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Abstract

In this dissertation, we aim to evaluate brain activation using Functional Magnetic Res-

onance Imaging (fMRI) data and activation changes across time associated with practice-

related cognitive control during eye movement tasks. FMR images are acquired from par-

ticipants engaged in antisaccade (generating a glance away from a cue) performance at two

time points: 1) at a pre-test before any exposure to the task, and 2) at a post-test, after one

week of daily practice on antisaccades, prosaccades (glancing towards a target), or fixation

(maintaining gaze on a target). The three practice groups are compared across the two time

points. Since there are many problems inherent in fMRI data such as the huge data size,

various sources of noise, ill-balanced groups, and temporal correlations, it is challenging to

detect the activated regions of the brain. We propose a model-free clustering technique based

on wavelet analysis to overcome the problems inherent in fMRI data. The proposed clustering

technique is composed of several steps: detrending, data aggregation, wavelet transform and

thresholding, the adaptive pivotal thresholding test, principal component analysis, and K-

means clustering. The main clustering algorithm is built in the wavelet domain to account

for temporal correlation. We apply the adaptive pivotal thresholding test based on wavelets

to significantly reduce the high dimension of the data. We cluster the thresholded wavelet

coefficients of the remaining voxels (the units of the images in the three dimensional space)

using principal component analysis K-means clustering. Over the series of analyses, we find

that the antisaccade practice group is the only group to show decreased activation from pre-

to post-test in saccadic circuitry. In order to examine the proposed wavelet-based clustering

approach, we perform a simulation study by adding artificial fMRI signals to the real resting-

state data, and the results demonstrate its effectiveness in fMRI clustering analysis. We also



conduct Regions of interest (ROI) analysis to locate the regions in which attenuations occur.

We apply bootstrap resampling and the mixed model with feature extraction approach to

the eleven bilateral neural ROIs. We observe decreasing activation in the supplementary

eye field, frontal eye field, superior parietal lobe, and cuneus for the antisaccade practice

group.

Index words: Bootstrap, Clustering, FMRI, Mixed model, Principal component
analysis, Saccades, Wavelets
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Chapter 1

Introduction

Magnetic Resonance Imaging (MRI) can be used to map changes in brain hemodynamics

that correspond to mental processes, and it has extended traditional anatomical imaging

to include maps of human brain function. Functional Magnetic Resonance Imaging (fMRI),

which is a non-invasive neuroimaging technique conducted using an MRI system, makes

it possible to observe the structures that participate in specific functions. FMRI can be

considered as a technique for measuring brain activity in the sense that it can be used to

produce activation maps showing which parts of the brain are involved in a particular mental

operation or respond to a given stimulus. This new ability to directly observe brain function

opens an array of new opportunities to advance our understanding of brain organization,

as well as a potential new standard for assessing neurological status and neurosurgical risk.

This technique can bring improved measurement of subtle brain activity that is associated

with perceptual, motor, and cognitive processes. Such processes are usually evidenced by

increased blood volume and blood flow levels in task-related neural circuits. Therefore, fMRI

data typically are based on the “Blood Oxygen Level Dependent” (BOLD) signal, which is

the local hemodynamic response relative to a particular task or stimulus.

In the past few decades, there has been a rapidly emerging body of literature in neu-

roimaging studies performed using fMRI to localize specific functions of the human brain. The

field of fMRI is intrinsically interdisciplinary in that image acquisition and image analysis are

propelled by researchers in neuroscience, psychology, physics, and statistics, among others.

There are several common objectives in the analysis of fMRI data. These include localizing

regions of the brain activated by a task, determining distributed networks that correspond to

brain function, and making predictions about psychological or disease states. Each of these

objectives can be achieved through the application of suitable statistical methods. Therefore

statisticians play an important role in understanding the nature of the data and obtaining

relevant results. Neuroscientists can use and interpret those results (Lindquist, 2008).

Functional connectivity in the brain is an important research topic in fMRI studies.

Connectivity refers to networks that model or explain relationships between brain regions. It
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involves finding regions or a network of regions in the brain that are related to a particular

cognitive task (Lazar, 2008). Functional connectivity analysis aims to detect and characterize

the coherent patterns of activity as a means of identifying brain systems by looking at

temporal correlations (Lazar, 2008; Marco, 2009).

Among many approaches, fMRI clustering provides an effective way of discovering

functional connectivity in the brain (Venkataraman et al., 2009). There are two dominant

methods in fMRI clustering analysis: clustering based on the voxelwise hypothesis test and

clustering based on grouping time series. The first method tests each voxel to determine

whether it is activated in response to a given stimulus or not and constructs a statistical

parametric map (SPM) of the brain using the test results. A typical method of constructing

a SPM is to calculate a test statistic at each voxel and plot its testing result in a map (Lazar,

2008). Regarding the test statistic, one can use a simple t or F statistic to compare the

mean levels of activation, or apply more sophisticated general linear models (Friston et al.,

1994). These hypothesis-based approaches, however, may suffer from low signal-to-noise

ratio (SNR) and multiple testing problems since analysis is performed at the voxel level

(Worsley, 2003). The second clustering method is a data-driven approach and partitions a

brain based on the patterns of voxel time courses without specifying a parametric model.

It assumes that the temporal patterns of activation are organized in a spatially coherent

fashion such that clustering extracts the main temporal patterns and partitions the brain

by grouping similarly behaved functions together (Goutte et al., 1999).

FMRI analysis has given statisticians various challenges and opportunities. Besides dif-

ferent types of noises such as thermal, systematic, physiological, and motion-related noises

in the data, two other main challenges are present in the analysis of fMRI data: correlation,

both spatial and temporal, among observations, and a massive amount of data with hundreds

of thousands of voxels over hundreds of time points (Lazar, 2008). Hence, fMRI clustering

methods that circumvent these challenges have been proposed (Balslev et al., 2002; Fadili

et al., 2000; Heller et al., 2006; Ye et al., 2009).

Cognitive control mediates the process through which tasks transition from new or unfa-

miliar to learned or skilled. With practice, a task becomes less effortful, resulting in improved

performance and a reduced need for cognitive control (e.g, Chein and Schneider, 2005;

Jansma et al., 2001; Schneider and Chein, 2003; Schneider and Shiffrin, 1977). Modifica-

tions in the neural circuitry supporting task performance also occur following practice (e.g,

see Chein and Schneider, 2005; Kelly and Garavan, 2005, for reviews). These changes in brain
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activation likely include changes in the specific neural circuitry supporting the response of

interest as well as general changes reflecting a decreased need for cognitive control.

In this dissertation, changes in brain activation across time are examined before and after

daily exposure to a set of eye movement tasks. Among the various types of eye movements,

saccades rapidly redirect one’s gaze to a location of interest. Prosaccades indicate more

reflexive eye movements in the sense that a person simply redirects his or her gaze to a

newly appearing visual cue. Antisaccades, however, indicate more complex and volitional

eye movements in the sense that a person redirects his or her gaze to the mirror image

location of a newly appearing peripheral visual cue. As such, a correct antisaccade response

requires the inhibition of a glance toward the cue and generation of a voluntary saccade to

an unmarked location in the opposite visual field.

Saccadic performance is supported by a network of subcortical and cortical regions, as

identified via neuroimaging and other techniques (Camchong et al., 2008; Dyckman et al.,

2007; Ford et al., 2005; Keedy et al., 2006; McDowell et al., 2008; Muri et al., 1998; O’Driscoll

et al., 1995; Paus, 1996; Raemaekers et al., 2002; Sweeney et al., 2007). Although the basic

circuitry is the same for prosaccades and antisaccades, the increased complexity of anti-

saccades is supported by increased activation of existing circuitry and/or the recruitment of

additional neural regions into the circuitry. As such, the saccade circuitry provides a specific,

well-studied system for understanding changes in brain activation associated with cognitive

control and practice.

We evaluate the changes across time in neural system activation after participants practice

either specific or nonspecific eye movement tasks using fMRI. Participants concentrate on

antisaccade performance during fMR image capture at two test sessions. The pre-test session

is performed before any exposure to the task; the post-test session is performed after one

week of daily practice on eye movement tasks. Participants are randomly divided into three

different task groups: (a) antisaccades, (b) prosaccades, or (c) fixation (maintaining gaze on

a target). Each participant practices daily a single type of eye movement only from the day

after the pre-test to the day before the post-test. It is hypothesized that (1) the participants

in the antisaccade practice group, which have task-consistent practice, would show changes

in neural circuitry (as measured by the BOLD signal) and that (2) the participants in

the prosaccade and fixation groups, which practice eye movement control tasks generally,

but not antisaccades specifically, would not show changes in neural circuitry. It is further

hypothesized that (i) for saccade tasks, saccade-related circuitry would show a decreased
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BOLD signal over time as a result of the circuitry becoming more efficient and (ii) in the

antisaccade practice group only, prefrontal cortex (PFC), frontal eye fields (FEFs), and

striatum would show decreased BOLD signal due to decreased need for higher level cognitive

control (Camchong et al., 2008; Munoz and Everling, 2004; Raemaekers et al., 2002).

The comparison of practice groups across test sessions is conducted using a combination

of statistical techniques that are selected specifically to circumvent commonly acknowledged

methodological problems. It is admitted that those methodological problems are associated

with the structure of the data generated via fMRI and/or the model-based general linear

model (GLM) analyses as they are typically applied. Various difficulties in fMRI data analysis

have been addressed: the accurate modeling of the BOLD response, massive-sized data that

are ill-balanced, and the influence of spatial and temporal correlations in the data.

In this dissertation, we propose a wavelet-based clustering method that can aggregate

fMRI time series into a small number of clusters. Our clustering procedure reduces the tem-

poral correlation in fMRI time series using the wavelet transform, significantly reduces the

high dimension of the data using the wavelet-based adaptive pivotal thresholding test, and

constructs data-driven clustered maps based on a principal component analysis (PCA) K-

means clustering approach. Using the proposed clustering procedure, we successfully find

brain activation changes across the two fMRI sessions associated with practice-related cog-

nitive control during eye movement tasks. Furthermore, to assess the modifications in the

saccade circuitry constrained to the superior cortex, we perform an analysis of variance

(ANOVA) to evaluate the main effects of the practice group and the scan day (pre- and

post-tests) as well as their interaction.

We attempt to empirically evaluate the performance of the proposed clustering procedure

using a simulation study. We generate simulated examples by adding artificial fMRI signals

to real resting-state data, and apply both K-means and PCA K-means clustering methods

to the raw simulated data and the wavelet-transformed data separately to compare our

clustering results. The simulation study shows that the wavelet-based clustering approach

provides more accurate clustering results than the use the raw BOLD values, while PCA K-

means clustering performs slightly better than K-means for the wavelet transformed data.

In order to locate the neural regions that show attenuation at the post-test, we conduct

an analysis using 11 bilateral neural regions of interest (ROIs) previously identified using

a similar task (Dyckman et al., 2007, and references therein). To achieve this goal, we

apply two approaches: a bootstrap resampling-based test and a mixed model with feature
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extraction. Both analyses reveal decreasing activation in the supplementary eye field, frontal

eye field, superior parietal lobe, and cuneus for the antisaccade practice group.

The dissertation is organized as follows. In Chapter 2, we briefly review fMRI data and

their properties, and existing fMRI clustering methods. We also describe the relevant sta-

tistical methods applied to the proposed clustering analysis. In Chapter 3, we illustrate the

data used in our analysis, introduce the proposed clustering approach, and then present the

analysis results. In Chapter 4, we empirically evaluate the performance of our wavelet-based

clustering approach using simulated data. In Chapter 5, we identify the specific ROIs that

show attenuations at the post-test for the antisaccade group. Finally, we conclude with future

work in Chapter 6.



Chapter 2

Literature Review

In Section 2.1, we present a review of fMRI studies. First, we introduce fMRI data and

their characteristics, describing how brain function can be measured. Second, we review the

statistical analysis and issues in fMRI data: the most commonly used experimental designs

and the problems inherent in the data that make the statistical analysis challenging. Third,

we discuss two main streams in the fMRI clustering approach. In Section 2.2, we present

reviews of statistical methods used in this dissertation. First, we introduce the principle of the

wavelet transform. Second, we describe the adaptive pivotal thresholding test proposed by

Park et al. (2011). Third, we explain the K-means clustering method. Finally, we introduce

principal component analysis.

2.1 FMRI and fMRI clustering

2.1.1 Introduction to fMRI data

FMRI is a specialized MRI scan for brain imaging which is used to study brain function in the

form of a time series and/or longitudinal data. Scans are acquired through an MRI machine;

therefore, we give descriptions of the MRI principle in simple terms. An MRI scanner is a

large static magnetic field. The strength of the magnet in an MRI scanner is measured using

a unit of measure known as a Tesla; scanners used on humans range from 1.5 Tesla (or 1.5

T) and up. By comparison, the magnetic field of the Earth measures only 0.5 Gauss (1 Tesla

= 10,000 Gauss). Bodies of human beings are composed of atoms, which are the smallest

pieces of an element that retains all the properties of that element, and an atom is made

up of three different tiny particles: protons, electrons, and neurons. These three particles

determine the atom’s spin; only elementary particles with nonzero spin can be studied in an

MR system. The usage of hydrogen isotope having a spin of 1
2
is common in studies using

an MR system because hydrogen is found in abundance in the tissues that are the target of

MR imaging (for more detail, refer to Lazar, 2008).

6
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The connection from an MR system to fMRI can be understood by correlation with

neuronal activity. When particular sites in the brain display increased activity in response to

a specific task or stimulus, more blood is supplied to the particular brain areas related to the

task or affected by the stimulus, which means that the increased neuronal activity causes an

increase in blood flow in those regions. An MR system tracks the changes in blood flow. This

is possible because hemoglobin has different properties in a magnetic field. In 1936, the Nobel

laureate Pauling and his student Coryell discovered that hemoglobin behaves differently in a

magnetic field, depending on its binding to oxygen. That is, when hemoglobin is attached to

oxygen, it weakly repels a magnetic field. Thus, oxygenated hemoglobin (Hb) is said to have

a diamagnetic property in a magnetic field. Conversely, when hemoglobin is not attached to

oxygen, the application of an external magnetic field causes it to become slightly magnetic.

Thus, deoxygenated hemoglobin (dHb) is said to have a paramagnetic property in a magnetic

field.

Both hemoglobin’s diamagnetic and paramagnetic properties are subtle, but measurable.

Thulborn and his colleagues in the early 1980s verified that MR pulse sequences show more

MR signal for highly oxygenated blood and less MR signal for highly deoxygenated blood,

and the magnitude of this effect increases with the square of the strength of the static mag-

netic field (i.e., strong static magnetic fields are essential for MR study) (Huettel et al.,

2009). In the late 1980s, Ogawa and his research team showed that the magnetic suscep-

tibility of paramagnetic dHb in blood vessels causes signal loss, resulting in the distortion

of MR images; in contrast, diamagnetic Hb in blood vessels does not impair MR signals in

the surrounding magnetic field. Magnetic susceptibility is defined as the intensity of magne-

tization of a substance when placed within a magnetic field. Most fMRI studies are based

on this blood-oxygenation-level dependent (BOLD) contrast; therefore, the BOLD contrast

becomes the basis for fMRI studies to identify the brain regions related to specific functions,

and exploring the human brain using fMRI has flourished since the early 1990s.

The key role in identifying brain regions is not played by Hb, but by dHb. When neuronal

activity increases in a specific brain area, blood flow increases in that area to supply glucose

for refueling the neurons. The delivery of glucose is carried out with that of oxygen at the

same time. This oxygen supply to the area is much greater than that consumed by the

neurons. Hb is detached from oxygen in the blood vessels at a regular rate under usual

conditions, so the contrast between Hb and dHb is constant. When a neuron is activated,

however, the excessively supplied Hbs drive out the dHbs. Therefore, the BOLD contrast is
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changed. The decreased amount of dHb decreases the signal loss, resulting in a brighter MR

image. In conclusion, the BOLD contrast caused by neuronal activation occurs not because

the Hb increases the MR signal but because it displaces the dHb that had been suppressing

the MR signal intensity (Huettel et al., 2009).

The hemodynamic response indicates the measure of the changes in the ratio of oxy-

genated to deoxygenated blood, and the estimation of hemodynamic response is of interest in

statistical research in fMRI (Lazar, 2008). The shape of the hemodynamic response depends

on the properties of stimuli and the related brain functions. Figure 2.1 shows an outline

of a typical hemodynamic response function (HRF) of a voxel to a single stimulus. After

the stimulus is given, there is a time lag until the change in the hemodynamic response is

observed (i.e., delay). We also notice this in our data, and take the lags into account in

our analysis in Section 5.3. As seen in the figure, after a few seconds of delay, the hemody-

namic response rapidly increases, and then attains its maximum value, known as the peak

of the hemodynamic response. As the neuronal activation stops, the hemodynamic response

decreases below the starting baseline and remains at this level. This phenomenon is known

as the post-stimulus undershoot (PSU). The cause of PSU is still under debate (van Zijl

et al., 2012). Finally, the BOLD signal returns to the baseline, which is the condition before

the neuron is activated.

The difference between MRI and fMRI is that the former depicts anatomical structure of

the brain and other body areas to identify tissue types, whereas the latter depicts the changes

in the brain activity over time relative to the specific tasks or stimuli given in the intended

experiments. The developments in MR technology finally allow us to obtain a functional

image of the brain by measuring the BOLD signal relative to a particular task or stimulus.

MRI has eminent advantages compared with other medical imaging technologies. Unlike

computed tomography (CT), which uses X-rays, it does not require radiation exposure. It

is also different from positron emission tomography (PET), which requires the injection of

radioactive materials into the participant’s body. However, a CT scan is relatively lower in

cost than an MRI scan, and a PET scan can provide direct information about metabolic

processes, which the MRI scan can not. In actuality, these alternatives for MRI scans are

often used in clinics and hospitals. The last two decades have seen the domination of fMRI in

the field of neuroimaging due to its low invasiveness (non-surgery), lack of radiation exposure,

and relatively wide availability.
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Figure 2.1: Typical shape of the hemodynamic response for a single stimulus. The y- and x-
axes indicate BOLD signal and scan time point in seconds, respectively. The hemodynamic
response lags behind neuronal activation, and then hits its peak. As the neuronal activa-
tion stops, the hemodynamic response decreases below initial baseline levels and remains
at this level, and then the BOLD signal returns to initial baseline levels. The shape of the
hemodynamic response varies with the properties of stimuli and the activated brain regions.

2.1.2 Statistical issues and prominent topics in fMRI data

FMRI data are acquired via experiments in which the human brain is the target. Participants

(subjects) are required to visit the MRI scanner center once in most studies, whereas more

visits may be needed in some studies (by days or by weeks); each visit is called a session

and these last from 30 minutes to a couple of hours. In each session, participants lie on a

table that slides into the doughnut-shaped static magnetic field, and then the MR system

produces one or more runs of functional images along with anatomical images. An image

acquired in two-dimensional space (single cross-section) is called a slice, and the number of

slices varies depending on the purpose of the study. The number of acquired slices can range

from one to four for a specific region, up to more than 30 for the whole brain. The slice can

lie on a plane of data in the axial, coronal, or sagittal direction. A three-dimensional image

depicting the real brain shape, called a volume, can be constructed by stacking the slices.
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The unit of image in a three-dimensional space is called a voxel, which comprises millions

of neurons; a voxel corresponds to the unit of image in a two-dimensional space, a pixel. A

single slice typically consists of a 64 × 64 or 128 × 128 matrix of voxels, resulting in 4096

or 16384 voxels. Most of the statistical analyses of fMRI data are performed using voxels as

the basic unit. Thus, fMRI data are indicated by a four-dimensional coordinate, such as the

form of “x× y × z at time point t.”

    

Fixation Fixation

Eye 
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Figure 2.2: Stimulus path of a simple block design.

There are currently two primary approaches to the design of fMRI experiments: block

design and event-related design. Figure 2.2 shows a simple example of a block design experi-

ment. In block design experiments, the stimulus is given in blocks of a predetermined length

(typically 10 to 30 s in duration). One stimulus type is presented per block. For example,

in an antisaccade task experiment, subjects are requested to glance toward the opposite

side of the target dot during the eye movement blocks (i.e., the task block) and to stare at

the center during the fixation blocks (i.e., the control block), in which no visual stimulus

is given. Blocks of the experimental task alternate with blocks of rest, or control. Because

of the “up-down” pattern shown in the figure, block design is also referred to as “boxcar

design.” Of interest is the comparison between levels of activation during the task and during

the control. In complex experiments, more than two types of stimuli are given. When the

goal of an experiment is to find the activated brain regions or to determine whether or not

specific areas of the brain are activated in response to a stimulus or a task, the block design

is useful and powerful.
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However, when the goal of an experiment is to estimate the shape of the hemodynamic

response function (HRF) associated with a single stimulus, task or event, the event-related

design is useful. In other words, this indicates when we are interested in the pattern of the

transient changes in brain regions across time. In the event-related design, one or more events

appear individually at random, distinguished by an interstimulus interval (ISI), which implies

that the event does not occur like clockwork. ISI is referred to as the temporal interval of

off-stimulus until another stimulus is given. It is not necessary that those event types are

identical, but there should be sufficient time between the presentation of stimuli to avoid

having the effects overlap with one another. Since event-related studies observe the transient

changes of brain activity related to individual stimuli given in a short time, high temporal

resolution should be assured for precise results. Temporal resolution indicates the minimal

time length of signal change accurately separated out by fMRI; therefore, it is important to

describe the ability to distinguish changes in a signal through time.

