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Abstract

Primatologists often meet the challenge of how to interpret the complex high resolution

GPS-collected movement points, which include space, time and attribute aspects. Using the

tracking data of a group of black capuchins (Sapajos nigritus) in Atlantic Forest, we firstly

quantified the movement to environment variables and path properties at different temporal

scales. Then we developed innovative visualization techniques such as space-time aquarium,

attribute clock, and time-time plot to represent spatial, temporal and attribute information

of the trajectories within a GIS framework. Comparison of the movement patterns is made

between April (fruit-abundant month) and May (fruit-scarce month). Finally, we integrated

all the functions into one exploratory data analysis toolbox. The general behavior patterns

of the group of monkeys under different environmental scenarios are identified. The results

have also shown the effectiveness of the proposed visualization techniques in the exploratory

analysis of large movement dataset.

Index words: Exploratory data analysis, space-time trajectories, black capuchin
monkey, geographic information system (GIS), behavior patterns
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Chapter 1

Introduction

Primates are considered ideal subjects for spatial cognition research because of their high

level of physical dexterity and sharp intellect. Diverse research has investigated different

aspects of the primates, including their social hierarchy (Sapolsky, 2005), learning ability

(Bartus et al., 1979), and memory (Sands & Wright, 1980). Most of these studies are con-

ducted in laboratory environments, and such settings make it very difficult to fully capture

the primates’ behavior due to spatial constraints. With the recent emergence of location-

aware devices and GIS (Geographic Information System) technique, scientists are able to

track the real-time movement of the primates over large spatial extents with a higher de-

gree of accuracy. The initial products of GPS-tracking (Global Positioning System) are high

resolution points with spatial, temporal and attribute information. This has led to a fun-

damental question: how can we better interpret the “point clouds” to better understand

primates’ movement pattern?
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1.1 Animal’s Trajectory

To better analyze movement points, they are always connected to a trajectory based on

time series. Trajectory, according to Andrienko & Andrienko (2005), can be defined as the

path made by the moving entity through the space in which it moves. People have always

been interested in observing the moving trajectories around us, including the bee’s waggle

dance (Riley, Greggers, Smith, Reynolds, & Menzel, 2005), ants’ routing (Crist & MacMa-

hon, 1991), and birds’ migration paths (Tracey, Woods, Roshier, West, & Saunders, 2004).

A detailed knowledge of motion patterns can help to better understand animals’ behaviors,

with implications for the study of spatial cognition. Additionally, the environmental interac-

tions attached to the trajectories are important sources of natural ecosystem dynamics. For

example, the spread of avian flu has been proved to be highly correlated with birds’ annual

migration routes (Peterson, Benz, & Pape, 2007).

Various methods have been developed to observe and record animals’ trajectories. Over

several decades, due to the technological limitation, tracking has been a tedious and expensive

task. One common way of tracking the animal is mark-recapture (Turchin, 1998), in which

the animals are captured, marked, released and recaptured after a certain time period.

This brings high level of uncertainty to the animals’ tracking. Therefore, most animal

movement studies focus on moving entities that are easy to observe, such as insects (Kareiva

& Shigesada, 1983a) and farm livestocks (Graham, 1978). The use of VHF (very high

frequency) radio telemetry, to some extent, facilitates the “capture” and “recapture” of

animals by collaring them with radio transmitters and by searching their locations with

special signal receivers (Mech & Barber, 2002). It is the emergence of GPS technology that

revolutionizes the tracking in wildlife biology (Hulbert, 2001). It makes the relatively fine

scale real-time tracking of animal movement possible. With the high temporal granularity

data, researchers are capable of monitoring both animals’ behaviors and their interactions
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with the surrounding environment(Handcock et al., 2009). For instance, novel TrackTagTM

GPS loggers have been used to track the sea bed depth that the sea turtles frequently stay,

aiming at better habitat management of the turtles(Schofield et al., 2007) .

While the use of high-resolution trajectories has created new insights into the research

of animal behavior and ecosystem dynamics, the measurement and analysis of the complex

mobile objects dataset become one challenge. Generally, the multiple points collected by

a location-aware device consist of three aspects: the paths indicating motions over space

and time, the characteristics of a motion, including speed, direction and length, and the

environmental factors associated with the paths such as slope and aspect. Andrienko (2010a)

formulates them as S × T � A, where S stands for space (geographic coordinates), T stands

for time (the data sampled intervals), and A stands for the attributes (both internal and

environmental components) attached to the corresponding S and T.

In order to answer the question “how do we analyze the movement data?”, the first step

is how to better represent space (S ), time (T ) and attribute (A). Most current GIS programs

work well in representing the spatial distribution of the motion points. Since most of them

are developed on the basis of cartography’s static snapshot view, they often fall short in

the representation of dynamic motion data. Three possible solutions to represent dynamic

phenomena in the static cartographic world would be interaction, animation and hypermedia

(MacEachren & Monmonier, 1992). Animation has been widely used in climatology to

display the weather dynamics, such as the tracks of the tropical cyclones (Liu, Wang, Gong,

Chen, & Peng, 2006; Patterson & Cox, 2005) and temperature changes (NOAA, 2012). Each

map display shows events that take place at specific moments and correspondingly updated

as time goes by (Peter, 2004). With hypermedia, the change can also be presented in the

snapshot views at different time stamps on one big screen, which enable us to visually identify

the differences at time domain (Andrienko, Andrienko, & Gatalsky, 2000).

Other than the techniques mentioned above, Hagerstrand’s time geography framework
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(Hagerstrand, 1970) is an alternative choice. Its basic idea is to represent the space-time

path in a three-dimensional aquarium, where the horizontal axes indicate the geographic

space with an independent vertical axis representing the time. The space-time cube has

been widely used in space-time movement studies, most of which are about the exploratory

analysis of human’s daily activity (Kwan, 2002; Vrotsou, Ellegard, & Cooper, 2007). This

aspect will be discussed more in Chapter 2.

1.2 Black Capuchin Monkey

“Capuchin monkeys are medium-sized, robusted built monkeys that exhibit moderate sex-

ual dimorphism, and have arms and legs of nearly equal length, large brain-to-body ratios

and furry semi-prehensile tails. ”(Fragaszy, Visalberghi, & Fedigan, 2004, p. 13). The ca-

puchin monkeys belong to the subfamily Cebinae. Their geographic distributions range from

Central America and South America to Northern Argentina. The taxonomic classification

of capuchins has long been highly controversial (Amaral, Finotelo, De Oliveira, Pissinatti,

Nagamachi, & Pieczarka, 2008). Lynch Alfaro et al. (2012) proposed a classification system

to divide capuchins into two genuses, Cebus and Sapajus, which has been widely adopted.

The group of monkeys studied in this project is Sapajus nigritus. As described by Fra-

gaszy et al. (2004, p. 15): “It has a very dark brown or gray, even blackish body with no

(or very vague) dorsal stripe. Its limbs are darker than its body and its underside is deep

reddish with black overlay. The face is white and contrasts with the rest of the body. The

cap is dark and tufts are evident; tufts can be erected or directed sideways or ahead”. Figure

1.1 is a photo of Sapajus nigritus taken in the study area.

Because of the habitat destruction, hunting and unregulated trade of monkeys, the ca-

puchins population have undergone dramatic decline. Continuous deforestation is the most

significant factor causing the vulnerable status of capuchins. Chapman & Peres (2001) has
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Figure 1.1: Sapajus nigritus. Photo taken by Dr. Andrea Presotto (Reprinted by permission
from Dr. Adrea Presotto, copyright 2012)

reported that the forest loss throughout 1980-1995 was around 9.7% in Latin America. In

particular, the Atlantic rain forest is now considered to be a significant place for conservation

of the black capuchin monkeys. According to an International breeding program, coordinat-

ed by an International Recovery and Management Committee established by the Brazilian

Government, Sapajus nigritus is listed as “vulnerable”. Therefore, studying the movement

and habitat use of the black capuchin monkeys in this area is essential for their protections.

1.3 Study Area and Data Availability

The data were collected at Carlos Botelho State Park (PECB), which is located in Sao

Paulo State, southeastern Brazil (24◦00′- 24◦15′ S, 47◦45′- 24◦00′W), within the Atlantic

Rain Forest region (Figure 1.2).It is located high up in the Paranapiacaba Mountains, the

Guapiara Plateau, in the municipality of Sao Miguel Arcanjo, at an elevation of 720-890 m.

The study site is about 380 km2, connecting three other border parks, forming a continuous
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protected forest of more than 1200 km2.

The average annual temperature is around 20◦C, ranging from 3◦C minimum to 29◦C

maximum. The climate is relatively mild, with no dry season and a very warm summer

(E.N. Domingues & Vellardi, 1987). The landscape composition is rather homogeneous,

undisturbed forest dominated by species including families Myrtaceae, Arecaceae, Euphor-

biaceae, Leguminosae, Sapotacease, Lauraceae and Rubiaceae (O.C. Negreiros & Netto,

1995). The vegetation at the study site belongs to the domain of ‘mares e morros’, indi-

cating unpredictable intervals of fructification, occurring for some species every three years

or more (AbSaber, 2003). The park is also diverse in terms of fauna. Two other primate

species (wooly spider monkeys and howler monkeys) live in the same area.

The population density of capuchins in this park is as low as 2.3 individuals per km2.

The monkey group in this study had 14 individuals, with one dominant male, one adult

male, three females, three infants and six juveniles. From the data, the group home range

size during 2006, 2007 and 2008 was about 400 ha (Presotto & Izar, 2010).

The environment data includes hydrologic layers, digital elevation data (DEM) at 28×28

m2 resolution, and remote sensing imaginary from the Landsat 5 Thematic Mapper(TM) at

30× 30 m2 resolution (Figure 1.3).

The black capuchin monkey movement data were collected by Dr. Andrea Presotto in

the Sao Paulo Park, covering every month during 2007. Basically, Dr Presotto followed the

group of monkeys and recorded the geographic coordinates at the approximate center of the

monkey group using GPS every five minutes from around 6:00 am to 6:00 pm on a daily basis.

Several years ago, the GPS could easily lose signal in the dense forest areas. Improved GPS

technology enables the tracking of the monkey movements in dense forest, with errors of less

than ±10 meters. Such data are ideal for capturing the details of monkey movement. The

positions of the monkey group were recorded at five-minute intervals. Sometimes, incomplete

data were caused by the monkeys’ fast and sudden movement.
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Food is one of the most important driving forces for the animals’ movement. The food

locations along the paths were also recorded with GPS. According to Presotto (2010), the

distance of a monkey’s visibility is approximately 80 meters. Therefore, fruit locations within

80 meters were merged together to form food patches. The boundaries of the food patches

were recorded. The “food locations” here mainly refer to the fruits the monkeys usually eat.

There are fruit-abundant months, such as April when fruits were widely distributed within

the study area. In fruit-scarce months, such as May, for example, there was almost no fruit

at all and the monkeys had to eat tree leaves. General information with regard to the data

used in this study is shown in Figure 1.4.

