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ABSTRACT 

Both environmental monitoring and the assessment of risks to the ecosystem play a 

significant role in maintaining environmental sustainability. Among several impacts, 

toxins produced by cyanobacteria in water affect aquatic plants, animals and human 

beings, they can grow faster with high availability of nutrients and warm temperatures. 

Based on public reports, the National Wildlife Federation noted in a report that 

cyanobacterial harmful algal blooms are common, with 21 states of the U.S reporting 

blooms at 147 locations between May and September 2013 [1]. In our research, we have 

studied the process to extract “chlorophyll a” concentration from lakes in Georgia using 

scenes captured by MERIS satellite; also studied the process for extracting physical 

parameters Land Usage Land Cover (LULC), Normalized Difference Vegetation Index 

(NDVI), and Palmer Drought Severity Index (PDSI) data for lakes in Georgia. We have 

also studied lakes, which have similar trend with respect to “chlorophyll a” concentration 

from 2002 to 2012, and impact of physical parameters for change in concentration by 

performing machine learning analysis. Our research seeks to explore the challenges and 



approaches in the extraction of data from satellite scenes and to apply data analytics to 

environmental monitoring. 
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CHAPTER 1 

INTRODUCTION 

 In this chapter, we introduce cyanobacteria and their effects on the ecosystem; also field 

monitoring and remote sensing techniques used to detect cyanobacteria concentration. We have 

also briefly discussed major challenges associated with cyanobacteria data extraction, how 

machine learning techniques can be used for the analysis and our contributions on these lines. 

 

1.1 Introduction 

Cyanobacteria commonly known as blue-green (BG) algae are important class of 

phytoplankton [3]. Abundant growth of cyanobacteria in aquatic systems creates problems due to 

their capacity to produce toxins which are known as cyanotoxins [3]. These cyanotoxins include 

neurotoxic, hepatotoxic, genotoxic, inflammatory, microcystins and cytotoxic agents [5]. Among 

these agents microcystins are the most potent and commonly encountered [5]. Cyanobacteria are 

the only bacteria that contain chlorophyll-a. The blue green algae contain the pigments 

phycoerythrin and phycocyanin [9]. Cyanobacteria and their cyanotoxins are unregulated 

contaminants [2]. Mass populations of cyanobacteria are described as “blooms”; and most of the 

blooms are toxic species [6]. Cyanotoxins can be found in water bodies used for drinking, aqua 

culture, crop irrigation, and recreation [2]. Algal blooms degrade the quality of the lakes and 

reservoirs by forming surface scums, inducing unpleasant taste and odor in the drinking water 

and causes effects to human health [4]. 
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Cyanobacteria blooms can normally be unappealing, which are concentrated along the 

shorelines where they are encountered frequently by the public [2]. The main reasons for growth 

of cyanobacteria blooms are increased nutrients level, increase in temperatures where warm 

surfaces favor cyanobacteria growth, and changes in land use practices such as increase in 

agricultural growth tends to increase in nutrients flow to water bodies [2].  

 Cyanobacteria toxins are also present in treated drinking water supplies when 

cyanobacteria blooms occur in their sources [6]. Increased population and depletion of ground 

water resulted in increase of usage of surface water as a water source, both from rivers/lakes and 

reservoirs [6]. Cyanobacterial toxins cause livestock poisoning, which has been extensively 

reported in America, Europe and Australia [6]. Livestock are vulnerable to cyanobacteria 

poisoning because they tend to drink toxic water in ponds and lakes in farms [6]. Human 

poisoning also occurs by toxins entering the food chain through shellfish, mussels, oysters or 

scallops, which are generally consumed by humans [6].  

Cyanobacterial blooms have been documented across US, and numerous states have 

issued health advisories or closed the recreational areas due to potential risks caused by them [2]. 

A few states have toxins monitoring programs, while others conduct event-based responses and 

some provide public education focused on human and animal protection from toxin exposure [2]. 

While there are different techniques followed for detecting cyanobacteria blooms, the typical 

approach is collecting samples and testing them in laboratory and satellite remote sensing.  

There are many challenges faced by different states in US in the development of field 

based monitoring programs because they are insufficient to provide timely warnings of 

cyanobacteria bloom development across large geographic areas [2]. Field monitoring program is 

difficult because estimating cyanobacteria blooms is time consuming and labor intensive, 
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involving water sample collection, laboratory analysis, and the visual identification and 

enumeration [2]. To overcome these challenges, satellite remote sensing has been recommended 

to provide more reliable information about the cyanobacterial blooms [7]. Remote sensing based 

techniques are used to detect and map the cyanobacterial blooms from space [8]. There are a 

variety of approaches and methods developed for identifying the blooms and scums, estimation 

of phycocyanin or detecting the presence of phycocyanin, and chlorophyll a concentration [2]. 

Various satellites have been used such as Landsat, MODIS and MERIS [2]. For remote sensing 

techniques, phycocyanin (PC) which is a characteristic photosynthetic pigment in cyanobacteria 

is used as proxy to detect blue green algae [25]. 

 Algal blooms cause critically stressful conditions in aquatic ecosystems so, predicting 

their occurrence is very important [10]. Various modelling techniques are applied to analyze 

fresh water ecosystems but they are generally very complex; machine learning techniques are 

efficient methods to deal with complex datasets such as, the long term time series data that arise 

in ecology in comparison with traditional techniques [10].   

 

1.2 Challenges in cyanobacteria data extraction and analysis 

 There are different techniques used for cyanobacteria detection to identify the 

concentration and their impact to the ecosystem. However, there are some challenges associated 

with remote sensing when used for detection. Some of the challenges include,

1. The satellite scenes captured using remote sensing has noise associated with them 

because of cloud cover.  

2. The physical parameters such as, land coverage land usage (LULC), palmer drought 

severity index (PDSI), and normalized difference vegetation index(NDVI) which has 
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effect on cyanobacteria growth. The physical parameter which has more affect to the 

change in cyanobacteria concentration is not known for Georgia lakes and reservoirs. 

3. Georgia has many lakes and reservoirs’ so deploying sensors in every water body to 

detect cyanobacteria bloom is not practical and can be costly. 

 

1.3 Major Contribution 

In this research, we have extracted LULC which gives information related to land 

coverage around lakes such as urban, forest, crop coverage and others, NDVI gives information 

related to live green vegetation and PDSI data which is about temperature and precipitation 

information from different data resources for 492 lakes of Georgia. We have also extracted 

Normalized Difference Chlorophyll Index (NDCI) which gives information related to 

chlorophyll concentration of lakes for years 2002 to 2012 from scenes captured by MERIS 

satellite by eliminating noise induced by cloud cover [24]. Our study shows the impact of 

physical parameters for change in chlorophyll concentration. We also performed clustering on 

lakes and identified lakes which have same trend with respect to chlorophyll-a concentration for 

years 2010 and 2011. All lakes in a single cluster will have same trend so deploying sensor in 

one lake for each cluster helps analyzing other lakes in the same cluster which reduces cost. Our 

study states that physical parameters have impact on phytoplankton growth and also as drought 

conditions increase chlorophyll a concentration in lakes also increases compared to  LCLU and 

NDVI parameters.