Indeed, block design studies, which are comparatively less sensitive to temporal resolu-

tion, were dominant in early fMRI experiments when low temporal resolution was typical. As

the technology has improved, studies using event-related design have become more common,

and make the wide adaptability possible in fMRI experiments. Estimation of the HRF can

be improved when events are presented in relative isolation or when sophisticated strategies

are applied to separate the responses to closely spaced events (Huettel et al., 2009). In sum-

mary, while block design is optimal for detecting activity in the brain, event-related design

is optimal for estimating the parameters of the hemodynamic response associated with indi-

vidual events (Burac̆as and Boynton, 2002). More recently, hybrid, or mixed designs, which

combine aspects of block and event-related designs, have been used (Lazar, 2008).

The statistical challenges in the analysis of fMRI data are multiple because of the char-

acteristics of the fMRI data and the procedures for data collection. First, fMRI data have

natural temporal and spatial correlation; however, a definite solution for these two correla-

tions has not yet emerged. It is believed that the temporal correlation is embedded since

fMRI data are acquired across time while stimuli are presented in a discrete sequence over

time. The response to a stimulus at the current time point can be affected by, or react

to the stimulus at the previous time point. Spatial correlation arises from the fact that

voxels are neighboring one another. When specific voxels are activated by a stimulus of

particular interest, it is natural to suspect that the voxels surrounding those voxels also

are affected. When the relationships between the measurements at neighboring locations is
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decided relying on physical distances, such as Euclidean distance, spatial correlation makes

the problem more complicated because those distances disregard the fact that voxels in dif-

ferent locations could be activated simultaneously by a single stimulus (i.e., coactivation). If

there are indeed spatio-temporal correlations present in the data, ignoring them introduces

bias in the assumed significance levels, resulting in tests that may be conservative or liberal in

direction, depending on the experimental design (Lazar, 2008). Since the spatial distribution

of the activated regions is expected to be in the vicinity of the neural population concerned

with the accomplished task, Fadili et al. (2000) indicate that voxels may be selected based

on anatomical criteria, use the cross-correlation function with fuzzy clustering analysis, and

compare task and resting data sets if possible.

Second, fMRI data are contaminated by noise arising from various sources, which might

make the signal related to brain activity relatively weak. The sources of noise may be divided

into two main groups: mechanical noise and subject noise. The former is caused by the

scanner or image processing. It has been studied in depth, and there are many methods to

handle it. However, the latter comes from the unavoidable fact that the experimental subjects

are human, so they will breathe and cannot remain perfectly still while in the scanner. When

our vision is moving in a specific direction, our head easily follows in the same direction. This

head motion can induce additional spatial correlation. Thus, it is routine to put foam padding

around the head so that the subject cannot move suddenly. Due to this noise contamination

of fMRI data, preprocessing steps must be performed on the acquired images to control the

noise in the acquired data before the actual statistical analysis.

Third, fMRI data are ill-balanced, as there is a severe lack of balance between the different

classes of voxels. The voxels responding to a stimulus are a small portion of the voxels in

the brain. Under these circumstances, some statistical techniques such as clustering analysis

generally do not perform well since the identified clusters tend to be dominated by one large

class. Since the task-related voxels are the minority, clustering results can be dominated by

the majority of non-task related voxels.

Fourth, fMRI studies conduct MRI scans for multiple subjects. A main interest in an

fMRI study is not exploring the brain of a designated person, but exploring the brain area

related to a particular ability of human beings or studying the brains of specific groups

composed of subjects sharing common characteristics (e.g., schizophrenia group).

Many statistical approaches, ranging from simple t tests performed at each voxel (an

analysis which ignores the spatial and the temporal correlations in the data) to complex
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Bayesian hierarchical spatio-temporal models, have been applied at the level of individual

subjects. Many underlying connections to statistics warrant further investigation in fMRI

data analysis. See Lazar (2008) for a recent survey of statistical analysis techniques. There-

fore, aggregation of the information from multiple subjects and further comparison between

groups are important statistical issues.

2.1.3 FMRI clustering

Connectivity refers to networks that model or explain how different brain regions are con-

nected to one another. In the current literature, there are two dominant methods of assessing

connectivity in fMRI data: correlation-based methods and structural equation models. The

former looks at the temporal correlations between spatially remote neurophysiological events

to determine which areas of the brain coactivate, so this is the measure of functional connec-

tivity. The latter looks at the influence that one neural system has over another by attaching

some notion of causality to the relationships that are found among the components, so this

is the measure of effective connectivity and it is used mostly in social science and econo-

metrics. The objective of an effective connectivity analysis is to estimate parameters that

represent influences among regions that may change with respect to experimental tasks,

whereas functional connectivity analysis aims to detect and characterize coherent patterns

of activity as a means of identifying brain systems (Lazar, 2008; Marco, 2009). Functional

connectivity analysis is the mainstream in that much of the current fMRI research aims to

identify brain regions activated in response to stimulus. Huettel et al. (2009, p386) define

functional connectivity as “how the activity of one brain region influences activity in another

brain region.” Functional connectivity is defined in terms of statistical dependencies among

neurophysiological measurements.

FMRI clustering analysis provides an effective way of finding functional connectivity in

the brain. There are two dominant methods of clustering fMRI data: clustering based on

the voxelwise hypothesis test and clustering based on the patterns of time series. The first

method assumes that different voxels in the brain have different responses to stimulus, tests

whether each voxel is activated or not, and constructs a statistical parametric map of the

brain based on the test results. One classical method is to calculate the t statistics at each

voxel to compare the mean levels of activation. Then usually the result from each voxel for a

given subject can be plotted in a map of t values (Huettel et al., 2009). If there is more than

one task condition, this method can be extended to generate an F statistic at each voxel to
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compare levels of activity over all conditions, leading to an F map for each subject (Lazar,

2008). Under the assumption that the time series at each voxel is independent of the others,

the general linear model can be applied to the time series at each voxel. For example, we

can build a linear model for stimulus and treat data as a combination of factors (Friston

et al., 1994). Most of these hypothesis-based approaches, however, assume that voxels are

independent without considering their spatial correlations.

The second clustering method is to partition the brain via the time courses of voxels

without assuming a specific model. This approach leads us to a way to find functional

connectivity between brain regions with the assumptions that the pattern of activation has

a structure and can be divided into a few types of similar activations (Goutte et al., 1999).

One can extract the main patterns in time and partition the data set by grouping similarly

shaped waveforms together. The most popular clustering tools are K-means (Balslev et al.,

2002), fuzzy clustering (Baumgartner et al., 1998; Fadili et al., 2000), Principal Component

Analysis (Baumgartner, 2000), Independent Component Analysis (McKeown and Sejnowski,

1998; McKeown et al., 2003), minimal spanning trees (Hartigan, 1975), hierarchical methods

(Stanberry et al., 2003), mixture models (Filzmoser et al., 1999), and dynamic clustering

(Baune et al., 1999). These procedures also provide the cluster indices, labels for each voxel

denoting cluster identification.

There are several statistical issues in clustering fMRI time courses. As pointed out in

Section 2.1.2, spatio-temporal correlation, fMRI noise, ill-balanced data problems, and mas-

sive size of data from multiple subjects are main concerns. In order to reduce the brain

volume prior to clustering, initial screening should be performed to exclude voxels that are

likely to be inactive. However, this is not a straightforward way to distinguish active from

inactive voxels, as we have already seen (e.g., Gibbons et al., 2004). Some possible strategies

are to use a loose F -test (Balslev et al., 2002; Goutte et al., 2001), a self-similarity test

for the autocorrelation function (Fadili et al., 2000), or to remove white noise areas. White

noise areas belong in an inactive area, but it indicates the areas in which voxels do not have

autocorrelation in their time courses. Also, if one clusters the fMRI data while ignoring the

temporal correlation, then the results are unsatisfactory and clusters do not form according

to the similarity of their pattern of response to the stimulus.

Several metric distances, such as the Euclidean and Mahalanobis distance, can be con-

sidered in clustering analysis. Golay et al. (1997) consider a metric based on the correla-

tion between stimulus and time courses and suggest clustering voxels on the basis of the
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cross-correlation function in order to reduce high noise level and improve performance. The

appropriate number of clusters is another nontrivial challenge. It is known that too small a

number of clusters makes it difficult to distinguish inactive from active voxels because the

active voxels get clustered together with inactive voxels. And too large a number of clusters

causes a difficulty of interpretation because the active voxels may be partitioned into several

clusters. There are several methods used for the selection of the cluster number in fMRI

studies: the silhouette value (Ye, 2003), the likelihood approach after removing correlation

(e.g., cross-validation (Balslev et al., 2002), AIC, BIC), the hierarchical approach, (e.g., a

tree-like structure which starts with K clusters and combines similar clusters one by one

(Stanberry et al., 2003)), and unsupervised fuzzy c-means analysis (Fadili et al., 2000).

2.2 Review of statistical methods

2.2.1 Wavelets

Wavelets can be explained by the mathematical analogue of a wave whose amplitude starts

out at zero, increases, and then decreases back to zero. It is a mathematical function used to

divide a given function or continuous-time signal into different scale components. Wavelets

are particularly useful for signal and image analysis since wavelets are localized in both

frequency and time. Another good aspect of wavelets is their fast convergence rates of wavelet

estimators on computational complexity. We briefly introduce wavelets in this section and

recommend Vidakovic (1999) for more details.

Let {ϕ, ψ} be a pair of compactly supported scaling and wavelet functions. Let ϕj,k(x) =

2j/2ϕ(2jx − k) and ψj,k(x) = 2j/2ψ(2jx − k) be their dilated and translated versions where

j and k are the scale and location parameters, respectively. The collection of dilations and

translations of ϕ and ψ, {ϕJ0,k, k = 0, . . . , 2J0 − 1; ψj,k, j ≥ J0 ≥ 0, k = 0, . . . , 2j − 1},
generates an orthonormal basis of L2(R) space. Therefore, any function f(x) in L2(R) can

be expressed as

f(x) =
2J0−1∑
k=0

aJ0,kϕJ0,k(x) +
∞∑

j=J0

2j−1∑
k=0

bj,kψj,k(x), J0, k ∈ Z (2.1)

and the wavelet coefficients are derived from the following wavelet transformation:

ak =

∫
R
ϕJ0,k(t)f(t)dt , bj,k =

∫
R
ψj,k(t)f(t)dt (2.2)

describing the global structure and the local detail of f(x), respectively.
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FMRI data are correlated in time, and this should be taken into account or diminished

in the model. An important and attractive property of the wavelet transformation is that

it reduces temporal correlation so that the transformed signal has the property of almost

white noise (Stoev et al., 2005; Coifman et al., 1992; Atto et al., 2007). Flandrin (1992)

shows that the within-scale wavelet coefficients are perfectly decorrelated. Moreover, the

correlation between wavelet coefficients of long memory data decreases exponentially fast

across scales and hyperbolically fast along time at a rate which is much faster than that

of the autocorrelation of the data. If we define the vanishing moments L of wavelets as the

number of zero moments of a particular wavelet function, that is,∫
R
tlψ(t)dt = 0 l = 0, 1, . . . , L− 1, (2.3)

then wavelets with a higher number of vanishing moments achieve a greater decorrelation.

Typically Daubechies wavelets (Daubechies, 1992) with L = 2, 3, 4 are a popular choice in

many applications; we use them with L = 2 in our data analysis in Chapter 3.

Among the approaches used to shrink wavelet coefficients, the simplest nonparametric

and nonlinear methods are to apply the hard or soft thresholds rules to the wavelets. We

illustrate simply the hard thresholding rule:

η(bj,k, λ) =

{
bj,k if |bj,k| ≥ λ

0 if |bj,k| < λ,
(2.4)

where λ ≥ 0. The hard thresholding rule sets the wavelet coefficients to zero when they are

less than the predetermined threshold value, λ; therefore, significant coefficients from the

whole wavelet set are extracted. Among the methods proposed for determining a threshold

value λ, we choose the global threshold called VisuShrink (Donoho and Johnstone, 1994),

which is defined as

λ = σ

√
2 log n

n
,

where n is a sample size and σ/n is estimated by

σ̂√
n
=

mediank({|b̂J−1,k −mediank b̂J−1,k| : k = 0, 1, . . . , 2J−1 − 1})
0.6745

,

where J = log2 n. By applying the hard thresholds rules to the wavelets, we keep the wavelet

coefficients larger than λ and drop the wavelet coefficients less than λ.
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2.2.2 Adaptive pivotal thresholding test

Park et al. (2011) propose the adaptive pivotal thresholding test based on wavelets to detect

a trend in a function. The key idea is to convert the problem of testing a trend of a function

into high dimensional normal mean inference in the wavelet domain. Using this approach

we test each voxel to identify those with no trend (i.e., voxels that are non-task related)

while controlling the false discovery rate to adjust for multiplicity (Benjamini and Hochberg,

1995).

The FDR procedure proposed by Benjamini and Hochberg (1995) is as follows. Assume

that we perform m tests for the class of null hypotheses {H1
0 , H

2
0 , . . . , H

m
0 }, where H l

0 indi-

cates the lth null hypothesis for the lth test, and l = 1, . . . ,m. Also assume that r null

hypotheses in the class of null hypotheses are true and the other m − r are not. Here,

information for what the number r is and where the true null hypotheses are located are

not given. Define the class of the test statistics as {T1, T2, . . . , Tm}. Using the class of test

statistics, one can calculate m p-values and then sort those p-values from smallest to largest

{p(1) ≤ p(2) ≤ . . . ≤ p(m)}. When r∗ is the largest l satisfying that

r∗ = max

{
l : p(l) ≤

l

m
q

}
, (2.5)

their proposal is to reject H1
0 , H

2
0 . . . , H

r∗
0 , where 1 ≤ r∗ ≤ m and q is the false discovery rate.

For instance, if r∗ = 1, then only one hypothesis is rejected. If r∗ = m, then all hypotheses

are rejected. In case there are no l’s satisfying (2.5), no rejection is made. Compared to

traditional methods, their method provides a reasonable criterion when a very large number

of tests are performed. We apply their approach to adjust for the multiplicity of our tests.

Let Yit denote the BOLD signal value at the ith voxel and the tth time point. We can

set up a regression model as follows. Suppose that

Yit = fi

(
t

n

)
+ εit, t = 1, . . . , n,

where fi is a trend function in the ith voxel, n is the total number of time points, and εit

is the error term in the ith voxel time series. Our interest is to test H0 : fi = 0 for each i,

which implies that the corresponding voxel is not active. The proposed approach transforms

this null hypothesis to the wavelet domain. In order to simplify notation, we drop i from

here on.

Let ϕ and ψ denote scaling and wavelet functions, respectively; the definitions of dilated

and translated versions (ϕj,k(x) and ψj,k(x), respectively) are given in Section 2.2.1, where j
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is a scale and k is a location parameter. For a trend function f ∈ L2[0, 1] , f can be expanded

with the wavelet basis functions. Let fn(x) be the projection of f(x) on the span of the first

n = 2J1 basis:

fn(x) =
2J0−1∑
k=0

akϕJ0,k(x) +

J1−1∑
j=J0

2j−1∑
k=0

bj,kψj,k(x),

where J0 is a positive integer and J1 > J0. In our analysis, we choose J0 = 3 and J1 = 6 by

binning the data to avoid boundary effects. Let ãk and b̃j,k be the näıve estimates of wavelet

coefficients in (2.2) in that they are

ãk =
n∑

t=1

Ỹi

∫ t/n

(t−1)/n

ϕJ0,k(u)du ≈ ak +
σ√
n
Zk,

b̃j,k =
n∑

t=1

Ỹi

∫ t/n

(t−1)/n

ψj,k(u)du ≈ bj,k +
σ√
n
Zj,k,

where Zk and Zj,k ∼ N(0, 1). By denoting

µn = (µ1, . . . , µn) = (a0, . . . , a2J0−1, bJ0,0, . . . , bJ0,2J0−1, . . . , bJ1−1,2J1−1−1),

the null hypothesis H0 : f = 0 becomes H0 : µn = 0 (i.e., H0 : all wavelet coefficients are

zero vs. H1: at least one wavelet coefficient is not zero). Here, define the loss function as

Ln =
n∑

k=1

(µk − µ̂k)
2,

and the variance estimate of the error term as

σ̂2
n = 2

n∑
k=(n/2)+1

µ̃2
k,

where µ̃k = (µ̃1, . . . , µ̃n) = (ã0, . . . , b̃J1−1,2J1−1−1) and µ̂k = (µ̂1, . . . , µ̂n) = (â0, . . . , b̂J1−1,2J1−1−1).

The hard thresholding rule introduced in Section 2.2.1 is applied on voxel BOLD signals

with length of n for the wavelet transform to select significant coefficients among a total of

n time points. Here, we consider the soft thresholding estimators µ̂k to increase the power

of the test before applying this adaptive pivotal thresholding test, that are defined as

âk = ãk,

b̂j,k = sgn(b̃j,k)(|b̃j,k| − λ)+.
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Here, (·)+ indicates that the negative parts of the values inside parentheses are set to zero.

For λ, one can use either the universal threshold, λj =
σ̂
√
2 logn√
n

, or the levelwise SureShrink

rule (Donoho and Johnstone, 1995), which minimizes

Sn(λj) =
σ̂2

n
2J0 +

J1−1∑
j=J0

Sj(λj),

where

Sj(λj) =
2j−1∑
k=0

[
σ̂2

n
− 2

σ̂2

n
I{|b̃j,k|≤λj} +min(b̃2j,k, λ

2
j)

]
, J0 ≤ j ≤ J1 − 1.

Genovese and Wasserman (2005) show that

√
n(Ln − Sn(λ̂))√

2σ̂2
n

∼ N(0, 1),

which leads to reject H0 : µ
n = 0 if

n∑
k=1

µ̂2
k > σ̂2 zα√

n/2
+ Sn(λ̂),

where zα stands for the 100(1− α)% percentile of the standard normal distribution.

When a large number of hypotheses are tested simultaneously, as is the case here, we

must adjust for multiple testing (i.e., inflation of Type I error probabilities). Since classical

procedures, such as the Bonferonni method, are critical in multiple testing problems for

the justification of the multiplicity, they tend to reject hypotheses more than it should.

Benjamini and Hochberg (1995) propose to control the false discovery rate for independent

test statistics. The false discovery rate (FDR) is defined as the expected proportion of errors

among the rejected hypotheses that is the mean of the number of false rejections divided by

the number of total rejections.

2.2.3 K-means clustering

The K-means method starts with specification of the number of clusters, K, in advance and

assigns each voxel to the cluster that has the nearest centroid. The procedure of K-means

clustering requires the following steps (Johnson and Wichern, 2002):

1. Partition the data arbitrarily into K initial clusters and calculate the cluster centroids.
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2. Reassign each subject into the nearest cluster based on the Euclidean distance of each

subject from the K centroids.

3. Update the cluster centroid and reassign each subject into the nearest cluster by recal-

culating the distance of each subject from the updated centroids.

4. Repeat steps 2 and 3 until there is no more reassignment.

The stability of the clustering can be checked by returning to the algorithm with a new initial

partition, and the group differences can be explained with a table of the cluster centroids

and within-cluster variances. There are various choices for the distance metric including the

Euclidean, Minkowski, Mahalanobis, and correlation.

2.2.4 Principal component analysis

Principal component analysis (PCA) is widely used as a data dimension reduction method

(Johnson and Wichern, 2002). The basic idea is that there may be linear relationships

between variables in a data set, and then the computation will be effective only if uncorre-

lated variables are used. The purpose of PCA is to transform a number of linearly correlated

variables into a smaller number of uncorrelated variables called principal components (PC).

Much of the variability in a data set can be accounted for by a small number M of the PCs.

The choice of M is made with a visual heuristic called the scree plot that shows the fraction

of total variance in the data as explained or represented by each principal component in

decreasing order.



Chapter 3

FMRI clustering analysis1

In this Chapter, we describe the data we analyze, propose our clustering procedure, and

present the analysis results. Dyckman et al. (2007) evaluate the effect of context on behavior

and brain activity during saccade tasks using our data set with one fMRI session. They

apply a general linear model using data-driven regressors obtained by ICA (independent

component analysis). The results from their study indicate that the superior parietal lobe

(SPL), supplemental eye fields (SEF), and frontal eye fields (FEF) may be more important for

supporting the complex behavioral response in prosaccades, whereas other brain regions, such

as PFC, may be more involved in response selection and/or context updating in antisaccades.

In the present study we evaluate the practice effects of the participants using two (pre- and

post- tests) fMRI sessions. We take temporal correlation into account (the wavelet transform

and thresholding), significantly reduce the high dimension of the data (the adaptive pivotal

thresholding test), and produce clustered maps based on a model-free approach (PCA K-

means clustering).

3.1 Introduction to saccadic data

Among eye movements, saccades are the rapid eye movements that redirect one’s gaze to a

newly appearing target. In this dissertation, we use eye movement data to evaluate changes

in brain activity before and after daily exposure to a set of eye movement tasks. Two types of

saccades and one eye movement are used: prosaccades, antisaccades, and fixation. “Prosac-

cades” are more reflexive, as a person simply redirects one’s gaze to a newly appearing

visual stimulus. “Antisaccades” are more complex and volitional, as a person redirects one’s

gaze to the mirror image location (same amplitude, opposite side) of the newly appearing

1Part of the results presented in this chapter have been published: Lee, J., Park, C., Dyckman,
K. A., Lazar, N. A., Austin, B. P., Li, Q., and McDowell, J. E. (2013), Practice-related Changes in
Neural Circuitry Supporting Eye Movements Investigated via Wavelet-based Clustering Analysis,
Human Brain Mapping, 34(9):2276-2291.

