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 As the frequency of cyanobacterial harmful algal bloom (CyanoHABs) become more 

common across recreational and water supply lakes and reservoirs, demand for rapid detection and 

temporal monitoring will be imminent for effective management. This study demonstrated a multi-

satellite based protocol for synoptic monitoring of rapidly evolving CyanoHABs across Earth’s 

inland waters. The analysis involved a novel way to cross-calibrate a chlorophyll-a (Chl-a) 

detection model for NASA’s Landsat-8 OLI sensor from the relationship between the normalized 

difference chlorophyll index  (NDCI) and the floating algal index (FAI) derived from ESA’s 

Sentinel-2A platform on a coinciding overpass date during the summer 2016 CyanoHAB bloom 

event in Utah Lake. This cross satellite–based monitoring method can be a great tool for regular 

monitoring and will reduce the budget cost for monitoring and predicting CyanoHABs in large 

lakes. 
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CHAPTER 1 

INTRODUCTION 

 

As the frequency of cyanobacterial harmful algal blooms (CyanoHABs) become more 

common in recreational lakes and water supply reservoirs, demand for rapid detection and 

temporal monitoring will be imminent for effective management. Concurrently, with the 

expanding constellations of both government and commercial imaging satellites, data availability 

will increase due to improved revisit time and resolution. As these large datasets become more 

easily accessible to the scientific community and resource managements, so will the demand for 

the information that can be extracted from them. Therefore, it is preemptive to develop cross-

sensor calibration techniques and algorithms to promote user-friendly application when 

incorporating multiple space-borne sensors for increased temporal targeting. The ultimate goal of 

this study was to demonstrate a novel and potentially operational cross-satellite based protocol for 

synoptic monitoring of rapidly evolving and increasingly common CyanoHABs in inland waters. 

Cyanobacterial harmful algal blooms (CyanoHABs) have been a major cause for concern 

in aquatic ecosystems around the globe. These blooms often consist of harmful cyanobacteria, a 

type of photosynthetic bacteria which produce hazardous compounds including neurotoxins and 

hepatotoxins capable of inducing severe gastroenteritis, liver failure, and even death (Greenfield 

et al., 2014). Annual blooms of cyanobacteria species in the Baltic Sea and in Lake Erie, Ohio are 

just two commonly known recurring examples (Hansson and Hakansson, 2007; Steffen et al., 

2014). CyanoHABs are becoming increasingly frequent across inland waters from varying climatic 
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regions making local, national, and global headlines. For example, the Indian River Lagoon (IRL) 

in Florida experienced a historic brown bloom and CyanoHAB in February-March (2016) causing 

the death of thousands of fish, leaving a foul odor throughout surrounding towns and hindering 

recreational activities (Florida Center for Investigative Reporting, 2016; www.fcir.org). Not so 

long after, in June, 2016, a state of emergency was declared in Florida coinciding with the massive 

CyanoHAB in Lake Okeechobee flowing into the St. Lucie Rive. Furthermore, CyanoTRACKER 

(cyanotracker.uga.edu), a citizen science project to raise awareness and community participation 

to report CyanoHABs, has reported over 100 large domestic and international blooms in 2016 

alone.  

Factors that ultimately lead to the formation of different types of algal blooms in inland 

waters have been investigated for years. Studies have shown the effects of anthropogenic 

eutrophication can be intensified in inland waters as a result of increased summer temperatures 

associated with frequent drought events that are followed by heavy rainfall (Ahn et al., 2002; Tyler 

et al., 2008). This hyper-eutrophic condition promotes a lake or pond with a certain susceptibility 

to experience planktonic (freely floating) algal blooms when combined with excessive Phosphorus 

(P) and Nitrogen (N) input from the surrounding watershed, to manifest these toxic, food-web 

disrupting CyanoHABs (Paerl, et al., 2014). Additionally, warming can selectively promote 

cyanobacterial growth because as prokaryotes, their growth rates are optimized at relatively high 

temperatures (Paerl and Paul, 2011), and according to an independent analyses conducted by 

NASA and the National Oceanic and Atmospheric Administration (NOAA), Earth’s 2016 surface 

temperatures were the warmest since modern recordkeeping began in 1880 (NOAA/NASA, 

Annual Global Analysis for 2016). It is therefore no surprise to consider that the Earth’s increasing 

temperature trend is providing an optimal niche for CyanoHABs across inland waters. 

http://www.fcir.org/
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Effects from the presence of CyanoHABs can be both economically and environmentally 

challenging. While it is difficult to place a value on the maintenance of a natural ecosystems, there 

may be impacts on fisheries, agriculture and tourism. For example, in 1991, nine water storages in 

New South Wales, Australia that are used for recreation were affected by algal blooms, with an 

economic loss estimated at $1.2 million (Steffensen, 2008). Taking all coastal and inland water 

bodies into account, it has been estimated that the cost of monitoring for cyanobacteria and for 

contingency planning to deal with blooms in Australia is $8.7 million per year (Atech, 2000).  

Currently, the most common form of detection and monitoring during a bloom event 

includes in-situ sampling and laboratory analysis (Randolph et al., 2008; Osswald et al., 2007; 

McElhiney and Lawton, 2004; Msagati et al., 2006). While traditional in-situ sampling 

methodologies can provide rapid, accurate information about the target and even discern individual 

cyanobacteria species, they are often considered laborious and time consuming. Additionally, data 

collected from field campaigns are mostly in the form of point data, and fails to capture (1) the 

spatial distribution of the bloom and (2) the magnitude of concentrations across the extent of the 

affected area. Airborne scanning for the detection, identification and mapping of algal species has 

provided a rapid alternative in which the spatial distribution of algal blooms could be observed 

(Jupp et al., 1994; Sengpiel, 2007; Mishra et al., 2009). However, imaging sensors aboard aircraft 

must be capable to perform bio-optical models necessary to quantify water quality parameters. 

Additionally, the organization responsible for the economic cost of fuel and pilot for temporal 

monitoring may just lead to a financial sink.  

Albeit the advancements in remote sensing technology, utilizing satellite imagery on a 

fairly regular environmental disaster in such a large body of water is just simply not a common 

practice, particularly at a time when data from numerous high temporal resolution satellites are 
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freely available. The lack of studies can also be attributed to the atmospheric correction errors 

often encountered in Case-2 turbid waters. Existing atmospheric correction methods often yield 

negative water-leaving radiances primarily because the water-column reflectance interferes with 

the atmospheric correction based on the 765 nm and 865 nm spectral bands (Gordon and Voss, 

1999; Hu et al., 2000; Bailley et al., 2010; Dash et al., 2012). This issue served as the primary 

motivation to modify a previously developed atmospheric correction to be extrapolated to multiple 

space-borne imaging sensors specifically to provide accurate reflectance products for studies 

involving inland water quality monitoring. 

 

1.1 Remote sensing of water quality parameters 

Multi- and hyper-spectral imagery collected by space-borne satellite platforms have 

provided a valuable tool for rapidly assessing the spatial variability of inland water quality 

parameters over synoptic scales (Gould and Arnone, 1997). For example, concentrations of the 

parameters such as chlorophyll-a (Chl-a), suspended particulate matter (SPM), colored dissolved 

organic matter (CDOM), and water optical properties can be computed from the water-leaving 

radiance (Lw) retrieved by atmospheric correction procedures. These parameters are important for 

studying and understanding biological and biogeochemical processes, and monitoring land-water 

interactions (He et al., 2012). Satellite platforms such as the Indian Remote Sensing (IRS) 

satellite’s Ocean Color Monitor (OCM) sensor, NASA’s Sea-viewing Wide Field-of-view sensor 

(SeaWiFs), the MODerate resolution Imaging Spectrometer (MODIS) and ESA’s Medium 

Resolution Imaging Spectrometer (MERIS, now decommissioned) are popular choices for 

studying water quality parameters due to their extensive swath and band configurations (O’Reilly 

et al., 2000; Hu et al., 2004; Antoine et al., 2008; Dash et al., 2012; Mishra and Mishra, 2011; 
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Kumar et al., 2016). However, their ability to retrieve optically active constituents (OACs) from 

small to moderately sized freshwater reservoirs and lakes are unrealistic due to their coarse spatial 

resolution. Nonetheless, these platforms have offered invaluable, rapid, and cost-effective 

information regarding the quality of ocean and coastal waters. 

In order to focus in on smaller inland water bodies, satellite platforms with higher spatial 

resolution must be utilized (Dash et al., 2012). As multiple linear predictors, multi- and 

hyperspectral satellite sensors have attempted to model water quality parameters such as turbidity 

and algal pigment concentrations in freshwater lakes as far back as 1978 (Carpenter, 1983). Since 

then, more recent, higher resolution satellites have become operational in which collected imagery 

can be downloaded for free via online applications such as USGS EarthExplorer and Global 

Visualization View (GloVis). For example, the Sentinel-2A (S2A) satellite launched on June 23, 

2015 by the European Space Agency (ESA) is an ideal candidate for monitoring inland water 

quality due to its localized swath width of 290km at 10-20 meter spatial resolution. Additionally, 

the MultiSpectral Imager (MSI) aboard S2A contains channels useful for water quality models 

developed to quantify Chl-a concentrations such as the floating algal index (FAI) (Hu, 2009) and 

normalized difference chlorophyll index (NDCI) (Mishra and Mishra, 2011). Similarly, the 

Operational Land Imager (OLI) aboard NASA’s Landsat-8 (LS8) platform is a 9-band pushbroom 

multispectral sensor with a 30 m spatial resolution. S2A MSI and LS8 OLI sensor specifications 

in terms of spectral band-centers are very similar. Although the width of each band varies in MSI, 

the 30 nm bandwidth in the OLI sensor is stable. For aquatic applications, the improved spatial 

resolution of the MSI sensor (10, 20 m) with regards to OLI (30 m) allows for a better separation 

of small scale features, and allows the observation of smaller river inlets and ponds (Vanhellemont 

and Ruddick, 2016). This can aid in the routine targeting and monitoring of CyanoHAB 
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susceptible aquatic ecosystems that may be difficult to access. After resampling MSI to match OLI 

30 m spatial resolution, examination of the spectral patterns retrieved by these two sensors can be 

employed and cross-calibrated to increase temporal resolution for more frequent monitoring of 

water quality parameters. 

 

1.2 Atmospheric correction over inland waters 

Measurements of Lw spectrum have now become routine because of the need to calibrate 

and validate satellite ocean color models (Siegel et al., 2000). The inland aquatic ecosystems on 

the other hand comprise less than 1% of the Earth’s surface, but often are among the most 

productive areas (Likens, 1975). Atmospheric correction errors with satellite imagery over these 

optically-complex waters using traditional ocean color platforms are often encountered as a result 

of this production (Jamet et al., 2011), and turbid water pixels often become flagged under 

common processing software due to autonomous land masking thresholds or the overcorrection of 

atmospheric aerosols. 

The remote sensing reflectance (Rrs) is a fundamental parameter widely used for estimating 

water quality parameters or benthic properties, and is the ultimate goal of atmospheric correction 

of ocean color measurements (Ye et al., 2017). In order to accurately derive Rrs from satellite 

imagery, both scattering and absorption properties in the atmosphere must first be identified, 

quantified, and subsequently removed as the molecular scattering signal due to ozone and Rayleigh 

effects may constitute as much as 90% of the total top-of-atmosphere (TOA) signal for spectral 

bands from the blue to red (typically 443 to 670 nm) (Gordon, 1997; Mishra et al., 2005). Although 

computation of ozone and Rayleigh contributions are relatively straightforward and mainly depend 

on sun-sensor geometry and study area elevation (Vermote et al., 1997), several studies have 
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attempted to characterize aerosol type ε, and in practice it is uncommon to find the solutions in 

one place (Dash et al., 2012; Hu et al., 2004).  

