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Abstract

This dissertation addresses a critical need in intravital microscopy to explore
tissue structure and dynamics in the bone. Overcoming the inherent challenges
of imaging bone in vivo holds the potential to deepen our comprehension of
bone health and unravel the intricate interactions between bone structure and
tissues. Our work begins by developing a polarimetric second harmonic gener-
ation (pSHG) microscope to determine the dominant orientation of collagen
fibers tailored for investigating cranial bone collagen assembly defects observed
in a mouse model of hypophosphatasia (HPP). We propose a spatial polarimet-
ric gray-level co-occurrence matrix (spGLCM) method to explore polarization-
mediated textural differences in the bone collagen mesh. By comparing machine
learning classifiers, we were able to accurately separate unknown images from
the two groups with an averaged F1 score of 92.30% by using random forest.

However, multiphoton imaging depth is limited due to loss of signal and
degradation of the focus due to tissue distortion. We developed a multi-photon
fluorescence microscope with adaptive optics (MPFM-AO) which uses a home-
built Shack-Hartmann wavefront sensor (SHWFS) to correct system aberra-
tions and a sensor less approach for correcting low order tissue aberrations. This
approach facilitates rapid imaging of subcellular organelles with approximately
400 nanometer resolution, penetrating up to 85 micrometers into highly scatter-
ing tissue. We achieved ∼1.55×, ∼3.58× and ∼1.77× intensity increases using
AO, and a reduction of the PSF width by ∼0.83×, ∼0.74× and ∼0.9× at the
depths of 0, 50 micrometers, and 85 micrometers in living mouse bone marrow
respectively, allowing us to characterize mitochondrial health and the survival
of functioning cells with a field of view of 67.5 micrometers x 67.5 microme-
ters. Furthermore, we proposed an innovative approach that combines low-
order deformable mirror (DM) aberration correction with high-order digital



micromirror device (DMD) scattering correction. We demonstrate the synergis-
tic enhancement of imaging performance at depths of 150 micrometers beneath
the surface of mouse cranial bone ex vivo. These advancements not only con-
tribute significantly to the evolution of biomedical imaging technologies but
also deepen our understanding of tissue microstructures and pathology.

Index words: [Two-photon fluorescence microscopy, Adaptive optics,
Shack-Hartmann wavefront sensor, Scattering
correction, Second-harmonic generation,
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can only see this if the light falls onto a screen and is scattered
into our eyes. (b) Double slit interference pattern for water
waves are nearly identical to that for light. Wave action is great-
est in regions of constructive interference and least in regions
of destructive interference. (c) When light that has passed
through double slits falls on a screen, we see a pattern such
as this. (credit: PASCO) . . . . . . . . . . . . . . . . . . . . 6
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inequivalent lateral directions are shown. In (b), real-space re-
solved volumes corresponding to the limits in (a) are depicted
for a wavelength of 550 nm. The volumes are simplified as el-
lipses, though their actual shapes are more complex. Assuming
computer processing fully utilizes the information limits from
(a), the figure considers an objective NA of 0.75 for theta and
1.4 for all other methods. Two-photon excitation wavelengths
are assumed to be twice the emission wavelength, while other
excitation wavelengths are presumed to be equal to the emis-
sion wavelength. Credit: Mats GL Gustafsson. . . . . . . . . 10
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Chapter 1

Introduction

Understanding the 3D structure of bone collagen and the brain at a cellular
level is a fundamental challenge in biomedical research. Bone collagen is a com-
plex protein that provides structural support to bones and plays a key role in
bone growth and repair. Similarly, the brain is a complex organ that contains
billions of cells and intricate neural networks that underlie behavior, cognition,
and emotion. Studying the 3D structure of bone collagen and the brain can
help us understand the mechanisms underlying bone and brain development
and disease, providing valuable insights and a foundation for developing new
treatments and therapies to improve human health.

While there are several imaging techniques available, two-photon fluores-
cence microscopy has proven to be an effective tool for studying biological sci-
ences. Unlike traditional confocal microscopy, multiphoton fluorescence mi-
croscopy utilizes the excitation of fluorophores by two photons to generate high-
resolution images of biological specimens. This technique enables researchers
to visualize and analyze intricate details.

Up until now, confocal and two-photon fluorescence microscopies have
been the go-to methods for imaging relatively thick specimens with reasonable
resolution and moderate penetration depth (Pawley, 2010, Denk, Strickler, and
Webb, 1990, Helmchen and Denk, 2005a, E. H. K. Stelzer, 1994, Diaspro, 2006).
In confocal and wide-field fluorescence microscopy, the illumination light ex-
cites fluorophores throughout the specimen’s thickness. In confocal fluores-
cence microscopy, out-of-focus light is filtered out by a pinhole in front of the
detector, but its damaging effects, such as phototoxicity and photobleaching,
still impact the entire specimen even when imaging a single plane at a time.
Another drawback is the limited penetration depth of confocal fluorescence
microscopy, particularly with high numerical aperture objective lenses.
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Multiphoton fluorescence microscopy appears to address the penetration
depth issue, being 1.5–2 times higher than that of confocal fluorescence mi-
croscopy. However, it comes with the trade-off of lower lateral resolution com-
pared to conventional fluorescence microscopes (T. Stelzer and Long, 1994) and
requires significantly higher light intensities, leading to notable photo-toxic and
photo-bleaching effects.

Techniques like optical projection tomography (Sharpe, Ahlgren, Perry,
Hill, Ross, Hecksher-Sørensen, et al., 2002a) have been developed for imag-
ing large specimens such as complete organs or developing embryos (Fig. 1.1).
By observing a specimen along multiple directions, three-dimensional recon-
struction and better access to the three-dimensional fluorophore distribution
are achieved. However, the low lateral resolution is not suitable for imaging
subcellular structures.

Figure 1.1: Comparison of imaging methods based on their resolution or preci-
sion. Precision methods are, e.g., stimulated emission depletion (STED) (Willig
et al., 2006), photoactivated localization microscopy (PALM) (Betzig et al.,
2006), and stochastic optical reconstruction microscopy (STORM) (Rust et
al., 2006). MRI—magnetic resonance imaging, PET—positron emission to-
mography, OPT—optical projection tomography (Sharpe, Ahlgren, Perry, Hill,
Ross, Hecksher-Sørensen, et al., 2002b), OCT—optical coherence tomography,
LSFM—light-sheet-based fluorescence microscopy, dmvLSFM—deconvolved
multiple views light-sheet-based fluorescence microscopy. Figure inspired by
Tsien, 2003. (Adapted from T. Stelzer and Long, 1994)

Considering the needs of modern biology, multiphoton fluorescence mi-
croscopy with adaptive optics seems ideal. An Adaptive Optics (AO) system
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typically consists of a deformable mirror conjugated to the back pupil plane of
a microscope, and either wave-front sensor or image-based sensorless wavefront
estimation methods to correct aberrations and improve the resolution, which
can improve in vivo imaging in animal models.

In this chapter, we first present our objectives. An introduction to two-
photon fluorescence microscopy and second harmonic generation microscopy
comes afterward. It is followed by an introduction to Adaptive Optics methods.

1.1 Objectives
The primary aim of this thesis is to delve into the structural and dynamic as-
pects of bone tissue using advanced multiphoton fluorescence microscopy tech-
niques. Specifically, polarimetric second harmonic generation microscopy was
utilized to assess the formation of collagen lamellar sheets within the bone, fo-
cusing on a mouse model exhibiting a metabolic bone disorder affecting mineral
deposition. Furthermore, the thesis demonstrates the efficacy of enhancing res-
olution in multiphoton fluorescence microscopy through the integration of
AO, particularly for imaging mitochondria deep within the skull in vivo. No-
tably, aberrations within bone tissue stem from both low-order and high-order
sources, which can be effectively corrected by implementing a combination
of deformable mirrors and digital mirror devices. This correction mechanism
enables imaging at significantly greater depths within tissue structures, thus
advancing our understanding of bone microstructure and dynamics.

1.2 Introduction to Fluorescence Microscopy
Over a century ago, scientists Heimstadt and Lehman harnessed the self-luminous
properties of fluorophores to pioneer a novel microscopy technique, enabling
the targeted imaging of specific biological structures. Unlike absorption light
microscopy, fluorescence microscopy involves filtering the illumination light,
allowing only the emitted light from the sample to be observed. In Figure 1.2,
the emitted light undergoes a sequence of filtration steps. Initially, the light
from the source passes through an excitation filter, selectively permitting the
light spectrum conducive to exciting the studied fluorophore. Subsequently,
the light emitted by the fluorophore within the biological sample reflects off
the surface of a dichroic mirror and transmits through an emission filter. This
process ensures that only the light emitted by the specific fluorophore under
examination is detected while the rest of the spectrum is effectively blocked
(Pawley, 2010).
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Since its inception, fluorescence microscopy has undergone substantial de-
velopment in various directions. The incorporation of Laser and LED illumi-
nation, coupled with advancements in filter and dichroic technologies, has sig-
nificantly improved the capabilities of fluorescence microscopy. The introduc-
tion of highly bright dyes has allowed for the targeted illumination of specific
cellular components, enhancing the precision of imaging. Super-resolution
imaging, a frontier in microscopy, employs two primary classes of probes: fluo-
rescent proteins (FPs) and non-genetically encoded probes like organic small-
molecule fluorophores and quantum dots. Complementary techniques such as
Fluorescent Lifetime Imaging (FLIM) and Förster Resonant Energy Transfer
(FRET) have been introduced to investigate molecular interactions. Progress
in fluorophore binding mechanisms includes direct binding, transfection, and
immuno-histochemistry/cytochemistry methods. Despite these advancements,
fluorescence microscopy techniques share a common limitation with other light
microscopy approaches—the diffraction limit, which will be discussed in the
subsequent section.

Figure 1.2: Diagram of the fluorescence microscope is shown in (a). The ac-
tual filter cube that is usually used in microscopes is shown in (b). A typical
Excitation and emission spectral diagram of a fluorochrome is shown in (c).
Pass-bands of a typical fluorescent cube including excitation and emission fil-
ters, and the dichroic mirror are illustrated in (d).
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1.2.1 Properties of an optical microscope
First, we aim to introduce the Point Spread Function (PSF) and Optical Trans-
fer Function (OTF) concepts in the context of a 4f optical system to enhance
comprehension regarding microscope characteristics. The 4f optical system is
in essence an optical relay that usually consists of two lenses. The input plane
is one focal length in front of Lens 1 while the output plane is located one focal
length after Lens 2. In between the two lenses, we have the Fourier plane. Here
is where we have the Fourier transformation of the object placed at the output
plane. The magnification is found to be equal to −f2

f1
and can be achieved if the

two lenses have the same focal length. The arrangement of a 4f imaging system
is depicted in Figure 1.3. The PSF serves as the impulse response of the optical
system. The image can be related to the object by convolving the PSF and the

Figure 1.3: Diagram of a 4f imaging system

object:
g1(x1, y1) = h(x, y)× g0(x0, y0)

where h is the PSF. The PSF of a coherent (h) and an incoherent (hi) system
can be found:

h((x⃗, y⃗); ξ⃗) =

∫
P (ξ⃗)e

i2π κ
f0

(x⃗,y⃗)ξ⃗
d2ξ⃗

hi((x⃗, y⃗); ξ⃗) =
∣∣∣h((x⃗, y⃗); ξ⃗)∣∣∣2

whereκ is the wave numbernλ,P is the pupil function, andf is the focal length.
The OTF is given by:

H̃(ξ) = F{hi}
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1.2.2 Diffraction Phenomenon of Light
Optical microscopes serve as invaluable tools for magnifying specimens and
revealing their intricate details. However, it’s crucial to understand that increas-
ing magnification doesn’t necessarily equate to enhanced visibility of these finer
structures (Huang et al., 2009). The fundamental factor dictating the clarity of
an image is diffraction, an inherent property of light waves, alongside reflection
and refraction. Diffraction encompasses the phenomenon wherein a light wave
bends as it encounters the edge of an obstacle or a small aperture. This phe-
nomenon was first documented and termed by the Italian scientist Grimaldi
in 1665 during his investigation into the deviation of light from straight-line
propagation (Grimaldi et al., 1665 Hecht, 2016).

In 1804, another pivotal concept, the interference of light, came into the
spotlight. English physician Thomas Young introduced this idea, illustrating it
through his renowned experimental observation known as Young’s double-slit
experiment (Goodman, 2005). This is shown in Figure 1.4.

Figure 1.4: Double slits produce two coherent sources of waves that interfere. (a)
Light spreads out (diffracts) from each slit, because the slits are narrow. These
waves overlap and interfere constructively (bright lines) and destructively (dark
regions). We can only see this if the light falls onto a screen and is scattered
into our eyes. (b) Double slit interference pattern for water waves are nearly
identical to that for light. Wave action is greatest in regions of constructive
interference and least in regions of destructive interference. (c) When light that
has passed through double slits falls on a screen, we see a pattern such as this.
(credit: PASCO)

This phenomenon involves the superimposition of two light waves to gen-
erate a resultant wave with altered amplitudes, either greater or lesser than the
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individual waves. The interplay of diffraction and interference is often eluci-
dated through the Huygens-Fresnel principle, which posits that each point on
a wavefront can be considered as a source of new spherical wavelets sharing the
same frequency as the primary wave (Hecht, 2016).

1.2.3 Limit of Diffraction and Point Spread Function
The resolution of an optical microscope is defined as the smallest distinguish-
able detail or the minimum separation between two closely spaced objects that
can be observed and resolved in an image. In essence, it represents the ultimate
boundary beyond which two distinct points or structures appear as a single
blurred entity. The Limit of Resolution is primarily determined by the wave-
length of the illuminating light and the maximum collection angle:

dAbbe =
λ

2n sinα

whereλ is the wavelength of the light, n is the refractive index of the immersion
medium, and α is the half aperture angle of the objective lens. The product of
the refractive index and sinα is the numerical aperture (NA), where NA =

n sin(α). The axial resolution limit is approximated as follows:

dAbbe,axial =
2λ

NA2

Lord Rayleigh (John William Strutt) (Sec., 2009 )introduced another equa-
tion concerning the examination of self-luminous objects. This formula is now
known as the Rayleigh criterion. According to this criterion, the central point
of the diffraction spot aligns precisely with the first diffraction minimum of an-
other diffraction spot on the image plane, signifying that the two points on the
sample are successfully distinguished or resolved. The formula for this criterion
can be articulated as follows:

dRayleigh =
0.61λ

NA

Sparrow Criterion, named after its developer, Joseph W. Sparrow, intro-
duces a more comprehensive consideration of the characteristics of an optical
system, accounting not only for the wavelength of light and the numerical aper-
ture but also taking into consideration factors like the shape of the aperture or
the illumination pattern. The formula for this criterion can be articulated as
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follows:
dSparrow =

0.47λ

NA

The focal spot of a typical objective with a high numerical aperture, depicted
by the cyan ellipsoid, has a width of 250 nm in the lateral direction and 550 nm
in the axial direction. The image of a point emitter imaged through the objec-
tive, namely the point spread function also has similar widths. These widths
define the diffraction-limited resolution. Two objects separated by a distance
larger than this resolution limit appear as two separate entities in the image.
Otherwise, they appear as a single entity (i.e., unresolvable). These two cases are
exemplified by the two cross sections of the microtubule image, cyan curves A
and B in the right panel, at the corresponding positions indicated by the white
lines in the middle panel. Some biological entities with their approximate sizes
are compared to the diffraction limit in Figure 1.5.

Figure 1.5: Diffraction-Limited Resolution of Conventional Light Microscopy.
The size scale of various biological structures in comparison with the diffraction-
limited resolution. (Left to right) A mammalian cell, a bacterial cell, a mitochon-
drion, an influenza virus, a ribosome, the green fluorescent protein, and a small
molecule (thymine). (Credit: Huang et al., 2010.)
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1.3 Optical Sectioning
All the near-field and far-field techniques presented here face challenges in achiev-
ing satisfactory axial resolution. Numerous strategies have been explored to ad-
dress this issue, encompassing scanning methods such as confocal microscopy
(C. J. R. Sheppard and Wilson, 1978 C. Sheppard and T.Wilson, 1978 Cremer
and Cremer, 1978 C. J. R. Sheppard and Wilson, 1981), interferometric tech-
niques like Interferometric Multiple Objective Microscopy (InM ) (Gustafs-
son et al., 1999), and 4Pi microscopy (S. Hell and Stelzer, 1992), as well as non-
linear approaches like two-photon microscopy. In this section, we provide a
brief overview of these methods, as they are occasionally integrated with super-
resolution techniques to enhance axial resolution. Figure 1.6 displays a com-
parative diagram of axial and lateral Optical Transfer Functions (OTFs) and
Point Spread Functions (PSFs) across different microscopy methods. This vi-
sual representation highlights the significant improvement in both axial and
lateral resolution achieved by employing the discussed techniques, particularly
in mitigating the limitations of wide-field microscopy.

1.3.1 Widefield Fluorescence Microscopy
The history of microscopy begins in the late 16th century when Dutch spec-
tacle makers Zacharias Janssen and Hans Lippershey are often credited with
inventing the compound microscope. These early microscopes consisted of mul-
tiple lenses that magnified objects. In 1665, English scientist Robert Hooke’s
groundbreaking work "Micrographia" featured detailed illustrations of objects
observed under a microscope. He coined the term "cell" while studying cork,
laying the foundation for cell theory (Fara, 2009 Hooke and Lessing, n.d.). As
technology advanced, Dutch scientist Antonie van Leeuwenhoek made signif-
icant advancements by developing high-quality single-lens microscopes. He
was the first to observe and describe microorganisms and red blood cells. In
the 18th century, significant advancements were made in lens design, leading to
achromatic lenses that reduced chromatic aberrations, greatly improving image
quality and resolution. Later, German physicist Ernst Abbe formulated a the-
ory that described the fundamental limits of optical resolution in microscopes.
His work laid the foundation for understanding the importance of wavelength
and numerical aperture in microscopy.

In traditional optical microscopy, specifically in bright-field microscopy, a
common method involves illuminating a sample from one direction and then
collecting the transmitted light from the opposite side. The resulting image’s
contrast relies on the absorption and scattering of light by areas of the sam-
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Figure 1.6: Comparison of theoretical resolving powers is depicted graphically
in (a), illustrating the information-gathering capacity of selected microscopy
techniques. Technically, the graph shows the ’optical transfer function support’,
with some techniques outlined for clarity. The larger solid-colored areas fully
encompass the smaller ones. Except for theta, all methods exhibit rotational
symmetry about the vertical axis; for theta, both inequivalent lateral directions
are shown. In (b), real-space resolved volumes corresponding to the limits in (a)
are depicted for a wavelength of 550 nm. The volumes are simplified as ellipses,
though their actual shapes are more complex. Assuming computer processing
fully utilizes the information limits from (a), the figure considers an objective
NA of 0.75 for theta and 1.4 for all other methods. Two-photon excitation wave-
lengths are assumed to be twice the emission wavelength, while other excitation
wavelengths are presumed to be equal to the emission wavelength. Credit: Mats
GL Gustafsson.

ple with varying densities (Thorn, 2016). Nevertheless, when dealing with
unstained living cells, bright-field imaging often presents a challenge due to
their inherent transparency. In such cases, the technique of phase contrast mi-
croscopy offers a solution by incorporating additional optical components that
transform phase shifts induced by the specimen into observable intensity varia-
tions within the image. Phase contrast and Differential Interference Contrast
(DIC) microscopy techniques, introduced in the early 20th century, greatly en-
hanced contrast and allowed for the observation of transparent or unstained
specimens, such as living cells (Thorn, 2016 D. Murphy, 2002).

The mid-20th century witnessed the rise of fluorescence microscopy, which
enabled scientists to label specific cellular structures with fluorescent dyes and
visualize them under specific wavelengths of light Marshall and Johnsen, 2017.
The term "fluorescence" describes a physicochemical energy interaction wherein
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molecules absorb shorter wavelength photons and subsequently emit them as
longer wavelength photons. Typically, the emitted light falls within the visi-
ble spectrum. In optical microscopy, the concept of fluorescence is harnessed
to label specific components or regions of a specimen, a technique known as
immunofluorescence. This method capitalizes on the specific binding proper-
ties of antibodies or antigens when combined with fluorescent molecules (fluo-
rochromes) to target and label specific biological molecules within a specimen.
The inception of immunofluorescence dates back to 1941 (H. Albert et al., 1941
Coons and Kaplan, 1950), as initially conceived and subsequently demonstrated
in experiments involving antibody labeling with fluorophores. Fluorescence mi-
croscopy offers exceptional specificity, contrast, and sensitivity, rendering it an
indispensable tool in biological research, cherished for its myriad advantages.
Figure 1.7 illustrates a basic epifluorescence microscope configuration. Typi-
cally, it comprises a light source that uniformly illuminates the sample at the
excitation wavelength, a dichroic mirror to separate the excitation light from the
emitted fluorescence light, a tube lens for forming the final image on the cam-
era, and an emission filter in the optical path to refine the selection of light with
the desired wavelength. This concept was initially introduced in 1911 (Heimsti-
idt, 1911), with an early prototype demonstrated as early as 1929 (Ellinger, 1929
Franke et al., 1979).

Widefield microscopy, with its roots dating back to the late 19th century,
represents a fundamental imaging technique that has played a pivotal role in the
history of microscopy. It is a foundational imaging technique widely employed
in the field of microscopy (Shimomura et al., 1962). It operates by illuminating
the entire specimen with a broad and uniform beam of light, which then passes
through the sample and is collected by an objective lens. One of the primary
advantages of widefield microscopy lies in its simplicity and speed, allowing
researchers to observe dynamic processes in real time. However, one limitation
has traditionally been its relatively lower spatial resolution due to out-of-focus
light.

1.3.2 Confocal Microscopy
Confocal microscopy is an advanced imaging technique widely used in various
scientific disciplines, particularly in biology and materials science. It offers ex-
ceptional control over optical sectioning and improved image clarity compared
to conventional widefield microscopy.

The key feature of confocal microscopy is its ability to eliminate out-of-
focus light, resulting in sharp and high-contrast images of specimens, even those
with complex three-dimensional structures (C. Sheppard and T.Wilson, 1978).
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Figure 1.7: Principle of fluorescence microscopy. a Jablonski diagram of a fluo-
rescent molecule. By absorption of a photon the molecule can be excited from
the electronic ground state, S0, into any vibrational level of S1. Fast nonradia-
tive relaxation into the lowest level of S1 takes place within a picosecond. The
molecule can return to any vibrational level of S0 by the spontaneous emission
of a photon (fluorescence). From there it relaxes non-radiatively into its low-
est vibrational level. b Absorption (blue) and emission (green) spectrum of a
fluorescent molecule. The hatched areas indicate the transmission range of the
respective bandpass filters. c In a typical experimental implementation the ex-
citation light is focused into the back aperture of the objective lens to generate
a homogeneous light distribution within the sample. All fluorophores in the
sample are equally excited (right inset). The fluorescence signal is collected by
the objective lens, separated from the excitation light by a dichroic mirror and
a detection bandpass (BP), and imaged onto an area detector such as a CCD
camera. The inset on the left depicts the image on the camera (green). Note that
the positions of the fluorophores are indicated only for illustration purposes.
(Credit: Egner et al., 2020)
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This is achieved through the use of a pinhole aperture that selectively allows
only light originating from the focal plane to enter the detector, blocking the
scattered and out-of-focus light from above and below the focal plane.

In confocal microscopy, a focused laser or point light source is used to scan
the specimen point by point. The emitted light from each point is collected
through a pinhole aperture before reaching a detector, creating a pixel-by-pixel
image. This is shown in Figure. 1.8. By scanning the laser beam across the
specimen in a raster pattern, a full 3D image stack can be reconstructed. This
ability to capture detailed, optical sections through a sample allows researchers
to visualize fine structures, study cellular processes, and obtain depth informa-
tion.

Figure 1.8: Excitation and emission light pathways in a basic confocal micro-
scope configuration. Similar to the widefield microscope, the confocal micro-
scope uses fluorescence optics. Instead of illuminating the whole sample at
once, laser light is focused onto a defined spot at a specific depth within the
sample. This leads to the emission of fluorescent light at exactly this point. A
pinhole inside the optical pathway cuts off signals that are out of focus, thus
allowing only the fluorescence signals from the illuminated spot to enter the
light detector.
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Confocal microscopy has become an invaluable tool in biology, neuroscience,
and materials science, enabling researchers to delve into the world of subcellular
structures, tissues, and intricate materials with precision and clarity. Its versa-
tility and the ability to combine it with various fluorescent labeling techniques
make it an indispensable technology for modern scientific investigations (Glass
and Dabbs, 1991 Sandison et al., 1995).

1.3.3 Multiphoton Fluorescence Microscopy
Multiphoton microscopy, which relies on the simultaneous absorption of mul-
tiple photons, was first experimentally demonstrated in the early 1960s, paving
the way for its application in biological imaging. Throughout the 1990s and be-
yond, advances in laser technology and optics led to the commercialization and
widespread adoption of multiphoton microscopy, enabling high-resolution,
three-dimensional imaging of biological specimens with reduced photodamage
and improved depth penetration (Denk, Strickler, and Webb, 1990 C. Xu and
Webb, 1996).

At its core, multiphoton microscopy relies on a nonlinear optical process
in which two or more photons of lower energy combine to excite a fluorophore
or chromophore. This results in fluorescence emission, typically in the visible
or near-infrared range. The resolution of a two-photon microscope can be
described by the following equation:

dRayleigh =
0.61λ

NA

However, in practice, other factors such as scattering, aberrations, and sample
properties can affect the actual resolution achieved. Unlike single-photon mi-
croscopy, which often requires high-energy photons and can lead to photodam-
age in biological samples, multiphoton microscopy utilizes longer-wavelength,
lower-energy photons, reducing the risk of phototoxicity and damage to living
cells and tissues (So et al., 2000).

Principle of Multiphoton Fluorescence Microscopy

Multiphoton fluorescence microscopy operates on the principle of multipho-
ton excitation, wherein a molecule absorbs two or more lower-energy photons
nearly simultaneously, resulting in the emission of a higher-energy photon. The
Jablonsky diagram in figure 1.9 shows the difference between one-photon (left)
and two-photon (right) fluorescence excitation. This process typically requires
the use of ultrafast pulsed lasers, such as femtosecond lasers, which provide
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Figure 1.9: Simplified Jablonski diagrams for one-photon (left) and two-photon
(right) fluorescence. (Adapted from Denk, Strickler, and Webb, 1990)

high photon densities at a focused spot within the specimen. The probability
of multiphoton absorption occurring is highest at the focal point, allowing for
precise three-dimensional imaging with reduced photodamage and improved
penetration depth, making it especially suitable for imaging deep within bio-
logical tissues. This is shown in Figure 1.10.

One of the remarkable features of multiphoton microscopy is its ability to
penetrate deeper into thick biological samples (Helmchen and Denk, 2006).
The longer-wavelength excitation light can travel deeper into tissues with mini-
mal scattering, allowing researchers to image structures at greater depths. This
makes it particularly well-suited for applications like brain imaging, where visu-
alizing deep neural structures is essential.

Another advantage of multiphoton microscopy is its ability to capture 3D
images without the need for physical sectioning. By scanning the focal point
in three dimensions, researchers can construct detailed, volumetric images of
specimens, providing insights into complex cellular and tissue structures.

Multiphoton microscopy has found widespread use in various fields, in-
cluding neuroscience, immunology, and developmental biology, due to its abil-
ity to capture high-resolution, deep-tissue images with minimal sample dam-
age(Zipfel et al., 2003). Researchers continue to harness its potential for non-
invasive imaging and understanding the intricacies of living organisms and bio-
logical processes.
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Figure 1.10: General principle of two-photon excitation process. Two-photon
(or multiple-photon) excitation microscopy is based on the principle that two
(or more) infrared photons can excite a molecule the same way a single photon
of double (or more) energy. Confinement of excitation is achieved because of
the high amount of photon generated by the infrared pulsed laser is focalized
on the sample. The photon density is so high at this point that the probability
that two photons interact with a molecule at the same location and at the same
moment is different from zero. (Adapted from Blanchin, 2015)

Signal Generation Efficiency

Multiphoton microscopy enables deep imaging in highly scattered biological
tissues due to the use of nonlinear excitation and long excitation wavelengths
(Horton et al., 2013 Ouzounov et al., 2017 M. Wang et al., 2018a Denk and
Svoboda, 1997). It has been demonstrated that the multiphoton excited fluores-
cence signal within the focal volume is mostly generated by ballistic light (the
light photons that travel through a turbid medium in a straight line). The num-
ber of ballistic lights arriving at the focus is significantly reduced when imaging
in deep tissues such as the mouse brain (Dunn et al., 2000Ying et al., 2000),
due to the absorption and scattering by the tissue which can be characterized
by Effective Attenuation Length (EAL). The ballistic lights as a function of
depth (z) can be expressed as:

Pz = P0 exp(−
z

le
)

wherePz is the optical power at the focus,P0is the optical power on the sample
surface, le is the EAL. The fewer ballistic lights, the less fluorescence generation.
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Therefore, the exponential decay of the excitation light needs to be compensated
by increasing the total optical power at the surface to obtain sufficient signal
from the focus. Clearly, with the same excitation power, less tissue attenuation
(or longer EAL) will allow for deeper tissue penetration (Oheim et al., 2001).

