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ABSTRACT 

Explaining patterns of species presence (occupancy) and if that species is present, 

the proportion of time it spends in an area (use), is typically the first step in 

understanding how species interact with their environments. I provide the first method 

(multi-scale occupancy modeling) to simultaneously estimate occupancy and use from 

detection-nondetection data while accounting for imperfect detection. Simulations with 5 

repeated samples at each scale demonstrated that estimates and credible interval coverage 

are relatively unbiased when the probability of detecting a species at a site given the site 

is occupied is ≥0.3. Bias could be reduced by increasing the number of repeated samples. 

Then we apply the newly-developed multi-scale occupancy models to analyze the 

relationship between snag density, big tree density (>60.96 cm dbh), and acoustic 

evidence of Ivory-billed Woodpeckers in Arkansas while accounting for the proportion of 

area surveyed.  Density of big trees (AIC weight=0.54) best predicted patch occupancy, 

percent area surveyed (AIC weight =0.61) best predicted the probability that evidence of 

Ivory-billed Woodpeckers was available within the patch (use), and density of big trees 

(AIC weight =0.61) best predicted the probability that evidence was detected given that it 



 

was available. The percent patch surveyed likely represented the level of nonrandom 

sampling within the patch and multi-level occupancy models helped control for that bias. 

Finally, we analyze the effect of disturbance on occupancy and use by 18 forest birds in 

northwest Ecuador. Both occupancy and use showed strong threshold responses at 21-

40% upper canopy cover with the probability of occupancy increasing from about 0 to 1 

and emigration (the probability that a species would stop using the site during the study 

period) decreasing from about 1 to 0. Patterns of use and occupancy suggest that 

disturbed habitat in the region (which is primarily abandoned pasture) may only be 

valuable to forest birds after a specific level of regeneration and during certain times of 

the season. The novel insights provided throughout this dissertation highlight the value of 

analyzing both occupancy and use in a variety of ecological contexts. 
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PREFACE 

A large portion of ecological research revolves around two fundamental 

questions: 1) is a species present in an area (occupancy) and 2) if it is present, how often 

does it use that area (use). Addressing these two questions is typically the first step in 

understanding how species interact with their environments. 

THE ROLE OF DETECTABILITY 

 If a species were always detected when present, than estimating occupancy and 

use would be relatively easy. Detecting a species at least once would mean a site is 

occupied and the number of detections would indicate how often the site is used. 

Unfortunately, few species are always detected when present and detectability (the 

probability of detecting a species given presence) can often vary by abiotic and biotic 

variables of interest (e.g., Wintle et al. 2005, O'Connell et al. 2006). This can produce 

misleading results about both use and occupancy (Williams et al. 2002, Gu and Swihart 

2004). 

 Methods to account for detectability in detection-nondetection data began to 

emerge in the 1980s. Geissler and Fuller (1987) were likely the first to propose that 

repeat surveys to the same sites could be used to estimate detection probabilities. Azuma 

et al. (1990) took the next step by using a series of independent Bernoulli trials, with the 

outcome 1 indicating presence and 0 absence, to describe repeated site visits. They 

demonstrated that an outcome of independent Bernoulli trials across a series of sites 

could estimate the proportion of sites occupied while accounting for imperfect detection. 

 In 2002, there were two major developments in occupancy estimation. Nichols 

and Karanth (2002) suggested the use of closed capture-recapture models with repeated 
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site visits to estimate site occupancy. In this approach the site is treated as an individual 

and the pattern of detections and nondetections is treated as capture-recapture data. Also 

in 2002, MacKenzie et. al (2002) contributed a major advance by showing that detection 

histories treated as independent Bernoulli trials could be directly incorporated into a 

maximum likelihood estimation model. The methods of MacKenzie et. al and others have 

now been expanded to include multiple seasons (MacKenzie et al. 2003), false positives 

(Royle and Link 2006), and multiple species (Dorazio and Royle 2005, Dorazio et al. 

2006) 

ESTIMATING USE AND OCCUPANCY 

 Studies of habitat use commonly rely on radiotelemetry (e.g., Michalski et al. 

