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ABSTRACT 

 Small regulatory non-coding RNAs (sRNAs) have emerged as an important class of 

regulators across all kingdoms of life. In prokaryotes, the majority of the known sRNAs bring 

about regulation by base pairing with their target mRNAs, resulting in either increased or 

decreased stability of the target transcripts. Based on their mode of action, these sRNAs are 

further sub-categorized into two categories: cis-acting and trans-acting. While cis-acting sRNAs 

are encoded on the antisense strand of their targets, trans-acting sRNAs bear no identifiable 

relationship with the loci of their targets. The lack of complementarity between trans-acting 

sRNAs and their target mRNA sequences; along with the added complexity that each sRNA can 

have multiple targets and some mRNAs are targets for multiple sRNAs, makes the discovery of 

such interactions a formidable challenge. 

 The research presented in this thesis describes a knowledge-based machine-learning 

model based on the popular random forest algorithm developed for the prediction of novel 

interactions in bacteria. The model was trained on a high quality dataset of experimentally 

verified sRNA-target interactions obtained from the literature. The prediction model is shown to 

be applicable on a genome-wide scale. The algorithm is further extended to filter predictions 

using random forest’s intrinsic similarity measure. Finally, the selected predictions were 



validated experimentally in Escherichia coli for several known trans-encoded sRNAs, leading to 

the identification of novel regulatory interactions. 
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CHAPTER 1  

INTRODUCTION 

 Non-coding RNAs have emerged as a major component of global regulatory networks in 

all kingdoms of life. Important roles have now been implicated for non-coding RNAs in almost 

all known pathways in various organisms, including several human diseases. As modern 

sequencing technologies enable the discovery of novel non-coding RNAs at an accelerated rate, 

annotation efforts are falling behind. This has created an urgent need for discovery and 

annotation of biological roles for the large majority of non-coding RNAs known. In bacteria, 

several types of non-coding RNAs are now known. A better understanding of the mechanistic 

details in prokaryotes is anticipated to broaden our current understanding of riboregulators in 

general.    

This thesis presents a novel approach to facilitate the study of the largest class of 

bacterial non-coding RNAs. Specifically, the research is concerned with the challenging problem 

of computational identification of regulatory targets of these non-coding RNAs. The information 

is presented in the form of relevant literature reviews, manuscript communicating original 

research and concluding remarks as follows: 

 

CHAPTER 2: REGULATORY NON-CODING RNAS IN BACTERIA 

Chapter 2 provides an introduction to the various kinds of regulatory RNAs in bacteria. 

Special emphasis is laid on the base-pairing so called trans-acting non-coding RNAs, the central 
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theme of this thesis. Mechanistic details are discussed for trans-acting non-coding RNAs are 

elaborated upon. 

 

CHAPTER 3: IDENTIFICATION OF REGULATORY RNA TARGETS IN BACTERIA 

In chapter 3, a review is presented that elaborates the various techniques employed by 

investigators in the field to identify regulatory targets of non-coding RNAs. As with the majority 

of this thesis, primary emphasis is on the various experimental and computational techniques 

used for finding targets of trans-acting non-coding RNAs. 

 

CHAPTER 4: SUPERVISED PREDICTION OF REGULATORY NON-CODING RNA 

TARGETS IN BACTERIA 

Chapter 4 is an original research study describing a novel machine-learning approach for 

the prediction of trans-acting non-coding RNA targets. The classification algorithm developed 

here uses simple sequence information from the non-coding RNA and their mRNA target 

sequences. This reduces computational complexity significantly when compared to other state-

of-the-art methods that rely on secondary structure prediction and multiple sequence alignments.  

 

CHAPTER 5: KNOWLEDGE BASED IDENTIFICATION OF TRANS-ACTING 

REGULATORY SRNA TARGETS IN ESCHERICHIA COLI 

Chapter 5 presents original research which is an extension of the predictive algorithm 

introduced in chapter 4. The machine learning classifier was applied on a genome-wide scale for 

the prediction of several non-coding RNA targets in Escherichia coli. The predictions were then 

validated experimentally, leading to the identification of several novel regulatory interactions. 
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CHAPTER 6: CONCLUSIONS 

The thesis closes with concluding remarks about the research presented. Thoughts on 

future directions and improvements to the field are presented here. 
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CHAPTER 2  

LITERATURE REVIEW: REGULATORY NON-CODING RNAS IN BACTERIA 

Living organisms constantly have to adapt to changing environments. At the cellular 

level, these adaptations are realized in the form of a wide range of biomolecular interaction 

mechanisms. Up until recently, most of our understanding of these mechanisms revolved around 

the so-called central dogma i.e. genes encoded in the DNA are transcribed into messenger RNAs, 

which are then translated into functional proteins. Thus, proteins were thought to be the 

mediators of all or most biological functions in the cell, including gene regulation. Apart from 

the non-protein coding ribosomal RNA (rRNA) and transfer RNAs (tRNA), RNA molecules 

were thought to be mere intermediaries in the central dogma. 

Despite findings of crucial roles of RNA in the fundamental processes of translation and 

splicing, the protein centric view has dominated the known regulatory circuitry of the cell. The 

realization of the prevalence of non-protein coding RNAs as the major class of functional 

biomolecules eluded detection even in the post-genomic era, since non-coding RNAs are not 

structured in the genomic sequences the way open-reading-frames are [1]. The paradigm shift in 

regulatory pathway research was brought about by the advent of high-throughput whole-

transcriptome profiling technologies[2,3]. With the wide availability of whole-genome tiling 

microarrays and deep sequencing of the transcriptome (RNASeq), pervasive transcription was 

detected in many organisms [4]. These results meant that the majority fraction of the genomes 

that was previously thought to be “junk” DNA codes for RNA, and implies a far greater role for 

RNA as functional biomolecules than previously thought [4]. It is now thought that non-coding 
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RNAs far outnumber the protein-coding genes in genomes of higher organisms[4]. Several 

classes of functional non-coding RNAs (ncRNAs) have now been discovered, and it is now well 

established that the majority of them serve regulatory functions.  

Although the majority of ncRNAs remain functionally unannotated, the regulatory roles 

for these molecules already span all levels of gene-expression, and affect almost all well 

understood pathways. The largest and best understood class of regulatory ncRNAs are ones that 

exert their effect by base-pairing interactions. Several aspects of the mechanisms of action of 

base-pairing ncRNAs are conserved across all kingdoms of life [5]. The work presented in this 

thesis involves bacterial members of this class of ncRNAs, hereby referred to as small regulatory 

RNAs (or simply sRNAs). 

Regulatory RNAs in Bacteria 
Examples of regulatory RNAs in bacteria were known long before their prevalence began 

to be appreciated. Shortly after the discovery of regulatory transcripts encoded in plasmids [6,7], 

the first chromosomally encoded sRNA was identified in Escherichia coli [8]. MicF was 

discovered serendipitously while screening a library of chromosomal fragments, and was 

subsequently found to inhibit the translation of outer membrane porin OmpF [8,9]. Like MicF, 

the first few sRNAs in bacteria were discovered rather fortuitously [10]. Computational searches 

for conserved non-coding regions flanked by orphan promoters and Rho-independent terminators 

led to the initial conjecture that many more non-coding RNAs possibly existed [11]. The 

confirmation of some of these candidates was initially aided by microarrays that probed 

intergenic regions, followed by direct detection by other methods [2]. Thereafter, advances in 

whole genome tiling-microarrays[12,13] and deep transcriptome sequencing (RNASeq) [14,15] 
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led to the identification of hundreds of novel non-coding transcripts across various bacterial 

species [16]. 

As with higher organisms, non-coding RNA regulators in bacteria are known to regulate 

their targets employing a variety of mechanisms [16]. Based on the type of targets and mode of 

action, several categories of these riboregulators have been identified in bacteria. Although the 

subsequent chapters in this thesis focus on just one major class of non-coding RNAs, a brief 

description of the other categories is included in this section for the sake of completeness.  

Protein Binding Regulatory RNAs 

Not many instances of protein binding ncRNAs are known in bacteria. However, the few 

that are known have far-reaching regulatory effects, since the protein targets are usually global 

regulators of metabolism [16] (Figure 2.1 B). One of the better studied examples in this category 

is the regulation of carbon storage by the CsrA/CsrB system [17]. The RNA-binding protein 

CsrA globally regulates carbon storage/usage, biofilm formation and cell motility as cells 

transition into nutrient-deficient conditions. In nutrient rich conditions, CsrA binds to 5’ UTR 

regions of mRNAs thereby affecting their stability. As nutrients deplete, the BarA-UvrB two-

component system induces the transcription of the sRNAs CsrB and its homolog CsrC. These 

sRNAs bind with the CsrA protein to antagonize its activity until nutrients are available again. 

Each sRNA molecule is thought to be able to bind to up to 18 CsrA protein molecules, thus 

rapidly reducing the abundance of functional CsrA protein [17]. The CsrA/CsrB system is 

conserved across several species (e.g. RsmY/RsmZ system in several bacteria) where it regulates 

several key pathways [18]. 

Another example of a protein binding regulatory RNA with a similar mode of action is 

the Escherichia coli 6S RNA. The 6S non-coding RNA sequesters the RNA polymerase bound 
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to the σ70 sigma factor by mimicking σ70 promoter sequences [19]. Other examples of sRNAs 

interacting with proteins to mediate regulation exist, although the evidence is mostly 

circumstantial, and very little is known about the mechanisms. For instance, the protein YhbJ is 

known to interact with GlmZ (a non-coding RNA) to destabilize it by an unknown mechanism 

[16]. Another non-coding RNA, GlmY competes with GlmZ to bind to YhbJ. Under conditions 

where GlmY is abundant, GlmZ RNA is freed from YhbJ to carry out regulation of mRNAs [20]. 

 

Figure 2.1: Illustrative depiction of non-RNA binding non-coding RNAs in bacteria. Depicted in (A) are 
the known mechanisms by which bacterial riboswitches act. The aptamer region (shown in pink) binds to 
the ligand and changes conformation, affecting the expression platform (shown in orange) to either form 
or disrupt terminator structures, or affecting the accessibility to the ribosome binding site (RBS). (B) 
Examples of non-coding RNAs that bind with multiple protein molecules through a repeating motif 
(CsrA/CsrB system) or sequester important regulators through molecular mimicry (6s RNA and 
GlmY/YhbJ). This figure was originally published in [16]. 

Riboswitches 
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Riboswitches are regulatory elements that are contained in the 5’ regions of mRNAs that 

they regulate. They respond to changes in various environmental conditions and/or metabolite 

concentrations by adopting different conformations, affecting the expression of the mRNA 

[21,22].  The 5’ UTR sequences can bind to small molecule metabolites and adopt different 

conformation in the presence of the metabolite. These structural changes result in regulation by 

switching between alternating RNA-hairpin structures that either allow the molecule to switch 

between terminator and anti-terminator elements (regulation of transcription), or disrupt 

ribosome binding sites within the transcript (regulation of translation) [23] (Figure 2.1 A). The 

metabolite ligands are usually end products of the pathways that the corresponding riboswitch 

carrying genes are involved in, thereby forming a feedback loop [24]. 

Most of the known riboswitches have been primarily studied in the Gram-positive 

bacteria Bacillus subtilis [23]. These riboswitches generally regulate key junctures of metabolic 

pathways and are known to involve a wide variety of reaction intermediates acting as ligands 

such as flavinmononucleotide (FMN), guanine, and lysine [22,23].  

Cis-Acting Regulatory RNAs 

Most of the known regulatory RNAs known in bacteria act upon their mRNA targets 

through base pairing. Base-pairing sRNAs are further subclassified into two categories based on 

the extent of base pairing and mode of action. Cis-encoded or cis-acting regulatory RNAs are so-

called because they are encoded in “cis”, or at the same genomic locus as their targets, on the 

opposite strand (Figure 2.2 A). As a result of this complementarity, cis-acting sRNAs can form 

extended stretches of contiguous base pairing with their targets, resulting in post-transcriptional 

inhibition of the target gene function. Although several putative endonucleases and other 

proteins have been purported to play a role in these mechanisms, the most commonly accepted 
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hypothesis involves degradation of the complex by ribonuclease III (RNase III). The long 

double-stranded regions formed from the base pairing allows RNase III, an endoribonuclease 

which specifically acts on double stranded RNA, to cleave the duplex [25]. An additional effect 

of base pairing by some sRNAs results in the occlusion of the ribosome binding site, thereby 

inhibiting translation [25]. 

 

 

Figure 2.2: Gene arrangements in base-pairing regulatory non-coding RNAs. (A) cis-acting sRNAs occur 
on the antisense strand of their targets and share extensive complementarity with them. Regulatory effects 
are brought about by regions of perfect base pairing. (B) trans-acting sRNAs occur at different loci from 
their targets, and can have a variety of effects depending on the region of the target transcript they bind to. 
This figure was originally published in [16]. 

Cis-acting sRNAs have been found to be encoded in both chromosomes and plasmids 

[25]. The sRNAs and their target mRNAs are transcribed using independent promoters in either 
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direction. Several plasmid encoded cis-acting sRNAs regulate fundamental biological processes, 

such as the RNAI/RNAII system of ColE1 for replication control [26], and FinP/traJ for 

conjugation control [27]. Chromosomal cis-encoded sRNAs, on the other hand, are usually 

expressed only under specific physiological conditions, in many cases as part of a toxin-antitoxin 

system. For example, GadY (antisense to gadX gene in E. coli) shows increased abundance in the 

stationary phase [28], while IstR (antisense to isiA in Synechocystis sp.) is abundant during iron 

stress [29]. 

Trans-Acting Regulatory RNAs 

The most prevalent class of regulatory RNAs that also act by base-pairing with their 

mRNA targets are the so called trans-encoded or trans-acting regulatory RNAs. Unlike the 

aforementioned cis-acting counterparts, these sRNAs are encoded “in trans” or at a different 

location from their target mRNAs (Figure 2.2 B). In fact, each trans-acting sRNA can target 

multiple mRNA targets occurring at unrelated loci [5]. As a consequence of this mechanism, 

trans-acting sRNAs lack extensive complementarity with their mRNA targets and their 

interactions are established with short stretches of weak base pairing interspersed by unpaired 

regions. The interactions often involve non-canonical base pairs and are made possible by the 

involvement of the RNA chaperone Hfq [5,16]. 

Trans-acting sRNAs exert regulatory effects on their targets similar to their cis-acting 

counterparts, with most known interactions leading to post-transcriptional down-regulation of the 

target genes, although a few cases of up-regulation have also been reported. Most trans-acting 

sRNAs show increased transcript abundance under conditions of physiological stress and 

regulate multiple genes in well-defined regulons pertaining to those conditions [30]. 
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DsrA was one of the first sRNAs that was found to interact with multiple mRNAs having 

both down-regulatory and up-regulatory effects [31]. When constitutively expressed on a 

multicopy plasmid, DsrA represses the H-NS protein, a global regulator of capsule genes and 

polysaccharide production, thus facilitating capsule formation [32]. Incidentally, DsrA was also 

found to upregulate the stationary phase sigma factor, RpoS, in contrast to the down-regulatory 

effects of all its other interactions [31,33,34]. Another well-studied sRNA RyhB, was found to be 

regulated by the ferric uptake repressor transcription factor Fur [35]. In turn RyhB regulates 

several genes responsible for iron storage homeostasis[36]. Several sRNAs have been implicated 

in the regulation of the bacterial outer membrane, quorum sensing and related 

pathways[1,37,38].  

It is these widespread effects on a variety of biological pathways and many aspects of 

trans-acting sRNAs that make them an interesting and challenging area of research, which is the 

main theme of this thesis. Henceforth, unless otherwise specified, the term sRNA will refer to 

trans-acting sRNAs.  

Mechanistic Aspects of Regulation  

The trans-acting sRNAs act stoichiometrically to bring about regulation, with the 

catalytic component usually being provided by ribonucleases [16]. The underlying mechanisms 

at the molecular level that lead to regulation by trans-acting sRNAs are still an area of active 

research. This section outlines the working hypotheses based on our current knowledge about 

these mechanisms. 
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Hfq facilitates base-pairing interactions 

Hfq was first identified as a host factor required for RNA phage Qβ replication (hence the 

nomenclature) [39]. Since then, our understanding of the role of Hfq in the RNA world has 

evolved with multiple studies suggesting its involvement in several pathways as a global RNA 

chaperone [40,41].  

 

 

Figure 2.3: (A) Proximal face of Hfq (orange) binds to the sRNA and the distal face (purple) binds to the 
mRNA. The rim (right panel, in red) is thought to facilitate base pairing in a step wise manner. (B) The 
many domains of the RNase E protein that bind to other members of the degradosome. Interactions 
between Hfq and RNase E accelerates turnover of sRNA-mRNA duplexes. This figure was originally 
published in [42] 
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In the cell, Hfq exists as a hexameric structure with multiple interaction sites for RNAs 

and proteins [43]. Site-directed mutagenesis studies suggest that the so-called “proximal face” of 

the hexameric ring preferentially binds to sRNAs [44], while the “distal face” of the structure 

shows a strong affinity for mRNAs [44,45] (Figure 2.3). The preference for binding A/U rich 

regions was predicted based on the crystallographic data [43] and genomic SELEX experiments 

[46]. The distal face has a strong preference for repeating ARN motif (where R is a purine and N 

is any nucleotide) occurring in mRNAs [43].  

Although the presence of multiple Hfq binding sites within RNAs complements the 

evidence that Hfq facilitates base pairing between sRNAs and mRNAs [47–49], the detailed 

mechanisms of this process remain obscure. A third region consisting of positively charged 

amino acids, termed the “lateral surface” or “rim” of the Hfq complex has been implicated in 

playing an important role in the steps leading to sRNA-mRNA duplex formation [44,50] (Figure 

2.3). 

Role of the degradosome and working hypotheses 

Hfq physically interacts with ribonuclease E (RNase E), the primary ribonuclease in 

mRNA degradation pathways. RNase E is part of a multi-protein complex known as the 

degradosome, which also contains of polynucleotide phosphorylase (PNPase, a 3’->5’ 

exonuclease), RNA helicase B DEAD-box motif (RhlB) and the glycolytic enzyme enolase [51–

53]. It has been hypothesized that the interaction of Hfq with RNase E presents the bound sRNA-

mRNA duplex to the degradosome, upon which the duplex undergoes rapid degradation [42] 

(Figure 2.4). In addition to the endonucleolytic activity of RNase E, PNPase acts as an 

exonuclease to further degrade the RNAs [54]. The RhlB helicase helps to disrupt secondary 

structures in the RNA molecules to allow PNPase activity to process those regions [54]. 



 

 14 

 

Figure 2.4: Multiple pathways to regulation by trans-acting sRNAs. Negative regulation is brought about 
by exposing cleavage sites to RNase E and other ribonucleases (left and center panel). In positive 
regulation (right panel), the sRNA binds upstream of the RBS to disrupt secondary structures that prevent 
ribosome binding. This figure was originally published in [55]. 

 

A second mechanism by which sRNAs mediate downregulation is by inhibition of 

translation (Figure 2.4). In bacteria, transcription and translation are tightly coupled [56,57], and 

ribosomes bind to transcripts as they are transcribed by RNA polymerase [56–58]. In many 

cases, the regions of interaction in the duplex coincide with the ribosome binding sites (RBS) on 

the mRNA, impeding loading of ribosomes required for translation. As a result, the mRNA, now 
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free from bound ribosomal proteins, is more exposed to endonucleases, resulting in loss of 

stability [59]. However, there is some experimental evidence that suggests that inhibition of 

translation alone is insufficient for the degradation of the mRNA and the pairing of sRNA to the 

mRNA is a requirement for the recruitment of RNase E and other ribonucleases [38]. 

Finally, a third mechanism of regulation involves upregulation of targets by translation 

activation. Unlike the more frequently found downregulatory interactions, fewer examples are 

known of interactions that lead to upregulation [60]. The working hypothesis described for these 

interactions suggests that the target mRNAs have existing secondary structures upstream of the 

transcription initiation site, around the RBS (Figure 2.4). The sRNA binds to a region upstream 

of the RBS, disrupting the existing secondary structure and thus making the RBS available for 

ribosome loading and protein synthesis [55,60]. As a side effect, the mRNA targets covered with 

ribosomes are no longer exposed to the endonucleases and have increased stability [60]. 

Other factors 

Although RNase E is the primary enzyme involved in the turnover of sRNAs and their 

targets, other ribonucleases have also been found to be involved. A previous study on the 

genome-wide effects of RNase E and RNase III using tiling-microarrays revealed that both 

endonucleases are responsible for the processing of a number of sRNAs [13]. The role of RNase 

III in cis-acting sRNA regulation has been studied, but little is known about the mechanisms by 

which they act on the short regions of base-pairing in trans-acting sRNAs. The exonuclease 

PNPase is purported to play a role in the sRNA mediated degradation of certain categories of 

genes [61], and those sRNAs that do not associate with Hfq [62]. Another recently discovered 

endoribonuclease, YbeY, has been reported to modulate regulation by sRNA on several genes, in 

response to hydroxyurea stress [63]. 
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RelA, a protein thought to be a central regulator of the stringent response, has also been 

reported to play a role in several Hfq mediated sRNA-mRNA interactions [64]. RelA apparently 

aids the oligomerization of the Hfq protein, and stimulates its binding efficiency to sRNAs in the 

process [64]. 

Yet another study determined that the triphosphate at the 5’ end of a sRNA paired with its 

target is processed to a monophosphate to make the duplex more susceptible to RNase E [65]. 

The enzyme known to be responsible for the initiation of mRNA decay by processing the 5’ 

triphosphate is RNA pyrophosphohydrolase (RppH) [66]. However, no change in this activity 

was observed in a RppH mutant in S. enterica, suggesting the presence of a second enzyme of 

this nature [66]. 