Light attenuation in biological tissues is a combined effect of absorption
and scattering. The theoretical model of the effective attenuation lengths based
on water absorption and Mia scattering is shown in Figure 1.11. Take the mouse
brain as an example, when the wavelength tuning range of the mode-locked Ti:S
laser is between700 nm and1060 nm, the effective attenuation of the excitation
light is completely dominated by tissue scattering (Helmchen and Denk, 2005b),
while the water absorption (water content is> 70% in brain tissues) is relatively
low (Roggan et al., 1999Friebel et al., 2006Jacques, 2013). Longer wavelengths
at approximately 1200 nm to 1850 nm is advantageous for deep brain imaging
due to the reduction of light scattering. However, water absorption increases
significantly in this spectral region and becomes the dominant absorber for
in vivo imaging. Therefore, the choice of the excitation wavelength is a trade-
off between water absorption and tissue scattering. The theoretical model of
calculating effective attenuation length le is then:

1

le
=

1

la
+

1

ls

where la is the water absorption length, and ls is the scattering mean-free path
calculated using Mia scattering for a tissue-like colloidal solution containing
1 μm diameter beads at a concentration of 5.4× 109beads/mL (Theer et al.,
2003K. Wang et al., 2014Cheong et al., 1990).

According to Figure 1.11, theoretical estimations based on tissue absorption
and scattering predict that the longer excitation wavelength approach is advanta-
geous for deeper tissue imaging, and previous experimental works have shown
that the longer wavelength windows of 1300 nm (Horton et al., 2013Oheim
et al., 2001T. Wang et al., 2020Balu et al., 2009Srinivasan et al., 2012Kobat
et al., 2011)and 1700 nm (Horton et al., 2013Chong et al., 2015) outperform
the shorter wavelengths, such as 775 nm (Balu et al., 2009), 800 nm(Balu et al.,
2009Zoumi et al., 2002),830 nm(Nizami, 2010Kleinfeld et al., 1998),920 nm(Theer
et al., 2003T. Wang et al., 2020Theer et al., 2003), by a factor of 2 to 3 times in
terms of imaging depth. However, the attenuation at these wavelengths is all
dominated by scattering (i.e., la is at least several times larger than ls). In particu-
lar, the absorption-scattering model predicts that the long wavelength window
is not one continuous window. Instead, it indicates that there are two win-
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Figure 1.11: Theoretical model of the effective attenuation lengths based on water
absorption and Mie scattering. The black stars indicate the reported effective
attenuation lengths in mouse brains in vivo, 131 μm at 775 nm, 152∼158 μm
at 920 nm, 305∼319 μm at 1300 nm, and 383 μm at 1680 nm.

dows for mouse brain imaging centered at 1300 nm and 1700 nm, with a gap
at 1450 nm due to strong water absorption (Fig 1.11).

Signal-to-Background Ratio

The out-of-focus background in multiphoton imaging has two main compo-
nents. The bulk background refers to the fluorescence generation in the light
cone away from the focus, and the defocused background refers to the fluores-
cence generated by the side lobes of a distorted Point-Spread Function (PSF).
This is shown in Figure 1.12. Both types of background lead to loss of contrast
in the images and contribute to the total fluorescence generation outside the
intended diffraction-limited focal volume.

The imaging depth of 2PM is limited by the background fluorescence in
non-sparsely labeled samples. The strength of the bulk background primarily
depends on the normalized imaging depth and the ratio of the staining den-
sity in the focal volume to that in the out-of-focus volume (Theer and Denk,
2006Durr et al., 2011). When the background becomes comparable to the signal
generated from the focus, images suffer from low contrast and high background
shot noise, which causes unrecoverable loss of spatial and temporal information.
Although the power-squared dependence of 2PE can effectively reduce the out-
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Figure 1.12: Illustrations of the two types of background encountered by multi-
photon imaging in deep tissue or through turbid layers.

of-focus excitation in scattering samples, its imaging depth is still limited to
∼ 5EALs for a labeling density of ∼ 2%, where the signal-to-background ratio
(SBR) approaches 1 (Kobat et al., 2011Durr et al., 2011Theer et al., 2003). The
SBR limit has been experimentally observed to occur at 450∼850 μm in the
mouse cortex with∼920 nm excitation, depending on the sample variation and
labeling density (T. Wang et al., 2020Kobat et al., 2011Takasaki et al., 2020). De-
spite several reports on 2P imaging in the deep cortex or even the hippocampus
of the mouse brain, these studies imposed additional requirements to reduce
the labeling density or the number of EALs, such as layer-specific staining with
redshifted dyes (Tischbirek et al., 2015), the removal of the neocortex (Dombeck
et al., 2010Attardo et al., 2015Low et al., 2014Pilz et al., 2016), or imaging young
mice with more transparent brains (Kondo et al., 2017). Nevertheless, none of
these measures fundamentally extends the depth limit imposed by the SBR on
2PM.

1300 nm 3PM is free of background generation for most practical imag-
ing depths, and benefits from both the longer excitation wavelength and the
higher-order nonlinearity. Since the SBR of multiphoton microscopy primar-
ily depends on the normalized depth, the long excitation wavelength substan-
tially improves the SBR by reducing the number of EALs at the same physical
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depth. Experiments have shown that 1300 nm 3PM is essentially background-
free throughout the entire mouse cortex (up to ∼800 μm) (T. Wang et al.,
2020Takasaki et al., 2020), which is less than three EALs for 1300 nm but ∼ 6

EALs for 920 nm. Furthermore, the higher order of nonlinear excitation also
plays a critical role in background suppression. In contrast to 2PM, which
reaches the SBR limit at ∼ 5 EALs for imaging mouse brain vasculature (Ko-
bat et al., 2011Durr et al., 2011Takasaki et al., 2020), 3PM achieves an SBR of>40
at ∼2100 μm, which corresponds to more than five EALs, as demonstrated by
imaging quantum-dot-labeled vasculature with 1700 nm 3PM (H. Liu et al.,
2019). It is noteworthy that the 3P imaging depths are more often limited by
signal strength instead of SBR. To achieve>2 mm imaging depth in the mouse
brain (H. Liu et al., 2019), quantum dots with 3PE cross sections of 104 to 105
times that of Texas Red were used.

Excitation Confinement

Figure 1.13: (a)3PE significantly reduces the side lobes of a Bessel beam compared
to 2PE. (b) Through skull imaging showing 3PE preserves both the lateral and
axial resolution, by comparing 2PM and 3PM images with the same excitation
wavelength of 1320 nm. The imaging depth in the brain excludes the thickness
of the intact skull.

The higher-order nonlinearity of 3PE maintains the high SBR and resolu-
tion despite the strong aberration caused by the sample. Both simulation and
experiment show that 3PE accentuates the central peak and suppresses the side
lobes of the PSF, resulting in only ∼ 8.7% of the total fluorescence generated
in the side lobes, a significant reduction from the ∼ 73.1% by 2PE (Fig 1.13(a))
(Lin and Schnitzer, 2016). The confinement of 3PE has been observed to pre-
serve the resolution and contrast of images in the presence of system- or sample-
induced wavefront distortion, which causes severe PSF degradation, especially
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in the axial direction (N. Ji et al., 2016). For example, 1300 nm 3PM is capable
of imaging through the intact mouse skull with a high SBR close to 100, while
2PE, even with the same excitation wavelength of 1300 nm, suffers from the
overwhelming background with a low SBR of 3 at the same depth (Fig 1.13(b))
(T. Wang et al., 2018). Similar effects have been observed with 2PM and 3PM
when imaging inside the mouse cranial bones and Drosophila brains (Hsu et al.,
2019K. Wang et al., 2019Tao et al., 2017). It is worth mentioning that the preser-
vation of resolution by 3PE comes at the cost of substantially reduced excitation
power efficiency, which makes imaging at a large depth challenging if the side
lobes of the PSF contain a large portion of excitation power (T. Wang et al.,
2018Rodríguez et al., 2018). One possible way to recover some of the lost exci-
tation efficiency is to use adaptive optics (AO) to correct the wavefront, albeit
with added system complexity. When using sensor-less, iterative approaches for
AO, 3PE facilitates the convergence of wavefront correction algorithms based
on the signal strength, since the higher-ordered nonlinear dependence of 3PE
signal on the excitation intensity results in a steeper gradient descent for max-
imizing the signal (Ouzounov et al., 2017Rodríguez and Ji, 2018Sinefeld et al.,
2015b).

1.3.4 SHG Historical Origins and Overview of Current Uses
SHG involves a nonlinear second-order coherent process, where two lower-
energy photons are upconverted to emit a photon precisely twice the frequency
of the incident excitation source (Figure 1.14) (P. J. Campagnola et al., 2002). Dr.
Maria Goeppert-Mayer theoretically predicted SHG (along with two-photon
excitation) in her 1931 PhD thesis (Göppert-Mayer, 1931), and the first experi-
mental demonstrations occurred on quartz in 1961 following the development
of the ruby laser (Franken et al., 1961). While modern SHG biological imag-
ing was reported in the late 1990s (P. J. Campagnola et al., 1999 Moreaux et al.,
2000), it’s worth noting that there were earlier spectroscopic and low-resolution
microscopy examinations of collagen in 1971 (Fine and Hansen, 1971) and 1986
(Freund and Deutsch, 1986).

The initial interest in this contrast mechanism for biological microscopy
was in probing membrane potential in live cells using voltage-sensitive dyes
(Bouevitch et al., 1993), demonstrating that SHG provided greater sensitivity
than traditional fluorescence methods (P. J. Campagnola et al., 2002 P. J. Cam-
pagnola et al., 1999 Sacconi et al., 2006). However, the larger majority of SHG
microscopy has been applied to tissues for structural analysis, and we will fo-
cus on those applications (P. J. Campagnola and Dong, 2011 Adur et al., 2016
Pavone and Campagnola, 2014).
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Figure 1.14: Two-photon excited fluorescence versus SHG. Displayed are
the Perrin-Jablonski fluorescence diagram (Left) and the energy-level diagram
(Right) describing two-photon excited fluorescence and SHG, respectively.
When intense light is shone on materials that do not possess an inversion sym-
metry, the vibrating electric field of the incident beam results in the polarization
of the medium, reemitting light at the original frequency ωi but also at the fre-
quency 2ωi (here shown, Right) that is twice the original one (with half of the
wavelength). Unlike two-photon excited fluorescence, all of the incident radi-
ation energy at frequency ωi is converted in the process of SHG to radiation
at the SHG frequency 2ωi. Whereas two-photon excited fluorescence involves
real energy transition of electrons, SHG involves only virtual energy transition.
As a result, using ultrafast (femtosecond) pulsed lasers, the response time of
SHG is at the femtosecond level, about several orders of magnitude faster than
the nanosecond response time of fluorescence, allowing very fast and sensitive
detection. credit: Periklis Pantazis

SHG microscopy has now become a powerful and widely used tool for high-
resolution, high-contrast, three-dimensional imaging of tissues (Bianchini and
Diaspro, 2008). As detailed in the theory section, SHG contrast requires non-
centrosymmetric assemblies on the size scale of λSHG, making it ideal for imag-
ing well-ordered structures such as fibrillar collagen (i.e., Col I, Col II, Col III,
and Col V or mixtures thereof). Other structural proteins like nonfibrillar colla-
gen (i.e., Col IV), laminin, fibronectin, and elastin are transparent to this modal-
ity as they don’t meet this criterion. Although this may seem limiting, collagen
is the primary protein component in the extracellular matrix (ECM) of many
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connective tissues, and most SHG microscopy applications focus on probing
collagen changes in various pathologies involving these tissues (Williams et al.,
2005 Tai et al., 2005 Yeh et al., 2002 Ricciardelli and Rodgers, 2006 Meredith
et al., 2010 Tilbury, Hocker, et al., 2014 Sun et al., 2008 Pena et al., 2007).

1.3.5 SHG Theory/Photophysics
A material’s response to an applied electric field E can be described using po-
larization P according to the following relationship:

P = χ(1)E(1) + χ(2)E(2) + χ(3)E(3) + ...,

where χ(n) is the nth order nonlinear susceptibility. The nonlinear effects are
achieved at higher-order susceptibility(n > 1). SHG and other relatively sim-
ilar nonlinear processes(i.e., sum frequency generation (SFG) and difference
frequency generation (DFG)) are governed by χ(2) (Pavone and Campagnola,
2014).

Figure 1.15: SHG from collagen. (a) Forward and backward SHG emission
from radiating dipoles (collagen fibers) oriented parallel and perpendicular to
the laser propagation. (b) Excitation and emission of a single collagen fiber. (c)
Collagen fiber orientation with respect to laser polarization gives rise to either
zero, strong, or weak SHG signal. Reproduced from Ref. (Mostaço-Guidolin
et al., 2017) published under CC BY 4.0.
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The susceptibility tensor, χ(2), is a bulk property and is the quantity mea-
sured in an experiment. However, the molecular level property of the nonlin-
earity, i.e., the first hyperpolarizability, β, forms the basis of the contrast mech-
anism. This parameter is defined in terms of the permanent dipole moment:

d(2) = βE2.

The molecular and bulk properties are then related by

χ(2) = Ns⟨β⟩

whereNs is the density of molecules and the brackets denote their orientational
average. Thus, harmonophores must have a permanent dipole moment, where
these must be aligned within the focal volume of the microscope so that χ(2) is
non-zero (Figure 1.15). These constraints limit the different proteins that can
be visualized with SHG, where the main species are collagen and myosin. In
comparison, other matrix proteins do not have either regular molecular struc-
tures or assemblies thereof. dx./While there has been interest in imaging skeletal
muscle, the large majority of SHG microscopy has been performed on issues
comprised primarily or partially of type I collagen (orCol I), which is the most
abundant protein in the body. It is thus important to elucidate the contrast
mechanism in terms of the collagen molecular structure. For example, Schanne-
Klein and coworkers used Hyper-Rayleigh Scattering (HRS)measurements to
show that the hyperpolarizability, β, arose from the coherent amplification of
peptide bonds along the length of the molecule (Javier et al., 2012). This find-
ing was consistent with our analysis using polarization-resolved measurements,
which revealed that the nonvanishing matrix elements governing χ(2) can be re-
lated to the pitch angle (∼ 50 degrees)of the individualα-helices in the collagen
molecule (Cox and Erler, 2011).

1.3.6 SHG Microscopy for Biomedical Applications
Over the past two decades, there has been a growing interest in the utilization of
SHG microscopies for imaging a diverse range of tissues. In the upcoming sec-
tions, we will highlight recent studies that have made significant contributions
to advancing these tools in both basic science and translational applications.

Collagen Fiber Alignment

While the majority of cancers are epithelial, involving significant extracellular
matrix (ECM) remodeling during early-stage disease and progression, these
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alterations encompass increased collagen synthesis (desmoplasia), changes in
morphology/alignment, and shifts in collagen isoform expression, such as ele-
vated Col III or Col V synthesis. Traditionally overlooked by pathologists, who
primarily focus on cellular attributes through hematoxylin and eosin (HE)
staining, these ECM modifications are now effectively visualized using SHG
microscopy. Notably, SHG has provided valuable insights into collagen remod-
eling in breast cancer, revealing distinct patterns known as tumor-associated
collagen signatures (TACS) associated with disease progression.

In breast cancer studies, increased collagen density is linked to carcinoma
risk, with SHG microscopy proving crucial in quantifying collagen alignment
and classifying stages of remodeling. Additionally, SHG has been instrumental
in characterizing the tumor microenvironment in untreated human breast tis-
sues (Bredfeldt et al., 2014 Conklin et al., 2011 Provenzano et al., 2009 Rueden et
al., 2009), allowing for detailed imaging of collagen alignment, tumor cell infil-
tration, blood vessels, mammary ducts, and lipids. Similarly, SHG microscopy
has been applied to pancreatic ductal adenocarcinoma (PDAC), demonstrating
that increased collagen alignment correlates with poor patient prognosis.

Beyond breast and PDAC, SHG microscopy has been employed to exam-
ine collagen alignment in other epithelial cancers like ovarian, prostate, and
lung cancers. For instance, SHG images of ovarian tumors showcased signifi-
cant morphological differences in collagen assembly compared to normal tissue,
while SHG images of human prostate cancer revealed preferential alignment of
collagen fibers in metastatic tumors. Moreover, SHG has been used to study
the trajectories of metastatic cancer cells and their noninvasive counterparts,
providing insights into cellular responses to ECM modifications.

These studies highlight SHG microscopy’s critical role in understanding the
structural changes in ECM associated with various epithelial cancers, offering
valuable information for disease pathology and prognosis.

SHG Polarization Analysis

SHG imaging not only allows visualization and analysis of fibrillar morphology
but also provides rich information about the molecular and supramolecular
structure through the nonlinear susceptibility tensor, χ(2), matrix elements.
For instance, measuring SHG intensity as a function of linear laser polarization
enables the determination ofα-helical pitch in well-aligned systems like tendon
and skeletal muscle, known as the single-axis molecular model (Plotnikov et al.,
2006 Su et al., 2011 Tilbury, Lien, et al., 2014).

However, a limitation arises when well-defined fiber alignment is required,
as in tendons, which does not apply to most tissues. Brasselet et al. addressed
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this by implementing a pixel-based generic model, analyzing the distribution
of dipole moments within the focal volume to determine signal anisotropy and
dipole moment alignment (Duboisset et al., 2012).

Further refinements include identifying specific collagen molecular attributes
contributing to the second-order nonlinear optical response. Polarization in/
polarization out (PIPO) and quantum calculations allow extraction of the second-
order susceptibility ratio, fibril distribution asymmetry, fibril orientation, triple
helical tilt angle, and overall fibril architecture within the 3D volume of each
voxel (Tuer et al., 2011 Tuer et al., 2012).

SFG polarization-resolved microscopy complements these studies by prob-
ing chiral and achiral contributions from the collagen molecule. Combining
SHG with circular dichroism (SHG-CD) provides a nonlinear analog for study-
ing protein folding, offering sensitivity to the chirality of protein assemblies.

In summary, polarization schemes in SHG imaging, denoted as P-SHG,
have gained significant attention, with applications spanning various studies
over the last several years (Tuer et al., 2011 Brasselet, 2011 Campbell et al., 2018).

P-SHG and Optical Clearing

While P-SHG techniques excel in examining structural changes in tissues, a
significant drawback lies in their limited imaging depth. Our research demon-
strated that these responses become largely scrambled within 1-2 scattering lengths
(approximately 20-50 microns) in both tendon and skeletal muscle (Nadiarnykh
and Campagnola, 2009). Previous studies, such as Wang’s Mueller matrix anal-
ysis, revealed that birefringence in collagenous tissues leads to asymmetric scat-
tering, causing a rapid depth-dependent loss of polarization (Jiao and Wang,
2002). Schanne-Klein et al. conducted an in-depth analysis specific to SHG,
considering effects like scattering, birefringence, and diattenuation, confirming
that birefringence plays a major role in depolarization (Gusachenko et al., 2010).

To address the inherent depth limitations in turbid tissues while preserv-
ing high resolution with polarization analysis, SHG imaging can be combined
with optical clearing. This involves placing samples in a high refractive index,
hyperosmotic reagent (e.g., glycerol, sugars, or sugar alcohols) to enhance trans-
parency (Tuchin, 2006). Our research demonstrated a reduction in the scat-
tering coefficient by approximately 5- to 20-fold, and P-SHG of tendon and
muscle retained correct polarization signatures even after optical clearing (La-
Comb et al., 2008). It’s worth noting that most studies reviewed above were
either conducted on thin sections (less than one scattering length) or optically
cleared with 50% glycerol.
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1.4 Adaptive Optics (AO)
In this section, we explore the impact of distortions on imaging and strategies
for mitigating them. Astronomers delved into this field in the 1940s and 50s
(Whitford and Kron, 1937 Babcock, 1948 Babcock, 1953). The performance of
ground-based telescopes lacking corrective elements has been hindered by at-
mospheric turbulence caused by wind and rapid changes in the refractive index
of the atmosphere (Fried, 1966). The perturbation in the field, resulting from
turbulence-induced aberration after passing through layers, can be expressed as

u(x⃗) = W (x⃗) exp(χ(x⃗) + iψ(x⃗))

where W (x⃗) represents the telescope aperture function, χ(x⃗) considers the
logarithm of amplitude fluctuations, and ψ(x⃗)accounts for fluctuations in the
phase of the wave. This equation illustrates how phase variations can exponen-
tially distort the field. Some assert that the resolution of the two 10m Keck
telescopes in Hawaii would not surpass that of an 8-inch backyard telescope
without adaptive optics (AO). Turbulence scatters light from a star, causing it
to twinkle and appear as a fuzzy blob when observed through a telescope, as
depicted in Figure 1.16.

Figure 1.16: Stellar images obtained at the 10-m Keck telescope with and without
turbulence correction. Credit : University of California Santa Cruz Center for
Adaptive Optics

Babcock was among the pioneers who proposed the implementation of a
corrective element to address atmospheric turbulence (Babcock, 1953). Dur-
ing that period, simple mechanisms were suggested and utilized to correct the
lateral movement of stars, such as photo-electric guiding (Whitford and Kron,
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1937)and rotating knife-edge (Babcock, 1948). However, it wasn’t until the late
1960s and early 1970s that the practical realization of Wavefront shaping by
Deformable Mirror (DM) emerged, initially for military applications and later
applied to astronomy (Hardy, 1998).

By the 1990s, Adaptive Optics (AO) had become a well-established tech-
nology in astronomy. An illustrative example is provided by the images in Fig-
ure 1.17 captured by the ground-based Keck telescope. It is evident that AO
correction revealed more information than could be conventionally measured.
Numerous scientists and research groups are actively engaged in enhancing the
accuracy and speed of Wavefront sensing, reconstruction, and developing algo-
rithms to predict and optimize the Wavefront more efficiently.

Figure 1.17: Neptune, imaged with the Keck 10m telescope, without (left) and
with (right) AO. The right image is a false-color composite from observations at
1.65 and 2.1 μm wavelengths taken in 2007. Credit: M. van Dam, E. Schaller,
and W. M. Keck Observatory.

The issue of optical aberrations also arises in microscopy, but this time it
stems not only from the travel path (albeit slightly) but primarily from the object
under study. Biological tissues, comprising numerous layers with varying refrac-
tive indices and non-geometrical shapes, induce predictable and unpredictable
patterns of light refraction (S. Hell et al., 1993). Predictable aberrations, which
have been mathematically modeled, include Zernike polynomials (Noll, 1976).
The primary aberrations in this context are Defocus, Astigmatism, Coma, and
Spherical, corresponding to lower-order Zernike modes. Efforts have been made
to compensate for unpredictable aberrations, particularly those associated with
scattering media, with potential applications in biological imaging (Vellekoop
and Mosk, 2007).
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Initially, Adaptive Optics (AO) for microscopy aimed to address spheri-
cal aberrations induced by high numerical aperture (NA) objective lenses (M.
Booth et al., 1998 M. Booth, 2007). The use of oil immersion lenses, in particu-
lar, results in a refractive index mismatch at the boundary between the oil and
the biological sample with a refractive index close to water. This mismatch leads
to the expansion of the focal plane and ultimately distorts the Wavefront, a prob-
lem that intensifies as the focal plane penetrates into the sample, as illustrated
in Figure 1.18. Studies have demonstrated significant aberrations even at a depth
of approximately 90 μm in mouse blastocyst and Nematode C. elegans sample,
causing lateral distortion and axial elongation of the Point Spread Function
(PSF) (Schwertner, Booth, and Wilson, 2004 Schwertner et al., 2004).

Figure 1.18: (a) Schematic of focusing by a high-NA objective lens. Planar wave-
fronts in the pupil are converted into convergent spherical wavefronts in the
focus. (b) The effects of focusing through a refractive index mismatch, where
refraction at the interface distorts the wavefronts. (c) Focusing through a com-
plex specimen, where refractive index variations introduce aberrations. (d) The
principle of aberration correction—a conjugate phase introduced in the pupil
is cancelled out by the specimen-induced aberrations. Credit: Martin J Booth

The scattering length (ls) is a crucial parameter in understanding how light
propagates through a medium. It represents the average distance that a photon
travels before undergoing a scattering event. Scattering length is inversely pro-
portional to the scattering coefficient (µs), which characterizes the probability
of scattering per unit distance:

ls =
1

µs

(1.1)
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The initial application of AO in microscopy occurred in 1999 with confocal
microscopy. Since the confocal configuration used was not in epi mode (same
path for illumination and imaging), scanning deep inside a tissue could result
in the nominal focal plane (NFP) not aligning with the actual focal plane (S.
Hell et al., 1993). It’s worth noting that in the epi mode, tip and tilt are auto-
correcting. Subsequently, AO was implemented in confocal microscopy to
correct the main aberrations (M. Booth et al., 2002). Since then, AO has been
extended to various microscopy techniques, including wide-field (Kam et al.,
2007 Azucena et al., 2011), two-photon (Tao et al., 2013 Rueckel et al., 2006),
STED (Patton et al., 2014), light sheet, SIM (Débarre et al., 2008), and SML
microscopy (Izeddin et al., 2012 Patton et al., 2014 Burke et al., 2015 K. Tehrani
et al., 2015). AO has also found use in enhancing microscopy, such as improving
the depth of field (Tucker et al., 1999) and introducing Astigmatism for 3D SML
imaging.

1.5 Outline
In Chapter 2, we use polarimetric second harmonic generation microscopy to
examine the disruption of collagen assembly in a condition known as hypophos-
phatasia (HPP) and introduce a spatial polarimetric gray-level co-occurrence
matrix (GLCM) analysis to quantify differences in collagen organization in-
duced by HPP. Various machine-learning techniques will be discussed and used
to classify disease states. Experimental examples of each task will be shown.

Chapter 3 is about Adaptive Optics. Aberrations models induced by the
optical instrument and biological samples will be discussed. direct and indirect
wavefront sensing will be discussed and then the correction device and methods
will be introduced.

In Chapter 4, we demonstrate our two-photon fluorescence microscopy
with adaptive optics. Sensor-based system correction method and sensor-less
sample correction method will be discussed. Then, we calculated and corrected
the sample aberrations caused by highly scattering bone with a sensorless AO
approach using the PSF maximum intensity, minimum FWHM, and maximum
energy as metrics. Experimental examples of each method will be shown.

In Chapter 5, we explored the performance of our low-order correction strat-
egy and investigated a novel approach for enhancing resolution in two-photon
fluorescence microscopy by combining low-order adaptive optics (AO) correc-
tion with high-order digital micromirror device (DMD) scattering correction.
Moreover, we have demonstrated the synergistic function of DM and DMD in
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enhancing imaging performance. Experimental examples of each method will
be shown.

Chapter 6 discusses and concludes this dissertation.
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Chapter 2

Spatial Polarimetric
Second Harmonic

Generation Evaluation
of Collagen in a

Hypophosphatasia Mouse
Model 4

Second harmonic generation (SHG) imaging is a nonlinear technique sensitive
to non-centrosymmetric molecules like type 1 collagen, which is abundant in
structural tissues. Expressed in numerous organ systems, type 1 collagen un-
dergoes modifications and assembly into secondary structures in each location
to provide tissue-specific mechanical and biochemical properties. Therefore,
tissue defects in the assembly and modification of collagen structures may result
from disease pathology, which could in turn be detected using SHG imaging
(P. Campagnola, 2011).

2.1 Introduction
Bone collagen has extensive secondary modifications during mesh formation
and co-deposition with crystalline hydroxyapatite mineral. Collagen fibrils are
produced early in osteoblastic differentiation, and with the assistance of mineral
seeds self-assemble in the extracellular space (Rho et al., 1998). As bone forma-
tion progresses matrix vesicles rich in the enzyme tissue non-specific alkaline
phosphatase (TNALP) mediate mineral deposition at the surface of cells and
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their extracellular matrix vesicles (Iijima et al., 2015). These mineral deposits
within and between collagen fibers significantly strengthen the toughness, fail-
ure strain and strength of the bone (J. Ji et al., 2012 Stock, 2015 Landis et al.,
1996). The mineral binds together with the collagen using a combination of
physical linkages (Stock, 2015 ), direct interactions with TNALP (Kirsch and
Pfaffle, 1992 Wu et al., 1992 Bossi et al., 1993 Vittur et al., 1984), hydrogen bonds
(Nair et al., 2013), electrostatic forces (Kikuchi et al., 2001), salt bridges (Nair
et al., 2013), and polysaccharide binding (Wise et al., 2007). Together these inter-
dependent mineralized fibrillar structures create a hierarchy of lamellar sheets
that increase the ability of bone to withstand torsion and tension. The lamel-
lar sheets self-assemble on top of one another in a plywood-like fashion with
neighboring layers arranged at differing angles.

