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Abstract

This dissertation studies the least squares estimator of a trend parameter in a simple

linear regression model with multiple changepoints when the changepoint times are known.

The error component in the model is allowed to be autocorrelated. The least squares esti-

mator of the trend and the variance of the trend estimator are derived. Consistency and

asymptotic normality of the trend estimator are established under wide generality. The Lund

et al. (2001) temperature trend study of the contiguous 48 United States is updated as an

application.
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Chapter 1

Introduction

There has always been a keen interest in statistical changepoint problems as they are encoun-

tered in diverse disciplines such as climatology, economics, finance, medicine, psychology,

geology, etc. Changepoints are times where the series under study first undertakes a struc-

tural change. Such change is usually in mean structure, but can also refer to variance changes,

or changes in the marginal distributions. Multiple changepoints may be present.

Changepoints are present in many climatic time series, our ultimate object of study

here. For example, changepoints in temperature series are plausible whenever the recording

station physically moves, the thermometer is changed, the thermometer shelter is altered,

an observer changes, etc. The time of a changepoint may be explicitly noted in the station

history logs or may not be documented at all. Fortunately, in many climate settings the

time of the changepoint is known. Undocumented changepoint time(s) greatly complicate

the analysis.

Changepoints can substantially alter conclusions made from climate series. Consider the

New Bedford, MA, series plotted in Figure 1.1. This series has experienced 4 changepoints

since 1812; in particular, the station was physically moved in 1906 and there were instru-

mentation changes in 1888, 1951, and 1985. The solid and broken lines depict least squares

fitted lines to the series. A linear annual trend estimate and standard error for this series is

1.3835 ±0.3415◦C per century when changepoints are ignored and −0.2817 ± 0.4979◦C per

century when changepoints are taken into account. Note that there is a large discrepancy in

the estimates — they differ by a factor of about 5 and the directions (signs) are even dif-

ferent. Note also that the standard error has increased from 0.3415◦C per century (ignoring
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changepoints) to 0.4979◦C per century (taking changepoints into account). The estimated

regression responses from the changepoint and non-changepoint models are compared graph-

ically against the raw series in Figure 1.1. The New Bedford series is not pathological; in

fact, Lund, Seymour, and Kafadar (2001) show that changepoints are the single most crucial

factor in developing an accurate linear temperature trend estimator at a single station in the

United States. Whereas one believes that a spatial law of large numbers holds, specifically

that changepoints for series aggregated over large geographical areas average to zero, the

overall importance of changepoints at an individual station is clear.

In this dissertation, the focus is on known changepoint times in the mean response of the

series in the setting where many changepoints are present. Changepoints in variability, or

more general structural changes in the marginal distributions of the series, are not considered.

The rest of the dissertation is organized as follows. Chapter 2 reviews historical and

recent literature on changepoints. Chapter 3 studies a simple linear regression model with

multiple changepoints under two different time series error structures. The large sample

properties of the trend estimator are examined and its asymptotic normality is established

under wide generality. Chapter 4 updates the Lund et al. (2001) temperature trend study of

the contiguous 48 United States for data observed during the last four years and proposes

some methodological improvements over past work.

1.1 References

[1] Lund, R.B., Seymour, L., and Kafadar, K. (2001). Temperature trends in the United

States, Envirometrics, 12, 673-679.



Chapter 2

Literature Review

2.1 Changepoint problems in statistics

Changepoint problems comprise a rapidly growing area of statistics, both in theory and

applications. In an intuitive sense, a changepoint is a time point such that the observations

follow one distribution up to that point and a distinct distribution thereafter. There are

two fundamental changepoint problems: one is to detect if there are any changepoints in the

sequence; the other is to estimate the number of changes and their corresponding locations

when a changepoint is present. Frequently used methods for changepoint inference in the

literature include maximum likelihood, Bayesian methods, and nonparametric tests. Different

types of changepoints exist (mean, variance, etc.); however, the most often investigated

changepoint problem is that of the change in the mean of a sequence of random variables.

2.1.1 Single changepoints

Many previous authors consider detecting changes in the mean of a sequence of normal

random variables experiencing a single changepoint at an unknown time. This problem was

first examined by Page (1955). Page employed a Shewhart control chart approach (Shewhart

1931) and constructed a sequential test based on a cumulative sum (CUSUM) scheme. Cher-

noff and Zacks (1964) proposed a Bayesian approach to detect a possible shift in a param-

eter of a distribution occurring at unknown time(s). Their results were later generalized by

Kander and Zacks (1966) to the case of a one-parameter exponential family, and by Gardner

(1969) to the case of an unknown positive mean shift. Sen and Srivastava (1975) obtained the

precise null hypothesis distribution of Gardner’s statistic and compared Bayesian tests with

4
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the maximum likelihood statistic for the single changepoint problem. The next important

advance was made by Hinkley (1970, 1971a). Hinkley investigated a maximum likelihood

approach for general changepoints in the mean response when the parameters of the time

series are allowed to vary at the changepoint time. Hawkins (1977) and Worsley (1979)

derived the null hypothesis distribution for the case of known and unknown variances of a

single change in mean.

The above parametric methods apply to changepoint detection in a sequence of inde-

pendent random variables. This assumption, however, falls far short of being practical for

many applications. Since the 1980s, methods of changepoint detection for dependent random

processes have attracted substantial attention. The work of Box and Tiao (1965) was among

the first in this direction. They assumed a non-stationary integrated moving average model

of observations. For detection of a shift in the mean value of such sequences, a Student’s

t-statistic was used. Picard (1985) estimated a shift in a Gaussian autoregressive process

of a known autoregressive order. Tang and MacNeill (1993) proposed adjustments to test

statistics to account for the effect of serial correlation. An influential area of changepoint

detection for random sequences takes a non-parametric approach. Non-parametric methods

have been proposed by Bhattacharya and Johnson (1968), Pettit (1979), and Bhattacharya

and Friesson (1981).

2.1.2 Multiple changepoints

Most early changepoint works concentrate on the case of a single changepoint in the mean of

a random sequence. The problem of multiple changepoints has not been as heavily trodden

upon. To detect multiple changepoints, Vostrikova (1981) proposed a method, known as a

binary segmentation procedure, to simultaneously estimate the number of changepoints and

their locations. Vostrikova’s advance was primarily an algorithm that saved computation

time. Vostrikova’s first step tests the null hypothesis of no changepoint versus the alterna-

tive of one changepoint. If the null hypothesis is rejected, the two subsequences before and
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after the changepoint found are analyzed in steps. The process is repeated until no further

subsequences are found to have an additional changepoint.

Srivastava and Worsley (1986) proposed a likelihood ratio test for detecting a change in

the mean of a sequence of independent normal random vectors. In Yao (1988), a version of

Schwarz’s criterion was used for changepoint detection. James, James and Siegmund (1992)

derived an asymptotic approximation for the likelihood ratio test and confidence regions for

the change in multivariate normal means.

In recent years, new techniques have been applied to multiple changepoint problems.

Barry and Hartigan (1992) consider this problem in the framework of the Markov produc-

tion model. Stephens (1994) discusses the use of the Gibbs sampler in multiple changepoint

problems and demonstrate how it can be used to considerably reduce the computational

analysis load. In Wang (1995), the problem of detection of multiple changepoints in a Gaus-

sian random sequence with the use of wavelet transformations was considered. Chib (1998)

introduced a Bayesian approach for models with multiple changepoints.

2.1.3 Changepoints in regression models

If the series indeed has a changepoint, then a one-regime regression model obviously leaves

the data poorly explained. Changepoint problems in regression models were first considered

by Quandt (1958, 1960), who derived a likelihood ratio test based on testing and estimating a

linear regression model obeying two distinct regimes. Hinkley (1969, 1971b) studied estima-

tion and inference in a two-phase regression model, examining the null hypothesis distribution

of an F -type test statistic. Later, Lund and Reeves (2002) pointed out that Hinkley’s claim of

an F distribution is incorrect and leads to an overestimation of the number of undocumented

changepoints. Ferreira (1975) studied a switching regression model from a Bayesian point of

view with the assumption of a known number of changepoints. Brown, Durbin, and Evans

(1975) introduce a method involving recursively computed residuals to test for changepoints

in multiple regression models. Hawkins (1989) used a union and intersection approach to
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test for changes in a linear regression model. In Kim and Siegmund (1989), asymptotic prop-

erties of a maximum likelihood statistic were investigated for testing the null hypothesis of

statistical homogeneity in a linear regression model against a changepoint alternative for the

case when the regression function is not continuous at the time of the changepoint. Gombay

and Horvath (1994) consider tests based on the maxima of weighted cumulative sums based

processes to detect possible changepoints in a multiple linear regression. Andrews, Lee and

Ploberger (1996) derive a class of finite-sample optimal tests for one or more changepoints

at unknown times in a multiple linear regression model.

In this dissertation, the process which is studied is a simple linear regression model with

multiple changepoints, where the changepoint times are known. This model allows for a mean

shift at each changepoint time and simultaneous estimation of any trend and changepoint

effects. The error component in the regression model is allowed to be autocorrelated, which

is one of our main technical advances. In particular, we compute the least squares estimate

of the trend and derive its variance in this setting. The large sample properties of the trend

estimate are examined and its asymptotic normality is established under wide generality.