These studies show that there are several aspects of regulation by trans-acting sRNAs 

that further study. A deeper understanding of the mechanisms of sRNA gene regulation will be 

greatly facilitated with the discovery of more interactions. The following chapters of this thesis 

discuss the challenges and methods employed for the identification of novel interactions of 

trans-acting sRNAs with their targets. 
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CHAPTER 3  

LITERATURE REVIEW: IDENTIFICATION OF REGULATORY RNA TARGETS IN 

BACTERIA 

As was described in the previous chapter, sRNAs exert regulatory effects on genes 

involved in a wide variety of biological pathways. As high-throughput sequencing technologies 

continue to get cheaper and more accessible to researchers, several studies are being directed to 

sequence the transcriptome of organisms under different physiological conditions to discover 

novel non-coding RNA transcripts [4]. Although these studies continue to uncover novel 

transcripts in a wide variety of genomes, annotation efforts have struggled to keep up. There has 

been some ambiguity on whether these small RNAs are a result of pervasive transcription or 

biologically functional [4]. In fact, the number of known non-coding transcripts in many 

organisms already outnumber protein coding genes, with the biological functions unknown for 

most of them.  

The widening gap in non-coding RNA discovery and annotation is particularly 

conspicuous in prokaryotes [38,67]. Going by the current trend, most intergenic non-coding 

RNAs in bacteria are likely to be trans-encoding sRNAs [68]. As previously mentioned, their 

counterparts in base pairing regulatory RNAs, cis-acting sRNAs, target mRNAs on the 

complementary strand. This makes identification of cis-acting RNAs relatively straightforward. 

In contrast, finding the potential mRNA targets of the growing number of trans-acting sRNAs is 

a non-trivial task. Firstly, the lack of extensive base pairing and correlation of genomic loci with 

their targets makes it difficult to identify targets. Furthermore, the short regions of base pairing 
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interactions are often comprised of weaker non-canonical base pairs, usually made possible by 

the RNA chaperone Hfq using mechanisms still not completely understood [60,69]. Just as each 

sRNA may target multiple mRNA targets, the target mRNAs may be regulated by multiple 

sRNAs [55,59]. Several experimental and computational tools have been developed to uncover 

this increasingly complex regulatory network of sRNAs and their targets. This chapter elaborates 

on the most successful and commonly used techniques in this area. 

Experimental Approaches  

The first target for a sRNA to be identified in bacteria was the mRNA for an outer 

membrane porin, ompF [8]. This finding was a result of the serendipitous discovery of the sRNA 

regulator itself, MicF, in a screen for genomic fragments that inhibited the OmpF protein [8]. 

Further characterization of this interaction suggested a 20 nucleotide region of imperfect base-

pairing between MicF and ompF [70]. As more sRNAs were subsequently discovered [71,72], 

several experimental approaches were designed to identify their targets. In this section, an 

overview of the successful methodologies employed for this purpose is presented. 

Classical genetic approaches 

Early approaches designed to look for sRNA targets used genetically engineered bacterial 

strains to select for strains expressing the target gene. This was achieved by random insertions of 

µ phages carrying chromosomal fragments, with truncated lacZ genes [73]. When an sRNA is 

overexpressed in a library of cells, cells that carry the genes inhibited by the sRNA will show up 

as white colonies on X-gal indicator plates or as blue colonies when the sRNA is not expressed. 

Targeted genes were then identified by cloning these selected colonies. This approach was used 

to identify the effect of the sRNA OxyS on fhlA mRNA [74]. However, the classical genetic 

approach is labor and time consuming, and unsuitable for widespread detection of sRNA targets. 
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Biochemical approaches 

At least two studies have reported to have successfully captured molecular species 

interacting with sRNAs using biochemical fishing techniques [75,76]. The first of these studies 

utilized the strong interaction between the sRNA RydC and the RNA chaperone Hfq. His-tagged 

Hfq molecules bound to RydC were allowed to incubate in total cellular RNA in vitro. The His-

tagged complexes were then extracted with bound mRNA fragments, which could then be 

converted to cDNAs for analysis. RydC was found to regulate the yejABEF operon, encoding a 

predicted ABC permease [75]. 

 Another study screened for genes targeted by the sRNA RseX, which would overcome 

the lethality associated with the deletion of the essential gene rseP, a global regulator of the 

extracytoplasmic stress response [77]. Since RseX is transcribed from a σE (envelope stress 

sigma factor) promoter in E. coli, it was predicted to regulate genes associated with this 

response. Biotinylated RseX bound to streptavidin magnetic beads was incubated with total RNA 

(Figure 3.1 a). The bound mRNA fragments were then converted to in cDNA and hybridized to 

whole-genome microarrays. Microarray analysis revealed two targets for RseX, genes for the 

outer membrane proteins ompA and ompC [77]. However, capturing the molecular duplex 

biochemically relies on strong interactions, which are rarely seen with trans-acting sRNAs. 

 

High throughput transcriptome screening 

Recent improvements in transcriptome profiling technologies now enable researchers to 

survey affected transcripts across the entire genome. As mentioned in the previous section, 

microarrays have been successfully used to screen for putative targets that have been 

biochemically enriched [77]. Other studies have used whole-genome microarrays to look for 

affected mRNAs by comparing strains expressing low levels of the sRNA (or with the sRNA 
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Figure 3.1: Identification of trans-acting sRNA targets using microarrays. Two commonly used 
strategies are used for this. (a) Biochemical capture of sRNA-target complexes bound to streptavidin 
beads are enriched and analyzed with microarrays. (b) Induced expression of the sRNA is followed by 
total RNA extraction. The sample is hybridized to a microarray along with the control to detect mRNAs 
with significantly changed abundance levels. 

 

gene deleted) with strains expressing high levels of the sRNA (constitutively expressed from a 

plasmid) (Figure 3.1 b). This strategy was used for the sRNA DsrA [78], suggesting many 

additional targets to the two that were already known. The issue with this method is that 

overexpressing the sRNA affects a large number of genes that are indirectly regulated by the true 

targets [68]. Subsequent validation of several true positives did reveal that DsrA plays a role in 

acid resistance [78]. 
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 A workaround to this problem has been sought by extracting the RNA for the microarray 

immediately following short-term expression of the sRNA from an inducible promoter [79]. The 

reasoning here is that a pulse induction of a tightly controlled inducible promoter (such as the 

arabinose induced pBAD promoter) [79] will affect the direct targets early on, minimizing the 

changes in indirectly affected genes when the total RNA is extracted. This strategy has been used 

for several sRNAs in E. coli and S. enterica. The sRNAs RybB and MicA, which are transcribed 

from σE (envelope stress sigma factor) promoters, were found to regulate several outer 

membrane proteins in S. enterica [80]. A few of these targets were subsequently also observed to 

be regulated in E. coli [81]. 

Computational Approaches 

The experimental methods outlined in the previous section are labor intensive and time 

consuming. While high throughput methods have shown some promise, they require performing 

several replicates of high-cost experiments to minimize false positives. These issues can be 

greatly reduced by supporting the search for sRNA targets with computational methods. Several 

computational approaches have been developed, based on our current understanding of the 

regulatory mechanisms from the known interactions. 

 

Methods based on Sequence Complementarity 

The simplest approach that has been applied successfully to finding miRNA targets in 

eukaryotes [82,83] is to search for complementary regions in the mRNA and sRNA sequences. 

However, unlike miRNAs, bacterial trans-acting sRNAs do not have well defined “seed” regions 

of interaction. This makes the use of pure sequence search methods like BLAST [84] ineffective. 

A BLAST-like search method had been developed to account for non-Watson Crick base pairing 

in RNA called GUUGle [85]. Other pure sequence based approaches are the individual base-pair 
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model used by TargetRNA [86] where Watson Crick base pairs are scored uniformly, or a 

similar approach where GC pairs are given a higher score than AU pairs [87]. Although these 

approaches fall short when used for making target predictions, their simplicity allows the 

computation to be fast and they have been used to score the significance of matches in more 

advanced methods [88]. 

 
Energetic Scoring of Duplexed Regions 

Somewhat more sophisticated approaches to searching for sequence complementary 

regions score the paired regions using scoring schemes used for evaluation of secondary 

structures. The energy parameters for this scoring scheme represent free energies (in Kcal/mol) 

that were derived from experimental data [89]. The scoring of a base pair in the interacting 

region depends on the immediately neighboring base pairs. This makes these approaches much 

more realistic than simplistic independent base-pair scoring, since such scoring schemes account 

for stacked base pairs and internal loops and bulges. Several algorithms incorporate this 

approach, notably RNAduplex [90] and RNAhybrid [91] from the Vienna RNA package, and the 

extended version of TargetRNA [86]. The advantage of using these simple energy models is that 

it is comparable in computational speed to the simple scoring method. However, since these 

methods ignore intra-molecular base pairs, these algorithms may end up predicting interactions 

at regions that are already involved in intramolecular secondary structures. 

Secondary Structure Prediction of Concatenated Sequences 

One of the main shortcomings of the previously described methods is their inability to 

account for intra-molecular secondary structural elements in the individual RNA molecules. 

Methods based on secondary structure prediction approaches were developed to account for 

these issues. The first category of such approaches aimed to predict the joint structure of the 
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sRNA and target RNA molecules by providing the concatenated sequence of the two molecules 

as input to a secondary structure prediction algorithm. 

 RNACofold [92] is based on this approach and accepts the input sequences concatenated 

and separated by a linker symbol. It applies a modified version of the RNAfold [93] algorithm, 

where the linker region is treated as a special bulge structure. As a result of this restriction, the 

modified algorithm only predicts secondary structures nested in the sequence of the two 

concatenated sequences [94]. 

The obvious advantage of concatenation based structure prediction is that the algorithms 

used for predicting secondary structure of a single RNA is easily extended for the joint structure 

prediction problem. This allows the computation of secondary structures of the individual RNA 

molecules (intramolecular base pairing) as well as the joint structure (inter-molecular base 

pairing) and thus significance statistics of the interactions predicted. 

Accessibility based structural approaches 

Although the concatenated secondary structure prediction methods overcome most of the 

shortcomings of the previous methods, they cannot predict non-nested joint structural elements 

like pseudoknots and kissing hairpins. Thus, a second category of secondary structure prediction 

based algorithms was developed to address this issue. As opposed to attempting to predicting a 

single joint secondary structure, the secondary structures of the individual sequences are taken 

into account first, in order to account for the accessible regions in each RNA molecule. 

Essentially, a region within a single RNA molecule must be free of intramolecular base-pairing 

in order to form an interactive base pair with another RNA molecule. This requires the 

calculation of the energy to free the regions in each RNA molecule of intramolecular base 
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pairing, followed by the energy required to make the interaction base pairs across an ensemble of 

structures.  

 

 

Figure 3.2: Common erroneous hybrid structures predicted by secondary structure based algorithms. (a) 
A biologically impossible structure that might get predicted by algorithms that use naïve scoring of 
duplexes using energy functions. (b) A commonly found non-nested structure that the concatenation 
based secondary structure methods will fail to predict. 

 

Although this is computationally a lot more expensive than the previous methods, these 

methods can predict the non-nested pseudoknots and kissing hairpins that the concatenation 

based approaches would have missed. Because of the computational overload involved here, the 

algorithms that adopt this approach, RNAup [95] and IntaRNA [96] utilize precomputed energy 

values for all possible interaction regions.  

Comparative Approaches 

As an extension of the sequence based approaches that simply searched for 

complementary regions in the interacting RNA molecules, comparative approaches assume that 

the regions in the sequence involved in these interactions are evolutionarily conserved. The first 

published method that used evolutionary information for the prediction of sRNA targets was 
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PETcofold [97]. PETcofold uses multiple sequence alignments for both the sRNA and target 

mRNAs from multiple species. The multiple sequence alignments allow the incorporation of 

covariance information that result from compensatory base-pair mutations that preserve 

functional structural elements. This makes it more likely to find regions that are important for the 

interactions within the sequence. However, PETcofold’s approach used positionally fixed 

alignments across multiple species, limiting the prediction of the sequence regions that are highly 

conserved[98]. A newer strategy used in CopraRNA [99] works around this limitation by 

allowing the sRNA and target mRNA interaction sites and patterns to be flexible. The driving 

hypothesis here is that while the target regulation should be conserved across related species, the 

base pairing patterns may be different. Thus, predictions are made independently in each species, 

before the evidence is combined to determine significance[99]. Although these methods require 

both the sRNA and the target mRNA sequences to be conserved in multiple species, they have 

successfully predicted targets for a few highly conserved sRNAs. 

Target Validation 

Irrespective of the methods employed for identification or prediction of sRNA targets, the 

regulatory interactions need to be validated individually using in vivo assays. For trans-acting 

RNAs, most known regulatory interactions result in change in stability of their targets [100]. 

Thus, the most common technique employed to test for regulatory effect is to assay the transcript 

abundances of the predicted targets in strains with the sRNA gene deleted, and/or with the sRNA 

being overexpressed from an inducible plasmid. As previously mentioned, overexpressing (or 

pulse inducing the expression) of sRNAs have been found to produce a large number of 

secondary effects. Therefore, individual assays of targets using this method is usually 

accompanied by assaying the same targets in sRNA deletion strains, comparing the mRNA levels 
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against appropriate wild type controls [68]. Since most regulatory interactions result in moderate 

changes in transcript abundance [30,50], these quantifications need to be carried out by sensitive 

experimental techniques like northern blot analysis or quantitative PCR. 

 Other validation methods have been reported to use translational fusion readouts of the 

putative target gene to a reporter gene. Commonly used reporter genes include the lacZ gene, 

encoding for β-galactosidase and the green fluorescent protein (GFP). While reporter systems are 

well established, if the fusion is driven by the target gene promoter, independent experiments 

need to be done in order to validate the effects on transcription [68]. On the other hand, inducing 

transcription of the fusion using an inducible promoter does not allow the identification of 

specific biological condition under which the regulation occurs. 

 Most of the confirmed regulatory interactions have been discovered in E. coli and S. 

enterica and very little is known about the sRNAs in other organisms [3]. More robust 

techniques are required to accelerate the discovery process across more species. Discovery of 

more regulatory interactions will significantly help in the understanding of the underlying 

mechanisms of riboregulation. 
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SUPERVISED PREDICTION OF REGULATORY NON-CODING RNA TARGETS IN 

BACTERIA USING ALIGNMENT-INDEPENDENT SEQUENCE INFORMATION 
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Abstract 

Small non-coding RNAs (sRNAs) are ubiquitous regulators of gene-expression across all 

kingdoms of life. Regulation by sRNAs in bacteria allows them to rapidly adapt to changing 

environmental and growth conditions. The vast majority of sRNAs in bacteria post-

transcriptionally regulate levels of target mRNAs through molecular interactions. In contrast to 

cis-encoded sRNAs that are transcribed from the antisense strand of their targets, trans-encoded 

sRNAs regulate multiple mRNAs irrespective of their locations, interacting with them in 

unconventional ways that make these interactions difficult to predict. Computational methods for 

the prediction of sRNA targets have primarily focused on base-pairing interactions. This 

approach has only been modestly successful.  

We have used Balanced Random Forests for the prediction of trans-encoded sRNA 

targets. The algorithm extends Random Forest’s sampling strategy for achieving equal 

performance in terms of sensitivity and specificity. Numerical features used for the classification 

are calculated from the sequences, allowing the predictions to be made using sequence 

information in an alignment-independent manner. Our algorithm outperforms current methods in 

terms of classification performance, and can be applied for the prediction of targets for sRNAs 

across entire prokaryotic genomes. The source code and data are available at 

https://github.com/j-mitra/BRF-sRNA-target 

Introduction 

Bacteria adapt to changing environments and various stress conditions through intricate 

genetic regulatory pathways. These pathways involve diverse mechanisms at multiple levels of 

gene expression, enabling the cell to rapidly adjust its physiology. In recent years, non-protein 

coding small RNAs (sRNAs) have emerged as major post-transcriptional regulators of gene 
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expression in almost all known bacterial species, mediating control through molecular 

interactions with target mRNAs [101] or proteins [102]. These sRNAs control expression of 

genes involved in a wide range of pathways, including regulation of stress responses, carbon and 

iron metabolism, biofilm formation, cell motility and quorum sensing [100]. 

The more prevalent mRNA-pairing sRNAs post-transcriptionally regulate levels of target 

mRNAs through molecular interactions, and have been broadly classified into two groups; cis-

encoded and trans-encoded [67,68,103]. The cis-acting sRNAs are encoded in the antisense 

strand of their target mRNAs, leading to the high sequence complementarity required for the 

interactions. Trans-encoded sRNAs, on the other hand, occur at genomic loci independent from 

their mRNA targets, share little sequence complementarity, and usually regulate multiple targets. 

Furthermore, the interactions between trans-encoded sRNAs and their targets involve short 

interspersed and often non-canonical base-pairing and are usually mediated by the RNA 

chaperone Hfq [67,104].  

With the advent of high-throughput transcriptome profiling techniques, many new sRNA 

transcripts have been identified [13,15,105,106].  Additional sRNAs have been predicted based 

on in silico analysis [94,105].  While over 100 sRNAs have been identified in the gram-negative 

bacteria Escherichia coli and Salmonella typhimurium, many of their molecular functions have 

not yet been characterized [68]. Therefore, attempts have been made to develop new 

computational approaches for the prediction of sRNA targets in bacterial genomes [94,107].  

Since sRNAs interact with their targets by base pairing, most previous methods for target 

prediction have relied on sequence and/or secondary structure based analysis.  However, purely 

sequence-based approaches that have been successfully used in prediction of eukaryotic miRNA 

targets are not applicable to prokaryotic trans-encoded sRNAs due to the lack of a perfect 
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complementary region with mRNA targets [94]. Some improvements have been achieved using 

thermodynamic scoring of base pairs in short complementary regions [90,108].  

Another target prediction method aims to identify the joint secondary structure of the 

interaction[109]. This technique faces the problem of identifying the native interaction from a 

combinatorially large number of possibilities, given that biologically functional interactions 

often do not correspond to the predicted structure with the minimum free energy [94,110]. This 

problem necessitates restricting the joint secondary structure prediction problem within a set of 

predetermined assumptions [94].  The earliest methods in this category applied a modified 

version of the single RNA secondary structure prediction algorithm to a concatenated sequence 

of the sRNA and the target mRNA to arrive at the joint secondary structure [92,111,112]. 

Subsequent secondary structure based methods have accounted for accessible regions in the 

secondary structures of the individual RNA molecules in formation of the interacting duplex 

[95,96].  

Algorithms combining sequence conservation information with accessibility have shown 

promise [99,113,114].  These methods depend on the occurrence of the sRNA and its target 

mRNA in multiple bacterial species such that conserved motifs can be detected. This prerequisite 

limits the target search space to conserved genes only, and somewhat diminishes the advantage 

obtained by restricting the interaction to conserved, structurally accessible sequence positions.  

While these bioinformatics methods have collectively demonstrated that various aspects 

of base-pairing interactions can be obtained from the sRNA and mRNA sequences alone, all 

predictions have been known to have an undesirably high false-positive rate (or low specificity).  

In most cases, the large number of false-positives result from the insufficiency of our current 
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understanding of the nondeterministic nature of these base-pairing interactions that allow each 

trans-encoded sRNA to regulate multiple mRNAs.  

One possible way to improve the specificity of the predictions is to incorporate 

information from other factors that play a role in sRNA mediated regulation.  For example, 

recent studies have suggested a role for accessory proteins involved in RNA metabolism in 

affecting mRNA steady state levels mediated by sRNAs [13,65,115,116]. However, the 

mechanistic details associated with the involvement of these proteins in the regulation are still 

largely undetermined.  

An argument often exploited in bioinformatics is that since biological function is 

essentially encoded in nucleotide sequence, effective representation of sequence information 

should adequately enable predictive models for biological processes. This assumption has been 

particularly useful in the application of machine-learning algorithms for pattern recognition in 

biological sequences [117–119]. Machine-learning algorithms that are designed for non-linear 

pattern recognition capture relationships between descriptive features of biological sequences 

that are inaccessible by linear statistical methods.  

Here we present a binary classifier for the prediction of sRNA targets based on the 

popular Random Forest algorithm [120]. The complex nature of biological systems has led to the 

widespread use of Random Forests for classification and regression problems in bioinformatics 

[121,122]. In the following sections, we elaborate on an iterative sampling based Random Forest 

model, hereby referred to as Balanced Random Forests (BRF) [123].  The BRF model uses a 

combination of numerically represented sequence features obtained from the sRNA and mRNA 

sequences to discriminate between sRNA and mRNA pairs known to have regulatory 

interactions and those that do not. 



 

 32 

 

Figure 4.1: 10-fold cross validation (CV) performance over iterative feature selection: As feature 
selection progresses, varying number of features are removed at each iteration and evaluated over a 10-
fold CV.  For the sake of clarity, the plot is split into four subparts with varying ranges to include all the 
iterations. 

 

Results 

Evaluation of Selected Features 

The complete feature set of 17760 features that was computed (as described in materials 

and methods) was subjected to iterative feature-selection. Each feature set was evaluated based 

on the 10-fold cross-validation Matthews Correlation Coefficient (MCC). The iterative removal 

of least important features progressively improved the 10-fold cross-validation MCC (Figure 

4.1, Supplementary Table S2).  The second round of selection for fine-tuning the feature-set was 

performed starting from a set of 60 features; a set of 49 features was settled upon as the optimal 

feature-set (Table S3, Figure S4).  In the selected feature set, it is interesting to note that most of 

the k-mer frequencies obtained from the target sequences that differ only by the number of gaps 

can be consolidated into simple patterns. For instance, the two-letter patterns SWS{N}1-3SWW, 

SSWW{N}1-3SWWW, MMKK{N}1-3KMMK and KKM{N}1-3MKK encompass 12 of the 30 

features obtained from mRNAs. Similar patterns SWSSSWW and KKK{N}1-3MKK were 
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captured from the sRNA sequences amongst a number of low-complexity patterns. Among the 

low complexity patterns, stretches of ‘R’ were found to be a recurring pattern in sRNA 

sequences. In order to determine if these patterns had any positional preferences in the 

sequences, we counted the occurrence of each pattern in the source sequences. It is worth noting 

here, that RF feature selection does not necessarily select features that are enriched in the 

positive class. Rather, it is a non-linear combination of the frequencies that make the 

classification possible in the selected model. This is evident when we compare the distributions 

of the frequencies in the two classes (Figure 4.2). Furthermore, the position-wise counts of the 

kmer patterns show that some patterns are less abundant than others in the positive sequences 

(figure S4). Not unexpectedly, several kmer patterns show either increased or decreased counts 

in regions around the transcription start site. 

