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Abstract

We develop a new theory of dimension reduction in time series, which provides an initial

phase when an adequate parsimoniously parameterized time series model is not yet available.

In this thesis, we define a notion of Time Series Central Subspace and Time Series Central

Mean Subspace, and estimate them using newly developed methods, when the lag of the series

and minimum dimension are known. The estimators are shown to be strongly consistent. In

addition, we also discuss estimation of the minimum dimension and the lag. The theory of

dimension reduction in time series poses many challenges, but a variety of encouraging results

presented through extensive simulations and real data analysis seem to suggest that our

method has a great potential for providing a viable and meaningful alternative to traditional

time series analysis. In fact, superior performance of our nonlinear or linear time series models

for several real data sets serve as a testament that our methods are very useful in time series

analysis. We believe that the ideas and methods presented here are of interest to time series

analyst in fields such as Economics, Business, Climatology, among others. We hope that this

work will stimulate a new way of analyzing time series data.
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Chapter 1

Introduction and Literature Review

Dimension reduction in regression has been a very active area of intense research for over

two decades. While many new techniques and estimation methods have been proposed for

dimension reduction in regression, only a handful of recent work (Xia, Tong, Li and Zhu,

2002) deals with dimension reduction issues for time series. What is more interesting to

note is that, while many ideas and techniques in time series analysis have their origin in

classical regression theory, the concept of dimension reduction in regression has not been

formally extended to the time series context. Such an extension is the main goal of this

thesis. Our objective here is to develop the formal dimension reduction theory for time series

when an adequate parsimoniously parameterized time series model is not yet available. As

far as we know, the materials presented here is the first formal development of dimension

reduction theory for time series. Before we delve into the main goal of the thesis, we present

a brief overview of time series methodologies from the literature and describe two notions

of dimension reduction in regression, known as Central Subspace (CS) and Central Mean

Subspace (CMS). In Section 1.2, we describe prior work on dimension reduction in time

series and briefly describe contents of the rest of thesis.

1.1 An Overview of Time Series Analysis and Dimension Reduction in

Regression

Statistical analysis of data observed at adjacent time points, commonly known as time series

analysis, has been an active area of research for several decades. The intrinsic nature of time

series is that its observations are correlated. This severely restricts the direct applicability

1
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of many conventional statistical methodologies, which are primarily suited for analyzing

independent and identically distributed data. The unique challenges posed by the nature

of time series data sets have given rise to two broad approaches, categorized as the time

domain approach and the frequency domain approach. Over the years, the statistics com-

munity has witnessed development of many useful parametric and nonparametric methods

for analyzing time series data. Nevertheless, there is a never-ending quest to build new and

modern methodologies to analyze time series data, which occur in a variety of fields such as

economics, meteorology, engineering, geophysics, social and environmental science; the list

is practically endless.

There is a long tradition of using either parametric or nonparametric methods in ana-

lyzing time series data. Model-based parametric methods overcome some practical complex-

ities associated with time series analysis. Autoregressive Moving Average (ARMA) models

are customarily used in linear time series model; see, for example, Wei (2006) and Brockwell

& Davis (1996), mathematical development of such model and their usefulness in analyzing

real time series data. Threshold Autoregression (TAR) models, on the other hand, are spe-

cial types of nonlinear models. Tong (1978, 1983, 1990) and Tong & Lim (1980) proposed

piecewise linear models, where the linear relationship changes according to values of the

process. There are also models incorporating a nonconstant error variance, known as het-

eroscedasticity. These include models such as Autoregressive Conditional Heteroscedasticity

(ARCH) by Engle (1982) and Generalized Autoregressive Conditional Heteroscedasticity

(GARCH) by Bollerslev (1986); and, these are also special type nonlinear models, often used

to characterize volatility. Nonparametric methods make no assumption about the structure

of a time series, but impose existence of density functions and associated smoothness condi-

tions. Although an attractive alternative to parametric methods, practical implementation

of nonparametric methods require specification of density estimators and selection associ-

ated bandwidth and other smoothing parameters. In addition, nonparametric methods do

not necessarily perform well in high dimensions. Nevertheless, these methods provide a guid-



3

ance for selecting appropriate lower-dimensional parametric models and for deciding between

competing models.

It is well-known that estimation approaches from classical regression theory have been

useful in building linear/nonlinear models for time series data {x1, · · · , xt; t ≥ 1}, where there

is an obvious dependence of xt on the past values {xt−1, · · · , x1}. In addition, the emphasis

in time series is usually on forecasting future values, which is easily treated as a regression

problem. For an in-depth exposition of widely studied time series models and forecasts based

on these models, see e.g., Brockwell and Davis (1996), Shummway and Stoffer (2000), Fan

and Yao (2003), Tsay (2005) and Wei (2006).

In this thesis, we develop a new theory for analyzing time series data which provides an

initial phase when an adequate parsimoniously parameterized time series model is not yet

available. Before we progress toward our goal, we briefly review the concept of dimension

reduction in regression.

Let Y be a scalar response variable and X be a p× 1 random covariate vector. The goal

is to make inference about how the conditional distribution Y |X varies with the values of X.

Dimension reduction in regression is to find q linear combinations say, βT
1 X, · · · , βT

q X with

q ≤ p such that the conditional distribution of Y |X is same as the conditional distribution

of Y |(βT
1 X, · · · , βT

q X). In other words, there would be no loss of information if X were

replaced by the q(≤ p) linear combinations. Suppose B = (β1, · · · , βq) denotes the p × q

matrix. Then, the goal is equivalent to finding a B matrix such that Y X|BTX, that is,

Y is (conditionally) independent of X given BTX. Here, indicates independence. As

introduced in Cook (1994, 1998), the dimension reduction methods approach this problem

through a Central Subspace (CS), which is a minimum dimension reduction subspace (DRS),

say S(B0), with dim(S(B0)) ≤ dim(S(B)) for all DRSs S(B) for which Y is independent

of X given BTX. Here, “dim” denotes dimension and the columns of matrix B form a basis

for the DRS. This approach is appealing because it does not specify a parametric model

and there is no loss of information about the conditional distribution of Y given X. For
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deeper issues related to the topic of dimension reduction and estimation approaches, see

Cook (1998).

Indeed, regression is understood by some to imply a study of the mean function E(Y |X).

Recently, Cook and Li (2002) introduced a concept called Central Mean Subspace (CMS),

which is similar in spirit to that of a CS, but dimension reduction is aimed at reducing the

mean function alone, leaving the rest of Y |X as the nuisance parameter. Here, CMS is a

minimum mean DRS, say SE(Y |X)(B0), with dim(SE(Y |X)(B0)) ≤ dim(SE(Y |X)(B)) for all

DRSs SE(Y |X)(B) for which Y is independent of E(Y |X) given BTX.

1.2 Dimension Reduction in Time Series

To address the issue of dimension reduction in time series, Xia and Li (1999), and Xia,

Tong and Li (1999, 2002) considered a single-index model, which avoids the curse of dimen-

sionality. Recently, Xia, Tong, Li and Zhu (2002) proposed dimension reduction methods in

regression, which is also applicable to time series with known lag, but their focus is only on

the estimation of dimensions in the mean function. For an ensemble of time series, Li and

Shedden (2002) present a dimension reduction method, which identifies a small number of

independent time series components such that each time series in the ensemble is a different

linear combination of the components. Their notion of dimension reduction, however, differs

from ours. Becker and Fried (2003) use a dynamic version of Sliced Inverse Regression (SIR,

Li 1991) as an exploratory tool for analyzing multivariate time series where the lag is chosen

using preliminary information. Hall and Yao (2005) discuss an estimation method, which

approximates the conditional distribution function of xt given the past using a single linear

combination of the past. To the best of our knowledge, there is no formal sufficient dimen-

sion reduction theory in time series which overcomes curse of dimensionality without making

specific model assumptions or using specific number of dimensions and lag. Development of

such a formal theory for time series is the main goal of this thesis.
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The primary goal of time series analysis is forecasting, which requires inference about

the conditional distribution of xt|Xt−1, for some suitable lag p ≥ 1, where Xt−1 =

(xt−1, ..., xt−p)
T . Typically, the lag p is not known. However, there are diagnostic ways

and estimation methods for determining a value of p before proceeding with the inference

(Ng and Perron, 2005). It is also important to note that with known p, we may only need a

few linear combinations of Xt−1 in the final model (Xia and Li 1999; Xia, Tong and Li 1999,

2002), determination of which is one of our main focus.

In Chapter 2, we propose a notion of time series central subspace, definition of a minimum

dimension reduction subspace, and estimate it using a method based on Kullback-Leibler

distance, when the lag and minimum dimension are known. The estimator is shown to be

strongly consistent. In addition, we also discuss estimation of minimum dimension and lag.

Furthermore, we show that the proposed estimator of minimum dimension (when it exists)

is strongly consistent. We proposed a graphical approach for the determination of true lag

of series.

In Chapter 3, we propose a notion of time series central mean subspace, definition of

a minimum mean dimension reduction subspace, and estimate it using a method based

on residual sum of squares, when the lag and minimum dimension are known. In order

to estimate the correct dimension, we introduce two information criteria. We examine the

performance of the estimators of the minimum dimension extensively through simulation and

real data analysis. As for estimation of the unknown lag, we continue to use the graphical

approach introduced in Chapter 2.

In Chapter 4, we give a brief discussion and conclusion summarizing the results of TSCS

and the TSCMS approaches.
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2.1 Introduction

Traditionally, time series analysis involves building an appropriate model and using either

parametric or nonparametric methods to make inference about the model parameters. Moti-

vated by recent developments in dimension reduction theory in regression, we develop a

similar theory for time series which does not require specification of a model but seeks to

find a p × d matrix Φd, with smallest possible number d(≤ p), such that the conditional

distribution of xt|Xt−1 is the same as that of xt|ΦT
d Xt−1, where Xt−1 = (xt−1, ..., xt−p)

T ,

resulting in no loss of information about the conditional distribution of the series given its

past p values. To this end, we define a notion of minimum dimension reduction subspace,

called time series central subspace, and estimate it using a recent method based on Kullback-

Leibler distance, when p and d are known. The estimator is shown to be strongly consistent.

In addition, we also discuss estimation of dimension d and lag p. We illustrate our method

via simulations for a variety of linear and nonlinear time series models and through analysis

of real data on Wolf yearly sunspot numbers, U.S. GNP, and U.S. beer production data (Wei,

2006). We believe that the methods presented here offer a new approach to analyzing time

series data.

In Section 2.2, we formally develop the theory of dimension reduction in time series by

introducing the notion of time series central subspace (TSCS). In Section 2.3, we discuss the

estimation of TSCS when its dimension d and lag p of the series are known, and discuss other

related issues. More precisely, in Section 2.3.1, we introduce an objective function and study

its properties. In Section 2.3.2, we give a detailed computational algorithm to compute the

estimator. In Section 2.3.3, we suggest a data-dependent way of determining lag p and d linear

combinations, which provides full information about the conditional distribution of xt|Xt−1.

Estimating this minimal set of linear combinations and replacing Xt−1 by the estimated linear

combinations is what we call dimension reduction in time series. The consistency results for

our estimators are stated in Section 2.3.4. In Section 2.4, we carry out several Monte Carlo

simulations followed by analysis of the well-known Wolf yearly sunspot data, U.S. GNP, and
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U.S. beer production data. In Section 2.5, we present a discussion of the results obtained

here. All the necessary proofs are given in the Appendix. Note that our approach provides

a new way of analyzing time series data, without specification of a parametric model and

without loss of information about the conditional distribution of xt given Xt−1. Above all,

our approach provides an initial phase when an adequate parsimoniously parameterized time

series model is not yet available.

2.2 Central Subspace in Time Series

A time series data x1, · · · , xt naturally evolves over time and hence there is an obvious

dependence of the current value xt on the past values xt−1, · · · , x1. Therefore, it would be

useful to make inference about the conditional distribution of xt given the past. However, in

many real data sets it is possible to determine (using the plot of autocorrelation and partial

autocorrelation functions of the series) a value of p ≥ 1, perhaps large, such that it suffices

to make inference about the conditional distribution of xt|Xt−1, for some p ≥ 1, where Xt−1

is as defined in the introduction. We will begin by assuming that such a lag value p exists

and is known. Later in this chapter, we also consider the case of unknown p.

Our goal is to find finitely many linear combinations, ΦT
1 Xt−1, · · · , ΦT

q Xt−1, with q ≤ p

such that the conditional distribution of xt|Xt−1 is same as the conditional distribution of

xt|(ΦT
1 Xt−1, · · · , ΦT

q Xt−1). As mentioned earlier, this is equivalent to finding a p × q matrix

Φ = (Φ1, ..., Φq) such that

xt Xt−1|ΦTXt−1, (2.1)

that is to say, xt is independent of Xt−1 given ΦTXt−1. Therefore, the p × 1 vector Xt−1

can be replaced by the q × 1 vector ΦTXt−1 without loss of information. This represents

a potentially useful reduction in the dimension of Xt−1, where all the information in Xt−1

about xt is contained in the q-linear combinations.

As in the introduction, we define a DRS for xt on Xt−1 as any subspace S(Φ) of R
q

for which (2.1) holds. Note that (2.1) holds trivially for Φ = Ip×p, which implies that a
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dimension reduction subspace always exists. Since the interest is in reducing the dimension,

we want to find a minimum DRS for xt on Xt−1. To this end, we define the intersection of all

DRSs as a TSCS, if the intersection is itself a DRS. We denote the TSCS by Sxt|Xt−1(Φd),

where dim(Sxt|Xt−1
(Φd)) = d. Clearly, this TSCS is the minimum DRS. The notion of TSCS

is parallel to that of the central subspace in regression (Cook, 1994, 1998a), and this provides

an initial phase when an adequate parsimoniously parameterized time series model is not

yet available. Note that in the definition of TSCS, we do not restrict the time series to be

linear or nonlinear or impose a stationarity assumption, as done in traditional time series

modeling approaches.