1.4 Research Objectives

Using high resolution tracking data, this paper focuses on uncovering the space-time pattern

behind the moving trajectory over a large spatial extent. The objectives of this paper are:

• To quantify the path with the environmental variables and path properties

• To develop exploratory visualization techniques to help discover the potential spatio-

temporal patterns of the movement

• To compare the movement trajectories between April fruit-abundant month (April)

and fruit-scarce month (May) to see how the monkeys’ behaviors are affected by the

environment

• To develop a toolbox to integrate all the functions into an interactive data analysis

environment, allowing primatologist to explore the data.

The paper is organized as follows. Chapter 2 reviews the previous work concerning

the animal movement and space-time analysis. Chapter 3 describes the unique features

of the data and the techniques used to analyze the data. Chapter 4 presents the results of

descriptive quantification, exploratory visualization and comparison between April and May.
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Chapter 5 makes a summary of the above work and discuss the potential improvement could

be done in the future.
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Chapter 2

Literature Review

Studying animal movement plays an important role in diverse subjects, including psychology,

ecology and geography. Because of the development of tracking technology, the past decade

has witnessed a dramatic increase in the movement research, expanding to all possible species

that humans are interested in (Urios et al., 2007; Mellone et al., 2011; Fernandez et al.,

2009). Meanwhile, individual-based and spatio-temporal dynamics have been highlighted on

the agenda of Geographic Information Science community (McMaster & Usery, 2005). In

this project, the animal movement and space-time path analysis are the two most important

components; each will be reviewed separately in the following two parts.

2.1 Animal Movement

The spatiotemporal movement of animals is a quite complex research topic which involves

multidisciplinary knowledge, including psychology (Gallistel, 1989; Trullier, Wiener, Berthoz,

& Meyer, 1997), landscape ecology (Dill, 1987; Nathan, 2008), and geography (Bian, 2000;

Goodchild, Yuan, & Cova, 2007). Animal scientists want to settle two main issues: the redis-

tribution of population and the movement of individuals. From the psychology perspective,
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the animals’ cognition and their perception of the surrounding environment determine their

motions. From ecologists’ view, the movement is primarily driven by various abiotic and

biotic factors (Turner & ONeill., 2001), including predators, foods and topographic features.

These environmental factors could act as significant constraints, threats or opportunities

(Tang & Bennett, 2010) with regard to animal movement. For geographers, the two ques-

tions we are mostly concerned are: how do animals use space and how do they spend time?

2.1.1 The Use of Space

The use of space can also be defined as the ranging patterns. An animal usually has an

area that it lives and travels in its everyday activities of food gathering, mating and caring

for young. Burt (1943) defined this area as the home range. A knowledge of the home

range is a pre-requisite both to the effective management of the animals’ resources and the

establishment of conservation strategies (O’Brien, 1984).

After identifying the animals’ home range, it is also necessary to know their space use

patterns within that area, which is often measured by utilization distribution (Jennrich &

Turner, 1969). According to Van Winkle’s (1975) definition , Utilization distribution is a

probability density that represents an animal’s relative frequency of occurrence in a 2D (x, y)

plane, which is usually constructed with a kernel method. Utilization distribution is a global

and static descriptor, which treats the home range as two dimensional. Research has been

done to take the third dimension and time into the measurement of utilitarian distribution.

Keating & Cherry (2009) described a product kernel model estimation method to handle

circularly distributed temporal covariates. Benhamou & Riotte-Lambert (2012) proposed a

more dynamics approach to concentrate more on the residence time and visiting frequency,

which are referred to as intensity Distribution(ID) and recursion distribution(RD).

When it comes to the movement of monkeys, Terborgh (1983) proposed four possible

scenarios that a group of monkeys can explore its home range: 1) if a species’ primary food on
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insects, which are evenly distributed, it is expected to cover the home range homogeneously;

2) at the other extreme, if a species’ food sources are highly patchy, such as the fruiting trees,

its movement is largely affected by the fruit ripening; 3) a species which needs to defend its

resources would spend more time patrolling the boundaries of the home range; 4) if there

are some essential but limited resources, movement is more likely concentrated on the core

area. In the real world, the animals’ use of space is certainly much more complicated and

possibly a combination of these models.

2.1.2 The Use of Time

The use of time can be defined as the activity patterns, or temporal behavior patterns.

An animal’s temporal behavior is significantly associated with metabolism and energetic

constraints, which are always in dynamic states due to the temporal variations of ambient

environment (Halle, 2000; Zhou, Wei, Huang, Li, Ren, & Luo, 2007). Studying the activity

patterns of an animal helps to better understand its physical properties and psychological

state (Lewis & Rachlow, 2011). Additionally, by comparing the activity patterns of the same

animal under different environmental conditions, such as food distribution(Stevenson, 2001)

and weather (Johnson, Edwards, & Ford, 2011) , we can explore the ecological influences on

the animal’s behavior (Struhsaker & Leland, 1979).

One important measurement of the activity patterns is time budget, which is a list of the

percentage of time that an animal spends on different activities. Generally, approximately

95% of an animal’s activity in one day can be divided into four categories: feeding, moving,

social interaction, and resting (Hill, 1999). The percentages of different activities have been

used in various animals’ research (Huang, Wei, Li, Li, & Sun, 2003; Goodman, 2007; Tang,

Zhou, Huang, Meng, & Huang, 2011). Many potential environmental factors have been

proposed to explain the variations of time budgets, including temperature (Hogan et al.,

2011), humidity (Vieira, Baumgarten, Paise, & Becker, 2010) and food availability (Caselli &
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Setz, 2011; Rothenwohrer, Becker, & Tschapka, 2011). Other factors, such as age (Stevenson,

2006), sex (Weiss, Corona, & Schultz, 2012), and social dominance (Hemingway, 1999), have

also been proved to be highly correlated to the variations in activity patterns.

Researchers in various fields have demonstrated the monkeys’ ability to adjust the time

budgets in response to environmental changes, such as seasonal variations of food availability

and solar insolation (Chaves et al., 2011; Thoren et al., 2011). Schoener (1971) concluded

three possible adjustments in time budgets during food scarcity: 1) increase the time for

subsistence, 2) increase feeding time, 3) reduce the time allocated to high energy-consuming

behaviors.

Both the ranging patterns and activity patterns are related in multiple ways with the ani-

mals’ physical characteristics, social behavior and external environment factors. Therefore,

it is necessary to take both space and time into consideration in the analysis of animals’

movement.

2.2 Space-Time Path Analysis

According to Peuquet (1994), the spatio-temporal data include three major components:

space, time and objects. Each component has its own properties and is highly interrelated

with each other. A similar statement related to the movement is that “a trajectory of a

single entity is a configuration of locations (possibly, in combination with the secondary

characteristics of movement)” (Andrienko, Andrienko, Pelekis, & Spaccapietra, 2008, p.

4). Recent major shift in geographic science from place-based perspective (Katerina, 2007;

Klepeis et al., 2001) to individuals is highlighted by the emergence of location aware devices.

This emphasizes that Geographic Information Science is not only about locations, but more

importantly, about mobility.
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While traditional GIS works well in static and place-based analysis, they often fail to

put individuals’ behavior and their interaction with the environment in a space-time context

(Chen et al., 2011). To fully understand an animal’s movement pattern, both space and time

components are equally important in the movement analysis.

2.2.1 Visualizing the Movement

The space component of the path can be easily represented with static maps (Kraak &

MacEachren, 1994) by projecting the complete trajectory on a conventional planar map

(Frihida et al., 2004; McGrady et al., 2003). The time component can be visualized us-

ing variations in symbology for different time stamps. The most famous example is the

Napoleon’s March on Moscow of 1812 - 1813 (Tufte, 1983). Six separate variables were

shown in the map. For example, the size of the army is marked with the band width and

the time labels were also drawn in the corresponding locations. The color variations, some-

times, can also be used to represent the “ages” of events when the number of time stamps

is relatively small (Peter, 2004).

Not until the concept of “time geography” (Hagerstrand, 1970) was used in urban ge-

ography research that the movement, inherently temporal, was systematically included in

“Geography”. Two basic concepts in the time geography framework are “space-time path”

and “space-time prism”. Hagerstrand argued that time should not be treated as an external

factor. Hence he adopted a three dimension coordinate system which use the x and y plane

for spatial representation and the vertical z axis for the time. The individual trajectories

become sinuous 3D lines which go up as time goes by, forming the space-time paths. The

space-time prism refers to the spatial and temporal extent that can be achieved by individ-

uals under specific constraints (Lenntorp, 1976). The time geography framework has been

widely applied in human behavior analysis. Kwan used 3D GIS data models for multi-story

structures, such as women’s studies (Kwan, 2002) and evacuation research (Kwan & Lee,
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2005). Tian, Ma, Wang, Song, & Xie (2010) analyzed the spatio-temporal behavior of people

based on mobile phone call records.

Some novel techniques are also developed to visualize the movement. One example is the

TT plot (Time-time plot), which transforms spatio-temporal data to a 2D plane with two

time axes, the spatial components, such as speed, travel distance and directions, are repre-

sented with coloring or shading cells (Imfeld, 2000). Andrienko et al. (2010b) applied SOM

(Self-Organizing Map), which is a combination of clustering and dimensionality reduction,

to link the space and time component and create an integrated visual analytic environment.

2.2.2 Quantifying the Movement

To get in-depth understanding of the movement pattern, the trajectory is better to be

represented with numbers. From mathematical perspective, one trajectory can be defined

as the curve depicting one animal’s relocations (Calenge, Dray, & Royer-Carenzi, 2009).

Whereas the movement is continuous, the GPS sampling can only record the location at

certain intervals. In this case, the trajectory curve is discretized to a number of steps

connecting successive displacements of the animal (Turchin, 1998).

A lot of efforts have been devoted to quantifying such trajectories. The most fundamental

level is using a set of descriptive parameters. Calenge et al. (2009) categorized the descriptive

parameters into three scale levels: 1) step between two relocations: step length, speed or

azimuth (Johnson et al., 2001; Marsh & Jones, 1988a); 2) relationship between two steps:

mean squared distance or relative angle (Kareiva & Shigesada, 1983b; Zollner & Lima, 1983);

3) trajectory: path length or sinuosity (Simon, 2004; Webb et al., 2009). The first two

categories are both in-path variables depicting the dynamics of attributes along the path,

while the third one more often considers the trajectory as a whole, or stationary. To narrow

the gaps between descriptors of different scale levels, Simon (2004) used sliding windows and

divided the trajectory to subparts. The descriptive parameters are calculated within the
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sliding window. Similarly, Andrienko, Andrienko, & Gatalsky (2000) developed dynamics

interval view method and apply it in a study of storks migration. Laube, Dennis, Forer,

& Walker (2007) proposed a framework to dynamically explore the geospatial lifeline, and

identified four lifeline context operators.