 

Figure 4.2: Violin-plots comparing the distribution densities of the top 10 selected features between the 
two classes. The frequencies for the patterns labeled in bold are contributed by the mRNA sequences. 

A predictive BRF model was fitted using the selected feature set from the entire training 

data as described in the methods section. The resulting model, consisting of 1000 classification 

forests of 5 trees each, was evaluated using our blind test set. The blind test results for the final 
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model compared well with the 10-fold CV, indicating a good fit while retaining the balance in 

sensitivity and specificity.  

Comparisons with other methods 

To put the BRF’s blind test performance in perspective, we made several comparisons 

with other models using the same test set. First, we established that performance was not 

compromised due to the sampling strategy employed by comparing against both weighted and 

unweighted conventional RFs constructed using the same training set. Both the models were 

tuned for mtry and grown to 5000 trees, keeping the parameters consistent with the BRF. The 

class weights were tuned for the weighted RF (WRF) for maximum OOB MCC. Table 4.1 

shows that although the three models were comparable in terms of overall accuracy, the BRF 

model did a better job of maximizing sensitivity (or true positive rate) without compromising on 

specificity (true negative rate).  

 

Table 4.1: Comparison of performances of all the models on the blind test-set. Balanced Random Forest 
(BRF) compares favorably with both unweighted Random Forest (RF) and Weighted Random Forest 
(WRF) in terms of Matthews Correlation Coefficient (MCC), overall accuracy, sensitivity (or positive 
predictive rate) and specificity (negative predictive rate). All three RF models outperform the state-of-the-
art TargetRNA2 and IntaRNA methods. 

	
   Accuracy	
   Sensitivity	
   Specificity	
   MCC	
  
BRF	
   79.21	
   80.49	
   78.33	
   0.58	
  
RF	
   78.22	
   70.73	
   83.33	
   0.55	
  
WRF	
   80.20	
   73.17	
   85.00	
   0.59	
  
	
   	
   	
   	
   	
  TargetRNA2	
   64.00	
   56.10	
   69.49	
   0.26	
  

IntaRNA	
   41.00	
   92.68	
   5.08	
   -­‐0.05	
  
 

 

Table 4.2: Description of the alphabets used for sequence representation..N, representing any nucleotide 
is used in the patterns from both standard and two-letter alphabets. 

Alphabet	
   Symbol	
   Origin	
  of	
  designation	
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Standard	
  
Alphabet	
  

G	
   Guanine	
  (G)	
  
A	
   Adenine	
  (A)	
  
U	
   Uracil	
  (U)	
  
C	
   Cytosine	
  (C)	
  

Two-­‐letter	
  
alphabet	
  1	
  

R	
   puRine	
  (G	
  or	
  A)	
  
Y	
   pYrimidine	
  (U	
  or	
  C)	
  

Two-­‐letter	
  
alphabet	
  2	
  

M	
   aMino	
  (A	
  or	
  C)	
  
K	
   Keto	
  (G	
  or	
  U)	
  

Two-­‐letter	
  
alphabet	
  3	
  

S	
   Strong	
  interaction,	
  3	
  H	
  bonds	
  (G	
  or	
  C)	
  
W	
   Weak	
  interaction,	
  2	
  H	
  bonds	
  (A	
  or	
  U)	
  

Universal	
   N	
   aNy	
  nucleotide	
  (A	
  or	
  U	
  or	
  G	
  or	
  C)	
  
 

Next, we determined how the BRF model compared against currently available state-of-

the-art prokaryotic sRNA target predictors. For the analysis, the first software we selected was 

the recently published TargetRNA2 [113], which uses sequence conservation along with 

secondary structural features of the interacting sequences to make the predictions. Another recent 

algorithm, CopraRNA [114], have had recent success using conservation information from 

multiple sequence alignments. However, since CopraRNA functions in a fundamentally different 

way from our method, requiring multiple sequences for both sRNA and targets as input, a 

parallel comparison are difficult to make. CopraRNA’s prediction results are corroborated by a 

previously published web server IntaRNA [96]. IntaRNA is a secondary structure based target 

prediction algorithm that account for accessible regions in the secondary structures of the targets. 

For the sake of comparison of contrasting methods, we included the IntaRNA webserver in our 

analysis. sRNA and mRNA sequences from our test set were submitted to the respective web-

servers as described in the published articles with default parameters. BRF outperformed both 

IntaRNA and TargetRNA2 in terms of overall accuracy and MCC (Table 4.2). Of the two 

methods, only TargetRNA2 distinguishes the two classes with reasonable competence. With 

default settings, IntaRNA tended to find interactions with a negative MFE for most sequence 
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pairs and predict them to be true interactions. This issue can be somewhat circumvented when 

IntaRNA makes predictions for a given sRNA across all mRNAs on a genome and the 

interaction MFEs are fitted to an extreme-value distribution [99,114]. Nonetheless, it is apparent 

that additional sequence information is required in order to arrive at reasonably reliable 

predictions. 

Genome-wide predictions for individual sRNAs 

Finally, the BRF classifier model can be used for fast genome-wide prediction of targets 

for a given sRNA. Predictions can be sorted by their associated probability values, and high-

confidence predictions may be used for downstream analyses.  We applied the model for target 

predictions for three sRNAs, across the E. coli genome, namely RyhB, OmrA and IstR, as case 

studies (Table S5). After taking out the targets already present in the training set from the 

genome-wide predictions, the top 100 predictions for each sRNA were subjected to gene 

ontology term enrichment  of the molecular function category using the DAVID server [124]. 

The most significant 5 terms for each sRNA are shown in Table 4.3. A number of predictions for 

the well studied RyhB and OmrA that group into well-defined functional categories, indicating 

that the trained model captures sequence information from these sRNA interactions included in 

the training set, and predicts new interactions from the genome that share these features. The 

functional categories obtained from the enrichment analysis is in accordance with previous 

studies on RyhB and OmrA [125,126]. While IstR is not as well represented in the training set as 

the other two sRNAs, the enriched GO-terms suggest that it might be involved in similar 

regulatory networks as RyhB. 
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Table 4.3: Gene Ontology (GO) term enrichment analysis results for the three sRNAs tested for genome-
wide predictions in E. coli. Only the top 5 most significant terms from molecular function ontology are 
shown here. 

sRNA	
   Gene	
  Ontology	
  Term	
   No.	
  of	
  Genes	
   P-­‐value	
  

Ry
hB

	
  

GO:0016765~transferase	
  activity,	
  transferring	
  alkyl	
  or	
  aryl	
  
(other	
  than	
  methyl)	
  groups	
   4	
   2.50E-­‐02	
  
GO:0015932~nucleobase,nucleoside,	
  nucleotide	
  and	
  
nucleic	
  acid	
  transmembrane	
  transporter	
  activity	
   3	
   3.60E-­‐02	
  
GO:0016151~nickel	
  ion	
  binding	
   3	
   4.30E-­‐02	
  
GO:0043169~cation	
  binding	
   19	
   5.10E-­‐02	
  
GO:0043167~ion	
  binding	
   19	
   5.30E-­‐02	
  

	
  	
  

O
m
rA
	
  

GO:0016151~nickel	
  ion	
  binding	
   4	
   4.40E-­‐03	
  
GO:0042626~ATPase	
  activity,	
  coupled	
  to	
  transmembrane	
  
movement	
  of	
  substances	
   6	
   1.40E-­‐02	
  
GO:0043492~ATPase	
  activity,	
  coupled	
  to	
  movement	
  of	
  
substances	
   6	
   1.40E-­‐02	
  
GO:0015399~primary	
  active	
  transmembrane	
  transporter	
  
activity	
   6	
   1.60E-­‐02	
  
GO:0015405~P-­‐P-­‐bond-­‐hydrolysis-­‐driven	
  transmembrane	
  
transporter	
  activity	
   6	
   1.60E-­‐02	
  

	
  	
  

Is
tR
	
  

GO:0016151~nickel	
  ion	
  binding	
   4	
   6.40E-­‐03	
  
GO:0004555~alpha,alpha-­‐trehalase	
  activity	
   2	
   9.60E-­‐03	
  
GO:0043169~cation	
  binding	
   23	
   1.70E-­‐02	
  
GO:0043167~ion	
  binding	
   23	
   1.80E-­‐02	
  
GO:0046872~metal	
  ion	
  binding	
   22	
   2.30E-­‐02	
  

 

Discussion 

In this article, we present a novel algorithmic approach to the prediction of trans-acting 

sRNA targets in bacteria. By providing a classification approach using sequence information 

independent of alignments, this method makes an useful addition to the spectrum of 

computational tools available for sRNA target prediction. In the past, the scarcity of known 

sRNA-target interactions had prohibited the effective development of supervised algorithms for 

prediction. By assembling an up to date dataset consisting of only experimentally verified 

interactions from the literature, we were able to obtain competent classification performance on 
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the blind test-set. The balanced-sampling strategy employed for construction of the RF model 

addressed the many-to-many cardinality of the interactions in the dataset, and allowed for the 

optimization of both sensitivity and specificity for an imbalanced dataset at the same time. 

Compared on the test-set, the BRF algorithm fares favorably with current state of the art 

predictors of bacterial sRNA targets. 

 Feature selection using RF’s intrinsic “variable importance” measure allowed us to 

narrow down an expansive list of sequence pattern frequencies to a set of 49 features with the 

highest discriminative power. This feature set is likely to incorporate information essential for 

the interactions apart from base-pairing alone. A few patterns appear to coincide with known 

signatures, such as AU-rich Hfq binding motifs [41,127], while others are more cryptic at the 

moment. This is primarily because RF uses the features in a combinatorial fashion, and 

individual features would impart little or no predictive power. It is likely that some features 

contributing to the model relate to yet to be discovered mechanisms of sRNA regulation. Recent 

findings in bacterial sRNA regulation have revealed new players in the pathway 

[13,115,116,128]. Sequence signatures have also been found to be associated with other aspects 

of gene-expression, such as mRNA stability and translational efficiency [129,130]. Whole-

genome motif enrichment studies in the newly discovered aspects of sRNA regulation will shed 

some light on the roles of sequence patterns. 

 Finally, we show that the BRF model can be used on a genome-wide scale for fast 

prediction of global targets for a given sRNA. However, despite the competent sensitivity and 

specificity of our final model on the blind test set, when applied to the complete set of coding 

mRNA sequences in the genome, the model predicts a large number of interactions with a 

probability greater than 0.5 (the default threshold). Therefore, additional filtering steps may be 
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required for the selection of candidates for experimental validation. In the two case studies we 

presented in the results, the top 100 predictions in the sorted lists do conform to functional 

enrichment consistent with that of their known targets. Thus, a sorted list of predictions with 

highest probabilities may be subjected to functional enrichment, and/or correlation analysis with 

other state-of-the-art methods to arrive at a experimentally manageable list of high-confidence 

predictions. We anticipate this method will be a good starting point for prediction pipelines, and 

will lead to the discovery of new sRNA-mRNA interactions. 

 

Methods 

Datasets 

Supervised learning algorithms such as RFs require a training set comprised of instances 

known to belong to the distinct categories in question. In most cases, training datasets that are 

comprised of experimentally verified instances offer the highest confidence for predictive 

modeling.  In bacteria, interactions between sRNAs and mRNAs are commonly tested either 

through a genomic deletion of the sRNA or constitutively over-expressing it in a plasmid, and 

subsequent measurement of transcript level changes in potential mRNA target candidates.  

We obtained an initial list of sRNA-gene pairs that have been reported in the literature to 

either interact or not have any effect, from previously published databases [131–133]. RNA 

regulatory and metabolism pathways vary considerably between gram-positive and gram-

negative species, and divergent species of bacteria in general. Keeping this in mind, we restricted 

our dataset to the widely studied enterobacteriales Escherichia coli and Salmonella typhimurium. 

Additional instances for both classes were collected from the literature, resulting in a final 
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dataset up to 168 experimentally verified interacting pairs of sRNAs and mRNAs, and 248 pairs 

that do not interact (Table S1). 

Feature Vectors 

The RF algorithm learns to distinguish between the two classes based on the information content 

in an appropriate numerical representation of the dataset. In order to encode the RNA sequences 

in numerical form, we computed frequencies of occurrence of a substantially large set of k-mer 

patterns in the sequences to serve as numerical features for classification. The rationale for using 

a large starting feature set was that RF’s inherent feature-selection methodology may be used to 

find the best non-linear combination of a subset of these features that best discriminates 

between the two classes.  

Each instance of a sRNA-mRNA pair in the dataset was represented by three individual 

sequences, and the pattern frequencies described below were calculated for each. The full sRNA 

and mRNA sequences were augmented by the sequence regions around the mRNA translation 

start sites (defined here as subsequence starting 150 nt upstream to 100 nt downstream of the 

start codon), given that most interactions with sRNAs occur in this region.  

Table 4.4: Summary of sequence patterns used for calculation of frequency features. Here, L is a given 
letter from the alphabet and N is any nucleotide (unspecified). 

Alphabet Pattern Feature Description 

Standard 
Alphabet 

L(1-4) Nucleotide, di-, tri- and tetranucleotide 
frequencies. 

LiN(1-3)Lii, LiN(1-3)LiiLiii 
and LiLiiN(1-3)Liii 

Di- and trinucleotide frequencies interspersed 
with stretches (1-3nt in length) of unspecified 

nucleotides (N).	
  

Two-letter 
alphabets 

L(3-8) Frequencies of 3-8mers of two-alphabet letters. 
L(3-4)N(1-3)L(3-4) Frequencies of 6-8mers of two-alphabet letters, 

interspersed with stretches (1-3nt in length) of 
unspecified nucleotides (N) 

Frequencies from the standard four-letter RNA alphabet (A,U,G and C) were calculated for 

all pattern combinations ranging from mono- to tetra-nucleotides. In order to account for the 

short interspersed interactions commonly found in sRNA-mRNA duplexes, the patterns were 



 

 41 

extended by incorporating 1-3 nucleotide stretches of a “wild-card” letter N, where N can match 

any nucleotide (Table 4.4). 

The three RNA sequences for each instance were also translated from the four-letter code to 

two-letter alphabets as proposed by the IUPAC-IUB Commission on Biochemical Nomenclature 

(CBN) [134] (Table 4.2). The reduced alphabet encoding makes the calculation of non-zero 

frequency values of longer pattern lengths, ranging from tri- to octamers. As with the standard 

alphabet, the range of the patterns was expanded with the incorporation of 1-3 nucleotide 

stretches of letter N (Table 4.4). Combining all the frequency features for the representative 

sequences in each instance across all the alphabets used amounted to an extensive starting feature 

set consisting of 17796 features. 

Balanced Random Forests 

Random Forest (RF) [120] is an ensemble-learning algorithm for classification, 

regression and clustering based on decision trees. Being based on the theory of ensemble 

learning allows the algorithm to learn complex classification tasks, and allows it to identify non-

linear interactions between features. Iterative sampling of prediction variables (or features) 

allows the use of a large number of features as compared to the number of observations and to 

assess the importance of individual features in an embedded feature-selection method. Since its 

inception, RFs have gained popularity in several learning problems in bioinformatics [121] 

owing to their innate properties that make the method adaptable to a variety of situations. 

When using classification datasets that are “imbalanced”, i.e. when one class is under-

represented in number of observations, predictions from classifiers are often biased towards the 

majority class. To deal with this issue, RFs allow the most commonly adopted approach of cost-

sensitive learning in the form of Weighted Random Forests (WRF), where a high “cost” is 
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assigned to the misclassification of the minority class [123,135]. Another way to counteract the 

class-imbalance problem is to down-sample the majority class, over-sampling the minority class, 

or both [123]. In most cases, sampling out observations to balance class sizes leads to loss of 

information, making cost-sensitive learning the preferred approach. However, since RFs use an 

ensemble of tree-based classifiers, iterative down sampling allows the incorporation of all 

observations from the majority class distributed among the individual trees. The Balanced 

Random Forest (BRF) approach we used in this work was based on this idea, where the BRFs 

were constructed as follows: 

i. A bootstrap sample was drawn from the minority class (the positive class, in this case), 

which was roughly 90% of all the minority class instances. 

ii. A second bootstrap sample was drawn from the majority class (the negative class), 

which was equal in size to the minority positive class sample obtained in i. 

iii. A small classification RF with n trees was initiated using the data obtained in step i. and 

ii. In the first iteration, the BRF was initiated with this small RF. In subsequent 

iterations, the RF was added to the combined BRF. 

iv. Steps i to iii were repeated m number of times, resulting in a BRF consisting of an 

ensemble n×m trees. Predictions were aggregated over all the trees in the ensemble to 

arrive at the final prediction. 

 

It is worth noting that the dataset used for any given tree may contain semi-redundant 

features, since each sRNA may regulate multiple mRNA targets, and each mRNA may be 

regulated by multiple sRNAs (Figure 4.3). The bootstrap sampling from the minority positive 
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class in step i was included to control for this redundancy, even though the class imbalance was 

addressed by under-sampling the majority class alone.  

 

 

Figure 4.3: Flowchart illustrating training and feature selection steps for the Balanced Random Forest 
(BRF) algorithm. The left loop constructs the current Balanced Random Forest model, while the right 
loop extracts features based on variable importance values calculated on the current model. 

 

Model training and feature selection 

A blind test-set consisting of approximately 25% of the total number of instances was randomly 

sampled from each class. The remaining dataset was used for training, which involved iterative 

feature evaluation and selection using RF’s inherent “variable importance” measure [120]. As 
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previously mentioned, all existing computational methods for the prediction of sRNA targets 

suffer from a high false positive rate [94].  Although our BRF methodology aims to boost the 

true-positive rate (sensitivity), it remained imperative that both sensitivity and specificity were 

optimized for model selection. In this regard, the Matthews correlation coefficient (MCC) 

offered one of the most balanced measures of a binary classifier’s performance, by incorporating 

counts for true positives (TP), false positives (FP), true negatives (TN) and false negatives (FN) 

in its formulation: 

 

!"" =
!".!" − !".!"

(!" + !")(!" + !")(!" + !")(!" + !")
 

 

Feature sets were evaluated based on their average 10-fold cross-validation MCC. Feature 

selection was performed in two stages: a number of features roughly proportional to the total 

number of features was eliminated in each iteration of the first round, followed by a second 

round of iterative removal of one least important feature. The feature set with the highest MCC 

was then used to train the final model, which was subsequently evaluated on the blind test-set. 

 The algorithm was implemented in the R programming language using package 

“randomForest”. The original R source code, accessory scripts and data are freely available at 

https://github.com/j-mitra/BRF-sRNA-target.  
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CHAPTER 5  

KNOWLEDGE BASED IDENTIFICATION OF TRANS-ACTING REGULATORY 

SRNA TARGETS IN ESCHERICHIA COLI 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mitra. J, Mohanty. B,  Kushner. S.R; To be submitted to Nucleic Acids Research  



 

 46 

Abstract 

Small non-coding RNAs (sRNAs) have emerged as global regulators in major pathways 

in all organisms known to man. In bacteria, the largest class of riboregulators act by base-pairing 

to mRNA targets, regulating them post-transcriptionally. Among these, a subclass of sRNAs act 

in cis, being encoded on the opposite strand of their targets. The other, more prevalent class act 

in trans, being encoded at different locations from either single or multiple targets and do not 

share extensive sequence complementarity. Several aspects of regulation by trans-acting sRNAs 

make it challenging to identify their targets. 

 We have previously presented a machine learning algorithm based on the random forest 

classifier to predict mRNA targets for trans-acting in bacteria. Here, we describe how the 

algorithm can be applied on a genome-wide scale to make successful predictions in E. coli. A 

selection of the top scoring mRNA predictions informed by additional criteria were validated 

experimentally, revealing regulatory interactions by multiple sRNAs in E. coli. 

Introduction 

Recent years have witnessed the rise of non-coding RNAs as regulators of gene-

expression in all kingdoms of life. The development of high-throughput transcriptome profiling 

technologies such as whole genome tiling-microarrays and RNASeq have led to the discovery of 

numerous non-coding RNA species. While the number of non-coding RNAs continue to grow 

rapidly, identification of their biological roles still remains a formidable challenge. 

In prokaryotes, systematic studies for the identification and characterization of regulatory 

non-coding RNAs have largely focussed on the model bacteria Escherichia coli [5,16,103] and 

Salmonella Enterica sp. [5,16]. In E. coli, over a hundred small regulatory non-coding RNAs 

(hereby referred to as sRNAs) have been identified [98,136]. sRNAs that are encoded in cis, i.e. 
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the antisense strand of protein coding mRNAs, target the mRNAs on the opposite strand for 

regulation. In contrast, the so called “trans-acting” sRNAs are encoded in intergenic regions of 

the genome, and regulate multiple mRNA targets at uncorrelated genomic loci. The lack of 

complementarity between the sRNAs and their targets have made target identification very 

difficult. 

The majority of these novel sRNA transcripts, however, have no biological function 

identified. This widening gap between the discovery and functional annotation of novel sRNAs 

has necessitated the development of several biocomputational approaches [68,98] to facilitate the 

annotation process. Early attempts in sRNA target predictions used simplistic sequence 

alignment based techniques [94,98] or secondary structure predictions of the ncRNA sequence 

concatenated with the mRNA [111,112]. The highly variable nature of these interactions have 

made it difficult for these early methods to have any noteworthy success. Subsequent efforts 

have incorporated structural accessibility  and/or sequence conservation information of the 

interacting RNA molecules. Sequence conservation is generally accounted for by using multiple 

sequence alignments between sRNA and target sequences from related species [97,99,113]. 