Prior work by our group (Pendleton et al., 2020) and others (Ambekar et al.,
2012) has used a SHG approach to explore the organization of bone lamellar
structures to uncover guiding principles of bone collagen organization. SHG
is non-destructive and provides direct information about collagen structure
without the need for fluorescent labeling. When imaged using polarized inci-
dent light, SHG can increase contrast to highlight collagen orientation within
tissues (Yasui et al., 2004). The intensity of the SHG signal is dependent on
the second-order susceptibility χ2, which is the bulk quantity visualized in the
SHG microscope and relies on collagen orientation relative to the excitation
light and collagen abundance. Second-order susceptibility is associated with the
molecular order of collagen and the coherent amplification of peptide bonds
along the length of the molecule, which is defined by the first hyperpolarizabil-
ity β (P. Campagnola, 2011). Schanne-Kleinn used hyper-Raleigh scattering
measurements to show that the molecular origins of β are due to the coher-
ent amplification of peptide bonds along the length of the collagen molecule
(Deniset-Besseau et al., 2009).

This work aims to build on our prior efforts with SHG polarimetry in bone
(Pendleton et al., 2020) to evaluate the collagen lamellar sheet formation in
a mouse model of a metabolic bone disorder impacting mineral deposition.
Hypophosphatasia (HPP) is a rare metabolic bone disease characterized by mu-
tations in the ALPL gene that encodes for TNALP (Henthorn et al., 1992 Mor-
net, 2007), which is critical for mineral production in bone (Sutton et al., 2012).
TNALP is present on the surface of bone forming cells and their mineralizing
matrix vesicles and, along with associated annexins (Kirsch and Pfaffle, 1992),
allow these vesicles to bind to collagen and deposit mineral crystals (Bossi et
al., 1993). Therefore, bones with reduced TNALP activity are likely to have an
impaired capacity to form mineral-stabilizing links between collagen molecules
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and may suffer from an impaired assembly of collagen into larger lamellar sheet
structures. HPP is characterized by rickets in children and osteomalacia in
adults (M. P. Whyte, 2002), with patients prone to fractures (Iijima et al., 2015)
in figure 2.1. Although the characteristic diminished mineral content of the
bone in HPP is associated with a reduction in bone forming cells in the growth
plate (M. P. Whyte, 2016) and in overall bone size (J. Liu et al., 2014), the impact
of HPP on collagen structure has not been characterized previously.

Figure 2.1: Hypophosphatasia weakens and softens the bones, causing skeletal
abnormalities similar to another childhood bone disorder called rickets. Af-
fected infants are born with short limbs, an abnormally shaped chest, and soft
skull bones. Additional complications in infancy include poor feeding and a fail-
ure to gain weight, respiratory problems, and high levels of calcium in the blood
(hypercalcemia), which can lead to recurrent vomiting and kidney problems.
These complications are life-threatening in some cases. Credit: Alila Medical
Media/Shutterstock.com

In this work, we use polarimetric SHG to investigate HPP disruption of
collagen assembly. We determine the dominant orientation of collagen fibers
within each pixel to delineate lamellar sheets. We find that the HPP lamellar
sheets are significantly smaller and less well-defined than the wild-type (WT)
lamellar sheets, which may contribute to the overall weakness of HPP bone. We
then use the gray-level co-occurrence matrix (GLCM) to describe the texture
of the SHG images and quantify differences in collagen organization induced
by HPP. We explore a spatial polarimetric GLCM method (spGLCM) which
incorporates the polarimetric response of the pixel of interest and its neigh-
bors along the polarization angle axis to the texture analysis. Compared to
pGLCM, spGLCM increases sensitivity to the bone collagen structure, finding
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significant alterations in the collagen of diseased HPP mice using several well-
accepted machine learning techniques including random forest (RF), XGBoost
and LightGBM to classify the state of disease. This implementation of SHG
polarimetry analysis could be used as a guide for researchers to describe bone
health, disease progression, and response to therapy. Our findings could enable
future strategies for label-free identification of disease states of the bone and
monitor the effectiveness of therapies for bone disorders like HPP, osteogenesis
imperfecta, X-linked hypophosphatemia, or osteoporosis.

2.2 Optical System Design
The optical setup is shown in figure 2.2. Briefly, it has a Ti: Sapphire fem-
tosecond pulsed laser that produces light from 680 nm to 1080 nm—we used
932 nm, with the power of the beam adjusted by a half wave retarder and po-
larizing beam splitter, then rapidly modulated by a Pockels cell attenuator and
scanned over the specimen. The back-collected emission light is sent to a photon
multiplier tube with a 409 nm long-pass dichroic beam splitter and bandpass
filter of 390/18 to capture SHG of collagen. SHG intensity is dependent on
angular matching between laser polarization and fiber alignment, which can
be exploited to enhance the contrast of collagen fibers (X. Chen et al., 2012).
Therefore, SHG images (512 x 512 pixels) were collected with linearly polarized
excitation, using a half-waveplate rotated at 5° intervals to evaluate collagen ori-
entation within the focus. We evaluated polarization quality with a polarization
state analyzer to measure the Stokes parameters at each excitation angle and cor-
rect any residual polarization distortion. Representative polarized stacks of each
mouse skull were generated at 5, 10, and 15 μm of depth. To probe differences
between HPP and WT mice, 5 distinct regions of the calvaria of each mouse
5 μm from the periosteum were imaged to create polarized image sets. For all
mice, the region lateral to the sagittal suture, anterior to the cranial suture and
posterior to the jugum limitans of the calvaria was imaged. We compensated
for average intensity variations between excitation polarizations in the images
using the variant part of the average intensity of all SHG raw images.

2.3 Sample Preparation
The use of all animals in this study was approved by The University of Georgia
Institutional Animal Care and Use Committee. Alpl-/- mice mimic infantile
HPP, with phenotypes of elevated levels of inorganic pyrophosphate (PPi), a
lack of mineralization, and end-stage seizures. All mice were given free access to
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Figure 2.2: Optical system design for polarimetric SHG imaging. λ/2plate-
Half-waveplate; λ/4plate - Quarter-waveplate; DiM- Dichroic mirror; F- Filter;
L- Lens; PBS- Polarizing beam splitter; PMT- photon multiplier tube. A half-
waveplate was rotated at 5° intervals to evaluate collagen orientation within the
focus. The polarization state analyzer contains a quarter-waveplate and power
meter to measure the Stokes parameters at each excitation angle and correct any
residual polarization distortion.

a modified laboratory rodent diet 5001 with 325 ppm Pyridoxine to delay seizures
and extend lifespan. Knockout Alpl-/- mice were identified by PCR at birth
(Day 0) in accordance with a protocol developed by Jackson Laboratory (Bar
Harbor, ME) using primers 5’ – CCGTGCATCTGCCAGTTTGAGGGGA
– 3’, 5’ – CTGGCACAAAAGAGTTGGTAAGGCAG – 3’, 5’ – GATCG-
GAACGTCAATTAACG TCAAT – 3’. Both Alpl+/+ and Alpl-/- mice were
collected at P14 (postpartum day 14) because in this disease model mice begin
to die by P16 with 100% mortality by P21. The skulls of the specimens were
extracted, and the cranial cavity was evacuated. Specimens were mounted in sili-
cone to prevent movement and hydrated with PBS throughout imaging. A total
of 26 mice (13 wild type (WT), 13 HPP) mice were used for statistical analysis.
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2.4 Scanning electron microscopy
To perform an independent analysis of lamella sheet organization, we used scan-
ning electron microscopy (SEM) to image skull fractured edges in WT and HPP
bone. Fresh skulls were snap frozen and freeze-fractured before dehydration in
a vacuum. Samples were then carbon coated and mounted for SEM analysis
with a Zeiss 1450EP.

2.5 Angular distribution of collagen fibers
To determine the approximate orientation of collagen fibers within the excited
volume, we used a single linear polarization of excitation light that was rotated
to generate a polarimetric, epi-collected second harmonic signal (Pendleton
et al., 2020). The polarization was verified to be maintained at the focus by
imaging spherical T-cells labeled with Di-8-ANEPPS (X. Chen et al., 2012 W.
Hu et al., 2012b). We fit a mathematical model of relative collagen second-order
susceptibility sensitivity to the measured experimental values. The intensity
of the SHG signal is dependent on the electric field, the number of collagen
fibers within the focal volume, and the orderliness of the collagen fibers. For
collagen fibrils within the focal plane, the incident electric field at angleα to the
x-axis generates a polarization-dependent second harmonic signal. This model
links the SHG to the relevant susceptibility tensors, χ(2)

xxx and χ(2)
xyy, under the

assumption that collagen fibers have x-axis cylindrical symmetry and Kleinman
symmetry (P. J. Campagnola and Loew, 2003). Therefore, the complete SHG
signal can be described as:

I2ω(α) = β[A cos(4α− 4ϕ) +B cos(2α− 2ϕ) + 1] (2.1)

and

fracχ(2)
xxxχ

(2)
xxy =

√
A+B + 1

A−B + 1
(2.2)

where A and B are coefficients related to susceptibility components, β is the
average number of detected photons and ϕ is a measure of the average collagen
fiber orientation within the focal volume (Teulon et al., 2012). To visualize
collagen lamellar orientation and organization, ImageJ2 and Python (version
3.8.12) were used. To form the color images, every 10° of collagen orientation
was assigned a different color, with the collagen fibers parallel to the sagittal
suture deemed 0°.
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2.6 Delineation of collagen sheet boundaries
We next sought to describe boundaries of collagen lamella sheets 5 μm, 10 μm,
and 15 μm from the periosteum using 2D images with the calculated angle of
collagen orientation assigned to each pixel. The standard deviation of the angu-
lar differences between each pixel and its nearest eight neighbors was calculated.
We used a small region of interest for this calculation to determine similarities
of neighboring collagen molecules that would likely be within the same fiber or
within the same lamella sheet. A high standard deviation is therefore expected
at the boundaries of lamellar sheets that have juxtaposed angles of orientation
or within a region of poorly aligned fibers. The average SHG intensity image
was masked using the Otsu technique and overlaid on the standard deviation
image. We observed a drop in SHG signal with most HPP samples when com-
pared to the WT bone and differences in the amount of SHG signal due to
collagen composition and bone structure (i.e. osteocyte lacunae). Therefore,
an automated Otsu threshold for each image was preferred to a single threshold
value for all images to reduce bias from manual thresholding.

2.7 Data Analysis

2.7.1 Gray Level Co-occurrence Matrix (GLCM)
The Gray Level Co-occurrence Matrix (GLCM) is a widely used technique in
image processing for quantifying texture information within an image (Har-
alick et al., 1973 Clausi, 2002 Conners and Trivedi, 1984). It characterizes the
spatial relationship between pairs of pixels based on their gray-level values. By
computing the frequency of occurrence of different pixel pairs with specific
relative positions and gray-level combinations, the GLCM provides valuable
statistical information about the texture properties of an image (Soh and Tsat-
soulis, 1999) as shown in figure 2.3. This matrix-based approach enables the
extraction of texture features such as contrast, correlation, energy, and homo-
geneity, which can be used for various applications including image classifica-
tion, segmentation, and analysis (Chuang et al., 1992). GLCM analysis has
found extensive use in fields such as medical imaging, remote sensing, and ma-
terial science, where the detailed characterization of texture properties is crucial
for understanding and interpreting image content (Amadasun and King, 1989).
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Figure 2.3: Illustration of the Gray Level Co-occurrence Matrix (GLCM) oper-
ation methodology from the input image (a) to GLCM image (b). (c) illustrates
the spatial relationships of pixels in the array of row-offsets and column-offsets
where D represents the distance from the pixel of interest. Red circles indicate
that how often a different combination of gray-levels cooccur in the input im-
age and arrows indicate the number of co-occurs in the GLCM image. (Ahmed,
2020)

2.7.2 Spatial polarized GLCM
Polarimetry is known to provide contrast for the examination of collagen struc-
tures, which is supported by our previous work in the visualization of cranial
lamellar sheets (Houle et al., 2015b Ambekar et al., 2012). Polarimetry utilizes
alterations in light polarization to reveal hidden structural organization within
collagen structures, offering enhanced contrast and insights into orientation
and properties. To minimize measurement variance based on physical orienta-
tion, we oriented all skulls in the same direction such that the nose of the mouse
was towards the top of the image, which yielded the dominant direction of col-
lagen fibers to be along the y-axis. We then captured an image using each of
the excitation light polarization directions to create a polarized image stack. To
leverage the polarization contrast, we performed second-order texture analysis
across x, y, and polar dimensions using a modified form of the symmetric gray
level co-occurrence matrix (GLCM) (Haralick et al., 1973) in Python which we
term spatial-polarimetric gray level co-occurrence matrix (spGLCM), based on
previously published approaches (Saitou et al., 2018) (see the code in appen-
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dices). Our final calculation of the spGLCM values in each polarimetric image
is expressed as GLCM analysis of the corrected polarimetric SHG raw images
along 4 different axes (Figure 2.4 ). Compared with pGLCM algorithms, the
spGLCM method incorporates the additional polarization contrast to provide
improved discrimination of the alignment of collagen fibers and their organiza-
tion into lamellar sheet structures.

After extraction, a spGLCM matrix will be used to calculate the contrast,
homogeneity, energy, entropy, and correlation according to the formulas:

Contrast =
N−1∑
i,j=0

pi,j(i− j)2 (2.3)

Homogeneity =
N−1∑
i,j=0

pi,j
1 + (i− j)2

(2.4)

Energy =

√√√√N−1∑
i,j=0

p2i,j (2.5)

Entropy =
N−1∑
i,j=0

(−pi,j ∗ log pi,j) (2.6)

Correlation =
N−1∑
i,j=0

pi,j[
(i− µi)(j − µj)√

σ2
i σ

2
j

] (2.7)

Figure 2.4: Workflow of spGLCM analysis. spGLCM extraction was imple-
mented on the 3-dimensional SHG images stack with four different directions
x-axis, y-axis, polar-axis, and diagonal-axis).
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2.8 Machine learning based classification
Statistical analysis was performed with Python (version 3.8.12). To investigate
separation between experimental groups based on spGLCM measurements,
we conducted RF, XGBoost and LightGBM techniques. In all methods, 121
spGLCM measurements for 13 mice per group with 5 images per mouse, where
80%data is used for training and 20%data is used for validation. Each spGLCM
measurements include one of the five properties with four different directions
and nine offsets. Once computed, F1 score is used to qualify the classification
results. The F1 score measures a classification model’s accuracy in correctly
identifying positive instances while minimizing false positives and negatives
(see the code in appendices).

2.8.1 Random Forest
Random Forest (RF) is a powerful machine learning algorithm widely used for
image classification tasks due to its robustness and efficiency (Breiman, 2001).
RF is an ensemble learning method that constructs a multitude of decision trees
during training and outputs the class that is the mode of the classes predicted by
individual trees. Each decision tree in the forest is trained on a bootstrap sample
of the original data, and at each node, a random subset of features is considered
for splitting, resulting in diverse and uncorrelated trees. This diversity helps mit-
igate overfitting and improves generalization performance. Additionally, RF
provides measures of feature importance, aiding in understanding the contribu-
tions of different image features to the classification process. The algorithm’s
versatility, scalability, and ability to handle high-dimensional data make it par-
ticularly well-suited for image classification tasks in various domains, including
medical imaging, remote sensing, and computer vision.

2.8.2 Extreme Gradient Boosting (XGBoost)
Extreme Gradient Boosting (XGBoost) is a powerful machine learning algo-
rithm that has gained popularity for its efficiency and effectiveness in various
tasks, including image classification (T. Chen and Guestrin, 2016). XGBoost
works by iteratively training an ensemble of decision trees, where each tree cor-
rects the errors of the previous ones (figure 2.5). It combines the predictions
from multiple weak learners to produce a strong learner with improved accuracy
and generalization capabilities. XGBoost is known for its scalability, robustness,
and ability to handle large datasets efficiently. Its popularity in image classifica-
tion tasks stems from its capability to automatically learn complex patterns and
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features from high-dimensional image data. XGBoost has been successfully
applied in various domains, including computer vision, bioinformatics, and
natural language processing.

Figure 2.5: Flow chart of XGBoost. Credited to: Rui Guo ( Guo et al., 2020)

2.9 Result and Discussion

2.9.1 Visualization of collagen sheets
To visualize collagen sheets, we freeze fractured calvaria of WT and HPP bone
and performed SEM imaging at the fracture site. We are clearly able to visualize
the lamella sheet formations in the WT bone along the fracture line (Fig. 2.6
A). The HPP bone, however, has disrupted lamellar sheet formation with small
collagen formations undulating in the cortical region of the skull with gapping
between the layers (Fig. 2.6 C). This results in a lack of well-defined sheets and
a large region of unorganized collagen structures.

We then attempted to visualize the same phenomenon with SHG. While
SEM accentuates boundaries between physically bonded areas, optical SHG
cross-sections specifically target collagen molecules in a sample, as the second-
order susceptibility links to collagen’s molecular order and amplifies peptide
bonds coherently along the molecule’s length, predominantly aligning at ap-
proximately 50° from the collagen molecule’s α-helix, as described by suscepti-
bility tensors χ(2)

xxx and χ(2)
xyy (P. Campagnola, 2011 Bancelin, Aime, et al., 2014).
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We can visualize regions of similar orientation with SHG in the WT bone with
the peaks of the intensity profiles indicating lamella sheets of the same direction
(Fig. 2.6 B). The optical cross-section of HPP bone shows collagen of similar
orientation throughout the image. It appears that lamella sheets may be formed,
but the boundaries of the sheets lack definition (Fig. 2.6 D).

Figure 2.6: Workflow of spGLCM analysis. pGLCM extraction was im-
plemented on the superimposed SHG images with four different directions
(0°,45°,90° and 135°). spGLCM extraction was implemented on the 3-
dimensional SHG images stack with four different directions x-axis, y-axis,
polar-axis and diagonal-axis). After extraction, a GLCM matrix will be used to
calculate the contrast, homogeneity, energy, entropy and correlation according
to the formulas.

2.9.2 Angular distribution of collagen fibers in bone
We sacrificed two-week-old WT and HPP mice (n = 13/group) and collected 5
images per mouse of the whole cranial bone from regions lateral to the sagittal
suture, anterior to the cranial suture, and posterior to the jugum limitans (Fig.
2.7 A). Using equation 3.1, the dominant angle of collagen fiber orientation, ϕ,
of each pixel was determined and every 10° was assigned a representative color
(Fig. 2.7 B). The WT bone displays co-localized groups of fibers (Fig. 2.7 C &

D) as well as a dominant orientation for the field of view (Fig. 2.7 E). The HPP
bone has fibers of similar orientation but lacks well-defined regions of similar
orientations (Fig. 2.7 J). After curve fitting, we found that the average intensity
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profiles are distributed according to their polarimetric orientations throughout
the field of view.

Figure 2.7: SHG polarized imaging identifies collagen structures in WT and
HPP bone. (A) The frontal bones of juvenile mice were imaged dorsal to the
jugum limitans (i) and lateral to the sagittal suture (ii). (B) Polarized light was
rotated, images were collected every 10°, and pixels containing collagen fiber
information were assigned colors based on the orientation of the fiber. Images
were collected at 5 μm from the surface of the periosteum. Regions of similar
orientations are seen in the WT calvaria (C-F) while the HPP calvaria has a
mixture of orientations throughout the viewing area (G-J). The asterisk in
F denotes an osteocyte lacuna. Scale Bar: 20 μm. Average intensity profiles
were plotted (blue dots), fitted (black line), and 95% confidence intervals (red
dashed lines) were established to demonstrate the intensity signature of each
orientation.

2.9.3 Lamella sheet integrity
After visualizing collagen assembly, we sought to investigate collagen lamellar
sheet integrity and formation. To do so, we acquired polarimetric images and
determined ϕ at 5 μm, 10 μm, and 15 μm depth into the bone, measured from
the periosteum. To quantify the similarity between pixels and their neighbors,
we first determined the angle of orientation of each pixel and then found the
average difference in orientation between a pixel of interest and its nearest eight
neighbors, and finally determined the standard deviation (SD) of these differ-
ences. The WT bone shows regions with highly conserved angular directions
of collagen fibers (red regions, Fig. 2.8 A-C); and demonstrates formation of
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collagen lamella sheets oriented in different directions around osteocyte lacunae
(Fig. 2.8 C). These findings suggest that the HPP bone has reduced regions of
well-defined lamella sheets, with collagen fibers that are more heterogeneously
distributed relative to nearby fibers.

Figure 2.8: The lamella sheet integrity is impaired in HPP bone. Each pixel
was evaluated for the standard deviation (SD) of the difference between it and
its nearest eight neighbors with a low (SD) indicating well-aligned pixels. WT
(A-C) and HPP (D-F) bone were evaluated at 5 μm (A, D), 10 μm (B, E), and
15 μm (C, F) from the periosteum. Well-aligned areas (red) are prominent in
the WT bone and are smaller in the HPP bone. The percent of counts includes
only the pixels that are passed with the Otsu threshold. Scale bar 20 μm.

We then quantified the distribution of these SD values (Fig. ?? G-L), find-
ing that the WT bone tends to have lower SD values, which suggests more
similar spatial distributions of collagen than in the HPP bone. These trends
suggest that more similar spatial distributions of collagen may occur in WT
than HPP bone.

2.9.4 Spatial polarimetric GLCM analysis
We next leveraged the contrast of polarimetric SHG to provide a sensitive ex-
amination of the effects of HPP on bone organization. To accomplish this, we
developed a spatial polarimetric GLCM analysis (spGLCM) that incorporates
polarization contrast into texture analysis. spGLCM measures included energy,

45



Figure 2.9: WT histograms (G-I) are left-skewed while the distribution of the
HPP histograms (J-L) is more normal with SD values centered around 1.2.

homogeneity, contrast, entropy and correlation with offsets ranging from 1 to
17 pixels along x-axis, y-axis, polar-axis and diagonal axis. For this analysis, we
imaged 13 mice per group with 5 image stacks each at a depth of 5 μm from the
surface. To demonstrate how the WT and HPP images respond to spGLCM
measures, a representative image from each group was plotted to provide a vi-
sualization of observed trends with different offsets along different directions.

Energy is a measure of the degree of stability of the grayscale variation of
the image, which reflects the degree of uniformity of the image. We observed
small trends toward a difference between the two groups when we compared
energy values at different offsets along the x-axis and y-axis. The energy values
tend to stay higher in the HPP than the WT, and the difference is pronounced
for spGLCM measurement within 100° to 170° along the polarization axis and
diagonal axis when compared to the WT energy values, indicating a higher
degree of stability of the grayscale variation in the HPP image. (Fig. 2.10)

Homogeneity describes local changes in image texture, indicating similari-
ties of gray levels and a homogenous distribution of textures. Overall, along the
x-axis and y-axis, the WT and HPP images have similar homogeneity measures
across offsets, with some differences observed with pixels of interest that are in
close proximity. The WT and HPP images have a qualitatively different rate of
change between 90° to 170° along the polarization axis and diagonal axis. This
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Figure 2.10: A single polarimetric SHG image of WT(left) and HPP(right) bone
was analyzed with spGLCM to exemplify the differences between the measures
of energy in four exemplary directions. The measurements along the x- and
y-axis respond similarly in WT and HPP but with different magnitudes, which
also indicates pGLCM are not sensitive to phase differences. The measurements
along the polar axis and diagonal axis also show similarity in WT and HPP but
with some differences, which also indicates spGLCM along the polar axis and
diagonal axis are sensitive to phase differences caused by polarization.

indicates that the gray levels differ from one another more quickly in the HPP
image, suggesting that the texture is less uniform and collagen orientation is
more varied. (Fig. 2.11)
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Figure 2.11: A single polarimetric SHG image of WT(left) and HPP(right) bone
was analyzed with spGLCM to exemplify the differences between the measures
of homogeneity at four exemplary directions.

Contrast measures the variance between the pixels of interest, which high-
lights the edges of features. For well-aligned collagen fibers and lamellar sheets,
we would expect contrast to be small when comparing pixels that are physically
close to one another. Along the x-axis and y-axis, the overall shape of the con-
trast measure is similar between the WT and the HPP representative images,
also the rate of change in the contrast measure is similar. However, the con-
trast values of the WT image are overall higher than the HPP image. Along the
polarization axis, the contrast values of the WT image are much higher than
the HPP image, especially after 100° indicating more distinct edges of collagen
fiber formation in the WT image and more homogenous gray levels in the HPP
image indicating a lack of collagen fiber organization. (Fig. 2.12)

48



Figure 2.12: A single polarimetric SHG image of WT(left) and HPP(right) bone
was analyzed with spGLCM to exemplify the differences between the measures
of contrast at four exemplary directions.

Entropy measures the level of disorder or uncertainty in the grayscale vari-
ations within the images. Compared to contrast, entropy captures a broader
aspect, indicating the overall level of disorder or unpredictability in these vari-
ations, encompassing not only edges but also randomness or lack of defined
patterns within the grayscale values. Along the x-axis and y-axis, entropy tends
to increase as the distance between evaluated pixels increases, indicating greater
unpredictability or randomness in grayscale variations at greater distances for
both WT and HPP images. Within the polarization and diagonal axis, the en-
tropy values of the WT image are much higher than the HPP image especially
after 100°, reflecting the disorderliness or lack of specific patterns linked to po-
larization direction or alignment happened in HPP samples. (Fig. 2.13)
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Figure 2.13: A single polarimetric SHG image of WT(left) and HPP(right) bone
was analyzed with spGLCM to exemplify the differences between the measures
of entropy at four exemplary directions.

Correlation has a range of [-1,1], and a value close to either end of the range
indicates a perfectly positively or negatively correlated image. Along the x-axis
and y-axis, as the distance between evaluated pixels increases, the correlation
values tend to decrease. In WT images we find a linear decay in correlation as we
move away from the pixel of interest across all angles of light. The HPP tends
to have a more rapid linear decay than the WT as the evaluation moves farther
from the pixel of interest. This indicates that the WT image has more similar
gray-level pairs regardless of the orientation of light while the correlation of
gray-level pairs of the HPP image tends to change more rapidly as a function of
pixel distance offset. Along the polarization and diagonal axis, the correlation
values tend to indicate the system polarization status. (Fig. 2.14)
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Figure 2.14: A single polarimetric SHG image of WT(left) and HPP(right) bone
was analyzed with spGLCM to exemplify the differences between the measures
of correlation at four exemplary directions.

2.9.5 Flow Map
spGLCM suggests a more well-defined collagen orientation in the WT than the
HPP bone. To further explore the collagen alignment, we applied an FFT on
monochrome superimposed WT and HPP SHG images (Fig. 2.15 A-B) and
showed the radial sum intensities for 360° around the center of HPP FFT image
(Fig. 2.15 C-D). We found that for HPP, the prominent peaks except for four
axes (90°, 180°, 270°, 360°) are seen at 30° and 210°, in accord with the original
SHG and FFT image (Taylor et al., 2013).
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Figure 2.15: (A-B)FFT intensity spectrum for WT and HPP sample. (C) The
radial sum intensities for 360 angles around the center of WT FFT image are
plotted as an x-y scatter graph. The peaks at 90°, 180°, 270°, and 360° are from
the axes of the FFT itself, shown as red, green, blue, and brown lines. (D)
Prominent peaks (yellow stars) are seen at 30° and 210°, in accordance with the
original HPP image and FFT image.

We created a flow map of (I, ϕ), represented as vectors colored with I and
oriented with ϕ, and found the WT bone displays groups of fibers as well as
a dominant orientation for the field of view (Fig. 2.16) (Y. Wang et al., 2022).
This Fourier space analysis supports our observations that the HPP bone has
less well-defined regions of similar collagen orientations.
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Figure 2.16: Flow map of (I, ϕ) represented as vectors colored with I and ori-
ented with ϕ, superimposed to the intensity image in grey.

2.9.6 Machine learning classification
SpGLCM analysis provides a rich data set for the comparison between healthy
and diseased bone collagen organization for machine learning. To synthesize
this broad range of parameters into a description of the impact of HPP on bone
collagen organization, we trained random forest, XGBoost, and LightGBM us-
ing 121 spGLCM features where 80% of the data was used for training and 20%
for validation. We applied different maximum depths of trees in random forest,
XGBoost, and LightGBM; allowing for the exploration of a wide spectrum of
complexities within individual trees, enabling the models to capture intricate
patterns and relationships present in the data while also managing the risk of
overfitting. We applied rotational symmetry to the spGLCM features along the
polarization axis to yield mirrored data from 0°-180° to 0°-360°. This approach
yielded an AUC-ROC score (closer to 1) indicating the random forest model
can differentiate between the classes more effectively (Figure 2.17 (a)). F1 score
of 92.30% using random forest on spGLCM data, which was the highest per-
forming of our models (Figure 2.17 (b)). In the random forest model, we next
explored features of importance (Figure 2.17 (c)) to classification and found
that polar energy, homogeneity, contrast, entropy, and correlation effectively de-
scribe the texture within the juvenile cranial bone. These spGLCM parameters
find similar orientations of collagen that can help describe subtle differences in
the collagen packing and alignment that might be otherwise missed.

