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ABSTRACT

This paper applies a valuation model for residential mortgages subject to exogenously

specified conditional probabilities of prepayment and default to data on subprime and

Alt-A adjustable-rate mortgages. In conformity with the doubly stochastic framework,

risk-neutral baseline hazard rates of prepayment and default in the model are dependent

on stochastically evolving latent factors, driven by Brownian motions. Hazard processes

also incorporate observable variables reflecting evolution of interest rates and house

prices. The model is estimated on two subsets of the data: one includes early vintages

of non-prime ARMs, the other is comprised of 2005 and later vintages. Results of the

calibration of the two sets of model parameters to market prices suggest that whatever

changes in the unobserved borrowers’ behavior took place in the observation period were

relatively soon recognized by the market. Simulations show that for subprime borrowers

the effect of house price fluctuations on the probability of default is very significant.
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CHAPTER 1

INTRODUCTION

This study proposes a reduced-form model for valuation of residential mortgages, which

accounts for uncertainty in housing prices. Historically, reduced-form modeling evolved

as an answer to certain deficiencies in the structural approach. In the seminal works by

Black and Scholes (1973) and Merton (1974), a tractable solution to the problem of asset

valuation was developed, where the issuer of these claims is subject to default risk. In

structural models, default probability depends on the ‘fundamentals’, such as market

capitalization of the firm and its capital structure.

In a basic structural model, the firm’s equity is a call option on the assets of the firm

with a strike price equal to the value of the debt that the firm owes. Under the assumption

of the frictionless market (zero bankruptcy costs) the risky debt pricing reduces to pricing

the European option. Modigliani and Miller’s (1958) irrelevance of capital structure is

built into this approach. The value of the firm’s assets is by definition equal to the value

of the debt plus the value of the equity. If the value of the firm’s assets at the date when

the debt matures is less than the face value of the latter, then the firm defaults on its debt.

Black and Cox (1976) further generalized this model by assuming that default can occur

not only at a maturity date but at any point in time, when the asset value reaches some

(sufficiently low) threshold value or exogenous default boundary.

Subsequent research extended the framework of Black-Scholes and Merton in sev-

eral directions: Longstaff and Schwartz (1995) introduced stochastic interest rates, thus

allowing for two (possibly correlated) sources of uncertainty. Geske (1977) suggested a

1
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compound option model allowing for different maturities of the debt. The contribution

of Leland and Toft (1996) incorporated bankruptcy costs and taxes in the model.

Applications of the structural credit-modeling approach to the mortgage valuation

have been proposed by, for example, Titman and Torous (1989) as well as Kau, Keenan,

Muller, and Epperson (1992). Mortgage termination by default in this framework is ana-

lyzed as rational behavior by a profit-maximizing economic agent. This agent defaults if

the value of the property falls below the current value of the remaining payments on the

mortgage contract adjusted by the value of the prepayment option and option to default

later in the future. Subsequent work (e.g., Stanton (1995)) attempted to reconcile predic-

tions of structural models with empirically observed behavior of many borrowers who

failed to prepay when interest rates dropped. Alternative explanation of the ‘suboptimal’

behavior (Longstaff (2003)) presumes an rational borrower who is subject to credit con-

straints.

Although some structural models are applied in industry (Moody’s KMV is one such

example) and have clear economic interpretation, empirical research has shown (e.g.

Jones, Mason, and Rosenfeld (1984)) that in applications the Black-Scholes-Merton model

tends to underestimate observed credit spreads (that is, spreads between return on risky

debt and ’riskless’ debt). Another deficiency is that usually the underlying asset values

(firm assets or property values) are not easily observable. Moreover, if the asset value pro-

cess is modeled as a pure diffusion, then for the borrower whose assets are in the vicinity

of the default boundary, the probability of defaulting the next point in time is techni-

cally very close to one: that is, default is predictable. Some of the more recent research

(e.g., Collin-Dufresne and Goldstein (2001)) introduces extensions that alleviate the most

obvious discrepancies with real-world behavior, such as model-predicted spreads that

decrease with maturity. However, often the resulting structural model turns out to be

fairly complicated due to the modifications that need to be made.
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A reduced-form approach emerged as an alternative to the structural approach in

1990s. Artzner and Delbaen (1995), Jarrow and Turnbull (1995), Lando (1998) and Duffie

and Singleton (1999), among others, consider default to be an unpredictable event; it is

defined as the first arrival time t of a non-explosive counting process with intensity λ.

Hence, the default process is specified exogenously. In many applications, arrivals are

assumed to be governed by the Poisson law, whereby the intensity λ can vary stochasti-

cally over time. The models of this type are also referred to as intensity-based models and

they are exceedingly popular in the literature on reduced-form credit modeling. Often-

times modelers employ doubly stochastic Poisson (or Cox) process. Intensity models were

applied to pricing of corporate debt (Duffee (1999)), interest rate spreads (Duffie and Sin-

gleton (1997)), sovereign debt (Duffie, Pedersen, and Singleton (2003)) and various types

of credit derivatives (Houweling and Vorst (2005)), but not until recently to mortgage

pricing.

My goal is to develop a reduced-form model extending the framework of Kau,

Keenan, and Smurov (2004), which appears to be the first application of intensity-based

models for valuation of residential mortgages. I seek to incorporate additional stochasti-

cally evolving factors, other that interest rates, that are relevant to the decision-making

process of the borrowers. Of particular interest is the price of collateral. This extension is a

step towards augmenting reduced-form models by some elements of structural approach.

The scheme of the implementation is presented in the figure 1.1.

The data from an extensive nationwide panel of mortgages are used to estimate empir-

ical models of mortgage terminations. The parameters of these latter are then used to infer

parameters of the (latent) stochastic baseline processes of default and prepayment, which

are assumed to be driven by Brownian motions. The value of the mortgage is determined

by evaluating the conditional expectation of the mortgage payoff given the risks that the

contract might be terminated due to default or prepayment prior to maturity date. This

expectation is conditioned on dynamics of five stochastic processes: latent factors for both
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Latent parameters of
the intensity processes   
default | prepayment 

Observable parameters of 
the intensity processes        
default | prepayment 

Interest rate process 
parameters (two-factor 
term structure) 

House price 
process
parameters 

Calibration of the 
latent parameters to 
the market data 

Mortgage price 

Mortgage
characteristics 
and payment 
histories

Interest rate 
data

House price 
data

Figure 1.1
The structure of the reduced-form mortgage valuation model

the default and prepayment intensity, two factors in the term structure of interest rates,

and a stochastic house price process. Model parameters are calibrated to the observed

market prices of mortgages. The complete model is applied to the analysis of the major

increase in defaults in non-prime segment of the mortgage market.

The dissertation is organized as follows: first two Sections of Chapter 2 contain a

short literature review and discusses the pricing framework, Section 3 reviews the esti-

mation technique and examines duration models estimates, Section 4 is devoted to the
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approaches to estimating the term structure of interest rates, Section 5 discusses the mod-

eling of house prices as a stochastic process, Section 6 reviews techniques for estimation

of the latent default and prepayment processes’ parameters. Chapter 3 reports the results

of the estimation of these components of the valuation model. Chapter 4 discusses the

calibration procedure and the application of this model to uncovering the main factors in

the surge in defaults in U.S. non-prime mortgage sector. Chapter 5 concludes.



CHAPTER 2

THE PRICING MODEL AND ITS COMPONENTS

2.1 AN OVERVIEW OF APPROACHES TO THE VALUATION OF RISKY DEBT

In this section I would briefly discuss the extant literature related to modeling of credit

events and mortgage termination in particular. Historically, the structural (option-

theoretic) approach to the valuation of the risky debt (Black and Scholes (1973), Merton

(1974)) preceded the reduced form models .

Early structural models implied an absence of frictions in the market. In the option-

theoretic framework of Black-Scholes-Merton the process for the market value of under-

lying assets H (assets of the firm or, say, market price of a residential property) was

assumed to be log-normal under the risk-neutral measure Q , that is

dHt

Ht
= (r − π)dt+ σdWt (2.1)

where r was the risk-free rate of return, π was the cash payout rate (service flow in

case of housing), σ was the instantaneous volatility of the standard Brownian motion Wt

. Technical pre-requisites1 include a measure space (Ω,F ,Q) equipped with a filtration

F ≡ (Ft)0�t�T ∗ , which supports the value process H . Assets are financed with debt D

with maturity T � T ∗ (T ∗ > 0 denotes the time horizon) and notional amount F .

Assume that default can only occur at maturity, when the value of the underlying (real

property) is less than F , HT < F . Then, the value of the debt (for the property which is

financed by both debt and equity) at the time of default is at most equal to the value of

1See, for example, Bingham and Kiesel (2004) whose exposition I follow in my discussion of
the pricing model.

6
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the property DT = HT . Creditors’ payoff is given by DT = F −max{F −HT , 0}. This is the

payoff of the (European) put option on the value of the underlying asset. The price of the

zero-coupon debt with a face value D is the difference between payment of F discounted

at the risk-free rate and a (European) put option on the value of the underlying

PD(t, T ) = F e−r(T−t) − PE(Ht, F ) (2.2)

where the put option value PE is given by the Black-Scholes formula

PE(Ht, F ) = −Hte
−π(T−t)Φ(−d1(Ht, T − t)) + F e−r(T−t)Φ(−d2(Ht, T − t)) (2.3)

with

d1 =
log(Ht/F ) + (r − π + σ2/2)(T − t)

σ
√
T − t

(2.4)

and

d2 =
log(Ht/F ) + (r − π + σ2/2)(T − t)

σ
√
T − t

− σ
√
T − t (2.5)

and where Φ is the cumulative density of the standard normal distribution. This model

yields unambiguous predictions regarding the timing of default, provides clear linkage to

the economic fundamentals and possesses a closed-form solution. The asset process can

rarely be observed, but in the case of corporate bonds, asset values can be inferred from

the observable share prices. However, researchers who tested Merton model (e.g., Jones,

Mason, and Rosenfeld (1984)) using time series analysis of prices of defaultable coupon

(callable) bonds, were for the most part unable to obtain the levels of yield spreads corre-

sponding to those observed in the marketplace. The original model was later extended to

incorporate the possibility of default occurring not only at maturity, but at any moment

between origination and maturity dates. For example, default may occur the first time

the value of the underlying asset decreases below the value of some constant default

boundary F . In this case, the time of default τ is the first passage time of the diffusion

representing the asset process through the default-triggering boundary: τ ≡ inf{t > 0 :

Ht < F}, where, in general, suitable barrier process ft can substitute for F . Black and
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Cox (1976) were the first to introduce this extension to the original Merton model and

since then many variants of the first-passage model were suggested. The probabilities of

default in this setting are higher than those in the original Merton model, however, for

most realistic continuous-time asset and boundary processes closed-form solutions for

first passage times are not available. One prominent example is the model of Leland and

Toft (1996), who allowed for the possibility of continuous issuance of new debt by the

firm. Proceeds from new equity offerings can be used to service the debt in case firm’s

earnings (which are functions of the assets) are insufficient to cover the dividends. There-

fore, the Leland-Toft model implies endogenous default boundary. The study of Eom et

al (Eom, Helwege, and Huang 2004) indicated that, unlike the Merton model, the Leland-

Toft model tends to overpredict yield spreads for a broad range of maturities and issuers.

Yet another shortcoming of the above structural models is the consequence of the

assumption that asset values follow a diffusion process. This would lead to vanishingly

low instantaneous default probability of a borrower in good standing on a short-maturity

debt, and, hence predicted yield spreads on such debt would be near zero. Zhou (2004)

suggested augmenting the diffusion representing asset values by a Poisson jump pro-

cess. Estimation of models in which asset values are driven by Levy processes (with

or without time change), is an area of much research effort (see Wu (2008) for a recent

review), however, still it is a non-trivial problem. An alternative device to achieve more

plausible values of short-term spreads is to allow for measurement error in asset values

(Duffie and Lando 2001).

It is noteworthy that yield spreads generated by earlier structural models decline

with increasing maturity. This counterfactual implication of these models is the conse-

quence of the specification for the value of the underlying: if the asset process is log-

normal with positive drift, then, as time passes, the value of the asset will tend to drift

away from any deterministic default boundary, when the capital structure is static. This

issue was addressed, among others, by Collin-Dufresne and Goldstein (2001), who built
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upon the work of Longstaff and Schwartz (1995). Colin-Dufresne and Goldberg suggested

that rather than rolling over the same notional amount of debt, debtors might attempt

to maintain some target leverage ratio. This leverage ratio can be modeled as a mean-

reverting process (e.g. Ornstein-Uhlenbeck). The aforementioned study of Eom, Helwege,

and Huang (2004) included an empirical test of the Colin-Dufresne-Goldberg model: it

performed better than both the Merton and the Longstaff-Schwartz models with respect

to obligations of the borrowers with good credit rating, but for relatively risky debt pre-

dicted spreads that were too high.

Evolution of structural models applied to mortgages and mortgage-backed securi-

ties followed the path outlined above, broadly speaking. The earliest models, e.g. Cun-

ningham and Hendershott (1984), were cast in Merton’s framework, typically with a

single source of uncertainty (either the value of housing asset or the interest rate) with

the only reason for premature termination of the contract being either prepayment or

default (as in the cited article). Dunn and McConnell (1981) used interest rate evolution

as the factor triggering financially optimal prepayment of the mortgage in their valuation

model for mortgage pass-throughs. They also considered exogenous prepayment (due

to the personal circumstances of a particular borrower) which, unlike endogenous pre-

payment, tended to have positive effect on the price of the contract. Such ’suboptimal’

prepayment was introduced as a Poisson process whose mean rate of arrival was deter-

mined by an empirical prepayment model. However, except for commercial mortgages

with prepayment penalties effectively prohibiting prepayment (the model for the latter

with two sources of uncertainty - term structure and house prices - was developed in

Titman and Torous (1989)), termination may take form either of prepayment or of default.

In the structural model borrower chooses the less costly of the two depending on whether

the face value of the loan F is greater or less than the current value of the collateral H .

Although default on the fully insured mortgage may on the surface look like prepayment

to the lender, it occurs in a quite different environment and is seldom to the lender’s
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advantage. Incorporation of both default and prepayment in a single model was accom-

plished by Kau, Keenan, Muller, and Epperson (1992), Schwartz and Torous (1992) as well

as Leung and Sirmans (1990) (the latter used discrete-time setting). Downing, Jaffee, and

Wallace (2010) analyze pool-level data using the geometric Brownian motion assumption

for house price process, parameters of which they calibrate, along with a one-factor Cox,

Ingersoll & Ross (CIR) (see Cox, Ingersoll, and Ross (1985)) term structure. They apply

the PDE approach to solve for optimal default and prepayment boundaries and derive

the values of default and prepayment hazards as well as the values of a ’background’

hazard2, which is assumed to be separate from the former two.

Models with both default and prepayment typically treat mortgage rates as an exoge-

nous factor. Another strand of the structural literature ( some authors term it "mortgage-

rate based", as in Pliska (2006)) regards mortgage rate as an endogenous factor in the

model. Stanton and Wallace (1998), Longstaff (2003), Dunn and Spatt (2005) focus on

prepayment and analyze the influence of such factors as transaction costs, borrowers’

mobility or credit constraints on the dynamics of the latter. Pliska (2006) and Goncharov

(2006) provide theoretical results as to the existence of the solution to the problem of

finding mortgage rate implied by a riskless yield curve and a given pattern of prepay-

ment behavior for fixed-rate default-free mortgages (the latter paper deals exclusively

with ’suboptimal’ behavior). They compare structural and reduced-form approaches

observing (Goncharov 2006) that obtaining similar result for the reduced-form setting

would be a challenging task.

The present discussion of structural or option-based approach and its applications

to mortgage valuation in particular has been brief and necessarily subjective. Many

important contributions were not mentioned for the sake of brevity. It appears that the

main drawbacks of structural models mentioned above, such as limited possibilities

of incorporating available information about borrowers and economy or inability to

2The ’background’ hazard function characterizes the conditional probability of termination for
nonfinancial reasons, see Downing, Jaffee, and Wallace (2010, Section 3.3.1).
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match market levels of yields, manifest themselves in mortgage applications as well as

in corporate credit risk applications. This often hinders the ability of structural model

to explain observed patterns of mortgage terminations, in particular prepayment3. The

better performance of reduced-form models in explaining market spreads is among the

reasons of the popularity of the latter. Seminal papers establishing the pricing framework

in which the process for contract termination is determined exogenously include, among

others, Jarrow and Turnbull (1995), Artzner and Delbaen (1995) Lando (1998), Madan and

Unal (1998), Duffie and Singleton (1999). In these models the date of termination (say, by

default) of the debt contract is not foreseeable.

Specifically, the termination time τ is a non-negative random variable with Prob(τ <

∞) = 1, Prob(τ = 0) = 0. In the Cox (doubly stochastic Poisson) process framework,

this random variable is exponentially distributed. Let Y be a d-dimensional stochastic

process (state process) on the space (Ω,F ,G,Q) where G = (Gt)0�t�T ∗ , Gt ⊂ F and the

jump process Jt =
(
1[τ�t]

)
is termination process, which generates the filtration J =

(Jt)0�t�T ∗ , Jt = σ ({τ � u} : u � t). T ∗ is finite time horizon in the model, such that T ∗ >

0, T � T ∗. Augmented σ-algebra Ft = Gt ∨ Jt = σ(Gt,Jt) is the maximum of these two;

F is the corresponding filtration. Under appropriate technical conditions intensity can be

represented for some function λ : Rd �→ R+ as a function of the state vector λt = λ(Yt). τ

is the time of the first jump of a Poisson process with intensity parameter λ4.

Let, further, a short-rate process rt = r(Yt) be defined for some function r : Rd �→ R. Let

V (s)(t, T ) denote time t price of the contract that will survive till maturity T with certainty

(e.g. default-free bond), then V (s)(t, T ) is simply V (s)(t, T ) = exp
(
−
∫ T

t
r(u)du

)
. Survival

probability (which is formally defined for the general case in the next section) at any time

period t given the realization of the intensity process λ(Yt) up to t is an expectation over

3It is acknowledged that nonfinancial considerations are often prominent in the decision to
prepay a mortgage.

4See e.g. Cox and Isham (1980) for the concise discussion of the various generalization of the
Poisson process. Daley and Vere-Jones (2003) is a widely cited reference on the theory of such
processes.
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all possible paths of the risk-neutral intensity process λQ(Yt)5:

Q(τ > t) = EQ exp

{
−
∫ t

0

λ(u)du

}
(2.6)

The price V (d)(·) of a defaultable contract with the face value equal to unity and the payoff

(assumed to be received at maturity) in case of default equal to V (τ) , is given as the

expected present value of payoff under all possible outcomes:

V (d)(0, T ) = EQ

(
exp

{
−
∫ T

0

r(u)du

}
(1[τ>T ] + V (τ)1[τ�T ])

)
(2.7)

or, alternatively, as the price of a default-free contract less the expected present value of

the loss due to default

V (d)(0, T ) = V (s)(0, T )− EQ
(
e−

∫ T
0

r(u)du(1− V (τ))1[τ�T ]

)
= (2.8)

V (s)(0, T )− EQ

(
e−

∫ T
0

r(u)du

∫ T

0

(1− V (u)) λ(u) e−
∫ u
0

λ(v)dv du

)
(2.9)

The question of mapping from the risk-neutral measure Q to the physical probability

measure P (correspondingly, from the risk-neutral intensity λQ to the real-world intensity

λP) is an empirical one. As Singleton (2006) points out, not only concurrent levels of λQ

and λP may differ, but also the characteristics of the processes, in general, may be quite

divergent (they may not be, for example, both of a same type, e.g., diffusions).

There are several assumptions about the recovery process which are common in the

reduced-form models. One particular recovery formulation is often called recovery of

treasury (RT) (Kijima 2003), since it can be viewed as replacement of the bond in default

with a treasury bond of a reduced value with the same maturity; an alternative term for

it is the fractional recovery of no-default value. This recovery assumption is natural for

the long-term bonds, holders of which are not protected against default by an accelera-

tion clause. Another recovery formulation – often termed the (fractional) recovery of face

value (RFV) (see, for instance, Singleton (2006)) – is closely related to the legal practice.

Under this assumption, creditor receives at default smaller of the fraction of the face value

5See, e.g., Lando (2004, Ch. 5).
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that remains after liquidation of the assets, or the face value of the debt. This assumption

is most appropriate for the case of mortgage foreclosure and for covenant-protected cor-

porate bond defaults. Unlike RFV, RT implies that holders of coupon bonds are entitled to

some fraction of future coupon values, too. Under (fractional) recovery of market value

(RMV) formulation, an investor receives at the time of default a fraction of the market

value of the debt as of the moment just prior to the default. This convention has an advan-

tage of having clear economic interpretation as the loss in value associated with default.

Although reduced-form models do not provide links between economic fundamen-

tals characterizing an issuer and the probability of premature termination, it is, however,

possible to introduce into the model state variables, which may or may not have straight-

forward economic interpretation. The general formula for price process of a defaultable

claim in reduced-form framework with state variable vector Y , GT -measurable payoff

process V and G-predictable recovery process X , which determines the rate of payoff, is

given below. It encompasses all aforementioned recovery assumptions6:

V (d)(t, T ) = 1[τ>t]E
Q

(∫
(t,T ]

exp{−
∫ u

t

r(Yv) + λ(Yv)dv} λ(Yu)Xudu |Gt
)
+

1[τ>t]E
Q

(
exp{−

∫ T

t

r(Yv) + λ(Yv)dv} V |Gt
)

(2.10)

In many cases, state variables employed in reduced-form model do not admit clear

structural interpretation. For example, in the study of corporate spreads (Duffee 1999),

dynamics of prices of default-free zero-coupon bonds depends on two uncorrelated state

variables, whereas instantaneous credit spread is the function of three independent state

variables (two aforementioned term structure state variables and an additional spread-

specific one). All three processes are latent. Some researchers attempt to bring to the

reduced-form models certain ’flavor’ of a structural ones by introducing such state vari-

ables as, for example, leverage ratio of the firm (Bakshi, Madan, and Zhang 2006) but,

6See, e.g. Bingham and Kiesel (2004, Proposition 9.4.1).
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for the most part, underlying state variables are not easily interpretable in terms of eco-

nomic fundamentals. That did not, however, preclude widespread use of reduced-form

models in bond pricing, where for many types of contracts there is only one possibility of

premature termination of debt contract – namely, by default.

This is not the case for callable bonds, residential mortgages and derivatives backed

by these contracts. Here the second way of termination – termination by prepayment –

plays an important role. For mortgages prepayment is not a rare event and, while bulk

of prepayments are to the lender’s disadvantage, there is significant number of ’non-

financial’ prepayments, which thereby partially compensate losses associated with finan-

cially optimal prepayments. Importantly, prepayment may act as a competing alternative

to default and this has to be reflected in the estimation. This was acknowledged in Kau,

Keenan, and Smurov (2004), where intensities of default and prepayment were modeled

as mean-reverting uncorrelated scalar diffusion processes. Term structure (modeled as

two factor Cox-Ingersoll-Ross one) entered the model via time varying spread between

contract rate at origination 7 and actual yield on 10-year Treasury bond. Pricing proce-

dure amounted to Monte Carlo integration of discounted payoffs that incorporated simu-

lated paths of interest rate and latent prepayment and default factors. Calibration of such

parameters as multiplicative and additive risk adjustments, liquidity adjustment and loss

rate in case of default (under the RFV assumption) to the market data was required in

order to apply risk-neutral valuation procedure. Implementation of such forward-looking

pricing procedure allowed authors to decompose the value of a representative mortgage

into components reflecting market assessment of risk according to the observed prepay-

ment and default behavior of borrowers.

Most of other contributors in this field limited their task to modeling only one of

termination processes. DeGiorgi and Burkhard (2006) estimated conditional intensity of

default including macroeconomic, locational variables, time since origination, seasonal

7The model of Kau, Keenan, and Smurov (2004) was applied to valuation of fixed-rate
mortgages.
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dummies and mortgage rate in the set of covariates. They used Swiss data on more than

70000 individual fixed-rate and adjustable-rate mortgages observed in 1994-2000. The

log-additive model for conditional default intensity was estimated non-parametrically

(smoothing splines were used to describe the contribution of each predictor). Kolbe

and Zagst (2008) used doubly stochastic framework to model prepayment. They chose

Ornstein-Uhlenbeck dynamics for their instantaneous short rate process. For the baseline

hazard process, along with latent baseline factor, they included the second state variable -

quarterly GDP growth rate - which entered additively into the drift term of the OU diffu-

sion. Kolbe and Zagst estimated parameters of their model using pool-level GNMA data.

