query 3 

Figure 5.8: Result of Query 3: A Uri Constrained Join Query over the Mondial Dataset 
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Figure 5.9 shows the estimation errors of the evaluated techniques for query 4, a join query 

involving 4 relationships with a literal constraint. The cardinality of the result of this query is 

162. The unpruned P-Tree, pruned P-Tree, unpruned MD-Tree and pruned MD-Tree all estimate 

the cardinality of the result as 1 with an estimation error of 0.9938. The TQOT estimates it as 

1296 with an estimation error of 7. Recall that for queries with constraint, we propagate the 

selectivity of the constraint to the estimates of the joins. Our propagation assumes that a uniform 

number of patterns will be affected by the constraint. For this query, this uniform assumption 

does not hold and hence the larger errors in the estimates for the cardinality of the results.  
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As figure 5.10 shows, for this query, both the SGT and TQOT techniques perform worse than 

our techniques. In conformity with the estimation errors of our techniques, all of our techniques 

exhibit the same performance in terms of the time spent for query processing. For this query, the 

effectiveness of our pruning techniques is once again shown by the fact that both the pruned P-

Tree and pruned MD-Tree perform as well as their unpruned counterparts. 

Figure 5.9: The estimation errors of the techniques for query 4 
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In summary for the Mondial dataset, our experimental results show that for the accuracy of 

estimates of unconstrained join queries, our techniques perform better than the Traditional Query 

Optimization Technique with the unpruned P-Tree, pruned P-Tree and the unpruned MD-Tree 

having an average error of 0.7% compared to 79% for the Traditional Query Optimization 

Technique. The pruned MD-Tree performs worst with an average error of 153%. For the 

constrained queries, all our techniques perform much better than the Traditional Query 

Optimization Technique with the unpruned P-Tree, pruned P-Tree and the unpruned MD-Tree 

having an average error of 79%, while the pruned MD-Tree has an average error of 100% 

compared to 386% average error of the Traditional Query Optimization Technique. Over both 

the unconstrained and constrained join queries, our techniques are superior with an average error 

of 40% for the unpruned P-Tree, pruned P-Tree and the unpruned MD-Tree and 127% average 

error of the pruned MD-Tree compared to 233% average error of the Traditional Query 

Optimization Technique. 

 

Figure 5.10: Result of Query 4: A Literal Constrained Join Query over the Mondial Dataset 
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As can be observed from the foregoing discussion, the accuracy of the pruned P-Tree was the 

same as that of the unpruned P-Tree for the queries 1 – 4. To assess the level of degradation of 

the accuracy of the pruned P-Tree with respect to the size of the pruned P-Tree, we pruned the P-

Tree to fit a 10KB budget, 25KB budget and 50KB budget. Figure 5.11 shows the estimation 

errors of the pruned P-Trees of sizes 10KB, 25KB and 50KB for query 2. As the figure shows, 

the pruned P-Tree of size 10KB shows a large estimation error for this query, while the pruned 

P-Tree of Size 25KB and 50KB have the same minimal estimation error (0.0137) as the 

unpruned P-Tree (see figure 5.5 above). As the figure shows, one can construct a summary that 

is as small as 25KB, without increasing the estimation error when compared to the unpruned P-

Tree, for this query. As the figure also shows, it takes the same amount of time to process the 

query for each of the pruned summaries. 
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Figure 5.11 shows the estimation errors of the pruned P-Trees of sizes 10KB, 25KB and 50KB 

for query 3. Once again, the pruned P-Tree of size 10KB shows a large estimation error for this 

query, while the pruned P-Tree of Size 25KB and 50KB have the same minimal estimation error 

Figure 5.11: The Estimation Error for Query 2 for Summaries of Size 10KB, 25KB and 

50KB 
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(0.5847) as the unpruned P-Tree (see figure 5.7 above). Once again, as illustrated by this figure, 

for this query, we can construct a summary that is as small as 25KB, without increasing the 

estimation error when compared to the unpruned P-Tree. As figure 5.10 and figure 5.11 show, 

the estimation error increases as the size of the summary decreases. However, the estimation 

error of the summary does not overly increase for a reasonably small budget, in these cases a 

budget of size 25KB. 
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We now show the results over the LUBM dataset for the hash join implementation with 

intermediate table materialization. For this dataset, once again we posed queries in categories 1 – 