Although these approaches are limited by the requirement that both the sRNA and the target be 

conserved in multiple species, the effective combination of comparative methods with secondary 

structural information has been successful in discovery of novel interactions [99,113].    

Despite apparent improvements in prediction capabilities of current algorithms, a large 

number of sRNAs have no assigned function. Trans-acting sRNAs have been extensively studied 

in E. coli, but fewer than 20 sRNAs have known targets [136]. While it is difficult to predict 

whether novel non-coding RNA species mediate regulation through base pairing, the sRNAs 

known to act in trans on few targets are likely to interact with many more mRNAs [68]. 
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Bioinformatic approaches have often utilized the assumption that the requisite 

information for biological function is encoded in the sequence.  Thus, numerical quantification 

of sequence patterns have been used for predictions [117–119]. Previously, we have presented a 

machine learning classification based approach for the prediction of trans-acting sRNA targets in 

bacteria (Mitra and Kushner, in review). Our algorithm is based on the popular random forest 

(RF) classifier and uses k-mer and gapped k-mer frequencies as prediction features. Since our 

method performed competently on a blind test set and compared favorably with existing state-of-

the-art methods, we anticipated that the application of the algorithm on a genome-wide scale 

would result in the identification of novel regulatory interactions. 

 

Materials and Methods 

Genome-wide predictions using Balanced Random Forest 

A Balanced Random Forest (BRF) model was trained using the full training dataset as 

described in the previous chapter. Genome-wide predictions were made for various sRNA. For 

the purpose of experimental validation, genome-wide predictions were made for the Escherichia 

coli sRNAs MicC, RybB, RseX, OxyS, DicF and RprA. Functional enrichment was done using 

the top scoring 100 predicted genes using the DAVID web server [137], as described previously. 

 
 
Filtering genome-wide results using BRF proximities 

Our filtering strategy was done by computing RF’s proximity measures for positively 

predicted interaction in the genome to a benchmark set of high confidence  known interactions. 

RF proximities are a similarity measure computed between predictions made by a trained RF 

model [120,138]. Essentially, proximities are measured as the ratio of the number of trees in the 
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forest traversed by two independent instances (or predictions) following identical paths, to the 

total number of trees in the RF model [120].  

While RF proximities are generally used for unsupervised learning applications using RF, 

we repurposed the measure as an additional criteria to prediction probabilities for selecting 

candidates for experimental validation. To accomplish this task, we performed leave-one-out 

(LOO) validation on the positive set using the BRF strategy described previously. Basically, 

each experimentally validated positive interaction was taken out of the training set while the 

remaining set was used for training. The trained models iteratively made predictions on the 

instance that was removed from its training data to output a probability. The variability 

introduced by the sampling from the larger negative set in the BRF algorithm was accounted for 

here by repeating the LOO evaluation 100 times with different seeds for random number 

generation. Positive interactions that were predicted with a probability higher than 0.75 (a 

predefined threshold for high-confidence) every single time were included in the benchmark set.  

Bacterial Strains and Northern Blot Analysis 

The BRF model was experimentally validated using northern blot analysis of predicted 

target mRNAs in Escherichia coli MG1655 and derivative strains. The sRNA knockout strains 

were generously provided by Gisele Storz at the National Institutes of Health (NIH). The mutant 

strains were generated by replacing each sRNA gene  with a kanamycin resistance cassette 

[139].   

Cells were grown on standard Luria broth and harvested for total RNA extraction during 

exponential (Klett 50, No. 42 green filter), late exponential (Klett 125), and stationary (Klett. 

200) phases of growth.  RNA was extracted using the RNAsnap™ protocol [140]. The RNA 
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samples were further purified using acidic phenol/chloroform extraction and ethanol/Na-acetate 

precipitation as previously described [141]. 

Twenty µg of each RNA sample were separated on either 5% denaturing polyacrylamide 

gels, or 1.5% agarose gels (with glyoxal added to samples) [142]. The polyacrylamide gels were 

used for analyzing transcripts less than 1 kb in size. Radiolabeled probes for the northerns were 

prepared in one of two ways: short 20 nucleotide DNA oligomers end-labeled with ɣ-32P-ATP 

using polynucleotide kinase [141], or PCR synthesized longer DNA fragments randomly labeled 

with ⍺-32P-dATP using the Klenow fragment of DNA polymerase I [141]. Northern 

hybridization was performed by incubating the membranes in ULTRAhyb™ hybridization buffer 

at Tm - 10°C when probed with radiolabeled oligonucleotides, or 65°C when probed with 

radiolabeled longer DNA fragments [141]. Hybridization was visualized on a Storm 840 

PhosphorImager (GE Healthcare) and band intensities were quantified using ImageQuant™ 

software (GE Healthcare). Fold change values were calculated using the local median 

background correction method, and the reported values were an average of at least two 

independent biological replicate experiments. 

 

Results  

The number of predictions scoring higher than the default probability threshold varied 

greatly among the six sRNAs tested. Typically, we observed sRNAs that were well represented 

in the training dataset got higher scoring predictions overall. This result appeared to be a 

consequence of overfitting in the model, despite stringent measures having been taken to avoid 

this very problem. Thus, the prediction probability distribution RybB, which had 30 known 

interaction instances in the training dataset looks very different from that of DicF, with only one 

interaction, and OxyS, with only two interactions (histofigs). This makes the selection of 



 

 51 

candidate predicted interactions for validation require additional constraints, in order to minimise 

false positives during experimental validation. 

 The benchmark-proximity filter employed in this study aimed to overcome this problem 

by identifying predicted interactions that were similar to high-confidence known interactions in 

the training dataset. The proximity filter was effective in two ways: first, it greatly reduces the 

total number of predictions across the genome; and second, the predictions could be sorted using 

additional criteria such as average proximity to all the benchmarks and/or the total number of 

benchmark interactions higher than a predefined proximity threshold. Around 4-5 interactions 

were selected from these sorted lists for each sRNA for validation. The selections were made 

from amongst the top 15 predicted results, based on the above mentioned criteria, and biological 

interest.  

Table 5.1: Average linear fold change in expression for predicted targets. Negative values indicate down-
regulation. 

Predicted Target sRNA Fold Change in Expression 
Log Mid-log Stationary 

btuB MicC -1.51 -4.52 1.58 
dppA MicC 14.40 36.70 1.41 

sdhC 
MicC 1.88 -0.53 11.03 
RybB 0.87 0.44 1.62 
RseX 0.41 0.30 3.09 

sthA 
MicC -1.16 -2.68 -1.04 
RybB -1.69 -3.89 -1.37 
RseX -4.49 -4.24 -1.04 

chbC 
DicF 0.97 12.86 162.65 
RprA 3.28 11.63 130.74 

yqjG MicC 1.07 4.42 0.84 

yejA MicC 0.42 0.84 4.92 
RprA 0.42 0.84 4.92 

 

Based on these criteria, we identified a number of targets commonly predicted with high 

confidence in all or most of the sRNAs in this study. Interestingly, some of the genes predicted 
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to be regulated by multiple sRNAs were also predicted to be interaction hubs by CopraRNA [99] 

a target predicting program that utilizes a very different approach. In particular, both sdhC and 

csrD consistently scored high for multiple sRNAs. Amongst the potential hubs, we were able to 

detect sdhC in our northern analyses, and it showed differential expression in the three sRNA 

deletion mutants it was tested against. A regulatory effect was decided to be positive when the 

fold change in the northern analyses was greather than 1.5 fold, keeping it consistent with 

previous studies [99,114].  

 

Figure 5.1: Northern blot analysis of predicted targets.  Total RNA was extracted at Klett. 50, 125, and 
200 for log-phase, mid-log phase and stationary phase, respectively, as described in the Materials and 
Methods. The blots shown here were performed on 1.5% agarose gels. All the genes were probed by 
longer DNA fragments as described in materials and methods, except for yejA, which was probed by an 
end-labeled oligomer. 

 The northern analyses revealed five novel regulatory interactions for MicC, which is 

known to regulate outer membrane proteins from previous studies [143]. sdhC was most strongly 

regulated by MicC, and only moderately by RybB and RseX. MicC regulated dppA negatively, 
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and btuB and sthA positively, the strongest effect usually seen in the mid-log phase (Table 5.1, 

Figure 5.1). Interestingly, sthA is the soluble protein alternative to the membrane bound pyridine 

nucleotide transhydrogenase (pntAB) [144,145]. This target was a departure from the known 

membrane associated genes that these sRNAs regulate. MicC also positively regulates btuB, 

another outer membrane porin that mediates the transport of cyanocobalamin across the 

membrane [146,147].  The operon yejABEF, previously found to be regulated by RspA [75], was 

strongly regulated by MicC (Figure 5.1, Table 5.1) and RprA (Table 5.1). The operon was 

previously predicted to be around 6 Kb in size. However, we detected two bands, both beyond 

the range of our riborulers. The smaller band was a little over 6 kb, and the larger band was 

between 6.5-7 kb.  
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Figure 5.2: Barplots depicting fold changes in predicted targets for sRNAs tested. 

Discussion 

The balanced random forest (BRF) model used for the prediction of trans-acting sRNA targets 

described in this study was trained using numerical representation of the sRNA and mRNA 

sequences using k-mer and gapped k-mer pattern frequencies only. The iterative feature selection 

methodology described previously aims to capture information required for distinguishing 

interacting pairs of sequences from the pairs that do not interact. In doing so, we eliminated the 
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need for secondary structure predictions and multiple-sequence alignment, possibly accounting 

for sequence characteristics required for regulation that might be overlooked by other methods. 

The sampling strategy employed for training the BRF was intended to maintain an equilibration 

of sensitivity and specificity. The BRF had shown promising results on counts of both sensitivity 

and specificity when tested on the blind test set. The observation of variable number of total 

predictions between sRNAs is due to the unequal representation of the sRNAs in the training 

dataset. Moreover, it is safe to assume that even the current training dataset collected from 

literature is a gross under-representation of the underlying interaction network in the genome 

itself. This leads to a large number of positive predictions when the model is applied on a 

genome-wide scale. A high false positive rate is an issue faced by all approaches to this problem 

[105]. 

The proximity based filtering approach we applied to workaround these issues has made 

the selection of candidates for experimental validation easier. Since the model was trained on 

data from the closely related enterobacteria E. coli and S. typhi, we anticipated these 

experimental validations on predictions on the E. coli genome to reveal novel interactions.  It is 

interesting to note, that although the training dataset did not distinguish between up-regulatory 

interactions from down-regulatory ones, our northern blot analyses have revealed both kinds of 

interactions from the predictions. The experimental results show that our prediction results lead 

to identification of novel interactions.  
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CHAPTER 6  

CONCLUSIONS 

Summary 

Regulation by non-coding RNAs is a highly active and rapidly developing area of 

research. The widespread influence of these regulatory networks have made researchers working 

on many different biological pathways interested in them. In bacteria, trans-acting small 

regulatory RNAs (or sRNAs) have emerged as the largest class of non-coding RNAs that 

mediate regulation by base-pairing with target mRNAs. As was outlined in the introductory 

chapters 2 and 3, several aspects of regulation by trans-acting sRNAs make the prediction and 

identification of their regulatory targets a non-trivial challenge.  

The original study presented in chapter 5 introduces a novel machine-learning based 

classifier to predict regulatory targets of trans-acting sRNAs. The model was trained on a high-

quality dataset of experimentally validated pairs of sRNA and targets that interact, and those that 

do not interact. The algorithm incorporated an additional sampling step to the popular random 

forest algorithm [cite] to tackle the imbalance in the data, which usually biases supervised 

classifiers towards the majority class. By incorporating an additional sampling step that samples 

an equal number of instances from either class, the trained model performed equally well on 

counts of both sensitivity and specificity when tested on the blind test set. Random forests 

intrinsic feature selection capabilities were used to select the feature subset from a starting set of 

a combinatorially large number of features. Thus the model trained from the best performing set 

of sequence features allows the random forest algorithm to capture information required for 

distinguishing interacting pairs of sRNA and mRNA sequences from pairs of sequence that do 
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not interact. In doing so, we eliminated the need for secondary structure predictions and 

multiple-sequence alignment, possibly accounting for sequence characteristics required for 

regulation that might be overlooked by other methods. The performance on the blind test set also 

compared favorably against the latest state-of-the-art algorithms available.  

The speed and performance of the trained model showed promise in discovery of novel 

interactions in bacteria. In chapter 6, this possibility is explored by making genome-wide 

predictions for six trans-acting sRNAs in Escherichia coli. In order to confirm predicted 

interactions, a manageable number of likely candidates needed to be picked for experimental 

validation. Unsurprisingly, we observed that genome scale predictions result in a larger number 

of positive predictions for each sRNA than is biologically probable. In order to increase the 

chances of selecting true-positives, an additional filter was incorporated using random forest’s 

intrinsic similarity measure, the proximities that can be computed using a trained model. To use 

this as an additional selection criteria to the prediction probabilities (or votes), a high-confidence 

benchmark set was created, to which proximities of new predictions were computed from the 

BRF model. Several of the candidates that were tested using these criteria have been found to be 

regulated by the sRNAs in the study. 

 
Future perspectives 

The biggest advantage of knowledge based learning algorithms is that these models get 

better as they can be retrained, with new data added to the training set. Having stated that, the 

data being collected needs to incorporate more information. This may include stages or 

conditions that these sRNAs exert regulation, and/or the strength and type of regulation that they 

bring about. Experimental developments in eukaryotes have now enabled elucidation of RNA-
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RNA interactions on a genome-scale. These technologies still fall short of capturing these 

interactions in bacteria, where the half-lives of most RNA species are very short. 

Computational techniques rely on quality, quantity and design of experimental studies. It 

is safe to say, that most computational studies, including comparative methods and joint 

secondary structure prediction methods will benefit from experiments that address binding 

regions of regulatory interactions. In bacteria, performing these experiments is challenging, 

because most RNA molecules are extremely short lived in the cell. As various research groups in 

the field combine multiple techniques to arrive at new ideas to discover more about sRNAs in 

bacteria, mathematical modeling techniques will always be useful in further facilitating new 

discoveries. 
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APPENDIX 

SUPPLEMENTARY DATA FOR CHAPTER 4 

SUPPLEMENTARY S1: SRNA-MRNA PAIRS SELECTED FOR THE STUDY 

Table S1: The table below lists all pairs of sRNAs and mRNAs tested for interactions, as 

reported in literature. The entry in the column labeled “Interaction” was taken as the class label 

for the algorithm. References to the interactions are listed below the table. 

 

sRNA mRNA Locus ID Species Interaction Reference 

ArcZ rpoS b2741 Escherichia coli str. K-12 substr. 
MG1701 Yes [148] 

ArcZ sdaC stm2970 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 Yes [149] 

ArcZ stm3216 stm3216 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 Yes [149] 

ArcZ tpx stm1682 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 Yes [149] 

ChiX celB stm1313 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 Yes [150] 

ChiX chbC b1737 Escherichia coli K-12 substr. MG1690 Yes [151] 

ChiX chiP b0681 Escherichia coli str. K-12 substr. 
MG1658 Yes [152] 

ChiX dpiB b0619 Escherichia coli str. K-12 substr. 
MG1657 Yes [153] 

ChiX ybfM stm0687 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 Yes [154] 

CyaR luxS b2687 Escherichia coli str. K-12 substr. 
MG1655 Yes [155] 

CyaR nadE b1740 Escherichia coli str. K-12 substr. 
MG1655 Yes [155] 

CyaR ompX b0814 Escherichia coli str. K-12 substr. 
MG1655 Yes [155] 

CyaR sdhA b0723 Escherichia coli str. K-12 substr. 
MG1663 Yes [99] 

CyaR yqaE b2666 Escherichia coli str. K-12 substr. 
MG1655 Yes [155] 

DicF ftsZ b0095 Escherichia coli str. K-12 substr. 
MG1655 Yes [156] 

DsrA argR b3237 Escherichia coli str. K-12 substr. 
MG1655 Yes [31] 
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sRNA mRNA Locus ID Species Interaction Reference 

DsrA hns b1237 Escherichia coli str. K-12 substr. 
MG1655 Yes [31] 

DsrA ilvL b0077 Escherichia coli str. K-12 substr. 
MG1655 Yes [31] 

DsrA rbsD b3748 Escherichia coli str. K-12 substr. 
MG1655 Yes [31] 

DsrA rpoS b2741 Escherichia coli str. K-12 substr. 
MG1655 Yes [33] 

FnrS cydD b0887 Escherichia coli str. K-12 substr. 
MG1655 Yes [157] 

FnrS folE b2153 Escherichia coli str. K-12 substr. 
MG1694 Yes [158] 

FnrS folX b2303 Escherichia coli str. K-12 substr. 
MG1696 Yes [158] 

FnrS gpmA b0755 Escherichia coli str. K-12 substr. 
MG1669 Yes [158] 

FnrS iscR b2531 Escherichia coli str. K-12 substr. 
MG1698 Yes [99] 

FnrS maeA b1479 Escherichia coli str. K-12 substr. 
MG1683 Yes [158] 

FnrS marA b1531 Escherichia coli str. K-12 substr. 
MG1685 Yes [99] 

FnrS metE b3829 Escherichia coli str. K-12 substr. 
MG1655 Yes [157] 

FnrS nagZ b1107 Escherichia coli str. K-12 substr. 
MG1678 Yes [99] 

FnrS sdhA b0723 Escherichia coli str. K-12 substr. 
MG1664 Yes [99] 

FnrS sodA b3908 Escherichia coli str. K-12 substr. 
MG1655 Yes [157] 

FnrS sodB b1656 Escherichia coli str. K-12 substr. 
MG1655 Yes [157] 

FnrS yobA b1841 Escherichia coli str. K-12 substr. 
MG1693 Yes [159] 

GcvB argT stm2355 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 Yes [160] 

GcvB brnQ stm0399 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 Yes [161] 

GcvB csgD b1040 Escherichia coli str. K-12 substr. 
MG1674 Yes [162] 

GcvB cycA b4208 Escherichia coli str. K-12 substr. 
MG1655 Yes [163] 

GcvB dppA stm3630 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 Yes [160] 

GcvB gdhA stm1299 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 Yes [161] 

GcvB gltL stm0665 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 Yes [160] 

GcvB iciA stm3064 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 Yes [161] 

GcvB ilvC stm3909 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 Yes [161] 

GcvB ilvE stm3903 Salmonella enterica subsp. enterica Yes [161] 
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serovar Typhimurium str. LT2 

GcvB livJ stm3567 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 Yes [160] 

GcvB livK stm3564 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 Yes [160] 

GcvB lrp stm0959 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 Yes [161] 

GcvB metQ stm0245 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 Yes [161] 

GcvB ndk stm2526 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 Yes [161] 

GcvB ompR stm3502 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 Yes [160] 

GcvB oppA stm1746.
s 

Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 Yes [160] 

GcvB serA stm3062 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 Yes [161] 

GcvB sstT b3089 Escherichia coli str. K-12 substr. 
MG1655 Yes [164] 

GcvB stm4351 stm4351 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 Yes [160] 

GcvB thrL/thrA stm0001 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 Yes [165] 

GcvB tppB stm1452 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 Yes [161] 

GcvB ybdH stm0602 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 Yes [161] 

GcvB ygjU stm3225 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 Yes [161] 

GlmY glmS b3729 Escherichia coli str. K-12 substr. 
MG1655 Yes [166] 

GlmZ glmS b3729 Escherichia coli str. K-12 substr. 
MG1655 Yes [166] 

InvR nmpC stm1572 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 Yes [167] 

IstR tisB b4618 Escherichia coli str. K-12 substr. 
MG1655 Yes [168] 

MicA ecnB b4411 Escherichia coli str. K-12 substr. 
MG1715 Yes [169] 

MicA fimB b4312 Escherichia coli str. K-12 substr. 
MG1713 Yes [169] 

MicA gloA b1651 Escherichia coli str. K-12 substr. 
MG1689 Yes [169] 

MicA lamB stm4231 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 Yes [170] 

MicA lpxT b2174 Escherichia coli str. K-12 substr. 
MG1695 Yes [169] 

MicA ompA stm1070 Salmonella enterica subsp. enterica 
serovar Typhi str. CT18 Yes [170] 

MicA ompA b0957 Escherichia coli str. K-12 substr. 
MG1673 Yes [171] 

MicA ompX stm0833 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 Yes [76] 
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MicA ompX b0814 Escherichia coli str. K-12 substr. 
MG1671 Yes [169] 

MicA pal b0741 Escherichia coli str. K-12 substr. 
MG1667 Yes [169] 

MicA phoP b1130 Escherichia coli str. K-12 substr. 
MG1655 Yes [172] 

MicA tsx b0411 Escherichia coli str. K-12 substr. 
MG1655 Yes [169] 

MicA ybgF b0742 Escherichia coli str. K-12 substr. 
MG1668 Yes [169] 

MicA ycfS b1113 Escherichia coli str. K-12 substr. 
MG1680 Yes [169] 

MicC nmpC stm1572 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 Yes [173] 

MicC ompC b2215 Escherichia coli str. K-12 substr. 
MG1655 Yes [143] 

MicF cpxR b3912 Escherichia coli str. K-12 substr. 
MG1709 Yes [174] 

MicF lpxR stm1328 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 Yes [175] 

MicF lrp b0889 Escherichia coli str. K-12 substr. 
MG1672 Yes [174] 

MicF ompF b0929 Escherichia coli str. K-12 substr. 
MG1655 Yes [143] 

MicF phoE b0241 Escherichia coli str. K-12 substr. 
MG1655 Yes [174] 

MicF yahO stm0366 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 Yes [175] 

