

GRAPH SUMMARIES FOR OPTIMIZING GRAPH PATTERN QUERIES ON RDF

DATABASES

by

ANGELA I. MADUKO

(Under the Direction of Amit P. Sheth and John A. Miller)

ABSTRACT

The adoption of the Resource Description Framework (RDF) as a metadata

representation standard is spurring the development of high-level mechanisms for storing and

querying RDF data. Many of the proposed systems are built on Relational/Object-Relational

Databases with a translation of queries posed in the supported RDF query language to SQL for

processing by the database. Graph pattern matching which matches a query graph against a data

graph, often require join operations. To process join operations, the database optimizer

determines an optimal join order from a cost model which employs the expected cardinality of

join results as a key parameter. This parameter is estimated from a statistical summary of the

data maintained in memory. In this work, we argue that the data summarization technique

employed by database systems are oblivious of the graph structure of RDF data and may lead to

estimation errors which result in the choice of a sub-optimal query plan. We present and evaluate

two techniques for estimating the frequency of subgraphs utilizing a small statistical summary of

the graph, based on occurrences. In the first technique, we summarize the graph in the P-Tree by

pruning small subgraphs based on a valuation scheme that blends information about their

importance and estimation power. In the second technique, we assume that edge occurrences on

edge sequences of length maxL are position independent. We then summarize the most

informative dependencies in the MD-Tree. In both techniques, we assume conditional

independence to estimate the frequencies of larger subgraphs. We present extensive experiments

on real world and synthetic datasets which confirm the feasibility of our approach. Our

experiments are geared towards showing that the estimates obtained from the proposed

summaries are accurate as well as effective for optimizing graph pattern queries posed over RDF

graphs.

INDEX WORDS: Frequency estimation, Graph summaries, Data summaries, Statistical

Summaries, RDF Join Queries, Graph Pattern Queries

GRAPH SUMMARIES FOR OPTIMIZING GRAPH PATTERN QUERIES ON RDF

DATABASES

by

ANGELA I. MADUKO

B.S, The University of Nigeria, Nsukka, Nigeria, 1998

A Dissertation Submitted to the Graduate Faculty of The University of Georgia in Partial

Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

ATHENS, GEORGIA

2009

© 2009

ANGELA I. MADUKO

All Rights Reserved

GRAPH SUMMARIES FOR OPTIMIZING GRAPH PATTERN QUERIES ON RDF

DATABASES

by

ANGELA I. MADUKO

Major Professor: Amit P. Sheth

 John A. Miller

Committee: Jonathan Arnold

 Budak Arpinar

Krzysztof Kochut

Electronic Version Approved:

Maureen Grasso

Dean of the Graduate School

The University of Georgia

May 2009

 iv

DEDICATION

I would like to dedicate my doctoral thesis to my parents for their love and support.

 v

ACKNOWLEDGEMENTS

I give thanks to the almighty God for making it possible for me to achieve this highest

level of education, by strengthening me and giving me the endurance that is necessary for the

pursuit of this level of education. Without Him, none of this would have been possible.

I am greatly indebted to my major advisor, Dr. Amit P. Sheth, for his guidance and

support throughout my studentship. His ready availability made it easy to get feedback and

direction at different points. I am also indebted to Dr. John A. Miller, my co-major advisor, for

his guidance especially in the last stages of my work. His ready availability made it easy to get

feedback and direction especially during the last stages of my studentship. I would like to thank

my advisory committee members, Dr. Budak Arpinar, Dr. Krzysztof Kochut and Dr. Jonathan

Arnold for accepting the task of participating on my doctoral advisory committee. I am

especially grateful to Dr. Paul Schliekelman for his ready availability and technical feedback and

guidance at different points. Special thanks to my friend Kemafor Anyanwu for her words of

advice at different points through out this journey.

I am deeply indebted to my family for the sacrifices that they made to support my pursuit

of this degree and the patience they showed throughout the process. This could not have been

possible without their love and support. I am also grateful to Chidi Okonkwo for his support

during the pursuit of my doctoral degree.

This work was supported in part by NSF-ITR-IDM Award #0325464 and #071444.

 vi

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS...v

LIST OF TABLES... viii

LIST OF FIGURES ... ix

CHAPTER

1 Introduction..1

1.1 Managing and Querying RDF...4

1.2 RDF Graph Pattern Query Optimization ..6

2 Related Work ...12

2.1 Optimizing RDF Graph Pattern Queries...12

2.2 Statistical Summaries for Cardinality Estimation...13

2.3 Graph Indexing ...16

3 Preliminaries and Background...18

3.1 RDF Data Model...18

3.2 Canonical Labeling of Graphs ..20

4 Summarization and Estimation Framework...22

4.1 Semantic and Structural Summary..22

4.2 Pattern Tree (P-Tree) ..27

4.3 Maximal Dependence Tree (MD-Tree) ..36

4.4 Estimating the Frequency of Large Patterns...47

 vii

5 Experimental Evaluation..51

5.1 Methodology...51

6 Conclusion and Future Work ...77

REFERENCES ..79

APPENDICES ...85

A Queries in SPARQL...85

B Combining the Preference and Estimation Value..89

C Installation Instructions..91

 viii

LIST OF TABLES

Page

Table 5.1: Dataset Properties ...53

 ix

LIST OF FIGURES

Page

Figure 1.1: RDF Schema and Data Graphs..2

Figure 1.2: RDF Storage Mechanisms (a) Schema Oblivious Mechanism and (b) Schema-aware

Mechanism ..Error! Bookmark not defined.

Figure 1.3: (a) A SPARQL Query Involving Several Join Operations (b) Its Corresponding

Graph Pattern and (c,d,e,f) Subgraph Patterns ..7

Figure 1.4: Estimating the Cardinality of Large PatternsError! Bookmark not defined.

Figure 4.1: Sample RDF Schema Graph, Instance Graph, Graph Patterns and Semantic and

Structural Summary...Error! Bookmark not defined.

Figure 4.2: Unique Edge Sequences for Subgraphs...27

Figure 4.3: Pattern Tree ...28

Figure 4.4: Pattern Tree Construction Algorithm..........................Error! Bookmark not defined.

Figure 4.5: Pruning Nodes of the Pattern TreeError! Bookmark not defined.

Figure 4.6: A Weight Matrix for Patterns of Length 2 ..39

Figure 4.7: Refining the Base MD-Tree ..Error! Bookmark not defined.

Figure 4.8: MD-Tree Construction Algorithm...45

Figure 4.9: (a) A Large pattern and (b) A Sample Graph DatabaseError! Bookmark not defined.

Figure 5.1: The sizes of the unpruned and pruned summaries for the Mondial dataset54

Figure 5.2: The sizes of the unpruned and pruned summaries for the LUBM10 dataset55

Figure 5.3: The estimation errors of the techniques for Query 1...57

 x

Figure 5.4: Result of Query 1: An Unconstrained Join Query over the Mondial Dataset58

Figure 5.5: The estimation errors of the techniques for Query 2...59

Figure 5.6: Result of Query 2: An Unconstrained Join Query over the Mondial Dataset60

Figure 5.7: The estimation errors of the techniques for Query 3...61

Figure 5.8: Result of Query 3: A URI Constrained Join Query over the Mondial Dataset61

Figure 5.9: The estimation errors of the techniques for query 4..62

Figure 5.10: Result of Query 4: A Literal Constrained Join Query over the Mondial Dataset63

Figure 5.11: The Estimation Error for Query 2 for Summaries of Size 10KB, 25KB and 50KB.64

Figure 5.12: The Estimation Error for Query 3 for Summaries of Size 10KB, 25KB and 50KB.65

Figure 5.13: The estimation errors of the techniques for query 5..66

Figure 5.14: Result of Query 5: An Unconstrained Join Query over the LUBM10 Dataset67

Figure 5.15: Result of Query 5: An Unconstrained Join Query over the LUBM10, LUBM15 and

LUBM20 Datasets ...67

Figure 5.16: The estimation errors of the techniques for query 6..68

Figure 5.17: Result of Query 6: An Unconstrained Join Query over the LUBM10 Dataset69

Figure 5.18: The estimation errors of the techniques for query 7..70

Figure 5.19: Result of Query 7: A Uri Constrained Join Query over LUBM10 Dataset70

Figure 5.20: The estimation errors of the techniques for query 8..71

Figure 5.21: Result of Query 8: A Literal Constrained Join Query over LUBM10 Dataset72

Figure 5.22: Comparison of the Hash Join Implementation with the Piped Iterator

Implementation for Query 5 ..73

Figure 5.23: Comparison of the Hash Join Implementation with the Piped Iterator

Implementation for Query 6 ..74

 xi

Figure 5.24: Comparison of the Hash Join Implementation with the Piped Iterator

Implementation for Query 7 ..75

Figure 5.25: Comparison of the Hash Join Implementation with the Piped Iterator

Implementation for Query 8 ..76

 1

1. Introduction

The sheer mass of available documents on the current Web and the insufficient representation of

knowledge contained in documents make it quite burdensome for humans to find the right

documents. A major shortcoming of the current Web is that information is targeted towards

human and as such a human always has to be in the loop to interpret the information given in

documents. In 2001, Berners-Lee, Hendler and Lassila [5] presented a vision of the Web called

the Semantic Web in which Web content will be given well defined semantics, thereby making it

more machine processable, empowering machines to act more on behalf of humans. The

Semantic Web is about developing technologies that will enable machines to make more sense of

the Web, with the result of making the Web more useful for humans. The World Wide Web

Consortium (W3C) has put forward a layered architecture for the Semantic Web that shows the

hierarchy of languages where each layer exploits and uses the capabilities of the layers below. At

the lowest level are Unicode and Uniform Resource Identifier (URI). Unicode is a standard that

allows for a consistent representation and manipulation of textual data expressed in most of the

world’s languages. URI is a compact string of characters used to identify or name a resource on

the Web. On top of this layer is the Extensible Markup Language (XML) which allows for

syntactic interoperability. The semantic layers then begin with the Resource Description

Framework (RDF) [31] which sits on top of XML. The RDF schema (RDFS) provides basic

vocabulary for RDF. On top of RDF sits the Web Ontology Language (OWL). OWL extends

RDFS by making it possible to express complex relationships between different RDFS classes as

well as to express more precise constraints on specific classes and properties. The rest of the

 2

layers contain technologies that are not yet standardized or currently undergoing standardization

efforts such as the Rule Interchange Format (RIF) or just ideas of what should be implemented to

realize the Semantic Web. In this thesis, we focus on RDF, since it is the building block of the

semantic layers of the Semantic Web. However, our work can also be applied to OWL.

RDF provides a simple data model for describing entities in the Semantic Web in terms of named

relationships and their values. The central notion of RDF is that of a resource which can be any

entity that is uniquely identified by an IRI (Internationalized Resource Identifier) in the Semantic

Web. IRIs are a general form of URIs that can be used to identify any entity. The fundamental

construct in RDF is a statement. RDF allows for making statements about how resources in the

Semantic Web are related, in the form of triples.

Publication

Location

Professor

Course

teaches

Student Universityemploys

Project

project_director

Research_Area
related_to_project

string

name

spans

string

name

Author
authoredBy

located_in

advisesMentor

&r1 &r2
authoredBy

&r3
enrolled_in

enrolled_in

advises

&r4
teaches

advises

&r5

advises

Figure 1.1: RDF Schema and Instance Graphs

 3

A statement (subject, property, object) asserts that a resource which is denoted as the subject has

a property whose value is the object (the object may be another resource or a literal). For

example, suppose we want to make an assertion that states that a resource (in this case a person)

with unique identifier http://www.example.edu/authors/author1 is the author of another resource

(in this case a publication) with unique identifier

http://www.example.edu/publications/publication1. We assert this by the RDF statement (ex:-

publications/publication1, exterms:authoredBy, ex:authors/author1) where the prefixes ex and

exterm are aliases for the namespaces http://www.example.edu and

http://www.example.edu/terms (for the terms that are used by an example university). RDF

statements can be represented graphically where labeled nodes represent the subject and object

(labeled with their respective unique identifiers) while a labeled edge from the subject to the

object, labeled by the value of the property, represents the property as shown in the bottom part

of figure 1.1. Similarly, RDF’s companion specification RDFS [7] provides special vocabulary

for describing domain vocabularies. Domain vocabularies describe the types of entities, i.e.,

classes (e.g., Author) and types of relations or properties (e.g., authoredBy) in the domain, as

shown in the top part of figure 1.1. RDFS also provides a special vocabulary of metaclasses and

metaproperties for describing domain vocabularies. The metaclass rdfs:Class/rdfs:Property

defines instances of Classes/Properties. Properties are further defined in terms of the classes

whose instances they may apply to (called their domain) and those whose instances they may

take as values (called their range). RDFS allows both classes and properties to be organized into

subclassOf/subpropertyOf hierarchies. Thus, the definition of classes/properties may also contain

information about which classes/properties they specialize using the

 4

rdfs:subclassOf/rdfs:subpropertyOf properties. Resources are also classified based on the classes

they belong to, i.e., resource typing, using the same model and the rdf:type property.

1.1. Managing and Querying RDF

The growing interest in RDF with its accompanying schema language RDFS as a metadata and

semantic data representation standard in the Semantic Web is spurring on the development of

large-scale storage and high-level querying systems for RDF data. As observed at the 2008

Semantic Technology conference, a number of commercial applications such as those from Talis

and Twine already use and apply very large RDF datasets, and continue to seek techniques to

manage ever increasingly larger datasets. A variety of systems have been proposed for storing

RDF ranging from main memory systems such as Jena [11][55], BRAHMS [28], to disk-based

systems such as Sesame [9], Jena [11], YARS [21], RSSDB [30], Oracle RDF [61]. In order to

exploit the maturity and wealth of research that has been invested in Database Management

Systems (DBMS), some of the proposed systems for storing and querying RDF such as Sesame

[9], Jena [11], RSSDB [30], Oracle RDF [61] employ a Relational/Object Relational Database

backend (also see [50] for a survey) that shred the RDF graph into relations. The two most

common techniques of shredding RDF graphs into relations are the schema-oblivious technique

and the schema-aware technique. The schema oblivious technique stores all triples in one

relation as shown in figure 1.2a, while the schema-aware technique has one relation for each

property type as shown in figure 1.2b (see [51] for a taxonomy). Other storage schemes augment

the triple store with an additional column such as context in YARS [21] or model id in Oracle

[61]. Native stores such as BRAHMS [28], designed specifically for the needs of the RDF data

model have also been proposed. Typically, a high level query language for querying RDF

[29][32][42][43] has also been proposed along with each of the proposals for storing RDF. Many

 5

of the proposed query languages for querying RDF, support graph pattern matching as the

primary query paradigm. In this paradigm, a query is a definition of a graph pattern that is to be

matched in the database and the result of the query is the list of all occurrences or matchings of

the graph pattern. Query processing techniques vary depending on the underlying storage

techniques. For example, for systems that are built on relational database systems, queries are

translated from an RDF query language such as SPARQL to SQL and then pushed to the

underlying database for processing. One implication of the graph shredding storage approach

with respect to query processing is that reconstructing subgraphs from database relations is done

using join operations.

&r3teaches&r4

&r2author&r1

enrolled_in

Predicate

&r3&r2

ObjectSubject

&r3&r2

ObjectSubject

&r2&r1

ObjectSubject

enrolled_in author

&r3&r4

ObjectSubject

teaches

• • •

.

.

.

.

.

.

.

.

.

(a)

(b)

This joining of triple patterns is often an expensive operation, necessitating an optimization step

that helps reduce the query processing cost as much as possible. It is often the case that queries

on RDF data will require several joins and unfortunately, these will often not be the primary key

Figure 1.2: RDF Storage Mechanisms (a) Schema Oblivious Mechanism and

(b) Schema aware Mechanism

 6

– foreign key variety of joins. Therefore, optimizing the order of joins for queries on RDF data

stores is arguably more important than it is for traditional relational databases.

1.2. RDF Graph Pattern Query Optimization

Independent of the technique in which the joins of the triple patterns is achieved in the different

systems, the order in which the joins are performed is a crucial optimization step. Thus, the

query optimizer needs to compare several alternative ways of computing the joins to determine

the best way. Each way of executing the join is referred to as a query plan where a query plan is

typically a tree of operators (including other operators besides the join operator). Each of the

alternative query plans is associated with a processing cost so that the goal of the optimizer is to

find the plan with the least cost which is referred to as an optimal plan. One of the key

parameters the query optimizer needs to determine an optimal plan for executing the query is the

size of the intermediate results. The estimation of the cardinality of intermediate join results is

equivalent to estimating the frequency of sub-patterns of a query graph pattern. These

cardinalities are estimated using a statistical summary of the data maintained by the optimizer. In

many systems the exact nature of the statistical summary differs. In relational databases, the

traditional approach is to keep the size of each relations and the number of distinct attribute

values for each attribute of each relation. Further, histograms may be used to keep the

distribution of values for each attribute in each relation. For the XML data model, several

different summaries have been proposed (such as bloom histograms, XSketch synopses,

correlated subpath tree, StatiX, etc), in the literature all of which exploit the tree nature of XML

data as such, it is unclear how these techniques can handle graph structured data such as RDF.

