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Abstract

This dissertation consists of two parts for the topic of sample integrity in high dimensional

data. The first part focuses on batch effect in gene expression data. Batch bias has been found

in many microarray studies that involve multiple batches of samples. Currently available

methods for batch effect removal are mainly based on gene-by-gene analysis. There has been

relatively little development on multivariate approaches to batch adjustment, mainly because

of the analytical difficulty that originates from the high dimensional nature of gene expres-

sion data. We propose a multivariate batch adjustment method that effectively eliminates

inter-gene batch effects. The proposed method utilizes high dimensional sparse covariance

estimation based on a factor model and a hard-thresholding technique. We study theoretical

properties of the proposed estimator. Another important aspect of the proposed method is

that if there exists an ideally obtained batch, other batches can be adjusted so that they

resemble the target batch. We demonstrate the effectiveness of the proposed method with

real data as well as simulation study. Our method is compared with other approaches in

terms of both homogeneity of adjusted batches and cross-batch prediction performance.

The second part deals with outlier identification for high dimension, low sample size

(HDLSS) data. The outlier detection problem has been hardly addressed in spite of the

enormous popularity of high dimensional data analysis. We introduce three types of distances

in order to measure the “outlyingness” of each observation to the other data points: centroid



distance, ridge Mahalanobis distance, and maximal data piling distance. Some asymptotic

properties of the distances are studied related to the outlier detection problem. Based on

these distance measures, we propose an outlier detection method utilizing the parametric

bootstrap. The proposed method also can be regarded as an HDLSS version of quantile-

quantile plot. Furthermore, the masking phenomenon, which might be caused by multiple

outliers, is discussed under HDLSS situation.

Index words: Batch effect; Centroid distance; Factor model; Gene expression data;
High dimensional covariance estimation; Masking effect; Maximal data
piling distance; Outlier detection; Ridge Mahalanobis distance
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Chapter 1

Introduction

Over the last few decades, our society has produced all kinds of databases in many scientific

and business areas. Collecting and processing massive data sets have entailed the develop-

ment of numerous new statistical methodologies and theories. In statistical data analysis,

observation is the experiment unit or data collection unit in which particular phenomena of

the object (e.g., human being) are watched and recorded. An observation typically contains

multiple variables (e.g., height, weight, age, etc.), and the number of variables is referred to

as the dimension of the data. Many traditional statistical theories are built on the assump-

tion that the number of observations (n) is much larger than the dimension (p). Also most

asymptotic studies are regarding situations in which n tends to infinity while p is a fixed

constant.

However, data nowadays often come with an extremely large number of variables. The

radically increasing number of variables is due to the growth of information technology

that collects, processes, and manages massive data sets. We are now in a situation where

many important data analysis problems are high-dimensional. Gene expression data, financial

data, hyperspectral imagery data, and internet commerce data are well-known examples.

Commonly, high dimensional data sets have a much smaller number of observations than

variables. For example, a typical microarray data set has gene expression measurements with

tens of thousands of genes for only up to a few hundred patients with a certain disease. We

refer to such data as high dimension, low sample size (HDLSS) data in this dissertation.

Unfortunately, classical statistical methods are not designed to cope with this kind of

explosive growth of dimensionality that the current data sets face. The analytic difficulty
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associated with adding extra dimensions is mentioned as “curse of dimensionality” by many

authors (e.g., Bellman (1961), Hastie et al. (2001)). It generally refers to the problem that

the previously well-fitting model is not valid or feasible in higher dimension even when p

is still less than n. For this reason, there have been continuous efforts to deal with a few

“well-chosen variables” from a large set of variables. These efforts are often categorized as

variable or feature selection or dimension reduction methods, which commonly involve the

process of selecting a subset of relevant variables for model construction such as regression

and classification.

Once a successful dimension reduction method transforms a data set to be a manageable

one by decreasing the number of variables below the sample size, conventional statistical

tools can be useful for the analysis of the data. Although practitioners search for a tractable

size of database in various ways, the attempt to reduce the number of variables is not always

successful. Often the variables should remain greater than the sample size to provide greater

details and better explanations, resulting in the failure of many statistical results.

Some solutions to these challenges have been offered, singularly or in combination with

the existing methodologies, for example, factor models (Bai, 2003; Fan et al., 2008), regu-

larization methods (Friedman, 1989), and sure independent screening methods (Fan and Lv,

2007). During the process of creating alternative approaches for HDLSS data, researchers

discovered that the HDLSS problems require new or different mathematics along with novel

computational and modeling issues. For example, for the theoretical development of HDLSS

studies, it is general to have the asymptotic situation that p approaches infinity instead of

a fixed p; the sample size n grows along with the dimension or sometimes remains fixed. In

another example, Hall et al. (2005) pointed out that the high dimensional data has a quite

different geometric representation from the low dimensional data.

While we mention “curse” due to the practical difficulty of high dimensional data, there

are benefits of high-dimensionality, called “blessing of dimensionality” (Donoho, 2000). This

view is often found in probability theory such as concentration of measure. In this view,
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increases in dimensionality can be helpful since certain random fluctuations are well con-

trolled in high dimension rather than moderate dimension. Not only theoretical benefits,

there are also great opportunities in high dimension on the practical side; for example, in

gene expression data, the more measurements are taken on each individual, the more infor-

mative details are available to characterize a certain disease.

Among emerging issues in HDLSS data analysis, this dissertation deals with the so called

“sample integrity” issue. Sample integrity means a sound, uncontaminated, or ideal condi-

tion of a data set which leads to consistent and reliable results in the statistical analysis.

Our concern for high dimensional data lies in how to ensure the quality of a sample while

previous trends focus on the quality of variables. Actually, a sample, as a subset of popula-

tion, is impossible to be perfect unless it includes all objects in the population. Statistical

models based on a sample always carry some sample biases. Such biases challenge estimation,

inference, and prediction, especially in high dimension. HDLSS data require extra efforts to

make the sample the best condition, not necessarily perfect but “unbiased” enough to extract

important patterns and trends in populations. This dissertation consists of two parts for the

topic of sample integrity in high dimensional data, which are introduced in Chapters 2 and

3, respectively.

In Chapter 2, we discuss eliminating batch bias found in many microarray studies in

which multiple batches of samples are inevitably used. Sometimes, researchers attempt to

integrate several data sets for the sake of prediction power. But they often find a problem

that analyzing the large combined data sets is not free from “batch effect,” which is possibly

caused by different experimental conditions. If the batch effect is not well controlled, the

statistical results can be erroneous. As a solution, we propose a novel batch effect removal

method regarding inter-gene relationships as well as location adjustment.

In Chapter 3, we suggest an outlier identification method for HDLSS data. Detecting

outliers is a common first step in the exploratory data analysis, but it has been hardly

addressed for HDLSS data. Conventional methods, which utilize mean and covariance, are not
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effective in characterizing the outlying observation in high dimensional space. This chapter

proposes an outlier detection method in HDLSS setting based on newly defined distance

measures and a parametric bootstrap.
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Chapter 2

Covariance Adjustment for Batch Effect in Gene Expression Data

2.1 Introduction

2.1.1 Microarray and Batch Biases

Since the mid 1990s, DNA microarray, also commonly known as gene chip, technologies have

become enormously popular in biological and medical research. This technology enables

one to monitor the expression levels of many genes (usually up to 20,000s) simultaneously.

Careful and efficient statistical analyses of microarray data can lead some important scientific

discoveries, for example gaining an understanding in the pathogenesis of a disease, identifying

clinical biomarkers, and ultimately personalized medicine (Böttinger et al., 2002; Heidecker

and Hare, 2007; Lee and Macgregor, 2004).

An important aspect of microarray studies is the management of biases (Scherer, 2009).

Unfortunately, microarray technology is susceptible to measurement variability due to the

complexity of the experiment process (Altman, 2009). The biases that are induced by tech-

nical factors can mislead results of statistical analysis and thus threaten the validity of the

entire study. Although proper employment of a well-planned experimental design can reduce

biases, the costly and time-consuming procedure of a microarray experiment makes it dif-

ficult to perform the “optimal” experiment. In reality, most microarray studies are faced

with not only random technical errors in the analytic phase, but also substantial systematic

biases.

One of the biggest challenges in statistical analysis of microarray data is how to deal with

“batch effect,” a systematic bias caused by the samples collected at different times or sites.
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Often researchers use multiple batches of samples in order to increase the sample size for the

sake of a potential benefit of increased statistical power. For example a predictive model from

combined sample is more robust than one from individual studies (Vachani et al., 2007; Xu

et al., 2005). But sometimes it is not clear whether the advantage of increased samples size

outweighs the disadvantage of higher heterogeneity of merged data sets. In order to make

the combining serve its purpose, there is a pressing need to find a “batch effect” removal

method that can create a merged data set without any batch bias.

Some experiments, such as a cancer study, require sufficiently large samples to enhance

the prediction performance (Ein-Dor et al., 2006). In the following example we consider two

different breast cancer data sets collected at different laboratories. Analyzing these data sets

individually may limit the scope of the study due to relatively small sample sizes compared

to tens of thousands of genes; the sample sizes are 286 and 198, respectively. With a goal of

predicting the estrogen receptor (ER) status, we want to create a combined data set in order

to increase the statistical power. Figure 2.1-(a) displays projections of the data onto the first

two principle component directions of the whole data set. We can see that the two batches

are clearly separated. In fact, this batch difference dominates biological difference of ER+

and ER−. One naturally needs to narrow or even close this gap between the two batches of

samples before any classification analysis. Both data sets are preprocessed by MAS5.0 for

the Affymetrix platform. The detailed description of these data sets can be found in Section

2.7.

Another example of batch effect can be found in Figure 2.1-(b), where four lung cancer

microarray data sets from four different laboratories are shown. Shedden et al. (2008) used

these data sets to perform a gene-expression-based survival prediction study. The detailed

description of the data set can be found in Section 2.7. In the figure, four different symbols

represent four different laboratories. We notice that there are visible gaps among the batches,

even after all four samples are preprocessed by RMA together for the Affymetrix platform.

6



PC1 (8%)

P
C

2 
(6

%
)

 

 

ER− in Lab1
ER+ in Lab1
ER− in Lab2
ER+ in Lab2

(a) Breast cancer data

PC1 (14%)

P
C

2 
(8

%
)

 

 

HLM
UM
CAN/DF
MSK

(b) Lung cancer data

Figure 2.1. Illustration of a batch effect in microarray data. In (a), breast cancer data sets from
two different laboratories are projected on the first two PC directions. It is clear that the batch
effect dominates the biological (ER+, ER−) signal. In (b), the projections of four lung cancer data
sets are shown. We can see strong batch bias especially in the first PC direction.
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Batch effects exist not only in microarray but also in other newer technologies. Recently,

researchers have found that there exist significant batch effects in mass spectrometry data,

copy number abnormality data, methylation array data, and DNA sequencing data (Leek and

Storey, 2007). In particular, recently research transition from microarrays to next-generation

sequencing is notable; e.g., RNA-sequencing is gaining more popularity since it provides

greater accuracy than microarray and a dynamic range of gene expression values. Even

though most of the existing methods including the proposed work have been developed for

microarray, the experience with microarray technologies may lead to the future success for

these new technologies.

2.1.2 Preprocessing

Preprocessing is an important step for gene expression data analysis since this step reduces

technical variation across arrays (samples) ahead of any statistical analyses such as clustering,

classification and regression analysis. Here we use the term “array” to refer to a sample which

includes information of individual probe sets. The choice of pre-processing method affects

both the experiment’s sensitivity and its bias (Scherer, 2009).

Preprocessing of microarray data generally involves the following steps: background cor-

rection, normalization, and filtering. In particular, the normalization step puts each array

on a common scale, which allows for the comparison of expression levels across different

arrays. There are two methods frequently used to normalize the microarray; one is global

median normalization, which forces each array to have equal median expression value, and

the other is quantile normalization, proposed by Bolstad et al. (2003). The quantile normal-

ization method transforms each array so that it has the same empirical distribution of gene

expression values as the other arrays. The common empirical distribution which each array

will have is driven by mean or median over all arrays. See the example in Figure 2.2; the

sorted gene expression values for each array is replaced by the average value of all arrays in

8



each position, and consequently all arrays come to have the same distribution of intensity

values.

Figure 2.2. Illustration of quantile normalization. The sorted gene expression values for each
array is replaced by the average value of all arrays in each position, so that each array has the same
distribution of expression values.

Practically, a preprocessed data set is obtained by using software packages. Common

choices are MAS5.0, robust multiarray analysis (RMA), or dChip for Affymetrix platform,

and locally weighted scattered smoothing (LOWESS) method for Agilent platform and

others. In our work, MAS5.0 is used for the breast cancer data, and RMA is used for the

lung cancer data. The softwares are publicly available at http://www.bioconductor.org and

http://www.dChip.org. The BioConductor package also includes a variety of graphical tools.

Figure 2.3, for example, displays the box plots for the first 19 arrays of a lung cancer data

set before and after RMA preprocessing. It is clear that the scale of probe intensities became

similar across arrays after preprocessing. For the our lung cancer data, RMA has been applied

to four data sets simultaneously because by using one unified reference we can avoid extra

bias between batches. For this matter, there are more recent methods such as frozen robust

multiarray analysis (fRMA) (McCall et al., 2010), which is known to be effective when pre-

processing multiple batches.

Preprocessing methods contribute to reducing array-specific technical variation such as

dye-balance, spatial dependency induced by experimental procedures. In many cases, how-

ever, systematic biases still remain after normalization. There are also many other issues in

9
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Figure 2.3. Box plots before and after RMA preprocessing for the first 19 arrays of a lung cancer
data set. The left panel displays the original intensity of arrays before RMA preprocessing. The
intensities’ scale becomes similar among arrays in the right panel after preprocessing.

preprocessing, but we restrict our attention to “batch effect,” which is occurred in a combined

data set from different sources.

2.2 Existing Batch Adjustment Methods

In this section we introduce some currently available batch adjustment methods: mean-

centering, standardization, empirical bayes method, discrimination-based methods, and

cross-platform normalization. Let Yijg represent the expression value of sample j (j =

1, . . . , ni), for gene g (g = 1, . . . , p), in batch i (i = 1, . . . , K). Here the gene index g is also

called “variable” or “dimension” in this dissertation.

2.2.1 Mean Centering and Standardization

The mean-centering (or median-centering) method sets the mean (or median) of each gene

to zero for each batch. Let us define the sample mean for each batch i and gene g as

10



Ȳig =
∑ni

j=1 Yijg/ni, and the mean-centering method replaces each observation by

Y ∗ijg = Yijg − Ȳig .

Despite its simplicity, the mean-centering method works reasonably well in practice (Chen

et al., 2011; Luo et al., 2010; Shabalin et al., 2008; Sims et al., 2008). This method is

essentially optimal under the assumption that the batch bias only exists in the shift of

the means. However, it has been found that the batch effect is more complex than mean

shifts. This method is implemented in PAMR R software package (Prediction Analysis of

Microarrays for R).

Standardization makes each gene within each batch have a unit variance and zero mean

(Johnson et al., 2007; Luo et al., 2010). Defining the sample variance for each batch i and

gene g as s2ig =
∑ni

j=1(Yijg − Ȳig)2/(ni − 1), the standardized gene expression is

Y ∗ijg =
Yijg − Ȳig

sig
.

2.2.2 Empirical Bayes Method

The Empirical Bayes (EB) method is introduced by Johnson et al. (2007). The EB method

is a gene-wise model-based approach for adjusting batch effects. This method regards the

batch bias as a random block effect, and biological signals as fixed treatment effects, and uses

analysis of variance (ANOVA) technique to estimate the bias for each gene. The batch bias

is obtained by an empirical Bayes estimator. Let us define Yijgc as the expression value of

sample j for gene g in batch i and biological covariates c (c = 1, . . . , C). A two way ANOVA

with batch effect can be generally expressed as

Yijgc = αg + βgc + γig + δigεijgc ,

where βgc is biological effect (e.g., positive or negative for a disease, or treatment vs. control

groups) for gene g, and also γig and δig represent the additive and multiplicative batch effects

of batch i for gene g, respectively. Here both γig and δig are random effects. It is assumed

that εijgc ∼ N(0, σ2
g) for gene g.
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In the EB method, all samples are standardized together to have zero mean and unit

variance for each gene g. After this standardization, samples in each batch follow a normal

distribution, Zijgc ∼ N(γig, δ
2
ig). By estimating γ̂∗ig and δ̂∗ig using an empirical bayes estimator,

the expression values are modified to

Y ∗ijgc =
σ̂g

δ̂∗ig
(Zijgc − γ̂∗ig) + α̂g + β̂gc .

One advantage of this method is that the magnitude of the adjustments may vary from

gene to gene, and it avoids over-adjusting due to the outliers (Johnson et al., 2007). In

particular, the EB method adjusts the variances between two batch of samples as well as the

mean location by estimating appropriate amount of multiplicative batch effect in ANOVA

model.

However, there are two potential drawbacks of the EB method. First we notice the fact

that the modified expression values by this method includes the biological effect in the model.

Thus it may be subject to the so-called “double dipping” problem because the transformed

data will be used later again to analyze the biological feature. Another drawback is that

it is a gene-wise approach. Since the batch effect estimation is performed on the individual

ANOVA for each gene, the possible inter-gene batch effect is ignored.

The R software of the EB method (ComBat) is available at http://www.dchip.org.

A similar approach was attempted by Leek and Storey (2007), whose surrogate variable

analysis (SVA) identifies the effect of the hidden factors that may be the sources of data

heterogeneity, and recovers it in a subsequent regression analysis.

2.2.3 Discrimination-based Approach

Benito et al. (2004) applied Distance Weighted Discrimination (DWD) (Marron et al., 2007)

method for adjusting systematic microarray data biases. DWD is originally designed for

a discrimination analysis in high dimension, low sample size (HDLSS) setting. For batch

adjustment, this method first aims to find the optimal direction to maximize separation
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between the batches, and then on the given direction each subpopulation moves until its

mean reaches the (separating) hyperplane between the two batches.

Even though Benito et al. (2004) used DWD for the purpose of the batch adjustment,

the core idea of their method can be applied with any discrimination method. They chose

DWD over other discrimination methods, such as support vector machines (SVM), because

they believe that DWD is better at finding the optimal separating hyperplane for HDLSS

discrimination. They also claimed that the projected data onto the normal direction vector

of the DWD hyperplane looks more Gaussian than other methods, which makes mean-shift

adjustment reasonable.

In what follows, the general concept of a discrimination-based approach is explained with

two batches case. Let yij be the p-dimensional vector of jth sample (j = 1, . . . , ni) for batch

i = 1, 2, and ȳi =
∑ni

j=1 yij/ni. Suppose that we have found the optimal direction vector

on which the separation between two batches is maximized. The hyperplane that efficiently

separates the two batches in the p-dimensional space can be expressed as

H = {y|wTy = m},

where w is the normal direction vector of the separating hyperplane, and m is the constant

that indicates the middle point between the two batches on w, i.e., m = (wTȳ1 + wTȳ2)/2.

Then, the adjusted data for batch i can be obtained by

y∗ij = yij + (m−wTȳi)w. (2.1)

The equation (2.1) is obtained by the following steps. The mean vector ȳi for batch i

approaches to the separating hyperplane along with the direction w and arrives at a point

hi on H. The moving path hi − ȳi can be expressed by the vector kiw with a scalar ki, i.e.,

hi − ȳi = kiw. Since wThi = m, replacing it with hi = ȳi + kiw becomes wTȳi + ki = m

since wTw = 1. Thus, ki = m−wTȳi, and therefore the moving path kiw is (m−wTȳi)w.

Each sample, yij, is shifted along the path by this amount as shown in (2.1).
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This procedure can be extended in a natural way to handle more than two batches.

Linear discrimination with K groups produces K − 1 dimensional discriminant space. Note

that we can set the middle point m to be any arbitrary number without changing the relative

positions of the data vectors after adjustment. Suppose K = 3 and w1 and w2 are the two

orthogonal directions that generate the 2-dimensional discriminant space. Then the three

batches of samples can be adjusted by the following steps.

y∗ij = yij −wT

1 ȳiw1,

y∗∗ij = y∗ij −wT

2 ȳiw2.

2.2.4 Cross Platform Normalization

Shabalin et al. (2008) proposed the cross platform normalization (XPN) method for the

problem of combining data from different array platforms. The XPN procedure is based on

a simple block-linear model. In other words, under the assumption that the samples of each

platform fall into one of L homogeneous groups within each of M groups of similar genes,

the expression value Yijg is written as block mean plus noise.

Yijg = Ai,α(g),βi(j) · big + cig + σigεijg . (2.2)

The functions α : {1, . . . , p} 7→ {1, . . . ,M} and βi : {1, . . . , ni} 7→ {1, . . . , L} define the

linked groups of genes and samples, respectively. The Aiml are block means, and big, cig are

slope and offset parameter, respectively, where m = 1, . . . ,M and l = 1, . . . , L. It is assumed

that εijg ∼ N (0, 1).