3. Figure 5.13 shows the estimation errors of the evaluated techniques for query 5, an 

unconstrained join query involving three relationships, over the LUBM10 dataset. The 

cardinality of the result of this query is 2912. The unpruned P-Tree, the pruned P-Tree and the 

unpruned MD-Tree all estimate it as 2906 with an estimation error of 0.0021 while the pruned 

MD-Tree estimates it as 1 with an estimation error of 0.9997. This is because maximal impact 

subtrees along the path of this query were aggressively pruned causing estimation to be based on 

Figure 5.12: The Estimation Error for Query 3 for Summaries of Size 10KB, 25KB and 

50KB 
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the independence assumption which does not hold in this case. The TQOT estimates it as 2914 

with an estimation error of 0.0007.  
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As figure 5.14 shows, our pruned P-Tree and pruned MD-Tree show encouraging performances 

with both performing as well as their unpruned counterparts. Once again, the performance of the 

pruned P-Tree and pruned MD-Tree show the effectiveness of the pruning techniques. Our 

techniques have the same performance as the TQOT, while the SGT exhibits a worse 

performance than all the other techniques. Further, the time taken to enumerate the plans in all 

cases is very negligible. To show how the techniques scale with larger dataset, we posed the 

same query over LUBM15 and LUBM20 datasets and as figure 5.15 shows, the techniques scale 

linearly with increase in dataset size and the performance of SGT gets even worse with increase 

in dataset size. 

Figure 5.13: The estimation errors of the techniques for query 5 
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Figure 5.16 shows the estimation errors of the techniques for query 6, another unconstrained join 

query involving four relationships, over the LUBM10 dataset. The cardinality of the result of this 

query is 559. The unpruned P-Tree, the pruned P-Tree and the unpruned MD-Tree all perfectly 

estimate the cardinality of the result as 559 with no estimation error. However, the pruned MD-

Tree estimates it as 1 with an estimation error of 0.998. Once again, this is due to the aggressive 

Figure 5.14: Result of Query 5: An Unconstrained Join Query over the LUBM10 Dataset 

Figure 5.15: Result of Query 5: An Unconstrained Join Query over the LUBM10, 

LUBM15 and LUBM20 Datasets 
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pruning of maximal impact subtrees along the path of this query with estimation using the 

independence assumption which does not hold. The TQOT estimates the cardinality of the result 

as 3790 with an estimation error of 5.78.  
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For this query, as shown in figure 5.17, in conformity with their estimation errors, our pruned P-

Tree performed as well as its unpruned counterpart while the pruned MD-Tree shows a worse 

performance than its unpruned counterpart. Our techniques all perform better than the TQOT. 

This is due to the fact that the uniformity assumptions on which it is based do not hold and the 

estimation errors are large enough to cause it to choose a worse plan than the P-Tree and MD-

Tree techniques. The SGT also exhibits the same performance as our techniques. 

Figure 5.16: The estimation errors of the techniques for query 6 
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Figure 5.18 shows the estimation errors of the techniques for query 7, a uri constrained join 

query involving three relationships over the LUBM10 dataset. The cardinality of the result of 

this query is 9. The unpruned P-Tree estimates it as 1 with an estimation error of 0.8889, the 

pruned P-Tree estimates it as 7 with an estimation error of 0.2222. For this query, the estimate 

obtained from the pruned P-Tree is more accurate than that obtained from the unpruned P-Tree. 

This is as a result of the combination function that is used to obtain the estimate of a pattern 

which is larger than the size of patterns maintained in the P-Tree. The unpruned MD-Tree 

estimates it as 2 with an estimation error of 0.7778, while the pruned MD-Tree estimates it as 1 

with an estimation error of 0.8889. The TQOT estimates it as 4 with an estimation error of 

0.5556.  

Figure 5.17: Result of Query 6: An Unconstrained Join Query over LUBM10 dataset 
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As shown in figure 5.19, all techniques except the SGT came up with the same query plan and 

thus have the same performance. This is because their absolute estimation errors are small and 

thus they all find an optimal plan.  