The rest of the thesis is organized as follows: 

CHAPTER 2 describes different remote sensing techniques, different satellites for environmental 

monitoring and their characteristics, tools used to process the satellite images, machine learning
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algorithm used for data analysis and also overview of cyanoTracker project. 

CHAPTER 3 describes the related work. 

CHAPTER 4 gives an overview of system architecture and process used to extract LULC, 

NDVI, PDSI and chlorophyll a concentration data. 

CHAPTER 5 gives empirical study done to cluster lakes of Georgia for years 2010 and 2011 

based on chlorophyll concentration and identifying the impact of physical parameters on 

chlorophyll concentration. 

CHAPTER 6 gives the conclusion of the analysis we performed. 
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CHAPTER 2 

BACKGROUND 

In this chapter, we have briefly described remote sensing and multispectral remote 

sensing, which play an important role in capturing cyanobacteria and physical parameters data. 

we also described satellites whose scenes are used to extract data in our analysis. We have 

described different tools and file formats, which are used for processing satellite images. We also 

described clustering technique used for data analysis and gave an overview of cyanoTracker 

project, which is a research project initiated by researchers at University of Georgia. 

 

2.1 Remote Sensing  

Remote sensing refers to the activities of monitoring or observing something from far 

away distance or remote places. In this process sensors are not in direct contact with the objects 

or places it captures. Electromagnetic radiations are used as a carrier for information from the 

object to the capturer [11]. Using remote sensing we get image or a scene, which contains data 

captured for each scene.  The analysis and processing of data need to be done in order to extract 

useful information out of satellite images [11]. To avoid noise induced by cloud cover and others 

while capturing, image correction should be done.  Remote sensing can be done using satellites 

that are placed in the orbit for different purposes like improving communication, earth 

observation, navigation, weather and many others [11]. Passive and Active remote sensing are 

two different kinds of remote sensing techniques. 
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Passive remote sensing data is captured based on natural radiation or reflection where 

reflected sunlight is the common source of radiation which is used in capturing images [11]. Film 

photography, infrared, and radiometers are based on passive remote sensing. Active remote 

sensing emits energy in order to capture objects where sensors detect and measure the reflection 

from the target [11]. 

 The traditional monitoring methods for ecosystem consist of collection of field samples, 

laboratory analysis, and manual cell counts so, these methods are time consuming, labor 

intensive and costly [3]. To improve the monitoring technique, remote sensing is proved to be 

valuable [3]. Using satellite remote sensing data over large areas are gathered quickly and 

economically [12].  

There are different active remote sensing techniques available, among them we are more 

interested in multi spectral remote sensing because the MERIS satellite from which we extracted 

chlorophyll-a concentration data for lakes of Georgia using downloaded images developed with 

this technology. 

 

2.2 Multispectral Remote Sensing 

 Multispectral airborne and satellite sensing have been employed for gathering data in 

fields of agriculture and food production, geology, oil, mineral, geography and urban to non-

urban localities [12]. Multispectral remote sensing systems use parallel sensor arrays that detect 

radiation in small number of broad wavelength bands [12]. Most multispectral satellites captures 

three to ten spectral bands [12]. This technique allows for the discriminations of different types 

of vegetation, rocks and soils, clear and turbid water, and selected man made materials [12].  
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2.3 MEdium Resolution Imaging Spectrometer (MERIS) 

MERIS is one of the instruments on board of the European Space Agency (ESA) satellite 

ENVISAT. The contributions of MERIS are measurement of photosynthetic potential by 

detection of phytoplankton, detection of yellow substance, and detection of suspended matter 

[13]. The primary mission of MERIS is to monitor the ocean color including chlorophyll 

concentrations for open oceans and coastal areas [13]. It also provides information related to 

land.  There are two level of products are processed using MERIS scenes where level1 products 

are images resampled on a path-oriented grid, with pixel values are calibrated to match the top of 

atmosphere radiance. Level2 products are processed to get the geophysical measurements and 

level1 products are input for the level2 products [13]. MERIS observes earth in 15 spectral bands 

among them we used two bands, 665nm band that contain information related to Chlorophyll 

absorption and 708nm band that contain data related to atmosphere correction [13]. We used 

satellite scenes of MERIS for calculating chlorophyll concentration. 

Moderate Resolution Imaging Spectrometer (MODIS) is another satellite whose captured 

scenes are used in our analysis. MODIS satellite view earth for every 1 to 2 days and acquires 

data in 36 spectral bands [14]. The data collected helps in understanding the processes occur on 

the land, in the oceans, and in the lower atmosphere [14]. MODIS has 13 visible and near 

infrared bands that could be potentially used in aquatic remote sensing [7]. We used MODIS 

satellite scenes for extracting NDVI data in our research. 

Cyanobacteria can be detected near 630nm where there is peak in reflectance spectra of 

cyanobacteria. MODIS does not provide any information at this spectral region so, we cannot use 

MODIS for detecting cyanobacteria blooms [7]. Once the satellite images from MERIS are 
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downloaded we need to process them to measure chlorophyll concentration so, we used ArcGIS 

and Beam software’s. 

 

2.4 ArcGIS and Beam Applications 

 ArcGIS is a geographic information system used for working with maps and geographic 

information. It is used for creating maps, analyzing mapped information, compiling geographic

data, sharing and discovering geographic information [15]. The file formats supported by 

ArcGIS and used in our research are shape files, raster files, tiff files. 

 Shape files are Esri (Environmental Systems Research Institute) vector storage data 

format for storing the location, shape and attributes of geographic features [16]. Shape file 

format can spatially describe features as points, line and polygons which represents water wells, 

rivers and lakes. The raster data type is, any type of digital image represented by reducible and 

enlargeable grids. It consists of rows and columns of cells, with each cell storing a single value. 

In raster images each pixel contains color information. Along with color information raster 

images can also have data related to land usage, temperature or a null value. TIFF is one of the 

file formats raster data is stored in [17].  

 BEAM is an open source toolbox and development platform for viewing, analyzing and 

processing of remote sensing raster data. It was originally developed to process image data from 

Envisat’s optical instruments [18]. Envisat (Environmental Satellite) is the European Space 

Agency’s largest civilian Earth observation satellite put into space [17]. In our research we used 

BEAM for processing satellite scenes captured by MERIS. 
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2.5 K Means Clustering 

To design a cost effective process for deploying sensors into water bodies of Georgia we 

used kmeans clustering technique. This technique is used for clustering lakes into groups to 

identify the lakes which have same trend related to chlorophyll concentration.  