Because the turning angles and the sinuosity of the trajectory are important indicators

of one animal’s space use patterns whether oriented movement (Schooley & Wiens, 2003)

or general dispersal wandering (Doerr & Doerr, 2005) within the home range. More linear

movement trajectory implies the animal is more in exploratory mode (Fryxell et al., 2008) or

searching for dispersal food sources (Webb et al., 2009), whereas more tortuous path indicates

the animal is in encamped mode (Fryxell et al., 2008) or habitat assessment (Bartumeus

et al., 2005). One simple way to describe the sinuosity is the straightness index ranging from

0 and 1, which is computed as the ratio between the beeline distance and the path length

(Batschelet, 2001). Dicke & Burrough (1988) introduced the fractal analysis to measure the

sinuosity of random search path as a fractal dimension. The fractal dimension of a path can

be estimated as:

D =
log(n)

log(n) + log(d/L)

where n is the number of steps, L is the total path length and d is the planar diameter,

defined as the longest distance between two points in the curve. For a random search path,

the fractal dimension usually ranges between 1 (curvilinear path) and 2 (fully jagged and

wiggly path) (Simon, 2004). The sinuosity of a path can also be estimated based on the

distribution of turning angles. As any step of the curvilinear can be considered as a vector,

the circular statistics (Fisher, 1993) provides several descriptors to depict the sinuosity, such

as mean vector length and mean turning angles (Simon, 2004).

25



2.2.3 Modeling the Movement

Other than descriptive parameters, various models have also been used to represent the

trajectory with mathematic rules and a set of parameters. Models developed in physics,

which generate theoretical trajectories by using the last step of one trajectory to build

an additional step (Calenge et al., 2009), are commonly used in ecology research, such as

correlated random walk (Byers, 2001), biased random walk (Marsh & Jones, 1988b), and

Brownian bridges (Horne, Garton, Krone, & Lewis, 2007). Some other models developed in

probability have also been widely implemented, such as state-space models (Jonsen, Myers,

& Flemming, 2003) and stochastic differential equations (Preisler, Ager, Johnson, & Kie,

2004)

In geographic research, the most commonly used models include system model, cellular

model (Nishinari, Kirchner, Namazi, & Schadschneider, 2004), and agent-based model (Boyer

& Walsh, 2010). Among them, the agent-based model is the most widely used for animal

movement research. Generally it simulates the behavior of individuals, interactions among

individuals, and interactions between individuals and their environments within geographic

frameworks. There are four key components in animal movement: internal states, external

factors, motion capacities and navigation capacities are always identified as the factors that

affect the agents’ movement (Tang & Bennett, 2010). Although agent-based modeling is

considered to be an ideal solution for the animal movement study, it is far away from an

exact simulation of the animals’ actual motion. Actually none of the models mentioned above

are capable of capturing the complexity of the animals’ behavior (Calenge et al., 2009). Most

of the case, they are used as the reference to the observed trajectories.
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2.3 Motivation and Need of Research

The movement of animals, especially primates, has been widely studied by psychologists

and ecologists. The general research topics include the animals’ food searching strategy

(exploratory or encamped), internal navigation system (allocentric or egocentric), and the

environmental driving factors. On the other side, the space-time aquarium is commonly

used in depicting the individual trajectory in human geography. However, there is much less

research that analyzes the animal’s movement within both spatial and temporal constraints.

Motivated by this, we plan to study the black capuchin monkeys’ movement from space and

time perspectives: how they use space and how they spend time. The design of the whole

research framework is space-time oriented.

This project firstly represents the movement trajectories of a group of black capuchins

within a GIS framework. The movement points are connected to form the polylines, which

would then be projected to space-time aquarium to integrate both space and time com-

ponents in one representation. The study also quantifies the paths at different scale levels.

Both summary descriptive statistics variables and in-path dynamic variations are calculated.

The distribution of turning angles and sinuosity of the path are two important indicators

that are particularly studied. To better understand how the environmental factors would

influence the black capuchin monkeys’ behavior patterns, the above quantified parameters

of fruit-abundant month (April) and fruit-scarce month (May) were compared using two-

sample statistical t-test. New visualization techniques (attribute clock and time-time plot,

are developed to facilitate the exploratory data analysis of the attributes dynamics) along the

paths. Finally, all these functions are integrated into an exploratory analysis environment

with regard to the movement data.
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Chapter 3

Methodology

This project analyzes both the space and time perspectives of the black capuchin monkeys’

movement, which correspond to their ranging and activity patterns. The geographic visu-

alization techniques, including both maps and charts, are primarily used to examine the

potential patterns behind the trajectories.

3.1 Unique Features of the Data

There are several unique features about the study area and the black capuchin monkeys.

Firstly, monkeys are highly intelligent animals. We are not completely clear about how

efficient they are in route navigation (Presotto & Izar, 2010) and food locations memorization

(Basile, Hampton, Suomi, & Murray, 2009), however, they will definitely not follow a simple

pattern as the “Game of Life” (Gardner, 1970) does. Secondly, the moving range of the

monkeys during the data collection period is relatively small. The spatial extent of their

activity during the entire year of 2007 is about 4.6 km2. The terrain within the home

range is relatively undulating, but not too steep (Figure 1.4 and 3.1). Figure 3.2 is the

normalized difference vegetation index (NDVI) calculated from Landsat TM5 image. The
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histogram and summary statistics of the NDVI (Figure 3.3) shows that there is no obvious

landscape heterogeneity across the study area. Hence the movement can be categorized

as small scale movement (Webb et al., 2009), which is largely driven by physical habitat

features and resource availability (Crist et al., 1992; McIntyre & Wiens, 1999). Thirdly, in

the dense forest, the monkeys have low visibility. This low visibility would inevitably increase

the uncertainty of the monkeys’ movement. As shown on the routes map (Figure 1.4), the

trajectories are quite randomly distributed over the whole study area, unlike the movement

patterns in northern Brazil (Hinely, 2006), which is savannah region with high visibility.
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Figure 3.1: Histogram and descriptive statistics of the elevation in the study area

In view of the unique features mentioned above, also considering that the data set is quite

large and the typical structure is unclear, this study focuses on the exploratory analysis,
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including data quantification, query and visualization.

The movement data in this project are collected using a constant time lag (5 minutes),

which is often defined as “regular trajectories”. In other words, at every five minutes interval,

no matter whether the monkeys relocate or not, there is a record at that point. According to

Dr. Presotto, there could be some missing records, either due to the monkeys’ unremitting

activeness or simply because the followers need to stop for food. For those time stamps,

the locations of the monkeys are estimated as the previous time stamps location in the data

preprocessing. Then descriptive variables are calculated at different scales to represent the

trajectories with numbers. Exploratory visualization techniques are applied to examine the

attribute dynamics both spatially and temporally. Finally, all the functions will be integrated

in an interactive data exploration environment to facilitate the future data analysis.
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Figure 3.3: Histogram and descriptive statistics of the NDVI in the study area
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3.2 Movement Path Quantification

According to Andrienko et al. (2010a), the movement data can be formulated as S × T � A.

In other words, the collected GPS points consist of space, time and attribute information.

The S (space) is recorded with series of point coordinates (x, y, z) and the T (time) is the

time stamp while recording the corresponding location. The A (attribute) includes both the

internal properties of the path and the external environment factors along the path. The

quantification of the trajectories will be conducted from these two perspectives.

3.2.1 Environment factors

The movements of black capuchin monkeys are highly likely to be influenced by the topog-

raphy environment, solar azimuth, food distribution or water sources. Therefore, we used

the elevation (DEM), hydrology, food patches and Landsat TM5 images of the study area.

In order to study movement, these environmental factors need to be quantified and assign

to the routes. For the topography, the elevation and the slope could important indicators of

the energy consumption. The DEM can also derive the hill aspect layer, which would tell us

the solar azimuth at each point. With proximity analysis in GIS, we will also keep tracking

the monkeys’ distance to the nearest food patches and the water sources. The NDVI values

are derived from the Landsat TM5 image, and then assign to each recording point to see if

there could be any potential patterns.

Other than above data, we also got some background information, such as the temper-

ature and precipitation data. While most of them are monthly average values and might

not be that accurate, still, they could be used as a reference for the general background

environment conditions.
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3.2.2 Path Properties

The trajectory can be considered as a polyline curve, hence can be depicted with various

geometrical variables. Because the data in this project are regular trajectories, the descriptive

parameters can be calculated at different scale levels.

At the step level, each step has the properties of the relocated distance, speed (the step

length divided by the time lag) and step orientation (the absolute angles between the step

and the referenced direction). At the inter-step level, we can quantify the paths with the

turning angles (the angles between the new step direction θi+1 and previous step direction

θi, αi = θi+1 − θi). As a trajectory is constructed from each single step, the descriptive

parameters at step level and inter-step level can also be computed at trajectory levels, such

as the length of the trajectory, the average speed and the overall heading direction. The three

scale levels are never independent. One trajectory can be the path of a whole day, or just

one step or the combination of several steps. Similarly, the inter-step can be the relationship

between steps, or between subparts of the trajectory. Therefore, in order to narrow the

gap between these three levels, the sliding window method is implemented. The temporal

granularity of the descriptive can be flexibly controlled by the size of sliding window (Figure

3.4).

Figure 3.4: Moving Window

Because the turning angles are important indicators of the efficiency of the monkeys’
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moving strategy, the angular quantification of the paths is a main focus of this study. The

simple straightness index is firstly calculated as D/L, where D is beeline distance between

first point and the last point, and L is the length of the trajectory. As the fractal analysis

is often considered to be an alternative and promising technique to measure the sinuosity of

the path (Simon, 2004), the fractal dimensions of the trajectories are also calculated. The

circular statistics is also used to depict the distribution of turning angles. Each discrete

step can be characterized as a vector in Cartesian coordinate system. The mean vector is a

summary descriptive variable of n step vectors. Its angular values ξ can be characterized as

the mean cosine and mean sine:

c(ξ) =
n∑
i=1

cos(ξi)/n = r(ξ) cos[φ(ξ)]

s(ξ) =
n∑
i=1

sin(ξi)/n = r(ξ) sin[φ(ξ)]

The mean vector orientation φ(ξ) = arctan3[s(ξ), c(ξ)]
1 measures the angular mean, and the

mean vector length r(ξ) = [c(ξ)2 + s(ξ)2]0.5 measures the concentration of the distribution

around the mean, ranging from 0 (dispersed distribution, random walk) to 1 (punctual

distribution, straight line movement).

Besides all the geometric variables, the internal attribute of the movement also includes

the activity of the monkeys, represented as nominal values. The activity patterns are gener-

ally divided into two categories: Eating and Non-Eating, which are correspondingly assigned

the value 1 and 0.