21
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visual stimulus. As such, a correct antisaccade response requires the inhibition of a glance

toward the stimulus and the generation of a voluntary saccade to an unmarked location in

the opposite visual field. “Fixation” is maintaining gaze on a target. Saccadic performance is

supported by a network of subcortical and cortical regions, as identified via neuroimaging and

other techniques (Camchong et al., 2008; Dyckman et al., 2007; McDowell et al., 2008, and

references therein). While the basic circuitry is the same for prosaccades and antisaccades,

the increased complexity of antisaccades is supported by increased activation of existing cir-

cuitry and/or the recruitment of additional neural regions into the circuitry. As such, the

saccade circuitry provides a specific, well-studied system for understanding changes in brain

activation associated with cognitive control and practice.

The present study uses fMRI to evaluate the changes across time in neural system acti-

vation after participants practice either specific or non-specific eye movement tasks. Partic-

ipants are engaged in antisaccade performance during fMR image acquisition at two time

points: 1) at pre-test before any exposure to the task and 2) at post-test after one week

of daily practice of eye movement tasks. Each participant practices a single type of eye

movement only: either a) antisaccades, b) prosaccades, or c) fixation, where fixation indi-

cates that one maintains ones gaze on a target. It is hypothesized that the subjects who

have task-consistent practice (i.e., the antisaccade practice group) would show changes in

neural circuitry as measured by the blood oxygenation level-dependent, BOLD, signal that

are not observed in the two task-inconsistent practice groups, the prosaccade and fixation

groups, who practice eye movement control tasks generally, but not antisaccades specifically.

It is further hypothesized that (i) for saccade tasks, saccade-related circuitry would show

decreased BOLD signal over time as a result of the circuitry becoming more efficient and

(ii) in the antisaccade practice group only, prefrontal cortex, frontal eye fields, and striatum

would show decreased BOLD signal due to decreased need for a higher level of cognitive

control (Munoz and Everling, 2004).

3.2 Data description

We perform the statistical analysis on the data collected by Dyckman (2007). The informa-

tion about our fMRI data presented in this subsection comes from her dissertation. For more

details, refer to her dissertation.
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3.2.1 Participants

Data were collected from thirty-seven undergraduate women (mean age=19.5 years, SD=1.8),

all right-handed. They were recruited from the Undergraduate Research Pool at the Uni-

versity of Georgia (UGA) or via flyers posted on campus. All participants were free (by

self-report) of psychiatric illness, history of head injury, and drug and alcohol abuse. Par-

ticipants provided written informed consent prior to the study, which was approved by the

UGA Institutional Review Board (UGA IRB # 10387).

3.2.2 Procedure

FMRI data during antisaccade task performance were acquired at two time points: 1) pre-

test (before any task exposure) and 2) post-test. Between pre- and post-tests fMRI sessions,

participants practiced one type of randomly assigned eye movement daily for one week:

either 1) antisaccades (glances away from a cue, n=12), 2) prosaccades (glances towards

a cue, n=14), or 3) fixation (maintains gaze at a central target, n=11). All participants

completed both test sessions.

3.2.3 FMRI Test Sessions

FMRI data were collected using a 1.5T GE Signal Horizon LX Scanner (GE Medical Sys-

tems, Waukesha, Wisconsin). Task instructions were given prior to entering the scan room.

Once in the room, a participant was positioned on a gurney with her head stabilized with

foam padding and a restraint strap across her forehead. A mirror placed over the partici-

pant’s head allowed her to view the stimuli on a rear-projection screen placed near her feet.

Eye movements were recorded using an fMRI compatible iView X System (SensoMotoric

Instrument, Inc.; 60 Hz sampling rate) eye tracking system.

Two localizer images were taken at the beginning of each session to ensure optimal

brain coverage for each participant. A high-resolution image was then obtained (SPGR-

protocol: sagittal, 2 NEX .9375× .9375× 1.5 mm, 124 slices, TE 2.8 ms, TR=10.8 ms, flip

angle = 20 degrees, scan time = 5 min 41 sec). After this structural image was acquired,

functional imaging was conducted (spiral scan with 2 interleaves, 24 continuous axial slices,

3.75× 3.75× 4 mm, TE = 40 ms, TR = 1912 ms, flip angle = 77 deg, scan time = 5 min 1

sec).
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The functional run consisted of 13 blocks (22.4 sec each) alternating between fixation and

antisaccade trials (see Figure 3.1). Stimuli consisted of 1 deg circles filled with different colors.

A fixation block was indicated by a purple stimulus at the central location; participants were

instructed to fixate on the target for the duration of the block. An antisaccade block consisted

of 7 individual trials, each of which started with a blue stimulus at the central location (2000

ms). The stimulus was extinguished and 200 ms later a cue presented 5 deg to the left or the

right (half in each visual field) on the horizontal axis (1000 ms). Participants were instructed

to look at the blue stimulus only when it was in the middle of the screen, and when it

was presented in the periphery, as shown in Figure 3.1, to look at the mirror image of that

stimulus (opposite direction, same amplitude) as quickly and accurately as possible.
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Antisaccade/Fixation TaskAntisaccade/Fixation Task

Fixation                                         Antisaccade

2000 ms

200 ms

1000 ms1000 ms

22.4 s

22.4 s

5 minutes

Figure 3.1: Saccade tasks in fMRI block design model. The functional run consists of 13
blocks (22.4 sec each) alternating between fixation and antisaccade trials. The white arrow
indicates where the participant should be looking at each point in time. Stimuli consist of
1 deg circles filled with purple for fixation and blue for antisaccade tasks. The participants
are instructed to fixate on the target for the duration of the fixation block. An antisaccade
block consists of 7 individual trials, each of which starts with a blue stimulus at the central
location (2000 ms). The stimulus is extinguished and is presented 5 deg to the left or the
right (half in each visual field) 200 ms later on the horizontal axis (1000 ms). Participants
are instructed to look at the blue stimulus only when it is in the middle of the screen, and
when it is presented in the periphery, to look at the mirror image of that stimulus.
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3.2.4 Behavioral Practice Sessions

Participants practiced their assigned tasks (antisaccade, prosaccade, or fixation) in the labo-

ratory each of four days (the weekend excluded) beginning the day after the pre-test scanning

session and ending the day before the post-test session. Refer to Figure 3.2. Practice sessions

were conducted using a hand held device with an LCD screen known as “Fix-Train,” which

was designed for the purpose of providing practice with eye movement tasks (see Fischer

et al., 2000).

The use of the Fix-Train device allowed for several participants to complete their training

simultaneously. Each participant was assigned her own Fix-Train and her data were recorded

on the device throughout the study. For each task, the goal of the participant was to deter-

mine the orientation of a “T” symbol and to press the corresponding arrow key. The bottom

leg of the “T” symbol could be facing up, down, left, or right. This manual task served as

a proxy for measuring eye movements because the location and duration of the “T” presen-

tation were designed so that the participant must execute the correct eye movement to see

the stimulus and discern its orientation.

For fixation training, the symbol remained in the center of the screen and changed direc-

tion two to five times before disappearing. Subjects pressed the arrow key corresponding to

the final orientation of the symbol before it disappeared from the screen. For prosaccade

training, the task was identical except that the symbol jumped to one side after changing

orientation in the middle, and participants pressed the arrow key corresponding to the ori-

entation of the symbol once it jumped to the periphery. For antisaccade training, a star

appeared in the center of the screen to provide a fixation target. Then, the star jumped to

one side of the screen and the “T” symbol appeared 70 ms later on the opposite side of

the screen. Participants were instructed to look at the opposite side of the star and press

the arrow key that corresponded to the orientation of the symbol. If participants made a

saccade toward the star before looking away from it, they would miss the symbol as it was

only visible for 100 ms.

Prosaccade and antisaccade training consisted of an equal number of trials to the left and

right. Each participant completed 200 trials a day of her specific task (fixation, prosaccade, or

antisaccade) and her data were recorded on the device. The number of correct trials and the

mean reaction time for each practice session were recorded by the Fix-Train and downloaded

to a computer for further analysis.
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Figure 3.2: Study schedule. Data were collected from 37 undergraduate women. Participants
were randomly divided into three task groups: antisaccade (n = 12), prosaccade (n = 14),
and fixation (n = 11). On the first visit for the pre-test session, all participants had the same
antisaccade task test and then practiced one type of assigned eye movement daily for one
week (except for the test session day and weekend). On the second visit for the post-test
session, all participants had the same antisaccade task test again. All participants completed
both pre- and post-test sessions.
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3.3 Preprocessing

FMRI test session data consist of eye movements recorded while the participants are engaged

in antisaccade tasks. All 37 participants have MRI scans of 38 slices of size 64×64 voxels from

the bottom to the top of the head during 75 scan time points. Each individual subject’s data

are preprocessed using standard methods in AFNI (Cox, 1996) including motion correction,

slice timing correction, head motion correction, and spatial and temporal filtering. Regions

of signal change can be described in three dimensions using standard normalized brain space

(e.g., Talairach Atlas). The data are individually transformed into Talairach coordinates for

standardization (Talairach and Tournoux, 1998), yielding slices of dimension 40× 48.

Data preprocessed in AFNI are then exported to MAT-files (MATLAB formatted binary

file) to be analyzed in MATLAB software (The Mathworks Inc., Natick, MA). Trials with

blinks and trials with no saccades are eliminated. Saccades are scored for direction and

reaction time.

Activation occurs predominantly in the 11th through 34th slices when we inspect the data

visually; therefore, we select this subset of the full volume for the remaining analyses. We

exclude the first five scans from the analysis to allow for stabilization of the magnetization.

Thus, the final data set contains 37 participants, each with data from 24 slices (40 × 48

voxels) and 70 scans.

3.3.1 Masking

The identification of brain tissue in a whole brain MR image is an essential first step in

many neuroimaging studies (Rex et al., 2004). The first step after data are exported to

MAT-files is to identify the location of the brain because it is not necessary to include the

voxels falling outside the brain in clustering analysis. There are several techniques used for

finding the location of the brain in sets of slices, for example, threshold masking (Friman

et al., 2004), skull stripping (Mahapatra, 2012), MRI Defacer (Bischoff-Grethe et al., 2007),

and Quickshear Defacing (Li, 2011).

In this analysis we adapt the threshold masking technique to remove the voxels falling

outside the brain. The selection of the threshold value is critical in masking out the brain

in the sense that if a threshold is set too low, it lowers efficiency by including too many

voxels outside of the brain, whereas a high threshold might eliminate some voxels inside

of the brain. We choose this threshold value using the histogram of voxel BOLD signals.
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Figure 3.3 shows the histograms of voxel BOLD signals for the pre-test (Figure 3.3(a)) and

the post-test (Figure 3.3(b)). The histograms are obtained by collapsing all voxel BOLD

signals over all time points for all subjects and then divided by the number of subjects.

The bottoms of the valleys in the histograms, which range from 1000 to 1500 for both the

pre- and post-tests, are good candidates for the threshold values (Hawkes and Kazan, 1993).

We apply two threshold values, 500 and 1000, to the clustering analysis, but there are no

significant differences between the two results. Thus, we determine to mask the brain using

the threshold value of 1000.
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Figure 3.3: Histograms of voxel’s BOLD signals. The histogram is obtained by collapsing all
voxel BOLD signals over all time points for all subjects and then divided by the number of
subjects. This histogram is used to choose the threshold value; the bottoms of the valleys in
the histograms are good candidates. Here the bottoms of the valleys fall between 1000 and
1500 for both the pre- and post-tests, and thus, choosing a threshold between 1000 and 1500
would be reasonable.

3.3.2 Detrending

The next step is to remove any deterministic trends that might affect the clustering analysis.

For example, when grouping the raw data into three clusters and five clusters, we obtain

the results in Figures 3.4(a) and 3.4(b), respectively. It is clear that some voxels have high

BOLD signal responses and some voxels have low BOLD signal responses across all scan

times. Since voxels should be grouped based on the similarities of their temporal patterns
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rather than simply the levels of their BOLD signals, we remove the differences in level by

subtracting the grand mean at each voxel, which is called the centered data. Then we group

the centered data into three clusters and five clusters with results given in Figures 3.4(c)

and 3.4(d), respectively. It is clear that linear trends are inherent in the voxel’s time series.

Lazar (2008) indicates that these linear trends are caused by system noise, which is

inherent in MRI data because it comes from the MR system itself. It is also mentioned that an

important form of system noise is trend in the voxel’s BOLD signal, and the signal intensity

gradually and systematically changes, as shown in Figures 3.4(c) and 3.4(d). Figures 3.4(e)

and 3.4(f) show the clustering results of three and five clusters, respectively, after removing

the linear trends from data. But clear quadratic trends still remain. Thus it motivates us

to remove these quadratic trends by subtracting fitted second degree polynomials from the

linearly detrended data and to use the linearly and quadratically detrended data instead of

the raw data for further analysis.

Our findings are consistent with those of Skudlarski et al. (1999) who made an advanced

improvement in efficiency of analysis by removing linear and quadratic trends on the voxel

time series in a preprocessing step. They pointed out that the linear trend removal increases

efficiency and that the removal of the quadratic polynomial makes a further improvement,

whereas the cubic polynomial does not help beyond these.
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Figure 3.4: Clustering results showing temporal trends of the voxel’s BOLD signals. Figures
3.4(a) and 3.4(b) are the clustering results when we group raw data into three clusters
and five clusters, respectively. The x-axes indicate scan time points, and the y-axes are
the voxel’s BOLD signals. These figures show that the clusters are composed of the voxels
which have similar BOLD signal amplitudes, but the similarities of their temporal patterns
are not considered at all. We remove the overall differences in the BOLD signal levels by
subtracting the grand mean, and the clustering results of three clusters and five clusters are
shown in Figures 3.4(c) and 3.4(d), respectively. It is clear that linear trends are inherent,
and these linear trends should be eliminated prior to grouping. Figures 3.4(e) and 3.4(f) are
the clustering results after we remove linear trends from the data. There still remain clear
quadratic trends, leading us to remove quadratic trends prior to further analyses.



32

3.3.3 Data aggregation

As we discuss at the beginning of Section 3.3, the final data have 37 participants × 24 slices

× 70 scans × (40×48) voxels, which yields a total of 119, 347, and 200 voxels. This is beyond

the capabilities of current clustering software (Mumford and Poldrack, 2007; Wanga et al.,

2007). To make clustering more manageable, we must first reduce the size of the data. This

has been a common concern in the literature. For example, Balslev et al. (2002) averaged

the time series for each voxel over 18 subjects prior to clustering.

No extraordinary dissimilarity between subjects should be assumed to aggregatate prop-

erly the time series for each voxel over all subjects. In order to study the distributions of the

37 subjects on the purpose of validation of homogeneity of subjects, we evaluate two center

measures, mean and median, and three variation measures, standard deviation, interquartile

range and range, at each voxel for each subject. The distributions of the center measures

are displayed in Figure 3.5. Here Figure 3.5(a) and Figure 3.5(b) present the distributions of

voxel means and Figure 3.5(c) and Figure 3.5(d) present the distributions of voxel medians

at pre- and post-tests, respectively. For example, we measure the mean of each voxel and

draw a boxplot of the measured means for each subject. The Figure shows that the distri-

butions do not look dramatically different across subjects, although some subject-to-subject

variation does exist; in particular, though, there are no outlying subjects.

The distributions of variation measures, standard deviation, interquartile range and

range, are displayed in Figure 3.6. The distributions of these measures across all subjects are

similar, although there are some isolated cases suspected as outliers. Therefore, we conjecture

that the aggregation of 37 subjects using a representative statistic would not cause a severe

problem in our analysis. In conclusion, we combine the subjects for each group at each voxel

and each time point separately using a representative value to circumvent the computational

burden. Since we find some outliers within each subject, we choose the median instead of

the mean as a representative value. We also try to group the voxels using the 10% and

20% trimmed means, and the clustering results are similar to the other summary measures.

The complete results can be found in Section 3.5.3. An advantage of using the median is

that it reduces the effect of heavy outliers found in some voxels. Another advantage of this

aggregating approach is that it increases the signal-to-noise ratio; hence it produces sharper

clustering brain maps. After aggregation we have a single image per group, for each of the

70 scan time points; the images are 24 slices ×40× 48 voxels in size.
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(a) mean (pre-test) (b) mean (post-test)

(c) median (pre-test) (d) median (post-test)

Figure 3.5: Distributions of voxel center measures at the pre- (left) and post-test (right),
respectively. Figures 3.5(a) and 3.5(b) present the distributions of voxel’s mean, and Figures
3.5(c) and 3.5(d) present the distributions of median. The x-axes indicate subject’s IDs.
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(a) SD (pre-test) (b) SD (post-test)

(c) IQR (pre-test) (d) IQR (post-test)

(e) Range (pre-test) (f) Range (post-test)

Figure 3.6: Distributions of voxel variation measures at the pre- (left) and post-test (right),
respectively. Figures 3.6(a) and 3.6(b) present the distributions of standard deviation, Figures
3.6(c) and 3.6(d) present the distributions of interquartile range, and Figures 3.6(e) and 3.6(f)
present the distributions of voxel’s range. The x-axes indicate subject’s IDs.
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3.3.4 Decorrelation

FMRI data are highly correlated temporally since stimuli are given continuously or period-

ically over time. Hence, the response to the stimulus at the current scan time point will be

influenced by the stimulus at the previous scan time point and the response to it (Lazar,

2008). A typical approach to address this issue in clustering analysis is to assume a temporal

model for characterizing the dependence structure in fMRI time series (e.g., Worsley, 2003).

This temporal correlation has been evaluated using different types of time series models

ranging from autoregressive of low order (see, for example, Woolrich et al., 2001; Luo and

Nichols, 2003; Gautama and Hulle, 2005) to long-range dependence (see, for example, Bull-

more et al., 2003; Park et al., 2010).

Friman et al. (2004) indicated that fMRI data have abundant temporal trends, and if not

accounted for, these trends cause pronounced autocorrelation in the residual noise process.

The dependence structure in fMRI time series makes clustering analysis more challenging,

and it should be accounted for because it is nontrivial to distinguish deterministic patterns

from dependence artifacts. Instead of modeling the temporal correlation explicitly, we use the

wavelet transformation to take advantage of its decorrelation and denoising properties. One

important advantage of using the wavelet transformation in fMRI analysis is that it removes

the temporal correlation so that the transformed data have less serial correlation (i.e., have

the property of nearly white noise) in the wavelet domain for large vanishing moments (L)

(for example, see Stoev et al., 2005). Refer to Equation (2.3). If we then cluster the voxels

in the wavelet domain rather than in the time domain, the temporal correlation inherent in

fMRI data is reduced.

Veitch and Abry (1999) pointed out, however, that the theoretical improvement with

large vanishing moments is balanced by an increase in the number of wavelet coefficients

influenced by the boundary effect, due to the finite length of the time series. They used

three vanishing moments for Internet traffic data to reduce strong serial correlation and also

remove possible linear and quadratic trends in the data. In our analysis, since we remove

those trends in advance, we use a Daubechies wavelet function (Daubechies, 1992) with two

vanishing moments, which would increase the number of available wavelet coefficients, and

apply the wavelet transformation to each median-valued voxel. We also compare clustering

maps to check significant changes from L=2 to 4 and find them similar to each other.

In addition, we apply a wavelet hard thresholding technique to obtain a sparse rep-

resentation of a signal by setting the wavelet coefficients to zero, less than the threshold
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suggested by Donoho and Johnstone (1994). This denoising process amplifies important sig-

nals and removes noise in the observed data. We use the Wavelab package, available at

http://stat.stanford.edu/~wavelab/, for the wavelet analysis.

3.3.5 Adaptive pivotal thresholding test

The size of the data is reduced considerably by applying the masking and data aggregation

methods described in Sections 3.3.1 and 3.3.3. However, the areas related to the BOLD signal

of interest involve relatively small portions of the brain. Clustering techniques can not play

a perfect role in detecting the activated voxels embedded in a mass of inactive voxels. As a

solution for this ill-balanced problem, and to improve the efficiency of computation, one can

exclude voxels whose signals are not significantly different from zero. Goutte et al. (1999)

applied a loose statistical test such as the F -test as a reduction tool. Fadili et al. (2000)

removed white noise voxels and further reduced the number of voxels by considering only

gray matter.

Park et al. (2011) proposed the adaptive pivotal thresholding test based on wavelets to

detect any kind of trend in a time series. We apply this adaptive pivotal thresholding test

based on wavelet coefficients (ak and bj,k in Equation (2.2)) to filter out inactivated voxels.

This test is more rigorous than a simple F -test as it accounts for temporal correlation. The

key idea is to convert the problem of testing a trend of a function into high dimensional

normal mean inference in the wavelet domain. We conduct this test at each voxel to identify

voxels with no trend (i.e., voxels that are non-task related). Since each voxel is tested using

this approach, adjustment for multiple testing is necessary and we apply the false discovery

rate (FDR) with q=0.15. This is a relatively generous threshold to help ensure that truly

interesting voxels are not removed for the rest of the analysis.

As indicated in Section 3.3 we start with 46,080 (24×40×48) voxels for each session and

each group. After the masking procedure, 14,743 ∼ 15,319 voxels are categorized as brain.