They employed nonlinear function of spread (between the weighted-average coupon

(WAC) of the mortgage pool and the 10-year treasury par yield) and linear and cubic

terms in burnout variable as the covariates in the empirical estimation of the base-

line. Their tests failed to reject one-factor parameterization of baseline hazard, but they

reported that the two-factor model for baseline prepayment provided somewhat better

fit. Liao, Tsai, and Chiang (2008) developed a reduced-form model for mortgage valu-

ation with yields explicit solutions; in their model the hazard rates of prepayment and

default are assumed to be the linear functions of the respective baseline hazards and

other relevant state variables. The set of state variables includes interest rates house price

process and household income process. Using geometric Brownian motion specification

for the latter two, extended Vasicek model for the interest rate and the assumption of a

deterministic loss rate they perform the sensitivity analysis of price to the volatilities of

state variables, correlations between them and other parameters of their model.

Outside of the field of real-estate finance, but in closely related work Jarrow, Li, Liu,

and Wu (2006) consider valuation of callable bonds: in their study call option on a bond is

modeled via intensity process, thus the model of Jarrow et al. much like the model of Kau,

Keenan, and Smurov (2004) has four stochastic processes: two for the term structure, one
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for default intensity and one for call intensity; ML estimation of the model parameters is

based application of extended Kalman filter.

Extant literature on empirical reduced-form valuation8 of mortgages and MBS is rel-

atively scant, but there is an ongoing research effort stimulated by the popularity of

reduced-form models in the credit risk literature.

2.2 NO-ARBITRAGE PRICING MODEL FOR THE MORTGAGE CONTRACT SUBJECT TO

DEFAULT AND PREPAYMENT

General pricing formula given by (2.9) should be reconciled with the fact that termina-

tion by default is observed only on the payment dates, i.e. in monthly intervals, rather

than completely at random. For the purpose of estimation convenience in our model it

is assumed that prepayment also follows this pattern. The formulation of the latent ter-

mination process in the present work follows Belanger, Shreve, and Wong (2004), who

generalize the notion of a hazard process to the situations when the event of interest (e. g.

default) occurs only at certain dates (payment dates). One may think of a non-decreasing,

{Ft}-predictable process Γt
9 which has right continuous paths with left limits (RCLL),

Γ0 = 0a.s.. The continuous Brownian filtration F = (Ft)0�t�T ∗ can be thought of as flow of

publicly available information about the borrower. Probability space (Ω,F ,Q) also sup-

ports positive random variable Ξ which is independent of FT ∗. Termination time τ is

8By ’reduced-form’ valuation, I mean here reduced-form models with stochastic state vari-
ables. More general rubric, sometimes called empirical or ‘econometric’ approach, includes not
only the aforementioned intensity-based, reduced-form models but also simpler statistical models
without stochastic dynamics of state variables. Reduced-form models in this broader sense have
been applied to the pricing of mortgage contracts and their derivatives for quite a while. In
industry such models have been found to be particularly suitable for modeling prepayment
(Patruno (1994)). Schwartz and Torous (1989) is one of the early examples of published work on
empirical mortgage-backed securities valuation. Deng, Quigley, and Van Order (2000) provides
an example of an elaborate hazard model developed for the assessment of the risk of mortgage
termination. Since this literature is abundant, I only touch on some of the contributions in this
field while discussing model specification.

9Some authors, e.g. Belanger, Shreve, and Wong (2004), reserve the term hazard process for the
process Λt defined below, others use this term for Γt, while Λt is referred to as martingale hazard
process.
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defined as τ = inf {t ∈ [0, T ∗]; Ξ � Γ(t)}. Survival process St can be defined via cumula-

tive distribution function10 of Γ as

S(t) = 1− F (Γt) = Q(τ > t|FT ∗) = Q(τ > t|Ft) 0 � t � T ∗ (2.11)

(Martingale) hazard process Λ t is also non-decreasing RCLL process11 defined as

Λt ≡ −
∫
(0,t]

1[Su−>0]
dSu

Su−
0 � t � T ∗ (2.12)

=
∑

0<tn�t

λtn (2.13)

where Su− ≡ limv↑u Sv and S0− ≡ 1, tn : 1[τ>tn] = 1.12 Next, consider the compensator pro-

cess Aτ
t ≡ Λ(t∧ τ) of the jump process Jt = 1[τ�t]. This process represents cumulative con-

ditional likelihood of default or default trend (respectively, prepayment trend). Doob-Meyer

decomposition of the counting process Nt (which is a pure jump process with jumps of

size one) yieldsMt = Nt−At whereMt is a (local) martingale. Intuitively, the compensator

for the counting process is a foreseeable part of the process based on observations prior

to time t : dAt = E(dNt|Ft−), and dMt is the part that cannot be foreseen. Realizations of

the two hazard processes are observed discretely and they are parameterized (at the nth

payment date) as:

λ
(�)
tn,P

= exp(z(tn)β
(�)) l

(�)
tn,P

� = def, prep (2.14)

where l(�)t are latent baseline hazard process driven by independent Brownian motions.

Estimation of the parameters β of the multiplicative intensity model given the values of

observed variables z is the subject of the next chapter. Importantly, the Brownian motions

in (2.14) admit physical probability measure P. Using standard no-arbitrage argument,

the price of a mortgage contract13 can be represented as (cf Belanger, Shreve, and Wong

10F (ξ) = Q(Ξ � ξ) and using the fact that {τ � t} is equivalent to {Ξ � Γt}.
11Martingale hazard Λt coincides with hazard Γt iff c.d.f of termination time τ is continuous, cf

Bielecki and Rutkowski (2002), Proposition 4.5.1. Then Λt is continuous.
12For F (ξ) = 1 − exp(ξ) survival St > 0 ∀t and indicators are redundant. On random interval

[0, τ) Γt = − log(St) and St = exp(−Λc
t)
∏

0<s�t(1 − ΔΛs) where Λc is continuous part of Λ and
ΔΛs = Λs − Λs−.

13Under a martingale measure Q (such that Mt is F-martingale) and using the assumption of
RFV.
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(2004), Proposition 3.2):

V (t, T ) = 1[τ>t]E
Q

(
δC

∫
(t,T ]

e−
∫ u
t
(rs+λs)dsλudu|Gt

)
+ 1[τ>t]E

Q
(
e−

∫ T
t
(rs+λs)dsC|Gt

)
(2.15)

where δ is the constant recovery rate, C is contractually specified payoff of the mortgage

contract and filtrations F and G are defined above (see (2.10)). Martingale hazard process

Λt is an aggregate one over the two kinds of termination, since termination time τ =

τ (d) ∧ τ (p) (cf Lemma 7.1.2. in Bielecki and Rutkowski (2002)).

Λt =
∑

0<tn�t

λ
(d)
tn +

∑
0<tn�t

λ
(d)
tn (2.16)

After taking into account adjustments for taxes and illiquidity (Duffie and Singleton

1999), the pricing formula for value of mortgage at the time of origination14 can be

written as:

V (0, T ) = EQ

(
δC

∫ T

0

e−
∫ u
t ((1−tax)rs+lq+λs)dsλudu|Gt

)
+

EQ
(
e−

∫ T
t
((1−tax)rs+lq+λs)dsC|Gt

)
(2.17)

Next four sections are devoted to the presentation of the approaches to specification

and parameter estimation of the components of the formula (2.17). I begin with review of

model specification and parameter estimation of β in (2.14).

2.3 MULTIPLICATIVE INTENSITY MODEL WITH COMPETING RISKS OF PREPAYMENT

AND DEFAULT

Let T represent the length of time (duration) that individual mortgagor holds the mort-

gage contract. It is naturally to think of T as a continuous random variable in which case

the survivor function (2.11) is simply

S(t) = 1− F (t) (2.18)

14The value at origination should equal amount of loaned funds to prevent arbitrage.
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where F (t) is the cumulative distribution function15 of T. The hazard function is defined

as the instantaneous probability of a failure (termination of the contract either by prepay-

ment or by default) conditional on survival:

λ(t) = lim
Δt→0

Pr(t � T < t +Δt)|T � t)

Δt
=
f(t)

S(t)
(2.19)

where f(t) = dF (t)
dt

is the density function16 of T assuming strictly positive values. How-

ever, a rational borrower is expected to abrogate the contract only on payment dates, since

this allows such borrower to enjoy an extra period of unpaid housing services. Assuming

that hazard within the interval between successive payment dates is constant, the discrete

version of hazard function obtains as

λdisj (t) =
f dis
j

f dis
j + f dis

j+1 + f dis
j+2 + ...

=
f dis(t)

Sdis(t)
(2.20)

where the density fdis
j in the discrete case can be represented as

f dis
j =

∑
i∈I

f dis
i 1{aj � ai} − F dis(aj−) =

F dis(aj) − F dis(aj−) = F dis(aj)− F dis(aj−1) =

Sdis(aj)− Sdis(aj+1) (2.21)

In the foregoing equation survivor function Sdis(t) is defined as

Sdis(t) =
∑
j∈J

f dis
j 1{t � aj} =

∑
[j|aj�t]

f dis
j (2.22)

with usual condition on probability masses:
∑

j∈J f
dis
j = 1. Duration variable T takes

discrete values 0 � aj � aj+1 and aj− = limt→j at. Hence discrete-time hazard function

can be written as λdisj =
fdis(tj )

Sdis(tj−)
. Discrete-time survivor function can be expressed via

discrete-time hazard function as

Sdis(t) =
∏
j|tj�t

(1− λdisj ) (2.23)

15Alternative definition of survivor function preferred by some authors is S(t) = Pr(T > t); in
the discrete case one should be careful to distinguish between the two.

16Cf specialization to the discrete case in (2.13).
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While continuous survivor function is monotonically non-increasing on the interval from

1 to 0 (assuming that eventually all subjects will fail, i.e. assuming non-defective distribu-

tion of the duration variable), the discrete analog is a decreasing step function with steps

occurring at event times tj (payment dates). Cumulative hazard function for discrete-

time models takes the form Λdis(t) =
∑

j|tj�t λ
dis
j familiar by (2.13)17. Generally speaking,

the distribution of T can have both discrete and continuous components, in which case

cumulative hazard function consists of discrete and continuous terms18:

Λ(t) =
∑
j|tj�t

λdisj +

∫ t

0

λ(u) du . (2.24)

As it is common with duration data, the data set under consideration is subject to cen-

soring. First, not all the mortgages have prepaid, defaulted or have been completely paid

off during the observation period. That means that our model have to account for right

censoring of the duration data. Secondly, payment histories for the mortgages of the ear-

liest vintages starts several years after the origination date, therefore, there is a problem of

left censoring for the part of the data set. An assumption that censoring process (denoted

by Y (t) : Yi(t) = 1 if individual i is in the risk set at time t− and 0 otherwise) is indepen-

dent of the data-generating process for duration simplify matters. This standard assump-

tion doesn’t look implausible in our case. Since the parameters of the distribution of Y do

not provide additional information about the parameters of the distribution of T , there

is no need to model the censoring mechanism explicitly. Even if distribution of censoring

process may be related to the data-generating process that generates the regressors z,

still the non-informative property allows one to concentrate on modeling of duration as

a function of covariates and baseline hazard, but not the censoring process. More specif-

ically, let the Y : (Yt){0�t�T ∗} be the filtration generated jointly by the stochastic data-

generating processes of covariates and censoring: Yt = σ(zi, Yi(s), i ∈ N : s � t). Let

17In continuous time summation over yjs is replaced by the integral over the range of t. In this
latter case is can be easily seen that cumulative hazard equals negative of log(S(t)).

18Cf footnote commenting (2.13) in the previous section.
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C denote the filtration generated by Y and counting process N(t) so that C = Y ∨ N .

Then for the case of two competing risks with corresponding filtrations Cdef and Cpre,

if one assumes independency between competing risks, duration will be determined by

the information in the minimal filtration generated by the sigma-algebra: C = Cdef ∨ Cpre.

Assuming that covariates enter the hazard multiplicatively, i.e. hazard function has the

following form

λ(t|z(t), β) = l(t|z(t), β) exp(z′(t)β) (2.25)

it has been shown (Cox and Oakes (1984), Kalbfleisch and Prentice (2002)) that factoring

complete likelihood into parts, one of which depends only on β and one – both on β and

baseline hazard l(t|·), is permissible. This simplifies inference on β, since now the latter

can be based only on the partial likelihood, which is a function of β only. For the case of

two competing risks of default and prepayment, denoted by corresponding subscripts,

general form of the partial likelihood is

L(βd, βp) =

kd∏
i=1

exp{z′d, i(td ,i)βd}∑
s∈R(td ,i)

exp{z′s(td ,i)βd}
·

kp∏
i=1

exp{z′p, i(tp ,i)βp}∑
s∈R(tp ,i)

exp{z′s(tp ,i)βp}
=

Ld(βd) · Lp(βp) (2.26)

where R(t� ,i) = {s : ts � t� ,i} is set of i = 1, ..., I subjects (contracts) which are at risk of

�th type of termination at time t� ,i, t� ,1 < ... < t� ,k� are times of type � termination19. Thus

a likelihood function for two independent competing risks factors out into two separate

likelihood functions for each of the risks. I will suppress reference to a particular risk in

what follows and leave only subscripts denoting subject or set of the subjects to simplify

notation. Maximum partial likelihood estimator of β obtains by setting the score function

U defined as

U(β) =
∂lnL(β)

∂β
=

N∑
i=1

δi

(
zi(ti)−

∑
s ∈ R(ti)zs(ti) exp{z′s(ti)β∑
s ∈ R(ti) exp{z′s(ti)β

)
(2.27)

19Cf Kalbfleisch and Prentice (2002, p.255, (8.13)). It is assumed that only a single termination
at a time may happen. For the various statistical methods of dealing with tied failure times see
Andersen, Borgan, Gill, and Keiding (1993) or Aalen, Borgan, and Gjessing (2008).
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equal to 0 by usual maximum likelihood arguments. Here δi is indicator taking value of 0

if observation iwas censored, N is sample size. Although partial likelihood estimator β̂ is

neither a marginal nor a conditional likelihood estimator but rather a product of limited

information likelihood procedure , this estimator is consistent for β and asymptotically

normal for large samples. For a discrete-time model (2.25) takes the form

λ(t|z(t), β) = l(t|z(t), β) exp(z′(ta−1)β) (2.28)

for t ∈ [ta−1, ta] if covariate values remain constant within this interval. Note that there

are no restrictions on the behavior of baseline hazard (e.g. constancy) within the interval.

Thus we can obtain estimates for the realizations of continuous-time baseline intensity

process at the endpoints of one-month interval. Kalbfleisch and Prentice (2002) show that

estimator (2.27) is still unbiased, consistent and asymptotically normal for the discrete

case whereas the unbiased estimate of variance is given by

Vu(β) =
k∑

j=1

δjV (β, tj)−
k∑

j=1

∑
s∈R(tj )

(zs(tj)− E (β, tj))
⊗

2 exp[2 z′s(tj)β] α̂0(β, tj) (2.29)

where α̂0(β, tj) =
δj(δj−1)(∑

s∈R(tj)
exp[z′s(tj )β]

)2
−
∑

s∈R(tj)
exp[2 zsl′(tj )β]

,

V (β, tj) =
N∑
i=1

(
zi(tj)− E (β, tj)

) (
zi(tj)− E (β, tj)

)′
pi(tj)

E (β, tj) =

N∑
i=1

zi(tj) pi(tj) ,

pi(β, aj) =
exp[z′i(aj)β]∑

s∈R(aj )
exp[z′s(aj)β]

.

This estimate is used to form sandwich-type estimator of asymptotic covariance of

(β̂ − β) :
(∑k

j=1 δjV (β̂, tj)
)−1

Vu(β̂)
(∑k

j=1 δjV (β̂, tj)
)−1.

It has been assumed throughout that dependence between the risks of prepayment

and default is only through common set of covariates entering both of the hazards. Kau,

Keenan, Muller, and Epperson (1995), Deng, Quigley, and Van Order (2000) among others
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pointed out to the importance of modeling prepayment and default jointly in the valua-

tion of residential mortgages. Dependence between risks can be introduced in different

ways. One popular choice is to parameterize the transformation of duration variable for

a particular risk −log(Λ0(t;α)) as z′(t)β + ν + ε, where parameter ν can be either common

between different risks or νj may be correlated. However, this modeling scheme comes

at significant additional computational cost. The likelihood for the model with correlated

competing risks and discrete data is no longer simply a product of the two individual like-

lihoods. Additional assumptions about the behavior of hazard or timing of the event of

interest within the interval between the observations are necessary to achieve the identifi-

cation. It is often assumed that either hazard rate is constant within the interval or density

is constant, although other choices have been also analyzed in the literature20. Typically in

the above parameterization parameter ν represents unobserved heterogeneity in the pop-

ulation with regard to the certain type of hazard. Latent durations Tp, T d are assumed

to be conditionally independent, given these unobserved heterogeneity components. In

such mixed proportional hazard model (νp, νd) may be modeled via continuous multivariate

joint distribution, or the mixture can be discrete. In this latter case the likelihood contri-

bution of an individual observation is

L∗(β|ν) =
K∑
k=1

πkLk(β|νprep, νdef) (2.30)

where πk is probability associated with the mass point k,
∑K

k=1 πk = 1 and Lk(β|νprep, νdef)

is likelihood contribution for particular combination of mass points. That is the approach

which was advocated by Heckman and Singer (1984), among others. Abbring (2001) and

others analyzed the conditions for identification of the model (see, e.g. Abbring and Van

Den Berg (2007) for a discussion of necessary conditions). These conditions are not too

20Jenkins (2005) provides a survey of different approaches to modeling mixed hazard with cor-
related risks.
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restrictive, however the estimator, which is the solution to the optimization problem

argmax
β,ν,π

{
N∑
i=1

log(L(yi|zi; β, ν, π))
}

(2.31)

is notorious for numerical problems arising in the estimation in the extensive data set. In

my attempts to estimate the mixed proportional hazard model with different number of

support points for heterogeneity distribution I found that often the distribution of hetero-

geneity was estimated to be degenerate, i.e. over 99% of the probability is concentrated

in a single masspoint (the results of MPH estimation are not reported here). Potentially

feasible approach for modeling competing risks dependency via parametric copula, how-

ever, is unlikely to suit the particular case of default and prepayment, since the correlation

between these risks is negative.

2.4 CHARACTERIZATION OF THE CIR TERM STRUCTURE MODEL

A definition of short (spot) rate seems a natural way to start the discussion of the term

structure. Denote byB a money account the process with continuous sample path and finite

variation, such thatB0 = 1. The short rate rt is an adapted process defined on a probability

space (Ω,F ,P) with almost all paths integrable on [0, T ], such that it solves the differential

equation dBt = rtBtdt, where Bt = Bt(ω) for almost all ω ∈ Ω, or, equivalently:

Bt = exp

(∫ t

0

rudu

)
, ∀t ∈ [0, T ] (2.32)

In the arbitrage-free market prices at time t of zero-coupon bonds maturing at time T

are given by:

p(t, T ) = E
Q
t

(
exp−

∫ T
t rudu

)
(2.33)

and the expectation above (see, e.g. Björk (2004)) implies the dynamics of the short rate

under the measure Q of the following form
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drs = (μ− ασ)ds+ σdWs (2.34)

rt = r

where α, μ and σ depend on time and short rate. The process α is termed market price

of risk and is defined as αt =
ρTt −rt
σT
t

, where ρTt is the local return at time t on the bond with

maturity T , σT
t is the local volatility and the difference ρTt − rt represents the risk pre-

mium on the bond. The measure Q is such that for any maturity T∗ ∈ [0, T ] the relative

zero-coupon bond price process p(t,T ∗)
Bt

, ∀t ∈ [0, T ∗] is a martingale, therefore it is termed

(spot) martingale measure. One obtains risk-neutral expectation hypothesis or local expec-

tation hypothesis if expectation with respect to martingale measure in (2.33) is replaced

with expectation with respect to objective measure P. The term ’local expectation’ can be

interpreted so that the bond price at any moment s is equal to the expected value (under

actual probability P) of the bond price in the next period (while the length of that period

tends to 0) discounted at spot rate at s. The family of bond prices (which are assumed to

be arbitrage free relative to r) is often referred to as term structure. One approach to mod-

eling term structure is to assume that short rate follows Itô process, or, more specifically,

a diffusion process of the form:

dr(t) = μ (t, r(t)) dt + σ (t, r(t)) dW̄ (t) (2.35)

where μ(·) and σ(·) in 2.35 are the same functions as in 2.34, however, the underlying

probability measure is now the objective probability P. Measures P and Q are equivalent

probability measures on a filtrations of a Brownian motion. It is known (Duffie (2001,

Appendix A)) that if Q is equivalent to P on a measurable space (Ω,FT ), then probability

measure Q is a Radon-Nikodym derivative:

dQ

dP
= exp

(∫ T

0

αu dWu −
1

2

∫ T

0

|αu|2 du
)

= ηT , P−a.s. (2.36)
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where random variable ηT is a.s. strictly positive and its P-expected value integrates

to 1. In other words,

dWt = dW̄t +

∫ t

0

αudu (2.37)

It follows that different choices of market price of risk α imply different martingale mea-

sures Q . However, one should execute caution in the choice of α, so that the latter will be

compatible with aggregate level of risk aversion in the market.

In general the drift and volatility functions μ(·) and σ(·) can be arbitrarily complex.

However, for the term structure model to be tractable, certain restrictions are often

imposed. A widely used class of models is one in which the price of a zero-coupon bond

can be represented as:

p(t, T ) = exp [A(t, T )− B(t, T ) r] (2.38)

for some deterministic functions A and B. In this case the model is said to belong to affine

or exponential affine class. In affine models (see, e.g., Duffie and Kan (1996)) the dynamics

for the short rate, given by SDE 2.35 imply the following form of drift and diffusion :

μ(t, r) = a(t) r + b(t) (2.39)

σ(t, r) =
√
d(t) r + e(t)

where a(·), b(·), d(·) and e(·) are deterministic functions satisfying the following differen-

tial equations: ⎧⎨
⎩

∂
∂t
B(t, T ) + a(t)B(t, T )− 1

2
d(t)B2(t, T ) = −1

B(T, T ) = 0
(2.40)

and ⎧⎨
⎩

∂
∂t
A(t, T ) = b(t)B(t, T )− 1

2
e(t)B2(t, T )

A(T, T ) = 0
(2.41)

(cf Björk (2004, (22.24-22.25)), for which there are closed-form solutions available in sev-

eral cases. Cox, Ingersoll, and Ross (1985) developed the general equilibrium model in



27

which the dynamics of short rate follows the following SDE:

dr(t) = κ (θ − r(t)) dt+ σ
√
r(t)dW̄ (t) (2.42)

under the martingale measure Q. A condition κθ > σ2

2
ensures that the process stays

non-negative. The change of measure is given by (cf Brigo and Mercurio (2006, p. 65):

dQ

dP
= exp

(
−1
2

∫ t

0

α2r(u)du +

∫ t

0

α
√
r(u)dW (u)

)
(2.43)

Hence market price of risk exhibits increased volatility in the periods when interest rates

are more volatile. Now, denoting A0(t, T ) = log (A(t, T )), the term structure of zero-

coupon bonds in the CIR model is given by :

A0(t, T ) =

[
2h exp ((κ+ h)(T − t)/2)

2h+ (κ+ h){exp ((T − t) h)− 1}

]2κθ/σ2

(2.44)

B(t, T ) =
2
(
exp ((T − t) h)− 1

)
2h+ (κ + h){exp ((T − t) h)− 1}

h =
√
κ2 + 2σ2

under the risk-neutral probability. Price of a zero-coupon-bond obtains as :

p(t, T ) = A0(t, T ) exp
(
− B(t, T ) r(t)

)
(2.45)

Chen and Scott (1992) suggested multi-factor extension of CIR model, where each of

several independent latent factors yj follows the square-root diffusion 2.42, and short rate

is the sum of these factors: r =
∑J

j=1 yj . Under these assumptions the term structure

equations (under the objective probability) have the same form as above (now including

market price of risk factor):

A0 j(t, T ) =

[
2hj exp

(
(κj + hj + αj)(T − t)/2

)
2hj + (κj + hj + αj){exp

(
(T − t) hj

)
− 1}

]2κjθj/σ
2
j

(2.46)

Bj(t, T ) =
2
(
exp ((T − t) hj)− 1

)
2hj + (κj + αj + hj){exp ((T − t) hj)− 1}

hj =
√
(κj + αj)2 + 2σ2

j
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and bond price is given by(cf Cox, Ingersoll, and Ross (1985, (23))):

p(t, T ) =

(
J∏

j=1

A0 j(t, T ) exp
(
−

J∑
j=1

Bj(t, T ) yj(t)
))

(2.47)

In the next section I discuss the estimation of the two-factor version of this model using

the data set of yields on zero-coupon bonds of different maturities.

