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ABSTRACT 

 In the face of a changing climate, food crops are increasingly threatened by arthropod-

vectored viruses. The development of accessible predictive tools for these pathosystems has been 

overlooked. I developed a generalizable spatially-explicit simulation model for arthropod-

vectored plant diseases that was parameterized for two plant virus pathosystems, Blueberry 

Necrotic Ring Blotch Virus (BNRBV) of Southern Highbush Blueberry and a Whitefly 

Transmitted Virus Complex (WTVC) of yellow squash, to replicate disease incidence field data 

for these systems. For the BNRBV pathosystem, the model performed well at replicating 

severity, location, and patchiness of disease. For the WTVC pathosystem, the model performed 

well at representing patchiness of disease but tended to overestimate whole-field disease 

incidence and misrepresent disease distribution in the field. Model results suggest that a general 

understanding of pathosystem dynamics coupled with demographic and behavioral data from 

vector literature can be sufficient to reasonably represent plant virus disease spread. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

 

Climate change and a rapidly growing global population have elevated the importance, 

socio-economic value, and complexity of plant health maintenance worldwide. Global food 

demand is expected to increase significantly by 2050 (by some estimates, 50-60%), and the 

potential impact of climate change on disease risk for most crops remains unclear ("Plant 

Diseases and Food Security in the 21st Century", 2021, Falcon et al., 2022). This situation is 

made more complex by climatically- and anthropogenically-driven emergence and introduction 

of novel and exotic pathogens. In the face of such challenges, tools that can predict when, where 

and how disease occurs under potential future conditions are advantageous in the control of plant 

disease epidemics. Epidemiological models facilitate projections of disease spread over a range 

of potential and known biological scenarios through statistical representations of important 

biological and environmental factors. Because the invasion of disease into a population of hosts 

is complex and empirical experimentation is necessarily focused on the limited number of 

epidemiological factors that can be directly measured, models are important tools to understand 

the dynamics of disease outbreaks and epidemics. Epidemiological models are an essential tool 

to explore and project potential outcomes from what is known about specific hostplant-pathogen-

environmental interactions and while simultaneously accounting for the uncertainty in important 

epidemiological factors that are difficult, if not impossible, to study empirically. Mathematical 

modelling attempts to simplify biological events into their component parts in order to 
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understand the rules that govern them (Antoniouk & Melnik, 2013). When constructed from 

previously collected data, models allow us to extend the usefulness of that data, evaluate 

assumptions that govern system dynamics, and make projections about complex biological 

systems that might not be understood in the absence of a well-designed mathematical model 

(Brauer, 2008, Jeger, 2000). 

Common predictive tools in plant epidemiology. Disease risk models are commonly 

used in plant pathology. These models usually serve one of two purposes: to determine when risk 

of an economically consequential infection (either initial infection or infection to an 

economically important plant part) is high (the most common form of disease risk model), or to 

provide an early warning of infection through detection of pre- or asymptomatically diseased 

plants (Fenu & Malloci, 2021, Hardwick, 2006, Miller & O’brien, 1952). In their calculation of 

disease risk, these models primarily focus on weather station sourced climate variables 

(temperature, humidity, precipitation) that are favorable for disease infection and intensification. 

Theoretically, this prevents unnecessary application of pesticides (primarily fungicides), because 

growers have the option to apply treatments to crops only when infection is predicted to be likely 

(Chappell et al., 2020, Cooke et al., 2006, Everts et al., 2016, Garrett et al., 2004, Jørgensen et 

al., 2020, Smith et al., 2018). To facilitate potential early disease detection, some models use 

remote sensing and multispectral imaging data (Cooke et al., 2006). Early detection allows for 

treatment of at-risk but potentially exposed and latently infected host plants while disease 

pressure is low. These models could benefit growers in that sufficiently early timing of 

treatments tends to enhance their effectiveness with a smaller footprint to control a localized 

disease outbreak (Severns & Mundt, 2022). 
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Disease risk models promote the proactive and reactive management of plant disease, but 

their use is restricted to specific types of well-documented pathosystems and rely heavily on 

climate envelopes as the sole means of prediction (e.g. these models do not integrate the current 

or future spatial distribution of disease). The utility of these models in terms of providing data to 

guide management decisions is clear, but these models do not have the flexibility to allow users 

to elucidate unknown elements of pathogen biology. Modern disease forecasting models often 

rely on machine learning analyses and surprisingly few of these models have been developed in 

the literature between 2010 and 2020, perhaps due to their intensive data requirements (Cooke et 

al., 2006). 

The serviceability of existing phytopathological models is limited by their specificity. 

They are mostly created for one specific crop or even a single disease of one crop (Andrade-

Piedra et al., 2005, Bregaglio et al., 2021, Chappell et al., 2020, Contreras-Medina, 2009, Coop, 

2023, Everts et al., 2016, Fenu & Malloci, 2021, Ferriss & Berger, 1993, Jørgensen et al., 2020, 

Kim & Jung, 2020, Pietravalle et al., 2003, Smith et al., 2018). Most often, the pathogens whose 

occurrences they are created to predict tend to be (mostly wind-dispersed) fungal and fungal-like 

pathogens and not the causal agents of arthropod-vectored diseases (Caubel et al., 2012, Juroszek 

et al., 2022, Juroszek et al., 2020, McLeish et al., 2020, Miller et al., 2022, Pietravalle et al., 

2003, Savary et al., 2015, Severns, 2022). This homogeneity and lack of generalizability raises 

the barrier to entry for the creation of arthropod-vectored plant virus models. Extant 

phytopathological models also tend to be constructed using approaches that do not account for 

the spatial arrangement of hosts, a key component in the determination of plant disease outcomes 

– especially for viral plant diseases (Cunniffe et al., 2015a, Fabre et al., 2021, Ferriss & Berger, 

1993, Jones, 2009, Ostfeld et al., 2005, Zhang et al., 2000). 
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Spatially-explicit models. Spatially-explicit models (SEMs) are simulation models that 

account for real spatial measurements. In general, SEMs have the power to more faithfully 

represent the epidemiology of and evaluate management practices for emerging diseases 

(DeAngelis & Yurek, 2017, Fabre et al., 2021). Phytopathological SEMs are usually constructed 

for aerially dispersed fungal pathogens (Beasley et al., 2022, Calonnec et al., 2008, 

Christopher P. Brooks et al., 2008, Fabre et al., 2021, Lof et al., 2017, Meentemeyer et al., 2011, 

Severns & Mundt, 2022, Vinatier et al., 2009). Those that are developed for arthropod-vectored 

bacterial and viral pathogens tend not to meaningfully account for vector behavior and/or 

demography (Cunniffe et al., 2015b, Nguyen et al., 2023, Parnell et al., 2009, Picard et al., 2017, 

Thierry et al., 2021, White et al., 2017). The relative paucity of SEMs for arthropod-vectored 

diseases is concerning, given that nearly half of all emerging plant diseases are caused by viruses 

and viral plant diseases are primarily vectored by arthropods (Anderson et al., 2004, Ferriss & 

Berger, 1993). Existing SEMs in the field of plant pathology are almost never open access and 

tend to be constructed for and parameterized for only one pathosystem in ways that prevent the 

models from being modified to another related system (Beasley et al., 2022, 

Christopher P. Brooks et al., 2008, Contreras-Medina, 2009, Fabre et al., 2021, Lof et al., 2017, 

Meentemeyer et al., 2011, Vinatier et al., 2009). Generalizable plant disease SEMs can be 

parameterized for many similarly vectored plant diseases and making SEMs publicly available 

allows for widespread adoption and adaptation for various purposes. With this in mind, I 

developed a generalizable, open access SEM for arthropod-vectored plant viruses that accounted 

for some vector behaviors. 

Most plant viruses are vectored by arthropods, which vary in their modes of viral 

transmission. It is the vector that differentiates plant viruses from passively dispersed 
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microscopic plant pathogens in a distinct way: the distribution of plant viruses is dependent upon 

vector behavior. Insect vectors are able to make decisions about which plants to feed and 

oviposit on and are influenced by factors such as host preference, host nutritional value, host 

physiological status, interactions among conspecifics, weather, and the presence of natural 

enemies (Avery et al., 2015, Byrne & Bellows Jr, 1991, Costa et al., 1991, Felicio et al., 2019, 

Liu et al., 2007, Mayer et al., 2002, Milenovic et al., 2019, Nam & Hardie, 2012, Rodelo-Urrego 

et al., 2013, Shi et al., 2018, Zhang et al., 2019, Zhao et al., 2021). Predicting the movement of a 

discerning organism requires more considerations than predicting that of a passively dispersed 

fungal spore spread along a gradient such as wind. For this reason, models predicting the 

movement of arthropod vectors must account for factors relating to landscape distribution of 

vector resources over space and time, vector behavioral ecology, vector demography and 

population dynamics, climatic conditions, host plant phenology, and transmission rates (Cunniffe 

et al., 2015a, Jeger et al., 1998, Zhang et al., 2000). 

Goals and objectives. In my thesis, I develop two spatially explicit disease models 

featuring arthropod vectors that serve as within-field base models for arthropod vectored plant 

diseases that are relatively limited in their dispersal capacity (e.g. mites) and those that are 

capable of more locally active and occasional long-distance dispersal (e.g. whiteflies). My 

models were designed to accommodate alterations to fit a variety of vector-virus pathosystems 

by adjusting the spatial data and the parameters describing the survival, reproduction, 

transmission, and dispersal parameters of the modelled invertebrate vector. The specific 

objectives were: 

1. To develop a spatially explicit simulation model for the spread of Blueberry 

Necrotic Ring Blotch Virus (BNRBV) in Southern Highbush Blueberry (SHB) 
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fields that integrates both the demography and dispersal of its suspected eriophyid 

mite vector in the genus Calacarus. 

2. To validate the BNRBV model by comparing its projections to previously 

collected field data. 

3. To develop a spatially explicit simulation model for the spread of a Whitefly-

Transmitted Virus Complex (WTVC) in yellow squash (Cucurbita pepo) fields 

that incorporates both the demography and dispersal of its vector, the silverleaf 

whitefly, Bemisia tabaci. 

  



7 

 

LITERATURE CITED 

 

Anderson, P. K., Cunningham, A. A., Patel, N. G., Morales, F. J., Epstein, P. R. and Daszak, P. 

(2004) Emerging Infectious Diseases of Plants: Pathogen Pollution, Climate Change and 

Agrotechnology Drivers. Trends in Ecology & Evolution, 19, 535-544. 

Andrade-Piedra, J. L., Forbes, G. A., Shtienberg, D., Grünwald, N. J., Chacón, M. G., Taipe, M. 

V., et al. (2005) Qualification of a Plant Disease Simulation Model: Performance of the 

Lateblight Model across a Broad Range of Environments. Phytopathology®, 95, 1412-

1422. 

Antoniouk, A. V. and Melnik, R. (2013) Mathematics and Life Sciences. Berlin: De Gruyter. 

Avery, P. B., Kumar, V., Simmonds, M. S. and Faull, J. (2015) Influence of Leaf Trichome Type 

and Density on the Host Plant Selection by the Greenhouse Whitefly, Trialeurodes 

Vaporariorum (Hemiptera: Aleyrodidae). Applied entomology and zoology, 50, 79-87. 

Beasley, E. M., Aristizábal, N., Bueno, E. M. and White, E. R. (2022) Spatially Explicit Models 

Predict Coffee Rust Spread in Fragmented Landscapes. Landscape Ecology, 37, 2165-

2178. 

Brauer, F. (2008) Compartmental Models in Epidemiology. In: Mathematical Epidemiology. 

(Brauer, F., van den Driessche, P. and Wu, J., eds.). Berlin, Heidelberg: Springer Berlin 

Heidelberg, pp. 19-79. 

Bregaglio, S., Willocquet, L., Kersebaum, K. C., Ferrise, R., Stella, T., Ferreira, T. B., et al. 

(2021) Comparing Process-Based Wheat Growth Models in Their Simulation of Yield 

Losses Caused by Plant Diseases. Field Crops Research, 265, 108108. 



8 

Byrne, D. N. and Bellows Jr, T. S. (1991) Whitefly Biology. Annual review of entomology, 36, 

431-457. 

Calonnec, A., Cartolaro, P., Naulin, J.-M., Bailey, D. and Langlais, M. (2008) A Host-Pathogen 

Simulation Model: Powdery Mildew of Grapevine. Plant Pathology, 57, 493-508. 

Caubel, J., Launay, M., Lannou, C. and Brisson, N. (2012) Generic Response Functions to 

Simulate Climate-Based Processes in Models for the Development of Airborne Fungal 

Crop Pathogens. Ecological Modelling, 242, 92-104. 

Chappell, T. M., Codod, C. B., Williams, B. W., Kemerait, R. C., Culbreath, A. K. and Kennedy, 

G. G. (2020) Adding Epidemiologically Important Meteorological Data to Peanut Rx, the 

Risk Assessment Framework for Spotted Wilt of Peanut. Phytopathology®, 110, 1199-

1207. 

Christopher P. Brooks, Janis Antonovics and Timothy H. Keitt (2008) Spatial and Temporal 

Heterogeneity Explain Disease Dynamics in a Spatially Explicit Network Model. The 

American Naturalist, 172, 149-159. 

Contreras-Medina, L. M. (2009) Mathematical Modeling Tendencies in Plant Pathology. African 

journal of biotechnology., 8, 7399. 

Cooke, B. M., Jones, D. G. and Kaye, B. (2006) The Epidemiology of Plant Diseases. Springer. 

Coop, L. (2023) Technical Documentation and Links for Plant Disease Risk and Other Hourly 

Weather Driven Models. Oregon IPM Center: Oregon State University. 

Costa, H. S., Brown, J. K. and Byrne, D. (1991) Host Plant Selection by the Whitefly, Bemisia 

Tabaci (Gennadius),(Hom., Aleyrodidae) under Greenhouse Conditions. Journal of 

Applied Entomology, 112, 146-152. 



9 

Cunniffe, N. J., Koskella, B., E. Metcalf, C. J., Parnell, S., Gottwald, T. R. and Gilligan, C. A. 

(2015a) Thirteen Challenges in Modelling Plant Diseases. Epidemics, 10, 6-10. 

Cunniffe, N. J., Stutt, R. O. J. H., DeSimone, R. E., Gottwald, T. R. and Gilligan, C. A. (2015b) 

Optimising and Communicating Options for the Control of Invasive Plant Disease When 

There Is Epidemiological Uncertainty. PLOS Computational Biology, 11, e1004211. 

DeAngelis, D. L. and Yurek, S. (2017) Spatially Explicit Modeling in Ecology: A Review. 

Ecosystems, 20, 284-300. 

Everts, K. L., Korir, R. C. and Newark, M. J. (2016) Re-Evaluation of Melcast for Fungicide 

Scheduling in Mid-Atlantic Watermelon. Plant Health Progress, 17, 51-52. 

Fabre, F., Coville, J. and Cunniffe, N. J. (2021) Optimising Reactive Disease Management Using 

Spatially Explicit Models at the Landscape Scale. In: Plant Diseases and Food Security 

in the 21st Century. (Scott, P., Strange, R., Korsten, L. and Gullino, M. L., eds.). Cham: 

Springer International Publishing, pp. 47-72. 

Falcon, W. P., Naylor, R. L. and Shankar, N. D. (2022) Rethinking Global Food Demand for 

2050. Population and Development Review, 48, 921-957. 

Felicio, T. N. P., Costa, T. L., Sarmento, R. A., Ramos, R. S., Pereira, P. S., da Silva, R. S., et al. 

(2019) Surrounding Vegetation, Climatic Elements, and Predators Affect the Spatial 

Dynamics of Bemisia Tabaci (Hemiptera: Aleyrodidae) in Commercial Melon Fields. 

Journal of Economic Entomology, 112, 2774+. 

Fenu, G. and Malloci, F. M. (2021) Forecasting Plant and Crop Disease: An Explorative Study 

on Current Algorithms. Big Data and Cognitive Computing, 5, 2. 

Ferriss, R. and Berger, P. (1993) A Stochastic Simulation Model of Epidemics of Arthropod -

Vectored Plant Viruses. Phytopathology, 83, 1269-1278. 



10 

Garrett, K. A., Madden, L. V., Hughes, G. and Pfender, W. F. (2004) New Applications of 

Statistical Tools in Plant Pathology. Phytopathology®, 94, 999-1003. 

Hardwick, N. V. (2006) Disease Forecasting. In: The Epidemiology of Plant Diseases. Springer, 

pp. 239-267. 

Jeger, M. J. (2000) Theory and Plant Epidemiology. Plant Pathology, 49, 651-658. 

Jeger, M. J., van den Bosch, F., Madden, L. V. and Holt, J. (1998) A Model for Analysing Plant-

Virus Transmission Characteristics and Epidemic Development. Mathematical Medicine 

and Biology: A Journal of the IMA, 15, 1-18. 

Jones, R. A. C. (2009) Plant Virus Emergence and Evolution: Origins, New Encounter 

Scenarios, Factors Driving Emergence, Effects of Changing World Conditions, and 

Prospects for Control. Virus Research, 141, 113-130. 

Jørgensen, L. N., Matzen, N., Ficke, A., Nielsen, G. C., Jalli, M., Ronis, A., et al. (2020) 

Validation of Risk Models for Control of Leaf Blotch Diseases in Wheat in the Nordic 

and Baltic Countries. European Journal of Plant Pathology, 157, 599-613. 

Juroszek, P., Bartsch, L., Fontaine, J. F., Racca, P. and Kleinhenz, B. (2022) Summary of the 

Worldwide Available Crop Disease Risk Simulation Studies That Were Driven by 

Climate Change Scenarios and Published During the Past 20 Years. Plant Pathology, 71, 

1815-1838. 

Juroszek, P., Racca, P., Link, S., Farhumand, J. and Kleinhenz, B. (2020) Overview on the 

Review Articles Published During the Past 30 Years Relating to the Potential Climate 

Change Effects on Plant Pathogens and Crop Disease Risks. Plant Pathology, 69, 179-

193. 



11 

Kim, K.-H. and Jung, I. (2020) Development of a Daily Epidemiological Model of Rice Blast 

Tailored for Seasonal Disease Early Warning in South Korea. Plant Pathol J, 36, 406-

417. 

Liu, S.-S., De Barro, P., Xu, J., Luan, J.-B., Zang, L.-S., Ruan, Y.-M., et al. (2007) Asymmetric 

Mating Interactions Drive Widespread Invasion and Displacement in a Whitefly. Science, 

318, 1769-1772. 

Lof, M. E., de Vallavieille-Pope, C. and van der Werf, W. (2017) Achieving Durable Resistance 

against Plant Diseases: Scenario Analyses with a National-Scale Spatially Explicit Model 

for a Wind-Dispersed Plant Pathogen. Phytopathology®, 107, 580-589. 

Mayer, R. T., Inbar, M., McKenzie, C., Shatters, R., Borowicz, V., Albrecht, U., et al. (2002) 

Multitrophic Interactions of the Silverleaf Whitefly, Host Plants, Competing Herbivores, 

and Phytopathogens. Archives of Insect Biochemistry and Physiology: Published in 

Collaboration with the Entomological Society of America, 51, 151-169. 

McLeish, M. J., Fraile, A. and García-Arenal, F. (2020) Trends and Gaps in Forecasting Plant 

Virus Disease Risk. Annals of Applied Biology, 176, 102-108. 

Meentemeyer, R. K., Cunniffe, N. J., Cook, A. R., Filipe, J. A. N., Hunter, R. D., Rizzo, D. M., 

et al. (2011) Epidemiological Modeling of Invasion in Heterogeneous Landscapes: 

Spread of Sudden Oak Death in California (1990–2030). Ecosphere, 2, art17. 

Milenovic, M., Wosula, E. N., Rapisarda, C. and Legg, J. P. (2019) Impact of Host Plant Species 

and Whitefly Species on Feeding Behavior of Bemisia Tabaci. Frontiers in Plant 

Science, 10, 1. 



12 

Miller, I. F., Jiranek, J., Brownell, M., Coffey, S., Gray, B., Stahl, M., et al. (2022) Predicting the 

Effects of Climate Change on the Cross-Scale Epidemiological Dynamics of a Fungal 

Plant Pathogen. Scientific Reports, 12, 14823. 

Miller, P. R. and O’brien, M. (1952) Plant Disease Forecasting. The Botanical Review, 18, 547-

601. 

Nam, K. J. and Hardie, J. (2012) Host Acceptance by Aphids: Probing and Larviposition 

Behaviour of the Bird Cherry-Oat Aphid, Rhopalosiphum Padi on Host and Non-Host 

Plants. Journal of insect physiology, 58, 660-668. 

Nguyen, V.-A., Bartels, D. W. and Gilligan, C. A. (2023) Modelling the Spread and Mitigation 

of an Emerging Vector-Borne Pathogen: Citrus Greening in the U.S. PLOS 

Computational Biology, 19, e1010156. 

Ostfeld, R. S., Glass, G. E. and Keesing, F. (2005) Spatial Epidemiology: An Emerging (or Re-

Emerging) Discipline. Trends in Ecology & Evolution, 20, 328-336. 