Polarimetric SHG is a label-free, non-destructive method of analyzing col-
lagen structure that has been used in many tissues to describe disease states
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Figure 2.17: Results of classification. spGLCM random forest has the highest
accuracy 92.30%, which indicates that spGLCM method can be used to classify
the two types of bone efficiently. We next investigate importance of all features
based on mean decrease in impurity and find features along polar axis, energy,
features with largest offset are heavily weighted for the machine learning models.

(Nadiarnykh et al., 2007 Campbell et al., 2018 Ralston et al., 2008). These
range from direct mutations of collagen structure such as occur in osteogenesis
imperfecta (Nadiarnykh et al., 2007) to increases in collagen production caused
by tumor formation (Campbell et al., 2018) to collagen organization and remod-
eling during cervical ripening (Bancelin, Nazac, et al., 2014). Our work applies
polarimetric SHG to investigate the impact of defective mineral deposition in
the bone on collagen assembly using a HPP mouse model. HPP is a debilitating
disease that is defined by a mutation in the TNALP enzyme that dramatically
reduces mineralization of the bone and teeth (M. Whyte et al., 2015). It is well
established that the collagen-mineral interface changes the mechanical proper-
ties of bone (Stock, 2015 Weiner and Wagner, 1998 Weiner et al., 1999), though
this interface is poorly understood. Complementary to existing literature on
collagen formation that has focused on the putative role of water to stabilize col-
lagen structures and hydrogen bonding (Holmgren et al., 1998 Holmgren et al.,
1999 Bertassoni et al., 2012), our work supports the role of mineral in stabilizing
collagen macrostructures observed in prior studies that have found mineral nu-
cleation and growth within immature collagen fibers. This process compresses
the collagen molecules along their triple helix axis (Lees et al., 1984 Eanes et al.,
1970), thereby allowing space for mineral propagation and collagen assembly
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into sheets (McCutchen, 1975). The SHG polarimetry used in this work visual-
izes the disruption of the collagen structure at both the fiber and lamella sheet
level of organization. Our texture analysis method incorporates both spatial
and polarimetric data to clearly differentiate between healthy and HPP bone by
evaluating the structure of the collagen fibers along the polarization angle axis.

The current work extends our prior efforts to evaluate collagen formation in
full-thickness bone (Pendleton et al., 2020). Other bone studies have used polar-
ized SHG analysis to explore collagen organization in different regions of sliced
bone (Rouède et al., 2017) and in response to disease (Nadiarnykh et al., 2007),
but here, we did not manipulate the bone and were still able to describe collagen
organization in healthy and diseased states. Much of the previous SHG work
has relied on comparison between forward and back generated SHG to directly
study thin sections (Houle et al., 2015a Caetano-Lopes et al., 2010), or extract
bulk optical parameters of thicker samples (LaComb et al., 2008). Our SHG
collection is limited to epi-mode so we collect a combination of back-generated
signal and forward-generated signal that has been back-scattered, which may
reduce our sensitivity to collagen orientation in comparison to thin sections
that are able to separate the forward and backward SHG. Optical properties of
the cranial bone such as birefringence, diattenuation, and polarization crosstalk
impact the accuracy of polarimetric measurements in thick tissue (K. F. Tehrani
et al., 2021). Our prior work found minimal effect of these parameters on polari-
metric measures captured within the first scattering length of the cranial bone;
therefore, in the current studies we imaged less than 15 μm deep (Pendleton et
al., 2020). Similar approaches to investigate collagen fiber alignment have lever-
aged the periodic arrangement common in collagen using Fourier based analysis
of bone and other tissues (Ambekar et al., 2012 Sivaguru et al., 2010 Ghazaryan
et al., 2012). This is especially well suited to tissues like tendon and muscle that
have highly periodic structures, but less so for bone where there are numerous
orientations of collagen bundles. Texture analysis using has been used to de-
scribe age and disease related differences in tendon and pancreatic tissues with
SHG (W. Hu et al., 2012a), and some studies have explored the potential to
combine polarimetry with texture analysis on resulting collagen orientation
profiles (Golaraei et al., 2020 Hristu et al., 2021 Dong et al., 2017). Here, we
build on these methods to develop a spGLCM approach that includes the spa-
tial polarimetric response of collagen in describing diseased states in whole bone
tissue. Our work shows how the lack of molecular scale mineralization found
in HPP appears to be associated with disruption of larger collagen lamella sheet
structures. Using our spGLCM method allows the inclusion of polarization
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information in epi-detected thick samples, which makes classification between
healthy and HPP more accurate.

The fusion of spGLCM analysis and machine learning reveals distinct pat-
terns in bone collagen between healthy and HPP states. Our models, particu-
larly random forest, showcase the impact of polar contrast and energy in cate-
gorizing these states. These findings underscore the potential of spGLCM pa-
rameters in delineating subtle differences in collagen organization, highlighting
the relevance of polarimetric data in understanding HPP-associated collagen
architecture.

Taken together, this study finds that collagen fiber and lamella sheet assem-
blies are significantly impaired in the HPP bone. Both SEM and SHG data
support previous studies that indicated impairment in HPP collagen structure
within osteoid using histological methods (Barvencik et al., 2011). Our work
does not directly address the mechanical effects of collagen organization; but
literature investigating a range of disease states with bone fragility phenotypes
such as osteoporosis, diabetes and aging has found collagen structural defects
to be associated with fragility (Saito and Marumo, 2010 Poundarik et al., 2015
Vashishth, 2007), and that misalignment of collagen and hydroxyapatite im-
pairs bone strength and mechanical function (Sekita et al., 2017). Although the
bone fragility of HPP has a direct origination from reduced mineral deposition
and resulting bone mineral density (Bianchi, 2015), impaired collagen organi-
zation may increase severity of the bone weakness phenotype resulting from
HPP. Thus, not only does the hypomineralization directly weaken the bone,
but the associated observed collagen deformations may further diminish bone
tensile properties and toughness. Furthermore, although we did not investigate
collagen organization in the other mineralized craniofacial tissues like the peri-
odontal ligament (PDL), it is possible that the disrupted collagen assembly we
observe in HPP plays a role in reducing the binding strength of the PDL and
contributes to the intact tooth loss associated with even mild odontohypophos-
phatasia (van den Bos et al., 2005).

In the future, it would be of interest to investigate the impact of a miner-
alization rescuing treatment on the collagen disorder observed in HPP. This
could be done by treating HPP mice with Strensiq, the synthetic bone-targeted
alkaline phosphatase enzyme used in patients to treat HPP (M. P. Whyte, 2016).
In addition, it is important to note that our study uses the severe infantile form
of HPP and evaluates lamellar sheet formation at two weeks of age when dis-
organized regions still are prevalent even in healthy mice. Future studies could
seek to understand the impacts of HPP on collagen structure in mature mice
with more mild forms of the disease using an adult HPP murine model. Many
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HPP patients exhibit comparatively mild symptoms such as tooth loss, frequent
fractures, or bone degradation and osteoporosis in mid-life (M. P. Whyte, 2016
M. Whyte et al., 2015 Bianchi, 2015) that may also have a collagen organization
defect or collagen degradation associated with them. In addition, our current
work focused on the calvaria of HPP bone, and future efforts may aim to in-
corporate analysis of long bone- and even extend the technique to investigate
other metabolic bone disorders.

2.10 Conclusion
Our work presented here develops polarized SHG imaging together with a
spGLCM texture analysis for evaluating collagen fibers and lamella sheet struc-
tures of the bone in both a healthy and diseased state. By using HPP as our
disease model, our work supports the linkage between collagen and mineral
within the bone to stabilize macro collagen structures. We found that collagen
is organized into regions of similar orientation within healthy bone and these
regions do not exist within HPP bone. Similarly, lamella sheets are clearly de-
fined with one or two dominant angles of orientation within the WT bone, but
the collagen fibers of HPP bone lack a dominant angle of orientation. We devel-
oped a texture analysis method that incorporates both spatial and polarimetric
data to clearly differentiate between healthy and HPP bone by evaluating the
structure of the collagen fibers along the polarization angle axis, using several
machine learning classification techniques. This method can be expanded to
describe bone health as it relates to aging or other diseases like osteogenesis im-
perfecta; and may be complimentary to current bone analysis techniques such
as bone mineral density. This could allow for additional guidance on treatment
of HPP and other metabolic bone disease by monitoring the collagen response
to therapy.
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Chapter 3

Adaptive Optics for
Microscopy

In the preceding chapter, all the Second Harmonic Generation (SHG) exper-
iments were conducted on the surfaces of mice skulls, focusing closely on the
suture region. However, as the examination delves deeper into the biological
specimen, the Point Spread Function (PSF) undergoes distortion, resulting in
a decrease in peak intensity. This effect stems from the diverse composition
of biological materials, each characterized by unique refractive indices. Con-
sequently, light passing through such media experiences refraction and scat-
tering. Fortunately, technological advancements, particularly those derived
from astronomy and referred to as Adaptive Optics (AO), now offer solutions
to mitigate these refractive index variations. AO has found extensive utility
across a spectrum of microscopy techniques. Various iterations of corrective
elements, wavefront sensing devices, and methodologies, including sensor-less
approaches, have emerged. This chapter embarks on a comprehensive explo-
ration of aberration origins, followed by a discussion on corrective elements.
We then scrutinize both direct and indirect wavefront measurement techniques
before concluding with an analysis of corrective algorithms.

3.1 Introduction
In the context of a plane beam of light traversing through space, contiguous
points sharing identical phase characteristics form what is termed a wavefront.
As such, regions with the same phase are spaced apart by intervals equivalent
to the wavelength. Describing the beam within the pupil, a complex pupil
function denoted byP delineates its amplitude (A) and phase (Ψ) (Wilson and
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Sheppard, 1984),

P (r, θ) = A(r, θ) exp [j(Ψ0 +Ψ(r, θ))] (3.1)

where Ψ0 represents an arbitrary wavefront offset, and Ψ(r, θ) signifies phase
discrepancies due to aberrations. In an ideal infinity-corrected imaging system, a
spherical wavefront originating from a point source transforms into a flat plane
wave after collimation by the objective lens. However, imperfections within
optical components, misalignments, and fluctuations in the refractive indices
of biological samples introduce non-uniform phase delays. Consequently, each
point on the wavefront accumulates the sum of all phase delays encountered
along its trajectory (M. Booth, 2007 Bourgenot and et al., 2013 M. J. Booth,
2014), resulting in an irregular wavefront shape (fig. 3.1). This irregularity
prevents all light rays from converging to a singular point, leading to the forma-
tion of an aberrated Point Spread Function (PSF) characterized by an increased
standard deviation (s) and decreased intensity peak (N) which will significantly
impact resolution.

Figure 3.1: Optical system 1 is a "perfect system." The rays collected from a point
source located at infinity are all refracted in a single point. The wavefront error
of optical system 2 compared to optical system 1 is characterized by local phase
advances or retardations (optical path differences, which are represented as little
arrows). Credited to: Pr. Daien Gatinel www.gatinel.com
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3.1.1 Optical System Aberrations
The presence of imperfections within optical components, coupled with mis-
alignments, gives rise to several prevalent optical aberrations, as depicted in
Figure 3.2. Among these, defocus, astigmatism, coma, and spherical aberration
are most common. It’s worth noting that tip and tilt corrections, predominant
concerns in astronomy, are generally not classified as aberrations in microscopy.
Defocus, as implied by its name, occurs when the focal plane deviates from the
imaging plane. Astigmatism results from a lens lacking symmetry about the
optical axis. Coma manifests when an off-axis point is imaged, giving rise to
a comet-shaped Point Spread Function (PSF). Particularly significant in high
Numerical Aperture (NA) systems, spherical aberration arises from the curva-
ture mismatch between a spherical wavefront and the parabolic shape of a lens.
This discrepancy, correctable through proper alignment, becomes pronounced
with oil immersion objective lenses. The refractive index mismatch between oil
(or cover glass, n = 1.52) and water (or biological sample, n ≈ 1.33 − 1.47)
(Jacobsen and Hell, 1995)introduces additional curvature to the wavefront, di-
rectly impacting the back focal plane of the objective. These aberrations adhere
to Snell’s law and become particularly crucial for deep tissue imaging (>50 μm).

Figure 3.2: Illustration of optical aberrations. (a) perfect focus, (b) Coma, (c)
Spherical aberration, (d) Astigmatism.
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3.1.2 Biological Sample Aberrations
All the aforementioned aberrations can be induced by a biological sample, pri-
marily stemming from its geometric configuration and the refractive index dis-
parities within. Initial endeavors to quantify the displacement of the Point
Spread Function (PSF) from its anticipated position due to refractive index
mismatches were rudimentary, often relying solely on Snell’s law (Shaw and
Rawlins, 1991 Carlsson, 1991 Visser et al., 1996), illustrated in Figure 3.3. This
analysis assumes the presence of a solitary refractive index interface, which leads
to an axial shift of the focus. If the interface is tilted, a lateral shift may also
occur. Hence, the ratio between the actual and nominal focal points can be
expressed as:

NFP =
n2

n1

AFP (3.2)

Figure 3.3: Illustration of focus through an aberrating medium.

The aberrations induced by biological factors have been extensively stud-
ied and modeled in (M. Booth et al., 1998 M. Booth et al., 2002 Schwertner,
Booth, and Wilson, 2004 Schwertner et al., 2007). To derive an equation for an
aberrated wavefront, it is imperative to first ascertain the phase of a plane that
has traversed through the sample. The phase of point L(x, y, z) subsequent
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to passage through multiple layers of diverse refractive indices (x̃, ỹ, z̃)can be
determined by:

ϕ(L(x, y, z)) =

∫ L(x,y,z0)

F

2π

λ
(n(x̃, ỹ, z̃))dw (3.3)

where λ is the wavelength of the beam in free space, F is the focal point, andw
is the geometrical path light travels governed by Snell’s law. The aberration of
the wavefront from the ideal situation at the plane z0 can be written as:

Φ(x, y) =

∫ P (x,y,z0)

F

2π

λ
(n(x̃, ỹ, z̃)− n0(x̃, ỹ, z̃))dw (3.4)

where n0 is the nominal refractive index of the propagating media without the
aberrating media. To see the effect of the aberrating media on the PSF we can
use the well-known equation relating the PSF to the pupil (Born et al., 1999):

h(u, v, ϕ) =

∫ 2π

0

∫ 1

0

P (r, θ)exp(j
1

2
ur2 + jvr cos(θ − ϕ))rdrdθ (3.5)

Now by substituting 3.4 into 3.1, and the combination into 3.5, the PSF be-
comes:

h(u, v, ϕ) =

∫ 2π

0

∫ 1

0

exp(jΦ(r, θ))exp(j
1

2
ur2 + jvr cos(θ − ϕ))rdrdθ

(3.6)
This effectively relates the variations of phase to the PSF. In a recent study by
J. J. Braat and Janssen, 2015 effects of small and large aberrations on the PSF and
OTF are explained.

3.1.3 Aberration Models
Optical aberrations in systems featuring a circular pupil are commonly charac-
terized using Zernike polynomials (Wyant, 1992). Zernike modes constitute a
comprehensive set of orthogonal polynomials defined on the unit circle, serving
as a means to describe and assess optical aberrations (M. Booth, 2007).

Several alternative models of aberrations have also been devised, including
Lukosz (Lukosz, 1963), Braat (J. Braat, 1987), and Lukosz-Zernike (M. Booth,
2007). These models aim to mitigate the error in wavefront aberration approxi-
mations, particularly for large wavefront errors.

Zernike polynomials are expressed as a product of radial and azimuthal func-
tions and possess three fundamental properties. Firstly, they exhibit rotational
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symmetry. Secondly, the radial polynomial must have a degree of n and should
not possess powers less thanm. Lastly, the parity of the radial polynomial must
align with that ofm. The polynomials are mathematically defined as:

Zm
n (r, θ) =


√
2R−m

n (r)sin(−mθ) m<0
R0

n m=0√
2Rm

n (r)sin(mθ) m>0

whereR is:

Rm
n (r) =

√
n+ 1

(n−m)/2∑
s=0

(−1)s(((n− s)!

s!((n+m)/2− s)!((n−m)/2− s)!
rn−2s

(3.7)
In this thesis, we adopt the notation for Zernike modes as outlined in Wyant,

1992. The equations along with their corresponding notations are presented in
the Following Table 3.1.3. Visual representations of Zernike polynomials up to
the fifth order are depicted in Figure 3.4.

n m No. Equation Description
0 0 0 1 Piston
1 1 1 2rcosθ Tip
1 -1 2 2rsinθ Tilt
2 0 3

√
3(2r2 − 1) Defocus

2 2 4
√
6r2cos(2θ) Astigmatism 90°

2 -2 5
√
6r2sin(2θ) Astigmatism 45°

3 1 6 2
√
2(3r3 − 2r))cos(θ) Coma Vertical

3 -1 7 2
√
2(3r3 − 2r))sin(θ) Coma Horizontal

4 0 8
√
5(6r4 − 6r2 + 1) Spherical

3 3 9 2
√
2r3cos(3θ) Trefoil

3 -3 10 2
√
2r3sin(3θ) Trefoil

4 2 11
√
10(4r4 − 3r2)cos(2θ) Second Astigmatism 90°

4 -2 12
√
10(4r4 − 3r2)sin(2θ) Second Astigmatism 45°

5 1 13 2
√
3(10r5 − 12r3 + 3r))cos(θ) Second Coma Vertical

5 -1 14 2
√
3(10r5 − 12r3 + 3r))cos(θ) Second Coma Horizontal

5 0 15
√
7(10r6 − 10r4 + 12r2 − 1) Second Spherical
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Figure 3.4: A simple interpretation of Zernike Polynomials

Now if we have a known aberration, the coefficient of each mode can be
determined by performing the following transform:

Mi =
1

π

∫ 1

0

∫ 2π

0

Φ(r, θ)Zi(r, θ)rdθdr (3.8)
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Likewise, a wavefront can be produced by superposing modes with known co-
efficients. This is mainly used for wavefront sensor-less sensing and correction.

Φc(r, θ) =
∑
i

MiZi (3.9)

3.2 Element for compensating wavefront errors
This section presents an overview of the most frequently utilized technologies
for compensating wavefront errors, namely Spatial Light Modulators, Digital
Micro-Mirror Devices, and Deformable Mirrors.

3.2.1 Spatial Light Modulators
A Spatial Light Modulator (SLM) comprises an array of pixels, each capable of
modulating either the phase, amplitude, or polarization of the incident beam
(Figure 3.5). Through the application of phase delays, SLMs can compensate
for wavefront distortions (Maurer et al., 2011 Neff et al., 1990). These devices,
commonly employed in the television industry, utilize liquid crystal technology,
exhibiting properties akin to both liquids and solid crystals, thereby offering
tunable optical characteristics like birefringence. SLMs come in two main types:
transmissive, known as LC-SLMs, utilizing liquid crystal technology, and re-
flective, known as LCOS-SLMs, employing liquid crystal on silicon technology
(Cho et al., 1998 Mu et al., 2006). Each pixel typically comprises two polarizers,
transparent electrodes, and liquid crystal material. Positioned perpendicularly,
the polarizers normally block light transmitted through the other. The molecu-
lar orientation of the most common type, twisted nematic aligned LC, forms a
helical structure, with the applied electric field controlling the polarization de-
viation of incident light. This allows for polarization adjustment from 0° (com-
pletely blocked) to 90° (fully transmitted), with gray values achievable based on
modulation depth. Alternatively, vertical and parallel nematic alignments are
suitable for amplitude modulation, particularly with linearly polarized incident
light (Török and Kao, 2007 Birch et al., 2011).

For phase modulation, the second polarizer must be removed to solely apply
a phase delay, as the twisted nematic alignment induces unwanted polarization
changes. Therefore, vertical or parallel nematic alignments are more appropriate
for phase-only modulation. Despite their capability to effectively introduce
phase differences, SLMs are limited by their slow speed (∼ 100Hz), wavelength-
dependent phase changes, and sensitivity to the polarization of incident waves,
which constrain their applications (Vellekoop and Mosk, 2007).
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Figure 3.5: The electro-optical characteristics of nematic liquid crystal layers
facilitate the localized alteration of the phase of the propagating readout light.
The application of an electric field induces an average molecular rotation, con-
sequently altering the refractive index by the polarization of the input light.
Common anchoring conditions include vertical (VAN), horizontal (PAN), or
a combination of both, such as twisted (TN). This straightforward device en-
ables the modulation of light phase, amplitude, or polarization based on the
design specifics and the inclusion or exclusion of additional polarizing elements.
Credit: Aurélie JULLIEN

3.2.2 Digital Micro-mirror devices
To overcome the sluggish operation of SLMs, digital micro-mirror devices (DMDs)
have been enlisted to expedite the correction process. DMD technology, com-
monly found in projectors, utilizes an array of micro mirrors (pixels) to generate
images through the application of binary patterns (Figure 3.6). While projec-
tion applications utilize different grayscale shades by adjusting the on/off duty
cycles of each pixel, for phase modulation, a holographic technique known as
binary phase modulation (Conkey, Caravaca-Aguirre, and Piestun, 2012) can
be employed. This technique has been utilized in the correction of scattering
media by selectively allowing portions of the beam with acceptable phase to
pass while blocking the remainder (X. Zhang and Kner, 2014).
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Figure 3.6: (a) An image depicting a pair of micromirrors, one deflected in the
’off’ direction and the other in the ’on’ direction, is provided. Each micromirror
is affixed to a yoke, which is connected to support posts linking the assembly
to the underlying complementary metal-oxide semiconductor (CMOS) sub-
strate. The landing tips mark the end of the travel range. The mirrors on the
Polygon400 DMD measure 18.0 μm on each edge, and the entire chip covers
a projection area of 8.7× 15.5mm on Nikon microscopes. This setup enables
the realization of near-diffraction-limited pixel sizes with various objectives, fa-
cilitating stimulation with intracellular specificity. (b) An overview illustration
of the entire DMD is presented. Credit: Allen, 2017

3.2.3 Deformable mirror
Deformable mirrors (DM) represent optical components featuring flexible re-
flecting surfaces. This flexibility enables the adjustment of the mirror’s surface
shape to compensate for wavefront errors by altering the optical path length.
Positioned behind the reflective surface of the DM are multiple actuators ca-
pable of inducing deformation in the reflected wavefront. Depending on the
spacing of the actuators (pitch) and their range of movement (stroke), they can
be categorized into two main types: tweeter and woofer. Analogous to audio
systems where tweeters produce high-pitched sounds and woofers handle low-
pitched ones, tweeter DMs correct higher-order modes while woofers address
lower-order ones. Deformable mirrors come in two primary types: segmented
and continuous surface (Kubby, 2013).

Two types of segmented deformable mirrors (DMs) exist. The first type
enables forward and backward motion (piston), involving only one actuator. A
more advanced variation emerged later, allowing each segment to perform pis-
ton, tip, and tilt operations with three actuators involved per segment. Typically
hexagonal in shape, segments in this type, as depicted in Figure 3.7, can pro-
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duce shapes with less error compared to the piston type. However, a drawback
is the time required for calculating each actuator for several thousand segments.
Despite this drawback, since the segments operate independently, they can be
utilized for correcting higher-order aberrations, albeit leading to a diffraction
problem. This occurs because each segment acts as a slit. Various types of de-

Figure 3.7: a) Schematic diagram of an Iris AO DM segment. The diagram
of the 700 μm diameter segment (vertexto-vertex) is highly exaggerated in the
vertical direction. Tens, hundreds, and even thousands can be tiled in an ar-
ray. b) Die photograph of a 111-actuator 37-piston/tip/tilt-segment DM with
3.5mm inscribed aperture. Photo courtesy of Takayuki Kotani, Paris Observa-
tory. Credit: Helmbrecht et al., 2009

formable mirrors (DM) are depicted in Figure 3.8. Alongside segmented DMs,
continuous surface DMs are also employed. Actuators positioned behind the
surface regulate the mirror’s shape. Consequently, these actuators cannot au-
tonomously apply deviations to their portion of the surface. An influence func-
tion (or poke function in some literature) can be derived for each actuator. The
phase is determined by the inner product of the influence function I and the
actuator matrixA:

Φc = I · A (3.10)

This equation can be inversed to produce the actuator matrix, for a desired
phase:

A = I
−1
Φc (3.11)

Continuous surface deformable mirrors (DMs) might seem to offer lower error
compared to other types, as they are not segmented and theoretically should
closely match the shape of the aberration. However, since they are typically em-
ployed for correcting lower-order aberrations, a segmented piston-tip-and-tilt
DM yields lower error for higher-order corrections. In astronomy applications,
the fitting error is often approximated using the Kolmogorov atmospheric tur-
bulence model. Here, we present the formula for the fitting error for compari-
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Figure 3.8: Schematic cross sections of the three types of wavefront correctors
evaluated. For illustration, the reflective surface of each corrector is configured
for compensating the same wavefront aberration. See text for description of the
corrector types. Credit: Doble et al., 2007

son among different DM types, as given by Hardy, 1998:

σ2
F = aF (

d

r0
)
5
3 rad2 (3.12)

Here, r0 represents the coherence length, also known as the Fried parameter
or "seeing cell size," which delineates the maximum diameter of a collector al-
lowable before distortions impair its performance. Fa denotes the fitting error
coefficient, d signifies the sub-aperture size for the mirror, and rad indicates the
radius of the deformable mirror (DM). Hardy’s Adaptive Optics (AO) book
has assessed the errors for each type, which are reproduced in Table 3.1. Utilizing
the fitting error allows for the interpretation of the DM’s effect as a high-pass
filter. This implies that lower spatial frequencies are corrected to permit higher
spatial frequency components. The spatial bandwidth of the filter is determined
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Table 3.1: fitting error coefficients for each DM type

DM type Coefficient Actuators per segments
Piston only (square segments) 1.26 1
Piston only (circular segments) 1.07 1
Piston/tip/tilt (square segments) 0.18 3
Piston/tip/tilt (circular segments) 0.14 3
Continuous surface 0.28 1

by 1
r0

. The coefficient provided in Table 3.1 can be employed to equate the num-
ber of segmentsN required for each type to achieve the same level of correction,
utilizing the following equation:

N1

N2

=
aF1

aF2

6
5 (3.13)

For example, comparing the continuous surface DM and piston only with cir-
cular segments, we see that

(
6
5

)1.07 × 0.28 times more segments are required.
We can also see that Piston/tip/tilt DM produces better accuracy. It has to be
noted that these approximations are based on atmospheric turbulence models,
and not directly applicable to biological aberrations.

The actuators utilized can vary based on the application, ranging from elec-
tromagnetic, and piezoelectric, to MEMS-based ones. Their speed and hystere-
sis serve as key factors for determining the appropriate type for each application.
Another type of deformable mirror (DM) is the bimorph, which employs two
connected plates of piezoelectric wafers. Applying voltage to this arrangement
results in one plate contracting while the other expands, inducing curvature on
the surface.

3.3 Technologies for compensating wavefront er-
rors

The configuration of the adaptive optics (AO) system and the correction strat-
egy will vary depending on the microscopy approach. For instance, in two-
photon microscopy, correction of the excitation path is sufficient to ensure
that the scanning excitation beam is focused as narrowly as possible, with all
emitted photons collected at a Photon-multiplier tube (PMT). On the other
hand, confocal and structured illumination microscopy (SIM) techniques re-
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quire wavefront correction on both the excitation and emission paths, as both
are equally crucial in achieving a sharp point spread function (PSF). In wide-
field and single-molecule localization (SML) imaging, only correction in the
emission path is necessary, as they illuminate a large field of view and thus the
excitation path does not significantly impact the emission PSF. Additionally, in
epi-fluorescence mode, where both excitation and emission use the same path,
correction of the wavefront in the emission path automatically addresses any
aberrations in the excitation path.