2.2 Changepoint problems in climatology

Changepoints (inhomogeneities) are present in many climatic time series. Climatologists have

studied changepoint problems extensively (cf. Thompson 1984, Alexandersson 1986, Jones et

al. 1986; Karl and Williams 1987, Rhoades and Salinger 1993, Easterling and Peterson 1995,

Vincent 1998). The importance of using homogeneous climate series in climate research has

received much attention. Analyzing raw inhomogenous climate data can seriously change the

assessment of climate trends and variability.

2.2.1 Homogeneity Methods

A homogeneous time series in climatology is defined as one where variations are caused only

by variations in weather and climate (Conrad and Pollak 1962). It has long been known that
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most of the long-term station air temperature records are not homogeneous, since they con-

tain changes that result from nonclimatic effects such as new instruments, station relocation,

and changes in averaging methods for time-averaged quantities, etc.

Inhomogeneities in climatic time series can occur either as gradual trends or as a discon-

tinuity (sharp change). Gradual trends may occur due to urban warming or other effects that

accumulate over time. However, discontinuities can be linked to many physical reasons: from

station moves and instrument changes to changes in methods for calculating time-averaged

values (Easterling and Peterson 1995).

In practice, it is not possible to discriminate between natural (climatic) and artificial

(nonclimatic) variations in climatic time series. In other words, it is generally impossible to

decide whether or not a series of observations is homogeneous. In this sense, we view homo-

geneity in terms of what Conrad and Pollak (1962) have defined as relative homogeneity: ”A

climatological series is relatively homogeneous with respect to a synchronous series at another

place if the temperature differences (precipitation ratios) of pairs of homogeneous averages

constitute a series of random numbers that satisfies the law of errors.” Statistical looseness

aside, this definition indicates that the variations in weather have similar tendencies over

rather large regions. So neighboring stations should paint the same picture of temperature

change. For example, a cold winter in Athens, GA, is usually accompanied by a cold winter

in Atlanta, GA.

2.2.2 Adjusting for inhomogeneities in climatological time series

To make homogeneity adjustments to a climatic series with possible changepoints, two basic

approaches have been developed. One is based on the use of metadata (station history)

when available, and the other is based on statistical methods to detect undocumented inho-

mogeneities when station history information is not available.

a. Adjustments for inhomogeneity by metadata
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Our data source of monthly mean temperatures is the U.S. Historical Climatology Network

(USHCN), which has reasonably good station history records (Karl et al. 1990). Station

history information provides times of station moves, changes in instrumentation, height of

instruments above the ground, etc., at each observing site. Such metadata permits adjust-

ments for inhomogeneity.

Karl et al. (1986) derive a correction for the time-of-observation bias to convert daily tem-

perature to a midnight-to-midnight scale and verify its validity from hourly data available at

many U.S. stations. To apply such a bias correction, it is necessary to have reliable metadata

defining all changepoint times in the station record. Karl and Williams (1987) have developed

a detailed procedure for adjusting for site changes when the changepoint times are known

a priori. The adjusted data retain its original scale and did not, for the most part, contain

anomalies. Karl et al. (1988) have concluded that urban effects on temperature are detectable

even in small towns (say with a population under 10,000). Also, systematic discontinuities

were introduced by the change from liquid-in-glass thermometers to the maximum-minimum

temperature system (MMTS) commonly used in the U.S. Cooperative Network (Quayle et

al. 1991) today. Rhoades and Salinger (1993) propose a method for estimating the effect

of known site changes on temperature and rainfall measurements. For temperature data, a

site-change effect can be estimated by computing a difference between the target station and

a weighted mean of neighboring stations.

b. Detection of and adjustment for inhomogeneities

Reliable monthly mean temperature records are usually very important in making useful

decisions in many climatological applications. One way of checking the reliability of a climatic

series is to compare a candidate station (a station which may require adjustments due to non-

climate changepoints) with nearby, closely related (specifically, highly correlated) reference

stations. This is the idea behind all tests of relative homogeneity. Neighboring stations can

reveal discontinuities at the candidate station more readily when the correlation between
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the candidate and its neighbors is high and the year-to-year variances of the anomalies are

small (Karl and Williams 1987).

A method for detecting changepoints without reference stations was proposed by

Thompson (1984). This might accidentally remove the long-term trend from the climate

records in the course of adjusting for identified changepoints, since there is no way of dis-

tinguishing changes of meteorological origin from site-change effects (Rhoades and Salinger

1993).

Jones et al. (1986) develop a visual technique to identify any major inhomogeneities.

Alexandersson (1986) used a single reference series created from a number of neighboring

stations. This helps minimize the effects of a discontinuity in one of the neighboring stations’

time series. Easterling and Peterson (1995) present a method for detecting undocumented

changepoints, which is based on regression models with the difference between the candi-

date and reference series as the response variable and time as the explanatory variable. A

two-phase regression model was used to identify the position of the changepoint and sig-

nificance of the changepoint was tested with an F -based statistic. Lund and Reeves (2002)

showed that this F test overestimates the number of undocumented changepoints and they

propose an Fmax test, which has performed reasonably well. The method in Lund and

Reeves (2002) allows for detecting both step- (discontinuity) and trend- (gradual trend)

type changepoints. Vincent (1998) describes a technique to identify nonclimatic steps and

trends in Canadian temperature series. This technique is based on the application of four

linear regression models; a residual analysis is used to assess the fit of the model.

Easterling et al. (1996) note that using climatic time series with homogeneity adjustments

can produce somewhat different results than using unadjusted data. Therefore, care must be

taken when using either the adjusted or unadjusted time series at an individual station.

In this dissertation, under known changepoint times given by the station history records

without data adjustment for inhomogeneities, our methods can simultaneously estimate both
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trend and changepoint effects. The methods allow for both mean shifts (step-type change-

point) at each changepoint time and overall trends effects.

2.3 Asymptotic normality of the OLS estimator

Consider the statistical regression model

yt = f(xt, β) + εt, t = 1, 2, . . . , n, (2.3.1)

where the series {εt} are zero mean errors. The ordinary least squares (OLS) estimator,

denoted by β̂, is defined as an argument of β that minimizes the sum of squared residuals

Sn(β) =
n∑

t=1

{yt − f(xt, β)}2. (2.3.2)

For a nonlinear regression function f(xt, β), general conditions which ensure the asymp-

totic normality of the OLS estimator were first given by Jennrich (1969) and Malinvaud

(1970) for the model in (2.3.1) with independent and identically distributed (IID) {εt}.

Hannan (1971) extended Jennrich’s results to time series data by allowing for stationary,

but ergodic {εt}. Robinson (1972) generalized Hannan’s results to systems of equations. The

essential details of the asymptotic theory are summarized briefly by Amemiya (1983), who

considers both IID and autocorrelated errors. White (1984) provided more general condi-

tions ensuring the asymptotic normality of the OLS estimator when {εt} is serially correlated

and/or heteroscedastic.

When f(xt, β) is linear in β, Eicker (1963) develops general conditions for the asymptotic

normality of the OLS estimators in (2.3.1) under IID {εt}. There is also a body of litera-

ture on the central limit theorem for stationary process. Conditions guaranteeing that least

squares regression estimators are asymptotically normal can be extracted from Grenander

and Rosenblatt (1957). Hannan (1961) proved a central limit theorem for least squares regres-

sion parameter estimators in a multiple linear regression model when the errors comprise a

causal linear stationary time series. A very general discussion of this situation is given in
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Eicker (1967). Hannan (1970) used Eicker’s ideas to modify the results in Hannan (1961).

Anderson (1971) extended Hannan’s (1961) results to settings where the errors in the causal

linear representation satisfy a Lindeberg-type condition. Unfortunately, these works are all

phrased in frequency domain terminology and are difficult to interpret in the time domain,

the setting most frequently used in modern analyses. Indeed, Fuller’s (1996) main contribu-

tion was to translate various classical theorems into the time domain.

In the Chapter 3, consistency and asymptotic normality of the OLS estimator in a simple

linear regression model under multiple changepoints with short-memory stationary autocor-

related errors is established and its limiting properties are quantified.
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Abstract

This paper studies the ordinary least squares trend estimator in a simple linear regression

model with multiple changepoints when the changepoint times are known. The error compo-

nent in the model is allowed to be a general short-memory stationary autocorrelated series.

Consistency and asymptotic normality of the estimator is established and its limiting prop-

erties are quantified.

Key Words: Linear Trend; Time Series; Consistency; Asymptotic Normality.

3.1 Introduction

Consider a simple linear regression model with multiple changepoints:

Xt = µ+ αt+ δt + εt, t = 1, 2, . . . , n, (3.1.1)

when the changepoint times are known. The errors {εt} are zero mean and stationary in time

t with autocovariance γ(h) = cov(εt, εt+h) at lag h. The regression location parameter is µ,

α is the linear trend-slope parameter, which is our focus, and {δt} is a changepoint mean

shift factor. In particular, the changepoints have the structure

δt =



∆1, 1 ≤ t < τ1

∆2, τ1 ≤ t < τ2
...

...