Over Case-1 clear-waters, water-leaving radiance is negligible in the near-infrared (NIR) 

portion of the electromagnetic spectrum (EMS) because of strong absorption by water, thus, the 

radiance measured at these wavelengths is essentially the contributions from the atmosphere 

(Gordon and Wang, 1994). However, this assumption does not work over Case-2 turbid-waters as 

the NIR reflectance is influenced by the OACs in the water column (Dash et al., 2012). These 

materials (OACs) include detrital biological material and abiotic particulates such as suspended 

sediments (Siegel et al., 2000). As ε is determined by choosing clear-water sites within the water 

body based on minimum TOA radiances, applying an NIR-based aerosol correction method over 

turbid inland waters, therefore, would assume a constant ε over the entire scene (Hu et al., 2000). 

Extrapolating those values to the visible (VIS) portion of the spectrum would thus overestimate 

the aerosol contributions in highly productive regions. Additionally, over a homogenous, highly 

productive inland water body, especially during an algal bloom or after an influx of sediments 

from excessive runoff, clear water pixels are difficult to find, and are often nonexistent. Even with 

plenty of clear water pixels present, ε has been found to vary spatially in nature, and for a water 

body with a large distance between a turbid and clear water pixel, a single value for ε may not be 

appropriate (Jiang and Wang, 2014; Vanhellemont and Ruddick, 2015). Dash et al., (2012) have 

shown the efficacy of the Hu et al. (2000) aerosol correction, originally developed for MODIS 

over Case-1 waters, by successfully extrapolating the NIR-based method to OCM sensor aboard 

Oceansat-1 launched by the Indian Space Research Organization (ISRO) in May, 1999. Their study 

highlighted the robustness of a newly generated code for an atmospheric correction algorithm that 

could work across multiple space-borne sensors. 
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Unlike the NIR-based aerosol correction, it has been demonstrated that the incorporation 

of the shortwave-infrared (SWIR) channels of both MODIS and OLI sensors to characterize 

aerosol contribution alleviates the issue of the OACs interfering with the Lw signal, which assumes 

a zero water-leaving radiance contribution in these wavelengths even in the most optically-

complex waters (Vanhellemont and Ruddick, 2015). One distinct advantage of using the SWIR 

band pair is that no clear water pixels are necessary to determine the aerosol type, a crucial 

advantage over the NIR-based aerosol method. Thus, the remaining signal received by these bands 

after ozone and Rayleigh correction are the result of the multiple scattering of aerosols, and can be 

quantified on a pixel-by-pixel basis. Following these assumptions, this study further elaborates the 

flexibility of the Hu et al. (2000) aerosol correction across two recently launched sensors over 

Case-2 inland waters. A modification of the aerosol path radiance (La) calculation was made by 

substituting the minimum vector coefficients usually obtained from the clear-water based NIR 

method with the two SWIR image matrices. This not only relieves the contamination issue 

encountered when using the NIR bands in turbid regions, but also compensates for over and under-

corrections when the NIR method miscalculates ε within each pixel.  

Commercial, academic, and government applications such as ENVI (commercial), 

ACOLITE (academic) and SeaDAS (government, NASA) allow the user to perform complex 

atmospheric corrections and image enhancements on data from multiple satellite imaging 

spectrometers (ENVI, 2009). However, their ability to retrieve more localized values of water-

leaving reflectance (ρw) remain unknown as the algorithms they incorporate comprise of a complex 

suite of programs which is difficult to modify as a user (Dash et al., 2012), and have not been 

validated for inland water quality parameters. The radiative transfer calculations in these 

commercial applications apply traditional inversion models, using artificial neural network (ANN) 
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techniques (Schroeder et al., 2007), and often fail to deliver accurate local parameters as such 

assumptions can promote errors in estimating surface reflectances (Bernardo et al., 2017). 

Therefore, rather than relying on a single software with built in functions that are uncontrollable 

to the researcher, a site specific, Modified Atmospheric correction for INland waters (MAIN) for 

the MSI and OLI sensors was developed using open-source applications to characterize unknown 

local variables such as ozone optical depth and site elevation. This potentially operational 

algorithm is anticipated to be utilized by lake resource managers to alleviate the issues encountered 

during the remote sensing of inland waters for accurate retrieval of water quality parameters. 

 

1.3 Case study – Utah Lake 

In this study, the MAIN algorithm was performed on two satellite images of Utah Lake 

acquired by S2A MSI and LS8 OLI which shared a coinciding overpass date on August 4th 2016 

amidst a known CyanoHAB. The infamous summer 2016 bloom event hospitalized more than 100 

people as a result from coming into contact with the water (The Guardian, Jul. 2016), which forced 

authorities to close the name-state lake for the first time in history (UDWQ, 2016). Thus far, only 

a single investigation of this phenomenon has incorporated a space-borne imaging platform to 

show the extent of an algal bloom using Earth Resources Technology Satellite (ERTS-1) in Utah 

Lake (Strong, 1974). However, Strong (1974) only showed the spatial patterns of the bloom 

distribution based on reflective properties in the green, red, and near-infrared (NIR) wavelengths 

using a single image date (September 12, 1972). Considering the lack of knowledge regarding 

multispectral bio-optical algorithms at that time, quantification of water quality parameters was 

absent. Therefore, quantification and a thorough phenological assessment of the 2016 bloom even 

in Utah Lake was investigated by constructing a time-series analysis of satellite derived Chl-a 
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concentrations calibrated with in-situ cyanobacterial cell density (CCD) counts from UDEQ field 

campaigns. 
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CHAPTER 2 

MATERIALS AND METHODS 

 

2.1 Study area 

Positioned in north-central Utah, USA at an altitude of 1,368 meters above sea level, 

surrounded by the Traverse Mountains and located between 40o14'42"N and 111o47'51"W. Utah 

Lake, a remnant of a much larger Pleistocene lake called Lake Bonneville, is a shallow (mean 

depth: 3 m) freshwater lake with a complex ecosystem which covers about half of Utah Valley’s 

floor with a surface area of roughly 390 km2 (Meritt, 2014) (Figure 1). The Utah Lake bed is flat 

as a result from 65,000 years of sediment build-up, creating a lacustrine pain over Utah Valley 

causing the lake to be so shallow (Jackson and Stevens, 1981). Utah Lake is highly eutrophic in 

nature and historically known for summer algae blooms, often consisting of toxic cyanobacteria 

species such as Aphanizomenon flos-aquae, Dolichospermum crissum, Geitlerinema spp. (I-III), 

Microcystis aeruginosa, Oscillatoria princeps, and Pseudanabaena spp. (UDEQ, 2016). In July 

2016, a massive cyanobacterial bloom comprised primarily of Aphanizomenon flos-aquae spread 

across Utah Lake. Prior to the bloom event, June (2016) was already declared the hottest June on 

record for the United States (https://www.ncdc.noaa.gov/sotc/global/201606), part of a growing 

pattern of 14 straight months of high temperature records. It is well established that cyanobacteria 

are adapted to warmer temperatures where they are able to outcompete other phytoplankton groups 

(e.g, diatoms, cryptophytes, etc.) (Paerl and Otten, 2013), and therefore future blooms are highly 

probable. It has been documented that waste water discharge into Utah Lake from surrounding 

https://www.ncdc.noaa.gov/sotc/global/201606
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treatment plants can constitute up to 80% of the lake’s total phosphorous input. However, local 

organizations are not sure that removal of phosphorous can control the bloom in the future, and 

for this purpose a long-term study will be underway to determine how much phosphorous the lake 

can handle without showing any adverse effect (Utah Lake Water Quality Study (2015-2019), 

UDEQ). 

Satellite imagery of Utah Lake during the coinciding overpass of S2A MSI and LS8 OLI 

was collected from EOS Land viewer online application, which provides complete, free and open 

access to S2A MSI and LS8 OLI user products in Universal Transverse Mercator (UTM) 

projection with the WGS84 datum. Prior to implementing bio-optical models on the raw image 

products, upper atmospheric noise was first reduced by correcting the input bands for ozone and 

Rayleigh scattering effects. The input bands required in this study were based on the models chosen 

to visualize and quantify the extent of the CyanoHABs within Utah Lake and are given in Table 

(1). These models included the FAI originally developed by Hu (2009) for MODIS, and NDCI, 

developed by Mishra and Mishra (2011) for MERIS like sensors. Chl-a concentrations were 

estimated as it is considered to be a proxy for the detection of all algal biomass using a polynomial 

relation between NDCI values and in-situ measured Chl-a (R2 = 0.95) from Mishra and Mishra 

(2011). The models are specifically designed to monitor and quantify the spatial distributions and 

concentrations of algal blooms, and can potentially assist lake resource managers for rapid bloom 

monitoring. 
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2.2 Modified atmospheric correction for inland waters (MAIN) 

In ocean color remote sensing, the total radiance received by a satellite sensor in orbit over 

a water body (LTOA) can be categorized from the contributions of Rayleigh scattering (Lrc), the 

multiple scattering of aerosols (Lam), transmittance effects (t), and the desired water-leaving 

radiance (Lw):  

 

LTOA = Lr + Lam + Lg + Lw(t) (1) 

 

Therefore, in an attempt to accurately model ρw and Rrs values over an inland water body, the logic 

of Equation (1) is assumed to hold true. The variable Lg, the radiance of the direct solar beam, i.e., 

photons that are specularly reflected from the water surface causing sun-glint is generally ignored 

because ocean-color sensors are equipped with a provision for tilting the scan plane away from the 

specular angle of the sun (Gordon and Wang, 1994). However, nadir-viewing sensors like MSI 

and OLI are susceptible to experience sun-glint effects depending on the sun-sensor geometry of 

the scene, and were instead masked out. 

Ancillary data consisting of scene specific physical parameters needed to be known before 

further processing. Conveniently, both MSI and OLI satellite image products provide a metadata 

file (.xml for MSI, .MTL for OLI) which include important variables such as solar elevation, 

azimuth and zenith angles, satellite azimuth and zenith angles, and Earth-sun distance needed for 

Rayleigh contribution calculations. Raw OLI metadata provides multiplicative and additive 

coefficients for the radiometric correction process to convert the RAW 16-bit DN formatted 

images into TOA radiance or reflectance values.  
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Lastly, maximum radiance and reflectance values are embedded within the metadata for manual 

calculation of the extraterrestrial solar irradiance (F0) across the available bands. 

LS8 OLI Level-1C 16-bit DN format product over Utah Lake on August 4th, 2016 was 

first radiometrically calibrated using the radiance multiplicative (ML) and additive (AL) rescaling 

coefficients provided in the product metadata file using the following formula (USGS, 

http://landsat.usgs.gov/Landsat8_Using_Product.php ): 

 

LTOA-OLI = ML × Qcal + AL (2) 

 

where LTOA-OLI is the TOA spectral radiance (W/( m2 * sr * μm)) measured by the OLI sensor, and 

Qcal is the quantized and calibrated standard product pixel values (DN).  