Application of the adaptive pivotal thresholding test with FDR for multiplicity retains 1,852

∼ 3,329 voxels that are categorized as antisaccade task-related, categorizing the other voxels

as possibly non-task related. This is a remarkable reduction because the number of voxels

used in the clustering can be decreased up to 96% of the original number.
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3.4 Clustering algorithms

We cluster the wavelet coefficients of the remaining voxels after the adaptive pivotal thresh-

olding test in Section 3.3.5, using both K-means and PCA K-means clustering methods.

Among the various choices for a distance metric forK-means clustering, we use the Euclidean

metric for computing the distance between points and cluster centroids, a typical choice,

because the data are suitably standardized by detrending and are approximately indepen-

dent because of the wavelet transformation. Refer to Section 2.2.3 for details.

PCA (Jolliffe, 2002) is widely used as a data dimension reduction method. The basic

idea is that if linear relationships exist between variables, analysis will be effective if only a

smaller number of uncorrelated variables, called principal components (PC), are used. The

procedure of PCA K-means clustering is as follows:

1. For wavelet transformed voxels X = (x1, . . . , xn)
T , obtain the n PCs, labeled PC1

to PCn, via PCA. These PCs are ordered by decreasing order of contribution to total

variance.

2. Draw a scree plot in which the horizontal axis contains the PCs sorted by decreasing

fraction of total variance explained, and find the point of separation in fraction of total

variance (sometimes called the elbow) where the most important components cease

and the less important components begin. Identify the M most important PC scores

using the elbow point. If the elbow happens at the (M + 1)-st PC, then take the first

M PC scores.

3. Apply K-means clustering to the M selected PC scores of the wavelet-transformed

voxels.

The scree plots for the pre- and post-tests for the three different groups are shown in

Figures 3.7(a) and 3.7(b), respectively. In our analysis 15 PCs are selected based on the scree

plots, a noticeable decrease from the 70 original time points. These 15 components explain

at least 80% of the total variance for each test session and each practice group. The results

for the three groups are similar to one another so that they are indistinguishable at each

time point (pre- and post-tests).

In both K-means and PCA K-means methods, the choice of K is an important issue. It

can be determined using a criterion such as the silhouette value (Ye, 2003), the likelihood

approach with cross-validation (Balslev et al., 2002), the hierarchical approach (Stanberry
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(a) The pre-test
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(b) The post-test

Figure 3.7: Scree plots of PCA for the pre- (left) and post-tests (right) and each practice
group. Red, blue, and black curves represent the antisaccade, prosaccade, or fixation practice
groups, respectively. The heights of the vertical bars on the bottom represent the contribu-
tions of each PC for that group. Note that there are little differences across the groups so
that lines are indistinguishable. Based on these plots, we select 15 PCs (green vertical bar)
because they explain at least 80% of the total variance for each test session and each practice
group.
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et al., 2003), and unsupervised fuzzy c-means analysis (Fadili et al., 2000). In our analysis,

we try different numbers of clusters, K = 3, 4, 5, 7, and choose K =3 because the larger

numbers of clusters only break the noise cluster into multiple clusters and do not provide

additional information.

Another issue in K-means clustering is that initial partitions can affect the final clusters.

We therefore run the clustering algorithm multiple times for the same number of clusters

and obtain similar results to those presented in Section 3.5.

We summarize our clustering analysis strategy in Figure 3.8. First, we mask out the data

standardized in Talairach space to delineate the contours of the brains using a threshold

value of 1000 for each subject at each slice. Second, we remove the linear and quadratic

trends in the masked data. Third, we aggregate the 37 subjects using the median values

for each group at each voxel and each time point separately. Fourth, we apply the wavelet

transformation to each median-valued voxel using Daubechies wavelet functions with two

vanishing moments and apply a wavelet hard thresholding technique. Fifth, we apply the

adaptive pivotal thresholding test based on wavelet coefficients to filter out inactivated voxels.

Finally, we cluster the thresholded wavelet coefficients of the remaining voxels after the

adaptive pivotal thresholding test using K-means and PCA K-means clustering methods.
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Figure 3.8: The proposed clustering analysis strategy.
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3.5 Clustering results

For each test session (pre- and post-tests) the brain is partitioned into two, three, five or

seven clusters, which are K=2, 3, 5, and 7, using K-means and PCA K-means clustering

methods. We present the clustered brain maps in Section 3.5.1 and their average time series

plots in Section 3.5.2. The results with other aggregation methods are provided in Section

3.5.3. Finally, we focus on the PCA K-means clustering results with K = 3 for two test

sessions and for three practice groups in Section 3.5.4 and show their statistical differences

using ANOVA in Section 3.5.5.

3.5.1 The clustered brain maps with K= 2, 3, 5, and 7 for test Sessions

We present the clustered brain maps in the following order:

• K-means method for the pre-test for slices 13 – 19 in Figure 3.9.

• K-means method for the pre-test for slices 20 – 26 in Figure 3.10.

• K-means method for the pre-test for slices 27 – 33 in Figure 3.11.

• PCA K-means method for the pre-test for slices 13 – 19 in Figure 3.12.

• PCA K-means method for the pre-test for slices 20 – 26 in Figure 3.13.

• PCA K-means method for the pre-test for slices 27 – 33 in Figure 3.14.

• K-means method for the post-test for slices 13 – 19 in Figure 3.15.

• K-means method for the post-test for slices 20 – 26 in Figure 3.16.

• K-means method for the post-test for slices 27 – 33 in Figure 3.17.

• PCA K-means method for the post-test for slices 13 – 19 in Figure 3.18.

• PCA K-means method for the post-test for slices 20 – 26 in Figure 3.19.

• PCA K-means method for the post-test for slices 27 – 33 in Figure 3.20.

The clusters having the largest to the smallest amplitude are displayed in colors ranging

from green (largest) to blue, red, cyan, purple, olive, and black (smallest). The upper and

lower areas of each slice correspond to anterior and posterior, respectively, and the larger

slice number is toward the top of the head.

From the clustered brain maps, we notice several remarkable points. First, the clustering

results by K-means and PCA K-means are similar. Second, partitioning brains into two
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clusters (i.e.,K=2) fails to detect some major areas known as antisaccade task-related regions

(e.g., Dyckman et al. (2007)). For example, see slices 27 – 32 in Figure 3.11. Some of the

antisaccade related regions shown in green and blue when K = 3 are not detected when

K = 2. Note that we interpret only green areas as the activated region for K = 2 by

combining the information from the time series plots in Figures 3.21(a) and 3.21(b). The

cluster displayed in blue in the average time series plot for K=2 appears to be noise. Third,

K greater than three merely breaks the noise cluster into multiple clusters and so does not

provide additional information. For example, compare K=3 with K=5 and K=7 in Figure

3.11. The major areas known as antisaccade task-related regions are detected for K=3, 5,

and 7, but the non-task related areas for K=3 (shown in red) are broken into several areas

for K=5 and 7 (i.e., noise clusters are displayed in several dark colors, but not in green or

blue).
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Figure 3.9: The clustered brain maps for the pre-test using K-means for slices 13 – 19. The y
labels indicate the slice number and the x labels are the number of clusters. The upper and
lower areas of each slice correspond to anterior and posterior, respectively, and the larger
slice number is toward the top of the head.
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Figure 3.10: The clustered brain maps for the pre-test using K-means for slices 20 – 26. The
y labels indicate the slice number and the x labels are the number of clusters. The upper and
lower areas of each slice correspond to anterior and posterior, respectively, and the larger
slice number is toward the top of the head.
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Figure 3.11: The clustered brain maps for the pre-test using K-means for slices 27 – 33. The
y labels indicate the slice number and the x labels are the number of clusters. The upper and
lower areas of each slice correspond to anterior and posterior, respectively, and the larger
slice number is toward the top of the head.
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Figure 3.12: The clustered brain maps for the pre-test using PCA K-means for slices 13 –
19. The y labels indicate the slice number and the x labels are the number of clusters. The
upper and lower areas of each slice correspond to anterior and posterior, respectively, and
the larger slice number is toward the top of the head.
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Figure 3.13: The clustered brain maps for the pre-test using PCA K-means for slices 20 –
26. The y labels indicate the slice number and the x labels are the number of clusters. The
upper and lower areas of each slice correspond to anterior and posterior, respectively, and
the larger slice number is toward the top of the head.
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Figure 3.14: The clustered brain maps for the pre-test using PCA K-means for slices 27 –
33. The y labels indicate the slice number and the x labels are the number of clusters. The
upper and lower areas of each slice correspond to anterior and posterior, respectively, and
the larger slice number is toward the top of the head.
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Figure 3.15: The clustered brain maps for the post-test using K-means for slices 13 – 19. The
y labels indicate the slice number and the x labels are the number of clusters. The upper and
lower areas of each slice correspond to anterior and posterior, respectively, and the larger
slice number is toward the top of the head.
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Figure 3.16: The clustered brain maps for the post-test using K-means for slices 20 – 26. The
y labels indicate the slice number and the x labels are the number of clusters. The upper and
lower areas of each slice correspond to anterior and posterior, respectively, and the larger
slice number is toward the top of the head.
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Figure 3.17: The clustered brain maps for the post-test using K-means for slices 27 – 33. The
y labels indicate the slice number and the x labels are the number of clusters. The upper and
lower areas of each slice correspond to anterior and posterior, respectively, and the larger
slice number is toward the top of the head.
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Figure 3.18: The clustered brain maps for the post-test using PCA K-means for slices 13 –
19. The y labels indicate the slice number and the x labels are the number of clusters. The
upper and lower areas of each slice correspond to anterior and posterior, respectively, and
the larger slice number is toward the top of the head.
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Figure 3.19: The clustered brain maps for the post-test using PCA K-means for slices 20 –
26. The y labels indicate the slice number and the x labels are the number of clusters. The
upper and lower areas of each slice correspond to anterior and posterior, respectively, and
the larger slice number is toward the top of the head.
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Figure 3.20: The clustered brain maps for the post-test using PCA K-means for slices 27 –
33. The y labels indicate the slice number and the x labels are the number of clusters. The
upper and lower areas of each slice correspond to anterior and posterior, respectively, and
the larger slice number is toward the top of the head.
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3.5.2 Average time series plot with K= 2, 3, 5, and 7 for test Sessions

We present the average time series plots in each cluster for the pre-test in Figure 3.21 and

for the post-test in Figure 3.22. The K-means and the PCA K-means results are displayed

in the left and right panels, respectively. The x-axes indicate scan time points and the y-

axes indicate the voxel’s detrended BOLD signal. For reference, the stimulus presentation

is in dashed black lines, depicting alternating blocks of fixation and the antisaccade task.

From the largest to the smallest amplitude, clusters are displayed in green, blue, red, cyan,

purple, olive, and black. The clusters displayed in these colors correspond to the same colored

clusters in the brain maps in Section 3.5.1.

From these average time series plots, we find several noticeable points. First, we can

clearly see that the clustering results by K-means and PCA K-means are similar as discov-

ered in the clustered brain maps. Second, for each plot at least one cluster (shown in green)

displays a box-car shape, suggesting the presence of antisaccade task-related voxels. Third,

we again observe that the larger numbers of clusters K only break the noise cluster into mul-

tiple clusters and do not provide additional information. For example, see Figures 3.21(d)

and 3.21(f). The clusters having the first two largest amplitudes in Figure 3.21(d) shown in

green and blue look similar to the green and blue clusters in Figure 3.21(f). However, the

cluster having the smallest amplitude (shown in red) in Figure 3.21(d) is divided into the

clusters shown in red, cyan, and purple in Figure 3.21(f).
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Figure 3.21: Average time series plots for the pre-test. The x-axes indicate scan time points
and the y-axes indicate the voxel’s detrended BOLD signal. Dashed black lines represent the
stimulus timing.
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Figure 3.22: Average time series plots for the post-test. The x-axes indicate scan time points
and the y-axes indicate the voxel’s detrended BOLD signal. Dashed black lines represent the
stimulus timing
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3.5.3 Comparison of results by median, mean, and trimmed mean

As mentioned in Section 3.3.3, we also aggregate the data using other center measures such

as mean, and 10% and 20% trimmed means. In this subsection we compare their clustering

results with those from the median using K = 3. Figures 3.23 - 3.28 show the clustered

brain maps when we group voxels into three clusters using PCA K-means. Each Figure has

four columns, and each column represents the results by using mean, 10% and 20% trimmed

means, and median, respectively. In the plots, the y labels indicate the slice numbers and

the x labels indicate the center measures used for data aggregation. The upper and lower

areas of each slice correspond to the anterior and posterior of the brain, respectively, and

the larger slice number is toward the top of the head. As we mention in Section 3.3.3, the

clustered brain maps do not show significant differences across different center measures for

either the pre- (Figures 3.23-3.25) or post-tests (Figures 3.26-3.28).

We note that the aggregated data with median have fewer noise voxels after the adaptive

pivotal thresholding test than other measures, while keeping a similar number of activated

voxels. For example, see the four superior slices (slices 29 – 32) in Figure 3.28, which clearly

contain the well known saccadic circuitry (Camchong et al., 2008; Dyckman et al., 2007, and

references therein). The median brain maps show smaller red areas (noise voxels) but similar

green and blue areas (activated areas) compared to the other measures.

Figure 3.29 displays the average time series plots by using these four center measures.

Cluster 1 (green), cluster 2 (blue), and cluster 3 (red) represent the green, blue, and red areas

in Figures 3.23-3.28, respectively. The first and the second columns in Figure 3.29 indicate

the average time series plots for the pre- and post-tests, respectively. The x-axes indicate

scan time points and the y-axes indicate the voxel’s detrended BOLD signal. For reference,

the stimulus presentation is in bashed black lines, depicting alternating blocks of fixation

and the antisaccade task. It is evident that the clustering results by the four measures are

similar to one another for both the pre- and post-tests.

We aggregate the data using the median because there exist some outliers within the

voxels for each subject, and the adaptive pivotal thresholding test more effectively filters out

the noise voxels when the median is used than when other measures are used.



59

13

Mean

13

10% Mean

13

20% Mean

13

Median

14

Mean

14

10% Mean

14

20% Mean

14

Median

15

Mean

15

10% Mean
15

20% Mean

15

Median

16

Mean

16

10% Mean

16

20% Mean

16

Median

17

Mean

17

10% Mean

17

20% Mean

17

Median

18

Mean

18

10% Mean

18

20% Mean

18

Median

19

Mean

19

10% Mean

19

20% Mean

19

Median

Figure 3.23: The clustered brain maps using other center measures for the pre-test for slices 13
– 19. These results are produced by PCA K-means clustering for K=3. The y labels indicate
the slice number and the x labels indicate the center measures used for data aggregation:
mean, 10% trimmed mean, 20% trimmed mean, and median. The upper and lower areas of
each slice correspond to anterior and posterior, respectively, and the larger slice number is
toward the top of the head.
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Figure 3.24: The clustered brain maps using other center measures for the pre-test for slices 20
– 26. These results are produced by PCA K-means clustering for K=3. The y labels indicate
the slice number and the x labels indicate the center measures used for data aggregation:
mean, 10% trimmed mean, 20% trimmed mean, and median. The upper and lower areas of
each slice correspond to anterior and posterior, respectively, and the larger slice number is
toward the top of the head.
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Figure 3.25: The clustered brain maps using other center measures for the pre-test for slices 27
– 33. These results are produced by PCA K-means clustering for K=3. The y labels indicate
the slice number and the x labels indicate the center measures used for data aggregation:
mean, 10% trimmed mean, 20% trimmed mean, and median. The upper and lower areas of
each slice correspond to anterior and posterior, respectively, and the larger slice number is
toward the top of the head.
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Figure 3.26: The clustered brain maps using other center measures for the post-test for
slices 13 – 19. These results are produced by PCA K-means clustering for K=3. The y
labels indicate the slice number and the x labels indicate the center measures used for data
aggregation: mean, 10% trimmed mean, 20% trimmed mean, and median. The upper and
lower areas of each slice correspond to anterior and posterior, respectively, and the larger
slice number is toward the top of the head.
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Figure 3.27: The clustered brain maps using other center measures for the post-test for
slices 20 – 26. These results are produced by PCA K-means clustering for K=3. The y
labels indicate the slice number and the x labels indicate the center measures used for data
aggregation: mean, 10% trimmed mean, 20% trimmed mean, and median. The upper and
lower areas of each slice correspond to anterior and posterior, respectively, and the larger
slice number is toward the top of the head.
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Figure 3.28: The clustered brain maps using other center measures for the post-test for
slices 27 – 33. These results are produced by PCA K-means clustering for K=3. The y
labels indicate the slice number and the x labels indicate the center measures used for data
aggregation: mean, 10% trimmed mean, 20% trimmed mean, and median. The upper and
lower areas of each slice correspond to anterior and posterior, respectively, and the larger
slice number is toward the top of the head.
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Figure 3.29: Average time series plots using other center measures for the pre- (left) and
post-test (right). The clusters 1 (green), 2 (blue) and 3 (red) correspond the green, blue
and red areas in the previous brain maps (Figures 3.23 – 3.28), respectively. These results
are produced by PCA K-means clustering for K=3. The x-axes indicate scan time points
and the y-axes indicate the voxel’s detrended BOLD signal. Dashed black lines represent the
stimulus timing.
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3.5.4 Comparison of results for test Sessions by task groups

For the comparison of practice groups (antisaccade, prosaccade, or fixation) across time

points (pre- and post-test), we partition the brain into two, three, five, or seven clusters

using K-means and PCA K-means clustering methods for each practice group and for each

test session. Since the clustering results from the two methods are similar, we present the

results using PCA K-means clustering methods with K = 3 for each test session and for

each practice group in this subsection. The complete results for antisaccade, prosaccade, and

fixation task groups can be found in Appendix A, B and C, respectively.

Figure 3.30 shows the average time series plots in each cluster indicated by cluster 1 in

green, cluster 2 in blue, and cluster 3 in red at the pre- and post-test for the antisaccade

(Figures 3.30 (a) and (b)), prosaccade (Figures 3.30 (c) and (d)), and fixation groups (Figures

3.30 (e) and (f)). For each plot, at least one cluster, shown in green, closely follows the shape

of the stimulus, suggesting the presence of antisaccade task-related voxels. Note that the

amplitude of this primary cluster looks attenuated at the post-test compared to the pre-test,

especially for the antisaccade group. This could be due to the fact that the participants in

the antisaccade group practice the same task for one week and thus become less responsive

to the stimulus.

The relevant areas to the antisaccade task are known as prefrontal cortex (PFC), frontal

eye fields (FEFs), and striatum, which can be observed in superior slices (Camchong et al.,

2008; Dyckman et al., 2007). To make the comparison more relevant to the task, we present

the clustered brain maps in Figure 3.31 for four superior slices (slices 29 – 32). The green,

blue, and red areas in the clustered brain maps correspond the cluster 1, 2, and 3, respectively,

in Figures 3.30. Note that the blue area decreases at the post-test (denoted as Post) compared

to the pre-test (denoted as Pre) for the antisaccade group if we compare the first row with

the second row, where the blue area corresponds to cluster 2 in Figure 3.30. But the green

area (cluster 1 in Figure 3.30) increases for all three groups. The red area (cluster 3 in Figure

3.30), which is a noise region, decreases at the post-test compared to the pre-test for the

antisaccade group.
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Figure 3.30: Average time series plots for each practice group and for the pre- (left) and
post-test(right). These results are produced by PCA K-means clustering for K=3. Three
clusters (cluster 1 is shown in green, cluster 2 is shown in blue and cluster 3 is shown in red)
for the pre- and post-test for the antisaccade (a, b), prosaccade (c, d), and fixation groups (e,
f). Dashed black lines represent the stimulus timing. The x-axes indicate scan time points,
and the y-axes indicate the voxel’s detrended BOLD signal.
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Figure 3.31: The clustered brain maps for the comparison of practice groups (antisaccade,
prosaccade or fixation) across time points (pre- and post-test). These results are produced
by PCA K-means clustering for K=3. The y labels indicate the slice number and the x
labels indicate the task group and the test session, where the pre- and post-test are denoted
by Pre and Post in x labels. The upper and lower areas of each slice correspond to anterior
and posterior, respectively, and the larger slice number is toward the top of the head.
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To evaluate where in the brain the task-related clusters are located, and to determine

whether the amplitude changes between the pre- and post-test occur in regions associated

with saccadic performance, the voxels making up the two clusters showing the greatest task-

related activation (green and blue in Figure 3.30) are plotted on the brain map. Figure 3.32

illustrates the voxels comprising these two clusters for the antisaccade group, which we refer

to as activated voxels given their task-related BOLD activation pattern. The antisaccade

group shows clear identification of the well known circuitry supporting saccadic performance

that includes frontal eye fields (FEF), supplementary eye fields (SEF), and posterior parietal

cortex (PPC).

(a) Pre-test (b) Post-test

Figure 3.32: Brain maps of the pre- (left) and post-test (right) for the antisaccade practice
group with two primary clusters. Voxels shown in green represent cluster 1 and those shown
in blue represent cluster 2. The slices are arranged starting from inferior (slice 21, upper left)
to superior (slice 32, lower right).