OmrA btuB b3966 Escherichia coli str. K-12 substr. 
MG1655 Yes [126] 

OmrA cirA b2155 Escherichia coli O127:H6 str. E2348/69 Yes [176] 

OmrA csgD b1040 Escherichia coli str. K-12 substr. 
MG1655 Yes [177] 

OmrA fecA b4291 Escherichia coli str. K-12 substr. 
MG1655 Yes [126] 

OmrA fecD b4288 Escherichia coli str. K-12 substr. 
MG1655 Yes [178] 

OmrA fepA b0584 Escherichia coli O127:H6 str. E2348/69 Yes [126] 

OmrA folP b3177 Escherichia coli str. K-12 substr. 
MG1655 Yes [126] 

OmrA glmM b3176 Escherichia coli str. K-12 substr. 
MG1655 Yes [126] 

OmrA gntP b4321 Escherichia coli str. K-12 substr. 
MG1655 Yes [126] 

OmrA ompR b3405 Escherichia coli O127:H6 str. E2348/69 Yes [176] 
OmrA ompT b0565 Escherichia coli O127:H6 str. E2348/69 Yes [176] 
OmrB cirA b2155 Escherichia coli O127:H6 str. E2348/69 Yes [176] 

OmrB csgD b1040 Escherichia coli str. K-12 substr. 
MG1655 Yes [177] 

OmrB fecA b4291 Escherichia coli str. K-12 substr. 
MG1655 Yes [126] 
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OmrB folP b3177 Escherichia coli str. K-12 substr. 
MG1655 Yes [126] 

OmrB glmM b3176 Escherichia coli str. K-12 substr. 
MG1655 Yes [126] 

OmrB gntP b4321 Escherichia coli str. K-12 substr. 
MG1655 Yes [178] 

OmrB ompR b3405 Escherichia coli O127:H6 str. E2348/69 Yes [176] 
OmrB ompT b0565 Escherichia coli O127:H6 str. E2348/69 Yes [126] 

OxyS fhlA b2731 Escherichia coli str. K-12 substr. 
MG1655 Yes [74] 

OxyS rpoS b2741 Escherichia coli str. K-12 substr. 
MG1655 Yes [179] 

RprA csgD b1040 Escherichia coli str. K-12 substr. 
MG1675 Yes [180] 

RprA rpoS b2741 Escherichia coli str. K-12 substr. 
MG1655 Yes [181] 

RprA ydaM b1341 Escherichia coli str. K-12 substr. 
MG1682 Yes [180] 

RseX ompA b0957 Escherichia coli str. K-12 substr. 
MG1655 Yes [77] 

RseX ompC b2215 Escherichia coli str. K-12 substr. 
MG1655 Yes [77] 

RybB asr b1597 Escherichia coli str. K-12 substr. 
MG1687 Yes [169] 

RybB chiP stm0687 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 Yes [182] 

RybB fadL stm2391 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 Yes [182] 

RybB fimA b4314 Escherichia coli str. K-12 substr. 
MG1714 Yes [169] 

RybB fiu b0805 Escherichia coli str. K-12 substr. 
MG1670 Yes [169] 

RybB fumC b1611 Escherichia coli str. K-12 substr. 
MG1688 Yes [169] 

RybB hinT b1103 Escherichia coli str. K-12 substr. 
MG1676 Yes [169] 

RybB mraZ b0081 Escherichia coli str. K-12 substr. 
MG1655 Yes [99] 

RybB nmpC b0553 Escherichia coli str. K-12 substr. 
MG1656 Yes [169] 

RybB ompA stm1070 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 Yes [182] 

RybB ompC b2215 Escherichia coli str. K-12 substr. 
MG1655 Yes [81] 

RybB ompD stm1572 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 Yes [182] 

RybB ompF stm0999 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 Yes [182] 

RybB ompN stm1473 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 Yes [183] 

RybB ompS stm1995 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 Yes [182] 
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RybB ompW b1256 Escherichia coli str. K-12 substr. 
MG1655 Yes [81] 

RybB rbsB b3751 Escherichia coli str. K-12 substr. 
MG1707 Yes [169] 

RybB rbsK b3752 Escherichia coli str. K-12 substr. 
MG1708 Yes [169] 

RybB rluD b2594 Escherichia coli str. K-12 substr. 
MG1699 Yes [169] 

RybB rraB b4255 Escherichia coli str. K-12 substr. 
MG1711 Yes [169] 

RybB sdhC b0721 Escherichia coli str. K-12 substr. 
MG1660 Yes [184] 

RybB tsx stm0413 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 Yes [182] 

RybB ycfL b1104 Escherichia coli str. K-12 substr. 
MG1677 Yes [169] 

RybB ydeN b1498 Escherichia coli str. K-12 substr. 
MG1684 Yes [169] 

RybB yhjJ b3527 Escherichia coli str. K-12 substr. 
MG1704 Yes [169] 

RydC yejA b2177 Escherichia coli str. K-12 substr. 
MG1655 Yes [75] 

RyhB acnA b1276 Escherichia coli str. K-12 substr. 
MG1655 Yes [35] 

RyhB bfr b3336 Escherichia coli str. K-12 substr. 
MG1655 Yes [35] 

RyhB cysE b3607 Escherichia coli str. K-12 substr. 
MG1706 Yes [185] 

RyhB erpA b0156 Escherichia coli str. K-12 substr. 
MG1655 Yes [99] 

RyhB ftn b1905 Escherichia coli str. K-12 substr. 
MG1655 Yes [36] 

RyhB fumA b1612 Escherichia coli str. K-12 substr. 
MG1655 Yes [35] 

RyhB fur b0683 Escherichia coli str. K-12 substr. 
MG1655 Yes [186] 

RyhB iscS b2530 Escherichia coli str. K-12 substr. 
MG1655 Yes [187] 

RyhB marA b1531 Escherichia coli str. K-12 substr. 
MG1686 Yes [99] 

RyhB nagZ b1107 Escherichia coli str. K-12 substr. 
MG1679 Yes [99] 

RyhB nirB b3365 Escherichia coli str. K-12 substr. 
MG1703 Yes [99] 

RyhB sdhA b0723 Escherichia coli str. K-12 substr. 
MG1665 Yes [99] 

RyhB sdhC b0721 Escherichia coli str. K-12 substr. 
MG1661 Yes [184] 

RyhB sdhD b0722 Escherichia coli str. K-12 substr. 
MG1655 Yes [35] 

RyhB shiA b1981 Escherichia coli str. K-12 substr. 
MG1655 Yes [188] 

RyhB sodB b1656 Escherichia coli str. K-12 substr. Yes [178] 
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SgrS manX b1817 Escherichia coli str. K-12 substr. 
MG1692 Yes [189] 

SgrS ptsG b1101 Escherichia coli str. K-12 substr. 
MG1655 Yes [190] 

SgrS ptsL b2416 Escherichia coli str. K-12 substr. 
MG1697 Yes [99] 

SgrS rpoS b2741 Escherichia coli str. K-12 substr. 
MG1655 Yes [127] 

SgrS sopD stm2945 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 Yes [191] 

SgrS yigL stm3962 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 Yes [192] 

Spot42 fucL b2802 Escherichia coli str. K-12 substr. 
MG1702 Yes [193] 

Spot42 galK b0757 Escherichia coli O127:H6 str. E2348/69 Yes [194] 

Spot42 gdhA b1761 Escherichia coli str. K-12 substr. 
MG1691 Yes [99] 

Spot42 gltA b0720 Escherichia coli str. K-12 substr. 
MG1659 Yes [193] 

Spot42 icd b1136 Escherichia coli str. K-12 substr. 
MG1681 Yes [99] 

Spot42 nanC b4311 Escherichia coli str. K-12 substr. 
MG1712 Yes [193] 

Spot42 sdhC b0721 Escherichia coli str. K-12 substr. 
MG1662 Yes [184] 

Spot42 slrA b2702 Escherichia coli str. K-12 substr. 
MG1700 Yes [193] 

Spot42 sthA b3962 Escherichia coli str. K-12 substr. 
MG1710 Yes [193] 

Spot42 sucC b0728 Escherichia coli str. K-12 substr. 
MG1666 Yes [99] 

Spot42 xylF b3566 Escherichia coli str. K-12 substr. 
MG1705 Yes [193] 

ArcZ rpoS b2741 Escherichia coli str. K-12 substr. 
MG1655 No [148] 

ChiX opgG b1048 Escherichia coli str. K-12 substr. 
MG1655 No [99] 

ChiX rpoS b2741 Escherichia coli str. K-12 substr. 
MG1655 No [148] 

CsrB ompX stm0833 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 No [195] 

CsrC ompX stm0833 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 No [195] 

cyaR phoP b1130 Escherichia coli str. K-12 substr. 
MG1655 No [172] 

cyaR rpoS b2741 Escherichia coli str. K-12 substr. 
MG1655 No [148] 

DicF rpoS b2741 Escherichia coli str. K-12 substr. 
MG1655 No [148] 

DsrA galK b0757 Escherichia coli str. K-12 substr. 
MG1655 No [196] 
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DsrA ompA b0957 Escherichia coli str. K-12 substr. 
MG1655 No [196] 

DsrA ompC b2215 Escherichia coli str. K-12 substr. 
MG1655 No [196] 

DsrA ompF b0929 Escherichia coli str. K-12 substr. 
MG1655 No [196] 

DsrA ompX stm0833 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 No [195] 

DsrA ptsG b1101 Escherichia coli str. K-12 substr. 
MG1655 No [196] 

FnrS narK b1223 Escherichia coli str. K-12 substr. 
MG1655 No [157] 

GcvB dksA b0145 Escherichia coli str. K-12 substr. 
MG1655 No [196] 

GcvB hns b1237 Escherichia coli str. K-12 substr. 
MG1655 No [196] 

GcvB mltC stm3112 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 No [161] 

GcvB mraZ b0081 Escherichia coli str. K-12 substr. 
MG1655 No [99] 

GcvB ompA b0957 Escherichia coli str. K-12 substr. 
MG1655 No [196] 

GcvB ompC b2215 Escherichia coli str. K-12 substr. 
MG1655 No [196] 

GcvB ompF b0929 Escherichia coli str. K-12 substr. 
MG1655 No [196] 

GcvB ompX stm0833 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 No [195] 

GcvB ptsG b1101 Escherichia coli str. K-12 substr. 
MG1655 No [196] 

GcvB sodB b1656 Escherichia coli str. K-12 substr. 
MG1655 No [196] 

GlmY ompX stm0833 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 No [195] 

GlmZ mraZ b0081 Escherichia coli str. K-12 substr. 
MG1655 No [99] 

GlmZ ompX stm0833 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 No [195] 

InvR ompC b2215 Escherichia coli str. K-12 substr. 
MG1655 No [167] 

InvR ompX stm0833 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 No [195] 

IstR ompX stm0833 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 No [195] 

MicA asr b1597 Escherichia coli str. K-12 substr. 
MG1655 No [169] 

MicA dppA b3544 Escherichia coli str. K-12 substr. 
MG1655 No [196] 

MicA fadL b2344 Escherichia coli str. K-12 substr. 
MG1655 No [169] 

MicA fimA b4314 Escherichia coli str. K-12 substr. 
MG1655 No [169] 

MicA fiuL b0805 Escherichia coli str. K-12 substr. No [169] 
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MicA ftsB b2748 Escherichia coli str. K-12 substr. 
MG1655 No [114] 

MicA fumC b1611 Escherichia coli str. K-12 substr. 
MG1655 No [169] 

MicA galK b0757 Escherichia coli str. K-12 substr. 
MG1655 No [196] 

MicA hinT b1103 Escherichia coli str. K-12 substr. 
MG1655 No [169] 

MicA hns b1237 Escherichia coli str. K-12 substr. 
MG1655 No [196] 

MicA htrG b3055 Escherichia coli str. K-12 substr. 
MG1655 No [169] 

MicA lamB b4036 Escherichia coli str. K-12 substr. 
MG1655 No [169] 

MicA lpp b1677 Escherichia coli str. K-12 substr. 
MG1655 No [169] 

MicA nmpC b0553 Escherichia coli str. K-12 substr. 
MG1655 No [169] 

MicA ompA b0957 Escherichia coli str. K-12 substr. 
MG1655 No [169] 

MicA ompC b2215 Escherichia coli str. K-12 substr. 
MG1655 No [196] 

MicA ompC b2215 Escherichia coli str. K-12 substr. 
MG1655 No [169] 

MicA ompF b0929 Escherichia coli str. K-12 substr. 
MG1655 No [196] 

MicA ompF b0929 Escherichia coli str. K-12 substr. 
MG1655 No [169] 

MicA ompT b0565 Escherichia coli str. K-12 substr. 
MG1655 No [172] 

MicA ompW b1256 Escherichia coli str. K-12 substr. 
MG1655 No [169] 

MicA ptsG b1101 Escherichia coli str. K-12 substr. 
MG1655 No [196] 

MicA rbsB b3751 Escherichia coli str. K-12 substr. 
MG1655 No [169] 

MicA rbsK b3752 Escherichia coli str. K-12 substr. 
MG1655 No [169] 

MicA rluD b2594 Escherichia coli str. K-12 substr. 
MG1655 No [169] 

MicA rraB b4255 Escherichia coli str. K-12 substr. 
MG1655 No [169] 

MicA sodB b1656 Escherichia coli str. K-12 substr. 
MG1655 No [196] 

MicA tsx b0411 Escherichia coli str. K-12 substr. 
MG1655 No [169] 

MicA ycfL b1104 Escherichia coli str. K-12 substr. 
MG1655 No [169] 

MicA ydeN b1498 Escherichia coli str. K-12 substr. 
MG1655 No [169] 

MicA yfeK b2419 Escherichia coli str. K-12 substr. 
MG1655 No [169] 
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MicA yhcN b3238 Escherichia coli str. K-12 substr. 
MG1655 No [169] 

MicA yhjJ b3527 Escherichia coli str. K-12 substr. 
MG1655 No [169] 

MicA yneM b4599 Escherichia coli str. K-12 substr. 
MG1655 No [172] 

MicC dppA b3544 Escherichia coli str. K-12 substr. 
MG1655 No [196] 

MicC galK b0757 Escherichia coli str. K-12 substr. 
MG1655 No [196] 

MicC hns b1237 Escherichia coli str. K-12 substr. 
MG1655 No [196] 

MicC mraZ b0081 Escherichia coli str. K-12 substr. 
MG1655 No [99] 

MicC ompA b0957 Escherichia coli str. K-12 substr. 
MG1655 No [196] 

MicC ompF b0929 Escherichia coli str. K-12 substr. 
MG1655 No [196] 

MicC ompX stm0833 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 No [195] 

MicC ptsG b1101 Escherichia coli str. K-12 substr. 
MG1655 No [196] 

MicC sodB b1656 Escherichia coli str. K-12 substr. 
MG1655 No [196] 

MicF dppA b3544 Escherichia coli str. K-12 substr. 
MG1655 No [196] 

MicF galK b0757 Escherichia coli str. K-12 substr. 
MG1655 No [196] 

MicF hns b1237 Escherichia coli str. K-12 substr. 
MG1655 No [196] 

MicF ompA b0957 Escherichia coli str. K-12 substr. 
MG1655 No [196] 

MicF ompC b2215 Escherichia coli str. K-12 substr. 
MG1655 No [196] 

MicF ompX stm0833 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 No [195] 

MicF ptsG b1101 Escherichia coli str. K-12 substr. 
MG1655 No [196] 

OmrA cheZ b1881 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

OmrA clpB b2592 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

OmrA csgB b1041 Escherichia coli str. K-12 substr. 
MG1655 No [126] 

OmrA csiE b2535 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

OmrA cydD b0887 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

OmrA deoR b0840 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

OmrA fdoL b3892 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

OmrA fimF b4318 Escherichia coli str. K-12 substr. No [126] 
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OmrA folA b0048 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

OmrA glcD b2979 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

OmrA gmhB b0200 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

OmrA hisM b2307 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

OmrA hokB b4428 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

OmrA hokD b1562 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

OmrA lit b1139 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

OmrA malK b4035 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

OmrA mipA b1782 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

OmrA nadA b0750 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

OmrA narH b1225 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

OmrA ompA b0957 Escherichia coli str. K-12 substr. 
MG1655 No [126] 

OmrA ompX stm0833 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 No [195] 

OmrA osmB b1283 Escherichia coli str. K-12 substr. 
MG1655 No [126] 

OmrA rumA b2785 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

OmrA ssuC b0934 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

OmrA sufD b1681 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

OmrA uup b0949 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

OmrA xylH b3568 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

OmrA yadD b0132 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

OmrA yadL b0137 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

OmrA yaeP b4406 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

OmrA ybcS b0555 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

OmrA ybeT b0647 Escherichia coli str. K-12 substr. 
MG1655 No [126] 

OmrA yccS b0960 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

OmrA ydbC b1406 Escherichia coli str. K-12 substr. 
MG1655 No [178] 
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OmrA ydhT b1669 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

OmrA yeaZ b1807 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

OmrA yfbT b2293 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

OmrA ygjN b3083 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

OmrA yhbE b3184 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

OmrA yrfC b3394 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

OmrA yzgL b3427 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

OmrB csgB b1041 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

OmrB fepA b0584 Escherichia coli str. K-12 substr. 
MG1655 No [126] 

OmrB fimF b4318 Escherichia coli str. K-12 substr. 
MG1655 No [126] 

OmrB fldA b0684 Escherichia coli str. K-12 substr. 
MG1655 No [126] 

OmrB mutM b3635 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

OmrB ompA b0957 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

OmrB ompX stm0833 Escherichia coli str. K-12 substr. 
MG1655 No [126] 

OmrB osmB b1283 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 No [195] 

OmrB srlB b2704 Escherichia coli str. K-12 substr. 
MG1655 No [126] 

OmrB trxC b2582 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

OmrB yaeH b0163 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

OmrB yaiY b0379 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

OmrB ybeT b0647 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

OmrB ybhT b0762 Escherichia coli str. K-12 substr. 
MG1655 No [126] 

OmrB ybjE b0874 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

OmrB ygaX b2013 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

OmrB yeeE b2680 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

OmrB yhdN b3293 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

OmrB yjhL b4299 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

OmrB ykfL b0245 Escherichia coli str. K-12 substr. No [178] 
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sRNA mRNA Locus ID Species Interaction Reference 
MG1655 

OmrB ykgJ b0288 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

OmrB ypdD b2383 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

OmrB yphD b2546 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

OxyS dppD b3541 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

OxyS fabB b2323 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

OxyS gfcB b0986 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

OxyS moaD b0784 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

OxyS ompX stm0833 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 No [195] 

OxyS pmbA b4235 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

OxyS rpmG b3636 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

OxyS tolA b0739 Escherichia coli str. K-12 substr. 
MG1655 No [197] 

OxyS tolB b0740 Escherichia coli str. K-12 substr. 
MG1655 No [197] 

OxyS tolR b0738 Escherichia coli str. K-12 substr. 
MG1655 No [197] 

OxyS ybbB b0503 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

OxyS yccE b1001 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

OxyS yeaC b1777 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

OxyS yeaK b1787 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

OxyS yfdH b2351 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

OxyS yheN b3345 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

RprA hns b1237 Escherichia coli str. K-12 substr. 
MG1655 No [196] 

rprA mlrA b2127 Escherichia coli str. K-12 substr. 
MG1655 No [180] 

RprA ompA b0957 Escherichia coli str. K-12 substr. 
MG1655 No [196] 

RprA ompC b2215 Escherichia coli str. K-12 substr. 
MG1655 No [196] 

RprA ompF b0929 Escherichia coli str. K-12 substr. 
MG1655 No [196] 

RprA ompX stm0833 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 No [195] 

RprA phoU b3724 Escherichia coli str. K-12 substr. 
MG1655 No [99] 
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RprA sodB b1656 Escherichia coli str. K-12 substr. 
MG1655 No [196] 

RseX ompX stm0833 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 No [195] 

RybB lpp b1677 Escherichia coli str. K-12 substr. 
MG1655 No [169] 

RybB ompT b0565 Escherichia coli str. K-12 substr. 
MG1655 No [172] 

RybB ompX stm0833 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 No [195] 

RybB rbsB b3751 Escherichia coli str. K-12 substr. 
MG1655 No [169] 

RybB yhcN b3238 Escherichia coli str. K-12 substr. 
MG1655 No [169] 

RydB ompX stm0833 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 No [195] 

RydC ompX stm0833 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 No [195] 

RyeB ompX stm0833 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 No [195] 

RyeC ompX stm0833 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 No [195] 

RyfA ompX stm0833 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 No [195] 

RygC ompX stm0833 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 No [195] 

RygD ompX stm0833 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 No [195] 

RyhB citG b0613 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

RyhB entS b0591 Escherichia coli str. K-12 substr. 
MG1655 No [185] 

RyhB galK b0757 Escherichia coli str. K-12 substr. 
MG1655 No [196] 

RyhB gltA b0720 Escherichia coli str. K-12 substr. 
MG1655 No [35] 

RyhB hns b1237 Escherichia coli str. K-12 substr. 
MG1655 No [196] 

RyhB icd b1136 Escherichia coli str. K-12 substr. 
MG1655 No [35] 

RyhB icd b1136 Escherichia coli str. K-12 substr. 
MG1655 No [185] 

RyhB kdpA b0698 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

RyhB mdh b3236 Escherichia coli str. K-12 substr. 
MG1655 No [35] 

RyhB metH b4019 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

RyhB metL b0198 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

RyhB motA b1890 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

RyhB ompA b0957 Escherichia coli str. K-12 substr. No [196] 
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RyhB ompC b2215 Escherichia coli str. K-12 substr. 
MG1655 No [196] 

RyhB ompF b0929 Escherichia coli str. K-12 substr. 
MG1655 No [196] 

RyhB perM b2493 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

RyhB pinH b2648 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

RyhB proA b0243 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

RyhB ptsG b1101 Escherichia coli str. K-12 substr. 
MG1655 No [196] 