2.5 EXISTING APPROACHES TO HOUSE PRICE MODELING

Several strands of literature are relevant to the analysis of the properties of the house

process. In particular, many recent partial equilibrium models of portfolio choice, e.g.,

(Flavin and Yamashita (2002) or Cocco (2005)) have incorporated real estate asset. Often-

times these studies are cast in one-period framework (while many allow for a bequest

motivation). Return on holding housing may be represented as a sum of an expected

return and a stochastic component. In an intertemporal utility model with housing good

(H) and a numeraire good (C), lifetime utility of a representative agent (household) is

given by:

U ≡
∫ ∞

0

exp(βt)u(H(t), C(t))dt (2.48)

where β is a discount rate, with a budget constraint

g(t)X(t) + S(t) + C(t) = (1− τ)Yr(t) + (1− τ) r(t)F (t)dt (2.49)

where g(t) is the price of a unit of housing stock, X(t) is the amount of units purchased,

S(t) are (net) real savings, Yr(t) is the real income of the household, τ is the marginal tax

rate of the household, r(t) is market interest rate. Additional constraint

∂H(t)

∂t
= X(t)− δ H(t) (2.50)

where δ is the depreciation rate, describes the dynamics of housing stock owned by a

household. Household in the model is allowed to invest in the financial asset as well as

in the housing. The last constraint:

∂F (t)

∂t
= S(t)− π F (t) (2.51)
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where π is the rate of inflation and F (t) is the value of net assets other than housing,

governs the dynamics of financial assets. If, as is often assumed, credit rationing with

shadow price ξ(t) is present, then usual first-order conditions and absence of arbitrage

imply (see Meen (2001)):

g(t) = s(t)/

(
(1− τ) r(t)− π + δ − ∂g

∂t

1

g(t)
+
ξ(t)
∂u
∂C

)
(2.52)

where s(t) is the imputed rent (price of housing services). That is, market efficiency

requires that return on housing asset has to be equal to the after-tax return on alterna-

tive financial asset. The exposition above relied on the assumption of minimal market

frictions.

Life-cycle portfolio allocation problem is often related to the optimal mortgage choice

(see, e.g. Campbell and Cocco (2003)) which is, in turn, related to the dynamics of interest

rates and house prices. A recent study by de Jong, Driessen, and Van Hemert (2007)

include five possible sources of uncertainty, namely expected and unexpected inflation,

real interest rate, house prices and stock prices. Drift term in the equation for nominal

house price is represented as nominal interest rate less imputed rent (which is assumed to

be constant) adjusted for composite market price of risk for all factors. Shock is the sum of

shocks to stock prices, real interest rates and inflation (which are correlated) and idiosyn-

cratic component. This idiosyncratic component (orthogonal to the other sources of risk)

is not priced in the model. In the estimation part de Jong, Driessen, and Van Hemert

(2007) first obtain parameters for interest rate and inflation processes by quasi-ML, then

estimate market price of risk for interest rate and expected inflation by matching yields

on bonds with different maturities and finally calibrate the parameters of the remaining

state variable processes to the data (the data used for house price dynamics calibration are

annual returns calculated using OFHEO repeated-sales index for US cities from from 1980

to 2003 ). In particular, de Jong, Driessen, and Van Hemert (2007) report the magnitude of

the standard deviation for idiosyncratic risk, which individual homeowners are subject

to, to be in the range 6%-12% (cf our estimates of house price volatility in table 3.4). This
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paper is one of relatively few studies in which parameters of the stochastic housing pro-

cess were estimated. In many cases21 authors obtain the parameter estimates for house

price process (or commercial property price process for the former paper) by calibration.

Models set in a general equilibrium framework such as Ortalo-Magne and Rady (2006)

often relax single-generation assumption but do not allow for multiple assets. Lately some

researchers attempted to bring real estate to consumption-based asset-pricing models as

in Piazzesi, Schneider, and Tuzel (2007). Piazzesi et al modeled the share of housing con-

sumption in the aggregate consumption as highly persistent and heteroscedastic variable

and suggest that to a large extent volatility in consumption is due to a composition risk

(changes in asset prices relative to changes in expenditure shares). Composition risk is

higher in bad times; higher perceived risk induces more precautionary savings so that

discount factor decreases and bond prices fall by less for a unit change in expenditure

ratio than stock prices do. Thus changes in expenditure share on housing are viewed as an

additional factor in Capital Asset Pricing Model. However, housing process is not mod-

eled explicitly, rather the model is calibrated to data on aggregate housing expenditure in

National Income and Product Accounts (NIPA). Among the challenges that researchers

working in the general equilibrium framework face, is the need to reconcile high volatility

of residential investment, high volatility of house prices and regularities of the business

cycles. Data from a large sample of OECD countries (Goodhart and Hofmann 2007) sug-

gests that the change in real house prices is a good predictor for turning points in business

cycle. Although the owner-occupancy rate differs substantially across these countries, still

even for the country with lowest level of home ownership more than 40% of households

live in their own house. Therefore, it is highly likely that house prices have a direct effect

on economic activity. Due to sluggish supply response house prices tend to amplify the

effect of macroeconomic shocks. Apart from supply inelasticity the other reason for this

amplification is that so much housing wealth is used as a collateral. Consequently, the

21E.g. Titman and Torous (1989) or more recent empirical paper on valuation of MBS Downing,
Jaffee, and Wallace (2010).
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failure of borrowers to repay their debts during cyclical downturns leads to increased

pressure on financial intermediaries and further suppresses asset prices in general. Mod-

eling of house prices within the framework of dynamic general equilibrium models poses

significant challenge. It is not surprising, then, that most empirical house price studies are

cast in reduced-form setting. In reduced-form models housing price equation is derived

by equating pre-specified supply and demand equations. Alternatively, housing price

equation can by obtained by inversion of a demand function. An empirical tool of choice

for many researchers is vector autoregression (VAR)22. For example Meen (2001) presents

the following specification of error correction form for the house price model (2.52):

Δ log(g)t = γ1Δ log(g)t−1 + γ2Δ log(X)t + γ3 (log(g)− γ4 log(X))t−1 + u (2.53)

where X = [Yr p c, W, H, HH ]′, Yr p c is real per-capita income, W is real wealth, HH

is the number of households. Price of a unit of housing g(·) is a function of income,

wealth, housing stock, population, mortgage stock (M) and the expected nominal price

of housing (P ).

log(g) = α1 log(Yr p c) + α2 log(W ) + α3 log(HH) + α4 log(H) + α5 log(M) + α6 r +

α7
∂log(P )

∂t
+ ε(2.54)

One interpretation for a parameter γ1 in this specification is that of a ’bubble-builder’

and γ3 – a ’bubble-burster’. Iacovello (2000) estimates VECM with real GDP in place of

Y , real house price index, short-term nominal interest rate, real money aggregate and

consumer inflation. He finds empirical support for his hypothesis about the presence

of cointegration between GDP and real house prices in six European countries in the

varying sample periods (late seventies to late nineties). The null hypothesis of a unit root

in a house price series is rejected for 2 countries out of 6. Cross-country analysis sug-

gests that countries with low transaction costs, high rate of ownership (one can infer

22Or vector error correction model (VECM) if macroeconomic series used in the estimation of
the model are non-stationary and cointegrated, which is often the case.
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that these are the countries with more developed institutional structure of the housing

market) display greater sensitivity of house prices to monetary shocks. Another approach

in this line of research is to condition housing demand directly on consumers’ expen-

diture rather than the determinants of expenditure. Dynamic model of Pain and West-

away (1997) contains ratio of housing assets to consumer expenditure, real house prices

and rate of ownership in the housing market as well as time dummies to capture the

policy-change shocks. The results of the estimation on the UK data suggest that this par-

simonious model (employed at the time of publication by Bank of England) performs

as well as more elaborate error-correction models. However, the two distinctive features

of the housing market are localization and spatial dependencies, whereas standard error

correction model restricts parameters to be the same across the spatial dimension. This

may be overly restrictive, especially for the case when the data used in the estimation

is already aggregated at the regional level. The latent-class model of van Dijk, Frances,

Paap, and van Dijk (2007) allows for the different parameters across groups of regions

(latent classes). Not surprisingly, house prices within the compact country (the Nether-

lands) are found to be cointegrated across regions, so the author constrain time trends

to be not too divergent,at the same time allowing the speed of convergence towards the

equilibrium to be different for different regions. ML estimation via EM algorithm sug-

gests that limited number of latent classes (two), which differ with regard to the response

to macroeconomic shocks, is sufficient to capture the essential features of the dynamics of

regional prices. An alternative approach pursued by Holly, Pesaran, and Yamagata (2006)

is to allow model parameters to vary across regions without any clustering. They apply

panel error correction model to state-level (OFHEO) repeat-sale indices. In this model the

logarithm of real price of housing is the linear function of real disposable income and

real interest rate. The authors represent error term as a linear function of unobserved

common effects and idiosyncratic component for each state (these latter are allowed to be

spatially correlated). The evidence in Holly, Pesaran, and Yamagata (2006) with regard to
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the presence of unit root in the panel of statewide house price indices is mixed, whereas

the cointegration relationship between house price index in real terms and real incomes

is found to be significant after accounting for heterogeneity and spatial correlation. Holly,

Pesaran, and Yamagata (2006) who used series up to 2003 suggested that there was little

evidence of house price bubble in all but limited number of states (Pacific division and

some Northeastern states).

Although many empirical studies focused on the properties of the first moment of the

price process, the volatility of house prices received increasing attention lately. Capozza,

Hendershott, and Mack (2004) found that prices across MSA and across time periods

exhibit heterogeneity with regard to shocks in income, population and construction costs.

Miller and Peng (2006) were able to obtain the estimates of the house price volatility for

about 12% of 277 MSA, for which series of house price index were available and found

evidence favorable to the hypothesis of asymmetric response23 of volatility to shocks

to GMP and appreciation rate of housing. Dolde and Tirtiroglu (2002) find that real-

ized house price returns (as measured by Freddie Mac CMHPI for the four US Census

regions) respond to volatility shocks and this response takes the sign opposite to that of

the volatility shock. These authors also conclude that most of the volatility shifts in the

observed period (1975-1993) were on a regional rather than national scale24. Crawford

and Fratantoni (2003) compare forecasting performance of univariate time-series models

of house prices accounting for persistent volatility versus performance of models that do

not include this factor and found that former usually is better. These authors have found

strong evidence in favor of the presence of autoregressive conditional heteroscedasticity

in 60% of the cases (three out of five states).

In the present study we have adopted a modeling approach that takes into account

regional differences in house price appreciation rates. Our model of house prices is a

23Larger and more protracted effect of negative shocks as indicated by impulse response anal-
ysis of VAR model.

24See figure 3.16 for the graphical representation of the comovements in the regional house
prices.
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reduced-form continuous-time one depending on a regional-specific latent factor with

diffusion dynamics. Fluctuations of interest rates (bond prices) play the role of a common

factor. We have chosen the specification so that we are able to obtain closed-form solutions

for the house price volatility.

2.6 AN OVERVIEW OF LITERATURE RELATED TO INTENSITY MODELING

2.6.1 SEQUENTIAL MONTE CARLO APPROACH TO LIKELIHOOD APPROXIMATION

Extant research abounds with different sorts of implementations of Sequential Monte

Carlo (SMC) techniques (a.k.a. particle filtering). In what follows I will briefly review some

of the theoretical concepts related to Sequential Monte Carlo methods in general before

going into the details of the particular implementation.

In the generalized state-space framework an econometrician seeks to infer parameters

of the unobserved state x (with the parameter vector θ ). The model is described by:

yt = Ht(xt, vt) (2.55)

A (discrete) time counter t in the foregoing observation equation runs from 1 to T . {Yn}n�0

is Rny-valued stochastic process taking values in Y while unknown state {Xn}n�0 is Rnx-

valued stochastic process taking values in X. Hereafter, with some abuse of notation xt

will stand either for random variable or for its realization. The initial density of the pro-

cess is denoted byX0 ∼ ν. The evolution of the state vector x is described by the following

equation:

xt = Gt(xt−1, ut) (2.56)

where state disturbances ut are serially independent, ut and vt are mutually independent

and functions Gt and Ht governing the evolution of the state and observation processes

can be non-linear. In principle observations can depend on the history of state process

and observational history, but often they are assumed to be independent conditionally on

hidden states; also, often the state process is taken to be Markovian with the transition
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density Xn|Xn−1 = x ∼ fθ(·|x). Consequently, the models of this class are sometimes

alternatively termed hidden Markov models (HMM). The state value at a given point in

time in this case is independent of the previous history25 of the state process and past

observations

p(xt|x1:t−1, y1:t−1) = p(xt|xt−1) (2.57)

The quantities of primary interest (if the task is parameter estimation) are typically

confined to likelihood, predictive and filtering densities. For likelihood-based parametric

inference one needs to evaluate the likelihood:

p(y|θ) =
∫

p(x|θ)p(y|x, θ)dx (2.58)

To model the evolution of the dynamic system one is interested in learning the predictive

density:

p(xt|y1:t−1) =

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1 (2.59)

This distribution can be derived by marginalizing the joint posterior:

p(x0:t−1|y1:t−1) =
p(y1:t−1|x0:t−1)p(x0:t−1)∫

p(y1:t−1|x0:t−1)p(x0:t−1)dx0:t−1

(2.60)

This latter satisfies the recursion:

p(x0:t−1|y1:t−1) = p(x0:t−2|y1:t−2)
p(yt−1|xt−1)p(xt−1|xt−2)

p(yt−1|y1:t−2)
(2.61)

The filtering distribution obtains as:

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)∫
p(yt|xt)p(xt|y1:t−1)dxt

(2.62)

However, direct computation of many quantities of interest such as the normalizing

constant in the denominator of (2.61) , the filtering density p(xt|y1:t) or expectations with

respect to the posterior p(x0:t|y1:t) involves evaluation of integrals of high dimension and

is often infeasible. An exception is the Gaussian case with linear observation and transi-

tion equations (Kalman filter). In non-linear non-Gaussian setting SMC (particle filters)

25For the first-order Markov models the history beyond the preceding time period.
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often prove indispensable. Particle methods rely on discrete approximation of distribu-

tions of interest by a weighted empirical distribution of a large set of M independent and

identically distributed samples (particles). More formally, {x̂i
0:t, w

i
0:t}Mi=1 can be thought of

as a random measure that characterizes the posterior density p(x0:t|y1:t). Particle weights

wi are normalized so that at each t they sum up to 1. Therefore, the particle set provides a

discrete weighted approximation to the posterior filtering density:

p(x0:t|y1:t) ≈
M∑
i=1

wi
0:tδ (x̂

i
0:t − x0:t) (2.63)

where δ is the Dirac delta function. This discrete distribution is zero at any point x except

for the points under the support of the particles. Nevertheless, estimation of the expecta-

tions of the functions of a hidden state can be performed using this discrete approxima-

tion as: ∫
f(x0:t)p(x0:t|y1:t)dx0:t ≈

M∑
i=1

wi
0:tf(x

i
0:t) (2.64)

Initially SMC was developed as a sequential version of sampling importance resam-

pling (SIR) of Smith and Gelfand (1992). The problem with using (2.64) is in updating the

weights wi
t given the weights in the previous period wi

t−1. This goal can be achieved using

sequential importance sampling (SIS). Taking the state transition density as a proposal

density (denote this proposal density by q ) for the time periods 1, ...t and denoting by

ν(x0) proposal for the initial distribution of the hidden state we can construct proposal

recursively as:

qt(x0:t) = qt−1(x0:t−1)p(xt|xt−1) (2.65)

It can be observed that all the information about the ith path up to time t is contained in the

particle x̂it−1 so storing the preceding (x̂it−2, x̂
i
t−3 values of the particles for the purpose of

updating is not necessary. For the target density which we denote by π ( πt(·) = p(x0:t|y0:t),

analogous decomposition yields:

πt(x0:t) =
p(x0:t,y1:t)

p(y1:t)
=
p(y0:t−1)

p(y0:t)
πt−1(x0:t−1)p(xt|xt−1)p(yt|xt) (2.66)
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where we made use of (2.61). Ratio of the latter to the former provides the way to update

the (unnormalized) weights:

w̃i
t = w̃i

t(x̂
i
0:t) =

πt−1(x̂
i
0:t−1)

qt−1(x̂
i
0:t−1|y1:t−1)

p(x̂t
i,yt|x̂i

t−1)

qt(x̂
i
t|x̂i

t−1,y1:t)

= wi
t−1

p(yt|x̂t
i)p(x̂i

t|x̂i
t−1)

qt(x̂
i
t|x̂i

t−1,y1:t)
(2.67)

The problem with weights when SIS is applied to long enough paths is that of weight

degeneracy: no matter how large M is, eventually all the probability mass concentrates

in a few particles. This led to the introduction (Gordon, Salmond, and Smith (1993)) of a

resampling step into the algorithm, during which step the particles are redistributed so

as to provide even coverage of a posterior. The algorithm for a generic SIR particle filter

( with a multinomial resampling step as in Gordon, Salmond, and Smith (1993) ) can be

written as:

Algorithm 1 (SIR with multinomial resampling).

Step 1 Draw samples x̂1, ..., x̂M from proposal (instrumental) distribution q.

Step 2 Calculate unnormalized weights w̃i = π(x̂i)
q(x̂i)

.

Step 3 Calculate normalized weights wi = w̃i
∑M

i=1 w̃
i

Step 4 Draw N discrete r.v. (I1, ...IN ) with Pr(I1 = j) = wj conditionally independently,

given x̂1, ..., x̂M , j = 1, ...M .

Step 5 Set x̂i
� = x̂Ii .26 This yields an updated sample from the target π with weights equal

to 1
N

.

This algorithm propagates particles with high importance weights and eliminates

those with low weights by drawing N samples from the set of the old particles with

26Subscript � stands for update.
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probabilities proportional to the importance ratios. However, since multinomial resam-

pling in steps 4-5 above introduces non-negligible noise ( variance in the number of repli-

cates of the old particles), modifications of a generic particle filter include other sam-

pling schemes (residual resampling, systematic resampling) that alleviate the extra noise

problem. Resampling step, while mitigating the effect of weight degeneracy, at the same

time leads to the thinning of the initial sample. Since the initial values of the path are

simulated only once resampling reduces the number of unique particles at each succes-

sive iteration. This depletion develops sooner when the prior (transiton density in case of

basic SIR filter) is far from the likelihood. Unfortunately, with importance weights given

by recursive formulae such as (2.66) the variance of weights inevitably increases over

time. If one wants to preserve the initial sample, he should have increased the size of

the ’particle cloud’ exponentially over time. Various improvements have been devised to

mitigate this effect , for example Gilks and Berzuini (2001) suggest replenishing the set

of particles via occasional Markov Chain moves. In case of multiple models or unknown

hyperparameters it might be beneficial if particles can ’jump’ to a new point in the space

of parameters; this so-called evolution step is achieved by sampling from Markov transi-

tion kernel of invariant distribution p(x1:t|y1:t) using either Gibbs sampler or Metropolis-

Hastings method. Resample-MCMC move algorithm allows in addition to drawing state

samples xi
t at time t to modify the values of the paths up to L steps back thus ’rejuve-

nating’ particle swarm. An alternative to Resample-MCMC move known as block sam-

pling goes further and instead of drawing single state value attempts to sample L values

along the path simultaneously at time t. Doucet, Briers, and Senecal (2006) argue that

this strategy can significantly decrease the number of resampling steps and reduce the

variance of importance weights.

We have chosen the strategy developed by Pitt and Shephard (1999) who improved

on generic SIR filter by incorporating the information contained in the new state value in

the incremental importance weight in (2.67). M. Pitt and N. Shephard cast this method in
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the framework of auxiliary variables and hence the term Auxiliary Particle Filter (APF).

Later it was shown that APF can be viewed as a sequential Monte Carlo method with the

target distribution including information contained in the predictive likelihood p̃(yt+1|xt):

πt(x0:t) = p(x0:t,y1:t)p̃(yt+1|xt) (2.68)

and importance distribution of the form

qt(xt|x1:t−1) = q(xt|yt,xt−1) (2.69)

The following auxiliary particle filter (APF) algorithm was implemented for the estima-

tion of the unobserved states ( latent intensities):

Algorithm 2 (ASIR with smooth resampling).

At time n=1

• Draw samples from q(x̂i1|y1), i = 1, ...,M .

• Calculate unnormalized importance weights w̃1(x̂
i
1) =

ν(x̂i
1)g(y1|xi

1)

q(x̂i
1|y1)

(g(·) ∼ Poi - observational density).

• Calculate normalized importance weights W̃ i
1 ∼ w̃1(x̂

i
1).

At time n ≥ 2

• Calculate normalized first-stage weights Wn−1(x̂
i
n−1) ∝ W̃n−1(x̂

i
n−1)× p̃(yn|x̂in−1).

• Resample pairs {W i
n−1, x̂

i
n−1} to obtain { 1

M
, x̄in−1}.

• Draw samples from q(xin|yn, x̄in−1) and set x̂i1:n ← (x̄in−1, x̂
i
n).

• Calculate unnormalized second-stage weights as w̃n(x̂
i
n−1:n) =

g(yn|x̂i
n) f(x̂

i
n|x̂i

n−1)

p̃(yn|x̂i
n−1)q(x̂

i
n|x̂i

n−1)

(f(·) - transition density of the states).

• Calculate normalized second-stage weights W̃ i
n(x̂

i
n) ∝ w̃n(x̂

i
n−1:n).
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Early on it was suggested to use some likely value γ associated with the transition density

to approximate empirical filtering density as g(yt+1|γit+1) f(x̂t+1|x̂it), (Pitt and Shephard

2001, p. 278) . More recently it has been pointed out that this approximation may lead to

the estimates with large or even unbounded variance (Doucet and Johansen 2008, p. 25) .

We have opted to choose the following form for the predictive likelihood p̃:

p̃(yt+1|x̂t) ∝
∫
g̃(yt+1|x̂t+1) f(x̂t+1|x̂t) dx̂t+1 (2.70)

It is important to ensure that p̃(yt+1|x̂t) be more diffuse than p(yt+1|x̂t), therefore the

approximate likelihood density g̃(·) should have ’fatter’ tails than g(·).

It has been shown (Chopin 2004) that Central Limit Theorem holds for estimators

obtained by SMC methods. The asymptotic variance for the mean estimator of an arbi-

trary function h(·) in a state space of dimension s is of the order O(n
s
2 ) for the multinomial

sampling scheme27. For the properties of approximate MLE we refer to the exposition in

Cappé, Moulines, and Rydén (2005, p. 443-468), who are able to prove that under stan-

dard conditions MLE for generalized state-space models (HMM) possess usual properties

(consistency, efficiency and asymptotic normality).

Chapter 3 deals with parameter estimation of the components of the pricing model.

I begin with multiplicative intensity (hazard) parameter estimation and proceed in the

order of the Sections in the present Chapter.

27n here is the number of observations (length of the series).



CHAPTER 3

ESTIMATION OF THE PARAMETERS OF THE MODEL

3.1 ESTIMATED PARAMETERS OF THE MULTIPLICATIVE INTENSITY MODELS

3.1.1 MORTGAGE DATA

The empirical analysis is based on the data provided by Black Box Logic, LLC that main-

tains Bond and Loan Information System (BLIS) database. The data provider claims that

their complete data set contains information about 6000 pools of non-agency securitized

mortgages. We used part of the data set containing information about adjustable-rate

mortgages originated during the 1997-2009 period and observed from 2000 through the

first half of 2009. Since our main subject of interest are non-prime loans, but there is no

indication in the data whether the mortgage is subprime, Alt-A or prime non-conforming,

we have chosen to include in the analysis only mortgages with FICO score at origination

of 720 or less1. We include only 30-year loans that are secured by 1-4 family houses or

condos. Our analysis puts high emphasis on the measure of borrower’s equity, therefore

we consider only first liens for which combined loan-to-value ratio is 80% or greater and

is equal to LTV at origination (this reduces total number of observations by about 1/3

compared to the sample of loans with LTV upwards of 40%). As an additional guard

against the present of ’silent seconds’ we search for the second liens that were originated

1This may not coincide with labeling a contract as subprime or Alt-A by the secondary market
but there should be significant degree of overlap. For example Gerardi, Shapiro, and Willen (2008)
observe that only 10% of the subprime mortgages in their analysis had LTV higher than 720.
See also Mayer, Pence, and Sherlund (2010) who tabulate median FICO score at origination for
a variety of non-prime mortgage types and various vintages; their estimates for the Alt-A cate-
gory lie in the range 694-708.

41
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within 3 months from the date of origination of the first-lien loan which combined loan-

to-value ratio is equal to the sum of LTV at origination of the first-lien loan and LTV at

origination of the second lien loan. Although this procedure produced few matches, we

excluded the suspect first-lien loans from further analysis. We further restrict our anal-

ysis to the loans that were originated in the 20 largest MSAs that are represented in the

Case-Shiller house price appreciation (HPA) index. We removed all loans which original

balances were less than $20,000 in year 2000 $ (roughly 15% of the median house price)as

these properties are unlikely to be representative of the more ’conventional’ set of proper-

ties. We also winsorize (remove top 0.5% of) our data with respect to the loan size, which

results in the largest loan in our sample being about 1.8 million dollars.