Clustering algorithms are presented with a set of data instances that must be grouped 

according to some notion of similarity [19]. Among clustering formulations that are based on 

minimizing a formal objective function, the most widely used and studied is k-means clustering 

[20]. Kmeans clustering is a method commonly used to automatically partition a dataset into k 

groups [19]. This algorithm works by selecting k initial cluster centers and then iteratively 

refining them by assigning each instance to its closest cluster center, and cluster center is updated 

by mean of its instances [19]. The input of the algorithm in our analysis is NDCI 7 classes data 

of lakes captured. Euclidean distance is used for calculating distance between two instances. The 

optimal number of clusters k for the input data set should be measured so, we used silhouette 

coefficient technique which is used to study the separation between two groups and their values 

ranges from [-1,1]. If the coefficient is closer to -1 the neighboring clusters are dissimilar, if it 0 

then they are neither similar nor dissimilar, and if it closer to1 the neighboring clusters are very 

similar [21]. Silhouette analysis is used to choose the optimal number of clusters for the given 

dataset [21]. 

 

2.6 cyanoTracker Project 

 As mentioned before toxins released by cyanobacteria are harmful to animals, human and 

other living organisms. So, in “cyanotracker” [31] project at the University of Georgia, working 

to implement an early warning system which monitors cyanobacteria blooms in lakes of Georgia. 
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 This project is about implementing a multi cloud framework that integrates community 

observations, remote sensing measurements, and multimedia analytics for environmental 

monitoring. The main objectives of this project are design of multi-cloud data monitoring along 

with event detection strategies and motivating community members to contribute content, 

designing a cost effective approach for data extraction, segmentation, registration and indexing 

of image and video data acquired from heterogeneous sources, and designing a cost effective 

approach for deploying hyperspectral sensors, managing them and analyzing the data collected 

for cyanobacteria concentration on daily basis.

 

 

Figure1. cyanoTracker Architecture (cyanotracker.uga.edu) 

 Figure 1 shows the cyanoTracker architecture [31], the three main components are Text 

Analytics Engine, Sensor Data Analytics Engine, and Image Analytics Engine. To design a cos 

effective approach for deploying sensors in lakes of Georgia the data is obtained from remote 

sensing satellites and analyzed the data for identifying the lakes which have same behavior 

related to their chlorophyll concentration recorded. This analysis includes land usage, vegetation, 
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temperature, precipitation, and chlorophyll concentration data from remote sensors, which would 

be combined with data obtained from social media and other sources. We worked on extracting 

data from MERIS, MODIS and other data resources, processing the satellite scenes to extract 

required data by eliminating noise, and clustering lakes into groups based on the chlorophyll 

concentration recorded.  
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CHAPTER 3 

RELATED WORK 

In this chapter, we have described related work and literature survey about different 

techniques used for cyanobacteria detection. There are several approaches being followed for 

many years for detecting and analyzing cyanobacteria concentration. 

 

3.1 Traditional Method 

There are different approaches for extracting cyanobacteria concentration from water 

bodies. The initial detection of cyanoHABs rely on visual observation. If we find discoloration of 

water, fish kill and thick mat like accumulations on the shore are the primary symptoms of the 

cyanoHABs [2]. In this process samples are collected manually, the samples collected must 

consist of water, algae, sediments of the water body etc. These samples need to be stored 

properly in order to avoid exposure to sunlight and other potential damages. The collected 

samples are then tested in laboratory for toxins that includes certain steps of manual analysis 

because not all cyanobacteria cells have toxins, it is important to separate the cells without toxins 

and with toxins [22]. The field monitoring approach which consists of sample collection, 

laboratory analysis, and detection of phytoplankton which takes few days or weeks [4]. These 

methods are expensive and time consuming, and often require lengthy process to perform 

filtration on the samples [4]. Cyanobacteria bloom observed places are inaccessible or unnoticed 

due to depth of the water or water bodies are spread for long distance and,  
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hence collecting samples is difficult [22]. There are difficulties associated with developing 

appropriate sampling designs that address large areas using fewer or affordable resources and 

detection methods [2]

3.2 Satellite Remote Sensing 

 To overcome the challenges associated with traditional method new tool is required to 

develop efficient and effective cyanobacteria monitoring, where satellite remote sensing provides 

an opportunity [2].  Due to patchy nature of phytoplankton distribution it is difficult to collect 

samples for large water bodies so remote sensing supports capturing almost or all the surface 

zones of them [23]. For these techniques, phycocyanin(PC) which is a characteristic 

photosynthetic pigment in inland blue green algae has been used for detecting the cyanobacteria 

concentration [3]. Studies are shown that satellite data can detect and quantify cyanobacteria 

blooms in lakes [2]. This includes variety of methods and approaches including identifying 

scums and blooms, estimating PC, detecting the presence of PC and cell count concentration [2]. 

Various satellites have been used such as MERIS, MODIS, Landsat and others [2].  Satellite 

measurements are useful for detection of phytoplankton, which has cyanobacteria because of the 

unique spectral characteristics of photosynthetic pigments [3]. The absorption of phycocyanin 

information is at ~620nm [3]. This band can be used for analyzing and estimating the 

cyanobacteria concentration.  There are five different algorithms proposed for estimating 

cyanobacteria concentration by using PC absorption feature, which are a semi-empirical baseline 

algorithm, a single reflectance band ratio algorithm, a nested semi-empirical band ratio 

algorithm, a new single reflectance band ratio algorithm, and a three band algorithm. Each 

algorithm has different approach in analyzing the cyanobacteria concentration which use 
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different reflectance bands [3]. All the above algorithms are developed for areas with latitudes 

higher than 350 but not for lower latitudes [3]. However, results are less accurate because of 

mixed pixel issues, geometric and radiometric noise, and inaccurate data structure introduces 

errors in the prediction algorithms. Hyper-spectral sensors are used to capture spatial and 

temporal data for phytoplankton blooms, which allows capturing cyanobacteria blooms from 

different aquatic systems [3]. Data from in situ is used to identify the relationship between 

reflectance and PC concentration where 620nm and 650nm bands are used for finding the 

relationship. A proximal hyper spectral remote sensing algorithm was developed to analyze the 

spectral reflectance properties of cyanobacteria with changing pigment concentration [3]. This 

algorithm performs better compared to other algorithms but this model deal with only specific 

absorption coefficient. Almost all algorithms did a decent job in extracting cyanobacteria with 

certain limitations, which require more research to develop effective algorithm for extracting 

cyanobacteria concentration. 
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CHAPTER 4 

SYSTEM ARCHITECTURE AND OVERVIEW 

In this chapter, we described research challenges faced while performing the study of 

cyanobacteria data extraction and analysis. We also described system architecture and data 

extraction procedure. 

 

4.1 Challenges 

While using satellite data for analyzing the impact of physical parameters LULC, NDVI, and 

PDSI on chlorophyll-a concentration of lakes, we encountered few challenges. 

The first challenge is while downloading PDSI data. We were able to extract data at 

divisional level instead of each lake, the lakes that belong to same division will have same PDSI 

value for that year and month. This caused data redundancy for lakes which belongs to same 

division for each year.  