2006, Matson et al. 2007, Rittenhouse and Semlitsch 2007). Unfortunately, it is often 

challenging and expensive to get a sufficient sample size to detect differences in use 

between habitats (Murray 2006). Detection-nondetection data tends to be inexpensive and 

easy to collect; thus, it may be a more efficient way to analyze patterns of use in many 

species. 

 To my knowledge, all studies of use relying on detection-nondetection data have 

focused on species turnover between years (e.g., Doherty et al. 2003, Huste et al. 2006, 

Huste and Boulinier 2007). Both site occupancy (MacKenzie et al. 2003) and mark-

recapture models (Boulinier et al. 1998, Nichols et al. 1998b, a) have been expanded to 

analyze multiple seasons. Year-to-year patterns of colonization and extinction can be 

used to make inference about metapopulation processes, population viability, and may be 

related to overall habitat quality (Boulinier et al. 1998, MacKenzie et al. 2003). Applying 

these approaches within a single season, however, provides a unique challenge. In a 
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single-season context, these models can only estimate the probability of a species moving 

in and out of a site and not the probability a site is occupied during that season. Although 

the probability of occupancy in these models (the probability that a species occupies the 

site irregardless of whether it uses the site in a given season) may be of lesser interest 

when each year of a multi-year study is treated as a season, understanding why a site is 

occupied will likely be fundamental to any investigation within a season.  

INTRODUCTION TO MCMC AND BAYESIAN STATISTICS 

Bayesian statistics 

Dramatic increases in computing power and the development of more user 

friendly software such as WinBUGS have made Bayesian statistics more accessible to a 

wide variety of conservation biologists. Although frequentist (i.e., non-Bayesian) 

statistics still dominate ecological research, Bayesian approaches are becoming 

increasingly popular when analyzing complex and hierarchical models, making decisions, 

and incorporating expert opinion (e.g., Sauer and Link 2002, Martin et al. 2005, Wintle 

and Bardos 2006). 

 The fundamental difference between Bayesian statistics and the more traditional 

frequentist statistics is how they view parameters to be estimated (Gelman et al. 2003). 

Frequentist statistics supposes that parameters are fixed and that given enough data they 

could be known without error (Link et al. 2002, Gelman et al. 2003). They essentially 

rely on what could have happened given an infinite sample size and not what actually 

happened given the data.  

This can lead to confusing interpretations of the summary statistics from 

frequentist analysis. For example, a 95% confidence interval in frequentist statistics does 
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not state that there is a 95% chance the true value is in that interval. There is only one 

true value and it is either inside or outside of that interval. The correct interpretation is 

that in an infinite number of studies the true value would be in that confidence interval 

95% of the time (Gelman et al. 2003). Bayesian statistics, however, makes direct 

probability statements on what actually happened given the data. A 95% credible interval 

(a Bayesian confidence interval) actually means that there is a 95% chance that the value 

is in that interval (Gelman et al. 2003). 

Bayesian analysis is based on three distributions: the prior, the sampling 

distribution, and the posterior. The prior summarizes all relevant information about the 

parameter not contained in the data in the form of a probability distribution. Prior 

information usually comes from results of other related studies (e.g., McCarthy and Parris 

2004, McCarthy and Masters 2005) or expert opinion (e.g., Martin et al. 2005). The 

sampling distribution (distribution of data given the parameters) summarizes the 

information in the data in a probability distribution. The prior and the sampling 

distribution are then combined using Bayes Theorem to get the posterior. The posterior 

thus summarizes all available information about a parameter. An agreement between 

previous information (the prior) and information in the data (sampling distribution) 

reduces the uncertainty about parameter estimates while disagreement between the prior 

and the likelihood will increase that uncertainty (Gelman et al. 2003). When using 

uniform priors (thus assuming that all parameters have an equal probability of occurring) 

the posterior distribution is proportional to the likelihood function. 
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MCMC: a brief description 

Markov chain Monte Carlo (MCMC) has become the dominant tool for 

implementing Bayesian statistics in conservation biology. Although many authors have 

commented on the complexity of mathematical ideas behind Bayesian analysis and 

MCMC, the way MCMC estimates parameters is fairly simple. The equation describing 

the posterior distribution in Bayesian analysis is usually complex and often cannot be 

solved directly; therefore, MCMC uses a simulation approach. It proposes values for all 

parameters to use in the equation. It keeps proposed values that fit in the equation, throws 

out those that do not, then proposes a new set of values. Once the means and summary 

statistics from the saved sets of values change very little with more iterations of the 

simulator, the model is said to have converged and the summary statistics can now be 

used for inference. 