This thesis focuses on building statistical summaries of graph structured data needed for

optimizing graph pattern queries and efficient techniques for estimating the frequency of patterns

 7

in a graph database from the statistical summaries. We note that a graph pattern query may

contain constraints in the sense that the components of the triples it contains may be bound to a

particular value. In this work, we focus on graph pattern queries which contain triple patterns

which may have constraints on the subjects and/or objects. As an example, figure 1.3a below

shows a SPARQL [42] query (namespaces are omitted for brevity) that asks for professors

employed in universities in the United States who direct a Semantic Web project. The

corresponding graph pattern for this query is shown in figure 1.3b. In this case, two out of the six

triple patterns of the graph pattern have the objects bound to literal values while. However,

suppose we first evaluate the two “name” constraints on research area and location, then as

shown in figure1.3c, three joins will be needed to process this query.

?university

research_area location

?professor

?project

project_director employs

spans located_in

?university?project

employs

?professor

project_director
?project

research_area

?professor

project_director

spans

?professor

?university

lococation

employs

located_in

Select ?university ?professor where

{

?project project_director ?professor .

?project spans ?research_area .

?research_area name “Semantic Web” .

?university employs ?professor .

?university located_in ?location .

?location name “USA” .

}

?university?project

?research_area ?location

?professor

Semantic Web USA

namename

project_director

located_inspans

employs

(d)

(b)
(a)

(c)

(e) (f)

Figure 1.3: (a) A SPARQL Query Involving Several Join Operations (b) Its

Corresponding Graph Pattern and (c,d,e,f) Sub-graph Patterns

 8

One possible join order is to first join the necessary triples of property type “spans” to those of

“project_director”, then joining the result from the first operation to the necessary triples of

property type “employs” and then finally joining the result from the second operation to the

necessary triples of property type “located_in”. However, to optimize this query, accurate

estimates of the intermediate patterns leading up to the actual graph pattern of the query, such as

those shown in figures 1.3d, e and f, are needed.

Noting that (1) the number of possible subgraphs in a graph database could be exponential and

(2) it is more expedient if the estimates are computed without disk accesses, since they are

needed at optimization time, we focus on techniques that summarize subgraphs in the graph

database so as to fit in the available memory budget. Obviously, such a summary will be useful

only if it captures the interactions among subgraphs. Our choice of subgraphs for capturing

interactions amongst graphs is strengthened by the observations in [52], [59] and [60], where it is

shown that subtrees and subgraphs perform better than paths in capturing interactions among

graphs and trees, respectively. However, the number of unique subgraphs greatly exceeds the

number of paths in a graph. It is thus infeasible to examine all subgraphs so we consider

examining only subgraphs of size at most maxL. If the number of subgraphs is still too large,

efficient pruning techniques will be needed. We propose two summaries that differ in their

representation of subgraphs and pruning techniques: the Pattern Tree (P-Tree) and the Maximal

Dependence Tree (MD-Tree).

Given a list of patterns and their frequencies, a simple way of representing the patterns is through

the use of a hash table. However, we can more concisely maintain this information using our P-

 9

Tree technique which organizes the patterns in a prefix tree to save space needed for storing the

patterns. The pruning technique of the P-Tree is based on two insights: (1) the frequency of a

graph may be close to that of a function of its subgraph; and (2) information about the

importance of subgraphs could lead to characterizing some as more important than others. For

example, frequent subgraphs from a query workload are more important than infrequent ones for

tuning purposes. We prune the P-Tree by blending the significance of patterns for estimation and

for tuning purposes.

The MD-Tree is based on the observation that edge types in certain positions in patterns may

largely determine the frequencies of the patterns. The idea then, is to assess the edge position

with the greatest influence on the frequencies of the patterns. If no position of great influence

exists, we assume that edges occur independently at each position. The pruning technique of the

MD-Tree is based on the observation that high-order statistical dependencies often exist among

subgraphs. It may be prohibitive to keep all such dependencies; thus, we attempt to capture the

most informative dependencies in the given space.

To estimate the frequency of a pattern that is larger than maxL, we systematically divide it into

patterns of length maxL and maxL-1 and combine the frequencies of these patterns to obtain an

estimate for the frequency of the large pattern. Given a pattern p of length k, we divide p into k-

maxL+1 patterns of length maxL where each succeeding pattern of length maxL overlaps the

preceding one in all but one edge. We then estimate p as follows:

)(

)(
...

)(

)(
*)(

1max

1max

2

2
1

+−

+−

′′ Lk

Lk

pfreq

pfreq

pfreq

pfreq
pfreq

 10

where s)'(ipfreq are the frequencies of the patterns of length maxL and s')(ipfreq ′ are the

frequencies of the overlapping patterns of length maxL-1. This is illustrated in the following

example.

prof3dept2

prof1dept1

ProfDept

head

article6prof3

article5prof2

article4prof2

article3prof1

article2prof1

article1prof1

ArticleProf

author

journal4article6

journal3article5

journal2article4

journal2article3

journal1article2

journal1article1

JournalArticle

in_journal

prof3

prof1

prof1

prof1

Prof

article6dept2

article3dept1

article2dept1

article1dept1

ArticleDept

journal1article2prof1

article6

article5

article4

article3

article1

Article

journal4prof3

journal3prof2

journal2prof2

journal2prof1

journal1prof1

JournalProf

journal2article3prof1dept1

prof3

prof1

prof1

Prof

article6

article2

article1

Article

journal4dept2

journal1dept1

journal1dept1

JournalDept

?dept ?prof ?article ?journal
head author in_journal

(a)

(b)

(c) (d)

(e)

(f)

(g)

Given the graph pattern query shown in figure 1.4a and suppose the database contains the tables

shown in figures 1.4b, c and d. Suppose also that our summaries contain patterns of length at

most 2, then our summaries will have the cardinality 4 for the join of “head” and “author” and 6

for the join of “author” and “in_journal” as shown in figures 1.4e and f. Since the query pattern

is of length 3, we estimate the cardinality of the result of the query using the cardinalities of the

patterns of length 2 and 1 in the summaries by dividing the query pattern into overlapping

patterns of length 2 where the overlap is in all but one edge. In this case, the overlap is in one

edge. Then we take the products of the cardinalities of the patterns of length two and then divide

by the cardinalities of the overlap. In this case we will estimate the result of the query as (4 * 6)

Figure 1.4: Estimating the cardinality of Large Patterns

 11

/6 since the overlap is the “author” edge which has a cardinality of 6. In this example, our

estimate is the exact cardinality of the result as shown in figure 1.4g.

In particular, this work makes the following contributions:

1. Generic Representation for an RDF Graph Pattern. With the multiple classification of

resources allowed in the RDF data model, graph patterns may exist in the instance graph that

are not explicitly represented in the schema graph. We create a Semantic and Structural

Summary for RDF/S by adding structural information from the RDF instance graph to a

Semantic Summary [3] created from the RDF schema.

2. Graph Sequencialization. Using the Semantic and Structural Summary, we adapt a technique

described in [58] for creating a partial ordering of edges in an undirected graph to obtain a

variable length sequence for RDF graph patterns.

3. Summarization Framework. Given that the number of unique graph patterns may be

exponential, we develop heuristics for pruning patterns of at most size maxL to fit a given

memory budget.

4. Estimation Framework. Using the proposed summaries, we show how to obtain estimates of

the cardinality of both patterns that are represented in the summary and those that are not

explicitly represented in the summary. The estimates obtained help guide a query optimizer in

choosing an optimal query plan.

5. Experimental Validation. We conduct experiments on real-life and synthetic datasets which

validate our approach. Our experiments show the efficiency of the proposed summaries in

providing estimates that help in optimizing both unconstrained join queries and constrained

join queries over RDF graphs

 12

2. Related Work

2.1. Optimizing RDF Graph Pattern Queries

An optimization approach for RDF Graph patterns that is based on the selectivity of RDF triples

was proposed in [49]. To determine the selectivity of resources, they simply adapted the

techniques developed for Relational Databases to RDF. They first define a selectivity measure

for resources, based on this selectivity for resources, they define the selectivity for a triple

pattern and then a graph pattern. Similar to our approach, they determine the selectivity of graph

patterns of size 2 (i.e., two joined triple patterns) by enumerating and storing all possible graph

patterns of size 2 and their frequencies. However, unlike in our approach, they only consider

joined patterns of size 2 that are obtainable from the schema and as such, may miss some

patterns. Furthermore, they do not consider approaches for pruning the summary such that it fits

a given memory budget as well as techniques for tuning the summary to favor certain patterns.

The optimization unit of an implementation of the SPARQLeR query language [32], adopts a

greedy approach for optimizing supported graph pattern queries. Given the graph pattern for a

query such that edges in the graph pattern are annotated with the cardinality of triples that satisfy

the triple pattern it represents, a query plan is constructed by beginning with the edge which has

the least cardinality and examining its adjacent edges for the edge with the next smallest

cardinality, using an algorithm similar to that used for growing a minimum spanning tree. Each

time a new edge is added to the plan, its adjacent edges are added to the pool of adjacent edges

from which the next edge with the smallest cardinality is chosen. This process is repeated until

 13

all edges of the graph have been visited. In contrast to our approach, this does not provide for nor

utilize the estimates of the cardinality of larger patterns in constructing the query plan. As such,

this technique may be less effective in finding optimal plans.

RDF Systems such as [11][30][61] which utilize a Relational/Object Relational Database

backend translates the query in the supported RDF query language into SQL which is then

pushed down to the underlying Database backend for processing. As such, the task of query

optimization is essentially pushed down to the optimizer of the Database backend.

2.2. Statistical Summaries for Cardinality Estimation

The problem of summarizing data for the purposes of estimating the cardinality of join results

has been studied for the Relational data model and can be largely categorized into 1) those which

summarize the attribute values and their correlations for attributes within a single relation such as

the one-dimensional and multi-dimensional histogram-based techniques of [26][27] and [41],

respectively, and the Statistical Interaction Models proposed in [15], 2) those which attempt to

capture the join dependencies across attribute values of attributes in multiple relations such as the

Probability Relational Model proposed in [18].

In the former case, the correlations of attribute values maintained are mainly targeted at

estimating the cardinality of tuples in a single relation which satisfy some predicate. The

cardinality of joins is estimated by combining the statistics maintained for the join attributes in

their respective relations with the assumption that the values of the join attributes are uniformly

distributed across the tables. The typical statistics maintained in this approach is the size of each

relations and the number of distinct attribute values for each attribute of each relation. Further,

 14

histograms may be used to keep the distribution of values for each attribute in each relation. This

approach proves inadequate in capturing the join dependencies that exist amongst RDF triples.

To capture the joint frequency distribution of multiple attributes across multiple relations, the use

of Probability Relational Models (PRMs) was proposed in [18]. PRMs rely on a Bayesian

network that exploits conditional independence to approximate the joint frequency distribution of

attributes of tuples across tables, joined via a foreign key. Since this approach only considers

foreign-key to primary-key joins, it proves inadequate for capturing many-to-many dependencies

that exist amongst attribute values of tables, which is typically the case in semi-structured data.

Further, if RDF triples are stored in relations using a schema-aware technique, then both

attributes in all relations form the key. In such a scenario, this technique does not clearly specify

how the join dependencies can be achieved. If however, a schema-oblivious technique is used, it

becomes even more unclear how the join dependencies can be achieved since all attributes form

the key of the single relation. The Tuple Graph Synopses (TUGS) was proposed in [47] as a

graph-based summary for cardinality estimation for relational databases. Given a schema graph

which defines the join relationships amongst relations, this technique constructs a graph of the

data contained in all relations and their join dependencies with respect to the schema graph. The

TUGS synopsis for the data is then constructed by a systematic summarization of the instance

graph. However, it is unclear how this approach may be applied to RDF graph stored using the

schema-oblivious approach, nor RDF graph patterns which require self-joins, since the TUGS

model does not consider self-joins of a relation. A technique that seamlessly copes with RDF

patterns, regardless of the storage model used to map the data into relations is desirable.

 15

The Jena property Table approach [55] proposes a technique that utilizes certain frequently

occurring patterns in RDF data for creating a Relational schema for RDF in such a way that

query patterns which would otherwise have been translated into join operations now amount to

select operations on a single table. In effect, they pre-compute and store the joins of the

frequently occurring patterns so that this approach attempts to optimize join operations over RDF

data by avoiding the joins at run time where possible. However, the usefulness of this approach

is limited to the particular frequently occurring patterns stored in a relational table. The join

operations can not be avoided for arbitrary patterns.

The data summarization and result cardinality estimation problem has gained significant research

interest for the XML data model for simple path expressions [1][12][34][36][40][54][57][52],

branching path expressions [12][40][57] and twig patterns [12][39][57][52]. Although all these

efforts propose ingenuous summarization and estimation framework for XML, most of these

techniques assume that the XML data is modeled as a tree, so that they are unsuitable for RDF

data which is modeled as a directed labeled graph. More importantly, all these techniques are

targeted at queries which exhibit tree patterns so that it is unclear how they apply to arbitrary

graph-structured queries. Although the proposals of [40][52] assume graph structured XML data

(considering idrefs), the queries are still assumed to be either simple path expressions or twigs,

which are modeled as trees, so that it is unclear how queries with a more complex structure can

be handled using these techniques. The estimation value which we defined for pruning patterns

in the P-Tree is similar in spirit to the notion of δ-derivable twigs introduced in [52] for pruning

twigs whose estimated frequencies are within δ error of their true frequencies. However, using

the pruning technique of [52] may cause the pruning of a pattern that, if not pruned, may have

 16

resulted in an even larger reduction of the size of the summary by causing the pruning of even

more patterns. In contrast, our value-based approach makes a more informed choice of patterns

to be pruned.

Research in Data Mining such as in [6][37] have investigated the problem of computing a

condensed frequent pattern base for estimating the cardinality of frequently occurring patterns in

a large item base. However, the construction technique of the pattern bases used for this purpose

does not cope with the challenging aspect of fitting a size budget. Further in contrast to our work,

these efforts focus only on estimating the cardinality of frequently occurring patterns.

2.3. Graph Indexing

Our work is also related to research in the area of graph indexing, which indexes fragments of

graphs in a database consisting of a collection of many disconnected graphs, for optimizing

graph containment queries. In this setting, given a query graph, all graphs which contain the

query graph are returned as the result of the query. A graph containment query is processed in

two steps. The first step retrieves a candidate set of graphs that contain the indexed fragments of

the query graph. The second step uses subgraph isomorphism to validate each candidate graph.

Several efforts have been made in using graph-indexing schemes to reduce the cost of processing

graph containment queries. GraphGrep [46] uses a path-based indexing approach that selects all

paths of up to length lp as the indexing feature. The size of the candidate set obtained in the first

step could be large, since path fragments do not maintain the overall structure of graphs. Since

the size of the candidate set is large, many isomorphism tests have to be performed for validating

the graphs it contains. To cope with this, GIndex [59] uses frequent graph fragments as the

 17

indexing feature. To reduce the large (potentially exponential) number of frequent fragments,

only discriminative frequent fragments are kept. Although GIndex performs the index

construction as a pre-processing step, the index construction time may be large since it uses a

mining approach which requires performing graph and subgraph isomorphisms, for discovering

the discriminative frequent fragment. Noting that the set of frequent graph fragments contain

many more tree than non-tree structures, Tree+∆ [60] indexes frequent trees, which it discovers

using a frequent tree mining algorithm that avoids the expensive graph and subgraph

isomorphisms, thereby reducing the large index construction time of GIndex due to graph

mining. On demand, Tree+∆ further reduces the size of the candidate set by selecting a small

portion of discriminative non-tree features related to query graphs only. As a complement to

these efforts, our work allows for optimizing the subgraph isomorphism tests, in the second step,

using estimates of the cardinalities of both indexed and non-indexed fragments of the query. In

addition, our technique can also be applied to a large connected graph.

The rest of this work is as follows. In section 3, we give the preliminaries and background

needed for our work. In particular, we formally discuss our notion of the RDF data model (RDF

Schema and RDF instance graphs). We also formulate the problem addressed in this work. In

section 4, we discuss the construction, pruning and estimation algorithms for our statistical

summaries, the Pattern Tree (P-Tree) summary and the Maximal Dependence Tree (MD-Tree)

Summary. In section 5, we show the results of experiments we conducted to evaluate the

performance of our summaries in terms of the accuracy of the estimates obtained from them and

the effectiveness of these estimates for query optimization. In section 6, we conclude our work

and give directions for future work.

 18

3. Preliminaries and Background

3.1. RDF Data Model

Let C, P, I and L be the sets of class Universal Resource Identifiers (URIs), property URIs,

instance URIs and literal values, respectively; the concepts of RDF schemas and instances can be

formalized as follows.

Definition 1. RDF Schema Graph: An RDF schema graph GS = (VS, ES, λS, C, P) is a directed

labeled graph where VS is the set of nodes of GS and ES is the set of edges (i.e. subset of

cartesion product of VS) of GS and λS: (VS ∪ ES) → C ∪ P is a surjective labeling function that

maps vertices and edges of GS to class and property URIs, respectively, such that λS(v) ∈ C and

λS(e) ∈ P for any v ∈ VS and e ∈ ES

Definition 2. RDF Instance Graph: An RDF instance graph GI = (VI, EI, λI, τ, I, P, L) defined

on a schema graph GS is a directed labeled graph where VI and EI are sets of vertices and edges

of GI, respectively; λI : (VI ∪ EI) → I ∪ L ∪ P is a surjective function that maps vertices and

edges of GI to instance URIs or literals or property URIs, respectively such that λI(v) ∈ I ∪ L for

any v ∈ VI and λI(e) ∈ P for any e ∈ EI. On the other hand, τ : VI → SV
2 is a function which

maps nodes of GI to sets of nodes of GS. This typing of nodes is such that for any edge e = (u, v)

in GI, if λI(e) = p, then there is an edge e′ = (u′, v′) in ES for which λs(e′) = p, τ(u) = {u′} and τ(v)

= {v′}.