The second challenge is related to MERIS data download. Since MERIS satellite spatial 

resolution is 300m, most of lakes are not captured. Among few lakes which are captured contains 

less than 5 pixels which are insufficient for that lake to be considered for our analysis because 

the accuracy of cyanobacteria bloom occurrence is very low. Due to these limitations we are able 

to perform analysis only on lakes that are large in size and captured by MERIS. 

The third challenge is due to cloud cover on lakes, while capturing information from lakes 

using MERIS cloud covers introduced lot of noise in NDCI data. We extracted scenes with cloud 

percentage less than 10 but that did not eliminate the noise. To fix this problem we manually 
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selected lakes that are visible to the naked eye and then tried to extract pixels of those lakes from 

the scenes. The manual selection did not resolve our issue, hence we filtered pixels whose values 

are less than -1 from the scenes using ArcGIS and finally extracted the pixel count for the lakes. 

In this process we could not extract data for many lakes. Initially we started with 492 lakes but 

we are able to extract NDCI data for <100 lakes for all 10 years.         

 

Figure 2. System Architecture and Overview 

The figure2 shows the system architecture and overview of this research. It consists of three 

main components, 

• Data Extraction 
• K-Means Clustering 
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• Computational and Data analysis 

 

We extracted physical parameters and NDCI data from different sources for 492 

waterbodies of Georgia. There are more than 100,000 waterbodies available in Georgia, among 

them we selected only 492 lakes and reservoirs because NDCI data is extracted from MERIS 

satellite whose pixel resolution is 300m. We require waterbodies whose pixel resolution is 

greater than 300m, therefore we selected waterbodies whose area > 0.25sqkm and extracted data 

for NDCI, LULC, NDVI and PDSI for time period 2002 April to 2012 March because MERIS 

satellite is active in that time period. 

 

4.2 Data extraction of Land Usage and Land Cover (LULC) 

LULC provide the land coverage and land usage type data such as urban, forest, low 

urban, agriculture, etc. We downloaded raster files which has LULC data for Georgia from 

geogap database. Raster files are extracted from satellite scenes captured by LANDSAT and 

stored in http://narsil.uga.edu/gap database. LULC data is available for entire Georgia but we 

need to extract data for only 492 water bodies so, downloaded Georgia water bodies shape file 

from http://nhd.usgs.gov/. The downloaded shape file has 100,000 water bodies but we need only 

lakes and reservoirs among them so, we filtered water bodies that are of type lakes and reservoirs 

using ArcGIS filter technique. As mentioned earlier among lakes and reservoirs we selected 492 

water bodies based on the area>0.25sqkm using ArcGIS. For each water body among 492 we 

created a buffer of 5 miles’ radius and we extracted LULC data. Adding 5miles radius buffer for 

each water body is done using ArcGIS that helps in extracting the possible surround conditions 

for each lake. We used 492 water bodies shape file as mask and extracted LCLU data from each 

raster file using ArcGIS which gives lake object id which is unique id of lake, 13 land cover type 
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area surrounded by lakes which are represented with grid codes and their coordinates. We are 

able to extract data only for years 2002, 2005 and 2008, rest are not available. LCLU data 

extracted for water bodies are available for different days in a year so we normalized the data by 

calculating mean for each object id and year, by which we get one entry for each water body per 

year. Table1 has information about 13 land cover types and their class names based on USGS.  

 

                     Table1. Land Cover Types 

Figure 3 has information about steps followed to extract the LCLU data for lakes of Georgia. 
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Figure 3. Flowchart of LULC data extraction procedure  
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4.3 Data extraction of Normalized Difference Vegetation Index (NDVI) 

Using NDVI data we get information about whether the area surrounded by each water 

body has live green vegetation. Dense vegetation will have positive values, cloud and snowfields 

have negative values. To extract NDVI data we downloaded the satellite scenes which  are 

captured by MODIS satellite from http://e4ft101.cr.usgs.gov website. To download MODIS 

satellite scenes, we downloaded the R script available online and made necessary changes [27]. 

The inputs for R script are horizontal (h) and vertical (v) tile information of Georgia and time 

period we want to download the scenes [28]. Using MODIS, we get different bands information 

like NDVI, EVI etc. We need to specify which band data we want to download where band=1 is 

for NDVI. We extracted NDVI for 421 lakes of Georgia because among thirteen-land cover 

types that are surrounded by each water body GC22, GC24 and GC81 has high impact on algae 

growth so we selected water bodies which are surrounded by these types. Using this feature 

reduction, we tried to reduce noise added to our results.  The feature reduction process is 

implemented for 2002, 2005 and 2008 LCLU data, using this process we get three different 

shape files. These shape files are used as mask and extracted NDVI values using ArcGIS. We 

assumed there will not be huge difference in LCLU coverage for consecutive years and used the 

year 2002 shape file as 492 water bodies mask file for 2003 and 2004 satellite scenes, 2005 

shape file as mask for 2006 and 2007, 2008 shape file mask for 2009, 2010, 2011 and 2012. 

From MODIS we get data for every 16 days so we simplified the data by calculating mean for 

each object id and year. 



 

22 

 

Figure 4. Flowchart of NDVI data extraction procedure 

 

4.4 Data extraction of Palmer Drought Severity Index (PDSI) 

PDSI data is measured for estimating drought conditions by using temperature and 

precipitation data. PDSI data is downloaded from the website which contains data for entire US 

https://www.drought.gov/drought/content/products-current-drought-and-monitoring-drought 

indicators/palmer-drought-severity-index. Based on National Climate Data Center, Georgia is 

divided into 9 climatic divisions where different counties of Georgia are divided into 9 divisions 

and PDSI data is available for each division. We extracted counties and their divisions manually 

from the figure 5 and then downloaded zip codes of water bodies using Google maps. Using zip 

codes of water bodies, we extracted counties of lakes and then mapped the divisions. The 

downloaded file contains different datasets along with PDSI and contains data for all states of 

USA, we downloaded data for state code 9 that is Georgia and element code 5 that is PDSI [29]. 

We downloaded data for years 2002 to 2012 and the data is available monthly. As mentioned 
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before algae growth is more in summer due to high temperatures so we considered only PDSI 

data from April to September. Since we have multiple entries for each lake, we simplified them 

by calculating mean on data from April to September for each year and water body. Table 2 

shows different PDSI values and their corresponding drought conditions. 