Whereas Sxt|Xt−1(Φd) is always a subspace, it is not necessarily a DRS. However, in

regression analysis, it can be shown under certain conditions (Cook 1994, 1996, 1998a) that

the intersection of DRS is a DRS. For the time series setup, we have the following result

that guarantees the existence of TSCS. The proof follows arguments similar to those in Cook

(1998a, p. 108) and is given in the Appendix (see Section 2.6).

Proposition 1 Let S(η) and S(γ) be DRSs for xt on Xt−1. If Xt−1 has a density f(xt−1) > 0

for xt−1 ∈ ΩXt−1 ⊂ R
p, where ΩXt−1 is the support of Xt−1, and f(xt−1) = 0 otherwise, then

S(η) ∩ S(γ) is a DRS.

We conclude this section with an example which shows that TSCS exists. If p = 3 and

Xt−1 = (xt−1, xt−2, xt−3)
T , set xt = φ1xt−1 + φ2xt−2 + φ3xt−3 + εt, where εt are independent

normal random variable. Then vector (φ1, φ2, φ3)
T forms a basis of TSCS. On the other

hand, if there is a degenerate case such as xt = φ1xt−1, then S((1, 0, 0)T ), S((0, 1, 0)T ), and

S((0, 0, 1)T ) are all minimum DRSs, but there does not exist a central subspace because

∩SDRS is equal to the origin.

For the rest of this chapter, we assume the existence of TSCS. Our definition of TSCS is

generally enough to cover many linear and nonlinear autoregressive (AR) models including
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the AR(p), threshold autoregression, and conditionally heteroscedastic autoregression. How-

ever, our approach does not include moving average (MA) models or generalized autoregres-

sive conditionally heteroscedastic models, which may be viewed as infinite order autoregres-

sion.

2.3 Estimation of TSCS

Our goal now is to develop a method for estimating the TSCS, Sxt|Xt−1(Φd), which does

not require a pre-specified model for xt|Xt−1. Our estimation method is similar to the one

proposed in Yin and Cook (2005). We begin by assuming that dimension d(≤ p) of TSCS and

lag p in Xt−1 are known. Therefore, we need to estimate only the set of vectors (Φ1, ..., Φd)(=

Φd). One may immediately think that well-known inverse dimension reduction methods such

as the Sliced Inverse Regression (Li, 1991) or the Sliced Average Variance Estimation (Cook

and Weisberg, 1991) may be useful for this purpose. While these methods can be applied

in some cases, as pointed out in Xia, Tong, Li and Zhu (2002; see pages 364-365), they are

typically not relevant for time series data.

The assumption that the minimal dimension d of TSCS is known may be restrictive. In

practice, it will be useful to develop methods to determine a value of d using the data. Also,

unlike in regression, where generally p is known, one needs to determine only d of TSCS,

here one also has to determine the lag p in Xt−1. In Section 2.3.4, we use our estimation

method to develop an iterative approach to determine both d and p.

2.3.1 Expected Log-likelihood

Let p(·, ·), p(·|·), and p(·) denote joint, conditional, and marginal densities, respectively. For

p × q matrices h with q ≤ p, we consider an objective function Ψ(h) defined by

Ψ(h) = E

{

log
p(hTXt−1, xt)

p(xt)p(hTXt−1)

}

= E

{

log
p(xt|hTXt−1)

p(xt)

}

, (2.2)

which is the mutual information (Cover and Thomas, 1991) between hTXt−1 and xt. Under

the assumption that Sxt|Xt−1(Φd) exists, we want to maximize this objective function over
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all p× d matrices h with ‖h‖ = I. Since the marginal distribution p(xt) does not involve h,

for subspace S(h), maximizing Ψ(h) is the same as maximizing the expected log-likelihood.

This mutual information can also be thought of as the Kullback-Leibler divergence between

the joint density, p(hTXt−1, xt), and the product of the marginal densities, p(xt)p(hT Xt−1),

quantifying the dependence of xt on hTXt−1. The following proposition shows that this is a

reasonable method for identifying the TSCS.

Proposition 2 Let S(h) be a DRS for xt on Xt−1 defined in Section 2.2, Ψ(h) be as defined

in (2.2), and let h1, h2 and hd be p × q1, p × q2 and p × d matrices, respectively, where

q1, q2, d ≤ p. Also assume that Sxt|Xt−1
(Φd) exists.

(i) If S(h1) = S(h2), then Ψ(h1) = Ψ(h2).

(ii) Ψ(I) ≥ Ψ(h1) with equality if and only if xt Xt−1|hT
1 Xt−1. Consequently, Ψ(I) =

Ψ(Φd) ≥ Ψ(hd) with equality if and only if Sxt|Xt−1
(Φd) = S(hd).

(iii) Ψ(h1) ≥ 0. Moreover, if d > q2 > q1 ≥ 1, then Ψ(I) = Ψ(Φd) = maxhd
Ψ(hd) >

maxh2
Ψ(h2) > maxh1

Ψ(h1).

Part (i) of the above proposition says that only the S(h) matters when maximizing Ψ(h)

and not the particular basis of the subspace. Therefore, the constraint hTh = I, which is used

for identifiability, is not at all restrictive. Part (ii) helps us confirm whether S(h) is a DRS

or not (for xt on Xt−1) by comparing Ψ(h) with Ψ(I), if Ψ(I) is known. More importantly,

Part (ii) says that arg maxhd
Ψ(hd) is always a basis for the TSCS. Part (iii) provides a very

useful sequential search for the TSCS by showing that information content increases with

the dimension until dimension d is achieved. This result will also be useful in Section 2.3.3

below. The proof of Proposition 2 is given in the Appendix.
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2.3.2 Computational Algorithm

If all the densities were known, then we could use (2.2) as the basis for a sample version

Ψn(h) of Ψ(h) and define

Ψn(h) =
1

n

n
∑

t=1

log
p(hTXt−1, xt)

p(xt)p(hTXt−1)
.

Then, we can maximize this sample version over all p×d matrices h. In practice, however, the

densities in Ψn(h) are not known. Therefore, we have to estimate them nonparametrically.

For this, we need a one-dimensional density estimate for p(xt) and, for fixed h, we need

multi-dimensional density estimates for p(hTXt−1, xt) and p(hTXt−1), respectively. General

guidelines for choice of kernels and selection of bandwidths can be found in Silverman (1986)

and Scott (1992).

In our computations, we use a density estimate based on a Gaussian kernel for the

one-dimensional density, and we use a density estimate based on product Gaussian kernels

for each of the two multi–dimensional densities. As observed in Yin and Cook (2005), our

experience also confirms that Gaussian kernels work well in this context. More specifically,

let G denote the univariate Gaussian kernel, and u = (u1, · · · , uk)
T be the k × 1 random

vector, for k ≥ 1. Denote the ith observation by ui = (u1i, · · · , uki)
T , then the k-dimensional

density estimate has the following form:

pn(u1, · · · , uk) = (n
k

∏

j=1

anj)
−1

n
∑

i=1

k
∏

j=1

G

(

uj − uji

anj

)

, (2.3)

where anj = cksjn
−1/(4+k) for j = 1, · · · , k. sj is the corresponding sample standard deviation

of uj, which must be updated during iteration. Including sj in the bandwidth term is not

necessary, however, doing so usually improves the estimation. The constant ck comes from

Silverman (1986, p. 87) or Scott (1992, p. 152).

Now, we replace the densities in Ψn(h) by their corresponding estimates defined in (2.3)

and maximize the function

Ψ̂n(h) =
1

n

n
∑

t=1

log
pn(h

TXt−1, xt)

pn(xt)pn(hT Xt−1)
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over all p × d matrices h satisfying the constraint hTh = I. A method that naturally incor-

porates this constraint is the Sequential Quadratic Programming (SQP) procedure (Gill,

Murray, Wright, 1981, Ch.6). The code for our algorithm is available in MATLAB, where

we use the function ‘fmincon’ for maximization, which accommodates the SQP procedure.

It should be noted that our estimation method does not require the time series to be sta-

tionary. Note that there are also other methods available in the literature for the estimation

of density and conditional density. Also, it may be possible to improve our algorithm using a

different density estimation method with refined bandwidths, as suggested in Fan, Heckman,

and Wand (1995) and Fan, Yao, and Tong (1996).

2.3.3 Estimation of Dimension d and Lag p

Our development of consistent estimation of TSCS assumes that the minimal dimension d

is known. In practice, however, prior information on d may not be available. Therefore, it

will be useful to develop a data-dependent way to determine d prior to using our consistent

estimation method to estimate the TSCS. Also, unlike in regression, here there may not

be any prior information available on the number of lags p and hence it will be useful to

develop data-dependent methods to determine p. It must be mentioned, however, that in

traditional time series analysis one usually uses autocorrelation and partial autocorrelation

plots or estimation approaches to determine the lag p.

For dimension reduction in regression, methods have been proposed for the determination

of the minimal dimension d of CS. See, for example, Li (1992), Schott (1994), Cook (1998b)

and Xia, Tong, Li and Zhu (2002). Here, we use our estimating function Ψ̂n(h) defined in

Section 2.3.2 and a sequential approach to determine the best value of d and p. A graphical

method for determining p, which differs from traditional approaches in time series analysis

(Ng and Perron, 2005). More specifically, for a given data set, we propose the following

iterative process to determine d and p:
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Step 1: Note that if p = 1, then d = 1, and therefore there is no need for dimension

reduction. Thus, the procedure starts by fixing a value of lag p(≥ 2) and determines

d̂p = min{d(≤ (p − 1)) : Ψ̂n(ĥp,(d+1)) − Ψ̂n(ĥp,d) ≤ τp,n}, (2.4)

where ĥp,k = arg maxhk
Ψ̂n(hk) and the maximization is over all p × k matrices hk, and

{τp,n; n ≥ 1} is a sequence of non-negative threshold values chosen in such a way that it

converges to zero as n → ∞. In our simulations and data analysis discussed in Section 2.4,

we set the threshold value τp,n = 0 and χ2
p(α)/(2n), where χ2

p(α) is the 100(1−α) percentile

of Chi-square distribution with p degrees of freedom.

The procedure in (2.4) is clearly iterative, which, at each stage, compares (successive)

differences Ψ̂n(ĥp,(d+1)) − Ψ̂n(ĥp,d) (> 0 because of Proposition 2(iii)) with the threshold

value 0 or χ2
p(α)/(2n), for a pre-specified value α > 0, and stops at the first value of d

for which the difference is below the threshold. For each p ≥ 2, this yields an estimate d̂p

of d, which in turn yields an estimate ĥp,d̂p
of TSCS with the maximum value Ψ̂n(ĥp,d̂p

).

Obviously, if the difference Ψ̂n(ĥp,(d+1)) − Ψ̂n(ĥp,d) never falls below the threshold, then

d̂p = p.

Step 2: Repeat the process in Step 1 for each p = 2, 3, · · · . This process will yield a finite

sequence of estimates {d̂p} and corresponding sequence of maximum values {Ψ̂n(ĥp,d̂p
)}.

Now plot {Ψ̂n(ĥp,d̂p
)} versus p, which we call the Shoulder Plot. In such a plot, we will look

for the value of p̂ at which Ψ̂n(ĥp̂,d̂p̂
) is essentially the largest; that is, the subsequent values

of Ψ̂n(ĥp,d̂p
) are about the same or less than Ψ̂n(ĥp̂,d̂p̂

). This creates a shoulder-like situation

at p = p̂, hence the name Shoulder Plot. This determines an estimate p̂ of lag p.

Note that Steps 1 and 2 yield estimates p̂ and d̂p̂. The idea behind a Shoulder Plot is

similar to an Elbow Plot, which plots (decreasing) eigenvalues against the serial numbers in

Principal Component Analysis (PCA) in order to determine the least number of PCs to use.

In Section 2.4, we use Steps 1 and 2 to determine d̂ and p̂ for our simulation data sets, the

Wolf yearly sunspot numbers and U.S. beer production data. In fact, we show the usefulness

of Shoulder Plot in determining p̂ for our simulation Example 1 and for Wolf yearly sunspot
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numbers and U.S. beer production data. In Section 2.4, we state a Theorem establishing the

consistency of d̂p defined in (2.4).

The choice of threshold value τp,n in (2.4) is critical for the computation of d̂p in numerical

studies. It can be easily seen from (2.4) that threshold values directly impact d̂p values, which

increase when τp,n values decrease. In our numerical studies (see Section 2.4), we found the

threshold values τp,n = 0 and χ2
p(α)/(2n) to be adequate.

2.3.4 Consistency Theorem

In this section, we state two theorems establishing the consistency of the estimate of TSCS

and d, respectively. Unlike in Section 2.3.2, here we do not restrict to Gaussian kernels.

Suppose Mi is a sequence of k-dimensional random variables with Lebesgue density p and

distribution function F . We define the following kernel density estimator of p

fn(M) =
1

nak
n

n
∑

i=1

K

(

M− Mi

an

)

for M ∈ R
k, where K : R

k → R+ is a probability density, lim K(M) = 0 uniformly

for ||M|| → ∞, an > 0, and limn→∞ an = 0. Let κι = {t : p(xt) > ι, p(hTXt−1) >

ι, p(hTXt−1, xt) > ι} for any fixed p × d matrix h such that hTh = I and for some ι to

be chosen in the following way: Let ǫ → 0, and ι → 0, but ǫ
ι
→ 0 as n → ∞ for ǫ > 0 and

ι > 0. Let nι be the number of observations whose indices are not in κι. Theorems 1 and 2

stated below are proved in the Appendix (see Section 2.6).