Next we consider in more detail the four superior slices (slices 29 – 32) in order to

investigate changes from the pre- to post-test across different practice groups. The locations

of the activated voxels at each time point are colored to identify those showing antisaccade-

related activity at the pre-test only (red), at both the pre- and post-test (orange) or at

the post-test only (yellow) in Figure 3.33. The numbers of voxels in each category in the

four slices are tabulated in Table 3.1. Note that the number of voxels activated at the post-

test (in bold) is smaller for the antisaccade practice group (i.e., more red and less yellow)

compared to the other groups. This is consistent with the observation in Figure 3.30(b) that
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the box-car shaped time series is attenuated for the antisaccade at the post-test. Figures

3.33 (a) – (c) show the changes from the pre- to post-test by presenting the locations of the

activated voxels. However, these results from Table 3.1 and Figure 3.33 do not display how

the amplitude of voxels activated at both the pre- and post-test is changed.

FEF SEF

(a)

PPC

(b)(b)

(c)

Figure 3.33: Overlay plots for (a) antisaccade, (b) prosaccade, and (c) fixation groups for
four slices inferior to superior (slices 29 – 32). Voxels in red are activated at the pre-test but
not at the post-test; those shown in orange are activated at both the pre- and post-test, and
those shown in yellow are activated only at the post-test. Activation is observed in typical
saccadic circuitry at this level of the brain which includes bilateral frontal eye field (FEF),
supplementary eye field (SEF) at the midline and bilateral posterior parietal cortex (PPC).

Figure 3.34 shows the changes from the pre- to post-test for the voxels activated at both

the pre- and post-test for the antisaccade practice group (orange voxels in Figure3.33 (a)). In

the plot, solid blue and red lines indicate the pre- and post-test, respectively. Dashed black

lines represent the stimulus timing. The x-axis indicates scan time points, and the y-axis

indicates the voxel’s detrended BOLD signal. The attenuation at the post-test within the

regions activated at both the pre- and post-test is found for the antisaccade practice group.
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Pre-test only Pre- and Post-test Post-test only
(Red) (Orange) (Yellow)

Slice No. Anti Pro Fix Anti Pro Fix Anti Pro Fix
29 43 41 16 51 16 31 39 33 92
30 57 15 16 61 46 41 29 34 83
31 38 16 9 43 22 33 33 40 63
32 34 16 6 24 18 14 15 22 54

Total 172 88 47 179 102 119 116 129 292

Table 3.1: Number of activated voxels by slice for the pre-test only (red), both the pre- and
post-test (orange) and the post-test only (yellow) for the three practice groups: antisaccade
(“Anti”), prosaccade (“Pro”), and fixation (“Fix”) corresponding to Figure 3.33. The number
of voxels activated at the post-test (in bold) is smaller for the antisaccade practice group
compared to the other groups (i.e., more red and less yellow).
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Figure 3.34: Average time series plots for the antisaccade group for four slices inferior to
superior (slices 29 – 32). Solid blue and red lines indicate the pre- and post-test, respectively.
Dashed black lines represent the stimulus timing. The x-axis indicates scan time points, and
the y-axis indicates the voxel’s detrended BOLD signal.
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3.5.5 ANOVA results

In order to evaluate the visual impressions from the clustering analysis, we perform an

ANOVA using the proportion of activated voxels based on Table 3.1. We define the proportion

of activated voxels as the number of activated voxels in the pre- or post-test divided by the

total number of activated voxels. For example, the proportion in the pre-test is defined as

the number of activated voxels in the pre-test (red and orange regions in Figure 3.35(a))

divided by the number of total activated voxels (red, orange, and yellow regions in Figure

3.35(a)). We partition the brain into five regions: left frontal, middle frontal, right frontal,

left posterior, and right posterior. See the partitioned brain map in Figure 3.35(b).

We use the proportion of activated voxels as the response variable, the day (pre- and

post-test) and the practice condition (antisaccade, prosaccade, fixation) as factors, and the

locations (left frontal, middle frontal, right frontal, left posterior, and right posterior brain)

as a block variable.

Pre test

only

Post test

only

Pre and!

post test!

both

(a) Voxel counts (b) Brain regions

Figure 3.35: (a) The Venn diagram shows the division of activated regions. The activated
voxels are divided into three regions, which are pre-test only (red), pre- and post-test both
(orange) and post-test only (yellow). (b) The brain is divided into five regions: the left
frontal (cyan), middle frontal (blue), right frontal (royal blue), left posterior (violet) and
right posterior (indigo). These five locations serve as a block variable in ANOVA.

Results of the ANOVA are shown in Table 3.2. There is a main effect of day (p-value

= 0.0268) showing more activated voxels at the post-test, but practice condition (p-value =

0.2811) and location (p-value = 0.1618) are not statistically significant. In addition, there
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is a significant interaction between day and practice condition (p-value < 0.0001). Post-hoc

testing shows that the antisaccade group has fewer activated voxels at the post-test than

at the pre-test, while the other groups have more. Figure 3.36 shows the interaction plot

between day and practice condition. Only the antisaccade group has a decreased proportion

of activation at the post-test.

Source DF Seq SS Adj MS F p-value
day 1 0.13373964 0.13373964 5.06 0.0268
task 2 0.06799930 0.03399965 1.29 0.2811
location 4 0.17724253 0.04431063 1.68 0.1618
day*task 2 2.66801521 1.33400761 50.44 <.0001
task*location 8 0.12818030 0.01602254 0.61 0.7710
day*location 4 0.12058587 0.03014647 1.14 0.3423
Error 98 2.59163243 0.02644523

Total 119 5.88739528

Table 3.2: ANOVA using the proportion of activated voxels based on Table 3.1.
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Figure 3.36: Interaction plot between day (pre- and post-test) and proportion of activated
voxels by the practice group: antisaccade in red, prosaccade in black and fixation in blue.

From this analysis, we see that only the antisaccade practice group shows decreased

activity from the pre-test to post-test. This pattern may be associated with increased effi-
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ciency such that fewer neural resources are necessary to support the response due to task-

specific practice. The two groups that practice test-irrelevant tasks (prosaccade and fixation)

show increased activation at the post-test. This pattern may be indicative of increased dif-

ficulty with antisaccade performance at the post-test. Participants in the prosaccade group

practice following a target as quickly as possible, which is the equivalent of priming the error

response during an antisaccade test. Participants in the fixation practice group keeping their

eyes stable on the target, which may have strengthened the neural circuitry that inhibits

rapid responses away from the fixation target (Leigh and Zee, 2006).



Chapter 4

Simulation Study1

The temporal patterns of activation are assumed to be established in a spatially coherent

fashion such that clustering, as a means of identifying brain systems, extracts the main tem-

poral patterns and partitions the brain by grouping similarly behaved functions together. In

order to detect and characterize the coherent patterns of activity, we propose a wavelet-based

clustering method to aggregate voxels into a small number of clusters based on the patterns

of voxel time courses in Chapter 3. Our clustering method successfully finds brain activation

changes across two fMRI sessions associated with practice-related cognitive control during

eye movement tasks. In this chapter, we attempt to empirically evaluate the performance

of our wavelet-based clustering approach using simulated data. For the exact evaluation, we

generate simulated data that mimic task-related BOLD signals by adding artificial fMRI sig-

nals to a resting-state brain, and then apply the proposed clustering approach. In particular,

we compare the clustering results in the original time domain and in the wavelet domain

using K-means and PCA K-means clustering methods. We describe our simulation design

in Section 4.1 and provide the results in Section 4.2.

4.1 Simulation design

Multiple regions are connected functionally, and identification of this functional connectivity

is often achieved by exploring resting-state connectivity. The term resting-state data refers

to data from subjects who do not perform any experimental task while they lie in the MRI

scanner (for more details, refer to Huettel et al., 2009; Biswal et al., 1995, and references

therein). Park et al. (2010) perform a multiscale analysis using resting-state fMRI data. They

collect the data on a single subject by asking the subject not to execute any task while he

lies in the MR scanner for approximately one hour. We conduct our simulation study using

1The results presented in this chapter have been published: Lee, J. and Park, C. (2012), Assess-
ment of a Wavelet-Based Clustering Analysis on FMRI Time Series, Quantitative Bio-Science, 31,
113–120.
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their resting-state fMRI data. The original data comprise 1500 scan time points with three

slices of size 64 × 64 each. In our simulation study, we use only two slices and randomly

select five sequences of length 64 from the original 1500 scan time points. We treat these five

random samples as if they were from five subjects.

On these two slices, we create two types of activated clusters in the following way. We

select two areas (green in Figure 4.1(a)) from slice 1 for cluster 1 and one area (blue in Figure

4.1(b)) from slice 2 for cluster 2, which yields 82 voxels for cluster 1 and 41 voxels for cluster

2. Note that the number of voxels in cluster 1 is twice as many as the number of voxels in

cluster 2. We mimic task-related BOLD signals in a real example by adding artificial box-car

shaped signals (shown in Figure 4.2) to these two areas. These two signals have the same

pattern, but the amplitude of Signal 1 (shown in a green dashed line and indicated by ‘a’) is

twice that of Signal 2 (shown in a blue solid line and indicated by ‘0.5a’). We plant Signal 1

on the selected area for cluster 1 (green in Figure 4.1(a)), and Signal 2 on the selected area

for cluster 2 (blue in Figure 4.1(b)).

We determine ‘a’, the amplitude of Signal 1, by controlling the signal to noise ratio (SNR),

which can be defined as the ratio of the task-related and noise variability. In calculating SNR,

we treat Signal 1, which has the highest amplitude, as signal and the noise voxels, which are

filtered out from the adaptive pivotal thresholding test, as noise. We select a = 47 and 62,

which corresponds to SNR=1 and 1.5, respectively.

In summary, the simulated data consist of five samples (mimicking subjects); each sample

has two slices, all the voxels in each slice are from the resting-state data, and each voxel

contains 64 time points. In order to create the activated regions, the box-car shaped artificial

signal with the amplitude of ‘a’ (‘0.5a’) is added to the resting-state voxels for cluster 1

(cluster 2). Therefore, it would be more challenging to correctly identify cluster 2 than

cluster 1.

In this simulation study, we follow the procedures of the real data analysis proposed in

Chapter 3 as closely as possible. First, we select five random samples, each of which has 64

time scan points. Second, we remove linear and quadratic trends at each voxel. Third, we

plant the artificial task-related signals on the pre-selected areas. Fourth, we aggregate the

five samples using a median value at each voxel and each time point separately, which yields

the aggregated data. Fifth, we apply the adaptive pivotal thresholding test based on wavelet

coefficients to filter out inactivated voxels. Sixth, we partition the remaining non-inactive

voxels into three clusters using the K-means or PCA K-means clustering algorithm with
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(a) Slice 1 (b) Slice 2

Figure 4.1: True cluster locations in the brain. (a) Two green areas are selected from slice 1
for cluster 1 and (b) one blue area from slice 2 for cluster 2. The volume of the selected area
for cluster 1 is twice that of the area for cluster 2.

Signal 1 Signal 2

0

!a

scan time points

a

a

0.5a

Figure 4.2: Two task-related signals sharing the same pattern but with different amplitudes
are created. Signal 1 (a green dashed line) is implanted in the green area in slice 1 for cluster
1 in Figure 4.1(a). Signal 2 (a blue solid line) is implanted in the blue area in slice 2 for
cluster 2 in Figure 4.1(b).
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K = 3. In the sixth step, we have two clustering results using the detrended raw voxel values

and the thresholded wavelet coefficients for each clustering algorithm. Finally, we repeat this

simulation procedure 100 times. We choose K = 3, because some noise voxels might survive

even after the adaptive pivotal test. We note that in the fifth step, all the voxels in both

clusters 1 and 2 remain after the adaptive pivotal test, and hence they are included in the

actual clustering in the sixth step. All the simulation steps are summarized in Figure 4.3.

Figure 4.3: Simulation scheme.



79

4.2 Simulation results

In this section, we present the 100 repetitions of the simulation results using K-means and

PCA K-means clustering algorithms for the two different SNRs. We compare the clustering

results using the raw data and thresholded wavelet coefficients data. Table 4.1 shows an

example of a clustering result when a clustering algorithm works perfectly. Note that cluster

1 is composed of 82 voxels and cluster 2 is made up of 41 voxels out of 8192 total voxels.

Thus, there are four types of misclassification: voxels that are falsely assigned to cluster 1 or

2, and voxels that are falsely not assigned to cluster 1 or 2.

Cluster 1
Origin

C1 Not C1

Allocation
C1 82 0

Not C1 0 8110

Cluster 2
Origin

C2 Not C2

Allocation
C2 41 0

Not C2 0 8151

Table 4.1: Correct allocation. Origin indicates the true cluster labels of voxels before clus-
tering and Allocation indicates the assignments of voxels after clustering. C1 and C2 stand
for cluster 1 and 2, respectively. Cluster 1 is composed of 82 voxels and cluster 2, of 41 voxels
out of 8192 total voxels.

Table 4.2 summarizes the clustering results using the raw data for SNR=1.0 and

SNR=1.5. For each cell, the average counts (over the 100 repetitions) of the classified

voxels are presented along with standard errors in parentheses. Origin indicates the true

cluster of voxels before partitioning, and Allocation indicates the assignment of voxels after

partitioning. C1 and C2 stand for cluster 1 and 2, respectively. Comparing the average

counts of misclassified voxels, one can see that K-means clustering performs slightly better

for SNR=1.0, while PCA K-means clustering produces more accurate results for SNR=1.5.

However, the overall misclassification average counts are rather high, which is evident later

in the comparison with the clustering results using the thresholded wavelet coefficients.

For illustration purposes, we present one of the 100 clustering results using the raw data

with SNR=1.0 (SNR=1.5) in Figure 4.4 (Figure 4.5, respectively). In the plots, the clustering
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results of K-means and PCA K-means methods with K=3 are displayed in the left and right

panels, respectively.

For SNR=1.0 (Figure 4.4), the top panel draws the average time course of three clusters

where green corresponds to cluster 1, blue to cluster 2, and red to the noise cluster. As can

be seen, K-means correctly captures the shape and amplitude of each cluster, but PCA K-

means fails to do so for cluster 2. The brain maps in the middle (slice 1) and bottom panels

(slice 2) show the three assigned clusters using the same color scheme as in Figures 4.4(a)

and 4.4(b). According to the clustered maps, K-means manages to identify true locations of

clusters 1 and 2 with only a few errors, but PCA K-means completely misclassifies cluster 2

(Origin) as cluster 1 (Allocation) as can be seen in Figure 4.4(f).

For SNR=1.5 (Figure 4.5), the time series plots from both clustering methods (Figures

4.5(a) and 4.5(b)) depict an incorrect shape for cluster 2 (blue), and in the clustered maps

(Figures 4.5(e) and 4.5(f)), they both classify cluster 2 (Origin) as cluster 1 (Allocation).

This clearly shows the limitation of the clustering approach using the raw data.
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SNR=1.0 (a = 47)
K-means PCA K-means

Origin Origin
C1 Not C1 C1 Not C1

Allocation
C1

81.11 14.29

Allocation
C1

81.89 16.71
(0.56) (1.96) (0.11) (2.01)

Not C1
0.89 8095.71

Not C1
0.11 8093.29

(0.56) (1.96) (0.11) (2.01)

Origin Origin
C2 Not C2 C2 Not C2

Allocation
C2

25.45 36.58

Allocation
C2

23.83 45.85
(1.99) (7.43) (2.02) (7.74)

Not C2
15.55 8114.42

Not C2
17.17 8105.15

(1.99) (7.43) (2.02) (7.74)

SNR=1.5 (a = 62)
K-means PCA K-means

Origin Origin
C1 Not C1 C1 Not C1

Allocation
C1

81.50 18.48

Allocation
C1

82.00 10.65
(0.22) (2.05) (0.00) (1.81)

Not C1
0.50 8091.52

Not C1
0.00 8099.35

(0.22 ) (2.05) (0.00) ( 1.81)

Origin Origin
C2 Not C2 C2 Not C2

Allocation
C2

20.48 50.75

Allocation
C2

30.35 30.91
(2.06) (7.90) (1.81) (7.16)

Not C2
20.52 8100.25

Not C2
10.65 8120.09

(2.06) (7.90) (1.81) (7.16)

Table 4.2: Simulation results using the raw simulated data with two SNR values. Both K-
means and PCA K-means clustering methods are applied. Origin indicates the true cluster
labels of voxels before clustering, and Allocation indicates the assignments of voxels after
clustering. C1 and C2 stand for cluster 1 and 2, respectively. For each cell, the average counts
of the classified voxels are presented along with standard errors in parentheses. The values
a = 47 and 62, the amplitude of the artificial task-related signal, correspond to SNR=1 and
1.5.
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Figure 4.4: Example of average time series plots of three clusters and the clustered brain
maps for SNR=1.0 (a=47) using the raw simulated data. Clusters 1 and 2 are indicated in
green and blue, respectively. The red voxels are considered as noise as their average time
series is rather flat.
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Figure 4.5: Example of average time series plots for three clusters and the clustered brain
maps for SNR=1.5 (a=62) using the raw simulated data. Clusters 1 and 2 are indicated in
green and blue, respectively. The red voxels are considered as noise as their average time
series is rather flat.



84

The simulation results using the thresholded wavelet coefficients are summarized in Table

4.3. For both SNR values, PCA K-means yields far superior results to K-means. All of the

average counts of misclassified voxels that are falsely assigned to clusters 1 and 2 for K-

means are at least seven times higher than those for PCA K-means. More importantly, in

the comparison with the results from the raw data in Table 4.2, both clustering methods

produce significantly smaller misclassification average counts for both SNR values when they

use the thresholded wavelet coefficients. This demonstrates the effectiveness of the wavelet-

based clustering procedure.

For illustration purposes, we again present one of the 100 clustering results using the

thresholded wavelet coefficients for both SNR=1.0 (Figure 4.6) and SNR=1.5 (Figure 4.7).

It can be seen from the average time series plots (Figures 4.6(a) and 4.6(b) for SNR=1.0, and

Figures 4.7(a) and 4.7(b) for SNR=1.5) that both K-means and PCA K-means correctly

capture the shape and amplitude of each cluster. It is evident that the clustering algorithms

with the thresholded wavelet coefficients yield accurate results in the clustered brain maps.

For example, all of the voxels in cluster 1 on slice 1 are successfully classified as cluster 1 in

both figures. Likewise, all of the voxels in cluster 2 on slice 2 are also successfully classified

as cluster 2 in both figures. This again shows that clustering analysis of fMRI data is more

effective in the wavelet domain than in the time domain.
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SNR=1.0 (a = 47)
K-means PCA K-means

Origin Origin
C1 Not C1 C1 Not C1

Allocation
C1

80.33 4.74

Allocation
C1

81.77 0.00
(0.58) (1.13) (0.06) (0.00)

Not C1
1.67 8105.26

Not C1
0.23 8110.00

(0.58) (1.13) (0.06) (0.00)

Origin Origin
C2 Not C2 C2 Not C2

Allocation
C2

33.72 21.97

Allocation
C2

40.84 0.39
(1.42) (4.77) (0.05) (0.07)

Not C2
7.28 8129.03

Not C2
0.16 8150.61

(1.42) (4.77) (0.05) (0.07)

SNR=1.5 (a = 62)
K-means PCA K-means

Origin Origin
C1 Not C1 C1 Not C1

Allocation
C1

80.96 10.76

Allocation
C1

81.99 3.16
(0.60) (1.78) (0.01) (1.08)

Not C1
1.04 8099.24

Not C1
0.01 8106.84

(0.60) (1.78) (0.01) (1.08)

Origin Origin
C2 Not C2 C2 Not C2

Allocation
C2

29.01 32.47

Allocation
C2

37.81 11.16
(1.84) (6.13) (1.09) (4.28)

Not C2
11.99 8118.53

Not C2
3.19 8139.84

(1.84) (6.13) (1.09) (4.28)

Table 4.3: Simulation results using the thresholded wavelet coefficients with two SNR values.
Both K-means and PCA K-means clustering methods are applied. Origin indicates the true
cluster labels of voxels before clustering, and Allocation indicates the assignments of voxels
after clustering. C1 and C2 stand for cluster 1 and 2, respectively. For each cell, the average
counts of the classified voxels are presented along with standard errors in parentheses. The
values a = 47 and 62, the amplitude of the artificial task-related signal, correspond to SNR=1
and 1.5. The clustering results are improved compared to those using the raw data.
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Figure 4.6: Example of average time series plots for three clusters and the clustered brain
maps for SNR=1.0 (a=47) using the thresholded wavelet coefficients. Clusters 1 and 2 are
indicated in green and blue, respectively. The red voxels are considered as noise among
the voxels that remained after filtering out inactivated voxels using the adaptive pivotal
thresholding test.
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Figure 4.7: Example of average time series plots for three clusters and the clustered brain
maps for SNR=1.5 (a=62) using the thresholded wavelet coefficients. Clusters 1 and 2 are
indicated in green and blue, respectively. The red voxels are considered as noise among
the voxels that remained after filtering out inactivated voxels using the adaptive pivotal
thresholding test.
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4.3 Conclusion

We perform this simulation study to evaluate the effectiveness of the wavelet-based clus-

tering method proposed in Chapter 3. We generate simulated data by adding artificial fMRI

signals to the real resting-state data and apply both K-means and PCA K-means clus-

tering methods to the raw simulated data and the wavelet-transformed data separately to

compare their clustering results. Due to the temporal correlation in fMRI time series, the

clustering analysis using the raw data might yield improper clustering results because it is

challenging to distinguish between deterministic patterns and dependence artifacts. In that

sense, a wavelet-clustering approach is promising owing to the decorrelation property of the

wavelet transform. In the comparison between K-means and PCA K-means clustering, PCA

K-means is preferred when coupled with the thresholded wavelet coefficients. The simula-

tion results show that the proposed clustering method is powerful and effective for fMRI

data. Note that the results when using SNR=1.5 show fewer misclassification errors than the

results when using SNR=1.0. Thus, the simulation study shows that the wavelet-based clus-

tering approach provides more accurate clustering results, while PCA K-means clustering

performs slightly better than K-means for the wavelet transformed data.