PDSI Values Drought Condition 
0 to -0.5 Normal 
-0.5 to -1.0 Incipient drought 
-1.0 to -2.0 Mild drought 
-2.0 to -3.0 Moderate drought 
-3.0 to -4.0  Severe drought 
>-4.0 Extreme drought 

Table 2. PDSI values and their drought condition 



 

24 

 

Figure 5. Georgia map with 9 divisions by National Climate Data Center 
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Figure 6. Flow chart of PDSI data extraction procedure 

 

Figure 7. Total no. of lakes for which Physical parameters information is available 
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4.5 Data extraction of Normalized Difference Chlorophyll Index (NDCI) 

NDCI gives chlorophyll a concentration, which may be directly proportional to 

cyanobacteria concentration. We calculated NDCI data from the satellite scenes captured by 

MERIS, which was active from 2002 to 2012. We downloaded satellite scenes from the ESA 

website http://merisfrs-merci-ds.eo.esa.int/merci/query/Products.do. To download data, we need 

to provide coordinates of Georgia and cloud percentage. Though we downloaded products which 

are atmospherically corrected at second level we observed cloud cover on the scenes so, we 

downloaded scenes whose cloud cover is less than 10% to avoid noise introduces while 

calculating NDCI. We projected the satellite scene to WS84, which involves transforming and 

rectifying the image into a standard projection. The projected image is exported to tiff using 

Beam software for further analysis. For each scene there are 48 different products available 

among them few are captured at different spectral band wavelengths and others are calculated 

using the captured products. We used algal1 band which contains water bodies that contains 

algae because we extract chlorophyll concentration data in water bodies which contains algae so, 

we need only water bodies of Georgia which has algae in them. Algal1 band concentration is 

derived from the ratio between blue and green signal leaving the water surface and the 

concentration of the algal pigments.  

Using algal1 band as reference we extracted the lakes that are visible for each scene 

manually. Since MERIS satellite resolutions is 300m and data download is limited to scenes 

whose cloud percentage is less than 10 most of the water bodies are not captured so, we had to 

work with only few water bodies. The water bodies that are selected and exported contains 

negative pixels which are treated as noise and eliminated them using ArcGIS raster calculator. 

Using modified algal1 as a water mask, we extracted pixel values of each lake from band 665 
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and band 708. We worked on those two bands because 665 band captured information related to 

chlorophyll absorption and fluorescence reference and 708 band is for fluorescence reference and 

atmospheric corrections [30]. Using the pixel values of bands calculated NDCI. 

   NDCI = (Band 708- Band 665)/ (Band 708+Band 665) 

The NDCI pixel values must be in range -1 to +1 but due to noise while capturing 

resulted in NDCI pixel exceeds the range so, we eliminated them by performing raster calculator 

on each scene using ArcGIS. We reclassified NDCI pixels into 7 different classes starts from low 

concentration to severe bloom based on the pixel range in table 3 [24]. For exporting data from 

raster file that contains NDCI data to excel, we generated separate shape file for each lake i.e., 

492 individual shape files from the single shape file using ArcGIS. Using 492 individual shape 

files as mask we extracted NDCI data from the raster file. Once we have the pixel counts for 

each class, water body, year and day we calculated mean for each object id and year to 

normalize.  

 

 

NDCI range Chl-a range  
<-0.1 <7.5 
-0.1 to 0  7.5-16 
0 to 0.1 16-25 
0.1 to 0.2 25-33 
0.2 to 0.4 33-50 
0.4 to -0.5 >50 
0.5 to 1 Severe bloom 

  Table 3. NDCI pixel range and Chlorophyll-a concentration 
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4.6 NDCI Data Extraction Algorithm 

For each file and year do 

Step 1: Manually select the lakes that are visible from algal1 band 

Step 2: Create a mask out of selected lakes as algal1_mask 

Step 3: Eliminate negative values from the mask 

Step 4: Extract Band7 (665 Band) lakes using algal1_mask 

Step 5: Extract Band9 (708 Band) lakes using algal1_mask 

Step 6: Eliminate negative values from Band9 and Band7 

Step 7: NDCI_nonfilter = (Raster (band_9)-Raster (band_7))/ (Raster (band_9) +Raster 

(band_7))  

Step 8: arcpy.gp. RasterCalculator_sa ("Con (\"%ndci_nonfilter%\"<-1,0,1)”, 

ndci_neg_masked) 

Step 9: arcpy.gp. Reclassify_sa (ndci_neg_mask, "Value", "0 NODATA;1 1”, 

ndci_filtered_negative_mask, "DATA") 

Step 10: arcpy.gp. ExtractByMask_sa (ndci_nonfilter, ndci_filtered_negative_mask, 

ndci_filter1) 

 Step 11: arcpy.gp. RasterCalculator_sa ("Con (\"%ndci_nonfilter%\">1,0,1)", positive) 

Step 12: arcpy.gp. Reclassify_sa (ndci_pos_mask, "Value", "0 NODATA;1 1”, 

ndci_filtered_posotive_mask”, DATA") 

 Step 13: arcpy.gp. ExtractByMask_sa (ndci_filter1, ndci_filtered_posotive_mask, ndci)  

Step 14: arcpy.gp. Reclassify_sa (ndci_corr, "Value", "-1 -0.10000000000000001 1; -  

0.1000000000000000 1;0 2;0 0.10000000000000001 3;0.10000000000000001 
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0.20000000000000001 4;0.20000000000000001 0.40000000000000002 

5;0.40000000000000002 0.5 6;0.5 0.99 7", Reclass_ndci, "DATA")   

For each 492 lakes shape files do 

 Step 15: arcpy.gp. RasterCalculator_sa ("\"%ndci%\"", lake) 

 Step 16: Convert raster file to dbf file  

 Step 17: Process the file to extract the pixel count 
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Figure 8. Flowchart of NDCI data extraction procedure
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CHAPTER 5 

EMPIRICAL STUDY 

Our empirical study has three main goals A. Performing clustering on NDCI data of year 

2010 for lakes of Georgia that are captured using MERIS. B. Performing clustering on NDCI 

data of year 2011 for lakes of Georgia that are captured using MERIS.  C. Analyzing the clusters 

of lakes based on NDCI data for years 2010 and 2011 with respect to Physical parameters. There 

is data available for years 2002 to 2012 but we chose to perform analysis on the data of 2010 and 

2011 because MERIS was able to capture maximum number of lakes in these years compared to 

the other years. As the quality of analysis directly depends on the amount of data available, we 

restricted our analysis to these two years. As mentioned earlier we downloaded the satellite 

scenes where cloud cover percentage is less than 10. Though we restricted the cloud cover, we 

were not able to get as many lakes information as possible because of noise introduced in the 

data.  

There are 53 lakes in total that has NDCI data extracted for years 2010 and 2011. Table 4 

has the list of lake id, object id, lake name, coordinates, county, zip code and division/zone 

information. The lake id is used to represent the lake in further analysis. Lake names for all lakes 

are not available so we marked them as not available. 