The records for each contract contain, in particular, the following information: the year

and month of origination and termination (if the latter occurred within the observation

window), the indicator for the type of termination (prepayment or default), the contrac-

tual amount of loan at origination and outstanding loan balance at the observation date,

loan-to-value ratio at origination, initial contract interest rate, value of index rate at the

time of origination, date of the first adjustment of the interest rate, contractually specified

margin, lifetime cap on the contract rate, periodic cap on the contract rate, lifetime floor on

the contract rate, contract rate at the observation date, indicator of the type of documen-

tation furnished by the borrower (full documentation or less than full documentation),

purpose of the loan (purchase or refinancing), indicator of whether mortgaged property

is primary or non-primary residence, indicator of whether the mortgage contract includes

prepayment penalty, zip code of the area where the property is located. For the contracts

with initial teaser rate (i.e. rate lower than the sum of the index rate and margin) the

length of the period for which the teaser is effective is specified. Given the indicator of

the presence of the teaser and the calculated length of time until first rate adjustment,

the approximate breakdown of contracts by type looks as follows: about a quarter of the

loans can not be identified (most often due to the missing values of the variables con-
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taining date of first interest rate adjustment); out of remaining loans share of the so-called

’2/28’ ARMs is almost 60%. ’3/27’ ARMs constitute about 7%, ’regular’ ARMs with initial

fixed period extending for 3, 5, 7 or 10 years constitute the rest2. Summary statistics for

the main loan characteristics are reported in the table 3.4. The breakdown by the time of

origination and by the time of termination is shown in the tables 3.2 and 3.3. Most of the

contracts were originated at the peak of the subprime boom – in 2005-2006 (about 70%

of all contracts in the sample). Figure 3.2 presents the series of default and prepayment

in calendar time. One can observe that default incidence in our sample has been steadily

rising since early 2006 and reached its absolute peak in early 2008. Prepayment peaked at

about the same time and was rapidly declining since then. Unlike in prepayments, there

was second, smaller peak in defaults in early 2009 after a drop in late 2008, which can pos-

sibly be attributed to either lagged effect on the housing and labor markets of the acute

phase of crisis in Fall 2008 or, perhaps, to some end-of-the-fiscal year accounting con-

siderations. It doesn’t seem that we are observing effect of re-setting the rates on ’2/28’

mortgages to the non-teasered level since comparison of figure 3.2 and figure 3.1 does not

reveal any sharp decline in the mean contract rate in the sample prior to its local peak in

the summer of 2007, which coincided with liquidity crisis on the market for subprime-

backed securities. On the other hand, casual examination of figure 3.12 suggests that for

many markets cumulative amount of house price depreciation by the beginning of 2009

reached 25% -30% or more compared to peak home price levels. For a typical mortgage

from our sample (originated in 2005-2006) would result in negative equity in excess of

10%-15%. In such equity position temporary loss of labor income of one (or more than

one) of the members of the household may lead to the decision to abrogate the contract.

Figure 3.1 depicts dynamics of the initial contract rate during the observation window

and its relation to the key interest rates. Table 3.4 in some sense complements figure 3.1

providing information about such components of the contract rate as margin and teaser

2ARMs with fixed 5-year period seem to be the most popular, comprising about a half of all
the loans in the ’regular’ ARMs category.
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(on average across the time dimension). In turn, tables 3.5 and 3.6 expand the information

in table 3.4 allowing for comparison of the characteristics of the loans that prepaid versus

loans that were foreclosed. As expected, the latter have higher average contract rate (74

bp difference on average) and somewhat higher original LTV (85.94% vs 85.37%). The

credit scores of the two subsamples of borrowers differ substantially (614.6 vs 634.2). An

average borrower, who defaulted on his mortgage, was willing to accept higher margin

(5.59 percentage points vs 5.2 pp), higher lifetime cap (13.41% vs 12.51%) and noticeably

higher lifetime floor (7.58% vs 6.96%) on the contract rate. There was higher share of loans

secured by non-primary residence (8% vs 6%) among those in default. Perhaps due to the

fact that Alt-A loans are more likely to be less than fully documented, there were less

loans with incomplete documentation among foreclosed mortgages then among prepaid

mortgages (62% vs 74%). No pronounced difference with regard to the loan size between

the two groups can be detected. These observational differences may serve as indirect

evidence for the ability of lenders to (some degree) screen the borrowers with regard to

their potential riskiness.

3.1.2 SPECIFICATION OF THE MODEL

There is vast and growing empirical literature studying mortgage default and prepay-

ment. For all the variety of approaches there seems to exist general agreement as to the

factors proven to have strong influence on the probability of a premature termination of

a residential mortgage. One of the major causes of prepayment is refinancing: refinancing

incentives for borrowers emerge when rates on the feasible set of contracts drop below

their existing contractual rates. To capture this factor, some measure of the difference in

rates should be developed, and there is substantial latitude in existing approaches. One

natural specification is to simply use the difference between the original contract rate and

the current (benchmark) rate as in Schwartz and Torous (1989), or the difference as a per-

centage of the latter (e.g. Ambrose and Sanders (2003)) or of the former (Cunningham
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and Capone (1990), among others). Those arguing in favor of the ratio often claim that

the incentive to refinance is dependent on the level of rates as well as on the difference.

Some, for example, Pavlov (2001), Richard and Roll (1989) use ratio of initial and cur-

rent rates or variation thereof, as in Richard and Roll (1989), others add non-linear terms

in the primary variable, e.g. Huang and Ondrich (2002), Ciochetti, Deng, Gao, and Yao

(2002). It is not uncommon to include discounting, as in using market price of the loan

(present value of mortgage payments at prevailing current market rate), e.g. Clapp, Deng,

and An (2006) or some function thereof (value of prepayment option as in Deng, Quigley,

and Van Order (2000)). It should be noted that the majority of loans in our sample are

’2/28’ or ’3/27’ ARMs that were initially conceived as products for borrowers, whose

credit was impaired, and who presumably would qualify for a more conventional loans

after they would have been current on their obligations for the period of 2 to 3 years.

This motivated the specification where interest rate spread was defined as the differ-

ence between the current contract rate on the existing contract and the contract rate on

a hypothetical fixed-rate mortgage with balance equal to the outstanding balance on the

ARM: SprToFRM= (rARM, t − r ˆFRM, t)/r ˆFRM,t. The model for the projected FRM rate is

estimated using observed rates on the pooled subsample of fixed-rate mortgages origi-

nated during the same time period (1997-2008) within the same 20 MSAs (see table 3.7 for

the summary of these data). We model the potential interest rate on the FRM that former

ARM borrower might be offered as a linear function of the loan-to-value ratio at origina-

tion (OrigLTVRatio), FICO score of the borrower (FicoScoreOrig), loan size (LoanSizeOrig)3

and the term structure at the time of refinancing. Because the latter is so important, we

use three variables to capture the effect of term structure on the mortgage rate: Yield10Y

is the current yield on the 10-year Treasury note which is widely regarded as a bench-

mark rate for 30-year FRMs, Yield10YSq is the quadratic term intended to capture pos-

sible nonlinearities and SlopeTS is the slope of the term structure curve approximated as

3It should be stressed that loan size at the time of origination of FRM is equal to the outstanding
mortgage balance on ARM.
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the difference in 10-year and 1-year yields4. Other characteristics of the borrower/loan

which are included in the model are dichotomous variable for the type of documentation

(LoDocLoan), interaction of this variable with the loan size (SizeOrigLoDoc) and dichoto-

mous variable indicating whether collateral is not a primary residence for the borrower

(InvestLoan). The values of the LoDocLoan and InvestLoan are assumed to be the same at the

time of hypothetical refinancing as they were for the original ARM. We also include MSA

fixed effects in the model (estimates of the fixed effects, which are significant at 5% level

for all but 2 MSAs, are not reported in the table 3.8 where the results of the estimation are

tabulated). Given the concerns about possible presence of the unreported second loans

and ubiquity of piggyback lending in the observation period, we added a dichotomous

variable LTV80Orig, which takes value of 1 if LTV of original ARM loan was exactly 80%,

taking this as indication of the possible presence of a piggyback loan. Indeed, the estimate

of the coefficient of LTV80Orig is found to be positively related to the interest rate, above

and beyond the positive effect of OrigLTVRatio. We calculate SprToFRM using observed

values of interest-rate related variables at each observation date, outstanding mortgage

balance for each loan in the sample at each observation date, loan and borrower charac-

teristics such as InvestLoan, which are assumed to be static, and the estimated parameters

(reported in table 3.8). Higher value of SprToFRM is expected to increase the intensity of

prepayment.

It was observed in the literature that dollar-measured refinancing incentive is propor-

tional to the size of the loan (e.g. Bennett, Peach, and Peristiani (2001)). Also, transaction

costs of refinancing will be relatively lower for larger loans, and borrowers with higher

loan balances are, perhaps, more often approached by mortgage brokers. Whether sensi-

tivity of such borrowers to the incentive is the same as the one of borrowers with smaller

4See table 3.7 for the sample statistics of the variables used for the estimation of fixed-rate
model. Some of the definitions for the variables that are specific to this model are also provided in
the footnotes to that table, while the variables that are common to fixed-rate and intensity models
are defined in table 3.1.
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loans is less clear, however, an expected sign of the coefficient on the variable LoanSize-

Orig5 is positive in the prepayment model.

FICO score is universally used measure of borrower’s credit quality. Unfortunately,

this is a static metric in our data, so the quality of this measure may deteriorate over

time. I include FicoScoreOrig into the hazard model for prepayment expecting to find gen-

eral positive relationship between the credit rating of the borrower and probability of

prepayment. Since so many contracts in our data have initial low ’teaser’ rate and are

liable to possible steep increases in the contract rate after the expiration of the teaser, it is

likely that borrowers will consider prepaying the mortgage around the time of the expi-

ration of the teaser. First variable that is intended to capture the incentive due to teaser is

TeaserI, a dynamic covariate proportional to the extent of initial reduction of the contract

rate; its value decreases over the effective period of teaser and thus it can be expected

to negatively affect the hazard of prepayment. The static variable, TeaserM, equal to the

magnitude of the initial reduction of the contract rate, on the contrary, should be related

positively to the probability of prepayment, as it is likely to be highly correlated with the

magnitude of increase in mortgage payment after teaser expiration. Finally, the dichoto-

mous variable D24Mon (which takes value of 1 around the time of expiration of teaser for

the most populous category of ’2/28’ ARMs) is intended to capture jump-type increase in

prepayment above and beyond effects represented by TeaserI and TeaserM.

Other dynamic variables that are relevant for prepayment decision of the borrower

include the current contract rate (CurrContRt) which, ceteris paribus, should be positively

affecting the prepayment intensity, and the squared term in contract rate (CurrContRtSq)

that accounts for nonlinearities in borrower’s response to changing interest rate envi-

ronment. Seasonality is generally considered to be an important explanatory variable in

the models of mortgage prepayment, as relocation is generally tilted towards summer

months. To capture this tendency in a parsimonious way, I add a sinusoidal trend in cal-

5Table 3.1 provides definition of this and other variables in the intensity model.
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endar time with period equal to 1 year, maximum in June and minimum in December

(variable SineSeason). Option-theoretic mortgage models predict that prepayment (and

default) decisions are influenced by expectations of future paths of state variables. To

account for the variability of house prices we include the dynamic covariate reflecting

historical variability of the house prices in a given MSA (HPriceVol). According to option-

theoretic models, this covariate should be positively associated with the likelihood of

prepayment.

As additional static controls we use LTV80Orig, PrepPenaltyLoan – indicator of the

presence of prepayment penalty, InvestLoan – indicator of status of the collateral and

LoDocLoan – indicator of less-than-full documentation. The first two variables are

expected to have negative effect on prepayment (recall that LTV80Orig is a rough proxy

for possible presence of the second loan secured by the same property), whereas the effect

of the latter variables is not clear ex ante. It might be that borrowers who do not provide

proof of income and/or assets have more problems when they try to refinance; on the

other hand, if there is strong correlation between incomplete documentation and Alt-A

status, then these loans may be no harder to refinance than true subprime loans with full

documentation. Therefore, the effect of LoDocLoan is left for empirical investigation.

Finally, the ability of the borrower to refinance in inversely related to the value of

equity in the property. We construct the measure of loan-to-value ratio at the time of

observation (CurrentLtv) as fraction, which numerator contains outstanding balance on

the loan at the time of observation and denominator represents estimate of house value

obtained by applying MSA-level house price appreciation index to the initial value of

the collateral6 (original loan balance / original loan-to-value ratio). Borrowers with more

equity in the house (in other words, those with lower CurrentLtv) presumably may qualify

for a new loan easier, and thus the expected sign of the coefficient is negative. Addition-

6This is fairly common approaches in the literature: see, e.g. Firestone, Van Order, and Zorn
(2007) who used Freddie Mac MSA-level price index. Deng, Quigley, and Van Order (2000) used
estimated weighted repeat sales index (also on the MSA level) to adjust house values.
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ally, rising house prices increase an incentive to take the equity out of the property, which

is another reason to expect negative sign.

The same set of covariates is used in the multiplicative intensity model of default.

In the latter model the measure of borrower’s equity position, CurrentLtv, is of primary

importance7. Its direct effect is positive8. Credit scores at origination are assumed to be

inversely related to default probabilities. Dynamic covariates related to interest rate envi-

ronment, such as CurrContRt and SprToFRM are expected to have positive signs while

TeaserI should have negative impact. HPriceVol is expected to be positively related to the

probability of default by the same argument as in the case of prepayment. The estimates

of static covariates such as TeaserM and LoDocLoan are likely to be positive. If default costs

are heterogeneous, in all likelihood these are less for the owners of the property which is

not the primary residence, hence expected positive sign for InvestLoan. Priors for other

static covariates and for the SineSeason are less clear-cut, but one may expect that, for

example, for PrepPenaltyLoan second-order effect will call for a negative sign. However, if

prepayment penalty is more often accepted by generally higher risk borrowers, then this

covariate will have positive sign. I prefer not to take stand with respect to the effect of

these covariates.

As it happens, there might be other relevant factors which were not included in the

duration model; some of these may not be observable. One may conjecture that bor-

rowers’ heterogeneity with respect to their propensity to prepay is potentially a signifi-

cant factor. As a robustness check, I augmented the model specification by variables repre-

7See, e.g. Case and Shiller (1996) or Yang, Buist, and Megbolugbe (1998) for an empirical evi-
dence that measure of home equity is one of the most significant factors that affect the decision of
a homeowner to default.

8So far the dicussion was limited to direct, or first-order effects of the covariates. However,
since default and prepayment are acting as competing risks, there are also second-order effects.
For example if SineSeason increases probability of prepayment, its effect on probability of default
is negative, ceteris paribus. However, if default also exhibit certain seasonal pattern then one may
prefer to remain agnostic about the overall effect of SineSeason on default. In general, second-
order effect of a covariate may either reinforce its primary effect if this covariate affects the default
and prepayment oppositely (as in the case of CurrentLtv), or second-order extent may somewhat
mitigate the first-order effect if the effect of a covariate on default and prepayment is the same.
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senting various types of deterministic time trends in default and prepayment. These were

found to be either non-significant or marginally significant and not materially improving

AIC and BIC.

Importantly, model specification includes the stratification of the sample by the time

of origination. As opposed to typical reduced-form modeling of mortgage duration, in

the present framework the estimation of the effects of observable variables on the hazard

of default and prepayment is not the end in itself, but merely the first stage in the estima-

tion of the model, where terminations are assumed to follow doubly-stochastic Poisson

process. The estimates of the multiplicative intensity model parameters allow one to eval-

uate realizations of stochastic baseline hazard functions l�t (see (2.14)) of default and pre-

payment. These are realizations at event times (in the ’mortgage time’ domain, i.e. on

a discrete set taking values from 1 to 360). Having obtained the sample of the realiza-

tions, one can proceed to estimate the underlying continuous-time stochastic processes

(which is the topic of Chapter 6). In order to reconcile stochastic (more precisely, doubly-

stochastic) nature of termination with the above estimation strategy, Kau, Keenan, and

Smurov (2004) proposed to stratify the data according to the origination period. I follow

their approach and assume that contracts originated within the same calendar quarter

share the common baseline; thus I obtain 43 pairs9 of sample paths of default and prepay-

ment. These paths are of unequal length (first sample corresponds to loans originated in

Q1 1997 that were observed throughout 2001-2009, whereas last sample – loans originated

in Q1 2008 – was observed for little more than a year). While it is in principle possible to

stratify by months instead of by quarter, it has proven impractical10. It appears that given

9Reader is reminded that originations span 1997 - first quarter of 2008 and that second half of
2004 is excluded from the estimation.

10An argument in favor of finer stratification enters in conflict with data considerations: the
early strata are usually sparse and consequently the estimates obtained from the risk sets with
but a few observations are subject to huge variation. A. Smurov in his unpublished dissertation
(Smurov 2004) supports this point (cf footnote 15 on p. 28); he also cites the statistical evidence that
suggests superior fit of a model with quarterly stratification versus models stratified over longer
time periods.
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existing two-stage estimation scheme quarterly stratification provides reasonable com-

promise between precision of the estimates and data limitations. I apply statistical test

for stratification proposed by Ridder & Tunali (Ridder and Tunali 1999), where, the test

statistic

C = (β̂s − β̂u)
′[V (β̂s − β̂u)]

−1(β̂s − β̂u) (3.1)

is asymptotically χ2(p) distributed under the null hypothesis(p is the number of estimated

parameters, the s subscript denotes the stratified model, the u denotes the unstratified

one, V (·) is the covariance matrix). In all cases the null hypothesis that the true model is

the unstratified one is rejected at 1% significance level (see table 3.9).

3.1.3 TESTABLE HYPOTHESIS AND ESTIMATION RESULTS

My initial intent was to estimate the model using the complete data set. However, there

seems to exist a widely accepted point of view, according to which screening of the non-

prime borrowers by primary lenders had become more lax at some point during the last

decade and these lax standards were in place for some time, before they were tightened in

the wake of liquidity crunch of the second half of 200711. This change in the lending prac-

tices might have resulted in the observationally different groups of borrowers: one group,

who obtained their mortgages under what we hereafter call ’old’ regime might have, for

example, higher average FICO score than the group who were extended loans under the

’new’ regime. Since FICO score usually is found to be a significant factor in reduced-form

model of default, one may expect higher estimated default hazard for the latter group.

However, naive comparison of default hazards in the first 36 months in ’mortgage time’

of, for example, cohort originated in Q1 1997 and cohort originated in Q1 2005 (supposing

that the former has higher average FICO) wouldn’t allow one to distinguish the effect of

observable characteristics from the effect of unobservables. If one could somehow observe

11See, among others, Mayer, Pence, and Sherlund (2010), Dell’Ariccia, Igan, and Laeven (2008)
for analysis of dynamics of various aspects of the lending standards.
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the behavior of 1997 cohort in the first three years of the term of the mortgage, had this

cohort been placed in the economic environment of 2005-2007, then one might decide

whether the two cohorts were intrinsically different (that is different in their hidden prop-

erties), or they were just two random draws from the same population that happened to

have some variation in some observable features, such as credit score.

Thus our working hypothesis is that there was some unseen shift in the behavior (or,

equivalently, hidden characteristics12) of the subprime and Alt-A borrowers has occurred

at some point during our observation period. This shift might have been responsible (at

least, partly) for the huge surge in non-prime default during 2007-2009. I pursue two goals

in my empirical analysis:

• Detect whether there were two distinct regimes in 1997-2009 and whether the

regime change can be attributed to the change in the intrinsic nature of non-prime

borrowers.

• If the unseen nature of the borrowers had changed during the observation period,

how much of the increase in default could be associated with that change and how

much – with other factors (change in observable characteristics, worsening eco-

nomic environment).

Instead of estimating the default and prepayment models for the complete panel, I

divide the data into 2 subsamples: one that corresponds to the ’old’ regime and one that

corresponds to the ’new’ regime13. Initially I used mortgages originated in 1997-2003 for

the estimation of the intensity models of termination under the ’old’ regime and those

12This equivalence is based on assumption that borrowers’ behavior is the product of their
hidden characteristics and so is effectively set at the time of origination, though the consequences
of their inherent behaviors, as regards mortgage termination, may only be seen much later).

13Figure 3.6 illustrates the difference between the average default rates in the first 3 years of the
contract term for the 2 cohorts belonging to different regimes.
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originated in 2006-2008 – for the models of the ’new’ regime14 (the subsample of mort-

gages originated in 2004-2005 was excluded). To begin with, I estimated the (unstratified)

default model for these two subsamples and obtained the initial parameter vectors ˜̂
βd
old

and ˜̂
βd
new. I conducted Wald test for the equality of the old and new parameter estimates

and found that null hypothesis of equality was soundly rejected. Next, I estimated pro-

portional hazard model of default on the subsamples of mortgages originated during

calendar months of 2004-2005 period. For each calendar month I estimated two models:

one with parameters restricted to be equal to ˜̂
βd
old and one with parameters set at ˜̂βd

new. I

then compared goodness-of-fit of the two models15 and found that the first (’old’) model

steadily dominated the second one until August 2004. In September 2004 the ’new’ model

fit the data marginally better, while beginning from October 2004 the dominance of the

’new’ model became statistically significant at 5% level and remained so until December

2005. Having had established Fall 2004 to be the time of the potential regime change, I

then re-estimated the unstratified models of default using subsamples of mortgages orig-

inated during Q1 1997 - Q2 2004, and Q1 2005 - Q1 2008, for the ˜̂
βd
old and ˜̂

βd
new respectively.

I repeated the procedure described above for the monthly subsamples of mortgages orig-

inated in July 2004 - December 2004 and reached essentially the same conclusions (results

are reported in the table 3.10).

Estimated parameters of the default intensity models for the two regimes are reported

in the tables 3.11 and 3.13. Straightforward comparison of the parameter estimates sug-

14Extant literature provides some indirect evidence as to the timing of possible shift which
was brought about by rapidly deteriorating underwriting standards (see, e.g. Demyanyk and Van
Hemert (2009)). It seems to be a wide-held belief that by 2006 lending practices had substantially
deteriorated.

15The intuition behind this procedure is that any changes in unobserved characteristics will be

for the most part absorbed in the baseline. The estimates ˜̂
βdold correspond to the ’average’ baseline

hazard under the hypothetic ’old’ regime, while ˜̂
βdnew – to that under the ’new’ regime (as we have

more or less firm priors that characteristics of the ’new’ regime already established by 2006). Thus,
by comparing the fit of models where β̂d are set to either ’old’ or ’new’ estimates we are effectively
comparing whether the shape of the baseline for a given month corresponds more to the estimated
’old’ baseline hazard or to the estimated ’new’ baseline hazard.
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gests that the ’new’ regime is likely to be characterized by increased riskiness. For

example, parameter coefficients at CurrentLtv and Ltv80Orig are greater under the ’new’

regime, estimate of the effect of the house price volatility becomes significant. Sensi-

tivity to the current contract rate is also estimated to be greater, as are the coefficients

at LoDocLoan and InvestLoan. Graphical representation of the default hazards under the

’old’ regime and under the ’new’ regime presented by figure 3.3 confirms the above intu-

ition. Default hazard is estimated for a randomly picked contract using actual values of

dynamic covariates observed in 2004-2008 and Nelson-Aalen estimates of baseline haz-

ards from the unstratified default intensity models for the two regimes. One can observe

that the increase in the default hazard around duration=24 months is much more steep

under the ’new’ regime, which can be attributed to the increased proportion of ’2/28’

ARMs. Importantly, the behavior under the two regimes diverge at durations greater than

3 years. The hazard under the second regime does not exhibit signs of decline, unlike the

’old’ regime hazard. To quantify these intuition, I perform the following experiment: I

calculate the hazard of default for a randomly chosen contract separately for each regime,

using empirical estimates of the baseline hazards of default and prepayment obtained

from non-stratified model for the respective regime. The results of the estimation are

reported in Panel A of table 3.15. It appears that borrowers in the ’new’ regime are sub-

stantially more risky judging by the value of the cumulative hazard (increase to 24%

compared to 11% in the ’old’ regime). However, if the values of the house prices are

held constant, the increase in default hazard is much less pronounced (15% instead of

24% for the actual covariate values) as the results in Panel B of table 3.15 indicate. Thus,

increase in the default incidence due to unobservable shift in borrowers’ behavior (regime

change) seems to be of the secondary importance compared to the effect of the changes

in the economic environment (house prices).