Similarly, MSI Level 1C product was first converted from the provided TOA reflectance 

(ρTOAMSI) into TOA radiance (LTOA-MSI):  

 

LTOA-MSI = (ρTOAMSI(λi) × F0’(λi) × cos(θ0)) / (π × d2) (3) 

 

 

 

 

 

 

 

http://landsat.usgs.gov/Landsat8_Using_Product.php
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The MAIN algorithm considers the effects from three fundamental atmospheric scattering 

parameters: ozone, Rayleigh and aerosols, and each scattering effect was addressed in order. Once 

the RAW imagery have been radiometrically calibrated, gaseous absorption from the ozone was 

removed from both TOA radiances of MSI and OLI imagery: 

 

Lt*(λi) = LTOA(λi) × e[τoz(λi) × (cos(θ0)
-1 + cos(θv)

-1)] (4) 

 

where Lt*(λi) is the TOA radiance measured by the satellite sensor in the absence of ozone 

absorption effect (Hu et al. 2004), θ0 is the solar zenith angle (degree), θv is the sensor zenith angle, 

and τoz(λi) is the ozone optical depth, calculated by following Gordon et al. (1999), and Mishra et 

al. (2005): 

τoz(λi) = koz(λi) × DU / 1000 (5) 

 

where koz(λi) is the ozone absorption coefficient taken from the Aerosol Optical Depth Value-

Added Product (Koontz et al., 2013) and DU is the ozone concentration in Dobson units obtained 

from NASA Ozone Over Your Head online application. This tool provides the total column ozone 

amount over any point on Earth for most dates between November 1978 and December 1994 and 

from August 1996 to today. This is not the amount of ozone that causes smog (tropospheric ozone), 

but rather a measure of ozone density through an entire column of atmosphere, from ground to 

space. The measurement is dominated by high altitude ozone (stratospheric ozone) 

(https://ozoneaq.gsfc.nasa.gov/tools/ozonemap/).  

 

https://ozoneaq.gsfc.nasa.gov/tools/ozonemap/
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Subsequently, Rayleigh corrected radiances (Lrc) from TOA-ozone corrected bands of 

interest is computed as: 

 

Lrc(λi)  = Lt*(λi)  - Lr(λi), (6) 

 

where Lr(λi)  is the Rayleigh scattering contributions across each wavelength in radiance, and is 

defined by Gordon (1997): 

 

Lr(λi) = F0’(λi) ×ω0r ×τr(λi) ×Pr / 4π cos(θv) (7) 

 

where F0’ is the extraterrestrial solar irradiance values (converted to mW*cm−2 ·μm−1), Pr is the 

Rayleigh scattering phase function calculated by following Doerffer’s (1992) logic, and ω0r is the 

single scattering albedo (ω0r = 1). Finally, τr(λi) is the Rayleigh optical thickness and is defined by 

Hansen and Travis (1974) as: 

 

τr(λi) = 
𝑃

𝑃𝑜
 × [ 0.008569 λi

-4 (1 + 0.0113 λi
-2 + 0.00013 λi

-4)] (8) 

 

where λi is each band’s centered wavelength in μm, and P0 is standard atmospheric pressure of 

1,013.25 mb and P is the calculated pressure from the study area elevation (in meters). Study site 

elevation was acquired using Google Earth (unit: ft.) for altitude pressure calculations for Rayleigh 

contribution determination: 

 

P = (101325 × (1 - 2.25577E-5 × elevation)5.25588) × 0.01 (9) 
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At large solar zenith angles, such as encountered in the analysis of high-latitude imagery, errors in 

Rayleigh reflectances can become quite large, e.g., >10% in the blue band (Gordon et al., 1988). 

Therefore, it is extremely important to consider the study site elevation for accurate Rrs retrieval. 

A digital elevation model (DEM) may also be used when correcting an entire image tile to 

compensate the differences in pressure changes respect to elevation on a pixel-by-pixel basis. 

Rayleigh corrected radiances were then converted back to reflectance following the USGS method 

(Landsat 8 User’s Handbook): 

 

ρrc(λi)  = ( π × Lrc(λi) × d 2 ) / ( F0’ × cos(θ0) ) (10) 

 

where d is the Earth-sun distance in the astronomical unit (AU) found within the OLI metadata 

.MTL file. Rayleigh corrected reflectances are useful in the ocean color community as the 

molecular scattering signal due to ozone and Rayleigh effects in the atmosphere may constitute as 

much as 90% of the total top-of-atmosphere (TOA) signal for spectral bands from the blue to red 

(typically 443 to 670 nm) (Gordon, 1997; Mishra et al., 2005). These bands are often incorporated 

into bio-optical algorithms used to derive the OACs from the water column, such as Chl-a biomass 

and suspended particulate matter (SPM), common products generated by the NASA Ocean 

Biology Processing Group (OBPG) for coastal and open ocean algal biomass. 
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Masking 

After collecting ρrc(λi), masking for clouds and sun-glint effects was performed in order to 

retrieve an accurate representation of the lake area without the interference of unrealistic values. 

A threshold value was set to the shortest of the middle infrared bands available on the OLI sensor 

(1609 nm) to 0.0215. In other words, pixels were masked if OLI ρrc(1609) > 0.0215. This simple 

threshold method works well throughout the world for discriminating water from floating objects, 

offshore constructions, land and clouds, even in extremely turbid waters (Vanhellemont and 

Ruddick, 2015). After resampling MSI spatial resolution from 20 m to 30 m, remaining MSI cloud 

and sun-glint free pixels were multiplied by the OLI water mask leaving n=138,814 pixels to be 

examined and compared against each other in a multispectral feature space. 

 

Aerosol Correction 

The strong impact of aerosols in the visible and near infrared spectral range can be difficult 

to correct, because they can be highly discrete in space and time (e.g., smoke plumes) and because 

of the complex scattering and absorbing properties of aerosols that vary spectrally and with aerosol 

size, shape, chemistry and density (Vermote et al., 2016). In this study, ε was determined by 

utilizing the two shortwave infrared (SWIR) channels available on both MSI and OLI: one to 

assess the magnitude of aerosol contribution (1610 nm for MSI, 1609 for OLI), and one to 

extrapolate to the bands that are within the visible part of the electromagnetic spectrum (EMS) 

(2190 nm for MSI, 2201 nm for OLI). Unlike using the NIR region of the EMS to determine 

aerosol type, in which pixels are highly sensitive to increased levels of OACs within the water 

column (Dash et al., 2012), both SWIR bands are assumed to have a zero marine contribution even 

in the most optically-complex waters (Vanhellemont and Ruddick, 2015). Therefore, after 
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Rayleigh and ozone correction, any signal received by the SWIR bands are the result from non-

selective scattering from particles in the lower atmosphere that has a diameter less than the incident 

wavelengths (< 1609 nm). Aerosol path radiance (La(λi)) was first quantified by assuming an 

exponential relationship between aerosol optical thickness and wavelength (Gordon and Wang, 

1994), and the phase function to remain constant over the desired wavelengths (Mohan and 

Chauhan, 2003): 

 

La(λ) / F0’(λ) = ke( -cλ ) (11) 

 

where k and c are constants. The assumption of a zero water leaving radiance contribution in the 

SWIR wavelengths allowed for the modification of Equation (11) by substituting La(λ) values 

usually collected over the clear or open water regions with the two Lrc SWIR (Lrc(λSWIR-1) and 

Lrc(λSWIR-2) image matrices: 

 

 

Lrc(λSWIR-1) / F0’(λSWIR-1) = ke( -cλ ) (12)  

Lrc(λSWIR-2) / F0’(λSWIR-2) = ke( -cλ ) (13) 

 

which leads to the natural logarithm of both equations: 

 

Ln[Lrc(λSWIR-1) / F0’(λSWIR-1)] = k (-c) λ = - ελSWIR-1 (14)  

Ln[Lrc(λSWIR-2) / F0’(λSWIR-2)] = k (-c) λ = - ελSWIR-2 (15)  
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Aerosol type ε was then determined for each pixel as the negative of the slope of the straight 

line between ΔλSWIR-1,2 and ΔLn[Lrc(λSWIR-1,2) / F0’(λSWIR-1,2)] as: 

 

(Ln[Lrc(λSWIR-2) / F0’(λSWIR-2)] - Ln[Lrc(λSWIR-1) / F0’(λSWIR-1)] ) / (λSWIR-2 - λSWIR-1) = - ε (16) 

 

The output returns a raster distribution map of ε which was extrapolated to the visible region of 

the EMS on a pixel-by-pixel basis, rather than a single value (usually a median, mean, or mode) 

commonly retrieved in the clear-water pixel method described by Hu et al. (2000) which is 

responsible for unrealistic and/or negative-water leaving reflectances in highly productive waters. 

Extrapolating to the visible part of the EMS was then possible to create an aerosol radiance map 

(Lam) to quantify the aerosol contribution across each channel: 

 

Lam(λi < 1609 nm ) = Lrc(λSWIR-2) × (F0’ / F0’(λSWIR-2))e
[-ε (λi / λswir-2)] (17) 

 

 

Lam(λi) was then converted to reflectance (ρam) for ρw(λi) and subsequent Rrs calculations by 

following Equation (10).  
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Remote sensing reflectance 

Finally, once all the necessary variables are defined, the desired ρw(λi) is calculated by: 

 

ρw(λi) = ρrc(λi) – ρam(λi) / t(λi) (18) 

 

where ρrc(λi) is the reflectance contribution from Rayleigh scattering, ρam(λi) is the corresponding 

aerosol reflectance map at each wavelength, and t(λi) is the diffuse transmittance from the water 

surface to the satellite, and is calculated as:  

 

t(λi) = e[(-τr (λi) / 2) (1 / cos(θv))] (19) 

 

For Rrs calculation, ρw(λi) is simply divided by π: 

 

Rrs(λi) = ρw(λi) / π (20) 

 

The MAIN algorithm does not include out-of-band correction, whitecap correction, surface 

roughness influences and contribution of Lam to diffuse transmittance. However, these corrections 

will not significantly change the overall accuracy of the procedure particularly for small lakes or 

estuaries on low wind speed days when whitecap and surface roughness terms are minimal (Dash 

et al., 2012). Although in-situ measurements of atmospheric conditions over Utah Lake were not 

collected in the field, the input of parameters such as ozone optical depth, site elevation, and sun-

sensor geometry is a viable approach for correcting the image and starting the iterative process 

made by scene specific atmospheric correction algorithms (Moses et al., 2012). 

http://www.sciencedirect.com.proxy-remote.galib.uga.edu/science/article/pii/S027311771730114X?np=y&npKey=85401e6d6bfc5d740d1f1c5f076a68dc279e4a6ac15db45c2a4f36ba16bb4f70#b0150
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2.3 MAIN Performance – Utah Lake 

In order to make sense of the derived Rrs values from the MAIN processed MSI and OLI 

images over Utah Lake, comparison with in-situ measurements is a common, standardized 

practice. Unfortunately, in-situ measurements of Rrs and atmospheric conditions of Utah Lake 

were not collected in the field during the coinciding MSI and OLI overpass on Aug. 4th, 2016. 

Meanwhile, the Utah Department of Environmental Quality (UDEQ) deploys sampling crews to 

collect general surface water parameters (temperature, DO, pH, etc.) and algal density for known 

cyanobacterial blooms. However, in-situ spectroradiometer measurements for Rrs or properties of 

the atmosphere in respect to aerosols are not considered. In the absence of any radiometric 

“ground” truth such as buoy or other suitable matchup data, an inter-comparison of satellite sensors 

is often the best choice (Suresh et al., 2006), but for smaller lakes and reservoirs, inter-comparison 

using larger scale satellites such as MODIS and Sentinel-3 is impractical as the reduced spatial 

resolution would not be able to accurately represent the distribution of water quality parameters, 

specifically near the lake boundaries where algal blooms are most common. Therefore, confidence 

in the atmospherically corrected values originated from performing the MAIN algorithm on 

another inland water body during a LS8 OLI overpass in Georgia, USA coinciding with fieldwork 

conducted two years prior on October 22nd, 2014. Thus, any error analysis between the MAIN 

derived Rrs values and in-situ measurements was only possible for the OLI sensor, as MSI was still 

under construction and had not launched yet.  