Lake id ObjectID Lake Name Ycentroid Xcentroid County Zone 
Lake1 16772 Not Available 34.5287 -83.0379 Franklin 3 
Lake2 24347 Not Available 33.4465 -81.966 Richmond 6 
Lake3 33975  Reservoir 51 32.839 -82.4385 Jefferson 6 

Lake4 37656 
 J. Strom Thurmond 
Reservoir 33.9799 -82.6104 Wilkes 3 

Lake5 42936 Savannah River 34.3933 -82.87 Hart 3 
Lake6 45144 Lake Burton 34.8371 -83.5525 Rabun 3 
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Lake7 49165  Richard B Russell Lake 34.1605 -82.6905 Elbert 3 
Lake8 56496  Lake Tobesofkee 32.8377 -83.805 Bibb 5 
Lake9 76515 Lake Juliette 33.0452 -83.8016 Monroe 4 
Lake10 78307 Cole Reservoir 33.3427 -84.2216 Henry 4 
Lake11 83280 Not Available 32.7974 -83.448 Twiggs 5 
Lake12 92266 Not Available 32.8694 -83.2207 Wilkinson 5 
Lake13 94440 Not Available 33.0628 -83.8249 Monroe 4 
Lake14 94519 Not Available 32.8685 -83.3274 Wilkinson 5 
Lake15 105217 Not Available 33.368 -83.9985 Henry 4 
Lake16 107928 Not Available 32.9056 -83.3004 Wilkinson 4 
Lake17 116880 Not Available 32.7824 -83.6141 Bibb 5 
Lake18 122801 House Lake 30.8645 -82.195 Charlton 9 
Lake19 123616 Not Available 33.0762 -83.8159 Monroe 4 

Lake20 132731 Not Available 32.9838 -82.8815 
Washingto
n 5 

Lake21 136953  Lake Sinclair 33.2266 -83.2641 Putnam 5 
Lake22 150600  Jackson Lake 33.3729 -83.8629 Newton 5 

Lake23 164064 Not Available 33.041 -82.9034 
Washingto
n 5 

Lake24 172577 Not Available 32.9109 -83.6539 Bibb 5 
Lake25 173019 Not Available 32.6998 -83.5766 Bibb 5 
Lake26 186515  Harbins Lake 33.4833 -84.2814 Clayton 4 
Lake27 186560 Not Available 32.7054 -83.5711 Bibb 5 
Lake28 192980 Perch Lake 30.9394 -82.1674 Charlton 9 
Lake29 193055  Lake Oconee 33.4878 -83.2468 Greene 5 
Lake30 197809  Blue Ridge Lake 34.8469 -84.2663 Fannin 2 
Lake31 209001  Carters Lake 34.6185 -84.6366 Murray 1 
Lake32 210641  Nottely Lake 34.9167 -84.0548 Union 2 
Lake33 211778 Not Available 34.5996 -84.6789 Murray 1 
Lake34 212411 Not Available 32.1531 -85.0432 Harris 4 
Lake35 233072 Not Available 33.4294 -85.0567 Heard 4 
Lake36 235014 Not Available 31.6104 -84.116 Dougherty 7 
Lake37 237515 Lake Acworth 34.0556 -84.6792 Cobb 2 
Lake38 245467  West Point Lake 33.0646 -85.1344 Troup 4 
Lake39 249472  Chatuge Lake 34.9838 -83.7708 Towns 2 
Lake40 251601  Lake Seminole 30.8126 -84.819 Seminole 7 
Lake41 254300  Lake Blackshear 31.946 -83.9362 Sumter 7 
Lake42 259235 Not Available 30.7689 -84.9511 Seminole 7 
Lake43 262177 Not Available 33.4133 -85.053 Heard 4 
Lake44 263903 Not Available 32.2493 -84.9175 Stewart 7 
Lake45 271963  Lake Oliver 32.5576 -85.0363 Muscogee 4 
Lake46 273732  Altoona Lake 34.1402 -84.6433 Cherokee 2 
Lake47 276050 Not Available 33.4275 -85.0374 Carroll 4 
Lake48 280501 Not Available 33.5423 -84.9485 Carroll 4 



 

33 

Lake49 281848 
 Walter F George 
Reservoir 31.8428 -85.0934 Quitman 7 

Lake50 282610  Lake Seminole 30.7903 -84.7565 Decatur 7 
Lake51 282683  Lake Seminole 30.7781 -84.9132 Seminole 7 
Lake52 282815  Lake Sidney Lanier 34.2767 -83.9331 Hall 2 
Lake53 282829  Bartlett’s Ferry Lake 32.7044 -85.1271 Troup 4 

Table 4. Information about lakes captured in years 2010 and 2011  

We restricted our analysis to lakes that are captured by MERIS from April to September 

of every year because cyanobacteria tend to grow in summer with high temperatures. For each 

lake there are 7 classes of NDCI data available which gives information from low to severe 

chlorophyll concentration. All 7 classifications are further reduced to 3 as low, medium, and high 

chlorophyll concentrations to analyze the chlorophyll concentration at different levels. We 

calculated the percentages of pixels for each class and executed K-Means Clustering algorithm 

on 53 lakes for 7 classes

 

5.1 Clustering on chlorophyll concentration data of year 2010 

Only 45 lakes chlorophyll concentration data are extracted among 492 lakes in the year 

2010 and our analysis focused on these 45 lakes and reservoirs to identify which lakes have same 

trend related to chlorophyll concentration. The silhouette coefficient determines K value in K-

Means Clustering to identify the optimal clusters. We observed optimal dissimilarity for the data 

set when clustered them into 3 groups and then executed K-Means clustering algorithm with 

k=3. Three clusters and their data distribution with respect to physical parameters and NDCI 

values are shown in the below figures: 9 to 14    
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Figure 9. Year 2010 Cluster 0 Physical Parameters data distribution 

 

Figure 10. Year 2010 Cluster 0 NDCI data distribution 

In cluster0 we observed most of the lakes are high and medium chlorophyll concentrated. 

In physical parameters data distribution, most of the areas surrounded by these lakes are covered 
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by agriculture when compared to low urban and high urban. These lakes are in areas where 

normal drought conditions are observed.  
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Figure 11. Year 2010 Cluster1 Physical Parameters data distribution 
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Figure 12. Year 2010 Cluster1 NDCI data distribution 

In cluster1 we observed most of the lakes are low and medium chlorophyll concentrated. 

In the physical parameter data distribution, we observed few lakes are surrounded by high low 

urban land coverage when compared to agriculture and high urban but for few lakes they are 

more covered by agriculture land. We observed that lakes are surrounded by normal drought 

conditions.  
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Figure 13. Year 2010 Cluster 2 Physical Parameters data distribution 

 

 

Figure 14. Year 2010 Cluster2 NDCI data distribution 
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In cluster2 we observed all most all lakes are medium chlorophyll concentrated. In the 

physical parameter data distribution, we observed few lakes are surrounded by more low urban 

land and agriculture land coverage when compared to high urban. Among low urban and 

agricultural land these lakes are more agriculture land covered. We observed that lakes are 

surrounded by normal drought conditions.  

 

5.2 Clustering on chlorophyll concentration data of year 2011 

There are a total of 43 lakes that are captured by MERIS among 492 lakes in year 2011 

and we performed analysis only on those lakes.  