After quantification, it is necessary to put the numbers into one context that actually makes

the numbers meaningful. To do that, we compared the descriptive parameters under two

1arctan3(s, c) is defined as arctan(s/c) for s > 0, c > 0; arctan(s/c) + 180◦ for c < 0; arctan(s/c) + 360◦

for s < 0, c > 0
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scenarios: April (fruit-abundant, high temperature) and May (fruit-scarce, low tempera-

ture) to see if the environment factors would influence the black capuchin monkeys’ ranging

strategies and activity patterns.

3.3 Exploratory Data Visualization

The movement data are usually quite complex, since they include the spatial, temporal and

both internal and external attribute information. As the data volume is large and the typical

patterns remain unclear, this project focuses on the exploratory data analysis (EDA) at this

stage. Tukey (1997) defined EDA as using a set of descriptive and graphical tools to discover

patterns of the data and suggest hypotheses. Users can view different perspectives of data

by interactively adjusting the parameters and representation techniques. In GIS study, due

to the nature of geographic data (Dykes & Mountain, 2003), visualization is a particularly

significant technique to promote human’s analytical capability and facilitate the interactive

data analysis. We applied three graphical techniques (space-time aquarium, attribute clock

and time-time plot) to improve our understanding of the spatio-temporal movement patterns

of black capuchin monkeys.

3.3.1 Space-Time Aquarium

The 3D space-time aquarium is developed based on the 2D static map. To integrate the time

component to the representation, an additional vertical axis is imposed to 2D maps. The

geographical locations (x,y) are represented with two horizontal axes, the third dimension

value z will go up as the time stamps increase. Details about space-time have been discussed

in the Chapter 1 Introduction and Chapter 2 Literature Review.

Considering the data will be analyzed within a GIS framework, the ArcGIS 10 (ESRI)

is used as a platform to integrate all the functionalities. The space-time aquarium is a
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3D representation of data, so the paths will be drawn in ArcScene environment. The time

stamps are firstly converted to numeric values proportionally based on the temporal range

and granularity. For example, the approximate wake-up time of the monkeys 6:00 am can be

set to the origin 0 along time axis, and five minute sample interval can be 1 unit increment in

z value. The Python script is written to connect the points to 3D lines based on the numeric

time sequence. In addition to simple visualization of the 3D trajectories, this study went a

step further to add interactive query function, so that the users can select the time range

they are interested in and display the relevant attributes dynamics during that period.

3.3.2 Attribute Clock

Batty (2006) proposed a way to visualize the ranking changes along the time line by project-

ing the “ranking trajectory” to a clock. The radius represents the values and the angle is the

time stamps. Figure 3.5 are pictures from Batty (2006). With the rank clock, we can get an

immediate view of the city rank orders changes, especially from the sample city trajectories

(Figure 3.5, right)

Figure 3.5: Rank clock examples from Batty (2006). Left: rank orders changes of the top
100 cities in US over the past 300 years, the rank order go from 1 (the center) to 100
(circumference); Right: sample city trajectories. (Reprinted by permission from Macmillan
Publishers Ltd: Nature, copyright 2006)
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Inspired by the rank clock idea, we develop a similar term “attribute clock” to represent

the temporal changes of the attributes on a daily basis. The data are collected from around

6:00 am to 6:00 pm, which is exactly 12 hours. This makes it appropriate to plot the data

to an actual “clock”.

The black capuchin monkeys’ frequently stop for food or resting. Therefore, the move-

ment paths are not “continuous” along the time line. Some attributes, such as the speed

and step length, dramatically vary from zero to certain values. If we connect the points

to form a line, it would result in a really poor visualization. Therefore, we develop the

“transparent pie” method to solve this problem. If the monkeys stop during certain period

of time, in the attribute clock, the corresponding angle range will be filled with transparent

pie, instead of line connection. By overlaying different days’ movement data and controlling

the transparency of the “pie”, we can even get an idea of how frequent the monkeys’ stop

during specific period of time. More details about “attribute clock” will be discussed in the

next Chapter.

3.3.3 Time-Time Plot

The TT-plot is a visualization technique that transforms the 3D motion data to 2D repre-

sentation by converting the spatial component to an inter-event distance matrix and adding

a second time axis (Imfeld, 2000). The inter-event distance can be actual spatial distance

or angle difference. The product of the previous one is TT-δ plot, which is mostly used TT

plot. The x and y axis are both time, the value at the point t1, t2 is the distance δ between

two locations Pt1 and Pt2 . It can be formulated as

ZTT−δ =
√

(xPt1
− xPt2

)2 + (yPt1
− yPt2

)2
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Different movement paths will generate different patterns in TT-δ plots. For example, a

zero-value point (t1 6= t2) indicates that the monkey visit the same place at t1 and t2.

Imfeld (2000) used the artificial data to general four movement patterns (Figure 3.6).

The TT-δ plots are symmetrical along the diagonal line, where the values are zero (distance

between horizontal tx and vertical tx). The TT-δ plot require certain degree of interpretation.

Take the Figure 3.6b as an example, the blue line parallel to diagonal line implies that the

monkeys walked the same path in the same direction as it did some time ago.

Figure 3.6: TT plot examples from Imfeld (2000). Generated from artificial movement data.
a)line; b)circle; c)8-shaped; d)star. The color scheme ranges from blue (δ = 0) to red
(δ = max) (Reprinted by permission from Dr. Stephen Imfeld, copyright 2000)

.

3.4 Toolbox Development

In the end, we integrate all the modules above into a ArcGIS toolbox to create a flexible

movement data analysis environment within a GIS framework. The ArcObject for .Net and

Python are used as the programming languages. The Visual Studio 2010 is the development

platform. To achieve better user-friendly interface and better graphics, the WPF engine is

used to build the applications.

To better handle large dataset, the toolbox design sticks to information seeking mantra

proposed by Shneiderman (1996): “Overview first, zoom and filter”. As ArcGIS does well

in data overview, zoom in or out and data query, the tools focus more on the graphical
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representation of filtered data. Interactivity is the most important feature in exploratory

data analysis, so the toolbox try to give the users the flexibility to choose the attributes

they are interested in and change the sliding window size or display modes whether they are

using transparent pie or line connection.

Figure 3.7 is a general work flow chart of this paper.
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GPS Points of 
Moneky Movement

Environment Data:
DEM, Food Patches 

Landsat TM5

Data Quantification

Path Properties: 
length, speed, 
sinuosity...

Environment Factors:
elevation, slope, 
aspect,NDVI...

Exploratory Data Visualiztaion

Space-Time Aquarium Attribute Clock Time-time Plot

Preliminary Interpretation of the black 
capuchin monkeys movement patterns

Trajectory Analysis Toolbox Integration

Figure 3.7: The general work flow chart of this paper, including data, path quantification,
exploratory data visualization and toolbox integration

.
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Chapter 4

Results and Discussions

Methodologically, this project aims to tackle two major parts: 1) path quantification of

movements and 2) visualization techniques to help the exploratory data analysis. With the

“numbers” and exploratory data visualization tools, some findings of the black capuchin

monkeys’ movement patterns are presented below.

4.1 Path Quantification

The general path parameters includes S (space), T (time) and A (attribute). In the field

data collection process, using the GPS, the spatial and temporal perspectives of the data

movement are recorded as coordinates (x, y, z) and time stamps t. This project primarily

focuses on the quantification on the attribute information. The A (attribute) includes both

the external environment factors and internal path properties, which would be discussed

separately below. To better understand the relationship between these numbers and the

actual movement patterns of black capuchin monkeys, the movement data collected at food

abundant month (April) and food scarce month (May) are compared.
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4.1.1 Environment Variables

Considering the background environmental data we have, such as DEM, hydrology, fruit

patches and Landsat TM5, and the potential factors that would influence the monkeys’

movement strategy, we select several environmental variables: elevation, slope, aspect, NDVI

(normalized difference vegetation index), distance to water and distance to the nearest food

patches. For each movement point, all these variables are calculated and joined to point

records in the attribute table. Some basic summary statistics are also calculated.

The slope and aspect of the study area are firstly derived from the DEM using the Spatial

Analyst module in ArcGIS. The distance to the nearest fruit patch and water source of each

point is calculated using Euclidean distance module. As there is almost no fruit in May, so

the “distance to fruit patch” variable is only calculated for April. The Monkeys’ movement

points are displayed on the top of slope (Figure 4.2), aspect (Figure 4.3), distance to water

(Figure 4.4) and distance to food (Figure 4.5). Then the values of these environment factors

are assigned to the corresponding movement points using Extract Multi Values to Points

module. Now the data includes the spatial coordinates (x, y, z), time stamps (t) and the

above environmental attributes. The figure 4.6, 4.8, 4.9 are the histogram (or windrose

diagram) of the environmental variables in April and May. All the plots are generated using

R statistics software. From the plots we can get a general idea of the black capuchin monkeys’

moving behavior. The comparison between April and May enable us to explore how the food,

which is often considered to be the most significant factor, will affect the monkeys’ motion.

In order to more clearly examine the data, summary statistics of these variables are

calculated (Table 4.1). During the data collection period, the objective black capuchin

monkeys’ movement ranges around 800 meters elevation. And they are more likely to stay

in relatively flat area (low slope) and not too far away from the water sources. At the

aggregated month level, there is no obvious movement pattern variation between April and

May, which is not that reasonable according to empirical study. Therefore, in-path dynamics

42



of the environmental variables will be discussed in the exploratory data visualization.

Table 4.1: Summary statistics of the environmental variables in April and May. The * means
“the distance to”. The unit of slope, distance to water source and distance to fruit patch is
meter, and the aspect is degree.

April May

Summary elevation slope water* fruit* elevation slope water*

Mean 807.50 9.95 8.87 115.64 806.64 10.57 16.46

Standard Deviation 17.56 7.70 8.53 73.06 15.40 6.37 6.73

Coefficient of Variation 0.02 0.77 0.96 0.63 0.02 0.60 0.41

4.1.2 Path Variables

The initial product of GPS data collection is a series of points. So in order to analyze the

path properties, the points are connected to lines on daily basis. The variables selected to

depict the path include path length, mean speed and turning angles.

As the black capuchin monkey follows a general temporal pattern: wake up in the morning

and sleep in the near evening, so the descriptive variables are calculated at daily level. In

this project, we have 11 days’ movement data both in April and May. However, there are

missing points in some days, either because of the bad weather or high activeness of monkeys.

To get a more representative depiction of the paths, the days with over one hour’s missing

points are removed. In the end, we got 9 days’ movement data for both April and May.

The daily movement length l can be easily computed by the sum of all the steps. And the

speed v can be calculated either with the movement length l divided by the daily time range

tall or actual movement time tactual (excluding all the stop times). Because the sinuosity

is one of the most important descriptor of monkeys’ moving strategy, several variables are

used to get a comprehensive view. First we used the reverse straightness index, which is the

ratio between the path length lpath and beeline distance lbee. Also, the fractal dimension of
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Histogram of elevation in April
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Figure 4.6: Histograms of elevation of the collected movement points (meter) in April and
May

Histogram of slope in April
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Figure 4.7: Histograms of slope of the collected movement points (degree) in April and May
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Figure 4.8: Windrose plots of slope of the collected movement points (degree) in April and
May
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Figure 4.9: Histograms of distance to water source of the collected movement points (meter)
in April and May
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Histogram in April
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Figure 4.10: Histograms of distance to fruit patch of the collected movement points (meter)
in April

each trajectory is calculated using the Hawths Analysis Tools for ArcGIS. The distribution

of the turning angles are described with circular statistical variable: mean vector length. To

actually place the numbers in an environment context, those path properties between April

and May are compared using two-sample t test.