 

2.4 MAIN validation 

Lake Sinclair (33.19°, -83.28°) (Figure 2, bottom) is a multi-use freshwater inland reservoir 

created in 1953. Spanning across 6,200 hectares (ha) within the Georgia Piedmont, Lake Sinclair 
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is the second largest reservoir in the state. In 1973, Georgia Power constructed the Wallace Dam 

on the Oconee River, separating Sinclair from its sister lake, Oconee (33.19°, -83.28°) (Figure 2, 

top). The Oconee River is the main source of water for this reservoir and supplies roughly 70% of 

the lake’s water (Fisher et al. 1999). The lake is also fed by waters from the Apalachee River and 

several small creeks in the area. With average depths of 27 m (Sinclair) and 6.4 m (Oconee), Lake 

Sinclair and Lake Oconee together are considered oligotrophic lakes, with nutrient poor lake basins 

composed of sandy or rocky bottoms, and scarce bottom vegetation (Smith and Manoylov, 2013). 

However, intensified summer temperatures combined with heavy rainfall after severe drought 

effects can intensify anthropogenic eutrophication (Ahn, et al., 2002), and excessive Phosphorus 

(P) and Nitrogen (N) input from the surrounding watershed can promote a lake with a certain 

susceptibility to experience planktonic (freely floating) algal blooms often consisting of toxic-

forming cyanobacterial species (Paerl et al., 2014). As the Georgia Piedmont is characterized by a 

warm and humid, temperate climate, the Lake Sinclair/Oconee pair have experienced isolated 

CyanoHABs where runoff is significant. 

In-situ Rrs values were obtained with a hand-held GER-1500 (Spectra Vista, Co.) 

spectroradiometer on October 22nd, 2014 at 15 sites divided amongst 3 sampling locations (SL) in 

both Lake Oconee (SL1 and SL2) and Lake Sinclair (SL3) coinciding with cloud-free OLI data 

(Figure 2). The hyperspectral data were weighted with the relative spectral response function of 

OLI to yield Rrs values at the seven OLI wavelength bands (443, 483, 561, 655, and 865 nm) by 

following Mobley, (1999):  

Rrs(θ, φ, λ,0+) = Lu(θ, φ, λ,0+) – 0.028 × Lsky(θ,φ,λ,0+) / Ed(θ,φ,λ, 0+) (21) 

where Lu is the upwelling irradiance measured by the spectroradiometer, φ is the azimuthal angle 

(in 90 deg); θ is the zenithal angle (of 45 deg); λ is the wavelength (in nm), and 0+ indicates that 
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radiance and irradiance measurements were acquired just above the water surface (Bernardo et al., 

2017). Additionally, to remove the effect of sensor-specific spectral response from Rrs, full-band-

pass water-leaving radiances were adjusted to that for square 11-nm band-passes located at the 

nominal band centers using the model of Werdell and Bailey., (2005) (Franz, 2014). 

 

2.5 Performance evaluation of multiple atmospheric corrections 

Several atmospheric correction algorithms exist (Berk et al., 1999; Adler-Golden et al., 

1998; Matthew et al., 2000; Ruddick et al., 2000; Vanhellemont and Ruddick, 2015;  Richter and 

Schläpfer, 2016), however, there is no consensus about which one should be used for remote 

sensing of the inland water color (Bernardo et al., 2017). This study further extends the 

comparisons between in-situ and modeled Rrs resulting from four commonly used atmospheric 

corrections seen by Bernardo et al., (2017) with the addition of the performance of the MAIN 

algorithm on an inland water body (Lake Oconee / Sinclair) in an humid subtropical climate. A 

brief description of the additional tested atmospheric corrections are provided in Table (2). 

Performance of the resulting Rrs values over Lake Oconee / Sinclair derived from each 

atmospheric correction relative to the radiometric quantities collected in the field were statistically 

evaluated by a normalized root mean square error (nRMSE) at each wavelength: 

𝑅𝑀𝑆𝐸 =  
√∑ [𝑥𝑖(𝜆)−𝑥𝑔(𝜆)]2𝑛

𝑖=1

𝑛
  (22) 

where xi is the OLI atmospherically corrected Rrs pixel at band λi matching the geographic location 

of true Rrs obtained in-situ (xg) by the GER-1500 spectroradiometer. It is important to note that 

while in-situ measurements are sometimes referred to as ‘ground-truth’ measurements, they are 

rarely ‘absolute truth’. Full characterization of the inherent measurement error of the field 

http://www.sciencedirect.com.proxy-remote.galib.uga.edu/science/article/pii/S027311771730114X?np=y&npKey=85401e6d6bfc5d740d1f1c5f076a68dc279e4a6ac15db45c2a4f36ba16bb4f70#b0045
http://www.sciencedirect.com.proxy-remote.galib.uga.edu/science/article/pii/S027311771730114X?np=y&npKey=85401e6d6bfc5d740d1f1c5f076a68dc279e4a6ac15db45c2a4f36ba16bb4f70#b0005
http://www.sciencedirect.com.proxy-remote.galib.uga.edu/science/article/pii/S027311771730114X?np=y&npKey=85401e6d6bfc5d740d1f1c5f076a68dc279e4a6ac15db45c2a4f36ba16bb4f70#b0005
http://www.sciencedirect.com.proxy-remote.galib.uga.edu/science/article/pii/S027311771730114X?np=y&npKey=85401e6d6bfc5d740d1f1c5f076a68dc279e4a6ac15db45c2a4f36ba16bb4f70#b0130
http://www.sciencedirect.com.proxy-remote.galib.uga.edu/science/article/pii/S027311771730114X?np=y&npKey=85401e6d6bfc5d740d1f1c5f076a68dc279e4a6ac15db45c2a4f36ba16bb4f70#b0190
http://www.sciencedirect.com.proxy-remote.galib.uga.edu/science/article/pii/S027311771730114X?np=y&npKey=85401e6d6bfc5d740d1f1c5f076a68dc279e4a6ac15db45c2a4f36ba16bb4f70#b0245
http://www.sciencedirect.com.proxy-remote.galib.uga.edu/science/article/pii/S027311771730114X?np=y&npKey=85401e6d6bfc5d740d1f1c5f076a68dc279e4a6ac15db45c2a4f36ba16bb4f70#b0175
http://www.sciencedirect.com.proxy-remote.galib.uga.edu/science/article/pii/S027311771730114X?np=y&npKey=85401e6d6bfc5d740d1f1c5f076a68dc279e4a6ac15db45c2a4f36ba16bb4f70#b0175
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instrument is essential for any validation effort (Bailey and Werdell, 2006). Nevertheless, 

standardizing Equation (22) further allows for a more comprehensible value: 

𝑛𝑅𝑀𝑆𝐸 =  
𝑅𝑀𝑆𝐸

𝑥𝑔𝑚𝑎𝑥−𝑥𝑔𝑚𝑖𝑛

 × 100  (23) 

Relative error analysis between MSI and OLI derived Rrs products for the Utah Lake 

images was conducted through mean absolute percent error (MAPE) in addition to nRMSE: 

𝑀𝐴𝑃𝐸 =  
1

𝑛
× ∑ |

𝑥𝑀𝑆𝐼−𝑥𝑂𝐿𝐼

𝑥𝑂𝐿𝐼
|𝑛

𝑖=1 × 100 (24) 

where xMSI and xOLI are the modeled Rrs resulting from the MAIN algorithm applied to both MSI 

and OLI, respectively. The pre-launch characterization of L8/OLI, 50-100% higher than its 

specification (Irons et al., 2012), shows that its SNR is much higher than the specification of 

S2/MSI (Vanhellemont and Ruddick, 2016). Therefore, since the resampling procedure applied to 

MSI data creates discrepancies in the spectral values of corresponding OLI pixels (especially over 

heterogeneous surfaces (Mandanici and Bitelli, 2016), xOLI was assumed as xtrue to prevent any 

instability of the SNR across the compared wavelengths.  

 

2.6 FAI 

 

Both MSI and OLI sensors contain a red, NIR, and SWIR channel all with very similar 

band-centers (Table 1) Therefore, a similar index in which both MSI and OLI can measure is the 

FAI. Because some bands between MSI and OLI vary in spatial resolution, the red band centered 

at 665 nm for MSI was resampled to match the vegetation red edge (VRE) and the shortwave infra-

red (SWIR) 20 m spatial resolution required for calculations. 

The FAI algorithm described by Hu (2009) is a simple ocean color index which introduced 

the detection of various floating algae and aquatic vegetation in the global oceans. Data 

comparison and model simulations showed that FAI is more advantageous than the traditional 
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NDVI or EVI because FAI is less sensitive to changes in observing conditions such as aerosols 

and solar viewing geometry (Hu, 2009). The FAI calculation, however, has not yet been included 

as a measure for the monitoring cyanobacterial blooms across turbid inland waters. Therefore, the 

FAI model was implemented in this research to provide an alternative approach to (1) quantify the 

extent and severity of an algal bloom over Utah Lake and (2) to explore the relationship between 

FAI and another index in which can subsequently estimate Chl-a concentrations and is not a shared 

index between the two sensors. 

Algae floating on the water surface have higher reflectance in the NIR (800-900 nm) 

portion of the EMS than in other wavelengths (Hu, 2009). Hu (2009) determined that the difference 

between ρrc(859) (NIR), and a baseline between 645 nm (red) and one of the short-wave infrared 

(1240 or 1640 nm) bands from MODIS can be used to detect floating algae, defined as: 

 

FAI = ρrc(NIR) - ρrc ‘(NIR) (25) 

ρrc’(NIR) = ρrc(RED) + (ρrc(SWIR) – ρrc(RED)) (λ(NIR) – λ(RED)) / (λ(SWIR) – λ(RED)), (26) 

 

where ρrc’(NIR) is the baseline reflectance in the NIR band derived from a linear interpolation 

between the red (665 nm) and SWIR (1610 nm) bands. This research utilized the FAI algorithm 

by applying it to all available, relatively cloud free imagery over the course of the 2016 Utah Lake 

bloom event for both MSI and OLI sensors. Additionally, performance sensitivity of the FAI 

algorithm between these sensors was evaluated through correlation. The underlying hypothesis 

predicted that the relationship of the FAI algorithm between any two cross-satellite sensors is 

robust enough to be extrapolated as long as it contains the required input bands. 
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2.7 NDCI & Chl-a 

 

 The abundance of Chl-a, a light harvesting pigment found in all oxygenic photosynthetic 

organisms, may be used as a proxy to assess the amount of algal biomass that is present in a water 

body (Ruiz-Verdu et al., 2008). Although extensive research has attempted to exploit the 620 nm 

absorption feature unique to the cyanobacterial pigment phycocyanin (PC) (Dekker, 1993; 

Schalles and Yacobi, 2000; Vincent et al., 2004; Simis and Gons, 2005; Mishra et al., 2009; Hunter 

and Tyler, 2010; Mishra et al., 2013; Mishra et al., 2014). MSI band configuration limits the direct 

measurements of cyanobacteria biomass due to the absence of a 620 nm band. However, NDCI, 

proposed by Mishra and Mishra (2011) is a standardized algal index that is used to predict Chl-a 

concentrations from remote sensing data in turbid productive waters. NDCI exploits the reflectance 

peak of Chl-a at 708 nm and the strong absorption feature in the red (665 nm) as: 

 

NDCI ∝ [Rrs(708) – Rrs(665)] / [Rrs(708) + Rrs(665)], (27) 

 

where Rrs(λ) is the remote sensing reflectance at that particular wavelength. In this study, however, 

modification to the NDCI formula to suite MSI band configuration (705 nm instead of 708 nm) 

was applied to all the Rayleigh corrected images following Mishra and Mishra (2011) as: 

 

NDCIMSI ∝ [ρrc(705) – ρrc(665)] / [ρrc(705) + ρrc(665)] (28) 

 

Rayleigh corrected reflectances ρrc were used rather than Rrs derived from the MAIN aerosol 

correction as the FAI algorithm originally developed by Hu (2009) called for ρrc, as ρrc are a 

popular metric in the ocean color community. Additionally, the FAI algorithm requires an SWIR 
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band for calculation. Using the SWIR bands to determine ε will thus consume the SWIR bands 

rendering them unusable. 