∆k, τk−1 ≤ t ≤ n

, (3.1.2)

where τ1 < τ2 < . . . < τk−1 are the ordered known changepoint times. Here, n is the total

number of observations recorded and k = k(n) is the total number of regimes in the series

up to time n. For parameter identifiability, we take ∆1 = 0 (else the ∆′
is and µ become
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confounded). Hence, the regression model in (3.1.1) contains the k+ 1 unknown parameters

µ, α, ∆2, . . . ,∆k.

There is much literature on regression models with changepoints similar to (3.1.1) (cf.

Quandt 1958 and 1960; Hinkley 1969 and 1971b; Solow 1987; Easterling and Peterson 1995;

Vincent 1998; Lund and Reeves 2002). Many of these models can be viewed as classic simple

linear regressions that allow for k phases with unknown changepoint times. Developing a good

changepoint detection method is the main goal in these works. We also note that the model

in (3.1.1) can be viewed as an ANCOVA model (Analysis of Covariates) in the presence of

autocorrelated errors and a linear trend covariate.

It is the purpose of this paper to derive the ordinary least squares (OLS) estimator of

the trend parameter, discuss its consistency, and establish its asymptotic normality under

wide generality. The asymptotic normality is not immediately clear from prior literature as

we allow the number of changepoints to tend to infinity as the sample size tends to infinity.

The nuances of this aspect will become clearer as we progress. This chapter concludes with

an extension of the results to the periodic (multivariate) setting with multiple changepoints

in the presence of periodically stationary time series errors.

3.2 OLS Trend Estimates and Consistency

Suppose that the series experienced k different regimes during the data record. Let ni denote

the number of observations recorded during regime i, 1 ≤ i ≤ k. Here, n = n1 +n2 + . . .+nk.

The set of all time indices for regime i, denoted by Yi, is

Yi =

{
i−1∑
j=1

nj + 1,
i−1∑
j=1

nj + 2, . . . ,
i∑

j=1

nj

}
.

For the model in (3.1.1), the OLS estimator of α has the explicit form
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α̂OLS =

∑k
i=1

∑
t∈Yi

(t− t̄i)(Xt − X̄i)∑k
i=1

∑
t∈Yi

(t− t̄i)2
, (3.2.1)

where t̄i = n−1
i

∑
t∈Yi

t and X̄i = n−1
i

∑
t∈Yi

Xt are the time and observation averages during

regime i, respectively. Of course, α̂OLS can be viewed as an argument of α that minimizes

the sum of squares

SOLS(µ, α,∆2, . . . ,∆k) =
k∑

i=1

∑
t∈Yi

(Xt − µ− αt−∆i)
2

over µ, α, ∆2, . . . ,∆k. The denominator of (3.2.1) can be explicitly evaluated as

k∑
i=1

∑
t∈Yi

(t− t̄i)
2 =

∑k
i=1 ni

3 − n

12
. (3.2.2)

The variance of the ordinary least squares trend estimator can be easily obtained from (3.2.1).

As α̂OLS is a linear combination of X1, X2, . . . , Xn, Var(α̂OLS) is seen to be

Var(α̂OLS) =
γ(0) + 2

∑n−1
h=1 wn,hγ(h)∑k

i=1

∑
t∈Yi

(t− t̄i)2
, (3.2.3)

where the weights {wn,h} are

wn,h =

∑n−h
t=1 ηtηt+h∑n

t=1 η
2
t

, 0 ≤ h ≤ n− 1, (3.2.4)

and {ηt} is

ηt =


t− t̄1, 1 ≤ t < τ1

t− t̄i, τi−1 ≤ t < τi

t− t̄k, τk−1 ≤ t ≤ n

. (3.2.5)

Note that α̂OLS is unbiased for any mean zero {εt}. Theorem 3.2.1 below establishes that



24

Var(α̂OLS) → 0 as n → ∞ for almost all short-memory time series {εt} and regime lengths

{ni}∞i=1. Thus, we can conclude that α̂OLS is consistent in considerable generality.

Theorem 3.2.1 Suppose that {εt} is stationary and has short-memory in the sense that
∞∑

h=0

|γ(h)| <∞.

Let m1(n) be the number of regimes in the series up to time n that are of length 1. If

lim inf
k→∞

m1(n)

k
< 1, (3.2.6)

then Var(α̂OLS) → 0 as n→∞.

The short-memory condition
∑∞

h=0 |γ(h)| < ∞ is satisfied by all causal autoregressive

moving-average (ARMA) processes (cf. Brockwell and Davis 1991). The regime length con-

dition in (3.2.6) is very general and requires that not all segments in the series have unit

length. In other words, there must be an infinite number of regimes that are of length two

or more to obtain consistency. Intuitively, regimes of length two or more provide some infor-

mation for α, and an infinite number of regimes with some information induces consistency.

For comparison’s sake against a practical setting, climate time series saw six changepoints on

the average during the 88-year period 1873–1950 (Mitchell 1953). In almost every practical

modelling situation, the conditions in Theorem 3.2.1. hold; indeed, the result is quite general.

The proof of Theorem 3.2.1 is given in the appendix at the end of this chapter. Here we

present a lemma useful in proof. In later work, we will regard {ni}∞i=1 as random; hence all

limits should be interpreted almost surely.

Lemma 1 If

lim inf
k→∞

m1(n)

k
< 1,

then

lim
n→∞

k∑
i=1

∑
t∈Yi

(t− t̄i)
2 = lim

n→∞

∑k
i=1 ni

3 − n

12

= ∞. (3.2.7)
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From Lemma 1 and (3.2.2) and (3.2.3), we see that consistency of α̂OLS under short-memory

errors take place whenever the ‘changepoint design’ {ni}∞i=1 satisfies

lim
n→∞

k∑
i=1

∑
t∈Yi

(t− t̄i)
2 = ∞.

As n → ∞, either the number of regimes k = k(n) → ∞ or ni = ∞ for some fixed

i. Of course, if ni = ∞ for some i, one can construct an estimate of α from data during

this regime only and consistency is implicit. It is important to note that an infinite number

of changepoint mean shift parameters are allowed as n → ∞. In most practical situations,

having ni = ∞ for some fixed i is unlikely. Indeed, we are primarily interested in the case

where k →∞ as n→∞.

3.3 Asymptotic Normality

There is substantial previous literature on the central limit theorem for stationary pro-

cess. We mention Grenander and Rosenblatt (1957), Hannan (1961, 1970), Eicker (1967),

Anderson (1971) and Fuller (1996) for classic results in systems of regressions. Two types

of regressions with stationary errors have been classically considered. The first is the causal

linear process

εt =
∞∑

j=0

ψjZt−j,
∞∑

j=0

|ψj| <∞, (3.3.1)

where the {Zt} are independent and identically distributed with zero mean and variance

σ2 > 0. The other type of {εt} considered is stationary and satisfies a uniform mixing

condition. Mixing conditions are notoriously difficult to check in practice. As {εt} in (3.3.1)

is strictly stationary in t, mixing conditions for causal linear processes are much easier to

verify, especially with Gaussian {Zt}.

Conditions guaranteeing that least squares regression estimates are asymptotically

normal can be extracted from Grenander and Rosenblatt (1957). Hannan (1961) proved a
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central limit theorem for least squares regression parameter estimators in a multiple linear

regression model when the errors comprise a causal linear stationary time series. A very

general discussion of this situation is given in Eicker (1967). Hannan (1970) used Eicker’s

ideas to modify the results in Hannan (1961). Anderson (1971) extended Hannan’s (1961)

results to settings where the errors {Zt} in (3.3.1) satisfy a Lindeberg-type condition. Unfor-

tunately, these works are all phrased in frequency domain terminology and are difficult to

interpret in the time domain, the setting most frequently used in modern analyses. Indeed,

Fuller’s (1996) main contribution was to translate various classical theorems into the time

domain.

Most regression central limit theorems are based on Grenander’s (1954) classical condi-

tions for the regression variable ϕt in the multiple linear regression model

Xt =

p∑
i=1

ϕt,iβi + εt.

Grenander’s three conditions, labelled as C1, C2, and C3, respectively, are

(C1) lim
n→∞

n∑
t=1

ϕ2
t,i = ∞, for i = 1, . . . , p;

(C2) lim
n→∞

ϕ2
n,i∑n

t=1 ϕ
2
t,i

= 0, for i = 1, . . . , p; and

(C3) lim
n→∞

∑n−h
t=1 ϕt,iϕt+h,j√∑n

t=1 ϕ
2
t,i

∑n
t=1 ϕ

2
t+h,j

exists, for all i, j = 1, . . . , p and h ≥ 0.

Condition C1 ensures that ϕt,i grows unboundedly so that the regression equation compo-

nent involving βi is non-ignorable. Condition C2 precludes ϕ2
n from comprising an appreciable

part of the sum of squares for large n and is perhaps reminiscent of Lindeberg conditions.

Condition C3 stipulates that correlations between regression design columns for all suffi-

ciently large n are well-defined. This can be interpreted in a law of large numbers sense: the

sample correlations in the columns of the design matrix merely exist, implying time-constant

dynamics in the limit.
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Via the existence of limits in (C3), we set

rh(i, j) = lim
n→∞

∑n−h
t=1 ϕt,iϕt+h,j√∑n

t=1 ϕ
2
t,i

∑n
t=1 ϕ

2
t+h,j

and Rh = [rh(i, j)]
p
i,j=1. We assume that R0 is nonsingular for convenience. Under some very

general assumptions on the distribution of the errors {εt}, Grenander’s conditions C1-C3

provide a wide arsenal for proving asymptotic normality of the least squares estimators of

regression coefficients.