Parameter estimates for prepayment models (tables 3.12 and 3.14) are largely as

expected. As with default models, one can observe increased sensitivity to contempora-
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neous LTV and current contract rate under the second regime. The estimate of the credit

score parameter has also become larger in magnitude. As far as teaser effects, the dynamic

covariate (TeaserI) estimate is smaller, but the effect of magnitude of teaser (TeaserM) in

prepayment is more pronounced under the second regime. The estimate of D24Mon is

also smaller under the second regime, which can be explained by inability of borrowers

to refinance loans with 2-year teaser period in the unfavorable house price environment

and increased incidence of default for these loans. The estimate of the LoDocLoan param-

eter has dropped from 1.35 to 0.37 (corresponding decrease in hazard ratio from 3.86 to

1.45) under the new regime, while the estimate of RefiLoan has increased from 0.10 to 0.25

(increase in hazard ratio by 17 percentage points); these effects may be due to seizing

up of the subprime market and to reversal of the trend in underwriting in the recent

years, which made refinancing into another subprime loan very problematic. Thus recent

refinancings are likely to be into conventional or FHA loans, either of which requires

borrower to provide documentation about his income and assets. One unexpected sign is

that of HPriceVol estimate under the ’new’ regime. This negative sign may either indicate

problems with volatility models specification or reflect expectations of the protracted

decline in house prices that hinder household mobility.

Visual examination of the cumulative baseline hazards of default and prepayment (fig-

ures 3.4 and 3.5) suggests that these are indeed sufficiently different – not only across the

two regimes but within the same regime as well. This graphical evidence seems to sup-

port, at least indirectly, treatment of the quarterly baselines as realizations of the stochastic

baseline default and prepayment processes, which will be the subject of the analysis in

one of the subsequent sections.

3.2 ESTIMATION OF AFFINE DIFFUSION-DRIVEN TERM STRUCTURE MODEL

Several approaches to the estimation of the term structure have been developed to date

and this is still an area of an ongoing research. In earlier studies the unobserved factor
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(factors) were often approximated by observable variables. This approach was pursued,

e.g., by Chan, Karolyi, Longstaff, and Sanders (1992) who used a yield on one-month

Treasury bill as a proxy for an unobserved spot rate and derived moment conditions

for a GMM estimation of diffusion parameters from the Euler discretization of the SDE

2.42. Titman and Torous (1989) were among the researchers, who employed a set of

cross-sectional restrictions implied by the term structure to estimate the parameters of

an underlying stochastic process. Their technique relied on minimization of the sum of

squared deviations between model and market prices for a set of Treasuries for each

date in the observation window for which the latter prices were quoted. Yet another

approach, represented for example by Gibbons and Ramaswamy (1993), also relies on

GMM for estimation. Conditional moment restrictions are based on a stationary density

of the state (they used returns on T-bills of different maturities, which were assumed

to be observed with errors). Researchers who preferred ML methods for estimation of

diffusion parameters typically had to deal with the situation in which the number of

observed maturities N exceeds the number of latent factors in the term structure. Dif-

ferent solutions have been proposed. Some, for example Chen and Scott (1992), posited

that J bonds are priced exactly, while remaining N − J are priced by the model up to

an additive error (which in the cited paper was assumed to follow first-order autoregres-

sive process). Typically errors are assumed to be independent of state process. Others,

like Pearson and Sun (1994), used only J yields, thus circumventing the problem. The

above estimation strategy, however, rests on the implicit assumption that state variable

remains affine under Q, which, in turn, imposes certain limitations on the functional form

for the market price of risk process. Simulated maximum likelihood, on the other hand

does not require such assumptions. However, this approach (for example, Brandt and

Santa-Clara (2002)) is computationally demanding even for today’s abundant computing

power. Simulated maximum likelihood as implemented in Brandt and Santa-Clara (2002)

is based on substituting Euler discretization transition density (essentially Gaussian) for
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the unknown (in general case) transition density of diffusion. It entails constructing large

number of sample paths of the discretized continuous-time process in order to achieve

sufficient degree of accuracy in the Monte Carlo approximation of the true transition

density. This approach is related to Bayesian methods (see Johannes and Polson (2005)

for a relatively recent review of this literature, which is growing rapidly as of time of

writing), as shown in Elerian, Chib, and Shephard (2001).

Bayesian methods (most prominently, MCMC) represent another way to deal with the

problem of parameter estimation for continuous-time models. Durham and Gallant (2002)

suggest a way to reduce the computational burden of simulated maximum likelihood

using importance sampling. Several other approaches include approximating transition

density by Hermite polynomials and subsequent ML estimation of the parameters (Aït-

Sahalia 2002) moment-based approach (efficient method of moments), which uses score

function from the auxiliary model obtained by Hermite polynomial approximation to

construct a GMM-type criterion function and martingale estimating functions (see, for

example, Kessler and Sørensen (1999)).

Even this short and incomplete overview of methods designed for the purpose of

continuous-time models parameter estimation gives some impression of the amount of

research effort that was devoted to solving this problem. For a good survey of literature

related to term structure estimation see, e.g., Dai and Singleton (2003). For the task at

hand I chose the approximate maximum likelihood based on state-space representation

and filtering of unobservable states as, for example, in Chen and Scott (2003) or Duan and

Simonato (1999). In this framework all N yields are assumed to be priced with error. The

observation equation is 2.47, in the vector form it can be re-written as:

Pt(Yt; Ψ, T ) = A0(Ψ, T ) exp
(
− B(Ψ, T ) Yt

)
(3.2)

where model parameters are packed in column vector Ψ and subscript now stands for the

time of the observation. Instantaneous time t rate rt is the limit of the negative log of a
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bond price as its maturity approaches 0:

rt(Yt; Ψ) = − lim
T→0

logPt(Yt; Ψ, T )

T
(3.3)

and continuously compounded yield-to-maturity of a zero-coupon bond is accordingly:

Rt(Yt; Ψ, T ) = −
logPt(Yt; Ψ, T )

T
(3.4)

Under the assumption of the presence of observational errors, the expression for the yield

takes the following form (cf Duan and Simonato (1999, (5,6))):

Rt(Yt; Ψ, T ) = −
logA(Ψ, T )

T
+

logB(Ψ, T )

T
Yt + εt (3.5)

where εt is i.i.d. N(0, σε). Yields of bonds of different maturities can be stacked:

⎡
⎢⎢⎢⎢⎣
Rt(Yt; Ψ, T1)

...

Rt(Yt; Ψ, TN)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
− logA(Ψ, T1)/T1

...

− logA(Ψ, TN)/TN

⎤
⎥⎥⎥⎥⎦Yt +

⎡
⎢⎢⎢⎢⎣
(B(Ψ, T1)/T1

...

B(Ψ, TN)/TN

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
εT, 1

...

εT,N

⎤
⎥⎥⎥⎥⎦ (3.6)

The transition equation for the state-space model is based on the discretization of the state

processes. Let h be the length of a discretization step and denote conditional mean of a

(vector) state process by m(Yt; Ψ, h) and conditional variance by Φ(Yt; Ψ, h). The transi-

tion equation for a discretized process is then given by:

Yt+1 = m(Yt; Ψ, h) + [Φ(Yt; Ψ, h)]
1
2 ηt+1 (3.7)

where ηt+1 is the vector of i.i.d N(0, 1) disturbances and Φ
1
2 stands for Cholesky decom-

position of conditional variance matrix Φ. In the Gaussian case first two moments char-

acterize the transition distribution completely, but for non-Gaussian Cox-Ingersoll-Ross

model the transition distribution is approximated therefore the Kalman filter is only

quasi-optimal. Hence the parameter estimation is based on quasi-maximum likelihood.

Parameter estimates are approximately asymptotically normal:

√
T (Ψ̂T −Ψ0) = N(0, F̂−1

T ĜT F̂
−1
T ) (3.8)
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where T is the number of periods (observations in the series), and matrices F̂T and ĜT

are given by the following expressions:

F̂T =
1

T

T∑
t=1

ft(Ψ̂T ;Rt) (3.9)

where Rt = [Rt(Yt; Ψ, T1), . . . , Rt(Yt; Ψ, TN)
′ and

ĜT =
1

T

T∑
t=1

∂ log lt(Ψ̂T ;Rt)
′

∂Ψ

∂ log lt(Ψ̂T ;Rt)

∂Ψ
(3.10)

l is approximated likelihood function and function f depends on conditional mean μt and

conditional variance Ωt, which are output of the Kalman filter:

ft(Ψ̂T ;Rt) =
∂μ′

t

∂Ψ
Ω−1

t

∂μt

∂Ψ
+

1

2

∂Ω′
t

∂Ψ

(
Ω−1

t ⊗ Ω−1
t

) ∂Ωt

∂Ψ
(3.11)

Estimation of the model was carried out with N (number of monthly time series of

zero-coupon yields) equal to five: yields on 3-month, 6-month, 12 month T-bills , 5-year

and 10-year T-bonds . Series data were obtained from CRSP (Fama-Bliss Discount Bond

files) and J. Huston McCulloch website at Ohio State 16. Estimation period was taken to

be January 1970 to December 2008 (468 observations). Figure 3.7 provides a graphical dis-

play of the series of yields, whereas descriptive statistics are presented in table 3.16. The

range of the interest rates in the analyzed period spanned the interval from 1.5% to more

than 16% with shorter yields being more volatile and their empirical distribution devi-

ating farther from normality. The results of the estimation are summarized in table 3.17.

Parameters of the first latent factor are estimated more precisely, than that of the second

factor, however, even the imprecise estimates of the latter indicate that stationarity might

be an issue for the second factor. Duan and Simonato (1999) and Chen and Scott (2003)

reported similar imprecise estimates for the mean-reverting and long-run mean param-

eters of the second latent factor. The long-run mean of the first factor (θ1) is estimated

16http://www.econ.ohio-state.edu/jhm/ts/ts.html.10-year yield series were
added to Fama-Bliss data since it is commonly believed that rates on long T-bonds and swaps
provide better benchmark for conventional mortgage rates than shorter instruments’ rates.
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to be slightly less than 3%, which is close to the values reported in the most empirical

studies investigating multi-factor time-homogeneous CIR model of the term structure.

Estimated standard deviations of pricing errors for all maturities are reasonably small.

Half-life (log 2/κ) of the shocks to the first factor is estimated to be about 10 months,

indicating strong degree of mean reversion17. Negative sign of the market price of risk α

implies positive risk premium. As with other parameters, the precision of the estimate of

the market price of risk for the second factor is lower than for the corresponding param-

eter of the first factor (this likewise applies to the combination κ + α, which estimate for

the second factor is negative). Relatively poor precision for the second factor estimates

is probably due to the limitations imposed by use of only first two conditional moments

in the filtering of the distribution which is likely asymmetric, as figure 3.10 may sug-

gest, and/or limitations of the chosen term structure that are discussed, for example, in

Rebonato (1996). Figure 3.10 presents graphs of smoothed Kalman filter estimates η̂t and ε̂t

of, respectively, state and response innovations. One can observe the histogram of former

is almost symmetric, albeit leptokurtic, while the latter are appreciably left skewed. Gaus-

sian response innovations don’t seem to be particularly well suited to fit the behavior of

rates in the periods of possible regime change (such as early 80s). Latent state variable

estimates are rendered in figure 3.9: as expected, the output from the Kalman smoother is

fairly close to the observed yield on the shortest maturity18.

In a way of additional diagnostics of the model, figure 3.11 displays the factor load-

ings which are calculated from 2.46. In the low-dimensional term structure models the

parameter coefficients on the state variables are conventionally interpreted as the ones

reflecting the first N principal components if interest rate (e.g. first component - the level

factor, second component - the slope factor and so on). One can observe fairly typical pat-

terns: almost flat for the level and convex to the origin - for the slope factor. Finally, figure

17Half-life can be interpreted as the half of the time which it takes for the process to return to its
long-run mean level after the shock.

18I didn’t use available yield on 1 month T-bills as this is widely considered to be more noisy
than 3-month yield.
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3.8 illustrates several paths of interest rates which were produced by simulation using

estimated parameters of the term structure.

In general, results of the estimation of the term structure appear to be consistent with

the findings of the extant research. Parameter values will be used further in the simula-

tions of the discount rate (spot rate) in (2.17), projected ARM rates and house values.

3.3 THE HOUSE PRICE PROCESS: THE MODEL AND THE ESTIMATION STRATEGY

3.3.1 THE MODEL OF THE HOUSE PRICE PROCESS

We build our model on the intuition presented in (2.52) accounting, however, for fric-

tions existing in the real world. Specifically, we assume that the ratio of the return on

housing asset to the return on alternative financial asset, instead of being time-invariant,

tends to some steady state level, but being continually disturbed by random shocks, it

evolves as a mean-reverting stochastic process. As far as the choice of financial asset is

concerned, our motivation included desire to maintain the inverse relationship between

the changes in interest rates and the changes in house prices. More formally, we again

consider the bond process p(·) of the previous Chapter (2.47). We further assume that

the discount bond with maturity T is continuously rolled over (at each moment a long

position in the ’old’ bond is being liquidated and a long position in the ’new’ bond with

the same maturity T is opened). Returns from such investment strategy are given by

p̃(·) exp(
∫ t

0
[R(u; ·) − ϕb(u)] du) where ϕb(u) is the price of risk associated with bond pro-

cess, R(·) is continuously compounded yield on the bond (p̃ is used instead of p to denote

the bond that is being continuously reinvested). Returns on investment in housing asset

are given by H(·) exp(
∫ t

0
[s−ϕH(·)]du), where ϕH is the price of risk associated with house

price process and s is the flow of services from the housing asset expressed as a per-

centage of its value. Next, we introduce the ’relative return’ process of the form (under
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the risk-neutral measure Q):

q(t) =
H(t) exp(

∫ t

0
[s− ϕH(u)]du)

p̃(t; ·) exp(
∫ t

0
[R(u; ·)− ϕb(u)] du)

(3.12)

We posit the mean reverting form for the ’relative return’ process under the physical

probability measure P:

dq(t)

q(t)
= κq(θq − q(t))dt + σq(·)dW P

q (t) (3.13)

where we assume that that the Brownian motion Wq is orthogonal to the Brownian

motions driving latent factors y1 , y2 of the term structure. Under the pricing measure Q,

the SDE for the q process incorporates the price of risk for the q process:

dq(t)

q(t)
= (κqθq − κqq(t)− ϕq(t))dt + σq(·)dWQ

q (t) (3.14)

Re-writing (3.12) as q(t) = H(t)
p̃(t;·) exp(

∫ t

0
[s − ϕH(·) − R(u; ·) + ϕb(u)]du), taking logs and

differentiating, we obtain:

dq(t)

q(t)
=

dH(t)

H(t)
− dp̃(t; ·)

p(t; ·) + s− ϕH(t)− R(t; ·) + ϕb(t) (3.15)

Given our definition of p̃(·) the bond process dp(t;y1(t),y2(t))
p(t;y1(t),y2(t))

can be expressed as dp(t;y1(t),y2(t))
p(t;y1(t),y2(t))

= dp̃(t;y1(t),y2(t))
p(t;y1(t),y2(t))

+ R(t). Hence, dH(t)
H(t)

under risk-neutral measure can be expressed via dq(t)
q(t)

as:
dH(t)

H(t)
=

dq(t)

q(t)
+

dp(t; ·)
p(t; ·) − (s− ϕH(t) + ϕb(t)) (3.16)

Equivalently SDE for house process can be written as:

dH(t)

H(t)
+ (s− ϕH(t)) = (μq(t)− ϕq(t))dt + σq(t)dW

Q
q (t) +

(μb(t; ·)− ϕb(t; ·))dt+ σb(t; ·)dWQ
b (t) (3.17)

where σb(t; ·) is diffusion function for the bond process19, μq(·) and μb(·) are drifts of the q

and bond processes, respectively, under the real-world measure P. From (3.17) we deduce

19Since we have 2-factor term structure with independent factors, drift and diffusion of the bond
process are functions of two term structure factors. See Appendix for the explicit expressions for
drift and diffusion in terms of latent factors of the term structure.



63

that ϕH(t) = ϕq(t) + ϕb(t; ·)). Operationally, we assume Cox, Ingersoll and Ross form for

the SDE (3.13) and the affine form for ϕq so that square-root diffusion form remains the

same under the risk-neutral measure. We calibrate ϕq = ϕ01 + ϕ11q to the data so as to

facilitate empirical estimation of the parameters governing the q process.

The risk adjustment for the bond process is determined by the form of the price of risk

processes for the latent factors of the term structure. Since the factors are independent,

the price of risk for the bond is the sum of the two terms for the latent factors:

ϕb = B1(t, T )α1y1(t) +B2(t, T )α2y2(t) (3.18)

where Bjs are given by (2.47). In the next section the data and the estimation process are

described in greater detail.

3.3.2 DATA AND RESULTS OF THE HOUSE PRICE PROCESS ESTIMATION

We use monthly Case-Shiller house price appreciation (HPA) series for the estimation of

house process. Figure 3.12 presents graphs of these series for selected regions. Certain

shortcomings (such as smoothing of actual price movements in the aggregated indices)

associated with estimation of the parameters of the house process from aggregated data

have been discussed in the literature (Downing, Stanton, and Wallace (2007)), however, it

should be noted that Case-Shiller index is likely to suffer from smoothing less than other

aggregated indices (such as ’classic’ OFHEO), since it doesn’t rely on appraised values.

Figure 3.16 and table 3.18 provide some information in regard to degree of spatial corre-

lation for selected series. Diffusion index is simply an indicator which takes the value of

1 if house prices in a given region and a given period increased and 0 if prices decreased.

Common seasonal component in house price variation notwithstanding, it is clearly seen

that price movements in largest MSAs used to have a lot in common in the observed

period, especially in the most recent years. Table 3.18 reports correlation coefficients for

HPA rate in 20 MSAs. The strength of correlation typically decreases with the distance
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between the MSAs (Detroit was chosen as an example of MSA that deviated from the

common trend due to regional specific factors being most pronounced).

For the estimates of house service flow we use median house price values from

American Community Survey. We divide ’owner’s equivalent rent of primary residence’

reported by Bureau of Labor Statistics for each of the 20 MSAs by the median house price

value for that region. We correct for the maintenance expenses incurred by an owner

using estimates of the share of these expenses reported by BLS. At the first stage of the

estimation we calibrate the values of ϕ01 and ϕ11 so that resulting empirical series of q

appear relatively flat. We use series of yields on zero-coupon bonds with 10-year maturity

estimated by J. Huston McCulloch20 to construct empirically observed q series. As a next

step, we attempt to estimate the parameters of the q process by maximum likelihood;

often the optimization procedure would not converge – in this case the parameters ϕ01

and ϕ11 are re-calibrated and procedure is repeated until convergence is achieved. Results

of the maximum-likelihood estimation of parameters κq , θq, σq are reported in tables 3.19

and 3.20. Estimates of the mean-reversion speed parameter κq vary in the range from

0.03 to 0.15 which implies the half-life of the process in the range from about 5 months

to 23 months. Volatility estimates vary from 0.05 to 0.24 with house prices in the "sandy

states" (CA, FL, AZ, NV) exhibiting more variability than house prices in the inland

states. Figure 3.14 presents graphs of the mean of a sample from simulated house process

for selected regions. Sample paths of the house process (under the risk-neutral measure)

are backed out given simulated paths of the q-process and simulated bond prices. Market

price of house risk, as it was indicated in the previous section, is derived from the prices

of risk for bond and relative return processes.

Importantly, the effect of house price appreciation (depreciation) in the model is trans-

mitted not only through changes in the level of house prices that translate into changes of

borrower’s equity but also through the variability of house price. This latter effect can be

20http://www.econ.ohio-state.edu/jhm/ts/ts.html
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though of as primarily influencing borrower’s expectation about future course of house

prices and hence the value of embedded options to default on the loan or to prepay. There

are examples in the extant literature (e.g. Miller and Peng (2006)) when volatility esti-

mates obtained from the GARCH model fit to HPA index were used in the VAR analysis

of volatility, home appreciation, personal income dynamics, population, unemployment

and gross regional product. Miller and Peng (2006) concluded that Granger causation

runs from home appreciation to volatility. In our model house volatility is dependent both

on interest rates volatility and idiosyncratic regional factor estimated from the historical

data. We include the covariate HPriceVol, which comes from univariate GARCH model21

as the proxy for historical volatility22 in our hazard-based analysis of conditional prob-

ability of mortgage termination. We extract the series of conditional standard deviation

for each of the 20 regions from the estimated GARCH model for the respective region23.

A variety of GARCH specifications have been explored: in particular, the hypothesis of

asymmetric effects of the volatility shocks on the house price appreciation as captured

by models with leverage effects (such as E-GARCH or T-GARCH) did not find strong

support in the sample. Two-component model for conditional volatility (conditional vari-

ance represented as a sum of a persistent and a short-run components) also was rejected

by the data. Final specifications are presented in tables 3.21 and 3.22. ARMA terms in

conditional mean were selected based on considerations of parsimony, given the values

of Akaike and Schwartz information criteria. In each of the 20 cases GARCH effects are

estimated to be highly statistically significant.

In the next section I address modeling of the latent processes that represent a stochastic

part of a probability of a mortgage termination24.

21Parameter estimates are reported in Tables 3.21 - 3.22.
22Nelson (1990) was the first to point out the link between certain diffusion processes and

ARCH/GARCH processes.
23Figure 3.15 provides an illustration of the estimated conditional standard deviation.
24Although direct interpretation of the latent factors is somewhat complicated, they may plau-

sibly be considered as reflecting changes in economic conditions in general and/or changes in the
social norms and attitudes (e.g. towards personal bankruptcy or breaching the contract) over time.



66

3.4 PRACTICAL IMPLEMENTATION OF SMC ML ESTIMATION

I assume the following two specifications for both latent intensity of default and latent

intensity of prepayment. The first specification is the square root (Cox-Ingersoll-Ross)

diffusion for the baseline process l, described by the following SDE under the physical

probability measure P:

dlt = a(1)(lt, t) dt+ b(1)(lt, t) dW
(1)
t (3.19)

where lt =
(
ldt , l

p
t

)′
,W

(1)
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t ,W
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t )′
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The second specification assumes that natural logarithm of the latent intensity follows

mean-reverting Ornstein-Uhlenbeck (OU) process under the objective probability mea-

sure. The SDE for the log-intensity xt = log(lt) has the following form:

dxt = a(2)(xt, t) dt+ b(2)(t) dW
(2)
t (3.20)

where xt =
(
xdt , x

p
t

)′
,W
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I proceed to estimate the parameters of these model under the assumption of zero cor-

relation between Brownian motions driving each of the processes. I employ the following

state-space representation:

p(y�j, tn |λ
�
j, tn) =

1

y�j, tn !
(λ�j, tn)

y�j,tn exp(−λ�j, tn). (3.21)

p(·) is the probability density for the nth element of the observational vector where � =

d, p. Here yt denotes the observed number of events (defaults or prepayments) in the jth
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stratum in the time period tn ( nth month since origination).

λ�j, tn =

K(n,j)∑
k=1

λ�k, tn = l�j, tn ·
K(n,j)∑
k=1

exp(zk(tn)β
�) (3.22)

is the cumulative value of intensity for the jth stratum at time tn. k is the index for indi-

vidual contract with a covariate vector z in a given stratum. p here and in what follows is

a generic symbol for a (conditional) probability distribution.

State vector is determined independently of the (3.21); for the former (CIR) specifica-

tion the transition density of the state is given by:

p(l�t |l�s) ∼ n.c.χ2(ν, η) (3.23)

where ν = 4κμ
σ2 , η = 4κ exp(−κ(t−s))

σ2(1−exp(−κ(t−s))
λ0(s), where s < t and superscripts denoting the

type of termination are omitted for notational convenience. For time-homogeneous CIR

process (μ(t) = μ) the condition 2κμ > σ2 is assumed to hold.25 The state equation for the

second (log-OU) specification takes the form:

p(l�t |l�s) ∼ LN(ν, η) (3.24)

where ν and η are, respectively, mean and variance of the log-normal distribution with

parameters of corresponding normal distribution given by ν∗ = λ0(s) exp(−κ(t − s)) +

μ(1− exp(−κ(t− s))), η∗ = σ2

2κ
(1− exp(−2κ(t− s))).

Sequential methods offer a possibility to filter out latent state and estimate the param-

eters in (3.23 or 3.24 ).

The choice of predictive likelihood relies on t distribution with low degrees of freedom

g̃(·) ∼ t5(α, β) as approximation of likelihood when the number of observed counts is sig-

nificant (greater than 7). Location parameter α and scale parameter β of this t-distribution

25For time-inhomogeneous CIR process if one is willing to accept a constant dimension condition,
i.e. assume that process obeys κμ(t)

σ2(t)
= constant, the transition density still remains tractable. This

latter model is treated for example in Musiela and Rutkowski (2005).
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are chosen to equal, respectively, mean and variance of the respective mixed Poisson dis-

tribution26. For example, for CIR specification (noncentral χ2 mixed Poisson) these quan-

tities are, respectively:

αi = x̂is exp(−κ(t− s)) + μ(1− exp(−κ(t− s))) (3.25)

βi = x̂is
σ2

κ
[exp(−κ(t− s))− exp(−2κ(t− s))] + μσ2

2κ
(1− exp(−κ(t− s)))2 + αi (3.26)

for any s < t.