MCMC in more detail 

Markov chain Monte Carlo solves a complex equation using simulation (Monte 

Carlo) through a series of values that are only dependent on the value one time step 

before (a Markov chain). At each iteration of the simulation, the sampler proposes a set 

of values. If a value fits into the equation, the result is saved and the chain moves to that 

point. If the value does not fit, the value is not retained and the chain does not move. This 

process of either accepting or rejecting values is known as rejection sampling (Gelman et 

al. 2003). Gibbs sampling, one of the most popular samplers in the program WinBUGS, 

is a special case of MCMC in which the posterior is structured so that all proposed values 

can be accepted (Gelman et al. 2003).    
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Two of the most important decisions when using MCMC are: 1) the number of 

iterations to run and 2) the number of the initial iterations to ignore. MCMC uses 

simulation to generate parameter estimates; therefore, determining the number of 

iterations required to estimate a parameter at a desired level of accuracy is essential. After 

running a sufficient number of iterations (to achieve the desired accuracy) a parameter is 

said to have converged (Raftery and Lewis 1992a, b). There are many methods to assess 

whether parameters have converged (reviewed in Cowles and Carlin 1996) and 

evaluation of these methods (e.g., Cowles et al. 1999, Sinharay 2004) and development of 

new approaches (e.g., Hjorth and Vadeby 2005, Nur et al. 2005, De la Rosa et al. 2006) is 

ongoing. 

MCMC requires initial values for all parameters to begin the simulation and one 

fundamental assumption of MCMC is that accepted values do not depend on those initial 

values (Gelman et al. 2003). For this reason, values from early iterations, which may still 

be dependent, are typically ignored (also known as burn-in). Although there are methods 

to evaluate the optimal burn-in period (e.g., Raftery and Lewis 1992a, Raftery and Lewis 

1992b), many researchers also rely on ad-hoc methods such as visual inspection of the 

chain’s values. 

OVERVIEW OF REMAINING CHAPTERS 

 Chapter 2 (Multi-scale occupancy models for imperfectly detected species) 

introduces a new method, multi-scale occupancy modeling, that uses detection-

nondetection data to simultaneously estimate use and occupancy while accounting for 

detectability. We provide simulation results and an example analysis with green frog 

(Lithobates clamitans) data from Louisiana. 

 7



 Chapter 3 (Correcting for the proportion area sampled: a case study of Ivory-

billed Woodpecker evidence in Arkansas) uses the newly-developed multi-scale 

occupancy models of Chapter 2 to examine the relationship between habitat and acoustic 

evidence of Ivory-billed Woodpeckers. We estimate the relationship between use and the 

proportion of a patch surveyed to correct for unequal sampling coverage between 

patches. 

 Chapter 4 (A threshold response to habitat disturbance by forest birds in 

northwest Ecuador) analyzes the relationship between habitat disturbance and occupancy 

and use in northwest Ecuador. We use patterns of occupancy and use to make initial 

recommendations for conservation planning and future monitoring in the region. 

 Chapter 5 (Conclusion) synthesizes the results from Chapters 1-4. 
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ABSTRACT: Explaining patterns of species presence (occupancy) and if that species is 

present, the proportion of time it spends in an area (use), is typically the first step in 

understanding how species interact with their environments. Despite the inherent 

relationship between occupancy and use, current methods that account for detectability 

can only estimate one or the other. We propose a multi-scale occupancy model that 

simultaneously estimates use and occupancy for species with imperfect detection. This 

approach uses a 3-point binomial mixture, allowing for separate modeling of the 

probability of occupancy at a large scale and use and detection a smaller scale. We 

separate use and detectability through repeated samples at each scale. Simulations with 5 

repeated samples at each scale demonstrated that estimates and credibility interval (a 