Prior to the estimation of the model in (2.2), k-means clustering is performed indepen-

dently to the rows and columns of a p by n data matrix, to identify homogeneous group

of genes and samples. From the mapping α(g) and βi(j), model parameters Âiml, b̂ig, ĉig

and σ̂ig are estimated by using standard maximum likelihood methods. Common parameters

θ̂g = (b̂g, ĉg, σ̂
2
g) and Âml are then obtained by weighted averages of the parameters from
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the two batches, i.e.,

θ̂g =
n1θ̂1,g + n2θ̂2,g

n1 + n2

and Âml =
n1,lÂ1,m,l + n2,lÂ2,m,l

n1,l + n2,l

,

where ni,l is the number of samples in the lth sample group of batch i. Finally, the expression

values are modified as

Y ∗ijg = Âα(g),βi(j) · b̂g + ĉg + σ̂g

(
Yijg − Âi,α(g),βi(j) · b̂ig + ĉig

σ̂ig

)
.

An advantage of the XPN method is taking the relationship of genes into account, by

the row and column clustering, followed by estimating block means in block linear model,

but block means assumption is arbitrary and may not be justified in the biological context.

2.2.5 Comparison of the Existing Methods

Mean-centering, standardization and the EM method are gene-wise approaches. Essentially,

they assume that the batch effect applies to each gene independently. These methods are

relatively easy to implement compared to a multivariate approach because the possible inter-

gene batch effect is not taken into account. However, it has been noted that some batch effects

exist in a multivariate space, i.e., the covariance structure among genes may be different from

a batch to a batch (Leek et al., 2010).

On the other hand, the discrimination-based batch adjustment attempts to remove the

batch effect in the multivariate space. These methods seem more efficient in the sense that

they use fewer direction vectors (K − 1 discriminant directions for K batches) than the

univariate approaches which remove batch effect in each of the p dimensions. However, finding

the discriminant direction such as the DWD can be computationally intensive. Furthermore,

as Proposition 1 below implies, the discrimination-based approach is essentially a gene-wise

approach, and it can even be regarded as an “incomplete” mean-centering.

Proposition 1. Applying the mean-centering adjustment to the data that have been adjusted

with any discrimination-based method is equivalent to the mean-centering of the original data.
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Proof. Suppose Yi is p× ni data matrix for batch i (i = 1, 2), and ȳi is p× 1 mean vector,

defined by Yi1/ni, where 1 is a p× 1 vector that all elements are 1. Adjusted data Ymc
i by

mean-centering method can be written as

Ymc
i = Yi − [ȳi, . . . , ȳi]p×ni

.

Adjusted data by a discrimination methods can be expressed by

Ydm
i = Yi −w′1ȳi[w1, . . . ,w1]p×ni

,

where w1 denotes a p × 1 discriminant direction of two batches with unit length. Mean-

centering on data Ydm is

Ydm+mc
i = Ydm

i − [ȳdmi , . . . , ȳdmi ]p×ni
.

Note that the mean-centering result can be also obtained from an iteration process, that is,

p sequential mean-shift to zero in orthogonal vectors, w1, w2, . . . , wp, where w′jwj = 1 and

w′jwk = 0 for j 6= k. We can formulate this process as below

Y
dm+mc(1)
i = Yi −w′1ȳi[w1, . . . ,w1]p×ni

= Y
(1)
i (say),

Y
dm+mc(2)
i = Y

(1)
i −w′2ȳ

(1)
i [w2, . . . ,w2]p×ni

= Y
(1)
i −w′2

(
1

ni
Y

(1)
i 1

)
[w2, . . . ,w2]p×ni

= Y
(1)
i −w′2

(
1

ni
{Yi1−w′1ȳi[w1, . . . ,w1]p×ni

1}
)

[w2, . . . ,w2]p×ni

= Y
(1)
i −w′2

(
ȳi −

1

ni
niw

′
1ȳiw1

)
[w2, . . . ,w2]p×ni

= Y −w′1ȳi[w1, . . . ,w1]p×ni
−w′2ȳi[w2, . . . ,w2]p×ni

− (w′1ȳi)w
′
2w1[w2, . . . ,w2]p×ni

= Yi −w′1ȳi[w1, . . . ,w1]p×ni
−w′2ȳi[w2, . . . ,w2]p×ni

,

finally, the adjusted data becomes

Y
dm+mc(p)
i = Yi −w′1ȳi[w1, . . . ,w1]p×ni

−w′2ȳi[w2, . . . ,w2]p×ni
− · · · −w′pȳi[wp, . . . ,wp]p×ni

.

16



Here we can replace w1, w2, . . . , wp with e1, e2, . . . , ep, where e1 = (1, 0, . . . , 0)′, e2 =

(0, 1, . . . , 0)′ and so on. This is because, for any other orthogonal basis v1, v2, . . . , vp, it is

true that

ȳ = w′1ȳw1 + · · ·+ w′pȳwp

= v′1ȳv1 + · · ·+ v′pȳvp.

Since e1, e2, . . . , ep form an orthogonal basis in p dimensions, replacing w’s by these gives

the same result. Therefore,

Ydm+mc
i = Yi − e′1ȳi[e1, . . . , e1]p×ni

− e′2ȳi[e2, . . . , e2]p×ni
− · · · − e′pȳi[ep, . . . , ep]p×ni

= Yi − [ȳi, ȳi, . . . , ȳi]p×ni

= Ymc
i .

2.3 Evaluation of Batch Effect Adjustment

Another important aspect of batch adjustment is how to justify or evaluate a given batch

adjustment method. Success of batch effect removal has been typically judged in the following

two aspects: 1) whether the method would enhance prediction performance of biological class

in the combined data set, 2) how homogeneous batches would become after adjustment.

2.3.1 Prediction Performance

Successful batch adjustment is often evaluated based on the prediction performance in a

combined data set. Some microarray studies are attempted with the purpose of exploring

predictors; e.g., clinically useful prognostic markers for cancer. Unfortunately, there are few

overlaps among individual studies due to the limited number of patients (Michiels et al.,

2005). Naturally a goal of integrating data sets is increasing the sample sizes, thereby dis-

covering more reliable predictors and increasing prediction accuracy (Cheng et al., 2009; Tan

et al., 2003; Vachani et al., 2007; Xu et al., 2005).
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One simple way to check the improved performance of merged data sets is through the

graphical technique such as principal component plot. Suppose we consider combining three

different breast cancer data sets to predict estrogen receptor (ER) status. Figure 2.4-(a)

displays three batches of sample projected on the first two principal component directions.

In (b), before batch adjustment, the plot shows that batch difference somewhat dominates

biological difference (ER+ and ER−). Meanwhile, in (c), after the batch adjustment by mean-

centering, biological signal became apparent without batch effect; the difference between

ER+ and ER− is well separated in the first principal component direction.
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(a) Three batches (b) Before batch correction (c) After batch correction

Figure 2.4. PC scatter plot of breast cancer data sets by bio-label before and after batch adjust-
ment. In (a), three batches of samples are displayed on the first two principal component directions,
labeled by batch membership. In (b), the same data sets are labeled with biological classes. One can
see that batch difference dominates biological difference (ER+, ER−). In (c), after batch correction
by mean-centering, biological signal became more clear with no apparent batch bias.

Beyond graphical measures, there have been some efforts to see the improved performance

of merged data sets based on classification performance (Huang et al., 2011; Luo et al.,

2010; Xu et al., 2005), or survival prediction (Cheng et al., 2009; Yasrebi et al., 2009). In

particular, Luo et al. (2010) compared several batch bias removal methods based on cross-

batch prediction, i.e., establishing a prediction model in one batch and applying to another.

The Matthews correlation coefficient (MCC) is used as the evaluation measure for binary

prediction that is known to be useful for unbalanced sample sizes. The MCC can be calculated

directly from the confusion matrix using the formula

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
,
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where TP, TN, FP, and FN are the number of true positives, true negatives, false positives,

and false negatives, respectively.

The principle of evaluating batch adjustment methods is that if applying a batch adjust-

ment method yields a better MCC score, batch biases would be regarded as effectively

removed and the method worked well. However, we notice that removing batch effect is not

necessarily followed by good prediction performance, regardless of the choice of batch effect

removal method (Luo et al., 2010; Yasrebi et al., 2009). There are more factors affecting

predictive power other than a batch adjustment technique, such as classification methods,

classifiers, sample size, biological natures, and others. For example, poor prediction perfor-

mance can be introduced by clinical nature; some biological endpoints (e.g.,overall survival)

are notoriously hard to predict while ER status is relatively easy to predict.

Therefore, even though a batch effect removal method has a positive impact on prediction

performance in a combined data set or validation data set, it may not necessarily imply

that the batch adjustment is effectively done. Rather, we should evaluate how the batch

adjustment contributes to homogenizing independently generated data sets.

2.3.2 Similarity of Adjusted Batches

The ideal way to evaluate the success of batch effect removal is to focus on the homogeneity

of sample batches, that is, how “similar” the batches have become after the adjustment.

There are several ways to look at the similarity of the batches. A simple approach is to use

a visualization technique. Benito et al. (2004) employed PC plot to justify their DWD batch

adjustment, which provides evidence of well-mixed samples in an informative subspace as

shown in Figure 2.5. A heatmap is also often used to visualize the difference between batches

(Johnson et al., 2007).

If we regard “similarity” as closeness in terms of location, the performance of methods

can be assessed by the difference between means or medians of batches. Chen et al. (2011)

compared several batch effect methods based on the presence of batch effect within the
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Figure 2.5. PC scatter plot of breast cancer data sets after adjustment, labeled by batch mem-
bership. In the previous Figure 2.4-(a), three batches (groups) of samples are separated on the first
two PC directions before batch adjustment. In this figure, the batches appear to be well mixed in
the PC plots after the adjustment by mean-centering.

analysis of variance (ANOVA) model; i.e., testing the existence of mean difference between

batches.

However, evaluating only the mean’s location of batches is too simple and even mean-

ingless since most methods accomplish mean-centering in some way (Chen et al., 2011). We

will need to consider diverse aspects of the homogeneity of samples more than closeness

of the location. Shabalin et al. (2008) suggested various measures for a validation of the

XPN methods, such as average distance to the nearest array in a different batch, correlation

between genes in different batches, correlation of t-statistics and preservation of significant

genes, and other measures.

In this dissertation we consider the closeness of covariance structures of batches. Test

statistics for equal covariance for high dimensional Gaussian data are proposed by Schott

(2007) and Srivastava and Yanagihara (2010). We choose the Q2
K test statistic proposed

by Srivastava and Yanagihara (2010) because it shows better performance in both power

and attained significant level especially when the variables are correlated; these facts will be

shown in the simulations in Section 2.3.3. In the equal covariance test, the null hypothesis

is H0 : Σ1 = Σ2 = · · · = ΣK = Σ, where K is the number of batches. It is shown that the

test statistic Q2
K asymptotically follows χ2

K−1 under the null hypothesis as both sample size
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and dimension grow. For K = 2, their test statistic Q2
K is based on the difference between

tr(Σ̂
2

1)/{tr(Σ̂1)}2 and tr(Σ̂
2

2)/{tr(Σ̂2)}2. A smaller value of the test statistic indicates greater

similarity of two population covariance matrices. This test is also available when there are

more than two batches. The general form of the test statistic is given by

Q2
K =

K∑
i=1

(γ̂i − ¯̂γ)2

ξ̂2i
, (2.3)

where

¯̂γ =

∑K
i=1 γ̂i/ξ̂

2
i∑K

i=1 1/ξ̂2i
,

γ̂i =
â2i
â21i
, i = 1, . . . , K ,

ξ̂2i =
4

n2
i

{
â22
â41

+
2ni
p

(
â32
â61
− 2â2â3

â51
+
â4
â41

)}
, i = 1, . . . , K.

Here âi is a consistent estimator of ai = tr(Σi)/p for i = 1, . . . , 4. Let us denote Si the

sample covariance matrix and ni is the degree of freedom for each batch. Also define that

Vi = niSi, V =
∑K

i=1 Vi and n =
∑K

i=1 ni. Then,

â1i =
1

pni
tr(Vi), and â1 =

1

pn
tr(V),

â2i =
1

p(ni − 1)(ni + 2)

{
tr(V2

i )−
1

ni
(trVi)

2

}
,

â2 =
1

(n− 1)(n+ 2)p

{
tr(V2)− 1

n
(trV)2

}
,

â3 =
n

(n− 1)(n− 2)(n+ 2)(n+ 4)

{
1

p
tr(V3)− 3(n+ 2)(n− 1)â2â1 − np2â31

}
,

â4 =
1

c0

(
1

p
tr(V4)− pc1â1 − p2c2â21â2 − pc3â22 − np3â41

)
,

where

c0 = n(n3 + 6n2 + 21n+ 18), c1 = 2n(2n2 + 6n+ 9),

c2 = 2n(3n+ 2), and c3 = n(2n2 + 5n+ 7).
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In the following subsection, we carry out some simulations to see the performance of the

Q2
K test statistic as well as other competing test methods.

2.3.3 Tests for the Equality of High Dimensional Covariance Matrices

The high dimensional covariance test is first introduced in Schott (2007). The null hypothesis

is

H0 : Σ1 = Σ2 = · · · = ΣK = Σ, (2.4)

where Σi, i = 1, . . . , K is a covariance matrix of a p-variate normal population. For the test

of H0 when sample size n is less than dimension p, Schott (2007) suggests the test statistic,

JK =
∑
i<j

[
tr(Si − Sj)

2 − (niηi)
−1{ni(ni − 2)tr(S2

i ) + n2
i tr(Si)

2}

− (njηj)
−1{nj(nj − 2)tr(S2

j) + n2
j tr(Sj)

2}
]
, (2.5)

where ni denotes degrees of freedom (sample size − 1) for ith group, and ηi is (ni+2)(ni−1).

Si denotes sample covariance matrix. Note that (2.5) is based on the trace of the sample

covariance matrices. This is a major difference from the conventional equal covariance test

when n > p that uses the determinants of matrices (Muirhead, 1982).

The basic idea of deriving (2.5) is to find an unbiased estimator of
∑

i<j tr(Σi −Σj)
2.

Thus, (2.5) has the following property

E(JK) =
∑
i<j

tr(Σi −Σj)
2. (2.6)

If the null hypothesis (2.4) holds, (2.6) will be zero. Specifically, Schott (2007) proved that

JK approximately follows normal distribution with zero mean and a constance variance, say

θ2, as (ni, p)→∞ under H0. Unfortunately, however, they admit that this test is somewhat

limited in that the convergence of null distribution to normal distribution is slower when

Σ 6= Ip.

On the other hand, Srivastava and Yanagihara (2010) proposed the statistic T 2
K and Q2

K .

The T 2
K statistic is based on the differences of tr(Σ2

1) and tr(Σ2
2), and the Q2

K is based on
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the differences of tr(Σ2
1)/(trΣ1)

2 and tr(Σ2
1)/(trΣ2)

2. So a smaller value of these two test

statistics implies greater similarity of two covariances. Under the null hypothesis, both T 2
K

and Q2
K are asymptotically distributed as χ2

K−1 as (ni, p) approach infinity. But Srivastava

and Yanagihara (2010) showed that Q2
K performs better than T 2

K in terms of the power of

the test.

In what follows we provide some simulations to compare the performance of the high

dimensional covariance tests: JK , T 2
K and Q2

K .

a. Simulation Study 1: Power of the test for different covariance structures.

We carry out a simulation in order to see the power of the tests in diverse situations.

With a goal of rejecting the null hypothesis (Σ1 = Σ2), the alternatives (Σ1 6= Σ2) are

constructed with the following four different scenarios.

• Diagonal signal: Σ1 = Ip vs. Σ2 = 2Ip.

• Off-diagonal signal: Σ1 = (1− 0.5)I + 0.511T vs. Σ2 = (1− 0.3)I + 0.311T.

• Diagonal signal*: Σ1 = δiIp vs. Σ2 = δIp, where δ = {
∑p

i=1 δ
2
i /p}1/2.

• Both diagonal and off-diagonal signal*: Σ1 = (1 − 0.5)I + 0.511T vs. Σ2 = (δ −

0.3)I + 0.311T, where δ = {1 + (p− 1)0.52 − (p− 1)0.32}1/2.

Note that in the last two scenarios with the asterisk notation, a constant δ is determined

under the condition that tr(Σ2
1) = tr(Σ2

2), which avoids the rejection by the size of trace

square. Three test statistics are calculated based on two samples from N200(0,Σ1) and

N200(0,Σ2), where the sample size is 50 for each data. We repeat this 100 times. Then

we observe how many times the tests reject the null hypothesis at 0.05 significance level.

In these scenarios, we intend to reject H0 since data sets are generated from different

covariance structures. Thus, high frequency of the rejection out of 100 repetitions indicates

that the tests work well.

The results are summarized in Table 2.1, which shows the percentage of the rejections.

A high percentage indicates that a test successfully detects the difference between two
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covariance matrices, whereas a low percentage indicates that the test does not always

detect the difference of the covariances. The Q2
K has the best results among the three

tests in that it shows high rejection percentages in all cases. However, the JK cannot

detect off-diagonal signal well, and the T 2
K test only detects the diagonal signal well.

Table 2.1
Comparison of three test statistics. The percentage indicates the number of rejections out of 100
repetitions for the null hypothesis of equal covariance. A high percentage indicates that the test

works well. The Q2
K generally performs well among the three tests.

J2
K T 2

K Q2
K

Diagonal signal 100% 100% 87%
Off-diagonal signal 47% 36% 81%
Diagonal signal* 100% 20% 100%
Both diagonal and off-diagonal signal* 100% 8% 100%

b. Simulation Study 2: Null distribution of JK

In order to take a closer look at the JK statistic (since it shows weak performance for the

detection of off-diagonal signal in Table 2.1), we run a simulation and observe the per-

formance of the null distribution. Two groups of samples are generated from N200(0,Σ)

with the sample size 50. We compute JK from those samples, and repeat this 100 times.

Since two data sets are from the equal covariance population, the distribution of JK is

supposed to be approximately normal. The results are shown in Figure 2.6. When Σ is

set to I200 in (a), the null distribution of JK/θ is close to standard normal. Meanwhile,

when Σ is set to 0.5I+0.511T in (b), the null distribution is not close to standard normal.

These results say that using the JK may be a problematic approach especially when a

data set includes many correlated variables.

c. Simulation Study 3: Attained significant level and power

The performance of the test statistics can be seen through the attained significant level

(ASL) and power. In Table 2.1, the Q2
K outperforms the JK and T 2

K , showing that the JK
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Figure 2.6. Convergence of null distribution of JK/θ. In (a), Σ = Ip, the null distribution is close
to standard normal. Meanwhile, in (b), Σ 6= Ip , the null distribution is not close to normal.

and T 2
K are not responsive to off-diagonal signal of covariance matrix. To generalize this

argument, we carry out a simulation with ASL and power for the third case in Table 2.1,

which is the case when the covariance matrices are different in their off diagonals. This

simulation is reproduced from those of Srivastava and Yanagihara (2010) with a slight

modification for the null and the alternative hypothesis as below.

H : Σ1 = Σ2 = (1− 0.5)I + 0.511T, (2.7)

A : Σ1 = 0.5I + 0.511′ and Σ2 = (δ − 0.3)I + 0.311T, (2.8)

where δ = {
∑p

i=1 δ
2
i /p}1/2. Following Srivastava and Yanagihara (2010), the ASL and the

attained power are defined as

α̂ =

∑Nsim
i=1 I(QH > χ2

1,α)

Nsim
, β̂ =

∑Nsim
i=1 I(QA > χ̂2

1,α)

Nsim
,

respectively, where Nsim is the number of replications, QH are the values of the test

statistic computed from data simulated under the null hypothesis, and χ2
1,α is the upper

100α percentile of the chi-square distribution with 1 degree of freedom. The QA are the

values of the test statistic computed from data simulated under the alternative hypothesis,

and χ̂2
1,α is the estimated upper 100α percentile from the empirical chi-square distribution

of QH.
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In our simulation, Nsim is 1000, α is set to 0.05, and p = 10, 40, 60, 100, 200 and ni

= 10, 20, 40, 60. The ASL and power for the three test statistics are calculated under

(2.7) and (2.8). The results are presented in Table 2.2. In ASL, T 2
K and Q2

K are showing

decent performance, converging to 0.05 as ni and p increase. Meanwhile, JK is supposed

to reach 0.025 in both the left and right tail under H0 by the two-tail test, but it is not

converging to 0.025 especially in the left tail. In power, the Q2
K is converging to 1 as ni

and p increase. The JK is also approaching to 1 although the convergence of JK is slower

than that of Q2
K . However, the T 2

K is not approaching to 1. Also note that the T 2
K test is

not robust for different covariance structures in Table 2.1. This weak power is because the

T 2
K test statistic only depends on the difference of tr(Σ2

1) and tr(Σ2
2), but there are many

different covariance matrices that have the same trace size. In conclusion, Q2
K shows the

best performance in both ASL and power while JK is not stable in ASL and T 2
K shows

weakness in power. Similar conclusions are derived when K > 2 as well.
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Table 2.2
Attained significance level (ASL) and power. For the Q2

K test statistic, the convergence of ASL to
0.05 is stable and the attained power tends to converge to 1 as both ni and p increase. Meanwhile,
the ASL of the JK is not converging to 0.025 especially in the left tail, and the attained power of

the T 2
K is not converging to 1.