Mishra and Mishra (2011) showed that NDCI and Chl-a concentration have a strong 

relationship, producing an R2 of 0.95 with a mean standard error of 2.49 mg m-3 (p < 0.0001) using 

ESA’s Medium Resolution Imaging Spectrometer (MERIS) sensor. Following this logic, Chl-a 

concentrations were estimated from the resulting NDCIMSI images using the quadratic function 

(Mishra and Mishra, 2011): 

 

Chl-a = 14.039 + 86.115 (NDCIMSI) + 194.325 (NDCIMSI)
2, (29) 

Considering all cyanobacteria contain Chl-a, it must be noted that the application of this 

methodology is focused on the development of a phenological assessment tool for a known 

cyanobacteria bloom event, not to discern between toxic and non-toxic cyanobacteria species. 

 

2.8 Cross calibration of MSI and OLI 

 Considering the absence of the band centered at 705 nm on the OLI sensor (Table 1), 

calculation of NDCI and subsequently Chl-a concentrations was not directly possible. The novel 

approach to compensate for the limitation of the OLI sensor, the relationship between processed 

MSI FAI and NDCI, denoted from here on as FAIMSI and NDCIMSI respectively, was analyzed 

from a region of interest (ROI) (n = 30,052) within Utah Lake near the Powell Slough Waterfowl 

Management Area (PSWMA). The resulting regression equation between FAIMSI and NDCIMSI 

was used to convert the OLI processed FAI images (FAIOLI, independent variable) into NDCI 

images (NDCIOLI, dependent variable). NDCIOLI were further processed for Chl-a (Chl-aOLI) 

concentration determination following Equation (29). Resulting Chl-aOLI products were then 
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compared to Chl-aMSI predictions for sensor dependency. Differences observed in the Chl-aOLI 

estimates relative to Chl-aMSI were quantified through a pixel-by-pixel percent error analysis 

(PEA) to derive a new correction coefficient matrix for the calibration of the OLI sensor to match 

Chl-aMSI readings, considering MSI was the original sensor which contained the 705 nm band for 

NDCI calculation. 

 

2.9 Cyanobacterial Cell Density (CCD) 

Cyanobacteria detection in Utah Lake was performed by sampling crews conducted by the 

UDEQ that started on July 13th, 2016, after the bloom was reported on July 11th, 2016. After 

processing and analyzing these samples in the lab, results were posted along with sampling 

location information on the official website of UDEQ 

(http://deq.utah.gov/Pollutants/H/harmfulalgalblooms/bloom-2016/utah-lake-jordan-

river/data.htm). However, lab analysis for cell count extraction requires tremendous effort and 

doing it on a regular basis by collecting field samples is not feasible from both economic and time 

perspectives. Additionally, water quality parameters collected during these field campaigns is in 

the form of limited point data, and often fails to deliver an accurate representation or magnitude 

of the bloom. Many satellite based studies used Chl-a concentration as a proxy for this purpose 

(Reinart and Kuster, 2006; Ahn et al., 2006; Zhao et al., 2010). In addition, previous studies based 

on field samples also revealed that peak Chl-a concentration coincided with peak PC (a proxy of 

cyanobacteria) concentration (Kanoshina and Leppanen, 2002; Mishra et al., 2009). Following 

this logic, CCD data from UDEQ sampling activities were correlated with Chl-a concentration 

derived from satellite data analysis, assuming all CCD measurements derived are from the known 

toxic-forming cyanobacteria species collected by UDEQ. The MSI image corresponding to July 

http://deq.utah.gov/Pollutants/H/harmfulalgalblooms/bloom-2016/utah-lake-jordan-river/data.htm
http://deq.utah.gov/Pollutants/H/harmfulalgalblooms/bloom-2016/utah-lake-jordan-river/data.htm
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15th, 2016 was used to correlate modeled Chl-a concentrations with in-situ CCD coinciding to the 

closest sampling dates (July 13th, 2016 – July 16th, 2016). Because of sun glint artifacts 

encountered from the satellite imagery during this time, only samples collected from the upper 

portion of the lake were used for correlation. A total of 12 cyanobacteria samples were considered 

and Chl-aMSI concentrations extracted from those 12 pixels were used to establish a relationship 

with CCD. Unfortunately, this is all the data that was available from UDEQ.  
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Figure 1. False color (RGB: BGB) ρTOA composites of Utah Lake captured by LS8 OLI (right) 

at 12:08pm and S2A MSI (left) at 12:21 pm local time during a coinciding overpass date on August 

4th, 2016.  
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Table 1. Comparison of MSI and OLI input bands for applied models and corresponding band-

centers and bandwidths. 

Band ID 

 

MSI band-center  

(nm) 

MSI bandwidth  

(nm) 

OLI band-center  

(nm) 

OLI bandwidth  

(nm) 

Applied  

Model 

RED 665 30 655 30 FAI / NDCI 

VRE 1 705 15 n/a 30 NDCI 

VRE 2 865 20 865 30 FAI 

SWIR 1 1610 90 1609 80 FAI 
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Figure 2. False color composite (RGB / OLI: 752) of Georgia’s (USA) Lake Oconee and Lake 

Sinclair captured by LS8 OLI on October 22nd, 2014. Yellow tringles represent the three sampling 

locations (SL) conducted during the coinciding overpass of the satellite. 
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Table 2. BRIEF DESCRIPTION OF FOUR COMMONLY USED ATMOPSHERIC  

CORRECTIONS 

 
Correction Method Description Source 

 

 

 

Dark Object Subtraction 

(DOS) 

 

Dark object subtraction searches each band for the 

darkest pixel value. Assuming that dark objects reflect 

no light, any value greater than zero must result from 

atmospheric scattering. The scattering is removed 

by subtracting this value from every pixel in the band. 

 

 

 

 

(Chavez, 1988) 

 

 

 

LS8 USGS Surface Reflectance Product  

(LS8-SRP) 

 

LS8-SRP relies on the inversion of the relatively simple 

equation in the Lambertian case with no adjacency 

effects, that accounts for a simplified coupling of the 

absorption by atmospheric gases and scattering by 

molecules and aerosols as it is implemented in the 6SV 

radiative transfer code. 

 

 

 

(Vermote, E. F., et al., 

1997b & Kotchenova, 

S. Y., et al., 2006) 

 

 

 

 

ACOLITE 

 

ACOLITE is the first atmospheric correction procedure 

for LS8 specifically for the obtaining of water-leaving 

reflectances. The methodology addresses Rayleigh 

scattering and incorporates the short-wave infrared 

bands for aerosol mapping. This study incorporated the 

RV-SWIR (S, L) approach to also characterize aerosol 

type. 
 

 

 

 

(Vanhellemont and 

Ruddick, 2014; 2015) 

 

 
Fast Line-of-sight Atmospheric 

Analysis of Spectral Hypercubes 

(FLAASH) 

 

In FLAASH, model simulations of the spectral radiance 

are performed for appropriate atmospheric and viewing 

conditions over a range of surface reflectance. The 

desired properties (reflectance, column water vapor, 

etc.) are derived from the spectral radiance at each 

image pixel using look-up tables that are generated 

from these simulations 

 

 

 

 

(ENVI, 2009; Adler-

Golden et al., 1999) 

 

 

 

 

 

 

 

http://www.sciencedirect.com.proxy-remote.galib.uga.edu/science/article/pii/S0034425716301572?np=y&npKey=3c0c87d16b241fddbd877b2540ed2ae0e8eef7b7832857bb9dd77715b7c23af7#bb0135
http://www.sciencedirect.com.proxy-remote.galib.uga.edu/science/article/pii/S0034425716301572?np=y&npKey=3c0c87d16b241fddbd877b2540ed2ae0e8eef7b7832857bb9dd77715b7c23af7#bb0135
http://www.sciencedirect.com.proxy-remote.galib.uga.edu/science/article/pii/S0034425716301572?np=y&npKey=3c0c87d16b241fddbd877b2540ed2ae0e8eef7b7832857bb9dd77715b7c23af7#bb0085
http://www.sciencedirect.com.proxy-remote.galib.uga.edu/science/article/pii/S0034425716301572?np=y&npKey=3c0c87d16b241fddbd877b2540ed2ae0e8eef7b7832857bb9dd77715b7c23af7#bb0085
http://www.sciencedirect.com.proxy-remote.galib.uga.edu/science/article/pii/S027311771730114X?np=y&npKey=85401e6d6bfc5d740d1f1c5f076a68dc8b21a0ea17c9b9fe122e3a1777eebf27#b0005
http://www.sciencedirect.com.proxy-remote.galib.uga.edu/science/article/pii/S027311771730114X?np=y&npKey=85401e6d6bfc5d740d1f1c5f076a68dc8b21a0ea17c9b9fe122e3a1777eebf27#b0005
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CHAPTER 3 

RESULTS AND DISCUSSION 

 

3.1 UDEQ field campaign 

UDEQ published historical water quality and CyanoHAB data for Utah Lake on their 

publicly available website (http://deq.utah.gov/) that shows increasing trends of cyanobacterial 

presence which reached up to an unprecedented level (36 million cells/mL) in July 2016 (Figure 

3). Once the 2016 bloom was reported, UDEQ started frequent monitoring of the lake with weekly 

field sampling and results corresponding to each sampling location were posted on it’s website 

(http://deq.utah.gov/Pollutants/H/harmfulalgalblooms/bloom-2016/utah-lake-jordan-

river/index.htm) after analysis (Figures 3b-d).  The severity of the bloom around the closure date 

of the lake (July, 14 -16) is evident in Figure (3b). Sampling locations around Utah Lake State 

Park and Lincoln Beach revealed the highest CCD exceeding 10 million cells/mL (Figure 3b).  

Even Jordan River, connecting to the lake from the northern side showed significantly high levels 

reaching 10 million cells/mL. By July 26th, reductions in cell counts were observed in the field 

samples analyzed by UDEQ and also visible in Figures 3(c-d) However, these maps were point-

based analysis and could not reveal the full spatial extent of bloom distribution. On the other hand, 

the full extent of the bloom can be clearly observed in the false color composite satellite image 

derived from Landsat-7 (Figure 3e). 

 

 

http://deq.utah.gov/
http://deq.utah.gov/Pollutants/H/harmfulalgalblooms/bloom-2016/utah-lake-jordan-river/index.htm
http://deq.utah.gov/Pollutants/H/harmfulalgalblooms/bloom-2016/utah-lake-jordan-river/index.htm
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3.2 Satellite data – Utah Lake 

S2A MSI and LS8 OLI shared a coinciding overpass date on August 4th, 2016 over Utah 

Lake, capturing a significantly large cyanoHAB spanning across the lake’s entire surface area. 