0

200

400

600

800

1000

1200

P-Tree PrunedP-

Tree

MD-Tree PrunedMD-

Tree

SGT TQOT

T
im
e
 i
n
 M
il
li
s
e
c
o
n
d
s

Enumeration

Processing

Total

 

 

 

Figure 5.18: The estimation errors of the techniques for query 7 

Figure 5.19: Result of Query 7: A Uri Constrained Join Query over LUBM10 Dataset 
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Figure 5.20 shows the estimation errors of the techniques for query 8, a literal constrained join 

query involving four relationships over the LUBM10 dataset. The cardinality of the result of this 

query is 93. The unpruned P-Tree, the pruned P-Tree, the unpruned MD-Tree and the pruned 

MD-Tree all estimate the cardinality of the result as 1 with an estimation error of 0.9892. Once 

again, this is because the uniform assumption based upon which the selectivity of the constraint 

is propagated to the estimates of the joins does not hold. The TQOT estimates the cardinality of 

the result as 341 with an estimation error of 2.6667.  
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Although our techniques have a smaller overall estimation error for this query than the TQOT, 

the TQOT performs slightly better than our techniques, as figure 5.21 shows. This is because the 

estimates obtained for intermediate patterns from our techniques with the selectivity propagation, 

caused it to choose a worse plan than the TQOT. The SGT shows a slightly worse performance 

than all our techniques. 

Figure 5.20: The estimation errors of the techniques for query 8 
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In summary for the LUBM dataset, our experimental results show that our techniques perform 

better on the average in terms of the accuracy of the estimates. For the unconstrained join 

queries, the unpruned P-Tree, pruned P-Tree and unpruned MD-Tree all had an average error of 

0.11%, while the pruned MD-Tree had an average error of 100% compared to 289% average 

error of the Traditional Query Optimization Technique. For the constrained join queries, the 

unpruned P-Tree had an average estimation error of 94%, the pruned P-Tree had an average error 

of 61%, the unpruned MD-Tree had an average error of 88%, while the pruned MD-Tree had an 

average error of 94% compared to 161% average error of the Traditional Query Optimization 

Technique. Over both the unconstrained and constrained join queries, the unpruned P-Tree had 

an average error of 47%, the pruned P-Tree had an average error of 30%, the unpruned MD-Tree 

had an average error of 44%, while the pruned MD-Tree had an average error of 97% compared 

to 225% average error of the Traditional Query Optimization Technique 

 

Figure 5.21: Result of Query 8: A Literal Constrained Join Query over LUBM10 Dataset 
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We now show the comparisons of the hash join implementation with intermediate table 

materialization versus the piped iterators on left deep plans only using indexed joins. We show 

this comparison only for the LUBM10 dataset.  
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Figure 5.22 shows the result of query 5 (an unconstrained join query involving three 

relationships) for the join with intermediate table materialization and the piped iterator 

implementation. The techniques all show a reduced running time for the piped iterator 

implementation when compared with intermediate table materialization. In addition, one of the 

piped techniques, the Simple Greedy Technique (SGT), shows an increased running time when 

compared to the other piped techniques (P-Tree, pruned P-Tree, MD-Tree, pruned MD-Tree, 

TQOT). For this query, all the techniques except for the SGT find the same left deep plan and as 

such they all have the same running time.  

Figure 5.22: Comparison of the Hash Join Implementation with the Piped Iterator 

Implementation for Query 5 
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Figure 5.23 shows the results of the intermediate table materialization and the piped iterator 

implementation for query 6, an unconstrained join query involving four relationships. When 

compared with their corresponding intermediate table materialization implementation, the pruned 

MD-Tree and the TQOT show a reduced running time for the piped iterator implementation. 

However, the rest of the techniques show a very slight increase in the running time for the piped 

iterator implementation. 

 

Figure 5.24 shows the result of the intermediate table materialization and the piped iterator 

implementation for query 7, a URI constrained join query involving three relationships. All the 

techniques show a reduced running time for the piped iterator implementation when compared 

with the intermediate table materialization. All the techniques, except the SGT, show extremely 

fast running times while the SGT shows an increase in the running time when compared to the 

other techniques for the piped iterator than for the intermediate table materialization.  