Note that our model of the instance graph consists of only ground RDF graphs which do not

contain reified statements (i.e. assertions about statements).

 19

Definition 3. RDF Graph Pattern: An RDF graph pattern or simply a pattern GP = (VP, EP, λP,

P) is a connected edge-labeled directed graph where VP ⊆ N and EP ⊆ ES and λP: EP → P and for

e ∈ EP λP(e) = λS(e).

Problem Formulation. This work focuses on exploiting information in an RDF graph to

improve the statistics needed for cost-based query optimization of both unconstrained and

constrained join queries posed over RDF data stores. In particular, we focus on improving the

statistics needed for estimating the cardinality of equi-join operations. This amounts to obtaining

information about the frequencies of patterns in an RDF graph.

Our approach is to model a query as a graph pattern defined by edge labels and topology (i.e., the

nodes are considered variables and thus are not bound to any particular label).

Definition 4. Given an instance graph GI and a query pattern GP, we say that GP has a matching

in GI if we can map every edge in GP to an edge in GI with the same label i.e., for e ∈ EP, λP(e) =

λI(e′) where e′ ∈ EI. This matching is such that the topology of the nodes and edges in GP are

preserved. Thus, a matching of a query pattern in an instance graph constitutes a result of the

query.

GI1 and GI2 are two unique subgraphs in GI matching GP, if at least one node in GI1 is different

(labeled with a different URI) from its corresponding node in GI2. From the foregoing, it is clear

that all unique matchings of a query pattern constitute the result of the query. Thus, our goal is to

obtain the frequency or cardinality of all unique matchings of a particular pattern.

Definition 5. The frequency of a query pattern is the number of matchings it has in the instance

graph.

 20

Unfortunately, it is prohibitive to count all matchings of a pattern from GI at query optimization

time so that the use of a summary of GI is necessary. Thus, the problem we address in this work

can be stated more precisely as follows:

Given an RDF schema graph and a corresponding instance graph, and a memory budget B,

create a summary of size at most B, from which we can obtain accurate estimates of the number

of unique matchings of a pattern from the instance graph.

3.2. Canonical Labeling of Graphs

In order to count the frequencies of patterns, we need an efficient way to uniquely enumerate the

patterns. In other words, we need a canonical label for patterns. In this section, we discuss the

DFS Coding canonical labeling and the gSpan algorithm which we adopt in this work for

labeling and counting the frequencies of matchings of a pattern.

With minimal modifications, efficient pattern mining algorithms, such as gSpan [58] and [53]

(which uses disk-based indexes for limited memory settings) can be used to discover subgraphs

matching patterns and count their frequencies. In general, these techniques first develop a

canonical label (i.e., unique code) for a graph; then subgraph frequencies are computed based on

the canonical label. In the next paragraph, we briefly review the minimum Depth First Search

(DFS) code [58] of a graph as its canonical label that we adopt in this work.

3.2.1. DFS Coding

This technique uses a Depth First Search (DFS) traversal of a graph to transform it into an edge

sequence called DFS code. Each edge (u, v) in the graph is represented by a 5-tuple <i, j, li, l(i, j),

lj>, where i and j are integers denoting the DFS discovery times of nodes u and v and li, lj and l(i,

j) are the labels of u, v, and the edge (u,v) respectively. The edges are then ordered by listing

 21

those in the DFS tree (tree edges) in the order in which they were discovered, then inserting the

remaining edges into the ordered list as follows: Given a tree edge (u, v), all non-tree edges from

v are listed immediately after (u, v); if (ui, vj) and (ui, vk) are two such non-tree edges, (ui, vj) is

listed before (ui, vk) only if j < k. Since a graph can have multiple DFS codes, the minimum,

obtained based on a linear ordering of all its DFS codes is chosen as its canonical label.

3.2.2. gSpan Algorithm

Given an undirected graph G and an integer F, the gSpan algorithm allows for enumerating all

subgraphs of G whose frequencies are at least F, where the minimal DFS code of each subgraph

is its canonical label. The algorithm iteratively generates and counts all unique subgraphs of

length i+1 from those of length i, whose frequencies are at least F (the length of a subgraph is

defined as the number of edges it contains). Each generated subgraph of length i+1 with

frequencies less than F is pruned on the assumption that it cannot lead to the generation of any

new frequent subgraph (i.e., with frequency at least F). Details of the algorithm can be found in

[58].

 22

4. Summarization and Estimation Framework

In this section, we discuss our summarization and estimation framework for graph patterns. We

begin by first discussing the Semantic and Structural Summary, then we discuss the P-Tree

summary and how to obtain estimates of patterns from it. Next we discuss the MD-Tree

summary and how to obtain estimates of patterns from the MD-Tree, then we discuss how to

obtain estimates for patterns with length greater than maxL.

4.1. Semantic and Structural Summary

Recall that at least a node URI distinguishes two unique matchings of a query pattern in the

instance graph so that to summarize the matchings of patterns in the instance graph, we need a

general representation that encompasses all unique matchings of any given query pattern. We

achieve this by refining the RDF Schema graph to include all patterns that exist and may exist in

the RDF instance graph and derive our representation from the refined schema graph. In a

previous work [3], we introduced the RDF Semantic Summary as a data structure that captures all

possible paths which can be obtained from the RDF schema based on either explicit definitions

in or deductions from the schema.

Definition 6. Given an RDF Schema graph GS = (VS, ES, λS, C, P), a Semantic Summary GSS =

(VSS, ESS, λSS) is a directed labeled graph where ESS the set of edges of the graph is given by

ESS = {ei | ei ∈ ES, λS(ei) ≠ λS(ej), i ≠ j}.

VSS the set of nodes of the graph is given by

 23

VSS = {domain(u) ∪ domain(v) | u ∈ ES, v ∈ ES, λS(u) = λS(v)} ∪ {range(u) ∪ range(v) | u ∈ ES,

v ∈ ES, λS(u) = λS(v)} where the functions domain/range gives the domain/range classes of an

edge in ES.

λSS(e) = λS(e) for e in ES

In other words, if multiple edges have the same label, these edges are merged into one by

merging their respective source and destination nodes. If u and v are two nodes of GS merged

into w and if u′ and v′ are two nodes of the instance graph that are types of u and v, u′ and v′ are

types of w in GSS. The edges emergent from or incident on a node w in GSS is the union of the

respective edges emergent from or incident on all nodes in GS that were merged into w.

Publication

Location

Professor

Course

teaches

Student University
employs

Project

project_director

Research_Area
related_to_project

string
namespans

string
name

Author
author

located_in

advises
Mentor

Publication

Location

Professor

Mentor

Course

teaches

Student

Author
University

employs

Project

project_director

Research_Area
related_to_project

enrolled_in

string
namespans

string
name

author

located_in

advises

(b)

&r1 &r2

&r5&r4
project_director

advisesrelated_to_project

author

(d)

(e)

(a)

&r1 &r2

&r5&r4
project_director

advises

author
&r3

&r6
employs

related_to
_project teaches

enrolled_in

&r2

&r3

advises

(c)

enrolled_in

advises

&r5

enrolled_in teaches

(f)

&r2
advises

&r5
advises

&r7

 Figure 4.1: Sample RDF Schema Graph, Instance Graph, Graph Patterns and

Semantic and Structural Summary.

 24

Although GSS captures all possible paths defined in the RDF schema, it may not describe the

structure of all patterns in the instance graph. This stems from the multiple classifications of

resources allowed in the RDF data model. We enhance GSS with this capability by merging

nodes in GSS which have any instance nodes in common. The resultant nodes are then annotated

with unique integer ids. Each edge in GSS is also annotated with a unique integer id. We refer to

this data structure as an RDF Semantic and Structural Summary. Essentially, a node in the

Semantic and Structural Summary represents either a single node or a collection of nodes in the

Semantic Summary. Example 1 illustrates the merging of nodes in the Semantic and Structural

Summary to reflect all subgraphs in the instance graph

Example 1. In the RDF schema graph shown in figure 4.1a above, the property type

“advises” is defined on the domains “Mentor” and “Professor”. A Semantic Summary of figure

4.1a represents these two classes by the same schema object with respect to the property

“advises” as shown in figure 4.1e. Figure 4.1c and figure 4.1d show two subgraphs drawn from

the instance graph shown in figure 4.1b. While the former subgraph is reflected in the schema,

the latter is not because the resource &r2 is multiply classified as an “Author” and a “Student”.

A Semantic and Structural Summary of figure 4.1a will incorporate this subgraph by

representing these two classes with the same schema object as shown in figure 4.1e.

Formally, if extent(u) is a function that gives the nodes in the instance graph GI which are

mapped to a node u in GSS, we define the RDF Semantic and Structural Summary as follows.

Definition 7. RDF Semantic and Structural Summary: Given an RDF Semantic Summary

GSS = (VSS, ESS, λSS), an RDF Semantic and Structural Summary is a directed labelled graph

GSSS = (VSSS, ESSS, α, λSSS) where λSSS : ESSS → P is a labelling function that maps elements of

ESSS to the set of property URIs, VSSS the set of nodes of the graph is given by

 25

VSSS = {u ∪ v | u ∈VSS, v ∈VSS, extent(u) ∩ extent(v) ≠ ∅}

ESSS the set of edges of the graph is given by

ESSS = {e = (u, v) | u ∈VSSS, v ∈VSSS, ∃e′ = (u′, v′), λSSS(e) = λSS(e′), u′ ⊆ u, v′ ⊆ v}

α : (VSSS ∪ ESSS) → N is a numbering function such that α : VSSS → N and α : ESSS → N are

injections.

In other words, if two nodes of the Semantic Summary have a common member in the instance

graph, the Semantic and Structural Summary merges the two nodes. Also every edge of the

Semantic and Structural Summary is either an edge of the Semantic Summary or an edge

resulting from the merging of nodes of the Semantic Summary.

The Semantic and Structural Summary differs from the structural summaries described in

[1][19][40] in the sense that it may contain properties defined in the RDF schema which do not

exist at all in the instance base. We allow the representation of such properties so that updates to

the instance graph that eventually introduce them can be accommodated gracefully. Furthermore,

the Semantic and Structural Summary may introduce spurious paths and cycles in the data

summary. For example, if resource &r5 in figure 4.1b is also defined as an instance of the class

Author, incorporating this in the Semantic and Structural Summary will cause the classes

Student, Author, Professor and Mentor to be merged. The merged node will have the edge

advises as a self loop so that the spurious pattern shown in figure 4.1f is seen as valid. We will

investigate possible solutions to this problem in the future.

Having discussed the Semantic and Structural Summary, we now direct our attention to our

proposed P-Tree and MD-Tree summaries. To create each of the proposed summary, we begin

 26

by generating all subgraphs of length at most maxL and counting their frequencies using a slight

modification of the gSpan algorithm with input graph G = (V, E, λI, τ) and the frequency

threshold set to one. However, we represent each edge e = (u, v) in G by a 5-tuple <i, j, λI(e),

τ(u), τ(v)>, where i and j are integers that denote the DFS discovery times of nodes u and v and

λI and τ are the functions defined in section 3.1, with λI(.) and τ(.) (i.e., the ranges of λI and τ)

mapped to integers in accordance with the RDF Semantic and Structural Summary. The

sequence of edges/quintuples obtained after the algorithm is run represents the structure of

subgraphs of G; thus, given any two edges e1 = (u1, v1) and e2 = (u2, v2) for which v1 = v2, it

follows that τ(v1) = τ(v2). While gSpan discusses the minimum DFS code in the context of

undirected labeled graphs, for directed labeled graphs, we ignore edge directions during DFS

traversal so as to maintain the connectivity of the graph, however the directions are kept

implicitly in the quintuples. Example 2 explains how to obtain the minimal DFS code of a

pattern.

Example 2. Figure 4.2a shows a directed labeled graph that models conference information.

All publication authors are classified as members of the class “Author”, publications as

“Publication” and so on. Concepts and edge labels are assigned integer ids as shown in figure

4.2c. To obtain the edge sequence for the subgraph au1 authorOf pub1, pub1 submittedTo conf1,

pc1 pcMember of conf1, we begin DFS with the edge authorOf as it is lexicographically the

smallest label. Traversal proceeds as shown by the boxed subscripts associated with the nodes to

yield the pattern (1,2,5,1,4) (2,3,7,4,3) (4,3,6,3,2). Note that the direction of the edge labeled

“pcMemberOf” is implicit in the sequence. Figure 4.2d shows all patterns of length at most 3

and their frequencies from the graph in figure 4.2c.

 27

conf1

pc1

submittedTo
au2

authorOf
pub1

pcMemberOf

au1
authorOf

au3

authorOf

2

3

7
1

5
4

6

1 5

1
5

7submittedTo

6pcMemberOf

5authorOf

4Publication

3PCMember

2Conference

1Author

3(1, 2, 5, 1, 4) (2, 3, 7, 4, 2) (4, 3, 6, 3, 2)

3(1, 2, 5, 1, 4) (3, 2, 5, 1, 4) (2, 4, 7, 4, 2)

1(1, 2, 5, 1, 4) (3, 2, 5, 1, 4) (4, 2, 5, 1, 4)

1(1, 2, 6, 3, 2) (3, 2, 7, 4, 2)

3(1, 2, 5, 1, 4) (2, 3, 7, 4, 2)

3(1, 2, 5, 1, 4) (3, 2, 5, 1, 4)

1(1, 2, 7, 4, 2)

1(1, 2, 6, 3, 2)

3(1, 2, 5, 1, 4)

(a)
(c)(b) (d)

2

1

3

4

Note that, in our directed graph model, an edge, for example (5, 1, 4) in figure 4.2, may appear in

a pattern of length at least two, in one of three possible directions: forward, as in (1, 2, 5, 1, 4);

backward, as in (3, 2, 5, 1, 4); or potentially in a self-loop, as in (2, 2, 5, 1, 4).

At this point, we have the necessary summary data to make accurate estimates for the sizes of

joins (intermediate or final). If the number of joins is less than or equal to maxL, the estimate

may be exact (and from empirical testing is always very close). Note, estimates are not always

exact, since the gSpan algorithm provides an efficient way to determine frequency counts, they

may differ slightly from a more straightforward, though very inefficient, technique of pre-

computing all joins. When the number of joins is greater than maxL, formulas must be used to

provide somewhat less accurate estimates

4.2. Pattern Tree (P-Tree)

Given the set of patterns and their frequencies, the P-Tree is a prefix tree representation of the

patterns that achieves more compactness than the list of patterns. Its nodes are labeled with edge

patterns (patterns of length 1) such that any pattern in P can be obtained by a concatenation of

Figure 4.2: Unique Edge Sequences for Subgraphs

 28

node labels on a path from the root. Also, each node is associated with the frequency of the

pattern it represents.

(1, 2, 5, 1, 4) (1, 2, 6, 3, 2) (1, 2, 7, 4, 2)

(3, 2, 5, 1, 4) (2, 3, 7, 4, 2) (3, 2, 7, 4, 2)

(4, 2, 5, 1, 4) (2, 4, 7, 4, 2) (4, 3, 6, 3, 2)

3 1
1

1

3

33

31

1(1, 2, 7, 4, 2)

1(1, 2, 6, 3, 2)

3(1, 2, 5, 1, 4)

3(1, 2, 5, 1, 4) (2, 3, 7, 4, 2) (4, 3, 6, 3, 2)

3(1, 2, 5, 1, 4) (3, 2, 5, 1, 4) (2, 4, 7, 4, 2)

1(1, 2, 5, 1, 4) (3, 2, 5, 1, 4) (4, 2, 5, 1, 4)

1(1, 2, 6, 3, 2) (3, 2, 7, 4, 2)

3(1, 2, 5, 1, 4) (2, 3, 7, 4, 2)

3(1, 2, 5, 1, 4) (3, 2, 5, 1, 4)

(a) (b)

Definition 8. Given two patterns Pi and Pj with sequence(Pi) = e1, e2, …, ek and sequence(Pj) =

e
′
1, e

′
2, …, e

′
m of lengths k and m respectively, we say that Pi is a sub-pattern of Pj and

respectively Pj is a super-pattern of Pi if m > k and ei = e
′
i for 1 ≤ i ≤ k. Further, we say that Pi is a

maximal sub-pattern of Pj and respectively Pj is a minimal super-pattern of Pi if k equals m-1.

Lemma 1. Given a set P of patterns of length at most maxL, every pattern P in P of length m,

m ≥ 2 has exactly one unique maximal sub-pattern in P.

Proof. The canonical representation of patterns is a linearization of the patterns so that every

pattern of length at least 2 has only one maximal sub-pattern.

By Lemma 1, pattern Pi is the parent of pattern Pj in the P-Tree, if Pi is its maximal sub-pattern.

The root of the tree is an empty node whose children are patterns of length 1. We illustrate this

with an example.