With MSI overpass time at 18:21:55.985Z (~12:21 p.m local time) and OLI at 18:08:13.5692030Z 

(~12:08 p.m. local time), differences in cloud cover were observed between the two images. After 

masking for clouds and artifacts due to sun-glint for the MSI image, 57.1% of the pixels comprising 

the 368.5 square kilometer (km2) lake was available for analysis in a multispectral feature space. 

Similarly, cloud cover affected only 18.2% of the lake pixels during the OLI overpass, leaving 

approximately 116 mi2 for analysis. Finally, the two images were combined after resampling MSI 

from its native resolution (10m for RGB, 20m for NIR, 60 m for SWIR) to match OLI 30m spatial 

resolution, and any non-overlapping areas were eliminated. Remaining pixels covering 

approximately 124.8 km2 (33%) of the lake area was available for the selection of an ROI which 

contained n = 30,052 pixels for band comparisons. 

 

3.3 MAIN Performance – Utah Lake 

Atmospherically corrected Rrs values obtained from the MAIN algorithm overall generated 

realistic, non-negative values across Utah Lake for both MSI and OLI sensors (Figure 4a-h). High 

Rrs values in the green bands [MSI (560 nm)/OLI (561 nm)] is most likely attributed to the 

reflectance properties of Chl-a pigments in the cells of cyanobacteria which have a reflectance 

maxima at ~575 nm and ~700 nm. Similarly, high intensities observed in the red bands [MSI (665 

nm)/OLI (655 nm)] imply areas where suspended particulate matter (SPM) are the dominant 

influence (Nechad et al., 2010). The absence of a similar signal in MSI (665 nm)/OLI (655 nm) in 

the same areas where MSI (560 nm)/OLI (561 nm) is high further indicates the presence of Chl-a 
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species which also have an absorption maximum at 665 nm (Mishra and Mishra, 2011). 

Additionally, MSI has a band centered at 705 nm (not shown), another reflectance maximum 

signature for the direct measurement of Chl-a. These observations highlight the capabilities of MSI 

for water quality monitoring in regards to algal biomass quantifications. 

The utilization of two SWIR bands for an aerosol correction most noticeably allows the 

preservation of the NIR band(s) for Rrs computation (Figure 4d & 4h). While the NIR-based 

aerosol method’s assumption of a zero water-leaving reflectance in optically complex waters leave 

the NIR bands unusable, the SWIR-based approach allows the NIR bands to be utilized in bio-

optical models and other simple water quality band ratio analyses. It is important because the utility 

of the NIR bands in monitoring the quality of inland turbid productive waters has been 

demonstrated frequently in the last decade (Dall’Olmo et al., 2003; Gilerson et al., 2010; Mishra 

et al., 2013; Moses et al., 2012). It is also apparent that the OACs within Utah Lake have an 

influence on the water-leaving reflectance at MSI-864 nm / OLI-865 nm in some areas. This would 

lead to an over-estimation of aerosol contribution and result in negative water-leaving reflectances 

in those areas, generating unnecessary masked pixels (Dash et al., 2012; Vanhellemont and 

Ruddick, 2015). This observation supports the claim that an NIR-based aerosol correction would 

not be the most reliable option for productive inland waters for water quality purposes. 

Distribution patterns of the water surface features for cloud-free pixels remains preserved 

across both sensors before (not shown) and after (Figure 4a-h) atmospheric correction. These 

results are not surprising as the linear correlations between the MSI and OLI sensors have been 

demonstrated by (Mandanici and Bitelli, 2016) and (Vuolo et al., 2016). However, ρTOA between 

the two sensors experienced significant errors in magnitude relative to each other (Table 3). 

Although positive linear correlations of the reflectance values exist across the comparable 
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wavelengths before correction (Table 3, linear fit, before MAIN), the overall average signal 

received by MSI was found to be 54% lower than that retrieved by OLI (Figure 5a), with lower 

error in the blue/green and higher error in the red/NIR portion of the EMS (Table 3, MAPE, before 

MAIN). This is mainly attributed to the effect of the resampling procedure of MSI data to match 

OLI’s 30 m resolution (Mandanici and Bitelli, 2016). After implementing the MAIN algorithm on 

either dataset, Rrs not only preserved positive linear correlations across all wavelengths for both 

sensors, but also tuned the reflectance magnitude closer to a 1:1 line (Table 3, linear fit after 

MAIN) and significantly (p < 0.05) reduced the band-by-band MAPE comparisons, with a 

minimum of 3.3 % between MSI (496)/OLI (483) (R2 = 0.86) and a maximum of 15.4% between 

MSI (864)/OLI (865) (R2 = 0.80). 

Characterization of mean ρTOA, atmospherically corrected Rrs, Rayleigh and aerosol 

radiance are shown in Figure (5a-d). Since Rayleigh scattering is highly dependent on solar and 

viewing geometries and the location of the observation site within the scene (Dash et al., 2012), 

Lr values (Figure 5c) computed by the MAIN algorithm were in good agreement between MSI and 

OLI considering the coinciding overpass path on August 4th, 2016, a thirteen minute delay in image 

capture, and the nadir-viewing nature of the pushbroom sensors. Interestingly, although the mean 

ρTOA and Rrs signals retrieved by MSI are lower than that measured by OLI, radiance due to the 

multiple scattering of aerosols (Lam), on average, seemed to show more of a contribution in MSI 

than that measured by OLI. Though spectral shapes of Lam remained the same, the 90 nm and 180 

nm bandwidths of the two SWIR channels of MSI would suggest a reduced signal-to-noise ratio 

in these wavelengths. The increased intensity of Lam by the MSI sensor could be explained by a 

change in atmospheric properties during the thirteen minute time difference between the 

coinciding overpass of both sensors.  



 

39 

Indeed, a higher percentage of clouds covered Utah Lake (46.3% cloud coverage) during the MSI 

overpass than the OLI overpass (only 18% of cloud coverage), suggesting an increase water vapor 

content, however, a study on the rate of aerosol and water vapor distribution across short spatial 

scales could not be found to support this hypothesis. 

 

3.4 MAIN Validation – Lake Oconee / Sinclair 

Confidence in the MAIN algorithm Rrs values for both MSI and OLI were derived from a 

dataset collected in the field on October 22nd, 2014 during a coinciding OLI overpass (Path: 18, 

Row: 37). During this time, S2A had not yet been launched, and in-situ spectroradiometer 

measurements could only be statistically compared to OLI derived Rrs from the MAIN algorithm. 

Collecting remote sensing data in the field relies on a time window which is defined to be short 

enough to reduce the effects of temporal variability in the in situ data, yet sufficiently large to 

allow for the greatest possibility of a match (Bailey et al., 2000; Bailey and Werdell, 2006). 

Fortunately, with prior knowledge regarding flight track time of the OLI sensor, fieldwork was 

completed within a 3 hour window. Figure (6) displays the spectral profiles of each sampling site 

collected by GER-1500 spectroradiometer at Lake Oconee / Sinclair (red solid line) with 

corresponding MAIN modeled Rrs values (black solid line). The performance of the MAIN 

algorithm relative to in-situ Rrs exhibited very similar spectral shapes and signal intensities across 

each sampling site, specifically sites 6, 7 and 10. Ultimately, the differences in spectral shapes at 

the other study sites is due to variability of the OACs in the water column. Relative comparisons 

between the two variables demonstrated the feasibility of the MAIN algorithm for a potentially 

operational method for reducing atmospheric noise over inland waters, with a MAPE of 8.7% for 

OLI (561nm) and a MAPE of 16.6% for OLI (655nm) compared to that of ACOLITE which 
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resulted in a MAPE of 32.3% for OLI (561nm) and a MAPE of 23.6% for OLI (655nm). 

Interestingly, the USGS LS8-SRP product outperformed the MAIN algorithm only for OLI 

(655nm) with a MAPE of 11.1%, and the DOS method developed by Chavez (1988) out-competed 

both of these methods for OLI (655nm) with a resulting MAPE of only 2.4%. However, the 

performance of these two methods (LS8-SRP and DOS) for OLI (561nm) was nearly two- and 

three-fold worse than that of the MAIN algorithm. Performance evaluation through MAPE and 

nRMSE for each atmospheric correction used for the Lake Oconee / Sinclair in this study is 

displayed in Table (4), where bold numbers represent the lowest error generated from each 

atmospheric correction for each band. FLAASH on the other hand performed the worst, with a 

minimum MAPE greater than 90% in the blue band [OLI (483nm)], and therefore was excluded 

from further analysis. 

Investigating further into the performance of each atmospheric correction relative to in-situ 

Rrs measurements, spectral shapes were analyzed visually and can be seen in Figure (7). Variability 

of in-situ Rrs intensities across each band can be seen throughout the dataset (black dashed lines). 

The ability of each atmospheric correction method (blue dashed lines) to match that variability and 

magnitude is the ultimate qualification for best performance. Spectral patterns resulting from 

ACOLITE relative to those collected in-situ show an overall similar behavior, however, the SWIR-

based approach in this method seemed to have led to an underestimation of aerosol concentration 

across all wavelengths, as can be seen by the reduced magnitude of signal intensity (Figure 7c). 

This will ultimately lead to the underestimation of water quality parameters such as SPM or Chl-

a concentrations at each site when incorporated into bio-optical models. These results are similar 

to those found by Bernardo et al., (2017). 
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Although LS8-SRP and DOS outperformed the MAIN algorithm for OLI (655nm), an 

important band in which SPM measurements are calculated (Nechad et al., 2010, Vanhellemont 

and Ruddick, 2014; Dogliotti et al., 2015) relative to statistical closeness (Table 4), the Rrs spectral 

shapes modeled by these two methods when compared to the spectral profiles generated the MAIN 

algorithm are obviously dissimilar (Figure 7b, d and e). For example, the Rrs maximum generated 

from the DOS method for OLI (561nm) was less than the Rrs minimum collected in-situ (Figure 

7e). Similarly the Rrs minimum generated from the LS8-SRP method for OLI (865nm) was greater 

than the Rrs maximum collected in-situ. However, it is apparent that all Rrs values generated from 

the MAIN algorithm for OLI (483nm), OLI (655nm), and OLI (865nm) lie inside the range 

collected in-situ. Many studies involved in the remote sensing of lake water color rely on both 

simple and complex band-ratio algorithms for determining various water quality parameters 

(Pierson and Strömbeck, 2000; Härma et al., 2001; Östlund et al., 2001; Simis et al., 2005; Mishra 

et al., 2009). Therefore, it is necessary for all spectral bands to be as consistent as possible relative 

to those collected in-situ using a single atmospheric correction method. 

Minor differences in the spectra of each atmospheric correction can be seen looking at two 

different study sites in which each atmospheric correction method performed best relative to the 

other sites (Figure 8) Once again the entire spectral shape generated from the MAIN algorithm 

seems to match most appropriately to that collected in-situ for both sites. The consistent irregular 

spectral shape of the DOS method from OLI (483nm) to OLI (655nm), however more accurate 

than in the OLI (655nm) calculated by the MAIN algorithm, would lead to false estimations in 

simple green/blue and green/red band ratio-algorithms. Therefore, one should use caution when 

using these simple correction methods and carefully consider the atmospheric properties being 

quantified. 
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3.5 FAI, NDCI, Chl-a & CCD 

The FAI algorithms appears to be sensor independent after a strong positive linear 

correlation (R2 = 0.898, p < 0.001, n = 30,052) was observed between both FAIMSI and FAIOLI 

within the ROI (Figure 9a) on the August 4th, 2016 image (Figure 9b). The MSI image on August 

4th, 2016 over Utah Lake was processed for NDCI (NDCIMSI) and subsequent Chl-a 

concentrations. To assess whether the OLI sensor can accurately match Chl-a estimates retrieved 

from MSI even though it lacks the necessary band centered at 705 nm, the relationship between 

FAIMSI and NDCIMSI was examined. A significant positive linear relationship (R2 = 0.935, p < 

0.001) was found between FAIMSI and NDCIMSI based on the n = 30,052 pixels derived from the 

sampling ROI location (Figure 9c). The resulting linear regression extracted between the two 

variables was used to process all FAIOLI images into NDCIOLI. 