Figure 5.23: Comparison of the Hash Join Implementation with the Piped 

Iterator Implementation for Query 6 



 

 75 

0

200

400

600

800

1000

1200

P
-T
re
e

P
ru
n
e
d
P
-

T
re
e

M
D
-T
re
e

P
ru
n
e
d
M

D
-T
re
e

S
G
T

T
Q
O
T

P
-T
re
e

P
ru
n
e
d
P
-

T
re
e

M
D
-T
re
e

P
ru
n
e
d
M

D
-T
re
e

S
G
T

T
Q
O
T

Hash Join Piped Iterators

T
im
e
 i
n
 M
il
li
s
e
c
o
n
d
s

Enumeration

Processing

Total

 

 

Figure 5.25 shows the result of query 8, a literal constrained join query involving four 

relationships, for the intermediate table materialization strategy and the piped iterator execution 

strategy. Compared to the intermediate table materialization strategy, all the techniques show a 

reduced running time in the piped iterator execution strategy. However, the SGT shows an 

increased running time when compared to the other techniques for the piped iterator execution 

strategy than for the intermediate table materialization strategy. 

Figure 5.24: Comparison of the Hash Join Implementation with the Piped Iterator 

Implementation for Query 7 
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Figure 5.25: Comparison of the Hash Join Implementation with the Piped 

Iterator Implementation for Query 8 
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6. Conclusion and Future Work 

Graph pattern querying is important for eliciting information from graphs. Optimizing graph 

pattern queries requires estimating the frequency of subgraphs in a query graph pattern. In this 

work, we presented two techniques for summarizing the structure of graphs and we showed how 

to prune the summary to fit a given space budget. As our experiments showed, for unconstrained 

join queries, the proposed P-Tree and MD-Tree exhibited encouraging performance when 

compared to the traditional query optimization techniques used in relational database systems 

and the simple greedy technique used by the execution engine of the SPARQLeR system. The 

pruned P-Tree is relatively stable for all datasets but performs best when graph patterns that 

share a common sub-graph pattern co-occur. The pruned MD-Tree performs best when single 

points of dependence exist among subgraphs. Our experiments also show that the time taken to 

enumerate plans is often negligible when compared to the actual query processing time. 

Although the Dynamic Programming approach arguably may take some time for enumeration as 

the number of relationships grows larger, the authors in [33] have shown a new class of 

enumeration algorithms that work to reduce the enumeration time without a large decrease in 

performance when compared to the dynamic programming enumeration. 

There are several directions we hope to explore in the future. First, we will look into a 

summarization and estimation framework for RDF graphs which may have hierarchies on the 

edges, by virtue of the subpropertyOf property. Next we will extend our statistical graph 

summaries to better cope with constraints so as to avoid the inaccurate estimates obtained when 

propagating the selectivity of a constraint to the estimates of the patterns obtained from the 
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summaries. Further we will investigate techniques for gracefully accommodating updates to the 

data graph into our summaries without a complete reconstruction of the summaries. 
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Appendix A. Queries in SPARQL 

Query 1  

For each country, find its provinces, their capitals and the rivers that flow through the country 

Prefix protégé: <http://protege.stanford.edu/kb#> 

Select ?country ?province ?province_capital ?river 

Where 

{ 

?country protégé:has-province ?province. 

?province protégé:has-province-capital ?province_capital. 

?river protégé:flows-through-country ?country 

} 

Query 2 

For each country, find its provinces, their capitals and the languages of the country 

Prefix protégé: <http://protege.stanford.edu/kb#> 

Select ?country ?province ?province_capital ?language 

Where 

{ 

?country protégé:has-province ?province. 

?province protégé:has-province-capital ?province_capital. 

?country protégé:languages ?language 

} 
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Query 3 

For each country that is a member of the World Trade Organization (WTrO), find its provinces 

and their capitals 

Prefix protégé: <http://protege.stanford.edu/kb#> 

Select ?country ?province ?province_capital 

Where 

{ 

?country protégé:has-province ?province. 

?province protégé:has-province-capital ?province_capital. 

protégé:WTrO  protégé:member ?country 

} 

Query 4 

For each country that is in Africa, find its provinces and their capitals 

Prefix protégé: <http://protege.stanford.edu/kb#> 

Select ?country ?province ? province_capital ?continent 

Where 

{ 

?country protégé:has-province ?province. 