RyhB sucB b0727 Escherichia coli str. K-12 substr. 
MG1655 No [35] 

RyhB sucC b0728 Escherichia coli str. K-12 substr. 
MG1655 No [35] 

RyhB sucD b0729 Escherichia coli str. K-12 substr. 
MG1655 No [35] 

RyhB sugE b4148 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

ryhB tolC b3035 Escherichia coli str. K-12 substr. 
MG1655 No [185] 

RyhB yadS b0157 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

RyhB yagJ b0276 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

RyhB yagT b0286 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

RyhB ybjG b0841 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

RyhB ydaN b1342 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

RyhB yecD b1867 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

RyhB yegK b2072 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

RyhB ygeZ b2873 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

RyhB ygiQ b4469 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

RyhB ygiT b3021 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

RyhB yheF b3325 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

RyhB yiaM b3577 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

RyhB ykgE b0306 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

RyhB ynfF b1588 Escherichia coli str. K-12 substr. 
MG1655 No [178] 

RyhB-1 ompX stm0833 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 No [195] 
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RyhB-2 ompX stm0833 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 No [195] 

SgrS dppA b3544 Escherichia coli str. K-12 substr. 
MG1655 No [196] 

SgrS hns b1237 Escherichia coli str. K-12 substr. 
MG1655 No [196] 

SgrS ompA b0957 Escherichia coli str. K-12 substr. 
MG1655 No [196] 

SgrS ompC b2215 Escherichia coli str. K-12 substr. 
MG1655 No [196] 

SgrS ompF b0929 Escherichia coli str. K-12 substr. 
MG1655 No [196] 

SgrS ompX stm0833 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 No [195] 

SgrS sodB b1656 Escherichia coli str. K-12 substr. 
MG1655 No [196] 

SgrS sopd2 stm0972 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 No [191] 

SgrS yigM stm3963 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 No [192] 

Spot42 ompX stm0833 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 No [195] 

Spot42 dppA b3544 Escherichia coli str. K-12 substr. 
MG1655 No [196] 

Spot42 fucK b2803 Escherichia coli str. K-12 substr. 
MG1655 No [198] 

Spot42 hns b1237 Escherichia coli str. K-12 substr. 
MG1655 No [196] 

Spot42 ompA b0957 Escherichia coli str. K-12 substr. 
MG1655 No [196] 

Spot42 ompC b2215 Escherichia coli str. K-12 substr. 
MG1655 No [196] 

Spot42 ompF b0929 Escherichia coli str. K-12 substr. 
MG1655 No [196] 

Spot42 sodB b1656 Escherichia coli str. K-12 substr. 
MG1655 No [196] 

SraB ompX stm0833 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 No [195] 

SraF ompX stm0833 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 No [195] 

SraH ompX stm0833 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 No [195] 

SraL ompX stm0833 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 No [195] 

SroB ompX stm0833 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 No [195] 

SroC ompX stm0833 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 No [195] 

SsrA smpB b2620 Escherichia coli str. K-12 substr. 
MG1655 No [199] 

SsrS ompX stm0833 Salmonella enterica subsp. enterica 
serovar Typhimurium str. LT2 No [195] 

SsrS sspA b3229 Escherichia coli str. K-12 substr. No [19] 
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MG1655 
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SUPPLEMENTARY S2: ITERATIVE FEATURE ELIMINATION RESULTS 

Table S2: Performance evaluation of feature-sets through the iterative feature elimination 
process 
 

No.	
  of	
  Features	
   Accuracy	
   Sensitivity	
   Specificity	
   MCC	
  
17796	
   0.685	
   0.621	
   0.717	
   0.349	
  
15000	
   0.699	
   0.627	
   0.736	
   0.374	
  
12500	
   0.699	
   0.618	
   0.742	
   0.376	
  
10000	
   0.707	
   0.630	
   0.748	
   0.391	
  
7500	
   0.705	
   0.633	
   0.744	
   0.386	
  
5000	
   0.728	
   0.630	
   0.782	
   0.426	
  
2500	
   0.750	
   0.655	
   0.803	
   0.474	
  
2000	
   0.759	
   0.664	
   0.813	
   0.492	
  
1500	
   0.767	
   0.673	
   0.820	
   0.508	
  
1000	
   0.774	
   0.686	
   0.823	
   0.524	
  
900	
   0.784	
   0.709	
   0.826	
   0.548	
  
800	
   0.789	
   0.733	
   0.820	
   0.560	
  
700	
   0.791	
   0.718	
   0.831	
   0.563	
  
600	
   0.792	
   0.727	
   0.827	
   0.564	
  
500	
   0.794	
   0.719	
   0.835	
   0.569	
  
400	
   0.805	
   0.731	
   0.846	
   0.591	
  
300	
   0.814	
   0.748	
   0.850	
   0.612	
  
200	
   0.818	
   0.747	
   0.860	
   0.618	
  
100	
   0.821	
   0.760	
   0.856	
   0.630	
  
90	
   0.809	
   0.758	
   0.836	
   0.605	
  
80	
   0.812	
   0.765	
   0.839	
   0.615	
  
70	
   0.823	
   0.771	
   0.853	
   0.634	
  
60	
   0.819	
   0.775	
   0.842	
   0.626	
  
59	
   0.822	
   0.789	
   0.839	
   0.637	
  
58	
   0.819	
   0.774	
   0.844	
   0.625	
  
57	
   0.822	
   0.785	
   0.840	
   0.633	
  
56	
   0.817	
   0.773	
   0.840	
   0.622	
  
55	
   0.824	
   0.779	
   0.848	
   0.638	
  
54	
   0.824	
   0.784	
   0.844	
   0.639	
  
53	
   0.826	
   0.784	
   0.850	
   0.643	
  
52	
   0.825	
   0.802	
   0.834	
   0.645	
  
51	
   0.826	
   0.793	
   0.844	
   0.644	
  
50	
   0.829	
   0.793	
   0.847	
   0.649	
  
49	
   0.830	
   0.793	
   0.850	
   0.650	
  
48	
   0.826	
   0.779	
   0.852	
   0.640	
  
47	
   0.823	
   0.773	
   0.849	
   0.632	
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No.	
  of	
  Features	
   Accuracy	
   Sensitivity	
   Specificity	
   MCC	
  
46	
   0.822	
   0.778	
   0.846	
   0.634	
  
45	
   0.827	
   0.784	
   0.850	
   0.644	
  
44	
   0.821	
   0.781	
   0.841	
   0.630	
  
43	
   0.817	
   0.779	
   0.836	
   0.622	
  
42	
   0.817	
   0.781	
   0.834	
   0.622	
  
41	
   0.819	
   0.779	
   0.839	
   0.626	
  
40	
   0.819	
   0.774	
   0.844	
   0.626	
  
30	
   0.815	
   0.772	
   0.839	
   0.616	
  
20	
   0.786	
   0.757	
   0.802	
   0.563	
  
10	
   0.801	
   0.782	
   0.809	
   0.593	
  

 

 

SUPPLEMENTARY S3: SET OF FEATURES SELECTED BY ITERATIVE FEATURE 

ELIMINATION 

Table S3: Feature set selected for the final model. For new predictions using the model 

provided, column headers must have the names in the first column. The second column lists the 

actual patterns that were used to calculate the frequencies. The third column lists the source 

sequence from which the frequency was computed. 

 
Column	
  Header	
   Pattern	
   Sequence	
  

stl1f6_33	
   YRRRRR	
   sRNA	
  
mFtl2f7_53	
   WSSWSWW	
   Full	
  mRNA	
  
mFtl2f8_93	
   WSWSSSWW	
   Full	
  mRNA	
  
s3gf3_56	
   CC...U	
   sRNA	
  
s3gf2_15	
   U...G	
   sRNA	
  
stl3f4_16	
   KKKK	
   sRNA	
  
mFtl2f7_93	
   SWSSSWW	
   Full	
  mRNA	
  
stl1f6_2	
   RRRRRY	
   sRNA	
  

mFtl3f7_39	
   MKMMKKM	
   Full	
  mRNA	
  
mFgtl2f6_45	
   SWS.SWW	
   Full	
  mRNA	
  
mF3gtl2f6_45	
   SWS...SWW	
   Full	
  mRNA	
  
mF2gtl2f6_45	
   SWS..SWW	
   Full	
  mRNA	
  

stl1f5_1	
   RRRRR	
   sRNA	
  
mF3gtl3f8_58	
   MMKK...KMMK	
   Full	
  mRNA	
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Column	
  Header	
   Pattern	
   Sequence	
  
mF3gf3_46	
   C...UC	
   Full	
  mRNA	
  
mF2gf4_218	
   UC..GC	
   Full	
  mRNA	
  
mFtl3f8_78	
   MKMMKKMK	
   Full	
  mRNA	
  
mFgtl3f8_58	
   MMKK.KMMK	
   Full	
  mRNA	
  
mFtl2f6_27	
   WSSWSW	
   Full	
  mRNA	
  

mF3gtl2f8_201	
   SSWW...SWWW	
   Full	
  mRNA	
  
stl3f5_31	
   KKKKM	
   sRNA	
  
stl1f7_95	
   YRYYYYR	
   sRNA	
  

mF3gtl3f6_52	
   KKM...MKK	
   Full	
  mRNA	
  
mF2gtl3f6_52	
   KKM..MKK	
   Full	
  mRNA	
  
stl1f8_223	
   YYRYYYYR	
   sRNA	
  
mFtl1f8_251	
   YYYYYRYR	
   Full	
  mRNA	
  
mFgf4_115	
   CU.AG	
   Full	
  mRNA	
  

mF2gtl3f8_58	
   MMKK..KMMK	
   Full	
  mRNA	
  
mF2gf4_17	
   AC..AA	
   Full	
  mRNA	
  

mFgtl2f8_201	
   SSWW.SWWW	
   Full	
  mRNA	
  
sgf3_3	
   A.AG	
   sRNA	
  
s3gf3_39	
   C...CG	
   sRNA	
  
sgtl3f6_60	
   KKK.MKK	
   sRNA	
  
mFgtl3f6_52	
   KKM.MKK	
   Full	
  mRNA	
  
stl3f4_11	
   KMKM	
   sRNA	
  

mF2gtl2f8_201	
   SSWW..SWWW	
   Full	
  mRNA	
  
s2gtl3f6_60	
   KKK..MKK	
   sRNA	
  

mF2gtl2f8_114	
   WSSS..WWWS	
   Full	
  mRNA	
  
mF3gf3_85	
   GC...A	
   Full	
  mRNA	
  
stl3f7_124	
   KKKKMKK	
   sRNA	
  
stl1f6_48	
   YRYYYY	
   sRNA	
  

mFgtl2f8_114	
   WSSS.WWWS	
   Full	
  mRNA	
  
s3gf3_127	
   UU...G	
   sRNA	
  
mF3gf4_220	
   UC...GU	
   Full	
  mRNA	
  
s3gtl3f6_60	
   KKK...MKK	
   sRNA	
  
mF3gf4_30	
   AC...UC	
   Full	
  mRNA	
  
mF3gf4_209	
   UC...AA	
   Full	
  mRNA	
  
mFgtl2f8_89	
   WSWS.SWWW	
   Full	
  mRNA	
  
stl1f6_31	
   RYYYYR	
   sRNA	
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SUPPLEMENTARY S4:  ANALYSIS OF SEQUENCE FEATURE POSITIONS IN 

SEQUENCES IN POSITIVE SET 

 

A: Position wise counts of the top 1-10 k-mers for mRNA sequences 

 

 

 

B: Position wise counts of the top 11-20 k-mers for mRNA sequences 
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C: 

Position wise counts of the top 21-30 k-mers for mRNA sequences 

 

 

 

D: Position wise counts of the top 1-10 k-mers for sRNA sequences 
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E: Position wise counts of the top 1-10 k-mers for sRNA sequences 

Figure S4: Positional occurrence of the 49 selected k-mer patterns in interacting sequences 

(positive set). The patterns are counted separately for mRNAs (A-C), showing 150nt 

upstream and 500nt downstream of the TSS; and the full sequences of sRNAs (D and E). 

 

SUPPLEMENTARY S5: E. COLI GENOME-WIDE PREDICTIONS FOR SRNAS RYHB 

AND OMRA 

Table S5: Genome wide prediction results for the RyhB and OmrA small RNAs across the E. 

coli genome. Only the top 100 results sorted by probability are shown here. 

 

	
  	
   RyhB	
  Predictions	
  

	
  	
  

OmrA	
  Predictions	
  

	
  	
  

IstR	
  Predictions	
  

Rank	
   Gene	
   Probability	
   Gene	
   Probability	
   Gene	
   Probability	
  

1	
   csgD	
   0.9276	
   phoP	
   0.8868	
   csgD	
   0.9538	
  

2	
   gntP	
   0.9084	
   sdhC	
   0.8682	
   phoP	
   0.9494	
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3	
   phoP	
   0.9004	
   mhpA	
   0.8494	
   sdhC	
   0.9422	
  

4	
   cirA	
   0.8684	
   gloA	
   0.8482	
   gntP	
   0.9392	
  

5	
   gloA	
   0.858	
   murD	
   0.8468	
   fecA	
   0.9338	
  

6	
   mhpA	
   0.8494	
   hybD	
   0.8354	
   rspA	
   0.9288	
  

7	
   murD	
   0.8436	
   chbC	
   0.8272	
   polB	
   0.9234	
  

8	
   chbC	
   0.8364	
   chiP	
   0.8248	
   hisG	
   0.922	
  

9	
   ompR	
   0.822	
   erpA	
   0.812	
   hybD	
   0.921	
  

10	
   hybD	
   0.821	
   cvrA	
   0.7978	
   murD	
   0.9202	
  

11	
   fecA	
   0.8208	
   adiC	
   0.795	
   malZ	
   0.9176	
  

12	
   nupG	
   0.817	
   coaA	
   0.7942	
   chbC	
   0.9168	
  

13	
   chiP	
   0.8166	
   hisG	
   0.7928	
   mhpA	
   0.9164	
  

14	
   ldtC	
   0.8104	
   degS	
   0.7928	
   cvrA	
   0.915	
  

15	
   rspA	
   0.8038	
   menA	
   0.792	
   yhhJ	
   0.9146	
  

16	
   btuB	
   0.7998	
   rspA	
   0.7902	
   ldtC	
   0.9142	
  

17	
   yhhJ	
   0.7962	
   atoD	
   0.786	
   yejA	
   0.9132	
  

18	
   coaA	
   0.7952	
   nupG	
   0.784	
   cirA	
   0.9126	
  

19	
   polB	
   0.7906	
   gntU	
   0.7806	
   sthA	
   0.9126	
  

20	
   atoD	
   0.7902	
   polB	
   0.7798	
   btuB	
   0.9126	
  

21	
   cvrA	
   0.7886	
   yhhJ	
   0.776	
   yehX	
   0.9104	
  

22	
   adiC	
   0.787	
   ybbW	
   0.7704	
   nupG	
   0.9102	
  

23	
   menA	
   0.7866	
   sdhA	
   0.7694	
   gntU	
   0.9074	
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24	
   malZ	
   0.7854	
   ldtC	
   0.7684	
   chiP	
   0.9068	
  

25	
   hisG	
   0.7812	
   prmA	
   0.7612	
   adiC	
   0.9066	
  

26	
   gntU	
   0.781	
   yhfT	
   0.7608	
   gloA	
   0.9058	
  

27	
   degS	
   0.7786	
   kbaZ	
   0.7596	
   bcsA	
   0.9058	
  

28	
   kbaZ	
   0.7768	
   nfo	
   0.7542	
   menA	
   0.9046	
  

29	
   yqjG	
   0.7742	
   ssuA	
   0.7474	
   ptrA	
   0.9044	
  

30	
   ptrA	
   0.7714	
   lsrD	
   0.7468	
   glmM	
   0.904	
  

31	
   ybbW	
   0.769	
   solA	
   0.7464	
   accA	
   0.9034	
  

32	
   yejA	
   0.7686	
   dacB	
   0.7424	
   bglX	
   0.9018	
  

33	
   lsrD	
   0.7638	
   mlaA	
   0.7414	
   sdhA	
   0.9012	
  

34	
   yhfT	
   0.7626	
   yehX	
   0.7412	
   ybbW	
   0.9006	
  

35	
   accA	
   0.7622	
   malZ	
   0.7382	
   yqjG	
   0.9006	
  

36	
   nfo	
   0.7598	
   rutF	
   0.7378	
   dacB	
   0.8988	
  

37	
   yehX	
   0.7592	
   arsB	
   0.7362	
   coaA	
   0.8978	
  

38	
   mlaA	
   0.7568	
   yqjG	
   0.7326	
   gudD	
   0.8964	
  

39	
   arsB	
   0.7554	
   gltS	
   0.7326	
   aroA	
   0.8944	
  

40	
   nnr	
   0.7552	
   puuE	
   0.732	
   nikE	
   0.894	
  

41	
   ssuA	
   0.751	
   yihT	
   0.731	
   cydD	
   0.8938	
  

42	
   rutF	
   0.751	
   yhjA	
   0.7288	
   erpA	
   0.8926	
  

43	
   ysgA	
   0.7508	
   ccmF	
   0.728	
   degS	
   0.8926	
  

44	
   dacB	
   0.7492	
   ptrA	
   0.7264	
   arnA	
   0.8924	
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45	
   queC	
   0.7482	
   accA	
   0.7256	
   yhjA	
   0.892	
  

46	
   aroA	
   0.7462	
   pbpG	
   0.7216	
   yraR	
   0.891	
  

47	
   yqjE	
   0.7422	
   brnQ	
   0.7182	
   yoaD	
   0.8908	
  

48	
   prmA	
   0.7418	
   queC	
   0.7164	
   ygcE	
   0.8904	
  

49	
   puuE	
   0.7416	
   waaH	
   0.716	
   yhfT	
   0.8904	
  

50	
   solA	
   0.741	
   cydD	
   0.7154	
   dgt	
   0.8898	
  

51	
   yibF	
   0.7396	
   msbA	
   0.7152	
   prpR	
   0.8896	
  

52	
   waaH	
   0.7388	
   yqjE	
   0.7136	
   modC	
   0.8896	
  

53	
   yhjA	
   0.735	
   modC	
   0.7124	
   mhpD	
   0.8878	
  

54	
   sthA	
   0.734	
   yejA	
   0.7098	
   treR	
   0.8856	
  

55	
   lsrF	
   0.7316	
   yigL	
   0.7094	
   agaD	
   0.885	
  

56	
   cydD	
   0.731	
   nagZ	
   0.7082	
   pbpG	
   0.8848	
  

57	
   xapB	
   0.73	
   eutH	
   0.708	
   waaH	
   0.8844	
  

58	
   fecD	
   0.73	
   otsA	
   0.707	
   rutF	
   0.8838	
  

59	
   rluE	
   0.7268	
   bcsA	
   0.7056	
   cusB	
   0.8834	
  

60	
   brnQ	
   0.7256	
   betT	
   0.7054	
   purL	
   0.8832	
  

61	
   yigL	
   0.7222	
   glmM	
   0.7052	
   kbaZ	
   0.882	
  

62	
   gsiA	
   0.7194	
   ascF	
   0.7044	
   yfhM	
   0.8816	
  

63	
   ynfA	
   0.719	
   rsxD	
   0.7038	
   yafS	
   0.8802	
  

64	
   pbpG	
   0.7156	
   nnr	
   0.7036	
   tdcE	
   0.88	
  

65	
   kduD	
   0.7156	
   mnmG	
   0.7022	
   prmA	
   0.88	
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66	
   eutH	
   0.715	
   mhpD	
   0.702	
   solA	
   0.8786	
  

67	
   otsA	
   0.7148	
   ycfT	
   0.702	
   mnmG	
   0.8786	
  

68	
   mnaT	
   0.712	
   ynfA	
   0.701	
   nirB	
   0.8776	
  

69	
   rsxD	
   0.7106	
   yibF	
   0.7004	
   ompR	
   0.8776	
  

70	
   yoaD	
   0.7098	
   agaD	
   0.6982	
   metE	
   0.8776	
  

71	
   glmM	
   0.7082	
   rluE	
   0.6966	
   nikA	
   0.8762	
  

72	
   frlC	
   0.7072	
   aroA	
   0.6962	
   frlC	
   0.876	
  

73	
   nikE	
   0.7068	
   ccmC	
   0.6944	
   frvB	
   0.876	
  

74	
   mhpC	
   0.7062	
   sthA	
   0.6944	
   atoD	
   0.8754	
  

75	
   msbA	
   0.7046	
   nikE	
   0.694	
   yehP	
   0.875	
  

76	
   dgt	
   0.7042	
   bfr	
   0.6932	
   rlmI	
   0.8742	
  

77	
   wcaE	
   0.7036	
   arnA	
   0.6924	
   yihT	
   0.8742	
  

78	
   modC	
   0.7024	
   yraR	
   0.6924	
   yhjG	
   0.874	
  

79	
   mhpD	
   0.7022	
   bglX	
   0.6906	
   rluA	
   0.8738	
  

80	
   yqaE	
   0.6994	
   nikA	
   0.6896	
   eptC	
   0.8728	
  

81	
   cdh	
   0.6986	
   lsrF	
   0.6892	
   arsB	
   0.8722	
  

82	
   allC	
   0.6968	
   gsiC	
   0.6886	
   cycA	
   0.8722	
  

83	
   asnC	
   0.6968	
   yiaN	
   0.6878	
   yibF	
   0.872	
  

84	
   cusB	
   0.6966	
   ysgA	
   0.6878	
   csdA	
   0.8718	
  

85	
   mnmG	
   0.694	
   xapB	
   0.6854	
   msbA	
   0.8716	
  

86	
   uraA	
   0.693	
   wcaE	
   0.6852	
   treF	
   0.871	
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87	
   yccA	
   0.6926	
   uraA	
   0.6846	
   waaA	
   0.8704	
  

88	
   ycfT	
   0.6926	
   amiB	
   0.6818	
   pfo	
   0.87	
  

89	
   fhuF	
   0.6922	
   rlmI	
   0.6814	
   puuE	
   0.8698	
  

90	
   bamE	
   0.6914	
   allC	
   0.6796	
   edd	
   0.8696	
  

91	
   yidZ	
   0.6914	
   frvB	
   0.6794	
   ccmF	
   0.8694	
  

92	
   agaD	
   0.6906	
   yoaJ	
   0.6786	
   lsrF	
   0.8692	
  

93	
   treR	
   0.6906	
   prpC	
   0.678	
   sad	
   0.869	
  

94	
   pldB	
   0.6896	
   marA	
   0.6772	
   yqjE	
   0.8682	
  

95	
   arnA	
   0.6886	
   asnC	
   0.6762	
   ysgA	
   0.8682	
  

96	
   rpsN	
   0.6878	
   gudD	
   0.676	
   treA	
   0.8676	
  

97	
   yiaN	
   0.6862	
   dgt	
   0.6754	
   hycG	
   0.8676	
  

98	
   yraR	
   0.6858	
   yeaN	
   0.6742	
   priA	
   0.8674	
  

99	
   yihT	
   0.6856	
   yoaD	
   0.6738	
   gspL	
   0.8672	
  

100	
   uidC	
   0.6832	
   mhpC	
   0.6726	
   gmd	
   0.867	
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SUPPLEMENTARY DATA FOR CHAPTER 5 

Table S6: Genome wide prediction results for the 6 small RNAs studied across the E. coli 

genome. Only the top 100 results sorted by probability are shown here. 