Silhouette Coefficient determines K value in K-Means Clustering. We executed K-Means 

clustering algorithm for different k’s starting from k=2 and observed maximum dissimilarity 

when k=6. Six clusters and their data distribution with respect to physical parameters and NDCI 

distribution is shown in figures 15 to 26     

 

Figure 15. Year 2011 Cluster0 Physical Parameters data distribution 
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Figure 16. Year 2011 Cluster0 NDCI data distribution 

In cluster0 we observed all lakes are low and medium chlorophyll concentrated. In the 

physical parameter data distribution, we observed lakes are surrounded by more agriculture land 

coverage when compared to high and low urban. We observed that lakes are surrounded by 

severe drought conditions.  

 

Figure 17. Year 2011 Cluster1 Physical Parameter data distribution 
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Figure 18. Year 2011 Cluster1 NDCI data distribution 

In cluster1 we observed all lakes are medium level chlorophyll concentrated. In the 

physical parameter data distribution, we observed different distribution of land cover where 

lake37 is surrounded by low urban area and lake13 has very less coverage of agriculture, low and 

high urban. We observed that lakes are surrounded by moderate drought conditions.  

 

Figure 19. Year 2011 Cluster2 Physical Parameters data distribution 

0 

20 

40 

60 

80 

100 

120 

Low Medium High 

Pe
rc

en
ta

ge
 o

f p
ix

el
s f

or
 e

ac
h 

la
ke

 a
nd

 
cl

as
s 

 

Chlorophyll concentration classes 

2011_Cluster1_NDCI data 

Lake13 Lake37 

-10 
0 

10 
20 
30 
40 
50 

Lake7 Lake9 Lake18 Lake20 Lake21 Lake29 Lake30 Lake41 Lake49 

L
C

L
U

, P
D

SI
, a

nd
 N

D
V

I 
Va

lu
es

 

Lakes of Georgia 

2011_Cluster2_Physical Parameters 

GC22 

GC24 

GC81 

NDVI 

PDSI 



 

42 

 

Figure 20. Year 2011 Cluster2 NDCI data distribution 

In cluster2 we observed all lakes are high medium chlorophyll concentrated. In the 

physical parameter data distribution, we observed few lakes are surrounded by more low urban 

land and agriculture land coverage when compared to high urban. Among low urban and 

agricultural land, lakes are more agricultural land covered. We observed that lakes are 

surrounded by severe drought conditions.  
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 Figure 21. Year 2011 Cluster3 Physical Parameters data distribution 
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Figure 22. Year 2011 Cluster3 NDCI data distribution 

In cluster3 we observed all lakes are high medium chlorophyll concentrated. In the 

physical parameter data distribution, we observed few lakes are surrounded by more low urban 

land and agriculture land coverage when compared to high urban. Among low urban and 

agricultural land, most of the lakes are more agricultural land covered. We observed that most of 

the lakes are surrounded by severe drought conditions.  
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Figure 23. Year 2011 Cluster4 Physical Parameters data distribution 

Figure 24. Year 2011 Cluster4 NDCI data distribution 

In cluster4 we observed all lakes are high and medium chlorophyll concentrated when 

compared to low concentration. In the physical parameter data distribution, we observed most of 

the lakes are surrounded by more low urban land and agriculture land coverage when compared 

to high urban. Among low urban and agricultural land, those lakes are more agricultural land 

covered. We observed that most of the lakes are surrounded by moderate drought conditions.  
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Figure 25. Year 2011 Cluster5 Physical Parameters data distribution 

 

 

Figure 26. Year 2011 Cluster5 NDCI data distribution 

In cluster5 we observed almost all lakes are medium chlorophyll concentrated when 

compared to low and high concentration. In the physical parameter data distribution, we 

observed few lakes are surrounded by more low urban land and agriculture land coverage when 
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compared to high urban. Among low urban and agricultural land, those lakes are covered by 

more agricultural land but lake2 has more high urban land coverage. We observed that most of 

the lakes are surrounded by severe drought conditions.  

 

5.3 Computational and Data Analysis for years 2010 and 2011 

In 2010 data there are few lakes that have high concentration of chlorophyll and others 

have medium chlorophyll concentration. In 2011 there are few lakes that are high chlorophyll 

concentrated and others are medium and low chlorophyll concentrated. In two years there is 

difference in low and high chlorophyll concentration but most of the lakes have are medium 

chlorophyll concentrated. To find out which physical parameter has high impact in change 

related to chlorophyll concentration between these years, we compared and analyzed the data of 

each physical parameter of all clusters for the lakes that are captured by MERIS in both 2010 and 

2011. There are 35 lakes in total which are captured in 2010 and 2011 for which we compared 

the physical parameters distribution to identify which parameter has more impact towards change 

in chlorophyll concentration   

Land Usage and Land Cover data is same for both the years because we are able to 

extract data of LULC for years 2002, 2005 and 2008. We do not have specific land cover data for 

years 2010 and 2011. So, we duplicated the data of 2008 for years 2010 and 2011 assuming that 

there is no big difference in LULC data. We observed that there is no huge difference between 

NDVI data of 2011 and 2010 but, we observed severe drought conditions in 2011 compared to 

2010. Figures 27 to 31 shows the comparison of physical parameters data in years 2010 and 

2011.  
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Figure 27. Comparison of GC22 data for years 2010 and 2011 

 

Figure 28. Comparision of GC24 data for years 2010 and 2011 
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Figure 29. Comparison of GC81 data for years 2010 and 2011 

 

Figure 30. Comparison of NDVI data for years 2010 and 2011 
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Figure 31. Comparison of PDSI data for years 2010 and 2011 

According to the PDSI data, in 2011 there is more drought compared to 2010. Water 

level reduces due to severe drought and nutrient concentration increases which may cause the 

increase of chlorophyll concentration in lakes for year 2011. 
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Figure 32. Comparison of NDCI data of lakes for years 2010 and 2011 
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In figure 32, we show the comparison of NDCI data of all 35 lakes for years 2010 and 

2011, we can observe that there is increase in medium chlorophyll concentration from 2010 to 

2011 for almost all lakes. As mentioned earlier there is huge difference in PDSI data between 2 

years compared to other factors so, drought conditions tend to increase in chlorophyll growth and 

PDSI data has more indicative of change in chlorophyll concentration. 
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CHAPTER 6 

CONCLUSION 

We have performed detailed analysis on how data analytics can be used for detection of 

chlorophyll-a concentration and also analyzed how physical parameters affect chlorophyll-a 

concentration. We have used Land Usage and Land Cover, Normalized Difference Vegetation 

Index, and Palmer Drought Severity Index and Normalized Difference Chlorophyll Index data as 

metrics for our analysis. We have studied how to extract data from different spectral bands 

captured by MERIS satellite and also studied about how to process spectral bands pixels for 

chlorophyll-a concentration with the help of existing techniques. We are able to extract pixel 

counts for different classes of chlorophyll concentration by eliminating noise by managing the 

challenges faced due to the inability of MERIS to capture all the lakes of Georgia. Though we 

successfully extracted data by overcoming the challenges faced due to resolution limitations and 

noise introduced in MERIS scenes, we could not extract data for all 492 lakes. We limited our 

analysis to 53 lakes which is very less compared to what we proposed.  