Chapter 5

Regions of Interest Analysis1

In Section 3.5.5 the ANOVA results reveal an attenuation at the post-test for the antisaccade

practice group in the saccade circuitry constrained to the superior cortex (slices 29-32). This

analysis, however, does not provide information about how specific neural regions within

whole brain saccadic circuitry may have been differentially affected. Therefore, we conduct

an analysis using 11 bilateral neural regions of interest (ROIs) previously identified using a

similar task (Dyckman et al., 2007, and references therein). Note that the activated regions

found by our clustering method are a subset of these ROIs. We open this chapter by intro-

ducing an ROI analysis (Section 5.1). To identify the specific ROIs that show attenuations

at the post-test for the antisaccade group, we perform two statistical tests: a bootstrap

resampling-based test (Section 5.2) and a mixed model (Section 5.3). And then this chapter

ends with a conclusion (Section 5.4).

5.1 Introduction to ROI analysis

Our fMRI clustering method shown in Chapter 3 is based on a whole-brain voxelwise analysis.

This is a common approach for exploring the brain areas related to specific cognitive processes

using the whole brain. A voxelwise analysis, however, does not permit us to examine specific

statistical hypotheses about the subregions of the brain. If brain regions involved in specific

cognitive processes are detected in the primary research, then the research can be developed

to investigate the detected brain regions or the specific task-related brain area, which is

known as regions of interest (ROIs) analysis. Thus, an ROI analysis begins at the earlier

discovery of the task-related areas within a brain, and extends a voxelwise analysis. Huettel

et al. (2009, p. 363) clarify a difference between the inquiries invoked in a voxelwise analysis

1Part of the results presented in this chapter have been published: Lee, J., Park, C., Dyckman,
K. A., Lazar, N. A., Austin, B. P., Li, Q., and McDowell, J. E. (2013), Practice-related Changes in
Neural Circuitry Supporting Eye Movements Investigated via Wavelet-based Clustering Analysis,
Human Brain Mapping, 34(9):2276-2291.
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and in an ROI analysis. The inquiries invoked in a voxelwise analysis are condensed into

“What brain regions evince a particular pattern of fMRI activation?” while an ROI analysis

asks, “What pattern of activation occurs in a particular brain region?”

ROIs within a brain are generally established by two methods: an anatomical and a

functional criterion (Poldrack, 2007). With an anatomical criterion, ROIs are selected visually

based on the structure of the brain by constructing the borders of particular brain regions

and then by including all voxels therein. With a functional criterion, only voxels that are

activated by a particular stimulus are selected for analysis. One common method to find

the voxels responding to a particular stimulus is to use a localizer task. A localizer task

is a simple fMRI experiment to identify a set of voxels that are known to be functionally

connected to a particular stimulus, in preparation for subsidiary analyses of that region in

different patterns.

An ROI approach has both advantages and disadvantages in comparison to a voxelwise

approach. It has two significant advantages: it uses relatively fewer voxels than a voxelwise

analysis and increases the signal to noise ratio (SNR). One of the difficulties in understanding

fMRI data through a voxelwise analysis is its huge data size. In our data, one slice has 1920

voxels (after being transferred to Talairach atlas), and there are 34 slices, which yields 65,280

voxels in total. Even if we choose the slices that show the entire shape of the brain and apply

masking, there are still 14,743 ∼ 15,319 voxels before starting analysis. This requires us to

address the need to correct the multiple testing problem and adjust the false discovery rate

(Benjamini and Hochberg, 1995) due to a large number of tests in removal of the white noise

area. Since the number of voxels used in an ROI analysis is much smaller than the number

used in a voxelwise analysis, it reduces the burden of multiple comparisons remarkably. In

our case, the number of total voxels pre-established in ROIs is 616 which is about 4 % of

15,319 voxels, the number of voxels remaining after we mask, and 0.94% of 65,280 voxels,

the number of voxels before we start this analysis. Second, in an ROI analysis SNR is found

to increase over a voxelwise analysis because each ROI combines data from many voxels, to

the extent that the ROI is functionally connected (Huettel et al., 2009).

An ROI approach also has disadvantages compared to a voxelwise approach. First, estab-

lishing ROIs based on an anatomical criterion is difficult whether one uses automated pro-

grams or draw manually. There is a possibility of a discrepancy between anatomical and

functional regions of the brain. In particular, complex tasks which intersect many anatom-

ical brain regions, even with perfect mapping between anatomical and functional regions,
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have a potential problem of connecting anatomical areas to functional regions. Moreover, a

single anatomical area may have multiple functional roles. Second, Huettel et al. (2009) indi-

cate that establishing ROIs based on a functional criterion is difficult when the boundaries

of a (functionally significant) brain region cannot be readily identified by anatomical land-

marks. A big improvement has been shown in automated programs used to divide a brain

anatomically, but there are still problems, especially variations in shape and size between

subjects. When ROIs are drawn manually, there is variation between evaluators, and good

training is required. Caution is needed in the universal use of an ROI analysis, and due to the

variability in function within any anatomical region, ROI approaches to an fMRI analysis

should be combined with a voxelwise analysis (Huettel et al., 2009).

Dyckman et al. (2007) report that the saccade-related neural circuitry and performance

on saccade tasks are affected by context. They carry out an ROI analysis to examine the

features of the relationship between runs in the significantly activated brain regions. Using

the same data we use, Dyckman et al. (2007) identify 20 ROIs based on BOLD activations

and previous fMRI studies of saccadic performance. Most of their ROIs are divided into left

and right: for example, left lateral frontal eye field and right lateral frontal eye field. We

collapse these into single ROIs; hence, we use eleven ROIs for the additional analysis. They

are listed in Table 5.1.

Regions of interest Abbreviation No. of voxels

Supplementary eye field SEF 36
Frontal eye field FEF 113

Superior parietal lobe SPL 63
Cuneus Cuneus 59

Thalamus Thalamus 56
Inferior parietal lobule IPL 59

Left PFC PFC-L 28
Right PFC PFC-R 36

Striatum (basal ganglia) Striatum 67
Middle occipital gyrus MOG 64

Right inferior frontal cortex IFC 35

Total 616

Table 5.1: Eleven bilateral neural regions of interest (ROIs). 20 ROIs are established by
Dyckman et al. (2007) based on BOLD activations observed in our data and previous fMRI
studies of saccadic performance. We collapse these left and right ROIs into single ones,
resulting in eleven in all.
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5.2 Bootstrap resampling-based test

In this section, we use a bootstrap approach to identify the specific ROIs that show the

difference between the pre- and post-tests. Bootstrap is a resampling approach used to infer

some aspect of a group (i.e., a population), such as the mean and confidence interval, on the

basis of a random sample drawn from that group.

5.2.1 Bootstrap resampling approach

The bootstrap resampling approach was invented by Efron (1979) to make inferences about

the aspect of population distribution on the basis of the corresponding aspect of its empirical

distribution. The key idea of bootstrapping starts from the perspective that a population

and a sample drawn from that population are analogous (Mooney and Duval, 1993), and

this analogy can be maximized by repetitive random resampling with replacement from

the sample. In other words, samples, as subsets of a population, represent the population,

and the properties of sampling distribution can substitute for the properties of population

distribution.

Since it is almost impossible to know the whole population, it is natural at times to make

an inference about the population from the sample without making unreliable assumptions

about the population, which is a nonparametric method. A bootstrapping approach is used

to draw conclusions that depend solely on the observed data, without distributional assump-

tions about the population, on the basis of the belief that a set of observed data comes from

an independent and identically distributed population. The difference between bootstrap-

ping and traditional parametric methods is shown by the fact that traditional parametric

methods rely on assumptions about population distributions to make an inference about

the population parameters. However, those assumptions are not always met, or the ana-

lytic solutions based on parametric assumptions could be unavailable. The estimates based

on the violated assumptions bring out results that are different from what they should be,

and the yielded misconclusions may be inefficient, seriously biased, or even misleading. To

avoid these risks, applying nonparametric methods can be a solution, and nonparametric

bootstrapping is a good alternative. Mooney and Duval (1993, p. 7) illustrate that nonpara-

metric approximations may well be as good as or better than parametric approximation in

certain situations.
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Figure 5.1: Bootstrap resampling method. The procedure starts with the observed data set
x of size n. The key point is to draw resamples of size n with replacement from x. The
first resample drawn is denoted as x∗(1), the second resample drawn as x∗(2), and so on. By
repeating this resampling procedure B times, B bootstrap samples are obtained, which are
x∗(1),x∗(2), . . . ,x∗(B). The ith bootstrap sample is denoted as x∗(i) = (x

∗(i)
1 , x

∗(i)
2 , . . . , x

∗(i)
n )

where i = 1, 2, . . . , B.

Bootstrapping involves drawing random samples repeatedly from the observed data with

replacement, building the empirical distribution with the results of the resampling. For

example, suppose that we are interested in estimating the median of a population using

the observed sample. By employing a bootstrap approach in this case, we treat the observed

data as a population and empirically build the sampling distribution of the sample median by

a large number of random samples of size n (i.e., of equal size to the observed data points)

with replacement, where n is the number of observed data points. For each resample, we

calculate its median, creating a collection of resampled medians. Based on this, a sampling

distribution for the median can be constructed.
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Suppose we have a random sample x of size n from an unknown population distribution G

and denote the observed data points of the sample x as (x1, x2, . . . , xn). Then we can define

a bootstrap sample x∗ as a random sample of size n drawn from the empirical distribution

Ĝ, in which the randomly selected data points of the bootstrap sample x∗ are denoted

as (x∗1, x
∗
2, . . . , x

∗
n). Since bootstrapping employs resampling with replacement, a bootstrap

sample may have some data points more than once and others not at all. For example, suppose

we have an observed sample of size 5 from unknown population G. Denote the observed data

points of this original sample x as (x1, x2, x3, x4, x5); then the bootstrap sample x∗ might be

x∗ = (x2, x1, x1, x5, x5), which means x∗1 = x2, x
∗
2 = x1, x

∗
3 = x1, x

∗
4 = x5, x

∗
5 = x5.

When we repeat this resampling procedure B times, we have B bootstrap samples, each

of size n, denoted by x∗(1),x∗(2), . . . ,x∗(B), where x∗(i) = (x
∗(i)
1 , x

∗(i)
2 , . . . , x

∗(i)
n ) for the ith

bootstrap sample and i = 1, 2, . . . , B. See Figure 5.1. By drawing a large number of bootstrap

resamples, we can build the empirical distribution Ĝ of a statistic of interest. Thus, the

observed sample of size n drawn from unknown population distribution G is

G→ (x1, x2, . . . , xn),

and the bootstrap sample of size n drawn from the empirical distribution Ĝ is

Ĝ→ (x∗1, x
∗
2, . . . , x

∗
n).

In case we are interested in estimating a parameter θ on the basis of a sample x, which

is a function of the unknown probability distribution G (i.e., θ = f(G)), we evaluate an

estimate θ̂ = f(Ĝ) from the sample x. Sometimes it might not be a plug-in estimate, then

generally denoted by θ̂ = s(x), where s(·) is a statistic of interest. For example, s(x) might

be a sample mean or a sample median. In a bootstrap approach, θ is estimated based on the

empirical distribution Ĝ, which is built with bootstrap resamples x∗. Hence θ̂∗, an estimate

for θ using a bootstrap sample x∗, is calculated by

θ̂∗ = s(x∗),

where s(x∗) is obtained by applying the function s(·) to x∗.

The procedures of the bootstrap resampling approach for estimating a parameter θ are

listed below along with an example:

1. Draw a resample x∗(1) = (x
∗(1)
1 , x

∗(1)
2 , . . . , x

∗(1)
n ) of size n from the observed data set

x = (x1, x2, . . . , xn) of size n.
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2. Calculate a statistic of interest s(x∗(1)) from x∗(1) = (x
∗(1)
1 , x

∗(1)
2 , . . . , x

∗(1)
n ). For example,

in the case of estimating the population mean µ, s(x∗(1)) = x̄∗(1) which is 1
n

n∑
i=1

x
∗(1)
i .

3. Repeat Step 1 and 2 B times; s(x∗(1)), s(x∗(2)), . . . , s(x∗(B)) are obtained. In the esti-

mating µ example, these are x̄∗(1), x̄∗(2), . . . , x̄∗(B).

4. Finally, estimate θ̂∗ by using s(x∗(1),x∗(2), . . . ,x∗(B)). In the estimating µ example,

µ̂∗ = 1
B

B∑
j=1

x̄∗(j).

5.2.2 Confidence band based on Bootstrap resampling-based test

We perform a bootstrap resampling-based test (Efron, 1979) by building a 95% confidence

band for the difference between the pre- and post-tests. As mentioned in Section 3.3, we

exclude the first five scans from the analysis to allow for the magnetization’s stabilization;

consequently, 70 scans are used. As seen in Table 5.1, each ROI has a different size. On the

basis of the idea that the voxels in the same ROI are similar to one another, we combine the

voxels by taking an average of the voxels within the ROI. Thus, each subject in the given

practice group has two average time course curves having 70 scan time points for each ROI,

one for the pre-test and the other for the post-test. The procedures are as follows:

1. For a given ROI and a given practice group, obtain the difference between the pre-test

and post-test time courses for each subject.

2. Obtain a bootstrap sample of the difference curves with the size corresponding to the

number of subjects of the given practice group (e.g., n = 12 for the antisaccade practice

group), and calculate the averaged curve (e.g, resulting in x̄
∗(1)
Anti for the antisaccade

practice group).

3. Repeat Step 2 1,000 times. For instance, the obtained 1,000 averaged curves for the

antisaccade practice group are x̄
∗(1)
Anti, x̄

∗(2)
Anti, . . . , x̄

∗(1000)
Anti .

4. Use the 1,000 averaged curves from Step 3 to construct a 95% confidence band.

5. Repeat Step 1– Step 4 for each practice group and each ROI.

The averaged curve x̄∗(1) obtained at the second step in the procedures is equal to s(x∗(1))

in the procedures of the bootstrap resampling approach described in Section 5.2.1.
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For a given ROI, if the time courses of the pre- and post-tests show similar activation

patterns, the confidence band for the difference curve is expected to include zero for most

time points. If an attenuation occurs at the post-test, the confidence bands would miss zero at

peaks (with a positive sign) and valleys (with a negative sign). The results of this bootstrap

approach are displayed in Figures 5.2– 5.12. The time course for each ROI and each practice

group is shown as a red line for the pre-test and a black line for the post-test. The time

points where statistically significant attenuations occur at the post-test are identified by

yellow bands. The converse of an attenuation at the post-test is also possible, and such an

amplification effect is indicated by confidence bands that miss zero at peaks (with a negative

sign) and valleys (with a positive sign). The time points that show statistically significant

amplification at the post-test are identified by gray bands in the plots.

Application of this bootstrap approach suggests that the SEF, FEF, SPL, and cuneus

show a strong attenuation at the post-test for the antisaccade practice group only. See Figures

5.2– 5.5. Many yellow bands appear in the average time series plots for these four ROIs at

the antisaccade practice group, but the prosaccade and fixation practice groups have fewer

yellow bands. Thus, visual inspection of these four ROIs shows that attenuations at the

post-test are evident in these regions only for the antisaccade practice group.

Although the prosaccade and fixation practice groups show some periods of amplification

on these four ROIs, there is little evidence of amplification in the antisaccade practice group

at the post-test because it is rare to see gray bands for the antisaccade practice group on

these four ROIs. Note that gray bands appear consistently for the fixation practice group

for all ROIs. In particular, SPL shows only gray bands for the fixation practice group, which

indicates a strong amplification at the post-test (see Figure 5.4).

It is interesting that the IPL shows strong amplifications at the post-test for all prac-

tice groups, and the average time series plot for the fixation practice group in particular

contains many gray bands (see Figure 5.7). The fixation practice group also shows a strong

amplification in the thalamus at the post-test (Figure 5.6). It is rather inconclusive in other

ROIs.

On the other hand, the prosaccade practice group shows amplifications and attenuations

at the post-test with similar frequencies based on visual inspection. No notable points are

found on the ROIs except on the SEF, FEF, SPL, cuneus, and IPL.

The findings from this ROI analysis are summarized in Table 5.2, which shows which

trend in each ROI dominates at the post-test, either attenuation or amplification. The values
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indicate differences between the proportion of time points (out of 70) that have significant

attenuations (yellow bands) and the proportion of time points (out of 70) that have significant

amplifications (gray bands) for each practice group at each ROI. The positive sign indicates

that more attenuations occur at the post-test, whereas the negative sign indicates that

more amplifications occur at the post-test. We highlight attenuations at the post-test if the

difference values between the proportions are larger than 0.07, and amplifications at the

post-test if the difference values between the proportions are smaller than -0.07.

As seen in Table 5.2, attenuations at the post-test dominate on the SEF, FEF, SPL, and

cuneus for the antisaccade practice group, and amplifications at the post-test dominate on the

thalamus and IPL for the fixation practice group. Based on these criteria, in the prosaccade

practice group, neither attenuations nor amplifications are dominant at the post-test.

A general pattern emerges showing that in the ROIs identified a priori as saccadic cir-

cuitry (Dyckman et al., 2007) there is a general attenuation (positive values showing less acti-

vation at the post-test) associated with task-specific practice (i.e., the antisaccade group).

There appears to be little dramatic change in either direction in the prosaccade practice

group. The only group that shows evidence of consistent amplification (negative values

showing more activation at the post-test) across time is the fixation practice group. This

pattern replicates that shown in the interaction plot (Figure 3.36) but with increased speci-

ficity and improved ability to evaluate which regions of the circuitry may be crucial for

practice-related changes in performance.
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Figure 5.2: SEF: The average time series plots for the pre-test (red) and post-test (black)
are drawn for the three task groups. Dashed black lines at the bottom show the timing of
antisaccade task blocks. Yellow bands represent time points where attenuations at the post-
test are statistically significant, and gray bands represent time points where amplifications
at the post-test are statistically significant by the bootstrap resampling method.
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Figure 5.3: FEF: The average time series plots for the pre-test (red) and post-test (black)
are drawn for the three task groups. Dashed black lines at the bottom show the timing of
antisaccade task blocks. Yellow bands represent time points where attenuations at the post-
test are statistically significant, and gray bands represent time points where amplifications
at the post-test are statistically significant by the bootstrap resampling method.
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Figure 5.4: SPL: The average time series plots for the pre-test (red) and post-test (black)
are drawn for the three task groups. Dashed black lines at the bottom show the timing of
antisaccade task blocks. Yellow bands represent time points where attenuations at the post-
test are statistically significant, and gray bands represent time points where amplifications
at the post-test are statistically significant by the bootstrap resampling method.

Scan time points

 

 

0 10 20 30 40 50 60 70
−20

−15

−10

−5

0

5

10

15

20
Pre−test
Post−test

(a) Antisaccade

Scan time points

 

 

0 10 20 30 40 50 60 70
−20

−15

−10

−5

0

5

10

15

20
Pre−test
Post−test

(b) Prosaccade

Scan time points

 

 

0 10 20 30 40 50 60 70
−20

−15

−10

−5

0

5

10

15

20
Pre−test
Post−test

(c) Fixation

Figure 5.5: Cuneus: The average time series plots for the pre-test (red) and post-test (black)
are drawn for the three task groups. Dashed black lines at the bottom show the timing of
antisaccade task blocks. Yellow bands represent time points where attenuations at the post-
test are statistically significant, and gray bands represent time points where amplifications
at the post-test are statistically significant by the bootstrap resampling method.
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Figure 5.6: Thalamus: The average time series plots for the pre-test (red) and post-test
(black) are drawn for the three task groups. Dashed black lines at the bottom show the timing
of antisaccade task blocks. Yellow bands represent time points where attenuations at the post-
test are statistically significant, and gray bands represent time points where amplifications
at the post-test are statistically significant by the bootstrap resampling method.
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Figure 5.7: IPL: The average time series plots for the pre-test (red) and post-test (black)
are drawn for the three task groups. Dashed black lines at the bottom show the timing of
antisaccade task blocks. Yellow bands represent time points where attenuations at the post-
test are statistically significant, and gray bands represent time points where amplifications
at the post-test are statistically significant by the bootstrap resampling method.
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Figure 5.8: PFC-L: The average time series plots for the pre-test (red) and post-test (black)
are drawn for the three task groups. Dashed black lines at the bottom show the timing of
antisaccade task blocks. Yellow bands represent time points where attenuations at the post-
test are statistically significant, and gray bands represent time points where amplifications
at the post-test are statistically significant by the bootstrap resampling method.
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Figure 5.9: PFC-R: The average time series plots for the pre-test (red) and post-test (black)
are drawn for the three task groups. Dashed black lines at the bottom show the timing of
antisaccade task blocks. Yellow bands represent time points where attenuations at the post-
test are statistically significant, and gray bands represent time points where amplifications
at the post-test are statistically significant by the bootstrap resampling method.
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Figure 5.10: Striatum: The average time series plots for the pre-test (red) and post-test
(black) are drawn for the three task groups. Dashed black lines at the bottom show the timing
of antisaccade task blocks. Yellow bands represent time points where attenuations at the post-
test are statistically significant, and gray bands represent time points where amplifications
at the post-test are statistically significant by the bootstrap resampling method.
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Figure 5.11: MOG: The average time series plots for the pre-test (red) and post-test (black)
are drawn for the three task groups. Dashed black lines at the bottom show the timing of
antisaccade task blocks. Yellow bands represent time points where attenuations at the post-
test are statistically significant, and gray bands represent time points where amplifications
at the post-test are statistically significant by the bootstrap resampling method.
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Figure 5.12: IFC: The average time series plots for the pre-test (red) and post-test (black)
are drawn for the three task groups. Dashed black lines at the bottom show the timing of
antisaccade task blocks. Yellow bands represent time points where attenuations at the post-
test are statistically significant, and gray bands represent time points where amplifications
at the post-test are statistically significant by the bootstrap resampling method.