Returning to our setting of application, the model in (3.1.1) can be rewritten as

Xt = µ+ αt+
k∑

i=2

∆iϕt,i + εt, (3.3.2)

where for i = 2, . . . , k,

ϕt,i =

 1, t ∈ Yi

0, otherwise
. (3.3.3)

Now the columns in the regression design matrix corresponding to µ and α satisfy

Grenander’s conditions C1–C3; however the columns for the changepoint ϕt,i’s do not

without stronger assumptions on the ni’s. Hence, one cannot use Grenander’s results

directly and some further analysis is needed. However, as α̂OLS can be explicitly written

as a function of X1, . . . , Xn as seen in (3.2.1), there is hope. Indeed, the following result

establishes asymptotic normality of α̂OLS in considerable generality.

Theorem 3.3.1 Suppose that {εt} has the causal linear representation in (3.3.1) and that the

regime lengths {ni}∞i=1 are realizations of an ergodic Markov chain {Ni}∞i=0 on the state-space

{1, 2, 3, . . .} with stationary measure ~π = {π`}∞`=1. We assume that {Ni}∞i=0 is independent of

{Xt}∞t=1 and has transition probability matrix P = {pij}∞i,j=1. We takeN0
D
= ~π for convenience

so as to render {Ni} stationary. If ~π has a finite third moment in the sense that

∞∑
`=1

`3π` <∞, (3.3.4)
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then

( k∑
i=1

∑
t∈Yi

(t− t̄i)
2

) 1
2

(α̂OLS − α)
D−→ N(0, V ) (3.3.5)

as n →∞, where V =
∑∞

h=−∞w∗hγ(h). Here, w∗h = limn→∞wn,h, where wn,h is as in (3.2.4)

and the limit exists almost surely in the realization of {Ni}.

It is worth noting that every causal ARMA series satisfies the short-memory assumption

in Theorem 3.3.1. In fact,
∑∞

h=0 |γ(h)| < ∞ is implied by (3.3.1). The ’Markov’ sampling

conditions in Theorem 3.3.1 imply that in the long run, a regime length ` has probability π`:

lim
i→∞

P [Ni = `] = π`.

The randomness of the regime lengths will ensure that various limits exist in the ensuing

analysis. It seems physically reasonable. Without such randomness, the analysis is very

difficult. The finite third moment of ~π is a technical condition ensuring, amongst other

things, that the following two limits exist:

lim
n→∞

k(n)

n
=

1∑∞
`=1 `π`

,

and

lim
n→∞

∑k
i=1

∑
t∈Yi

(t− t̄i)
2

n
=

(
1∑∞

`=1 `π`

)( ∞∑
`=1

`(`+ 1)(`− 1)

12
π`

)
.

Finite third moment conditions arise frequently in renewal theory and regenerative process

settings (cf. Ross 1996; Kalashnikov 1994). In view of the cubic structure in (3.2.2), this is

not unexpected. The proof of Theorem 3.3.1 is rather technical and is given in the appendix

at the end of this chapter. As a matter of notation in cases where the {Ni}∞i=0 are random,

and observed we abbreviate Var(α̂OLS|N1 = n1, N2 = n2, . . .) to Var(α̂OLS). We hope this

causes no confusion as the limiting properties do not depend on the realization of {Ni}∞i=0.

However, all computations are conditional on the realization of {Ni}∞i=0 and the analysis is

properly phrased in terms of Var(α̂OLS|N1 = n1, N2 = n2, . . .).
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A large sample confidence interval for the trend estimator can be extracted from the

above result. In particular,

α̂OLS ± zα/2

√
V∑k

i=1

∑
t∈Yi

(t− t̄i)2
(3.3.6)

is an approximate (1 − α) × 100% confidence interval for the trend parameter α. Here zα/2

denotes the customary (1−α/2)th quantile of the standard normal distribution. In the more

practical setting where the autocovariances in {εt} are unknown, one can substitute estimates

of γ(·) into (3.2.3) and use the interval

α̂OLS ± zα/2V̂ar(α̂OLS)
1/2, (3.3.7)

where V̂ar(α̂OLS) is an estimate of Var(α̂OLS). Here a t-based margin may be more appropriate

than the zα/2 quartile, but we will not pursue this slant here, preferring to quote Slustky’s

theorem and keep the analysis confined to asymptotics.

3.4 Periodic Simple Linear Regression Models with Multiple Changepoints

The previous section assumed that {εt} has zero mean and is stationary with short-memory

autocovariance; in this section, the results are extended to periodically stationary time series

with short-memory. A random sequence {Yt} with finite second moments is called a periodic

series with period T if

E[Yt+T ] = E[Yt]

and

Cov(Yt+T , Ys+T ) = Cov(Yt, Ys)

for all integers t and s. Periodic series are also called periodically stationary, cyclostationary,

or periodically correlated. The period T is taken as known and as the minimal integer

satisfying the above periodicity equations (to avoid ambiguity).

One periodic version of the model in (3.1.1) (not the only) is

XmT+ν = µν + αν(mT + ν) + δ(i)
ν + εmT+ν , (3.4.1)
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where ν is a season index satisfying 1 ≤ ν ≤ T ; m is a cycle index satisfying 0 ≤ m ≤ d− 1;

αν is the linear trend during season ν; {δ(i)
ν = ∆ν,i} is a changepoint mean shift factor for

season ν under regime i; and {εmT+ν} is a zero mean periodic series with period T . The

bookkeeping tracks XmT+ν as the observation from season ν of cycle m and d = bn/T c as

the total observed number of cycles. To avoid trite work, we take d as an integer in what

follows.

We comment that a periodic stationary time series with period T is not stationary in

the usual covariance sense unless T = 1. However, periodic time series with period T are

T -variate stationary series. The regression in (3.4.1) can be written as a Seemingly Unrelated

Regression (SUR) model, which was studied by Zellner (1962).

Let ~Xν = {XmT+ν}d−1
m=0 denote the observed data during season ν; ~εν = {εmT+ν}d−1

m=0 the

errors during season ν; and ~βν = (µν , αν ,∆ν,2, . . . ,∆ν,k)
′ the parameters during season ν.

Let Dν denote the design matrix at season ν and note that Dν has size d× (k + 1) with

Dν =



1 ν 0 0 . . . 0 0

1 T + ν 0 0 . . . 0 0

...
...

...
...

...
...

...

1 (n1,ν − 1)T + ν 0 0 . . . 0 0

1 n1,νT + ν 1 0 . . . 0 0

...
...

...
...

...
...

...

1 (n1,ν + n2,ν − 1)T + ν 1 0 . . . 0 0

...
...

...
...

...
...

...

1 (
∑k−1

i=1 ni,ν)T + ν 0 0 . . . 0 1

...
...

...
...

...
...

...

1 (d− 1)T + ν 0 0 . . . 0 1



,

where ni,ν is the number of observations in season under regime i. The SUR model can be

expressed in multivariate form as
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~X = D~β + ~ε, (3.4.2)

where ~X = ( ~X ′
1,
~X ′

2, . . . ,
~X ′

T )′, ~ε = (~ε′1,~ε
′
2, . . . ,~ε

′
T )′, ~β = (~β′1,

~β′2, . . . ,
~β′T )′, and D is a block-

diagonal matrix with Dν in the νth place.

The OLS estimator of the trends (α1, . . . , αT )′ in model (3.4.2) is given by

~̂αOLS = (JT ⊗ ~e′2)(D′D)−1D′ ~X, (3.4.3)

where JT = (1, 1, . . . , 1)′ is the T -dimensional one vector, ~e2 = (0, 1, 0, . . . , 0)′ is the (k + 1)-

dimensional vector with 1 in the second place and all other entries of zero, and ⊗ denotes

Kronecker product.

The variance and covariance matrix of the OLS trend estimator can be obtained from

(3.4.3) as

Var(~̂αOLS) = (JT ⊗ ~e′2)(D′D)−1D′Γ~εD(D′D)−1(J ′T ⊗ ~e2), (3.4.4)

where Γ~ε = [Γij]
T
i,j=1 is the covariance matrix of ~ε and

Γij =



γij(0) γij(1) . . . γij(d− 1)

γij(−1) γij(0) . . . γij(d− 2)

...
...

...
...

γij(−(d− 1)) γij(−(d− 2)) . . . γij(0)


.

Notice that γνν(·) is the autocovariance of the season ν series {XmT+ν}d
m=0 and γij(·), i 6= j,

is the cross-covariance function of {XmT+i}d
m=0 and {XmT+j}d

m=0. We remind the reader that

γij(h) 6= γji(h) in general.

In the SUR model (3.4.2), for each fixed season ν, the OLS estimator of αν can be

constructed from ~Xν and has explicit form, similar in structure to (3.2.1):

α̂ν,OLS =

∑d−1
m=0 ξν,mXmT+ν

T
∑d−1

m=0 ξ
2
ν,m

, (3.4.5)
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where

{ξν,m} =



0− n1,ν−1

2

1− n1,ν−1

2

...