Parnell, S., Gottwald, T. R., Bosch, F. v. d. and Gilligan, C. A. (2009) Optimal Strategies for the 

Eradication of Asiatic Citrus Canker in Heterogeneous Host Landscapes. 

Phytopathology, 99, 1370-1376. 

Picard, C., Rimbaud, L., Hendrikx, P., Soubeyrand, S., Jacquot, E. and Thébaud, G. (2017) Peso: 

A Modelling Framework to Help Improve Management Strategies for Epidemics – 

Application to Sharka. EPPO Bulletin, 47, 231-236. 

Pietravalle, S., Shaw, M. W., Parker, S. R. and van den Bosch, F. (2003) Modeling of 

Relationships between Weather and Septoria Tritici Epidemics on Winter Wheat: A 

Critical Approach. Phytopathology®, 93, 1329-1339. 



13 

Plant Diseases and Food Security in the 21st Century (2021). (Scott, P., Strange, R., Korsten, L. 

and Gullino, M. L., eds.). Springer Cham. 

Rodelo-Urrego, M., Pagán, I., González-Jara, P., Betancourt, M., Moreno-Letelier, A., Ayllón, 

M. A., et al. (2013) Landscape Heterogeneity Shapes Host-Parasite Interactions and 

Results in Apparent Plant–Virus Codivergence. Molecular Ecology, 22, 2325-2340. 

Savary, S., Stetkiewicz, S., Brun, F. and Willocquet, L. (2015) Modelling and Mapping Potential 

Epidemics of Wheat Diseases—Examples on Leaf Rust and Septoria Tritici Blotch Using 

Epiwheat. European Journal of Plant Pathology, 142, 771-790. 

Severns, P. and Mundt, C. (2022) Delays in Epidemic Outbreak Control Cost Disproportionately 

Large Treatment Footprints to Offset. Pathogens, 11, 393. 

Severns, P. M. (2022) Dispersal Kernel Type Highly Influences Projected Relationships for Plant 

Disease Epidemic Severity When Outbreak and at-Risk Populations Differ in 

Susceptibility. Life, 12, 1727. 

Shi, X., Chen, G., Pan, H., Xie, W., Wu, Q., Wang, S., et al. (2018) Plants Pre-Infested with 

Viruliferous Med/Q Cryptic Species Promotes Subsequent Bemisia Tabaci Infestation. 

Frontiers in Microbiology, 9. 

Smith, D. L., Kerns, J. P., Walker, N. R., Payne, A. F., Horvath, B., Inguagiato, J. C., et al. 

(2018) Development and Validation of a Weather-Based Warning System to Advise 

Fungicide Applications to Control Dollar Spot on Turfgrass. PLOS ONE, 13, e0194216. 

Thierry, H., Monteil, C., Parry, H. and Vialatte, A. (2021) Simulating Seasonal Drivers of Aphid 

Dynamics to Explore Agronomic Scenarios. Ecosphere, 12, e03533. 



14 

Vinatier, F., Tixier, P., Le Page, C., Duyck, P.-F. and Lescourret, F. (2009) Cosmos, a Spatially 

Explicit Model to Simulate the Epidemiology of Cosmopolites Sordidus in Banana 

Fields. Ecological Modelling, 220, 2244-2254. 

White, S. M., Bullock, J. M., Hooftman, D. A. P. and Chapman, D. S. (2017) Modelling the 

Spread and Control of Xylella Fastidiosa in the Early Stages of Invasion in Apulia, Italy. 

Biological Invasions, 19, 1825-1837. 

Zhang, P.-J., Wei, J.-N., Zhao, C., Zhang, Y.-F., Li, C.-Y., Liu, S.-S., et al. (2019) Airborne 

Host–Plant Manipulation by Whiteflies Via an Inducible Blend of Plant Volatiles. 

Proceedings of the National Academy of Sciences, 116, 7387-7396. 

Zhang, X.-S., Holt, J. and Colvin, J. (2000) A General Model of Plant-Virus Disease Infection 

Incorporating Vector Aggregation. Plant Pathology, 49, 435-444. 

Zhao, P., Zhang, X., Gong, Y., Wang, D., Xu, D., Wang, N., et al. (2021) Red-Light Is an 

Environmental Effector for Mutualism between Begomovirus and Its Vector Whitefly. 

PLOS Pathogens, 17, e1008770. 



15 

 

 

CHAPTER 2 

A SPATIALLY-EXPLICIT EPIDEMIOLOGICAL MODEL FOR BLUEBERRY 

NECROTIC RING BLOTCH VIRUS AND ITS SUSPECTED VECTOR, A 

CALACARUS MITE1 
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ABSTRACT 

 Blueberry necrotic ring blotch virus (BNRBV) is the causal agent of an emerging 

disease of Southern Highbush Blueberry (SHB; Vaccinium corymbosum). BNRBV 

causes non-systemic, localized infections on leaf tissue. The vector of BNRBV has not 

been confirmed but is suspected to be an eriophyid mite (family: Eriophyidae). We used 

previously collected field data reporting per-plant disease severity of BNRBV on 

susceptible ‘Star’ SHB plants to help construct and evaluate a spatially-explicit 

simulation model for the spread of BNRBV, assuming the vector to be a mite in the 

genus Calacarus. This SEI epidemiological compartmental model, called SimpleMite, 

integrated vector dispersal behavior (derived from raw field data), vector demography, 

and runs in the open-access environment HexSim. I selected two fields from 2011 and 

2012 field seasons for model development and evaluation as the observed disease levels 

were on the highest and lowest ends of observed disease severity. If the model is put 

together properly, it should reasonably project similar disease levels and spatial 

distribution over time comparable to the field data. For each virtual field, disease severity 

values from the first data collection date in 2011 and 2012 were used as the initial disease 

conditions to replicate the spatial disease severity patterns observed at the penultimate 

and ultimate data collection dates. Moran’s I, a global index of data aggregation over 

space, mean disease levels, the statistical distribution of disease levels over space on two 

different time points, and infection saturation heat maps produced by SimpleMite 

overlapped with the field data on those target dates and fields. The model performed best 

when replicating disease outcomes when disease levels were high, and less accurately 

represented the spatial distribution or quantity of infection severity values when disease 
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levels were so low that they would likely have little influence on blueberry yields or plant 

vigor. Model outcomes were inaccurate without the inclusion of a variable accounting for 

infected vectors preferentially dispersing from already diseased plants. This suggests that 

vector dispersal behavior may be an important and overlooked aspect of invertebrate-

vectored plant disease. SimpleMite was conceptualized to be a base model for any 

arthropod-vectored plant disease, and has built-in aspects that should further facilitate the 

epidemiological studies of viral and bacterial plant disease dynamics. 
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INTRODUCTION 

The co-occurrence of increased international trade and climate change presents 

significant challenges to plant pathologists attempting to control disease outbreaks 

(Hulme, 2009). Many factors relevant to the management of plant disease are changing 

simultaneously and prediction of overall plant health trends sometimes yield conflicting 

results – for example, changes in precipitation patterns are predicted to negatively impact 

the growth of corn in some regions, but accompanying rises in CO2 may temper the 

effects (Juroszek et al., 2020). The flow of global commerce facilitates the introduction 

of pathogens into previously uncolonized areas, introducing further complexity into 

prediction of plant health outcomes (Fabre et al., 2021, Hulme, 2009). Under these 

conditions, understanding host-pathogen interactions can be incredibly complicated, and 

further complexity is introduced with the consideration of vector species. For these 

reasons, predictive tools are increasingly valuable to the study and management of plant 

diseases, especially that of arthropod-vectored plant pathogens. The use of these models 

on smaller scales could elucidate the finer details of plant, pathogen, and vector biology 

that are needed for the construction of broader climate change models (Jones, 2016, 

Juroszek et al., 2020). 

The Georgia blueberry industry is periodically threatened by Blueberry Necrotic 

Ring Blotch Virus (BNRBV; Blunervirus vaccinium), the causal agent of Blueberry 

Necrotic Ring Blotch Disease (BNRBD), an emerging disease of Southern Highbush 

Blueberry (SHB; Vaccinium corymbosum). The disease was first observed in Georgia in 

2006 and is currently widespread across the southeastern U.S., appearing to be restricted 

to this region (Martin et al., 2012, Martin & Tzanetakis, 2018, Ramos-González et al., 
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2023). Because Georgia is typically one of the top three blueberry-producing states in the 

top blueberry-producing nation, BNRBD is an issue of both local and national 

importance (Upadhaya & Dwivedi, 2019). Consumer demand for blueberries and 

blueberry acreage are increasing, and BNRBD prevalence remains unpredictable within 

and between growing seasons (Fulcher et al., 2015, Quito-Avila et al., 2013). The 

development of predictive tools for the distribution and prevalence of this disease could 

potentially provide important insight to its superficially understood disease dynamics. A 

more holistic understanding of BNRBD dynamics may lead to more effective 

management practices when disease outbreaks occur. 

BNRBV is in the genus Blunervirus in the family Kitaviridae. Kitaviruses are a 

newly recognized family of positive-sense single-stranded RNA plant viruses. The only 

known and documented vectors of kitaviruses are eriophyid mites (family: Eriophyidae) 

and mites in the genus Brevipalpus (family: Tenuipalpidae) (Ramos-González et al., 

2023). Members of this virus family cause localized infections in plant foliar tissues and 

lack the capacity for systemic movement within their hosts, which is atypical of plant 

viruses (Agrios, 2005, Ramos-González et al., 2023). BNRBV symptoms present as 

irregularly shaped, darkly-discolored to necrotic leaf spots, some with green centers. 

Aggregations of these infections may coalesce into a larger, amorphous infected region, 

potentially triggering leaf abscission. Typical of kitaviruses, BNRBV appears to be 

localized to these necrotic spots, does not move systemically within its host, and 

consequently does not persist in host plants from one growing season to the next 

(Robinson et al., 2016). The primary source of BNRBV in agricultural environments 

remains unknown as it appears to recolonize blueberry plantings each spring (Robinson et 
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al., 2016). These observations suggest that the virus possibly overwinters outside of 

blueberry fields (alternate hosts are presently unknown) and recolonizes from the field 

margins where the virus reservoirs and vector(s) exist. The impact of defoliation caused 

by severe cases of BNRBV on fruit fresh weight yield the following spring is currently 

unknown but a possibility on young plantings or if the disease pressures are high for 

consecutive growing seasons. Reduction in yield is physiologically plausible given that  

artificial defoliation has been shown to reduce the yields (sometimes by ~43% of grams 

of fresh weight per plant) of some SHB cultivars (Williamson & Miller, 2002). 

To date, no organism has been definitively shown to vector BNRBV and the virus 

appears unable to spread through vegetative propagation or seed (Robinson et al., 2016). 

However, researchers suspect that an eriophyid mite in the genus Calacarus may be 

serving as a vector of BNRBV due to the occurrence of these mites in association with 

the virus (Burkle et al., 2012, Cantu-Iris et al., 2013, Ramos-González et al., 2023). 

Unpublished data reported by A. D. Tassi and D. Carrillo documents an association 

between BNRBV and the presence of both a Calacarus sp. and Brevipalpus sp., but the 

authors assert that between the two, only Calacarus was able to perform as a vector 

(Ramos-González et al., 2023). Though confirmation of the vector species for BNRBV is 

an area of active research, its genetic similarity to other Kitaviruses (many of which are 

vectored by eriophyid mites), clustered pattern of disease spread, and association with an 

eriophyid species suggests that BNRBV is also likely to be mite-transmitted (Robinson et 

al., 2016). 

Eriophyid-vectored viruses are poorly understood. The family Eriophyidae 

belongs to Eriophyoidea: a superfamily of microscopic, four-legged, phytophagous mites. 



21 

These mites tend to have highly specialized, monophagous relationships with their host 

plants and several species are confirmed vectors of plant viruses (Baker & Wharton, 

1952, Vacante, 2015, Westphal & Manson, 1996). Members of Eriophyoidea have been 

described since the mid-19th century, but much of what is known about them was 

discovered in recent history (Lindquist & Amrine, 1996). Though Eriophyidae is the 

second-most important family of mite plant pests after the Tetranychidae (superfamily: 

Tetranychoidea), the majority of eriophyoid literature has been published in the last fifty 

years (de Lillo & Skoracka, 2010, Lindquist & Amrine, 1996). There is a dearth of 

literature on both the behavior and molecular biology of eriophyoids in particular (de 

Lillo & Skoracka, 2010, Michalska et al., 2010). As a result, the study of eriophyoid 

mite-vector pathosystems is slowly progressing but still in its infancy. 

The objective of this study was to develop a spatially-explicit simulation model to 

predict BNRBD disease incidence based on reported life history, assumed mite vector, 

and a previous two-year field study of BNRBD spread in multiple south Georgia 

production blueberry fields. Much remains a mystery about BNRBD. In the absence of 

sufficient literature on the epidemiology of this disease, a simulation model acts as a 

bridge between what is relatively well-known and unknown about this pathosystem. This 

model allows for the evaluation of disease spread under various conditions based on our 

knowledge of the host, our current understanding of the virus, and the life history of the 

presumed vector. With these limitations in mind, this study provides a framework for the 

predictive modeling of arthropod-vectored plant disease that addresses uncertainty and 

environmental/epidemiological variation with stochastic processes embedded within the 

model as a parameter that can be varied. While my research can promote the collection of 
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high-quality life history data of eriophyid mites and further study of BNRBV to refine 

projections, it also provides plant pathologists with an open access base model for the 

spread of arthropod-vectored plant diseases. I have constructed this model with the vision 

that the parameter values can be readily changed to represent other invertebrate-vectored 

plant disease systems. There is no similar GPS enabled, spatially explicit, open access 

model for the study of invertebrate vectored plant diseases. 

 

MATERIALS AND METHODS 

Field data. This study utilized raw field data on BNRBD presented by Tanisha Robinson 

(2013). These raw data (hereafter collectively referred to as ‘Robinson Field Data’) list 

the per plant disease severity of BNRBD in several Georgia blueberry fields on the 

susceptible southern highbush blueberry (SHB) cultivar ‘Star’ and were recorded 

periodically across several weeks in 2011 and 2012 (see Table 2.1). Disease severity was 

reported as the percentage of leaves (up to a maximum of 100%) that displayed BNRBD 

symptoms on each observation date. ‘Enigma (Site 1)’ in Enigma, GA and ‘Homerville’ 

in Homerville, GA (hereafter referred to as ‘Enigma’ and ‘Homerville’) were selected for 

study because disease levels spanned the low and high ends of the recorded disease levels 

and they were consistent in their arrangement of alternating rows of ‘Star’ with rows of 

‘Emerald’ – an SHB cultivar that is resistant to BNRBD. Blueberry plants in the selected 

field sites were spaced 1.2 m between plants within a row and 3.0 m between rows 

(Robinson, 2013). 

Model overview. A simulation model for the spread and disease incidence of 

BNRBV, hereafter termed ‘SimpleMite’, was developed in the HexSim modeling 
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environment using HexSimPLE as a template which was modified to complement the 

BNRBV system. HexSim is a spatially-explicit simulation modelling environment for 

ecological scenarios and HexSimPLE is a females-only population model template 

constructed within it used for the analysis of spatial metapopulation dynamics 

(Schumaker, 2023). SimpleMite represents a population of vectors moving throughout a 

landscape of SHB plants and is adapted from the event sequence for HexSimPLE. See 

Appendix A for a summarized overview of HexSim or visit www.hexsim.net for a 

detailed description of the entire landscape event simulation environment.  HexSimPLE 

(and by extension SimpleMite) is constructed of four basic parts:  

1) Spatial data specifying the landscape in which the modeled populations of 

pathogen, host, and vector exist 

2) Demographic and biological information on the pathogen, host, and vector 

3) A set of traits and accumulator values that describe each individual vector and 

host in the model 

4) An event sequence specifying all actions performed by the individuals 

(agents) in each population (pathogen, vector, host) and their interactions with 

the landscape 

Spatial data. 

SimpleMite requires the input of several spatial data called “Hexmaps”. Given 

that HexSim is a spatially-explicit modeling environment, these Hexmaps are constructed 

of hexagons with a user-specified size that correspond to real life dimensions. Hexagons 

in SimpleMite have a width of 1.5 m, which is about the distance across each individual 

SHB plant canopy and half the distance between rows (Fang et al., 2020, Robinson, 

http://www.hexsim.net/
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2013).The spatial data required for SimpleMite are mostly those used to populate the 

HexSimPLE routine, with the addition of an “Initial Disease Conditions Map”. The maps 

required for the implementation of HexSimPLE are: Matrices Map, Habitat Map, 

Regions Map, Stress Map Fecundity, and Stress Map Survival. These maps are described 

extensively in Appendix A but are briefly described below. The Matrices Map 

determined which hexagons in the landscape are assigned a Leslie Matrix to estimate and 

project the mite population size. The Habitat Map determined the location of each host 

plant and border rows. The Regions Map determines which hexagons in the landscape are 

considered unique regions that should be subject to their own independent environmental 

stochasticity. Stress Map Fecundity and Stress Map Survival designate the hexagons in 

the landscape in which mites are subjected to specified/hypothesized reductions on their 

fecundity and survival, respectively. The Initial Disease Conditions Map represents the 

distribution of mites and disease at the beginning of the first time step of the model and is 

a recreation of the disease conditions from the first data collection date of Robinson Field 

Data. 

Demographic information. 

SimpleMite retains many of the population-focused qualities of HexSimPLE, with 

significant additions to represent BNRBV disease dynamics. The vector population was 

divided into three life stages: Stage 0 (eggs), Stage 1 (juvenile mites), and Stage 2 (adult 

mites). Survival and fecundity rates for each life stage were gathered from published life 

tables for Calacarus and other closely related, ecologically similar eriophyid mite species 

(Table 2.2). Population size was projected using a Leslie Matrix (Appendix A), a well-

known demographic projection method, based on vital rates (Table 2.2) for each life 
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stage  at each time step (a four-day interval) as part of the event sequence (Kajin et al., 

2012). In SimpleMite, Stages 0 and 1 are incapable of both dispersal and serving as 

vectors of BNRBV, which is biologically realistic as eriophyoids do not reach sexual 

maturity until the final molt and dispersal is generally only carried out by adult females 

(Alberti & Nuzzaci, 1996, Lindquist & Oldfield, 1996). Because HexSimPLE is a 

females-only model, demographic data in SimpleMite represent the fecundity and 

survival of and the per-plant carrying capacity for female Calacarus mites only. Because 

vagrant eriophyoid mites usually have a 50:50 sex ratio, carrying capacities of SHB for 

Calacarus mites estimated from the literature were halved (Sabelis & Bruin, 1996). To 

lessen the computation load on the model and encourage a more efficient run time, 1 mite 

in the model corresponds to 100 real mites. However, these ratios are variables in 

SimpleMite and could be changed depending on the acquisition of more refined 

information or the specific questions being evaluated. 

Traits and accumulators. 

Because characteristics of the hosts and vectors are required to model more 

biologically realistic disease outcomes, traits and accumulator values in SimpleMite 

describe individuals in both the host and vector populations. Traits describe a categorical 

characteristic of the population (e.g. yellow vs. blue), while accumulators describe some 

numerical characteristic of the population (e.g. the number of adult mites present on a 

host plant). Traits may, and often do, change throughout the model depending on the 

events in the simulation that the population members are subject to. Certain traits 

(“accumulated traits”) may change as a result of the values of the accumulators 

associated with each individual. Therefore, specified events, called “accumulate events”, 
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can change accumulated traits through changes in accumulators. Traits that are not 

associated with any accumulators are “probabilistic traits” and can only be altered by 

“transition events”. Traits describing members of the vector population include: 

“Viruliferous” vs. “Non-Viruliferous”. This trait is dependent upon whether the host 

plant the vector disperses from is BNRBV-Positive and can produce viruliferous (mite) 

vectors. An accumulator describing a member of the vector population is “Dispersal 

Distance”. This accumulator determines how many hexagons away from the source 

hexagon (plant) a vector disperses. It is calculated based on a dispersal kernel for 

BNRBD derived from Robinson Field Data (see Figure A.1 in Appendix A). This 

dispersal gradient was determined by identifying isolated instances of disease from 

Robinson Field Data to serve as “source” plants. The infection severity and distance from 

source plants was recorded for plants surrounding the source that became d iseased. 

Model fitting for the dispersal kernel function was performed using the R package, drc 

(Ritz et al., 2016). 

Traits describing the individual host plants are: “BNRBV-Positive” vs. “BNRBV-

Negative”, “Viruliferous Vector Production – Yes” vs. “Viruliferous Vector Production – 

No”, “Viruliferous Mites Acquired – Yes” vs. Viruliferous Mites Acquired – No”, and 

“Lesion Category – Mild Lesions” vs. “Lesion Category – Moderate Lesions” vs. “Lesion 

Category – Severe Lesions”. These sets of traits describe the disease status of the plant, 

whether the plant can produce viruliferous vectors, whether the plant has acquired 

viruliferous vectors within the time step, and the estimated number of lesions resulting 

from the BNRBV infection, respectively. Accumulators describing individual host plants 

include: “Infection Saturation”, “Viruliferous Mites Acquired”, and accumulators that 
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quantify the total number of mites and the number of mites of each life stage on a per-

plant basis. “Infection Saturation” was calculated based on both the number of mites and 

the disease status of the plant. If a host plant has the “BNRBV-Positive” trait, the 

“Infection Saturation” accumulator increases with the number of Stage 2 mites on the 

plant, achieving a maximum of 100 when the number of Stage 2 mites reaches the 

carrying capacity (see Equation 2.1). “Infection Saturation” is scored out of 100 and 

determines whether host plant has the “Lesion Category – Mild” (25  Infection 

Saturation < 50), “Lesion Category – Moderate” (50  Infection Saturation < 75), or 

“Lesion Category – Severe” (Infection Saturation  75) trait. The “Viruliferous Mites 

Acquired” accumulator represents whether viruliferous mites were acquired by a host 

plant during the time step and it determines whether the host plant has the “Viruliferous 

Mites Acquired – Yes” trait (if accumulator is greater than zero) or the “Viruliferous 

Mites Acquired – No” trait (if the accumulator is not greater than zero).  