ROIs Antisaccade Prosaccade Fixation

SEF 0.16 -0.01 -0.01
FEF 0.19 0.04 -0.01
SPL 0.11 0.06 -0.07

Cuneus 0.09 -0.03 -0.07
Thalamus 0.04 0.03 -0.09

IPL -0.03 0.00 -0.14
PFC-L -0.04 0.07 0.00
PFC-R 0.04 -0.01 -0.01
Striatum 0.06 0.04 -0.01
MOG -0.01 -0.01 0.01
IFC 0.01 0.03 0.00

Table 5.2: Differences of the proportions of statistically significant attenuations (positive
values) and amplifications (negative values) for the three groups at each ROI. These values
are calculated as a proportion of time points attenuated - a proportion of time points ampli-
fied (i.e., (the number of time points significantly decreased at the post-test - the number of
time points significantly increased at the post-test)/70). The values are denoted in bold if
the absolute values are larger than 0.07.
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5.3 Mixed model

In this section, we analyze ROIs using feature extraction and a mixed model to investigate

attenuations at the post-test in the practice groups. The limitation of the bootstrap approach

is that the test is done only within group, and thus the comparison between groups is done

in an ad-hoc way by counting the numbers of significant attenuations and amplifications.

Using a mixed model, we attempt to find statistical evidence in the difference among the

three groups for some ROIs.

In our data, subjects are randomly divided into the three task group so that each subject

has only one membership, which means that subjects are nested in the task groups. There is

a nonnegligible likelihood that subjects belonging to the same task group behave similarly

compared to subjects belonging to different task groups. This naturally leads us to assume

that there is a common latent factor between subjects within the same task group. In addi-

tion, brain images from all subjects are scanned consecutively for more than five minutes so

that each subject has 70 BOLD signals. From a different angle, this can be considered as

repeated measures over time within each subject. Unlike a classical parametric approach, in

which observations are frequently assumed to be randomly drawn, these repeated measures

from a single subject are not independent of each other and affect the error term. In this sec-

tion, we take the latent factor and the dependence from the repeated measures into account

by introducing a mixed model.

5.3.1 Introduction to Mixed models

A mixed model (also known as a mixed effects model) is named for the statistical model

containing both fixed effects and random effects. The term “fixed effects” indicates that

the levels of the factor (i.e., the parameters of explanatory variables) are considered as

fixed constants. Thus, the specific levels of the factor are of interest in and of themselves.

Conversely, the term “random effects” indicates that the levels of the factor are considered

random. In other words, the levels of a factor are drawn randomly from a population which

we want to study so that they are representative of the population. Suppose, for instance,

that we are interested in a clinical study investigating the effectiveness of a medication which

is administrated at two different dose levels of interest, 20 mg and 40 mg, and the clinical

study is conducted at 500 different clinics randomly selected in the United States. The two

dose levels handled in this clinical study are the only dose levels being investigated, and
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in using them there is no consideration for any other dose levels. On the other hand, the

selected 500 clinics can be thought of as representative of all clinics existing in the United

States because any clinic among all the clinics in the United States can be chosen. Hence,

the factor of dose level is a fixed effect and the factor of clinic is a random effect. The most

effective way to distinguish fixed and random factors depends on how the data are gathered

and on which questions of interest are emphasized. Since the method of an analysis is affected

by whether the factor is treated as fixed or random, inappropriate classification of factors

may lead to an inaccurate result.

In a mixed model with nested groups, observations belonging to different groups (or

clusters) are assumed to have different variance (i.e., heterogeneous variance), but observa-

tions belonging to the same group have equal variance (i.e., homogeneous variance). Hence,

there is a need to consider two sources of variations; one is variation between groups (i.e.,

inter-cluster variation), and the other is variation within groups (i.e., intra-cluster variation).

Mixed models are used commonly in the analysis of longitudinal data, repeated measures,

and hierarchical data. Longitudinal data are defined as data obtained repeatedly over time

on each experimental unit. A mixed model is well suited for the analysis of longitudinal data,

where each time series constitutes an individual curve (Demidenko, 2004). Repeated measures

(or repeated measurements) are defined as data obtained repeatedly on each experimental

unit. Longitudinal data and repeated measures are sometimes considered as the same, but

they are slightly different in the sense that repeated measures do not have to be done

over time. For instance, measurements at the different levels of a factor can be regarded

as repeated measures. Hierarchical data are defined as data being structured as a one-to-

many relationship. For example, one parent can have multiple children, but one child can

have only one biological parent. Utilizing mixed models in those data formats is intended

to increase sensitivity by making within-group comparisons (McCulloch and Searle, 2001).

Demidenko (2004) states, “A mixed model is well suited for biological and medical data,

which display notorious heterogeneity of responses to stimuli and treatment. An advantage

of the mixed model is the ability to genuinely combine the data by introducing multilevel

random effects” (p.1).

The general mixed model for the ith group (i.e., the ith cluster) can be written as

yi = Xiβ + Ziai + ϵi, i = 1, . . . , k, (5.1)

where
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• yi is an ni × 1 vector of observed responses for the ith group.

• Xi is an ni × p design matrix of fixed effects for the ith group.

• β is a p× 1 vector of fixed effects coefficients associated with the design matrix Xi for

all responses.

• Zi is an ni × q design matrix of random effects for the ith group.

• ai is a q × 1 vector of random effects associated with the design matrix Zi for the ith

group.

• ϵi is an ni × 1 vector of error term (i.e., residual error) for the ith group.

• k is the number of groups and ni is the number of observations in the ith group.

We assume that the random effects term ai and the error term ϵi are independent of each

other for all i, i = 1, . . . , k. The form of the mixed model for the ith group in Equation (5.1)

can be condensed into one matrix format representing all groups (Demidenko, 2004):

y = Xβ + Za+ ϵ,

where

y(n×1) =


y1

y2

...

yk

 ,X(n×p) =


X1

X2

...

Xk

 ,β(p×1) =


β1

β2

...

βp

 ,

Z(n×kq) =


Z1 0 . . . 0

0 Z2 . . . 0
...

. . .
...

0 . . . 0 Zk

 , a(kq×1) =


a1

a2

...

ak

 , ϵ(n×1) =


ϵ1

ϵ2
...

ϵk

 .

Here, the dimension for each term is denoted inside parentheses located at the right bottom,

and n indicates the total number of observations, which is n =
∑k

i=1 ni. If n1 = n2 = . . . = nk;

then it is said that the data are balanced. In classical statistics, the expected values for y in

a linear model, for example, are denoted as E[y] = Xβ, which are considered as constants.

The random effects term introduced by a mixed model is not a constant, whereas the fixed
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effects term is still considered as a constant. Thus, the expected values for y in a mixed

model are described in a different way than in a fixed model:

E[y|a] = Xβ + Za.

Since

var[y|a] = var[ϵ] = R,

and by assuming E[a] = 0 and var[a] = G (without any loss of generality), we have

y ∼ N(Xβ, ZGZT +R). (5.2)

Equation (5.2) shows that the marginal expectation of y is related to only a fixed effects term,

but the marginal variance of y consists of two components from random effects and error

terms; so these quantities are often called variance components. The best linear unbiased

predictors (BLUP) and the best linear unbiased estimators (BLUE) from the mixed effects

model are affected by variance components (Demidenko, 2004; McCulloch and Searle, 2001).

Mixed models allow the researcher to make correct comparisons between groups using the

correct source of variations, which are the variations between groups instead of the overall

measurement errors.

5.3.2 ROI analysis using a mixed model

We employ a mixed model in our ROI analysis to compare practice groups by allowing

heterogeneity in variance. As described in Section 5.2.2, we start with the difference between

the pre- and post-test time courses for each subject as a response variable. Since subjects in

our data are nested within the practice groups, it is reasonable to assume that the subjects

belonging to the same practice group have equal variance (i.e., homogeneity in variance within

the same group). On the other hand, it is legitimate to assume that the subjects belonging to

different practice groups have different variance. We also assume that the repeated measures

made on the same subject over a period of scan time points have a homogeneous correlation.

A feature extraction approach is associated with a detection of peak values in functions

or curves. It adopts substitutes from detected peaks, and an analysis of these quantifica-

tions accompanies to determine which differ across defined populations or factors of interest

(Morris, 2012; Morris et al., 2005). One merit of a feature extraction approach is that the
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dimensions of the data can be reduced. Hence, we extract the features from the fMRI time

series for ROI analysis and analyze them using a mixed model with repeated measurements.

We use mean and median values to extract the features representing the stimulus-presented

and -absent periods in our fMRI data.

Task on

Task off

Cycle 1 Cycle 5

Figure 5.13: Cycle definition. The x-axis indicates scan time points (1 ∼ 70) and the y-axis
indicates the detrended BOLD signal. Dashed black lines represent the stimulus timing. The
interval of stimulus timing is 5.86; thus the blocks of stimulus timing do not stand on the
integer numbers in the x-axis. The first scan time point in each stimulus-presented and -
absent period are denoted by solid yellow lines. The Dashed black lines do not overlap with
the yellow lines standing on integer numbers in the x-axis. Task-on and -off indicate the
condition when stimulus is presented and absent, respectively. By discarding the scan time
points during the first stimulus-presented period and during the last stimulus-absent period,
we have five blocks of experimental task alternation (indicated as “Cycle 1” and “Cycle 5”)
starting with a stimulus-absent period and ending with a stimulus-presented period.

In Figure 5.13, the x-axis indicates scan time points (1 ∼ 70), and the y-axis indicates the

detrended BOLD signal. Task-on and -off indicate the condition when stimulus is presented

and absent, respectively. As can be seen in the figure, our data have six scan time points

mostly in each stimulus-presented and -absent period, respectively, so that there are twelve

scan time points in one block of experimental task alternation. Note that there are five scan
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time points only in the first stimulus-presented period and the third stimulus-absent period.

Dashed black lines represent the stimulus timing; the interval of stimulus timing is 5.86; thus

the blocks of stimulus timing do not stand on the integer numbers in the x-axis. The first

scan time point in each stimulus-presented and -absent period are denoted by solid yellow

lines (e.g., the first scan time point in the first stimulus-absent period is 6, the first scan

time point in the second stimulus-presented period is 12, and the first scan time point in the

last stimulus-absent period is 65). Thus, the blocks shown in dashed black lines (non-integer

numbers) do not overlap with the yellow lines (integer numbers).

By discarding the scan time points during the first stimulus-presented period and during

the last stimulus-absent period, we have five blocks of experimental task alternation. A cycle

is defined as one block of experimental task, starting from a stimulus-absent period and

ending with a stimulus-presented period. The first cycle contains from the 6th to the 17th

scan time points, and the last cycle contains from the 53rd to the 64th scan time points

(indicated as “Cycle 1” and “Cycle 5” inside yellow text boxes in Figure 5.13).

In what follows, we explain our feature extraction procedure. Each cycle can be repre-

sented by one feature extracted value using the difference between the stimulus-presented

period and the stimulus-absent period within the same cycle. For example, suppose that

f(t) indicates the detrended BOLD signal at the scan time point t and we use the mean

value to extract the features representing the stimulus-presented and -absent periods. For

better understanding, the magnified plot of the first two cycles is depicted in Figure 5.14.

For the first cycle the stimulus-absent period has the scan time points (t6, . . . , t11) and

the stimulus-presented period has the scan time points (t12, . . . , t17). The average value of

(f(t6), . . . , f(t11)) is 1
6

11∑
i=6

f(ti); this value substitutes for the stimulus-absent period in the

first cycle and is denoted by f(t1,0) in Figure 5.14. The average value of (f(t12), . . . , f(t17))

is 1
6

17∑
i=12

f(ti); this value substitutes for the stimulus-presented period in the first cycle and

is denoted by f(t1,1) in Figure 5.14.

Hence, the representative of the first cycle can be condensed into one value by using the

difference between those two averages (i.e., f(t1,1)− f(t1,0)). Likewise, the representative of

the ith cycle can be condensed into f(ti,1) − f(ti,0) for i = 1, . . . , 5, where f(ti,0) indicates

the average value in the stimulus-absent period for the ith cycle and f(ti,1) indicates the

average value in the stimulus-presented period for the ith cycle.
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Figure 5.14: Feature extraction. This is the magnified plot of the first two cycles. The x-axis
indicates scan time points, and the y-axis indicates the detrended BOLD signal. Dashed black
lines represent the stimulus timing. The interval of stimulus timing is 5.86. The rooftop and
the nadir in dashed black lines indicate when stimulus is presented and absent, respectively.
The scan time points during the first stimulus-presented period are discarded. The scan time
points used in our analysis are colored with solid green lines; solid yellow lines indicate the
first scan time point in each stimulus-presented and -absent period. f(ti,0) and f(ti,1) denote
the values of the extracted feature for the stimulus-absent and -present periods in the ith
cycle, respectively. Finally, the ith cycle is represented by the difference between these two
values of the extracted feature.

With visual inspection we notice that all subjects have roughly one time-lag until

responding to a stimulus. For a more exact comparison between groups, we modify the cycle

definition made above by shifting one scan time point in order to account for this response

delay. As a method of extracting the features from the stimulus-presented and -absent

periods in each cycle, we use mean and median values, and then we have representative

values for cycles by using the difference between those two mean or median values. Thus,

for a given subject in a specific practice group, each cycle, which usually has 12 responses,

is represented by one summary value, that is the difference between means or medians
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extracted from the original twelve values. Each subject has one average time course curve

containing 70 detrended BOLD signals in the original data structure in a given practice

group and in a given ROI. With the feature extraction approach, the data structure, finally,

becomes such that each subject has five extracted values (i.e., one value for each cycle).

Denote the response variable for the j-th subject at the k-th cycle in the i-th practice

group by yijk; then the mixed model form in (5.1) can be written as

yijk = µ+ αi + βk + (αβ)ik + aj(i) + eijk, (5.3)

where µ is the grand mean, αi is the fixed effect of the i-th practice group, βk is the fixed

effect of the k-th cycle, (αβ)ik is the fixed effect of the interaction between the i-th practice

group and the k-th cycle, aj(i) is the random effect associated with the j-th subject in the

i-th practice group, and eijk is the random error associated with the j-th subject at the k-th

cycle in the i-th practice group for i = 1, 2, 3, j = 1, . . . , ni, n1 = 12 (antisaccade), n2 = 14

(prosaccade), n3 = 11 (fixation), and k = 1, . . . , 5. We assume that aj(i) ∼ i.i.d. N(0, σ2
i )

and eijk is normally distributed with E(eijk) = 0, V (eijk) = σ2 and Cov(eijk, eijk′) = σ2ρ for

k ̸= k′ for all i and j. Here, ρ, the intra-class correlation, is defined by σ2
i /[σ

2 + σ2
i ]. Note

that

E(yijk) = µ+ αi + βk + (αβ)ik,

V ar(yijk) = σ2
i + σ2.

As a result of the application of this mixed model based on the feature extraction

approach, the interaction effect term between the task group and cycle is not significant

at the significant level α = 0.1 for all ROIs for both mean and median values. After drop-

ping the interaction effect term (αβ)ik from the model (5.3), we find that the cycle effect βk

is also not significant for all ROIs for both mean and median values. Thus, our final model

becomes

yijk = µ+ αi + aj(i) + eijk,

where the notations are the same as in the model (5.3). Hence,

E(yijk) = µ+ αi,

V ar(yijk) = σ2
i + σ2.

The results of the application of this mixed model based on the feature extraction

approach are summarized in Table 5.3. F -tests and p-values indicate whether the differ-

ences between the practice groups are significant for each ROI. Large F -values imply that
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there are significant differences between practice groups. The test results show that SEF,

FEF, SPL, and cuneus have significant differences at the post-test between the three prac-

tice groups at significance level α = 0.1 for both mean and median values. These results are

consistent with the results in Section 5.2.2.

For the four ROIs which show significant differences between the three practice groups,

least squares means (LSmeans) (Hsu, 1999) are computed for each practice group to see

where an attenuation or an amplification at the post-test occurs. These LSmeans results

are shown in Figures 5.15 (a) and (b) in which the feature is extracted by using mean and

median values, respectively. Blue, green, and red stand for the antisaccade, prosaccade, and

fixation practice groups, respectively. The vertical lines indicate the 95% confidence intervals

for each practice group. Positive values indicate attenuations at the post-test, and negative

values indicate amplifications at the post-test. The significance of these attenuations and

amplifications at the post-test are valid statistically only when their confidence intervals do

not cover zero. The overlapped vertical lines evince that those overlapped groups do not have

significant differences from one another.

The antisaccade practice group has a strong attenuation at the post-test for SEF, FEF,

SPL, and cuneus for both mean and median values. The vertical blue lines indicating the

antisaccade practice groups lie far above zero. The prosaccade practice group (green) also

has an attenuation at the post-test for FEF and SPL for both mean and median values. In

contrast, the fixation practice group has a strong amplification at the post-test for the SPL

and cuneus for both mean and median values. Blue, red, and green lines do not overlap in

the SPL for both mean and median values, which means that a significant difference between

the three practice groups is found in the SPL. Green and red lines overlap in the SEF, FEF,

and cuneus for both mean and median values, which means no significant difference between

the prosaccade and fixation practice groups is found in these regions.

5.4 Conclusion

We conduct ROI analyses with 11 bilateral neural ROIs using the bootstrap resampling

approach and the mixed model with the feature extraction approach to study whether there

is a general attenuation associated with task-specific practice. These 11 ROIs are identified a

priori as saccadic circuitry by Dyckman et al. (2007) in the previous study using a similar task

practice. We reach the same conclusion through these two analyses. The antisaccade practice

group shows a general attenuation in brain activity at the post-test; in particular, significant
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(a) Features extracted by using mean values

SEF FEF SPL Cuneus
−6

−4

−2

0

2

4

6

8

ROIs

Ls
m

ea
ns

 

 

Anti
Pro
Fix

(b) Features extracted by using median values

Figure 5.15: Least squares means (LSmeans) plots for SEF, FEF, SPL, and cuneus reveal
significant differences between the three practice groups. Blue, green, and red stand for the
antisaccade, prosaccade, and fixation practice groups, respectively. The vertical lines indicate
the 95% confidence intervals for each practice group. The positive and the negative values
indicate attenuations and amplifications at the post-test, respectively. These indications
of attenuations and amplifications at the post-test are valid statistically only when their
confidence interval does not cover zero. The overlapping vertical lines mean those overlapping
groups do not have significant differences from one another.
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ROIs
Mean Median

F value p-value F value P-value

SEF 3.05 0.0511 2.67 0.0737
FEF 3.90 0.0230 3.95 0.0220
SPL 6.46 0.0022 5.47 0.0054

Cuneus 6.38 0.0024 10.57 <.0001
Thalamus 2.00 0.1403 2.07 0.1309

IPL 0.24 0.7872 0.17 0.8402
PFC-L 0.12 0.8883 0.04 0.9603
PFC-R 0.73 0.4824 0.32 0.7247
Striatum 1.08 0.3433 1.59 0.2090
MOG 0.26 0.7726 0.26 0.7682
IFC 0.94 0.3944 1.47 0.2339

Table 5.3: The results of the application of the mixed model with the feature extraction
approach. SEF, FEF, SPL, and cuneus reveal significant differences between practice groups
when we use mean and median values for feature extraction at significance level α = 0.1.

attenuations are found in the SEF, FEF, SPL, and cuneus only for the antisaccade practice

group. These four ROIs are confirmed as the regions related to task-specific practice in the

previous study. On the other hand, the fixation group shows a general amplification in brain

activity at the post-test. The prosaccade group shows that attenuation and amplification in

brain activity at the post-test occur in a similar frequency.



Chapter 6

conclusion and future work

6.1 Conclusion

This dissertation evaluates brain activation associated with practice-related cognitive control

during eye movement tasks. All participants are tested on antisaccade performance at the

pre- and post-test while fMRI data are acquired. In between the pre- and post-test, partici-

pants engage in daily practice of one assigned eye movement task: antisaccade, prosaccade,

or fixation. In order to detect changes of brain activation between the two test sessions, we

propose a wavelet-based clustering approach. A notable component of our clustering method

is the application of a novel combination of statistical techniques selected specifically to cir-

cumvent typically acknowledged methodological problems associated with the structure of

the data generated via fMRI and/or the model-based GLM analyses as they are commonly

applied to fMRI data. These problems include massive-sized data that are ill-balanced and

influenced by temporal autocorrelations, which we successfully moderate via the integra-

tion and application of clustering routines and wavelet analyses. The difficulties inherent in

accurate modeling of the BOLD response, which are standard in GLM analyses, are likewise

avoided in this dissertation by using a data-driven technique. This model-free analysis suc-

cessfully identifies the well-known brain activation patterns known to support antisaccade

performance. Not only is the circuitry identified, but also the analysis of practice-related

changes can be evaluated with greater confidence because these methods are more resistant

to common problems. As such, the differences between practice groups across time are tested

in a rigorous manner and reveal task-specific brain activation changes in cognitive control

across time.