(n1,ν − 1)− n1,ν−1

2

...

0− nk,ν−1

2

1− nk,ν−1

2

...

(nk,ν − 1)− nk,ν−1

2



(3.4.6)

is a d-dimensional vector for ν = 1, . . . , T .

Using linearity of α̂ν,OLS in ~Xν , the variance of α̂ν,OLS is seen to be

Var(α̂ν,OLS) =

∑d−1
h=−(d−1)

(∑(d−1−|h|)
m=0 ξν,mξν,m+|h|∑d−1

m=0 ξ2
ν,m

)
γν,ν(h)

T 2
∑d−1

m=0 ξ
2
ν,m

. (3.4.7)

Similarly, the covariance between α̂i,OLS and α̂j,OLS is

Cov(α̂i,OLS, α̂j,OLS) =

∑d−1
h=−(d−1)

( ∑(d−1−|h|)
m=0 ξi,mξj,m+|h|√∑d−1

m=0 ξ2
i,m

∑d−1
m=0 ξ2

j,m

)
γi,j(h)

T 2

√∑d−1
m=0 ξ

2
i,m

∑d−1
m=0 ξ

2
j,m

. (3.4.8)

Notice that for each season ν, application of the Theorem 3.3.1 immediately gives con-

sistency and asymptotically normality of α̂ν,OLS with minimal assumptions. We state this in

Theorem 3.4.1 below.

Theorem 3.4.1 Suppose that {~εt} = {(ε1,t, . . . , εT,t)
′} is the T -variate stationary time series

in the causal linear process
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~εt =
∞∑
l=0

Ψl
~Zt−l, (3.4.9)

where {~Zt} are independent and identically distributed with mean zero and invertible

variance-covariance matrix Σ, and {Ψl}∞l=0 = {[ψl(i, j)]
T
i,j=1} is a sequence of T × T matrices

such that
∑∞

l=0 |ψl(i, j)| <∞, i, j = 1, . . . , T .

Suppose that the regime lengths {ni} obey the same sampling assumptions imposed in

Theorem 3.3.1 (the regime changes are non-periodic in particular). Then as d→∞,

T

( d−1∑
m=0

ξ2
ν,m

) 1
2

(α̂ν,OLS − αν)
D−→ N(0, Vν), (3.4.10)

where Vν =
∑∞

h=−∞ rh(ν, ν)γν,ν(h) and

rh(ν, ν) = lim
d→∞

∑(d−1−|h|)
m=0 ξν,mξν,m+|h|∑d−1

m=0 ξ
2
ν,m

, h = 0,±1,±2, . . . . (3.4.11)

Whereas α̂ν,OLS is consistent and asymptotically normal, we question its asymptotic effi-

ciency here. In particular, note that α̂ν,OLS uses only data from season ν. The series values

outside of season ν also contain some information about αν when the errors are correlated. In

future work, we will address such efficiency issues, being content for the moment to construct

any consistent estimator and quantify its asymptotic properties.

3.5 Appendix

Proof of Lemma 1. For a fixed sequence {ni}∞i=1, let m`(n) be the number of regimes

before time n such that ni = `:

m`(n) = #{i : 1 ≤ i ≤ k(n) and ni = `}.

We suppress dependence of k(n) and m1(n),m2(n), etc. on n and use the abbreviations

k,m1,m2, etc. Note that n =
∑k

i=1 ni.

Consider R defined by
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R = lim inf
k→∞

∑k
i=1 ni

3 − n

k
.

Now if R > 0, then
k∑

i=1

ni
3 −

k∑
i=1

ni →∞

as k →∞ and the lemma follows.

To show that R > 0, observe that

R = lim inf
k→∞

∑k
i=1 ni(ni

2 − 1)

k
. (3.5.1)

Since m1 +m2 + . . .+mn = k, (3.5.1) is merely

R = lim inf
k→∞

∑n
`=1m``(`

2 − 1)

k

= lim inf
k→∞

∑n
`=1m``(`+ 1)(`− 1)

k

= lim inf
k→∞

∑n
`=2m``(`+ 1)(`− 1)

k
.

Now for all ` ≥ 2, `− 1 ≥ 1 and `2 ≥ 1; hence,

R ≥ lim inf
k→∞

∑n
`=2m``

2

k

≥ lim inf
k→∞

n∑
`=2

m`

k

= lim inf
k→∞

(m1 + . . .+mn)−m1

k

= 1− lim inf
k→∞

m1

k
.

Hence, if lim infk→∞
m1

k
< 1, then R > 0 and the lemma is proved.

Proof of Theorem 3.2.1. Observe that

k∑
i=1

∑
t∈Yi

(t− t̄i)
2 =

n∑
t=1

η2
t ,

where {ηt} is obtained from (3.2.5). From (3.2.3) Var(α̂OLS) is
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Var(α̂OLS) =
γ(0) + 2

∑n−1
h=1 wn,hγ(h)∑n

t=1 η
2
t

, (3.5.2)

where wn,h is as in (3.2.4).

By the Cauchy-Schwarz inequality,

∣∣∣∣ n−h∑
t=1

ηtηt+h

∣∣∣∣ ≤
( n−h∑

t=1

η2
t

) 1
2
( n−h∑

t=1

η2
t+h

) 1
2

≤
n∑

t=1

η2
t , (3.5.3)

and |wn,h| ≤ 1 for all n and h. Using this in (3.5.2) provides

Var(α̂OLS) ≤ γ(0) + 2
∑n−1

h=1 |wn,h||γ(h)|∑n
t=1 η

2
t

≤ γ(0) + 2
∑n−1

h=1 |γ(h)|∑n
t=1 η

2
t

≤
∑n−1

h=−(n−1) |γ(h)|∑n
t=1 η

2
t

. (3.5.4)

As
∑∞

h=0 |γ(h)| < ∞ by our short-memory assumption and
∑n

t=1 η
2
t → ∞ by Lemma 1

(recall that (3.2.6) holds), (3.5.4) shows that Var(α̂OLS) → 0 as n→∞.

Proof of Theorem 3.3.1. Note that α̂OLS in (3.2.1) can be written as

α̂OLS =

∑k
i=1

∑
t∈Yi

(t− t̄i)Xt∑k
i=1

∑
t∈Yi

(t− t̄i)2
, (3.5.5)

since
∑k

i=1

∑
t∈Yi

(t− t̄i)X̄i = 0. Thus,

α̂OLS =

∑n
t=1 ηtXt∑n

t=1 η
2
t

,

where {ηt} is defined as in (3.2.5); in particular,
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{ηt} =



1− n1+1
2

2− n1+1
2

...

n1 − n1+1
2

...

1− nk+1
2

2− nk+1
2

...

nk − nk+1
2



. (3.5.6)

is an n-dimensional vector.

Let

Yn =

( n∑
t=1

η2
t

) 1
2

(α̂OLS − α)

=

∑n
t=1 ηtεt

(
∑n

t=1 η
2
t )

1
2

.

By Theorem 6.3.4 of Fuller (1996), we have

Yn
D−→ N(0, V )

as n→∞ provided that

n∑
t=1

η2
t →∞, (3.5.7)

η2
n∑n

t=1 η
2
t

→ 0, as n→∞ and that the limit (3.5.8)

lim
n→∞

∑n−|h|
t=1 ηtηt+|h|∑n

t=1 η
2
t

:= g(h) exists for all h = 0,±1,±2, . . . , (3.5.9)

where V =
∑∞

h=−∞ g(h)γ(h) 6= 0. Our work will verify that Fuller’s three conditions hold in

our setting.

Under the assumptions in Theorem 3.3.1, the regime lengths {ni}∞i=1 are sampled from

the ergodic Markov Chain {Ni}∞i=0 on the state-space {1, 2, 3, . . .} with stationary measure
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{πl}∞l=1. Let ~π = (π1, π2, . . .)
′ and take N0

D
= ~π so that Ni

D
= ~π for all i ≥ 1. It follows that the

limits involved in (3.5.7) — (3.5.9) do not depend on the realization of {Ni} almost surely.

Further, the ergodic properties of Markov chains give

m`(n)

k(n)
=

#{i : 1 ≤ i ≤ k(n) and Ni = `}
k(n)

→ π` (3.5.10)

almost surely as n → ∞. As π` > 0 for all ` > 0, (3.5.10) ensures that (3.2.6) in Theorem

3.2.1 holds. Hence, Lemma 1 applies and
∑n

t=1 η
2
t → ∞ as n → ∞. It now follows that

(3.5.7) holds.

Observe that

η2
n∑n

t=1 η
2
t

=
(nk−1)2

4∑n
t=1 η

2
t

. (3.5.11)

Since nk is finite almost surely and
∑n

t=1 η
2
t →∞ by Lemma 1, (3.5.8) also holds.

For (3.5.9), note that

lim
n→∞

1
n

∑n−h
t=1 ηtηt+h

1
n

∑n
t=1 η

2
t

(3.5.12)

exists if limn→∞ n−1
∑n−h

t=1 ηtηt+h and limn→∞ n−1
∑n

t=1 η
2
t exist.