Example 3. Figure 4.3b shows the P-Tree for the patterns in figure 4.3a, which are the same

patterns introduced in figure 4.2a. Except for the root, each node is associated with an edge

Figure 4.3: Pattern Tree

 29

pattern and the frequency of the pattern it represents. Thus the frequency of the pattern

(1,2,5,1,4) (3,2,5,1,4) (4,2,5,1,4) can be obtained by traversing the leftmost branch of the tree.

Pruning the Pattern Tree.

To motivate the pruning of the P-Tree, we observe that given to two patterns Pi and Pj which

have almost the same edge patterns, the frequency of Pi may be within δ of that of Pj, where δ is

a small non-zero positive integer. The idea of our P-Tree approach then is to identify sets of

patterns which have almost the same edge patterns such that for a set say P, the frequencies of

patterns in P are within δ of at least one pattern in P say Pi. Thus, given Pi, the frequencies of all

other patterns in P can be estimated within δ error so that we can safely eliminate all other

patterns in P from the summary. In this section, we discuss how we construct a P-Tree that fits

the given summary budget.

If the size of the P-Tree exceeds the budget, it has to be systematically pruned so as to avoid a

large increase in its overall estimation error. The question then is; which nodes are to be pruned

and in what order? To answer this question, we develop the concepts of preference and

estimation values of patterns. We begin by introducing some notations.

Notations.

We denote a set of patterns of length k by PK and we define the function freq whose domain is

the power set of patterns of length at most maxL and whose range is the set of positive integers,

such that if X is a single pattern, freq(X) maps to the frequency of the pattern. If however, X

contains more than one pattern, freq(X) maps to the sum of the frequencies of all patterns in X.

Formally, we have that

 30

>

=∈
= ∑

∈X p

I

1 |X| if freq(p)

1 |X | if | X p ,Gin p offrequency

 freq(X)

We define function children whose domain and range are the set of patterns of length at most

maxL and the power set of patterns of length at most maxL, respectively, such that for a pattern

Pi, children(Pi) maps to the set of children of Pi in the P-Tree.

To prune the P-Tree, we consider that in some scenarios, certain patterns may be considered

more important than others. For example, frequent patterns in a query workload, for tuning the

summary. Our preference value for a pattern captures this notion.

Definition 9. Preference Value of a Pattern. Given a set of patterns P = (p1, p2, …, pm) with

frequencies (freq(p1), freq(p2), …, freq(pm)). Let PPI = (pPI1, pPI2, …, pPIm) be a vector such that 0

≤ pPIi ≤ 1 for every pPIi ∈ pPI. If pPIi defines the importance of pattern pi, we define the preference

value of pi (pPVi) as the number of patterns which are less important than pi, i.e., number of

patterns pj in P such that pPIi > pPIj.

In Definition 9 above, we do not assume any particular technique for computing the importance

of a pattern. However for the purpose of tuning the summary to favour frequent patterns, the

importance of a pattern can simply be computed as the ratio of its frequency to that of the most

frequent patternyes. Our testing did not include preference values, so we will defer further

treatment of them until the appendix.

To motivate the estimation value of patterns, we note that if there is a match for a pattern p

where sequence(p) = e1, e2, …, ek in the tree, its frequency freq(p), is the integer associated with

the matched node labeled ek. If ek is pruned in the tree, we guess freq(p) from freq(p′), where

sequence (p′) = e1, e2, …, ek-1 is the parent of p in the tree, under the assumption that children of

 31

p′ in the tree have a uniform frequency distribution. Thus if p′ has m children with total

frequency N, the frequency of each child is estimated as N/m. When the children of p′ are

contracted, we compute and associate the ratio N/(m × freq(p′)) with p′. We keep this ratio

(rounded to the nearest integer) and not N/m for ease of frequency propagation as we will discuss

later. We refer to this ratio as the growth rate of p′, denoted by p′GR. We compute one growth

rate for p′ for all its children, to avoid overly increasing the size of the tree as patterns are

pruned.

Our estimate for a contracted pattern p will be inaccurate if the frequency distribution of the

children of its parent p′ is not uniform. To exploit the uniformity assumption, we attempt to

prune the P-Tree by deleting the children of patterns for which the assumption holds. To do this,

we let the probability of the occurrence of any child p of a pattern p′ be its proportion with

respect to the total frequency of all children of p′ (i.e. freq(p)/N, where N is the sum of freq(pj)

for all pj in children(p′)). If the random variable Υ defines the occurrence of a child of p′, we can

measure the evenness of the probability distribution of Υ using its entropy [45] H(PrΥ) given by:

H(PrΥ) = - ∑j PrΥ(pj)log2(PrΥ(pj))

The entropy of a probability distribution gives a sense of the unpredictability of any value from

the distribution. The entropy of a probability distribution is maximized if the distribution is

uniform. Thus, to measure how uniformly distributed Υ is, we normalize H(PrΥ) by dividing by

its maximum entropy. We denote this ratio as p′ENT for pattern P′ in the tree. If p′ has one child,

we set p′ENT to 1.

 32

Definition 10. cEstimation Value of a Pattern. Given a set of patterns P = (p1, p2, …, pm) with

frequencies (freq(p1), freq(p2), …, freq(pm)) and some δ ≥ 0, the estimation value of pi (pEVi) is

given by:

()
)children(P

 } δ |)freq(p)p)(freq(p | and)children(P p | p {
 P

i

h

jGRiiijj

iENT

≤−∈

By definition, for a pattern p, pENT is at most 1. It is 1, if the frequency distribution of the

children of p is uniform. If the exponent h is set to 1, the second term of the product measures

how closely p estimates all its children with at most δ error. Thus if pi and pj both have three

children, if pi estimates only two within δ error while pj estimates just one also within δ, this

value will be higher for pi (2/3) than for pj (1/3). However, if pi has six children and estimates

only two within δ error, then the value will be 1/3 for both pi and pj, although pi estimates more

of its children outside δ than pj. To cope with this, we set h to 1.5 so that the numerator will not

overly dominate the denominator. To find the optimal value for δ i.e. the smallest integer for

which the pruned P-Tree fits the given budget, we recursively increase a small integer

exponentially in powers of 2 until enough patterns can be pruned to meet the budget. Suppose

this occurs at ε = 2
i
, then we find the optimal δ which lies between 2

i-1
and 2

i
using binary search.

We now show how the observed and estimation values of patterns are combined to obtain a

single value with which the P-Tree is pruned.

As we noted before, when the size of the unpruned P-Tree exceeds the budget, we reduce the

size of the P-Tree by systematically selecting some nodes of the P-Tree which are to be pruned.

We compute the value of each node of the P-Tree (the combination of its preference and

 33

estimation values, or simply the latter if the former is not given) and select nodes to be pruned as

shown in the Prune P-Tree algorithm shown below.

1. Prune P-Tree

2. Input: P-Tree T, Budget B, constant c

3. Output: Pruned P-Tree T

4. δ ← 0; inc ← 0; Set estimable ←∅; done ← false

5. while done = false do

6. estimable ← ∅
7. for each internal node v in T in bottom – up order do

8. compute estimation value at δ
9. if v’s estimation value > 0 then

10. insert all its children into estimable

11. end if

12. end for

13. if sizeof(T) - sizeof(estimable) ≤ B and δ is optimal then
14. compute estimation values of patterns in T

15. prune all patterns in estimable

16. done ← true

17. else

18. adjust δ
19. end if

20.end while

As lines 4-8 of the Prune-Tree algorithm show, estimation values are used to select the patterns

to be pruned. The running time of the algorithm O(Ld
maxL

log(maxi{freq(pi)})), is reasonable

since logarithm is a slowly growing function and maxL will typically be small. The running time

stems from the loops in lines 7-12 and 2-17. Lines 7-12 run in O(Ld
maxL

) time, where L and d are

the numbers of unique edge labels and the maximum degree of nodes in the graph respectively.

Recall that the root of the P-Tree has a child for each unique edge label in the graph while

internal nodes have at most d children. Lines 5-20 will be executed at most log(maxi{freq(Pi)})

times, since all patterns are estimable at δ = maxi{freq(Pi)}.

Figure 4.4: Pattern Tree Construction Algorithm

 34

We illustrate the pruning process with an example. In the example below, we assume that

information about the preference values of patterns are not provided.

a

b

c

d
8 812 8

9
811

11
10

10

12

(1, 1.28)

(1, 0.94)

(1, 0.33)

(a)

a

b

d
8 812 8

10

10

12

(1, 2.56)

(1, 2.06)

11

(c)

a

c

d
8 812 8

9
811

(1, 2.56)

12
(1, 2.66)

(d)

a

b

c 9
811

11
10

10

12

(1, 2.66)

(1, 2.06)

(e)

a

b

c

d
8 812 8

9
811

11
10

10

12

(1, 2.56)

(1, 2.66)

(1, 2.06)

(b)

Example 4. Figure 4.5a shows a subtree of a P-Tree. The 2-tuple (PZ, PV) associated with

each internal node is its growth rate and its value, computed at δ = 1 and c = 0 and assuming no

importance information is given so that PPVi is zero for all patterns. We show how the values are

computed using node “a”. Its growth rate is given by (10+10+11)/(3×12), which rounds to 1, so

its frequency (12) estimates that of one child (11). With exponent 1.5, the second term of the

equation in Definition 16 is 0.333. The entropy of the frequency distribution of its children is

given by 10/31 × log2(31/10) + 10/31 × log2(31/10) + 11/31×log2(31/11), or 1.583, with a

maximum entropy (log2(3)) of 1.585 and ratio 0.999. Its estimation value is then 0.999(0.333) =

0.333. In figure 4.5b, the values are computed at δ = 2. In figures 4.5c, d, and e, the children of

Figure 4.5: Pruning Nodes of the Pattern Tree

 35

nodes b, a, and c have been pruned at δ = 2, with total estimation errors of 4, 5, and 6. Our

technique will result in the pruning of figure 4.5c since b has the largest value.

We note that when a set of internal nodes children(Pi) with parent Pi are to be pruned, if the

children of any node in children(Pi) have been pruned, the average of the growth rates of such

nodes are computed and associated with Pi. Thus, a node P in the pruned P-Tree may have at

most maxL growth rates, ordered in increasing order of the original depths of their source in the

P-Tree.

Frequency Estimation Using the Pattern Tree.

Having discussed the construction and pruning technique of the P-Tree, we now discuss how to

estimate the frequencies of patterns of at most maxL from the P-Tree.

Given a pattern GP = (VP, EP, λP, P), we obtain its edge sequence p = e1, e2, …, ek and check that

each pair of edges ei and ej in p is connected in the semantic and structural summary. If they are,

we match p against the P-Tree. If we find a complete match for p in the Pattern Tree, we return

the frequency of the matched node ek in the P-Tree. If we find a partial match, we consider the

last matched node vj in the P-Tree. If it matches ek, we return its associated frequency which is

the exact cardinality of p if no descendant of vj was pruned. If it matches ei i < k, we use its

frequency to estimate that of the pruned node which originally matched ek. We note that

estimating the frequency of ek requires estimating and propagating those of its k-i-1 immediate

pruned ancestors. If ξ1, ξ2 , …, ξr, k ≤ r ≤ maxL are the growth rates associated with vj and

freq(pj) is the frequency associated with vj, we estimate the frequency of ek as:

∏
=

×
i -k

1 r

rFj ξ P

 36

For ease of exposition, we illustrate the estimation process with an example.

Example 5. To estimate the frequency of pattern (a, b, c, d) using the pruned P-Tree of figure

4.5c, we find the partial match (a, b, _, d), we return 12 since node d is matched. With the P-Tree

of figure 4.5e, we find the match (a, b, c, _). We return 9, since the growth rate of c is 1.

4.3. Maximal Dependence Tree (MD-Tree)

To construct our MD-Tree summary, we adapted the Maximal Dependence Decomposition

(MDD) technique that was proposed in [10]. The MDD was proposed as a technique that

captures the most informative dependencies that exists amongst a set of DNA sequences of the

same length, where it is impossible, due to limited data, to obtain a satisfactory estimate of all

dependencies in the sequences. In our setting, we observe that even if it is possible to obtain

accurate estimates of all dependencies that exist amongst a set of patterns of the same length, the

space overhead that will be incurred in maintaining these dependencies will be very large. Our

goal therefore, is to capture the most informative dependencies that exist amongst patterns of the

same length, while incurring as small a space overhead as possible.

To motivate the MD-Tree, we observe that edges in certain positions in patterns may largely

determine the probabilities of the occurrence of the patterns. For example, the three patterns of

length 3 in figure 4.2d have the edge in the first (leftmost) position in common so that the edge in

the second (middle) position, likely exerts a greater influence on the frequency of each of these

patterns. The idea behind our adaptation of the MDD [10] approach then, is to assess the edge

position with the greatest influence on the frequencies of the patterns. If no position of great

influence exists, we assume that edges occur independently at each position. Thus, given a set of

patterns of length at most maxL, we capture the probabilities with which edges occur at any

 37

position p ≤ maxL in the patterns in a tree data structure, which we call the MD-Tree. The next

paragraphs discuss how to construct the MD-Tree through an adaptation of the Maximal

Dependence Decomposition [10] technique. First, we give notations used in this discussion.

Notations.

In addition to the notations introduced in section 4.2, we now introduce more notations used in

the discussions in this section. Given an instance graph GI = (VI, EI, λI, τ, I, P, L), we let NE

denote the number of unique edge labels in G, i.e., NE is size of the mapping (λI(e), τ(u), τ(v)),

for each edge e = (u, v) in EI. Further, we let β be an integer in the range [1, 3] such that: 1) β is

1 if all edges in EI are forward edges (in a depth first search traversal of the graph) only, 2) β is 2

if in addition to forward edges, EI also contains backward edges only, 3) β is 3 if in addition to

forward edges, EI also contains self loop edges only or both backward and self loop edges. This

is based on the assumption that a graph which contains a self loop edge is likely to contain a

backward edge. We denote the probability with which edge ei (its label and directionality) occurs

at position j in the pattern by Pr(ei, j).

Having established the notations used in the discussion, we begin the discussion of the MD-Tree

by introducing our notion of edge occurrence probability matrix. Given a set PK of patterns of

length k, suppose it is known that edges occur independently at any position in the patterns, then

we can estimate the frequency of any pattern Pj with edge sequence (e1, e2, …, ek) as the product

of the total frequency of patterns in PK and the probability with which an edge ei occurs at

position j that is:

freq(Pj) = freq(PK) × Pr(e1, 1) × Pr(e2, 2) × … × Pr(ek, k)

 38

To this effect, we pre-compute and maintain these probabilities in a probability matrix where

Pr(ei, j) is given by the ratio of the total frequencies of patterns in PK such that edge ei occurs at

position j and the total frequencies of all patterns in PK, i.e.,

{ }()
()K

K

P

P

freq

jposition at occurs e edge and p | pfreq
)j,Pr(e i

i

∈
=

Definition 11. Edge Occurrence Probability Matrix. A probability matrix PMK for a set PK of

patterns of length k with k > 0, is a βNE × k matrix whose rows represent the possible edge sub-

patterns that may appear in any pattern in PK and whose columns represent the positions in

which the edge sub-patterns may occur. The (i, j)
th
 entry of PMK contains the probability that

edge ei occurs at position j.

To construct the probability matrix PMK for patterns in PK, we first obtain the row indices by

assigning unique integer ids to the possible edge sub-patterns that may appear in any pattern of

length at least two, in multiples of β, corresponding with the possible edge directions (forward,

backward and self-loop). To ascertain that edge patterns are uniquely identified, we assign

integer x to edge sub-pattern ei such that if x modulo β is zero, one or two then x identifies ei in

the forward direction, backward direction or self-loop, respectively. The column indices are

simply the k positions in which edge patterns may occur. Next, if edge sub-pattern ei is assigned

integer x, and ei occurs at position j, we store Pr(ei, j) in cell (x, j) of PMK. Example 6 explains

how the probability matrix in figure 4.6c is created

Example 6. Figure 4.6a below shows the set P2 of patterns of length two from figure 4.2d. The

dimension of the probability matrix PM2 for patterns in P2 is 6×2 (i.e. β is 2, since there are no

self loop edges). To construct PM2, we assign integer ids to the edge types (5, 1, 4), (6, 3, 2) and

 39

(7, 4, 2) as shown in figure 4.6b. Next, we compute the entries for each cell (i, j) in PM2 as

shown in figure 4.6c. Thus, cell (1, 1) holds the probability that edge type (5, 1, 4) occurs in a

forward direction at position 1 in the patterns i.e. 6/7, cell (2, 2) holds the probability that edge

type (5, 1, 4) occurs in a backward direction at position 2 of the patterns i.e. 3/7 etc. Under the

independence assumption, the frequency of the pattern (1, 2, 5, 1, 4)(3, 2, 5, 1, 4) is estimated as

7(6/7)(2/7) i.e. 12/7, which rounds to 2.

1(1, 2, 6, 3, 2) (3, 2, 7, 4, 2)

3(1, 2, 5, 1, 4) (2, 3, 7, 4, 2)

3(1, 2, 5, 1, 4) (3, 2, 5, 1, 4)

(7, 4, 2)6

(7, 4, 2)5

4

3

2

1

(6, 3, 2)

(6, 3, 2)

(5, 1, 4)

(5, 1, 4)

(a)

(b) (c)

0

0

0

1/7

0

6/7

1

1/76

3/75

04

3

2

1

0

3/7

0

2

If the independence assumption holds for all sets of patterns of length k, 1 ≤ k ≤ maxL, then

probability matrices PM1, PM2, ..., PMmaxL will suffice for estimating the frequency of these

patterns. This assumption gives rise to our notion of the Base MD-Tree.