Event sequence. 

The SimpleMite event sequence was constructed of five core event groups: 

Initialize Simulation, Conduct Movement, Perform Demography, BNRBV Disease 

Dynamics, and Get Output Map Data. Each time that the sequence of events in the 

simulation was run from start to finish is called a “time step”. In the SimpleMite model, 

each time step represented four days of real time. Some events and event groups from the 

HexSimPLE base model (none of which are listed or described here) that are specifically 

relevant for extracting data relevant to population studies were toggled off but retained in 

the model for potential future uses. Many events in the SimpleMite event sequence that 

carried over from the HexSimPLE base model were amended or altered to better 
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represent Calacarus mite biology, BNRBD disease dynamics, and/or to facilitate ease of 

reporting relevant data. 

The Initialize Simulation event group determines the arrangement of host plants 

in the landscape, the starting disease conditions, and number of mites per plant. This 

event group runs only on the first time step. The Conduct Movement event group 

determined how many mites were dispersing from host plants and to which hexagons the 

mites dispersed. The Perform Demography event group determined how many mites 

were present in each hexagon of the landscape after reproduction and survival was 

executed for each time step. The BNRBV Disease Dynamics event group determines 

which host plants in the landscape have become infected with BNRBV and the severity 

of their infection. The BNRBV Disease Dynamics event group was triggered to run every 

other time step (starting with the second time step) to approximate a latent period of 

about 8 days to be a full multiple of the time step (4 days). When placed adjacent to 

diseased plants, virus-free SHB plants developed symptoms in 2-3 weeks, so we assumed 

a latent period for BNRBD of about ~1 week (Martin et al., 2012, Robinson, 2013). The 

Get Output Map Data event group calculates the population parameters of the mites on 

each host plant. In the original HexSimPLE model, this information would have been 

used in a subsequent event group to construct maps of the population in the simulated 

landscape, but this event group was unnecessary for the purposes of SimpleMite and was 

toggled off to conserve computing power and reduce simulation run time.  

Calacarus mites as presumed vectors. This model is constructed with the 

assumption that an eriophyid mite in the genus Calacarus is the only vector for BNRBV. 

Spatiotemporal disease patterns described by Robinson (2013) support the idea of a slow-
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moving vector with limited capacity for long-distance dispersal. Calacarus also has a 

wide geographic distribution, having been found in all tropical regions of the world and 

several subtropical regions (Oldfield, 1996, Vacante, 2015). Some species of Calacarus 

are known to have wide host ranges, which is unusual for the Eriophyoidea, which tend 

to be host specialists (Oldfield, 1996). Mites of this genus are known to exist in Georgia 

on camellia (Keifer et al., 1982). Although the role of a Calacarus sp. as a vector has not 

been definitively proven by Koch's postulates in the literature, Calacarus mites have been 

found in high numbers in association with BNRBD (Burkle et al., 2012, Cantu-Iris et al., 

2013). 

SimpleMite requires the input of demographic and life history information of the 

vector. These parameters were taken from the literature on eriophyid and Calacarus 

mites. A selection of the parameters used for the model is provided in Table 2.2. 

Immature stages of the mites were assigned a fecundity of zero, while adult mites were 

assigned a fecundity of 6 (T.J. Van der Merwe & Coates, 1965). Given that SimpleMite 

is based on a females-only model and has a four-day time-step, this value represents the 

number of eggs laid in a four-day period that will become female mites. This value is 

based on the mean ovipositional rate for a Calacarus species and assumes a 50:50 sex 

ratio. The per-plant carrying capacity was calculated by taking a maximum number of 

Calacarus mites per cm2 from the literature (17.4 cm2) and multiplying this by the 

average SHB bush size, estimating 1000 leaves per bush and obtaining average leaf size 

of ‘Star’ SHB plants from another study (Severns, unpublished) (Fournier et al., 2004). 

SimpleMite event sequence. The SimpleMite event sequence consists of the five 

aforementioned event groups in the following order: Initialize Simulation, Conduct 
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Movement, Perform Demography, BNRBV Disease Dynamics, and Get Output Map 

Data. The event sequence is best understood when conceptualized not as a list of events 

that occur but as a cycle that repeats with each time step. Some events contained within 

event groups seem out of place if the event sequence is not considered in this way. For a 

simplified representation of the disease cycle contained within the event sequence, see 

Appendix A, Figure A.2. 

Initialize Simulation. 

This event group sets up the simulation to run and is triggered to only run on the 

first time step. It assigns one individual to each of the cells in the Matrices Map. These 

individuals (collectively, “Hosts”) are then labeled as having a “Host Type” of either 

“Gap” or a “Plant” depending on if the cell they occupy is marked with a 0 or a 1 on the 

Habitat Map, respectively. For both Homerville and Enigma, Gaps corresponded to the 

Robinson Field Data map that were not ‘Star’ SHB plants, and Plants represented 

susceptible ‘Star’ SHB plants. In this specific simulation, only Plants can support 

populations of mites and become infected with BNRBV. Also in this event group, the 

Regions Map sets the number of unique regions for which environmental stochasticity 

will be determined each time step. For all the simulations described herein, the entire 

virtual landscape was considered one region, the environmental conditions of which 

varied with each time step. This was a logical choice given that all Robinson field data 

maps corresponded to a small geographic area (a portion of one SHB field). A sub-event 

group called Set Initial Disease Conditions makes use of the Initial Disease Conditions 

Map. This map lists the per-plant infection severity of the first data collection date of 

Robinson Field Data (see Table 2.1). 
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Plants that corresponded to a ‘Star’ plant with an infection severity score greater 

than zero were assigned the “Viruliferous Mites Acquired – Yes” trait. The disease status 

trait of all Plants and Gaps was updated in a subsequent transition event. Table 2.3 

represents the decision table used for that transition event. As a result, all Plants that were 

designated as having acquired viruliferous mites were BNRBV-Positive. The value of the 

infection severity was also assigned to the “Infection Saturation” accumulator. In the 

SimpleMite model, BNRBV-Positive Plants can only produce viruliferous vectors when 

their “Infection Saturation” accumulator (a variable in the simulation) had a value greater 

than fifty (this is the “Viruliferous Vector Threshold” described in Table 2.2). This 

decision was made based on a sensitivity analysis (unpublished) that demonstrated that 

disease was substantially overestimated when all “BNRBV-Positive” Plants produced 

viruliferous vectors, but severely underestimated when an infection saturation of 100 was 

required to produce viruliferous vectors. After the BNRBV-Positive Plants are assigned 

an “Infection Saturation” accumulator value, they are then marked as “Viruliferous 

Vector Production – Yes” or “Viruliferous Vector Production – No” if the accumulator 

value is greater than 50 or not greater than 50, respectively. 

Finally, the initial mite population was added to the model as part of this event 

group. Mite populations were only added to “BNRBV-Positive” Plants. The quantity of 

mites added to each infected plant was calculated based on the Infection Severity Value 

of that plant: the value of the “Infection Saturation” is multiplied by both 1/100 and the 

per-plant carrying capacity (see “Carrying Capacity [ per-hexagon ]” in Table 2.2). This 

calculation is an adaptation of Equation 2.1 in order to keep the relationship between 
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Infection Saturation and the number of Stage 2 mites consistent. All mites introduced into 

the model during this event group are Stage 2 (adults). 

Conduct Movement. 

The event group begins by setting the “Viruliferous Mites Acquired” accumulator 

to zero for all Plants. The mite carrying capacity for the Hosts is determined by the 

Habitat Map, meaning that Plants had a carrying capacity of 4,210 simulated mites (with 

each simulated mite representing 100 real mites) and Gaps having a carrying capacity of 

zero. The number of mites that disperse from each Plant was dependent upon the carrying 

capacity for each Plant. Only the number of mites that exceeded the carrying capacity 

could disperse from each Plant and only Stage 2 mites (adults) can disperse from Plants. 

The default version of this event group in HexSimPLE allows for the dispersal of all 

three life stages. It assigns dispersal distances to the appropriate number of Stage 0, Stage 

1, and Stage 2 individuals that will be dispersing. Because Stage 0 and Stage 1 mites do 

not disperse in SimpleMite (which is representative of the BNRBV pathosystem), the 

dispersal distances were set to zero for these immature mites and only calculated for 

Stage 2. Dispersing Stage 2 mites were either assigned the “Non-Viruliferous” or 

“Viruliferous” trait, depending on if they dispersed from a Plant that had the 

“Viruliferous Vector Production – No” or “Viruliferous Vector Production – Yes” trait, 

respectively. Once the dispersers moved their assigned distance and direction, the number 

of “Viruliferous” mites received by a Plant was marked on a map called “Viruliferous 

Stage 2”. 

Perform Demography. 
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Storing mite population sizes as accumulator values facilitates the use of Leslie 

Matrices to calculate population growth in this event group. For more information about 

Leslie Matrices and the calculation of population size, please reference Appendix A and 

Schumaker (2023). In this event group, the number of individuals in each mite life stage 

is determined after reproduction and survival for each Plant (a single hexagon in 

SimpleMite). 

BNRBV Disease Dynamics. 

In order to simulate a latent period of ~8 days, this event group only triggers 

every even time step. The event sequence begins by determining which Plants have 

acquired “Viruliferous” vectors by referencing the Viruliferous Stage 2 Map and 

assigning the number received by each Plant to its “Viruliferous Mites Acquired” 

accumulator, which updates the “Viruliferous Mites Acquired” trait. A transition event 

then determines the updated disease status of each Plant. The decision table used for this 

transition event is represented in Table 2.4 and is distinct from the decision table used in 

the Initialize Simulation event group (Table 2.3) in that there is a 50% chance that a 

previously BNRBV-Negative Plant that has the “Viruliferous Mites Acquired – Yes” trait 

becomes BNRBV-Positive instead of a 100% chance. Preliminary data (unpublished) 

demonstrated that this 50% reduction in probability prevents the overestimation of 

“Infection Saturation” when used as a direct comparison to the reported infection severity 

in Robinson Field Data. Following this transition event, Infection Saturation was 

calculated for each BNRBV-Positive Plant using Equation 2.1. Because this “Infection 

Saturation” accumulator value is meant to serve as a direct comparison to the reported 

infection severity in Robinson Field Data, this equation sets the maximum value for 
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Infection Saturation at 100. As discussed previously in this chapter, the “Infection 

Saturation” accumulator value corresponds to the “Lesion Category” trait. Though no 

analyses were performed with this trait, it was included in the model to serve as a 

placeholder for a consequence of BNRBD such as percent defoliation or yield loss. To 

date, the relationship between BNRBD severity and these disease outcomes are unknown. 

Despite this, the inclusion of the trait provides the scaffolding for the representation of 

either of these relationships in the simulation, should they be elucidated, or the user 

wishes to evaluate a range of potential scenarios. The event group concludes by 

constructing two maps: one map of the locations of “BNRBV-Positive” Plants and 

another map that records the “Infection Saturation” accumulator value for each Plant to 

its location. 

Get Output Map Data. 

This event group calculates several values related to population size and dispersal 

that in HexSimPLE were used to construct demographic output maps in a subsequent 

event group. The construction of these maps has been toggled off in SimpleMite but this 

event group was retained to prevent the creation of unforeseen errors in the simulation. 

For more information on this event group, please reference Schumaker (2023). 

Model output and analysis. I constructed virtual fields for both Enigma and 

Homerville in the HexSim modelling environment. Each ‘Star’ and ‘Emerald’ SHB plant 

from Robinson Field Data was represented as one hexagon, and two hexagons of spacing 

were included between SHB plant rows unless otherwise indicated. For each of these 

fields, infection severity data from the first collection date in Robinson Field Data from 

2011 and 2012 was used for the Initial Disease Conditions Map (Table 2.1). This resulted 
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in four unique versions of the SimpleMite model. For each of these four versions, three 

hundred simulation replicates were generated for a total of 1,200 simulation results files. 

For each set of results files, the Infection Saturation Map was analyzed for the time steps 

corresponding to the penultimate and ultimate data collection dates - a grand total of 

2,400 Infection saturation maps were produced and analyzed. 

Some elements of the model vary stochastically with each time step. Each region 

in the Regions map (in the case of SimpleMite, there is only one) experiences regional 

effects on fecundity and survival (to represent environmental stochasticity; for more on 

this, see Appendix A). The degree to which the fecundity and survival values vary is 

determined by this environmental stochasticity and the Percent Stochasticity values for 

fecundity and survival (see Table 2.2; for more details, see Appendix A). This means 

that for each version of SimpleMite, all results are different from one another and this 

intentionally introduced stochasticity is a method to address the contribution of varying 

environmental scenarios on outcomes of the same outbreak. This approach is particularly 

useful to represent how explosive or predictable diseases can be when major 

epidemiological conditions randomly vary (as is often the case with disease epidemics). 

Analyses of simulation outputs focus on the Infection Saturation Map generated 

in the BNRBV Disease Dynamics event group. The closest corresponding time step of 

the simulation was directly compared to the infection severity field data of the 

penultimate and ultimate collection dates for Robinson Field Data (see Table 2.1). 

Because each time step of the simulation corresponds to ~4 days of real time and because 

the BNRBV Disease Dynamics event group only runs every even time step, the closest 

corresponding simulation time step to any given data collection day was calculated by 
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dividing the data collection day number by four and choosing the closest even number in 

the simulation runs. HexSim produces output maps in a proprietary Hexmap format 

(“.hxn”). All 1,200 Infection Saturation Map .hxn files were converted to CSV files for 

ease of analysis using a C program called “hxn2csv” available under “Accessories & 

Programs” on the “Resources” page of the HexSim website (www.hexsim.net). 

Model Evaluation for Mean Infection Saturation. 

The mean infection saturation (total of the “Infection Saturation” values of each 

Plant in the simulation divided by the number of Plants in the simulation) was calculated 

for each of the 300 simulation replicates of each field (Homerville or Enigma), year 

(2011 or 2012), and observation date (penultimate or ultimate). As a general summary of 

model projection performance, these mean values were compared with each other and to 

a notched boxplot which visually represented the breadth of infection severity for the 

penultimate and ultimate data collection dates. If the model performed well, I expected to 

observe an overlap in ranges of the notched boxplots for the simulation infection 

saturation mean values and the field infection severity data. 

In a more refined comparison of the model projections and the field data, 

simulation infection saturation values were assigned to percentile groups based on their 

mean infection saturation value using the R package, dplyr (Wickham et al., 2023). These 

percentile groups represented the extremes on the low and high disease severity 

projections while conserving the middle percentile values: the 0% to 10% percentile 

group encompassed the simulation runs in the 10th percentile and below, the 10% to 50% 

percentile group encompassed all replicates between the 10th percentile up to the 50th, the 

50% to 90% percentile group encompassed replicates between the 50th up to the 90th, and 

http://www.hexsim.net/
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the 90% to 100% percentile group encompassed replicates above the 90th percentile. 

Because these percentile groups were calculated based on the field, year, and collection 

date, the same simulation run could be grouped into two different percentile groups 

depending on the analysis. For example, replicate 207 for the Enigma 2012 simulation 

could be grouped into the 10% to 50% percentile group when grouping by the means of 

the time step corresponding to the penultimate collection date and be grouped into the 

50% to 90% percentile group when grouping by the means of the time step corresponding 

to the ultimate collection date. Once the simulation replicates were separated into these 

groups, they were again visually compared with the breadth of infection saturation values 

reported for the corresponding field, year, and collection date combination with a notched 

boxplot generated using the R package ggplot2 (Wickham, 2016). Superimposed onto 

this boxplot were the maximum values for each simulation replicate, also organized by 

the mean-based percentile group. 

Total Infection Saturation. 

The total infection saturation was calculated for each of the 300 simulation 

replicates of each field, year, and corresponding collection date combination. Total 

infection saturation was calculated as the total of the “Infection Saturation” values of 

each Plant in the simulation. These values were separated into the mean-based percentile 

groups described previously in this chapter. A notched boxplot of the range of total 

infection saturation values was visually compared to the singular value for total infection 

severity obtained from Robinson Field Data. If the model performed well, I am expecting 

that the total infection saturation values overlap the total infection severity value for the 

field data. The notched boxplot was constructed in ggplot2 (Wickham, 2016). 
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Moran’s I Analysis. 

A subset of 20 simulation replicates was selected for each field, year, and 

corresponding collection date combination. Moran’s I analysis was performed on the 

Infection Saturation Map of each of the subset of 20 simulation replicates and the 

corresponding Robinson Field Data infection severity map. I used Moran's I to determine 

similarities in spatial aggregation of disease between simulation outputs and field data. 

Moran’s I is a commonly used test for global (as opposed to local) spatial autocorrelation 

(or the degree of aggregation over space), (Gedamu et al., 2024) and compares the value 

of a particular attribute of any one location to that of its neighbors. Moran’s I values 

range from -1 to 1, with a value of 1 indicating that data are perfectly aggregated in 

space, a zero indexing no aggregation, and a -1 indicating perfect repulsion of the data. 

Moran’s I analysis was performed using the Moran.I() function of the R package, ape 

(Paradis & Schliep, 2019) on altered versions of each Infection Saturation Map that only 

contained the cells in which Plants were located and altered versions of the infection 

severity maps from Robinson Field Data that only contain ‘Star’ SHB plants. 

To select a subset of 20 simulations, I first determined the average infection 

severity value for each map selected from Robinson Field Data and compared this value 

to the mean infection saturation values of the percentile groups for the corresponding 

simulations. I randomly selected twenty replicates from the percentile group that had a 

range of mean infection saturation values that were most similar to the mean infection 

severity calculated from Robinson Field Data infection severity map of interest. For 

example, if the mean infection severity obtained from Robinson Field Data fell within the 

range of the means of the replicates in the 90% to 100% percentile group, the subset of 20 
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simulation replicates would be selected from the 90% to 100% percentile group. If the 

mean obtained from Robinson field data did not fall within any of the percentile groups, 

the subset of 20 was selected from either the 0% to 10% percentile group, or the 90% to 

100% percentile group, depending on if it the mean was lower or higher than all of the 

simulation means, respectively. The subset of 20 was randomly selected from the chosen 

percentile group using the R package, kimisc (Müller, 2017). 

Infection Saturation Heatmaps. 

To determine whether the simulations were generating reasonable outputs, I 

created infection saturation heatmaps to visualize and qualitatively compare field data to 

simulations. Infection saturation maps were constructed using ggplot2 for five replicates 

of each field, year, and collection date combination (Wickham, 2016). These heatmaps 

were arranged into one figure using the R package ggpubr (Kassambara, 2023). The five 

replicates were randomly selected from the subset of 20 replicates discussed previously in 

this chapter. This random selection was performed using the kimisc R package (Müller, 

2017). The heatmaps for both the field and simulation data only represent the locations 

containing ‘Star’ SHB plants or simulated Plants, respectively. 

 

RESULTS 

Homerville 2011 – Penultimate. 

When I plotted the field data from Homerville in 2011 from the penultimate data 

collection date against the data for the nearest corresponding simulation time step, the 

distribution of all corresponding simulation mean infection saturation values overlapped 

with the field data (Figure 2.1), indicating that despite a large number of stochastic 



40 

simulations the field data outcome was represented from the same initial disease 

configuration. When the infection saturation means were separated into percentile groups, 

the range of all groups overlapped with the corresponding field data (Figure 2.9). The 

maximum infection saturation values of the simulation percentile groups also overlapped 

with the fourth quartile (upper 25%) of the field data but the max outlier simulation 

values were not as great as the max field severity values (Figure 2.9). Total infection 

severity for field data fell within the range of total infection saturation values for the 

>90% percentile group (Figure 2.17). Moran’s I values, an index of the global degree of 

aggregation of disease in space, of all 20 randomly selected virtual fields were positive 

and had statistically significant p-values (α < 0.05) (Table 2.5 and Figure 2.25). The 

Moran’s I value of the corresponding field data was also positive and had a statistically 

significant p-value (α < 0.05) (Table 2.5 and Figure 2.25). Summary statistics and 

Moran's results suggested that the model projections were quantitatively comparable to 

the field data and qualitatively the disease severity heatmaps based on field data and 

randomly selected simulation runs produced similar levels, locations, and patchiness of 

BNRBD (Figure 2.29). 

Homerville 2011 – Ultimate. 