Theorem 1 Assume the conditions of Lemma 1 stated in the Appendix and that nι

n
→ 0 in

probability as n → ∞. Let Φ̂n = arg maxh Ψ̂ι
n(h) and Φd = arg maxh Ψ(h), where

Ψ̂ι
n(h) =

1

n

n
∑

t=1

J(t ∈ κι) log
fn(hTXt−1, xt)

fn(xt)fn(hTXt−1)
,

J(t ∈ κι) denotes the indicator function for κι, Ψ(h) is as defined in (2.2) and the maxi-

mization is over all p × d matrices h such that h
T
h = I. Then Φ̂n converges to Φd with

probability one, as n → ∞.
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Theorem 2 Assume the conditions of Lemma 1 and Lemma 2 in the Appendix, and The-

orem 1. Let d̂ι
p = min{k(≤ (p − 1)) : ĉι

k ≤ τp,n}, where ĉι
k is same as ĉk = Ψ̂n(ĥp,(d+1)) −

Ψ̂n(ĥp,d) defined (2.4) with Ψ̂n replaced by Ψ̂ι
n defined in Theorem 1. If for each fixed p,

τp,n → 0 as n → ∞, then d̂ι
p converges to d with probability one, as n → ∞, where d is the

dimension of TSCS.

2.4 Simulations and Data Analysis

In this section, we investigate the performance of our estimation methods proposed in Sec-

tions 2.3.2 and 2.3.3 for various simulated data sets and well-known real data on Wolf yearly

sunspot numbers, U.S. GNP, and U.S. beer production data (Wei, 2006).

2.4.1 Simulations

In order to assess the accuracy of our estimates of TSCS in our simulations, we use the

measures proposed by Ye and Weiss (2003) and Xia, Tong, Li and Zhu (2002). Both of these

methods assess the accuracy of estimates by measuring the distance between the estimated

TSCS, Sxt|Xt−1(Φ̂d), and the TSCS, Sxt|Xt−1(Φd). More precisely, Ye and Weiss (2003) mea-

sure the distance using the so called vector correlation coefficient (Hotelling, 1936) defined by

ρ =
√

|Φ̂T
d ΦdΦT

d Φ̂d|, where |A| denotes the determinant of a matrix A. Note that 0 ≤ ρ ≤ 1,

and when ρ = 1, Sxt|Xt−1(Φ̂d) = Sxt|Xt−1(Φd). Therefore, higher values of ρ imply that the

two DRSs are closer, and hence, the estimates are more accurate. As for the measure defined

by Xia, Tong, Li and Zhu (2002), let S(Φ̂q) denote the (estimated) DRS spanned by the

columns of p × q matrix Φ̂q. The distance between Sxt|Xt−1(Φ̂q) and Sxt|Xt−1(Φd) can be

measured by m2 =
∥

∥

∥
(I − ΦdΦd

T )Φ̂q

∥

∥

∥

2

if q < d and m2 =
∥

∥

∥
(I − Φ̂qΦ̂

T
q )Φd

∥

∥

∥

2

if q ≥ d. Here,

smaller values of m2 yield more accurate estimates.

We begin with two illustrative examples, where our only focus is accuracy (measured

by the above distances) of estimates obtained using our estimation method. In each of our

simulation study considered below, we specify either a linear or a nonlinear time series model.
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n ρ m2

100 0.8663 0.0188
200 0.9434 0.0047
300 0.9515 0.0024

Table 2.1: AR(2) model: Average values of accuracy measures ρ and m2 based on 200 Monte
Carlo replications.

We implement our computational algorithm described in Section 2.3.2 for samples of size n

= 100, 200 and 300 drawn from each of these models. For each sample size, we perform 200

Monte Carlo replications of our algorithm, each yielding an estimate of Φd, for a specified

value of p and d.

First, we consider a linear autoregressive model of order 2, AR(2), given by

xt = 0.3xt−1 + 0.3xt−2 + εt,

where p = 2 and d = 1, and {εt} is a sequence of independent standard normal random

variables. Here, our interest is to estimate Φ1. Table 2.1 gives the average values of accuracy

measures ρ and m2, respectively, based on 200 Monte Carlo replications for each sample size.

Table 2.1 shows that the average values of ρ are in general close to 1, while those of m2 are

close to zero, implying that our estimates of Φ1 are very accurate. Notice that the accuracy

of our estimates, as measured in terms of ρ and m2, increases with sample size, as expected.

Next, we consider the nonlinear time series model (Model 2.2) given by

xt = −1 − cos((π/2)(xt−1 + 2xt−4))

+0.2εt exp(−(−2xt−1 + 2xt−2 − 2xt−3 + xt−4 − xt−5 + xt−6)
2),

where p = 6, d = 2. This model is considerably more complicated than the AR(2) model

above in that, in addition to a nonlinear mean function, the error term εt is also multiplied

by a nonlinear function depending on the past of the series. Here, our interest is to estimate

Φ2. While we set the value of d = 2, we set the lag value p = 6 and 10, in order to study
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n lag p ρ m2

100 10 0.7612 0.0922, 0.3613
100 6 0.8487 0.0540, 0.2523
200 10 0.7793 0.0849, 0.3374
200 6 0.8440 0.0654, 0.2547
300 10 0.7841 0.0853, 0.3267
300 6 0.8846 0.0630, 0.1810

Table 2.2: Model 2.2: Average values of accuracy measures ρ and m2 based on 200 Monte
Carlo replications.

the effect of using a wrong lag value of p = 10 on the accuracy of estimates. Table 2.2 gives

the average values of ρ and m2, respectively, based on 200 Monte Carlo replications for each

sample size and lag value. Note that Table 2.2 gives two different m2 values in each cell,

which correspond to estimates Φ̂1 and Φ̂2, respectively. Once again, we see from Table 2.2

that the average values of ρ are close to 1 and m2 values are close to zero, implying that

our estimates of Φ2 are reasonably accurate. Notice once again that the accuracy of our

estimates, as measured in terms of ρ and m2, increases with sample size. Also, accuracy

of the estimates is better when correct lag is used in the estimation as opposed to using

a wrong lag. Finally, accuracy of estimates for the linear time series model AR(2) given in

Table 2.1 is in general better than those for the nonlinear time series model given in Table

2.2. Nevertheless, the accuracy results in Table 2.2 attests to the fact that our estimation

procedure can perform reasonably well even when the conditional mean and the variance

functions are nonlinear.

Next three examples deal with nonlinear time series models, where p = 6, but the number

of dimensions vary from 1 to 3, that is, d = 1, 2, 3, respectively. The main aim here is to

numerically investigate the performance of d̂p and the Shoulder Plot proposed in Section

2.3.3 for inference about d and p, respectively. Therefore, in these examples, we not only
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assess the accuracy of our estimation method but also use our iterative procedure described

in Steps 1 and 2 of Section 2.3.3 to determine d and p.

Example 1:

Consider the model (Model 2.3)

xt = −1 − cos((π/2)(xt−3 + 2xt−6)) + 0.2εt,

where p = 6, d = 1 and {εt} is a sequence of independent standard normal random variables.

Here, our interest is to estimate Φ1. Once again, Table 2.3 shows that the average values of

ρ are very close to 1 and m2 values are very close to zero, regardless of whether the lag p is

6 or 10. Here, the moderate sample performances are as good as those for the large sample

ones. These imply that our estimates of Φ1 are very accurate.

The above estimation was carried out after specifying p = 6, 10 and d = 1. Suppose

we want to make inference about p and d based on samples drawn from Model 2.3, where

the true dimension and lag are d = 1 and p = 6, respectively. For each sample size and

lag p = 6, 10, we performed 200 Monte Carlo replications and, for each replication, we

computed an estimate d̂p defined in (2.4) using the threshold values τp,n = 0, χ2
p(.05)/(2n)

and χ2
p(.01)/(2n). From now on, we will refer to these three threshold values as “0-threshold”,

“0.05-threshold” and “0.01-threshold”, respectively. We then tallied the estimated number of

dimensions (out of 200 replications). These counts are reported in the last three columns of

Table 2.3 for each sample size, lag value and threshold value, where fi denotes the frequency

of d̂p = i and fi+ denotes the frequency of d̂p ≥ i, out of 200 replications.

Table 2.3 shows that, for sample sizes n = 100 and 200, our estimator d̂p using the 0.05-

threshold and 0.01-threshold correctly estimates the true dimension, d = 1, a substantially

higher percentage of times than the estimator using the 0-threshold. It is interesting to note

that d̂p using the 0.05-threshold and 0.01 threshold continues to perform well even when

the lag is wrongly specified (p = 10). It is clear from Table 2.3 that, for n = 100 and 200,

the performance of the estimator d̂p using 0-threshold does not seem consistent with regard
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n lag p ρ m2 0-threshold 0.05-threshold 0.01-threshold
100 10 0.9965 0.0069 f1=114 f1=180 f1=197

f2+=86 f2+=20 f2+=3
100 6 0.9985 0.0030 f1 = 46 f1=174 f1=196

f2+=154 f2+=26 f2+=4
200 10 0.9989 0.0021 f1=94 f1=191 f1=197

f2+=106 f2+=9 f2+=3
200 6 0.9995 0.0010 f1=115 f1=194 f1=199

f2+=85 f2+=6 f2+=1
300 10 0.9994 0.0011 f1=165 f1=199 f1=200

f2+=35 f2+=1 f2+=0
300 6 0.9997 0.00005 f1=184 f1=200 f1=200

f2+=16 f2+=0 f2+=0

Table 2.3: Model 2.3: Average values of accuracy measures ρ and m2, and frequency of
estimated dimension for 0-threshold, 0.05-threshold and 0.01-threshold, all based on 200
Monte Carlo replications. The true dimension is d = 1.

to identifying the true dimension correctly. When the sample size n = 300, however, our

estimator d̂p correctly estimates the true dimension a large percentage of times for all the

three thresholds, with near-perfect or perfect performance by 0.05- and 0.01- threshold.

Next, we determine p̂ using a Shoulder Plot described in Step 2 of Section 2.3.3. Here, we

set n = 300, p = 4, 5, 6 and 7, and computed the finite sequence {Ψ̂n(ĥp,1)} for 20 simulated

data sets from Model 2.3. Using these values, we computed the average and the standard

deviation of Ψ̂n(ĥp,1) values for each p = 4, 5, 6, 7. In Figure 2.1, we give a Shoulder Plot

using the average values and average ± standard deviation values of Ψ̂n(ĥp,1). Clearly, Figure

2.1 indicates that the Shoulder is at p = 6. In fact, Shoulder Plots for 18 out of 20 simulated

data sets (not given here) indicated that p̂ = 6. Similar results (not reported here) were also

observed for n = 100, 200.
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Figure 2.1: Example 1(Model 2.3): Shoulder plot of average values (“Mean”), average −
standard deviation values (“-Std.”) and average + standard deviation values (“+Std.”) of
Ψ̂n(ĥp,1) versus p = 4, 5, 6, 7 based on 20 simulated data sets, each with sample size n = 300.
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n lag p ρ m2 0-threshold 0.05-threshold 0.01-threshold
100 10 0.9006 0.0977 f1 = 49 f1=137 f1=155

0.0954 f2=67 f2=54 f2=45
f3+=84 f3+=9 f3+=0

100 6 0.9655 0.0366 f1=26 f1=41 f1=50
0.0314 f2=52 f2=148 f2=145

f3+=122 f3+=11 f3+=5
200 10 0.9734 0.0288 f1=60 f1=85 f1=113

0.0241 f2=80 f2=83 f2=71
f3+=60 f3+=32 f3+=16

200 6 0.9878 0.0137 f1=23 f1=34 f1=37
0.0106 f2=82 f2=147 f2=149

f3+=95 f3+=23 f3+=17
300 10 0.9835 0.0177 f1=58 f1=71 f1=87

0.0151 f2=85 f2=91 f2=84
f3+=57 f3+=38 f3+=29

300 6 0.9923 0.0090 f1=14 f1=21 f1=21
0.0063 f2=93 f2=156 f2=159

f3+=93 f3+=23 f3+=20

Table 2.4: Model 2.4: Average values of accuracy measures ρ and m2, and frequency of
estimated dimension for 0-threshold, 0.05-threshold and 0.01-threshold, all based on 200
Monte Carlo replications. The true dimension is d = 2.

Example 2:

Consider the model (Model 2.4)

xt|Xt−1 = −1 − cos((π/2)(xt−1)) − cos((π/2)(1/
√

2)(xt−3 + 2xt−6)) + 0.2εt,

where p = 6, d = 2 and {εt} is a sequence of independent standard normal random variables.

Table 2.4 shows that for all sample sizes the average values of ρ are in general very close to

1 and m2 are very close to zero, regardless of whether the lag p is 6 or 10. These imply that

our estimates of Φ2 are very accurate.