Computed path variables of the movement paths are summarized for April (Table 4.2)

and May (Table 4.3). In order to more visually interpret the data, the bar plot of each

variables are generated (Figure 4.11).

From the tables and plots, some general movement behaviors of the monkeys can be

inferred. The daily movement length of the study group of black capuchin monkeys ranges

from 1000 to 4000 meters. They usually travel at an average speed of 6 meters per minute.

The distribution of the movement points follow a general decline trend as the “slope”, “dis-
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tance to water”, and “distance to food” increase, which means that the monkeys are more

likely to stay at low energy-consuming area, and keep appropriate distances from water and

fruit patches. There is an aspect “peak”: northeast, for both the aspect windroses in April

and May. The reason for this might be that northeast aspect is warmer and gets more sun-

shine. Differences exist between April (food-abundant month) and May (food-scarce month).

For example, the daily movement length and the traveling speed in April are notably larger

than May. This implies that with sufficient food sources, black capuchin monkeys are more

energetic. Besides, from the reverse straightness index and fractal dimension, we can know

that the paths are more sinuous in April than in May. This can also be inferred from the

distribution of turning angles descriptor: mean vector length, which ranges from 0(uniform,

fully dispersed distribution) and 1(punctual distribution, all angles being equal). For the

data in this project, the mean vector length of the paths in April is visually smaller than

those in May. This might imply that the black capuchin monkeys are more likely to choose

random walk moving strategy during food abundant season.

Most of the “visual” interpreted results coincide with previous studies of black capuchin

monkeys. To make it more convincing, the two-sample t test is applied to compare those

variables between April and May (Table 4.4). The only statisticaly different variable is the

average daily moving length in April is longer than the moving length in May. The combi-

nation of moving strategies within one day makes it hard to detect the potential movement

patterns. Therefore, it is necessary to examine the path at small scales and to explore the

in-path dynamics of the variables, which will be done in exploratory data visualization.

4.2 Exploratory Data Visualization

From the above environmental variables and path properties, we can get a general view of the

study group of black capuchin monkeys’ ranging strategies and behavior patterns. However,
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Table 4.2: Path properties of April. The speed here is calculated as the path length divided
by the actual travel time.

Day Length(m) Speed(m/min) Sinuosity Fractal Dimension Mean Vector Length

11-Apr 1795.0 9.45 2.30 1.30 0.35

12-Apr 2425.1 10.10 5.04 1.72 0.25

14-Apr 2308.2 3.95 5.46 1.55 0.26

15-Apr 3138.1 7.21 6.57 1.73 0.12

16-Apr 3029.5 8.19 6.75 1.80 0.22

17-Apr 3872.6 8.15 11.27 2.14 0.10

18-Apr 2716.1 7.05 6.63 1.77 0.24

19-Apr 2242.1 7.60 4.40 1.57 0.26

20-Apr 2696.1 7.81 5.30 1.65 0.14

Table 4.3: Path properties of May. The speed here is calculated as the path length divided
by the actual travel time.

Day Length(m) Speed(m/min) Sinuosity Fractal Dimension Mean Vector Length

10-May 1112.5 5.56 2.30 1.29 0.47

11-May 1202.5 5.23 2.51 1.32 0.34

12-May 1391.7 6.33 3.70 1.53 0.24

14-May 1533.9 5.68 4.06 1.54 0.23

15-May 1999.5 5.63 8.48 2.00 0.13

16-May 2105.7 6.38 3.70 1.45 0.20

17-May 1854.2 5.15 3.64 1.43 0.22

18-May 1357.5 4.52 4.96 1.64 0.14

19-May 1026.1 5.40 2.45 1.32 0.34
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Figure 4.11: The daily path properties: Daily movement length, Average moving speed,
Sinuosity and Mean vector length in April and May
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Table 4.4: Two-sample t test between path properties in April and May

Null Hypothesis p-value Result

April Length < May Length 0.0001 reject

April Sinuosity < May Sinuosity 0.533 non-reject

April MVL > May MVL 0.094 non-rejct

as the environmental conditions changes all the time, the monkeys’ internal decision-making

of ‘where to go’ also vary. Therefore, the computed descriptors at multiple scales may lead

to completely different results. In this study, we applied exploratory data analysis to address

this problem by exploring in-path variables within dynamic time window. Considering the

nature of geographic data, the visualization techniques play the major role in the data

exploration process. Three exploratory data visualization methods are used in this study:

space-time aquarium, attribute clock and time time plot.

4.2.1 Space-time Aquarium

With the x-y plane to represent space and an additional z axis as time, the space-time

aquarium provides a good solution to integrate both the spatial and temporal components

in one graphic, which is particularly important for movement data. In order to make it fully

compatible with GIS data, the space-time aquarium is developed in ArcScene.

Figure 4.12 is a screen capture of the space-time aquarium of the moving paths from a

perspective view. The bottom layer is the DEM, and each horizontal surface represents the

time stamp at three hours’ interval, from 6:00 am to 6:00 pm. And each polyline represents

the objective group of black capuchin monkeys’ daily path. The colored points along the

path show the monkeys’ activity patterns; green means eating while red means non-eating.

Also the geometry characteristics of the polyline imply the path properties. For example, a
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vertical line segment corresponds to the stop period. For other line segments, the steeper

slope corresponds to the faster the movements speed.

In ArcScene, user can have the flexibility to zoom in, zoom our and rotate the 3D cube

and view space-time aquarium from different angles. For instance, seen from orthographic

view, the space-time aquarium is an overview of spatial distribution of moving trajectories

(Figure 4.13).

Figure 4.12: Screen capture of space-time aquarium of the movement trajectories of the
black capuchin monkeys in April and May

In order to give the users more interactions with the data, a temporal data query module

is added to the space time aquarium representation. Users can select the time period they

are interested in and the movement points and path segments will be filtered. This help users

to focus on the time ranges of interest. For example, according to field work experience of

Dr Andrea Presotto, the monkeys have an interesting sleeping site selection habit, that they

never sleep within the fruit patches. In other words, after they eat some fruits and want
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to go to sleep, they would travel a certain distance away from the fruit patch. Figure 4.14

filters the movement points and trajectories within 3:00 pm to 7:00 pm time frame. After

each green vertical line usually follows a displacement over x-y plane, which coincides with

the pre-knowledge. In this way, the space-time aquarium and the temporal query function

combined help us identified many hidden spatio-temporal movement patterns.

Figure 4.13: Orthographic view of the space-time aquarium

4.2.2 Attribute Clock

Most of the current GIS software packages are good at spatial data analysis, yet weak at

temporal perspective. And for the movement data, the time is actually an essential part.

Therefore, this study focuses on the temporal dynamics along the trajectories. In this sense,

the attribute clock provides a good solution for temporal data representation by projecting

the movement points to a virtual clock.
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Figure 4.14: Filtered space-time path from 3:00pm to 7:00pm, the sleep site selection pattern
is identified

The attribute clock is integrated into ArcMap as a trajectory analysis add-in (Figure

4.15). The right side displays the virtual clock, which ranges from 6:00 am to 6:00 pm.

Different angles represent different time stamps. For any variable projected to the attribute

clock, the origin point represents its the minimal value and the outmost ring is the maximum

value. All the other points are scaled within the origin point and outmost ring. Then similar

to space-time aquarium, all the points are connected to polylines along the time. For the data

input section, users can choose any pre-loaded layers in ArcMap. Also, users are required to

select the time field and the variable they want to explore. Figure 4.16 is an attribute clock

example showing the elevation changes in April 12th. The elevation in that day ranges from

779 meters and 840 meters. The green and red points separately represent the eating and

non-eating activities of the black capuchin monkeys. In order to more clearly present the

daily activity pattern, an extra outbound ring is added to the attribute clock. For better

user experience and more interactions with the data, the tooltip is used, which can also be
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seen in Figure 4.16, so that the value of the corresponding point will show up on hover.

Figure 4.15: Attribute clock user interface

The monkeys stop frequently, either eat food or play with each other. Hence some vari-

ables, such as speed, are not continues at temporal domain. If we still connected the points

to polylines, we could get really poor visualization (Figure 4.17). To solve this problem,

the transparent pie technique is developed. The basic idea of the transparent pie is that

instead of connecting the 0 value points with lines, the stop time periods will be filled with

transparent pies. In this way, the temporal continuity of the variables dynamics can be kept.

Besides, the stop periods, which are particularly important for animal behavior study, will

be highly emphasized in the data representation. The Figure 4.18 is an example of the trans-

parent pie representation of the monkeys’ speed dynamics in April 12th. From the graphic,
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Figure 4.16: The attribute clock of the elevation dynamics in April 12th

we can easily see during what periods do they stop, how long do they stay there, what is the

purpose of the stay: eating or non-eating?

Another advantage of using the transparent pie is that by controlling the transparency of

the “pies”, we can overlay several days’ movement data together to examine the aggregated

properties of the “stops”. Figure 4.19 is an example of transparent pie overlay of the monkeys’

movement in three days. The lower the transparency, the less “stop” during that period of

time. Some general activity patterns can be seen (Figure 4.19). For example, the monkeys

rarely stop during 8:00 am and 9:00 am, but often stop in the pre-evening. The potential

explanations could be that after they wake up, they are highly energetic and keep moving

to find new food sources, and before they go to sleep, they usually stop to eat some food.

Though the visual interpretations can not be regarded as definite conclusions, at least they

can be lead to new questions and potential solutions, which is a major goal of exploratory
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Figure 4.17: Bad visualization example of the monkeys’ speed dynamics in April 12th

Figure 4.18: Transparent pie example of the monkeys’ speed dynamics in April 12th
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data analysis (EDA).

Figure 4.19: Transparent pie overlay example of the monkeys’ speed dynamics using three
days’ movement data
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4.2.3 Time-time plot

Another temporal dynamics visualization technique developed is time-time Plots, which

contains two time axes to examine the intra-dataset parameters. As the distance(s) is the

most important intra-dataset spatial parameter, TT-δ plots are generated to analyze the

potential spatio-temporal patterns of the black capuchin monkeys’ movement.