?province protégé:has-province-capital ?province_capital. 

?country protégé:encompassed ?continent. 

?continent protégé:name “Africa” 

} 
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Query 5 

For each professor that directs a research group, find the course he teaches and the TA of the 

course 

Prefix lubm: <univ-bench.owl#> 

Select ?researchGroup ?professor ?course ?ta 

Where 

{ 

?researchGroup lubm:director ?professor. 

?professor lubm:teacherOf ?course. 

?ta lubm:teachingAssistantOf ?course 

} 

Query 6 

For each professor that is a co-PI of two projects, find the research group of the projects 

Prefix lubm: <univ-bench.owl#> 

Select ?project1 ?project2 ?professor ?researchGroup1 ?researchGroup2 

Where 

{ 

?project1 lubm:coPI ?professor. 

?project2 lubm:coPI ?professor. 

?researchGroup1 lubm:hasProject ?project1 

?researchGroup2 lubm:hasProject ?project2 

} 
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Query 7 

For each project that has two sub projects, find the publications of the project authored by 

FullProfessor0 in department10, university0, and the citations of the publication 

Prefix lubm: <univ-bench.owl#> 

Prefix journal1: <http://www.Journal1.org/> 

Select ?professor ?department ?publication 

Where 

{ 

?professor lubm:headOf ?department. 

?publication lubm:publicationAuthor ?professor. 

?publication lubm:publicationInJournal journal1:University0/Department0 

} 

Query 8 

Find the journal publications of all head of departments whose name is FullProfessor2. 

Prefix lubm: <univ-bench.owl#> 

Select ?professor ?department ?publication ?journal 

Where 

{ 

?professor lubm:headOf ?department. 

?professor lubm:name “FullProfessor2”. 

?publication lubm:publicationAuthor ?professor. 

?publication lubm:publicationInJournal ?journal 

} 
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Appendix B. Combining the Preference and Estimation Values. 

We now show how the preference and estimation values of patterns are combined to obtain a 

single value with which the P-Tree is pruned. 

Definition 16.  Let P = {p1, p2, …, pm} be the set of patterns in the P-Tree and pEVmax, the 

maximum expected value of patterns in P. Given a constant c > 0, the value of a pattern pj is 

given by:   

pVj  = (1 + pEVj)(1 + pPVj) + ipEVmax 

where i is an indicator variable whose value is 1 if pPVj ≥ c and 0 otherwise. The additive 

constants ensure that the value of a pattern is non-zero when either its preference or estimation 

value is zero. On the other hand, the second term allows for tuning the P-Tree by boosting the 

values of important patterns as defined by their preference values, to delay their pruning. 

 

We note that when the size of the P-Tree exceeds the budget, we prune the tree systematically to 

meet the budget. To prune, we compute the value of each node of the P-Tree (the combination of 

its preference and estimation values, or simply the latter if the former is not given) and select 

nodes to be pruned as shown in the Prune P-Tree algorithm shown below. 
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Prune P-Tree

Input: P-Tree T, Budget B, constant c

Output: Pruned P-Tree T

1. δ ← 0; inc ← 0; Set estimable ← ∅; done ← false

2. while done = false do 

3. estimable ←∅
4. for each internal node v in T in bottom – up order do

5. compute estimation value given δ
6. if v’s estimation value > 0 then

7. insert all its children into estimable 

8. end if

9. end for

10. if sizeof(T) - sizeof(estimable) ≤ B and δ is optimal then
11. compute values of patterns in T

12. if c > 0 

13. delete smaller valued patterns to meet B

14. else 

15. prune all patterns in estimable

16. end if

17. done ← true

18. else

19. adjust  δ
20. end if

21.end while
 

As lines 4-9 of the Prune-Tree algorithm show, estimation values are used to select the patterns 

to be pruned. However in lines 12-16, the patterns eventually pruned may differ when tuning the 

tree. The running time of the algorithm O(Ld
maxL

log(maxi{freq(pi)})), is reasonable since 

logarithm is a slowly growing function and maxL will typically be small. The running time stems 

from the loops in lines 4-9 and 2-21. Lines 4-9 run in O(Ld
maxL

) time, where L and d are the 

numbers of unique edge labels and the maximum degree of nodes in the graph respectively. 