3.4 Wavefront measurement
In this section, we explore various methods for measuring wavefronts, which
can be broadly categorized into two groups: direct and indirect techniques. Di-
rect methods involve the use of sensors, a concept dating back to the 1950s in
astronomy. Techniques such as the Foucault Knife-edge test (Babcock, 1953)
and the shearing interferometer (Southwell, 1980) were initially employed to
measure tip/tilt. Subsequently, methods like the Shack-Hartman wavefront
sensor (SHWS) (Platt and Shack, 2001), Pyramid sensor(Vérinaud, 2004), and
curvature sensor (Roddier et al., 1988) emerged as prominent direct wavefront
sensing approaches in astronomy. In microscopy, the SHWS (Beverage et al.,
2002 Azucena et al., 2009) finds widespread application across multiple modal-
ities. Additionally, coherence-gated wavefront sensing and the Pyramid wave-
front sensor are introduced in this section. On the other hand, the indirect
category comprises methods that do not rely on sensors but instead utilize spa-
tial information obtained from images to measure the wavefront, either with
or without manipulating it. Techniques such as phase retrieval, phase diversity,
hill climbing, modal wavefront optimization, and machine learning algorithms
fall into this category.

3.4.1 Direct measurement

Shack-Hartmann Wavefront Sensor

The Shack-Hartman wavefront sensor (SHWS) represents R. Shack’s enhance-
ment of the original aperture arrangement initially proposed by Hartmann in
1900. Widely recognized as the predominant wavefront sensor utilized in mi-
croscopy, the SHWS has found extensive application across various microscopy
modalities (M. J. Booth, 2014). It has been effectively employed in widefield
(Beverage et al., 2002 Tao, Crest, et al., 2011), two-photon (Aviles-Espinosa,
Andilla, et al., 2011 Cha et al., 2010), confocal (Rahman and Booth, 2013 Tao,
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Crest, et al., 2011), and light-sheet microscopy setups (Jorand et al., 2012). The
SHWS employs an array of micro-lenses, illustrated in Figure 3.9, to assess the
gradient of the wavefront. In this setup, a flat wavefront is depicted as a green
line. Each micro-lens focuses a segment of the wavefront onto a specific spot.
Consequently, when the wavefront experiences aberrations, the position of
each spot shifts in accordance with the gradient of the wavefront in the back
pupil plane of the lens, within the x-y plane. By discerning the positions of
the ideal and deviated point spread functions (PSFs), the wavefront can be ac-
curately reconstructed. The objective’s aperture is projected onto a microlens
array, depicted in Figure 3.9(a). Under normal conditions without aberrations,
the wavefront remains flat, resulting in a consistent arrangement of spots on
a camera situated at the lenslet array’s focal length. However, in the presence
of aberrations, the spots relocate in correspondence with the wavefront’s tilt
across each lenslet, as illustrated in Figure 3.9(a). The slope of the wavefront in
the y-direction, denoted as Sy for each lenslet, can be expressed as:

Sy =
∆Wy

a
=
y − y0
f

=
∆y

f
(3.14)

In the equation, ∆Wy represents the wavefront tilt, while a denotes the diam-
eter of a lenslet. The variable y0 signifies the spot’s location in the absence of
aberrations, whereas y denotes the location for a wavefront affected by aberra-
tions. Additionally, f represents the focal length of the lenslet array. A similar
equation applies to the x-direction. It’s important to note from 3.9 that the
lenslets feature flat edges at both the top and bottom to ensure continuity with-
out any light loss in the gaps between them. When selecting a lenslet array,
special attention must be paid to ensure this continuity, especially if optical
efficiency is a crucial consideration.

A flat wavefront at the back pupil plane of the Shack-Hartmann wavefront
sensor (SHWS) necessitates a point source. In astronomy, natural or synthetic
guide stars—point sources at infinity—are employed for this purpose. How-
ever, in microscopy, where natural guide stars are absent, synthetic guide stars
(SGS) must be generated. These SGS can be produced using various methods,
including autofluorescence (Tao et al., 2013) from biological material, fluores-
cence from staining sparse structures (Tao, Crest, et al., 2011 Tao et al., 2012),
or micro-beads (Tao, Crest, et al., 2011 Tao, Azucena, et al., 2011 Azucena et al.,
2010 Vermeulen et al., 2011).

Several techniques are utilized for wavefront reconstruction, such as least
squares, Fourier-based methods, and correlation approaches. The sensitivity
of the SHWS is contingent upon the aperture size of the lenslets. However,
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Figure 3.9: Principle of the Shack-Hartmann sensor. An array of microlenses
is placed in a conjugate pupil plane with a camera at a distance of the focal
length of the lenslet array. (a) A plane (aberration-free) wavefront results in a
regular array of spots falling on the camera. When the wavefront is aberrated,
an irregular array of spots is formed. (b) The relationship between wavefront
tilt across a lenslet, ∆Wy, and shift in the location of the spot, ∆y.

it is imperative to strike a balance between the aperture size and the number
of lenslets that can fit in the back pupil plane to prevent aliasing while still
minimizing errors (Neal et al., 2002 Chew et al., 2006).

Selecting the Lenslet Array When deciding on the appropriate lenslet array,
two primary factors come into play:

1) The quantity of lenslets sampling the pupil.
2) The focal length of the lenslet array.
The quantity of lenslets sampling the pupil hinges on the pitch of the lenslet

array, which is equivalent to the lenslet diameter for a fully populated array, and
the magnification between the objective aperture and the lenslet array. A higher
number of lenslets sampling the pupil enhances the spatial resolution of the
measurements. However, this may result in a lower signal-to-noise ratio for
each spot due to reduced light per lenslet. Typically, a ratio of 2 for the total
number of lenslets to the total number of actuators is deemed adequate for
adaptive optics systems in vision science. However, astronomical adaptive op-
tics systems have employed lower values (Laslandes et al., 2017 Tyson, 2015).
When selecting the focal length, there exists a trade-off between dynamic range
and sensitivity, as depicted in Figure 3.10. Dynamic range refers to the maxi-
mum measurable tilt across a lenslet before the spot transitions into the region
behind a neighboring lenslet. This tilt corresponds to a shift in the spot of a/2.
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Figure 3.10: Dynamic range and sensitivity for a Shack-Hartmann sensor. Dy-
namic range is the maximum measurable tilt, ∆WMax, across a given lenslet.
This corresponds to the tilt resulting in movement of a Shack-Hartmann spot
to the edge of a lenslet, ∆yMax , of a/2. (b) Sensitivity is the minimum measur-
able tilt, ∆WMin. This depends on the minimum measurable shift, ∆yMin.

Therefore, the maximum measurable tilt is:

∆WMax =
a2

2f
(3.15)

Hence, as the focal length increases, the dynamic range decreases. Conversely,
with shorter focal lengths, the Shack-Hartmann system becomes less sensitive
to the tilt across each lenslet. The minimum measurable tilt is determined by:

∆WMin =
∆yMina

f
(3.16)
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Here, ∆yMin represents the smallest detectable spot displacement, influenced
by factors such as the noise level. In practical applications, the choice of focal
length should be based on the mirror’s stroke capacity (or the actual stroke
planned for use). Ideally, the focal length should be selected to ensure that a full
deflection of the surface of one actuator, from its midpoint position, does not
cause a spot to shift into the area behind a neighboring lenslet. It’s important
to note from Equations 3.15 and 3.16 that both sensitivity and dynamic range
are impacted by the diameter of each lenslet. However, it is typically assumed
that this parameter is determined during the process of establishing the number
of lenslets per actuator.

Selecting the Camera Shack-Hartmann sensors have utilized a diverse ar-
ray of CMOS and CCD cameras. Factors that warrant consideration include
quantum efficiency and noise levels. While advancements in these performance
metrics are desirable, they must be balanced against associated costs. It’s worth
noting that when employing the Shack-Hartmann sensor solely for calibrating
a deformable mirror, for instance, in preparation for implementing sensorless
adaptive optics, a highly sensitive camera may not be necessary since laser light
can be utilized directly. However, in scenarios where the Shack-Hartmann
sensor is tasked with closed-loop correction of sample aberrations using fluo-
rescence emission, the returning light intensity from the sample is often low,
necessitating a more sensitive camera.

Determining Spot Location The determination of the spot location behind
each lenslet commonly employs a center-of-mass algorithm, known as centroid-
ing. The x and y coordinates, i.e., centroids of a spot, (Cx, Cy), are calculated
as:

Cx =

∑N
i=1 xi · Ii∑N

i=1 Ii
, Cy =

∑N
i=1 yi · Ii∑N

i=1 Ii

where xi and yi are the coordinates of the ith pixel, Ii is the intensity of the
ith pixel, and N is the total number of pixels. The assignment of pixel coor-
dinates and pixel numbers is illustrated in Figure 3.11 for a simplified example
of a sensor with nine camera pixels behind a single lenslet. In the absence of
aberrations, the spot is positioned at coordinates (0,0), as depicted in Figure
3.11(a). When aberrations are present, the spot shifts to (0.25,-0.25), as shown
in Figure 3.11(b).
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Figure 3.11: How the pixel numbers and coordinates are assigned when using
a centre-of-mass algorithm to determine the spot location behind a lenslet. (a)
When no aberrations are present, the spot has coordinates (0,0). (b) Aberra-
tions are present and so the spot has moved to (0.25, -0.25).

Pyramid wavefront sensor

The Pyramid wavefront sensor (PWS) operates on the principle of the knife-
edge test to determine the gradient of the wavefront (Vérinaud, 2004, Carbillet
et al., 2005). Utilizing a pyramid prism, the PWS generates four images with
gradients in opposing directions and angles, as depicted in Figure 3.12. Through
computational manipulation, these images can be combined to reconstruct the
wavefront.

Compared to the Shack-Hartmann wavefront sensor (SHWS), the PWS
offers higher sensitivity and is less susceptible to aliasing (Vérinaud, 2004 Ko-
rkiakoski et al., 2007). Unlike the SHWS, its sensitivity is not constrained by
the low numerical aperture (NA) of the lenslets or the number of apertures. In
microscopy, the PWS has been utilized for phase imaging (Iglesias and Vargas-
Martin, 2013), indicating its potential applicability for wavefront sensing in
other modalities.

3.4.2 Indirect measurement

Phase retrieval and phase diversity

Phase retrieval is an image-based technique that operates without a wavefront
sensor, employing an iterative approach to minimize the error between an es-
timated wavefront and the actual one based on the measured 3D point spread
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Figure 3.12: The pyramid wave-front sensor set-up (left) and algorithms (right)
for simulating the modulation with N discretized points: the pupil plane im-
age corresponding to each modulation point is computed independently from
the others and the whole set of images are then finally summed. Credited to:
Carbillet et al., 2005

function (PSF) (Hanser et al., 2004 Hanser et al., 2003 Deming, 2007). Initially,
an ideal complex pupil function is assumed, from which the PSF is computed.
Subsequently, the amplitude of the measured PSF replaces the estimated PSF,
while the phase function remains unchanged. Following this, an inverse Fourier
transform is executed. By utilizing prior knowledge of the numerical aperture
(NA) and wavelength, out-of-pupil components can be masked out to adhere
to the constraints. This iterative process is repeated to diminish the error to an
acceptable level.
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Phase diversity is a method that capitalizes on a predetermined aberration
introduced into the system to gauge the wavefront aberrations. Unlike the
phase-retrieval technique, phase diversity can be applied with extended (inco-
herent) images (Gonsalves, 1982 Paxman et al., 1996).

Modal-based optimization

The method discussed above involve the application of known aberrations (such
as defocus), followed by computational analysis of acquired images to generate
the aberrated wavefront. In contrast, the methods outlined in this section em-
ploy a known aberration and utilize image-based metrics to assess the quality of
the result. The phase of the applied aberration can be generated using equation
3.9. Various iterations of model-based optimization have been explored and im-
plemented across different modalities (Bourgenot et al., 2012Débarre et al., 2008
Debarre et al., 2009 Jesacher et al., 2009 Olivier et al., 2009 Gould et al., 2012).
Generally, images are captured using a combination of multiple modes from an
orthogonal model (like Zernike or Lukosz), with distinct coefficients applied
to the pupil. These images are then assessed using a metric to determine the
optimal coefficient for each mode. The selection of an appropriate metric and
model is critical in these methods to extract the most spatial information with-
out causing photo-bleaching of the sample. A commonly employed algorithm
is Parabolic optimization (M. J. Booth et al., 2007), which estimates aberrations
by observing the impact of applying three coefficients of a Zernike mode and
fitting a parabolic curve to it. This technique necessitates a temporally stable
object for accurate referencing of measurements. However, its accuracy may be
compromised in scenarios with low signal-to-noise ratio (SNR) or temporally
fluctuating objects. The depicted process is illustrated in Figure 3.13. It’s essen-
tial to apply the coefficients at reasonable intervals to accurately determine the
center of the parabola.

Machine learning methods

Machine learning methods have emerged as powerful tools in sensorless adap-
tive optics, a technology that enables aberration correction in optical systems
without the need for a dedicated wavefront sensor. By leveraging computational
algorithms, machine learning techniques can directly infer wavefront aberra-
tions from imaging data, enabling real-time adaptive optics correction. These
methods typically involve training a model on a dataset of aberrated and cor-
rected images, allowing the system to learn the relationship between observed
image features and corresponding aberrations. One example is the work by
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Figure 3.13: Parabolic optimization approach. Sample images are captured for
each mode using at least three different bias values (−b, a,+b). Image quality
is estimated using a suitable defined metric for each image (M−,Mz,M+), and
a quadratic function is fitted to the measured points. The peak value of the
fitted curve corresponds to estimated best correction.

Kner et al., who demonstrated closed-loop adaptive optics for microscopy with-
out a wavefront sensor using machine learning algorithms (Kner et al., 2010).
This approach promises to enhance the performance and versatility of adaptive
optics systems, particularly in scenarios where conventional wavefront sensing
methods may be impractical or limited.

3.5 Metrics for sensorless correction
In many iterative wavefront correction schemes, an image-based metric serves
as a measure of the wavefront quality. Various features of an image are utilized
for this purpose, including maximum intensity, total fluorescence intensity,
image sharpness, and Fourier components, depending on the imaging modality.
For instance, in confocal and multiphoton microscopes, the total fluorescence
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intensity at a specific point is often employed (M. J. Booth, 2006 O. Albert et al.,
2000). Similarly, mean image intensity is utilized in two-photon microscopy
(Debarre et al., 2009), while in widefield microscopy, the maximum intensity of
the image or a specific region within it is commonly used as a metric (Thomas
et al., 2015). Additionally, metrics based on the low-frequency spatial content of
the image and image sharpness, which are intensity-dependent, are employed
in microscopy(Débarre et al., 2007 Fienup and Miller, 2003).

Another approach involves using a sharpness metric, which applies a high-
pass filter to the Fourier transform of an image, performs a summation, and
normalizes by the total frequency components (Burke et al., 2015). This metric,
denoted as S, is defined by:

S =

∑
n,m µn,mIn,m(n

′2 +m′2)∑
n,m In,m

(3.17)

µn,m =

{
1

√
(n′2 +m′2) ≤ ω

0
√

(n′2 +m′2) > ω

whereF is the Fourier transform of the image, with n andm coordinates, n′ =

n− (ntotal− 1)/2,m′ = m− (mtotal− 1)/2, ω is the radius of the threshold.
This metric assigns the highest weight to high-frequency components, which
typically have a lower signal-to-noise ratio. As a result, the metric is susceptible
to noise.

3.6 Open-loop or closed-loop control system
An adaptive optics (AO) system can be configured in either open-loop or closed-
loop control setups (Figure 3.14). In open-loop configurations, the wavefront
undergoes a single assessment using direct or indirect methods, followed by cor-
rection using the correction element. Subsequent imaging processes do not
involve additional wavefront measurements. Conversely, closed-loop systems
continuously monitor the wavefront, utilizing feedback to refine the correction
or adapt to changing conditions, such as dynamic aberrations induced by in
vivo samples. Initially introduced in microscopy using guide stars like backscat-
tered light or fluorescent beacons, the closed-loop configuration has also been
adopted in sensorless AO systems, employing techniques such as phase retrieval
and modal-based approaches.

The key distinction between closed-loop and open-loop systems lies in the
arrangement of the AO components. This distinction is depicted in Figure 1
for a simple confocal fluorescence imaging system. In a closed-loop system (Fig-
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Figure 3.14: Difference between a closed-loop and open-loop AO system imple-
mented in a simple confocal fluorescence imaging system. (a) In a closed-loop
system, the light returning from the sample passes via the deformable mirror.
The sensor measures the error in the aberration correction, rather than the full
induced aberration. In effect, the sensor provides feedback on whether the
deformable mirror has reached the desired shape to obtain an aberration-free
(plane) wavefront. (b) In an open-loop system there is no feedback and so non-
linearities and other uncertainties in the deformable mirror performance can
reduce system performance. Credited to: Karen Hampson and Martin Booth.

ure 3.14a), the light returning from the sample passes through the deformable
mirror before reaching the sensor. Consequently, the sensor measures the error
in the aberration correction rather than the full induced aberration, providing
feedback on whether the deformable mirror has achieved the desired shape to
obtain an aberration-free, i.e., plane, wavefront. In contrast, in an open-loop
system (Figure 3.14b), there is no feedback on whether the deformable mir-
ror has acquired the correct shape since the light does not pass through the
deformable mirror when returning from the sample. Closed-loop systems offer
advantages in accuracy as they inherently compensate for non-linearities in the
movement of the mirror surface, as well as hysteresis and drifts in the mirror’s
shape. Additionally, an aperture conjugate to the sample plane helps prevent
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light scattered from multiple depths from affecting sensor measurements. This
aperture must be larger than the usual confocal pinhole to ensure aberration
information is not filtered out.

Several important points emerge from the diagrams. Firstly, the deformable
mirror and sensor are typically located in a pupil conjugate plane, as commonly
implemented in AO systems. However, some studies have shown that placing
the corrector conjugate to the sample may correct aberrations over a wider field-
of-view (Mertz et al., 2015). Secondly, the light returning from the sensor passes
through the deformable mirror before reaching the imaging device in a confocal
system, as the final point spread function (PSF) and resolution are influenced
by both incoming and outgoing PSFs. In contrast, in a two-photon system, the
resolution depends on forming a tight focus in the sample, so the photodetector
need not be positioned after the corrector and can be placed near the sample to
collect as much returning light as possible. Lastly, the Shack-Hartmann sensor
is situated in a de-scanned path, meaning the light returning from the sample
does not pivot on the lenslet array, and each microlens focus remains stationary
during the scan. Traditional algorithms for analyzing Shack-Hartmann images
rely on a single focus forming behind each microlens on the Shack-Hartmann
camera, although this may not always be the case (Poyneer, 2003).

3.7 Conclusion
We have discussed adaptive optics (AO) methods initially developed for astron-
omy and their adaptation for microscopy applications. Our exploration revealed
how biological samples, alongside conventional sources of aberration like opti-
cal imperfections and misalignments, can significantly distort a wavefront. We
presented various correction elements typically employed to mitigate these aber-
rations. Furthermore, we delved into both direct and indirect methods of wave-
front measurement, elucidating the metrics utilized for indirect assessments.
In the upcoming chapter, we will unveil our utilization of adaptive optics for
real-time correction of wavefronts during data acquisition.
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Chapter 4

Multi-photon
Fluorescence Microscopy
With Adaptive Optics 5

This chapter aims to show the enhancement of resolution for two-photon fluo-
rescence microscopy (2PFM) by the implementation of Adaptive Optics (AO)
for imaging deeper inside a tissue. Adaptive Optics helps improve the optical
aberrations induced by biological samples and enable imaging further inside a
tissue. In this work we developed a two-photon fluorescence microscope with
adaptive optics (TPFM-AO) for high-resolution imaging, which uses a home-
built Shack-Hartmann wavefront sensor (SHWFS) to correct system aberra-
tions and a sensorless approach for correcting low order tissue aberrations. Us-
ing AO increases the fluorescence intensity of the point spread function (PSF)
and achieves fast imaging of subcellular organelles with ∼400 nm resolution
through 85 μm of highly scattering tissue. We achieved 1.55×, 3.58× and
1.77× intensity increases using AO, and a reduction of the PSF width by 0.83×,
0.74× and 0.9× at the depths of 0, 50 μm and 85 μmin living mouse bone
marrow respectively, allowing us to characterize mitochondrial health and the
survival of functioning cells with a field of view of 67.5 μm 67.5 μm. We also
investigate the role of initial signal and background levels in sample correction
quality by varying the laser power and camera exposure time and develop an
intensity-based criteria for sample correction. This work demonstrates a promis-
ing tool for imaging of mitochondria and other organelles in optically distorting
biological environments, which could facilitate the study of a variety of diseases
connected to mitochondrial morphology and activity in a range of biological
tissues.

83



4.1 Introduction
Mitochondria are intracellular organelles with 0.5 to 10 μm diameter that drive
energy production processes through the respiratory chain by oxidative phos-
phorylation (Siesjo, 1978Siegal et al., 1981). They play a fundamental role in
numerous physiological processes of critical importance in tissue homeostasis
and repair, such as cell differentiation (Folmes et al., 2012), apoptosis (Patrice
et al., 1996), signal transduction (Z. Xu et al., 2016), reactive oxygen species gen-
eration (M. Murphy, 2009), and maintenance of healthy organ function (Grop-
man, 2004). Their function is highly dynamic and reflected in mitochondrial
network structure, and imaging technologies are therefore essential to under-
stand physiological mitochondrial processes in health and disease. High energy
requirement tissues such as the brain and bone marrow are especially dependent
on carefully orchestrated mitochondrial maintenance and activity.

Over the last decades, evaluation of live tissue dynamics at cellular resolu-
tion using intravital imaging has transformed biological understanding of organ
function at a single cell level. In the bone, this has significantly advanced scien-
tific understanding of vascular dynamics, stem cell biology, and bone homeosta-
sis and regeneration (Spencer et al., 2014 Lo Celso et al., 2009 Christodoulou
et al., 2020 Wilk et al., 2017). In the brain, intravital imaging has generated
unique insight into brain circuitry and processing, brain cancer, brain trauma,
and degenerative diseases (Andermann et al., 2010 W. Yang et al., 2018 Shih et al.,
2012 Z. Chen et al., 2019 Y. Hu et al., 2021 Calvo-Rodriguez et al., 2019 Ricard
and Debarbieux, 2014). However, one of the most serious obstacles to imaging
is the poor penetration depth of intravital optical microscopy. Single photon
imaging with confocal detection is a common approach that uses visible light
for fluorescence excitation (400–650 nm), where light penetration is attenu-
ated by absorption and scattering of skull bone and tissues (Shi et al., 2016 M.
Wang et al., 2018b). To extend imaging depth, high energy pulses of near-IR
excitation light (760-1080 nm) can be tightly focused to create a nonlinear two-
photon absorption process using standard fluorophores. Two-photon imaging
extends the attainable imaging depth to 500 μm-1mm of brain tissue and up to
∼150 μm in highly scattering bone (S. Hell and Stelzer, 1992 C. Xu and Webb,
1996 Callis, 1997 Denk, Strickler, and Webb, 1990 Sinefeld et al., 2015a). How-
ever, nonhomogeneous wave propagation through these irregular and highly
distorting turbid media induces high magnitude phase deviations in the wave-
front (K. Tehrani et al., 2017) that dramatically reduce image resolution even
at moderate depths. Therefore, cranial windows and skull-thinning methods
are commonly adopted to improve optical access (C. Chen et al., 2021 Jeong
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et al., 2013 G. Yang et al., 2013). However, the surgery increases risk of tissue
inflammation and may cause stress that could alter biological function in the
target tissues (Li et al., 2014).

One way to overcome this challenge is with adaptive optics (AO). An AO
system typically consists of a deformable mirror conjugated to the back pupil
plane of a microscope, and either wavefront sensor or image-based sensorless
wavefront estimation methods to correct aberrations and improve the resolu-
tion, which can improve in vivo imaging in animal models (Tao et al., 2013 K.
Wang et al., 2015 Rueckel et al., 2006 Debarre et al., 2009, Kong and Cui, 2015
Kong et al., 2016 Kong et al., 2016, O. Albert et al., 2000, Wright et al., 2005).
Wavefront sensor approaches include Shack–Hartmann wavefront sensors with
auto-fluorescent or near-IR guide stars [33,34], coherence gated wavefront sens-
ing (Rueckel et al., 2006), and image-based methods that use information from
acquired images to remove wavefront distortions (Debarre et al., 2009 Marsh
et al., 2003 Kong and Cui, 2015 Kong et al., 2016 Kong et al., 2016). Wavefront
sensorless approaches usually estimate an initial error and through an iterative
scheme converge to an optimized solution based on intensity metrics (M. J.
Booth, 2006 O. Albert et al., 2000 Wright et al., 2005). Recently, nonlinear
guide stars with Shack–Hartmann measurements of wavefront aberrations have
yielded an accurate measurement of low-order tissue aberrations that proves to
be useful to extend imaging depth in biological samples but require long integra-
tion times and has a small effective field of view (Tao et al., 2013 Aviles-Espinosa,
Andilla, et al., 2011). In an alternative wavefront sensorless approach using rapid
anisotropic aberration correction, the adaptive correction element was conju-
gated to the turbid layer instead of the focus, with the goal of increasing the
size of the isoplanatic patch (J.-H. Park et al., 2015 Southern et al., 2019). Our
bone marrow imaging occurs within an extended scattering layer, and so such
an approach is not appropriate.

4.2 Objectives
In this chapter, we calculate and correct both the system aberration and the
sample aberrations caused by mouse cranial bone and brain tissue to improve
imaging for dynamic mitochondria localization. We demonstrate that low-
order aberration correction provides a significant improvement when imaging
through the bone into the bone marrow. We first compensate for the aberra-
tions of our microscope system using a sensor-based AO algorithm, and then we
compensate for the aberrations of mouse cranial bone by using a Zernike-mode-
based sensor-less AO algorithm because it requires comparatively less signal to
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optimize and create an improved wavefront profile. We use our two-photon
fluorescence microscope with adaptive optics to image mitochondria in mouse
cranial bone marrow and brain. We also find and evaluate the threshold and
performance for intensity-based sample correction. This work shows that after
AO correction, the fluorescence intensity of the point spread function (PSF)
is improved, and the resolution of images is significantly improved when imag-
ing through intact mouse cranial bone into the bone marrow, allowing us to
characterize mitochondrial health and dynamics of functioning cells deep in
tissue.

4.3 Optical System Design

Figure 4.1: Modified system design with SHWFS. BPP- Back pupil plane;
CMOS- scientific camera; DG- diffraction grating; DiM- Dichroic mirror; DM-
deformable mirror; F- Filter; IP- image plane; L- Lens; OL- Objective lens; PBS-
Polarizing beam splitter; PH- pinhole; PMT- photon multiplier tube; SHWFS-
Shack-Hartmann wavefront sensor; TL- tube lens.

A schematic of the adaptive optics two-photon fluorescence microscopy
(AO-TPFM) system is shown in Fig. 4.1, based on our previously published
work K. Tehrani et al., 2017. The optical setup consists of a Chameleon Ti:Sapphire
laser producing 680 to 1080 nm 137 fs pulses of energy, with power at the source
modulated using a half-waveplate and a polarizing beam splitter. The laser beam
is recollimated and passed through a Pockels cell (Conoptics) for rapid intensity
modulation during imaging. The beam is then expanded using a telescope with
a pinhole in the focus to create a more uniformly Gaussian beam profile. The
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Pockels cell is used to block the beam during flyback, as well as correct beam
intensity for the resonant scanner. The deformable mirror (DM, Alpao DM97-
15) placed conjugate to the back pupil plane has a continuous face sheet and
97 actuators and is used for low-order AO wavefront correction. The DM is
inserted into the beam path with two optical relay systems. Beam scanning is
done by a Sutter instrument MDR-R box that houses a fast resonant galvo and
a slow galvo scanner for horizontal and vertical sweeping respectively. Both scan-
ners are from Cambridge Technology and are placed very close to each other
to reduce astigmatism, with heatsinks. The scanned beam is relayed using two
achromatic doublets – serving as the scanning and tube lenses respectively – to
the 60× 1.00 NA water immersion objective lens (Nikon, MRD07620). The
back-propagated emission light from the sample is separated from the excita-
tion light using a dichroic mirror DiM1 (Semrock FF705-Di01) and sent to an
sCMOS camera (ANDOR, Zyla Scientific CMOS) which is used to look at
the PSF shape or separated with a dichroic mirror DiM2 (Semrock FF705-Di01)
and sent to the photon multiplier tubes (PMT) from Hamamatsu (H10770-
40). DiM3-4 (Semrock FF552-Di02, and FF409-Di03) and filters F2-4 (Semrock
571/72 nm, 509/22 nm, and 390/18 nm) were used to separate each spectral
channel to capture signals from two-photon fluorescence (TPF), green fluo-
rescent protein (GFP), and second harmonic generation (SHG) of collagen,
respectively. A home-built Shack-Hartmann wavefront sensor (SHWFS) was
used, with a LabVIEW-based control and measurement software to measure
the total system aberrations (black arrow shows beam direction) just before the
objective lens (Fig. 4.2 a). Another LabVIEW-based control and measurement
software was used for full AO correction. The MATLAB®-based open-source
software, Scanimage (Pologruto et al., 2003) was employed to control the mi-
croscope after the correction.