From (3.5.10) and (3.3.4), observe that limn→∞ k(n)/n exists:

k(n)

n
=

1
k

∑n
`=1m`

1
k

∑n
`=1m``

=
1∑n

`=1
m`

k
`

→ 1∑∞
`=1 π``

,

=
1

E[N0]
, (3.5.13)
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where the limit existence follows by Proposition 3.3.1 of Ross (1996) and (3.3.4) ensures that

E[N0] <∞.

We now argue that limn→∞ n−1
∑n

t=1 η
2
t exists. For this, observe that

1

n

n∑
t=1

η2
t =

1

n

n∑
`=1

m``(`+ 1)(`− 1)/12

=

(
k

n

)( n∑
`=1

(
m`

k

)
`(`+ 1)(`− 1)

12

)
. (3.5.14)

Since k/n→ E[N0]
−1, it suffices to prove that limn→∞

∑n
`=1(

m`

k
) `(`+1)(`−1)

12
exists. For this, we

merely need that
∑n

`=1 `
3m`/k converges. To see this latter point, we borrow an argument

from Markov chain theory. Note that for each M ≥ 1,

lim inf
n→∞

M∑
`=1

(
m`

k

)
`3 ≥

M∑
`=1

(
lim

n→∞

m`

k

)
`3

=
M∑
`=1

`3π` (3.5.15)

since m`/k → π` for each fixed `. Now (3.5.15) implies that

lim inf
n→∞

∞∑
`=1

(
m`

k

)
`3 ≥

∞∑
`=1

`3π`.

Also,

lim sup
n→∞

∞∑
`=1

(
m`

k

)
`3 ≤

∞∑
`=1

(
lim sup

n→∞

m`

k

)
`3

=
∞∑

`=1

`3π`.

Hence, under condition (3.3.4)

lim
n→∞

n∑
`=1

(
m`

k

)
`3 =

∞∑
`=1

`3π`

< ∞,

and

lim
n→∞

n∑
`=1

(
m`

k

)
`(`+ 1)(`− 1)

12
=

∞∑
`=1

`(`+ 1)(`− 1)

12
π`.
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.

Hence, from (3.5.14) limn→∞ n−1
∑n

t=1 η
2
t exists and equals(

1∑∞
`=1 `π`

)( ∞∑
`=1

`(`+ 1)(`− 1)

12
π`

)
=

(
1

E[N0]

)(
E[N3

0 ]− E[N0]

12

)
.

To argue that limn→∞ n−1
∑n−h

t=1 ηtηt+h exists for each h ≥ 1, first, consider the case h = 1.

Tedious manipulations provide the explicit form

∑n−h
t=1 ηtηt+h

n
= 1 +

∑n
t=1 η

2
t

n
−

1
4
(
∑k

i=1 n
2
i +

∑k−1
i=1 nini+1) + 1

4
(n1 + nk)− 1

4

n
. (3.5.16)

Hence, limn→∞ n−1
∑n−1

t=1 ηtηt+1 exists if limk→∞ k−1
∑k−1

i=1 NiNi+1 exists. By Theorem 1.1

and Theorem 1.3 of Billingsley (1961),

∑k−1
i=1 NiNi+1

k

a.s.−→ E[N0N1]

=
∞∑

s=1

∞∑
m=1

smπspsm. (3.5.17)

Hence, limn→∞ n−1
∑n−1

t=1 ηtηt+1 exists with

lim
n→∞

∑n−1
t=1 ηtηt+1

n

= 1 +

(
1∑∞

`=1 `π`

)( ∞∑
`=1

`(`+ 1)(`− 1)

12
π` −

∑∞
`=1 `

2π`

4
−

∑∞
s=1

∑∞
m=1 smπspsm

4

)
= 1 +

(
1

E[N0]

)(
E[N3

0 ]− E[N0]

12
− E[N2

0 ]

4
− E[N0N1]

4

)
.

For h ≥ 2, the arguments that limn→∞ n−1
∑n−h

t=1 ηtηt+h exist are analogous and every bit

as tedious.

Putting the above facts together allows us to finally conclude that the limit in (3.5.9)

exists. Thus, Fuller’s three conditions are satisfied and Yn
D−→ N(0, V ) as n → ∞ where

V =
∑∞

h=−∞ g(h)γ(h).
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Abstract

This paper updates the temperature trend study of the contiguous 48 United States in

Lund et al. (2001) for data observed during the last four years. Better methods for handling

missing observations and model parsimony are among the improvements. The number of

stations with usable data has now increased from 359 to 969, thereby improving the accu-

racy of the reported spatial patterns in the trends. The methodological improvements and

additional four years of data produce slightly smaller trend estimate standard errors at fixed

stations. Warming is again found in the Northeast, West, Northern Midwest and cooling in

the Southeast; overall, the trends here suggest more warming than the Lund et al. (2001)

study. Finally, the estimated temperature trends are regressed on several covariates, revealing

a significant negative correlation between temperature trends and precipitation.

Key Words and Phrases: Head-Banging Algorithm; Linear Trend; Spatial Autocorrrela-

tion; Standard Error; Temporal Autocorrelation; Time Series.

4.1 Introduction

This paper updates the United States temperature trend study in Lund et al. (2001) for recent

data and for improvements in the methods of analysis. United States temperature changes

have been previously studied in Diaz and Quayle (1980) and Karl et al. (1995) (amongst many

others). Global temperature change studies (e.g. Ellsaesser et al. 1986, Hansen et al. 1999,

2001, and the references therein) also provide insight into United States temperature trends.

The Lund et al. (2001) study was a statistically detailed examination of temperature

changes in the United States. It made three fundamental analysis contributions. First, the

reported standard errors of the trend estimates accounted for temporal correlations in the

data. Second, seasonal aspects were considered in that monthly rather than yearly series

were examined. Third, the analysis allowed for the crucial effect of changepoints at times
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where changepoints were known to occur. Many (unfortunately, not all) changepoint times

are explicitly noted in the station history logs; such records permit for adjustment of this

factor (cf. Karl and Williams 1987; Karl et al. 1990).

However, there were some drawbacks in the Lund et al. (2001) study. One is that the

spatial coverage was not good — only 359 of 1221 stations in the network were deemed usable

due to data quality (missing data in particular). For instance, only 2 stations in Oklahoma,

4 stations in Mississippi, and 10 stations in Texas were in this study. The updated study

contains 34 Oklahoma stations, 29 Mississippi stations, and 39 Texas stations. The primary

reason driving the improved spatial coverage lies in the revised methods for handling missing

data. As the number of stations with good quality data has now increased from 359 to 969,

the spatial coverage of climate change in the United States is now significantly more complete

and the resulting analysis more reliable.

The other main improvement in this update lies with parsimony issues for handling

changepoints. The Lund et al. (2001) study expended a large number of changepoint param-

eters in its mathematical regression model: one for each different changepoint and season

(month). For example, in a monthly series (period 12) with 6 changepoints per century,

which is the average number of documented changepoints seen over all 969 stations in this

study, the regression model employed used 84 = 24+12×(6−1) parameters. In contrast, the

periodic simple linear regression model used here assumes the same changepoint mean shift

response over all seasons, thereby reducing the number of parameters to a more parsimonious

number of 29 = 24 + (6− 1).

The rest of the paper is organized as follows. We first describe the sources of data and

quality restrictions imposed upon series entering this study. The methods used to obtain

the trends and their uncertainty margins are then narrated. A case study of one of the

969 stations is then presented for illustration. Spatial contour maps of the smoothed trend

estimates are then presented and discussed. Finally, we regress the estimated trends on

factors such as precipitation and elevation in an attempt to better understand them.
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4.2 The Data

The data set used in this study is taken from the United States Historical Climatology

Network (USHCN). The USHCN consists of 1221 stations in the 48 contiguous United States;

this data is raw but adjusted for biases due to the time of observation. Karl et al. (1990)

describes the USHCN in more detail.

Data quality is an issue due to site changes (changepoints) and missing observations. We

take a changepoint as a change of station location, station instrument, or station shelter.

The dates of the changepoints that are known were noted and rounded to the nearest month.

Stations having two changepoints within four months were discarded; in comparison, Lund

et al. (2001) discarded series with two or more changepoints occurring within three years.

The driving improvement here is that the regression model introduced in the next section

is more parsimonious and can accommodate a smaller number of observations taken from

one ‘regime’. As before, a minimum of 75 years of record is required to enter the study

and stations missing 5% or more of their observations during their period of record were

discarded, or the starting date of the series was advanced if possible so as to make the series

meet the above constraints.

After these data quality restrictions were imposed, 969 stations remained for study. Figure

4.1 graphically depicts the location of these stations; the spatial coverage is excellent. The

duration of record at each station is variable, with the average series containing 103 years

of data. The starting month of every series is rounded to the ‘nearest viable January’; the

last observation is taken during December of 2000. The earliest starting year is 1812 (New

Bedford, MA); the latest starting year is 1926 (8 stations).

Any missing observations that remain were infilled with a model-based Expectation-

Maximization (EM) algorithm (cf. Dempster et al. 1977). In the first step, missing values

are replaced with regression-based interpolations; then an ARMA model was chosen for the

residuals of the regression fit via the AICC statistic (cf. Brockwell and Davis 1991). Pre-

dictions for the missing values were computed as one-step-ahead predictions based on the
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chosen ARMA model. The process is iterated until the ARMA parameters and predictions

converge. Such an EM procedure can be used to infill series with many consecutive missing

observations; in comparison, stations with six or more consecutive points missing were dis-

carded in Lund et al. (2001). Infilling is needed for automation of computation; specifically, it

would be virtually impossible to individually handle all possible missing data configurations

that arise in the 969 stations.