The two time axes both range from 6:00 am to 6:00 pm. They are then scaled to numeric

range from 0 to 360 to facilitate the data visualization. The value of each point (t1,t2) is

the distance between location at t1 and t2. Because the distance from t1 to t2 is the same

with the distance from t2 to t1, the result is a symmetric matrix, which leads unnecessary

visual redundancy. So only the distance from t1 to t2 is calculated. To estimate the overall

distance distribution in the time-time space, the interpolation technique is used to create a

continuous surface. The color scheme “blue to red” is applied to the calculated distances,

with blue representing the minimum value and red for the maximum value. In addition to

the continuous surface, the contour line and 3D mesh representations are also developed.

Users can choose different visualization methods or combine them in one graph. As can be

seen from the user interface of time-time plot (Figure 4.20), users have the flexibility to use

different chart types, and view the 3D meshes surface from different angles.

Figure 4.21 is a TT-δ plot example of the movement trajectory in April 16th with different

chart types. To the right of each TT-δ is a color range scheme, which serves as a reference

for the users to find out the corresponding value for each color. For the April 16th trajectory,

the monkeys kept moving away from their sleeping site until around 11:30 am, when they

reach the farthest point (around 1000 meters). And then they started to move back and stop

around 300 meters from the previous sleeping site. There are many horizontal or vertical

lines in the plot, which are especially obvious in the contour representation. Those linear

lines correspond to the stop periods of the monkeys’ moving trajectory.

Two typical trajectories in April and May are compared (Figure 4.22). In April, the
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monkeys are more likely to follow the random search pattern and in May, they usually

make oriented paths. The TT-δ plots also prove that by revealing two completely different

patterns. There are more red spots in April TT-δ plot, which indicates the paths are much

more sinuous. And one interesting thing found is that in the May TT-δ plot, there are many

horizontal and vertical lines. In other words, the monkeys stop more frequently in May,

maybe due to the lack of energy. This also explains why the path length in May is much

shorter than that in April.

Figure 4.20: The user interface of T-T plot

4.3 Toolbox development

Finally, the space-time aquarium, attribute clock and time-time plot are integrated as a

toolbox into ArcGIS to facilitate the future exploratory analysis of animals’ movement data.

The space-time aquarium is developed as a ArcTool module using Python; the attribute

clock and time-time plot are developed with ArcObject for .Net. The users can select the

spatial layer, time period and attribute with great flexibility. Then the spatial, time and
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Figure 4.21: The TT − δ plot example of the movement points in April 16th. Left is
continuous surface plot. Right combines the 3D mesh and contour lines.

attribute information can be presented with different exploratory visualization techniques.

For both the attribute clock and time-time plot, the time window technique is implement-

ed. The various properties of the trajectories can be examined at different scales. Figures

4.23 and 4.24 are two examples of the the plots generated at two different temporal scales.

In this way, users can interactively explore movement data.
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Figure 4.22: Comparison between the random walk path and oriented path. The first row
are the random search path and its TT-δ plot, and the second row are the oriented path and
its TT-δ plot.
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Figure 4.23: The elevation clock of April 14th at two time scales. Left is the elevation clock
at 5 minute interval. Right is the elevation clock at 20 minute interval.

Figure 4.24: The TT-δ plots of April 16th generated at two different time windows. Left is
the TT-δ plot at 5 minute interval. Right combines the TT-δ plot at 10 minute interval.
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Chapter 5

Conclusion

The black capuchin monkeys’ movement has been studied from various perspectives. For

example, psychologists focus more on the spatial cognition or navigation strategy of the

monkeys; primatologists are interested in the taxonomy of monkeys and how different species

vary in the activity patterns. As geographers, we focus on two most important components in

geography: space and time. Therefore, tools to interactively explore and visually interpret

movement data need to be flexible and take both spatial and temporal components into

consideration.

5.1 Summary of Work

We summarize our work corresponding to the four research objectives.

Firstly, corresponding to the first objective proposed in Chapter 1, both the environment

factors and path properties are computed at different temporal levels. With the quantify

numbers and generated graphs (histograms and windrose plots), we get an overview of the

monkeys’ behavior patterns. This allows us to answer questions such as what are their mean

daily traveling length, at what slope ranges do they most stay, do they have any preference
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over the aspects of the mountain.

Secondly, considering the complex structure of the movement data and the uncertainties

of the monkeys’ navigation strategies, we applied the exploratory data analysis (EDA) in the

in-path variables analysis. Also because of the nature of the geographic data, the visualiza-

tion techniques are primarily used in the EDA. Three visualization techniques are developed.

The first one is the space-time aquarium, which represents the space coordinates in x-y plane

and the time stamps along the z axis. The temporal query module is added that the users

can select the time periods of interest and explore different variables dynamics. Because

current GIS works well in spatial data analysis, this project aims more at data exploration

functions at temporal domain. The second exploratory data visualization technique is the

attribute clock. Its basic idea is to plot the movement points to a virtual clock. The angle

represents the time stamp and the radius measures the value of the specific variable at the

corresponding time stamp. To address the “variable discontinuity” issue, the transparent

pie method is developed. For any of the monkeys stop time period, the corresponding an-

gle range of the attribute clock will be filled with a pie. By controlling the transparency

of the pie, the users can overlay several days’ movement trajectories in one attribute clock

and examine the most frequently stop periods. The third technique is the time-time plot,

which has two time axes and a third dimension to represent the spatial information. In this

project, we calculated the distance δ between t1 and t2 as the third dimension value, or so

called TT-δ plot. By projecting 3D space-time data to a 2D image, the movement patterns

can be more easily identified. The exploratory data visualization techniques above prove

efficient in the space-time movement patterns analysis.

Thirdly, in order to put the computed numbers and generated graphs in a real world con-

text, and further examine one of the most important factors: food distribution, we compared

the movement trajectories in April (fruit-abundant month) and May (fruit-scarce month).

Both visual interpretation of the graphs (histograms and windrose plots) and two-sample t
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test are used in the comparison. The results reveal that at daily level, the movement pattern

differences do exists, yet are not statistically significant. Therefore, I went a step further

to investigate in-path dynamics. From generated space-time aquarium, attribute clock, and

TT-δ plot, we can clearly identified the movement differences under two different scenarios.

Generally, the monkeys are more likely to adopt random search strategy during fruit abun-

dant month, while during fruit-scarce month, they would try to save energy by traveling

shorter distance and make more oriented paths. Although the results of visual interpreta-

tion can not be considered as definite conclusions, the geo-visualization helps users to find

the underlying patterns and possibly leads to new hypothesis for the further analysis and

modeling of the monkeys’ movement.

Finally, all the functions are programmed with ArcObject for .Net and integrated into

ArcGIS as different modules. Users could have the flexibility of choosing different time

periods, time window or selecting the variables of interest. Interaction with the data is also

highly emphasized in the design of the tools.

5.2 Future Work

While the goals of this study have been accomplished, there are a few caveats regarding the

data accuracy and tool design need to be mentioned.

Firstly, data with higher accuracy and large sample sizes could greatly increase the results.

The environmental background data used in this project are at rather coarse resolutions. For

example, the DEM layer is 28× 28 meters resolution and the landsat TM5 image is 30× 30

meters. In other words, it takes the monkeys around four minutes to move across one “cell”.

Also, since the monkeys spend most of the time in the tall trees, the estimated elevation values

from the DEM layer are not the actual “elevation” of the monkeys. The monkeys’ movement

can be categorized as small-scale movement, how the height the monkeys climbed on the trees
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really matters for their behavior study. For the fruit patches data we got in this project, only

the fruit patches that the study group of monkeys have been to are recorded. So the variables

“distance to fruit patches” can only be estimated as the distance to the fruit patches that

the monkeys used, not the actual distribution of fruit patches. Without the accurate and

complete environmental background data, it is impossible to model the relationship between

the environmental factors and the monkeys’ moving strategy. In addition, because the GPS

collection of the monkeys’ movement is really laborious and time-consuming, we only got ten

days’ movement points separately in April and May. However, the sample size is not large

enough to run the statistical test. Especially for the data in this project, the uncertainty

of the sapajos nigritus’ movement greatly increases in dense forest. Larger sample size will

help a lot in identifying the potential movement patterns.

Secondly, more interactivity features could be added to the exploratory data visualiza-

tion tools developed in this project. Although the current tools are integrated in ArcGIS,

the components are still independent. There is no communication between the attribute

clock plots and ArcMap layers. In the future work, more linkages between space and time

components will be developed. For example, if the users select the points in attribute clock,

the corresponding points will be highlighted in the ArcMap window. Another problem is

that the rendering speed of the graphs is relatively low in the ArcGIS dockable window. It

takes over 10 seconds to rendering one day’s TT-δ plot and crashes when three days’ data

are loaded. More efficient graphic tools need to be developed to fully users the flexibility to

interactively explore the data.

Thirdly, the techniques have some inherent shortcomings. For example, the attribute

clock works best with daily based data. For other temporal cycle, the “clock” might not be

that intuitive. The TT-δ plot requires the movement data to be regularly collected at fine

temporal resolution. Otherwise, the interpolation could result in serious bias for the no-data

time period. In fact, during the field movement data collection, there are all different kinds

71



of factors, such as the monkeys’ high physical dexterity and dangerous animals, that would

lead to the missing data.

To sum up, through the path quantification and exploratory data visualization, the black

capuchin monkeys’ movement patterns and their potential relationships with environmental

factors are identified. The exploratory visualization techniques are integrated into a GIS

toolbox. For the future work, more emphasis should be put on the modeling of animals’

behavior. Environmental data with higher resolution and movement points with the actual

elevation of the monkeys in the data collection could lead to significant improvement in the

monkeys’ movement models.

72



Bibliography

AbSaber, A. (2003). Os domnios de natureza no brasil: Potencialidades paisagsticas. E.

Ateli Editorial . Cotia.

Amaral, P. J. S., Finotelo, L. F. M., De Oliveira, E. H. C., Pissinatti, A., Nagamachi, C. Y.,

& Pieczarka, J. C. (2008). Phylogenetic studies of the genus cebus (cebidae-primates)

using chromosome painting and g-banding. BMC Evolutionary Biology , 8 (1), 169.

Andrienko, G., Andrienko, N., Bak, P., Bremm, S., Keim, D., von Landesberger, T., Plitz,

C., & Schreck, T. (2010a). A framework for using self-organising maps to analyse spatio-

temporal patterns, exemplified by analysis of mobile phone usage. Journal of Location

Based Services , 4 (3-4), 200–221.

Andrienko, G., Andrienko, N., Bremm, S., Schreck, T., Von Landesberger, T., Bak, P., &

Keim, D. (2010b). Space-in-time and time-in-space self-organizing maps for exploring

spatiotemporal patterns. Computer Graphics Forum, 29 (3), 913–922.

Andrienko, N., & Andrienko, G. (2005). Exploratory Analysis of Spatial and Temporal Data:

A Systematic Approach. Springer-Verlag New York, Inc.

Andrienko, N., Andrienko, G., & Gatalsky, P. (2000). Towards exploratory visualization of

spatio-temporal data. In Third AGILE Conference on Geographical Information Science.