A. RybB 

Rank	
  
Gene	
  
Name	
   Gene	
  ID	
   Locus	
  ID	
  

Prediction	
  
Probability	
  

1	
   rspA	
   946126	
   b1581	
   0.986	
  
2	
   sthA	
   948461	
   b3962	
   0.982	
  
3	
   sdhC	
   945316	
   b0721	
   0.980	
  
4	
   glmM	
   947692	
   b3176	
   0.978	
  
5	
   mngB	
   945359	
   b0732	
   0.977	
  
6	
   bglX	
   946682	
   b2132	
   0.977	
  
7	
   purL	
   947032	
   b2557	
   0.975	
  
8	
   narZ	
   945999	
   b1468	
   0.973	
  
9	
   arnA	
   947683	
   b2255	
   0.973	
  
10	
   srlA	
   947575	
   b2702	
   0.973	
  
11	
   yqjG	
   947615	
   b3102	
   0.973	
  
12	
   glmS	
   948241	
   b3729	
   0.972	
  
13	
   yghJ	
   2847716	
   b4466	
   0.972	
  
14	
   polB	
   944779	
   b0060	
   0.972	
  
15	
   yfhM	
   947302	
   b2520	
   0.972	
  
16	
   malZ	
   949131	
   b0403	
   0.971	
  
17	
   yejA	
   946675	
   b2177	
   0.971	
  
18	
   aegA	
   947383	
   b2468	
   0.971	
  
19	
   sdhA	
   945402	
   b0723	
   0.971	
  
20	
   priA	
   948426	
   b3935	
   0.971	
  
21	
   rcsD	
   946717	
   b2216	
   0.970	
  
22	
   nagC	
   945285	
   b0676	
   0.970	
  
23	
   yehP	
   946652	
   b2121	
   0.970	
  
24	
   tdcE	
   947623	
   b3114	
   0.969	
  
25	
   ybhC	
   945381	
   b0772	
   0.969	
  
26	
   btuB	
   948468	
   b3966	
   0.969	
  
27	
   ddpA	
   946052	
   b1487	
   0.968	
  
28	
   pfo	
   946587	
   b1378	
   0.968	
  
29	
   tktA	
   947420	
   b2935	
   0.968	
  
30	
   pfkB	
   946230	
   b1723	
   0.967	
  
31	
   mscM	
   948676	
   b4159	
   0.967	
  
32	
   fiu	
   946246	
   b0805	
   0.967	
  
33	
   ptrA	
   947284	
   b2821	
   0.967	
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34	
   ftsK	
   945102	
   b0890	
   0.966	
  
35	
   yhdP	
   2847740	
   b4472	
   0.966	
  
36	
   selB	
   948103	
   b3590	
   0.966	
  
37	
   metH	
   948522	
   b4019	
   0.966	
  
38	
   etk	
   947409	
   b0981	
   0.965	
  
39	
   yraR	
   947667	
   b3152	
   0.965	
  
40	
   rluD	
   947087	
   b2594	
   0.965	
  
41	
   nikA	
   947981	
   b3476	
   0.964	
  
42	
   dmsA	
   945508	
   b0894	
   0.964	
  
43	
   yfeW	
   946907	
   b2430	
   0.964	
  
44	
   yhjJ	
   948040	
   b3527	
   0.964	
  
45	
   cydD	
   949052	
   b0887	
   0.964	
  
46	
   barA	
   947255	
   b2786	
   0.964	
  
47	
   oxyR	
   948462	
   b3961	
   0.964	
  
48	
   pepT	
   946333	
   b1127	
   0.963	
  
49	
   dacB	
   947693	
   b3182	
   0.963	
  
50	
   ycgV	
   945767	
   b1202	
   0.963	
  
51	
   fadD	
   946327	
   b1805	
   0.963	
  
52	
   menD	
   946720	
   b2264	
   0.963	
  
53	
   lhr	
   946156	
   b1653	
   0.963	
  
54	
   gspA	
   947825	
   b3323	
   0.963	
  
55	
   rpoH	
   947970	
   b3461	
   0.962	
  
56	
   yjiR	
   949089	
   b4340	
   0.962	
  
57	
   cusB	
   945189	
   b0574	
   0.962	
  
58	
   ldtC	
   945666	
   b1113	
   0.962	
  
59	
   parC	
   947499	
   b3019	
   0.962	
  
60	
   aroK	
   2847759	
   b3390	
   0.962	
  
61	
   hisG	
   946549	
   b2019	
   0.962	
  
62	
   fadI	
   948823	
   b2342	
   0.962	
  
63	
   nadB	
   947049	
   b2574	
   0.962	
  
64	
   cyaA	
   947755	
   b3806	
   0.962	
  
65	
   yejF	
   946689	
   b2180	
   0.962	
  
66	
   lpxK	
   945526	
   b0915	
   0.961	
  
67	
   narG	
   945782	
   b1224	
   0.961	
  
68	
   ispB	
   947364	
   b3187	
   0.961	
  
69	
   menA	
   948418	
   b3930	
   0.961	
  
70	
   rcsC	
   948993	
   b2218	
   0.961	
  
71	
   bepA	
   947029	
   b2494	
   0.961	
  
72	
   frlC	
   2847758	
   b4474	
   0.961	
  
73	
   gntR	
   947946	
   b3438	
   0.960	
  
74	
   ybhJ	
   945380	
   b0771	
   0.960	
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75	
   ycbZ	
   945569	
   b0955	
   0.960	
  
76	
   xdhA	
   947116	
   b2866	
   0.960	
  
77	
   tsaD	
   947578	
   b3064	
   0.960	
  
78	
   ybhF	
   945413	
   b0794	
   0.960	
  
79	
   tynA	
   945939	
   b1386	
   0.960	
  
80	
   treF	
   948037	
   b3519	
   0.960	
  
81	
   atoC	
   947444	
   b2220	
   0.960	
  
82	
   puuA	
   946202	
   b1297	
   0.960	
  
83	
   metE	
   948323	
   b3829	
   0.959	
  
84	
   panE	
   945065	
   b0425	
   0.959	
  
85	
   gspL	
   947842	
   b3333	
   0.959	
  
86	
   allC	
   945150	
   b0516	
   0.959	
  
87	
   ydbH	
   945949	
   b1381	
   0.959	
  
88	
   lysA	
   947313	
   b2838	
   0.959	
  
89	
   yjjI	
   948904	
   b4380	
   0.959	
  
90	
   ileS	
   944761	
   b0026	
   0.959	
  
91	
   kdpD	
   946744	
   b0695	
   0.959	
  
92	
   recB	
   947286	
   b2820	
   0.959	
  
93	
   poxB	
   946132	
   b0871	
   0.958	
  
94	
   csgD	
   949119	
   b1040	
   0.958	
  
95	
   ccmH	
   946623	
   b2194	
   0.958	
  
96	
   yegD	
   947234	
   b2069	
   0.958	
  
97	
   cirA	
   949042	
   b2155	
   0.958	
  
98	
   ade	
   948210	
   b3665	
   0.958	
  
99	
   entF	
   945184	
   b0586	
   0.958	
  
100	
   nemA	
   946164	
   b1650	
   0.958	
  

 
B. MicC 

Rank	
  
Gene	
  
Name	
   Gene	
  ID	
   Locus	
  ID	
  

Prediction	
  
Probability	
  

1	
   csgD	
   949119	
   b1040	
   0.908	
  
2	
   fecA	
   946427	
   b4291	
   0.851	
  
3	
   gntP	
   948848	
   b4321	
   0.847	
  
4	
   cirA	
   949042	
   b2155	
   0.821	
  
5	
   glmM	
   947692	
   b3176	
   0.819	
  
6	
   sdhC	
   945316	
   b0721	
   0.812	
  
7	
   mhpA	
   945197	
   b0347	
   0.811	
  
8	
   ompR	
   947913	
   b3405	
   0.807	
  
9	
   murD	
   944818	
   b0088	
   0.802	
  
10	
   gloA	
   946161	
   b1651	
   0.801	
  
11	
   chiP	
   945296	
   b0681	
   0.798	
  
12	
   hybD	
   948982	
   b2993	
   0.781	
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13	
   phoP	
   945697	
   b1130	
   0.780	
  
14	
   fecD	
   946816	
   b4288	
   0.780	
  
15	
   sdhA	
   945402	
   b0723	
   0.779	
  
16	
   btuB	
   948468	
   b3966	
   0.778	
  
17	
   folP	
   947691	
   b3177	
   0.774	
  
18	
   chbC	
   945982	
   b1737	
   0.768	
  
19	
   degS	
   947865	
   b3235	
   0.767	
  
20	
   gntU	
   2847760	
   b4476	
   0.766	
  
21	
   cvrA	
   945755	
   b1191	
   0.755	
  
22	
   erpA	
   944857	
   b0156	
   0.753	
  
23	
   yhhJ	
   947991	
   b3485	
   0.752	
  
24	
   coaA	
   948479	
   b3974	
   0.747	
  
25	
   ybbW	
   945138	
   b0511	
   0.746	
  
26	
   nupG	
   946282	
   b2964	
   0.742	
  
27	
   bglX	
   946682	
   b2132	
   0.742	
  
28	
   adiC	
   948628	
   b4115	
   0.740	
  
29	
   atoD	
   947525	
   b2221	
   0.737	
  
30	
   ldtC	
   945666	
   b1113	
   0.736	
  
31	
   rspA	
   946126	
   b1581	
   0.736	
  
32	
   ccmC	
   946703	
   b2199	
   0.735	
  
33	
   nfo	
   946669	
   b2159	
   0.735	
  
34	
   bcsA	
   948053	
   b3533	
   0.733	
  
35	
   kbaZ	
   947637	
   b3132	
   0.733	
  
36	
   betT	
   945079	
   b0314	
   0.731	
  
37	
   mdtC	
   946608	
   b2076	
   0.730	
  
38	
   mlaA	
   945582	
   b2346	
   0.729	
  
39	
   glmS	
   948241	
   b3729	
   0.727	
  
40	
   oppD	
   945802	
   b1246	
   0.725	
  
41	
   polB	
   944779	
   b0060	
   0.724	
  
42	
   yihT	
   948373	
   b3881	
   0.724	
  
43	
   hisG	
   946549	
   b2019	
   0.723	
  
44	
   menA	
   948418	
   b3930	
   0.723	
  
45	
   selB	
   948103	
   b3590	
   0.720	
  
46	
   ssuA	
   945560	
   b0936	
   0.719	
  
47	
   queC	
   947034	
   b0444	
   0.717	
  
48	
   emrB	
   947167	
   b2686	
   0.716	
  
49	
   malZ	
   949131	
   b0403	
   0.715	
  
50	
   sdhD	
   945322	
   b0722	
   0.713	
  
51	
   prmA	
   947708	
   b3259	
   0.711	
  
52	
   yhfT	
   947883	
   b3377	
   0.710	
  
53	
   arsB	
   948011	
   b3502	
   0.710	
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54	
   lpxT	
   946693	
   b2174	
   0.710	
  
55	
   gltS	
   948166	
   b3653	
   0.707	
  
56	
   eptC	
   948458	
   b3955	
   0.707	
  
57	
   hycG	
   947191	
   b2719	
   0.706	
  
58	
   yoaE	
   946335	
   b1816	
   0.705	
  
59	
   yqjG	
   947615	
   b3102	
   0.704	
  
60	
   accA	
   944895	
   b0185	
   0.703	
  
61	
   poxB	
   946132	
   b0871	
   0.703	
  
62	
   msbA	
   945530	
   b0914	
   0.702	
  
63	
   solA	
   944983	
   b1059	
   0.701	
  
64	
   pbpG	
   946662	
   b2134	
   0.701	
  
65	
   nagC	
   945285	
   b0676	
   0.701	
  
66	
   ccmF	
   948783	
   b2196	
   0.700	
  
67	
   eutH	
   944979	
   b2452	
   0.699	
  
68	
   dacB	
   947693	
   b3182	
   0.699	
  
69	
   yhjA	
   948038	
   b3518	
   0.698	
  
70	
   ycfT	
   945679	
   b1115	
   0.697	
  
71	
   yehX	
   946659	
   b2129	
   0.697	
  
72	
   bcr	
   944808	
   b2182	
   0.696	
  
73	
   prpR	
   944987	
   b0330	
   0.696	
  
74	
   rluE	
   945701	
   b1135	
   0.695	
  
75	
   xapB	
   946868	
   b2406	
   0.695	
  
76	
   agaD	
   947649	
   b3140	
   0.694	
  
77	
   purL	
   947032	
   b2557	
   0.691	
  
78	
   rng	
   947744	
   b3247	
   0.691	
  
79	
   puuE	
   945446	
   b1302	
   0.691	
  
80	
   queG	
   948686	
   b4166	
   0.691	
  
81	
   brnQ	
   945042	
   b0401	
   0.689	
  
82	
   pal	
   945004	
   b0741	
   0.689	
  
83	
   nirB	
   947868	
   b3365	
   0.688	
  
84	
   rpoS	
   947210	
   b2741	
   0.688	
  
85	
   yejA	
   946675	
   b2177	
   0.687	
  
86	
   yigL	
   2847768	
   b3826	
   0.686	
  
87	
   gcvP	
   947394	
   b2903	
   0.684	
  
88	
   dxs	
   945060	
   b0420	
   0.684	
  
89	
   tdcE	
   947623	
   b3114	
   0.683	
  
90	
   sthA	
   948461	
   b3962	
   0.683	
  
91	
   ldcC	
   944887	
   b0186	
   0.682	
  
92	
   lsrD	
   946264	
   b1515	
   0.682	
  
93	
   csdA	
   947275	
   b2810	
   0.682	
  
94	
   frvB	
   948390	
   b3899	
   0.680	
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95	
   ptrA	
   947284	
   b2821	
   0.680	
  
96	
   nikE	
   947987	
   b3480	
   0.679	
  
97	
   ybbP	
   945118	
   b0496	
   0.679	
  
98	
   cycA	
   948725	
   b4208	
   0.676	
  
99	
   aqpZ	
   945497	
   b0875	
   0.676	
  
100	
   fhlA	
   947181	
   b2731	
   0.676	
  

 

C. RseX 

Rank	
  
Gene	
  
Name	
   Gene	
  ID	
   Locus	
  ID	
  

Prediction	
  
Probability	
  

1	
   sdhC	
   945316	
   b0721	
   0.969	
  
2	
   rspA	
   946126	
   b1581	
   0.969	
  
3	
   polB	
   944779	
   b0060	
   0.965	
  
4	
   malZ	
   949131	
   b0403	
   0.959	
  
5	
   sdhA	
   945402	
   b0723	
   0.959	
  
6	
   sthA	
   948461	
   b3962	
   0.959	
  
7	
   btuB	
   948468	
   b3966	
   0.959	
  
8	
   glmS	
   948241	
   b3729	
   0.958	
  
9	
   glmM	
   947692	
   b3176	
   0.958	
  
10	
   csgD	
   949119	
   b1040	
   0.958	
  
11	
   yejA	
   946675	
   b2177	
   0.955	
  
12	
   bglX	
   946682	
   b2132	
   0.955	
  
13	
   chbC	
   945982	
   b1737	
   0.954	
  
14	
   hisG	
   946549	
   b2019	
   0.954	
  
15	
   fecA	
   946427	
   b4291	
   0.951	
  
16	
   cydD	
   949052	
   b0887	
   0.950	
  
17	
   chiP	
   945296	
   b0681	
   0.950	
  
18	
   cirA	
   949042	
   b2155	
   0.950	
  
19	
   yfhM	
   947302	
   b2520	
   0.949	
  
20	
   purL	
   947032	
   b2557	
   0.948	
  
21	
   yghJ	
   2847716	
   b4466	
   0.947	
  
22	
   ldtC	
   945666	
   b1113	
   0.947	
  
23	
   tdcE	
   947623	
   b3114	
   0.947	
  
24	
   pfo	
   946587	
   b1378	
   0.946	
  
25	
   ptrA	
   947284	
   b2821	
   0.946	
  
26	
   murD	
   944818	
   b0088	
   0.946	
  
27	
   yqjG	
   947615	
   b3102	
   0.945	
  
28	
   dacB	
   947693	
   b3182	
   0.945	
  
29	
   menA	
   948418	
   b3930	
   0.945	
  
30	
   phoP	
   945697	
   b1130	
   0.945	
  
31	
   yraR	
   947667	
   b3152	
   0.944	
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32	
   dmsA	
   945508	
   b0894	
   0.944	
  
33	
   gspA	
   947825	
   b3323	
   0.944	
  
34	
   bcsA	
   948053	
   b3533	
   0.944	
  
35	
   mhpA	
   945197	
   b0347	
   0.943	
  
36	
   arnA	
   947683	
   b2255	
   0.942	
  
37	
   accA	
   944895	
   b0185	
   0.942	
  
38	
   yafS	
   944903	
   b0213	
   0.942	
  
39	
   cusB	
   945189	
   b0574	
   0.942	
  
40	
   nagC	
   945285	
   b0676	
   0.942	
  
41	
   yehP	
   946652	
   b2121	
   0.942	
  
42	
   hybD	
   948982	
   b2993	
   0.942	
  
43	
   yehX	
   946659	
   b2129	
   0.941	
  
44	
   nupG	
   946282	
   b2964	
   0.941	
  
45	
   nagZ	
   945671	
   b1107	
   0.940	
  
46	
   aroA	
   945528	
   b0908	
   0.940	
  
47	
   priA	
   948426	
   b3935	
   0.940	
  
48	
   cvrA	
   945755	
   b1191	
   0.939	
  
49	
   tktA	
   947420	
   b2935	
   0.939	
  
50	
   dxs	
   945060	
   b0420	
   0.938	
  
51	
   ddpA	
   946052	
   b1487	
   0.937	
  
52	
   nikA	
   947981	
   b3476	
   0.937	
  
53	
   narZ	
   945999	
   b1468	
   0.937	
  
54	
   yhjA	
   948038	
   b3518	
   0.937	
  
55	
   treF	
   948037	
   b3519	
   0.937	
  
56	
   mhpC	
   944954	
   b0349	
   0.936	
  
57	
   recB	
   947286	
   b2820	
   0.936	
  
58	
   gspL	
   947842	
   b3333	
   0.936	
  
59	
   prpR	
   944987	
   b0330	
   0.936	
  
60	
   etk	
   947409	
   b0981	
   0.936	
  
61	
   ftsK	
   945102	
   b0890	
   0.936	
  
62	
   waaH	
   948140	
   b3615	
   0.935	
  
63	
   ybhC	
   945381	
   b0772	
   0.935	
  
64	
   panE	
   945065	
   b0425	
   0.935	
  
65	
   sapA	
   945873	
   b1294	
   0.935	
  
66	
   mscM	
   948676	
   b4159	
   0.935	
  
67	
   nikE	
   947987	
   b3480	
   0.935	
  
68	
   ccmH	
   946623	
   b2194	
   0.934	
  
69	
   adiC	
   948628	
   b4115	
   0.934	
  
70	
   marC	
   947132	
   b1529	
   0.934	
  
71	
   metE	
   948323	
   b3829	
   0.934	
  
72	
   mngB	
   945359	
   b0732	
   0.933	
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73	
   edd	
   946362	
   b1851	
   0.933	
  