4.3 Statistical Methods

4.3.1 Periodic regression model

Consider one fixed temperature station. As the data are monthly in structure, our methods

center on the periodic simple linear regression model under multiple changepoints with period

T = 12:

XmT+ν = µν + αν(mT + ν) + δmT+ν + εmT+ν , (4.3.1)

where the series {εmT+ν} is zero mean random error with periodic temporal autocovariances

as elaborated upon below. The notation here uses XmT+ν as the observed monthly mean

temperature during the νth month of yearm, where ν is a monthly index satisfying 1 ≤ ν ≤ T

and m is a yearly index satisfying 0 ≤ m ≤ d − 1. Time is scaled at each station so as to

make m = 0 the first year in the data record. The data record length is n = dT , where d is

the total number of years of data; to avoid trite work, we take d as an integer.

For parameter interpretations, µν is the average temperature during month ν in the

absence of trend (αν = 0) and changepoints (δmT+ν ≡ 0); αν is the month ν linear trend,

which will be our focus later, or the average temperature change rate during month ν in the

absence of changepoints; and {δmT+ν} is a changepoint mean shift factor. In particular, the

changepoints have the structure
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δmT+ν =



∆1, 1 ≤ mT + ν < τ1

∆2, τ1 ≤ mT + ν < τ2
...

...

∆k, τk−1 ≤ mT + ν ≤ n

, (4.3.2)

where τ1 < τ2 < . . . < τk−1 are the months of the known changepoint times and k − 1 is

the total number of changepoints in the record (hence there are k different ‘regimes’). One

could regard the k−1 changepoints as inducing a k-phase simple linear regression, extending

the two-phase setup in Lund and Reeves (2002). Until the first changepoint time, the mean

effect in the regression is ∆1; between the first and second changepoint times, the mean effect

becomes ∆2, and so forth. For parameter identifiability, we take ∆1 = 0 (else the ∆i’s and

µν ’s become confounded).

In general, the model in (4.3.1) is a parsimonious version of the model used in Lund

et al. (2001) in that changepoint mean shifts in (4.3.1) are required to be the same over

varying seasons. We consider such structure for three fundamental reasons. First, imposing

equivalent changepoint effects across the seasons seems physically reasonable. A change of

station instrumentation, for example, should not produce radically different responses during

different seasons. The changepoint effects for a fixed station are also now easy to interpret:

∆k is the mean shift, as measured against the first regime, of series values from the kth

regime. Second, the regression parameter numbers are reduced from 2× T + (k − 1)× T in

the Lund et al. (2001) study to 2T + k − 1 here. This is a very large reduction in settings

with a large k. One expects more efficient trend estimates than those in Lund et al. (2001)

(smaller standard errors).

The seasonal parametrization in (4.3.1) has advantages over yearly analyses. For instance,

it allows one to address uniformity of temperature change over different seasons. Indeed, some

authors suspect that temperature warming is most rapid during winter due to decreased

nightly radiational cooling, the latter attributed to increasing carbon dioxide (see Callendar

1961, Madden and Ramanathan 1980, and Jones et al. 1982 for early references).
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For brevity’s sake (12 maps is excessive), we partition the monthly trends into the four sea-

sons Winter, Spring, Summer, and Fall. Winter is taken as December, January, and February

(DJF); Spring as March, April, and May (MAM); Summer as June, July, and August (JJA);

and Fall as September, October, and November (SON). A trend for Spring, for example, is

obtained by adding the trends during March, April, and May: α̂SPR = α̂3 + α̂4 + α̂5. Trends

for the other three seasons, denoted by α̂WIN, α̂SUM, and α̂FAL for Winter, Summer, and Fall,

respectively, are obtained analogously. An annual or yearly trend estimate, denoted by α̂YR,

is obtained by adding all monthly trends:

α̂YR =
T∑

ν=1

α̂ν = α̂WIN + α̂SPR + α̂SUM + α̂FAL.

For ease of interpretation and a standard basis of comparison, all trend estimates are con-

verted into degrees Celsius per century. This entails multiplying seasonal trends by 400 and

annual trends by 100.

4.3.2 Inference for the trend parameters

To estimate αν for each month ν, we use the method of ordinary least squares (OLS).

The OLS estimators of the ανs cannot be explicitly derived in closed form akin to (5) in

Lund et al. (2001). The regression in (4.3.1), however, does have the general linear model

representation

~X = D~β + ~ε,

where ~X = (X1, . . . , Xn)′ is the observed series (′ indicates matrix transpose), D is the

n× (2T + k − 1) dimensional design matrix

D = (D1|D2|D3), (4.3.3)

~β = (µ1, . . . , µ12, α1, . . . , α12,∆2, . . . ,∆k)
′ is the 2T + k − 1 dimensional parameter vector,

and ~ε = (ε1, . . . , εn)′ contains all regression errors. The component matrices D1 and D2 in
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(4.3.3) are n × T dimensional with (i, j)th entry of zero except that (D1)mT+ν,ν = 1 and

(D2)mT+ν,ν = mT + ν for 0 ≤ m ≤ d − 1 and 1 ≤ ν ≤ T . The components in D3 are zero

except for (D3)`,j = 1 when ` ∈ [τi, τi+1) and j = i as 1 ≤ i ≤ k − 1 (take τk = n+ 1 here).

An estimator of ~β is obtained from the classical least squares formula

~̂β = (D′D)−1D′ ~X. (4.3.4)

The estimator α̂ν is contained in the (T + ν)th component of ~̂β.

The trend estimators ~̂α = (α̂1, . . . , α̂T )′ are unbiased for any zero mean errors {εt}. OLS

estimators are asymptotically most efficient in time-homogeneous settings (cf. Grenander

1954); one does not expect drastic suboptimality in changepoint and/or periodic settings.

The variance/covariance matrix of the trend estimators is obtained from (4.3.4):

var(~̂β) = (D′D)−1(D′ΓD)(D′D)−1,

where Γ = var(~ε) = E[~ε~ε′] is the covariance matrix of {εt}. Observe that var(~̂β) is a (2T +

k − 1)× (2T + k − 1) matrix. The standard error of α̂ν is the square root of the (T + ν)th

diagonal component of var(~̂β) (or more precisely an estimate of this quantity).

Ignoring autocorrelations in {εt} by taking Γ to be a multiple of the identity matrix

underestimates the true variabilities in α̂ν (cf. Bloomfield and Nychka 1992, Lund et al. 1995

for discussion). To estimate Γ, a periodic autoregressive moving-average (PARMA) model

was fitted to the residuals of the regression fit. PARMA models are flexible short-memory

periodic time series models. Their development in climatological settings is described in

detail in Lund et al. (1995, 2001) and the references therein.

4.3.3 Spatial smoothing

For each station in the study, the above methods provide a trend estimate and standard error

for each of the four seasons and the entire year. To summarize these trends, we spatially

smooth them by longitude and latitude with the weighted head-banging algorithm described
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in Hansen (1991) and Mungiole et al. (1999). Briefly, the weighted head-banging algorithm

is a nonparametric local averaging smoother that is especially adept with rough (highly

variable) spatial fields. Head-banging methods effectively preserve edge features in the spatial

field while simultaneously downweighting outliers. The algorithm variant we use weights the

trends inversely to their standard error before averaging; hence, more questionable trends

have less overall influence on the end result. This is but one reason to pursue accurate

standard errors for the individual trends. The head-banging smoothing parameters used

here were 15 triples with 30 nearest neighbors for each contour map. Selection of appropriate

values of head-banging parameters is important, but not overly crucial in interpreting general

spatial structure of the trends. One will get a feel for smoothing aspects by comparing Figures

4.3 and 4.4 below.

Application of the head-banging algorithm yields a spatially smoothed trend estimate at

each station longitude and latitude in the study; such smoothing accounts for spatial autocor-

relations in the trend estimates nonparametrically. As an end step, the ESRI ARCGIS soft-

ware was applied to the head-banging smoothed trends. Here, the Inverse Distance Weighted

interpolation method with 12 neighbors was applied to display the head-banging smoothed

trends in the contour maps. The end-product is reasonably attractive while preserving gen-

eral structure.

4.4 A Comparison

To gain some feel for the methods, especially in regard to the different statistical models,

we consider the station located at Chula Vista, California in a case study. The data record

at this station through 1996 is plotted in Figure 1 of Lund et al. (2001). This series has

seen three documented changepoint times since 1919; the effects of each changepoint are

elaborated upon in Lund and Reeves (2002). Annual trend estimates and their standard

errors are listed below.
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Annual Chula Vista Trend Estimates in ◦C/Century

Model Annual Trend Standard Error

Neglecting Changepoints 2.896 0.7184

Lund et al. (2001) 1.126 0.6581

Model (4.3.1) 0.932 0.6117

The annual trend estimate of 0.932◦C/Century based on (4.3.1) is 17% smaller than the

1.126◦C/Century reported in the Lund et al. (2001). The standard error has decreased from

0.6581◦C/Century to 0.6117◦C/Century, suggesting slightly improved accuracy. Comparisons

at other stations also suggest some efficiency gains; specifically, an average standard error of

0.8226◦C/Century was obtained by Lund et al. (2001) whereas that here is 0.7646◦C/Century.