Andrienko, N., Andrienko, G., Pelekis, N., & Spaccapietra, S. (2008). Basic Concepts of

73



Movement Data Mobility, Data Mining and Privacy , (pp. 15–38). Springer Berlin Heidel-

berg.

Bartumeus, F., da Luz, M. G. E., Viswanathan, G. M., & Catalan, J. (2005). Animal search

strategies: A quantitative random-walk analysis. Ecology , 86 (11), 3078–3087.

Bartus, R. T., Dean, R. L., & Fleming, D. L. (1979). Aging in the rhesus monkey: Effects

on visual discrimination learning and reversal learning. Journal of Gerontology , 34 (2),

209–219.

Basile, B., Hampton, R., Suomi, S., & Murray, E. (2009). An assessment of memory aware-

ness in tufted capuchin monkeys (cebus apella). Animal Cognition, 12 , 169–180.

Batschelet, E. (2001). Circular Statistics in Biology . Academic Press, London.

Batty, M. (2006). Rank clocks. Nature, 444 (7119), 592–596. 10.1038/nature05302.

Benhamou, S., & Riotte-Lambert, L. (2012). Beyond the utilization distribution: Identifying

home range areas that are intensively exploited or repeatedly visited. Ecological Modelling ,

227 (0), 112–116.

Bian (2000). Object-oriented representation for modelling mobile objects in an aquatic

environment. International Journal of Geographical Information Science, 14 (7), 603.

Boyer, D., & Walsh, P. D. (2010). Modelling the mobility of living organisms in heterogeneous

landscapes: does memory improve foraging success? Philosophical Transactions of the

Royal Society A: Mathematical, Physical and Engineering Sciences , 368 (1933), 5645–5659.

Burt, W. H. (1943). Territoriality and home range concepts as applied to mammals. Journal

of Mammalogy , 24 , 346–352.

74



Byers, J. (2001). Correlated random walk equations of animal dispersal resolved by simula-

tion. Ecology , 82 (6).

Calenge, C., Dray, S., & Royer-Carenzi, M. (2009). The concept of animals’ trajectories

from a data analysis perspective. Ecological Informatics , 4 (1), 34–41.

Caselli, C. B., & Setz, E. Z. F. (2011). Feeding ecology and activity pattern of black-fronted

titi monkeys (callicebus nigrifrons) in a semideciduous tropical forest of southern brazil.

Primates , 52 (4), 351–359.

Chapman, C. A., & Peres, C. A. (2001). Primate conservation in the new millennium: The

role of scientists. Evolutionary Anthropology: Issues, News, and Reviews , 10 (1), 16–33.

Chaves, O. M., Stoner, K. E., & Arroyo-Rodriguez, V. (2011). Seasonal differences in ac-

tivity patterns of geoffroyia ’ s spider monkeys (ateles geoffroyi) living in continuous and

fragmented forests in southern mexico. International Journal of Primatology , 32 (4), 960–

973.

Chen, J., Shaw, S.-L., Yu, H., Lu, F., Chai, Y., & Jia, Q. (2011). Exploratory data analysis

of activity diary data: a spacetime gis approach. Journal of Transport Geography , 19 (3),

394–404.

Crist, T. O., Guertin, D. S., Wiens, J. A., & Milne, B. T. (1992). Animal movement

in heterogeneous landscapes: An experiment with eleodes beetles in shortgrass prairie.

Functional Ecology , 6 (5), 536–544.

Crist, T. O., & MacMahon, J. A. (1991). Individual foraging components of harvester ants:

movement patterns and seed patch fidelity. Insectes Sociaux , 38 , 379–396.

Dicke, M., & Burrough, P. A. (1988). Using fractal dimensions for characterizing tortuosity

of animal trails. Physiological Entomology , 13 (4), 393–398.

75



Dill, L. M. (1987). Animal decision making and its ecological consequences: the future of

aquatic ecology and behaviour. Canadian Journal of Zoology , 65 (4), 803–811.

Doerr, E., & Doerr, V. (2005). Dispersal range analysis : quantifying individual variation in

dispersal behaviour. Oecologia, (pp. 1–10).

Dykes, J. A., & Mountain, D. M. (2003). Seeking structure in records of spatio-temporal

behaviour: visualization issues, efforts and applications. Comput. Stat. Data Anal., 43 ,

581–603.

E.N. Domingues, D. S., & Vellardi, A. (1987). Correlaes topogeomorfolgicas, geolgicas e

de declividades do parque estadual de carlos botelho. SP. Boletim Tcnico do Instituto

Florestal , 41 , 377–420.

Fernandez, M., Oria, J., Snchez, R., Gonzalez, L. M., & Margalida, A. (2009). Space use of

adult spanish imperial eagles aquila adalberti. Acta Ornithologica, 44 (1), 17–26.

Fisher, N. I. (1993). Cambridge University Press.

Fragaszy, D. M., Visalberghi, E., & Fedigan, L. M. (2004). The complete capuchin : the

biology of the genus Cebus . Cambridge; New York: Cambridge University Press.

Frihida, A., Marceau, D. J., & Theriault, M. (2004). Extracting and visualizing individ-

ual Space-Time paths: An integration of GIS and KDD in transport demand modeling.

Cartography and Geographic Information Science, 31 (1).

Fryxell, J. M., Hazell, M., Borger, L., Dalziel, B. D., Haydon, D. T., Morales, J. M., M-

cIntosh, T., & Rosatte, R. C. (2008). Multiple movement modes by large herbivores at

multiple spatiotemporal scales. Proceedings of the National Academy of Sciences of the

United States of America, 105 (49), 19114–19119.

76



Gallistel, C. R. (1989). Animal cognition: The representation of space, time and number.

Annual Review of Psychology , 40 (1), 155–189.

Gardner, M. (1970). The fantastic combinations of John Conway’s new solitaire game “life”.

Scientific American, 223 , 120–123.

Goodchild, M. F., Yuan, M., & Cova, T. J. (2007). Towards a general theory of geographic

representation in gis. Int. J. Geogr. Inf. Sci., 21 (3), 239–260.

Goodman, R. M. (2007). Activity patterns and foraging behavior of the endangered grand

cayman blue iguana, cyclura lewisi. Caribbean Journal of Science, 43 (1), 73–86.

Graham, P. (1978). Optimal foraging: Movement patterns of bumblebees between inflores-

cences. Theoretical Population Biology , 13 (1), 72–98.

Hagerstrand, T. (1970). What about people in regional science? Papers in Regional Science,

24 , 6–21.

Halle, . S. N. C., S. (2000). Activity patterns in small mammals, an ecological approach..

Heidelberg: Springer-Verlag.

Handcock, R. N., Swain, D. L., Bishop-Hurley, G. J., Patison, K. P., Wark, T., Valencia, P.,

Corke, P., & ONeill, C. J. (2009). Monitoring animal behaviour and environmental inter-

actions using wireless sensor networks, gps collars and satellite remote sensing. Sensors ,

9 (5), 3586–3603.

Hemingway, C. A. (1999). Time budgets and foraging in a malagasy primate: do sex dif-

ferences reflect reproductive condition and female dominance? Behavioral Ecology and

Sociobiology , 45 (3), 311–322.

77



Hill, R. (1999). Ecological and demographic determinants of time budgets in baboons: Impli-

cations for cross-populational models of baboon socioecology.. Dissertation, University of

Liverpool.

Hinely, A. J. (2006). GIS-Based habitat modeling related to beared capuchin moneky tool use.

Master’s thesis, University of Georgia, GA, USA.

Hogan, L. A., Johnston, S. D., Lisle, A. T., Horsup, A. B., Janssen, T., & Phillips, C. J. C.

(2011). The effect of environmental variables on the activity patterns of the southern

hairy-nosed wombat (lasiorhinus latifrons) in captivity: onset, duration and cessation of

activity. Australian Journal of Zoology , 59 (1), 35–41.

Horne, J. S., Garton, E. O., Krone, S. M., & Lewis, J. S. (2007). Analyzing animal movements

using brownian bridges. Ecology , 88 (9), 2354–2363.

Huang, C., Wei, F., Li, M., Li, Y., & Sun, R. (2003). Sleeping cave selection, activity pattern

and time budget of white-headed langurs. International Journal of Primatology , 24 (4),

813–824.

Hulbert, I. A. R. (2001). GPS and its in animal telemetry: The next five years. Tracking

Animals with GPS , (pp. 51–60).

Imfeld, S. (2000). Time, Points and Space: Towards a better analysis of wildlife data in

GIS . Dissertation, University of Zurich.

Jennrich, R. I., & Turner, F. B. (1969). Measurement of non-circular home range. Journal

of Theoretical Biology , 22 (2), 227–237.

Johnson, C., Parker, K., & Heard, D. (2001). Foraging across a variable landscape: behav-

ioral decisions made by woodland caribou at multiple spatial scales. Oecologia, 127 (4),

590–602.

78



Johnson, J. B., Edwards, J. W., & Ford, W. M. (2011). Nocturnal activity patterns of

northern myotis (myotis septentrionalis) during the maternity season in west virginia (usa).

Acta Chiropterologica, 13 (2), 391–397.

Jonsen, I. D., Myers, R. A., & Flemming, J. M. (2003). Meta-analysis of animal movement

using state-space models. Ecology , 84 (11), 3055–3063.

Kareiva, P. M., & Shigesada, N. (1983a). Analyzing insect movement as a correlated random

walk. Oecologia, 56 (2), 234–238.

Kareiva, P. M., & Shigesada, N. (1983b). Analyzing insect movement as a correlated random

walk. Oecologia, 56 (2), 234–238.

Katerina, V. (2007). Everyday life discoveries: Mining and visualizing activity patterns in

social science diary data. vol. 0, (pp. 130–138).

Keating, K. A., & Cherry, S. (2009). Modeling utilization distributions in space and time.

Ecology , 90 (7), 1971–1980.

Klepeis, N. E., Nelson, W. C., Ott, W. R., Robinson, J. P., Tsang, A. M., Switzer, P.,

Behar, J. V., Hern, S. C., & Engelmann, W. H. (2001). The national human activity

pattern survey (nhaps): a resource for assessing exposure to environmental pollutants. J

Expo Anal Environ Epidemiol , 11 (3), 231–252.

Kraak, M.-j., & MacEachren, A. M. (1994). Visualization of spatial data’s temporal compo-

nent. In Proceedings, Spatial Data Handling, Advances in GIS Research, (pp. 5–9).

Kwan, M., & Lee, J. (2005). Emergency response after 9/11: the potential of real-time 3D

GIS for quick emergency response in micro-spatial environments. Computers, Environment

and Urban Systems , 29 (2), 93–113.

79



Kwan, M.-P. (2002). Feminist visualization: Re-envisioning gis as a method in feminist

geographic research. Annals of the Association of American Geographers , 92 (4), 645–661.

Laube, P., Dennis, T., Forer, P., & Walker, M. (2007). Movement beyond the snapshot

dynamic analysis of geospatial lifelines. Computers, Environment and Urban Systems ,

31 (5), 481–501.