74	
   clsC	
   947321	
   b1046	
   0.933	
  
75	
   ygcE	
   946193	
   b2776	
   0.933	
  
76	
   yibF	
   948113	
   b3592	
   0.933	
  
77	
   dgt	
   947177	
   b0160	
   0.933	
  
78	
   tsaD	
   947578	
   b3064	
   0.933	
  
79	
   frlC	
   2847758	
   b4474	
   0.933	
  
80	
   poxB	
   946132	
   b0871	
   0.932	
  
81	
   pepT	
   946333	
   b1127	
   0.932	
  
82	
   treA	
   945757	
   b1197	
   0.932	
  
83	
   bepA	
   947029	
   b2494	
   0.932	
  
84	
   ybhJ	
   945380	
   b0771	
   0.932	
  
85	
   elfC	
   946934	
   b0940	
   0.932	
  
86	
   selB	
   948103	
   b3590	
   0.932	
  
87	
   lhr	
   946156	
   b1653	
   0.932	
  
88	
   eptC	
   948458	
   b3955	
   0.931	
  
89	
   yoaD	
   946336	
   b1815	
   0.931	
  
90	
   srlA	
   947575	
   b2702	
   0.931	
  
91	
   gntU	
   2847760	
   b4476	
   0.931	
  
92	
   csdA	
   947275	
   b2810	
   0.931	
  
93	
   yqeG	
   945028	
   b2845	
   0.931	
  
94	
   lpxK	
   945526	
   b0915	
   0.931	
  
95	
   msbA	
   945530	
   b0914	
   0.930	
  
96	
   dapE	
   948313	
   b2472	
   0.930	
  
97	
   ybbW	
   945138	
   b0511	
   0.930	
  
98	
   mdtC	
   946608	
   b2076	
   0.930	
  
99	
   prmA	
   947708	
   b3259	
   0.930	
  
100	
   fadI	
   948823	
   b2342	
   0.930	
  

 
D. OxyS 

Rank	
  
Gene	
  
Name	
   Gene	
  ID	
   Locus	
  ID	
  

Prediction	
  
Probability	
  

1	
   csgD	
   949119	
   b1040	
   0.882	
  
2	
   fecA	
   946427	
   b4291	
   0.843	
  
3	
   gntP	
   948848	
   b4321	
   0.828	
  
4	
   cirA	
   949042	
   b2155	
   0.817	
  
5	
   glmM	
   947692	
   b3176	
   0.816	
  
6	
   sdhC	
   945316	
   b0721	
   0.793	
  
7	
   ompR	
   947913	
   b3405	
   0.793	
  
8	
   chiP	
   945296	
   b0681	
   0.788	
  
9	
   mhpA	
   945197	
   b0347	
   0.779	
  
10	
   murD	
   944818	
   b0088	
   0.772	
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11	
   fecD	
   946816	
   b4288	
   0.772	
  
12	
   gloA	
   946161	
   b1651	
   0.768	
  
13	
   folP	
   947691	
   b3177	
   0.763	
  
14	
   sdhA	
   945402	
   b0723	
   0.758	
  
15	
   btuB	
   948468	
   b3966	
   0.754	
  
16	
   hybD	
   948982	
   b2993	
   0.753	
  
17	
   phoP	
   945697	
   b1130	
   0.751	
  
18	
   fhlA	
   947181	
   b2731	
   0.744	
  
19	
   gntU	
   2847760	
   b4476	
   0.739	
  
20	
   rpoS	
   947210	
   b2741	
   0.736	
  
21	
   glmS	
   948241	
   b3729	
   0.735	
  
22	
   chbC	
   945982	
   b1737	
   0.734	
  
23	
   degS	
   947865	
   b3235	
   0.728	
  
24	
   cvrA	
   945755	
   b1191	
   0.728	
  
25	
   yhhJ	
   947991	
   b3485	
   0.721	
  
26	
   erpA	
   944857	
   b0156	
   0.718	
  
27	
   kbaZ	
   947637	
   b3132	
   0.716	
  
28	
   betT	
   945079	
   b0314	
   0.713	
  
29	
   bglX	
   946682	
   b2132	
   0.713	
  
30	
   coaA	
   948479	
   b3974	
   0.711	
  
31	
   mdtC	
   946608	
   b2076	
   0.709	
  
32	
   mlaA	
   945582	
   b2346	
   0.707	
  
33	
   ybbW	
   945138	
   b0511	
   0.705	
  
34	
   nupG	
   946282	
   b2964	
   0.702	
  
35	
   adiC	
   948628	
   b4115	
   0.702	
  
36	
   ldtC	
   945666	
   b1113	
   0.701	
  
37	
   hisG	
   946549	
   b2019	
   0.701	
  
38	
   nfo	
   946669	
   b2159	
   0.698	
  
39	
   atoD	
   947525	
   b2221	
   0.698	
  
40	
   bcsA	
   948053	
   b3533	
   0.698	
  
41	
   ccmC	
   946703	
   b2199	
   0.697	
  
42	
   rspA	
   946126	
   b1581	
   0.695	
  
43	
   yoaE	
   946335	
   b1816	
   0.693	
  
44	
   ssuA	
   945560	
   b0936	
   0.692	
  
45	
   yhfT	
   947883	
   b3377	
   0.692	
  
46	
   yihT	
   948373	
   b3881	
   0.691	
  
47	
   polB	
   944779	
   b0060	
   0.690	
  
48	
   emrB	
   947167	
   b2686	
   0.689	
  
49	
   selB	
   948103	
   b3590	
   0.686	
  
50	
   prmA	
   947708	
   b3259	
   0.685	
  
51	
   yqjG	
   947615	
   b3102	
   0.682	
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52	
   oppD	
   945802	
   b1246	
   0.680	
  
53	
   agaD	
   947649	
   b3140	
   0.679	
  
54	
   eptC	
   948458	
   b3955	
   0.677	
  
55	
   menA	
   948418	
   b3930	
   0.676	
  
56	
   queC	
   947034	
   b0444	
   0.676	
  
57	
   ccmF	
   948783	
   b2196	
   0.675	
  
58	
   nagC	
   945285	
   b0676	
   0.675	
  
59	
   malZ	
   949131	
   b0403	
   0.674	
  
60	
   gltS	
   948166	
   b3653	
   0.673	
  
61	
   poxB	
   946132	
   b0871	
   0.672	
  
62	
   hycG	
   947191	
   b2719	
   0.672	
  
63	
   dacB	
   947693	
   b3182	
   0.671	
  
64	
   arsB	
   948011	
   b3502	
   0.667	
  
65	
   tdcE	
   947623	
   b3114	
   0.664	
  
66	
   sdhD	
   945322	
   b0722	
   0.662	
  
67	
   queG	
   948686	
   b4166	
   0.661	
  
68	
   bcr	
   944808	
   b2182	
   0.660	
  
69	
   yhjA	
   948038	
   b3518	
   0.660	
  
70	
   dxs	
   945060	
   b0420	
   0.659	
  
71	
   solA	
   944983	
   b1059	
   0.659	
  
72	
   msbA	
   945530	
   b0914	
   0.658	
  
73	
   puuE	
   945446	
   b1302	
   0.657	
  
74	
   accA	
   944895	
   b0185	
   0.657	
  
75	
   rng	
   947744	
   b3247	
   0.656	
  
76	
   eutH	
   944979	
   b2452	
   0.655	
  
77	
   frvB	
   948390	
   b3899	
   0.655	
  
78	
   lsrD	
   946264	
   b1515	
   0.654	
  
79	
   yehX	
   946659	
   b2129	
   0.654	
  
80	
   purL	
   947032	
   b2557	
   0.653	
  
81	
   ycfT	
   945679	
   b1115	
   0.652	
  
82	
   nagZ	
   945671	
   b1107	
   0.652	
  
83	
   sthA	
   948461	
   b3962	
   0.652	
  
84	
   rluE	
   945701	
   b1135	
   0.651	
  
85	
   mmuP	
   946284	
   b0260	
   0.651	
  
86	
   brnQ	
   945042	
   b0401	
   0.651	
  
87	
   nikE	
   947987	
   b3480	
   0.651	
  
88	
   ompT	
   945185	
   b0565	
   0.650	
  
89	
   pbpG	
   946662	
   b2134	
   0.650	
  
90	
   gcvP	
   947394	
   b2903	
   0.648	
  
91	
   glnD	
   944863	
   b0167	
   0.647	
  
92	
   bfr	
   947839	
   b3336	
   0.647	
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93	
   ybbP	
   945118	
   b0496	
   0.646	
  
94	
   cycA	
   948725	
   b4208	
   0.646	
  
95	
   gdhA	
   946802	
   b1761	
   0.645	
  
96	
   waaH	
   948140	
   b3615	
   0.643	
  
97	
   rutF	
   946594	
   b1007	
   0.642	
  
98	
   gntR	
   947946	
   b3438	
   0.641	
  
99	
   csdA	
   947275	
   b2810	
   0.640	
  
100	
   ilvY	
   948284	
   b3773	
   0.639	
  

 
E. DicF 

Rank	
  
Gene	
  
Name	
   Gene	
  ID	
   Locus	
  ID	
  

Prediction	
  
Probability	
  

1	
   rspA	
   946126	
   b1581	
   0.877	
  
2	
   sdhC	
   945316	
   b0721	
   0.876	
  
3	
   csgD	
   949119	
   b1040	
   0.874	
  
4	
   btuB	
   948468	
   b3966	
   0.868	
  
5	
   polB	
   944779	
   b0060	
   0.868	
  
6	
   ftsZ	
   944786	
   b0095	
   0.866	
  
7	
   hisG	
   946549	
   b2019	
   0.861	
  
8	
   menA	
   948418	
   b3930	
   0.861	
  
9	
   malZ	
   949131	
   b0403	
   0.858	
  
10	
   chbC	
   945982	
   b1737	
   0.858	
  
11	
   phoP	
   945697	
   b1130	
   0.858	
  
12	
   chiP	
   945296	
   b0681	
   0.857	
  
13	
   nupG	
   946282	
   b2964	
   0.857	
  
14	
   ldtC	
   945666	
   b1113	
   0.856	
  
15	
   cirA	
   949042	
   b2155	
   0.855	
  
16	
   yejA	
   946675	
   b2177	
   0.854	
  
17	
   dacB	
   947693	
   b3182	
   0.854	
  
18	
   yqjG	
   947615	
   b3102	
   0.853	
  
19	
   sdhA	
   945402	
   b0723	
   0.852	
  
20	
   cydD	
   949052	
   b0887	
   0.852	
  
21	
   arnA	
   947683	
   b2255	
   0.851	
  
22	
   ptrA	
   947284	
   b2821	
   0.851	
  
23	
   yhjA	
   948038	
   b3518	
   0.851	
  
24	
   yehX	
   946659	
   b2129	
   0.850	
  
25	
   gntP	
   948848	
   b4321	
   0.849	
  
26	
   yraR	
   947667	
   b3152	
   0.849	
  
27	
   yafS	
   944903	
   b0213	
   0.848	
  
28	
   aroA	
   945528	
   b0908	
   0.848	
  
29	
   fecA	
   946427	
   b4291	
   0.847	
  
30	
   ybbW	
   945138	
   b0511	
   0.846	
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31	
   mhpA	
   945197	
   b0347	
   0.846	
  
32	
   pfo	
   946587	
   b1378	
   0.846	
  
33	
   prpR	
   944987	
   b0330	
   0.846	
  
34	
   edd	
   946362	
   b1851	
   0.846	
  
35	
   dmsA	
   945508	
   b0894	
   0.844	
  
36	
   ygcE	
   946193	
   b2776	
   0.844	
  
37	
   tdcE	
   947623	
   b3114	
   0.844	
  
38	
   murD	
   944818	
   b0088	
   0.843	
  
39	
   modF	
   945368	
   b0760	
   0.843	
  
40	
   gspA	
   947825	
   b3323	
   0.843	
  
41	
   sthA	
   948461	
   b3962	
   0.842	
  
42	
   ddpA	
   946052	
   b1487	
   0.842	
  
43	
   kbaZ	
   947637	
   b3132	
   0.841	
  
44	
   hybD	
   948982	
   b2993	
   0.840	
  
45	
   mnmG	
   948248	
   b3741	
   0.840	
  
46	
   accA	
   944895	
   b0185	
   0.840	
  
47	
   yhhJ	
   947991	
   b3485	
   0.840	
  
48	
   yfhM	
   947302	
   b2520	
   0.840	
  
49	
   priA	
   948426	
   b3935	
   0.840	
  
50	
   secM	
   944831	
   b0097	
   0.839	
  
51	
   purL	
   947032	
   b2557	
   0.839	
  
52	
   tsaD	
   947578	
   b3064	
   0.839	
  
53	
   glmM	
   947692	
   b3176	
   0.839	
  
54	
   yehP	
   946652	
   b2121	
   0.838	
  
55	
   yidH	
   948190	
   b3676	
   0.838	
  
56	
   yibF	
   948113	
   b3592	
   0.838	
  
57	
   marC	
   947132	
   b1529	
   0.837	
  
58	
   waaH	
   948140	
   b3615	
   0.837	
  
59	
   sodA	
   948403	
   b3908	
   0.837	
  
60	
   hsrA	
   948265	
   b3754	
   0.836	
  
61	
   bcsA	
   948053	
   b3533	
   0.836	
  
62	
   sfmA	
   945522	
   b0530	
   0.836	
  
63	
   ygjJ	
   947597	
   b3079	
   0.836	
  
64	
   clsC	
   947321	
   b1046	
   0.835	
  
65	
   yeiI	
   946640	
   b2160	
   0.835	
  
66	
   gntU	
   2847760	
   b4476	
   0.835	
  
67	
   ybjP	
   945491	
   b0865	
   0.835	
  
68	
   degS	
   947865	
   b3235	
   0.835	
  
69	
   allC	
   945150	
   b0516	
   0.835	
  
70	
   nikA	
   947981	
   b3476	
   0.835	
  
71	
   mhpC	
   944954	
   b0349	
   0.834	
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72	
   rutF	
   946594	
   b1007	
   0.834	
  
73	
   nagZ	
   945671	
   b1107	
   0.834	
  
74	
   nirB	
   947868	
   b3365	
   0.834	
  
75	
   ybgS	
   945356	
   b0753	
   0.834	
  
76	
   gspL	
   947842	
   b3333	
   0.833	
  
77	
   yfhH	
   947030	
   b2561	
   0.833	
  
78	
   treF	
   948037	
   b3519	
   0.833	
  
79	
   flhA	
   946390	
   b1879	
   0.833	
  
80	
   elfC	
   946934	
   b0940	
   0.832	
  
81	
   prmA	
   947708	
   b3259	
   0.832	
  
82	
   glmS	
   948241	
   b3729	
   0.832	
  
83	
   pepT	
   946333	
   b1127	
   0.832	
  
84	
   cusB	
   945189	
   b0574	
   0.832	
  
85	
   msbA	
   945530	
   b0914	
   0.831	
  
86	
   tktA	
   947420	
   b2935	
   0.831	
  
87	
   narZ	
   945999	
   b1468	
   0.830	
  
88	
   cvrA	
   945755	
   b1191	
   0.830	
  
89	
   gatZ	
   946641	
   b2095	
   0.830	
  
90	
   dgt	
   947177	
   b0160	
   0.830	
  
91	
   bglX	
   946682	
   b2132	
   0.830	
  
92	
   ftsK	
   945102	
   b0890	
   0.829	
  
93	
   pbpG	
   946662	
   b2134	
   0.829	
  
94	
   adiC	
   948628	
   b4115	
   0.829	
  
95	
   bcsE	
   948050	
   b3536	
   0.828	
  
96	
   yiaO	
   948091	
   b3579	
   0.828	
  
97	
   der	
   946983	
   b2511	
   0.828	
  
98	
   flgE	
   945636	
   b1076	
   0.828	
  
99	
   puuE	
   945446	
   b1302	
   0.828	
  
100	
   rsxD	
   946134	
   b1630	
   0.827	
  

 
F. RprA 

Rank	
  
Gene	
  
Name	
   Gene	
  ID	
   Locus	
  ID	
  

Prediction	
  
Probability	
  

1	
   csgD	
   949119	
   b1040	
   0.954	
  
2	
   fecA	
   946427	
   b4291	
   0.890	
  
3	
   cirA	
   949042	
   b2155	
   0.878	
  
4	
   gntP	
   948848	
   b4321	
   0.876	
  
5	
   sdhC	
   945316	
   b0721	
   0.864	
  
6	
   sdhA	
   945402	
   b0723	
   0.862	
  
7	
   chiP	
   945296	
   b0681	
   0.861	
  
8	
   glmM	
   947692	
   b3176	
   0.860	
  
9	
   mhpA	
   945197	
   b0347	
   0.858	
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10	
   murD	
   944818	
   b0088	
   0.847	
  
11	
   hybD	
   948982	
   b2993	
   0.840	
  
12	
   chbC	
   945982	
   b1737	
   0.840	
  
13	
   gloA	
   946161	
   b1651	
   0.838	
  
14	
   btuB	
   948468	
   b3966	
   0.831	
  
15	
   gntU	
   2847760	
   b4476	
   0.827	
  
16	
   cvrA	
   945755	
   b1191	
   0.822	
  
17	
   bglX	
   946682	
   b2132	
   0.813	
  
18	
   adiC	
   948628	
   b4115	
   0.811	
  
19	
   fecD	
   946816	
   b4288	
   0.811	
  
20	
   rpoS	
   947210	
   b2741	
   0.809	
  
21	
   erpA	
   944857	
   b0156	
   0.809	
  
22	
   ompR	
   947913	
   b3405	
   0.807	
  
23	
   malZ	
   949131	
   b0403	
   0.806	
  
24	
   rspA	
   946126	
   b1581	
   0.805	
  
25	
   mlaA	
   945582	
   b2346	
   0.804	
  
26	
   folP	
   947691	
   b3177	
   0.804	
  
27	
   prmA	
   947708	
   b3259	
   0.803	
  
28	
   polB	
   944779	
   b0060	
   0.800	
  
29	
   nfo	
   946669	
   b2159	
   0.799	
  
30	
   hisG	
   946549	
   b2019	
   0.799	
  
31	
   degS	
   947865	
   b3235	
   0.799	
  
32	
   yhhJ	
   947991	
   b3485	
   0.797	
  
33	
   menA	
   948418	
   b3930	
   0.795	
  
34	
   eptC	
   948458	
   b3955	
   0.794	
  
35	
   ssuA	
   945560	
   b0936	
   0.793	
  
36	
   ydaM	
   945909	
   b1341	
   0.793	
  
37	
   ybbW	
   945138	
   b0511	
   0.792	
  
38	
   kbaZ	
   947637	
   b3132	
   0.791	
  
39	
   mdtC	
   946608	
   b2076	
   0.787	
  
40	
   coaA	
   948479	
   b3974	
   0.786	
  
41	
   selB	
   948103	
   b3590	
   0.784	
  
42	
   glmS	
   948241	
   b3729	
   0.784	
  
43	
   yihT	
   948373	
   b3881	
   0.784	
  
44	
   yejA	
   946675	
   b2177	
   0.783	
  
45	
   phoP	
   945697	
   b1130	
   0.783	
  
46	
   bcsA	
   948053	
   b3533	
   0.783	
  
47	
   queC	
   947034	
   b0444	
   0.782	
  
48	
   emrB	
   947167	
   b2686	
   0.782	
  
49	
   arsB	
   948011	
   b3502	
   0.781	
  
50	
   betT	
   945079	
   b0314	
   0.781	
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51	
   agaD	
   947649	
   b3140	
   0.780	
  
52	
   dacB	
   947693	
   b3182	
   0.779	
  
53	
   yqjG	
   947615	
   b3102	
   0.779	
  
54	
   poxB	
   946132	
   b0871	
   0.777	
  
55	
   nagZ	
   945671	
   b1107	
   0.777	
  
56	
   atoD	
   947525	
   b2221	
   0.774	
  
57	
   nikE	
   947987	
   b3480	
   0.771	
  
58	
   sthA	
   948461	
   b3962	
   0.771	
  
59	
   ccmF	
   948783	
   b2196	
   0.769	
  
60	
   ybbP	
   945118	
   b0496	
   0.767	
  
61	
   solA	
   944983	
   b1059	
   0.766	
  
62	
   ldtC	
   945666	
   b1113	
   0.766	
  
63	
   accA	
   944895	
   b0185	
   0.765	
  
64	
   ccmC	
   946703	
   b2199	
   0.764	
  
65	
   nagC	
   945285	
   b0676	
   0.763	
  
66	
   gdhA	
   946802	
   b1761	
   0.763	
  
67	
   ptrA	
   947284	
   b2821	
   0.763	
  
68	
   yhfT	
   947883	
   b3377	
   0.763	
  
69	
   hycG	
   947191	
   b2719	
   0.762	
  
70	
   rluE	
   945701	
   b1135	
   0.761	
  
71	
   dxs	
   945060	
   b0420	
   0.761	
  
72	
   nupG	
   946282	
   b2964	
   0.761	
  
73	
   rng	
   947744	
   b3247	
   0.761	
  
74	
   bcr	
   944808	
   b2182	
   0.761	
  
75	
   yhjA	
   948038	
   b3518	
   0.760	
  
76	
   yehX	
   946659	
   b2129	
   0.759	
  
77	
   prpR	
   944987	
   b0330	
   0.759	
  
78	
   tdcE	
   947623	
   b3114	
   0.759	
  
79	
   queG	
   948686	
   b4166	
   0.759	
  
80	
   oppD	
   945802	
   b1246	
   0.758	
  
81	
   sdhD	
   945322	
   b0722	
   0.757	
  
82	
   gcvP	
   947394	
   b2903	
   0.757	
  
83	
   purL	
   947032	
   b2557	
   0.756	
  
84	
   pbpG	
   946662	
   b2134	
   0.756	
  
85	
   yoaE	
   946335	
   b1816	
   0.755	
  
86	
   gltS	
   948166	
   b3653	
   0.755	
  
87	
   eutH	
   944979	
   b2452	
   0.754	
  
88	
   puuE	
   945446	
   b1302	
   0.752	
  
89	
   dgt	
   947177	
   b0160	
   0.751	
  
90	
   waaH	
   948140	
   b3615	
   0.750	
  
91	
   brnQ	
   945042	
   b0401	
   0.748	
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92	
   msbA	
   945530	
   b0914	
   0.748	
  
93	
   mnmG	
   948248	
   b3741	
   0.748	
  
94	
   yoaD	
   946336	
   b1815	
   0.747	
  
95	
   narZ	
   945999	
   b1468	
   0.746	
  
96	
   nirB	
   947868	
   b3365	
   0.745	
  
97	
   xapB	
   946868	
   b2406	
   0.745	
  
98	
   sapA	
   945873	
   b1294	
   0.745	
  
99	
   ycfT	
   945679	
   b1115	
   0.744	
  
100	
   yibF	
   948113	
   b3592	
   0.743	
  

 