ASL Power

K = 2 JK T 2
K Q2

K JK T 2
K Q2

K

p ni (L) (R)

20 10 0 0.0740 0.0250 0.2130 0.0270 0.0540 0.3690
20 20 0 0.0750 0.0260 0.0770 0.1350 0.0800 0.9450
20 40 0 0.0700 0.0380 0.0410 0.3840 0.0770 0.9980
20 60 0 0.0850 0.0460 0.0520 0.7110 0.0700 1.0000

40 10 0 0.0860 0.0240 0.1870 0.0290 0.0240 0.7660
40 20 0 0.0890 0.0360 0.0730 0.1340 0.0620 0.9960
40 40 0 0.0790 0.0400 0.0540 0.6680 0.0690 1.0000
40 60 0 0.0650 0.0260 0.0400 0.9870 0.0850 1.0000

60 10 0 0.0890 0.0160 0.1660 0.0410 0.0340 0.7610
60 20 0 0.0620 0.0250 0.0510 0.2000 0.0810 0.9980
60 40 0 0.0940 0.0390 0.0550 0.7650 0.0720 1.0000
60 60 0 0.0830 0.0460 0.0540 0.9890 0.0880 1.0000

100 10 0 0.0660 0.0130 0.1580 0.0350 0.0220 0.6180
100 20 0 0.0840 0.0320 0.0720 0.1350 0.0520 0.9960
100 40 0 0.0840 0.0430 0.0610 0.8290 0.0620 1.0000
100 60 0 0.1000 0.0510 0.0630 0.9830 0.0600 1.0000

200 10 0 0.0700 0.0110 0.1480 0.0050 0.0130 0.2090
200 20 0 0.0900 0.0470 0.0790 0.0510 0.0220 0.9530
200 40 0 0.0920 0.0410 0.0550 0.8100 0.0550 1.0000
200 60 0 0.0660 0.0330 0.0440 1.0000 0.0720 1.0000
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2.4 Batch Effect Removal by Covariance Adjustment

In this section we propose a novel batch effect removal method that adjusts the covariance

structure across batches. This method utilizes a factor model and a hard-thresholding idea

for the high dimensional covariance estimation, which are described in Section 2.4.2 and

2.4.3, respectively.

2.4.1 Multivariate Batch Adjustment

Let us assume an imaginary situation where batch effect does not exist, or that all cur-

rent and future data are from the same batch. Define the (unobservable) random vector of

gene expression values Y∗ = (Y ∗1 , . . . , Y
∗
p )T. The p-dimensional Y∗ is assumed to be from a

multivariate distribution with mean vector E(Y∗) = µ∗ and nonsingular covariance matrix

Var(Y∗) = Σ∗, where p is the number of genes. We also assume that Z = Σ∗−1/2(Y∗ − µ∗)

has E(Z) = 0 and Var(Z) = I, which is a common assumption in high dimensional analysis

(Ahn et al., 2007; Yata and Aoshima, 2010).

In a more realistic scenario, we observe array vectors Yij = (Yij1, . . . , Yijp)
T from batch i,

i = 1, . . . , K, j = 1, . . . , ni. We assume that each sample array from the ith batch follows a

multivariate distribution with mean vector E(Yij) = µi and nonsingular covariance matrix

Var(Yij) = Σi. Then we can express

Yij = Σ
1/2
i Zj + µi

= Σ
1/2
i (Σ∗−1/2(Y∗j − µ∗)) + µi

= Σ
1/2
i Σ∗−1/2Y∗j −Σ

1/2
i Σ∗−1/2µ∗ + µi

= fi(Y
∗
j ),

where a function fi represents the ith batch effect and Y∗j is a realization of Y∗. Thus, the

function fi is an affine transformation of the unobservable Y∗, i.e.,

fi(Y
∗) = AiY

∗ + bi,
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where Ai = Σ
1/2
i Σ∗−1/2 and bi = −Σ

1/2
i Σ∗−1/2µ∗ + µi. Now it can be seen that the batch

effect can be adjusted by applying the inverse function f−1i such that

f−1i (Y) = A−1i (Y − bi). (2.9)

Note that in this way we could adjust for the batch effect that possibly distorts inter-gene

relationship as well as mean and variance effect for individual genes.

Then the critical question is how to estimate the matrix A−1i = Σ∗1/2Σ
−1/2
i , which is

a function of the two population covariance matrices. Note that Σi = Σ∗ implies that the

covariance of ith batch is the same as the one under the assumption of no batch effect. It

is clear that in this case A−1i is identity, so there is no need to correct the multiplicative

effect in (2.9). In general, we need to suggest how to obtain the estimates of Σ̂
−1
i and Σ̂

∗
. It

is noted that using the usual sample covariance is not acceptable because of the singularity

from p > ni.

2.4.2 High Dimensional Covariance Estimation Based on Factor Model

Estimating high dimensional covariance matrices has been gaining much importance over

the recent years. The classical sample covariance estimator is not directly applicable to

many multivariate studies when the dimension is large relative to the sample size. According

to Bickel and Levina (2008b), most problems related to the high dimensional covariance

estimation can be solved by two main approaches. One is the estimation of eigenstructure of

the covariance matrix, which is useful for some extended research of the principal component

analysis. The other approach is the estimation of the inverse, usually called precision matrix,

which relates to linear discriminant analysis, regression, conditional independence analysis

in graphical model and many others.

We note that in the ideal batch adjustment suggested in the previous section, the multi-

plicative factor matrix A−1i has two components. The first part is related to the covariance

of the true batch, i.e., data without batch bias. The second component is the inverse of the

covariance of an observed batch. Therefore we need a unified framework under which both
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covariance and precision matrices are estimated. To achieve this goal, we employ the factor

model proposed by Fan et al. (2008).

One advantage of using the factor model is that gene categorization can be taken into

account, by assuming that the behaviors of the many numbers of observed variables are

determined by a much smaller number of “factors.” A common belief in gene expression

analysis is that there exist groups of genes within which the genes “act” together (Dettling

and Buehlmann, 2004; The Gene Ontology Consortium, 2008). There are a few different

approaches for defining factors for genes. Most commonly, one can use the Gene Ontology

(GO), grouping genes that belong to the same pathway. The so-called “gene set enrichment”

analysis (Efron and Tibshirani, 2007; Subramanian et al., 2005) is based on this approach.

A possible drawback is that at the current moment the pathway information is not complete

and can be inaccurate (Montaner et al., 2009). The DNA sequence information of the genes

can also be used to define factors, that is, the genes with similar DNA sequences are expected

to form a group (Claesson et al., 2009; Davey et al., 2007). This approach utilizes the evo-

lutionary information. Another approach is to use the data set at hand to create clusters of

the genes, using a clustering algorithm such as k-means. In this work, we use the pathway

approach, provided at http://go.princeton.edu/cgi-bin/GOTermMapper.

Under this presumption of factors, we briefly introduce the framework of the factor model.

The factor model is a multiple regression model on each gene expression level Yi, i = 1, . . . , p,

Yi = βi1X1 + · · ·+ βiqXq + εi, (2.10)

where X1, . . . , Xq are q known factors and βij, j = 1, . . . , q, are regression coefficients. Fol-

lowing Fan et al. (2008), let y = (Y1, . . . , Yp)
T, x = (X1, . . . , Xq)

T and e = (ε1, . . . , εp)
T, and

rewrite (2.10) in a matrix form

y = Bx + e. (2.11)

Note that B = {βij} is a p× q regression coefficient matrix. For microarray data, a random

vector y indicates p gene expression values for an individual subject. Each of p variables has
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a linear relationship with known q factors, denoted by a vector x. In this study, we utilize 21

categories of Gene Ontology as the q factors, and Xj represents the group mean of expression

values that belong to the jth category. We make the common assumption that E(e|x) = 0,

and cov(e|x) is diagonal (Fan et al., 2008).

Fan et al. (2008) estimated covariance of y based on (2.11). They define two data matrices

Y = [y1, . . . ,yn]p×n and X = [x1, . . . ,xn]q×n from n i.i.d sample of random vector y and x,

respectively. Then the least squares estimator of B in (2.11) is given by B̂ = YXT(XXT)−1.

Let Σ = cov(y) and Σ0 = cov(e|x). The estimation of the covariance matrix of y from n

samples can be derived from the model (2.11):

Σ̂ = B̂ĉov(x)B̂T + Σ̂0, (2.12)

where ĉov(x) is a q × q nonsingular sample covariance matrix from the given factor matrix

X. Lastly, Σ̂0 is obtained by diag(n−1ÊÊT) where Ê is the residual matrix, Y − B̂X. The

estimator Σ̂ in (2.12) is always invertible even when the dimension p exceeds n. Fan et al.

(2008) has shown that Σ̂
−1

performs better than the inverse of the sample covariance matrix

as (p, q, n)→∞; see Fan et al. (2008, 2011) for detailed discussions on the convergence rate

of the estimate.

Back to the batch problem, we can use the estimator in (2.12) for a covariance estimator

for each batch Σ̂i, i = 1, . . . , K. Another matrix to estimate, Σ̂
∗
, is the covariance of the

“true batch.” If one of the observed batches, say i∗th batch, can be regarded as close to the

true batch, one can use Σ̂i∗. This batch may have been produced under the best conditions.

Specifically, it may be that the facility that produced these measurements had the most

experience with the technology. The batch might show the best quality metrics, or the

best reproducibility on technical replicates, such as Strategene Universal Human Reference

samples. In this case the proposed adjustment method transforms the data so that all the

batches mimic the ideal batch.
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When it is difficult to pinpoint a better batch, we can pool the covariance estimates for

each batch as following

Σ̂
∗

=
(n1 − 1)Σ̂1 + · · ·+ (nK − 1)Σ̂K

n1 + · · ·+ nK −K
. (2.13)

Note that this assumes that Σ∗ is reasonably close to K−1
∑K

i=1 Σi.

2.4.3 Sparse Estimation through hard thresholding

In practice, the suggested covariance adjustment estimator Â−1i in the previous section can

induce a substantial amount of uncertainty since the estimation involves a multiplication of

high-dimensional covariance estimates, one of which is inverted. In high dimensional data

analysis, it is a common assumption that not all variables are signal variables. Thus some

degree of sparsity is usually imposed in the estimation process to achieve a more stable

estimator, especially when high dimensional covariance matrix is being estimated. See for

example Bickel and Levina (2008b), Friedman et al. (2008), and Cai and Liu (2011).

In this work we use a hard-thresholding idea (Bickel and Levina, 2008a; Shao et al., 2011),

i.e., entries that are smaller than some tuning parameter, say δ, in the estimated matrix are

forced to be zero. Let us define Â−1i (δ) to be a sparse estimate of A−1i by hard-thresholding

with an appropriately chosen δ, i.e., the (j, k)-th off-diagonal element ajk of A−1i is

ajk(δ) = ajkI(|ajk| > δ), j 6= k.

In order to choose δ, we consider similarity between covariances of the adjusted batches.

Let Si and Sδi be the sample covariance matrices of the ith batch before and after the adjust-

ment, respectively. Note that Sδi = Â−1i (δ)Si(Â
−1
i (δ))T. We propose to choose δ that makes

Sδi as similar to each other as possible. In particular, we consider the equal covariance test

statistic for high dimensional data proposed by Srivastava and Yanagihara (2010). Their test

statistic Q2
K is based on the difference between tr{(Sδi )2}/{tr(Sδi )}2 and tr{(Sδj)2}/{tr(Sδj)}2.

A smaller value of the test statistic indicates greater similarity of two population covariance
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matrices. This test is also applicable for comparison of more than two batches. The general

form of the Q2
K test statistic is given in Section 2.3.2.

Figure 2.7 displays the test statistic Q2
K for both the breast cancer data and the lung

cancer data in Section 2.7 for a range of δ̂. It can be seen that δ̂ = .02 and δ̂ = .03 are the

best choices for respective data sets. In Section 2.7, we separately choose the level of sparsity

for each batch. For computational efficiency, the search is performed around the common δ̂

found in Figure 2.7. As a result, δ̂ = (0.01, 0.03, 0.02) are used for the breast cancer data,

and δ̂ = (0.03, 0.02, 0.06, 0.05) for the lung cancer data.

0 0.05 0.1 0.15 0.2
0

5

10

15

20

25

30

35

δ

Q
k2  s

ta
tis

tic

0 0.05 0.1 0.15 0.2
0

20

40

60

80

100

δ

Q
k2  s

ta
tis

tic

(a) Breast cancer data (b) Lung cancer data

Figure 2.7. Change of the test statistic Q2
k over δ̂. The lowest value is obtained at δ̂ = .02 and

δ̂ = .03 in (a) and (b), respectively.

2.5 Theoretical Properties

In this section we study some theoretical properties of Â−1i = Σ̂
∗1/2

Σ̂
−1/2
i , i = 1, . . . , K,

with growing dimensionality (p), number of factors (q), and sample size (ni). The rate of

convergence is studied in terms of Frobenius norm. For any matrix C = {cij}, its Frobenius

norm is given by

‖C‖ =

(
m∑
i=1

n∑
j=1

|cij|2
)1/2

= {tr(CCT)}1/2.

For the sake of simplicity, we impose the same set of assumptions for each batch so that

we can omit the subscript i when discussing the estimation of Σ̂i. Also we assume that
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the sample size ni is all equal to n for all batches. In the following, we repeat some basic

assumptions in Fan et al. (2008) for readers. Let bn = E‖y‖2, cn = max1≤i≤q E(X4
i ), and

dn = max1≤i≤p E(ε4i ).

(i) (y1,x1), . . . , (yn,xn) are i.i.d samples of (y,x). E(e|x) = 0 and cov(e|x) = Σ0 is

diagonal. Also the distribution of x is continuous and the number of factor q is less

than dimension p.

(ii) bn = O(p) and the sequences cn and dn are bounded. Also, there exists a constant

σ1 > 0 such that λq(cov(x)) ≥ σ1 for all n.

(iii) There exists a constant σ2 > 0 such that λp(Σ0) ≥ σ2 for all n.

In this paper we further assume that

(iv) Denote the eigenvector and the corresponding eigenvalue of Σ as (uj, λj), and those of

Σ̂’s as (ûj, λ̂j), j = 1, . . . , p. The conditional expectation E(ûjû
T
j | λ̂j) = uju

T
j for all

j, and P{
∑p

j=1(λ̂j − λj)2 ≥
∑p

j=1(λ̂
1/2
j − λ

1/2
j )2} = 1.

Note that the last assumption, which can be re-written as
∑p

j=1 λ̂j(λ̂j−1) +λj(λj−1)−

2λ̂
1/2
j λ

1/2
j (λ̂

1/2
j λ

1/2
j − 1) ≥ 0, is easily met in general unless most eigenvalues are less than

one. In what follows we list our theoretical findings as well as the proofs.

Lemma 1 (Convergence rate for pooled covariance matrix). Under the assumptions (i) and

(ii), we have

‖Σ̂
∗
−Σ∗‖ = Op(n

−1/2pq).

Proof of Lemma 1. Suppose that we use the pooled covariance for the ideal batch and the

number of batch K is finite.

‖Σ̂
∗
−Σ∗‖ = ‖

{(n− 1)Σ̂1 + (n− 1)Σ̂2 + · · ·+ (n− 1)Σ̂K

(Kn−K)

}
−
{Σ1 + Σ2 + · · ·+ ΣK

K

}
‖

=
1

K
‖
(
Σ̂1 −Σ1

)
+
(
Σ̂2 −Σ2

)
+ · · ·+

(
Σ̂K −ΣK

)
‖
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≤ 1

K

K∑
i=1

‖Σ̂i −Σi‖

= Op(n
−1/2pq).

The proof of ‖Σ̂−Σ‖ = Op(n
−1/2pq) has been shown in Fan et al. (2008).

Lemma 2 (Inequality for the rates of convergence). Under the assumptions (i), (ii) and

(iv), we have

E‖Σ̂
1/2
−Σ1/2‖2 ≤ E‖Σ̂−Σ‖2.

Proof of Lemma 2.

E‖Σ̂
1/2
−Σ1/2‖2 = Etr(Σ̂

1/2
−Σ1/2)2

= Etr(Σ̂ + Σ− 2Σ̂
1/2

Σ1/2
)

= E
{
tr(Λ̂) + tr(Λ)− 2tr(ÛΛ̂1/2ÛTUΛ1/2UT)

}
,

where U = [u1, . . . ,up]p×p and Λ = diag(λ1, . . . , λp). From the condition (iv), we know that

E(ûiû
T
i | λ̂i) = uiu

T
i . Then we show that

Etr(ÛΛ̂1/2ÛTUΛ1/2UT)

= Etr{(Λ̂1/2ÛTU)(Λ1/2UTÛ)}

= E{
∑p

i=1(û
T
i ui)

2λ̂
1/2
i λ

1/2
i +

∑p
i 6=j(û

T
i uj)

2λ̂
1/2
i λ

1/2
j }

= E{
∑p

i=1(u
T
i ûi)(û

T
i ui)λ̂

1/2
i λ

1/2
i +

∑p
i 6=j(u

T
j ûi)(û

T
i uj)λ̂

1/2
i λ

1/2
j }

= E{
∑p

i=1 uT
i E(ûiû

T
i | λ̂i)uiλ̂

1/2
i λ

1/2
i +

∑p
i 6=j uT

j E(ûiû
T
i | λ̂i)ujλ̂

1/2
i λ

1/2
j }

= E{
∑p

i=1(u
T
i ui)

2λ̂
1/2
i λ

1/2
i +

∑p
i 6=j(u

T
i uj)

2λ̂
1/2
i λ

1/2
j }

= E
(∑p

i=1 λ̂
1/2
i λ

1/2
i

)
.

Similarly, we can show that Etr(ÛΛ̂ÛTUΛUT) = E(
∑p

i=1 λ̂iλi). Note that tr(Λ) =
∑p

i=1 λi.

Therefore, we compare two equations

E‖Σ̂
1/2
−Σ1/2‖2 − E‖Σ̂−Σ‖2
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= E
{∑p

i=1 λ̂i +
∑p

i=1 λi − 2
∑p

i=1 λ̂
1/2
i λ

1/2
i

}
− E

{∑p
i=1 λ̂

2
i +

∑p
i=1 λ

2
i − 2

∑p
i=1 λ̂iλi

}
= E

{∑p
i=1(λ̂

1/2
i − λ

1/2
i )2 −

∑p
i=1(λ̂i − λi)2

}
≤ 0,

under the condition (iv).

Lemma 3 (Convergence rate for the inverse of square root covariance estimator). Suppose

that q = O(nα1) and p = O(nα) where α1, α ≥ 0. Under the assumptions (i)–(iv), we have

‖Σ̂
−1/2
−Σ−1/2‖ = op

(
(p3q4 log(n)/n)1/2

)
.

Proof of Lemma 3. The basic idea is the same as the proof of Theorem 3 in Fan et al. (2008),

which showed the weak convergence of Σ̂
−1

. We also follow the same steps for Σ̂
−1/2

. Firstly,

in Fan et al. (2008), they applied Sherman-Morrison-Woodbury formular in (2.12) to get

Σ̂
−1

= Σ̂
−1
0 − Σ̂

−1
0 B̂

[
ĉov(x)−1 + B̂TΣ̂

−1
0 B̂

]−1
B̂TΣ̂

−1
0 . (2.14)

Here we modify (2.14) by multiplying Σ̂
1/2

to both sides, and we will get

Σ̂
−1/2

= Σ̂
−1
0 Σ̂

1/2
− Σ̂

−1
0 B̂

[
ĉov(x)−1 + B̂TΣ̂

−1
0 B̂

]−1
B̂TΣ̂

−1
0 Σ̂

1/2
.

Secondly, like Fan et al. (2008), we evaluate the estimation error of each term of Σ̂
−1/2

as

below

‖Σ̂
−1/2
−Σ−1/2‖ ≤ ‖Σ̂

−1
0 Σ̂

1/2
−Σ−10 Σ1/2‖

+ ‖
(
Σ̂
−1
0 −Σ−10

)
B̂
[
ĉov(x)−1 + B̂TΣ̂

−1
0 B̂

]−1
B̂TΣ̂

−1
0 Σ̂

1/2
‖

+ ‖Σ−10 B̂
[
ĉov(x)−1 + B̂TΣ̂

−1
0 B̂

]−1
B̂T
(
Σ̂
−1
0 Σ̂

1/2
−Σ−10 Σ1/2

)
‖

+ ‖Σ−10

(
B̂−B

)[
ĉov(x)−1 + B̂TΣ̂

−1
0 B̂

]−1
B̂TΣ−10 Σ1/2‖

+ ‖Σ−10 B
[
ĉov(x)−1 + B̂TΣ̂

−1
0 B̂

]−1(
B̂T −BT

)
Σ−10 Σ1/2‖

+ ‖Σ−10 B
{[

ĉov(x)−1 + B̂TΣ̂
−1
0 B̂

]−1 − [cov(x)−1 + BTΣ−10 B
]−1}

BTΣ−10 Σ1/2‖

=̂ H1 +H2 +H3 +H4 +H5 +H6.
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Examining each of H1 to H6 is quite tedious, and many details are identical to Fan et al.

(2006, 2008), so here we only provide some additional proofs with the outline of the remains.

Let us look at the first term H1.