Lenntorp, B. (1976). Paths in space-time environments : a time geographic study of move-

ment possibilities of individuals . Dissertation, the Royal university.

Lewis, J. S., & Rachlow, J. L. (2011). Activity patterns of black bears in relation to sex,

season, and daily movement rates. Western North American Naturalist , 71 (3), 388–395.

Liu, S.-g., Wang, Z.-y., Gong, Z., Chen, F.-f., & Peng, Q.-s. (2006). Physically based modeling

and animation of tornado. Journal of Zhejiang University - Science A, 7 , 1099–1106.

Lynch Alfaro, J. W., Boubli, J. P., Olson, L. E., Di Fiore, A., Wilson, B., Gutirrez-Espeleta,

G. A., Chiou, K. L., Schulte, M., Neitzel, S., Ross, V., Schwochow, D., Nguyen, M. T. T.,

Farias, I., Janson, C. H., & Alfaro, M. E. (2012). Explosive pleistocene range expansion

leads to widespread amazonian sympatry between robust and gracile capuchin monkeys.

Journal of Biogeography , 39 (2), 272–288.

MacEachren, A. M., & Monmonier, M. (1992). Special content issue: Geographic visualiza-

tion. Cartography and Geographic information Systems , 19 (4), 197–200.

Marsh, L. M., & Jones, R. E. (1988a). The form and consequences of random walk movement

models. Journal of Theoretical Biology , 133 (1), 113–131.

Marsh, L. M., & Jones, R. E. (1988b). The form and consequences of random walk movement

models. Journal of Theoretical Biology , 133 (1), 113–131.

80



McGrady, M. J., Ueta, M., Potapov, E. R., Utekhina, I., Masterov, V., Ladyguine, A., Zykov,

V., Cibor, J., Fuller, M., & Seegar, W. S. (2003). Movements by juvenile and immature

steller’s sea eagles haliaeetus pelagicus tracked by satellite. Ibis , 145 (2), 318–328.

McIntyre, N. E., & Wiens, J. A. (1999). Interactions between landscape structure and

animal behavior: the roles of heterogeneously distributed resources and food deprivation

on movement patterns. Landscape Ecology , 14 (5), 437–447.

McMaster, R. B., & Usery, E. L. (2005). A Research Agenda for Geographic Information

Science. CRC Press, Boca Raton, FL.

Mech, D., & Barber, S. (2002). A critique of wildlife radio-tracking and its use in national

parks: a report to the U.S. national park service. Wildlife Research.

Mellone, U., Yez, B., Limiana, R., Muoz, A.-R., Pavn, D., Gonzlez, J.-M., Urios, V., &

Ferrer, M. (2011). Summer staging areas of non-breeding short-toed snake eagles circaetus

gallicus. Bird Study , 58 (4), 516–521.

Nathan, R. (2008). An emerging movement ecology paradigm. Proceedings of the National

Academy of Sciences , 105 (49), 19050–19051.

Nishinari, K., Kirchner, A., Namazi, A., & Schadschneider, A. (2004). Extended floor field

ca model for evacuation dynamics. IEICE Transactions , 87-D(3), 726–732.

NOAA, C. P. C. (2012). Pacific sea surface temperature aniamtion.

URL www.cpc.ncep.noaa.gov/products/precip/CWlink/MJO/enso.shtml

O’Brien, P. H. (1984). Feral goat home range: Influence of social class and environmental

variables. Applied Animal Behaviour Science, 12 (4), 373–385.

81



O.C. Negreiros, A. D. G. F. H. C. M. V., A. Custodio Filho, & Netto, B. M. (1995). Anlise

estrutural de um trecho de floresta pluvial tropical, parque estadual de carlos botelho,

ncleo sete barras (sp brasil). Revista do Instituto Florestal , 7 , 1–3.

Patterson, R., & Cox, D. (2005). Visualization of an F3 tornado within a simulated supercell

thunderstorm. SIGGRAPH ’05. New York, NY, USA: ACM.

Peter, G. (2004). Interactive analysis of event data using space-time cube. vol. 0, (pp.

145–152).

Peterson, A. T., Benz, B. W., & Pape, M. (2007). Highly pathogenic h5n1 avian influenza:

Entry pathways into north america via bird migration. PLoS ONE , 2 (2), e261.

Peuquet, D. J. (1994). It’s about time: A conceptual framework for the representation

of temporal dynamics in geographic information systems. Annals of the Association of

American Geographers , 84 (3), 441–461.

Preisler, H. K., Ager, A. A., Johnson, B. K., & Kie, J. G. (2004). Modeling animal movements

using stochastic differential equations. Environmetrics , 15 (7), 643–657.

Presotto, A., & Izar, P. (2010). Spatial reference of black capuchin monkeys in brazilian

atlantic forest: egocentric or allocentric? Animal Behaviour , 80 (1), 125–132.

Riley, J. R., Greggers, U., Smith, A. D., Reynolds, D. R., & Menzel, R. (2005). The flight

paths of honeybees recruited by the waggle dance. Nature, 435 (7039), 205–207.

Rothenwohrer, C., Becker, N. I., & Tschapka, M. (2011). Resource landscape and spatio-

temporal activity patterns of a plant-visiting bat in a costa rican lowland rainforest. Jour-

nal of Zoology , 283 (2), 108–116.

Sands, S. F., & Wright, A. A. (1980). Primate memory: retention of serial list items by a

rhesus monkey. Science, 209 (4459), 938–940.

82



Sapolsky, R. M. (2005). The influence of social hierarchy on primate health. Science,

308 (5722), 648–652.

Schoener, T. W. (1971). Theory of feeding strategies. Annual Review of Ecology and Sys-

tematics , 2 (1), 369–404.

Schofield, G., Bishop, C. M., MacLean, G., Brown, P., Baker, M., Katselidis, K. A., Di-

mopoulos, P., Pantis, J. D., & Hays, G. C. (2007). Novel GPS tracking of sea turtles as a

tool for conservation management. Journal of Experimental Marine Biology and Ecology ,

347 (1-2), 58–68.

Schooley, R. L., & Wiens, J. A. (2003). Finding habitat patches and directional connectivity.

Oikos , 102 (3), 559–570.

Shneiderman, B. (1996). The eyes have it: a task by data type taxonomy for information

visualizations. Proceedings 1996 IEEE Symposium on Visual Languages , 0 (UMCP-CSD

CS-TR-3665), 336–343.

URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=545307

Simon, B. (2004). How to reliably estimate the tortuosity of an animal’s path:: straightness,

sinuosity, or fractal dimension? Journal of Theoretical Biology , 229 (2), 209–220.

Stevenson, P. R. (2001). The relationship between fruit production and primate abundance

in neotropical communities. Biological Journal of the Linnean Society , 72 (1), 161–178.

Stevenson, P. R. (2006). Activity and ranging patterns of colombian woolly monkeys in

north-western amazonia. Primates , 47 (3), 239–247.

Struhsaker, T. T., & Leland, L. (1979). Socioecology of Five Sympatric Monkey Species in

the Kibale Forest, Uganda, vol. Volume 9, (pp. 159–228). Academic Press.

83



Tang, H.-X., Zhou, Q.-H., Huang, Z.-H., Meng, Y.-J., & Huang, C.-M. (2011). Activity

patterns and time budgets of the rhesus macaque in karst habitat. Chinese Journal of

Zoology , 46 (2), 32–38.

Tang, W., & Bennett, D. A. (2010). Agent-based modeling of animal movement: A review.

Geography Compass , 4 (7), 682–700.

Terborgh, J. (1983). Five New World Primates. A Study of Comparative Ecology.. Princeton,

NJ: Princeton University Press.

Thoren, S., Quietzsch, F., Schwochow, D., Sehen, L., Meusel, C., Meares, K., & Radespiel,

U. (2011). Seasonal changes in feeding ecology and activity patterns of two sympatric

mouse lemur species, the gray mouse lemur (microcebus murinus) and the golden-brown

mouse lemur (m. ravelobensis), in northwestern madagascar. International Journal of

Primatology , 32 (3), 566–586.

Tian, H., Ma, X., Wang, H., Song, G., & Xie, K. (2010). A novel approach to estimate

human space-time path based on mobile phone call records. In Geoinformatics , (pp. 1–6).

Tracey, J. P., Woods, R., Roshier, D., West, P., & Saunders, G. R. (2004). The role of wild

birds in the transmission of avian influenza for australia: an ecological perspective. Emu,

104 (2), 109–124.

Trullier, O., Wiener, S., Berthoz, A., & Meyer, J. (1997). Biologically-based artificial navi-

gation systems: Review and prospects. Progress in Neurobiology , 51 , 483–544.

Tufte, E. (1983). The Visual Display of Quantitative Information. Graphics Press.

Tukey, J. W. (1997). Exploratory Data Analysis . Addison-Wesley Publishing Company.

Turchin, P. (1998). Quantitative Analysis of Movement: Measuring and Modeling Population

Redistribution in Animals and Plants . Sinauer Associates, Sunderland, Mass.

84



Turner, R. G., M.G., & ONeill., R. (2001). Landscape Ecology in Theory and Practice:

Pattern and Process . The Johns Hopkins University Press.

Urios, V., Soutullo, A., pez, L., pez, P., Cadah, a, L., Limi, ana, R., & Ferrer, M. (2007).

The first case of successful breeding of a golden eagle aquila chrysaetos tracked from birth

by satellite telemetry. Acta Ornithologica, 42 (2), 205–209.

Van Winkle, W. (1975). Measurement of non-circular home range. Journal of Wildlife

Management , 23 , 118–123.

Vieira, E. M., Baumgarten, L. C., Paise, G., & Becker, R. G. (2010). Seasonal patterns and

influence of temperature on the daily activity of the diurnal neotropical rodent necromys

lasiurus. Canadian Journal of Zoology-Revue Canadienne De Zoologie, 88 (3), 259–265.

Vrotsou, K., Ellegard, K., & Cooper, M. (2007). Everyday life discoveries: Mining and

visualizing activity patterns in social science diary data. (pp. 130–138).

Webb, S. L., Riffell, S. K., Gee, K. L., & Demarais, S. (2009). Using fractal analyses to

characterize movement paths of white-tailed deer and response to spatial scale. Journal

of Mammalogy , 90 (5), 1210–1217.

Weiss, E., Corona, L., & Schultz, B. (2012). Sex differences in musculoskeletal stress markers:

Problems with activity pattern reconstructions. International Journal of Osteoarchaeology ,

22 (1), 70–80.

Zhou, Q., Wei, F., Huang, C., Li, M., Ren, B., & Luo, B. (2007). Seasonal variation in

the activity patterns and time budgets of trachypithecus francoisi in the nonggang nature

reserve, china. International Journal of Primatology , 28 (3), 657–671.

Zollner, P. A., & Lima, S. L. (1983). Analyzing insect movement as a correlated random

walk. Oecologia, 56 (2), 234–238.

85