We also performed analysis on the NDCI data using K-Means clustering algorithm for 

years 2010 and 2011 by using silhouette coefficient to determine optimal clusters. Using the 

clusters formed from K-Means we compared chlorophyll concentrations and physical parameters 

data to identify the lakes which have similar trend in 2010 and 2011.  Based on our analysis 

PDSI data affects the change in chlorophyll a concentration for lakes of Georgia in years 2010 

and 2011. 

 

 



 

54 

REFERENCES 

[1] From URI: https://www.nwf.org/Wildlife/Threats-to-Wildlife/Pollutants/Algal-Blooms.aspx 

[2] Ross S. Lunetta, Blake A. Schaeffer, Richar P. Stumpf, Darryl Keith, Scott A. Jacobs, Mark 
S. Murphy (2015). Evaluation of cyanobacteria cell count detection derived from MERIS 
imagery across the eastern USA, Remote Sensing of Environment 157 (2015) 24-34 
 
[3] Igor Ogashawara, Deepak R. Mishra, Sachidananda Mishra, Marcelo P. Curtarelli and Jose L. 
Stech (2013), A Performance Review of Reflectance Based Algorithms for Predicting 
Phycocyanin Concentrations in Inland Waters, Remote Sensing ISSN 2072-4292 
 
[4] Kaylan Randolph, Jeff Wilson, Lenora Tedesco, Lin Li, D. Lani Pascual, Emmanuel Soyeux 
(2008), Hyperspectral remote sensing of cyanobacteria in turbid productive water using optically 
active pigments, chlorophyll a and phycocyanin, Remote Sensing of Environment 112 (2008) 
4009-4019 
 
[5] Andrew N Tyler, Peter D Hunter, Laurence Carvalho, Geoffrey A Codd, J Alex Elliott, Claire 
A Ferguson, Nick D Hanley, David W Hopkins, Stephen C Maberly, Kathryn J Mearns and E 
Marion Scott (2009), Strategies for monitoring and managing mass populations of toxic 
cyanobacteria in recreational waters: a multi-interdisciplinary approach, Environmental Health 
2009, 8 (Suppl I): SII doi: 10.1186/1476-069X-8-SI-SII 
 
[6] I. R. Falconer, and A. R. Humpage (2005). Health Risk Assessment of Cyanobacterial (Blue- 
green Algal) Toxins in Drinking Water, Int. J. Environ. Res. Public Health, 2(1), 43-50 
 
[7] Tiit Kutser, Liisa Metsamaa, Niklas Stormbeck, and Ele Vahtmae (2006), Monitoring 
cyanobacterial blooms by satellite remote sensing, Estuarine, Coastal and Shelf Science 67 
(2006) 303-312 
 
[8] Hunter, Peter D, Tyler, Andrew N, L. Carvalho, Laurence, Codd Geoffrey A., Maberly, 
Stephen C. (2010), Hyperspectral remote sensing of cyanobacterial pigments as indicators for 
cell population and toxins in eutrophic lakes, Remote Sensing of Environment, 114.2705-2718. 
10.1016/j.rse.2010.06.06 
 
[9]  From URI: www.fondriest.com/environmental-measurements/parameters/water-
quality/algae-phytoplankton-chlorophyll/ 
 
[10] Kim, D. K., Jeong, K. S., McKay, R.I.B., Chon, T.S. and Joo, G.J. (2012), Machine 
Learning for Predictive Management: Short and Long Term Prediction of Phytoplankton 
Biomass using Genetic Algorithm Based Recurrent Neural Networks, Int. J. Environ. Res., 6(1): 
95-108, Winter 2012, ISSN: 1735-6865 
 
[11]  From URI: http://uotechnology.edu.iq/appsciences/Laser/Lacture_laser/thrid_class/ 
Remote_Sensing/3-Remote_Sensing.pdf 
 



 

55 

[12] M Govendar, K Chetty, and H Bulcock (2007), A review of hyperspectral remote sensing 
and its application in vegetation and water resource studies, ISSN 0378-4738 
 
[13] From URI: https://earth.esa.int/web/guest/missions/esa-operational-eo-
missions/envisat/instruments /meris/design  
 
[14] From URI: http://modis.gsfc.nasa.gov/about/ 
 
[15] From URI: https://en.wikipedia.org/wiki/ArcGIS 
 
[16] From URI: https://doc.arcgis.com 
 
[17] From URI: https://en.wikipedia.org/ 
 
[18] From URI: http://www.brockmann-consult.de/cms/web/beam 
 
[19] Kiri Wagstaff, Claire Cardie, Seth Rogers, and Stefan Schroedl (2001), Constrained K-
means Clustering with Background Knowledge, Proceedings of the Eighteenth International 
Conference on Machine Learning, 2001, p. 577-584 
 
[20] Tapas Kanungo, David M. Mount, Nathan S. Nethanyahu, Christine D. Piatko, Ruth 
Silverman, and Angela Y. Wu (2002), An Efficient k-Means Clustering Algorithm: Analysis and 
Implementation, IEEECS Log Number 111599 
 
[21] From URI: http://scikit-learn.org/ 

[22] Ingrid Chorus and Jamie Bartram, (1999), Toxic Cyanobacteria in Water: A guide to their 
public health consequences, monitoring and management ISBN 0-419-23930-8 
 

[23] A.A. Gitelson, Y.Z. Yacobi, D.C. Rundquist, R. Stark, L. Han, and D. Etzion, Remote 
estimation of chlorophyll concentration in productive waters: Principals, algorithm development 
and validation. 
  
[24] Sachidananda Mishra, Deepak R. Mishra (2011). Normalized difference chlorophyll index: 
A    novel model for remote estimation of chlorophyll-a concentration in turbid productive 
waters, Remote Sensing of Environment 117 (2012) 394-406 
 
[25] Mishra, S., D. R. Mishra, and W. Schluchter (2009). A novel algorithm for predicting 
phycocyanin concentrations in Cyanobacteria: A proximal hyperspectral remote sensing 
approach, Remote Sensing, 1, 758-775; doi:10.3390/rs1040758 
 
[26] From URI: http://www.yale.edu/ceo/Documentation/MODIS_data.pdf 
 
[27] From URI: http://r-gis.net/?q=ModisDownload 
 



 

56 

[28] From URI: http://modis-land.gsfc.nasa.gov/MODLAND_grid.html 
 
[29] From URI: ftp://ftp.ncdc.noaa.gov/pub/data/cirs/drd/divisional.README 
 
[30] From URI: https://wdc.dlr.de/sensors/meris/ 
 
[31] Cyanotracker (2015). "Cyanotracker-The University of Georgia." 2015, from 
http://cyanotracker.uga.edu/ 
 
 