4.4 Adaptive Optics
In this section, we will discuss two methods for aberration correction, which
are sensor-based system correction and sensor-less sample correction. For each
method, we will discuss the methodology, hardware implementation and re-
sults.

4.4.1 Sensor-based system correction
For sensor-based system correction, we use Shack-Hartman wavefront sensor
which demonstrated in chapter 3.4.1. Basically, the idea is that each micro-lens in
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the Shack-Hartman wavefront sensor focuses a segment of the wavefront onto
a specific spot. Consequently, when the wavefront experiences aberrations, the
position of each spot shifts in accordance with the gradient of the wavefront
in the back pupil plane of the lens, within the x-y plane. By discerning the
positions of the ideal and deviated point spread functions (PSFs), the wavefront
can be accurately reconstructed. Chapter 3.4.1 introduced the Shack-Hartman
wavefront sensor, strategies to select lenslet array, selecting CMOS camera and
the algorithm to determine spot locations in sensor-based system correction
method.

Sensor-based AO Algorithm

Before measuring and correcting the aberrations of the biological samples, we
first compensated for system aberrations using a sensor-based AO algorithm.
The lenslet array creates spots in the image whose displacement versus an in-
ternal reference guidestar allows calculation of wavefront distortions (Fig. 4.2
b). The wavefront reconstruction algorithm and code can be found in the ap-
pendix.

We use following equation to decompose the calculated wavefront into the
Zernike modes (Zhao and Burge, 2007):

ci = 1/π

∫ 1

0

∫ 2π

0

Φi(ρ, θ)Zi(ρ, θ)ρdθdρ (4.1)

where Z is the Zernike mode of order i and ci is the coefficient of mode Zi.
Equation 4.1 yields a complete Zernike coefficient set that could be applied to
a DM for correction. We take modes 5 to 37 (using Noll’s ordering Noll, 1976
of the Zernike modes, up to order 4) into consideration because these modes
can be corrected by the DM. To find the corrected wavefront shape, we do a
summation such that the constructed phase equals

Φc(ρ, θ) = exp(−j2π/λ
∑
i

ciZi(ρ, θ)) (4.2)

The root-mean-square (RMS) wavefront error that is corrected by the Zernike
modes 4 to 37 (piston, tip, and tilt are not included) is calculated by σ =

(
∑

i c
2
i )

(1/2).

Sensor-based AO Result

We perform one DM correction at each focal plane by scanning for a fluores-
cent signal and then optimizing the wavefront. The wavefront of our excita-
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tion beam shows< 2 waves of distortion, with Zernike decomposition of the
wavefront identifying the strongest contributions from tip (Z2), tilt (Z3), and
defocus (Z4) (Fig. 4.2 c-d). After applying Shack-Hartmann wavefront correc-
tion, the PSF in the sample plane has a near diffraction-limited Gaussian shape
(FWHM = 350 nm).

Figure 4.2: Shack-Hartmann wavefront sensor. (a) SHWFS used to measure the
total system aberrations (b) Image of the Shack-Hartmann spots on the SHWFS
camera. (c) Corrective wavefront (μm). (d) Singular value decomposition of
the Zernike modes. (e-f) PSF before and after system correction. Scale bar =
10 μm.

4.4.2 Sensorless sample aberration correction
Wavefront aberrations are the difference in phase or optical path length from
the ideal (e.g., spherical, or planar) form Neil et al., 2000, which can be caused
by light propagation through an inhomogeneous medium like biological tis-
sue. According to the Zernike mode equation, different combinations of the
Zernike coefficients in a phase distribution at the back-pupil plane can alter
the point spread function at the focal plane. If used to reconstruct the wave-
front phase distribution with proper Zernike modes and coefficients by a DM
placed conjugate to the back-pupil plane, this principle can compensate the
aberrations induced by tissue.

89



Sensorless AO Algorithm

Sensorless AO uses signals obtained with the microscope as an input for an
algorithm that estimates the optical aberrations present in the system. Our
implementation of sensorless AO is depicted in the flowchart in Figure 4.3. A
series of PSFs is acquired with different Zernike aberration modes applied to
a DM conjugate with the back pupil plane. To determine the optimal value
for each Zernike mode, different values of aberration are applied to the DM.
The example shown in Figure 4.4 for correcting coma by using the following
equation:

a =
−b(M+b −M−b

2M+b − 4M0 + 2M−b

(4.3)

Figure 4.3: PSF-quality-based wavefront sensing workflow. (a) Flowchart de-
picting traditional implementation of sensorless-AO-based wavefront measure-
ment.

We evaluated 15 or 20 orders of Zernike modes (tip, tilt, and defocus ex-
cluded), which in our preliminary experiments using 15 or 20 modes for cor-
rection provided 90% of the enhancement found when including higher order
modes. An image quality metric (e.g. maximum intensity, minimum FWHM,
and maximum energy) is then selected and evaluated for each image. Then a
parabolic function is fitted to the measured points and the mode coefficient
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Figure 4.4: Sample PSF are captured for each mode using at least three different
bias values (−y, x, +y). Image quality is estimated using a suitable defined
metric for each image (I−, Iz , I+), and a quadratic function is fitted to the
measured points. The peak value of the fitted curve corresponds to estimated
best correction. Inset images represent a PSF affected by various amounts of
coma.

corresponding to the estimated peak is applied as the correction. Subsequent
modes are corrected similarly to achieve convergence of the wavefront.

Sensorless PSF evaluation of in vivo mouse skull in SHG channel

We evaluated the PSF improvement in vivo at 40 μm below the outside layer
of cranial bone of the mouse using the TPFM-AO microscope by applying dif-
ferent metrics: maximum intensity, minimum FWHM, and maximum energy
of the PSF using a 780 nm laser excitation wavelength to generate second har-
monic generation (SHG) signals. We imaged the sample with system correction
on and then used three metrics separately to compensate for the aberrations in-
duced by the distorting tissue environment in vivo. Then, we applied minimum
FWHM-based sensorless correction after maximum intensity-based sensorless
correction and found improvement according to the metric value of the de-
tected fluorescence by different approaches (Fig. 4.5).

4.4.3 Sample correction parameter selection
During preliminary aberration correction experiments, we observed that the de-
gree of enhancement achieved in sensor-less sample correction is dependent on
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Figure 4.5: PSF evaluation of in vivo mouse skull in SHG channel according to
three different metrics

the initial intensity conditions in low signal environments. Since a low starting
signal is common when attempting to use AO, we explored the sensitivity of
our correction strategy to different background noise and signal levels by mod-
ulating the laser power before the objective lens (Fig. 4.6 a) and the camera
exposure time (Fig. 4.6 b). These measures both strongly influence the signal-
to-background ratio of the PSF images used in the sample correction for a GFP
mouse skull. We used two power levels at the sample, a commonly used average
power on the sample for imaging 50-100 µm deep in tissue, and the maximum
average power that we experimentally observed not to cause visible damage to
the sample within our image acquisition time; and a range of integration times
for each Zernike mode measure from 10ms to 1s. At each condition, we evalu-
ated several measures of PSF quality, including the mean intensity, max inten-
sity, second moment, and Strehl ratio. To calculate the second moment, the
k-th central moment of a data sample is defined asmk = 1/n

∑n
i=1(xi − x̄)k,

where n is the number of samples and x̄ is the mean. The Strehl ratio is defined
as: S = e( − 4π2σ2/λ2), where σ is the root mean square deviation of the
wavefront,λ is the wavelength. In our situation, the experimental Strehl ratio
is defined as the ratio of the peak aberrated image intensity from a point source
compared to the maximum attainable intensity using an ideal optical system
limited only by diffraction over the system’s aperture.
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Figure 4.6: Intensity-based sample correction. Both laser power before the ob-
jective lens (a) and camera exposure time (b) could affect the results of sample
correction. (c) shows the improvement percentage calculated by (full AO – sys-
tem AO)/system AO intensity. The percent changes between the uncorrected
and corrected values reach a constant.

According to the figure, although we are not getting improvement based on
mean intensity, we achieve improvement based on max value, second moment,
and Strehl ratio of PSF when the exposure time is larger than 0.5s, with the per-
cent changes between the uncorrected and corrected value reaching a constant
soon after (Fig. 4.6 c). Therefore, we find that by performing our TPFM-AO ap-
proach at two distinct signal levels using the mean or max intensity of PSF when
the improvement percentage of two of the measurements is almost the same,
the sample correction has achieved its maximum improvement performance.
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4.5 Sample Preparation

4.5.1 Preparation of fluorescent beads stack in gel
200 nm yellow-green fluorescent beads (ThermoFisher Scientific F8811) were
diluted to a ratio of 1:200 in 2.0% agarose. 0.2 grams of agarose powder (Bio-
Rad, Certified Molecular Biology Agarose 1613101) were added to 10 milliliters
of DI (Deionization) water to make the mass concentration 2.0%. Next, the
agarose solution was heated in a microwave for intervals of 45 seconds. This
process was continued until the agarose became a gel mixture. After 1-2 minutes
passed for the agarose gel to cool down to safe handling temperature, the agarose
gel was ready to hold the beads in place for imaging analysis. 2.0 milliliters of
beads were added to 400 milliliters of agarose to achieve the 1:200 ratio. After
drying completely, the petri dish was then placed on the stage of the TPFM-AO
system and DI water was added for imaging with the water dipping objective.

4.5.2 Preparation of mouse intravital imaging
For mouse intravital imaging, we used a transgenic mouse model ubiquitously
expressing mitochondrial-targeted Dendra-2 green monomeric fluorescent pro-
tein (Jackson Laboratory, #018385) as previously described Southern et al.,
2019 Pham et al., 2012. The mouse was initially anesthetized using 4% isoflu-
rane (100 μL/min oxygen flow) and restrained using a 3D printed stereotaxic
holder. The holder is similar to those used in previously published works by
several groups when studying cell dynamics in the brain and skull Lo Celso
et al., 2009 K. Tehrani et al., 2017, and serves to secure and stabilize the mouse
skull while reducing mechanical coupling with the trunk of the body so that
breathing movement artifacts are reduced. Five minutes before making an inci-
sion, 50 μL of 0.25% bupivacaine was locally applied as analgesia. An incision
was made on the scalp from between the eyes toward both ears to make a flap.
The periosteum layer was removed, and the area of imaging was cleaned using a
cotton swab; immediately sterile phosphate-buffered saline (PBS) was applied
to the incision site. The animal was placed under the microscope objective and
sterile PBS was added to fill the gap between the skull and the objective lens.
The rate of isoflurane was then reduced to 1.4% during imaging. For vascu-
lature imaging, a 20 μL dose of 70kDa rhodamine-B dextran (Nanocs) was
administered through retro-orbital injection before making an incision. All
animal procedures and experiments were approved by the UGA Institutional
Animal Care and Use Committee (IACUC).
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4.5.3 Preparation of mouse brain and skull sample
After the intravital imaging session, mice were euthanized using CO2 and cervi-
cal dislocation. Immediately after sacrifice, the brain was extracted and mounted
in a petri dish using 2.0 % agarose for mitochondrial imaging. The skull was
extracted and mounted in a petri dish for mitochondrial and second harmonic
generation imaging.

4.6 Result and Discussion

4.6.1 In vitro tissue mimic with AO correction for submi-
cron bead imaging

We evaluated the experimental resolution improvement in a tissue phantom
of the TPFM-AO microscope by measuring the full-width at half-maximum
(FWHM) of the intensity profile of 0.2 μm beads embedded in a gel using a
960 nmlaser excitation wavelength (Fig. 4.7). Beads were embedded in a 5mm

thick 2% agarose gel and imaged at 50 μm depth (Fig. 4.7 a) to mimic a dis-
torting tissue environment. We imaged the sample with system correction on,
and then used a sensorless approach to compensate for the aberrations induced
by the gel (Fig. 4.7 b). The full AO correction approach shows relatively high
values of astigmatism (Z6) and coma (Z7) and yields the wavefront shown in
Fig. 4.7 c, d. AO improved the full width at half maximum of the detected
bead fluorescence with the average FWHM Gaussian fit of 10 measured 0.2 μm
radius 2-photon excited fluorescent beads improving from 0.538 ± 0.03 μm
to 0.408± 0.03 μm after sample correction (Fig. 4.7 e).
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Figure 4.7: System and mean-intensity-based full AO on 0.2 μm beads (b) at
50 μm depth in an agarose gel (a). Zernike mode decomposition of the wave-
front (c). Wavefront after full AO (μm) (d). Spot size (e). The red and green box
represent the FWHM of each intensity profile. The FOV is 67.5 μm x 67.5 μm.
Data are represented as mean +/− standard deviation for each measurement.
Scale bar = 10 μm.

4.6.2 AO correction enables high-resolution imaging of mi-
tochondria organelle morphology in the mouse brain

We then measured and corrected aberrations for Dendra-2 mouse brain mito-
chondria using a 780 nm laser excitation wavelength. Immediately after sac-
rifice, the mouse brain was cut into 2mm thick slices, then embedded in 3%
agarose to prevent movement. For imaging, the brain was immersed in phosphate-
buffered saline (PBS). Two-photon fluorescence images were acquired in the
hippocampal region, as indicated by a red asterisk in our brain diagram (Fig.
4.8 g). We found tissue wavefront distortions (Fig. 4.8 e) and aberrations due
to the shape and high refractive index of the brain; mostly astigmatism (Z5, Z11),
trefoil (Z9) and spherical (Z11) (Fig. 4.8 f). After AO, the images had improve-
ments in mitochondrial intensity and sharpness laterally and, especially, axially
by correcting the aberrations (Fig. 4.8 a, b). In the spatial frequency space (Fig.
4.8 c), the resolution improvement gained through aberration correction led to
a substantial increase in the magnitude of high spatial frequency components,
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which indicates a sharper image with more fine detail. Signal profiles in the axial
plane along the white lines show improved intensity (Fig. 4.8 d).

Figure 4.8: Images of the hippocampus of a young mouse brain with system
AO (a) and with mean-intensity-based full AO (b). Corresponding FFTs of
the brain image in log scale and line profiles (c). Corresponding signal profiles
along the white lines, y-axis is intensity (d). Wavefront after full AO (μm) (e).
Singular value decomposition of the Zernike modes (f) for sample correction.
The hippocampus of young mouse was imaged at the red asterisk (g). The FOV
is 59.32 μm × 59.32 μm . Scale bar = 10 μm.
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4.6.3 AO correction for ex vivo mouse skull imaging
We evaluated the experimental resolution improvement in a mouse skull of the
TPFM-AO microscope by measuring the maximum intensity of the PSF using
a 780 nm laser excitation wavelength to generate second harmonic generation
(SHG) signal(Fig. 4.9). Skull was fixed in 2% agarose gel and imaged at 120 μm
depth from the surface in a highly distorted environment. We imaged the sam-
ple with system correction on (Fig. 4.9 a) and then used a sensorless approach
based on the maximum intensity metric to compensate for the aberrations in-
duced by the skull (Fig. 4.9 b). Next, we applied a sensorless correction based
on the maximum intensity metric again to evaluate the efficiency of using a sen-
sorless approach one time to compensate for most aberrations (Fig. 4.9 c). The
full low-order AO correction approach shows relatively high values of coma(Z7,
Z14), spherical (Z8), and trefoil(Z9) (Fig. 4.9 d) and yields the wavefront shown
in Fig. 4.9 e.

Figure 4.9: AO correction for ex vivo mouse skull imaging

AO improved the intensity of the detected SHG signal with 3 examples mea-
sured after the first full correction and keep same after the second full correction.
Three representative intensity plots are shown in Fig. 4.10.
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Figure 4.10: Intensity profile.

4.6.4 AO correction enables SHG imaging in mouse cra-
nial bone in vivo

We then measured and corrected aberrations for mouse cranial bone using a
780 nm laser excitation wavelength to generate SHG signal. SHG images were
acquired in the region lateral to the sagittal suture, anterior to the cranial suture,
and posterior to the jugum limitans of the calvaria at a depth of 40 μm. After all,
the images had improvements in SHG intensity and sharpness by correcting the
aberrations (Fig. 4.11 a,b,c), with PSF sharpness improvement in the meantime.

Figure 4.11: SHG imaging of mouse cranial bone at the depth of 40 μm with
system AO (left), with maximum intensity-based full AO (middle), and with
minimum FWHM-based full AO (right).

We found tissue wavefront distortions and aberrations due to the shape and
high refractive index of the bone; mostly astigmatism (Z4), coma (Z7), and tre-
foil (Z9) in Fig. 4.12 a when applying maximum intensity as the sensorless AO
correction metric. Next, we applied another sensorless AO correction based on
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the minimal FWHM of the PSF and found a relatively high value of astigma-
tism (Z4, Z5) in the bone yielding the wavefront shown in Fig. 4.12 b. Signal
profiles in the axial plane along the white blocks show improved intensity (Fig.
4.12 c).

Figure 4.12: Sensorless AO correction once (a), twice (b), and intensity profiles
(c).

4.6.5 AO correction enables mitochondrial imaging deep
in mouse bone marrow in vivo

We next evaluated mitochondrial imaging through the outside layer of cranial
bone into the bone marrow using the Dendra-2 mouse with780 nm laser excita-
tion wavelength. We evaluated 15 orders of Zernike modes to correct aberrations
of the bone marrow in vivo because in preliminary experiments this achieved
the best improvement of the PSF intensity and shape. We found improvements
in image intensity and resolution for in vivo TPF imaging of mitochondria in
bone marrow at the depth of 0, 50 and 85 μm (Fig. 4.13 4.14 4.13 a-c). Signal
profiles along the red line show ∼1.55×, ∼3.58× and ∼1.77× intensity in-
creases using sample AO correction at the depths of 0, 50 and 85 μm separately
(Fig. 4.13 4.14 4.13 a1-c1). The FWHM with full AO was enhanced by∼0.83×,
∼0.74× and ∼0.9× at the depth of 0, 50 and 85 μm separately (Fig. 4.13 4.14
4.15 a2-c2).
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Figure 4.13: Dynamic imaging of GFP-mitochondria mouse bone marrow at
the depth of 0 μm with system AO (left) and with mean-intensity-based full
AO (right)(a). Wavefront after sample correction (μm) (a4). Corresponding
signal profiles of the red line (a1) and FWHM profiles of the yellow line (a2)
and corresponding Zernike modes (a3) for full AO. y-axis for signal profiles and
FWHM profiles is intensity. The red and green box represent the FWHM of
each intensity profile. The FOV is 67.5 μm x 67.5 μm. Scale bar = 10 μm.

At the surface of the bone, we observed aberrations due to the shape and
high refractive index of the bone; mostly astigmatism (Z6), trefoil (Z9) and
secondary astigmatism (Z13) (Fig. 4.13a3).

When we go 50 μm deep in the bone marrow, the aberrations of primary
astigmatism and trefoil are lower magnitude, but secondary astigmatism (Z13)
remains (Fig. 4.14 b3).

When we reach the opposite side of the bone marrow at a depth of 85 μm,
aberrations are mainly coma (Z7) and secondary astigmatism (Z13) resulting
from the curved interior surface of the bone (Fig. 4.15 c3). The corrective wave-
front after full AO is shown in Fig. 4.13 4.14 4.15 a4-c4.
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Figure 4.14: Dynamic imaging of GFP-mitochondria mouse bone marrow at
the depth of 50 μm with system AO (left) and with mean-intensity-based full
AO (right)(b).

Figure 4.15: Dynamic imaging of GFP-mitochondria mouse bone marrow at
the depth of 85 μm with system AO (left) and with mean-intensity-based full
AO (right)(c).

When averaging across a whole image, the signal intensity showed ∼2.73×,
∼3.13× and ∼2.18× intensity increases over TPFM with system AO correc-
tion at 0, 50 and 85 μm depth. The average detected FWHM improvement
was ∼0.79× (1.0 μm before and 0.79 μm after), ∼0.78× (0.8 μm before and
0.62 μmafter) and∼0.81× (0.45 μm before and 0.36 μmafter) at the depth of
0, 50 and 85 μm respectively in Fig. 4.16 .
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Figure 4.16: Loss of resolution and maintenance at the depth of 0, 50, 85 μm
with system AO and with full AO in intensity (a) and FWHM (b). Error bar
shows the standard deviation of each measurement.

To evaluate the effect of AO on other emission wavelengths and confirm
that the 85 μm depth was through the bone marrow and into the bone on the
other side, we captured second harmonic generation images with a bandpass
filter of 390/18, finding that the FFT spectrum contains more high-frequency
information after full AO in Fig. 4.17 a-c right.
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Figure 4.17: Dynamic imaging of Dendra-2 strained mouse brain marrow at the
depth of 85 μm with system AO (left) and with full AO (right) (a-c) in SHG
channel. Corresponding signal profiles in the axial plane along the white blocks
(a1-c1). FFT of SHG images with system AO (left) and with full AO (right)
show in (a2-c2). The FOV is 67.5 μm x 67.5 μm. Scale bar = 10 μm.

We also evaluated another multichannel dynamic in vivo bone marrow sam-
ple using the Dendra2 mitochondria mouse and co-labeling the blood vascu-
lature using a rhodamine-B dextran conjugate. This stain required correction
of the excitation beam using 840 nm excitation wavelength and emission with
a 585/40 nm filter. We achieved improved imaging with full AO correction at
three different depths of 30 μm, 50 μm and 70 μm, demonstrating the utility
of the system for AO in dynamic samples at multiple excitation and emission
wavelengths (Figure 4.18).
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Figure 4.18: Dynamic multichannel imaging of dendra-2 strained mouse blood
vasculature and mitochondria at the depth of 30 μm, 50 μm, 70 μm with sys-
tem AO (left) and with full AO (right) (a-c). Wavefront after sample correction
(a4-c4). Corresponding signal profiles of the red line (a1-c1) and FWHM pro-
files of the yellow line (a2-c2) and corresponding Zernike modes (a3-c3) for full
AO. The FOV is 67.5 μm x 67.5 μm. Scale bar = 10 μm.

4.6.6 AO correction for dynamic mitochondria evaluation
in mouse bone marrow

To evaluate the potential of AO correction to longitudinally monitor mito-
chondrial organelle dynamics in the bone, we corrected tissue aberration at a
single plane 40 μm deep in the bone marrow, and then performed time lapse
imaging for a total of 20 minutes. We quantified the temporal change in the
cell mitochondria position (Fig. 4.19) and observed differences in mitochon-
drial movement rates and trajectories (Fig. 4.19 a/a’-b/b’). We found minimal
intensity reduction over the imaging session, suggesting that there was little
photobleaching or change in the tissue aberrations over 20 minutes (Fig. 4.19
c-d). A variety of cell and mitochondria trajectories are clearly present within
relatively small regions of the bone marrow, which is not surprising given the
high cellular density and diversity of cell types.
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Figure 4.19: Time-coded pseudo color max projection of time lapse imaging
of GFP-mitochondria mouse bone marrow at the depth of 40 µmwith mean-
intensity-based full AO. (a/a’, b/b’)shows an overview of mitochondria travel-
ing in the bone marrow. (c)shows different time points. d shows mitochondria
fluctuations. y-axis is intensity. The FOV is 67.5 μm x 67.5 μm. Scale bar =
10 μm.

4.7 Conclusion
In conclusion, we calculated and corrected the sample aberrations caused by
highly scattering bone with a sensorless AO approach using the PSF maximum
intensity, minimum FWHM, and maximum energy as metrics. We demonstrate
that low-order aberration correction provides a significant improvement when
imaging through the bone into the living bone marrow. We find our TPFM-
AO system increases the fluorescence intensity of the PSF and achieves fast
imaging of subcellular organelles with 400 nm resolution. We also achieved
close to a twofold increase in intensity and a reduction in PSF width using
AO in living mouse bone via SHG channel, allowing us to better characterize
bone health and the survival of functioning cells. This AO approach could
be used for the study of the dynamics of other organelles and is applicable to
a wide range of biological tissues. This study demonstrates a promising tool
for imaging mitochondria and other organelles in optically distorting biological
environments, which could facilitate the study of a variety of diseases connected
to mitochondrial morphology and activity in a range of biological tissues.
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6 Adapted from the
submitted paper:
Liversage A, Tehrani
K, Zheng T, Kner
P, Mortensen L.
"Binary Wavefront
Manipulation using
an epi-detected SHG
Guidestar".

Chapter 5

Tunable Low order and
high order Adaptive

Optics 6

In this chapter, we aim to explore the performance of our low-order correc-
tion strategy and introduce a novel approach for enhancing resolution in two-
photon fluorescence microscopy (2PFM) by combining low-order deformable
mirror (DM) adaptive optics (AO) correction with high-order digital micromir-
ror device (DMD) scattering correction. In previous experiments aimed at cor-
recting aberrations, it was observed that the effectiveness of sensor-less sample
correction depends on various parameters, including the number of Zernike
modes applied and the range of bias measurements. Therefore, We try to find
guiding principles for quickly and reproducibly finding optimal low order cor-
rection states. Furthermore, we developed a hybrid system, integrating a DM for
correcting low-order aberrations and a DMD for correcting scattering-induced
aberrations. By applying different correction strategies, our approach signif-
icantly improves the quality of scanned imaging, when using the SHG origi-
nating within the bone as the guidestar even in the case of low initial photon
conditions.

5.1 Introduction
Many vertebrate organisms, including humans, exhibit optical turbidity due
to the heterogeneous refractive index of their cellular structures, leading to
light scattering and hindering deep visualization within biological tissue. Wave-
lengths beyond the visible spectrum, experiencing reduced scattering through
organic matter, offer potential for deeper exploration. For instance, X-rays of-
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fer high resolution in computed tomography, and magnetic resonance imaging
is crucial for medical diagnostics. However, these methods have limitations
in manipulating individual cells or molecules. As light enters the skin, it scat-
ters multiple times, causing rapid diffusion within tissues, creating a diffuse
"glow" extending to approximately 1 mm, known as the transport mean free
path (TMFP), where photons disperse equally. Optical imaging methods for
deep tissue exploration traditionally relied on unscattered (ballistic) photons,
like those in confocal imaging, two-photon microscopy, and optical coherence
tomography. However, the exponential decline of ballistic photons with depth
presents a challenge for diffraction-limited imaging.

Recent studies show that photons retain valuable information despite mul-
tiple scattering events in disordered materials like biological tissue. Rather than
discarding these scattered photons, emerging technologies capture and extract
data from them. By analyzing the spatial phase profile of light-exiting tissue, an
optimal wavefront shape can be computationally reconstructed. When reintro-
duced into the tissue, this optimized wavefront converges to form a micrometer-
scale spot. This process is akin to time reversal, where light can be guided back-
ward through a disordered medium to counteract scattering effects effectively
(Smith and Johnson, 2015).

Adaptive optics was covered in the preceding chapter. Most ground-based
telescopes use adaptive optics (AO) systems to measure how the atmosphere
affects light from a guide star, which is an approximate point source of light.
Based on this information, AO systems sharpen and alter images. Although
wavefront shaping is designed for the biophotonic domain, where optical scat-
tering is common, it is based on the concepts of AO. Wavefront shaping aims
at a more complete goal in biology, rather than only correcting low-order aber-
rations to make images distorted by scattering more clear. This goal is to guide
light deeper into tissue to generate a tightly focused beam.

As was shown in the last chapter, low-order aberrations like astigmatism
and defocus can be effectively corrected with classical AO, improving the quality
of the images. DMs reduce blur and enhance image resolution by dynamically
adjusting the wavefront, especially in shallow tissue depths. However, during
previous aberration correction experiments, we observed that the degree of
enhancement achieved in sensor-less sample correction is dependent on several
parameters, such as the number of Zernike modes applied, the range of bias
measurements, and so forth, so it is critical to find the best combination of
parameters of sensorless correction.

However, in highly scattering tissues, such as bone marrow, additional aber-
rations caused by refractive index variations can degrade image resolution. To
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address these challenges, recent advancements have introduced high-order cor-
rection techniques, such as digital micromirror device (DMD) scattering cor-
rection. Unlike DMs, DMDs manipulate light using an array of individually
controllable micro-mirrors, offering precise control over the phase and ampli-
tude of incident light. High-order correction with DMD-based systems utilizes
spatial light modulation to selectively manipulate the phase and amplitude of
incident light. This technique enables the generation of complex wavefronts
that counteract the effects of scattering-induced aberrations, resulting in en-
hanced imaging depth and resolution in highly scattered tissues. This allows
for the correction of high-order aberrations induced by scattering, diffraction,
and wavefront distortions in complex tissue environments.