As for inference about d, Table 2.4 shows that, for all sample sizes and when the lag

is correctly specified (p = 6), our estimator d̂p using the 0.05-threshold and 0.01-threshold

correctly estimates the true dimension, d = 2, about 73% to 80% of the times. However,
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n lag p ρ m2 0-threshold 0.05-threshold 0.01-threshold
100 10 0.6505 0.2531 f1=20 f1=41 f1=62

0.1768 f2=105 f2=155 f2=138
0.2348 f3=63 f3=1 f3=0

f4+=12 f4+=0 f4+=0
100 6 0.8519 0.1091 f1=2 f1=10 f1=28

0.0552 f2=67 f2=187 f2=172
0.1040 f3=102 f3=3 f3=0

f4+=29 f4+=0 f4+=0
200 10 0.7936 0.1397 f1=11 f1=14 f1=17

0.0980 f2=125 f2=183 f2=183
0.1501 f3=63 f3=3 f3=0

f4+=1 f4+=0 f4+=0
200 6 0.9299 0.0669 f1=32 f1=45 f1=49

0.0212 f2=33 f2=114 f2=134
0.0433 f3=135 f3=41 f3=17

f4+=0 f4+=0 f4+=0
300 10 0.8631 0.0936 f1=9 f1=11 f1=12

0.0755 f2=110 f2=179 f2=184
0.0907 f3=79 f3=10 f3=4

f4+=2 f4+=0 f4+=0
300 6 0.9637 0.0365 f1=1 f1=1 f1=1

0.0110 f2=67 f2=159 f2=180
0.0231 f3=132 f3=40 f3=19

f4+=0 f4+=0 f4+=0

Table 2.5: Model 2.5: Average values of accuracy measures ρ and m2, and frequency of
estimated dimension for 0-threshold, 0.05-threshold and 0.01-threshold, all based on 200
Monte Carlo replications. The true dimension is d = 3.

Table 2.4 also shows that wrong specification of lag adversely affects the performance of

d̂p, resulting in severe underestimation for 0.05- and 0.01-threshold. On the other hand, the

0-threshold does not perform well at all and, in fact, considerably overestimates the true

dimension.



27

Example 3.

The next model is same as the one considered in Section 4.3, Example 3 of Xia, Tong, Li

and Zhu (2002), who compare several estimation methods using m2 distance defined above

and estimate the dimension d using a method different from the one proposed here; see Table

2 and Section 2.2 of Xia, Tong, Li and Zhu (2002) for details. More specifically, we consider

the nonlinear time series model (Model 2.5)

xt = −1 + (0.4)(1/
√

5)(xt−1 + 2xt−4) − cos((π/2)(1/
√

5)(xt−3 + 2xt−6))

+ exp(−(1/
√

15)2(−2xt−1 + 2xt−2 − 2xt−3 + xt−4 − xt−5 + xt−6)
2) + 0.2εt

where p = 6, d = 3 and {εt} is a sequence of independent standard normal random variables.

Table 2.5 shows that, for large sample sizes and correct lag specification, accuracy of

estimates of Φ3 are better, as indicated by the large values of ρ and small values of m2.

Moreover, comparison of our m2 values in Table 2.5 with those in Table 2 of Xia, Tong, Li

and Zhu (2002) shows that the RMAVE method of Xia, Tong, Li and Zhu (2002) performs

better than our estimation method. However, this is to be expected because their RMAVE

method focuses on estimation of dimensions in the mean function and the nature of Model

2.5 helps their focus. On the other hand, their RMAVE method may not perform well for

Model 2.2 above, where the error term is multiplied by a nonlinear function depending on

the past of the series.

As for inference about d, Table 2.5 shows that, for all sample sizes and when the lag is

correctly specified (p = 6), our estimator d̂p using the 0-threshold correctly estimates the

true dimension, d = 3, about 51% to 68% of the times. Here, it is important to point out

that the performance of d̂p using 0-threshold in correctly estimating the true dimension is

slightly better than that of Xia, Tong, Li and Zhu’s (2002) method for n = 100, but the

latter method performs better than ours for n = 200 and 300, as shown in their Table 2.

Table 2.5 also shows that wrong specification of lag adversely affects the performance of d̂p

resulting in severe underestimation for all the three thresholds. On the other hand, even
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when the lag is correctly specified, the 0.05- and 0.01-threshold do not perform well at all

for any sample size.

The last three examples seem to suggest that when d = 1 or 2, 0.05-threshold performs

better, but when d = 3 the 0-threshold performs better. Thus, generally, we should use

0.05-threshold to estimate d, when we prefer smaller dimension; otherwise, use 0-threshold.

2.4.2 Wolf Yearly Sunspot Data

In the previous section we studied the performance of our estimation approach when data

is drawn from a variety of nonlinear time series models. In this section, we employ our

methods to analyze a real data. For this purpose, we revisit a classic time series known as

Wolf yearly sunspot numbers for the years 1700 to 2001, giving a total 302 observations.

Many scientists believe that sunspot numbers influence the weather on the Earth, which

in turn impacts activities such as agriculture and telecommunications. This data has been

extensively studied by many authors in time series literature and has been analyzed using

various linear and nonlinear models; see, for example, Yule (1927), Bartlett (1950), Whittle

(1954), Brillinger and Rosenblatt (1967), and Xia, Tong and Li (1999). More details about

fitting a linear time series model to this data can be found in Example 6.2 of Wei (2006).

As discussed in Example 6.2 of Wei (2006), the sunspot series is stationary in the mean

but not stationary in the variance. Using power transformation analysis it can be shown

that a square root transformation applied to the data stabilizes its variance. Let zt denote

the sunspot number at time t and xt =
√

zt. Since the sample autocorrelation function

xt shows a sine-cosine wave and the sample partial autocorrelation function has relatively

large spikes at lags 1, 2 and 9, Wei (2006) fits the following three models to xt: (i) AR(2)

model, (ii) AR(9) model, and (iii) AR(1,2,9) model, which depends only on lags 1, 2 and

9. See Series W2, Table 7.3 in Wei (2006) for more details on the estimates corresponding

these models and estimates of error variance. Based on estimated error variance, Wei (2006)

concludes that both AR(9) and AR(1,2,9) models are adequate for the data. Later, we will
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p d=1 d=2 d=3
2 0.7229 0.7533∗ N/A
3 0.7259 0.7578∗ 0.7185
4 0.7258 0.7593∗ 0.7581
5 0.7255 0.7682∗ 0.7768
6 0.7377 0.7744∗ 0.7825
7 0.7590 0.7999∗ 0.8049
8 0.7634 0.8011∗ 0.8069
9 0.7846 0.8177∗ 0.8197
10 0.7843∗ 0.8146 0.8235
11 0.7837 0.8186∗ 0.8256
12 0.7818 0.8201∗ 0.8153

Table 2.6: Wolf yearly sunspot data: Ψ̂n(ĥp,d) values for p = 2, · · · , 12, and d = 1, 2 and 3.

For each p, d̂p determined by 0.05-threshold is denoted by * in the table.

compute the forecasts from Wei’s models (ii) and (iii) and use these as benchmarks to assess

the performance of the model that we are about to propose. For model building we use the

sunspot numbers for the years 1700 to 1991, yielding a sample of size n = 292. We then

compute our model-based forecast of the sunspot numbers for the remaining years 1992 to

2001. The observed sunspot numbers for the years 1992 to 2001 will be used to assess all

forecasts.

We begin the process of model building for the data (1700-1991) by first identifying the

dimension d. For this, we set p = 2, · · · , 12 and computed the Ψ̂n(ĥp,d) values for d = 1, 2

and 3 (see Step 1 of Section 2.3.3). Table 2.6 lists the Ψ̂n(ĥp,d) values for each p and d,

except for the trivial case p = 1. Using (2.4) with 0.05-threshold and the values in Table 2.6

we obtained d̂p = 2 for all 2 ≤ p ≤ 12, except when p = 10, for which d̂p = 1. Note that d̂p

for each p is indicated by an asterisk in Table 2.6. Since d̂p = 2 uniformly for all p, except

for p = 10, we decided to estimate the unknown dimension d = 2.

Next, as discussed in Step 2 of Section 2.3.3, we created a Shoulder Plot using Ψ̂n(ĥp,2)

values for p = 2, · · · , 12 (see second column in Table 2.6). This Shoulder Plot is given in
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Figure 2.2. It is clear from Figure 2.2 that the Shoulder is at p = 9. Our determination of

p = 9 agrees with other approaches; for example, R software with command ‘sunspot.ar <-

ar(sunspot.year)’ determines lag p = 9 using the Akaike Information Criterion (AIC).

Having decided that d = 2 and p = 9, we now proceed to estimate the 9 × 2 matrix

Φ2 = (Φ1, Φ2), whose columns form the basis of TSCS, Sxt|Xt−1(Φ2). We used our estimation

method described in Section 2.3.2 and obtained the estimates Φ̂1 and Φ̂2. This enables us to

work with a much smaller 2-dimensional vector (Φ̂T
1 Xt−1, Φ̂

T
2 Xt−1) in predicting xt instead

of the 9-dimensional vector Xt−1.

Next, we used trial-and-error approaches with graphical tools and plots of xt against

Φ̂T
1 Xt−1 and Φ̂T

2 Xt−1 to determine a time series model for the data. Nonlinear patterns of

these plots containing cycles suggested that cosine functions are reasonable approximations.

Moreover, we also determined that some of the estimated coefficients in the cosine functions

are close to π
4
, π

2
, and π. In the end, all this leads us to the final nonlinear time series model

given by

xt = 0.48 − 1.25Φ̂T
1 Xt−1 + 0.74Φ̂T

2 Xt−1 + 0.50 cos
(π

2
Φ̂T

1 Xt−1 + π
)

+ 0.25 cos
(π

2
Φ̂T

2 Xt−1 −
π

4

)

+ ǫt.

In order to assess the performance of our nonlinear time series model above, we computed

model-based forecasts of sunspot numbers for the remaining years 1992 to 2001 using our

model, and AR(9) and AR(1,2,9) models fitted in Wei (2006). These forecasts along with

observed sunspot numbers for the years 1992 to 2001 are given in Table 2.7.

An overlay plot of forecast values from each of these models and the observed sunspot

numbers is given in Figure 2.3. Moreover, for each of the three models, we computed the

Mean Square Relative Error (MSRE)= k−1
∑k

t=1(zt−ẑt)
2/zt, where zt is the observed sunspot

number, ẑt is its forecast value and k is the number of (future) observations. For k = 10,

we give the MSRE values for each of the three models in Table 2.7. Note that our model

produces an MSRE value which is almost half of those of Wei’s models. Through this real

data we have shown that our dimension reduction approach together with the estimation
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Figure 2.2: Wolf yearly sunspot data: Shoulder plot of Ψ̂n(ĥp,2) values (second column of
Table 2.6) versus p = 2, · · · , 12.
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Year Sunspot Number AR(9) AR(1,2,9) Our model
1992 94.2996 121.8850 119.2840 102.1030
1993 54.6003 88.6637 83.9347 71.6920
1994 29.9001 46.9641 49.8700 42.4043
1995 17.5000 26.3525 27.6294 23.5257
1996 8.6001 17.5277 19.8872 19.7202
1997 21.4999 22.5212 28.3990 23.8431
1998 64.2995 45.4616 53.5825 54.7348
1999 93.3001 76.9934 84.6827 92.5245
2000 119.6000 106.5490 110.9600 119.0450
2001 111.0010 118.7780 120.6190 118.2990

MSRE 6.3191 6.2648 3.1838

Table 2.7: Observed sunspot numbers, forecasts from AR(9), AR(1,2,9) and our model, and
MSRE for each model: Years 1992 - 2001.

method and graphical techniques lead us to a time series model which outperforms Wei’s

(2006) models for the sunspot data.
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Figure 2.3: Wolf yearly sunspot data: Overlay plot of observed sunspot numbers (Sunspot)
and forecast values from AR(9), AR(1,2,9), and our model: Years 1992-2001.
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2.4.3 U.S. GNP Data

This gives seasonally adjusted quarterly growth rates of US Gross National Product (GNP)

from 1947 to 1991, which is obtained from the Citibase database. Shummway and Stoffer

(2000) conclude that a MA(2) model fits the data well, whereas Tiao and Tsay (1994) and

Hall and Yao (2005) propose AR-type models. As mentioned in the introduction, Hall and

Yao (2005) fix p = 2 and d = 1, and obtain an estimate Φ̂1 = (0.580,−0.815)T of Φ1.

They conclude that the conditional distribution of xt|.58xt−1 − .815xt−2 provides a good

approximation to that of xt|{xt−1, xt−2}. Assuming their result, we used graphical methods

to arrive at the following nonlinear mean function model for the data given by

x̂t = 0.74 + 0.02γ + 0.91γ2,

where γ = 100Φ̂T
1 Xt−1. We then added an error term to the above model and simulated a

new time series. Using the methods described in Section 2.3.3, we determined that d̂ = 1

and p̂ = 2 for this new series, which shows that our methods correctly detected d and p.

2.4.4 U.S. Beer Production Data

This seasonal data (Wei 2006) concerns U.S. beer production (in millions of barrels) for 32

consecutive quarters from 1975 to 1982. Here, we illustrate that our method performs well

when the data is seasonal and the sample size is small. We use the first 30 observations to

build a model and then calculate model-based forecasts for the last two observations.

Using the methods described in Section 2.3.3, we obtained d̂p = 1 for each 2 ≤ p ≤ 9

using the 0.05- and 0.01-threshold as you can see in Table 2.8. Moreover, the Shoulder Plot

in Figure 2.4 clearly indicates that the Shoulder is at p = 4. Fixing p = 4 and d = 1, and

using graphical techniques we arrive at the following model:

x̂t = 5.71 − 0.80Φ̂T
1 Xt−1 − 1.27 cos

(π

2
Φ̂T

1 Xt−1 − 2π
)

.