Definition 12. Base MD-Tree. Given the sets P1, P2, …, PmaxL of patterns of length at most

maxL, a base MD-Tree for the patterns in Pi 1 ≤ i ≤ maxL is a triple (RT, VT, ET) where RT ∈ VT

is the root of the tree and VT and ET are the sets of nodes and edges of the tree, such that |VT - RT|

Figure 4.6: A Probability Matrix for Patterns of Length 2

 40

= |ET| = maxL. All nodes in VT - RT are ordered children of RT such that child i is associated with

the probability matrix PMi, for patterns in Pi. Each edge (RT, i) is labeled with freq(Pi), the total

frequency of all patterns in Pi.

Example 7. Figure 4.7a shows the base MD-Tree for the patterns of figure 4.2d.

Under the assumption that edge types appear independently in patterns, the base MD-Tree holds

sufficient information for estimating the frequency of patterns. As we saw in Example 6, this

assumption may not always hold. Thus a refinement process on the base MD-Tree is required to

capture dependency information that may exist among edge types with respect to the positions at

which they occur in the patterns.

Given PK, the set of all patterns of length k, suppose it is known that the occurrence of any edge

at position i, 1 ≤ i ≤ k and i ≠ m, depends on the edge at position m. We estimate the frequency

of a pattern Pj = (e1, e2, …, ek) in PK as:

∏
≠=

××
k

m i 1, i
mimK)m) ,(e | i),Pr((e)m ,Pr(e)freq(P

where Pr((ei, i) | (em, m)) is the conditional probability that ei occurs at position i given that em

occurred at position m. To refine the base MD-Tree to reflect this dependence, let node vK be the

node in the base MD-Tree that is associated with probability matrix PMK. We create βNE ordered

children nodes rooted at vK, where each child is associated with a new probability matrix PMK of

dimension βNE × k-1. Cell (a, b) of the probability matrix associated with child i of vK contains

the conditional probabilities that the edge type with integer id “a” occurs at position “b” given

that the edge type with integer id “i” occurs at position m. The ith edge from vK to its ith child is

labeled with the probability that the edge type with integer id “i” occurs at position m in patterns

 41

in PK. After the refinement process, the probability matrix associated with node vK is deleted and

the integer “m” is associated with vK.

0

06

1/55

04

02

1/53

3/51

1/706

3/705

004

3/702

1/7

6/7

03

01

0006

3/73/705

0

0

0

1

1/74/72

0

0

0

3/74

03

01

5 7 7

0

1

6/7

1/25

1/22

06

...
...

01

16

...
...

01
…

(a)

(c)

1/7
0

0

5
7

7

0
……
0

6

2

1

…(n6,2)i,j(n6,1)i,j

...

…

…

…

...

(n1,2)i,j

2

...

(n2,1)i,j

1

...

(n2,6)i,j

(n1,6)i,j

6

cv3,1

cv2,1
cv3,2

cv1,2

acv3

acv2cv2,3

acv1cv1,3

(d)

(e)

(1, 2, 6, 3, 2) (3, 2, 7, 4, 2)

(1, 2, 5, 1, 4) (2, 3, 7, 4, 2)

(1, 2, 5, 1, 4) (3, 2, 5, 1, 4)

1

3

3

3

1

(b)

For ease of exposition, we illustrate the refinement process with an example.

Example 8. Given the base MD-Tree of figure 4.7a, suppose we know that edge types

occurring at position 1 for patterns of length 2 has the greatest influence on the edge types at

position 2, we refine the second child node (which we denote as v2 in this example) of the root of

the base MD-Tree as follows. First, we create 6 new children nodes for node v2, one for each

edge type. Next, we obtain the length 2 patterns which were used to create the probability matrix

associated with v2 i.e. the patterns shown in figure 4.6a. Next, we partition these patterns with

respect to the occurrence of the 6 edge types at position 1. As shown in figure 4.7b, only the

partitions for edge types 1 and 3 are non-empty. Using the patterns in the partition 1 and 3, we

Figure 4.7: Refining the Base MD-Tree

 42

create two new probability matrices which we associate with child nodes 1 and 3 of v2

respectively. Figure 4.7c shows the MD-Tree after the refinement process.

When one or more nodes of a base MD-Tree are refined as described above, we call the modified

tree a refined MD-Tree.

Definition 13. Refined MD-Tree. A refined MD-Tree for the sets P1, P2, …, PmaxL of patterns of

length at most maxL, is a triple (RT, VT, ET) where RT ∈ VT is the root of the tree, VT and ET are

the sets of nodes and edges of the tree respectively. The set of nodes VT can be partitioned into

two disjoint non-empty sets VTleaf and VTnon-leaf such that every node in v ∈ VTleaf or VTnon-leaf is a

leaf node or non-leaf node respectively. Further, a node v is associated with a probability matrix

if and only if v is a leaf node and every non-leaf node v, v ≠ RT has exactly βNE children. The

root node RT has exactly maxL children.

Finding the Position of Maximal Dependence.

As we noted earlier, we refine a node of the base MD-Tree by determining the position in

patterns of length k that exerts the greatest influence on the others. We now discuss how we

determine this position.

Given the set PK of patterns of length k, we find the position that greatly influences the others by

performing chi-square association tests for edge types that occur at all pairs of positions i and j, 1

≤ i,j ≤ k, i ≠ j, using the chi-square test statistic given by:

∑∑
= =

−E EβN

1 m

βN

1 n nm,

2

nm,nm,

E

)E (O

 43

In the equation above, Om,n is the sum of the frequency of patterns in PK for which edge types m

and n occur at positions i and j respectively and Em,n, the expected mean of Om,n is given by:

∑∑∑∑
= ===

 E EEE βN

1 a

βN

1 b

ba,

βN

1 b

nb,

βN

1 a

am, OOO

Thus, for the set PK of patterns of length k, we find the position that greatly influences the others

by performing chi-square association tests for edge types which occur at all pairs of positions i

and j, 1 ≤ i,j ≤ k, i ≠ j. For each position i, we sum the values obtained from the chi-square

association tests for positions i and j, 1 ≤ j ≤ k, j ≠ i. We refer to this sum as the aggregated chi-

square value (ACV) of position i. If m is the position which has the maximum ACV (MACV),

then position m exerts the greatest influence on all other positions if at least one of the chi-square

values of positions m and j, 1 ≤ j ≤ k, j ≠ m, is statistically significant i.e. if the probability that

positions m and j are associated by chance is less than a given level of significance. We clarify

this with an illustration.

Example 9. Suppose we wish to find a position of maximal dependence for a set of patterns of

length 3. First, we create a 3×4 matrix as shown in figure 4.7d. To compute CV1,2 for example,

we create a 6×6 matrix as shown in figure 4.7e, such that cell i,j contains the number of times the

edge types with integer ids i and j occur at positions 1 and 2 in the patterns respectively. CV1,2 is

then the value of the chi-square test statistic for the 6×6 matrix. Next, we store the sum of all

entries of each row of the 3×4 matrix to the fourth column, then we find the maximum of the sums

over the three rows. Suppose the maximum sum is ACV2, we conclude that position 2 has the

greatest influence on others but only if at least one of CV2,j is statistically significant

Definition 14. Significant Node. Let v be a leaf node of a base or refined MD-Tree T, let PMK

be the probability matrix associated with v and let PK be the set of patterns from which PMK was

 44

created. We say that v is a significant node in T if there is a position j of maximal dependence in

the patterns in PK.

Definition 15. Complete MD-Tree. A complete MD-Tree is a refined MD-Tree T that has no

significant leaf nodes.

Finding the Optimal MD-Tree.

From the foregoing discussion, it is obvious that the complete MD-Tree is the ideal choice

amongst MD-Trees for obtaining accurate estimates of the frequency of patterns. However, the

size of the complete MD-Tree may exceed the budget. Thus, given the sets of patterns P1, P2, ..,

PmaxL, our optimal MD-Tree is a refined MD-Tree whose size does not exceed B and from which

the best estimates of the frequency of patterns in P1, P2, .., PmaxL can be obtained. The idea is to

choose a sub-tree of the complete MD-Tree that fits the budget and maximizes the MACV values

of the refined nodes in the sub-tree. Our objective of selecting nodes with high MACV values is

because a high MACV value indicates a strong position of maximal dependence. Given a

complete MD-Tree (rT, VT, ET), let S = (sv1, sv2, …, svm) be the size increment induced on the

MD-Tree when node vi was refined. Note that svi is zero for the root and leaf nodes since they are

not refined. Also let I = (iv1, iv2, … ivm) be the impact of node vi, given by MACVi/Cvi, rounded

to the nearest integer, where Cv is the number of columns of the probability matrix associated

with vi. We normalize the MACV values to avoid favoring nodes of larger patterns. Note also

that ivj is zero for the root and leaf nodes since they are not refined. The problem is to find a tree

T′ = (V′, E′), V′ ⊆ VT and E′ ⊆ ET rooted at rT, such that ∑j (svj) ≤ B and ∑j (ivj) is maximized.

This problem is an instance of the Tree Knapsack Problem (TKP) which is known to be NP-hard.

Given xj, an indicator variable with value 1 if vj is selected as part of the optimal solution or 0

otherwise, TKP is formulated as the following integer programming problem: Maximize

 45

∑
m

j
jvjxi

constrained on

B xS
m

j
jvj ≤∑ , jpred(j) x x ≥

where pred(j) denotes the predecessor (parent) of j in T′. With this reformulation, several

pseudo-polynomial time solutions based on dynamic programming (DP) have been proposed

such as [13] with Ο(|V′|B) running time. We employ a greedy approximation with Ο(|V′|)

running time. Given the complete MD-Tree, the vectors S and I and the summary size budget B,

our greedy approximation creates the tree T′ = (V′, E′) by choosing maximal impact subtrees of

T′ which fit the budget, as shown in the Prune MD-Tree algorithm.

1. Prune MD-Tree

2. Input: Tree Knapsack TK, Budget B

3. Output: Pruned Tree TK

4. V = (v1, v2, …, vm) //vector of nodes of TK in decreasing order of impacts

5. tree_capacity← 0

6. while V not empty do

7. v ← extract first element of V

8. v_ancestors_size← sizes of v and its ancestors

9. if tree_capacity + v_ancestors_size ≤ B then
10. initialize node v′ to v
11. while u ≠ rT do
12. contract v′ into u for edge (u, v′)
13. delete v′ from V
14. increment tree_capacity with v_ancestors_size

15. else

16. prune subtree at v, delete its nodes from V

17.end while

Figure 4.8: MD-Tree Construction Algorithm

 46

Frequency Estimation Using the MD-Tree.

Given an optimal MD-Tree (rT, VT, ET), we define λV as a function that maps nodes in VT to

integers (for internal nodes) or probability matrices (for leaf nodes) with which they are

associated. The integers associated with internal nodes denote the position at which the node was

split. We also define λE as a function which maps edges in ET to integers (for edges emanating

from the root) or real numbers (for all other edges) with which they are associated. The integer

on edge i emanating from the root denotes the total frequency of patterns of length i, while the

real numbers on all other edges denote the conditional probability of the occurrence of its

incident node given the edge pattern at the split position. We also define the function id on edge

patterns that return the integer id assigned to the edge type of the pattern.

Let P = e1, e2, …, ek be the edge sequence of a graph pattern GP = (VP, EP, λP, P) of length k. To

estimate the frequency of P, we check that each pair of edges ei and ej in P is connected in the

semantic and structural summary. If so, beginning from the k
th
 child (say v) of rT, we estimate

freq(P) as:

= ∏∏

∉=
+

=
+

k

 r 1, r
r)),r(id(e1jv

j

1 i
))iv(vλid(e1iiE1TE))(v(λ) v,v(λ) v,(rλ freq(P)

S

In the product above, given an edge (v, v′)r subscripted with r, the subscript r denotes the r
th
 edge

of node v. The integer j is the number of edges of the optimal MD-Tree found on the path from

the root to a leaf node as defined by the subscripts on the edges, so that the node vj+1 is a leaf.

The subcripts (r, r′) are integer indices for accessing cell (r, r′) of the probability matrix

associated with node λV(vj+1). The set S holds labels of all nodes on the path from RT to vj+1

so

that at vj+1, any integer in the range [1, maxL] not in the set S did not label any node on this path.

We keep elements of S sorted as they are inserted, so that at the leaf vj+1, we can check for

 47

elements of [1, maxL] not contained in S in Ο(maxL) time. The depth of the MD-Tree is at most

maxL; thus, the time complexity for estimating pattern frequencies is given by:

Ο(maxL log(maxL))

We illustrate the estimation process by an example.

Example 10. To estimate the frequency of the pattern P = e1, e2 of length 2 given by (1,2,5,1,4)

(3,2,5,1,4) from the MD-Tree of figure 4.7, we first access the second child node of the root. Let

this node be denoted v1. Since λV(v1) = 1, we insert 1 into set S and set the frequency of P

(freq(P)) to freq(P2) which is 7. Recall from figure 4.6b that id(e1) = id(1, 2, 5, 1, 4) is 1. So, we

access the node on which the first edge of v1 is incident. Let this node be v2. Next, we multiply

freq(P) by λE(v1, v2) given by 6/7, resulting in 6. Then, we obtain λV(v2) which yields the

probability matrix PM2 associated with v2 which must have only one column. Since the set S

contains the integer 1, the lone column of PM2 must index position 2 of patterns in P2. Further,

id(e2) = id(3,2,5,1,4) is 2, thus we access cell which represents the index (2, 2) in PM2 to obtain

1/2. We then multiply freq(P) which is currently 6 by 1/2 to obtain 3, the final estimate for the

frequency of P.

4.4. Estimating the Frequency of Large Patterns

Given a large pattern whose length is greater than maxL, the idea is to use smaller patterns

whose frequencies are known, to estimate the frequency of the large pattern. Thus we break up

the large pattern into smaller patterns whose frequencies are known and then combine the

frequencies of the small patterns to obtain an estimate for that of the large pattern. There are

several possible ways of breaking up the large pattern starting from one in which the smaller

patterns are disjoint to one in which the smaller patterns have overlaps in all but one edge. In [1],

the authors demonstrated that breaking up a large path into non-disjoint smaller paths that

 48

intersect in all but one edge work well in estimating the frequency of large path. Further, the

authors in [17] have also shown that breaking up a large twig into non-disjoint smaller twigs

which intersect in all but one edge work well in estimating the frequency of the large twig. In the

light of these works, we estimate the frequency of a large pattern by breaking it up into non-

disjoint smaller patterns which intersect in all but one edge. We break up a large pattern by a

traversal that visits all edges in the pattern as few times as possible. More formally, given a large

pattern GP = (VP, EP, λP, P) with |EP| > maxL, as always, we check that its edge sequence p = e1,

e2, …, ek is connected in the semantic and structural summary. If so, we break up GP into G′1,

G′2, …, G′|E|-maxL+1 non-disjoint connected patterns such that G′i intersects G′i-1 in all but one

edge. Let G′′i denote the intersecting edges of G′i and G′i-1. Next, we obtain the edge sequences

p′1, p′2, …, p′|E|-maxL+1 and p′′2, p′′3, …, p′′|E|-maxL+1 for the patterns G′1, G′2, …, G′|E|-maxL+1 and

G′′2, G′′3, …, G′′|E|-maxL+1, respectively. Like in [17], we assume conditional independence to

estimate the frequency of GP as follows:

∏
+

= ′′
′

×′=
1 -maxL |E|

2 r r

r
1

)pfreq(

)pfreq(
)pfreq()freq(p

Since GP may be broken up into G′1, G′2, …, G′|E|-maxL+1 in several different ways, we select that

for which frequency estimates of the patterns p′1, p′2, …, p′|E|-maxL+1 are obtained along the

deepest paths, i.e., paths which have the maximum total split nodes in the MD-Tree or along

paths with the least pruned nodes in the P-Tree.

Example 11. Figure 4.9a shows a large pattern of length 4. The exact matchings of this pattern

in the sample graph database shown in figure 4.9b is 4. Suppose maxL is 2, we estimate this

pattern by subdividing it into the sub-patterns (a) 1—head→2,2—teacherOf→3, (b) 2—

teacherOf→3,2—author→4, (c) 2—author→4,4—inJournal→5. Sub-pattern (a) has 3

 49

matchings, (b) has 5 matchings and (c) also has 5 matchings. Sub-pattern (a) overlaps with (b)

on the edge 2—teacherOf→3 which has 3 matchings, while sub-pattern (b) overlaps with (c) on

the edge 2—author→4 which has 6 matchings. Therefore, the estimate for the pattern is

3(5/3)(5/6) which is 4.167 which rounds to 4.

journal1dept1 prof1

course1

article1

journal2article2

journal3dept2 prof2

course2

article3

journal4article4

journal5prof4 article6

dept3 prof3

course3

article5

head

head

head

author

author

author

author

author

author
teac

herO
f

teac
herO

f

teac
herO

f

inJournal

inJournal

inJournal

inJournal

inJournal

b

1 2

3

54

head
author

teac
herO

f

inJournal

a

Using the example shown in figure 4.9, we compare our combining function to the traditional

database join formula given by NANB/max(VA, VB) where NA is the number of tuples in relation

A, NB is the number of tuples in relation B, VA and VB are the numbers of distinct join attribute

values in relation A and relation B, respectively.