 

NDCIOLI = 3.4374 * FAIOLI + 0.212, (30) 

 

where NDCIOLI was further processed to estimate Chl-a concentration (Chl-aOLI) once again 

following the logic of Mishra and Mishra (2011), modified for the OLI sensor: 

 

Chl-aOLI = 14.039 + 86.115 (NDCIOLI) + 194.325 (NDCIOLI)
2, (31) 

 

This not only reveals new possibilities with unexplored OLI capabilities, but also assists in 

increased temporal quantification of bloom coverage when coupled with the MSI sensor.  
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Values of Chl-a estimates after NDCI calculation were extracted from the same ROI (n = 

30,052) near the PSWMA (Figure 9a) for the coinciding overpass date (August 4th, 2016) for both 

OLI and MSI (Figure 9d). Resulting Chl-aOLI estimations when compared with Chl-aMSI during 

validation showed a positive correlation (R2 = 0.883), however, underestimations of Chl-aOLI 

concentrations were also observed. This is in part due to the signal to noise ratio (SNR) loss 

experienced by MSI after resampling from 20 to 30 meters to match OLI’s spatial resolution 

(Vanhellemont and Ruddick, 2016) and difference in cross-sensor bandwidths. Nonetheless, the 

objective here was to match Chl-aOLI estimates as close to that being predicted by MSI (Chl-aSMSI), 

even after a decrease (20m to 30m) in MSI spatial resolution by resampling. Therefore, PEA was 

performed on the original Chl-aOLI estimates. This was accomplished by determining the percent 

error (PE) between each Chl-aOLI and associated Chl-aMSI pixel in which the resulting PE values 

are then added back to the original Chl-aOLI pixel estimates: 

 

Chl-aOLI_CAL = Chl-aOLI + Chl-aMSI (1 - (Chl-aOLI / Chl-aMSI)) (32) 

 

where Chl-aOLI_CAL is the calibrated Chl-a concentration estimation after PEA. The relationship 

between the August 4th Chl-aMSI and the calibrated Chl-aOLI_CAL processed images (R2=0.98) seem 

to explain the concentration differences observed between the two sensors prior PEA as a result of 

the SNR loss experienced by MSI after resampling (Figure 10, before PEA). A significant 

improvement was observed after compensating the error which modified the slope (~1) and bias 

(0.3) (Fig. 10, after PEA).  
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The PEA method increased the overall predictions to the original Chl-aOLI estimation, as expected, 

in all pixels to match readings closer to Chl-aMSI. Chl-aOLI_CAL was then regressed against the 

original Chl-aOLI image to derive a linear equation (R2 = 0.94) that can be applied on the other OLI 

images comprising the time series from June to August: 

 

Chl-aOLI* = 1.5251 * Chl-aOLI – 5.4534 (33) 

 

where Chl-aOLI* is the corrected and final Chl-a concentration determination algorithm (Fig. 10, 

after PEA), which added one more step in estimating Chl-a concentrations after first being derived 

from NDCIOLI. 

 Point-based maps and analysis conducted by UDEQ across the July 2016 bloom event 

could not reveal the full extent of the bloom coverage (Figures 3b-d). Therefore, calibration of 

Chl-aMSI with UDEQ CCD field sampling data (n = 12) was accomplished through a linear 

regression (R2 = 0.62; n = 12; p < 0.05): 

 

CCDSAT (cells / mL) = 4,989.5 (Chl-aSAT) – 131,742 (34) 

 

where SAT is the either MSI or OLI_CAL. This relationship (Equation 34) was further used to 

create spatio-temporal maps of CCD over the entire lake. Time series composites of final RGB, 

FAI, Chl-a and CCD products containing all available imagery dates over the summer 2016 bloom 

event are displayed in Figures 11 and 12 from both MSI and OLI sensors respectively.  
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3.6 Time series composites 

The time series composites of FAI maps revealed positive values (> 0.03) in the month of 

July, 2016 indicating a bloom condition in the lake (Figure 11, row 2). Hu (2009) showed the 

potential of FAI to isolate the areas affected by floating algae using both MODIS and Landsat 

ETM+ satellite sensors. However, both being relatively new operational satellite sensors, neither 

MSI nor OLI data have ever been used to incorporate this index by a means to quantify a 

cyanobacterial bloom. Spatio-temporal analysis of the Chl-aMSI maps revealed similar patterns for 

the bloom onset (first week of July), peak level (mid-July), and then decay of the bloom (August) 

as reported by UDEQ in their official website. A significant high level of Chl-a concentration can 

be clearly observed on July 15th, July 22nd, and even on August 4th spatial maps (Figure 11, row 

3). Spatio-temporal maps of CCDMSI showed a somewhat faint sign of cyanobacteria in the middle 

of the lake before July 2016 (Figure 11, row 4). It should be noted that the CCD model (Equation 

34) produced a bias of 131,742 cells/ml which indicated that the CCD model may produce higher 

error for low cell count areas. More field data from known CyanoHAB events are required to tune 

and validate this model for a broad CCD range. However, Provo Bay, wedged between the central-

eastern coasts of the lake, showed measurable signs of cyanobacteria cells even in prior months. 

This could be associated with a considerable amount of sewage input as this area is very close to 

urban communities and waste water treatment plants. According to the Utah division of water 

quality, about 80% of the algal bloom causing phosphorous comes from effluent discharges by 

wastewater treatment plants. Apart from Provo Bay, a small indication of cyanobacteria growth 

was observed at the start of July (July 2nd, 2016) in the southernmost part of the lake which 

significantly increased in mid-July (July 15th and July 22nd, 2016) and covered almost the entire 

lake as observed from the time series analysis of spatial maps (Figure 11). The cell count was 
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significantly high on July 15th, 2016 which corroborated with the results of field sampling reported 

by UDEQ (Figs. 3b-d and Fig. 11). However, the MSI image on July 15th, 2016 was affected by 

sun glint near the southeastern portion of the lake and could not show the full extent of the bloom. 

Cell count numbers reduced as the day progressed and only some areas near the southeastern 

shoreline of the lake indicated lower level of cell density on August 24th, 2016 and can be seen on 

the map (Figure 11). 

 Additional analysis of the OLI derived spatio-temporal maps of FAI, Chl-a, and CCD filled 

the gaps between MSI image dates (Figure 12). The OLI spatial maps produced starting from June 

1st, 2016 through August 20th, 2016 followed a similar pattern (start of bloom on July 2nd, peak on 

July 19th, and lowest level on August 20th, 2016) to that of the MSI derived spatio- temporal maps 

(Figure 12). This continuity of a pattern validated that the two sensors can effectively be coupled 

in future studies for low cost continuous monitoring of algal blooms at increased temporal 

resolution. 

  

3.7 Time series analysis 

Mean values of Chl-a and CCD from each cloud and sun-glint free pixel corresponding to 

each date from both MSI and OLI sensors were plotted across the July 2016 bloom event timeline 

(Figure 13). Time series analysis of mean Chl-a and CCD clearly revealed the start-peak-decay of 

the bloom. Coupling of the two sensors provided a complete time series starting from June to 

August. Temporal patterns shown in Figure (13) included data from both MSI (total 12 images: 

June 12th , July 2nd, July 15th, July 22nd, August 4th, and August 24th) and OLI sensor (June 1st, June 

12th, July 3rd, July 19th, August 4th, and August 20th ) which together showed similar a trend of the 

bloom as reported by UDEQ in their daily updates related to the 2016 CyanoHAB.  
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A small increase in mean Chl-a concentration was observed on July 2nd (mean Chl-a: 14.59 ug/L) 

from June 17th (mean Chl-a: 8.84 ug/L), which significantly increased on July 15th (mean Chl-a: 

36.15 ug/L), and reached a maximum level on July 19th, 2016 (mean Chl-a: 46.44 ug/L) (Figure 

13). After July 19th, Chl-a concentration reduced gradually and reached a similar level on July 3rd, 

2016 (mean Chl-a: 18.09 ug/L) and on August 24th, 2016 (mean Chl-a: 18.01). A similar trend was 

found in CCD which showed significant jump in mean cell count on July 15th (mean cell count: 

108,176 cells/mL) from July 3rd, 2016 (mean cell count: 9,163 cells/mL) and started reducing in 

following dates that reached a similar level compared to that of July 3rd and on August 24th, 2016 

(mean cell count: 9,145 cells/mL) (Figure 13). These results not only validated the range and 

pattern shown using field sample data analyzed and published by UDEQ, but also reveals how fast 

a bloom can grow if the environmental conditions are favorable. These results demonstrate that 

satellite–based monitoring methods can be a great tool for lake resource managements and state 

agencies for regular monitoring and will reduce the budget cost for monitoring and predicting 

CyanoHABs in large lakes. 
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Figure 3. Historical comparison of cyanobacteria cell count in Utah Lake. Box plot of 

cyanobacterial cell density of Utah Lake from 2008 to 2016 measured by UDEQ, (a). The dashed 

yellow line is a warning threshold and the dashed red line represents lake closure threshold. Dates 

and sampling locations for cyanobacterial cell density during the July 2016 bloom (b-d). The 

floating algae was also captured by Landsat-7 image (RGB=5,4,2) and shown in green color (e). 

(Note: All images corresponding to field sampling results (a-d) were obtained from UDEQ). 
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Figure 4. Pseudocolor distribution maps of Rrs over Utah Lake derived from MSI (top) and OLI 

(bottom) across all comparable wavelengths (a-h). Cloud masking and sun-glint removal is 

represented by black pixel regions 
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Table 3. Linear relationship (R2) and mean absolute percent error (MAPE) between MSI and OLI 

band before and after MAIN atmospheric correction 

 Before MAIN Correction   After MAIN Correction   
Band(λ) Linear Fit (y = mx  + b) R2 MAPE (%) Linear Fit R2 MAPE 

[MSI (496), 

OLI (483)] MSITOA = 0.956  x OLITOA + 0.103 0.86 45.82 

MSIRrs = 0.966  x OLIRrs + 

0.00014 0.86 3.33 

[MSI (560), 

OLI (561)] MSITOA = 0.824  x OLITOA + 0.062 0.88 42.08 

MSIRrs = 0.785  x OLIRrs + 

0.00591 0.87 10.41 

[MSI (665), 

OLI (655)] MSITOA = 0.832  x OLITOA + 0.081 0.92 54.94 

MSIRrs = 0.802  x OLIRrs + 

0.00268 0.91 15.15 

[MSI (864), 

OLI (865)] MSITOA = 0.730  x OLITOA + 0.074 0.72 73.73 

MSIRrs = 0.823  x OLIRrs + 

0.00102 0.80 15.38 
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Figure 5. Spectra comparisons of mean ρTOA (a), Rrs (b), Lr (c), and Lam (d) (n = 30,200) between 

the coinciding overpass of OLI (black solid line) and MSI (black dashed line) on August 4th, 2016 

over Utah Lake.  
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Figure 6. Spectral profiles of each SL site collected by GER-1500 hyperspectral spectroradiometer 

on October 22, 2014 (red) and corresponding Rrs estimates derived from atmospherically corrected 