For log-OU specification ( where state x is log-intensity) the location and scale are

given by

αi = x̂is exp(−κ(t− s)) + μ(1− exp(−κ(t− s))) (3.27)

βi =
σ2

2κ
(1− exp(−2κ(t− s))) + αi (3.28)

Our sample for the estimation consists of 1868 stratum*duration observations (1429

observations for the ’early’ model and 439 observations for the ’recent’ model). To min-

imize numerical difficulties arising due to the presence of extremely noisy observations

we used only stratum*durations for which number of contract at risk was no less than

30. The number of discrete support points was chosen to be 5,000. We apply off-line pro-

cedure for maximum likelihood estimation of parameters of latent intensities using the

output of the particle filter. Initial distribution for the particles was chosen to be uniform

centered around small positive value (no less than 3 orders of magnitude less than median

of empirical Nelson-Aalen estimates27). Since vector of observed counts is sorted in the

chronological order of strata, the filter has to be initialized at the beginning of each new

stratum. The value of likelihood is approximated as p̂θ(y1:T ) = p̂θ(y1)
∏T

n=2 p̂θ(yn|y1:n−1).

Smooth resampling routine suggested by Pitt (Pitt 2002) is used to alleviate problems

caused by discontinuities in empirical CDF. While filter likelihood p̂θ is unbiased, the

26Mixing distribution is either log-normal or noncentral chi-square one, which parameters are
determined by values of κ, μ and σ in (3.20) or (3.19).

27Experiments with different initial densities, including asymmetric ones, proved that results of
estimation are robust to the choice of initial distribution as long its upper decile lies below mean
and medial of the empirical distribution of Nelson-Aalen estimates.
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approximate log-likelihood is not, therefore we resort to standard bias correction to

log p̂θ(y1:T ) as in Pitt (2002). We approximate gradient of likelihood numerically by central

differences and use combination of Sequential Quadratic Programming and trust-region

algorithms (MATLAB Optimization Toolbox) for numerical optimization of parameters.

Unfortunately, the estimates of the parameters’ standard errors obtained from the numer-

ical approximation of Hessian are likely to be biased downwards28. Tables 3.23 and 3.24

present ML estimates of the parameters of default and prepayment processes under spec-

ifications 3.20 and 3.19, respectively. For the former specification one can observe that

volatility of the default process is greater under the first regime which is likely due to the

fact that there are much more sparse strata and consequently, 0 counts. Hence the increase

in the number of events by 5-10 for that period (given our pure diffusion specification,

i.e. process without jumps) can be explained only by high volatility. On the contrary, the

strata in the second period are all populous so that period-to-period variation of 20-30

defaults or more goes without much notice. The speed of mean reversion is substantially

lower in the recent period that indicates that rise in defaults continues longer than it used

to in a more quiet environment. The long-run mean and volatility of default process is

somewhat lower under the new regime in the BK specification which decrease is more

than compensated by elevated combined effect of observables. In the CIR case only the

volatility under the new regime is lower than under the old one.

Figures 3.17 and 3.18 suggest that the fit of the log-OU specification for the latent

intensities is better than that of the CIR specification. The latter tend to overpredict pre-

payment under both regimes and default under the new regime (as noted before, this is

probably the side effect of elevated volatility that arises as a result of an attempt to fit

the diffusion process to the fluctuations of high amplitude29). On the contrary, default

under the recent regime tends to be underpredicted. Pattern of the residuals for the log

28Theorem 12.5.7 in Cappé, Moulines, and Rydén (2005) states that observed information at the
MLE is a consistent estimator of Fisher information matrix.

29Figure 3.19 illustrates the behavior of mean of one-step ahead prediction density for the two
specifications. CIR paths seem to have more problems in capturing the sudden surges in default.
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Ornstein-Uhlenbeck specification of the prepayment intensity is closer to the normal:

still the highest peaks under both regimes are not captured well, as quantile-quantile

plots illustrate. Default process under the ’old’ regime appears to fit better (the esti-

mated parameters misfit only periods with highest default intensity ) while for the ’new’

regime the model tends to overpredict lowest counts (typically associated with the first 3-

4 months after origination) and underpredict very high intensities (above 300 defaults in

a given month). More formally, null hypothesis of normality of transformed (Anscombe)

residuals for both ’old’ and ’new’ models is rejected by Jarque-Bera test at 5% confidence

level. Null hypothesis about the absence of autocorrelation in the transformed residuals

for the first 6 lags is not rejected at 5% level for the default model under the ’old’ regime

by Ljung-Box test, but it is rejected for the prepayment models under both regimes and

for the default model under the ’new’ regime.

For the general goodness-of-fit test I have implemented the following procedure. I

simulated 5,000 series from the process (3.23) or (3.24) with parameters reported in the

table 3.24 and the table 3.23 for each stratum30. I further calculated arithmetic mean

of these series and weighted mean, with weights produced by the filtering procedure.

These means were multiplied by factor
∑K(n,j)

k=1 exp(z′β̂� from (3.22) for the respective

stratum(j)*duration(n) combination. In this way, for each stratum*duration cell I obtained

two values of expected counts ŷjn and ˆ̃yjn. I calculated ’grand’ χ2 Pearson statistic as

Gg =
∑
n

∑
j

Xjn, (3.29)

where Xjn =
(yjn−ŷjn)2

ŷjn
, and its counterpart with Xjn replaced by X̃jn =

(yjn−ˆ̃yjn)2

ˆ̃yjn
. The

procedure was repeated 100 times with different initializations of random number gener-

ator to guard against possible biases induced by the Monte Carlo procedure. The results

(mean values over 100 Monte Carlo replications) are reported in the table 3.25. They are

30For example, simulated intensity series for the first of 13 strata used in the estimation of the
model for the ’new’ regime are of length 54, series for the second stratum are of length 51 and so
on
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in line with the observations made based on informal graphical analysis of the residual

plots: the log-Gaussian diffusion specification for both default and prepayment process

performs better than the CIR specification. This specification cannot be rejected by the

data at conventional significance level in all 4 cases (default and prepayment under both

’old’ and ’new’ regimes). In the subsequent analysis (calibration of the model) I intend to

use only log-OU specification.
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Table 3.1
Multiplicative intensity models: variable definitions

Variable name Definition

CurrentLtv Estimate of LTV ratio at the time of observation, % (house
price at the time of observation is approximated
using MSA-level HPA index).

LTV80Orig 1 if LTV at origination is exactly 80%, 0 otherwise.
LoanSizeOrig Loan amount at origination, in constant (2000)

million dollars.
TeaserM Calculated difference between the regular contract rate and the

’teaser’ rate, percentage points.
TeaserI Interaction of the previous variable with a length of the

time remaining until expiration of the ’teaser’ rate.
FicoScoreOrig FICO score of the borrower at origination (divided by 100).
LoDocLoan Indicator variable that equals 1 for the loan with partial

or no verification of borrower’s income or assets.
PrepPenaltyLoan Indicator variable that equals 1 for the loan

encumbered by prepayment penalty.
InvestLoan Indicator variable that equals 1 for the loan secured by the

property other than primary residence.
RefiLoan Indicator variable that equals 1 for the loan taken out

for the purpose of refinancing.

CurrContRt Contract rate at the time of observation, percentage
points.

CurrContRtSq Square of the above.
SprToFRM Spread between the contract rate and the predicted FRM rate31

(ratio of the difference between the two / predicted FRM rate).
D24Mon Indicator variable that equals 1 at durations 24, 25, 26

months, 0 otherwise.
SineSeason Seasonal trend (a sinusoid with maximum in June and

minimum in December).
HPriceVol Estimate of the house price volatility, % (based on

the GARCH model for each region)
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Table 3.2
Number of originated and terminated loans by the quarter of origination (the ’old’

regime)

Year Quarter No. ori- No. prep. No. def. % prep. % def.
ginated

1997 Q1 20 6 6 0.30 0.30
Q2 37 14 11 0.38 0.30
Q3 50 15 24 0.30 0.48
Q4 65 28 22 0.43 0.34

1998 Q1 48 20 12 0.42 0.25
Q2 73 31 19 0.42 0.26
Q3 86 45 16 0.52 0.19
Q4 37 14 9 0.38 0.24

1999 Q1 41 16 13 0.39 0.32
Q2 53 17 15 0.32 0.28
Q3 86 40 25 0.47 0.29
Q4 98 45 29 0.46 0.30

2000 Q1 113 53 36 0.47 0.32
Q2 157 86 31 0.55 0.20
Q3 281 205 51 0.73 0.18
Q4 266 124 72 0.47 0.27

2001 Q1 188 67 65 0.36 0.35
Q2 326 113 119 0.35 0.37
Q3 849 379 327 0.45 0.39
Q4 813 398 266 0.49 0.33

2002 Q1 757 371 208 0.49 0.27
Q2 1422 814 344 0.57 0.24
Q3 3083 2146 556 0.70 0.18
Q4 2271 1557 356 0.69 0.16

2003 Q1 1795 1078 319 0.60 0.18
Q2 4697 3188 710 0.68 0.15
Q3 7383 4854 831 0.66 0.11
Q4 8694 6334 1212 0.73 0.14

2004 Q1 9679 6904 1297 0.71 0.13
Q2 19041 13034 2850 0.68 0.15

Total 62509 41996 9851 0.67 0.16
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Table 3.3
Number of originated and terminated loans by the quarter of origination (the ’new’

regime)

Year Quarter No. ori- No. prep. No. def. % prep. % def.
ginated

2005 Q1 26608 15564 6220 0.58 0.23
Q2 35753 18220 9797 0.51 0.27
Q3 30017 12491 9718 0.42 0.32
Q4 24995 8761 8603 0.35 0.34

2006 Q1 20305 5868 8082 0.29 0.40
Q2 23773 5163 9770 0.22 0.41
Q3 19280 3475 8031 0.18 0.42
Q4 18789 2446 7707 0.13 0.41

2007 Q1 13854 1496 5494 0.11 0.40
Q2 6674 618 2609 0.09 0.39
Q3 1248 132 357 0.11 0.29
Q4 161 11 21 0.07 0.13

2008 Q1 61 11 0.19

Total 221518 74245 76420 0.34 0.34
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Table 3.4
Summary statistics for model variables and major loan characteristics

Variable N Mean St. dev. Min Max

Panel A. Static variables.
OrigLTVRatioa 284027 85.67 6.60 80 108.89
LTV80Orig 284027 0.49 0.50 0 1
LoanSizeOrig 284027 0.22 0.13 0.02 1.80
TeaserM 284027 1.59 1.75 0 10.01
FicoScoreOrig 284027 630.6 56.55 374 720
OrigContRateb 284027 7.46 1.62 1.00 18.62
Marginc 230286 5.14 1.80 1.00 9.99
Ceilingd 234643 12.76 2.69 2.58 25.34
Floore 188682 7.18 1.92 2.51 18
LoDocLoan 284027 0.67 0.47 0 1
PrepPenaltyLoan 284027 0.51 0.50 0 1
InvestLoan 284027 0.07 0.25 0 1
RefiLoan 284027 0.42 0.49 0 1

Panel B. Dynamic variables.
CurrentLtv 6065604 0.91 0.19 0.01 1.54
CurrContRt 6185335 7.58 1.72 1.00 17.38
SprToFRM 6065604 -0.08 0.21 -0.97 1.35
TeaserI 6185335 12.11 27.59 0 443.4
SineSeason 6185335 0.01 0.71 -1 1
HPriceVol 6073575 0.07 0.03 0.01 0.23

a - LTV at origination, b - contract rate at origination, c - margin over the index rate, d - lifetime
cap on the contract rate, e - lifetime minimum for the contract rate.
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Table 3.5
Summary statistics for model variables and major loan characteristics for the subset

of defaulted loans

Variable N Mean St. dev. Min Max

Panel A. Static variables.
OrigLTVRatio 86271 85.94 6.71 80 108.89
LTV80Orig 86271 0.47 0.50 0 1
LoanSizeOrig 86271 0.21 0.12 0.02 1.64
TeaserM 86271 1.65 1.79 0 10.01
FicoScoreOrig 86271 614.6 60.62 374 720
OrigContRate 86271 7.92 1.53 1.00 18.62
Margin 73388 5.59 1.55 1.00 9.99
Ceiling 75537 13.41 2.54 2.58 25.34
Floor 66318 7.58 1.73 2.51 16.90
LoDocLoan 86271 0.62 0.48 0 1
PrepPenaltyLoan 86271 0.56 0.50 0 1
InvestLoan 86271 0.08 0.27 0 1
RefiLoan 86271 0.40 0.49 0 1

Panel B. Dynamic variables.
CurrentLtv 1811732 0.93 0.18 0.03 1.54
CurrContRt 1813812 8.10 1.62 1.00 17.38
SprToFRM 1811732 -0.06 0.21 -0.97 1.35
TeaserI 1813812 11.73 27.19 0 421.3
SineSeason 1813812 0.00 0.71 -1 1
HPriceVol 1813812 0.07 0.03 0.02 0.23
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Table 3.6
Summary statistics for model variables and major loan characteristics for the subset

of loans that were prepaid

Variable N Mean St. dev. Min Max

Panel A. Static variables.
OrigLTVRatio 116241 85.37 6.27 80 107.2
LTV80Orig 116241 0.48 0.50 0 1
LoanSizeOrig 116241 0.21 0.12 0.02 1.75
TeaserM 116241 1.53 1.74 0 9.70
FicoScoreOrig 116241 634.2 52.36 414 720
OrigContRate 116241 7.18 1.48 1 16.43
Margin 84139 5.20 1.78 1.00 9.99
Ceiling 86137 12.51 2.63 2.7 25
Floor 71684 6.96 1.84 2.51 17.83
LoDocLoan 116241 0.74 0.44 0 1
PrepPenaltyLoan 116241 0.51 0.50 0 1
InvestLoan 116241 0.06 0.23 0 1
RefiLoan 116241 0.45 0.50 0 1

Panel B. Dynamic variables.
CurrentLtv 1722826 0.79 0.12 0.00 1.54
CurrContRt 1722902 7.18 1.60 1.05 16.38
SprToFRM 1722826 -0.04 0.18 -0.55 1.15
TeaserI 1722902 12.16 25.59 0 354.5
SineSeason 1722902 0.00 0.71 -1 1
HPriceVol 1722902 0.06 0.02 0.02 0.23
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Figure 3.1
Mean contract rate, rate on conventional mortgages and T-bill rate during the

observation window
Source for conventional mortgage rate and 1-year T-bill yield:
http://research.stlouisfed.org/fred2/. Mean mortgage rate in the sample is
calculated by month of loan origination.
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Figure 3.2
Default and prepayment incidence during the observation window

Table 3.7
Summary statistics for the fixed-rate model variables

Variable N Mean St. dev. Min Max

OrigLTVRatio 82582 0.87 0.07 0.8 1.09
FicoScoreOrig 82582 6.33 0.56 3.45 7.20
LoanSizeOrig 82582 0.20 0.13 0.02 1.73
OrigContRate 82582 7.77 1.54 2.00 18.38
Yield10Ya 82582 4.46 0.41 3.33 6.89
SlopeTSb 82582 1.17 1.22 -0.41 3.14
LoDocLoan 82582 0.70 0.46 0 1
InvestLoan 82582 0.12 0.32 0 1
LTV80Orig 82582 0.37 0.48 0 1
SizeOrigLoDocc 82582 0.14 0.14 0 1.73

a - yield on the 10-year Treasury note, b - difference between the 10-year and 1-year Treasury
yields, c - interaction between LoanSizeOrig and LoDocLoan.
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Table 3.8
OLS estimates of the model for the FRM rate

Variable Estimate Std. error t-stat. p-value

Intercept 0.6031 0.3133 1.93 0.0542
OrigLTVRatio 11.642 0.1221 95.39 <.0001
LTV80Orig 0.5954 0.0146 40.89 <.0001
FicoScoreOrig -0.7293 0.0088 -83.05 <.0001
LoanSizeOrig -4.3616 0.0720 -60.62 <.0001
SizeOrigLoDoc 1.2135 0.0766 15.85 <.0001
Yield10Y 0.1085 0.1260 2.84 0.0045
Yield10YSqa 0.0368 0.0137 2.68 0.0074
SlopeTS -0.3024 0.0038 -79.43 <.0001
LoDocLoan -0.0080 0.0186 -0.43 0.6681
InvestLoan 0.2904 0.0126 23.08 <.0001

Number of obs. 82,582
Adjusted R2 0.5008

Dependent variable – OrigContRate. Heteroscedasticity consistent standard errors and t-statistics
are reported. Estimates of MSA fixed effects are not reported.
a– square of Yield10Y.

Table 3.9
Test statistics for the presence of the calendar-time stratum effects

Statistic Prep-t (’old’) Prep-t (’new’) Default (’old’) Default (’new’)

C-stat. 3,805.8 1,787.5 314.8 832.9
(<0.01) (<0.01) (<0.01) (<0.01)

Test statistics C = (β̂s − β̂u)
′[V (β̂s − β̂u)]

−1(β̂s − β̂u) is asymptotically distributed as χ2 (16) (see
Ridder and Tunali (1999). P-values are reported in parenthesis below the C-stat. value.
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Table 3.10
Comparison of out-of-sample fit for the ’old’ and the ’new’ models of default

Calendar month ’Old’ model ’New’ model Difference No. obs.
fit (−2 log L) fit (−2 log L)

Jul 2005 27,968 28,009 −41 244,169
Aug 2005 21,745 21,771 −26 188,589
Sep 2005 25,015 25,051 36a 195,398
Oct 2005 38786 38,612 174a 213,463
Nov 2005 28,201 28,127 74a 216,560
Dec 2005 41,264 41,188 76a 267,016

a likelihood ratio test in favor of superior fit of the estimated ’new’ model is significant at 5%

level. Estimated parameters ˜̂
βdold of the ’old’ model are obtained by fitting unstratified

proportional hazard model to the data on mortgages originated in Q1 1997 - Q2 2004, estimated

parameters ˜̂
βdnew of the ’new’ model – by fitting model to the data originated in Q1 2005 - Q1 2008.

Table 3.11
Estimates of the multiplicative intensity default model for the ’old’ regime

Variable Estimate Std. error p-value Hazard ratio

Ltv80Orig 0.084 0.029 0.003 1.087
LoanSizeOrig -0.701 0.140 <0.001 0.496
TeaserM 0.085 0.009 <0.001 1.088
FicoScoreOrig -0.690 0.025 <0.001 0.501
LoDocLoan 0.104 0.023 <0.001 1.110
PrepPenaltyLoan 0.030 0.022 0.169 1.030
InvestLoan 0.196 0.040 <0.001 1.217
RefiLoan -0.083 0.021 <0.001 0.920
D24Mon 0.167 0.097 0.087 1.181

CurrentLtv 3.375 0.137 <0.001 29.23
HPriceVol 0.485 0.440 0.271 1.623
SprToFRM 2.183 0.141 <0.001 8.873
CurrContRt 0.468 0.043 <0.001 1.597
CurrContRtSq -0.030 0.002 <0.001 0.971
TeaserI -0.008 0.002 <0.001 0.992
SineSeason -0.087 0.034 0.011 0.917

Log likelihood −72,706. Number of observations 1,413,052.
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Table 3.12
Estimates of the multiplicative intensity prepayment model for the ’old’ regime

Variable Estimate Std. error p-value Hazard ratio

Ltv80Orig -0.299 0.014 <.0001 0.741
LoanSizeOrig 0.145 0.056 0.010 1.156
TeaserM 0.040 0.005 <.0001 1.041
FicoScoreOrig 0.067 0.015 <.0001 1.070
LoDocLoan 1.350 0.017 <.0001 3.858
PrepPenaltyLoan -0.200 0.011 <.0001 0.819
InvestLoan -0.234 0.022 <.0001 0.792
RefiLoan 0.104 0.010 <.0001 1.110
D24Mon 0.663 0.032 <.0001 1.941

CurrentLtv -1.754 0.053 <.0001 0.173
HPriceVol 4.339 0.224 <.0001 76.67
SprToFRM 1.583 0.081 <.0001 4.870
CurrContRt 0.555 0.024 <.0001 1.741
CurrContRtSq -0.035 0.001 <.0001 0.966
TeaserI -0.026 0.001 <.0001 0.974
SineSeason 0.043 0.017 0.012 1.044

Log likelihood −327,166. Number of observations 1,413,052.
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Table 3.13
Estimates of the multiplicative intensity default model for the ’new’ regime

Variable Estimate Std. error p-value Hazard ratio

Ltv80Orig 0.413 0.010 <0.001 1.511
LoanSizeOrig 0.621 0.034 <0.001 1.860
TeaserM 0.023 0.002 <0.001 1.023
FicoScoreOrig -0.575 0.008 <0.001 0.563
LoDocLoan 0.286 0.008 <0.001 1.331
PrepPenaltyLoan 0.038 0.008 <0.001 1.039
InvestLoan 0.294 0.013 <0.001 1.342
RefiLoan -0.211 0.008 <0.001 0.810
D24Mon -0.089 0.029 0.002 0.915

CurrentLtv 4.247 0.088 <0.001 69.89
HPriceVol 0.852 0.108 <0.001 2.344
SprToFRM 2.071 0.075 <0.001 7.930
CurrContRt 0.775 0.023 <0.001 2.171
CurrContRtSq -0.043 0.001 <0.001 0.957
TeaserI -0.001 0.000 <0.001 0.999
SineSeason -0.011 0.012 0.354 0.989

Log likelihood −724,575. Number of observations 4,652,552.
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Table 3.14
Estimates of the multiplicative intensity prepayment model for the ’new’ regime

Variable Estimate Std. error p-value Hazard ratio

Ltv80Orig -0.483 0.011 <.0001 0.617
LoanSizeOrig 0.338 0.039 <.0001 1.402
TeaserM 0.089 0.002 <.0001 1.093
FicoScoreOrig 0.213 0.010 <.0001 1.237
LoDocLoan 0.371 0.009 <.0001 1.450
PrepPenaltyLoan -0.133 0.008 <.0001 0.875
InvestLoan -0.252 0.016 <.0001 0.777
RefiLoan 0.246 0.008 <.0001 1.279
D24Mon 0.370 0.028 <.0001 1.448

CurrentLtv -2.700 0.060 <.0001 0.067
HPriceVol -1.465 0.187 <.0001 0.231
SprToFRM 1.463 0.062 <.0001 4.321
CurrContRt 0.788 0.026 <.0001 2.200
CurrContRtSq -0.042 0.001 <.0001 0.959
TeaserI -0.005 0.000 <.0001 0.995
SineSeason 0.085 0.013 <.0001 1.089

Log likelihood −705,635. Number of observations 4,652,552.
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Figure 3.3
Estimates of the hazards of default for a representative contract under the ’old’

regime and under the ’new’ regime
Empirical estimates of the monthly hazard under the two regimes. The Nelson-Aalen of baseline
default hazard for the respective unstratified model were used in the calculations. Contract was
originated in Atlanta in January 2004: loan size $181,155, LTV 80%, FICO 673, margin 5.7 p.p.,
lifetime floor 6.25%, lifetime cap 12.25%, teaser 2.375 p.p. Contract was originated for the
purpose of refinancing, full documentation was provided, prepayment penalty existed.
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Figure 3.4
Cumulative baseline hazards of default (left) and prepayment (right) estimated

under the ’old’ regime
Nelson-Aalen estimates of cumulative baseline hazard (covariate values are set to 0) are depicted
for the following strata: first row – Q2 2000, second row – Q2 2002, third row – Q2 2004.
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Figure 3.5
Cumulative baseline hazards of default (left) and prepayment (right) estimated

under the ’new’ regime
Nelson-Aalen estimates of cumulative baseline hazard (covariate values are set to 0) are depicted
for the following strata: first row – Q2 2005, second row – Q2 2006, third row – Q2 2007.
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Figure 3.6
Ratio of the number of foreclosed mortgages to the total number of observed

mortgages for an ’old’ regime cohort versus a ’new’ regime cohort
Average monthly number of observed mortgages for Q2 2002 cohort in the analyzed period - 581,

for Q2 2006 cohort - 14,381.
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Table 3.15
Estimates of the (empirical) cumulative hazard of default

’New’ regime ’Old’ regime

Panel A. Trended values of dynamic LTV during
the period of the house price drop.

Contract A 9.38% 5.88%
2-year ahead
Contract A 15.47% 13.30%
4.7-year ahead

Panel B. Actual covariate values.

Contract A 10.32% 6.30%
2-year ahead
Contract A 23.50% 17.50%
4.7-year ahead

Values of the cumulative hazard of default are obtained using Nelson-Aalen estimates of the
baseline hazard for non-stratified models of default and prepayment for the respective regime.
Contract characteristics for contract ’A’: origination – San Diego, October 2005, loan amount – $
543,268 ( in constant year 2000 dollars), LTV at origination – 85%, contract rate at origination –
6.75 %, margin – 3.03%, lifetime cap – 13.75%, periodic cap – 1 perc. pt, lifetime floor - 6.75%;
purchase loan, FICO at origination – 657.
After 9 months the actual values of house prices have been replaced by the 12-month moving
average.