H1 = ‖Σ̂
−1
0 Σ̂

1/2
−Σ−10 Σ1/2‖

= ‖Σ̂
−1
0 Σ̂

1/2
−Σ−10 Σ̂

1/2
+ Σ−10 Σ̂

1/2
−Σ−10 Σ1/2‖

≤ ‖Σ̂
−1
0 −Σ−10 ‖‖Σ̂

1/2
‖+ ‖Σ−10 (Σ̂

1/2
−Σ1/2)‖

= Op(n
−1/2p1/2)Op(p

1/2q1/2) + J1

= Op(n
−1/2pq). (2.15)

‖Σ̂
−1
0 −Σ−10 ‖ is given in Fan et al. (2008). To check ‖Σ̂

1/2
‖ = Op(p

1/2q1/2), we consider an

ideal situation in (2.11). We have q factors X1, . . . , Xq, and each factor has an equal variance,

i.e., σ2 = var(Xj) for all j, as well as the factors are independent each other. Thus let us say

cov(x) = σ2Iq. Also assume that the factor loadings are all equal over the response variable

Yi, i = 1, . . . , p; for example let B = [1, . . . ,1]p×q. In addition we suppose that cov(e|x) = Ip.

Then (2.12) is

Σ̂ = σ̂2q11T + Ip.

We now have that E‖Σ̂
1/2
‖2 = Etr(Σ̂) = trE(σ̂2q11T+Ip) = tr(σ2q11T)+tr(Ip). It turns out

to be the sum of eigenvalues. Therefore, E‖Σ̂
1/2
‖2 = σ2qp + p = O(qp). Lastly, we consider

the term J1. From Lemma 2, we see that ‖Σ̂
1/2
−Σ1/2‖ = Op(n

−1/2pq). Also note that from

the assumption (iii), we know that Σ0 is diagonal in which entries are a positive constant.

Thus, we have

J1 = Op(n
−1/2pq).

Next, we look at the second term H2.

H2 = ‖
(
Σ̂
−1
0 −Σ−10

)
B̂
[
ĉov(x)−1 + B̂TΣ̂

−1
0 B̂

]−1
B̂TΣ̂

−1
0 Σ̂

1/2
‖

≤ ‖
(
Σ̂
−1
0 −Σ−10

)
Σ̂

1/2

0 ‖‖Σ̂
−1/2
0 B̂

[
ĉov(x)−1 + B̂TΣ̂

−1
0 B̂

]−1
B̂TΣ̂

−1/2
0 ‖‖Σ̂

−1/2
0 Σ̂

1/2
‖

=̂ L1L2L3
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= Op(n
−1/2pq). (2.16)

L1 and L2 have been proved in Fan et al. (2008). There is some change in the term L3, but

it contains the same calculation as in H1. Thus, the result above is combined from

L1 = Op(n
−1/2p1/2), L2 = O(q1/2), and L3 = Op(p

1/2q1/2).

Here we notice that both term H1 and H2 will approach zero as n → ∞ since p3/2q =

o((n/log(n))1/2). This fact relies on the range of α1 and α from our initial assumption p =

O(nα) and q = O(nα1). In other words, n−β/2 consistency is obtained when β = 1−3α−2α1 ≥

0. Similar argument about the range of α1 and α can be found in Theorem 2 in Fan et al.

(2008). Similarly, we can bound H3

H3 = ‖Σ−10 B̂
[
ĉov(x)−1 + B̂TΣ̂

−1
0 B̂

]−1
B̂T
(
Σ̂
−1
0 Σ̂

1/2
−Σ−10 Σ1/2

)
‖

≤ ‖Σ−1/20 ‖‖Σ−1/20 B̂
[
ĉov(x)−1 + B̂TΣ̂

−1
0 B̂

]−1
B̂TΣ

−1/2
0 ‖‖Σ1/2

0

(
Σ̂
−1
0 Σ̂

1/2
−Σ−10 Σ1/2

)
‖

= O(p1/2)O(q1/2)op((n/log(n))−1/2pq)

= op((n/log(n))−1/2p3/2q3/2). (2.17)

Finally, we consider terms H4, H5 and H6. All of these terms have a slight modification in

Fan et al. (2008) by the term ‖Σ1/2‖.

H4 = Op(n
−1/2p3/2q), H5 = Op(n

−1/2p3/2q) and H6 = op((n/log(n))−1/2p3/2q2). (2.18)

In conclusion, the next result follows from (2.15) - (2.18) that

√
np−3q−4/log(n) ‖Σ̂

−1/2
−Σ−1/2‖ P−→ 0 as n→∞.

In Lemma 1, the convergence rate of pooled covariance estimator is determined by the

term n−1/2pq. Note that this rate is the same for the individual covariance estimator Σ̂i, as

shown Fan et al. (2008). From Lemma 2, the convergence rate of Σ̂
1/2

is bounded by that

of Σ̂. Furthermore, in Lemma 3, we show the weak convergence of the estimator Σ̂
−1/2

as
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(p, q, n)→∞. Note that p and q increase as n increases, thus the impact of dimensionality

can considerably slow down the convergence rate. The idea of Lemma 3 is originated from Fan

et al. (2008), who obtained the convergence rate of Σ̂
−1

. In a comparison to the convergence

rate for Σ̂
−1

: ‖Σ̂
−1
− Σ−1‖ = op{(p2q4 log(n)/n)1/2}, it can be seen that Σ̂

−1/2
converges

slightly slower than Σ̂
−1

by the order of p1/2. From Lemma 1, 2 and 3 above, the next

theorem follows.

Theorem 1 (Convergence rate for the covariance adjustment estimator). Under assumptions

(i)–(iv), we have

‖Σ̂
∗1/2

Σ̂
−1/2
i −Σ∗1/2Σ

−1/2
i ‖ = op

(
(p4q5log(n)/n)1/2

)
.

Proof of Theorem 1. For easy notation, let A = Σ∗1/2, Â = Σ̂
∗1/2

, B = Σ
−1/2
i and B̂ =

Σ̂
−1/2
i and consider the following problem

‖ÂB̂−AB‖ = ‖ÂB̂− ÂB + ÂB−AB‖

= ‖Â(B̂−B) + (Â−A)B‖

≤ ‖Â‖‖B̂−B‖+ ‖Â−A‖‖B‖.

We need to examine each of the four terms. Note that ‖Â‖ = ‖Σ̂
∗1/2
‖ = ‖Σ̂

1/2
‖ =

Op(p
1/2q1/2) when ni = n, and also we know that ‖Σ−1/2‖ = O(p1/2) from the assump-

tion (iii). Furthermore, by Lemmas 1 and 2,

‖Â−A‖ = ‖Σ̂
∗1/2
−Σ∗1/2‖ = Op(n

−1/2pq).

Combining the result of ‖B̂−B‖ in Lemma 3,

‖ÂB̂−AB‖ = Op(p
1/2q1/2)op{(p3q4log(n)/n)1/2}+Op(n

−1/2pq)O(p1/2).

Since p3/2q = o((n/log(n))1/2), we therefore have the following result

√
np−4q−5/log(n) ‖Σ̂

∗1/2
Σ̂
−1/2
i −Σ∗1/2Σ

−1/2
i ‖ P−→ 0 as n→∞.
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The following corollary shows that the after-adjustment covariance estimator has the

same convergence rate as the pooled estimator Σ̂
∗
.

Corollary 1. Under the same conditions as in Theorem 1, we have

‖ĉov(Y∗i )−Σ∗‖ = Op(n
−1/2pq),

where Y∗i is the adjusted data in the ith batch.

Proof of Corollary1. We denote the adjusted data in each batch as Y∗i = Σ̂
∗1/2

Σ̂
−1/2
i (Yi−b̂i)

in (2.9) Thus, we have

‖ĉov(Y∗i )−Σ∗‖ = ‖Σ̂
∗1/2

Σ̂
−1/2
i ĉov(Yi)Σ̂

−1/2
i Σ̂

∗1/2
−Σ∗‖

= ‖Σ̂
∗1/2

Σ̂
−1/2
i Σ̂iΣ̂

−1/2
i Σ̂

∗1/2
−Σ∗‖

= ‖Σ̂
∗
−Σ∗‖

= Op(n
−1/2pq)

by Lemma 1.

Theorem 1 shows that the dimensionality p2q5/2 slows down the convergence rate of

Σ̂
∗1/2

Σ̂
−1/2
i as n → ∞. Suppose both the dimension p and the number of factor q is a

fixed small number, then the estimator is slightly slower than Σ̂
−1/2
i in Lemma 3. But its

performance becomes considerably slower when q increases along with p. In Corollary 1, the

convergence rate of ĉov(Y∗i ) is determined by the order of pq, and this rate is the same as

that of Σ̂i. Therefore the covariance estimator after batch adjustment achieves the same

performance as before batch adjustment. Corollary 1 is the expected consequence due to the

fact that ĉov(Y∗i ) pursuits to be Σ̂
∗

in order to obtain the homogeneity of covariances among

batches.

2.6 Simulation Study

In this section, we carry out some simulations to see the performance of the proposed method

as well as other existing methods. As the first step, we generate two heterogeneous data
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sets in both location and covariance. Then, six methods are attempted to adjust two data

sets to make them homogeneous. The methods are mean-centering (MC), distance-weighted

discrimination (DWD) method, standardization (Z-score), empirical Bayes (EB) method,

cross-platform normalization (XPN) and our proposed multi-batch covariance adjustment

(MBCA) method. We also add MBCA(B1) and MBCA(B2), which consider adjusting data

with a target batch 1 and 2, respectively.

For the evaluation of the successful adjustment, we investigate data similarity in various

aspects. The evaluation items are some graphical measures, the test for the equal covariance

(Q2
2), average distance of nearest samples between batch, comparison of within-batch pair

distance versus between-batch pair distance.

2.6.1 Simulation Data

Let us fix the number of batch K = 2, dimension p = 800, and sample size ni = 50

(i = 1, 2). Data sets are generated from two normal populations. Let us define data matrices

Y1 = [y11, . . . ,y1n](p×n1) and Y2 = [y21, . . . ,y2n](p×n2), where yij is a p-dimensional data

vector j for batch i. In other words,

y1j ∼ Np(µ1,Σ1), j = 1, . . . , n1 ,

y2j ∼ Np(µ2,Σ2), j = 1, . . . , n2 .

Here µ1 is a p-dimensional mean vector, and the p elements are randomly generated from

unif(0, 1.4). Similarly, µ2’s elements are generated from unif(−1.4, 0). For the covariance,

Σi (i = 1, 2) is determined by UiDiU
T
i , where Ui is a p × p random orthonormal matrix

and Di is a diagonal matrix that contains eigenvalues. The diagonal elements of D1 are set

to px−1/3, x = 1, . . . , p, and the diagonal elements of D2 are set to p exp(−0.042x)/6. In

Figure 2.8, two sets of diagonal elements (eigenvalues) are displayed on the range [1,100] of

dimension. D1 is decreasing in polynomial order and D2 is exponentially decreasing.

41



0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

dimension

ei
ge

nv
al

ue
s

 

 

D
1

D
2

Figure 2.8. Eigenvalues of two population covariance matrices in the simulation setting.

For example, two generated data sets are displayed by the principal components in Figure

2.9. Since we intended to generate heterogeneous data, it appears that two sample batches

are different in both location and dispersion.
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Figure 2.9. PC scatter plot of two sample batches under our simulation settings. We can see the
data sets are different in both location and shape.

For the simulated data sets above, we apply several batch adjustment methods to create

a homogeneous data set. For our method MBCA, the factor matrix Xi (i = 1, 2), which is a

k × ni matrix where k < p, is needed corresponding to the data matrix Yi (i = 1, 2). The

k-means clustering is used to construct the factor matrix with k = 5. In real data analysis

one can utilize an important factor information if any such as gene pathway for microarray

data. For applying the EB and XPN, the software from http://www.bioconductor.org and
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their providing software are used under their default setting. These simulations are repeated

one hundred times (Nsim = 100). The results are following.

2.6.2 Simulation Results

a. Eigenvalues

The similarity of eigenvalues is observed after batch adjustment across methods. In Figure

2.10, coincidence of two eigenvalue curves indicates similarity of data sets. For MC and

DWD, the eigenvalues do not change from the Before. It is not surprising because those

two methods correct only the mean difference but not the variance-covariance. Meanwhile,

Z-score, EB and XPN adjust the variance of data sets, leading to some change in eigenvalue

structure. Although the eigenvalue curves come to similar as dimension increases, these

are not quite similar in the first few PC directions. In MBCA, MBCA(B1), two eigenvalue

curves show the best similarity.
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Figure 2.10. Eigenvalues after batch adjustment across methods. Coincidence of two eigenvalue
curves indicates similarity of data sets. Among seven methods, our proposed method shows the
best similarity.

b. Principal component scatter plot

The principal component (PC) scatter plot is widely used in many statistical analysis.

Unlike the usual scatter plot which displays data based on canonical basis, the PC plot

43



projects data onto the space spanned by eigenvectors (also called principal component

direction vectors). This makes it possible that one investigates only a few direction vectors

in order to understand the feature of data. Due to its dimensional efficiency, using the

principal components is almost essential in high dimensional data analysis.

In this work we use the PC scatter plot to see the data homogeneity after the adjustment.

In the previous Figure 2.9, we could see the dissimilarity of the two data sets. After the

batch adjustment, it is expected that the two data sets are homogeneous. In Figure 2.11,

adjusted data by different methods are shown on the first two PC directions. Although

PC1 and 2 contain limited information, these are still useful to see the adjusted results.

For instance, the MC and DWD adjust the location of samples but not the shape. Other

methods adjust the variance and therefore show well-mixed shape compared to the MC

and DWD. Among these, XPN, MBCA and MBCA(B1) are better in the homogeneity of

the two batches than Z-score and EB method.
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Figure 2.11. PC scatter plot after adjustment across methods. the MC and DWD adjust the
location of samples but not the shape. Other methods adjust the variance and thus show well-
mixed shape compared to the MC and DWD.

But note that this criterion provides limited knowledge about data feature since a few

principal components explain only partial variance of whole data. In some case, Z-score,
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EB, XPN, and MBCA produce indistinguishably similar results in the PC plot. In other

case, PC3 and 4 provide more useful information. Therefore, we only use this PC plot

to gain general idea before and after adjustment. To reach more reliable conclusion, we

further investigate numerical measurements based on repetitions.

c. Equal covariance test (Q2
2)

The adjusted data sets can be tested in the equality of covariance matrices, using Q2
2

statistic. The Q2
K statistic is proposed by Srivastava and Yanagihara (2010) to test the

equality for K high dimensional covariance matrices. For the null hypothesis of equal

covariance, small p-value indicates dissimilarity of covariances. After adjustment, it is

expected to have higher p-values indicating that data sets are similar in terms of covari-

ance. In Figure 2.12, the Before has the small p-values, which is intended from the initial

simulation setting. During 100 iterations, the MC and DWD do not change the p-values

meaning that these methods do not alter the covariance. Meanwhile, Z-score, EB and

XPN methods adjust the covariance in a small range. However, in fact, if our rejection

criterion is 0.1, the covariance equality is not guaranteed in these methods. On the other

hand, the MBCA, MBCA(B1) and MBCA(B2) achieve the higher p-values during all

iterations meaning that our proposed method successfully adjusts the covariance.

d. Average distance of nearest samples between batch

Another way to measure the similarity of data sets can be using the pairwise L2 distances

between arrays after adjustment. As similarly done by Shabalin et al. (2008), we calculate

the distance of an array in one batch to the nearest sample in another batch. At first, we

standardize the whole data before calculating the distances for the sake of fair comparison

across methods. Once the calculation of the distance is done for all samples in one batch,

the same thing is repeated for the other batch. Then we average the distances that are

produced from both batches. After batch adjustment, it is expected that the nearest

sample distance becomes smaller than the Before. In Figure 2.13-(a), during 100 iterations,

the average distances of nearest samples between batch are declined by all methods. In
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Figure 2.12. Equal covariance test (Q2
2) after adjustment across the methods. Higher p-values,

e.g., over 0.1 significant level, indicates that the adjustment achieves the similarity of data sets in
terms of covariance. During 100 simulations, the MC and DWD do not change the p-values. Our
proposed method achieves the higher p-values compared to other methods.

particular, the MBCA method reduces the distances close to the baseline, which is referred

from 2.13-(b). The baseline is calculated by the same way of (a) except the fact that two

data groups are from random split within batch. This split is repeated 10 times in each

batch. The baseline drawn in (a) and (b) are from the median of the 100 baselines from the

Before. In comparison to the baseline, the proposed method shows the best performance.

e. Within batch pair distance versus between batch pair distance

We compare the distribution of the pairwise distances between samples in the same batch

with those in different batches. Note that we standardize the whole data before calculating

the distances. In each panel of Figure 2.14, we overlay two estimated density curves

of pairwise distances, which are from within and between batches, respectively for a

simulated data. Coincidence of two density curves indicates similarity of the data sets.

MC and DWD change the location of two density curves but not the shape of the density.
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(a) Average distance of nearest samples between batch
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(b) Baseline: the distance from random split within batch

Figure 2.13. Average distance of nearest samples between batch. After batch adjustment, it
is expected to decrease the nearest sample distance. In (a), during 100 iterations, the distances
are declined by all methods. In particular, the MBCA method reduces the distances close to the
baseline. The baseline is calculated based on random split within batch.

Note that the DWD sometimes shows incomplete mean-centering since it only shifts the

data sets in a selected direction; see Proposition 1 in Section 2.2.5. The other methods
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show better coincidence of two density curves than MC and DWD. In particular, it can

be seen that MBCA has the most similar density curves.
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Figure 2.14. Estimated density curves of within and between batch pairwise distances in the
simulated data. Coincidence of two density curves indicates similarity of the data sets. Kullback-
Leibler (KL) divergence in the left-up corner measures the difference between two density curve.

Furthermore in order to compare the methods numerically, we calculate the absolute

difference between the areas under each density curve. After successful batch adjustment,

the difference of the areas will be small since the two density curves be more coincident.

The results are shown in Figure 2.15-(a). All methods decrease the area between two

density curves. Rather than MC and DWD, the other methods considerably reduce the

the area. Similarly, we calculate Kullback-Leibler (KL) divergence, which also measures

the difference between two density curve. The KL divergence is a nonsymmetric measure

of the difference between two probability distribution. Let us say P is a true probability

and Q is an approximate probability. The KL divergence of Q from P is defined by

KL(P‖Q) =

∫ ∞
−∞

ln

(
p(x)

q(x)

)
p(x) dx.

We first set the distribution of within batch pair distance as P and the distribution of

between batch pair distance as Q and change the role of P and Q, then two KL values are

averaged. Figure 2.15-(b) shows box plots of the log divergence values from 100 repetitions.
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The last three box plots, the original MBCA and the two targeted versions, are the lowest,

indicating that the batches are merged well.
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(a) Absolute difference between the areas under each density curve.
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(b) Kullback-Leibler (KL) divergence.

Figure 2.15. Difference between two density curves in Figure 2.14. In (a), absolute difference
between the areas under each density curve is computed for 100 repetitions. In (b), log Kullback-
Leibler divergence is calculated. Smaller value indicates the similarity of two density curves, there-
fore indicating successful adjustment.
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2.7 Real Data Analysis

2.7.1 Data

We use two cancer microarray gene expression data sets: Breast cancer data and Lung cancer

data. Originally two data sets have 22,283 genes, and this number is down to 12,526 genes

by averaging the replicates that are identified by the UniGene cluster. Then we select 4,364

genes that are assigned by Gene Ontology (GO); mapping of the GO annotations for genes

can be found at http://go.princeton.edu/cgi-bin/GOTermMapper.

The breast cancer data set consists of three batches that were independently collected in

various places in Europe at different times. All three batches were preprocessed by MAS5.0

for Affymetrix U133a GeneChip. The data are available at the http://www.ncbi.nlm.nih.gov/

projects/geo/ with the GEO accession number : GSE2034, GSE4922 and GSE7390. As for the

biological signal, we have a estrogen status (ER+, ER−) for each subject. A brief summary

of the three batches is shown in Table 2.3.

Four batches in the lung cancer data set were collected at four different laboratories:

Moffitt Cancer Center (HLM), University of Michigan Cancer Center (UM), the Dana-Farber

Cancer Institute (CAN/DF), and Memorial Sloan-Kettering Cancer Center (MSK). These

four institutes formed a consortium with the US National Cancer Institute to develop and

validate gene expression signatures of lung adenocarcinomas. This experiment was designed

to characterize the performance of several prognostic models across different subjects and

different laboratories. A relevant study has been published by Shedden et al. (2008). The CEL

files are available at http://caarraydb.nci.nih.gov/caarray/. The data sets for our analysis

are preprocessed by the robust multi-array average (RMA) method. As for the biological

signal, we use overall survival status (dead, alive) reported at last follow-up time. Table 2.3

displays a brief summary of the data.
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Table 2.3
A brief summary of the two gene expression data sets.

Breast cancer data Lung cancer data
Batch Sample size ER− ER+ Batch Sample size Live Die

GSE2034 286 77 209 HLM 79 19 60
GSE4922 245 34 211 UM 178 76 102
GSE7379 198 64 134 CAN/DF 82 47 35

MSK 104 65 39

2.7.2 Comparison of Methods

In this section we compare the proposed multi-batch covariance adjustment (MBCA)

approach with several other existing methods including mean-centering (MC), distance

weighted discrimination (DWD), standardization, the empirical Bayes (EB) and the cross-

platform normalization (XPN) methods. The criteria that we use for comparison are homo-

geneity of covariance, cross-batch prediction performance, pairwise distances for between-

batch samples and within-batch samples, correlation of t-statistics and a preservation score

of important genes.

a. Homogeneity of Covariance

We measure the inter-batch homogeneity in terms of their covariance matrices. Note that

most methods adjust for the means so the adjusted batch means are equal. We obtained

p-values based on the Q2
k test statistic (H0 : Σ1 = · · · = ΣK) discussed in Section 2.3.2.