When I plotted the field data from Homerville 2011 from the ultimate data 

collection date against the data for the nearest corresponding simulation time step, the 

distribution of all corresponding simulation mean infection saturation values overlapped 

with the field data (Figure 2.2), indicating that despite a large number of stochastic 

simulations the field data outcome was represented from the same initial disease 

configuration. When the infection saturation means were separated into percentile groups, 
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the range of all groups overlapped with the corresponding field data (Figure 2.10). The 

maximum infection saturation values of the simulation percentile groups also overlapped 

with the fourth quartile (upper 25%) of the field data and the max outlier simulation 

values overlapped with the field severity values (Figure 2.10). Total infection severity 

for field data fell within the range of total infection saturation values for the <10% 

percentile group (Figure 2.18). Moran’s I values, an index of the global degree of 

aggregation of disease in space, of all 20 randomly selected virtual fields were positive 

and had statistically significant p-values (α < 0.05) (Table 2.5 and Figure 2.25). The 

Moran’s I value of the corresponding field data was also positive and had a statistically 

significant p-value (α < 0.05) (Table 2.5 and Figure 2.25). Summary statistics and 

Moran's results suggested that the model projections were quantitatively comparable to 

the field data and qualitatively the disease severity heatmaps based on field data and 

randomly selected simulation runs produced similar levels, locations, and patchiness of 

BNRBD (Figure 2.30). 

Homerville 2012 – Penultimate. 

When I plotted the field data from Homerville 2012 from the penultimate data 

collection date against the data for the nearest corresponding simulation time step, the 

distribution of all corresponding simulation mean infection saturation only overlapped 

with the field data outliers (Figure 2.3), indicating that the field data outcome was not 

represented from the same initial disease configuration.. When the infection saturation 

means were separated into percentile groups, the range of all groups only overlapped with 

some of the outliers from the corresponding field data (Figure 2.11). The maximum 

infection saturation values of the simulation percentile groups did not overlap with the 
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fourth quartile (upper 25%) of the field data, nor did the max outlier simulation values 

overlap with the field severity values (Figure 2.11). Total infection severity for field data 

fell within the range of total infection saturation values for the <10% percentile group 

(Figure 2.19). Moran’s I values, an index of the global degree of aggregation of disease 

in space, of all 20 randomly selected virtual fields were negative and had a p-value that 

was not statistically significant (α < 0.05) (Table 2.5 and Figure 2.26). The Moran’s I 

value of the corresponding field data was also negative and had p-value that was not 

statistically significant p-value (α < 0.05) (Table 2.5 and Figure 2.26). Summary 

statistics and Moran's results suggested that the model projections were quantitatively 

comparable to the field data, but p-values for both field and simulation data were not 

significant. Qualitatively, the disease severity heatmaps based on field data and randomly 

selected simulation runs produced similar locations and patchiness of BNRBD, though 

the field data showed more incidences of low disease levels (Figure 2.31). 

Homerville 2012 – Ultimate. 

When I plotted the field data from Homerville 2012 from the ultimate data 

collection date against the data for the nearest corresponding simulation time step, the 

distribution of all corresponding simulation mean infection saturation values overlapped 

with the field data (Figure 2.4), indicating that despite a large number of stochastic 

simulations the field data outcome was represented from the same initial disease 

configuration. When the infection saturation means were separated into percentile groups, 

the range of all groups overlapped with the corresponding field data (Figure 2.12). The 

maximum infection saturation values of the simulation percentile groups also overlapped 

with the max field severity values (Figure 2.12). Total infection severity for field data 
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exceeded and does not fall within the range of total infection saturation values for the 

percentile groups (Figure 2.20). Moran’s I values, an index of the global degree of 

aggregation of disease in space, of all 20 randomly selected virtual fields were negative 

and had a p-value that was not statistically significant (α < 0.05) (Table 2.5 and Figure 

2.26). The Moran’s I value of the corresponding field data was also positive and had a 

statistically significant p-value (α < 0.05) (Table 2.5 and Figure 2.26). Qualitatively, the 

disease severity heatmaps based on field data and randomly selected simulation runs 

produced dissimilar levels, locations, and patchiness of BNRBD (Figure 2.32). 

Enigma 2011 – Penultimate. 

When I plotted the field data from Enigma in 2011 from the penultimate data 

collection date against the data for the nearest corresponding simulation time step, the 

distribution of all corresponding simulation mean infection saturation values overlapped 

with the field data (Figure 2.5), indicating that despite a large number of stochastic 

simulations the field data outcome was represented from the same initial disease 

configuration. When the infection saturation means were separated into percentile groups, 

the range of all groups overlapped with the corresponding field data (Figure 2.13). The 

maximum infection saturation values of the simulation percentile groups also overlapped 

with the fourth quartile (upper 25%) of the field data and the max field severity values 

(Figure 2.13). Total infection severity for field data exceeded and did not fall within the 

range of total infection saturation values for all percentile groups (Figure 2.21). Moran’s 

I values, an index of the global degree of aggregation of disease in space, of all 20 

randomly selected virtual fields were positive and had statistically significant p-values (α 

< 0.05) (Table 2.6 and Figure 2.27). The Moran’s I value of the corresponding field data 
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was also positive and had a statistically significant p-value (α < 0.05) (Table 2.6 and 

Figure 2.27). Summary statistics and Moran's results suggested that the model 

projections were quantitatively comparable to the field data and qualitatively the disease 

severity heatmaps based on field data and randomly selected simulation runs produced 

similar levels, locations, and patchiness of BNRBD (Figure 2.33). 

Enigma 2011 – Ultimate. 

When I plotted the field data from Enigma 2011 from the ultimate data collection 

date against the data for the nearest corresponding simulation time step, the distribution 

of all corresponding simulation mean infection saturation values overlapped with the 

field data (Figure 2.6), indicating that despite a large number of stochastic simulations 

the field data outcome was represented from the same initial disease configuration. When 

the infection saturation means were separated into percentile groups, the range of all 

groups overlapped with the corresponding field data (Figure 2.14). The maximum 

infection saturation values of the simulation percentile groups also overlapped with the 

max field severity values (Figure 2.14). Total infection severity for field data fell within 

the range of total infection saturation values for the 50-90% percentile group (Figure 

2.22). Moran’s I values, an index of the global degree of aggregation of disease in space, 

of all 20 randomly selected virtual fields were positive and had statistically significant p-

values (α < 0.05) (Table 2.6 and Figure 2.27). The Moran’s I value of the corresponding 

field data was also positive and had a statistically significant p-value (α < 0.05) (Table 

2.6 and Figure 2.27). Summary statistics and Moran's results suggested that the model 

projections were quantitatively comparable to the field data and qualitatively the disease 
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severity heatmaps based on field data and randomly selected simulation runs produced 

similar levels, locations, and patchiness of BNRBD (Figure 2.34). 

Enigma 2012 – Penultimate. 

When I plotted the field data from Enigma in 2012 from the penultimate data 

collection date against the data for the nearest corresponding simulation time step, the 

distribution of all corresponding simulation mean infection saturation values overlapped 

with the field data (Figure 2.7), indicating that despite a large number of stochastic 

simulations the field data outcome was represented from the same initial disease 

configuration. When the infection saturation means were separated into percentile groups, 

the range of all groups overlapped with the corresponding field data (Figure 2.15). The 

maximum infection saturation values of the simulation percentile groups also overlapped 

with the max field severity values (Figure 2.15). Total infection severity for field data 

fell within the range of total infection saturation values for the <10% percentile group 

(Figure 2.23). Moran’s I values, an index of the global degree of aggregation of disease 

in space, of all 20 randomly selected virtual fields were positive and had statistically 

significant p-values (α < 0.05) (Table 2.6 and Figure 2.28). The Moran’s I value of the 

corresponding field data was also positive and had a statistically significant p-value (α < 

0.05) (Table 2.6 and Figure 2.28). Summary statistics and Moran's results suggested that 

the model projections were quantitatively comparable to the field data and qualitatively 

the disease severity heatmaps based on field data and randomly selected simulation runs 

produced similar levels, locations, and patchiness of BNRBD (Figure 2.35). 

Enigma 2012 – Ultimate. 
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When I plotted the field data from Enigma in 2012 from the ultimate data 

collection date against the data for the nearest corresponding simulation time step, the 

distribution of all corresponding simulation mean infection saturation values overlapped 

with the field data (Figure 2.8), indicating that despite a large number of stochastic 

simulations the field data outcome was represented from the same initial disease 

configuration. When the infection saturation means were separated into percentile groups, 

the range of all groups overlapped with the corresponding field data (Figure 2.16). The 

maximum infection saturation values of the simulation percentile groups also overlapped 

with the fourth quartile (upper 25%) of the field data and the max field severity values 

(Figure 2.16). Total infection severity for field data fell within the range of total infection 

saturation values for the 10-50% percentile group (Figure 2.24). Moran’s I values, an 

index of the global degree of aggregation of disease in space, of all 20 randomly selected 

virtual fields were positive and had statistically significant p-values (α < 0.05) (Table 2.6 

and Figure 2.28). The Moran’s I value of the corresponding field data was also positive 

and had a statistically significant p-value (α < 0.05) (Table 2.6 and Figure 2.28). 

Summary statistics and Moran's results suggested that the model projections were 

quantitatively comparable to the field data and qualitatively the disease severity heatmaps 

based on field data and randomly selected simulation runs produced similar levels, 

locations, and patchiness of BNRBD (Figure 2.36). 

Similarities and differences among simulations and field data. Overall, 

SimpleMite appeared to perform well in generating reasonable projections of BNRBD 

over space and time which overlapped with the field data at later dates given the same 

initial disease distribution. There were some exceptions to this outcome, however. In all 
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but one of eight instances (the penultimate collection date for Homerville in 2012) all 

percentile groups of simulation means overlapped with the range of the corresponding 

field data. In only one instance (the penultimate collection date of Homerville in 2012) 

did the simulation maximums of at least one percentile group not overlap with either the 

fourth quartile (upper 25%) or upper outliers of the corresponding field data. Total 

infection severity values for field data tended to fall within the range of total infection 

saturation values for corresponding simulation data, except for in two instances (the 

ultimate and penultimate collection dates for Homerville in 2012 and Enigma in 2011, 

respectively). SimpleMite also tended to generate higher levels of disease than the field 

data (e.g. the field data were not positioned in the middle of the projected disease levels) 

but these projected disease levels also did not lead to severe epidemics that far 

outstripped the field data. In almost all cases, the max disease levels in the field data were 

greater than the maximum disease levels projected by SimpleMite. 

 

DISCUSSION 

Accessible simulation models for arthropod-vectored viruses are still incredibly 

rare but should be increasingly valuable to the field of plant pathology as many of the 

emerging plant diseases around the world are viral/bacterial and likely to be arthropod  

vectored. There are different valid conceptual approaches to the creation of 

phytopathological simulations, some more data-intensive than others (González-

Domínguez et al., 2023, Savary et al., 2018). SimpleMite was constructed with published 

mite demographic information, the epidemiological aspects of the virus, a dispersal 

gradient, and a variable for vector dispersal behavior. Despite the dearth of knowledge on 
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BNRBV and its relationship with its suspected vector, this published information 

combined with some simplifying assumptions appear to be sufficient to replicate disease 

patterns observed in field settings, demonstrating that the development of a simulation 

model for an arthropod-vectored virus is possible even for pathosystems for which data is 

sparse. 

SimpleMite performed reasonably well in predicting the spatial extent and 

severity of disease outcomes, especially in years with high disease levels, despite having 

a high range of percent stochasticity (+/- 20%) in fecundity and survival to replicate 

environmental variation. Given that biological parameters remained consistent across all 

four versions of SimpleMite, this suggests that initial concentration of disease in space is 

an important factor in disease outcomes in years with high total disease levels (Severns & 

Mundt, 2022, Severns et al., 2015). The SimpleMite model is populated with the 

estimated number of mites based on the initial disease severity measurements and it must 

be assumed that plants that are not BNRBV-Positive are not mite-infested. This 

assumption may or may not align with biological reality; it is unknown if mites are 

distributed widely across SHB plants in the field regardless of disease status. With this 

caveat in mind, the capacity of the model to reasonably project disease outcomes in years 

with high disease levels suggests one of two things: 1) that mite populations are omni-

present in SHB fields and that those populations living on BNRBV-infected plants earlier 

in the season are more important drivers of disease outcomes than the whole field -

distribution of mite populations, or 2) that BNRBV infection in the field follows the 

arrival of Calacarus mites to SHB fields and that these mites are not omnipresent on 

SHB plants. 



49 

There are potential reasons for the former and latter conclusions about the mite 

and disease distributions. Species of eriophyoid mites tend to have specialized 

relationships with one specific host plant species, which supports the idea that Calacarus 

mites would be omnipresent in SHB fields (Oldfield, 1996). However, some Calacarus 

species have been reported to have unusually wide host ranges spanning multiple plant 

families, meaning that mites could enter SHB fields after dispersing from a different host 

species (Li et al., 2014, Oldfield, 1996, Vacante, 2015). Because BNRBV does not 

appear to persist in SHB plants from one year to the next (Robinson, 2013), the former 

idea suggests that the virus persists in the overwintering mite population and the latter 

suggests that a different Calacarus host plant serves as a reservoir for the virus. If the 

virus persists in the mite population from year to year, perhaps it is doing so within the 

bodies of deutogynes – special survival forms of female eriophyid mites meant to 

withstand harsh conditions (Manson & Oldfield, 1996). These two perspectives present 

different disease management approaches: one that would primarily focus on reducing 

the existing mite population in the field and another that would primarily focus on 

eradication of the virus reservoir. Additional research is necessary to determine which of 

these ideas is more representative of biological reality which could be integrated into a 

refined SimpleMite model to evaluate potential management scenarios before attempting 

them in the field. 

In SimpleMite and in Robinson Field Data, BNRBD does not appear to get out of 

control. Robinson Field Data reports per-plant disease severity in the form of the 

proportion of leaves on the SHB plant displaying symptoms of BNRBD. Because more 

severe infections can lead to leaf abscission, this would mean that plants that are severely 
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infected may be reported in the data as having a low infection severity value (Robinson, 

2013). Also, eriophyid mites are mild parasites that tend not to overcrowd or destroy their 

hosts and actively disperse when host quality decreases or mite populations climb 

(Lindquist & Oldfield, 1996, Vacante, 2015). Some elements of one or both of these 

phenomena appear to be reflected in the results for SimpleMite.  

SimpleMite sometimes struggled to replicate observations from Homerville in 

2012 – the only field and year combination for which disease levels were low. Robinson 

hypothesized that disease levels were lower due to increased rainfall in the early growing 

season in 2012 (2013). This is consistent with evidence that shows that rainfall reduces 

population sizes of other Calacarus mite species and that extreme climatic conditions can 

significantly alter the demographic parameters and life history of other eriophyoids 

(Vacante, 2015). Presumably, this represents a link between vector demography and 

environmental conditions that is not adequately represented by SimpleMite. Vector 

demography was an especially important element of this model given that the presumed 

vector is slow-moving and the disease is non-systemic. The number of mites in the 

simulation related directly to the disease severity of a given plant in the virtual landscape. 

Relationships between different climatic events and eriophyoid mite population dynamics 

are not straightforward and may be species-specific. These results highlight yet another 

area of eriophyoid mite biology that remains poorly understood. Because their feeding 

tends to produce little cellular damage and their host plant relationships tend to be highly 

specific, eriophyoid mites are in some ways uniquely positioned to serve as effective viral 

vectors (Lindquist & Oldfield, 1996). Though eriophyoid-vectored plant pathogens have 

been documented since the 1930s, little is understood about their transmission and the 
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few that are studied tend to have highly specific relationships with their vector (Oldfield 

& Proeseler, 1996, Vacante, 2015). It is difficult to overstate the global distribution of 

these mites – there are estimated to be at least 250,000 species distributed across 320,000 

host plant species and we are only aware of a small percentage of their taxa (Lindquist et 

al., 1996, Ozman-Sullivan & Sullivan, 2023). These mites are also notorious for 

colonizing new regions (Lindquist et al., 1996, Navia et al., 2010). If eriophyoid-vectored 

viruses become more prevalent, this nescience could have significant consequences for 

the field of plant pathology. 

Even the smallest of animals can exemplify complex behaviors that collectively 

have outsized impacts. Eriophyid mites can barely be seen with the human eye (~ 0.2 

mm), and yet they can discern between host and non-host plants, evaluate host plant 

quality, engage in parental care behaviors, and make dispersal decisions based on their 

environment (Lindquist & Oldfield, 1996, Michalska et al., 2010, Vacante, 2015). 

Preliminary versions of SimpleMite (unpublished) failed to replicate disease patterns 

observed in Robinson Field Data without the inclusion of dispersal behavior patterns 

derived from field data. If this is true for eriophyoid mites that can only disperse through 

active ambulatory movement or passive aerial dispersal (Lindquist & Oldfield, 1996), the 

inclusion of vector dispersal behavior is likely even more critical for models of 

arthropods that conduct active flight. Perhaps if other elements of eriophyoid mite 

behavior were better understood, their incorporation into this model would improve its 

ability to predict spatial disease patterns in years with low-disease levels. Simulation 

models for arthropod-vectored viruses that do not treat vector behavior as a cornerstone 

of model development are likely inherently incomplete. 
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The evaluation of SimpleMite was limited by the lack of field studies on BNRBV. 

The study presented by Robinson (2013) is the only published research, to the best of our 

knowledge, that reports per plant disease severity for BNRBD and the creation of 

SimpleMite would not have been possible without this contribution. This is an illustration 

of the importance of detailed field study for plant diseases – the usefulness of the data 

collected may live far beyond the study itself. Future field studies on the spatial patterns 

of this disease would help to more robustly evaluate the SimpleMite model. We plan to 

make this model publicly available in the hopes that further studies are conducted by 

adapting its framework to other pathosystems. 
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Table 2.1. Data collection dates for each field site from Robinson Field Data. 

YEAR COLLECTION 

NUMBER 

ENIGMA HOMERVILLE ROLE 

2011 1 June 28th / Day 1 June 21st / Day 1 Initial Disease Conditions 

 2 July 12th / Day 15 July 7th / Day 17 - 
 3 July 26th / Day 29 July 19th / Day 29 Penultimate Date 
 4 August 13th / Day 47 August 12th / Day 53 Ultimate Date 

     

2012 1 June 12th / Day 1 June 6th / Day 1 Initial Disease Conditions 

 2 June 26th / Day 15 June 25th / Day 20 -  
 3 July 10th / Day 29 July 9th / Day 34 - 
 4 July 23rd / Day 42 July 23rd / Day 48 - 

 5 September 25th / Day 106 September 27th / Day 114 Penultimate Date 
 6 October 16th / Day 127 October 18th / Day 135 Ultimate Date 
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Table 2.2. Select Global Variable values used in the SimpleMite model. 

Variable Name Variable Value Citation(s) 

Fecundity [ stage 0 ] 0 - 

Fecundity [ stage 1 ] 0 - 

Fecundity [ stage 2 ] 6 T. J. Van der Merwe & Coates, 1965 

Survival [ stage 0 ] 0.95 Druciarek et al., 2014 

Survival [ stage 1 ] 0.9 Druciarek et al., 2014 

Survival [ stage 2 ] 0.3 Druciarek et al., 2014 

Percent Stochasticity [ fecundity ] 20 - 

Percent Stochasticity [ survival ] 20 - 

Carrying Capacity [ per-hexagon ] 4210  

Viruliferous Vector Threshold 50 - 
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Table 2.3. Decision table used to transition the disease status of Plants in the Initialize Simulation event group of SimpleMite. 
 

Viruliferous Mites 

Acquired: 

Gap or Plant: Current Disease 

Status: 

Probability of Becoming 

BNRBV-Positive: 

Probability of Becoming 

BNRBV-Negative: 

No Plant BNRBV-Negative 0 1 
No Plant BNRBV-Positive 1 0 
No Gap BNRBV-Negative 0 1 

No Gap BNRBV-Positive 0 1 
Yes Plant BNRBV-Negative 1 0 

Yes Plant BNRBV-Positive 1 0 
Yes Gap BNRBV-Negative 0 1 
Yes Gap BNRBV-Positive 0 1 
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Table 2.4. Decision table used to transition the disease status of Plants in the BNRBV Disease Dynamics event group of SimpleMite. 
 

Viruliferous Mites 

Acquired: 

Gap or Plant: Current Disease 

Status: 

Probability of Becoming 

BNRBV-Positive: 

Probability of Becoming 

BNRBV-Negative: 

No Plant BNRBV-Negative 0 1 
No Plant BNRBV-Positive 1 0 
No Gap BNRBV-Negative 0 1 

No Gap BNRBV-Positive 0 1 
Yes Plant BNRBV-Negative 0.5 0.5 

Yes Plant BNRBV-Positive 1 0 
Yes Gap BNRBV-Negative 0 1 
Yes Gap BNRBV-Positive 0 1 
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Table 2.5. Summary of Moran’s I Analysis of field and SimpleMite simulation data for Homerville, GA in 2011 and 2012. 