Example 12. For the traditional database formula, there are several ways to subdivide the

pattern of figure 4.9a. We show only 2 ways here. One possible subdivision is 1—head→2,2—

teacherOf→3 and 2—author→4,4—inJournal→5. The first sub-pattern has 3 matchings, while

Figure 4.9: (a) A Large pattern and (b) A Sample Graph Database

 50

the second sub-pattern has 5 matchings and node 2 which is the join node (prof) has 3 distinct

matchings for both. Applying the formula, we have 3(5/3) which is 5. Another possible

subdivision is 1—head→2,2—teacherOf→3, 2—author→4 and 4—inJournal→5. The first sub-

pattern has 3 matchings, the second (author relation) has 6 matchings and the third (inJournal

relation) has 5 matchings. Node 2 (prof) which is the join node for the first and second sub-

patterns has 3 matchings for the first and 4 matchings for the second. Node 4 (article) which is

the join node for the second and third sub-patterns has 6 matchings for the second and 5

matchings for the third. Applying the formula recursively we have 3(6/4)(5/6) which is 3.75

which rounds to 4.

 51

5. Experimental Evaluation

In this section, we present the results of the experimental study we conducted based on the

proposed techniques described in this thesis. The goal of our experimental evaluation is to show

that the estimates obtained from the proposed summaries are indeed more accurate than

commonly used techniques and more importantly effective for optimizing join queries posed

over RDF graphs. We also demonstrate that the pruned summaries perform nearly as well as the

unpruned summaries in terms of accuracy and query optimization. We show this by comparing

the running time of several join queries optimized using our techniques to those optimized using

other techniques.

5.1. Methodology

Techniques. We considered the following techniques in our experimental study, depending on

how cardinality estimates are obtained for query optimization:

� Proposed Graph Summaries (GSummaries): We implemented the P-Tree and MD-Tree

summaries proposed in this work. We implemented a main memory execution engine that

uses the classic dynamic programming technique [44] for enumerating query plans. We used

the schema-aware model [51] for shredding RDF graphs into relational tables.

� Simple Greedy Technique (SGT): We implemented a simple greedy technique that builds a

left deep query plan by beginning with the relationship with the smallest cardinality and

extending to its adjacent relationships using an algorithm similar to that for growing a

minimum spanning tree.

 52

� Traditional Query Optimization Technique (TQOT): We also implemented another execution

engine that simulates a main memory relational database execution, using the same dynamic

programming enumeration as the execution engine for our graph summaries. The difference

however is in the way the result cardinality estimates are obtained. While for our proposed

techniques, the graph summaries supply the cardinalities, for the main memory relational

database, we used the well known uniformity assumptions employed by relational databases

to compute the cardinality estimates. If n1 and n2 are the sizes of the two relations to be

joined and if v1 and v2 are the number of distinct values of the join attributes, the cardinality

of the join of the two relations is estimated as n1n2/max{v1, v2}

Implementation Details. We implemented the proposed techniques (P-Tree and MD-Tree

summaries) in C++ with experiments performed on a 1.8GHz Dual AMD Opteron processors

and 16GB RAM. We created sparse matrices using sparseLib++ [25] libraries and used

BRAHMS [23] to parse the graphs. We used the schema-aware model for shredding RDF graphs

into tables and the B+Tree implementation of [22] for indexes. To compare the techniques, we

implemented the joins using hash join algorithm with intermediate tables materialized in

memory. We also implemented the joins using piped iterators on left deep plans only. Although

our work is mainly targeted towards optimizing join queries without constraints, in our

experiments, we show that with a combination of equi-depth [26] histograms and our proposed

summaries, our techniques perform well for join queries with uri constraints or literal constraints.

The histograms provide cardinality information for the constraints, based on which we compute

the selectivity of the constraint, which we propagate to estimates of unconstrained joins from our

graph summaries. If the value obtained from the histogram for a particular constrained

relationship is f and the cardinality of that relationship when unconstrained is n, we compute the

 53

selectivity as f/n. If the estimate of an unconstrained join from our graph summaries is c, we then

propagate the constraint to the unconstrained join by the product c(f/n).

Datasets. For our experiments, we used one synthetic dataset and one real life dataset. The real

life dataset which we used is the Mondial dataset. The Mondial dataset is a rich compilation of

geographical Web data sources on global statistics of world countries, cities, provinces, seas, and

international organizations. We converted an OWL version of the Mondial dataset into RDF

using protégé. For the synthetic dataset, we further enriched the Lehigh University Benchmark

(LUBM) dataset with new classes and relationships. To do so, we followed the model used by

LUBM in determining the sizes of instances of classes and relationships such that the generated

dataset models a real life university domain. For scalability experiments, we generated three

LUBM datasets with 10, 15 and 20 universities. The table below shows the properties of these

datasets.

 Mondial LUBM10 LUBM15 LUBM20

Instance nodes 5841 248880 385530 528334

Instance edges 18565 3021748 4677928 6416925

Literal Nodes 12450 106300 164795 225209

Literal edges 14002 429927 668110 915398

Unique Instance edges 28 31 31 31

Summaries. Stored as a list, the size of all patterns of length up to three for the Mondial dataset

is 378534 bytes and the size of the unpruned P-Tree and MD-Tree are 164792 and 128690 bytes,

with the P-Tree giving about a 56% reduction in size and the MD-Tree giving about a 66%

Table 5.1: Dataset Properties

 54

reduction in size. We pruned the P-Tree and MD-Tree, by constructing summaries which are

50% of the original unpruned summary sizes.

Mondial Dataset

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

P-Tree Pruned P-Tree MD-Tree Prund MD-Tree

Mondial Dataset

On the other hand, the size (as a list) of all patterns of length two for the LUBM dataset is 9614

bytes. Its unpruned P-Tree and MD-Tree are 5582 and 9422 bytes, with the P-Tree giving about

a 42% reduction in size and the MD-Tree giving a minimal reduction in size. Once again, we

pruned the P-Tree and MD-Tree, by constructing summaries which are 50% of the original

unpruned summaries. For both datasets, we used a 5% significance level and a β value of 3 for

constructing the MD-Tree summaries.

Figure 5.1: The sizes of the unpruned and pruned summaries for the Mondial dataset

 55

LUBM10 Dataset

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

P-Tree Pruned P-Tree MD-Tree Prund MD-Tree

LUBM10 Dataset

Time Analysis. The time for discovering all patterns of length maxL is the most time-consuming

part of our approach. Fortunately, it is a preprocessing step and depends on the connectedness of

the dataset. The time needed for constructing the P-Tree and MD-Tree summaries is in the order

of tenths of seconds.

Queries. As we noted earlier, our proposed summaries are targeted towards join queries posed

over RDF databases where relationships are specified in the joins but without constraints on the

nodes. However, in our experiments, we also evaluated the efficiency of our techniques when

combined with histograms for join queries which may have constraints on the nodes. To make

our evaluations as realistic as possible, we avoided choosing queries which are a random

concatenation of relationships in the data graph. While doing so could have led us to test queries

with larger sizes, we made the choice of queries which are meaningful and are as close as

possible to real life queries that users are likely to pose over the datasets. First, we chose queries

which have no constraints on the nodes, then we also chose queries which have uri constraints on

the nodes as well as those which have literal constraints on the nodes. For this reason, our

Figure 5.2: The sizes of the unpruned and pruned summaries for the LUBM10 dataset

 56

queries can be grouped into three categories. 1) Join queries with no constraints at all, i.e., for

which relationships are specified and all nodes are variables. 2) Join queries with uri constraints,

i.e., those for which relationships are specified but some nodes are constrained to be of a

particular uri. 3) Join queries with literal constraints, i.e., those for which relationships are

specified but some nodes are constrained to be a particular literal value. We have included the

queries in SPARQL in the appendix of this paper. Queries 1 – 4 are posed over the Mondial

dataset while queries 5 – 8 are posed over the LUBM dataset.

Error metric. We used the relative error metric |freq(p) – freq(p^)|/freq(p) to measure the

estimation error where freq(p) and freq(p^) are the true and estimated frequencies of p. Since the

nature of the SGT is such that it does not provide estimates for patterns, we do not include it in

our comparison of the estimation error of the techniques.

Results. We first show the results of queries over the Mondial dataset for the hash join

implementation with intermediate table materialization. Figure 5.3 shows the accuracy of the

techniques for query 1, which is an unconstrained join query with three relationships. The

cardinality of the result of this query is 4916. The unpruned P-Tree and the pruned P-Tree both

estimate the cardinality of the result of this query as 4915 with an estimation error of 0.0002. The

pruned P-Tree exhibits a good performance for this query. On the other hand, the unpruned MD-

Tree estimates it as 4934 with an estimation error of 0.0037 while the pruned MD-Tree estimates

it as 3276 with an estimation error of 0.3336. The TQOT estimates it as 3445 with an estimation

error of 0.2992. The pruned MD-Tree estimates the cardinality of this query with the highest

error amongst all the techniques. This is for the case where a maximal impact subtree is pruned

because it does not fit the budget, leading to estimation using the independence assumption.

 57

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P-Tree Pruned P_Tree MD-Tree Pruned MD-

Tree

TQOT

Series1

As figure 5.4 shows, the unpruned P-Tree, pruned P-Tree, the unpruned MD-Tree and the TQOT

all performed equally well while the pruned MD-Tree and SGT did not perform as well. We note

that although the size of the pruned P-Tree is about half the size of the unpruned P-Tree, the

pruned P-Tree has the same performance as the unpruned P-Tree. This is an indication of the

efficiency of the pruning technique. As indicated by its estimation error, the performance of the

pruned MD-Tree is not as good as its unpruned counterpart. As mentioned earlier, this is because

of the pruning of a maximal impact subtree that does not fit the budget. For the TQOT, this is the

case where the estimation error is not high enough to cause it to choose a sub-optimal plan.

Figure 5.3: The estimation errors of the techniques for Query 1

 58

0

10

20

30

40

50

60

70

80

P
tre
e

P
ru
ne
dP
Tr
ee

M
D
Tr
ee

P
ru
ne
dM
D
Tr
ee

S
G
T

TQ
O
T

T
im
e
 i
n
 M
il
li
s
e
c
o
n
d
s

Enumeration

Processing

Total

Figure 5.5 shows the estimation errors of the evaluated techniques for query 2, which is another

unconstrained join query involving three relationships. For this query, the cardinality of the

result is 877. The unpruned P-Tree and the pruned P-Tree both estimate the cardinality of the

result as 865, with an estimation error of 0.0137. The effectiveness of the pruning technique of

the P-Tree is shown by the fact that although the pruned P-Tree is about half the size of the

unpruned P-Tree, its estimation error is the same as that of the unpruned P-Tree. The unpruned

MD-Tree estimates it as 868 with an estimation error of 0.0103. The pruned MD-Tree estimates

the result cardinality as 3276 with an estimation error of 2.7355, while the TQOT estimates the

result cardinality as 2005 with an estimation error of 1.2862. Again, the unpruned P-Tree and

pruned P-Tree have the best performance with the least estimation error, followed by the

unpruned MD-Tree. The pruned MD-Tree has the worst performance

Figure 5.4: Result of Query 1: An Unconstrained Join Query over the Mondial Dataset

 59

0

0.5

1

1.5

2

2.5

3

P-Tree Pruned P_Tree MD-Tree Pruned MD-Tree TQOT

Series1

As figure 5.6 shows, the TQOT exhibits the worst performance, while all the other techniques

exhibit the same performance. For the TQOT, this is the case where the join uniformity

assumption does not hold and the estimation errors are large enough to cause it to choose a sub-

optimal query plan. Although the estimation error of the pruned MD-Tree is larger than that of

the unpruned MD-Tree as well as the TQOT, the pruned MD-Tree still performs as well as the

unpruned MD-Tree and better than the TQOT. This is because the intermediate estimates

obtained from the pruned MD-Tree are more accurate than the overall estimate, as such it still

finds the optimal plan.

Figure 5.5: The estimation errors of the techniques for Query 2

 60

0

5

10

15

20

25

30

35

P
tre
e

P
ru
ne
dP
Tr
ee

M
D
Tr
ee

P
ru
ne
dM
D
Tr
ee

S
G
T

TQ
O
T

T
im
e
 i
n
 M
il
li
s
e
c
o
n
d
s

Enumeration

Processing

Total

Figure 5.7 shows the estimation errors of the techniques for query 3, a join query involving three

relationships, with a uri constraint. The cardinality of the result of this query is 1033. The

unpruned P-Tree, pruned P-Tree and unpruned MD-Tree all estimate the cardinality of the result

of this query as 429, with an estimation error of 0.5847. For this query, once again, the pruning

technique for the P-Tree prunes effective as the estimation error for the P-Tree is the same as that

of the unpruned P-Tree. The pruned MD-Tree estimates the cardinality of this query as 0 with an

estimation error of 1. The estimation error of the pruned MD-Tree is greater than that of the

unpruned MD-Tree, reflecting the case when a maximal impact subtree of the MD-Tree is

pruned in order to meet the budget. The TQOT estimates it as 289, with an estimation error of

0.7202.

Figure 5.6: Result of Query 2: An Unconstrained Join Query over the Mondial Dataset

 61

0

0.2

0.4

0.6

0.8

1

1.2

P-Tree Pruned P_Tree MD-Tree Pruned MD-Tree TQOT

Series1

Figure 5.8 shows the query processing performances of the techniques for query 3. For this

query, all the techniques find the optimal query plan and thus exhibit the same performance. This

is due to the constraint on the query which causes the techniques to find an optimal query plan,

even though their estimation errors differ.

0

5

10

15

20

25

30

35

P
tre
e

P
ru
ne
dP
Tr
ee

M
D
Tr
ee

P
ru
ne
dM
D
Tr
ee

S
G
T

TQ
O
T

T
im
e
 i
n
 M
il
li
s
e
c
o
n
d
s

Enumeration

Processing

Total

Figure 5.7: The estimation errors of the techniques for Query 3

Figure 5.8: Result of Query 3: A Uri Constrained Join Query over the Mondial Dataset

 62

Figure 5.9 shows the estimation errors of the evaluated techniques for query 4, a join query

involving 4 relationships with a literal constraint. The cardinality of the result of this query is

162. The unpruned P-Tree, pruned P-Tree, unpruned MD-Tree and pruned MD-Tree all estimate

the cardinality of the result as 1 with an estimation error of 0.9938. The TQOT estimates it as

1296 with an estimation error of 7. Recall that for queries with constraint, we propagate the

selectivity of the constraint to the estimates of the joins. Our propagation assumes that a uniform

number of patterns will be affected by the constraint. For this query, this uniform assumption

does not hold and hence the larger errors in the estimates for the cardinality of the results.

0

1

2

3

4

5

6

7

8

P-Tree Pruned P_Tree MD-Tree Pruned MD-Tree TQOT

Series1

As figure 5.10 shows, for this query, both the SGT and TQOT techniques perform worse than

our techniques. In conformity with the estimation errors of our techniques, all of our techniques

exhibit the same performance in terms of the time spent for query processing. For this query, the

effectiveness of our pruning techniques is once again shown by the fact that both the pruned P-

Tree and pruned MD-Tree perform as well as their unpruned counterparts.

Figure 5.9: The estimation errors of the techniques for query 4

 63

0

5

10

15

20

25

30

35

P
tre
e

P
ru
ne
dP
Tr
ee

M
D
Tr
ee

P
ru
ne
dM
D
Tr
ee

S
G
T

TQ
O
T

T
im
e
 i
n
 M
il
li
s
e
c
o
n
d
s

Enumeration

Processing

Total

In summary for the Mondial dataset, our experimental results show that for the accuracy of

estimates of unconstrained join queries, our techniques perform better than the Traditional Query

Optimization Technique with the unpruned P-Tree, pruned P-Tree and the unpruned MD-Tree

having an average error of 0.7% compared to 79% for the Traditional Query Optimization

Technique. The pruned MD-Tree performs worst with an average error of 153%. For the

constrained queries, all our techniques perform much better than the Traditional Query

Optimization Technique with the unpruned P-Tree, pruned P-Tree and the unpruned MD-Tree

having an average error of 79%, while the pruned MD-Tree has an average error of 100%

compared to 386% average error of the Traditional Query Optimization Technique. Over both

the unconstrained and constrained join queries, our techniques are superior with an average error

of 40% for the unpruned P-Tree, pruned P-Tree and the unpruned MD-Tree and 127% average

error of the pruned MD-Tree compared to 233% average error of the Traditional Query

Optimization Technique.

Figure 5.10: Result of Query 4: A Literal Constrained Join Query over the Mondial Dataset

 64

As can be observed from the foregoing discussion, the accuracy of the pruned P-Tree was the

same as that of the unpruned P-Tree for the queries 1 – 4. To assess the level of degradation of

the accuracy of the pruned P-Tree with respect to the size of the pruned P-Tree, we pruned the P-

Tree to fit a 10KB budget, 25KB budget and 50KB budget. Figure 5.11 shows the estimation

errors of the pruned P-Trees of sizes 10KB, 25KB and 50KB for query 2. As the figure shows,

the pruned P-Tree of size 10KB shows a large estimation error for this query, while the pruned

P-Tree of Size 25KB and 50KB have the same minimal estimation error (0.0137) as the

unpruned P-Tree (see figure 5.5 above). As the figure shows, one can construct a summary that

is as small as 25KB, without increasing the estimation error when compared to the unpruned P-

Tree, for this query. As the figure also shows, it takes the same amount of time to process the

query for each of the pruned summaries.