A higher p-value indicates greater similarity of covariance matrices among batches. Table

2.4 shows the results for both data sets. As expected from the proposition 1, the MC and

DWD methods yield the same p-value before and after adjustment. Meanwhile, the EB,

XPN and MBCA have higher p-values, which indicates these methods alter covariances

and homogenize them among batches. The proposed MBCA method has the highest

p-value. The results for the lung cancer data sets also suggest a similar conclusion. In

particular, the sample standardization has the p-value (0.0002) that is smaller than the
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before p-value (0.0456), which indicates that the gene-wise approach can even make the

batches more dissimilar. We acknowledge that our method is designed to achieve the

best covariance similarity as much as possible, so this criterion alone does not necessarily

justify the superior performance. However, it is still useful to see how other methods

measure up one another.

The p-values of the EB, XPN, and MBCA methods in Table 2.4 suggest that for both

data sets the methods transform the batches in such a way that they have a common

covariance. However, this does not necessarily imply that the adjusted data by the three

methods indeed have the identical covariance. In Table 2.5, we have results from pairwise

tests for the equality of covariance matrices produced by each method. We can see that

the three methods homogenize the covariances differently; while the EB and XPN are

similar each other, both are different from the MBCA.

Table 2.4
Comparison of test statistics for equality of covariance and corresponding p-values. Higher

p-values indicate greater similarity of covariance matrices among the batches.

Breast cancer data Lung cancer data
Method Q2

K p-value Q2
K p-value

Before 7.7697 0.0206 8.0182 0.0456
MC 7.7697 0.0206 8.0182 0.0456
DWD 7.7697 0.0206 8.0182 0.0456
Z-score 4.8767 0.0873 19.4446 0.0002
EB 0.7093 0.7014 3.3300 0.3435
XPN 0.2802 0.8693 1.8651 0.6009
MBCA 0.2421 0.8860 0.1585 0.9840

Table 2.5
Pairwise covariance-equality test for different methods.

Breast cancer data Lung cancer data
Method Q2

K p-value Q2
K p-value

MBCA vs. EB 10.9304 0.0009 8.0243 0.0046
MBCA vs. XPN 14.6737 0.0001 2.3989 0.0004
EB vs.XPN 0.2734 0.6011 0.4285 0.5127
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b. Target Batch Consideration

As discussed in Section 2.4.2, the proposed MBCA is able to transform the batches to

resemble an “ideal” batch. For the data sets analyzed in this section, there is no known

ideal batch to target at. Therefore we set each batch as the target batch and compare

the covariance homogeneity between the target and the other batches (H0 : Σi = Σ(−i),

where i is the target batch and Σ(−i) is the common covariance of all the other batches)

in Table 2.6. It is not surprising that MBCA successfully makes the whole data mimic

the target batch each time. From the table, on the other hand, it is observed that few

hypotheses are rejected for EB and XPN. For example, for the breast cancer data, XPN

yields batches 1 and 3 that are different from batch 2 (p-value = 0.0069), and for the

lung cancer data, EB yields batches 1, 2, and 4 that are different from batch 3 (p-value

= .0011). Furthermore, relatively low p-values of batch 3 in the lung cancer data may

indicate that this batch is more difficult to be homogenized with others. This finding is

also supported by Shedden et al. (2008), where arrays from batch 3 were found to cluster

separately from the other batches, perhaps related to the observation that these arrays

were also dimmer; this difference could reflect a departure from protocol or a technical

issue with the batch.

c. Cross-batch Prediction

Since the batch bias usually interferes with the biological signal, a successful adjust-

ment can improve separability of the biological classes, making a classifier produce better

prediction performance. However, one should use caution when using the strengthened

biological signal as a criterion for a successful batch effect adjustment. If the adjustment

is overly done, it may force the data to be spuriously more separable than what the under-

lying population can allow. A method that uses the biological signal in the adjustment

process, such as the EB method, can be prone to this problem.

In this dissertation, rather than the performance itself, we use cross-batch prediction, i.e.,

we see if one can build a classification rule based on one batch, that can be effectively
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Table 2.6
Equal covariance test after adjusting data for a target batch.

Breast cancer data Lung cancer data
Batch 1 vs. Others Q2

K p-value Q2
K p-value

MBCA(B1) 0.0553 0.8141 0.2697 0.6036
EB 0.8670 0.3518 0.6437 0.4224
XPN 2.4537 0.1172 0.1310 0.7174
Batch 2 vs. Others Q2

K p-value Q2
K p-value

MBCA(B2) 0.0611 0.8047 0.1239 0.7249
EB 5.5035 0.0190 1.2084 0.2717
XPN 7.2880 0.0069 3.1155 0.0776
Batch 3 vs. Others Q2

K p-value Q2
K p-value

MBCA(B3) 1.1364 0.2864 0.6530 0.4191
EB 1.4948 0.2215 6.3813 0.0115
XPN 0.5219 0.4700 10.6768 0.0011
Batch 4 vs. Others - - Q2

K p-value
MBCA(B4) - - 0.2609 0.6081
EB - - 6.7489 0.0094
XPN - - 7.5614 0.0060

applied to other batches. If the adjustment is reasonable, we expect that prediction per-

formance of a classifier would be similar from batch to batch. As for the classification

method, we choose the regularized linear discriminant analysis Guo et al. (2005), because

of its known superior performance for high dimensional data such as gene expression.

Since each batch can have different proportions of biological signals, we use Matthews

correlation coefficient (MCC), which is known to be useful for unbalanced sample sizes

(Luo et al., 2010), to measure prediction performance.

For the breast cancer data, we use two batches as training data to determine the discrim-

ination rule, with which the tuning parameter is chosen with five-fold cross-validation.

Then we predict ER status in the left-out batch, and report the MCC. The results are

shown in Table 2.7. It is evidenced that cross-batch prediction performance has been

generally improved by all methods and the proposed method again shows competitive

performance. For the lung cancer data, we train the classifier with three batches and test
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Table 2.7
MCC from cross-batch prediction by ridge linear discriminant analysis. The numbers in the

parentheses indicate batches used for training the classifier.

Breast cancer data Lung cancer data
Method (23)→ 1 (13)→ 2 (12)→ 3 (234)→ 1 (134)→ 2 (124)→ 3 (123)→ 4
Before 0.6267 0.5597 0.7191 0.0492 -0.0554 0.0416 0.1933
MC 0.6955 0.5794 0.7317 0.1268 0.1431 0.0812 0.2334
DWD 0.7133 0.6140 0.6941 0.0654 0.1421 0.1183 -0.0201
Z-score 0.6711 0.6125 0.7178 0.0367 0.1658 0.1656 0.1300
EB 0.6623 0.5159 0.7317 0.0479 0.1298 0.1183 0.0852
XPN 0.7080 0.5962 0.7209 0.1410 0.1502 0.0175 0.1654
MBCA 0.7106 0.5877 0.7317 0.1696 0.1334 0.0812 0.1442

it on the left-out batch. The results for the lung cancer data with overall survival (OS)

as the biological signal are shown in the table as well. Note that the MCC values for the

lung cancer data are much smaller than for the breast cancer data since the prediction of

the overall survival is notoriously difficult (Luo et al., 2010) while ER status is relatively

easy to predict.

Table 2.8 shows the MCC values when MBCA is applied with a target batch for the

lung cancer data. The results suggest that some batches work better as a target batch.

In particular, MBCA (B1), with batch 1 as the target, excels any results in Table 2.7,

which is consonant with the fact that this site was a high volume facility experienced with

microarrays.

d. Within and Between Batch Pairwise Distance

In order to measure the similarity of data sets after adjusting batches, we compare the

distributions of the pairwise distances between arrays in the same batch with those in dif-

ferent batches. In each panel of Figure 2.16, 2.17, we overlay two estimated density curves

of pairwise distances, which are from within and between batches, respectively. Coinci-

dence of two density curves indicates similarity of the data sets. Furthermore, in order

to compare the methods numerically, we also calculate Kullback-Leibler (KL) divergence
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Table 2.8
MCC from cross-batch prediction for the lung cancer data with MBCA with a target batch.

Lung cancer data
Method (234)→ 1 (134)→ 2 (124)→ 3 (123)→ 4
Before 0.0492 -0.0554 0.0416 0.1933
MBCA(B1) 0.1410 0.1693 0.1027 0.2636
MBCA(B2) 0.0654 0.1658 0.1027 0.1788
MBCA(B3) 0.0675 0.1817 0.0386 0.1689
MBCA(B4) 0.0533 0.1466 0.0745 0.1992

which measures the difference between two density curve, shown in the left-up corner

of Figure 2.16, 2.17. The smaller value indicates the better coincidence of two density

curves. For the breast cancer data in Figure 2.16, the standardization, EB, XPN and

MBCA methods show similarly good performance while these methods are better than

the MC and DWD. For the lung cancer data in Figure 2.17, there is no substantial dif-

ference among the compared methods.

20 25 30 35 40 45
0

0.02

0.04

0.06

0.08

0.1

0.12

Distance

D
en

si
ty

Before

 

 

KL=0.4263 Within
Between

20 25 30 35 40 45
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Distance

D
en

si
ty

MC

 

 

KL=0.0378 Within
Between

20 25 30 35 40 45
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Distance

D
en

si
ty

DWD

 

 

KL=0.0398 Within
Between

80 100 120 140
0

0.01

0.02

0.03

0.04

Distance

D
en

si
ty

Z−score

 

 

KL=0.0023 Within
Between

25 30 35 40 45
0

0.05

0.1

0.15

Distance

D
en

si
ty

EB

 

 

KL=0.0014 Within
Between

25 30 35 40 45
0

0.05

0.1

0.15

Distance

D
en

si
ty

XPN

 

 

KL=0.0008 Within
Between

25 30 35 40 45
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Distance

D
en

si
ty

MBCA

 

 

KL=0.0018 Within
Between

25 30 35 40 45
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Distance

D
en

si
ty

MBCA−B1

 

 

KL=0.0021 Within
Between

Figure 2.16. (Breast cancer data) Estimated density curves of within and between batch pairwise
distances in the breast cancer data. Coincidence of two density curves indicates similarity of the
data sets.

e. Correlation of t-statistic

Another evidence of batch bias is disagreement of t-statistics of biological class among
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Figure 2.17. (Lung cancer data) Estimated density curves of within and between batch pairwise
distances in the lung cancer data. Coincidence of two density curves indicates similarity of the data
sets.

different batches. After removing batch bias, it is expected to see more concordant result in

t-statistics across batches. In Shabalin et al. (2008), this concordance has been measured

by Pearson correlation in a pair of t-statistics for ER status in the breast cancer data.

We applies this measure for our two types of endpoints: ER status in the breast cancer

data and OS in the lung cancer data. For three batches, three Pearson correlations are

calculated from three pairs of t-statistics and averaged. The results are shown in Table

2.9. Higher value indicates better concordance of t-statistic after the batch adjustment.

In both data sets, the greatest increase is achieved by the XPN. Our method MBCA also

increases the correlation of t-statistics in the breast cancer data.

f. Preservation of Important Genes

As pointed out by Shabalin et al. (2008), excessive homogenization of batches can result in

a loss of biological information. Thus it is important to see whether a given method keeps

the biological signal in the individual batches after adjustment. In particular, Shabalin

et al. (2008) use the sets of genes that are found to be important before adjustment and

check whether those genes remain important. We borrow their approach in this study.
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Table 2.9
Correlation of t-statistic. Higher value indicates better concordance of t-statistic across batches

after the batch adjustment

Breast cancer data Lung cancer data

Biological class ER status Overall survival

Method Correlations Correlations

Before 0.8031 0.1412
MC 0.8031 0.1412
DWD 0.8031 0.1412
Z-score 0.8031 0.1412
EB 0.7885 0.1239
XPN 0.8525 0.1434
MBCA 0.8122 0.1381

Let Li (i = 1, . . . , K) be the set of genes that have p-value less than .1 for the two-sample

t-test in the ith batch before adjustment. Also let La be the gene list in the combined

data set after adjustment. Ideally many genes in Li should appear in La. We evaluate the

preservation of significant genes by the following measures.

V1 = |(L1 ∩ · · · ∩ LK) ∩ La|/|L1 ∩ · · · ∩ LK |,

V2 = |(L1 ∪ · · · ∪ LK) ∩ La|/|L1 ∪ · · · ∪ LK |.

Higher value of these measures (closer to one) indicates better preservation of significant

genes. The results are presented in Table 2.10, where we can see that XPN has the lowest

V2 for the breast cancer data and EB has the highest V2 for the lung cancer data.

2.8 Discussion

In this dissertation we propose a novel multivariate batch adjustment method. The approach

taken is one step advanced to the gene-wise approach in the sense that we directly estimate

and adjust for correlations between genes. It is shown to be effective to obtain best homo-

geneity among batches through our data analysis. Furthermore, the proposed MBCA method
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Table 2.10
Preservation of Significant genes.

Breast cancer data Lung cancer data

Biological class ER status Overall survival

Method V1 V2 V1 V2
MC 0.9991 0.8185 0.3333 0.4310
DWD 0.9991 0.8260 0.3333 0.4367
Z-score 0.9991 0.8201 0.3333 0.4305
EB 0.9991 0.8289 0.3333 0.4672
XPN 0.9991 0.8066 0.3333 0.4202
MBCA 0.9983 0.8237 0.3333 0.4243

is greatly useful when there exists an ideal batch which is obtained in the best experimental

conditions since the other batches can mimic the ideal one.

There are some practical issues with the proposed MBCA method. First is the choice of

factors. One can use data-driven clustering results with genes, for example k-means. However,

choosing k is another non-trivial problem. In this work, we use the gene ontology to avoid

such argument and it is reasonable in the biological sense. Second is computational burden

because the MBCA method involves calculation of high dimensional covariances. If this were

a concern, one can use singular value decomposition as discussed in Hastie and Tibshirani

(2004), which would reduce the computing time from O(p3) to O(pn2).
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Chapter 3

Outlier Detection in High Dimension, Low Sample Size Data

3.1 Introduction

3.1.1 Outliers In HDLSS Data

Identifying outliers has been important in many statistical analyses since outlying observa-

tion may distort parameter estimation and mislead the experimental result. Several authors

have defined outliers as observations far away from the main mass of data, or unlike obser-

vation from the baseline distribution (Barnett and Lewis, 1994; Becker and Gatheer, 1999;

Hawkins, 1980). As the definition implies, classifying outliers from the rest of data is some-

what relative; in other words, it depends on various factors such as distribution assumption,

distance measure, covariance structure, and existence of group outliers.

Our study focuses on identifying outliers in high dimension, low sample size (HDLSS)

data. In spite of the enormous popularity of high dimensional data analysis nowadays, the

outlier detection problem has been hardly addressed. Classical outlier detection methods that

are based on estimated mean and covariance can be useless when the dimension is relatively

large compared to the sample size. Therefore, developing a more suitable outlier detection

method that can handle the growth of dimensionality in many real data is imperative.

Outliers are commonly viewed as unusual observations that aberrantly behave relative to

other observations. As dimension increases, it is not clear whether the growth of dimension-

ality hides the unusual observations, or reversely, falsely claims outliers that belong to the

ordinary pattern of high-dimensional samples. The important principle for detecting outliers

is how to define the ordinary pattern of a group of observations, which is hard for HDLSS

data since the distributions of data are difficult to infer with a small sample size.
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Another important aspect in outlier detection for HDLSS data is how to measure the

“outlyingness,” specifically, the distance between a potential outlier and the rest of the data

points. In this dissertation we investigate centroid distance, maximal data piling distance

(Ahn and Marron, 2010) and ridge Mahalanobis distance. Before introducing the proposed

outlier method for HDLSS data, in the following subsection we briefly introduce existing

approaches for traditional low-dimensional multivariate data.

3.1.2 Existing Approaches For Low-Dimensional Data

There are two main approaches to the outlier detection problem. First is a diagnostic

approach often used in regression. In this context, outliers refer to regression outliers, which

are observations deviating from the linear relationship between explanatory variables (X-

space) and the response variable (Y-space). For example, a residual-based method considers

the extremeness in Y-space, whereas a hat matrix is used to detect a high leverage point in X-

space. Let us consider the following regression model for a given data set {yi, xi1, . . . , xip}ni=1:

yi = xT

i θ + ei, i = 1, . . . , n ,

where xi = (xi1, . . . , xip)
T and θ = (θ1, . . . , θp)

T. The most popular estimator for the regres-

sion coefficients θ is least squares (LS) estimator that solves the following minimization

problem:

min
ˆθ

n∑
i=1

(yi − xT

i θ̂)2.

Unfortunately, in LS estimation, even a single outlier can easily inflate or deflate param-

eter estimation θ̂. The mathematical formula of this concept is introduced as the breakdown

point in Donoho and Huber (1983) and Rousseeuw (1987), which is defined by the propor-

tion of contaminants that leads the estimates to arbitrarily large aberrant values. For the

LS estimator, the breakdown point is 1/n, which is called 0 % breakdown point because

of the limit value as n → ∞, indicating that the estimation is very sensitive to outliers.

Therefore, many estimators have been developed for robust regression such as L1 regression,
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M-estimator in Huber (1981), Least Median of Squares (LMS) and Least Trimmed Squares

(LTS) in Rousseeuw (1984), S-estimator in Rousseeuw and Yohar (1984) and many others.

Among these, LMS and LTS regression that have a 50% breakdown point have gained popu-

larity due to its robustness to outliers in both X- and Y-space, and these estimates inspired

the proposal of weighted least squares (WLS), which has been popularly used until now.

Further, these model-diagnostic ideas for outliers can be extended to other linear models

such as designed experiments, non-linear regression, and time series.

The second approach for the outlier detection problem is to see the “extremeness” of

an observation relative to the data mass, which requires one to estimate the location and

the scale of the data mass. In the view of regression, this approach focuses on only X-

space regardless of the response variable. As a regression model includes more explanatory

variables, there is a higher possibility that outliers appear in X-space, and those outliers

are often hard to recognize in the multivariate space. Certain outliers are not identifiable in

individual dimensions as shown with a toy example in Figure 3.1.

x
1

x 2

Figure 3.1. An example of multivariate outliers. Two data points in the up left corner are separated
from the other observations, but those outliers are not detectable in individual dimensions, x1 or
x2.

It is commonly preferred to use both location and shape parameters in order to estimate

the distance of a data point to data mass in the multivariate space. Let x1, . . . ,xn be multi-

variate data vectors in Rp. Also let d2i denote the squared distance of the ith data point to
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the center of data considering dispersion of data clouds. Then,

d2i = d2(xi; t,V) = (xi − t)TV−1(xi − t), i = 1, . . . , n , (3.1)

where t is the location parameter that represents the center of data and V is the shape

parameter that represents the dispersion of data. Intrinsic estimators for t and V are sample

mean vector and sample covariance matrix; in that case, d2i is called the squared Maha-

lanobis distance. Unfortunately, the Mahalanobis distance is known to suffer from masking

or swamping phenomena as shown in Barnett and Lewis (1994) and many other literatures.

The masking effect is caused by multiple outliers, one of which hides the other. Conversely

the swamping effect occurs when the outlier, say x(n), carries the less outlying observation

x(n−1) with it even though it may not be an outlier, resulting in a false judgement in regard

to x(n−1). For this reason, it seems natural to replace t and V with robust estimators such

as median and median absolute deviation so that the distance in (3.1) is not vulnerable to

masking or swamping, and thus rightly declares outliers. Some sophisticated methods for

the estimation of robust location and scatter parameters have been studied regarding high

breakdown point. (Davies, 1992, 1987; Lopuhaä, 1989; Maronna et al., 2006; Rousseeuw,

1985, 1987; Rousseeuw and van Zomeren, 1990)

However, when dimension becomes higher, even at the range of tens, the robust estima-

tors for t and V that have the high breakdown points become computationally intensive

and often infeasible in practice . Thus, some researchers proposed the fast algorithm for

the robust estimators along with the outlier detection (Maronna and Zamar, 2002; Maronna

and Youhai, 1995; Peña and Prieto, 2001; Rousseeuw and van Driessen, 1999). The main

rule of those methods is selecting useful dimensions, such as principal component directions,

that effectively estimate the location and scatter parameters or that explicitly represent the

outlier. For example, Peña and Prieto (2001) suggested to search for up to 2p directions,

by maximizing or minimizing the kurtosis coefficient of the projections. In another example,

Filzmoser et al. (2008) proposed the PCout for outlier detection. They found suitable prin-

63



cipal component directions of data on which the outliers are readily apparent and thus one

downweights those directions to obtain a robust estimator.