5.2 Objectives
In this chapter, we optimize our low-order correction strategy and present a
novel method for increasing resolution in two-photon fluorescence microscopy
(2PFM) which combines low-order deformable mirror (DM) adaptive optics
(AO) correction with high-order digital micromirror device (DMD) scattering
correction. First, we present a number of methods to enhance our low-order
correction strategy’s performance. Next, for intensity-based sample correction,
we determine and assess the threshold and effectiveness of each method inde-
pendently. Then, in order to image the mitochondria in the mouse cranial bone,
we coupled the best performance of sensorless adaptive optics with high-order
digital micromirror device (DMD) scattering correction. This work demon-
strates how our method of scattering tissue depths leads to quick imaging of
subcellular structures with great resolution and a large increase in fluorescence
intensity. A promising tool for high-resolution imaging of organelles in com-
plex biological contexts is provided by this combined correction method, which
will make it easier to research disorders related to the morphology and activity
of mitochondria in a variety of tissues.

5.3 Optical System Design
Based on our previous chapter, a modified schematic of the adaptive optics two-
photon fluorescence microscopy (AO-TPFM) system is shown in Fig. 5.1. The
custom microscope engages a Ti:Sapphire laser (Chameleon Ultra II, Coher-
ent) for excitation in the wavelength range 680 nm - 1080 nm, and is illustrated
in Figure 5.1. Output from the source laser is modulated using a Pockels cell
(350-105, Conoptics) and immediately thereafter, a pinhole is used to improve
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Figure 5.1: Modified system design with SHWFS for low- and high-order correc-
tion. BPP- Back pupil plane; CMOS- scientific camera; DG- diffraction grating;
DiM- Dichroic mirror; DM- deformable mirror; DMD- digital micromirror
devices; F- Filter; IP- image plane; L- Lens; OL- Objective lens; PBS- Polarizing
beam splitter; PH- pinhole; PMT- photon multiplier tube; SHWFS- Shack-
Hartmann wavefront sensor; TL- tube lens. BB-????? Iris-???

the Gaussian properties of the beam. The beam is expanded to utilize approx-
imately 30%of the DMD (ALP-4.3 (V4395), ViALUX) active array surface,
within the 10.5mm height limit of the active array. A resonant-galvanometer
scanner (MDR-R, Sutter Instrument) allows for scanned imaging, and finally,
a 60x water immersion objective lens (LUMFLN60XW, Olympus) focuses
the light onto the sample. To measure and optimize the DMD pattern, the
sample-emitted light is captured on the sCMOS camera (Zyla 4.2, Andor, Ox-
ford Instruments) through an appropriate filter for the SHG guidestar (FF01-
390-18, Semrock) when excited at 780 nm, by moving the dichroic mirror DiM1
to its appropriate position. Capturing an image of the sample over a wider field
of view, DiM1 is moved to reflect emitted light to be collected by the photon mul-
tiplier tubes (PMTs) (H10770-40, Hamamatsu Photonics K.K.), using trans-
impedance amplifiers (59-178, Edmund Optics), and scanimage (Pologruto et
al., 2003) controls the resonant scanner and FPGA (PXIe-7975R and NI5734,
National Instruments). The sCMOS camera and DMD are controlled by a
custom LabVIEW (National Instruments) program. All of the epi-detection
experiments conducted included lower-order adaptive optics, with the system
correction turned on, as per previous adaptive optics work within Chapter 4.
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5.4 Tunable Low order Adaptive Optics
In this section, we aim to address the consistency of sensorless aberration cor-
rection and optimize our low-order correction strategy. We will discuss the
methodology and performance for each tunable parameter, as illustrated in Fig-
ure 5.2. The level of improvement achieved in sensorless sample correction de-
pends on various parameters, including the number of Zernike modes applied,
the range of bias measurements, the number of bias measurements, the num-
ber of fittings, and the Mean Squared Error (MSE) for each fitting. Therefore,
it is crucial to identify the optimal combination of parameters for sensorless
correction to ensure consistency in performance.

Figure 5.2

5.4.1 Sensorless Correction consistency
We investigated the consistency of our sensorless correction strategy by varying
the number of Zernike modes applied, and the number of bias measurements
applied when doing Gaussian fitting. This exploration was conducted sepa-
rately using GFP PSF and SHG PSF as Guidestars. These parameters signifi-
cantly impact the level of improvement achieved in sensorless sample correction.
To statistically qualify the improvement, we applied a 2D Gaussian fit (see the
code in appendices) of the PSF images and then calculated sharpness as the
improvement metric, defined as:

sharpness = a ∗ (1/σx2 + 1/σy
2) (5.1)

111



where the parameter a is the height of the curve’s peak, and σx and σy (the
standard deviation, sometimes called the Gaussian RMS width) controls the
width of the "bell".

Number of Zernike modes

First, we evaluated the consistency of sensorless correction ex vivo at a depth
of 30 μm below the surface of cranial bone by varying the number of Zernike
modes applied in the GFP channel and at a depth of 20 μm in the SHG channel.
The number of Zernike modes varied from 2 to 8, following the Noll Zernike
radial order (Figure: 5.3).

Our findings indicate that all PSFs after sensorless correction exhibited
sharpening, characterized by higher maximum intensity and narrower FWHM.
Specifically, when the Zernike mode applied was equal to or greater than 28,
both GFP and SHG PSFs demonstrated a greater improvement in sharpness,
suggesting that more high-order aberrations were corrected.

Figure 5.3: Sharpness improvement when changing the number of Zernike
modes for sensorless correction in the GFP(left) and SHG(right) channel. b:
before sample correction, a: after sample correction, nz: number of Zernike
mode.

As discussed in figure 5.4, the Zernike coefficient plot consistently reveals
the same dominant Zernike polynomials even when the number of Zernike
modes applied for sensorless correction is decreased. For instance, when apply-
ing 45 Zernike modes, the dominant Zernike coefficients include Z3 (astigma-
tism), Z5 (astigmatism), Z7 (coma), Z9 (trefoil), Z13 (secondary astigmatism),
Z14 (quadrafoil), and Z19 (secondary trefoil). Similarly, when reducing the
number of Zernike modes to 36, 18, or 21, the dominant Zernike coefficients re-
main consistent, including Z3 (astigmatism), Z5 (astigmatism), Z13 (secondary
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astigmatism), Z14 (quadrafoil), and Z19 (secondary trefoil). Even when only
15 Zernike modes are applied, the dominant Zernike coefficients consist of Z3
(astigmatism) and Z14 (quadrafoil).

This demonstrates the consistency of sensorless correction across different
numbers of Zernike modes applied, as the same dominant aberration types are
consistently corrected regardless of the specific modes used in the correction
process.

Figure 5.4: Zernike polynomial plot when changing the number of Zernike
modes (x-axis) to 45,36,28,21,15 from left to right for sensorless correction when
using GFP (upper) and SHG (lower) guidestar

Number of bias measurement

We further assessed the consistency of sensorless correction ex vivo at a depth
of 35 μm below the surface of cranial bone, with variations in the number of
Zernike modes applied in the GFP channel and at a depth of 25 μm in the SHG
channel. To ensure consistency and avoid fitting errors, we maintained the same
intervals when changing the number of bias measurements.

Figure 5.5 illustrates that all PSFs after sensorless correction exhibited sharp-
ening, characterized by higher maximum intensity and narrower FWHM. Par-
ticularly, when the number of bias measurements is less than 9 (corresponding
range between -4 to 4), both GFP and SHG PSFs showed a notable improve-
ment in sharpness. This suggests that system correction already restored a sig-
nificant amount of information, and a relatively small number of bias measure-
ments could precisely correct the aberrations in the tissue environment.
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Figure 5.5: Sharpness improvement when changing the number of bias mea-
surements for sensorless correction in the GFP(left) and SHG(right) channels.
b: before sample correction, a: after sample correction, nm: number of bias
measurements.

5.5 Binary wavefront manipulation using an epi-
detected SHG guidestar

Aberrations in an imaging system can be classified as system-induced or sample-
induced. System aberrations typically manifest as lower-order Zernike poly-
nomials, like defocus or astigmatism, resulting from misalignment of optical
elements. Sample-induced aberrations encompass both lower and higher-order
aberrations, varying with sample complexity. In this chapter, we developed a hy-
brid system, integrating a DM for correcting low-order aberrations and a DMD
for correcting scattering-induced aberrations.

5.5.1 Introduction
Adaptive optics methods, employing active elements like deformable mirrors
(DMs), have successfully corrected lower-order aberrations in homogeneous tis-
sues such as the drosophila brain, zebrafish, and mouse brain (N. Ji et al., 2017
M. J. Booth, 2014 Debarre et al., 2009 K. Wang et al., 2015). However, in highly
scattering media like bone, where scattered modes outnumber DM degrees of
freedom, correction efficacy diminishes (Yeminy and Katz, 2021). Spatial light
modulators (SLMs) and digital micromirror devices (DMDs) have expanded
spatial degrees of freedom, enabling wavefront shaping concepts to address high-
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order aberrations through continuous phase modulation (Vellekoop and Mosk,
2008), polarization modulation (J. Park et al., 2015), and binary modulation
(X. Zhang and Kner, 2014 Fang et al., 2018). To optimize wavefront manipu-
lation with electro-optical components, various search heuristics are utilized,
including sequential (Vellekoop and Mosk, 2008), parallel(Cui, 2011), genetic
algorithms(Conkey, Brown, et al., 2012), or machine learning(K. F. Tehrani
et al., 2017 Durech et al., 2021).

In living samples, rapid wavefront optimization within the persistence time
(Tp) is crucial, and optimization speed heavily relies on the electro-optical de-
vice used. While liquid crystal SLMs have reasonable convergence times, their
maximum update rate of approximately 200Hz leads to optimization durations
ranging from minutes to hours (Akbulut et al., 2011). To expedite optimization,
digital micromirror devices (DMDs) with update rates of up to 32kHz have been
proposed, though they lack pseudo-continuous phase modulation like SLMs.
While DMDs have been utilized for phase modulation via binary amplitude
off-axis holography, the measured improvement has not consistently matched
theoretical expectations (Vellekoop and Mosk, 2008). Nevertheless, DMDs can
manipulate the wavefront by selectively activating pixels contributing to light
focus while blocking destructive elements through binary amplitude modula-
tion (Goorden et al., 2014). These wavefront shaping techniques necessitate
optimization of numerous corrective elements, emphasizing the importance
of fast and effective search heuristics like genetic algorithms (GA), which have
shown shorter convergence times (X. Zhang and Kner, 2014 Conkey, Brown,
et al., 2012).

5.5.2 Genetic algorithm
For an in-depth exploration of genetic algorithm (GA) search heuristics, readers
are directed to (Koza and Poli, 2005), while the foundational GA employed in
this study is delineated in X. Zhang and Kner, 2014 and Conkey, Brown, et
al., 2012, visually represented in Figure 5.6. Initially, a population of parent
masks, represented by a 1-dimensional binary array, is introduced. Each mask
comprises S segments, with each segment represented by pj, set to either 1 (on)
or 0 (off). The emission from the sample is recorded for each mask projected
onto the DMD surface, and the fitness of each mask, quantified as the maximum
intensity within a specified region of interest, is assessed. Masks are then ranked
based on their fitness metric, with higher intensity yielding higher rankings.

Subsequent generations are generated by selecting the top N/2 ranked
masks, which are propagated to the new generation and used to produce G
new offspring (G = N/2) through crossover and mutation. In simulations,
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no significant difference was observed between randomly positioning or fixing
a crossover point, provided it wasn’t too close to the beginning or end of the
pattern. The crossed-over genes undergo mutation according to the mutation
rate R, defined as R = (R0 − Rend) · exp(−n/λ) + Rend, where R0 is the
initial mutation rate,Rend is the final mutation rate, nis the generation index,
and λ is the decay factor (Goorden et al., 2014). If the total number of on pixels
within a mask

∑s
n=1 pj exceeds 52.5%, an additional mutation stage is imple-

mented, randomly switching off pixels until the total falls to 52.5%or below.
This additional mutation stage can potentially disrupt well-established masks
and may delay convergence.

The newly generated masks are sequentially applied to the DMD, and the
process is iterated for a fixed number of generations. We assess the optimized
output’s performance using the intensity enhancement metric η, defined as
η = Ioptimized/Ireference, as proposed by X. Zhang and Kner, 2014 and B.
Zhang et al., 2018, given in full as:

η =
Iak

1
N

∑
m I

b
m

, (5.2)

where the intensity of the mth pixel is given by Im, the kth pixel is the spot
intensity, and a and brefer to the image after (a) and before (b) correction. In
the case of before, the initial pattern is set to 50% segments on, and in the after
state, the number of on segments is limited to 52.5%.

Each pre-defined segment for optimization consists of individual DMD
micromirrors arranged in a square pattern. These squares are organized in a
circular configuration and manually aligned with the incident excitation beam.
The size of these squares determines the number of segments within the larger
circular area on the DMD. For instance, setting the segment size to 24 × 24

pixels results in an active area on the DMD with 373 controllable segments,
constrained by the diameter of the active region set to 512 micromirrors in all
cases discussed in this study. Reducing the segment size increases the number
of controllable segments while the circular area influencing the wavefront re-
mains constant at a diameter of 512 micromirrors. Dividing the active area into
segments of size 24× 24 yields 373 total segments, 12× 12 segment size results
in 1436 segments, and 6 × 6 segment size partitions the active area into 5785
segments.
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Figure 5.6: The optimization process of the DMD mask involves several steps.
Initially, randomized masks are generated, projected onto the DMD, and evalu-
ated based on their performance. The top-ranked masks are selected and prop-
agated to the next generation. These masks are then used to perform crossover,
wherein genetic material is exchanged to generate50%of a new generation. Sub-
sequently, according to the mutation rate R, elements of the new generation
undergo mutation, with a maximum limit of 52.5% on pixels. The resulting
population of masks is projected onto the DMD and evaluated. This iterative
process continues until the specified iteration criterion is met.

5.6 Sample preparation
For biological examination of the scatter correction, we used a transgenic mouse
model ubiquitously expressing mitochondrial-targeted Dendra-2 green monomeric
fluorescent protein (Jackson Laboratory, #018385). Skull was extracted and
fixed in 4% paraformaldehyde (PFA) and 96% phosphate-buffered saline (PBS)
for 48 hours and then mounted in a Petri dish using a PDMS elastomer (Sylgard
184, Dow Corning).
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5.7 Data analysis
In the following section, we use the histogram flatness measure (HFM) as a
performance metric for image contrast (Tripathi et al., 2011). Histogram flatness
measure for the histogram (h(x)) is defined as:

HFM =
exp(

∫ 1
2

− 1
2

lnh(x))∫ 1
2

− 1
2

lnh(x)
(5.3)

where HFM is the ratio of the geometric mean of h(x) to the arithmetic mean
of h(x).

5.8 Result and discussion
We corrected low-order and scattering aberrations for mouse cranial bone using
a 780 nm laser excitation wavelength to generate SHG signal at several depths.
Different correction strategies were applied to each situation. Images were ac-
quired in the region lateral to the sagittal suture, anterior to the cranial suture
and posterior to the jugum limitans of the calvaria.

5.8.1 Low-order sample correction at 45 μm

PSF evaluation

We assessed the improvement in point spread function (PSF) ex vivo at a depth
of45 μmbelow the outer layer of cranial bone using the TPFM-AO microscope.
We utilized a 780 nm laser excitation wavelength to generate second harmonic
generation (SHG) signals and optimized intensity and FWHM. Initially, we
imaged the sample with system correction enabled and then compensated for
aberrations induced by the distorting tissue environment (Figure 5.7(a)). Tissue
wavefront distortions and aberrations, primarily astigmatism (Z3), coma (Z8),
and secondary astigmatism (Z11), were observed due to the bone’s shape and
high refractive index (Figure 5.7(b)).
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Figure 5.7: (a) PSF before and after low-order sample correction. (b) Singular
value decomposition of the Zernike modes. (c) Corrective wavefront (μm).

Experimental resolution improvement was evaluated by analyzing the am-
plitude and sharpness of the 2D Gaussian fit of the PSF before and after low-
order sample correction (Figure 5.8(a)). Following sensorless sample correction,
the sharpness (b) and (c) amplitude of the PSF improved by a factor of 2 and 4,
respectively.
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Figure 5.8: (a) 2D Gaussian fit of PSF before and after low-order sample correc-
tion. (b) sharpness. (c) amplitude.

Scanimage evaluation

Images of Dendra-2 mouse cranial bone mitochondria (GFP) and bone colla-
gen (SHG) were captured without/with sample correction at 45 μm, as shown
in Figure 5.9. DM sample correction resulted in improved mitochondrial in-
tensity and lateral and axial sharpness by correcting tissue aberrations. The
histogram conducted for GFP and SHG channels separately revealed notable
improvements in imaging quality in Figure 5.10. Gaussian fitting of three ran-
domly selected signal points was employed to assess the improvement at a depth
of 45 μm, with HFM recorded in Table 5.1. For the GFP channel, overall in-
tensity improved and HFM improved from 0.17 to 0.19 after correction. For
the SHG channel, HFM improved from 0.22 to 0.24 after correction. These
findings highlight the effectiveness of low-order correction in enhancing image
resolution, enabling the visualization of finer details in both GFP and SHG
channels.
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Figure 5.9: Dendra-2 mouse cranial bone mitochondria (GFP) and bone colla-
gen (SHG) image without/with DM sample correction at 45 μm. Scale bar in
the figure indicates 10 μm.

Next, we implemented high-order DMD correction both without and with
the DM pattern to illustrate the synergistic function of low-order and high-
order correction at a depth of 45 μm, as depicted in Figure 5.11.
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Figure 5.10: Histograms of GFP and SHG channel without/with DM sample
correction at 45 μm.

Table 5.1: HFM at 45 μm without/with DM sample correction.

without DM with DM
GFP 0.17 0.19
SHG 0.22 0.24

Improvements summarized in Table 5.2 revealed notable enhancements in
maximum intensity and FWHM for both the GFP and SHG channels at45 μm.
Specifically, for the GFP channel, HFM improved to 0.20 after scattering cor-
rection. Similarly, for the SHG channel, overall intensity improvement can be
observed in the histogram (Figure 5.12), with HFM improved to 0.26 after scat-
tering correction. The application of high-order DMD correction based on
low-order DM correction enhances both the maximum intensity and FWHM,
demonstrating the synergistic function of low-order and high-order correction
at 45 μm.

Table 5.2: HFM at 45 μm with low-order and high-order correction.

DM only DM + DMD
GFP 0.19 0.20
SHG 0.24 0.26
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Figure 5.11: Dendra-2 mouse cranial bone mitochondria (GFP) and bone colla-
gen (SHG) image by applying high-order DMD correction without/with low-
order DM correction at 45 μm. Scale bar in the figure indicates 10 μm.

By applying the same patterns, the correction remains valid when we go
deeper to 65 μm in figure 5.13.
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Figure 5.12: Histograms of GFP and SHG channel at 45 μmwith low-order and
high-order correction.

The data presented in Table 5.3 underscore significant improvements for
the GFP and SHG channels at 65 μm. Specifically, in the GFP channel in the
histogram (Figure 5.14), overall intensity improvement is significant, alongside
an enhancement in HFM. Correspondingly, in the SHG channel, the overall
intensity experienced a boost and the HFM improved from 0.29 to 0.31. These
findings convincingly demonstrate the efficacy of correction at 65 μm.

Table 5.3: HFM at 65 μm.

DM only DM + DMD
GFP 0.21 0.25
SHG 0.29 0.31
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Figure 5.13: Dendra-2 mouse cranial bone mitochondria (GFP) and bone colla-
gen (SHG) applied high-order DMD correction without/with low-order DM
correction at 65 μm. Scale bar in the figure indicates 10 μm.

Overall, our discussion delved into the initial application of low-order DM
correction in different setups, evaluating its efficacy both independently and
in conjunction with high-order correction. The results showcased substantial
enhancements in intensity and sharpness across both GFP and SHG channels
following correction, particularly notable at relatively shallow depths of 45 and
65 micrometers where scattering effects are less pronounced. This underscores
the crucial role of integrating low-order DM correction with high-order DMD
correction techniques to achieve precise imaging of biological structures.
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Figure 5.14: Histograms of GFP and SHG channel at 65 μm with low-order
and high-order correction.

5.8.2 High-order scattering correction at 80 μm
When reaching a depth of 80 μm below the surface, maintaining the same cor-
rection strategy became challenging as the low-order DM correction proved
ineffective in correcting the point spread function (PSF) due to the low signal-
to-noise ratio. Consequently, we implemented high-order scattering correction
initially to restore the PSF quality before subsequently applying low-order DM
correction.

PSF evaluation

We assessed the improvement in point spread function (PSF) ex vivo at a depth
of 80 μm below the surface after low-order correction with high-order DMD
correction enabled (Figure 5.15).
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Figure 5.15: (a) PSF before and after low-order sample correction with high-
order DMD correction enabled. (b) Singular value decomposition of the
Zernike modes. (c) Corrective wavefront (μm).

The experimental resolution improvement was assessed by analyzing the
amplitude and sharpness of the 2D Gaussian fit of the PSF before and after
low-order sample correction (Figure 5.16(a)). Subsequent to sensorless sam-
ple correction, both the sharpness (b) and amplitude (c) of the PSF showed
enhancement by a factor of 1.3 and 1.5, respectively.
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Figure 5.16: (a) 2D Gaussian fit of PSF before and after low-order sample cor-
rection. (b) sharpness. (c) amplitude.

Scanimage evaluation

After visualizing the PSF improvement, we captured images of Dendra-2 mouse
cranial bone mitochondria (GFP) and bone collagen (SHG) without/with low-
order DM correction at 80 μm, as shown in Figure 5.17. Initially, applying high-
order scattering correction improved the signal. Subsequently, DM sample
correction further enhanced mitochondrial intensity and lateral as well as axial
sharpness by rectifying tissue aberrations subsequent to high-order correction.
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Figure 5.17: Dendra-2 mouse cranial bone mitochondria (GFP) and bone colla-
gen (SHG) applied low-order DM correction without/with high-order DMD
correction at 80 μm.

Histograms in Figure 5.18 and contrast improvements summarized in Table
5.4 revealed notable enhancements for both the GFP and SHG channels at
80 μm. Specifically, for the GFP channel, the overall intensity is significantly
increased, with HFM improving to 0.27 after scattering correction. Similarly,
for the SHG channel, intensity improved with HFM improving to 0.47 after
correction, highlighting the effectiveness of our correction strategy in imaging
thick and highly scattering tissue.
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Table 5.4: HFM at 80 μm with high-order and low-order correction.

DMD only DMD + DM
GFP 0.24 0.27
SHG 0.32 0.47

Figure 5.18: Histograms of GFP and SHG channel at 80 μmwith low-order and
high-order correction.

The results indicate significant improvements in both intensity and contrast
for the GFP channels following scattering correction. These findings suggest
that our correction strategy effectively enhances image quality, enabling the res-
olution of finer details in both GFP and SHG channels at a depth of 80 μm.
This underscores the importance of incorporating high-order correction tech-
niques to achieve optimal imaging results, particularly in scenarios involving
biological samples with complex scattering properties.

The same correction pattern applied at80 μm remains effective as we progress
to deeper depths, such as 100 μm and 150 μm, as depicted in Figure 5.19 and
Figure 5.21, respectively.
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Figure 5.19: Dendra-2 mouse cranial bone mitochondria (GFP) and bone colla-
gen (SHG) applied low-order DM correction without/with high-order DMD
correction at 100 μm. Optimized contrast reveals detailed features after correc-
tion.

Histograms in Figure 5.20 and contrast improvements summarized in Table
5.5 demonstrate significant enhancements in both intensity and contrast for
both the GFP and SHG channels at a depth of 100 μm. Specifically, for the
GFP channel, intensity increased with HFM improving to 0.25 after scattering
correction. Similarly, for the SHG channel, intensity improved with HFM
improving to 0.41 after correction.

Table 5.5: HFM at 100 μm with high-order and low-order correction.

DMD only DMD + DM
GFP 0.18 0.25
SHG 0.34 0.41
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Figure 5.20: Histograms of GFP and SHG channel at 100 μm with low-order
and high-order correction.

Histograms in Figure 5.22 and contrast improvements summarized in Table
5.6 demonstrate notable enhancements in both intensity and contrast for both
the GFP and SHG channels at a depth of 150 μm. Specifically, for the GFP
channel, the intensity increased, with FWHM improving to 0.39 after scattering
correction. Similarly, for the SHG channel, FWHM improved to 0.29 after
correction.

Table 5.6: HFM at 150 μm with high-order and low-order correction.

DMD only DMD + DM
GFP 0.27 0.39
SHG 0.28 0.29
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Figure 5.21: Dendra-2 mouse cranial bone mitochondria (GFP) and bone colla-
gen (SHG) applied low-order DM correction without/with high-order DMD
correction at 150 μm. Optimized contrast reveals detailed features after correc-
tion.

In summary, while there may be slight variations in FWHM values across
different correction conditions, the synergistic function of DMD and DM is
evident in the combined correction’s ability to improve maximum intensity
for both GFP and SHG imaging from 45 μm to 150 μm. Our findings under-
score the importance of addressing tissue aberrations, particularly at greater
depths, where scattering effects become more pronounced. By applying dif-
ferent correction strategies, we were able to recover signal and improve image
sharpness, thereby enabling clearer visualization of subcellular structures such
as mitochondria and collagen fibers within cranial bone tissue.
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Figure 5.22: Histograms of GFP and SHG channel at 150 μm with low-order
and high-order correction.

5.9 Conclusion
In conclusion, this chapter has investigated a novel approach for enhancing
resolution in two-photon fluorescence microscopy (2PFM) by combining low-
order deformable mirror (DM) adaptive optics (AO) correction with high-order
digital micromirror device (DMD) scattering correction.

Our experiments have revealed that the effectiveness of sensorless low-order
correction is influenced by various parameters, including the number of Zernike
modes applied and the number of bias measurements. Optimal sensorless cor-
rection can be achieved by selecting a relatively high number of Zernike modes
and a relatively small number of bias measurements.

The integration of DM for correcting low-order aberrations and DMD for
correcting scattering-induced aberrations in our hybrid system has led to sig-
nificant improvements in scanned imaging quality. Moreover, we have demon-
strated the synergistic function of DM and DMD in enhancing imaging perfor-
mance. Notably, even in scenarios with low initial photon counts, our approach
has yielded promising results, particularly when utilizing second harmonic gen-
eration (SHG) originating within the bone as the guidestar.

Overall, these findings underscore the potential of our hybrid AO approach
to enhance resolution in 2PFM, thereby opening up new avenues for improving
imaging quality in a wide range of biological and biomedical applications. Our
study contributes to the advancement of biomedical imaging technologies, of-
fering new insights into tissue microstructures and pathology. Further research
in this direction holds promise for enhancing our understanding of biological
processes and disease mechanisms in various biomedical applications.
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Chapter 6

Conclusion

In conclusion, this thesis has provided a comprehensive exploration of second
harmonic generation (SHG) imaging and two-photon fluorescence microscopy
techniques tailored for evaluating collagen fiber structures and imaging thick
and highly scattering biological tissues. Chapter 1 laid the groundwork with an
introduction to fluorescence microscopy and adaptive optics, setting the stage
for the subsequent chapters.

Chapter 2 delved into the development of a polarized SHG imaging tech-
nique coupled with a texture analysis method, demonstrating its effectiveness
in differentiating between healthy and hypophosphatasia (HPP) bone tissues
by evaluating collagen fiber structures.

In Chapter 3, we examined aberration origins, corrective elements, wave-
front measurement techniques, and corrective algorithms, providing a compre-
hensive understanding of aberration correction strategies.

Chapter 4 detailed the development of a two-photon fluorescence micro-
scope with adaptive optics (TPFM-AO), resulting in improved contrast and
enabling fast imaging of subcellular organelles through highly scattering tissue.

Chapter 5 introduced a novel approach combining low-order deformable
mirror (DM) adaptive optics correction with high-order digital micromirror
device (DMD) scattering correction, significantly improving imaging quality
and demonstrating the synergistic function of DM and DMD.

Our study highlights the efficacy of high-order scattering correction tech-
niques in improving imaging quality, particularly in scenarios involving biolog-
ical samples with complex scattering properties. The integration of high-order
scattering correction with low-order deformable mirror (DM) correction has
shown significant enhancements in maximum intensity and FWHM for both
GFP and SHG channels across varying depths, from 45 μm to 150 μm.
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However, there is room for improvement in both low-order and high-order
correction strategies. For low-order aberration correction, integrating a CMOS
camera alongside photomultiplier tubes (PMTs) for multi-channel imaging
could enhance correction effectiveness. Additionally, further investigation is
needed to elucidate the function of DM and DMD at greater tissue depths,
particularly in vivo.