Table 3.16
Summary statistics for the yields

Maturity Minimum Median Maximum Mean St. dev. Kurtosis

3 M 0.0027 0.0595 0.1603 0.0294 0.8641 4.240
6 M 0.0031 0.0613 0.1652 0.0297 0.8092 4.035
12 M 0.0039 0.0633 0.1581 0.0292 0.6816 3.654
5 Y 0.0184 0.0702 0.1500 0.0260 0.6987 3.308
10 Y 0.0271 0.0742 0.1532 0.0254 0.8892 3.461

Number of observations - 468.
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Yields on zero-coupon bonds 1970-2008
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Figure 3.7
Monthly series of yields for 5 maturities: January 1970 - December 2008

Sources of data : CRSP, University of Chicago and J. Huston McCulloch’s website
http://www.econ.ohio-state.edu/jhm/ts/
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Figure 3.8
Simulated paths of yield on 10-year bond under estimated parameters of CIR interest

rate process
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Table 3.17
Estimates of the parameters of the affine term structure model

Parameter Estimate Std error t-statistic

κ1 0.8514 0.0234 6.0114
θ1 0.0275 5.27e-4 6.0733
σ1 0.1295 0.0001 28.1143
α1 -0.3004 0.0136 -2.1204

κ2 0.0144 0.0018 0.5610
θ2 0.0006 0.0013 0.0715
σ2 0.0539 7.40e-6 22.0558
α2 -0.0427 0.0003 -1.6573
σε3m 2.5e-3 6.0e-9 –
σε6m 1.0e-8 2.7e-8 –
σε12m 2.2e-3 5.3e-9 –
σε5y 2.1e-3 1.0e-8 –
σε10y 1.1e-3 1.2e-8 –

Log-likelihood -10,355
State-space routines from SsfPack 3.0 library by S.J. Koopman,
N. Shephard and J. Doornik were used in the estimation. t-stats
are based on the OPG standard errors. N obs. = 468.

Table 3.18
Pearson correlation coefficients between HPA indices

Region LA SDiego Tampa Detroit NYC Comp. 10

LA 1 0.9839 0.9892 0.7327 0.9729 0.9909
SDiego 1 0.9669 0.8156 0.9671 0.9884
Tampa 1 0.7442 0.9734 0.9874
Detroit 1 0.7485 0.7836
NYC 1 0.9917
Comp. 10 1

Pearson correlation coefficients between selected individual Case-Shiller HPA indices the
composite index for 10 largest MSAs. Sample size: 249 obs.
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Yields on 3M and 10Y zero-coupon bonds and Kalman filter estimate of the smoothed values of the state 
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Figure 3.9
Smoothed state estimates from Kalman filter, yield on 3-month zero-coupon bond

and yield on 10-year zero-coupon bond
Sum of the smoothed state estimates(ŷj,t, j = 1, 2) for the two factors of the term structure is
depicted by the solid black line.
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Smoothed
   KF state disturbances for the first factor of the term structure
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Figure 3.10
Series of smoothed state and response disturbances for the first factor of the CIR

term structure
Smoothed state disturbance estimates η̂t are in the left column; smoothed response disturbance
estimates ε̂t are in the right column.

-1
0

1
2

1 year 5 years 10 years

1 factor
2 factor

Figure 3.11
Factor loadings for the estimated parameters of two latent factors

Loadings on the first and the second factor are drawn as the functions of the bond’s maturity
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Figure 3.12
Case-Shiller HPA indices for selected MSAs

Nominal indices for 1989-2009, January 2000 value equal to 100
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Series of q−process for San Diego 
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Figure 3.13
Series of relative returns (q) for selected MSAs
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Figure 3.14
Simulated house price appreciation indices for selected MSAs

Means of 100 simulated house price paths are depicted. Level of house prices in January 2006 is
taken to be 1. Simulation is carried 360 months forward.
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Cond. stand deviation from GARCH model for San Diego
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Figure 3.15
Estimates of conditional standard deviation from the GARCH models for selected

MSAs
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Diffusion index
      and HPA rate for CS 20 index
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Figure 3.16
The diffusion index for annualized nominal returns across 20 MSAs and the

nationwide rate of nominal house price appreciation
Diffusion index (solid gray) is the average of indicators which take the value of 1 if prices in a
given region in a given period increased compared to their level in the previous month and 0 if
prices decreased. The nationwide nominal rate of house price appreciation for 1989-2009 is
depicted by the dotted red line.
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Table 3.19
Estimates of the relative housing returns (q) process

MSA κq estimate κqθq estimate σq estimate ϕ01 ϕ11

Phoenix 0.0787 0.6080 0.1381 -4.35E-06 2.07E-03
(0.005) (0.049) (0.38)

Los Angeles 0.0402 0.6477 0.1359 -0.0894 5.31E-03
(0.008) (2.29) (0.080)

San Diego 0.0303 2.0325 0.2387 -0.0541 8.11E-04
(0.004) (0.771) (0.007)

San Francisco 0.0453 0.4296 0.1559 -0.0089 1.27E-03
(0.004) (0.004) (0.007)

Denver 0.1229 0.5615 0.1560 -0.0073 2.42E-03
(0.004) (0.019) (0.005)

Washington 0.0312 0.3948 0.1804 -0.0062 7.93E-04
(0.004) (0.067) (0.008)

Miami 0.0559 0.4996 0.1711 -0.0029 8.64E-04
(0.004) (0.052) (0.007)

Tampa 0.0370 0.4216 0.1212 -0.0632 5.42E-03
(0.008) (0.034) (0.008)

Atlanta 0.0552 0.2513 0.1294 -0.0083 1.10E-03
(0.009) (0.054) (0.003)

Chicago 0.0545 0.4193 0.1141 -0.0013 1.21E-03
(0.004) (0.089) (0.008)

Boston 0.0880 0.1041 0.0778 -0.0009 6.37E-03
(0.005) (0.087) (0.003)

Detroit 0.0902 1.1777 0.1318 -0.0218 1.60E-03
(0.009) (0.145) (0.006)

Minneapolis 0.0703 0.1291 0.0921 -0.0177 4.89E-03
(0.005) (0.010) (0.002)

Charlotte 0.0667 0.1119 0.0654 -0.0085 7.92E-03
(0.005) (0.011) (0.003)

Las Vegas 0.0600 0.2151 0.0986 -0.0098 4.74E-03
(0.006) (0.018) (0.004)

Ratio of returns from holding housing to returns from investing in discount bond (continuously
’rolling over’ the latter) is assumed to obey the SDE:

dq(t) = q(t)
[
κq(θq − q(t))dt− σq

√
q(t) dWq(t)

]
. Parameters ϕ01 and ϕ11 are calibrated so that

empirical series of q appear relatively trendless. Standard errors of diffusion parameters or
combination thereof are reported in parenthesis below the estimates.
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Table 3.20
Estimates of the relative housing returns (q) process

MSA κq estimate κqθq estimate σq estimate ϕ01 ϕ11

New York 0.0681 0.1137 0.0809 -0.0054 6.2E-03
(0.005) (0.011) (0.004)

Cleveland 0.0338 0.0710 0.0562 -0.0010 6.95E-03
(0.008) (0.004) (0.006)

Portland 0.1056 0.0949 0.0614 -0.0052 1.28E-02
(0.008) (0.005) (0.005)

Dallas 0.1487 1.1422 0.0944 -0.0195 3.24E-03
(0.042) (0.147) (0.003)

Seattle 0.1302 0.2789 0.0778 -0.0119 7.31E-03
(0.007) (0.064) (0.004)

Ratio of returns from holding housing to returns from investing in discount bond (continuously
’rolling over’ the latter) is assumed to obey the SDE:

dq(t) = q(t)
[
κq(θq − q(t))dt− σq

√
q(t) dWq(t)

]
. Parameters ϕ01 and ϕ11 are calibrated so that

empirical series of q appear relatively trendless. Standard errors of diffusion parameters or
combination thereof are reported in parenthesis below the estimates.



100

Table 3.21
Estimated parameter values of the GARCH models of housing returns

Parameter Estimate Std err. Estimate Std err. Estimate Std err.

Panel A. Phoenix San Francisco Denver

Const. (cond. mean) 3.02E-04 1.85E-04 6.39E-05 3.36E-04 1.07E-03 2.87E-04
AR(1) (cond. mean) 9.19E-01 2.27E-02 8.89E-01 2.82E-02 7.65E-01 4.56E-02
Const. (cond. var.) 7.71E-07 5.42E-07 3.21E-06 2.34E-06 4.62E-07 5.86E-07
ARCH(1) 3.09E-01 1.36E-01 1.49E-01 7.8E-03 1.06E-01 5.33E-02
GARCH(1) 6.69E-01 1.21E-01 7.77E-01 1.1E-01 8.77E-01 7.35E-02
AIC –2126 –1858 –2040
N. obs. 248 248 248

Panel B. Washington Miami Tampa

Const. (cond. mean) -2.31E-06 2.38E-04 1.48E-04 2.51E-04 4.13E-04 4.58E-04
AR(1) (cond. mean) 8.82E-01 2.52E-02 9.47E-01 2.32E-02 8.45E-01 4.55E-02
Const. (cond. var.) 7.28E-06 2.99E-06 4.25E-06 2.22E-06 5.84E-06 7.58E-06
ARCH(1) 3.57E-01 1.50E-01 2.86E-01 1.34E-01 9.71E-02 9.03E-02
GARCH(1) 2.97E-01 1.77E-01 5.85E-01 1.32E-01 7.82E-01 2.33E-01
AIC –2018 –1965 –1850
N. obs. 248 248 248

Panel C. Atlanta Chicago Minneapolis

Const. (cond. mean) 6.90E-04 2.02E-04 1.16E-03 2.87E-04 1.09E-03 3.11E-04
AR(1) (cond. mean) 7.73E-01 3.91E-02 7.07E-01 4.25E-02 7.19E-01 4.03E-02
Const. (cond. var.) 5.02E-07 3.47E-07 1.26E-06 8.36E-07 3.23E-06 2.10E-06
ARCH(1) 1.56E-01 5.32E-02 1.51E-01 5.56E-02 2.27E-01 1.05E-01
GARCH(1) 7.78E-01 7.66E-02 7.96E-01 7.31E-02 6.80E-01 1.43E-01
AIC –1923 –1970 –1898
N. obs. 232 248 248

Panel D. Charlotte Las Vegas Cleveland

Const. (cond. mean) 1.22E-03 2.93E-04 4.01E-04 3.0E-04 1.27E-03 3.02E-04
AR(1) (cond. mean) 5.32E-01 6.44E-02 8.47E-01 3.6E-02 5.68E-01 6.29E-02
Const. (cond. var.) 2.17E-06 1.71E-06 2.34E-06 1.3E-06 8.51E-07 9.19E-07
ARCH(1) 1.90E-01 9.89E-02 2.02E-01 8.1E-02 1.46E-01 5.36E-02
GARCH(1) 7.06E-01 1.60E-01 7.47E-01 8.4E-02 8.37E-01 7.22E-02
AIC –2014 –1855 –1914
N. obs. 248 248 248
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Table 3.22
Estimated parameter values of the GARCH models of housing returns (continued)

Parameter Estimate Std err. Estimate Std err. Estimate Std err.

Panel A. Los Angeles San Diego Boston

Const. (cond. mean) 2.7E-03 7.97E-04 3.1E-03 8.50E-04 3.88E-03 7.09E-04
MA(1) (cond. mean) 0.5.9E-01 7.48E-02 5.4E-01 7.45E-02 5.66E-01 6.15E-02
Const. (cond. var.) 1.2E-05 7.27E-06 1.3E-05 7.90E-06 2.24E-06 2.56E-06
ARCH(1) 1.8E-01 7.71E-02 1.9E-01 8.64E-02 9.30E-02 5.53E-02
GARCH(1) 5.5E-01 2.09E-01 5.9E-01 1.98E-01 8.62E-01 9.27E-02
AIC –1719 –1692 –1765
N. obs. 248 248 248

Panel B. New York Portland Detroit

Const. (cond. mean) 2.92E-03 5.3E-04 5.06E-03 5.06E-03 9.11E-04 2.78E-04
MA(1) (cond. mean) 6.54E-01 6.3E-02 7.23E-01 7.23E-01 7.91E-01† 7.26E-02
MA(2) (cond. mean) 6.91E-01 6.91E-01 1.43E-01‡ 8.72E-02
Const. (cond. var.) 1.34E-06 1.1E-06 7.81E-07 7.81E-07 3.43E-06 1.99E-06
ARCH(1) 1.26E-01 5.9E-02 8.63E-02 8.63E-02 4.15E-01 2.00E-01
GARCH(1) 8.09E-01 9.0E-02 8.89E-01 8.89E-01 5.57E-01 1.34E-01
AR(3) (cond. mean) -4.14E-01 7.90E-02
AR(4) (cond. mean) 2.08E-01 6.18E-02
AIC –1931 –1948 –1781
N. obs. 248 248 224

Panel C. Dallas Seattle

Const. (cond. mean) 5.9E-04 4.03E-04 1.12E-03 3.35E-04
AR(1) (cond. mean) 6.9E-01 4.85E-02 7.83E-01 4.03E-02
Const. (cond. var.) 3.3E-06 3.40E-06 2.07E-06 1.62E-06
ARCH(1) 1.1E-01 9.40E-02 1.21E-01 6.38E-02
GARCH(1) 6.9E-01 2.76E-01 7.91E-01 1.11E-01
AIC –875 –1822
N. obs. 116 232
† – AR(1), ‡ – AR(2)
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Table 3.23
ML estimation of the latent termination processes.

Parameter Estim. Std err. Parameter Estim. Std err.

Panel A. Log-OU (Black-Karasinski) specification.
’Old’ regime (up to 2004)

κp 0.1047 0.012 κd 0.1746 0.008
μp -6.5887 0.322 μd -5.3822 0.349
σp 0.2620 0.010 σd 0.4067 0.008

Number of observations 1,429 1,429
Log-likelihood -15,142 -15,057

Panel B. Log-OU (Black-Karasinski) specification.
’New’ regime ( 2005 and later)

κp 0.1017 0.018 κd 0.0869 0.009
μp -7.0758 0.277 μd -8.2614 0.439
σp 0.2826 0.011 σd 0.3376 0.009

Number of observations 439 439
Log-likelihood -5,548 -5,247

Simulated ML estimation with likelihood approximated by APF with 5,000 support points
(particles).
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Table 3.24
ML estimation of the latent termination processes.

Parameter Estim. Std err. Parameter Estim. Std err.
Panel A. CIR specification. ’Old’ regime (up to 2004).

κp 0.2248 0.030 κd 0.6242 0.062
μp 1.6381 0.121 μd 2.3075 0.021
σp 0.8778 0.008 σd 1.5920 0.001

Number of observations 1,429 1,429
Log-likelihood -20,127 -26,329

Panel B. CIR specification.’New’ regime (2005 and later)

κp 0.4933 0.010 κd 1.2017 0.009
μp 2.3975 0.045 μd 4.1618 0.023
σp 1.0430 0.002 σd 0.9957 0.008

Number of observations 439 439
Log-likelihood -5,658 -5,425

Simulated ML estimation with likelihood approximated by APF with 5,000 support points
(particles). Parameters are scaled by the factor 1E-4 in the default estimation and by the factor
1E-3 in the prepayment estimation.



104

0 20 40 60 80 100 120 140 160 180
−5

0

5

10

15

Observed prepayment counts

A
ns

co
m

be
 r

es
id

ua
ls

Prepayment (’old’ regime, CIR specification)

−4 −3 −2 −1 0 1 2 3 4
−10

−5

0

5

10

15

Standard Normal Quantiles

Q
ua

nt
ile

s 
of

 A
ns

co
m

be
 r

es
id

.

QQ Plot of Ansc. resid. from prep. model (’old’ regime, CIR specif.)

0 5 10 15 20 25 30 35 40 45
−2

0

2

4

6

8

10

12

14

Observed default counts

A
ns

co
m

be
 r

es
du

al
s

Default model, (’old’ regime, CIR specification)

−4 −3 −2 −1 0 1 2 3 4
−10

−5

0

5

10

15

Standard Normal Quantiles

Q
ua

nt
ile

s 
of

 A
ns

co
m

be
 r

es
id

ua
ls

QQ Plot of Ansc. resid. default model (CIR)

0 100 200 300 400 500 600
−15

−10

−5

0

5

10

15

20

Observed prepayment counts

A
ns

co
m

be
 r

es
id

ua
l

Prepayment (’new’ regime, CIR specification)

−4 −3 −2 −1 0 1 2 3 4
−15

−10

−5

0

5

10

15

20

Standard Normal Quantiles

Q
ua

nt
ile

s 
of

 A
ns

co
m

be
 r

es
id

ua
ls

QQ Plot of Ansc. resid. prepayment (’new’ regime, CIR specification)

0 50 100 150 200 250 300 350
−14

−12

−10

−8

−6

−4

−2

0

2

4
Default (’new’ regime, CIR specification)

Observed default counts

A
ns

co
m

be
 r

es
id

ua
l

−4 −3 −2 −1 0 1 2 3 4
−15

−10

−5

0

5

Standard Normal Quantiles

Q
ua

nt
ile

s 
of

 A
ns

co
m

be
 r

es
id

ua
ls

QQ Plot of Ansc. resid. default model (’new’ regime, CIR specif.)

Figure 3.17
Anscombe residuals from default and prepayment models (CIR specification)

Anscombe transformation is defined as A(y) =
∫ y
−∞ V ar−

1
3 (t)dt. It is aimed at transforming data

to approximately normally distributed with standard deviation 1.
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Figure 3.18
Anscombe residuals from default and prepayment models (log-OU specification)

Anscombe transformation is defined as A(y) =
∫ y
−∞ V ar−

1
3 (t)dt. It is aimed at transforming data

to approximately normally distributed with standard deviation 1.
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Figure 3.19
One-step-ahead predictive density and actual counts of default and prepayment

Solid blue line depicts sample mean of predictive distribution (2.59), as approximated by 5,000
discrete support points, for a contracts from a given stratum (originated in Q1 2003). Dashed red

line is sample standard deviation. Actual number of counts is represented by black dots.
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Table 3.25
Pearson GOF statistic for different model specifications

Pearson statistic Default Default Prepaym. Prepaym.
model (ŷjn) model (ˆ̃yjn) model (ŷjn) model (ˆ̃yjn)

Panel A. Log-OU (Black-Karasinski) specification.
’Old’ regime (up to 2004)

Gg 2,192 773.6 2,741 746.7
(1.00) (<0.05) (1.00) (<0.05)

Panel B. Log-OU (Black-Karasinski) specification.
’New’ regime (2005 and later)

Gg 2,656 156.6 3,592 122.1
(1.00) (<0.05) (1.00) (<0.05)

Panel C. CIR specification. ’Old’ regime (up to 2004).

Gg 5,303 2,091 5,824 2,747
(1.00) (0.997) (1.00) (1.00)

Panel D. CIR specification. ’New’ regime (2005 and later).

Gg 3,945 878.0 3,185 107.6
(1.00) (1.00) (1.00) (<0.05)

P -values calculated under the assumption that test statistic is asymptotically χ2(jn− p)
distributed are reported in parenthesis. Number of degrees of freedom (with number of
estimated parameters p taken to be 19) for Panels A & C is 1,410, for Panels B & D – 420.
Statistic Gg in the columns 2 and 4 is calculated based on simple arithmetic mean, while
the one in the columns 3 and 5 is based on the filter output.



CHAPTER 4

CALIBRATION OF THE PRICING MODEL TO THE OBSERVED MARKET PRICES OF

RESIDENTIAL MORTGAGES

4.1 PRICE OF A MORTGAGE CONTRACT AS A CONDITIONAL EXPECTATION

Mortgages in our sample have been originated in different states with varying legal pro-

visions with regard to foreclosure and sale of property. There is also certain variation with

regard to mortgage insurance within our data set. Nevertheless, common feature of all the

contracts is that the amount of lender’s claim is known with certainty at any time during

the term of a contract. However, foreclosure process and subsequent sale imply signifi-

cant costs to the lender. Therefore, it is reasonable to assume that only a fraction of the

amount of the legal claim is recovered, which amounts to the assumption of recovery of

face value. In practice lender does not necessarily receive the payoff at the time of default

as it is implied by RFV, however, this simplification should not pose a major problem.

Valuation of the mortgage amounts to evaluation the conditional expectation under the

risk-neutral (spot martingale) measure that makes state processes martingales. Default

and prepayment in the model are driven by two processes based on independent1 Brow-

nian motions; in addition, there are two latent factors of the term structure of interest rates

and latent factor governing house price dynamics (house prices enter the model via con-

current loan-to-value ratio parameter). Monte Carlo valuation procedure is based on the

application of the basic no-arbitrage principle: the amount of funds loaned should equal

1An assumption of independence of the state processes under risk-neutral measure is not un
uncommon for the reduced-form models with multidimensional state space, e.g. Jarrow, Li, Liu,
and Wu (2006).
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the expected present value of the discounted cash flows over the ’life span’ of the mort-

gage contract (given by pricing equation (2.17)) where discount rate takes into account

likelihood of premature termination by default or prepayment. The formula that takes

into consideration amortizing nature of mortgage can be represented as:

V (0, T ) = E

(
N∑

n=1

Q(τ > tn−1) e
−
∫ tn
0 r̃sdsCF (tn)

)
(4.1)

Q(τ > tn−1) =
n−1∏
m=1

(
1−

∑
�

λ(�)m

)
, � = d, p

r̃s = (1− tax)rs + lq

CF (tn) = λ(d)n W (n) + λ(p)n A(n) + (1−
∑
�

λ(�)n )M

λ(�)n = l(�)n exp(z(tn)β̂
(�))

where the expectation is taken with respect to a martingale measure Q and N = 360 for a

standard 30-year mortgage. rs is an instantaneous spot rate, tax = taxF +taxST . M stands

for monthly mortgage payment adjusted for taxes:

M = (1− taxF ) (1− taxST ) (1 +mr)Prin(n− 1) + (L ·mc− (1 +mr)Prin(n− 1)) (4.2)

where taxF is federal income tax rate, taxST – state income tax rate2,mr is annual contract

rate, Prin(n) stands for unpaid principal after the nth payment. mc is mortgage constant

which is equivalent to:

mc =
mr
12

1−
(

1
1+mr

12

)360

In case of prepayment (which may occur at any point in time but is recorded at monthly

frequency) lender receives mortgage balance left unpaid after the nth payment and reg-

ular monthly payment: A(n) = Prin(n) + M . W (n) is the recovery value in case of

default. I assume time-independent loss rate and parameterize random recovery rate as

Δ = 1 − Z Prin(n)
H(0)

, where Z is a random variable distributed as Uniform (0,1), H(0) is the

2While in principle these parameters could also be calibrated to the market data, for consider-
ations of tractability they were chosen to be fixed at 28% (federal rate) and 4.32% (state rate).
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value of the collateral (house) at the inception of the contract. Therefore, loss is assumed to

be proportional to the ratio of unpaid balance to the initial value of the collateral. Schön-

bucher (2003) shows that the local expected value of recovery rate can be substituted for

the value of random variable as long as stochastic recovery rate process is independent of

other stochastic processes in the model and pertinent payoff is linearly related to recovery

rates (cf Proposition 6.6). The resulting formula for the recovery rate obtains as:

δe = 1− ζePrin(n)
H(0)

(4.3)

where ζe = EQ(Z). Let a be the percentage of the mortgage contract that is covered by

insurance provided by the government agencies or private insurers (in this case a =

1− LTV>0.8). In case of default lender receives W (n) = min{1, a+ δe}A(n). This formula-

tion for the recovery value implies that for the lender the cash flow in case of default on

100%-insured mortgage is the same as the cash flow in case of prepayment (ignoring any

possibility of differential tax treatments).