Year Type Collection 
Date 

(x̅) 
Moran's I 

Min. 
Moran's I 

Max. 
Moran's I 

x̅ 
|(ΔMoran's I)| 

Min. 
|(ΔMoran's I)| 

Max. 
|(ΔMoran's I)| 

2011 Field* Penultimate 0.050 - - - - - 
 

Simulation Penultimate 0.103 0.064 0.120 0.053 0.013 0.070 
 

Field* Ultimate 0.082 - - - - - 
 

Simulation Ultimate 0.093 0.027 0.120 0.024 4.3310-4 0.055 

2012 Field** Penultimate -4.2810-4 - - - - - 
 

Simulation Penultimate -0.002 -0.002 -0.002 0.002 0.001 0.002 
 

Field** Ultimate 0.083 - - - - - 
 

Simulation Ultimate -0.002 -0.002 -0.002 0.085 0.085 0.085 

*Field data with high disease levels based on total infection severity. 
**Field data with low disease levels based on total infection severity.  
|(ΔMoran’s I)| was calculated as the absolute value of the difference between the field data Moran’s I value and the simulation replicate Moran’s I 
value. Italicized values indicate a Moran’s I value with a significant p-value or the average of 20 Moran’s I values with significant p-values, for 

field data and simulation data, respectively ( = 0.05). 
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Table 2.6. Summary of Moran’s I Analysis of field and SimpleMite simulation data for Enigma, GA in 2011 and 2012. 

Year Type Collection 
Date 

(x̅) 
Moran's I 

Min. 
Moran's I 

Max. 
Moran's I 

x̅ 
|(ΔMoran's I)| 

Min. 
|(ΔMoran's I)| 

Max. 
|(ΔMoran's I)| 

2011 Field* Penultimate 0.120 - - - - - 
 

Simulation Penultimate 0.100 0.092 0.108 0.019 0.012 0.028 
 

Field* Ultimate 0.181 - - - - - 
 

Simulation Ultimate 0.113 0.106 0.124 0.068 0.057 0.074 

2012 Field* Penultimate 0.173 - - - - - 
 

Simulation Penultimate 0.082 0.063 0.115 0.091 0.058 0.110 
 

Field* Ultimate 0.173 - - - - - 
 

Simulation Ultimate 0.077 0.074 0.081 0.068 0.081 0.088 

*Field data with high disease levels based on total infection severity. 
|(ΔMoran’s I)| was calculated as the absolute value of the difference between the field data Moran’s I value and the simulation replicate Moran’s I 
value. Italicized values indicate a Moran’s I value with a significant p-value or the average of 20 Moran’s I values with significant p-values, for 

field data and simulation data, respectively ( = 0.05). 
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Equation 2.1. Equation for the calculation of “Infection Saturation” accumulator value in BNRBV Disease Dynamics event group of 
SimpleMite. 

 
 

𝐼𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛 𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑀𝑖𝑛 (100, (
𝑁𝑢𝑚𝑏𝑒𝑟 𝑆𝑡𝑎𝑔𝑒 2

𝐶𝑎𝑟𝑟𝑦𝑖𝑛𝑔 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 [ 𝑝𝑒𝑟 − ℎ𝑒𝑥𝑎𝑔𝑜𝑛 ]
∗ 100)) 

 
 
This equation follows the formula: 𝑀𝑖𝑛(𝑥, 𝑦) which selects the smaller number between x and y. 
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Figure 2.1. Comparison of disease incidence field data to simulation results at the same time point. Notched boxplot of Homerville, 
GA penultimate (day 29) field data from 2011 and corresponding simulation means. Field data represents individual infection severity 
values of each SHB plant. Simulation means represent the mean infection saturation of all plants in the virtual field for 300 replicates. 
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Figure 2.2. Comparison of field data to simulated results of the same time point. Notched boxplot of Homerville, GA 2011 ultimate 

(day 53) field data and corresponding simulation means. Field data represents individual infection severity values of each SHB plant. 
Simulation means represent the mean infection saturation of all plants in the virtual field for 300 replicates. 
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Figure 2.3. Comparison of disease incidence field data to simulation results at the same time point. Notched boxplot of Homerville, 

GA 2012 penultimate (day 114) field data and corresponding simulation means. Field data represents individual infection severity 
values of each SHB plant. Simulation means represent the mean infection saturation of all plants in the virtual field for 300 replicates. 
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Figure 2.4. Comparison of disease incidence field data to simulation results at the same time point. Notched boxplot of Homerville, 
GA 2012 ultimate (day 135) field data and corresponding simulation means. Field data represents individual infection severity values 

of each SHB plant. Simulation means represent the mean infection saturation of all plants in the virtual field for 300 replicates.  
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Figure 2.5. Comparison of disease incidence field data to simulation results at the same time point. Notched boxplot of Enigma, GA 

2011 penultimate (day 29) field data and corresponding simulation means. Field data represents individual infection severity values of 
each SHB plant. Simulation means represent the mean infection saturation of all plants in the virtual field for 300 replicates. 
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Figure 2.6. Comparison of disease incidence field data to simulation results at the same time point. Notched boxplot of Enigma, GA 

2011 ultimate (day 47) field data and corresponding simulation means. Field data represents individual infection severity values of 
each SHB plant. Simulation means represent the mean infection saturation of all plants in the virtual field for 300 replicates. 
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Figure 2.7. Comparison of disease incidence field data to simulation results at the same time point. Notched boxplot of Enigma, GA 
2012 penultimate (day 106) field data and corresponding simulation means. Field data represents individual infection severity values 

of each SHB plant. Simulation means represent the mean infection saturation of all plants in the virtual field for 300 replicates. 
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Figure 2.8. Comparison of disease incidence field data to simulation results at the same time point. Notched boxplot of Enigma, GA 

2012 ultimate (day 127) field data and corresponding simulation means. Field data represents individual infection severity values of 
each SHB plant. Simulation means represent the mean infection saturation of all plants in the virtual field for 300 replicates. 
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Figure 2.9. Comparison of disease incidence field data to simulation results at the same time point. Notched boxplot of Homerville, 
GA 2011 penultimate (day 29) field data and corresponding simulation means and maximums grouped by percentile. Field data 

represents individual infection severity values of each SHB plant. Simulation percentile group boxplots represent the mean infection 
saturations for each replicate in the percentile group, while points represent maximum infection saturation values for each replicate in 
the percentile group. Percentile groups were determined based on mean field infection saturation. 
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Figure 2.10. Comparison of disease incidence field data to simulation results at the same time point. Notched boxplot of Homerville, 
GA 2011 ultimate (day 53) field data and corresponding simulation means and maximums grouped by percentile. Field data represents 
individual infection severity values of each SHB plant. Simulation percentile group boxplots represent the mean infection saturations 

for each replicate in the percentile group, while points represent maximum infection saturation values for each replicate in the 
percentile group. Percentile groups were determined based on mean field infection saturation. 
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Figure 2.11. Comparison of disease incidence field data to simulation results at the same time point. Notched boxplot of Homerville, 

GA 2012 penultimate (day 114) field data and corresponding simulation means and maximums grouped by percentile. Field data 
represents individual infection severity values of each SHB plant. Simulation percentile group boxplots represent the mean infection 

saturations for each replicate in the percentile group, while points represent maximum infection saturation values for each replicate in 
the percentile group. Percentile groups were determined based on mean field infection saturation. 
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Figure 2.12. Comparison of disease incidence field data to simulation results at the same time point. Notched boxplot of Homerville, 
GA 2012 ultimate (day 135) field data and corresponding simulation means and maximums grouped by percentile. Field data 

represents individual infection severity values of each SHB plant. Simulation percentile group boxplots represent the mean infection 
saturations for each replicate in the percentile group, while points represent maximum infection saturation values for each replicate in 

the percentile group. Percentile groups were determined based on mean field infection saturation. 
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Figure 2.13. Comparison of disease incidence field data to simulation results at the same time point. Notched boxplot of Enigma, GA 
2011 penultimate (day 29) field data to corresponding simulation means and maximums grouped by percentile. Field data represents 

individual infection severity values of each SHB plant. Simulation percentile group boxplots represent the mean infection saturations 
for each replicate in the percentile group, while points represent maximum infection saturation values for each replicate in the 

percentile group. Percentile groups were determined based on mean field infection saturation. 
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Figure 2.14. Comparison of disease incidence field data to simulation results at the same time point. Notched boxplot of Enigma, GA 
2011 ultimate (day 47) field data to corresponding simulation means and maximums grouped by percentile. Field data represents 
individual infection severity values of each SHB plant. Simulation percentile group boxplots represent the mean infection saturations 

for each replicate in the percentile group, while points represent maximum infection saturation values for each replicate in the 
percentile group. Percentile groups were determined based on mean field infection saturation. 

  



81 

 
Figure 2.15. Comparison of disease incidence field data to simulation results at the same time point. Notched boxplot of Enigma, GA 
2012 penultimate (day 106) field data and corresponding simulation means and maximums grouped by percentile. Field data 
represents individual infection severity values of each SHB plant. Simulation percentile group boxplots represent the mean infection 

saturations for each replicate in the percentile group, while points represent maximum infection saturation values for each replicate in 
the percentile group. Percentile groups were determined based on mean field infection saturation. 

  



82 

 
Figure 2.16. Comparison of disease incidence field data to simulation results at the same time point. Notched boxplot of Enigma, GA 

2012 ultimate (day 127) field data and corresponding simulation means and maximums grouped by percentile. Field data represents 
individual infection severity values of each SHB plant. Simulation percentile group boxplots represent the mean infection saturations 

for each replicate in the percentile group, while points represent maximum infection saturation values for each replicate in the 
percentile group. Percentile groups were determined based on mean field infection saturation. 
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Figure 2.17. Comparison of disease incidence field data to simulation results at the same time point. Notched boxplot of Homerville, 
GA 2011 penultimate (day 29) field data and corresponding simulation total infection saturation grouped by percentile. Field data, 
represented by dotted blue line, represents total infection severity of all SHB plants. Simulation percentile group boxplots represent 

the total infection saturations for each replicate in the percentile group. Percentile groups were determined based on mean field 
infection saturation. 
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Figure 2.18. Comparison of disease incidence field data to simulation results at the same time point. Notched boxplot of Homerville, 
GA 2011 ultimate (day 53) field data and corresponding simulation total infection saturation grouped by percentile. Field data, 

represented by dotted blue line, represents total infection severity of all SHB plants. Simulation percentile group boxplots represent 
the total infection saturations for each replicate in the percentile group. Percentile groups were determined based on mean field 

infection saturation. 
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Figure 2.19. Comparison of disease incidence field data to simulation results at the same time point. Notched boxplot of Homerville, 
GA 2012 penultimate (day 114) field data and corresponding simulation total infection saturation grouped by percentile. Field data, 
represented by dotted blue line, represents total infection severity of all SHB plants. Simulation percentile group boxplots represent 

the total infection saturations for each replicate in the percentile group. Percentile groups were determined based on mean field 
infection saturation. 
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Figure 2.20. Comparison of disease incidence field data to simulation results at the same time point. Notched boxplot of Homerville, 
GA 2012 ultimate (day 135) field data and corresponding simulation total infection saturation grouped by percentile. Field data, 
represented by dotted blue line, represents total infection severity of all SHB plants. Simulation percentile group boxplots represent 

the total infection saturations for each replicate in the percentile group. Percentile groups were determined based on mean field 
infection saturation. 
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Figure 2.21. Comparison of disease incidence field data to simulation results at the same time point. Notched boxplot of Enigma, GA 
2011 penultimate (day 29) field data and corresponding simulation total infection saturation grouped by percentile. Field data, 

represented by dotted blue line, represents total infection severity of all SHB plants. Simulation percentile group boxplots represent 
the total infection saturations for each replicate in the percentile group. Percentile groups were determined based on mean field 
infection saturation. 
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Figure 2.22. Comparison of disease incidence field data to simulation results at the same time point. Notched boxplot of Enigma, GA 
2011 ultimate (day 53) field data and corresponding simulation total infection saturation grouped by percentile. Field data, represented 
by dotted blue line, represents total infection severity of all SHB plants. Simulation percentile group boxplots represent the total 

infection saturations for each replicate in the percentile group. Percentile groups were determined based on mean field infection 
saturation. 
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Figure 2.23. Comparison of disease incidence field data to simulation results at the same time point. Notched boxplot of Enigma, GA 
2012 penultimate (day 106) field data and corresponding simulation total infection saturation grouped by percentile. Field data, 

represented by dotted blue line, represents total infection severity of all SHB plants. Simulation percentile group boxplots represent 
the total infection saturations for each replicate in the percentile group. Percentile groups were determined based on mean field 

infection saturation. 
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Figure 2.24. Comparison of disease incidence field data to simulation results at the same time point. Notched boxplot of Enigma, GA 

2012 ultimate (day 127) field data and corresponding simulation total infection saturation grouped by percentile. Field data, 
represented by dotted blue line, represents total infection severity of all SHB plants. Simulation percentile group boxplots represent 

the total infection saturations for each replicate in the percentile group. Percentile groups were determined based on mean field 
infection saturation. 
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Figure 2.25. Degree of spatial aggregation for disease incidence field data and that of simulation results at the same time point. 

Comparison Moran’s I value for Homerville, GA 2011 field data to Moran’s I values of 20 randomly selected virtual fields from 
corresponding simulations. For penultimate and ultimate collection dates, 20 replicates each were selected from the percentile group 

most similar to field data. Percentile groups were determined based on mean field infection saturation and similarity to field data was 
determined based on field data mean. 
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Figure 2.26. Degree of spatial aggregation for disease incidence field data and that of simulation results at the same time point. 
Comparison of Moran’s I value for Homerville, GA 2012 field data to Moran’s I values of 20 randomly selected virtual fields from 
corresponding simulations. For penultimate and ultimate collection dates, 20 replicates each were selected from the percentile group 

most similar to field data. Percentile groups were determined based on mean field infection saturation and similarity to field data was 
determined based on field data mean. 
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Figure 2.27. Degree of spatial aggregation for disease incidence field data and that of simulation results at the same time point. 
Comparison of Moran’s I value for Enigma, GA 2011 field data to Moran’s I values of 20 randomly selected virtual fields from 

corresponding simulations. For penultimate and ultimate collection dates, 20 replicates each were selected from the percentile group 
most similar to field data. Percentile groups were determined based on mean field infection saturation and similarity to field data was 

determined based on field data mean. 
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Figure 2.28. Degree of spatial aggregation for disease incidence field data and that of simulation results at the same time point. 
Comparison of Moran’s I value for Enigma, GA 2012 field data to Moran’s I values of 20 randomly selected virtual fields from 

corresponding simulations. For penultimate and ultimate collection dates, 20 replicates each were selected from the percentile group 
most similar to field data. Percentile groups were determined based on mean field infection saturation and similarity to field data was 

determined based on field data mean. 
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Figure 2.29. Heatmaps of field infection severity for Homerville, GA 2011 penultimate (day 29) field data and field infection 

saturation for five randomly selected replicates from corresponding simulation. Five replicates were randomly selected from a subset 
of 20 randomly selected simulation replicates from the percentile group most similar to field data. Percentile groups were determined 
based on mean field infection saturation and similarity to field data was determined based on field data mean. Rows not  containing 

SHB plants are omitted from actual and virtual fields. 
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Figure 2.30. Heatmaps of field infection severity for Homerville, GA 2011 ultimate (day 53) field data and field infection saturation 
for five randomly selected replicates from corresponding simulation. Five replicates were randomly selected from a subset of 20 

randomly selected simulation replicates from the percentile group most similar to field data. Percentile groups were determined based 
on mean field infection saturation and similarity to field data was determined based on field data mean. Rows not containing SHB 
plants are omitted from actual and virtual fields. 
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Figure 2.31. Heatmaps of field infection severity for Homerville, GA 2012 penultimate (day 114) field data and field infection 

saturation for five randomly selected replicates from corresponding simulation. Five replicates were randomly selected from a subset 
of 20 randomly selected simulation replicates from the percentile group most similar to field data. Percentile groups were determined 

based on mean field infection saturation and similarity to field data was determined based on field data mean. Rows not containing 
SHB plants are omitted from actual and virtual fields. 
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Figure 2.32. Heatmaps of field infection severity for Homerville, GA 2012 ultimate (day 135) field data and field infection saturation 
for five randomly selected replicates from corresponding simulation. Five replicates were randomly selected from a subset of 20 

randomly selected simulation replicates from the percentile group most similar to field data. Percentile groups were determined based 
on mean field infection saturation and similarity to field data was determined based on field data mean. Rows not containing SHB 

plants are omitted from actual and virtual fields. 
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Figure 2.33. Heatmaps of field infection severity for Enigma, GA 2011 penultimate (day 29) field data and field infection saturation 

for five randomly selected replicates from corresponding simulation. Five replicates were randomly selected from a subset of 20 
randomly selected simulation replicates from the percentile group most similar to field data. Percentile groups were determined based 

on mean field infection saturation and similarity to field data was determined based on field data mean. Rows not containing SHB 
plants are omitted from actual and virtual fields. 
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Figure 2.34. Heatmaps of field infection severity for Enigma, GA 2011 ultimate (day 47) field data and field infection saturation for 

five randomly selected replicates from corresponding simulation. Five replicates were randomly selected from a subset of 20 randomly 
selected simulation replicates from the percentile group most similar to field data. Percentile groups were determined based on mean 

field infection saturation and similarity to field data was determined based on field data mean. Rows not containing SHB plants are 
omitted from actual and virtual fields. 
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Figure 2.35. Heatmaps of field infection severity for Enigma, GA 2012 penultimate (day 106) field data and field infection saturation 

for five randomly selected replicates from corresponding simulation. Five replicates were randomly selected from a subset of 20 
randomly selected simulation replicates from the percentile group most similar to field data. Percentile groups were determined based 

on mean field infection saturation and similarity to field data was determined based on field data mean. Rows not containing SHB 
plants are omitted from actual and virtual fields. 
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Figure 2.36. Heatmaps of field infection severity for Enigma, GA 2012 ultimate (day 127) field data and field infection saturation for 
five randomly selected replicates from corresponding simulation. Five replicates were randomly selected from a subset of 20 randomly 
selected simulation replicates from the percentile group most similar to field data. Percentile groups were determined based on mean 

field infection saturation and similarity to field data was determined based on field data mean. Rows not containing SHB plants are 
omitted from actual and virtual fields.
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CHAPTER 3 

A SPATIALLY-EXPLICIT EPIDEMIOLOGICAL MODEL FOR A WHITEFLY-

TRANSMITTED VIRUS COMPLEX OF YELLOW SQUASH  2 

  

 
2 Campbell, A. To be submitted to a peer-reviewed journal. 
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ABSTRACT 

 The spread of a whitefly-transmitted virus complex (WTVC) of cucurbits has 

been studied in yellow squash (Cucurbita pepo) for the last several years in the southeast 

US. This virus complex consists of three systemic diseases of cucurbits: Cucurbit Leaf 

Crumple Virus (CuLCrV), Cucurbit Chlorotic Yellows Virus (CCYV), and Cucurbit 

Yellow Stunting Disorder Virus (CYSDV). I used data from published studies of this 

virus complex that provided disease incidence values to parameterize and evaluate a 

simulation model for its spread that provides real-time yield loss estimates. This whitefly 

model was adapted from SimpleMite described in Chapter 2. Moran’s I, a global index of 

data aggregation over space, mean disease levels, the statistical distribution of disease 

levels over space on two different time points, and infection incidence heat maps 

produced overlapped with the published whitefly field data. The whitefly model tended to 

overestimate the amount of disease compared with field data and also yielded some 

different spatial distributions of disease in the different stochastic runs. Additional 

information on the dispersal behavior of whiteflies, especially in relation to the WTVC-

infected plants, would likely improve model accuracy. The use of the base model for two 

starkly different pathosystems lends credibility to the assertion that it can be used for a 

variety of arthropod-vectored viruses. 
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INTRODUCTION 

For plant pathologists and those managing crop health, the threat of plant viruses 

is of particular and increasing concern. Although the number of documented plant viruses 

is only about 10% of the ~ 8000 species of plant pathogenic fungi (Westcott & Horst, 

2008), plant viruses constitute 47% of all emerging plant diseases – a combination of 

newly discovered plant diseases, those that have jumped to novel host plants, and 

pathogens that have colonized new geographic regions. A similar estimate of emerging 

fungal plant pathogens is notably less at~ 30%, though there are considerably more plant 

pathogenic fungo than viruses  (Anderson et al., 2004) These differences suggest that 

viral plant diseases are being discovered at an increasing rate compared with fungal plant 

pathogens, viral diseases are proportionally increasing in prevalence more quickly than 

fungi and the significance of viral plant diseases to crop production is a burgeoning issue. 

Arthropods are the most significant vectors of plant viruses (Luria & Darnell Jr., 

1967). Among the most infamous of arthropod plant disease vectors is Bemisia tabaci 

Gennadius (Order Hemiptera, Family Aleyrodidae), also referred to as the whitefly, 

silverleaf whitefly, or the sweet potato whitefly. Bemisia tabaci is a world-wide pest of 

tremendous importance for agricultural production. This insect is currently distributed 

across all continents, except for Antarctica, and occurs throughout tropical and warm 

temperate regions of the world (Sani et al., 2020). Even in the absence of plant viruses, 

whiteflies can cause substantial physiological damage to crops. B. tabaci negatively 

impacts plant health through phloem feeding and honeydew secretion, causing 

physiological disorders, irregular ripening, secondary infections, reduction in 

photosynthetic ability, reduction in fruit quality, and reduced yields (Baig et al., 2015, 
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Barman et al., 2022, Byrne & Bellows Jr, 1991, Dutta et al., 2018, Jiménez et al., 1995, 

Jones, 2003, Li et al., 2021, Navas-Castillo et al., 2011, Van Lenteren & Noldus, 1990). 