(MAIN) OLI bands 1-5 (443, 483, 561, and 655 nm) (black). 
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Table 4. Band-by-band comparison through MAPE and Normalized Root Mean Square Error 

(nRMSE) analysis (%) between in-situ Rrs and each atmospheric correction method for the OLI 

image over Lake Oconee / Sinclair on October 22nd, 2014 

 

Correction Method nRMSE (%) MAPE (%) 

ρTOA     

[OLI (483nm)] 609.1 1146.9 

[OLI (561nm)] 413.6 430.9 

[OLI (655nm)] 233.2 404.0 

[OLI (865nm)] 109.1 1134.4 

MAIN     

[OLI (483nm)] 36.4 4.8 

[OLI (561nm)] 27.1 8.7 

[OLI (655nm)] 55 16.6 

[OLI (865nm)] 35.1 135.8 

ACOLITE     

[OLI (483nm)] 60.3 43.4 

[OLI (561nm)] 85.6 32.3 

[OLI (655nm)] 97.9 23.6 

[OLI (865nm)] 50.4 54.8 

OLI-SRP     

[OLI (483nm)] 31.4 14.0 

[OLI (561nm)] 54.5 19.1 

[OLI (655nm)] 30.7 11.1 

[OLI (865nm)] 73.6 292.9 

DOS     

[OLI (483nm)] 28.5 7.4 

[OLI (561nm)] 79.8 25.4 

[OLI (655nm)] 26.9 2.4 

[OLI (865nm)] 70 281.1 
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Figure 7. Rrs spectra of 15 study sites collected on October 22nd, 2014 at Lake Oconee / Sinclair 

(dashed black line) and corresponding spectra from each atmospheric correction method (dashed 

blue line). 
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Figure 8. Spectral profiles from two different study sites on Lake Oconee / Sinclair (SS: 6, SL: 2 

/ SS: 10, SL: 3) after applying all atmospheric corrections excluding FLAASH. 
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Figure 9. (a) OLI RGB composite on August 4th, 2016 showing sampling ROI (n = 30,052 pixels) 

near the PSWMA. (b) Density scatter plot between FAIMSI and FAIOLI layers. (c) Regression 

between NDCIMSI and FAIMSI for NDCIOLI determination. (d) Relationship between Chl-aOLI and 

Chl-aMSI (before PEA). 
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Figure 10. Relationship between August 4th, 2016 Chl-aOLI and Chl-aMSI before and after PEA 

correction. Overall increase in Chl-aOLI signal after PEA compensates for the differences observed 

caused from the SNR loss when resampling MSI from 20 to 30 m. 
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Figure 11. Rayleigh corrected, MSI derived spatio-temporal patterns of FAI, Chl-a, and CCD. 

True color images (RGB: 3,2,1) corresponding to each date are also included to compare the 

patterns in variability. Sun glint affected area are marked by open white circle, indicated by arrows 

and not included in the analysis. 
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Figure 12. Rayleigh corrected LS8 OLI derived spatio-temporal patterns of FAI, Chl-a, CCD from 

June to August 2016. Black zones within the FAI and Chl-a images (July 3rd – August 4th) are a 

result of cloud masking during the pre-processing phase. Black zones within the CCD time series 

products were below the bias threshold of 131,742 (cell/ml) for the CCD model (Equation 34). 
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Figure 13. Time series values of Chl-a and CCD for all cloud free images incorporated in analysis. 

Both Sen2A and OLI derived concentration and cell density are included (MSI data points are 

marked in black colors and OLI data points are marked in blue colors). 
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CHAPTER 4 

CONCLUSION 

 

Effective quantification and phenological analysis of a massive CyanoHAB in Utah Lake 

using two operational satellite sensors was successfully achieved in this study. The efficacy of the 

MAIN algorithm when coupling LS8 OLI and S2A MSI sensors served as a viable alternative to 

derive accurate ρrc, ρw, and Rrs values for water quality bio-physical models than other commonly 

used atmospheric corrections. Additionally, cross-sensor calibration of NDCI from FAI provided 

a novel alternative way to use the OLI sensor for extracting NDCI and consequently estimating of 

Chl-a values without the presence of one of the two specific bands (705 nm) required for the 

computation. 

Because of the overall conservation of spectral shape and the consistent low error 

associated between in-situ and the MAIN derived Rrs values relative to the performance of the 

other atmospheric corrections analyzed in this study, the MAIN algorithm should be considered 

for reference in future studies intending to derive OACs from inland water bodies for water quality 

purposes. For example, ESA’s BEAM application is an open-source toolbox and development 

platform for viewing, analyzing and processing of remote sensing raster data. Originally developed 

to facilitate the utilization of image data from Envisat's optical instruments, BEAM now supports 

a growing number of other satellite instruments including the Sentinel and Landsat constellation. 

The accuracy of the retrievals acquired by comparisons with concurrent in-situ ground 

measurements was published in full detail elsewhere. For the remote sensing reflectance product 

http://github.com/bcdev/beam
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when using BEAM, a mean absolute percentage error (MAPE) of 18% was derived within the 

spectral range 412.5–708.75 nm (Schroeder et al., 2007) while the accuracy resulting from the 

MAIN algorithm resulted with a MAPE of 10% in the spectral range from 443 – 655 nm. 

Unlike the other atmospheric corrections tested (ACOLITE, DOS, LS8-SRP and 

FLAASH), the MAIN algorithm requires some user-input parameters for Rrs calculation such as 

site elevation and ozone concentration (in DU) of which can be conveniently retrieved from 

Google Earth and NASA’s Ozone Over Your Head online application, respectively. Additionally, 

the MAIN algorithm generates maps of aerosol distribution (Lam) for each band to understand 

aerosol variability and spatial distribution over inland waters. Finally, the MAIN algorithm relived 

the need to perform any vicarious calibration often required by other ocean color platforms to 

empirically match the signal received by the satellite with ground radiometric measurements. 

Cross-sensor comparisons between MSI and OLI Rrs values derived from the MAIN 

algorithm have resulted in significant relationships across all comparable bands, with high 

correlation coefficients as well as similar intensity readings. Of course, the overall accuracy of the 

estimated Rrs from MAIN processed MSI and OLI images for Utah Lake would improve with 

frequent, routine in-situ sampling consisting of both water surface radiometric measurements and 

atmospheric properties (ozone, aerosols) in a more systematic manner to fully understand the 

relationships between Rrs and the OACs in the water column. This would allow the formation of a 

much larger dataset to gain the confidence in the quantification of future water quality parameters.  

Resulting CCD estimations in Utah Lake were a preliminary, novel way to quantify the 

cyanobacteria biomass using in-situ CCD measurement derived from UDEQ and Chl-a 

concentrations derived from satellite product. Considering the range of CCD during field sampling 

campaigns, the CCD model derived from MSI and OLI would not be able to detect lower 
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concentrations of cyanobacteria biomass even though cyanobacteria may be present. This was 

partly due to the small sample size (n = 12) as clouds interfered with the lower portion of the lake 

and those samples collected by UDEQ had to be masked out to prevent unrealistic values. As the 

CCD model was calibrated with a Chl-a detection model and not a PC model, this method is only 

suitable for known cyanobacterial bloom assessments. Running the same model on a random 

inland water body to for the detection only of cyanobacteria without any local knowledge would 

not provide a reliable conclusion about whether the positive readings are from cyanobacteria or 

from another photosynthetic species containing chlorophyll. 

Currently, there is no rapid, large scale operational tool readily available for monitoring 

this phenomenon other than through the use of satellite based remote sensing. Phenological 

assessment maps generated by the proposed methodology is a significant first step in providing a 

visual and quantifiable approach to understand the seasonal variability of a particular water body 

of interest. Additionally, time series analysis clearly allows studies to reveal the start-peak-decay 

patterns of bloom events. This may be helpful regarding taking preemptive measures for both 

environmental and economic purposes. Complimentary datasets, including the addition of routine 

in-situ radiometric measurements during a bloom event in addition to observing meteorological 

parameters and atmospheric conditions for the validation of satellite derived products would 

definitely improve the current proposed methods in this study. Additionally, with the rise of 

unmanned aerial systems (UAS) (drones, quadcopters, etc.) and the ever decreasing prices of 

smaller, handheld spectroradiometers, potential problems often encountered in satellite imagery 

could be eliminated. For example, a cloudy image over a target lake is useless, but a multi-spectral 

sensor attached to a UAS can provide a rapid assessment of the affected area and potentially derive 

preliminary concentration estimates.  
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Furthermore, spectral imaging or real-time RGB video from UAS relieves the need for an 

atmospheric correction, which resolves pre-processing time and frustration. 

On the other hand, this free, robust multi-satellite based method can not only have a large 

impact on the proposed ongoing project conducted by UDEQ, but also for many other inland water 

bodies which face frequent CyanoHABs every summer as the warming trend continues. The 

satellite-based techniques proposed in this study can essentially be applied to any sensor that 

contains the required input bands after derived accurate Rrs values with the MAIN algorithm. 

Obviously, with the increasing frequency of CyanoHAB events across thousands of inland water 

bodies, the time and resources needed to validate every satellite overpass is incomprehensible. In 

the meantime, monitoring inland water quality using higher spatial resolution satellite imagery 

combined with widely accepted, traditional water quality algorithms developed in the past can 

provide a spatially accurate representation of the study area in addition to a quantitative, 

preemptive assessment at no expense.  
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APPENDIX A 

LIST OF ACRONYMS (in alphabetical order) 

AU: Astronomical unit 

CCD: Cyanobacterial cell count 

CDOM: Colored dissolved organic matter 

Chl-a: Chlorophyll-a 

cyanoHABs: Cyanobacterial harmful algal blooms 

λ: Wavelength 

d: Earth-sun distance 

DN: Digital number 

DOS: Dark Object Subtraction 

DU: Dobson Unit 

ESA: European Space Agency 

EVI: Enhanced Vegetation Index 

FAI: Floating Algal Index 

FLAASH: Fast Line-of-sight Atmospheric Analysis of Hypercubes 

Fo’: Instantaneous extraterrestrial solar irradiance  

L1C: Level-1C 

Lr: Rayleigh radiance contribution 

Lrc : Rayleigh-corrected radiance 

Lt*: Top-of-atmosphere radiance corrected for ozone 
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LTOA: Top-of-atmosphere radiance 

LS8: Landsat-8 

MAIN: Modified atmospheric correction for inland waters 

MERIS: Medium Resolution Imaging Spectroradiometer 

MODIS: Moderate Resolution Imaging Spectroradiometer 

MSI: MultiSpectral Imager 

NASA: National Aeronautics Space Administration 

NDCI: Normalized Difference Chlorophyll Index 

NDVI: Normalized Difference Vegetation Index 

NIR: Near-infrared  

NOAA: National Oceanographic and Atmospheric Administration 

OACs: Optically-active constituents 

OBPG: Ocean Biology Processing Group 

OCM: Ocean Color Monitor 

OLI: Operational Land Imager 

P: Pressure 

RGB: Red, Green, Blue 

ROI: Region of interest 

Rrs: Remote sensing reflectance 

ρrc: Rayleigh-corrected reflectance 

ρTOA: Top-of-atmosphere reflectance 

ρw: Water-leaving reflectance 

S2A: Sentinel-2A 



 

78 

SeaWiFs: Sea-Viewing Field-of-View Sensor 

SNAP: Sentinel Application Platform 

SWIR: Short-wave infrared 

t: Transmittance 

TOA: Top-of-atmosphere 

UDEQ: Utah Department of Environmental Quality 

 