At times, researchers focus on the outliers themselves for the purpose of deleting them

rather than developing a robust method for outliers. This approach requires knowledge of

the distribution of the data since we decide a cut-off value, rejection point for outliers, based

on that distribution. There are many proposals for discordancy test of multivariate samples

from a multivariate distribution in (Barnett and Lewis, 1994). A conventional method is a

chi-square quantile-quantile plot. This method is using the fact that the squared Mahalanobis

distance calculated from Gaussian data follows a chi-square distribution. On the other side,

Hardin and Rocke (2005) proposed the scaled F-distribution substituting chi-square distri-

bution for some robust estimation of t and V in (3.1). In the next subsection, we describe

the details of the chi-square quantile-quantile plot.

3.1.3 The Chi-square Quantile-Quantile Plot

The chi-square quantile-quantile plot (qq plot) is originally designed to check the multivariate

normality assumption of a data set. The principle of the plot lies in the linearity between

the χ2
p quantiles and the sample quantiles. Let us denote a sample vector xj, j = 1, . . . , n,

which comes from Np(µ,Σ). The squared Mahalanobis distance of each data point, xj ∈ Rp,

is defined by

D2
j = (xj − µ)TΣ−1(xj − µ), j = 1, . . . , n . (3.2)

It is well known that (3.2) follows χ2
p distribution. Since µ and Σ are usually unknown, we

would estimate (3.2) from the data as

D̂2
j = (xj − x̄)TS−1(xj − x̄), j = 1, . . . , n , (3.3)

where x̄ and S are the sample mean vector and the sample covariance matrix, respectively.

Note that, as n → ∞, the squared Mahalanobis distance from data in (3.3) will behave as

if it is a chi-square random variable. This relationship can be seen as a straight line having
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slope 1 over the plot with respect to the pairs

(
χ2
p

(
(j − 0.5)/n

)
, D̂2

(j)

)
, j = 1, . . . , n, where

χ2
p(·) is the lower quantiles of chi-square distribution and D̂2

(j) is the jth order statistics of

D̂2
1, . . . , D̂

2
n. In the outlier context, the observation deviating from the straight line is more

likely an outlier.

However, the chi-square qq plot has suffered from some drawbacks. Only large samples

consistently produce statistically significant results. Another problem can stem from the

Mahalanobis distance’s masking effect. Even though there are many efforts to overcome

such drawbacks by, for example, finding robust estimators for µ and Σ, the Mahalanobis

distance including its robust versions are hardly useful when p > n.

3.1.4 New Approach With Parametric Bootstrap

In this dissertation, we propose a novel outlier detection method using a parametric boot-

strap, which can be interpreted as an HDLSS version of qq plot. For the outlier detection

problem for HDLSS data, we employ different distance measures instead of the Mahalanobis

distance, which are introduced in Section 3.2. Some high dimensional asymptotic properties

of these distances are studied in Section 3.3. A problem in the usage of the newly defined

distances is that the distribution of the distances is unknown and difficult to infer due to

the small sample size. Our solution is to utilize a bootstrap method, which is known to be

useful for estimating the sampling distribution when the theoretical distribution is unknown

and the sample size is insufficient. Specifically, we use the parametric bootstrap based on

the mean and covariance of Gaussian distribution. The details of the parametric bootstrap

method for the outlier detection are discussed in Section 3.4.

3.2 Distance for Outlier detection

In this section, we introduce three distance measures for outlier detection in HDLSS data:

namely, centroid distance, maximal data piling distance proposed by Ahn and Marron (2010),

and ridge Mahalanobis distance. We will use these distances to measure the oulyingness of
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a data point relative to others. This approach is often called the leave-one-out procedure. In

the following subsection, we investigate the property of each distance measure as well as the

relationships among the distances.

3.2.1 Centroid distance

Suppose there is an HDLSS data set denoted by X(p×n) = [x1, . . . ,xn] with p > n. First,

we consider the distance between an observation and the center of the rest. The centroid

distance (CD) can be calculated by the Euclidean distance between the jth data point in Rp

and the mean (centroid) of the other n− 1 data points for all n data points; i.e.,

Dc(j) =
√

(xj − x̄(−j))T(xj − x̄(−j)), j = 1, . . . , n , (3.4)

where x̄(−j) is the sample mean vector without the jth observation.

Stating outlier as an unusual observation from the ordinary pattern of the others often

implies that the observation might be from a different distribution. Suppose one data point x1

came from a different distribution than the other n−1 data points. This fact also determines

the distribution of the distance between two data points: x1 vs x̄(−1). For example, assume

that x1, . . . ,xn are independently generated p-variate Gaussian data. Note that D2
c denotes

the squared centroid distance between a data point x1 and the mean of the others; i.e.,

D2
c = (x1 − x̄(−1))

T(x1 − x̄(−1)). The following proposition states that D2
c is a noncentral

chi-squared distribution.

Proposition 2. Suppose there are n independent sample vectors x1, . . . ,xn. While a data

vector x1 is from Np(θ, τ 2Ip), the other data vectors x2, . . . ,xn are from Np(µ, σ2Ip). Then,

D2
c follows a noncentral chi-squared distribution;

(
τ 2 + σ2/(n − 1)

)
χ2
p(λ), where λ =

(
τ 2 +

σ2/(n− 1)
)−1‖θ − µ‖2.

Proof. Since x2, . . . ,xn are independent, the mean vector denoted by x̄(−1) =
∑n

j=2 xj/(n−1)

is Np
(
µ, σ2/(n− 1)Ip

)
. Also, x1 and x̄(−1) are independent, and

(
τ 2 + σ2/(n− 1)

)−1/2
(x1 − x̄(−1)) ∼ Np

(
θ − µ, Ip

)
. (3.5)
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The squared form of (3.5) can be seen as a noncentral chi-squared distribution with the

degree of freedom p and the noncentrality parameter λ =
(
τ 2 + σ2/(n− 1)

)−1‖θ −µ‖2.

Remark 1 states a special case of Proposition 2 with θ = µ and τ 2 = σ2, which represents

a situation where all data vectors are from the same normal distribution with spherical

covariance.

Remark 1. Suppose there are n i.i.d. sample vectors from Np(0, σ2Ip). Then, D2
c between

an observation and the others follows σ2
(
1 + 1/(n− 1)

)
χ2
p .

3.2.2 Maximal Data Piling Distance

In the previous section, the CD addresses the proximity between two centers of data, where

one of two groups has a single observation. The maximal data piling (MDP) distance focuses

on the proximity between two affine subspaces. More precisely, the MDP distance is the

orthogonal distance between two affine subspaces that each of two data groups generates. In

the outlier context, it is the orthogonal distance from an observation to the affine subspace

generated by the other observations as seen in Figure 3.2.

MDP 
distance 

Figure 3.2. Illustration of MDP distance. MDP distance is the orthogonal distance from an obser-
vation to the affine subspace generated by the other observations.

It is suggested in Ahn et al.(2011) that the MDP distance is an appropriate distance

measure for high dimensional clustering problem. Originally the MDP direction vector is
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proposed by Ahn and Marron (2010) for a discrimination problem for HDLSS data. Let us

assume a binary discrimination situation. Ahn and Marron (2010) showed that there exists

a unique direction vector that maximizes the distance between projections of each class as

well as the amount of data piling within class. Data piling is a phenomenon that projection

values of data vectors are piled at a point. In fact, the data piling onto this direction are two

distinct values, one for each class. This optimization problem resembles the Fisher’s linear

discriminant (FLD) in low-dimensional setting in the sense that FLD also maximizes the

distance of two class means and minimizes the within-class variance. But note the MDP

direction vector is defined only for HDLSS data since in low-dimensional data there does not

exist a direction vector that yields the complete data piling. The MDP direction vector has

been found to work well for HDLSS data classification problem especially when variables are

correlated (Ahn and Marron, 2010).

In what follows, we introduce the mathematics of the MDP distance along with the

MDP direction vector. Regarding the outlier problem, we assume a special case of binary

classification. Suppose there are two classes where the first class contains a single observation

x1 and the second class contains n− 1 observations x2, . . . ,xn. Then the mean vector of the

second class is x̄(−1). Let w = x1 − x̄(−1) denote the mean difference vector of two classes.

Also let C denote the centered data matrix by subtracting the mean vector in the second

class, i.e., C = [x2 − x̄(−1), . . . ,xn − x̄(−1)]. Further, let P = CC† be the projection matrix

to the column space of C, where A† is the Moore-Penrose generalized inverse of a matrix A.

Ahn and Marron (2010) showed that the maximal data piling vector vMDP is obtained from

the following optimization problem:

finding v that maximizes |vTw| subject to CTv = 0 and ‖v‖ = 1. (3.6)

Here CTv = 0 is called the data piling constraint, also rewritten as xT
i v = x̄T

(−1)v for

i = 2, . . . , n, which implies that the projection of every data point in the second class onto v

is the same as its class mean. Note that the first class is not included in this constraint since

it has already a single data point. ‖v‖ = 1 is a normalization constraint so that the vector
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has unit length. The solution of (3.6) can be found by projecting w onto the orthogonal

complement of the column space of C,

vMDP ∝ (Ip −P)w. (3.7)

Then, the MDP distance is defined as the distance between two class projections onto

vMDP, i.e.,

DMDP = |(x1 − x̄(−1))
TvMDP|. (3.8)

In the following, properties of the MDP distance are studied under the spherical Gaussian

data. Let D2
MDP denote the squared maximal data piling distance. The following proposition

states that D2
MDP has a chi-squared distribution, which can be seen as a special case of

Theorem 3 in Ahn et al. (2011).

Proposition 3. Suppose there are n i.i.d. sample vectors from Np(0, σ2Ip). Then, D2
MDP

between an observation and the others follows σ2
(
1 + 1/(n− 1)

)
χ2
p−n+2.

Back to our outlier detection problem, in order to identify outliers in a HDLSS data set

X(p×n) = [x1, . . . ,xn], we compute the MDP distance for all n data points as below

DMDP(j) = |(xj − x̄(−j))
TvMDP|, j = 1, . . . , n , (3.9)

= 2/‖ZT†`(j)‖. (3.10)

For calculation purpose, we can use the equation (3.10), where Z is the centered data

matrix obtained by subtracting the overall mean, i.e., Z = [x1 − x̄, . . . ,xn − x̄], and `(j) =

(1, . . . , 1,−1, 1, . . . , 1)T is a label vector whose jth element is −1. Note that while centroid

distance exists regardless of dimension and sample size, MDP distance exists only for HDLSS

data, specifically, p > n− 2 (df = p− n+ 2).

Here we would like to point out that we are not able to directly apply the chi-squared

distribution for outlier detection. The first reason is that Propositions 2 and 3 are shown

under the spherical case. However, this assumption is usually not true in real data setting

since many variables are correlated. The second reason is that the leave-one-out distance
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within a sample pool as in (3.4) and (3.9) does not fully meet the conditions in Propositions

2 and 3 in that xj − x̄(−j) and xj′ − x̄(−j′) are dependent each other and so on. Therefore,

we rather generate the reference distribution using parametric bootstrap. This method will

be introduced in Section 3.4.

3.2.3 Ridge Mahalanobis Distance

In this section, we introduce the ridge Mahalanobis (rMH) distance for HDLSS data, which

measures the proximity from an observation to the others considering dispersion of data

clouds. The squared Mahalanobis distance (3.3) in Section 3.1.3 is not applicable when

p > n due to the singularity of the sample covariance matrix S. Thus, we define a modified

version for HDLSS data. A popular solution for the singularity of S is utilizing ridge-type

correction using α (α > 0). Then, rMH distance of each data point to the rest for n data

vectors x1, . . . ,xn is defined as

DrMH(j) =
√

(xj − x̄(−j))T(S(−j) + αIp)−1(xj − x̄(−j)), j = 1, . . . , n , (3.11)

where x̄(−j) and S(−j) are the sample mean vector and the sample covariance matrix without

the jth observation, respectively, and α is the ridge parameter (α > 0). The rMH distance

shares some properties with both centroid distance and MDP distance depending on the

value of α as shown in Propositon 4.

Proposition 4. As α increases, the rMH distance becomes equivalent (up to a constant

multiple) to the centroid distance. As α decreases, the rMH distance becomes equivalent (up

to a constant multiple) to the MDP distance.

Proof. First of all, as α increases, we can show that the rMH distance becomes proportional

to the centroid distance. Let w = x1 − x̄(−1). The squared rMH distance between x1 and

the others is written as D2
rMH = wT(S(−1) +αIp)

−1w. Also the squared centroid distance can

be rewritten as D2
c = wTw. For large value of α, we can see that the impact of correlation

coefficient is weak, therefore (S(−1) + αIp) approximately becomes proportional to identity.
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The inverse works similarly as shown below.

(S(−1) + αIp)
−1 ∝ α(S(−1) + αIp)

−1 for α > 0

= (1/αS(−1) + Ip)
−1

→ Ip as α→∞.

Therefore, D2
rMH → c1D

2
c as α→∞, where c1 is a constant.

Second of all, as α decreases, we can show that the rMH distance becomes proportional

to the MDP distance. Let vα = (S(−1) + αIp)
−1w. The squared rMH distance can also be

written as

D2
rMH = wTvα .

Similarly, the squared MDP distance is

D2
MDP = (wTvMDP)2 =

(
w(Ip −P)w

‖(Ip −P)w‖

)2

= wT(Ip −P)w

∝ wTvMDP .

Thus the asymptotic equivalence of D2
rMH and D2

MDP can be shown through that of vα and

vMDP as α→ 0.

vα = (S(−1) + αIp)
−1w

∝ α(CCT + αIp)
−1w

=
[
I−CCT(CCT + αI)−1

]
w (3.12)

→ (I−CC†)w as α→ 0. (3.13)

The step from (3.12) to (3.13) is due to the fact that limα→0 = CT(CCT +αI)−1 = C†. Note

that this limit exists even if (CCT)−1 does not exist (Golub and Van Loan, 1996). Remind

that P = CC†. Therefore, vα → c2vMDP as α→ 0, where c2 is a constant.

In addition to Proposition 4, we provide a numerical example to see the equivalence of

rMH to either centroid distance or MDP distance. Let us generate 50 random vectors from
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N500(0, 3Ip) and calculate CD, rMH and MDP distances. For the ridge parameter of rMH

distance, two cases are computed: α = 104 , α = 10−3. In Figure 3.3, the rMH distance

with the change of α is compared to the other two distances. In each panel, X-axis displays

the order statistics of rMH distance, and Y-axis displays two other distances of the same

observation. In (a), rMH with large α (α = 104) is linear to CD. In (b), rMH with small α

(α = 10−3) is linear MDP.
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(a) rMH vs. CD (b) rMH vs. MDP

Figure 3.3. The ridge Mahalanobis (rMH) distance with α. In (a), rMH with a large α (104) is
linear to the centroid distance. In (b), rMH with a small α (10−3) is linear to the maximal data
piling distance.

Regarding computational burden, rMH distance in (3.11) can be replaced with the compu-

tationally efficient version utilizing singular value decomposition. The singular value decom-

position of X(p×n) is a factorization to be X = UDVT. Let us denote Y = D0V
T, where

D0 is a n× n diagonal matrix keeping only non-zero diagonal elements of D. We obtain the

same result by replacing X(p×n) with Y(n×n) = [y1, . . . ,yn]. Thus, the distance in (3.11) is

equivalent to

DrMH(j) =
√

(yj − ȳ(−j))T(Sy(−j) + αIn)−1(yj − ȳ(−j)) .
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3.3 HDLSS Asymptotics of Outlier Detection

In this section, we discuss some HDLSS asymptotic results of the outlier detection for MDP

and CD methods. Theorems in the following subsections have been proved by Ahn et al.

(2013).

3.3.1 The Maximal Data Piling Distance

In this section we study asymptotic properties of the MDP distance in the context of outlier

by utilizing the asymptotic geometric representation of HDLSS data by Hall et al. (2005)

and Ahn et al. (2007). The two papers established the representation under different distri-

butional settings and later Jung and Marron (2009) did it in a unified framework. In this

section we use the assumptions in Hall et al. (2005) since it is easier to discuss the geometry

in their setting. Let Xp×n = [x1, . . . ,xn] be non-outliers data matrix with p > n where

xj = (X1j, . . . , Xpj)
T are i.i.d. p-variate random vectors from a population. Suppose that we

add n0(< n) outliers to the data set and denote outlier vectors as X0
p×n0

= [x0
1, . . . ,x

0
n0

],

where x0
j = (X0

1j, . . . , X
0
pj)

T are p-variate random vectors. Let N be the total number of

sample size, N = n+ n0. It is not so realistic to assume that all n0(> 1) outliers are coming

from an identical distribution (which is different from the distribution of X). Yet, for the

theoretical development of the method, we will view data with multiple outliers as a mixture

model where majority of data vectors are from one population and relatively small fraction

of data vectors come from another (but a common) population.

Assume that the population structure of the data satisfies the following conditions spec-

ified in Hall et al. (2005) for HDLSS asymptotics. (a) The fourth moments of the entries of

the data vectors are uniformly bounded; (b)
∑p

j=1 var(Xj)/p and
∑p

j=1 var(X0
j )/p converge

to positive constants σ2 and τ 2, respectively; (c)
∑p

j=1{E(Xj) − E(X0
j )}2/p converges to

nonnegative µ2;(d) There exists a permutation of the entries of the data vectors such that

the sequence of the variables are ρ-mixing for functions that are dominated by quadratics.
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Under these conditions, as p tends to infinity, the data vectors approximately form an N -

polyhedron while {x1, . . . ,xn} forms a regular n-simplex with n and {x0
n+1, . . . ,x

0
N} with n0

vertices, denoted by X and X0 respectively. The length of an edge connecting data vectors in

X (or X0) is approximately
√

2σ (or
√

2τ) after scaled by
√
p. The length of an edge between

a point in X and X0 is
√
σ2 + τ 2 + µ2 after scaled by

√
p.

First, we start with an easy case where there is only one outlier. The following proposition

states a condition where the proposed detection method can identify a single outlier with

probability one.

Proposition 5. Assume that the above assumptions (a) - (d) are satisfied and there is a

single outlier, i.e., n0 = 1. Further, assume that µ2 + τ 2 > σ2. Then, the leave-one-out MDP

distance for the outlier is bigger than the distances for non-outliers with probability 1.

Note that in the large p limit, the condition µ2 + τ 2 > σ2 implies that the squared

Euclidean distance between a data vector in X and the outlier is greater than all the pairwise

distances between the data vectors in X .

In the presence of multiple outliers, (n0 > 1), the so-called masking effect can make

the detection challenging. The following theorem, of which Proposition 5 is a special case,

specifies situations where the proposed method can overcome the masking phenomenon.

Theorem 2. [Multiple outliers.] Assume that the above assumptions (a) - (d) are satisfied

and n > n0. Let τ 2
let
= cσ2 for some constant c > 0. Under either of the following further

assumptions,

(i) If c > 1 and µ ≥ 0, or

(ii) if c = 1 and µ > 0, or

(iii) if

n(n0 − 1)

n0(n− 1)
< c < 1 (3.14)
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and

µ2 > fn,n0(c)σ
2, (3.15)

where

fn,n0(c) =
c2(n− 1)− c(n− n0)− (n0 − 1)

n(n0 − 1)− cn0(n− 1)
,

then the (N−1) vs 1 splits- MDP outlier detection method detects outliers in the large p-limit

in the sense that the MDP distance is bigger when an outlier is split from the rest than when

non-outlier is split from the rest with probability 1.

Remark 2. (i): If c > 1, then the variation of outlier data vectors is larger than the that

of non-outlier data vectors. As a result, in the large p−limit, the outliers tend to be so far

away from each other that the masking effect becomes negligible.

Remark 3. (ii): If c = 1, then the variation of outlier data vectors is the same as that of

non-outlier data vectors. Outlier detection is possible only if µ is strictly larger than 0. From

condition (d) in the previous page, this implies that the squared mean difference between

non-outliers and outliers should grow at least at the order of O(p) as the dimension grows.

Remark 4. (iii): If the variation of the outliers is moderate, then successful outlier detection

is possible only the mean difference is relatively large.

It is evident that any outlier detection method will eventually struggle with too many

outliers. But, how many outliers is too many? It is practically important and interesting to

answer the question “how many outliers can MDP method tolerate in the large p-limit?”.

Theorem above under moderately isolated outliers case provides an immediate and intuitive

answer to this question.

Corollary 2. [How many outliers can MDP handle?] Assume that the above assumptions

(a) - (d) are satisfied and n > n0. Suppose that we have “moderately” isolated outliers from a

population with τ 2 = cσ2, where 0 < c < 1 is fixed. The MDP outlier method detects outliers

successfully w.p. 1 as long as the the number of outliers does not exceed the upper bound,
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i.e., n0 < n/{n(1− c) + c} and the mean difference exceeds the lower bound in the sense that

µ2 > fn,n0(c)σ
2.

Example 1. For two different c values, shown in Figure 3.4 are the plots of the minimum

required µ2 from (3.15) for n0 satisfying (3.14), c = 0.9 on top and c = 0.7 on bottom.

Outlier detection is possible up to n0 = 9 for c = 0.9 whereas we have the limit n0 = 3 for

c = .7. In both cases, the minimum mean difference is increasing as the number of outlier

increases. In fact, we have a noticeable jump from n0 = 8 to 9 (on top) and from n0 = 2

to 3, and after that jump, the masking effect becomes so dominant that satisfactory outlier

identification is impossible.
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Figure 3.4. The number of outliers paired with the minimum µ2 required for successful outlier
detection. Top: τ2 = .9σ2. Bottom: τ2 = .7σ2. Outliers have to be farther away from the population
mean as the number of outliers increases up to the limit, given by (3.14). If n0 is beyond that limit,
the detection methods break down.