Additionally, B. tabaci is incredibly prolific as a vector of plant diseases, transmitting 

more than 150 different plant pathogens to a large number of different host species 

(Stansly & Naranjo, 2010). Combined with its vast geographic distribution and 

significant genetic diversity (as evidenced by its many biotypes discussed later in this 

section), B. tabaci presents considerable challenges to those seeking to combat its effects 

on plant health. 

Damage from B. tabaci in regions in which insecticides are not widely available 

can be particularly devastating. For example, annual economic losses in Sub-Saharan 

Africa resulting from cassava mosaic disease (CMD) and cassava brown streak disease 

(CBSD), the causal agents of which are vectored by B. tabaci, are estimated at $1B USD 

(Parry et al., 2020). Cassava’s position as a culturally significant staple crop for the 

region means that this crop loss transcends economics (Falade & Akingbala, 2010, 

Montagnac et al., 2009). Despite the widespread availability of insecticides, 

economically advanced nations are not immune to whitefly destruction. In 2017, damage 

to several crops resulting from whitefly infestations cost the Georgia (USA) vegetable 

industry $161.2M USD (Li et al., 2021). 

Though the whitefly was first described in 1736, it was not considered an insect 

of agricultural concern until it began causing major damage to crops in the late 19th 

century (Byrne & Bellows Jr, 1991, Sani et al., 2020). The study of B. tabaci has 

historically been ripe with controversy. While it was originally suggested that the insect 

originated in Asia, it is now believed and supported through phylogenetics, that its true 
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origin is in Sub-Saharan Africa (Boykin et al., 2013, Byrne & Bellows Jr, 1991, Jones, 

2003, Mugerwa et al., 2018, Stansly & Naranjo, 2010). Adding further confusion, there 

has long been debate about whether B. tabaci is a “complex species or a species 

complex” (Xu et al., 2010). The current understanding posits that B. tabaci is a cryptic 

species complex composed of at least 40 morphologically indistinct species (Li et al., 

2021). These cryptic species (formerly termed biotypes) appear to be mostly 

reproductively and genetically isolated from one another. Some biotypes produce inter-

specific hybrids showing a continuum of partial to complete pre-zygotic isolation and 

others produce a low percentage of offspring with potentially reduced reproductive 

capacity, suggesting that these biotypes can be considered as separate biological species 

(Coyne & Orr, 2004, Xu et al., 2010). 

All whiteflies are classified in the family Aleyrodidae, the only group in the 

superfamily Aleyrodoidea, in the order Hemiptera (Foottit & Adler, 2018). Aleyrodidae 

is further divided into three subfamilies of extant whiteflies: Aleurodicinae, Aleyrodinae, 

and Udamoselinae. While there are more than 1500 species of whiteflies, Bemisia and 

Trialeurodes, are the only two whitefly genera that contain species known to transmit 

plant viruses, with B. tabaci serving as the vector for the vast majority of them (Jones, 

2003, Li et al., 2021, Sani et al., 2020). Bemisia tabaci is also the exclusive vector of the 

plant virus genus Begomovirus (Rosen et al., 2015, Valverde et al., 2004).  

Whiteflies are hemimetabolous insects. They have an egg stage, followed by four 

nymphal instar stages which culminate in the adult whitefly. Immature stages of the 

whitefly can acquire viral particles from phloem feeding but can only carry them into 

adulthood if the virus is persistently transmitted (Jones, 2003, Perilla-Henao & Casteel, 
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2016). The egg stage is entirely stationary and attaches to the underside of the leaf tissue 

by an egg pedicel, a structure through which the egg absorbs water from the leaf (Baig et 

al., 2015, Stansly & Naranjo, 2010). B. tabaci emerges from the egg chorion after 

hatching as a first-instar nymph with fully developed legs, an oval-shaped body, and no 

wings. This stage first undergoes a very brief “crawler” period in which the juvenile 

whitefly walks across the leaf surface in search of a minor leaf vein from which to feed. 

Crawlers usually settle near to the egg (a few centimeters) from which they hatched. If 

hatched in an unsuitable location, they can travel to an adjoining leaf, but many do not 

survive this, making oviposition site selection a significant determinant of first-instar 

mortality (Byrne & Bellows Jr, 1991, Stansly & Naranjo, 2010). After selecting a suitable 

feeding site, the crawler inserts its stylet in the leaf tissue and remains sessile throughout 

the following three nymphal stages (Butter & Dhawan, 2021, Stansly & Naranjo, 2010). 

Second-, third-, and fourth-instar nymphs are also oval-shaped and wingless but have 

underdeveloped legs in comparison to crawlers (Li et al., 2021). These legs primarily 

seem to serve the function of firmly attaching the instars to the leaf surface as they are 

non-functional for walking (Stansly & Naranjo, 2010). These three primary whitefly life 

stages meet their nutritional needs by continuing to feed on phloem in the same location 

in which they settled as a crawler. 

Though the end of the fourth-instar nymphal stage is often referred to as the 

“pupal” stage, whiteflies are hemimetabolous and do not form true pupae (Byrne & 

Bellows Jr, 1991, Li et al., 2021, Stansly & Naranjo, 2010). The fourth-instar whitefly 

retracts its stylet from the leaf tissue prior to eclosion (Stansly & Naranjo, 2010). The 

adult whitefly then emerges, leaving the pupal case behind. It has a yellow body with 
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well-developed legs and hyaline wings that are coated in an epicuticular wax secreted by 

wax plates present on the abdomen (Baig et al., 2015, Byrne & Bellows Jr, 1991, Stansly 

& Naranjo, 2010). Adult whiteflies possess a pair of segmented antennae, two ocelli, and 

compound eyes (with low visual acuity) that consist of an upper eye and lower eye (Baig 

et al., 2015, Stansly & Naranjo, 2010). Copulation usually takes place within hours to 

days of adult emergence, depending on the season (Byrne & Bellows Jr, 1991). Adult B. 

tabaci can reproduce using a form of arrhenotokous parthenogenesis (also known as 

haplodiploidy) in which females are diploid and males are haploid (Byrne & Bellows Jr, 

1991). In this parthenogenetic system, unfertilized eggs become haploid males and 

fertilized eggs become diploid females (Butter & Dhawan, 2021, Li et al., 2021, Normark 

& Kirkendall, 2009). However, they most often reproduce sexually by which they can 

produce males or females (Manzari & Fathipour, 2021). 

Some B. tabaci species apparently present more of a threat to crop systems than 

others. Of particular concern to plant health are B. tabaci Middle East Asia Minor 1 

(MEAM1) and B. tabaci Mediterranean (MED), formerly termed the B biotype and B. 

argentifolii, and Q biotype, respectively. In the late 20th century, MEAM1 began a global 

invasion that would result in the displacement of many of the indigenous whiteflies of the 

world (Liu et al., 2007, McKenzie et al., 2004, Xu et al., 2010). In the United States, 

MEAM1 arrived in the 1980s and promptly displaced B. tabaci New World (formerly 

termed the A biotype), which was not considered a major pest (Barman et al., 2022). In 

the early 21st century, MED invaded on a global scale and displaced indigenous 

whiteflies in many regions, though it has yet to displace MEAM1, perhaps due to the 

ability of MEAM1 to outcompete MED and prevent copulation (Liu et al., 2007, Pascual 
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& Callejas, 2004, Xu et al., 2010). To date, MEAM1 is the dominant whitefly in Georgia 

agricultural systems (Barman et al., 2022). 

Though they are morphologically indistinct, B. tabaci cryptic species differ in 

ways that are relevant to disease outcomes and therefore range significantly in their 

ability to cause damage to plants. MEAM1 and MED are the most destructive of all the 

cryptic species (Rosen et al., 2015). Between the two of them, MEAM1 has a broader 

host range and can more efficiently transmit begomoviruses than MED and the other 

cryptic species (Fiallo-Olivé et al., 2020, Rosen et al., 2015). Bemisia tabaci can transmit 

several different virus genera, but of particular concern throughout the world are in 

impacts of begomoviruses and criniviruses on agricultural crops, including fruit and 

vegetable production in Georgia.  

Three viruses of cucurbits occur in mixed infections in Georgia: Cucurbit Leaf 

Crumple Virus (CuLCrV), Cucurbit Chlorotic Yellows Virus (CCYV), and Cucurbit 

Yellow Stunting Disorder Virus (CYSDV) (Kavalappara et al., 2021a, Kavalappara et al., 

2021b). These viruses are all vectored by Bemisia tabaci, the sweet potato whitefly. 

CYSDV and CCYV are in the genus Crinivirus and the family Closteroviridae and 

produce nearly identical symptoms: mottling, yellowing, and, in severe cases, stunting 

(Dutta et al., 2018, Kavalappara et al., 2021b, Wintermantel et al., 2019). CuLCrV is in 

the genus Begomovirus and the family Geminiviridae and causes pale, curled, or 

crumpled leaves as well as stunting and growth distortions in severe cases (Dutta et al., 

2018). Individually, CuLCrV is transmitted in a persistent manner and CCYV and 

CYSDV are transmitted in a semi-persistent manner. Little is known about how these 

viruses come to be found in mixed infections; it is unknown if whiteflies transmit more 
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than one of these viruses simultaneously or if host plants are individually infected with 

the complex. Given the frequency that these viruses to co-occur in a Whitefly-

Transmitted Virus Complex (WTVC), an epidemiological simulation model of disease 

spread can range from a simple one-vector one-disease system to one vector with 

multiple pathogens that when combined cause different diseases (Codod et al., 2022, 

Kavalappara et al., 2021a). The following model conceptualizes the WTVC as a three-

virus complex in which all three viruses are transmitted by viruliferous whiteflies at one 

time. 

Given its wide host breadth, global distribution, and devastating economic 

consequences there is a vast selection of scientific literature written on the B. tabaci 

species complex. There are, however, no whitefly specific simulation models that 

reasonably account for whitefly dispersal behaviors and disease spread. When insect-

vectored plant disease simulation models are created, they are unfortunately often not 

open access, making it difficult for other users to improve upon a model or adapt it for 

different scenarios (Parry et al., 2020, Roy et al., 2021). The simulation model described 

in this chapter is generally parameterized for the aforementioned WTVC in yellow 

squash (Cucurbita pepo) fields, but is generalizable to similar small, winged invertebrate 

plant disease vectors and will be made available to the public as a subroutine that runs 

within the HexSim 4.0 environment (which is open access). This will enable others 

access to and provide opportunities for refinement and adaptation to other similar insect 

vectored plant disease systems.  

Arthropod-vectored plant disease models should include vector behavior, vector 

life history, and account for disease-relevant parameters such as acquisition access period 
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(AAP) and inoculation access period (IAP). In these ways, the simulation models 

described in Chapter 2 and this chapter are similar. These models differ in that the 

simulation described in Chapter 2 represents a non-systemic viral disease with a 

comparably sedentary vector (eriophyid mite) while the simulation in this chapter 

describes a systemic disease virus complex vectored by a considerably more active, 

winged invertebrate vector. Although SimpleMite served as the backbone for this model, 

there are significant departures between the models that specifically account for differing 

vector lifestyles and disease dynamics. Given the high degree of similarity between 

whitefly cryptic species, these systems can be easily represented by the following model 

with small alterations in biological parameters. 

 

MATERIALS AND METHODS 

Field data. This study utilized published field data of disease incidence of a 

Whitefly-Transmitted Virus Complex (WTVC; composed of CuLCrV, CCYV, and 

CYSDV) in Georgia yellow squash fields (Codod et al., 2022). In the field study (Codod 

et al., 2022), disease incidence was reported as the percentage of diseased plants in each 

~3 x 1 m field quadrat. Each quadrat had an average of ~9 squash plants but the number 

of plants appeared to vary from 6 to 13 plants depending on specific locations (which 

were not provided in the publication). Field data (hereafter termed, ‘WTVC data’) was 

recorded weekly for a total of four weeks (Codod et al., 2022). Figure 1 from Codod et 

al., 2022 was used to configure experimental squash fields in the HexSim modelling 

environment. The authors of the WTVC study recorded data for experimental fields for 
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2019 and 2020, but only data from the field in 2020 (Figure 4C from Codod et al., 2020) 

was used for model performance comparisons in my study. 

Model overview. A simulation model for the spread of a whitefly-transmitted 

virus complex (hereafter termed ‘WTVC Model’) was developed in the HexSim 

modelling environment by modifying SimpleMite (see Chapter 2). Most elements of 

SimpleMite were retained in the WTVC Model and only the differences between these 

models will be highlighted below. These changes were necessary to adapt the virtual 

landscape and epidemiological/vector parameters to the Codod et al. (2022) data and 

whitefly-virus pathosystem. 

Spatial data. Maps were constructed to replicate squash fields as described by 

Codod et al. (2022) in Figure 1. Experimental fields from the WTVC data consisted of 30 

rows by 10 columns of quadrats. Codod et al. reported that each quadrat contained on 

average 9 squash plants (Codod et al., 2022). The virtual landscape created to replicate 

the study was constructed of 1 m x 1 m hexagons, meaning that each ~ 3 x 1 m quadrat 

was represented by a line of three hexagons. Simulation disease incidence was measured 

on a per-quadrat basis. For ease of calculation and interpretation, and because the number 

of plants in each quadrat in the field study appears to be inconsistent (as discussed 

above), each quadrat in the simulation represented 10 yellow squash plants – a very slight 

departure from the reported field quadrat average of 9 plants. Because each simulated 

quadrat represented 10 squash plants, each hexagon in the simulation represented an 

average of 3 ⅓ squash plants. To distinguish between quadrats in the field study and 

quadrats in the virtual landscape of the model, they will hereafter be termed “field 

quadrats” and “simulated quadrats”, respectively. 
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Demographic information. The vector population was again divided into three 

life stages: Stage 0 (whitefly eggs and first instar), Stage 0 (second through fourth 

whitefly instars), and Stage 2 (adult whiteflies). The life stages were divided in this 

manner because egg to adult development time tends to be ~16 days at 30 C. 

temperatures like those found in Tifton, GA in September 2020, when the study began 

(Bayhan et al., 2006, Butler et al., 1983). This development time roughly aligns with the 

7-day time step of the model in which egg to adult development (the time it takes for an 

individual in the model to progress from Stage 0 to Stage 2) takes two time steps, or 14 

days. Also, adult whiteflies tend to live for at least 7 days (Butler et al., 1983). This time 

step was chosen because it reconciles both the whitefly life cycle and the data collection 

dates for the WTVC data, which occurred every 7 days. 

Because eggs and nymphal stages of B. tabaci are incapable of dispersal, only 

Stage 2 whiteflies are capable of dispersal and virus transmission. Survival and fecundity 

rates were gathered from published life tables for Bemisia tabaci (Table 3.1). Population 

size was projected using a Leslie Matrix (Appendix A) for each simulated quadrat based 

on vital rates for each life stage at each time step. Fecundity values represent average egg 

production for one time step. Because WTVC is a females-only model, estimates for 

fecundity carrying capacity were halved, which assumes a 1:1 sex ratio. Sex ratios vary 

by cryptic species, but MEAM1 has been reported to have a sex ratio of around 1:1 

(Ahmed et al., 2014). Carrying capacity was calculated for adult whiteflies and roughly 

estimated at 50 adults per 100 cm2 of leaf area and is based on the whiteflies per cm2 

reported by Zhang et al. (2014). At the beginning of the first time step, simulated 

quadrats were estimated to have a total leaf area of 3,000 cm2 based on 10 squash plants 
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having individual leaf area of 300 cm2 (Loy, 2004). Carrying capacity was halved to 

represent female whiteflies only and one whitefly in the WTVC model simulation 

represents 10 real whiteflies, leading to a carrying capacity of 75 adults in the model (see 

Table 3.1). Because cucurbits tend to undergo rapid leaf expansion, carrying capacity 

increased at each time step up to a value of 375. Incorporating leaf expansion into the 

calculation of carrying capacity was a simpler approach than altering the map. This 

increase in carrying capacity is an estimate derived from general trends in cucurbit leaf 

growth patterns (Loy, 2004), and host plant size data was not reported by Codod et al. 

(2022). 

The WTVC model posed the additional challenge of representing whitefly 

dispersal, which can be challenging due to the capacity of B. tabaci for active flight and 

dispersal decisions. Isaacs and Byrne (1998) conducted a mark-recapture study on 

whiteflies in melon fields in which they described the relationship between the proportion 

of female whiteflies recaptured and the distance they traveled (Isaacs and Byrne, 1998 

Fig. 4). Preliminary data (unpublished) demonstrated that this relationship alone 

misrepresented the spatial patterns of disease outcomes demonstrated in the WTVC data, 

perhaps because the authors recorded whitefly dispersal distance less than 24 hours af ter 

marking likely underestimating the distance a n individual whitefly travels in the course 

of 7 days (the length of the WTVC model time step) (Isaacs & Byrne, 1998). Isaacs and 

Byrne (1998) also excluded data from collection days on which less than 100 whiteflies 

were recaptured (Isaacs & Byrne, 1998). This dispersal kernel was retained in the model 

and a randomly varying integer under 10 was added to the resulting value to facilitate the 

dispersal of whiteflies to neighboring simulated quadrats. 
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WTVC Model event sequence.  

The event sequence structure for WTVC is nearly identical to that of SimpleMite 

(see Chapter 2). Disease was introduced initially through the Initial Disease Conditions 

Map that mirrored the disease incidences (per simulated quadrat) represented in the initial 

data collection date (11 DAP as shown in Codod et al., 2022 Figure. 4C) for WTVC data. 

An initial population of whiteflies was added to the model. Preliminary simulation results 

data (unpublished) demonstrated that disease outcomes were underestimated when only 

adult whiteflies were added to the model at this stage. Seven hundred whiteflies 

(translating to 70 virtual whiteflies) of each stage class were added to each simulated 

quadrat during the initialization of the simulation. Because some plants were already 

diseased at the time of the initial collection date (11 days after planting) of the field 

study, it seemed reasonable to assume that whiteflies were already present and had 

reproduces in the field. Equal numbers of each life stage were populated within each 

diseased simulated quadrat to reduce the influence of the starting number of whiteflies on 

the population dynamics. 

In the WTVC model, disease status was determined on a per-simulated quadrat 

basis as opposed to a per-plant basis like in the SimpleMite model. Simulated quadrats 

that contain at least one diseased plant were considered WTVC-Positive. WTVC-Positive 

simulated quadrats always begot viruliferous vectors and WTVC-Negative simulated 

quadrats always begot non-viruliferous vectors. When viruliferous vectors dispersed and 

arrived at a WTVC-Negative simulated quadrat, their new location became exposed to 

the virus complex. In the following time step, simulated quadrats that were previously 
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exposed to the virus complex become WTVC-Positive, to represent a latent period of ~1 

week. 

As in the field study, an increase in the disease incidence of simulated quadrats 

represented an increase in the number of WTVC-Positive plants within it. WTVC-

Positive simulated quadrats experienced an increase in their disease incidence upon 

receiving viruliferous mites and with each passing time step. To represent the increase in 

the number of plants diseased in each simulated quadrat, the accumulator value for 

disease incidence of a WTVC-Positive simulated quadrat increased by a value of 15 plus 

a randomly varying integer (the absolute value of the result of 20 multiplied by a random 

number from a normal distribution of mean 0 and standard deviation 1) every time that 

quadrat received viruliferous mites and with each passing time step. This is because 

viruliferous whiteflies entering a WTVC-Positive simulated quadrat presumably infect 

more plants upon entering, and viruliferous whiteflies within a WTVC-Positive quadrat 

likely move between plants in the quadrat, spreading disease. 

There is not yet precise information on the relationship between infection 

severity, time since infection, whitefly pressure, and their impact on crop yields for this 

virus complex. However, this model includes a real-time yield loss sub model that 

predicts percentage yield loss based on these factors to serve as a framework for the 

incorporation of this information in the future. The yield loss subroutine calculates the 

whitefly pressure of each simulated quadrat as the proportion of the adult carrying 

capacity that has been reached and assigned it to one of three categories: Low (>0.25), 

Medium (>0.50), or High (<0.75). The model categorized the simulated quadrats into an 

“infection saturation class” in a very similar manner, based on their infection incidence. 



118 

These two factors were used in the Disease Dynamics event group to construct a yield 

loss map of the field that updates with each time step. Each simulated quadrat is given a 

two-part score: a score of 1, 2, or 3 for Low, Medium, or High whitefly pressure, 

respectively, and a score of 1, 2, or 3 for being in a Low, Medium, or High infection 

saturation class, respectively. The maximum score that any simulated quadrat can have at 

each time step is 6 (a score of 3 for both whitefly pressure and infection saturation class). 