We demonstrate the effectiveness of our wavelet-based clustering method for fMRI clus-

tering analysis via the simulated data by adding artificial signals. For precise verification, we

follow the procedures identical to the ones used in the real data analysis after mimicking the

conditions of real data. The clustering results are compared in the time and wavelet domains

using K-means and PCA K-means clustering methods. The simulation results show that

115
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the clustering analysis using the raw data yield improper clustering results for some cases,

whereas PCA K-means clustering methods provide accurate and appropriate results using

the wavelet transformed data. Therefore, PCA K-means is preferred when coupled with the

thresholded wavelet coefficients.

Using the proposed clustering procedure, we find that over the series of analyses con-

ducted, task-consistent practice is associated with decreased activation from the pre- to

post-test. The antisaccade practice group is the only group to show consistently decreased

antisaccade-related activation in saccadic circuitry, particularly evident in FEF, SEF, SPL,

and cuneus. This pattern may be associated with increased efficiency such that fewer neural

resources are necessary to support the response due to task-specific practice. A similar

pattern has been reported in numerous studies showing decreased activity associated with

learning (Garavan et al., 2000; Jansma et al., 2001; Koch et al., 2006; Poldrack et al., 2005).

A distinctly different pattern of neural activation response is demonstrated by the two

groups who practice test-inconsistent tasks (prosaccade and fixation). The prosaccade prac-

tice group is most likely to show unchanged activation levels between the pre- and post-test.

ROI analyses suggest some minor decreases in activation at the post-test, but they are nei-

ther as widespread nor as strong as those observed in the antisaccade practice group. Thus,

the brain activation across time in the prosaccade group is relatively stable. The fixation

practice group is the only one that demonstrates generally increased activation at the post-

test. The persistent increases in the fixation group may suggest strengthening of the neural

circuitry that inhibits rapid responses away from the fixation target (Leigh and Zee, 2006).

Although both prosaccade and fixation practice groups constitute control conditions, their

different task requirements would cause us to predict different brain activation patterns.

In summary, these data demonstrate that changes in brain activation patterns of the well-

identified neural circuitry supporting antisaccade performance (McDowell et al., 2008; Munoz

and Everling, 2004; Sweeney et al., 2007) differ between task-specific and task-irrelevant

practice. Changes in brain activation are observed despite no quantifiable differences in

antisaccade performance at the post-test, which may imply that brain activation patterns

are more sensitive than behavioral measures as indications of plasticity. Of course, this

intervention is merely one week in duration. It may take longer for changes in the behavioral

component of the task to be manifest if they are a less sensitive measure of changes in brain

function.
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6.2 Future work

Our wavelet-based clustering method is powerful and effective for fMRI clustering analysis.

Nevertheless, the approach considered in this dissertation, like many other clustering proce-

dures in the literature of fMRI studies, still does not account for the spatial correlation in

the data. We plan to apply the work by Zhang et al. (2008) to handle the spatial correlation

in a wavelet-based clustering analysis of fMRI data. They use a hidden Markov random field

to model the spatial dependence in the data and develop a maximum likelihood approach via

the Expectation-Maximization algorithm with stochastic variation. The limitation of their

approach, however, is that it can be applied to only one image, not a series of images. This

shortcoming will be remedied in our future project.

The multiple subjects for each group are combined via median at each voxel and each

time point separately in this work. However, taking the median does not fully utilize the

information available in the raw data. We plan to develop a better aggregation method, for

example, smoothing neighboring voxels instead of taking a simple statistic.

In the initial analysis, the simple hard thresholding rule is applied. To produce a more

efficient clustering algorithm, we plan to apply a data-driven block thresholding rule using

neighboring empirical coefficients (Park, 2010) and compare it with other thresholding rules.
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Appendix A

Clustering results for the Antisaccade task group

In this appendix, we present the clustering results for the antisaccade task group. For each

test session (pre- and post-test) the brain is partitioned into two, three, five or seven clusters,

which are K=2, 3, 5, and 7, using K-means and PCA K-means clustering methods.

The clustered brain maps are listed in the following order:

• K-means method for the pre-test for slices 13 – 19 in Figure A.1.

• K-means method for the pre-test for slices 20 – 26 in Figure A.2.

• K-means method for the pre-test for slices 27 – 33 in Figure A.3.

• PCA K-means method for the pre-test for slices 13 – 19 in Figure A.4.

• PCA K-means method for the pre-test for slices 20 – 26 in Figure A.5.

• PCA K-means method for the pre-test for slices 27 – 33 in Figure A.6.

• K-means method for the post-test for slices 13 – 19 in Figure A.7.

• K-means method for the post-test for slices 20 – 26 in Figure A.8.

• K-means method for the post-test for slices 27 – 33 in Figure A.9.

• PCA K-means method for the post-test for slices 13 – 19 in Figure A.10.

• PCA K-means method for the post-test for slices 20 – 26 in Figure A.11.

• PCA K-means method for the post-test for slices 27 – 33 in Figure A.12.

The average time series plots corresponding to each cluster in the clustered brain maps are

listed in the following order:

• The pre-test using K-means and PCA K-means method in Figure A.13.

• The post-test using K-means and PCA K-means method in Figure A.14.

126



127

13

k= 2

13

k= 3

13

k= 5

13

k= 7

14

k= 2

14

k= 3

14

k= 5

14

k= 7

15

k= 2

15

k= 3
15

k= 5

15

k= 7

16

k= 2

16

k= 3

16

k= 5

16

k= 7

17

k= 2

17

k= 3

17

k= 5

17

k= 7

18

k= 2

18

k= 3

18

k= 5

18

k= 7

19

k= 2

19

k= 3

19

k= 5

19

k= 7

Figure A.1: The clustered brain maps for the antisaccade group for the pre-test using K-
means for slices 13 – 19. The y labels indicate the slice number and the x labels are the
number of clusters. The upper and lower areas of each slice correspond to anterior and
posterior, respectively, and the larger slice number is toward the top of the head.
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Figure A.2: The clustered brain maps for the antisaccade group for the pre-test using K-
means for slices 20 – 26. The y labels indicate the slice number and the x labels are the
number of clusters. The upper and lower areas of each slice correspond to anterior and
posterior, respectively, and the larger slice number is toward the top of the head.
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Figure A.3: The clustered brain maps for the antisaccade group for the pre-test using K-
means for slices 27 – 33. The y labels indicate the slice number and the x labels are the
number of clusters. The upper and lower areas of each slice correspond to anterior and
posterior, respectively, and the larger slice number is toward the top of the head.
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Figure A.4: The clustered brain maps for the antisaccade group for the pre-test using PCA
K-means for slices 13 – 19. The y labels indicate the slice number and the x labels are
the number of clusters. The upper and lower areas of each slice correspond to anterior and
posterior, respectively, and the larger slice number is toward the top of the head.
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Figure A.5: The clustered brain maps for the antisaccade group for the pre-test using PCA
K-means for slices 20 – 26. The y labels indicate the slice number and the x labels are
the number of clusters. The upper and lower areas of each slice correspond to anterior and
posterior, respectively, and the larger slice number is toward the top of the head.
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Figure A.6: The clustered brain maps for the antisaccade group for the pre-test using PCA
K-means for slices 27 – 33. The y labels indicate the slice number and the x labels are
the number of clusters. The upper and lower areas of each slice correspond to anterior and
posterior, respectively, and the larger slice number is toward the top of the head.
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Figure A.7: The clustered brain maps for the antisaccade group for the post-test using K-
means for slices 13 – 19. The y labels indicate the slice number and the x labels are the
number of clusters. The upper and lower areas of each slice correspond to anterior and
posterior, respectively, and the larger slice number is toward the top of the head.
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Figure A.8: The clustered brain maps for the antisaccade group for the post-test using K-
means for slices 20 – 26. The y labels indicate the slice number and the x labels are the
number of clusters. The upper and lower areas of each slice correspond to anterior and
posterior, respectively, and the larger slice number is toward the top of the head.
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Figure A.9: The clustered brain maps for the antisaccade group for the post-test using K-
means for slices 27 – 33. The y labels indicate the slice number and the x labels are the
number of clusters. The upper and lower areas of each slice correspond to anterior and
posterior, respectively, and the larger slice number is toward the top of the head.
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Figure A.10: The clustered brain maps for the antisaccade group for the post-test using
PCA K-means for slices 13 – 19. The y labels indicate the slice number and the x labels are
the number of clusters. The upper and lower areas of each slice correspond to anterior and
posterior, respectively, and the larger slice number is toward the top of the head.
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Figure A.11: The clustered brain maps for the antisaccade group for the post-test using
PCA K-means for slices 20 – 26. The y labels indicate the slice number and the x labels are
the number of clusters. The upper and lower areas of each slice correspond to anterior and
posterior, respectively, and the larger slice number is toward the top of the head.
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Figure A.12: The clustered brain maps for the antisaccade group for the post-test using
PCA K-means for slices 27 – 33. The y labels indicate the slice number and the x labels are
the number of clusters. The upper and lower areas of each slice correspond to anterior and
posterior, respectively, and the larger slice number is toward the top of the head.
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Figure A.13: Average time series plots for the antisaccade group for the pre-test. The x-axes
indicate scan time points and the y-axes indicate the voxel’s detrended BOLD signal. Dashed
black lines represent the stimulus timing.
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Figure A.14: Average time series plots for the antisaccade group for the post-test. The x-axes
indicate scan time points and the y-axes indicate the voxel’s detrended BOLD signal. Dashed
black lines represent the stimulus timing



Appendix B

Clustering results for the Prosaccade task group

In this appendix, we present the clustering results for the prosaccade task group. For each

test session (pre- and post-test) the brain is partitioned into two, three, five or seven clusters,

which are K=2, 3, 5, and 7, using K-means and PCA K-means clustering methods.

The clustered brain maps are listed in the following order:

• K-means method for the pre-test for slices 13 – 19 in Figure B.1.

• K-means method for the pre-test for slices 20 – 26 in Figure B.2.

• K-means method for the pre-test for slices 27 – 33 in Figure B.3.

• PCA K-means method for the pre-test for slices 13 – 19 in Figure B.4.

• PCA K-means method for the pre-test for slices 20 – 26 in Figure B.5.

• PCA K-means method for the pre-test for slices 27 – 33 in Figure B.6.

• K-means method for the post-test for slices 13 – 19 in Figure B.7.

• K-means method for the post-test for slices 20 – 26 in Figure B.8.

• K-means method for the post-test for slices 27 – 33 in Figure B.9.

• PCA K-means method for the post-test for slices 13 – 19 in Figure B.10.

• PCA K-means method for the post-test for slices 20 – 26 in Figure B.11.

• PCA K-means method for the post-test for slices 27 – 33 in Figure B.12.

The average time series plots corresponding to each cluster in the clustered brain maps are

listed in the following order:

• The pre-test using K-means and PCA K-means method in Figure B.13.

• The post-test using K-means and PCA K-means method in Figure B.14.
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Figure B.1: The clustered brain maps for the prosaccade group for the pre-test usingK-means
for slices 13 – 19. The y labels indicate the slice number and the x labels are the number
of clusters. The upper and lower areas of each slice correspond to anterior and posterior,
respectively, and the larger slice number is toward the top of the head.



143

20

k= 2

20

k= 3

20

k= 5

20

k= 7

21

k= 2

21

k= 3

21

k= 5

21

k= 7

22

k= 2

22

k= 3
22

k= 5

22

k= 7

23

k= 2

23

k= 3

23

k= 5

23

k= 7

24

k= 2

24

k= 3

24

k= 5

24

k= 7

25

k= 2

25

k= 3

25

k= 5

25

k= 7

26

k= 2

26

k= 3

26

k= 5

26

k= 7

Figure B.2: The clustered brain maps for the prosaccade group for the pre-test usingK-means
for slices 20 – 26. The y labels indicate the slice number and the x labels are the number
of clusters. The upper and lower areas of each slice correspond to anterior and posterior,
respectively, and the larger slice number is toward the top of the head.
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Figure B.3: The clustered brain maps for the prosaccade group for the pre-test usingK-means
for slices 27 – 33. The y labels indicate the slice number and the x labels are the number
of clusters. The upper and lower areas of each slice correspond to anterior and posterior,
respectively, and the larger slice number is toward the top of the head.
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Figure B.4: The clustered brain maps for the prosaccade group for the pre-test using PCA
K-means for slices 13 – 19. The y labels indicate the slice number and the x labels are
the number of clusters. The upper and lower areas of each slice correspond to anterior and
posterior, respectively, and the larger slice number is toward the top of the head.
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Figure B.5: The clustered brain maps for the prosaccade group for the pre-test using PCA
K-means for slices 20 – 26. The y labels indicate the slice number and the x labels are
the number of clusters. The upper and lower areas of each slice correspond to anterior and
posterior, respectively, and the larger slice number is toward the top of the head.
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Figure B.6: The clustered brain maps for the prosaccade group for the pre-test using PCA
K-means for slices 27 – 33. The y labels indicate the slice number and the x labels are
the number of clusters. The upper and lower areas of each slice correspond to anterior and
posterior, respectively, and the larger slice number is toward the top of the head.
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Figure B.7: The clustered brain maps for the prosaccade group for the post-test using K-
means for slices 13 – 19. The y labels indicate the slice number and the x labels are the
number of clusters. The upper and lower areas of each slice correspond to anterior and
posterior, respectively, and the larger slice number is toward the top of the head.
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Figure B.8: The clustered brain maps for the prosaccade group for the post-test using K-
means for slices 20 – 26. The y labels indicate the slice number and the x labels are the
number of clusters. The upper and lower areas of each slice correspond to anterior and
posterior, respectively, and the larger slice number is toward the top of the head.
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Figure B.9: The clustered brain maps for the prosaccade group for the post-test using K-
means for slices 27 – 33. The y labels indicate the slice number and the x labels are the
number of clusters. The upper and lower areas of each slice correspond to anterior and
posterior, respectively, and the larger slice number is toward the top of the head.
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Figure B.10: The clustered brain maps for the prosaccade group for the post-test using PCA
K-means for slices 13 – 19. The y labels indicate the slice number and the x labels are
the number of clusters. The upper and lower areas of each slice correspond to anterior and
posterior, respectively, and the larger slice number is toward the top of the head.
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Figure B.11: The clustered brain maps for the prosaccade group for the post-test using PCA
K-means for slices 20 – 26. The y labels indicate the slice number and the x labels are
the number of clusters. The upper and lower areas of each slice correspond to anterior and
posterior, respectively, and the larger slice number is toward the top of the head.
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Figure B.12: The clustered brain maps for the prosaccade group for the post-test using PCA
K-means for slices 27 – 33. The y labels indicate the slice number and the x labels are
the number of clusters. The upper and lower areas of each slice correspond to anterior and
posterior, respectively, and the larger slice number is toward the top of the head.
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Figure B.13: Average time series plots for the prosaccade group for the pre-test. The x-axes
indicate scan time points and the y-axes indicate the voxel’s detrended BOLD signal. Dashed
black lines represent the stimulus timing.
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Figure B.14: Average time series plots for the prosaccade group for the post-test. The x-axes
indicate scan time points and the y-axes indicate the voxel’s detrended BOLD signal. Dashed
black lines represent the stimulus timing



Appendix C

Clustering results for the Fixation task group

In this appendix, we present the clustering results for the fixation task group. For each test

session (pre- and post-test) the brain is partitioned into two, three, five or seven clusters,

which are K=2, 3, 5, and 7, using K-means and PCA K-means clustering methods.

The clustered brain maps are listed in the following order:

• K-means method for the pre-test for slices 13 – 19 in Figure C.1.

• K-means method for the pre-test for slices 20 – 26 in Figure C.2.

• K-means method for the pre-test for slices 27 – 33 in Figure C.3.

• PCA K-means method for the pre-test for slices 13 – 19 in Figure C.4.

• PCA K-means method for the pre-test for slices 20 – 26 in Figure C.5.

• PCA K-means method for the pre-test for slices 27 – 33 in Figure C.6.

• K-means method for the post-test for slices 13 – 19 in Figure C.7.

• K-means method for the post-test for slices 20 – 26 in Figure C.8.

• K-means method for the post-test for slices 27 – 33 in Figure C.9.

• PCA K-means method for the post-test for slices 13 – 19 in Figure C.10.

• PCA K-means method for the post-test for slices 20 – 26 in Figure C.11.

• PCA K-means method for the post-test for slices 27 – 33 in Figure C.12.

The average time series plots corresponding to each cluster in the clustered brain maps are

listed in the following order:

• The pre-test using K-means and PCA K-means method in Figure C.13.

• The post-test using K-means and PCA K-means method in Figure C.14.

156



157

13

k= 2

13

k= 3

13

k= 5

13

k= 7

14

k= 2

14

k= 3

14

k= 5

14

k= 7

15

k= 2

15

k= 3
15

k= 5

15

k= 7

16

k= 2

16

k= 3

16

k= 5

16

k= 7

17

k= 2

17

k= 3

17

k= 5

17

k= 7

18

k= 2

18

k= 3

18

k= 5

18

k= 7

19

k= 2

19

k= 3

19

k= 5

19

k= 7

Figure C.1: The clustered brain maps for the fixation group for the pre-test using K-means
for slices 13 – 19. The y labels indicate the slice number and the x labels are the number
of clusters. The upper and lower areas of each slice correspond to anterior and posterior,
respectively, and the larger slice number is toward the top of the head.
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Figure C.2: The clustered brain maps for the fixation group for the pre-test using K-means
for slices 20 – 26. The y labels indicate the slice number and the x labels are the number
of clusters. The upper and lower areas of each slice correspond to anterior and posterior,
respectively, and the larger slice number is toward the top of the head.
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Figure C.3: The clustered brain maps for the fixation group for the pre-test using K-means
for slices 27 – 33. The y labels indicate the slice number and the x labels are the number
of clusters. The upper and lower areas of each slice correspond to anterior and posterior,
respectively, and the larger slice number is toward the top of the head.
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Figure C.4: The clustered brain maps for the fixation group for the pre-test using PCA
K-means for slices 13 – 19. The y labels indicate the slice number and the x labels are
the number of clusters. The upper and lower areas of each slice correspond to anterior and
posterior, respectively, and the larger slice number is toward the top of the head.
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Figure C.5: The clustered brain maps for the fixation group for the pre-test using PCA
K-means for slices 20 – 26. The y labels indicate the slice number and the x labels are
the number of clusters. The upper and lower areas of each slice correspond to anterior and
posterior, respectively, and the larger slice number is toward the top of the head.
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Figure C.6: The clustered brain maps for the fixation group for the pre-test using PCA
K-means for slices 27 – 33. The y labels indicate the slice number and the x labels are
the number of clusters. The upper and lower areas of each slice correspond to anterior and
posterior, respectively, and the larger slice number is toward the top of the head.
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Figure C.7: The clustered brain maps for the fixation group for the post-test using K-means
for slices 13 – 19. The y labels indicate the slice number and the x labels are the number
of clusters. The upper and lower areas of each slice correspond to anterior and posterior,
respectively, and the larger slice number is toward the top of the head.
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Figure C.8: The clustered brain maps for the fixation group for the post-test using K-means
for slices 20 – 26. The y labels indicate the slice number and the x labels are the number
of clusters. The upper and lower areas of each slice correspond to anterior and posterior,
respectively, and the larger slice number is toward the top of the head.
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Figure C.9: The clustered brain maps for the fixation group for the post-test using K-means
for slices 27 – 33. The y labels indicate the slice number and the x labels are the number
of clusters. The upper and lower areas of each slice correspond to anterior and posterior,
respectively, and the larger slice number is toward the top of the head.
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Figure C.10: The clustered brain maps for the fixation group for the post-test using PCA
K-means for slices 13 – 19. The y labels indicate the slice number and the x labels are
the number of clusters. The upper and lower areas of each slice correspond to anterior and
posterior, respectively, and the larger slice number is toward the top of the head.
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Figure C.11: The clustered brain maps for the fixation group for the post-test using PCA
K-means for slices 20 – 26. The y labels indicate the slice number and the x labels are
the number of clusters. The upper and lower areas of each slice correspond to anterior and
posterior, respectively, and the larger slice number is toward the top of the head.
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Figure C.12: The clustered brain maps for the fixation group for the post-test using PCA
K-means for slices 27 – 33. The y labels indicate the slice number and the x labels are
the number of clusters. The upper and lower areas of each slice correspond to anterior and
posterior, respectively, and the larger slice number is toward the top of the head.
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(a) K-means with K=2
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(b) PCA K-means with K=2
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(d) PCA K-means with K=3
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(e) K-means with K=5
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(f) PCA K-means with K=5
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Figure C.13: Average time series plots for the fixation group for the pre-test. The x-axes
indicate scan time points and the y-axes indicate the voxel’s detrended BOLD signal. Dashed
black lines represent the stimulus timing.
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(a) K-means for K=2
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(b) PCA K-means for K=2
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(e) K-means for K=5
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(f) PCA K-means for K=5
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Figure C.14: Average time series plots for the fixation group for the post-test. The x-axes
indicate scan time points and the y-axes indicate the voxel’s detrended BOLD signal. Dashed
black lines represent the stimulus timing