As far as the proof goes, Proposition 5 is a special case of Theorem 2 when n0 = 1. The

proof of Theorem 2 shown in Ahn et al. (2013) is as follows:
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Proof of Theorem 2

In this proof we will use 1 (non-outliers x distribution) and 0 (outliers x0 distribution) as

the class labels for convenience’s sake. In the HDLSS geometrical limit, the data vectors from

Class 1 and Class 0 form two simplices, denoted by X and X 0. Assume that the respective

sample sizes are n and n0. Since only the relative locations of the data vectors are of interest

for all our purposes, we can express the data matrices for X and X 0, after scaled by
√
p, as

the following:

X =


σ



1− 1
n
− 1
n
· · · − 1

n

− 1
n

1− 1
n
· · · − 1

n

...
...

. . .
...

− 1
n

− 1
n
· · · 1− 1

n





δX · · · δX
...

...
...

...
...

...

δX · · · δX





0 · · · 0

...
...

...

...
...

...

0 · · · 0




,

X 0 =





0 · · · 0

...
...

...

...
...

...

0 · · · 0





−δX0 · · · −δX0

...
...

...

...
...

...

−δX0 · · · −δX0


τ



1− 1
n0

− 1
n0

· · · − 1
n0

− 1
n0

1− 1
n0
· · · − 1

n0

...
...

. . .
...

− 1
n0

− 1
n0

· · · 1− 1
n0




,

where

δX =
n0

N

µ0√
p−N

and δX0 =
n

N

µ0√
p−N

.

Note that this formulation ensures the same roles of σ2, τ 2 as in the geometric representation

and µ2
0 = µ2 + σ2/n + τ 2/n0. For any split of data vector, ` ∈ {1, 0}N , we formulate the

resulting MDP distance. From the proof of the Theorem 1 in Ahn et al. (2011), we have an

explicit expression for the MDP distance in terms of `,

D2
MDP(`) = µ2

0

{
µ2
0

σ2

n11n10

n
+
µ2
0

τ 2
n01n00

n0

+ (
n10

n
− n00

n0

)2
}−1

, (3.16)

where nij denotes the number of samples that are that are actually from Class i, but classified

into Class j. Note that n11 + n10 = n and n01 + n00 = n0. For outlier detection, we only
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consider all possible (N−1) vs 1 splits and there are only two possible scenarios; a non-outlier

(a x vector) separated from the rest or an outlier (a x0 vector) separated from the rest. Thus,

the pairs of consideration for (n11, n00) are (n−1, 0) or (n, 1). The former corresponds to the

instances when one of the non-outliers is separated from the rest and the latter is the case

when an outlier is separated from the rest.

In order to achieve successful outlier detection, we require that D2
MDP(`0) ≥ D2

MDP(`1),

where `0 is the label assignments which splits an outlier from the rest and `1 is the label

vector which separates a non-outlier from the rest. From the expression of MDP distance for

any given label vector above, (3.16), let us define a bivariate function f as follows:

f(x, y) =
µ2
0

σ2

x(n− x)

n
+
µ2
0

τ 2
(n0 − y)y

n0

+
(

1− x

n
− y

n0

)2
,

where (x, y) are the pair of legitimate values of (n11, n00), i.e., either (n − 1, 0) or (n, 1).

Successful outlier detection is possible if and only if

f(n− 1, 0)−1 < f(n, 1)−1 ⇔ f(n− 1, 0) > f(n, 1) (3.17)

By plugging µ2
0 = µ2 + σ2/n+ τ 2/n0 and τ 2 = cσ2 into (3.17), we get equivalent condition,

gn,n0(c)µ
2 + hn,n0(c)σ

2 > 0, (3.18)

where the coefficients of µ2 and σ2 are

gn,n0(c) = cn0(n− 1)− n(n0 − 1)

and

hn,n0(c) =
(
c2(n− 1)− c(n− n0)− (n0 − 1)

)
.

Note that gn,n0(c) < 0 iff 0 < c < n(n0 − 1)/{n0(n − 1)} and hn,n0(c) < 0 iff 0 < c < 1.

Depending on the signs of these coefficients, there are several possible scenarios:

1. If c > 1, then gn,n0(c) > 0 and hn,n0(c) > 0. Thus, the condition (3.18) holds for any

values of µ ≥ 0.
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2. If c = 1, then gn,n0(c) > 0 and hn,n0(c) = 0. The condition (3.18) holds for any values

of µ > 0.

3. If n(n0 − 1)/{n0(n−1)} < c < 1, then (3.18) holds if and only if µ2 > −hn,n0(c)/gn,n0(c)σ
2.

4. If 0 < c ≤ n(n0 − 1)/{n0(n− 1)}, then gn,n0(c) ≤ 0 and hn,n0(c) < 0 and the condition

(3.18) does not holds for any values of µ ≥ 0.

�

3.3.2 Centroid Distance

In this section, we study the HDLSS asymptotic properties of outlier detection based on CD.

Theorem 3. [Multiple outliers.] Assume that the above assumptions (a) - (e) are satisfied

and n > n0. Let τ 2
let
= cσ2 for some constant c > 0. Under either of the following further

assumptions,

(i) if c > 1 and µ ≥ 0, or

(ii) if c = 1 and µ > 0, or

(iii) if 0 < c < 1 and µ2 > σ2(1− c)(N − 2)/(n− n0),

then the (N − 1) vs 1 splits- CD outlier detection method detects outliers in the large p-limit

in the sense that the CD distance is bigger when an outlier is split from the rest than when

non-outlier is split from the rest with probability 1.

Ahn et al. (2013) proved Theorem 3 as below.

Proof of Theorem 3

We start from the same data vector position as we used for MDP. The squared of the

Centroid distance when one outlier separated from the rest is

D∗2 = (
n

N − 1
)2µ2

0 + τ 2(
N

N − 1
)2(
n0 − 1

n0

).
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If a non-outlier data vector is separated from the rest, the role of n and n0, σ
2 and cσ2 are

reversed from the expression above. We get the squared of the Centroid distance,

D2 = (
n0

N − 1
)2(µ2 +

σ2

n
+
cσ2

n0

) + (
N

N − 1
)2(
n− 1

n
)σ2.

For correct outlier detection, we require that D∗2 > D2, which is equivalent to

(n2 − n2
0)µ

2 + (c− 1)N(N − 2)σ2 > 0. (3.19)

Let pn,n0(c) = (c− 1)N(N − 2).

1. If c > 1, then pn,n0(c) > 0 and (3.19) is satisfied for any µ2 ≥ 0.

2. If c = 1, then pn,n0(c) = 0 and (3.19) is satisfied for any µ2 > 0.

3. If 0 < c < 1, then (3.19) can be written as µ2 > σ2(1− c)(N − 2)/(n− n0). �

For outliers with moderate variation (c < 1), the detection method for HDLSS data is

successful if the outliers are deviated from the non-outliers more than minimum required

quantity. Outlier detectable areas are determined by the number of parameters, µ2, c, N and

n0. We fix N = 50 and change n0 = 1, 2 or 5 and compare the detectable areas for CD and

MDP. In the plot below, the x-axis is for log2(1−c) and y-axis for log µ2 and detectable areas

by CD (MDP or both) are colored as blue (red or purple). In the top panel, when n0 = 1, the

CD and MDP ares are the same. With multiple outliers, n0 = 2 (middle) and n0 = 5, CD

detectable area is slightly bigger than MDP area, however, the difference is noticeable only

when log2(1−c) > 2. The difference in the areas with c < 3/4 is not much of an impact since

the assumption of the variation within outliers less than 3/4 of variation within non-outliers

seems to be unrealistic.
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Figure 3.5. Detectable areas by CD and MDP.
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3.4 Proposed Method For HDLSS Outlier Detection

In the previous section, we discussed three distance measures. The next question is how to

judge the outlier, or how confidently one can say that the distance of the outlier is unusually

large compared to those of other data points. In order to answer this question, one may like

to see the “extremeness” of each data point in comparison with theoretical values that would

be observed if there were no outliers. To see this, we need to obtain the distribution of the

distances under the hypothesis of no outlier, i.e., the null distribution of the distance.

In this section we introduce a parametric bootstrap method in order to estimate the

null distribution of the distance with which we can judge the outlier. In Section 3.4.1 we

will describe the details about how to apply the parametric bootstrap approach for the

estimation of the null distribution. In Section 3.4.2 we suggest the outlier detection method

using a quantile-quantile plot based on the empirical null distribution. In Section 3.4.3 we

discuss the consistency of the proposed method.

3.4.1 Estimation For the Null Distribution Of the Distance

Suppose there are n data points denoted by xj, j = 1, . . . , n, in Rp and there is one possible

outlier in the data. Let us denote D̂j = d(xj,X(−j)) the distance of the jth data point from

the other observations, where X(−j) = [x1, . . . ,xj−1,xj+1, . . . ,xn], and sort these distance

values to be D̂(1) < · · · < D̂(n). We can reasonably assume that the observation that has the

maximum distance is a possible outlier. The question is when we can say the maximum is

far enough to be an outlier. In order to judge whether a seemingly outlying data point is a

true outlier, we like to compare the observed distances to the regular distances which are

obtained under a non-outlier situation.

A parametric bootstrap approach is useful for the estimation of the null distribution of

the distances, which would be observed under the situation that there are no possible outliers.

In fact, we are interested in the n quantiles of this null distribution, denoted by q(1), . . . , q(n).

The parametric bootstrap estimates q(1), . . . , q(n) with D̃(1), . . . , D̃(n), which is the ordered
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one-vs-others distances computed from a bootstrap sample of size n. Let us denote D̃n a set

of distances from the bootstrap samples.

At a first step, we estimate the mean and covariance (µ̂, Σ̂) from the given data set for the

preparation of re-sampling. It is important to assume that these two re-sampling parameters

are robust to outliers. That way we can assure the bootstrap samples are free of outliers, from

which we can reasonably estimate D̃n. One easy way to achieve the outlier-free condition

is eliminating the potential outliers if any. It is natural to suspect the observation that is

the farthest from the others. Suppose the kth observation is selected as a possible outlier

based on a distance measure d(·, ·), i.e., D̂k = D̂(n). We can think of a sample mean and a

sample covariance estimation without the kth observation; say x̄(−k) and S(−k). Apparently,

µ̂ = x̄(−k) and Σ̂ = S(−k) would be better estimators rather than x̄ and S if the kth

observation were a true outlier.

The inference from D̃n entails repetition for large B. For b = 1, . . . , B, we draw n samples

yb1, . . . ,y
b
n from Np(µ̂, Σ̂), which provides us with B realizations D̃n

1
, . . . , D̃n

B
of D̃n. We sort

the distances in each set D̃n, and average D̃(j) at each j for the estimation of q(1), . . . , q(n).

Notice the hat notation is used for the first generation estimators (samples), whereas the

tilde notations are used for the second generation estimators (bootstrap samples).

When we generate a bootstrap sample of size n from Np(x̄(−k),S(−k)), we will encounter

the singularity problem with the covariance S(−k) due to (n− 1) < p. In that case we add a

small number α > 0 to the diagonal elements of S(−k), which produces a nonsingular matrix

(S(−k) +αIp) that is still extremely close to S(−k). By doing this, we ensure to draw samples

from well-defined distribution. The small positive number α is arbitrary. We set α equal

to
√
log(p)/(n− 1), following the asymptotic term

√
log(p)/n → 0 which is found in some

related works with covariance estimation (Bickel and Levina, 2008a,b; Cai and Liu, 2011).
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3.4.2 Comparison Of the Null Distribution and Sample Quantiles

Once we obtain the empirical null distribution from the bootstrap samples, we can create

a quantile-quantile plot to see whether there is any aberrant pattern among data points.

Specifically, we plot the ordered distances calculated from the sample, D̂(1) < · · · < D̂(n) in

the y-axis (sample quantiles). Also we plot the average of the ordered distances based on

B bootstrap samples, D̃∗(1) < · · · < D̃∗(n), where D̃∗(j) = average {D̃b
(j)}Bb=1 for j = 1, . . . , n,

in the x-axis (bootstrap quantiles). If there is no outlier in the data set, it is expected that

the pairs of the distances (D̂(j), D̃
∗
(j)), j = 1, . . . , n, will be approximately linear, showing a

straight line. If a certain data point deviates from the straight line, that can indicate the

outlier.

Note that the proposed parametric bootstrap approach above has a similar concept as

the so-called chi-square qq plot that is used for low-dimensional multivariate data. In the fol-

lowing example, we want to show that our proposed method can also work well for traditional

low dimensional data. Suppose we have 50 random vectors from N10(0,Σ), and deliberately

input one outlier. Details about how to input the outlying observation are described in Sec-

tion 3.5. In Figure 3.6-(a), we implement our proposed parametric bootstrap approach. For

the calculation of the distance, we use d(xj,X(−j)) = {(xj − x̄(−j))
TS−1(−j)(xj − x̄(−j))}1/2. As

expected, one observation is outlying from the rest in this figure. In addition, we draw the

chi-square qq plot in (b) for the same data. The y-axis displays the order statistics of the

squared Mahalanobis distances from the sample (sample quantiles). The x-axis displays the

quantiles of the chi-square distribution with the degree of freedom 10. With the comparison

to (b), the plot (a) looks visually equivalent to or even better than (b); it is fully functioning

for distinguishing the outlier.

In the example of Figure 3.6 with low-dimensional data, both plots in (a) and (b) work

well for the detection of outlier. However, the chi-square qq plot is not appropriate for

the high-dimensional data since the estimated squared Mahalanobis distances in n < p

do not follow the chi-square distribution. Meanwhile, the great advantage of our proposed
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method is the flexibility in higher dimension, which will be shown later in our simulation

and real data analysis. Not only dimension, the method is flexible for different distance

measures. This is because unlike the chi-square plot the our method does not require any

distribution assumption of the distance. Instead, the parametric bootstrap method estimates

the distribution of the distance empirically regardless of the type of distance function.
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(a) Parametric bootstrap (b) Chi-square qq plot

Figure 3.6. An example of multivariate outlier identification in low dimension. In (a), the para-
metric bootstrap idea is applied for the qq plot with the bootstrap quantiles in the x-axis and the
sample quantiles in the y-axis. In (b), the chi-square qq plot is displayed with χ2 quantiles versus
sample quantiles. In both plots, one observation is shown as an outlier.

Generally, suppose there are at most n0 � n potential outliers. We assume that removing

all these n0 outliers yields the remaining data free of outliers from which the parameter

estimation is reasonable. In practice when we do not know how many outliers actually exist,

we suggest to see all results from n0 = 1, · · · , N0, where N0 is a reasonable upper bound

for the number of outliers. The procedures are performed sequentially. Assuming n0 = 1,

one potential outlier can be found by D̂k1 = D̂(n). By deleting the k1th observation from

a data set, the qq plot using the parametric bootstrap is drawn. If there is no evidence

that the k1th observation is a true outlier, we stop the procedure and conclude there is no

outlier. However, if the k1th observation seems to be “real” outlier on the plot, we remove

it and attempt to identify another potential outlier among n − 1 observations. In this new

step, we set n0 = 2, which means there are two possible outliers, one of which are already

removed in the previous step. The second potential outlier can be found by D̂k2 = D̂
′

(n−1).
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Note that there may be some change in the order statistics D̂
′

(1), . . . , D̂
′

(n−1) after deleting

k1th observation. If there is no evidence that the k2th observation is an outlier, we stop the

procedure and conclude that there is only one outlier. If the plot shows the k2th observation

is also an outlier, we remove it and set n0 = 3, and so forth.

This algorithm is illustrated in Figure 3.7. In each step of n0 = 1, 2 and 3, we examine

the extremeness of the observation that has the maximum distance. When the observation

shows an outlying pattern, it is removed from the data set. The process is continued until we

do not see any extreme pattern of the observations. In the step n0 = 3, there is no enough

evidence for the outlier. Thus we would conclude that there exist two outliers in this data

set. Note that in this illustration we use MDP distance in (3.9) for the computation of the

distances.
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Figure 3.7. Illustration of the algorithm for outlier detection. In each step of n0, we examine the
extremeness of the observation that has the maximum distance. The process is continued until we
do not see any evidence of outlying observations. Based on the plots, we would conclude that there
exist two outliers.

Furthermore, we summarize the proposed algorithm in light of the computational steps

as below. As for the distance measures, we can use the centroid, MDP, and rMH distances

introduced in Section 3.2. From now on, we omit the hat and tilde notation for simplicity’s

sake.
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Algorithm for Outlier Detection

Suppose n0 = 1, which means there is one possible outlier.

(1) Calculate the distances of each observation (say Dj , j = 1, . . . , n), and sort them by

ascending order to be D(1) < · · · < D(n).

(2) Find the observation which has the largest distance, Dk = D(n), then delete the kth

observation from the data set.

(3) Compute the sample mean vector x̄(−k) and covariance matrix S(−k) without the kth

observation.

(4) Generate n random vectors from Np(x̄(−k),S(−k) + αIp), where α =
√
log(p)/(n− 1).

(5) Calculate the distances as in step (1) with the simulated data in step (4). Say D1
j

(j = 1, . . . , n) and sort them to be D1
(1) < D1

(2) < · · · < D1
(n).

(6) Repeat the steps (4) and (5) B times, and average the ordered distances in order to

obtain D∗(1) < · · · < D∗(n), where D∗(j) = average {Db
(j)}

B
b=1 for j = 1, . . . , n.

(7) Create a qq plot with D∗(j) in the x-axis and D(j) in the y-axis. Deviating from the

straight line indicates an outlier.

This procedure will stop here if there is no evidence for the outlier in the plot (7). If the

kth observation looks a true outlier, it is removed from the data set. In the next step, we set

n0 = 2, which means there are two possible outliers, one of which is removed and we search

for the second one if any. The steps for n0 = 2 is the same as those of n0 = 1 but with (n− 1)

observations.

(1′) Calculate the the distances D′(1) < · · · < D′(n−1).
...

These procedures are continued until there is no outlying pattern of the observations, or a

reasonable upper bound for the number of outliers is reached.
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3.4.3 Consistency of the parametric bootstrap method

In what follows we discuss some theoretical reasoning of the proposed parametric bootstrap

method. Suppose there are two Gaussian data sets. The first data set is x1, . . . ,xn from

Np(µ,Σ), from which we calculate the leave-one-out distances, and denote a set of the

distances by D̂n. Also sort these distances to be {D̂(1), . . . , D̂(n)}. The second is a bootstrap

sample of size n, i.e., y1, . . . ,yn from Np(µ̂, Σ̂), from which we also find a set of the distances

denoted by D̃n with the sorted distances {D̃(1), . . . , D̃(n)}.

We are interested in the consistency of D̃n and the performance of the parametric boot-

strap when p � n. Suppose that the null distribution of the distances is known and we

denote the quantiles of the distribution by q(j), j = 1, . . . , n. Then, we have P (D̂(j) = q(j))

converges to 1 as the sample size goes to infinity for all j. Also, because of the fact that

(µ̂, Σ̂) is uniformly consistent to (µ,Σ) as n → ∞, it is true that P (D̂n = D̃n) → 1 as

n → ∞ since both P (D̂(j) = q(j)) → 1 and P (D̃(j) = q(j)) → 1. However, if p is very large

relative to n and we do not have this uniform consistency, the consistency of D̃n to D̂n is

unsure. Thus, an important thing is to establish the rate at which p can converge to infinity

while still having the required uniform consistency.

The similar argument has been discussed in van der Lann and Bryan (2001) for their

bootstrap approach. Let p(n) be such that n/log(p(n)) → ∞ as n → ∞. In their Theorem

3.1, the consistency of (µ̂, Σ̂) to (µ,Σ) has been shown as n/log(p(n)) → ∞. The idea of

the proof is using Bernstein’s inequality (van der Vaart and Wellner, 1996). An application

of Bernestein’s inequality gives the result that maxij P (|Σ̂ij − Σij| > ε) ≤ C exp(−nε) for

some C <∞. Thus,

P (max
i≤j
|Σ̂ij −Σij| > ε) ≤

∑
i≤j

P (|Σ̂ij −Σij| > ε) ≤ p(p− 1)

2
C exp(−nε),

which converges to zero if n/log(p(n))→∞. Consequently, the consistency of (µ̂, Σ̂) directly

leads to the result that P (D̂n = D̃n)→ 1 as n/log(p(n))→∞.
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Although q(j), j = 1, . . . , n are unknown in reality, the argument above is enough to prove

the consistency of our parametric bootstrap method. This is because our bootstrap approach

for the outlier detection focuses on the relationship between the sample and the bootstrap

sample rather than a true null distribution. In other words, By repeating generating a boot-

strap sample of size n, we estimate D̃n, whose consistency to D̂n as n/log(p(n)) → ∞ is

obtained regardless of what a true distribution is.
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3.5 Simulation Study

In this section we carry out some simulations to see the performance of the proposed method

for outlier detection in HDLSS data. In Section 3.5.1, we investigate the performance when

there is only one outlier. In Section 3.5.2, we study the case when there are more than one

outlier, which implies possible masking effect. In that section, we also give an argument that

masking effect in HDLSS is rare in general.