To compare the performance of our model with the seasonal MA and AR models given in

Wei (2006; see pages 178-182), we computed the Mean Square Error (MSE) = k−1
∑k

t=1(xt−
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Figure 2.4: U.S. beer production data: Shoulder plot of Ψ̂n(ĥp,1) values versus p = 2, · · · , 9.
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p d=1 d=2
2 0.3588∗ 0.4514
3 0.5401∗ 0.6677
4 0.5845∗ 0.6767
5 0.5699∗ 0.6535
6 0.4714∗ 0.7150
7 0.5665∗ 0.7183
8 0.5278∗ 0.7139
9 0.5856∗ 0.6930

Table 2.8: U.S. beer production data: Ψ̂n(ĥp,d) values for p = 2, · · · , 9, and d = 1, 2. For

each p, d̂p determined by 0.05 are denoted by *, in the table.

x̂t)
2 for the last two quarters of 1982, where xt is the observed beer production, x̂t is its

forecast value and k is the number of (future) observations. MSE values for our model, the

seasonal MA and AR models are 4.87, 8.41, and 8.50, respectively. Note that the MSE value

for our model is about half of the other two models, indicating that our model performs

better than the seasonal ARMA models.

2.5 Discussion

Literature has seen a proliferation of parametric and nonparametric methods for time series

analysis; however, only few use a dimension reduction approach. In this chapter, we developed

a new theory of dimension reduction in time series, which provides an initial phase when

an adequate parsimoniously parametrized time series model is not yet available. Although

the notion of TSCS is similar to that in regression, there are many differences due to the

intrinsic nature of a time series. For instance, the fact that well-known dimension reduction

methods such as Sliced Inverse Regression (Li, 1991) or Sliced Average Variance Estimation

(Cook and Weisberg, 1991) are not relevant for time series (Xia, Tong, Li and Zhu, 2002)

warrants a different treatment. Furthermore, p is usually known in regression, whereas it has
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to be inferred from data for a time series. We believe that the sufficient dimension reduction

approach proposed here may stimulate new ideas for modeling time series.

We proposed an estimating function and a sequential approach to estimate d and lag

p. To estimate d, we proposed an estimator and suggested the use of either 0-threshold

or 0.05-threshold. The choice of threshold certainly affects the value of d̂p, which increases

as τp,n decreases. This choice, however, poses more challenges than the end of the story.

For example, it is also possible to motivate a choice of threshold based on the AIC or the

Schwarz Bayesian Criterion. Clearly, this raises an important question about the selection of

threshold values; and more research needs to be done in this direction. As for the estimation

of p, it is possible to define an estimator similar to d̂p. Nevertheless, the use of Shoulder Plot

seems quite informative in our analysis because of its visual appeal and simplicity. Further

investigation in this direction is also needed.

Overall, the theory of dimension reduction in time series poses many challenges, but a

variety of encouraging results presented through our simulations seem to suggest that our

method has great potential for providing a viable and meaningful alternative to traditional

time series analysis. In fact, superior performance of our nonlinear time series model for

Wolf yearly sunspot data, as compared to Wei’s (2006) models, serves as a testament that

our method is very useful in time series analysis. Also, for the seasonal U.S beer production

data, our model performs better than those in Wei (2006). Finally, we consider estimation of

TSCS and other related issues in this chapter. However, new dimension reduction methods

such as central mean subspaces (Cook and Li, 2002), which focus on the mean function of

time series, is yet to be developed. Research on the latter topic is the focus of next chapter.
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2.6 Appendix

2.6.1 PROOF OF PROPOSITION 1

For notational simplicity, the single-index is introduced for this justification. We need to show

that S(δ) is a DRS when δ be a basis for S(φ) and S(α) so that φ = (φ1, δ) and α = (α1, δ)

where α1 6= 0 and φ1 6= 0. Hence, for more general approach, let K = (K1,K2,K3)
T =

(φT
1 Xt−1, α

T
1 Xt−1, δ

TXt−1)
T . K has a density because Xt−1 has a density and (φ1, α1, δ) is a

full rank linear operator. Therefore, we can say the distribution of (K1,K2)|(K3 = k3) has

a density and then

Fxt|K = Fxt|K1,K3
= Fxt|K2,K3

, (2.5)

since S(φ) and S(α) are DRSs. Here, our goal is to show Fxt|K = Fxt|K3.

Now, when k3 is fixed, (k1, k
′

2)
T and (k

′

1, k2)
T are considered to be linked if either k1 = k

′

1

or k2 = k
′

2. Let take (k1, k
′

2)
T , (k1, k2)

T , and (k
′

1, k2)
T . By (2.5),

Fxt|K1=k
′

1,K3
= Fxt|K2,K3

(2.6)

and

Fxt|K2=k
′

2,K3
= Fxt|K1,K3

. (2.7)

By (2.5), (2.6), and (2.7),

Fxt|K1=k
′

1,K3
= Fxt|K2=k

′

2,K3
(2.8)

Then,

Fxt|K1=k
′

1,k2,k3
= Fxt|k1,K2=k

′

2,k3
. (2.9)

Provided there is at least one linked point like (k1, k2)
T in this case, any two points can

be chained together, which means (2.9) holds for any two points. Finally, Fxt|K1,K2,K3 is a

constant function of (k1, k2) and then the conclusion follows.
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2.6.2 PROOF OF PROPOSITION 2

(i) If S(h1) ⊆ S(h2), then it is possible to write h1 = h2K for some matrix K. Therefore,

with simple algebra,

Ψ(h2) − Ψ(h1) = E

[

Ext|hT
2 Xt−1

{

log
p(xt|hT

2 Xt−1)

p(xt|KThT
2 Xt−1)

}]

≥ 0.

The inequality follows from a result on page 14 of Kullback (1959). Suppose S(h1) = S(h2).

Then K can be a nonsingular square matrix in the above argument, and the inequality will

become an equality.

(ii) As in (i), we can write

Ψ(I) − Ψ(h1) = E

[

Ext|Xt−1

{

log
p(xt|Xt−1)

p(xt|hT
1 Xt−1)

}]

≥ 0

with equality if and only if p(xt|Xt−1) = p(xt|hT
1 Xt−1). But, xt Xt−1|hT

1 Xt−1 if and only if

p(xt|Xt−1) = p(xt|hT
1 Xt−1). Hence the first assertion in (ii). From this and the definition of

TSCS, Sxt|Xt−1(Φd), for which the property xt Xt−1|ΦT
d Xt−1 holds, we have that Ψ(I) =

Ψ(Φd) ≥ Ψ(hd). Now, if Ψ(Φd) = Ψ(hd), then Sxt|Xt−1(Φd) = S(hd) by the uniqueness of

TSCS. The other way conclusion follows from (i).

(iii) Since

Ψ(h1) = E

{

log
p(xt,h

T
1 Xt−1)

p(xt)p(hT
1 Xt−1)

}

,

Ψ(h1) ≥ 0 by a result of Kullback (1959, p.14).

Let α = arg maxh1
Ψ(h1), and, for any p× (q2 − q1) matrix β, by using Kullback’s result

(1959, p. 14), we have

max Ψ(h2) − max Ψ(h1) ≥ Ψ(α, β) − Ψ(α)

= E
αT Xt−1,β

T
Xt−1

[

E
xt|αT Xt−1,β

T
Xt−1

{

log
p(xt|αTXt−1, β

TXt−1)

p(xt|αTXt−1)

}]

≥ 0.

However, equality cannot hold, unless p(xt|αTXt−1, β
TXt−1) = p(xt|αTXt−1) for any β; that

is xt βTXt−1|αTXt−1, for any β, and hence xt Xt−1|αTXt−1. Thus, Ψ(I) = Ψ(α), by

the definition of central subspace. This produces the contradiction that d ≤ (d − 1). 2
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2.6.3 ASSUMPTION A1 AND LEMMA 1

The following assumptions apply to Lemma 1 stated below and Theorem 1 stated in Section

3.4. We first introduce some notations. Define the Øx
y-operator for functions g : R

k → R
1

and x,y ∈ R
k by

Øx
yg =

∑

(ǫ1,...,ǫk)∈{0,1}k

(−1)
Pk

j=1 ǫjg{ǫ1x1 + (1 − ǫ1)y1 + ... + ǫkxk + (1 − ǫk)yk}

(Reyni, 1962). Suppose P is the set of all finite partitions of R
k into rectangles and Øx

yg is

expressed by the corresponding limit if some components of x and y are positive or negative

infinity. Then g is said to be of bounded variation if sup{g(s), s ∈ P} < ∞, where g(s) is

defined for s =
∑l

i=1[xi, yi) by
∑l

i=1 |Øxi
yi

g|.

As in Sen (1974), we define a stationary φ-mixing sequence {hTXt,−∞ < t < ∞} for

any p × d matrix h, on a probability space (Ω, A , P ) with each hTXt having a continuous

distribution F . That is, if M k
−∞ and M∞

k+n are σ-fields generated by {hTXt, t ≤ k} and

{hTXt, t ≥ k + n}, respectively, and if A ∈ M k
−∞ and B ∈ M∞

k+n, then for all k, n ≥ 0 and

φn ≥ 0, |P (A ∩ B) − P (A)P (B)| ≤ φnP (A), where {φn} is independent of h, {φn} ↓ in n

and limn→∞ φn = 0. Furthermore, for each m ≥ 0, we define Am(φ) =
∑∞

n=1(n + 1)mφ
1/2
n

for {φn} defined above. Assume that Am(φ) < ∞ for some m ≥ 1, as in Theorem 3.2 of

Sen (1974). Since φn is independent of h, the conclusion of Sen’s Theorem 3.2 holds for

hTXt with the upper bound Cφλ
−2(m+1) (for λ ≥ 1), where Cφ(< ∞) only depends on {φn}.

Using this upper bound and same arguments as in the proof of Theorem 1(b) of Rüschendorf

(1977), one can prove the following lemma.

Lemma 1 Assume the conditions in A1 and that
∑∞

n=1

(

γ√
n ak

n

)2(m+1)

< ∞, for all γ ∈ R+,

where {an} is a sequence of bandwidths of the kernel density estimator fn defined in Section

2.3.4. Suppose the kernel K in fn is of bounded variation. Also, let the density functions

satisfy the following conditions: p(xt) is uniformly continuous, p(hTXt−1) is uniformly con-

tinuous in h and Xt−1, and p(hTXt−1, xt) is uniformly continuous in h, Xt−1, and xt, where
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h
T
h = I. Then the following results hold with probability one, as n → ∞:

sup
xt∈R1

|fn(xt) − p(xt)| → 0,

sup
h∈Rp×d,Xt−1∈Rp

|fn(hTXt−1) − p(hTXt−1)| → 0,

sup
h∈Rp×d,Xt−1∈Rp,xt∈R1

|fn(hTXt−1, xt) − p(hTXt−1, xt)| → 0.

2.6.4 PROOF OF THEOREM 1 AND LEMMA 2

Note that the constraint hTh = I does not guarantee that a matrix maximizing the objective

function Ψ(h) is unique. Nevertheless, the subspace corresponding to it is unique. Therefore,

for identifiability, we may replace any basis matrix that maximizes the objective function by

its orthogonal projection matrix, which is unique. Thus, without loss of generality and for

the simplicity of our proof, we assume that the matrix solution is unique.

If Φ̂n does not converge to Φd with probability 1, there is a subsequence which is still

indexed by n, and a p×d matrix Φ0 satisfying ΦT
0 Φ0 = I and Φ0 6= Φd, such that Φ̂n → Φ0.

Thus, for any ǫ > 0, and large enough n, we have

fn(xt) = p(xt) + δ1,t, (2.10)

fn(Φ̂T
nXt−1) = p(Φ̂T

nXt−1) + η2,t = p(ΦT
0 Xt−1) + δ2,t, (2.11)

fn(Φ̂T
nXt−1, xt) = p(Φ̂T

nXt−1, xt) + η3,t = p(ΦT
0 Xt−1, xt) + δ3,t, (2.12)

such that |δk,t| < ǫ for all t and k = 1, 2, 3. Note that equation (2.10) and the first equalities

in equation (2.11) and (2.12) follow from the conclusions of Lemma 1, whereas the uniform

continuity conditions in Lemma 1 lead to the second equalities in equations (2.11) and (2.12).

From these, we have

log fn(xt) = log p(xt) + log

{

1 +
δ1,t

p(xt)

}

,

log fn(Φ̂T
nXt−1) = log p(Φ̂T

0 Xt−1) + log

{

1 +
δ2,t

p(ΦT
0 Xt−1)

}

,

log fn(Φ̂T
nXt−1, xt) = log p(Φ̂T

0 Xt−1, xt) + log

{

1 +
δ3,t

p(ΦT
0 Xt−1.xt)

}

,
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Therefore, by the definition of κι in Section 2.3.4 and that ǫ
ι
→ 0, for Ψ̂ι

n defined in the

Theorem 1 we have that

Ψ̂ι
n(Φ̂n) =

1

n

n
∑

t=1

J(t ∈ κι) log
p(ΦT

0 Xt−1, xt)

p(xt)p(ΦT
0 Xt−1)

+ o(1) = Ψ̄ι
n(Φ0) + o(1).

But,

Ψ̄ι
n(Φ0) − Ψ(Φ0) =

{

1

n

n
∑

t=1

log
p(ΦT

0 Xt−1, xt)

p(xt)p(ΦT
0 Xt−1)

− Ψ(Φ0)

}

− 1

n

n
∑

t=1

J(t ∈ κc
ι) log

p(ΦT
0 Xt−1, xt)

p(xt)p(ΦT
0 Xt−1)

= τ1 − τ2.