For each time step, the proportion of the maximum score reached for each simulated 

quadrat is recorded and added to a “Cumulative Yield Loss Score” accumulator. If a 

simulated quadrat has a score of 6 for four time steps in a row (which is equivalent to the 

maximum Cumulative Yield Loss Score of 4), this would be considered 100% yield loss 

(or entirely non-marketable fruit). If a simulated quadrat has a score of 3 for three time 

steps in a row (which is equivalent to a Cumulative Yield Loss Score of 0.75), this would 

be considered a yield loss score of 18.75% (~ 19% reduction in fruit weight). Scoring 

yield loss in this way allows the incorporation of time since infection, infection 

incidence, and whitefly pressure as contributing factors. See Appendix B for an example 

of a sequence of heatmaps constructed from the real-yield loss maps. 

 

RESULTS 

Penultimate Data Collection Date. 

When I plotted the field data from the penultimate date of the WTVC study 

against the data for the nearest corresponding simulation time step, the distribution of all 

corresponding simulation mean infection incidences overlapped with the field data 

(Figure 3.1). This suggested that despite a large number of widely varying stochastic 
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simulations (± 20% survival and fecundity of whiteflies) the field data outcome was 

projected by the model from the same initial disease configuration. When the infection 

saturation means were separated into percentile groups, the range of all groups 

overlapped with the corresponding field data (Figure 3.3). The maximum infection 

saturation values of the simulation percentile groups reached 100, as did the maximum of 

the field data (Figure 3.3). Field total infection incidence did not fall in the range of the 

total infection incidence values for the simulation (Figure 3.5), and the simulations 

produced notably lower disease levels when compared to the penultimate field data 

(Table 3.2).  

Moran’s I values, an index of the global degree of aggregation of disease in space, 

of all 20 randomly selected simulations were positive and had statistically significant p-

values (α < 0.05) (Table 3.3 and Figure 3.7). The Moran’s I value of the corresponding 

field data was also positive and had a statistically significant p-value (α < 0.05) (Table 

3.3 and Figure 3.7). Summary statistics and Moran's I results suggested that the model 

projections were within a reasonable range of disease distribution and patchiness, while 

the heatmaps indicated that the locations of disease in the simulations could vary 

substantially between simulation runs and when compared with the field data (Figure 

3.8). 

Ultimate Data Collection Date. 

When I plotted the field data from the penultimate date of the WTVC study 

against the data for the nearest corresponding simulation time step, the distribution of all 

corresponding simulation mean infection incidences overlapped with the field data 

(Figure 3.2). This suggested that despite a large number of widely varying stochastic 
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simulations (± 20% survival and fecundity of whiteflies) the field data outcome was 

projected by the model from the same initial disease configuration. When the infection 

saturation means were separated into percentile groups, the range of all groups 

overlapped with the corresponding field data (Figure 3.4). The maximum infection 

saturation values of the simulation percentile groups reached 100, as did the maximum 

reported values in the field data (Figure 3.4). Total infection incidence did not fall in the 

range of the total infection incidence values for the simulation (Figure 3.6), but the 

simulation results were not notable outliers in terms of the percentage of maximum 

disease incidence (Table 3.2). 

Moran’s I values, an index of the global degree of aggregation of disease in space, 

of all 20 randomly selected simulations were positive and had statistically significant p-

values (α < 0.05) (Table 3.3 and Figure 3.7). The Moran’s I value of the corresponding 

field data was also positive and had a statistically significant p-value (α < 0.05) (Table 

3.3 and Figure 3.7). Summary statistics and Moran's results suggested that the model 

projections were quantitatively comparable to the field data and qualitatively the disease 

severity heatmaps based on field data and randomly selected simulation runs produced 

similar levels and patchiness of WTVC, but WTVC locations were again variable 

(Figure 3.9). 

 

DISCUSSION 

The WTVC model more accurately predicted the disease outcomes for the 

ultimate data collection date from the WTVC field data than that of the penultimate 

collection date. While WTVC model overestimated the total infection incidence 
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demonstrated in the field data for both data collection dates (Table 3.2; Figures 3.5 and 

3.6), this overestimation was greater for the penultimate data collection date. This 

difference in the degree of inaccuracy of the model projections suggests a potential shift 

in disease dynamics that occurs as fields become more infected with disease or as more 

of the whiteflies in the field become viruliferous. Such as shift in dynamics is plausible as 

whitefly-vectored viruses have been demonstrated to influence whitefly behavior 

(Domingo-Calap et al., 2020, Moreno-Delafuente et al., 2013, Shi et al., 2018b). 

Additionally, we assumed a one week latent period for disease development. But, this 

maybe inaccurate, as WTVC is a complex with the molecular interactions related to 

disease expression unknown. If the latent period is longer than 7 days, this could explain 

the differences between penultimate and ultimate disease projections and the field data. 

In general, comparable Moran’s I values for field and simulation data indicated 

that the WTVC model represented the degree of disease aggregation in space reasonably 

well (Table 3.3; Figure 3.7). Total infection incidence values demonstrated that the 

model tends to overestimate total amount of disease in the field (Table 3.2; Figures 3.5 

and 3.6). Visual assessment of infection incidence heatmaps (Figures 3.8 and 3.9) 

indicated that more areas of the field remain uninfected with WTVC in the simulation 

data than in the field data. There are three possible explanations for this phenomenon: 1) 

at the time of the first data collection by Codod et al. (2022), there could have been plants 

that were latently infected with WTVC, but had not yet shown symptoms and therefore 

were not captured in the data as being diseased, or 2) whitefly movement through the 

field was not accurately represented by the model, or 3) in the field data, whiteflies 

entering the field non-negligibly contribute to disease within the field, which is not 
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represented in the model. All of these explanations are plausible and they may occur in 

combination with each other. When collection of the WTVC data began, some plants 

were already diseased, meaning that the field had already been exposed to viruliferous 

whiteflies, making it probable that some latently infected squash plants were not 

accounted for. The WTVC model assumes that additional whiteflies do not enter the field 

throughout the simulation (i.e. the whiteflies exist in a closed population in which new 

individuals can only be introduced through reproduction). Given the potential capacity of 

B. tabaci for long-distance travel (Byrne, 1999, Franco De Oliveira et al., 2023) and the 

breadth of weed hosts that can support B. tabaci populations (Barman et al., 2022), it is 

plausible that whiteflies may enter the field throughout the observation period in 

significant numbers. It is also possible that the model underestimated the distance (or 

variety of distances) that is typically traveled by dispersing whiteflies. Estimates of the 

degree of long-distance dispersal on whiteflies are difficult to obtain as they mostly rely 

on mark and recapture experiments in which only a small subset of the whiteflies released 

are recaptured (Byrne, 1999, Doukas & Payne, 2014, Franco De Oliveira et al., 2023, 

Isaacs & Byrne, 1998, Legarrea et al., 2012). Mark and recapture studies tend to be 

particularly unhelpful for determining the degree of long-distance dispersal in a 

population because sampling efforts are usually biased towards the release point (Terui, 

2020).The characterization of whitefly dispersal in the WTVC model is important 

because it directly relates to the resulting locations of disease. The inaccuracy of the 

model in projecting disease locations (Figure 3.8 and 3.9) based on initial conditions 

potentially suggests that the elements of the model relating to dispersal behaviors may be 

in need of refinement. 
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It is clear that whitefly dispersal behavior is complex and difficult to study due to 

their small size and potentially large population numbers. For example, vector behavior is 

typically separated into three behavioral categories: host-seeking, feeding, and dispersal 

(Fingu-Mabola & Francis, 2021). B. tabaci is known to respond to visual plant cues and 

are particularly attracted to green wavelengths of light wavelengths (Fereres & Moreno, 

2009). There is also some evidence that whiteflies can be retracted or repelled by plant 

volatiles and that viral infection and previous visitation by other whiteflies may 

manipulate these volatiles potentially influencing feeding on uninfected plants when the 

whitefly is viruliferous (Shi et al., 2018a, Zhao et al., 2022). While some insect vectors 

of plant viruses land on plants and feed on several different plants before selecting one, 

whiteflies instead make this decision during the pre-alighting phase and begin feeding 

after landing on the selected plant (Costa et al., 1991, Fereres & Moreno, 2009). The 

patterns of whitefly attraction to the cues of an infected plant are virus- and cryptic 

species-specific and are not accounted for in the WTVC model (Lu et al., 2017, Maluta et 

al., 2017, Moreno-Delafuente et al., 2013). The omission of these potential relationships 

could have impacted the accuracy of model spread, especially if there are 

attraction/repulsion interactions between viruliferous/non-viruliferous whiteflies and/or 

infected/uninfected host plants. 

Because plant viruses rely on vectors for dispersal and transmission, the 

movement of competent vectors is directly related to the patterns of disease spread. 

Characterizing the movement patterns of B. tabaci has been a frequent subject of interest 

in published whitefly studies. Adult B. tabaci are winged insects that engage in powered 

flight. Because most of its dispersal occurs across short distances, B. tabaci is often 
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erroneously considered to be a weak flier. However, it has been demonstrated 

experimentally by Blackmer and Byrne that whiteflies can actively fly against a 15.6 ± 2 

cm/s wind. Furthermore, 6% of the B. tabaci population under study were capable of 

sustaining flight in the wind chamber for over 15 minutes (~ 140 meters) and < 1% of 

individuals capable of the headwind flight for over 2 hours (~ 1.1 km) (Blackmer & 

Byrne, 1993a). This evidence supports the theory that within B. tabaci populations there 

are two different dispersal modes – one that actively disperses short distances (within 

fields) and another that disperses long distances (between fields and across a broader 

landscape), either with or without the aid of winds. This long-dispersal behavior is 

referred to as “migratory” and the other, short distance dispersal as “non-migratory” 

(Byrne, 1999, Wolfenbarger, 1946). Dispersal patterns of whiteflies observed in some 

field experiments were patchy and bimodal, further supporting this bimodal dispersal 

characteristic of individuals within populations (Byrne et al., 1996). The presence of a 

migratory morph may explain the high degree of gene flow between populations in an 

agricultural region and sudden colonization of fields by whitefly vectored plant viruses 

(Crossley & Snyder, 2020). Though these dispersal abilities have been observed and 

demonstrated experimentally, there is mixed evidence for a potential underlying 

causative morphological or definitive genetic difference (Blackmer et al., 1994, 

Blackmer & Byrne, 1993b, Byrne & Houck, 1990). The debate of the true existence of 

these dispersal morphs complicates their potential inclusion in a whitefly dispersal model.  

Though Bemisia tabaci as an agricultural pest has long been under study, the 

variety and complexity of this cryptic species can make it difficult to discern the 

important elements of its role as a vector. Improved methods for the study of whitefly 
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dispersal behavior may significantly further our understanding of whitefly-vectored 

disease patterns. While there are potentially important elements of the WTVC 

pathosystem that could refine the model described in this chapter, the existing model 

provided reasonable replication of in-field disease patterns, demonstrating the ability of 

the SimpleMite model to serve as a base model for a variety of arthropod-vectored 

diseases.  

To our knowledge, this is the only generalizable spatially-explicit arthropod-

vectored plant disease model that includes real-time yield loss projections. Though the 

data required to parameterize the real-time yield loss subroutine does not yet exist, the 

framework was included in this model to encourage the collection of such data and to 

extend its future usefulness by incorporating what is perhaps the most important 

consequence of plant disease in commercial agriculture. 
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Table 3.1. Select Global Variable values used in the WTVC Model. 

Variable Name Variable Value Citation(s) 

Fecundity [ stage 0 ] 0 - 

Fecundity [ stage 1 ] 0 - 

Fecundity [ stage 2 ] 23.1 Pascual & Callejas, 2004,  

Survival [ stage 0 ] 0.895 Ahmed, 2014 

Survival [ stage 1 ] 1 Ahmed, 2014 

Survival [ stage 2 ] 0.3 - 

Percent Stochasticity [ fecundity ] 20 - 

Percent Stochasticity [ survival ] 20 - 

Carrying Capacity [ per-hexagon ] 75 Zhang, 2014 
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Table. 3.2. Summary of total infection saturation values for experimental field data from Codod, 2022 and corresponding simulations. 

Year Type Collection 

Date 

Percentile Group (x̅) Total Infection 

Incidence 

(x̅) Percent of Maximum Infection 

Incidenceb 

2020 Field Penultimate - 10,376a 34.6% 

 Simulation Penultimate 0 – 10% 17,810 59.4% 

   10 – 50% 18,562 61.9% 

   50 – 90% 19,327 64.4% 

   90 – 100% 20,112 67.0% 

 Field Ultimate - 19,184a 63.9% 

 Simulation Ultimate 0 – 10% 20,761 69.2% 

   10 – 50% 22,746 75.82% 

   50 – 90% 24,219 80.7% 

   90 – 100% 25,121 83.7% 
aValues calculated from Codod et al., 2022, Figure 4C (25 and 32 DAP for penultimate and ultimate, respectively). 
bPercentage calculated for a maximum infection incidence of 30,000 (300 quadrats at 100% disease incidence). 
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Table 3.3. Summary of Moran’s I Analysis for experimental field data from Codod, 2022 and corresponding simulations.  

Year Type Collection 

Date 

(x̅) 

Moran's I 

Min. 

Moran's I 

Max. 

Moran's I 

x̅ 
|(ΔMoran's I)| 

Min. 

|(ΔMoran's I)| 

Max. 

|(ΔMoran's I)| 

2020 Field Penultimate 0.12a - - - - - 

  Simulation Penultimate 0.149 0.111 0.183 0.030 0.002 0.063 

  Field Ultimate 0.14a -  - - - - 

  Simulation Ultimate 0.160 0.101 0.196 0.026 0.004 0.056 
aMoran’s I and p-value as reported in Codod, 2022. 
|(ΔMoran’s I)| was calculated as the absolute value of the difference between the field data Moran’s I value and the simulation replicate Moran’s I 
value. Italicized values indicate a Moran’s I value with a significant p-value or the average of 20 Moran’s I values with significant p-values, for 
field data and simulation data, respectively ( = 0.05). 
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Figure 3.1. Comparison of disease incidence field data to simulation results at the same time point. Notched boxplot of WTVC 
penultimate date field data and corresponding simulation means. Field data represents infection incidence values of each squash-

planted field quadrat. Simulation means represent the mean infection incidence of all simulated quadrats in the virtual field for 300 
replicates. 
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Figure 3.2. Comparison of disease incidence field data to simulation results at the same time point. Notched boxplot of WTVC 
ultimate date field data and corresponding simulation means. Field data represents infection incidence values of each squash-planted 

field quadrat. Simulation means represent the mean infection incidence of all simulated quadrats in the virtual field for 300 replicates. 
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Figure 3.3. Comparison of disease incidence field data to simulation results at the same time point. Notched boxplot of WTVC 
ultimate date field data and corresponding simulation means and maximums grouped by percentile. Field data represents infection 

incidence values of each squash-planted field quadrat. Simulation means represent the mean infection incidence of all simulated 
quadrats in for 300 replicates. Simulation percentile group boxplots represent the mean infection incidence for each replicate in the 
percentile group, while points represent maximum infection incidence values for each replicate in the percentile group. Percentile 

groups were determined based on mean field infection incidence. 
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Figure 3.4. Comparison of disease incidence field data to simulation results at the same time point. Notched boxplot of WTVC 

ultimate date field data and corresponding simulation means and maximums grouped by percentile. Field data represents infection 
incidence values of each squash-planted field quadrat. Simulation means represent the mean infection incidence of all simulated 

quadrats for 300 replicates. Simulation percentile group boxplots represent the mean infection incidence for each replicate in the 
percentile group, while points represent maximum infection incidence values for each replicate in the percentile group. Percentile 
groups were determined based on mean field infection incidence. 
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Figure 3.5. Comparison of disease incidence field data to simulation results at the same time point. Notched boxplot of WTVC 

penultimate date field data and corresponding simulation total infection incidence grouped by percentile. Field data, represented by 
dotted blue line, represents total infection incidence of all squash-planted field quadrats. Simulation percentile group boxplots 

represent the total infection incidence for each replicate in the percentile group. The highest attainable value for total infection 
incidence is 30,000. Percentile groups were determined based on mean field infection incidence. 
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Figure 3.6. Comparison of disease incidence field data to simulation results at the same time point. Notched boxplot of WTVC 

penultimate date field data and corresponding simulation total infection incidence grouped by percentile. Field data, represented by 
dotted blue line, represents total infection incidence of all squash-planted field quadrats. Simulation percentile group boxplots 

represent the total infection incidence for each replicate in the percentile group. The highest attainable value for total infection 
incidence is 30,000. Percentile groups were determined based on mean field infection incidence. 
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Figure 3.7. Degree of spatial aggregation for disease incidence field data and that of simulation results at the same time point. 
Comparison of Moran’s I value for WTVC field data to Moran’s I values of 20 randomly selected virtual fields from corresponding 

simulations. For penultimate and ultimate collection dates, 20 replicates each were selected from the percentile group most similar to 
field data. Percentile groups were determined based on mean field infection incidence and similarity to field data was determined 
based on field data mean. 
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Figure 3.8. Heatmaps of field infection incidence for WTVC penultimate date field data and field infection incidence for five 
randomly selected replicates from corresponding simulation. Five replicates were randomly selected from a subset of 20 randomly 

selected simulation replicates from the percentile group most similar to field data. Percentile groups were determined based on mean 
field infection saturation and similarity to field data was determined based on field data mean. 
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Figure 3.9. Heatmaps of field infection incidence for WTVC ultimate date field data and field infection incidence for five randomly 

selected replicates from corresponding simulation. Five replicates were randomly selected from a subset of 20 randomly selected 
simulation replicates from the percentile group most similar to field data. Percentile groups were determined based on mean field 

infection saturation and similarity to field data was determined based on field data mean. 



147 

 

 

CHAPTER 4 

CONCLUSIONS 

 

The vast majority of novel and exotic viral plant pathogens appear to be (re-

)emerging due to anthropogenically-mediated introduction events (Anderson et al., 2004, 

Gibbs et al., 2010, Jones, 2009, Webster et al., 2007). Because arthropods serve as 

vectors for most of these pathogens, arthropod invasions likely play a significant role in 

the management of emerging plant diseases. The simulation models described in the 

previous two chapters involve vectors that are cases in point. The suspected vector of 

BNRBV is a mite in the superfamily Eriophyoidea – a group of organisms that has been 

recognized as having a high propensity for invading new areas (Navia et al., 2010). 

Bemisia tabaci is the vector of a virus complex that is threatening squash production in 

South Georgia and crops around the world. Two Bemisia tabaci cryptic species were part 

of a relatively recent, infamous world-wide biological invasion that displaced many less 

damaging indigenous whiteflies and led to the proliferation of agriculturally damaging 

plant diseases caused by begomoviruses, criniviruses, and ipomoviruses (Navas-Castillo 

et al., 2011). The development of effective management practices for these recent plant 

diseases is hindered due to a lack of understanding how these arthropod-vectored 

pathosystems function. One way that simulation models can help plant pathologists with 

these diseases is to develop models based on what is known and suspected to evaluate the 
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contribution of environmental, behavioral and epidemiological variables in a complex 

and dynamic plant pathosystem (González-Domínguez et al., 2023). 

The models described in Chapter 2 and Chapter 3 present arthropod-vectored 

pathosystems that integrate vector demographics and dispersal behavior using a 

contemporary compartmental epidemiological model approach. Vector demography and 

behavior are essential components to understanding any arthropod-vectored plant disease 

(Fontenille et al., 2020). Surprisingly little is known about BNRBV and its presumed 

vector, a Calacarus mite, and although comparatively more is known about Bemisia 

tabaci, its behavioral and dispersal ecology is only superficially established. Despite 

information deficiencies, my epidemiological models could capture known patterns with 

respect to field data over space and time. With more phenomenological information and 

directed empirical studies, these models could be refined and become more informative. 

Additional field studies on the spatial spread of both BNRBV and the WTVC would 

provide further points of comparison to evaluate the performance of SimpleMite and the 

WTVC Model, respectively. 

The previous chapters present models for two very different pathosystems. 