3.5.1 Single Outlier Case

In Section 3.2 we introduced three types of distance measures for high-dimensional data:

the centroid, rMH, and MDP distances. It is natural to suggest a potential outlier based

on the maximum distance since three distances basically measure the level of each data

point’s remoteness compare to the other observations. However, in some case, there are

conflicts between distance measures about which observation has the largest distance; the

order statistics for the distance of each data point may be different across the distance

measures. We found that these conflicts are influenced by the covariance structure that

the data set has. In the following example we compare three types of distances under the

three different scenarios: variables are uncorrelated, strongly correlated, or under the mixed

condition of these two extreme cases. For simplicity we assume that there is only one outlier

in each case.

Let us generate a sample of size 49 from p-variate normal distribution Np(0,Σ), where

p = 500. We consider three types of covariance structures. In Setting I, we use Σ = I,

i.e., the variables are uncorrelated. In Setting II, we set a compound symmetric matrix,

where diagonal elements are 1 and off-diagonal elements are ρ (we set ρ = 0.7). This case

is when the variables are highly correlated. In Setting III, we consider a mixed situation of

these two extreme cases in which some variables are highly correlated and some others are

less correlated. In fact, such covariance is more realistic other than those of two previous

settings. For this setting, we compute a p× p matrix by ΓΛΓT, where Γ is an orthonormal
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matrix and Λ is a diagonal matrix that contains eigenvalues, i.e., Λ = diag{λ1, . . . , λp}.

The eigenvalues are set to λj = pj−1/3, j = 1, . . . , p. The first 50 eigenvalues, λ1, . . . , λ50

are displayed in Figure 3.8. The rest of eigenvalues, λ51, . . . , λ500, gradually decrease toward

zero. We convert this covariance matrix to the correlation matrix ρ = {ρij}, and see the

correlation coefficient values. In this example, the correlation coefficients vary as follows:

|ρij| < 0.1 (40.12%), 0.1 ≤ |ρij| < 0.2 (32.59%), 0.2 ≤ |ρij| < 0.3 (18.85%), 0.3 ≤ |ρij| < 0.4

(7.09%), 0.4 ≤ |ρij| < 0.5 (1.29%), and |ρij| ≥ 0.5 (0.05%). In addition, in order to produce

an orthonormal matrix Γ, we first generate a random p×p matrix in which the elements are

random numbers from unif(0, 1). Then, the p column vectors are orthonormalised by the

Gram-Schmidt process.
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Figure 3.8. Eigenvalues of covariance matrix of Setting III.

Once a data set without an outlier is generated, we add the 50th data point as the

outlier in the data set. An outlying data point is constructed along with a random vector

v0. To decide this random vector, we randomly choose ten eigenvectors v1, . . . ,v10 from the

p eigenvectors of Σ, and also generate ten random numbers a1, . . . , a10 from unif(−1, 1),

then we construct a linear combination of the vectors with the length of 1 as follows: v0 =

(
∑10

i=1 aivi)/‖
∑10

i=1 aivi‖. Thus, the outlying data point can be expressed by outlier = a0v0+

e, where e is a noise vector from Np(0, .05 Ip). We set a0 = 40.

91



With the updated data set, we draw the principal component (PC) scatter plot to see

whether this outlier can be seen. Figure 3.9 shows the projections onto the the first four

principal components under Settings I to III. The potential outlier is marked by blue solid

dot, and the 49 other normal data points are marked by red circle. In (a), PC1 direction

clearly shows the outlier separated from the rest of data. In (b), PC2 directions clearly shows

the outlier. But in (c), we notice that the first four principal components fail to recognize the

outlier. In this case, more principal components are searched for until the outlier appears,

and finally it is found in PC7 direction (2.8 %). But, this search may not always work since

individual PC does not provide much information as dimension grows. Even though we find

the direction that reveals the outliers, it only accounts for 2.8 % of total variance in this

example. In general, using PC plots for the purpose of outlier detection may not be efficient

in high dimension.

We apply our outlier detection method for this data set. we first calculate the one-vs-

others distances of 50 data points using all three types of distances, and draw the quantile-

quantile plot as described in Section 3.4.2. Figure 3.10 shows the results. In (a), three distance

measures equivalently perform well for identifying outliers. In (b), rMH and MDP distances

identify the outlier well but CD does not. In (c), similar to (b), the rMH and MDP distances

work well but the CD could not find the outlier. We tried this simulation for different

dimensions, such as p = 100 and 300, and obtained similar results, which can be found in

Figures 3.11-3.13.

3.5.2 Multiple Outliers and Masking Effect

Researchers often face multiple outliers or clusters of outliers in a data set. In this section

we examine whether our proposed method is effective under this circumstance. In Section

3.4.2 we propose a sequential algorithm that the potential outliers are tested one by one. As

we mentioned, the reason why we follow these steps is that we prevent (µ̂, Σ̂) from being
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Figure 3.9. PC scatter plot from the data set that has a potential outlier. In (a) and (b), the first
and second PC clearly show the outlier, respectively. But in (c), the first four PC fail to recognize
the outlier.
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Figure 3.10. Performance of three distance measures for outlier detection in HDLSS data. In (a),
all three distance measures works well for identifying an outlier. Meanwhile, in (b) and (c), the
centroid distance (CD) fails to detect the outlier, but the ridge mahalanobis (rMH) and maximal
data piling (MDP) distances identify the outlier regardless of covariance structure.
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Figure 3.11. (Setting I) Outlier detection results by three distance measures are similar in different
dimensions.
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Figure 3.12. (Setting II) Outlier detection results by three distance measures are similar in dif-
ferent dimensions.

96



10 15 20

10

15

20

CD*

 

C
D

p=100

0 10 20
10

20

30

rMH*

 

rM
H

p=100

0 5 10
5

10

15

MDP*

 

M
D

P

p=100

20 30

22
24
26
28
30
32

CD*

 

C
D

p=300

20 40

30

40

50

rMH*

 

rM
H

p=300

10 20
15

20

25

MDP*

 

M
D

P

p=300

30 40 50

30

35

40

45

CD*

 

C
D

p=500

20 40

40

50

60

rMH*

 

rM
H

p=500

15 20 25 30

25

30

35

MDP*

 

M
D

P

p=500

Figure 3.13. (Setting III) Outlier detection results by three distance measures are similar in
different dimensions.
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contaminated by the outliers, so that the inference from the bootstrap samples, which are

drawn from Np(µ̂, Σ̂), is reasonable.

Another benefit of this sequential approach is to prevent the masking effect. Recall that

the distance of each observation is defined by the leave-one-out distance, expressed as D̂j =

d(xj,X(−j)) in Section 3.2. Suppose there are more than one outlier in a data set. When we

calculate the leave-one-out distance from the data, it is possible that the order statistics,

D̂(1) < . . . < D̂(n), are misled by the multiple outliers. In other words, the distance of

an outlying data point relative to the other observations can be deflated when some other

outliers are included in the data set. If that occurs, we may delete the wrong observation

while the true outlier is still kept, resulting in incorrectly estimating (µ̂, Σ̂). However, this

negative scenarios may be not a problem in the proposed outlier detection method thanks

to the sequential approach. Even though the true outlier did not appear for the first time

through the n ordered distances, it can appear in the next procedure by recalculating the

n − 1 ordered distances, D̂
′

(1) < · · · < D̂
′

(n−1) since removing one observation also removes

the possible masking effect carried by that observation.

In the following we run our outlier detection method for two multiple outlier settings.

Suppose there is a data set from Np(0,Σ), where n = 50 and p = 500. For the covariance Σ,

we consider a mixed structure, which is Setting III in Section 3.5.1. In Setting I, we input

three outliers that are randomly generated. We replace three observations with the three

outlying data points as below

outlier1 = d0v1,0 + e1, (3.20)

outlier2 = d0v2,0 + e2, (3.21)

outlier3 = d0v3,0 + e3, (3.22)

where d0 is an arbitrary constant that determines the outlyingness (we set d0 = 40), and

e1, e2 and e3 are independent noise vectors from Np(0, .05 Ip). Also v1,0 , v2,0 and v3,0 are
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p-dimensional random vectors with the length of 1, expressed by

vk,0 = (ak,1vk,1 + · · ·+ ak,10vk,10) /‖ak,1vk,1 + · · ·+ ak,10vk,10 ‖, k = 1, 2, 3 ,

where (vk,1, . . . ,vk,10) are randomly chosen ten vectors from p eigenvectors of Σ, which are

conducted three times to form three outliers, as denoted by k = 1, 2, 3. Also (ak,1, . . . , ak,10)

are random numbers from unif(−1, 1).

A data set that includes these three potential outliers is projected onto the principal

component directions in Figure 3.14. In this figure, the potential outliers are marked by dot,

diamond, and cross, and the 47 normal data points are marked by black circles. The three

potential outliers are not shown as the outliers on the first four principal components.
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Figure 3.14. PC scatter plot of a data set that have multiple outliers (Setting I). The three
potential outliers marked by dot, diamond, and cross are not appeared as the outliers on the first
four principal components.

Further, our proposed method for the outlier detection is performed on this Setting I

data. We test until n0 = 4. Figure 3.15 displays the results. In each panel, the y-axis displays

the sample quantiles which is named by the distances: CD, rMH, and MDP. Also, the x-axis

displays the corresponding bootstrap quantiles which is named by CD∗, rMH∗, and MDP∗.

In the first row panels, CD does not separate the group outliers from the rest. This result is

expected because the simulation is based on a mixed covariance structure, and the CD tends
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Figure 3.15. Our outlier detection method on multiple outliers (Setting I). In the second and third
row panels, the ridge Mahalanobis (rMH) distance and the maximal data piling (MDP) distance
clearly separate the group outliers. The sequential procedures lead to the conclusion that there are
three outliers in the data set. At n0 = 4, we do not see any evidence of the outliers.
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to work for data with little correlation. In the second and third row panels, rMH and MDP

separate the group outliers well. When the outlier is removed sequentially, it is clearly seen

that there were three outliers in the data set because we do not see any evidence of other

outliers at n0 = 4.

In Setting II, we perform a simulation under a challenging situation that some outliers

are hard to be detected; we insert three outliers that are rather clustered together. This

setting is designed to see whether our method is able to handle the masking phenomenon

that might occur by the multiple outliers. In the previous Gaussian data setting, let us

construct three outliers following (3.20)-(3.22). But we made these group outliers closer to

each other in terms of the pairwise angle. To do this, the random vectors v1,0, v2,0 and v3,0

are constructed as

v1,0 ∝ (a1v1 + · · ·+ a6v6) + (a7v7 + · · ·+ a10v10),

v2,0 ∝ (b1v1 + · · ·+ b6v6) + (a7v7 + · · ·+ a10v10),

v3,0 ∝ (c1v1 + · · ·+ c6v6) + (a7v7 + · · ·+ a10v10),

where (v1, . . . ,v10) are randomly chosen ten vectors from p eigenvectors of Σ, and

(a1, . . . , a10), (b1, . . . , b6), and (c1, . . . , c6) are random numbers from unif(−1, 1). The three

vectors, vk,0, k = 1, 2, 3, are normalized to have the length of 1. Note that all of the three

vectors are the linear combinations of v1, . . . ,v10 where the coefficients of v1, . . . ,v6 are

different, and the other coefficients are the same. Such linear combinations produce closer

pairwise angles among the vectors; i.g., angle(v1,0,v2,0) = 63.30◦, angle(v1,0,v3,0) = 59.07◦,

and angle(v2,0,v3,0) = 44.42◦.

A data set that includes the three close outliers is projected onto the first four principal

components directions as shown in Figure 3.16. It is clearly seen that there are three outliers

especially on PC3 direction where the direction accounts for 7.2% of total variance. Note

that this plot also shows that the outliers are not seen on some other directions such as PC1,

2, and 4. Individual PC direction is not much informative in high dimension. Luckily, we

found that the PC3 represents outliers in this example, but this may be because the outliers
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are clustered together. In general, judging outliers based on the first few PC does not always

work as previously shown in Figures 3.9 and 3.14.
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Figure 3.16. PC scatter plot of a data set that have close group outliers (Setting II). It is clearly
seen that there are three outliers especially on PC3 direction.

With the Setting II data, we run the proposed outlier detection method. The results are

shown in Figure 3.17. In the first row panels, the outliers do not clearly appear as expected

since CD is not a good distance measure for non-spherical high dimensional data. In the

second and third row panels, rMH and MDP distances show the similar patterns. At n0 = 1,

there seems to exist a single outlier, which is a false conclusion. We know there actually exist

three outliers in the data. This truth reveals at n0 = 3. Once the diamond is deleted, the

cross is clearly seen as the outlier. That says that in the previous step n0 = 1 and 2, there

was the masking effect between two data points by the angles of the pair (44.42◦).

Usually, when one mentions the masking effect in low dimension (n > p), it refers to the

problem by using the Mahalanobis distance whose parameters are mean vector and covariance

matrix. In other words, the mean and covariance estimations including the outlier(s) them-

selves can mislead the outlier rejection point (e.g., chi-square distribution criteria), resulting

in hiding the true outlier. For this reason, many researchers have attempted to estimate the
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Figure 3.17. Our outlier detection method on multiple outliers (Setting II). In the second and the
third row panels, based on n0 = 1 and 2, one may conclude that there exist one outlier. However,
at n0 = 3, after the diamond is deleted, the cross is clearly seen as the outlier. Thus we know that
there actually exist three outliers in the data. That says that in the previous step n0 = 1 and 2,
there was the masking effect between two data points by the angles of the pair.
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robust Mahalanobis distance by finding the robust estimators of location and shape param-

eters (Maronna and Zamar, 2002; Rousseeuw and van Zomeren, 1990). Unfortunately, using

the robust estimates do not entirely resolve the masking problem especially when dimension

is larger. For example, Rousseeuw and van Zomeren (1990) suggests that their minimum

volume ellipsoid estimator (MVE) will be useful for n/p > 5 since high dimensionality may

cause the collinearity of a few sample points in a multivariate space, which makes detecting

outliers harder.

In high dimension (p > n), on the other hand, the Mahalanobis distance is no longer in

use due to the singularity problem of covariance estimator. Then, one may want to know

when the masking phenomenon can occur in high dimension. In Setting II simulation, we

addressed the angle between data vectors can be a source of masking effect. The masking

effect by the angle is related to the characteristics of MDP distance. According to the MDP

distance, the farness of an observation is defined by the orthogonal distance from a data

point to the affine subspace that the rest of the data points generate. That means that the

masking effect can be arisen when the distance from an outlying data point to the affine

subspace is underestimated. Such situation may occur when the angle between the outlying

data vector and some other vectors belonging to the affine subspace is much smaller than 90

degrees. In that situation, the perpendicular distance of the outlier to the rest is substantially

underestimated, as a result one cannot detect the outlier.

Fortunately, however, such masking phenomenon is highly unlikely when the dimension is

large. Hall et al. (2005) addressed some geometric property of high dimensional data vector

as p → ∞ for fixed n. Among the facts, we would like to point out that all pairwise angles

of the data vectors are approximately perpendicular as dimension increases. Importantly,

the fact that the data vectors are almost perpendicular implies that there is extremely less

probability of masking effect by the angles between two outliers. Furthermore, the almost

perpendicular data vectors are commonly observed in real high-dimensional data. Figure

3.18 shows the histograms of all pairwise angles of the data vectors in real data. The real
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data sets are listed in Table 3.1. Each data set denoted by data (i, j) is centered by the mean

vector, and then all pairwise angles among the observations are calculated. In this figure. we

see that all pairwise angles are piled towards 90 degrees. Therefore, the masking effect is not

a problem in the usage of MDP distance as a distance measure for high dimensional data.
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Figure 3.18. Histograms of all pairwise angles among observations in real data sets. The real data
sets are listed in Table 3.1. We see that most pairwise angles are piled towards 90 degrees.
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3.6 Real Data Example

3.6.1 Data Sets

Our outlier detection method is implemented with real microarray data: breast cancer data

(Data 1), lung cancer data (Data 2) and luekemia data (Data 3). Those three data have

more than one batch, and each batch is partitioned by two biological classes. For example,

“breast cancer data, ER+ group” is denoted by data (1,1), “breast cancer data, ER- group”

is denoted by data (1,2) and the like. All data sets denoted by data (i, j) are listed in Table

3.1 as below. More details of Data 1 and 2 are given in Table 2.3 in Chapter 2. The luekemia

data (Data 3) is publicly available from Dettling (004b). Note that we only select the top

1000 genes based on the variances since large variance often indicates the presence of the

outlier.

Table 3.1
List of data sets

Data id Data name Sample size Batch Source
(1,1) Breast cancer ER+ 209 Batch1
(1,2) Breast cancer ER- 77
(1,3) Breast cancer ER+ 211 Batch2 Table 2.3
(1,4) Breast cancer ER- 34
(1,5) Breast cancer ER+ 134 Batch3
(1,6) Breast cancer ER- 64
(2,1) Lung cancer dead 60 Batch1
(2,2) Lung cancer alive 19
(2,3) Lung cancer dead 102 Batch2
(2,4) Lung cancer alive 76 Table 2.3
(2,5) Lung cancer dead 35 Batch3
(2,6) Lung cancer alive 47
(2,7) Lung cancer dead 39 Batch4
(2,8) Lung cancer alive 65
(3,1) Luekemia 1 25 Dettling (004b)
(3,2) Luekemia 0 47
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3.6.2 Outlier Detection Results in Real data

We apply the proposed method on the 16 real data sets above in order to examine whether

those data sets include outliers. Among these data sets, some suspicious observations are

found in data (1,5), (2,2), (2,5), and (2,6).

In the example of Figure 3.19, the qq plots from the proposed method are drawn for data

(1,5). In each panel, the data points are labeled by the observation number, 1 to 134. In

the second and third row panels, we can see that there are three outliers: 39, 68 and 113.

At n0 = 1, the observation 39 is suggested for the outlier in both rMH and MDP distances.

At n0 = 2 and 3, the observations 68 and 113 are suggested for the other outliers in both

distances but with a difference sequence. The other results for data (2,2), (2,5), and (2,6)

are depicted in Figures 3.21, 3.23, and 3.25, respectively.

Furthermore, these results are compared to the results of the PCout method proposed

by Filzmoser et al. (2008). The PCout algorithm finds the outliers based on the principal

components which contribute to 99 % of total variance. This approach makes sense since the

dimension usually comes down to less than sample size, which makes the analysis of data

easier. The process of searching outliers on these PC’s involves mainly two parts considering

location outliers and scatter outliers. The first part to detect the location outlier utilizes

a kurtosis measure proposed by Peña and Prieto (2001). Extremely large or small kurtosis

coefficients on some directions indicates the presence of the outliers. Therefore, one weights

the directions that clearly separate the outliers based on the kurtosis coefficients. In the

second part with regard to scatter outliers, they consider another weight for each observation,

utilizing the translated biweight function. See Filzmoser et al. (2008) for the technical details.

The comparisons are shown in Table 3.2. In the comparison of data (1,5), for example,

the PCout method finds total 15 observations, which is more than what our method finds

(three outliers). Also in the rest of the data sets, the PCout method tends to find more

outliers. These results are depicted in Figures 3.22, 3.24 and 3.26, respectively.
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Table 3.2
Comparison with PCout

Data id Our method PCout
(1,5) 39, 68, 113 39, 68, 113 and others (total 15 observations)
(2,2) 5, 9 3, 5, 9
(2,5) 1, 2 1, 2, 15, 28
(2,6) 13 6, 13, 20, 32, 33, 47
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Figure 3.19. Outliers in data (1,5) with our method. Three outliers are found: 39, 68, 113.
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Figure 3.20. Outliers in data (1,5) with PCout. In the right bottom panel, total 15 outliers are
found: 39, 68, 113 and others.
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Figure 3.21. Outliers in data (2,2) with our method. Two outliers are found: 5, 9.

110



5 10 15

0
20

40
60

80
10

0

Index

D
is

ta
nc

e 
(lo

ca
tio

n)

5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index

W
ei

gh
t (

lo
ca

tio
n)

5 10 15

3
4

5
6

7
8

9

Index

D
is

ta
nc

e 
(s

ca
tte

r)

5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index

W
ei

gh
t (

sc
at

te
r)

5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index

W
ei

gh
t (

co
m

bi
ne

d)

5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index

Fi
na

l 0
/1

 w
ei

gh
t

Figure 3.22. Outliers in data (2,2) with PCout. In the right bottom panel, three outliers are
found: 3, 5, 9.
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Figure 3.23. Outliers in data (2,5) with our method. Two outliers are found: 1, 2.
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Figure 3.24. Outliers in data (2,5) with PCout. In the right bottom panel, four outliers are found:
1, 2, 15, 28.
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Figure 3.25. Outliers in data (2,6) with our method. one outlier is found: 13.
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Figure 3.26. Outliers in data (2,6) with PCout. In the right bottom panel, six outliers are found:
6, 13, 20, 32, 33, 47.
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3.7 Conclusion

In this chapter, we propose an outlier detection method for HDLSS data, which has not

been dealt with in previous works. Specifically, we suggest using three types of distance

measures that are useful in the high dimensional space. Also a parametric bootstrap method

is applied for introducing a qq plot in which we expect outliers to come out. Through the

theoretical properties and a simulation study, the proposed method is shown to be effective

in the detection of multiple outliers as well as a single outlier.
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