10
25

50
30

30

30

0

2

4

6

8

10

12

14

Figure 5.11 shows the estimation errors of the pruned P-Trees of sizes 10KB, 25KB and 50KB

for query 3. Once again, the pruned P-Tree of size 10KB shows a large estimation error for this

query, while the pruned P-Tree of Size 25KB and 50KB have the same minimal estimation error

Figure 5.11: The Estimation Error for Query 2 for Summaries of Size 10KB, 25KB and

50KB

 65

(0.5847) as the unpruned P-Tree (see figure 5.7 above). Once again, as illustrated by this figure,

for this query, we can construct a summary that is as small as 25KB, without increasing the

estimation error when compared to the unpruned P-Tree. As figure 5.10 and figure 5.11 show,

the estimation error increases as the size of the summary decreases. However, the estimation

error of the summary does not overly increase for a reasonably small budget, in these cases a

budget of size 25KB.

10
25

50
30

30

30

0

2

4

6

8

10

12

Estimation Error

Summaries

Time in

Milliseconds

We now show the results over the LUBM dataset for the hash join implementation with

intermediate table materialization. For this dataset, once again we posed queries in categories 1 –

3. Figure 5.13 shows the estimation errors of the evaluated techniques for query 5, an

unconstrained join query involving three relationships, over the LUBM10 dataset. The

cardinality of the result of this query is 2912. The unpruned P-Tree, the pruned P-Tree and the

unpruned MD-Tree all estimate it as 2906 with an estimation error of 0.0021 while the pruned

MD-Tree estimates it as 1 with an estimation error of 0.9997. This is because maximal impact

subtrees along the path of this query were aggressively pruned causing estimation to be based on

Figure 5.12: The Estimation Error for Query 3 for Summaries of Size 10KB, 25KB and

50KB

 66

the independence assumption which does not hold in this case. The TQOT estimates it as 2914

with an estimation error of 0.0007.

0

0.2

0.4

0.6

0.8

1

1.2

P-Tree Pruned P_Tree MD-Tree Pruned MD-Tree TQOT

Series1

As figure 5.14 shows, our pruned P-Tree and pruned MD-Tree show encouraging performances

with both performing as well as their unpruned counterparts. Once again, the performance of the

pruned P-Tree and pruned MD-Tree show the effectiveness of the pruning techniques. Our

techniques have the same performance as the TQOT, while the SGT exhibits a worse

performance than all the other techniques. Further, the time taken to enumerate the plans in all

cases is very negligible. To show how the techniques scale with larger dataset, we posed the

same query over LUBM15 and LUBM20 datasets and as figure 5.15 shows, the techniques scale

linearly with increase in dataset size and the performance of SGT gets even worse with increase

in dataset size.

Figure 5.13: The estimation errors of the techniques for query 5

 67

0

50

100

150

200

250

300

350

P
tr
e
e

P
ru
n
e
d
P
T
re
e

M
D
T
re
e

P
ru
n
e
d
M
D
T
re
e

S
G
T

T
Q
O
T

LUBM10

T
im
e
 i
n
 M
il
li
s
e
c
o
n
d
s

Enumeration

Processing

Total

0

100

200

300

400

500

600

700

800

P
tr
e
e

P
ru
n
e
d
P
T
re
e

M
D
T
re
e

P
ru
n
e
d
M
D
T
re
e

S
G
T

T
Q
O
T

P
tr
e
e

P
ru
n
e
d
P
T
re
e

M
D
T
re
e

P
ru
n
e
d
M
D
T
re
e

S
G
T

T
Q
O
T

P
tr
e
e

P
ru
n
e
d
P
T
re
e

M
D
T
re
e

P
ru
n
e
d
M
D
T
re
e

S
G
T

T
Q
O
T

LUBM10 LUBM15 LUBM20

T
im
e
 i
n
 M
il
li
s
e
c
o
n
d
s

Enumeration

Processing

Total

Figure 5.16 shows the estimation errors of the techniques for query 6, another unconstrained join

query involving four relationships, over the LUBM10 dataset. The cardinality of the result of this

query is 559. The unpruned P-Tree, the pruned P-Tree and the unpruned MD-Tree all perfectly

estimate the cardinality of the result as 559 with no estimation error. However, the pruned MD-

Tree estimates it as 1 with an estimation error of 0.998. Once again, this is due to the aggressive

Figure 5.14: Result of Query 5: An Unconstrained Join Query over the LUBM10 Dataset

Figure 5.15: Result of Query 5: An Unconstrained Join Query over the LUBM10,

LUBM15 and LUBM20 Datasets

 68

pruning of maximal impact subtrees along the path of this query with estimation using the

independence assumption which does not hold. The TQOT estimates the cardinality of the result

as 3790 with an estimation error of 5.78.

0

1

2

3

4

5

6

7

P-Tree Pruned

P_Tree

MD-Tree Pruned MD-

Tree

TQOT

Series1

For this query, as shown in figure 5.17, in conformity with their estimation errors, our pruned P-

Tree performed as well as its unpruned counterpart while the pruned MD-Tree shows a worse

performance than its unpruned counterpart. Our techniques all perform better than the TQOT.

This is due to the fact that the uniformity assumptions on which it is based do not hold and the

estimation errors are large enough to cause it to choose a worse plan than the P-Tree and MD-

Tree techniques. The SGT also exhibits the same performance as our techniques.

Figure 5.16: The estimation errors of the techniques for query 6

 69

0

500

1000

1500

2000

2500

P
tr
e
e

P
ru
n
e
d
P
T
re
e

M
D
T
re
e

P
ru
n
e
d
M
D
T
re
e

S
G
T

T
Q
O
T

LUBM10

T
im
e
 i
n
 M
il
li
s
e
c
o
n
d
s

Enumeration

Processing

Total

Figure 5.18 shows the estimation errors of the techniques for query 7, a uri constrained join

query involving three relationships over the LUBM10 dataset. The cardinality of the result of

this query is 9. The unpruned P-Tree estimates it as 1 with an estimation error of 0.8889, the

pruned P-Tree estimates it as 7 with an estimation error of 0.2222. For this query, the estimate

obtained from the pruned P-Tree is more accurate than that obtained from the unpruned P-Tree.

This is as a result of the combination function that is used to obtain the estimate of a pattern

which is larger than the size of patterns maintained in the P-Tree. The unpruned MD-Tree

estimates it as 2 with an estimation error of 0.7778, while the pruned MD-Tree estimates it as 1

with an estimation error of 0.8889. The TQOT estimates it as 4 with an estimation error of

0.5556.

Figure 5.17: Result of Query 6: An Unconstrained Join Query over LUBM10 dataset

 70

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P-Tree Pruned

P_Tree

MD-Tree Pruned MD-

Tree

TQOT

Series1

As shown in figure 5.19, all techniques except the SGT came up with the same query plan and

thus have the same performance. This is because their absolute estimation errors are small and

thus they all find an optimal plan.

0

200

400

600

800

1000

1200

P-Tree PrunedP-

Tree

MD-Tree PrunedMD-

Tree

SGT TQOT

T
im
e
 i
n
 M
il
li
s
e
c
o
n
d
s

Enumeration

Processing

Total

Figure 5.18: The estimation errors of the techniques for query 7

Figure 5.19: Result of Query 7: A Uri Constrained Join Query over LUBM10 Dataset

 71

Figure 5.20 shows the estimation errors of the techniques for query 8, a literal constrained join

query involving four relationships over the LUBM10 dataset. The cardinality of the result of this

query is 93. The unpruned P-Tree, the pruned P-Tree, the unpruned MD-Tree and the pruned

MD-Tree all estimate the cardinality of the result as 1 with an estimation error of 0.9892. Once

again, this is because the uniform assumption based upon which the selectivity of the constraint

is propagated to the estimates of the joins does not hold. The TQOT estimates the cardinality of

the result as 341 with an estimation error of 2.6667.

0

0.5

1

1.5

2

2.5

3

P-Tree Pruned

P_Tree

MD-Tree Pruned MD-

Tree

TQOT

Series1

Although our techniques have a smaller overall estimation error for this query than the TQOT,

the TQOT performs slightly better than our techniques, as figure 5.21 shows. This is because the

estimates obtained for intermediate patterns from our techniques with the selectivity propagation,

caused it to choose a worse plan than the TQOT. The SGT shows a slightly worse performance

than all our techniques.

Figure 5.20: The estimation errors of the techniques for query 8

 72

0

200

400

600

800

1000

1200

1400

P
tr
e
e

P
ru
n
e
d
P
T
re
e

M
D
T
re
e

P
ru
n
e
d
M
D
T
re
e

S
G
T

T
Q
O
T

LUBM10

T
im
e
 i
n
 M
il
li
s
e
c
o
n
d
s

Enumeration

Processing

Total

In summary for the LUBM dataset, our experimental results show that our techniques perform

better on the average in terms of the accuracy of the estimates. For the unconstrained join

queries, the unpruned P-Tree, pruned P-Tree and unpruned MD-Tree all had an average error of

0.11%, while the pruned MD-Tree had an average error of 100% compared to 289% average

error of the Traditional Query Optimization Technique. For the constrained join queries, the

unpruned P-Tree had an average estimation error of 94%, the pruned P-Tree had an average error

of 61%, the unpruned MD-Tree had an average error of 88%, while the pruned MD-Tree had an

average error of 94% compared to 161% average error of the Traditional Query Optimization

Technique. Over both the unconstrained and constrained join queries, the unpruned P-Tree had

an average error of 47%, the pruned P-Tree had an average error of 30%, the unpruned MD-Tree

had an average error of 44%, while the pruned MD-Tree had an average error of 97% compared

to 225% average error of the Traditional Query Optimization Technique

Figure 5.21: Result of Query 8: A Literal Constrained Join Query over LUBM10 Dataset

 73

We now show the comparisons of the hash join implementation with intermediate table

materialization versus the piped iterators on left deep plans only using indexed joins. We show

this comparison only for the LUBM10 dataset.

0

50

100

150

200

250

300

350

P
-T
re
e

P
ru
n
e
d
P
-

T
re
e

M
D
-T
re
e

P
ru
n
e
d
M

D
-T
re
e

S
G
T

T
Q
O
T

P
-T
re
e

P
ru
n
e
d
P
-

T
re
e

M
D
-T
re
e

P
ru
n
e
d
M

D
-T
re
e

S
G
T

T
Q
O
T

Hash Join Piped Iterators

T
im
e
 i
n
 M
il
li
s
e
c
o
n
d
s

Series1

Series2

Series3

Figure 5.22 shows the result of query 5 (an unconstrained join query involving three

relationships) for the join with intermediate table materialization and the piped iterator

implementation. The techniques all show a reduced running time for the piped iterator

implementation when compared with intermediate table materialization. In addition, one of the

piped techniques, the Simple Greedy Technique (SGT), shows an increased running time when

compared to the other piped techniques (P-Tree, pruned P-Tree, MD-Tree, pruned MD-Tree,

TQOT). For this query, all the techniques except for the SGT find the same left deep plan and as

such they all have the same running time.

Figure 5.22: Comparison of the Hash Join Implementation with the Piped Iterator

Implementation for Query 5

 74

0

500

1000

1500

2000

2500

P
-T
re
e

P
ru
n
e
d
P
-

T
re
e

M
D
-T
re
e

P
ru
n
e
d
M

D
-T
re
e

S
G
T

T
Q
O
T

P
-T
re
e

P
ru
n
e
d
P
-

T
re
e

M
D
-T
re
e

P
ru
n
e
d
M

D
-T
re
e

S
G
T

T
Q
O
T

Hash Join Piped Iterators

T
im
e
 i
n
 M
il
li
s
e
c
o
n
d
s

Series1

Series2

Series3

Figure 5.23 shows the results of the intermediate table materialization and the piped iterator

implementation for query 6, an unconstrained join query involving four relationships. When

compared with their corresponding intermediate table materialization implementation, the pruned

MD-Tree and the TQOT show a reduced running time for the piped iterator implementation.

However, the rest of the techniques show a very slight increase in the running time for the piped

iterator implementation.

Figure 5.24 shows the result of the intermediate table materialization and the piped iterator

implementation for query 7, a URI constrained join query involving three relationships. All the

techniques show a reduced running time for the piped iterator implementation when compared

with the intermediate table materialization. All the techniques, except the SGT, show extremely

fast running times while the SGT shows an increase in the running time when compared to the

other techniques for the piped iterator than for the intermediate table materialization.

Figure 5.23: Comparison of the Hash Join Implementation with the Piped

Iterator Implementation for Query 6

 75

0

200

400

600

800

1000

1200

P
-T
re
e

P
ru
n
e
d
P
-

T
re
e

M
D
-T
re
e

P
ru
n
e
d
M

D
-T
re
e

S
G
T

T
Q
O
T

P
-T
re
e

P
ru
n
e
d
P
-

T
re
e

M
D
-T
re
e

P
ru
n
e
d
M

D
-T
re
e

S
G
T

T
Q
O
T

Hash Join Piped Iterators

T
im
e
 i
n
 M
il
li
s
e
c
o
n
d
s

Enumeration

Processing

Total

Figure 5.25 shows the result of query 8, a literal constrained join query involving four

relationships, for the intermediate table materialization strategy and the piped iterator execution

strategy. Compared to the intermediate table materialization strategy, all the techniques show a

reduced running time in the piped iterator execution strategy. However, the SGT shows an

increased running time when compared to the other techniques for the piped iterator execution

strategy than for the intermediate table materialization strategy.

Figure 5.24: Comparison of the Hash Join Implementation with the Piped Iterator

Implementation for Query 7

 76

0

200

400

600

800

1000

1200

1400

P
-T
re
e

P
ru
n
e
d
P
-

T
re
e

M
D
-T
re
e

P
ru
n
e
d
M

D
-T
re
e

S
G
T

T
Q
O
T

P
-T
re
e

P
ru
n
e
d
P
-

T
re
e

M
D
-T
re
e

P
ru
n
e
d
M

D
-T
re
e

S
G
T

T
Q
O
T

Hash Join Piped Iterators

T
im
e
 i
n
 M
il
li
s
e
c
o
n
d
s

Enumeration

Processing

Total

Figure 5.25: Comparison of the Hash Join Implementation with the Piped

Iterator Implementation for Query 8

 77

6. Conclusion and Future Work

Graph pattern querying is important for eliciting information from graphs. Optimizing graph

pattern queries requires estimating the frequency of subgraphs in a query graph pattern. In this

work, we presented two techniques for summarizing the structure of graphs and we showed how

to prune the summary to fit a given space budget. As our experiments showed, for unconstrained

join queries, the proposed P-Tree and MD-Tree exhibited encouraging performance when

compared to the traditional query optimization techniques used in relational database systems

and the simple greedy technique used by the execution engine of the SPARQLeR system. The

pruned P-Tree is relatively stable for all datasets but performs best when graph patterns that

share a common sub-graph pattern co-occur. The pruned MD-Tree performs best when single

points of dependence exist among subgraphs. Our experiments also show that the time taken to

enumerate plans is often negligible when compared to the actual query processing time.

Although the Dynamic Programming approach arguably may take some time for enumeration as

the number of relationships grows larger, the authors in [33] have shown a new class of

enumeration algorithms that work to reduce the enumeration time without a large decrease in

performance when compared to the dynamic programming enumeration.

There are several directions we hope to explore in the future. First, we will look into a

summarization and estimation framework for RDF graphs which may have hierarchies on the

edges, by virtue of the subpropertyOf property. Next we will extend our statistical graph

summaries to better cope with constraints so as to avoid the inaccurate estimates obtained when

propagating the selectivity of a constraint to the estimates of the patterns obtained from the

 78

summaries. Further we will investigate techniques for gracefully accommodating updates to the

data graph into our summaries without a complete reconstruction of the summaries.

 79

References

1. Aboulnaga, A., Alameldeen, A., Naughton, J.: Estimating the Selectivity of XML Path

Expressions for Internet Scale Applications. In VLDB, 2001.

2. Aleman-Meza, B., Hakimpour, F., Arpinar, B. I., Sheth, A.: SwetoDblp Ontology of

Computer Science Publications. Tech. Report, CS Department, University of Georgia,

2006

3. Anyanwu, K., Maduko, A., Sheth, A.: SemRank: Ranking Complex Relationship Search

Results on the Semantic Web. In Proc. 14th WWW Conference, 2005.

4. Beckett, D.: RDF/XML Syntax Specification (Revised). W3C Recommendation. 10th

February 2004. http://www.w3.org/TR/rdf-syntax-grammar/

5. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American, 2001.

6. Boulicaut, J., Bykowski, A, Rigotti, C.: Approximation of Frequency Queries By Means

of Free-sets. In Proc. 4th European PKDD Conference, 2000.

7. Brickley, D., Guha, R. V.: RDF Vocabulary Description Language 1.0: RDF Schema.

W3C Recommendation. 10th February, 2004. http://www.w3.org/TR/rdf-schema

8. Broder, A. Z., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R.,

Tomkins, T., Wiener, J.: Graph structure in the web. WWW9/Computer Networks, 2000.