BNRBV causes local infections on plant leaves while the viruses that compose the 

WTVC systemically infect their hosts. Severe BNRBV infections cause leaf abscission 

with unknown consequences for subsequent growing seasons, while severe infections of 

the WTVC cause plant death (Codod et al., 2022, Robinson, 2013). The suspected vector 

of BNRBV disperses actively by crawling across leaf surfaces or passively on air 

currents, while B. tabaci is capable of sustained flights against a wind current of 4.0 cm/s 

(Byrne, 1999, Lindquist & Oldfield, 1996). Regardless of these important differences in 
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modes of dispersal, the same base model was used for both simulations, demonstrating 

that these models have potential use far beyond the two pathosystems through a 

straightforward change of parameter values to match similar a similar pathosystem (e.g. 

aphid vectored viruses). While there is a rich history of the use of predictive tools in plant 

pathology (Charaya et al., 2021), most of the modern options available are not 

appropriate and complementary to the tools used by epidemiologists outside of the plant 

sciences. The development of modern epidemiological analyses has been hindered by a 

lack of available data (Cooke et al., 2006) and availability of analytical tools that are 

currently used by epidemiologists in animal and human systems. There appears to be no 

such comparable and publicly available epidemiological spatially explicit simulation 

models for arthropod-vectored plant viruses other than those presented in my thesis. My 

hope is that these models will serve as templates for the development of more 

phytopathological SEMs and encourage other plant pathologists to learn, refine, and use 

the computationally more flexible and appropriate epidemiological analyses to 

understand the complex nature of arthropod vectored plant diseases. 
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APPENDIX A 

AN OVERVIEW OF HEXSIM AND RELEVANT METHODS FOR BIOLOGICAL, 

POPULATION, AND DISEASE MODELS 

 

Mathematical models for biological scenarios. Mathematical models are 

heuristic tools used to represent biological systems of which the mechanisms are not fully 

understood (Antoniouk & Melnik, 2013). Modelling can solve some of the challenges 

inherent within the study of epidemiology. Within any discipline, causative conclusions 

are generated from manipulative experiments, but these experiments can be challenging 

to perform in the field of epidemiology because disease events often occur across large 

spatial scales that are difficult to replicate within experimental field settings (Ostfeld et 

al., 2005). Furthermore, supposing the resources to replicate these events are available, it 

may be impossible to fully contain the pathogens to an experimental population, posing a 

danger to susceptible hosts outside of the experiment. These challenges impede the 

ability of epidemiologists to empirically test important hypotheses. However, well-

designed and validated epidemiological models do provide a means to evaluate disease 

spread under varying scenarios, including some conditions that were known to exist, 

some that are thought to exist but with little empirical study to substantiate, and 

hypothetical situations that may exist in the future (e.g. climate change and the evolution 

of virulence). Model outcomes can be analyzed to determine if they agree with existing 
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hypotheses about disease patterns and used to make projections under scenarios of 

interest (Brauer, 2008, Jeger, 2000). 

 

Compartmental models. Compartmental disease models are commonly used as 

the primary analysis for contemporary epidemiological models other than plant diseases. 

In these models, individuals in populations are divided into “compartments” that describe 

their status relative to the disease under study. The most common type of compartmental 

model is the SEIR model in which the compartments are Susceptible (S), Exposed (E), 

Infected (I), and Recovered (R). This model is used for systems where designated 

organisms are susceptible to disease and there is a latent period between exposure to the 

pathogen and infection leading to detectable symptom/ infection confirmation through 

serological tests. Organisms in the S compartment are at risk of encountering the 

pathogen and are susceptible to the disease. Organisms in the E compartment have been 

exposed to the pathogen but have not yet become infected or infectious. Organisms in the 

I compartment are infected and can spread the disease to other members in the population 

following a defined latent period. Organisms in the R compartment have recovered from 

the infection (or are removed from the population) and are no longer contagious. In the 

standard SEIR model, organisms in the R compartment cannot become reinfected, at least 

for a period, because the infection conferred immunity. In the context of viral plant 

diseases, plants often do not recover from infection. In this case, the R compartment 

could also represent plants that were rogued or have died. 

In compartmental landscape event simulation models, every organism in the 

population exists within one compartment (a cell in a grid of cells) at any given time. 



 

155 

Because of this compartmentalization, which can represent actual space, spatially-explicit 

compartmental models (like those used in landscape ecology) are a natural complement 

to modeling disease spread over space and time. Organisms can move from one 

compartment to another, or across many compartments, the likelihood of which is 

determined by transfer rates, which in aggregate are used to describe a dispersal gradient 

(a.k.a. dispersal kernel, disease gradient, contact gradient). Rates of transfer between 

disease compartments are determined by the contact frequency between members of the 

population, the latent period of the disease, and the rate of recovery or death. For 

example, the rate of transfer for an organism within the population from the S to the E 

compartment is a function of the transmissibility of the disease and the probability of a 

random contact between a susceptible individual and an infected individual (Brauer, 

2008, Tolles & Luong, 2020). These combined factors are represented by the effective 

contact rate, β. The transfer rate from the E to the I compartment is dependent upon the 

latent period of the disease. The average number of daughter infections caused by a 

single infective individual (or single infection in the case of a polycyclic fungal foliar 

plant disease) is known as the basic reproductive number, or R0. The transfer rate from 

the I to the R compartment is dependent on the rate of recovery from the infection, often 

represented as ɣ. Because the number of individuals within any one compartment is a 

function of time, these mathematical models were traditionally formulated as a series of 

differential equations with respect to time (Brauer, 2008). Though the SEIR model is 

commonly used, there are many variations of disease compartmental models (e.g. SIR, 

SI, SEI) that are adapted to fit a range of disease scenarios and account for human 

interventions. 
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Although compartmental disease models are often used for animal species in 

which members of the population spread the disease upon encountering one another, this 

framework must be conceptualized differently for invertebrate-vectored plant diseases. 

The first difference to consider is that the host population is not moving – planted crops 

are sessile. Second, invertebrates are the vectors that transmit pathogens between plants, 

which have behaviors and their own demographic population vital rates, as opposed to 

wind or plant-plant contact. Some epidemiologists have approached this challenge by 

using a dual compartmental model: an SEI model to represent transmission from the 

vectors and an SEIR model to represent the disease dynamics of the host plant (Jeger et 

al., 1998). Another difference between the standard compartmental disease model and 

invertebrate vectored plant diseases is that vectors such as whiteflies, may be biased in 

selecting host plants to settle on, feed from and oviposit on, potentially resulting in 

positive or negative spatial autocorrelation patterns of disease that might not occur in 

wind vectored plant diseases. In invertebrate vectored plant diseases, space may play an 

important part in plant disease dynamics that is distinctly different from that of  a 

passively dispersed plant pathogen.  

 

 Representing demography in my models through Leslie Matrices. To make 

decisions for the future it is often necessary to use data from the past. Potential future 

scenarios constructed of assumptions from previously collected data are called 

projections. Projections are not necessarily the same as predictions or forecasts, which try 

to accurately portray a real future. Instead, projections are constructed of if -then 

statements that apply assumptions about a previous state of a system to determine the 
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potential future state of that system, given that the assumptions are true (Keyfitz & 

Caswell, 2005). Projections can be predictions if the assumptions and data used to 

construct them are realistic. Real-life biological systems are almost always more 

complicated than can be represented in projection models. While the “simplifying 

assumptions” made by those who study populations reduce their exactitude, they allow 

them to be more easily replicated mathematically (Vandermeer & Goldberg, 2013). 

These mathematical representations distill information about the population demographic 

parameters and estimate their possible population growth responses to variation in life 

history traits (Kajin et al., 2012). While these methods are often applied by conservation 

biologists to manage rare focal species, they have also been used in population ecology 

for decades to project the growth of any stage- or age-structured population (Caswell and 

Goldberg, 2013). 

 Most often, projections attempt to represent and generally summarize the size and 

structure of imagined populations. In mathematical biology, population projection models 

(PPMs) are tools used to project the population dynamics of a particular organism. PPMs 

use information about the vital rates and life histories of organisms to determine 

population dynamics. One of the most widely used methods in population ecology is the 

Leslie matrix (Nichols et al., 1992). Leslie matrices are a specific form of population 

projection model used to project a population of stage/age-structured organisms as it 

progresses through multiple generations using matrix algebra. They are often used for 

organisms that have life cycles divided into distinct life stages (and occasionally age-

structured populations). Organisms are categorized into different, demographically 

important, developmental stages (e.g. egg, juvenile and adult) and transition rates 
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represent the likelihood that an organism moves from one stage to the next taking into 

account biological rules (e.g. eggs cannot reproduce, individuals in all stages can die or 

survive to transition to the next developmental stage, organisms cannot become younger). 

Ultimately, population growth is determined by the rates of mortality and the fecundity of 

each life stage. A key assumption of this model is that members of the population within 

the same life stage have similar demographic parameters and that the initial conditions 

(from which the transition rate information is collected) remains the same for any future 

projections (Kajin et al., 2012). However, there are methods to induce variation into 

demographic projections through elasticities or introducing stochastic parameter value 

selection from a pool of values given parameter ranges (which is computationally more 

advanced). 

 

HexSim and the HexSimPLE template. HexSim is a spatially-explicit 

modelling environment developed for the simulation of ecological scenarios (Schumaker 

& Brookes, 2018). Its graphical user interface enables users to create a simulation for 

their event sequence of choice without having to write code, lowering the barrier to entry 

for its use. The interface allows the user to customize three main components of the 

simulation: the populations involved, the space in which the simulation takes place, and 

the events that occur in the simulation. There are extensive options provided to users to 

describe the structure, resource needs, and behavior of their population(s) of interest. 

Additionally, individual population members can acquire new accumulated traits as a 

result of their life history. 
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HexSim requires the input of spatial data in the form of Hexmaps and barrier 

maps. Hexmaps are grids that define the space in which the populations can exist and can 

contain biologically relevant information such as the resource value of the environment to 

members of the population. Barrier maps determine linear boundaries on Hexmaps that 

population members cannot cross. Both kinds of maps are inherently time series maps but 

can be used as static maps by only assigning a map to the first time-step of the series. A 

time step is one complete instance of the event sequence which can be customized to 

match the biological system being modeled. 

The event sequence allows for population members to interact with and within the 

space. The event sequence determines what life history events the members of the 

population experience. Any action performed by or upon population members is 

described by the events in the event sequence. Survival, reproduction, population member 

interactions, aging, feeding, and migration are dictated by the event sequence. The event 

sequence inherently determines the relationship between one time step and real time. For 

example, if the event sequence includes the relevant life history events that occur in two 

weeks of the life of the organism of interest, then one time step in the simulation is 

equivalent to two weeks of real time. If the event sequence includes the relevant life 

history events that occur in one day of the life of the organism of interest, then the time 

step would only represent one day of real time. The user determines how many time steps 

occur in one run of the simulation, which is to say, how much real time one run of the 

simulation represents. 

My simulations use a HexSim template called HexSimPLE. This template was 

created for users that are particularly interested in studying metapopulation dynamics of 



 

160 

age- or stage-stratified population (Schumaker, 2023). HexSimPLE requires the input of 

demographic parameters for each life stage of the population under study and uses Leslie 

matrices to perform matrix algebra that determines the structure of the population. I 

created a modified version of the HexSim template that, in addition to being customized 

to the demographic parameters of the vector, involved interactions between vectors and 

hosts that result in the transmission of viral diseases. The focal points of these models are 

the consequences of vector population dynamics on disease outcomes, making this 

modified version of HexSimPLE ideal for the study.  

Representing Space in HexSimPLE 

Within spatially-explicit models, the user specifies meaningful dimensions that directly 

relate to the real world. The two-dimensional space within these is often broken up into a 

grid pattern. The user can specify, that each cell in the grid measures 1 meter by 1 meter, 

for example. This specificity allows the user to both represent the actual size of real 

objects or habitats in the model and obtain model outputs that provide information about 

the way that organisms behave or interact in two-dimensional space. HexSim differs from 

most spatially explicit models in that two-dimensional space is assembled of a framework 

of hexagons instead of rectangles or squares. This shape was chosen because the 

probability of traveling from the middle of a hexagon to any edge is more symmetrical 

than distributing from the center of a square (all other landscape event simulators) to the 

edge or a corner (much greater distance to the corner but assume the same probability, 

which is incorrect). Additionally, similar shapes can be made with hexagons (with a 

slightly ragged edge) as can be made with squares (a circle would leave gaps between the 

compartments which would be a spatial and probabilistic black hole). The additional 
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surface area achieved by using hexagonal cells allows for more detailed and refined 

movement estimates within the HexSim environment. 

Multiple maps of the same space can be supplied to the simulation for different 

purposes. HexSimPLE requires the use of both a Habitat Map and a Matrices Map. The 

Habitat Map communicates resource quality by scoring each hexagon from 0.0 (non-

habitat) to 1.0 (ideal habitat). This score determines both the carrying capacity of the cell 

and the vital rates of individuals existing within it, a topic discussed in the following 

section. This map can be a time series or a static map. In a host-pathogen model, 

adjusting the habitat quality could be used to represent the susceptibility, resistance, or 

relative attractiveness of the host to an invertebrate vector. The Matrices Map is 

constructed of a collection of patches made up of one or more hexagons. These patches 

can be contiguous or non-contiguous and the sizes of the patches can vary. A Leslie 

matrix is assigned to each patch in this Hexmap. Adjusting the boundaries of these 

patches allows the user to adjust the granularity of the simulated population, allowing a 

more detailed or general view of population dynamics. This map cannot be a time series. 

In order for the HexSimPLE template to function, the aforementioned Hexmaps 

must contain entered parameter values. HexSimPLE technically also requires the user to 

supply four other maps, but they can optionally contain information. There are three 

required Hexmaps called Regions Map, Stress Map Fecundity, and Stress Map 

Survival. These Hexmaps contain patches of hexagons that should be identical in terms 

of size and location to those in the Matrices Map. There is one optionally meaningful 

barrier map called Movement Barriers. If the user does not wish to use these Hexmaps, 

the value of all hexagons contained within a patch can be set to 1, and all others set to 
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zero. If the user does not wish to introduce any barriers, the Movement Barriers map 

should not contain any barriers. 

The Regions Map allows the user to introduce stochasticity into the environment. 

The landscape can be broken into patches of hexagons that will be assigned a different 

environmental quality value during the event sequence. This map cannot be a time series. 

Users that do not want to introduce multiple regions should start with a map identical to 

the Matrices Map and then assign to all non-zero hexagons a value of 1 (Schumaker, 

2023). This results in a map with one region. Stress Map Fecundity and Stress Map 

Survival are collectively referred to as Stress Maps. These maps allow the user to 

introduce location-specific effects on fecundity and survival, either as separate or 

interacting effects. Patches of cells in this map are assigned a score from 0 (maximal 

stress) to 1 (no stress). These stress scores are used “to extract coefficients that are 

subsequently used to multiply the individual Leslie matrix survival and fecundity rates”, 

respectively (Schumaker, 2023). In a viral plant disease model, stress maps could perhaps 

be used to represent the effects of an insecticide on the vector population, either 

temporarily or permanently. If the user does not want to introduce stress into the model, 

all patch stress scores should be set to 1. The Stress Maps can be time series. Because 

most of the Hexmaps used in this template are divided into patches, barriers created using 

the Movement Barriers map should not intersect these patches and should instead 

border the edges of the patch. Otherwise, “individuals who emigrate into a sub-divided 

patch will effectively cross the barrier when they become absorbed into the patch's 

population vector” (Schumaker, 2023). 

Representing Populations in HexSimPLE 
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The primary purpose of the HexSimPLE routine is to obtain information about the 

population of interest, and the user is required to provide information about the 

demographic parameters of the focal organism. These parameters are collectively called 

Global Variables. The required parameters are Fecundity, Survival Rate, Habitat 

Exponent [fecundity], Habitat Exponent [survival], Percent Stochasticity [fecundity], 

Percent Stochasticity [survival], Dispersal Path Length (minimum), Dispersal Path 

Length (maximum), Per-Hexagon Carrying Capacity, Initial Population Size, and Data 

Sampling Delay. 

 Because HexSimPLE was constructed with age- or stage-stratified populations in 

mind, the Fecundity and Survival Global Variables require the input of survival and 

fecundity rates for three life stages of the organism: stage 0, stage 1, and stage 2. This 

approach is complementary to the biology of both plant pathogen vectors and fungal 

plant pathogens. For the models proposed here, these three stages correspond to the egg, 

juvenile, and adult stages, respectively. These rates, as well as the habitat quality of the 

patch supplied in the Habitat Map and the Habitat Exponent Global Variables, are 

combined to create patch-specific vital rates for fecundity and survival. The formula used 

to determine these rates is described in Equation A.1. Adjusting the Habitat Exponent for 

fecundity or survival allows the user to set “a habitat quality below which survival or 

fecundity rates begin dropping rapidly” (Schumaker, 2023). Incorporating the habitat 

quality scores allows the user to represent a scenario in which the environment impacts 

the reproduction and/or survival of the population members. The incorporation of the 

Habitat Exponent allows the user to control the degree to which these parameters respond 

to habitat quality. 
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 The fecundity and survival rates used in individual Leslie matrices are also 

impacted by the Percent Stochasticity Global Variables. The user can enter a value for 

both Percent Stochasticity [fecundity] and Percent Stochasticity [survival]. This 

allows for the introduction of environmental stochasticity into the model, if desired. Each 

region specified in the Regions Map will be assigned a different environmental condition 

at each time step. The value of fecundity and survival for that region will vary randomly 

by the percentage specified in this Global Variable. For example, if the Percent 

Stochasticity [fecundity] Global Variable is set to 10 (= ±10% of the global variable 

value) and the Fecundity Global Variable is set to 20, the fecundity for any given region 

at any time step will be randomly selected from a range of 18 to 22. The relationship 

between the Percent Stochasticity [survival] and Survival Global Variables functions 

identically. One or both Percent Stochasticity Global Variables can be set to zero to “turn 

off” environmental stochasticity. 

 The Dispersal Minimum [number of hexagons in a straight line] and 

Dispersal Maximum [number of hexagons in a straight line] Global Variables 

determine the boundaries of how far individuals can move during the Conduct Movement 

Event Group (discussed in detail in the following section). These Global Variables 

specify the minimum and maximum length of their dispersal path. The Carrying 

Capacity [per-hexagon] Global Variable sets the maximum number of individuals that 

one hexagon of ideal habitat (score of 1.0 on the Habitat Map) can support. The Initial 

Population Size [per matrix] Global Variable sets the initial number of individuals 

added to each matrix in the Matrices Map. The Begin Sampling [cumulative hexmaps] 

Global Variable determines the time step at which HexSim begins constructing the 
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Cumulative Population Size, Cumulative Productivity, and Cumulative Dispersal 

Generated Hexmaps. These Generated Hexmaps will be discussed in further detail in the 

following section. These Generated Hexmaps require several time steps of data before 

they become meaningful, which is why they are not collected from the beginning of the 

simulation.  

 

Equation A.1: 

r𝑞  =  r𝑜 [ 1 – (1 – q)ƞ ] 

Equation for patch-specific vital rates, where rq is the patch-specific survival or fecundity rate, ro is the 

survival or fecundity rate provided as a Global Variable, q is the mean habitat quality of the patch obtained 

from the values in the Habitat Map, and ƞ is the Habitat Exponent for either fecundity or survival. Adapted 

from Schumaker (2023). 

 

The HexSimPLE Event Sequence and Outputs 

 There are five main Event Groups in the default HexSimPLE event sequence: 

Initialize Simulation, Conduct Movement, Perform Demography, Get Output Map Data, 

and Construct Output Maps. Events connect the individuals in the model to the space that 

they occupy and allow them to interact with the hexagons, taking into account the Global 

Variables and characteristics of the population and individuals of interest. Event Groups 

are collections of related events that determine any action that occurs within both the 

HexSim program and within the simulation. Event Groups can contain individual events 

and/or other Event Groups. Individual events can be toggled on or off by the user. 

 The Initialize Simulation Event Group only occurs on the first time step of the 

simulation. It introduces the population into the map. The Conduct Movement Event 

Group determines which individuals of each stage class will disperse, if any. Whether 
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individuals disperse is dependent upon the distribution of habitat quality across the map – 

individuals are attracted to patches with higher habitat quality. To represent populations 

in which certain stage classes do not disperse, the user can toggle off the individual 

events that correspond to the movement of those stage classes. The Perform 

Demography Event Group performs the matrix algebra that calculated the survival and 

fecundity rates of each patch in the Matrices Map. It contains two sub-Event Groups: Set 

Vital Rates and Matrix Multiplication. The Set Vital Rates Event Group calculates the 

survival and fecundity rates for each patch in the Matrices Map. These vital rates are 

dependent on both the Survival and Fecundity Global Variables and the many factors 

discussed previously in this section, e.g. habitat quality and environmental stochasticity. 

The Matrix Multiplication Event Group performs the matrix algebra that determines the 

population size for the following time step. 

 HexSim can summarize and present spatial data to visualize the results of a 

simulation run. This spatial data is called a Generated Hexmap. The Get Output Map 

Data Event Group contains events that compile data for the six default Generated 

Hexmaps produced by HexSimPLE: Population size, Cumulative population size, 

Population density, Cumulative population density, Cumulative productivity (births – 

deaths), and Cumulative productivity (emigration – immigration). Finally, the Construct 

Output Maps Event Group complies and presents the data of the aforementioned 

Generated Hexmaps. These maps are arranged in a time series that begin after the time 

step specified in the Begin Sampling Global Variable and can also be visualized within 

HexSim for individual time steps or viewed as a “movie”. 
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Figure A.1. Dispersal kernel constructed for dispersal of suspected vector of BNRBV based on per-plant diseases incidence patterns 

observed from Enigma in 2012. Kernel corresponds to equation: 

𝑦 = 13.83
− 

𝑥
0.985  
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Figure A.2. A diagram of the simplified SimpleMite model disease cycle, describing how disease moves through the model. 
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APPENDIX B 

EXAMPLE REAL-TIME YIELD LOSS HEATMAPS DERIVED FROM WTVC 

MODEL OUTPUTS 

 

The WTVC model described in Chapter 3 produces real-time yield loss maps in 

addition to infection incidence maps. A description of the calculations used to create 

these maps can be found in the Methods of Chapter 3. An example of a sequence of 

heatmaps derived from these real-time yield loss maps can be found below in Figure B.1. 
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Figure B.1. Example sequence of real-time yield loss data produced by the WTVC Model described in Chapter 3. 

 

 