From nι

n
→ 0 and the ergodic theorem, both τ1 and τ2 tend to 0 with probability one as

n → ∞. Hence, limn→∞ Ψ̂ι
n(Φ̂n) = Ψ(Φ0) with probability one. Since Ψ̂ι

n(Φ̂n) ≥ Ψ̂ι
n(Φd)

by definition, taking limit on both sides we get Ψ(Φ0) ≥ Ψ(Φd). On the other hand, by the

definition of Φd, Ψ(Φ0) ≤ Ψ(Φd) and therefore Ψ(Φ0) = Ψ(Φd). Due to the uniqueness,

Φ0 = Φd, which is a contradiction. Therefore, Φ̂n → Φd with probability 1.

Lemma 2 Assume the conditions of Lemma 1 and Theorem 1. For each fixed p and k,

maxhp,k
Ψ̂ι

n(hp,k) → maxhp,k
Ψ(hp,k), as n → ∞.

2.6.5 PROOF OF LEMMA 2

For simplicity, we assume that arg maxhp,k
Ψ(hp,k) is unique. Then, by the arguments

in the proof of Theorem 1 and its conclusion, we have that limn→∞ maxhp,k
Ψ̂ι

n(hp,k) =

maxhp,k
Ψ(hp,k), with probability one.

2.6.6 PROOF OF THEOREM 2

Let ck = maxhp,(k+1)
Ψ(hp,(k+1))−maxhp,k

Ψ(hp,k). By Proposition 2 (iii), it follows that ck > 0

if k < d and ck = 0 if k ≥ d. Hence, d = min{k(≤ (p−1)) : ck = 0}. Moreover, for each k, we

have by Lemma 2 that ĉι
k → ck as n → ∞. Recall that d̂ι

p = min{k(≤ (p − 1)) : ĉι
k ≤ τp,n}.

Since τp,n → 0 as n → ∞, it follows that d̂ι
p → d as n → ∞, with probability one.
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[20] Rüschendorf, L. (1977), “Consistency of estimators for multivariate density functions

and for the mode,” Sankhya A, 39, 243–250

[21] Schott, J. R. (1994), “Determining the dimensionality in sliced inverse regression,”

Journal of the American Statistical Association, 89, 141-148.

[22] Scott, D. W. (1992), Multivariate Density Estimation: Theory, Practice, and Visualiza-

tion, New York: John Wiley & Sons.



45

[23] Sen, P. K. (1974), “Weak convergence of multidimensional empirical processes for sta-

tionary φ-mixing processes,” Annals of Probability, 2, 147–154.

[24] Silverman, B. W. (1986), Density Estimation for Statistics and Data Analysis, London

and New York: Chapman and Hall.

[25] Shummway, R. H. and Stoffer, D. S. (2000), Time Series Analysis and Its Applications,

New York: Springer-Verlag.

[26] Tiao, G. C. and Tsay, R. S. (1994), “Some advances in nonlinear and adaptive modeling

in time series,” Journal of Forecasting, 13, 109–131.

[27] Wei, W. W. S. (2006), Time Series Analysis: Univariate and Multivariate Methods,

Boston: Pearson & Addison Wesley.

[28] Whittle, P. (1954), “A statistical investigation of sunspot observations with special

reference to H.Alfven’s sunspot model,” The Astrophysical Journal, 120, 251–260.

[29] Xia, Y., Tong, H., Li, W. K., and Zhu, L. X. (2002), “An adaptive estimation of dimen-

sion reduction,” Journal of the Royal Statistical Society, Ser. B, 64, 363–410.

[30] Ye, Z. and Weiss, R. E. (2003), “Using the bootstrap to select one of a new class

of dimension reduction methods,” Journal of the American Statistical Association, 98,

968–979.

[31] Yin, X. and Cook, R. D. (2005), “Direction estimation in single-index regressions,”

Biometrika, 92, 371–384.

[32] Yule, G. U. (1927), “On a method of investigating periodicities in disturbed series with

special reference to wolfer’s sunspot numbers,” Philosophical Transaction Royal Society

London, Ser. A, 226, 267–298.



Chapter 3

Time Series Central Mean Subspace †

†Park, J. H., Sriram, T. N., and Yin, X. To be submitted to The Journal of Computational and

Graphical Statistics.

46



47

3.1 Introduction

In the previous chapter, we developed a sufficient dimension reduction method for time

series, where our aim was to make inference about the conditional distribution of the series

given the past. In many instances, time series analysis is concerned with inference about the

conditional mean of the current observation given the past of the series, and less concerned

with the other aspects of conditional distribution. In such instances, it may be useful to

adapt our inquiry to fit that more specific objective.

Recently, Cook and Li (2002) developed dimension reduction methods that address infer-

ence about the conditional mean of response given the predictors. They introduced a notion

of Central Mean Subspace (CMS), similar to the notion of Central Subspace, and an esti-

mation methodology to estimate the CMS. Other dimension reduction methods for CMS

available in the literature include principal Hessian direction (pHd; Li 1992), the Structure

Adaptive Method (SAM; Hristache, Juditsky, Polzehl, and Spokoiny 2001), the Iterative Hes-

sian Transformation (IHT; Cook and Li 2002), the Minimum Average Variance Estimation

(MAVE; Xia, Tong, Li, and Zhu 2002). Of these, only the MAVE method developed by Xia,

Tong, Li and Zhu (2002) is also applicable to dimension reduction in time series.

In this chapter, we focus on developing a notion of Time Series Central Mean Subspace

(TSCMS) and propose a method to estimate it, when the lag and the dimension are known.

While the development of our notion of TSCMS bears similarity to the one in Chapter 2, the

method of estimating it differs from our approach in Chapter 2. In addition, we also discuss

estimation of minimum dimension (when it exists) and lag. As in Chapter 2, we illustrate our

method via simulations for a variety of linear and nonlinear time series models and through

analysis of real data on Yearly number of lynx pelts.

The rest of the chapter is organized as follows. In Section 3.2, we develop a theory of

dimension reduction in time series by introducing a notion of Central Mean Subspace in

time series and study its properties. In Section 3.3, we discuss the estimation method for the

Central Mean Subspace in time series when its dimension and lag of the series are known.
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Monte Carlo simulations for a variety of linear and nonlinear time series models and a real

data analysis are given in Section 3.4. A brief discussion of results obtained in this chapter

is carried out Section 3.5. All the necessary proofs are given in Section 3.6.

3.2 Central Mean Subspace in Time Series

As before, let xt denote the current observation of a time series and Xt−1 = (xt−1, ..., xt−p)
T ,

where p is known. When focusing on the conditional mean of a series, dimension reduction

hinges on finding a p × q matrix Φ, q ≤ p, so that the q × 1 vector ΦTXt−1 includes all the

information about xt that is available from E(xt|Xt−1). Note that this is considerably less

restrictive than requiring that ΦTXt−1 contains all the information about xt that is available

from Xt−1, as in Chapter 2.

Definition 1 If

xt E(xt|Xt−1)|ΦTXt−1,

then S(Φ) is mean dimension reduction subspace for the time series xt.

It is clear from the above definition that a time series dimension reduction subspace

is necessarily a mean dimension reduction subspace, because xt Xt−1|ΦTXt−1 implies

xt E(xt|Xt−1)|ΦTXt−1. The following proposition gives equivalent conditions for the con-

ditional independence in Definition 1.

Proposition 3 The following three statements are equivalent:

(i) xt E(xt|Xt−1)|ΦTXt−1.

(ii) Cov(xt, E(xt|Xt−1)|ΦTXt−1) = 0.

(iii) E(xt|Xt−1) is a function of ΦTXt−1.

Part (i) of Proposition 3 is exactly same as Definition 1. Part (ii) says there is no cor-

relation between xt and E(xt|Xt−1) given ΦTXt−1. Part (iii) is what might be suggested by
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intuition as E(xt|Xt−1) = E(xt|ΦTXt−1). The above proposition says that any of the three

conditions could be taken as the definition of a mean dimension reduction subspace. Similar

to the TSCS defined in Chapter 2, we now define the smallest mean dimension reduction

subspace for time series.

Definition 2 Let SE(xt|Xt−1) = ∩SM , where the intersection is over all mean dimension

reduction spaces SM . If SE(xt|Xt−1) is itself a mean dimension reduction subspace, then it is

called the Time Series Central Mean Subspace (TSCMS).

Note that TSCMS does not always exist, because the intersection of two mean dimension

reduction subspaces is not necessarily a mean dimension reduction subspace. For example, if

p = 4 and Xt−1 = (xt−1, xt−2, xt−3, xt−4)
T , set E(xt|Xt−1) = φ1xt−1 + φ2xt−2 + φ4xt−4. Then

the vector (φ1, φ2, 0, φ4)
T forms a basis of TSCMS. On the other hand, when xt = φ1xt−1, we

have that S((1, 0, 0, 0)T ), S((0, 1, 0, 0)T ), and S((0, 0, 0, 1)T ) are all minimum mean DRSs.

But, there does not exist a TSCMS because ∩SM is equal to the origin.

If SE(xt|Xt−1) exists, then SE(xt|Xt−1) ⊆ Sxt|Xt−1
because the former is the intersection of a

larger collection of subspaces. Hence, it may be possible to reduce the dimension from that of

Sxt|Xt−1, if we are only concerned with E(xt|Xt−1). Under mild conditions, as in Proposition 1

of Chapter 2 (Cook 1998, Page 108), it is also possible to prove the existence of the TSCMS.

We assume for the remainder of this chapter that the TSCMS always exists.

The TSCMS is intended to play the same role when considering the conditional mean as

the time series central subspace does when inquiring about the full conditional distribution

of xt|Xt−1. Methods of estimating SE(xt|Xt−1) are discussed in the next section.

3.3 Estimation of TSCMS

Having discussed some basic properties of the TSCMS, SE(xt|Xt−1), we now turn our attention

to finding population vectors in that subspace. In their pioneering article, Li and Duan (1989)

demonstrated that a class of estimators, which includes the Ordinary Least Squares (OLS),
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correctly estimate the dimension of the regression parameter regardless of the shape of the

regression function, provided that the predictors satisfy a linearity condition. Recently, Cook

and Li (2002) adopted this idea for the estimation of CMS in regression. For a description

of this approach, consider an objective function of the form

R(a,b) = E[L(a + bTXt−1, xt)],

where a ∈ R
1, b ∈ R

p, and L(·, ·) is strictly a convex function of its first argument. The use

of an objective function neither implies that any associated model is true nor that it provides

proper fit of the data. Nevertheless, there is an association between the vectors derived from

this objective function and SE(xt|Xt−1), as shown below.

To this end, let the population minimizers be defined by

(Φ0,Φ) = argmina,bR(a,b). (3.1)

Let η be a basis matrix for Sxt|Xt−1
. As shown in Li and Duan (1989), if E(Xt−1|ηTXt−1)

is linear in Xt−1 and dim(Sxt|Xt−1) = 1, then Φ ∈ Sxt|Xt−1. Now, using arguments in Cook

(1998, page 143-147), it is possible to relax the above dimension restriction and show that

Φ ∈ SE(xt|Xt−1). However, if we restrict the objective function to

L(a + bTXt−1, xt) = −xt(a + bTXt−1) + φ(a + bTXt−1) (3.2)

based on the natural exponential family for some strictly convex function φ, then Φ always

belongs to SE(xt|Xt−1), as shown below in Theorem 3. From now on, we will refer to the above

estimation method as the OLS method.

Theorem 3 Let γ be a basis matrix for SE(xt|Xt−1) and let Φ be defined as in (3.1) with the

exponential family objective function in (3.2). If E(bT Xt−1|γTXt−1) is a linear function in

γTXt−1 for all b ∈ ℜp, then Φ ∈ SE(xt|Xt−1).

Proof of this theorem follows along the lines given in Section 3.6.2 (also see Cook and

Li, 2002). As pointed out by Cook and Weisberg in their discussion of Li (1991), the most
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important family of distributions satisfying the linearity condition in Theorem 3 is that of

elliptically symmetric distributions, in particular multivariate normal distribution. In fact, if

Xt−1 is multivariate normal, then the linearity condition in Theorem 3 is satisfied. However,

even if Xt−1 is multivariate normal, xt need not, in general, be a gaussian time series, as

shown in Proposition 4 below.

Proposition 4 Let (xt−1, ..., xt−p)
T has joint normal distribution, then (xt, ..., xt−p+1)

T has

also joint normal distribution. However, (xt,Xt−1) has not necessarily normal distribution.

In view of the above discussion and the discussion in Xia, Tong, Li and Zhu (2002, see

page 365), the linearity condition in Theorem 3 is very restrictive for time series situation.

Therefore, we propose a more suitable estimation methodology for time series, which is

motivated by a method adopted in Xia, Tong, Li and Zhu (2002).

3.3.1 An Estimation Method

In their work on effective dimension reduction in regression, Xia, Tong, Li and Zhu (2002)

suggested an adaptive approach based on conditional Minimum Average Variance Estima-

tion (MAVE) method, which is also applicable to the time series context. Unlike the OLS

approach, this method does not need strong assumptions on the probability structure of

Xt−1, nor does it need the linearity condition imposed in Theorem 3. In a related literature,

Xia and An (1999) proposed an estimation method based on the idea of projection pursuit,

assuming a projection pursuit autoregressive model for time series. In this section, we pursue

an estimation method similar to the MAVE method of Xia, Tong, Li and Zhu (2002), but

with a different intermediate approach.