Recall that the root of the P-Tree has a child for each unique edge label in the graph while 

internal nodes have at most d children. Lines 2-21 will be executed at most log(maxi{freq(Pi)}) 

times, since all patterns are estimable at δ = maxi{freq(Pi)} 
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Appendix C. Installation Instructions.  

The software is currently supported only on Linux platforms. This software uses Brahms so the 

user has to download and install Brahms first. To download and install Brahms, follow the 

instructions found at http://lsdis.cs.uga.edu/projects/semdis/brahms/. After Brahms has been 

downloaded and installed, install this software by unzipping and untarring the file 

GraphSummaries.tar.gz. Then go to the source directory in the GraphSummaries distribution. 

There are two phases to using the software. The first phase creates the graph summaries whereas 

the second phase uses the created summaries to guide query optimizers in choosing an optimal 

plan for query processing. To create a graph summary, use the “GeneratePatterns” binary file. 

There are several input parameters to the “GeneratePattern” binary file. These can be viewed by 

running GeneratePatterns with the help option. After the summary has been created, they can be 

used by calling the “processQuery” method in “QueryProcessor”. This method accepts several 

input parameters. They are: 

const char* modelName: the name of the snapshot file created using the snapshotCreator utility  

distributed with Brahms. 

string queryFileName: The name of the file that contains the formatted query. The query is 

formatted as a sequence of triples of the form subject predicate object where the subjects and 

objects are preceded by the integer 0, 1, 2, or 3 to denote that they represent a literal, a variable, a 

uri or a class respectively. See the file “queryFormatDescription” for more details and examples. 

string summaryFileName: The name of the summary file created in the first phase to be used for 

query procfessing. 
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string lookUpFileName: The file name of the look up table that was created in the first phase to 

be used for query processing. 

string litLookUpFileName: The file name of the literal look up table that was also created in the 

first phase to be used for query processing. 

usint summaryType: An unsigned short integer that denotes the type of graph summary that is 

being used either 2 for Pattern Tree or 3 for Maximal Dependence Tree. 

usint maxSize: An unsigned short integer that indicates the maximum size/length of patterns in 

the graph summary being used. 

bool default: Indicates if default values are kept for each pattern size for estimation purposes. 

int evalType: An integer denoting the type of evaluation to be done in choosing the optimal plan. 

It could be 0, 1 or 2 for cost, cardinality or selectivity respectively. 

int enumType: An integer denoting the type of enumeration for the iterative dynamic 

programming plan enumeration strategy. It could be 0 for standard or 1 for balanced.  

usint idpStep: An integer that specifies the number of dynamic programming steps to perform 

before the greedy selection, in the iterative dynamic programming plan enumeration strategy. 

int joinType: An integer that specifies the type of join algorithm to be used. It could 0 for nested 

loop join, 1 for hash join or 2 for merge join. 

bool elimDup: Specifies if duplicates should be eliminated 

int planEnumType: An integer that specifies which plan enumeration strategy to be used. It could 

be 0 for dynamic programming enumeration, 1 for greedy enumeration, 2 for iterative dynamic 

programming enumeration and 3 for using the SPARQLeR query planning technique. 

int estimationType: An integer that specifies the type of estimation to be done. It could be 0 for 

the estimation using the proposed graph summaries or 1 for using the dbms estimation style.  
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int sip: An integer that specifies how execution should proceed. It could be 0 for enumerating all 

plans with intermediate table generation, 1 for enumerating only left-deep plans with 

iterator/piped executions, or 2 for enumerating only left deep plans with intermediate table 

generation. 

double selectivityDecay: A double value that specifies how the propagation of the selectivities of 

constrained join queries to larger sized patterns should be decayed. 

int numRepetitions: An integer that specifies the number of times a query should be repeated for 

average timings. 

 

The experiments conducted in this work can be reproduced by using the datasets used in this 

work. The Mondial dataset is freely available on the web at http://www.informatik.uni-

ulm.de/ki/Liebig/owl/mondial.owl. We converted this owl file to RDF by using Protégé. The 

LUBM dataset is freely available at http://swat.cse.lehigh.edu/projects/lubm/.  However, like we 

said, we modified this LUBM dataset generator by adding more properties and classes. This 

modified version is included with the distribution of this software.  