Moving forward, our future research aims to optimize and refine these cor-
rection strategies, particularly for in vivo applications, to advance the capabili-
ties of two-photon fluorescence microscopy in biomedical research and clinical
settings. Our study contributes to the advancement of biomedical imaging tech-
nologies, offering new insights into tissue microstructures and pathology. Fur-
ther research in this direction holds promise for enhancing our understanding
of biological processes and disease mechanisms in various biomedical applica-
tions.

listings xcolor
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.1 Wavefront reconstruction algorithm and Mat-
lab code

main.m
1 imgpath=’/Users/tianyizheng/Desktop/LAB2021 -2022/ AO

/12 -15/20211213 _Poke100mW.tif’;
2 info = imfinfo(imgpath);
3 slice = size(info ,1);
4 base = imread(imgpath ,98);
5 %base = imread(’base2.tiff ’);
6 phi = zeros (34 ,34 ,97);
7 img = zeros (2048 ,2048 ,97);
8 for i = 1: 97
9 img(:, :, i) = imread(imgpath , i);

10 phi(:, :, i) = GetAberration(base , img(:,:,i));
11 end

GetAberration.m return phi
1 function [phi] = GetAberration(baseimg , offsetimg)
2 global self;
3 [gradx , grady] = GetGradientsCorr(baseimg ,offsetimg

);
4 [extx , exty] = hudgins_extend(gradx ,grady);
5 phi = recon_hudgins(extx ,exty);
6 phi = phi*self.calfactor;
7 phi = RemoveGlobalWaffle(phi);
8 end

GetGradientsCorr.m Determines Gradients by Correlating each section with
its base reference section

1 self.bot = self.y_center - (self.radius)*self.
px_spacing;

2 self.left = self.x_center - (self.radius)*self.
px_spacing;

3 self.baseimg1 = high_pass_filter(baseimg);
4 self.offsetimg1 = high_pass_filter(offsetimg);
5

6 for ii = 1 : self.nx
7 for jj = 1 : self.ny
8 [a, b] = findDotsCenterofmass(baseimg ,

offsetimg , jj , ii);
9 try

10 [rows , cols] = ndgrid (1: size(a, 1), 1:
size(a, 2));

11 py = sum(rows(b) .* a(b)) / sum(a(b)) ;
12 px = sum(cols(b) .* a(b)) / sum(a(b)) ;
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13 catch % IndexError
14 px = self.CorrCenter (2);
15 py = self.CorrCenter (1);
16 end
17 self.gradx(jj ,ii) = self.CorrCenter (2) - px;
18 self.grady(jj ,ii) = self.CorrCenter (1) - py;
19 end
20

21 gradx = self.gradx;
22 grady = self.grady;
23 end

hudgins extend.m extension technique Poyneer 2002 recon hudgins.m wave-
front reconstruction from gradients Hudgins Geometry, Poyneer 2002 Re-
moveLocalWaffle.m initialize DM map corrected for local waffle

1 phi_corrected = zeros (2* self.radius , 2*self.radius);
2 for ii = 1 : 2*self.radius -2
3 for jj =1 : 2*self.radius -2
4 img3x3 = phi (((1+jj)) : ((1+jj)+2), ((1+ii)

) : ((1+ii)+2));
5 phi_corrected(jj+2, ii+2) = sum(sum(img3x3

* self.T_Filter));
6 end
7 end
8 phi_corrected (:, 1) = phi(:, 1);
9 phi_corrected (:, 2*self.radius) = phi(:, 2*self.

radius);
10 phi_corrected (1, :) = phi(1, :);
11 phi_corrected (2* self.radius , :) = phi(2* self.radius

, :);

.2 Labview code for low-order correction

.2.1 Sensorbased system correction via SHWFS
We use Matlab to generate the voltage applied to DM according to the SHWFS
measurement.

.2.2 Sensorless sample correction Labview code

.3 PSF sharpness evaluation
We evaluate the PSF before and after correction using Fiji and Python. The
code for the 2d Gaussian fit is attached here.
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Figure 1: Sensorbase aberration correction interface in LABVIEW

1 import numpy as np
2 import scipy.optimize as opt
3 import matplotlib.pyplot as plt
4 from pdb import set_trace as st
5 from PIL import Image
6 import numpy as np
7 from scipy import stats
8 from scipy.optimize import curve_fit
9 import os

10 import tifffile as tf
11 from glob import glob
12 from tqdm import tqdm
13 import pandas as pd
14

15 def twoD_Gaussian(xy , amplitude , xo , yo , sigma_x ,
sigma_y , theta , offset):

16 x, y = xy
17 xo = float(xo)
18 yo = float(yo)
19 a = (np.cos(theta)**2) /(2* sigma_x **2) + (np.sin(

theta)**2) /(2* sigma_y **2)
20 b = -(np.sin(2* theta))/(4* sigma_x **2) + (np.sin (2*

theta))/(4* sigma_y **2)
21 c = (np.sin(theta)**2) /(2* sigma_x **2) + (np.cos(

theta)**2) /(2* sigma_y **2)
22 g = offset + amplitude*np.exp( - (a*((x-xo)**2) +

2*b*(x-xo)*(y-yo)
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Figure 2: Sensorless aberration correction interface in LABVIEW

23 + c*((y-yo)**2)))
24 return g.ravel()
25

26 def crop_tiff(tiff ,a,b):
27 # Convert image to array
28 image_arr = np.array(tiff)
29 # Crop image
30 image_arr = image_arr[a:a+100, b:b+100]
31 return image_arr
32

33 def main():
34 path = r’/Users/tianyizheng/Desktop/DM+DMD

/20240331/ ’
35 folder_name = ’processed /7’
36 tif_list = glob(os.path.join(path+folder_name+’/’,’

b_nm3.tif’))
37 tif_list = np.sort(tif_list)
38 # tif_list = glob(os.path.join(path , ’154-2018-1

_HPP_5umdeep_00005.tif ’))
39 len_ = tif_list.shape [0]
40 name_list = []
41 sharp_list = []
42 amp_list = []
43 for ind , f in enumerate(tif_list):
44 print(f’{ind +1}/{ len_}’)
45 name = f.split(’/’)[-1]. split(’.tif’)[0]
46 print(name)
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Figure 3: Sensorless aberration correction interface in LABVIEW

47 name_list.append(name)
48 # load tiff file
49 tif = tf.imread(f)
50 tiff = crop_tiff(tif ,10 ,10)
51 x,y = tiff.shape
52 x1 = np.linspace(0, x-1, x)
53 y1 = np.linspace(0, y-1, y)
54 x1 , y1 = np.meshgrid(x1 , y1)
55 data = tiff.ravel()
56

57 initial_guess = (35000 ,50 ,50 ,10 ,10 ,0 ,10)
58

59 popt , pcov = opt.curve_fit(twoD_Gaussian , (x1,
y1), data , p0=initial_guess)

60 data_fitted = twoD_Gaussian ((x1 , y1), *popt)
61 sharp = popt [0]*(1/ popt [3]**2+1/ popt [4]**2)
62 print(sharp)
63 sharp_list.append(sharp)
64 amp_list.append(popt [0])
65 # st()
66 fig , ax = plt.subplots (1,1)
67 ax.imshow(data.reshape(x, y), cmap=plt.cm.jet ,

origin=’lower’,extent =(x1.min(), x1.max(), y1.min(),
y1.max()))

68 ax.contour(x1 , y1 , data_fitted.reshape(x, y),
3, colors=’w’)

69 fig.savefig(path+’2dgaussian /8/’+name+’.png’)
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70 sharp_arr = np.array(sharp_list)
71 name_arr = np.array(name_list)
72 amp_arr = np.array(amp_list)
73 # st()
74 # sharp_dataset = pd.DataFrame(index=name_arr , data

=sharp_arr)
75 # sharp_dataset.to_csv(path+’2 dgaussian /8/’ + ’

sharpness.csv ’)
76 # ampli_dataset = pd.DataFrame(index=name_arr , data

=amp_arr)
77 # ampli_dataset.to_csv(path+’2 dgaussian /8/’ + ’

amplitude.csv ’)
78 # st()
79

80 if __name__ == ’__main__ ’:
81 main()

.4 Code for spGLCM analysis

1 # coding: utf -8
2

3 __author__ = ’Tianyi ’
4

5 import numpy as np
6 import tifffile as tf
7 from pdb import set_trace as st
8 from glob import glob
9 import os

10 from skimage.feature import greycomatrix , greycoprops
11 from skimage import io, color , img_as_ubyte
12 import pandas as pd
13 import matplotlib.pyplot as plt
14 import seaborn as sns
15 import threading
16 import queue
17

18

19 def glcm_3d(input , delta , d):
20 """ _summary_
21

22 Args:
23 input (np.ndarray): input array. 3D. dtype int
24 delta (tuple[int], optional): Direction vector

from pixel. Defaults to (1, 1, 1).
25 d (int , optional): Distance to check for

neighbouring channel. Defaults to 1.
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26

27 Raises:
28 Exception: if input is not of type dint or is

not 3D
29

30 Returns:
31 _type_: GLCM Matrix
32 """
33

34 if ’int’ not in input.dtype.__str__ ():
35 raise Exception("Input should be of dtype Int")
36

37 if len(input.shape) != 3:
38 raise Exception("Input should be 3 dimensional"

)
39

40 offset = (delta [0] * d, delta [1] * d, delta [2] * d)
# offset from each pixel

41

42 x_max , y_max , z_max = input.shape # boundary
conditions during enumeration

43

44 levels = input.max() + 1 # 0:1:n assume contn range
of pixel values

45

46 results = np.zeros((levels , levels)) # initialise
results error

47

48

49 for i, v in np.ndenumerate(input):
50 x_offset = i[0] + offset [0]
51 y_offset = i[1] + offset [1]
52 z_offset = i[2] + offset [2]
53

54 if (x_offset >= x_max) or (y_offset >= y_max)
or (z_offset >= z_max):

55 # if offset out of boundary skip
56 continue
57

58 value_at_offset = input[x_offset , y_offset ,
z_offset]

59

60 results[v, value_at_offset] += 1
61

62 return results / levels **2
63

64
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65

66 def normalise(P):
67 return P / np.sum(P)
68

69 ###### here needs correction: graylevel should be int
:16

70 def graycoprops(P, debug=False):
71

72 P = normalise(P)
73 # st()
74

75 energy = np.sum(P**2)
76

77 idx = np.where(P > 0)
78

79 # begin i , j indexing from 1
80 i = idx [0] + 1
81 j = idx [1] + 1
82

83 homogeneity = np.sum(P[idx] / (1 + (i - j) ** 2))
84

85 contrast = np.sum(P[idx] * (i - j) ** 2)
86

87 entropy = np.sum(-P[idx] * np.log(P[idx]))
88

89 # for correlation
90

91 mu = np.sum(i * P[idx])
92

93 sigma_square = np.sum(P[idx] * (i - mu) ** 2)
94

95 correlation = np.sum((P[idx] * (i - mu) * (j - mu))
/ sigma_square)

96

97 if debug:
98 print(
99 f"""

100 i: {i}\n
101 j: {j}\n
102 mu: {mu}\n
103 sigma_square: {sigma_square }\n
104 """
105 )
106

107 return {
108 "energy": energy ,
109 "homogeneity": homogeneity ,
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110 "contrast": contrast ,
111 "entropy": entropy ,
112 "correlation": correlation ,
113 }
114

115

116 def get_features(f,offset):
117

118 img = tf.imread(f)
119 img= np.array(img)#.astype(np.uint8)
120 # ####### flip the 3d shg images along polarization

angle ######
121 img = np.flip(img ,0)
122

123 ####### double the 3d shg images along polarization
angle ######

124 img_array = np.concatenate ([img , img], 0)
125

126 txt = {}
127

128 # (1,0,0) : x direction - polar
129 # (0,1,0) : y direction - x
130 # (0,0,1) : z direction - y
131 # (1,1,1) : diag direction - diag
132 # (1,1,0) : xy direction - x-polar
133 # (1,0,1) : xz direction - y-polar
134 # (0,1,1) : yz direction - xy
135 for label , delta in [
136 ("xd", (1, 0, 0)),
137 ("yd", (0, 1, 0)),
138 ("zd", (0, 0, 1)),
139 ("dd", (1, 1, 1)),
140 ("xy", (1, 1, 0)),
141 ("xz", (1, 0, 1)),
142 ("yz", (0, 1, 1)),
143 ]:
144 # st()
145 glcm_img = glcm_3d(img_array.astype(int), delta

, d = offset)
146 # st()
147 glcm_img[0, :] = 0
148 glcm_img[:, 0] = 0
149 # st()
150 txt[f"{label}_img"] = graycoprops(glcm_img)
151 # st()
152 intensity_mean = {
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153 # Average taken where masked scan != 0. Only
non zero values

154 "img": np.mean(img_array[img_array !=0]) ,
155 }
156 return txt , intensity_mean
157

158

159

160 def plot_avg_intensity(df):
161 ax = sns.boxplot(data=df,palette =["red", "blue"])
162 ax.set_ylabel("Intensity")
163 ax.set_title("Intensity HPP vs WT")
164 ax.set_xticklabels (["HPP","WT"])
165 plt.show()
166

167 def make_to_same_len(list1 ,list2):
168 if len(list1)>len(list2):
169 for _ in range(len(list1)-len(list2)):
170 list2.append(np.nan)
171 return list1 , list2
172 elif len(list1)<len(list2):
173 for _ in range(len(list2)-len(list1)):
174 list1.append(np.nan)
175 return list1 , list2
176 elif len(list1) == len(list2):
177 return list1 , list2
178

179

180 def main():
181

182 path = r’../ data_8bit ’
183 for offset in [1,3,5,7,9,11,13,15,17]:
184

185 ####### one angular image for test ########
186 # tif_list = os.path.join(path ,’

HPP_corrected_focus_16_10780 -10815 _10805_SHG.tif ’)
187

188 tif_list = glob(os.path.join(path ,’*.tif’))
189 tif_list = np.sort(tif_list)
190 # len_ = tif_list.shape [0]
191

192 hpp_list = []
193 wt_list = []
194 hpp_features = []
195 wt_features = []
196

197 ############## multi -thread ##############
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198

199 # Create a queue to hold the files to process
200 file_queue = queue.Queue()
201

202 # Enqueue the files into the queue
203 for f in tif_list:
204 file_queue.put(f)
205

206 # Create a lock for thread -safe access to lists
207 lock = threading.Lock()
208

209 # Define a function that each thread will
execute

210 def process_file ():
211 while not file_queue.empty():
212 f = file_queue.get()
213

214 # st()
215 ind = len(tif_list) - file_queue.qsize

()
216 print(f’{ind }/{ len(tif_list)}’)
217

218 name = f.split(’focus_ ’)[-1]
219 img_label = f.split(’/’)[-1]. split("

_corr")[0]
220

221 if img_label == "HPP":
222 hpp = get_features(f,offset)[0]
223 # st()
224 hpp_intensity = get_features(f,

offset)[1]
225 hpp_features_df = pd.DataFrame(hpp)
226

227 with lock:
228 print("HPP:", hpp_features_df)
229 hpp_list.append(hpp_intensity[’

img’])
230 hpp_features.append(

hpp_features_df)
231 else:
232 wt = get_features(f,offset)[0]
233 wt_intensity = get_features(f,

offset)[1]
234 wt_features_df = pd.DataFrame(wt)
235

236 with lock:
237 print("WT:", wt_features_df)
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238 wt_list.append(wt_intensity[’
img’])

239 wt_features.append(
wt_features_df)

240

241 # Define the number of threads you want to use
242 num_threads = 10 # Adjust this according to

your requirements
243

244 # Create and start the threads
245 threads = []
246 for _ in range(num_threads):
247 thread = threading.Thread(target=

process_file)
248 thread.start()
249 threads.append(thread)
250

251 # Wait for all threads to complete
252 for thread in threads:
253 thread.join()
254

255 # ########### multi -threading ends ###########
256

257

258 np.save(’../7 direction_36_glcm_data/
hpp_features_8bit_d=’+offset , np.asarray(
hpp_features))

259 np.save(’../7 direction_36_glcm_data/
wt_features_8bit_d=’+offset , np.asarray(wt_features)
)

260

261

262 if __name__ == "__main__":
263 main()

.5 Code for Random forest and XGBoost making
classification

1 import pandas as pd
2 from sklearn.model_selection import train_test_split
3 from sklearn.metrics import accuracy_score
4 import pickle
5 from matplotlib import pyplot as plt
6 from sklearn.model_selection import GridSearchCV
7 from pdb import set_trace as st
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8 import numpy as np
9 import seaborn as sns

10 from sklearn.metrics import f1_score ,confusion_matrix ,
ConfusionMatrixDisplay

11 from glob import glob
12 import os
13 from tqdm import tqdm
14 from sklearn.model_selection import cross_val_score ,

KFold
15 import xgboost as xgb
16 from sklearn.ensemble import RandomForestClassifier
17 from sklearn.manifold import TSNE
18 from sklearn.decomposition import PCA
19 from sklearn.feature_selection import SelectKBest , chi2
20 # from catboost import CatBoostClassifier , Pool
21 import lightgbm as lgb
22 from sklearn.metrics import roc_curve , auc
23 from sklearn.inspection import permutation_importance
24

25

26

27 def calc_evaluation(Y, pred):
28

29 ’’’
30 compute confusion matrix and f1 score
31 ’’’
32

33 print(’Confusion matrix ’)
34 cm = confusion_matrix(Y.astype(int).squeeze (),pred.

astype(int))
35 print(cm)
36

37 print(’f1 score ’)
38 print(f1_score(Y.astype(int).squeeze (), pred.astype

(int)))
39 disp = ConfusionMatrixDisplay(confusion_matrix=cm)
40 disp.plot()
41 # plt.show()
42 # return f1_score(Y.astype(int).squeeze (), pred.

astype(int))
43

44 def normalize_func(data):
45

46 normalized_data = data / np.max(data , axis=2,
keepdims=True)

47 # st()
48 return normalized_data
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49

50

51 def sort_and_plot(input_dict , plot_title):
52 """
53 Converts a dictionary into a DataFrame , calculates

sum and std for each key , sorts them , and plots a
bar plot with standard deviation.

54

55 Args:
56 input_dict (dict): The dictionary to convert.
57 plot_title (str): The title for the bar plot.
58 """
59 # Initialize lists to store the results
60 features = []
61 sums = []
62 stds = []
63

64 # Calculate sum and std for each key
65 for key , values in input_dict.items():
66 features.append(key)
67 sums.append(sum(values))
68 stds.append(pd.Series(values).std())
69

70 # Create a summary DataFrame and sort it
71 summary_df = pd.DataFrame ({
72 ’Feature ’: features ,
73 ’Sum’: sums ,
74 ’Std’: stds
75 }).sort_values(by=’Sum’, ascending=False)
76

77 # Plotting
78 plt.figure(figsize =(10, 6))
79 plt.bar(summary_df[’Feature ’], summary_df[’Sum’],

yerr=summary_df[’Std’], capsize=5, color=’skyblue ’)
80 plt.title(plot_title)
81 # plt.xlabel(’Feature ’)
82 plt.ylabel(’Sum’)
83 plt.xticks(rotation =45)
84 # plt.show()
85

86 return summary_df
87

88 def feature_selection(X, y, k):
89 """
90 Perform feature selection using SelectKBest with

chi -squared statistic.
91
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92 Args:
93 X (numpy.ndarray or pandas.DataFrame): Input

features of shape (n_samples , n_features).
94 y (numpy.ndarray or pandas.Series): Target

variable of shape (n_samples ,).
95 k (int): Number of features to select.
96

97 Returns:
98 numpy.ndarray: Transformed features of shape (

n_samples , k).
99 """

100 selector = SelectKBest(chi2 , k=k)
101 X_new = selector.fit_transform(X, y)
102 return X_new
103

104 def main():
105

106 path = r’../4 direction_18_glcm_data ’
107 num = 20
108 # num = 35
109 data_wt_1 = np.load(path+’/wt_features_8bit_d =1. npy

’)
110 # st()
111 data_wt_1 = normalize_func(data_wt_1)
112 data_wt_1 = data_wt_1.reshape(data_wt_1.shape[0],

num)
113 data_hpp_1 = np.load(path+’/hpp_features_8bit_d =1.

npy’)
114 data_hpp_1 = normalize_func(data_hpp_1)
115 data_hpp_1 = data_hpp_1.reshape(data_hpp_1.shape

[0],num)
116 data_arr_1 = np.concatenate ((data_wt_1 , data_hpp_1)

,axis =0)
117 label_arr = np.concatenate ((np.zeros (( data_wt_1.

shape [0],), dtype=int), np.ones(( data_hpp_1.shape
[0],), dtype=int)),axis=None)

118 # st()
119

120 data_wt_2 = np.load(path+’/wt_features_8bit_d =3. npy
’)

121 data_wt_2 = normalize_func(data_wt_2)
122 data_wt_2 = data_wt_2.reshape(data_wt_2.shape[0],

num)
123 data_hpp_2 = np.load(path+’/hpp_features_8bit_d =3.

npy’)
124 data_hpp_2 = normalize_func(data_hpp_2)
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125 data_hpp_2 = data_hpp_2.reshape(data_hpp_2.shape
[0],num)

126 data_arr_2 = np.concatenate ((data_wt_2 , data_hpp_2)
,axis =0)

127

128 data_wt_3 = np.load(path+’/wt_features_8bit_d =5. npy
’)

129 data_wt_3 = normalize_func(data_wt_3)
130 data_wt_3 = data_wt_3.reshape(data_wt_3.shape[0],

num)
131 data_hpp_3 = np.load(path+’/hpp_features_8bit_d =5.

npy’)
132 data_hpp_3 = normalize_func(data_hpp_3)
133 data_hpp_3 = data_hpp_3.reshape(data_hpp_3.shape

[0],num)
134 data_arr_3 = np.concatenate ((data_wt_3 , data_hpp_3)

,axis =0)
135

136 data_wt_4 = np.load(path+’/wt_features_8bit_d =7. npy
’)

137 data_wt_4 = normalize_func(data_wt_4)
138 data_wt_4 = data_wt_4.reshape(data_wt_4.shape[0],

num)
139 data_hpp_4 = np.load(path+’/hpp_features_8bit_d =7.

npy’)
140 data_hpp_4 = normalize_func(data_hpp_4)
141 data_hpp_4 = data_hpp_4.reshape(data_hpp_4.shape

[0],num)
142 data_arr_4 = np.concatenate ((data_wt_4 , data_hpp_4)

,axis =0)
143

144 data_wt_5 = np.load(path+’/wt_features_8bit_d =9. npy
’)

145 data_wt_5 = normalize_func(data_wt_5)
146 data_wt_5 = data_wt_5.reshape(data_wt_5.shape[0],

num)
147 data_hpp_5 = np.load(path+’/hpp_features_8bit_d =9.

npy’)
148 data_hpp_5 = normalize_func(data_hpp_5)
149 data_hpp_5 = data_hpp_5.reshape(data_hpp_5.shape

[0],num)
150 data_arr_5 = np.concatenate ((data_wt_5 , data_hpp_5)

,axis =0)
151

152 data_wt_6 = np.load(path+’/wt_features_8bit_d =11.
npy’)

153 data_wt_6 = normalize_func(data_wt_6)
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154 data_wt_6 = data_wt_6.reshape(data_wt_6.shape[0],
num)

155 data_hpp_6 = np.load(path+’/hpp_features_8bit_d =11.
npy’)

156 data_hpp_6 = normalize_func(data_hpp_6)
157 data_hpp_6 = data_hpp_6.reshape(data_hpp_6.shape

[0],num)
158 data_arr_6 = np.concatenate ((data_wt_6 , data_hpp_6)

,axis =0)
159

160 data_wt_7 = np.load(path+’/wt_features_8bit_d =13.
npy’)

161 data_wt_7 = normalize_func(data_wt_7)
162 data_wt_7 = data_wt_7.reshape(data_wt_7.shape[0],

num)
163 data_hpp_7 = np.load(path+’/hpp_features_8bit_d =13.

npy’)
164 data_hpp_7 = normalize_func(data_hpp_7)
165 data_hpp_7 = data_hpp_7.reshape(data_hpp_7.shape

[0],num)
166 data_arr_7 = np.concatenate ((data_wt_7 , data_hpp_7)

,axis =0)
167

168 data_wt_8 = np.load(path+’/wt_features_8bit_d =15.
npy’)

169 data_wt_8 = normalize_func(data_wt_8)
170 data_wt_8 = data_wt_8.reshape(data_wt_8.shape[0],

num)
171 data_hpp_8 = np.load(path+’/hpp_features_8bit_d =15.

npy’)
172 # st()
173 data_hpp_8 = normalize_func(data_hpp_8)
174 data_hpp_8 = data_hpp_8.reshape(data_hpp_8.shape

[0],num)
175 data_arr_8 = np.concatenate ((data_wt_8 , data_hpp_8)

,axis =0)
176

177 data_wt_9 = np.load(path+’/wt_features_8bit_d =17.
npy’)

178 data_wt_9 = normalize_func(data_wt_9)
179 data_wt_9 = data_wt_9.reshape(data_wt_9.shape[0],

num)
180 data_hpp_9 = np.load(path+’/hpp_features_8bit_d =17.

npy’)
181 data_hpp_9 = normalize_func(data_hpp_9)
182 data_hpp_9 = data_hpp_9.reshape(data_hpp_9.shape

[0],num)
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183 data_arr_9 = np.concatenate ((data_wt_9 , data_hpp_9)
,axis =0)

184

185

186 data_arr = np.concatenate (( data_arr_1 , data_arr_2 ,
data_arr_3 , data_arr_4 , data_arr_5 ,data_arr_6 ,
data_arr_7 ,data_arr_8 ,data_arr_9),axis =1)

187

188 xgb_max_f1_train = []
189 rf_max_f1_train = []
190 xgb_max_f1_test = []
191 rf_max_f1_test = []
192

193 for i in range (5):
194 train_X , test_X , train_Y , test_Y =

train_test_split(data_arr , label_arr , test_size =0.2)
195 # st()
196

197 # KFold for cross -validation
198 # kf = KFold(n_splits=5, shuffle=True ,

random_state =42)
199

200

201 # XGBoost
202 print(’

-------------------------------------------------------
’)

203 print(’XGBOOST ’)
204 # max_f1_xgboost = []
205 f1_xgboost_test = []
206 f1_xgboost_train = []
207 # error_xgb_list = []
208

209 for i in range(1, 20):
210 xgbc = xgb.XGBClassifier(use_label_encoder=

False , max_depth=i, objective=’binary:logistic ’,
eval_metric=’logloss ’)

211 # f1_scores = cross_val_score(xgbc ,
data_arr , label_arr , cv=kf, scoring=’f1 ’)

212 # f1_xgboost.append(f1_scores)
213 # error_xgb = np.std(f1_xgboost)
214 # max_f1_xgboost.append(np.max(f1_scores))
215 # error_xgb_list.append(error_xgb)
216

217 ## fitting
218 xgbc.fit(train_X , train_Y)
219
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220 ## for testing
221 pred_y = xgbc.predict(test_X)
222 f1_ = f1_score(test_Y.astype(int).squeeze ()

, pred_y.astype(int))
223 f1_xgboost_test.append(f1_)
224 ## for training
225 pred_y = xgbc.predict(train_X)
226 f1_ = f1_score(train_Y.astype(int).squeeze

(), pred_y.astype(int))
227 f1_xgboost_train.append(f1_)
228

229 xgb_max_f1_test.append(np.max(f1_xgboost_test))
230 xgb_max_f1_train.append(np.max(f1_xgboost_train

))
231 print(np.mean(xgb_max_f1_test))
232

233

234 # Random Forest
235 print(’

-------------------------------------------------------
’)

236 print(’RANDOM FOREST ’)
237 # max_f1_rf = []
238 f1_rf_test = []
239 f1_rf_train = []
240 # error_rf_list = []
241

242 for i in range(1, 20):
243 clf = RandomForestClassifier(max_depth=i,

random_state =0)
244 ## fitting
245 clf.fit(train_X , train_Y)
246 ## testing
247 pred_y = clf.predict(test_X)
248 f1_ = f1_score(test_Y.astype(int).squeeze ()

, pred_y.astype(int))
249 f1_rf_test.append(f1_)
250

251 ## train
252 pred_y = clf.predict(train_X)
253 f1_ = f1_score(train_Y.astype(int).squeeze

(), pred_y.astype(int))
254 f1_rf_train.append(f1_)
255

256

257 # f1_scores = cross_val_score(clf , data_arr
, label_arr , cv=kf, scoring=’f1 ’)
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258 # f1_rf.append(f1_scores)
259 # error_rf = np.std(f1_rf)
260 # max_f1_rf.append(np.max(f1_scores))
261 # error_rf_list.append(error_rf)
262

263 # max_f1_rf = np.array(max_f1_rf)
264 # error_rf = np.array(error_rf_list)
265 rf_max_f1_test.append(np.max(f1_rf_test))
266 rf_max_f1_train.append(np.max(f1_rf_train))
267 # print("Mean max F1 -scores for each depth in

Random Forest:", np.max(max_f1_rf))
268 print(np.mean(rf_max_f1_test))
269

270 st()
271

272 if __name__ ==’__main__ ’:
273 main()
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