As in Xia, Tong, Li and Zhu (2002), we minimize

Ψ(Φ) = E(xt − f(ΦTXt−1))
2

with respect Φ, where E(xt|Xt−1) = f(ΦTXt−1). Since f is assumed to be unknown, we will

estimate it using a Nadaraya-Watson estimator (Nadaraya, 1964 and Watson, 1964) defined
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by

f̂λ(Φ
Txt−1) =

∑n
i=1 K

(

ΦT xt−1−ΦT xi−1

λ

)

xi

∑n
j=1 K

(

ΦT xt−1−ΦT xj−1

λ

) ,

where λ is a bandwidth and K is an appropriate kernel density estimator, to be specified

later. With these, we minimize a sample version of Ψ(Φ) defined by

Ψ̂n(Φ) =

n
∑

t=1

(xt − f̂λ(Φ
Txt−1))

2. (3.3)

We will refer to Ψ̂n as the Residual Sum of Squares (RSS). Although we adopt a similar

estimation approach as in Xia, Tong, Li and Zhu (2002), we estimate the unknown mean

function using a Nadaraya-Watson estimator whereas Xia, Tong, Li, Zhu (2002) estimate a

local linear expansion of the mean function.

In our computations, we use a gaussian kernel for the one-dimensional case and a product

gaussian kernel for the multi-dimensional case. Our experience indicates that gaussian kernels

work well in the current context. More specifically, let G denote the univariate gaussian

kernel, and u = (u1, · · · , uk)
T be the k × 1 random vector, for k ≥ 1. Denote the ith

observation by ui = (u1i, · · · , uki)
T , then the k-dimensional kernel density estimate has the

following form:

pn(u1, · · · , uk) = (n

k
∏

j=1

anj)
−1

n
∑

i=1

k
∏

j=1

G

(

uj − uji

anj

)

, (3.4)

where anj = bksjn
−1/(4+k) for j = 1, · · · , k, and sj is the corresponding sample standard

deviation of uj , which is updated during each iteration. Including sj in the bandwidth term

is not necessary; however, doing so usually improves the estimation. The constant bk in anj is

chosen as suggested in Silverman (1986, p. 87) or Scott (1992, p. 152). In all our computations,

we use the function ‘fmincon’ for minimization, the codes for which are available in MATLAB.

3.3.2 Estimation of Dimension d and Lag p

Our development of TSCMS assumes that the minimal dimension d is known. In practice,

however, prior information on d may not be available. Here, we will develop a data-dependent
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method for estimating d. Also, unlike in regression, there may not be any prior information

available on the number of lags, p, and hence it will be useful to develop data-dependent

methods to determine p. As mentioned in Chapter 2, in traditional time series analysis one

usually uses autocorrelation and partial autocorrelation plots or estimation approaches to

determine the lag p.

In time series analysis or, more generally, in any data analysis, several models may be

appropriate for a given data set. Therefore, one needs a suitable criterion for model selec-

tion. Akaike (1973, 1974) introduced an information criterion known as Akaike’s Informa-

tion Criterion (AIC). It is well known that the AIC tends to overestimate the order of the

autoregression (Shibata, 1976). Akaike (1978, 1979) also developed the Baysian information

criterion (BIC), which is an extension of the AIC procedure; see Findley (1985) for a detailed

discussion on properties of AIC. There are many other criteria for model selection in time

series; see, for example, Parzen (1977), Hannan and Quinn (1979), Stone (1979) and Hannan

(1980).

Recently, Xia, Tong, Li and Zhu (2002) proposed a Cross Validation (CV) method for

estimating the unknown dimension d. But, they do not suggest any method to estimate

p. Next, for our context, we propose an estimator of d and p using the Schwarz Baysian

information Criterion (SBC) and the Residual Information Criteria (RIC; Shi and Tsai 2002).

For an in-depth exposition of these model selection methods, see e.g., Schwarz (1978), Ng

and Perron (2005) and Ni, Cook and Tsai (2005).

Note that if p = 1, then d = 1, and there is no need for dimension reduction. Thus, for a

fixed value of lag p(≥ 2), we determine d̂p using the following SBC and RIC criteria;

SBC : d̂p = min
1≤d≤p

{n log(Ψ̂n(Φ̂p,d)/n) + dp log(n)} (3.5)

RIC : d̂p = min
1≤d≤p

{(n − dp) log(Ψ̂n(Φ̂p,d)) + dp(log(n) − 1) + 4/(n − dp − 2)}. (3.6)

For each lag p, we compute SBC and RIC, and obtain d̂p and the associated Ψ̂n(Φ̂p,d̂p
). Next,

plot Ψ̂n(Φ̂p,d̂p
) versus p, which we call an Elbow Plot. In such a plot, we will look for the



54

value of p̂ at which Ψ̂n(Φ̂p̂,d̂p
) is essentially the smallest. This usually creates an elbow-like

situation at p = p̂, hence the name Elbow Plot. This yields an estimate p̂ of lag p. In Section

3.4, we use simulations and a real data set to illustrate how to determine the dimension and

detect the lag.

3.4 Simulations and Data Analysis

In this section, we will carry out several simulation studies to demonstrate the performance

of our method. All the simulation examples will focus only on the mean function. In addition,

we will analyze a data on Yearly number of lynx pelts sales to illustrate the performance of

our method on a real data. Furthermore, we also compare the forecasts based on our fitted

model for the real data with those of another model available in the literature.

3.4.1 Simulations

In all our simulations, we use the measures proposed by Ye and Weiss (2003) and Xia, Tong,

Li and Zhu (2002) to assess the accuracy of our estimates. We use the vector correlation

coefficient (Ye and Weiss, 2003) defined by ρ =
√

|Φ̂T
d ΦdΦT

d Φ̂d|, where |A| denotes the

determinant of a matrix A. Note that 0 ≤ ρ ≤ 1, and when ρ = 1, SE(xt|Xt−1)(Φ̂d) =

SE(xt|Xt−1)(Φd). Therefore, higher values of ρ imply that the two spaces are closer, and hence,

the estimates are more accurate. On the other hand, the method in Xia, Tong, Li and

Zhu (2002) (similar to the one in Li, Zha and Chairomonte, 2005) measures the distance

between SE(xt|Xt−1)(Φ̂q) and SE(xt|Xt−1)(Φd) using m2 =
∥

∥

∥
(I − ΦdΦd

T )Φ̂q

∥

∥

∥

2

if q < d and

m2 =
∥

∥

∥
(I − Φ̂qΦ̂

T
q )Φd

∥

∥

∥

2

if q ≥ d. Here, smaller values of m2 yield more accurate estimates.

In all our simulations, samples of size n = 100, 200 and 300 are considered. For each

sample size, accuracy of estimates is based on 100 Monte Carlo replications. The error term

{εt} in all our models considered below is a sequence of independent standard normal random

variables. In each of our simulation study, we first randomly select 100 initial values for model

parameters and, for each initial set of values, we minimize the objective function Ψ̂n(Φ) in
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n lag p ρ m2

100 2 0.9986 0.0029
200 2 0.9991 0.0017
300 2 0.9994 0.0011

Table 3.1: Model 3.1: Average values of accuracy measures ρ and m2 based on 100 Monte
Carlo replications.

(3.3) and compute the RSS Ψ̂n(Φ̂). We will choose that initial value set for which the RSS

value is the smallest.

Model 3.1:

Let

xt = 1.56xt−1 − 0.56xt−2 + εt,

where p = 2 and d = 1. In this AR(2) model, the conditional mean function of the series is

linear. We will now estimate Φ1 and measure the accuracy of the estimate using the above

mentioned methods. Table 3.1 gives the average values of accuracy measures ρ and m2,

respectively. It shows that the average values of ρ are in general close to 1, while those of

m2 are close to zero, implying that our estimates of Φ1 are very accurate. Notice that the

accuracy of our estimates increases with increasing sample size, as expected.

Model 3.2:

Let

xt = 0.5{cos(1.0)xt−1 − sin(1.0)xt−2}

+0.4 exp[−16{cos(1.0)xt−1 − sin(1.0)xt−2}2] + 0.1εt,

where p = 2 and d = 1. Note that the conditional mean function of the series is nonlinear.

Table 3.2 gives the average values of ρ and m2, respectively. Once again, the table shows that

the estimates are accurate and the results attest to the fact that our estimation procedure

performs reasonably well, even when the conditional mean is nonlinear.
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n lag p ρ m2

100 2 0.9313 0.0817
200 2 0.9443 0.0622
300 2 0.9292 0.0800

Table 3.2: Model 3.2: Average values of accuracy measures ρ and m2 based on 100 Monte
Carlo replications.

Model 3.3:

Let

xt = −1 − cos((π/2)(xt−3 + 2xt−6)) + 0.2εt,

where p = 6 and d = 1. Table 3.3 shows once again that our estimates of Φ1 are accurate.

To detect the true dimension d (=1), we use the SBC and RIC criteria in (3.5) and (3.6), for

each sample size and lag p = 6. In Table 3.3, we report fi, the frequency of d̂p = i, based on

100 Monte Carlo replications using SBC and RIC. Here, fi+ denotes the frequency of d̂p ≥ i.

For sample sizes n = 100, 200 and 300, Table 3.3 shows that, in terms of correctly identifying

d, both SBC and RIC perform well with RIC performing slightly better than SBC.

To make inference about p, given d = 1, we use the Elbow Plot defined above. For this,

we compute the average and the standard deviation of Ψ̂n(Φ̂p,1) values for each p = 4, 5, 6, 7

based on 100 simulated data sets, each with n = 300. The Elbow Plot in Figure 3.1, giving

the average values and average ± standard deviation values of Ψ̂n(Φ̂p,1) clearly indicates

that the Elbow is at p = 6. In fact, 89 out of 100 Elbow Plots (not given here) indicated that

p̂ = 6. Similar results (not reported here) were also observed for n = 100, 200.
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Figure 3.1: Model 3.3: Elbow plot of average values (“Mean”), average − standard deviation
values (“-Std.”) and average + standard deviation values (“+Std.”) of Ψ̂n(Φ̂p,1) versus p =
4, 5, 6, 7 based on 100 simulated data sets, each with sample size n = 300.
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n lag p ρ m2 SBC RIC
100 6 0.9997 0.0223 f1 = 100∗ f1 = 100∗

f2+=0 f2+=0
200 6 0.9995 0.0010 f1 = 94∗ f1 = 100∗

f2+=6 f2+=0
300 6 0.9973 0.0054 f1 = 98∗ f1 = 100∗

f2+=2 f2+=0

Table 3.3: Model 3.3: Average values of accuracy measures ρ and m2, and frequency of
estimated dimension for SBC and RIC, all based on 100 Monte Carlo replications. The true
dimension is d = 1.

Model 3.4:

Let

xt = −1 − cos((π/2)(xt−1)) − cos((π/2)(1/
√

5)(xt−3 + 2xt−6)) + 0.2εt,

where p = 6 and d = 2. Table 3.4 shows that the accuracy of the estimates of Φ2 is

reasonable. As for estimation of d, Table 3.4 shows that RIC correctly estimates the true

dimension, d = 2, about 86% to 99% of the times, for all sample sizes and when the lag p = 6.

However, SBC performs worse even for large sample sizes and considerably overestimates the

true dimension, when the sample size n ≥ 200. This seems rather counter-intuitive because

SBC is generally more conservative.

Model 3.5:

Let

xt = −1 + (0.4)(1/
√

5)(xt−1 + 2xt−4) − cos((π/2)(1/
√

5)(xt−3 + 2xt−6))

+ exp(−(1/
√

15)2(−2xt−1 + 2xt−2 − 2xt−3 + xt−4 − xt−5 + xt−6)
2) + 0.2εt,

where p = 6 and d = 3. Table 3.5 shows that the accuracy of estimates of Φ3 are better for

large sample sizes and when the true lag p = 6. As for estimating d, Table 3.5 shows that

both SBC and RIC correctly estimate the true dimension (d = 3) a higher percentage of



59

n lag p ρ m2 SBC RIC
100 6 0.9075 0.0681 f1=0 f1=1

0.0681 f2=82∗ f2=99∗

f3+=18 f3+=0
200 6 0.9641 0.0301 f1=0 f1=0

0.0301 f2=47 f2=99∗

f3+=53 f3+=1
300 6 0.9639 0.0287 f1=0 f1=0

0.0287 f2=18 f2=86∗

f3+=82 f3+=14

Table 3.4: Model 3.4: Average values of accuracy measures ρ and m2, and frequency of
estimated dimension for SBC and RIC, all based on 100 Monte Carlo replications. The true
dimension is d = 2.

n lag p ρ m2 SBC RIC
100 6 0.7811 0.1278 f1=1 f1=13

0.1278 f2=59 f2=87
0.1278 f3=23 f3=0

f4+=17 f4+=0
200 6 0.9465 0.0363 f1=0 f1=0

0.0363 f2=5 f2=47
0.0363 f3=80∗ f3=53

f4+=15 f4+=0
300 6 0.9683 0.0187 f1=0 f1=0

0.0187 f2=0 f2=6
0.0187 f3=75∗ f3=94∗

f4+=25 f4+=0

Table 3.5: Model 3.5: Average values of accuracy measures ρ and m2, and frequency of
estimated dimension for SBC and RIC, all based on 100 Monte Carlo replications. The true
dimension is d = 3.
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time, especially as sample size gets larger. However, when the sample size is 100, both SBC

and RIC underestimate the true dimension.

Results for models 3.3, 3.4 and 3.5 above seem to suggest that RIC performs better when

the true dimension is smaller (d = 1, 2) while SBC criteria performs better when the true

dimension is larger (d = 3).