It should be stressed again that the numbers quoted for an analysis where changepoints are

neglected are invalid, but it is interesting to see how far off they indeed are.

4.5 Overall Results

This section studies the estimated trends at all 969 stations. Figure 4.2 shows boxplots

of the raw trend estimates during each season. Observe that the median line is positive

in each plot, suggesting overall warming in every season. The variability of the estimated

trends is greatest during Winter, minimal during Fall and Summer. There are a few outlying

trends in each season, of course in part attributed to the large sample size of 969. The

average trend estimate over all stations is 1.167◦C/Century for Winter, 0.971◦C/Century for

Spring, 0.658◦C/Century for Summer, and 0.515◦C/Century for Fall. The season with the

largest temperature variability (Winter) also shows the most warming. The average annual

trend estimate over all 969 stations is 0.8278◦C/Century. Overall, these results suggest more

warming than those reported in Lund et al. (2001), where the average annual trend was

0.7253◦C/Century.
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Figure 4.3 is a GIS contour plot of the raw annual estimated trends without applica-

tion of the head-banging smoother. The plot is included for smoothing feel, and is color

coded, with red representing warming and blue cooling. One sees a speckled structure to the

plot, indicating a rough spatial field, with cooling stations relatively more prevalent in the

Southeastern United States and warming stations relatively more frequent in the Southern

Rockies, Northern Midwest, New England, and Oregon.

Figure 4.4 is a head-banging smoothed version of the annual trends in Figure 4.3. Figure

4.4 conveys the general structure of Figure 4.3 with much of the noise variability smoothed

away. Overall, much of the West appears to be warming while a status quo climate, with

perhaps slight cooling, is evident in the Southeast and Ohio River Basin. This is less cooling

than that reported in Lund et al. (2001), but it is somewhat more widespread. Some cooling

in the Northern Rockies that did not appear in the Lund et al. (2001) study is also evident.

As before, rapid warming is apparent in Maine, Southern Arizona, and Northern Minnesota.

Notice the scale in the plot is not symmetric: cooling rates are not less than −1.5◦C/Century

whereas some warming rates exceed 2.5◦C/Century.

Figures 4.5 — 4.8 present spatially smoothed contours of trend estimates for Winter,

Spring, Summer, and Fall, respectively. A consistent feature in these plots is the slight

cooling in the Southeast and Ohio River Basin and the warming in the Four Corners Region

and Northern Midwest. The Dakotas show rapid Winter warming as does Southern Arizona

and Southern California. One can discern additional structure by examining the plots in

detail. We do not encourage extrapolation and/or local inference in the plots beyond very

general patterns; the usual disclaimer on interpreting local variations in a rough spatial field

applies.

4.6 Explanation of the Trends

The maps in Figures 4.4 — 4.8 here, along with analogous maps in Lund et al. (2001),

suggest that the Southeastern United States and Ohio River Basin have cooled slightly over
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the period of record and that the Four Corners Region, Northern Midwest, much of the

West, and the Northeast are warming. It would be informative to explain these patterns if

possible.

We now regress the updated annual trends on the factors precipitation (average yearly),

altitude of recording station, and longitude and latitude in an effort to explain the temper-

ature changes. In particular, we fit the multiple regression model

α̂i = a+ b1Pi + b2Ai + b3Longi + b4Lati + Zi, (4.6.1)

where α̂i is the estimated annual temperature change (α̂YR) in ◦C/Century at station i, Pi

is the annual average precipitation (in inches), Ai is the altitude of the station (in feet above

or below mean sea level), Longi is the longitude (in degrees), and Lati is the latitude (in

degrees). An overall mean trend change of a is put into the model. The series {Zi} is assumed

to be zero mean random error.

In fitting the model in (4.6.1), only precipitation is a significant explanatory factor of

the estimated temperature trends at the 5% significance level. The elevation, longitude, and

latitude factors were in fact highly insignificant. The p-value for the precipitation factor is,

however, very small — less than 0.0001 — indicating that precipitation and temperature

change are indeed correlated. The estimated regression coefficient corresponding to precipi-

tation is b̂1 = −1.758.

The negative association between the precipitation and temperature change is not unex-

pected. Precipitation has been previously linked to temperature change (cf. Ellsaesser et

al. 1986). An inspection of Figure 4.3 shows that most cooling stations reside in areas with

heavier precipitation (for examples, the blue speckles in the mountainous stations in the

Rockies). This logic does not commute as there are many stations with relatively heavier

precipitation rates that are warming (New England for example); however, the widespread

warming in the dry Desert Southwest and Great Plains is evident in Figure 4.4.
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It would have been interesting to include forestation changes as an additional factor in

(4.6.1); however, no consistent measure of this quantity was readily available over the same

time at which the temperatures were collected. We leave this issue as well as exploration of

other factors to others more knowledgeable in these areas.
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Chapter 5

Future Work

5.1 Simple Linear Regression in periodic settings

As we have seen, the simple linear regression

Xt = µ+ αt+ εt (5.1.1)

is useful in many situations with correlated {εt}.

The OLS estimator of the trend α, denoted by α̂OLS, is unbiased for any mean zero {εt}

and has the simplistic explicit form

α̂OLS =

∑n
t=1(t− t̄)(Xt − X̄)∑n

t=1(t− t̄)2
,

where t̄ = (n + 1)/2 and X̄ = n−1
∑n

t=1Xt are the time and observation averages. Lee

and Lund (2002) derive explicit expressions for Var(α̂OLS) under autocorrelation structures

commonly encountered in time series practice.

It is well known that the OLS estimator of α does not have the smallest variance among all

unbiased linear estimates unless {εt} is white noise (uncorrelated with a constant variance).

Specifically, a generalized least squares estimator of α (also called a weighted least squares

or BLUE estimate), denoted by α̂GLS, has a smaller variance than α̂OLS. However, as has

been pointed out by Grenander (1954), if {εt} is stationary and has a spectral density that

is strictly positive at all frequencies, then

lim
n→∞

Var(α̂OLS)

Var(α̂GLS)
= 1. (5.1.2)

66
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This justifies use of OLS estimators in lieu of generalized least squares estimators in sub-

stantial generality.

The analogy of (5.1.1) in a periodic setting is

XmT+ν = µν + αν(mT + ν) + εmT+ν , (5.1.3)

where {εt} is a mean zero periodic time series with known period T . The OLS estimator of

αν is

α̂ν =

∑d−1
m=0(XmT+ν − X̄ν)(mT + ν − t̄ν)∑d−1

m=0(mT + ν − t̄ν)2
, (5.1.4)

where X̄ν = d−1
∑d−1

m=0XmT+ν and t̄ν =
∑d−1

m=0(mT + ν) are the observation and time aver-

ages. Here, d = bn/T c is the total observed number of cycles of data. We take d as an integer

to avoid trite work.

As mentioned in Chapter 3, we question the optimality of OLS trend estimators in a

periodic environment. Whereas we do not believe that the OLS estimators in (5.1.4) are

radically inefficient, we do not believe they are asymptotically most efficient either. The

tradeoff needs to be understood and quantified. Future work will study this issue.

5.2 Detection of undocumented changepoints

This dissertation focuses on a simple linear regression with multiple changepoints when

the changepoint times are known. However, not all changepoint times are documented in

practice.

To test a null hypothesis of no changepoint in (3.1.1) against an alternative of one or

more changepoints, we consider a variant of (3.1.1) that allows for a single changepoint at

an unknown time c:

Xt =

 µ1 + α1t+ εt, 1 ≤ t ≤ c

µ2 + α2t+ εt, c < t ≤ n
. (5.2.1)
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When {εt} is mean zero independent random error with constant variance, this two-phase

linear regression model has been studied by many authors (cf. Hinkley 1969 and 1971b; Solow

1987; Easterling and Peterson 1995; Vincent 1998; Lund and Reeves 2002).

For a fixed c ∈ {1, 2, . . . , n}, let α̂1, α̂2, µ̂1, and µ̂2 be OLS estimates of parameters in

(5.2.1). Under the null hypothesis of no changepoint, a regression F -statistic

Fc =
(SSEreduced − SSEfull)/2

SSEfull/(n− 4)
(5.2.2)

should be small for each c when there is no changepoint. If a changepoint occurred at time

c, Fc, and hence Fmax = max1≤c≤n Fc, should be statistically large. Lund and Reeves (2002)

list null hypothesis (no changepoint) percentiles and point out that Hinkley’s (1969, 1971b)

claim that the null hypothesis distribution of Fmax was, under the constraint that the two

regression lines meet at time c, approximately an F3,n−4 distribution is incorrect and leads

to an overestimation of undocumented changepoints.

However, the theory and methods in Lund and Reeves (2002) need to be extended to

autocorrelated and periodic settings. We propose to derive a mathematical theory for the

asymptotic distribution of Fmax as n→∞ so as to obviate the need for simulation in each

separate situation encountered.
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