9. Broekstra, J., Kampman, A., Harmelen, F. V.: Sesame: A Generic Architecture for

Storing and Querying RDF and RDF Schema. In Proc. 1st ISWC Conference, 2002

10. Burge, C. Identification of Complete Gene Structures in Human Genomic DNA. Ph.D.

Thesis, Stanford University, Stanford, CA. 1997

 80

11. Carroll, J. et al.: Implementing the Semantic Web Recommendations. In Proc. 13th

WWW Conference, 2004.

12. Chen, Z., Jagadish, H. V., Korn, F., Koudas, N., Muthukrishnan, S., Ng, Raymond.,

Srivastava, D.: Counting Twig Matches in a Tree. Proc. 17th ICDE Conference 2001.

13. Cho, G., Shaw, D. X. A Depth-First Dynamic Programming Algorithm for the Tree

Knapsack Problem. INFORMS J. Computing 9(4) 1997, 431-438.

14. Dehaspe, L., Toivonen, H., King, R. D.: Finding Frequent Substructures in Chemical

Compounds. In KDD, 1998.

15. Deshpande, A., Garofalakis, M., Rastogi,R.: Independence is Good: Dependency-Based

Histogram Synopses for High-Dimensional Data. In Proc. 2001 ACM SIGMOD

Conference, 2001.

16. Desphande, M. Kuramochi, M. Wale, N.: Frequent Substructure-Based Approaches for

Classifying Chemical Compounds. In TKDE. Vol. 17, No. 8. Aug. 05.

17. Freire, J., Haritsa, J., Ramanath, M., Roy, P., Simeon, J.: StatiX: Making XML Count. In

Proc. 2002 ACM SIGMOD Conference, 2002.

18. Getoor, L., Taskar, B., Koller, D.: Selectivity Estimation using Probabilistic Models. In

Proc. 2001 ACM SIGMOD Conference, 2001.

19. Goldman, R., Widom, J.: DataGuides: Enabling Query Formulation and Optimization in

Semi-Structured Databases. In Proc. 23rd VLDB Conference, 1997.

20. Guo, Y., Pan, Z., Heflin, J.: LUBM: A Benchmark for OWL Knowledge Base Systems.

Journal of Web Semantics 3(2), 2005, pp158-182.

21. Harth, A., Decker. S.: Optimized index structures for querying RDF from the web. In

LAWEB 2005

 81

22. http://idlebox.net/2007/stx-btree/

23. http://lsdis.cs.uga.edu/projects/semdis/brahms

24. http://lsdis.cs.uga.edu/projects/semdis/swetodblp

25. http://math.nist.gov/sparselib++/

26. Ioannidis, y.: The History of Histograms (abridged). In Proc. 29th VLDB Conference,

2003.

27. Jagadish, H., Koudas, N., Muthukrishnan, S.: Optimal Histograms with Quality

Guarantees. In Proc. 24th VLDB Conference, 1998

28. Janik, M., Kochut, K.: BRAHMS: A WorkBench RDF Store and High Performance

Memory System for Semantic Association Discovery. In Proc. 4th ISWC Conference,

2005.

29. Karvounarakis, G., Alexaki, S., Christophides, V., Plexousakis, D., Schol, M.: RQL: A

Declarative Query Language for RDF. In WWW'02, Honolulu, Hawaii, USA, May7-11

2002

30. Karvounarakis, G., Christophides, V., Plexousakis, D., Alexaki, S.: Querying RDF

descriptions for community web portals. In Proc. French BDA Conference, 2001.

31. Klyne, G., Carroll, J. J.: RDF Concepts and Abstract Syntax. W3C Recommendation.

(Revised) February 2004. http://www.w3.org/TR/rdf-syntax-grammar/

32. Kochut, K., Janik, M.: SPARQLeR: Extended SPARQL for Semantic Association

Discovery. In ESWC 2007.

33. Kossmann, D., Stocker, K.: Iterative Dynamic Programming: A New Class of Query

Optimization Algorithms. In ACM Transactions on Databases. Volume 25, Issue

1 (March 2000)

 82

34. Lim, L., Wang, M., Padmanabhan, S., Vitter, J.S., Parr, R.: XPathLearner: An On-Line

Self-Tuning Markov Histogram for XML Path Selectivity Estimation. In Proc. 28th

VLDB Conference, 2002.

35. Magkanaraki, A., Karvounarakis, G., Christophides, V., Plexousakis, D., Anh, T.:

Ontology Storage and Querying. Technical Report No 308, April 2002

36. McHugh, J., Widom, J.: Lore: Query Optimization for XML. In Proc. 25th VLDB

Conference, 1999

37. Pei, J., Dong, G., Zou, W., Han, J.: On Computing Condensed Frequent Pattern Bases. In

ICDM, 2002.

38. Perry, M. TOntoGen: A Synthetic Data Set Generator for Semantic Web Applications. In

SIGSEMIS Bulletin.

39. Polyzotis, N., Garofalakis, M., Ioannidis, Y.: Selectivity Estimation for XML Twigs. In

ICDE, 2004.

40. Polyzotis, N., Garofalakis, M.: Statistical Synopses for Graph-Structured XML

Databases. In SIGMOD, 2002.

41. Poosala, V., Ioannidis, E.: Selectivity Estimation Without the Attribute Value

Independence Assumption. In Proc. 23rd VLDB Conference, 1997.

42. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. W3C Working

Draft. 19
th
 April 2005. http://www.w3.org/TR/rdf-sparql-query/

43. Seaborne, A.: RDQL - A Query Language for RDF, WWW Consortium, Member

Submission SUBM-RDQL-20040109, January 2004

 83

44. Selinger, P. G., Astrahan, M. M., Lorie, R. A., Price, T. G.: Access Path Selection in a

Relational Database Management System. In Proceedings of the ACM SIGMOD

International Conference on Management of Data. 1979.

45. Shannon, C.E. A Mathematical Theory of Communication, Bell Syst. Tech. Journal 27,

379-423, 623-656. 1948.

46. Shasha, D., Wang, J. T. L., Giugno, R. Algorithmics and Applications of Tree and Graph

Searching. In PODS, 2002

47. Spiegel, J., Polyzotis, N.: Graph-Based Synopses for Relationa Selectivity Estimation. In

Proc. 2006 ACM SIGMOD Conference, 2006.

48. Srivastava, J., Cooley, R., Deshpande, M., Tan, P. Web Usage Mining: Discovery and

Applications of Usage Patterns from Web Data. ACM SIGKDD Explorations 2000.

49. Stocker, M., Seaborne, A., Bernstein, A., Kiefer, C., Reynolds, D.: SPARQL Basic Graph

Pattern Optimization Using Selectivity Estimation. In WWW 2008.

50. SWAD-Europe Deliverable 10.2: Mapping Semantic Web Data with RDBMSes.

51. Theoharis, Y., Christophides, V., Karvounarakis, G.: Benchmarking Database

Representations of RDF/S Stores. In Proc. 4th ISWC Conference, 2005.

52. Wang, C., Parthasarathy, S., Jin, R.: A Decomposition-Based Probabilistic Framework

for Estimating the Selectivity of XML Twig Queries. In EDBT, 2006.

53. Wang, C., Wang, W., Pei, J., Zhu, Y., Shi, B. Scalable Mining of Large Disk-based

Graph Databases. KDD 2004.

54. Wang, W., Jiang, h., Lu, H., Yu, j.: Bloom Histograms: Path Selectivity Estimation for

XML Data with Updates. In Proc. 30th VLDB Conference, 2004.

55. Wilkinson, K.: Jena Property Table. In Proc. 3rd Jena User Conference, 2006.

 84

56. Winer, F. B. Drug design and the CAS ONLINE Substructure Search System. Drug Inf J.

983;17(4):277-86.

57. Wu, J., Patel, J., Jagadish, H. V.: Estimating Answer Sizes for XML Queries. In Proc. 8th

EDBT Conference, 2002.

58. Yan, X., Han, J.: gSpan: Graph-Based Substructure Pattern Mining. In Proc. 2nd ICDM

Conference, 2002.

59. Yan, X., Yu, P. S., Han, J. Graph Indexing: A Frequent Structure-based Approach. In

SIGMOD, 2004.

60. Zhao, P., Yu, J. X., Yu, P. S.: Graph Indexing: Tree + Delta >= Graph. In VLDB, 2007

61. Oracle® Spatial Resource Description Framework (RDF) 10g Release 2 (10.2) Manual

 85

Appendix A. Queries in SPARQL

Query 1

For each country, find its provinces, their capitals and the rivers that flow through the country

Prefix protégé: <http://protege.stanford.edu/kb#>

Select ?country ?province ?province_capital ?river

Where

{

?country protégé:has-province ?province.

?province protégé:has-province-capital ?province_capital.

?river protégé:flows-through-country ?country

}

Query 2

For each country, find its provinces, their capitals and the languages of the country

Prefix protégé: <http://protege.stanford.edu/kb#>

Select ?country ?province ?province_capital ?language

Where

{

?country protégé:has-province ?province.

?province protégé:has-province-capital ?province_capital.

?country protégé:languages ?language

}

 86

Query 3

For each country that is a member of the World Trade Organization (WTrO), find its provinces

and their capitals

Prefix protégé: <http://protege.stanford.edu/kb#>

Select ?country ?province ?province_capital

Where

{

?country protégé:has-province ?province.

?province protégé:has-province-capital ?province_capital.

protégé:WTrO protégé:member ?country

}

Query 4

For each country that is in Africa, find its provinces and their capitals

Prefix protégé: <http://protege.stanford.edu/kb#>

Select ?country ?province ? province_capital ?continent

Where

{

?country protégé:has-province ?province.

?province protégé:has-province-capital ?province_capital.

?country protégé:encompassed ?continent.

?continent protégé:name “Africa”

}

 87

Query 5

For each professor that directs a research group, find the course he teaches and the TA of the

course

Prefix lubm: <univ-bench.owl#>

Select ?researchGroup ?professor ?course ?ta

Where

{

?researchGroup lubm:director ?professor.

?professor lubm:teacherOf ?course.

?ta lubm:teachingAssistantOf ?course

}

Query 6

For each professor that is a co-PI of two projects, find the research group of the projects

Prefix lubm: <univ-bench.owl#>

Select ?project1 ?project2 ?professor ?researchGroup1 ?researchGroup2

Where

{

?project1 lubm:coPI ?professor.

?project2 lubm:coPI ?professor.

?researchGroup1 lubm:hasProject ?project1

?researchGroup2 lubm:hasProject ?project2

}

 88

Query 7

For each project that has two sub projects, find the publications of the project authored by

FullProfessor0 in department10, university0, and the citations of the publication

Prefix lubm: <univ-bench.owl#>

Prefix journal1: <http://www.Journal1.org/>

Select ?professor ?department ?publication

Where

{

?professor lubm:headOf ?department.

?publication lubm:publicationAuthor ?professor.

?publication lubm:publicationInJournal journal1:University0/Department0

}

Query 8

Find the journal publications of all head of departments whose name is FullProfessor2.

Prefix lubm: <univ-bench.owl#>

Select ?professor ?department ?publication ?journal

Where

{

?professor lubm:headOf ?department.

?professor lubm:name “FullProfessor2”.

?publication lubm:publicationAuthor ?professor.

?publication lubm:publicationInJournal ?journal

}

 89

Appendix B. Combining the Preference and Estimation Values.

We now show how the preference and estimation values of patterns are combined to obtain a

single value with which the P-Tree is pruned.

Definition 16. Let P = {p1, p2, …, pm} be the set of patterns in the P-Tree and pEVmax, the

maximum expected value of patterns in P. Given a constant c > 0, the value of a pattern pj is

given by:

pVj = (1 + pEVj)(1 + pPVj) + ipEVmax

where i is an indicator variable whose value is 1 if pPVj ≥ c and 0 otherwise. The additive

constants ensure that the value of a pattern is non-zero when either its preference or estimation

value is zero. On the other hand, the second term allows for tuning the P-Tree by boosting the

values of important patterns as defined by their preference values, to delay their pruning.

We note that when the size of the P-Tree exceeds the budget, we prune the tree systematically to

meet the budget. To prune, we compute the value of each node of the P-Tree (the combination of

its preference and estimation values, or simply the latter if the former is not given) and select

nodes to be pruned as shown in the Prune P-Tree algorithm shown below.

 90

Prune P-Tree

Input: P-Tree T, Budget B, constant c

Output: Pruned P-Tree T

1. δ ← 0; inc ← 0; Set estimable ← ∅; done ← false

2. while done = false do

3. estimable ←∅
4. for each internal node v in T in bottom – up order do

5. compute estimation value given δ
6. if v’s estimation value > 0 then

7. insert all its children into estimable

8. end if

9. end for

10. if sizeof(T) - sizeof(estimable) ≤ B and δ is optimal then
11. compute values of patterns in T

12. if c > 0

13. delete smaller valued patterns to meet B

14. else

15. prune all patterns in estimable

16. end if

17. done ← true

18. else

19. adjust δ
20. end if

21.end while

As lines 4-9 of the Prune-Tree algorithm show, estimation values are used to select the patterns

to be pruned. However in lines 12-16, the patterns eventually pruned may differ when tuning the

tree. The running time of the algorithm O(Ld
maxL

log(maxi{freq(pi)})), is reasonable since

logarithm is a slowly growing function and maxL will typically be small. The running time stems

from the loops in lines 4-9 and 2-21. Lines 4-9 run in O(Ld
maxL

) time, where L and d are the

numbers of unique edge labels and the maximum degree of nodes in the graph respectively.

Recall that the root of the P-Tree has a child for each unique edge label in the graph while

internal nodes have at most d children. Lines 2-21 will be executed at most log(maxi{freq(Pi)})

times, since all patterns are estimable at δ = maxi{freq(Pi)}

 91

Appendix C. Installation Instructions.

The software is currently supported only on Linux platforms. This software uses Brahms so the

user has to download and install Brahms first. To download and install Brahms, follow the

instructions found at http://lsdis.cs.uga.edu/projects/semdis/brahms/. After Brahms has been

downloaded and installed, install this software by unzipping and untarring the file

GraphSummaries.tar.gz. Then go to the source directory in the GraphSummaries distribution.

There are two phases to using the software. The first phase creates the graph summaries whereas

the second phase uses the created summaries to guide query optimizers in choosing an optimal

plan for query processing. To create a graph summary, use the “GeneratePatterns” binary file.

There are several input parameters to the “GeneratePattern” binary file. These can be viewed by

running GeneratePatterns with the help option. After the summary has been created, they can be

used by calling the “processQuery” method in “QueryProcessor”. This method accepts several

input parameters. They are:

const char* modelName: the name of the snapshot file created using the snapshotCreator utility

distributed with Brahms.

string queryFileName: The name of the file that contains the formatted query. The query is

formatted as a sequence of triples of the form subject predicate object where the subjects and

objects are preceded by the integer 0, 1, 2, or 3 to denote that they represent a literal, a variable, a

uri or a class respectively. See the file “queryFormatDescription” for more details and examples.

string summaryFileName: The name of the summary file created in the first phase to be used for

query procfessing.

 92

string lookUpFileName: The file name of the look up table that was created in the first phase to

be used for query processing.

string litLookUpFileName: The file name of the literal look up table that was also created in the

first phase to be used for query processing.

usint summaryType: An unsigned short integer that denotes the type of graph summary that is

being used either 2 for Pattern Tree or 3 for Maximal Dependence Tree.

usint maxSize: An unsigned short integer that indicates the maximum size/length of patterns in

the graph summary being used.

bool default: Indicates if default values are kept for each pattern size for estimation purposes.

int evalType: An integer denoting the type of evaluation to be done in choosing the optimal plan.

It could be 0, 1 or 2 for cost, cardinality or selectivity respectively.

int enumType: An integer denoting the type of enumeration for the iterative dynamic

programming plan enumeration strategy. It could be 0 for standard or 1 for balanced.

usint idpStep: An integer that specifies the number of dynamic programming steps to perform

before the greedy selection, in the iterative dynamic programming plan enumeration strategy.

int joinType: An integer that specifies the type of join algorithm to be used. It could 0 for nested

loop join, 1 for hash join or 2 for merge join.

bool elimDup: Specifies if duplicates should be eliminated

int planEnumType: An integer that specifies which plan enumeration strategy to be used. It could

be 0 for dynamic programming enumeration, 1 for greedy enumeration, 2 for iterative dynamic

programming enumeration and 3 for using the SPARQLeR query planning technique.

int estimationType: An integer that specifies the type of estimation to be done. It could be 0 for

the estimation using the proposed graph summaries or 1 for using the dbms estimation style.

 93

int sip: An integer that specifies how execution should proceed. It could be 0 for enumerating all

plans with intermediate table generation, 1 for enumerating only left-deep plans with

iterator/piped executions, or 2 for enumerating only left deep plans with intermediate table

generation.

double selectivityDecay: A double value that specifies how the propagation of the selectivities of

constrained join queries to larger sized patterns should be decayed.

int numRepetitions: An integer that specifies the number of times a query should be repeated for

average timings.

The experiments conducted in this work can be reproduced by using the datasets used in this

work. The Mondial dataset is freely available on the web at http://www.informatik.uni-

ulm.de/ki/Liebig/owl/mondial.owl. We converted this owl file to RDF by using Protégé. The

LUBM dataset is freely available at http://swat.cse.lehigh.edu/projects/lubm/. However, like we

said, we modified this LUBM dataset generator by adding more properties and classes. This

modified version is included with the distribution of this software.