3.4.2 Yearly number of lynx pelts sales data

In this section, we use a real data set to assess the performance of our method. The data set

under discussion gives the yearly number of lynx sales for the years 1857 to 1911, consisting

of 55 observations. Andrews and Herzberg (1985) report the data on the number of lynx

pelts sold by Hudson’s Bay Company in Canada. We begin with a brief background on the

data set.

The Canada lynx Lynx canadensis is a beautiful wild felid (or cat) of the boreal forest.

Like the cougar and the bobcat, the other two members of the cat family (Felidae) native

to Canada, the Canada lynx (referred to as lynx) tends to be secretive and most active

at night, and like them it is rarely seen in the wild. The Canada lynx, long haired and of

lustrous flare when prime, is a valuable fur-bearer, though it is currently out of fashion and

sells for a mere $60 a pelt (fur). Records from the early days of the fur trade are scarce,

but for one year, 1763, there are records showing that 4,150 lynx pelts were exported from

Canada to England, comprising a mere 2% of the furs in trade that year (Poland 1892).

However, records of purchases of Canada lynx pelts by the Hudson’s Bay Company during

the 19th century attest to the growing popularity of cat pelts. Peak harvests were of the

order of 80,000 pelts annually in the late 1800s, but they declined sharply after the turn of

the century (Elton and Nicholson, 1942). In the early 1900s, approximately 64,000 bobcat

and lynx pelts were sold annually in the United States, the world’s largest fur market for

much of this century (Osborn and Anthony, 1922). Following the Depression and World War

II, the fur trade’s source of supply underwent a major shift from mainly wild-trapped to
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mainly ranched animals (IFTF 1989). Cats, however, are not ranched, and their proportion

within the wild-caught minority of furbearers increased dramatically during the 1960s.

Wei (2006) analyzes this data set in Example 6.7 of his book, where he models the

logarithm of the series. Based on traditional approach using ACF and PACF, Wei (2006)

concludes that an AR(3) model is adequate for the data. For our data analysis, we consider

the log transformed series of lynx pelt sales for the years 1857 to 1906 with n = 50. Our

process begins with estimation of d and p, followed by the estimation of TSCMS. We then

build a model, based on which we compute the lynx pelt sales number forecasts for the

remaining five years: 1907 to 1911. We also fitted an AR(3) model for the year 1857 to 1906,

and obtained forecasts for the remaining five years: 1907 to 1911.

To estimate d, we set p = 2, 3, 4, and 5 and compute SBC and RIC values for d = 1, 2, 3,

and 4. Table 3.6 lists the SBC and RIC values for each p and d, except for the trivial case

p = 1. Based on SBC and RIC criteria, we conclude that d̂p = 1 for all 2 ≤ p ≤ 5. Note

that d̂p for each p is indicated by an asterisk in Table 3.6. Since d̂p = 1 uniformly for all p,

we decided to use d = 1 in order to determine p̂. The Elbow Plot in Figure 3.2, based on

Ψ̂n(Φ̂p,1) values for p = 2, 3, 4, and 5, clearly indicates that the Elbow is at p = 4. From

Table 3.6 and Figure 3.2, we conclude that the minimal dimension is d = 1 and the lag is

p = 4 for our real data.

Setting d = 1 and p = 4, we use our estimation method in (3.3) to obtain an estimate,

Φ̂1, of the 4 × 1 basis matrix Φ1 in SE(xt|Xt−1)(Φ1). Then, we use the estimates and trial-

and-error approaches with plots of xt against Φ̂T
1 Xt−1 to build a time series model. Finally,

all this led us to fit a linear time series model given by

x̂t = 9.45 − 0.78Φ̂T
1 Xt−1

= 9.45 − 0.57xt−1 − 0.14xt−2 + 0.19xt−3 + 0.48xt−4.

To compare the performance of our model with the AR(3) model, we use the forecasts

for the lynx pelt sales numbers for the years 1907 to 1911 based on our model and AR(3)

model, and compute the Mean Square Relative Error (MSRE)= k−1
∑k

t=1(zt − ẑt)
2/zt and
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p (SBC) d=1 d=2 d=3 d=4
2 −1.2026∗ -1.1459
3 −1.4718∗ -1.4458 -1.3713
4 −1.6376∗ -1.5500 -1.3597 -1.1561
5 −1.5951∗ -1.4497 -1.2124 -0.8979

p (RIC) d=1 d=2 d=3 d=4
2 −57.3648∗ -51.5332
3 −68.4724∗ -61.0805 -50.6462
4 −74.1494∗ -60.6710 -41.8626 -22.0403
5 −69.9898∗ -51.1338 -27.2237 -0.1745

Table 3.6: Yearly number of lynx pelts sales data: SBC and RIC values for p = 2, 3, 4 and
5, and d = 1, 2, 3 and 4. For each p, d̂p determined by smallest value is denoted by * in the
table.

Year lynx pelts sales AR(3) Our model
1907 61478 51224.0745 54661.7679
1908 36300 32181.6533 34838.2186
1909 9704 16659.4772 18029.1375
1910 3410 9966.4659 9337.1632
1911 3774 8086.3704 6606.8272

MSRE 4939.3398 4077.1181
MARE 0.8125 0.6996

Table 3.7: Observed yearly number of lynx pelts sales, forecasts from AR(3) and our model,
and MSRE and MARE for each model: Years 1907 - 1911.
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Figure 3.2: Yearly number of lynx pelts sales data: Elbow plot of Ψ̂n(Φ̂p,1) values versus
p = 2, 3, 4, 5.
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the Mean Absolute Relative Error (MARE)= k−1
∑k

t=1 |zt − ẑt|/zt, where zt is the observed

the lynx pelt number, ẑt is its forecasted value and k is the number of (future) observations.

As is seen from Table 3.7, the MSRE values for AR(3) and our model are 4939.3398 and

4077.1181, respectively, and the MARE values for AR(3) and our model are 0.8125 and

0.6996, respectively. Note that our model produces MSRE and MARE values, which are

smaller than those of the AR(3) model. An overlay plot of forecast values from each of the

above models and the observed lynx pelt sales numbers is given in Figure 3.3. This shows

that the forecasts based on our model are better than those based on Wei’s AR(3) model.

All these show that our time series central mean subspace approach is a promising tool for

time series analysis.

3.5 Discussion

In this chapter, we developed a new approach for dimension reduction in time series, which

focuses only on the mean function of time series. After introducing the notion of TSCMS,

we proposed an estimation method, which uses the Nadaraya-Watson kernel estimator

(Nadaraya, 1964 and Watson, 1964) to estimate the mean function, and thereby estimate

the TSCMS, when the lag p and the minimal dimension d are known. As in Chapter 2, we

proposed a data dependent method based on criteria referred to as SBC and RIC in order

to estimate the minimal dimension d, given lag p. We also proposed a graphical method to

detect lag p, referred to as Elbow Plot.

Overall, the theory of mean dimension reduction subspace in time series poses many

challenges, but a variety of encouraging results presented through our simulations seem to

suggest that our method has great potential for providing a viable and meaningful alternative

to traditional time series analysis, when only mean function is of interest. In fact, superior

performance of our linear time series model for the yearly number of lynx pelts sales data,

as compared to Wei’s (2006) model, serves as a testament that our method is very useful in

time series analysis.
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It would be of interest to establish some theoretical properties of the estimates of TSCMS,

as done in Chapter 2. This would entail development of new theoretical concepts. Hence, it

will be pursued later. While we do not claim the superiority of our method over traditional

time series methods, we do believe that our method will open new avenues in time series

data analysis.
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3.6 Appendix

3.6.1 PROOF OF PROPOSITION 3

It is obvious that part (i) implies part (ii). If E(xt|Xt−1) is a function of ΦTXt−1, then, given

ΦTXt−1, E(xt|Xt−1) is a constant. Hence, it is independent of any other random variable.

Therefore, clearly we have that part (iii) implies part (i). Now, we need to prove that part

(ii) implies part (iii). From part (ii) we have that

E[xtE(xt|Xt−1)|ΦTXt−1] = E(xt|ΦTXt−1)E[E(xt|Xt−1)|ΦTXt−1]. (3.7)

Since

E(xt|ΦTXt−1) = E[E(xt|Xt−1,Φ
TXt−1)|ΦTXt−1]

= E[E(xt|Xt−1)|ΦTXt−1],

the right hand side of (3.7) is {E[E(xt|Xt−1)|ΦTXt−1]}2. Similarly, the left hand side of (3.7)

is

E[xtE(xt|Xt−1)|ΦTXt−1] = E{E[xtE(xt|Xt−1)|Xt−1,Φ
TXt−1]|ΦTXt−1}

= E{E[xtE(xt|Xt−1)|Xt−1]|ΦTXt−1}

= E{[E(xt|Xt−1)]
2|ΦTXt−1}.

Therefore, V ar[E(xt|Xt−1)|ΦTXt−1] = 0, which implies that, given ΦTXt−1, E(xt|Xt−1) is a

constant. Therefore, part (ii) implies part (iii) and hence the proposition.
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3.6.2 PROOF OF THEOREM 3

Let γ be a basis for the central mean subspace:

R(a,b) = E[−xt(a + bTXt−1) + φ(a + bTXt−1)]

= E[−E(xt|γTXt−1)(a + bTXt−1) + φ(a + bTXt−1)]

≥ E[−E(xt|γTXt−1)(a + bT E(Xt−1|γTXt−1)) + φ(a + bT E(Xt−1|γTXt−1))]

= E[−xt(a + bTPγXt−1) + φ(a + bTPγXt−1)].

Since γ is a basis for SE(xt|Xt−1), the second line is obvious. The inequality of third line

is caused by convexity which is E[φ(a + bTXt−1)] ≥ φ(a + bT E[Xt−1|γTXt−1]). The last line

derives from the linearity of E(Xt−1|γTXt−1), that is, E(Xt−1|γTXt−1) = PγXt−1, where

Pγ is the projection on SE(xt|Xt−1) regarding the usual inner product. Therefore, R(a,b) ≥

R(a,Pγb) and the conclusion is the result of the unique Φ.
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3.6.3 PROOF OF PROPOSITION 4

Here, consider a counterexample when p = 2. Let (xt, xt−1, xt−2)
T and consider

xt =







−xt−2 −1 ≤ xt−2 ≤ 1

xt−2 otherwise
,

where xt−1 xt−2, xt−1 and xt−2 ∼ N(0, 1). Then, xt ∼ N(0, 1) by the Exercise 4.8(a) of

Johnson and Wichern (2002).

From the Exercise 4.8(b) of Johnson and Wichern (2002), let xt and xt−2 be a bivariate

normal distribution. K = (xt−2, xt)
T ∼ N(µ, Σ) where µ = (0, 0)T . Suppose a = (1,−1)T ,

then aTK = xt−2 − xt. Since aT µ = 0 and

aT Σa = (1 − 1)





1 σ21

σ12 1









1

−1



 = 2 − σ21 − σ12,

aT K = xt−2 − xt ∼ N(0, 2− 2σ21). Here, P (xt−2 − xt = 0) = 0 by continuity. However, from

initial assumption,

xt−2 − xt =







2xt−2 −1 ≤ xt−2 ≤ 1

0 otherwise

and P (xt−2 − xt = 0) = P (|xt−2| > 1) = 0.3174 from xt−2 ∼ N(0, 1). Then, we directly

got a contradiction that xt and xt−2 do not have a bivariate normal distribution. The result

leads that (xt, xt−1, xt−2)
T does not have a joint normal distribution. Hence, the conclusion

follows.
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Chapter 4

Conclusion

In this thesis, we developed a new theory of dimension reduction in time series, which

provides an initial phase when an adequate parsimoniously parametrized time series model

is not yet available. We introduced two notions such as TSCS and TSCMS for the purpose

of dimension reduction in time series. While the notion TSCS captures information about

xt contained in Xt−1 through minimal number of linear combinations of Xt−1, the notion

TSCMS captures information about xt contained in E(xt|Xt−1) through minimal number of

linear combinations of Xt−1. Due to these differences, we needed to adopt different estimation

techniques for TSCS and TSCMS, respectively. Nevertheless, we illustrated extensively via

Monte Carlo simulations and data analysis that our methods provide a viable alternative to

the traditional time series methods.

We also considered issues intrinsic to the nature of a time series, such as estimation of

lag p. To this end, we proposed use of a Shoulder Plot and an Elbow Plot to determine lag p

in the case of TSCS and TSCMS, respectively. In addition, we also proposed estimators to

make inference about the minimum dimension d associated with TSCS/TSCMS. In the case

of TSCS, we theoretically showed strong consistency of our estimator of d, whereas we used

SBC and RIC criteria for making inference about d in the case of TSCMS.

Overall, the theory of dimension reduction in time series poses many challenges, but a

variety of encouraging results presented through our simulations seem to suggest that our

method has great potential for providing a viable and meaningful alternative to traditional

time series analysis. In the case of TSCS, superior performance of our nonlinear time series
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model for Wolf yearly sunspot data, as compared to Wei’s (2006) models, serves as a tes-

tament that our method is very useful in time series analysis. Also, for the seasonal U.S

beer production data, our model performs better than those in Wei (2006). In the case of

TSCMS, superior performance of our linear time series model for the yearly number of lynx

pelts sales data, as compared to Wei’s (2006) model, shows that our method is very useful in

time series analysis. We believe that the sufficient dimension reduction approaches proposed

in the thesis will stimulate new ideas for modeling time series.

Some future work may focus on different kernels. In this thesis, we only used gaussian

kernel but other kernels such as Epanechnikov (Silverman, page 43) may be used in this

direction. We used Nadaraya-Watson estimator in Chapter 3 but other estimators (Eubank,

page 159) may be considered in the future research.