The mapping between martingale intensity processes3 l
(�)
P and l

(�)
Q is given by the ver-

sion of Cameron-Martin-Girsanov theorem (cf Duffie (2001), ch.11.I). If a nonexplosive

counting processNt on a filtered probability space (Ω, (Gt), P), where filtration G is driven

by d-dimensional Brownian motion W , admits martingale intensity process lP and ψ is a

strictly positive predictable process such that
∫ T

0
ψslP, sds < ∞ a.s., the local martingale ξ

is defined as:

ξt = exp

(∫ t

0

(1− ψs)lP, s ds

) ∏
{i:T (i)�t}

ψT (i), t � T (4.4)

where T (i) is the ith jump time of N . If ψ and lP are bounded then ξ is a martingale. An

equivalent probability measure Q is defined by dQ
dP

= ξT . Counting process N admits

intensity lQ = ψ lP on [0,T] and is doubly stochastic under risk-neutral measure Q

with respect to the filtration F = G ∨ σ({Ns : 0 � s � t}). Furthermore, Theorem 4.8

in (Schönbucher 2003) shows states that there exists a predictable process ϕ such that

3This is the term used, for example, by McNeil, Frey, and Embrechts (2005).
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∫ t

0
‖ϕ(s)‖ ds <∞ which satisfies:

dWP = dWQ − ϕ(t)dt (4.5)

One functional form choice for the martingale intensity process that satisfies the require-

ment of non-negativity is that of log-OU ( Black-Karasinski4) diffusion process:

dx
(�)
t = [a(�)(t)− b(�)(t)x(�)t ]dt+ σ(�)(t)dW

(�)
t (4.6)

λ
(�)
0 ,t = exp(x

(�)
t )

With the choice σ(t) = σ, b(t) = κ, and a(t) = κθ this becomes:

dx
(�)
Q,t = ψ(�)

(
κ
(�)
Q

[
θ
(�)
Q − xQ,t

]
dt + σ(�) dW

(�)
Q,t

)
(4.7)

With "essentially affine" price of risk ϕ(t) = ϕ11 + ϕ21xt; ϕ21 =
κQ−κP

σ
; ϕ11 =

κPθP−κQθQ
σ

the mean-reverting character of the process under the physical probability measure is

preserved under the risk-neutral measure5. I further assume simple specification for the

price of the jump risk process6 ψ(t): ψ = ψ11. Jarrow, Lando, and Yu (2005) argue in favor

of conditionally diversifiable risk premium for jump in value (ψ = 1), however, the empir-

ical evidence so far is at best mixed.

4.2 MONTE CARLO IMPLEMENTATION

Absence of arbitrage implies that expected value of payoff of the mortgage contract under

martingale measure Q at the time of origination equates market value of the mortgage.

Since data on contractual amounts of loans, contract rates and upfront fees is at our dis-

posal it is possible to evaluate conditional expectation in (4.2) using simulation methods.

4Berndt (2007) reports that in the empirical reduced-form study on large sample of corporate
bonds this specification for default intensity exhibited best fit.

5For the discussion of the behavior of the default intensity under different measures with the
specification for the price of risk process similar to the one used above see, e.g., Pan and Singleton
(2008).

6Similar assumption is made, e.g., in Driessen (2005).
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Simulation approach is appealing for several reasons, most importantly because of depen-

dency of the payoff on the path of interest rates, house prices and latent termination

factors and considerable number of state variables in the model. Conditional indepen-

dence of the termination processes across the borrowers given observable characteris-

tics which were used in the estimation of the empirical hazard models further facili-

tates Monte Carlo pricing procedure. This procedure is based on the simulation of risk-

neutral default and prepayment intensity processes as specified in (4.7), interest rates

(spot rate (2.42) and benchmark (index) rate)and future house prices (3.17). Large number

(N) of independent sample paths of the state processes are simulated using either one of

the appropriate discretization methods for SDE or, as in this case, using random vari-

ates from known transitional density. Using simulated values of state variables samples

v1 = V (ω1), ..., vN = V (ωN) of the model-predicted value of the ith mortgage contract

are evaluated according to (4.2). Unbiased estimator for the conditional expectation EQ of

a random variable V (i)(ω) obtains as 1
N

∑N
n=1 v

(i)
n . Monte Carlo error V − V̂ tends in the

limit as N → ∞ to mean zero normal random variable with standard deviation equal to

the standard deviation of V divided by
√
N according to the central limit theorem. CLT

applies since samples xn generated using pseudo-random number generator are indepen-

dent.

Calibration of the remaining model parameters Θ = (ψ(d), ψ(p), ϕ(d), ϕ(p), ζe, lq) to the

observed market prices of mortgages is achieved via stochastic multivariate optimization.

Key identity that should be satisfied in the no-arbitrage environment is represented by:

V (0, T ) = Loan · (1− pts) (4.8)

where Loan is the face value of the loan at origination, pts are upfront fees on the loan.

In our data the information on points is not available; we have opted to use zero value

for points, the resulting discrepancy being absorbed in the total pricing error. Hence, the
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optimization problem can be formulated as :

argmin
Θ

I∑
i=1

(
Vi(0, T )

Loani
− (1− ptsi)

)2

(4.9)

I have chosen random subsets of mortgages originated within the same calendar months.

Since the MSAs are represented in the sample unequally in different time periods and I

deemed it desirable that contracts from all MSAs be represented in the calibration sub-

sample at any time period, the size of subsample was chosen to be in the range of 250-

320. The calibration procedure is quite expensive computationally, therefore the upper

limit on the size of a subsample was set by available computational resources7. Since

the dimensionality of the problem is quite high, I have opted to choose an evolutionary

algorithm instead of more traditional methods based on stochastic gradient approxima-

tion. The particular method was differential evolution (DE) which involves fitness-based

selection from a population of S vectors each of which represents a trial solution to the

problem (Brabazon and O’Neill 2006), (Price, Storn, and Lampinen 2006). Fitness function

is given by sum of the Euclidian distances of the calibrated value ( mean over N Monte

Carlo samples; in my case N = 1000) to the actual value of the lean for the subsample of

K loans:

Fitness =
K∑
i=1

(
1

N

N∑
n=1

v(i)n − Loan(i)

)2

(4.10)

The algorithm proceeds as follows:

Algorithm 3 Differential evolution optimization.

Step 1 Choose S ’individuals’ (vectors Θ) at random from some distribution (I chose uni-

form) that covers the range of the possible solutions

Step 2 Evaluate fitness of each ’individual’

7Calibration was performed on Intel Xeon quad-core 3.16 GHz workstation with 16 Gb of
RAM.
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Step 3 Mutation: combine characteristics of randomly (or purposefully) selected ’individ-

uals’ (vectors) into a variant vector

Step 4 Crossover: combine the variant vector with each ’individual’ forming S trial vec-

tors

Step 5 Evaluate fitness of each trial ’individual’ and perform selection: keep old ’indi-

vidual’ if his fitness score is not surpassed by that of the new vector, otherwise,

keep the new vector

The Matlab implementation of the DE optimization procedure uses free software devel-

oped by R. Storn, K. Price and others which accompanies the book by Price, Storn, and

Lampinen (2006).

As a practical matter, I have restricted the range of the possible values of ψ(�) close to

unity8 in accordance with conditional diversification argument of Jarrow, Lando, and Yu

(2005). Values of the liquidity parameter are in the range (1E-6,1E-2), the upper bound

for the expected loss ζe is set at 0.75 – approaching this boundary is considered to be

the sign of the model’s inability to explain observed market prices without resorting to

implausibly high assumptions about losses incurred in the case of default.

4.3 APPLICATION OF THE MODEL TO NON-PRIME MORTGAGE MARKET

The valuation model described above is calibrated using subsamples of mortgages orig-

inated throughout 2002-2007. If there was indeed a shift in the unobserved characteris-

tics of non-prime borrowers which revealed itself in the altered default and prepayment

behavior, then there are at least three possible scenarios in regard to the market reaction.

Since all the mortgages in our sample come from the MBS pools the ’market’ is under-

stood in the sense of the secondary market. First, market might have been unaware of the

changes in the borrowers’ traits. If that was the case then testable implications will be as

8The range of possible values is limited to (0.99, 1.25).
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follows: the "old" pricing model is going to apply to the contracts originated under the

"new" regime. Alternatively, secondary market might have suspected that the regime had

changed, but there was considerable uncertainty as to what the true characteristics of that

"new" regime were. In this case one may expect that the performance of the model (in

terms of parameter ’sanity’ and/or accuracy of pricing) estimated under the "old" regime

on the subsamples originated under "new" regime would be worse, but the "new" model

may not be sufficiently adequate as well. Third possibility which I am considering is that

the secondary market might have learned of a regime shift and of the features of the "new"

regime – this hypothesis is consistent with inadequacy of the "old" pricing model for the

subsamples originated under "new" regime. On the contrary, the "new" model is expected

to perform adequately. Results presented in tables 4.1 and 4.2 are largely consistent with

the latter hypothesis. Observationally, there is variation in the additive risk adjustments

ϕ11, ϕ21, both in default and prepayment prices of risk. However, the cumulative value of

price of risk remains negative9 in all cases. Loss parameter ζe seems to be exhibiting the

greatest degree of variation: calibration early in the "old" regime yields values typically

in the range of (0.25, 0.5) , however, as we’re approaching the end of 2004, the expected

loss10 rises above 0.5 and exceeds 0.7 in early 2005 subsample.

For the "new" model, which we begin to calibrate on the subsample from December

2004, initially we observe high values of expected loss and liquidity parameters. However,

as we move on in calendar time these values settle in the range 0.3-0.5 for expected loss

and 40-60 basis points for liquidity premium. The calibrated loss value begin to increase in

2007 subsamples and is already very high for mortgages originated in Spring (at about the

same time problems of many subprime mortgage originators became public knowledge).

Indeed, market perception of riskiness of subprime mortgage pools and, consequently,

spreads of subprime-backed MBS was changing rapidly about that time (see figure 4.1).

9I report the value of total additive risk adjustment as ϕ(�)
11 + ϕ

(�)
21 θ̂

(�)
P .

10Recall that this is expected value of loss for the lender in case of default under the martingale
measure Q rather than under the real-world probability measure.
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For the subsamples of loans originated in June-July 2007 our calibration procedure does

not allow to obtain satisfactory estimates as even after dozens of iterations the pricing

error still remains much greater in magnitude than that reported for the earlier periods11.

It seems that secondary mortgage market processed information in an efficient manner

so that "new" model started to dominate the old one soon after the time period in which,

as the results of statistical tests suggest, the switch from the "old" regime to the "new" one

occurred.

4.3.1 PROBABILITIES OF DEFAULT: MONTE CARLO ESTIMATES

In Chapter 3 I calculated default hazards for a randomly chosen contract under the old

regime and under the new one using empirical estimates of the baseline hazards of the

two regimes and graphed these hazards on figure 3.3. This supposedly should have given

an idea of how the "new" hazard differs from the "old" one. Results presented in table 4.3

extend this experiment building upon the estimates obtained in Chapters 5 and 6. For ran-

domly chosen mortgages from two different regions I calculate the forecast default prob-

abilities (cumulative hazards of default) for different time horizons under the objective

probability measure P using estimates of the parameters of latent baseline processes (table

3.23), term structure of interest rates (table 3.17), and housing processes for these regions

(backed from the estimates of relative housing returns process reported in table 3.19) as

means of 2,000 Monte Carlo scenarios. Comparison of the cumulative hazards under the

two regime supports the results of the analysis in Chapter 3. Simulated hazard of default

is uniformly greater under the second regime (column 3 of table 4.3). Depending on the

region and the time horizon the ratio of the two varies in the range from 1.1 to 1.8. How-

ever, this increase, though noticeable, still is insufficient to fully account for the serious

increase in default rates of the latest vintages of ARMs (cf figure 3.6). However, when

house price process is perturbed by the 30% shock (which roughly corresponds to the

11One iteration of evolutionary algorithm with population of 50-60 ’individuals’ currently exe-
cutes about 70-80 minutes.
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magnitude of the decrease in the house prices in the MSAs under consideration) the

cumulative hazard of default increases 2-3 times compared to the base case ("old" regime

– column 2) and by 70%-100% compared to the "new" regime (column 3). Thus simula-

tions based on our estimated model parameters tend to confirm the point of view that

the surge in subprime mortgage default can be for the most part attributed to the precip-

itous fall in house prices (primarily in the regions that experienced highest house price

appreciation in the previous years). It should be noted, though, that probability of house

price swings of such magnitude is quite low in our model12, even though these swings

are actually part of the data used for the estimation of the house process parameters. It

is not improbable that models that were used by mortgage originators and other market

participants attached even smaller ex ante probabilities to such house price scenarios.

12For San Diego the probability of decline in prices similar to one that occurred in 2006-2009 is
below 8%.
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Table 4.1
Calibrated risk adjustments, liquidity and expected loss parameters for for the ’old’

regime model (estimated on Q1 1997- Q2 2004 data)

Param. June May March Sept. Oct. Dec. Feb.
2002 2003 2004 2004 2004 2004 2005

ψp 1.1348 1.1932 1.1901 1.0640 1.1551 1.1676 1.0073
ϕp
11 -11.240 -9.9847 -8.5336 -9.4549 -9.7261 -9.1911 -11.565

ϕp
21 -0.0524 0.1765 0.0888 0.1369 -0.0767 -0.0120 0.0746

ϕp
11+ -10.894 -11.148 -9.1187 -10.357 -9.2210 -9.1123 -12.057

ϕp
21θ

p

ψd 1.1860 1.0713 1.1213 1.0535 1.0415 1.1517 0.9909
ϕd
11 0.2315 -0.3496 0.2522 -0.2482 -0.1783 0.7704 0.4526

ϕd
11 0.1214 0.0012 0.0914 -0.0270 -0.0281 0.1566 0.0933

ϕd
11+ -0.4219 -0.3558 -0.2399 -0.1029 -0.0269 -0.0724 -0.0494

ϕd
21θ

d

Lq 0.0045 0.0066 0.0064 0.0059 0.0054 0.0056 0.0064
Loss 0.3144 0.2627 0.3381 0.4807 0.4992 0.5937 0.7114

RMSE, % 0.59 0.54 0.65 0.45 0.62 0.50 0.54

No. mtg 283 304 284 275 260 261 303
Normalized RMSE is calculated as RMSE

Loanmax−Loanmin
. ψ� denotes multiplicative price of risk

parameter, ϕ�
11 and ϕ�

21 – additive price of risk parameters, while ϕ�
11 + ϕ�

21θ
� represents

approximate cumulative value of additive drift adjustment. Lq stands for liquidity adjustment in
4.2; Loss – for the expected loss (ζ e in 4.3).
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Figure 4.1
Spreads between subprime credit default swaps index (ABX) and LIBOR, thousands

basis points
Reproduced from page 69 in Fender, Ingo and Martin Scheicher "The ABX: how do the
markets price subprime mortgage risk?" BIS Quarterly Review, September 2008, pp 67–81.
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Table 4.2
Calibrated risk adjustments, liquidity and expected loss parameters for the ’new’

regime model (estimated on post-2004 data)

Parameter Dec. 2004 Febr. 2005 May 2005 July 2005 Nov. 2005

Panel A. Subsamples of mortgages originated in Dec. 2004 - Nov. 2005

ψp 1.0000 1.0896 1.0742 1.1883 1.0648
ϕp
11 -5.9075 -7.5450 -7.7872 -3.3601 -15.174

ϕp
21 0.1974 -0.0798 -0.0796 0.1634 0.0231

ϕp
11+ -7.5259 -6.8904 -7.1348 -4.7001 -15.363

ϕp
21θ

p

ψd 0.9921 1.0498 1.1915 1.1762 1.1181
ϕd
11 0.4471 0.3751 0.0266 0.7776 0.4161

ϕd
21 0.0702 0.0490 0.0145 0.1185 0.0643

ϕd
11+ -0.1282 -0.0267 -0.0927 -0.1943 -0.1113

Lq 0.0072 0.0067 0.0052 0.0061 0.0047
Loss 0.6754 0.5881 0.3021 0.3156 0.3813

RMSE, % 0.49 0.54 0.72 0.53 0.84

No. mtg 261 303 293 299 301
Panel B. Subsamples of mortgages originated in Feb. 2006 - March 2007

Feb. 2006 June 2006 Oct. 2006 Jan. 2007 March 2007
ψp 1.0584 1.1988 1.1748 1.1905 1.1866
ϕp
11 -6.0607 -12.612 -10.890 -14.885 -11.415

ϕp
21 -0.0245 -0.0466 0.1495 0.1763 0.1978

ϕp
11+ -5.8877 -12.283 -11.946 -16.131 -12.813

ϕp
21θ

p

ψd 1.0844 0.9897 1.0253 1.0977 1.0761
ϕd
11 0.1259 0.4540 1.1793 0.1446 0.6608

ϕd
21 0.0201 0.0670 0.1573 0.0377 0.0822

ϕd
11+ -0.0391 -0.0950 -0.1107 -0.1646 -0.0132

ϕd
21θ

d

Lq 0.0041 0.0063 0.0063 0.0070 0.0062
Loss 0.4779 0.4226 0.4819 0.6953 0.7156

RMSE, % 0.71 0.70 1.12 0.83 1.14

No. mtg 301 301 291 299 311
Normalized RMSE is calculated as RMSE

Loanmax−Loanmin
. ψ� denotes multiplicative price of risk

parameter, ϕ�
11 and ϕ�

21 – additive price of risk parameters, while ϕ�
11 + ϕ�

21θ
� represents

approximate cumulative value of additive drift adjustment. Lq stands for liquidity adjustment in
4.2; Loss – for the expected loss (ζ e in 4.3).
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Table 4.3
Predicted hazard of default under the ’old’ and the ’new’ regime

’New’ regime ’Old’ regime

Panel A. In the absence of house price drop
Contract ’A’ 5.05% 4.86%
2-year horizon
Contract ’A’ 15.84% 9.91%
4.7-year horizon
Contract ’B’ 4.74% 4.28%
2-year horizon
Contract ’B’ 13.22% 9.50%
4.7-year horizon

Panel B. With 30% house price drop
Contract ’A’ 5.05% 4.86%
2-year horizon
Contract ’A’ 30.08% 17.33%
4.7-year horizon
Contract ’B’ 4.74% 4.28%
2-year horizon
Contract ’B’ 22.46% 16.28%
4.7-year horizon

Contract characteristics for contract ’A’: origination – San Diego, October 2005, loan amount – $
543,268 ( in constant year 2000 dollars), LTV at origination – 85%, contract rate at origination –
6.75 %, margin – 3.03%, lifetime cap – 13.75%, periodic cap – 1 perc. pt, lifetime floor - 6.75%;
purchase loan, FICO at origination – 657.
Contract characteristics for contract ’B’: Tampa, November 2005, loan amount – $ 92,742.86, LTV
at origination – 90%, contract rate at origination – 6.625 %, margin – 4%, lifetime cap – 12.625%,
periodic cap – 1 perc. pt, lifetime floor - 4 %; loan is taken out for refinancing, subject to
prepayment penalty, FICO at origination – 629.
Reported cumulative hazards of default are means of the 2,000 simulations (under the real-world
probability measure). House price drop is assumed to occur 35 months past the origination of the
contract.



CHAPTER 5

CONCLUSION

Reduced-form approach to the valuation of contingent claims subject to credit risk is con-

sidered a flexible alternative to the traditional structural models. In the mortgage pricing

context, it unites duration analysis (competing risk variant thereof) with unobserved com-

ponents models. In the present study, I have applied a reduced-form model in the spirit

of Duffie and Singleton (1999) to the loan-level data set which contains payment histo-

ries of non-prime adjustable rate residential mortgages. Conditional on observed loan

and borrower’s characteristics and changing interest rate and house prices, probability of

borrower’s default (prepayment) is dependent on the unobserved factors evolving over

time. These latent factors can be interpreted quite broadly: first, they can reflect changing

economic conditions to the extent these are not captured by dynamic covariates in the

duration model, second, they may incorporate dynamic observed and intangible costs of

refinancing and default. The latter dynamics may be due to technological innovation or

to changing attitudes and mores. The model can also be interpreted as a dynamic frailty

one (see, e.g. Aalen, Borgan, and Gjessing (2008, ch. 11) for an extended discussion). The

probability of mortgage termination is considered to be a composition of a deterministic

part (estimated covariates’ effects) and a stochastic part (baseline default (prepayment)).

An assumption that the actual occurrence of default (prepayment) given the probability

of this event is uncertain adds an additional ’layer’ of stochasticity to the model1.

Present work, while building on model presented in Kau, Keenan, and Smurov (2004),

adds an important component to default and prepayment models – namely, house prices.

1This latter ’layer’ reflects idiosyncratic risk of prepayment (default).
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Numerous empirical studies2 have corroborated the prediction of structural models that

at a certain point decline in the value of home equity is the dominant determinant of the

decision to default on a home loan. The stochastic house price process (which is linked to

the term structure of interest rates by design) enters into the model in a straightforward

way - via the estimate of borrower’s equity, that is represented by a covariate (covariates).

A number of studies documented mean reversion in the time series of house prices

(see, e.g., Glaeser, Gyourko, and Saiz (2008)), therefore, the mean-reverting character-

ization of the house price process seems a natural choice. Interest rates follow mean-

reverting process as well; to preserve the link between house prices and interest rates

and to ensure that the changes in interest rates induce opposite changes in house prices,

the mean-reverting form is posited for the ratio of returns to holding house to returns

from investment in long-term bonds3. This parsimonious specification at the same time

allows for the estimation of a separate set of parameters for each MSA.

The pricing model developed in this study was applied to the subsamples of mort-

gages originated earlier in the decade and later on (in the last 2-3 years of subprime

boom). Our analysis suggests that there is limited evidence in favor of the shift in the

hidden characteristics (behavior) of the subprime borrowers towards higher propensity

to default. Results of experiment presented in table 3.15 suggest that although the cumu-

lative hazard of default for a representative contract increased under the second regime

to 24% from 11% under the first regime the increase was largely due to the worsening of

the environment. The hazard would have increased only to 15%, had house prices been

constant. This experiment was based on the empirical (Nelson-Aalen) estimates of the

baseline hazards for both regimes. The estimation of the complete set of the model param-

eters allowed me to repeat this experiment, this time using the house process model. The

2Deng, Quigley, and Van Order (2000), Guiso, Sapienza, and Zingales (2009), among others.
3Several contributions to the ’structural’ credit risk literature used continuous-time mean-

reverting specifications for the ratios, for instance, Collin-Dufresne and Goldstein (2001). In the
asset-pricing literature, Piazzesi, Schneider, and Tuzel (2007) is an example of a model which
parameters authors estimate using long-run price-dividend ratios.
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findings reported in table 4.3 are largely consistent with the aforementioned results. Sim-

ulated hazard of default under the ’new’ regime holding other factors constant increased

by 13%-59% relative to the ’old’ regime. This is to be compared with 75%-100% increase

in the hazard of default under the new regime as a result of the 30% shock to simulated

house prices. Thus, the application of our model to the non-prime adjustable rate mort-

gage data indicates that the greater share of the surge in defaults in the recent years can

be explained by the effect of observable variables, first and foremost by the steep drop in

house prices.

Speaking of the potential avenues of the future research, it might be attractive to aug-

ment the set of the state variables by other factors that have an impact on the decision

to default (prepay), such as, for example, unemployment4 or by macroeconomic vari-

ables representing the business cycle such as gross national5 or regional product. Another

possible extension is to preserve the independency of default and prepayment latent

factors from other stochastic state variables, but to allow for more sophisticated corre-

lation structure of the latent variables: either for instantaneous correlation between the

two and/or for dependency of the ’random draws’ of the termination processes6. Finally,

while there are certain benefits of consistency in using the same data set for the estimation

of physical conditional probabilities (hazards) of default and prepayment and subsequent

risk-adjustments calibration, certain data limitations (such as the lack of information on

upfront fees (points)) complicate this calibration procedure. In principle, one might use

market data such as series of prices of credit-default swaps for this purpose, were such

data available.

4Unemployment represented by a stochastic process driven by independent Brownian motion
is relatively straightforward extension of the model. Alternatively, the form of each of the state pro-
cesses can be chosen to be simple as, e.g., in de Jong, Driessen, and Van Hemert (2007), however,
explicit instantaneous correlation between the various sources of uncertainty can be introduced.

5As, for example, in Kolbe and Zagst (2008).
6In terms of estimation, this would introduce dependence not only on the previous observation

in the same stratum, but on observations from earlier strata.
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APPENDIX

DRIFT AND DIFFUSION OF THE BOND PROCESS

SDE for the zero-coupon bond under the physical measure is:

dp(t, T ) = p(t, T )
[
r(t) dt−D1(t, T )σ1

√
y1(t)dW

P
1 (t)−D2(t, T )σ2

√
y2(t)dW

P
2 (t)

]
(1)

where short rate r(t) is the sum of the 2 latent factors:

r(t) = y1(t) + y2(t) (2)

Hence μb(·) is given by:

μb(t, T, y1(t), y2(t)) = p(t, T ) r(t) dt (3)

and σb(·) is given by:

σb(t, T, y1(t), y2(t)) =
(
D2

1(t, T )σ
2
1y1(t) +D2

2(t, T )σ
2
2y2(t)

)(− 1
2
) (4)

where σ1 and σ2 are volatility parameters of the latent factors. Using independence

between the latent factors of the term structure, we can write the Brownian motion for

the bond process as:

W P
b (t) =

(
D2

1(t, T )σ
2
1y1(t) +D2

2(t, T )σ
2
2y2(t)

)(− 1
2
)
(−D1(t, T )σ1

√
y1(t)dW

P
1 (t)

−D2(t, T )σ2
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P
2 (t)) (5)
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