Bayesian confidence interval) coverage are relatively unbiased when the probability of 

detecting a species at a site given the site is occupied is ≥0.3. Bias could be reduced by 

increasing the number of repeated samples. We provide an example analysis using green 

frog (Lithobates clamitans) data collected by the Louisiana Amphibian Monitoring 

Program to demonstrate how covariates could affect use and detectability in different 

ways. Multi-scale occupancy modeling can accommodate all recent extensions to single-

season occupancy models such as multi-species interactions, community metrics, false 

positives, and multi-season modeling.  

INTRODUCTION 

 A large portion of ecological research revolves around two fundamental questions: 1) 

is a species present in an area (occupancy) and 2) if it is present, how often does it use 

that area (use). Addressing these two questions is typically the first step in understanding 

how species interact with their environments.  
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 If species were always detected when present, than estimating occupancy and use 

would be relatively easy. Detecting a species at least once would demonstrate that a site 

is occupied and the number of detections would indicate how often that site is used. 

Unfortunately, few species are always detected when present and detectability (the 

probability of detecting a species given presence) can vary as a result of abiotic and biotic 

variables of interest (e.g., Wintle et al. 2005, O'Connell et al. 2006). This can produce 

misleading results about both use and occupancy (Williams et al. 2002, Gu and Swihart 

2004). 

 Although there have been many recent advances in using detection-nondetection 

data to estimate occupancy  while accounting for imperfect detection (MacKenzie et al. 

2002, Nichols and Karanth 2002, Williams et al. 2002), most studies of habitat use still 

rely on radiotelemetry (e.g., Michalski et al. 2006, Matson et al. 2007, Rittenhouse and 

Semlitsch 2007).Unfortunately, it is often challenging and expensive to get a sufficient 

sample size to detect differences in use between habitats when using radiotelemetry 

(Murray 2006). Detection-nondetection data tends to be inexpensive and easy to collect; 

thus, it may be a more efficient way to analyze patterns of use in many species. 

 Both mark-recapture (Boulinier et al. 1998, Nichols et al. 1998b, a) and site-

occupancy models (MacKenzie et al. 2003) for detection-nondetection data have been 

adapted to estimate immigration and emigration at a site between seasons. This approach 

has numerous applications to population viability analysis, metapopulation dynamics, and 

may be a useful indicator of habitat quality (Boulinier et al. 1998, MacKenzie et al. 

2003). These models essentially estimate the probability of use, and of transitions 

between use and nonuse (emigration and immigration) but not occupancy.  Although the 
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probability of occupancy in these models (the probability that a species occupies the site 

irregardless of whether it uses the site in a given season) may be of lesser interest when 

each year of a multi-year study is treated as a season, understanding why a site is 

occupied will likely be fundamental to any investigation within a season.   

  In this paper, we describe a multi-scale site occupancy model which 

simultaneously estimates occupancy (Ψ) and use (u) within a single season while 

accounting for detectability. We begin by presenting a multi-scale occupancy model 

which relies on a 3-point binomial mixture. Then we present simulation results and an 

example analysis of green frog (Lithobates clamitans) data in Louisiana from the North 

American Amphibian Monitoring Program. We used the freely available program PyMC 

(Markov chain Monte Carlo for Python, http://code.google.com/p/pymc/) to perform all 

analyses. 

MULTI-SCALE OCCUPANCY MODEL 

Definitions 

 Let Ψi be the probability that site i is occupied, uij be the probability that site i is used 

during visit j given the site is occupied, and pijk be the probability that a species is 

detected given presence in site i, visit j, during subsample k. A subsample is a repeated 

sample within a visit. Occupancy is the probability that a species is present at a site, use 

is the probability that a species is present during a visit to that site given the site is 

occupied, and detection is the probability that a species is detected given use. We use N 

to denote the total number of sites, V to denote the total number of visits to a site, and S 

to denote the total number of subsamples within a visit. As in MacKenzie et al. (2003),  
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we define the detection history, T vectors of 1’s or 0’s representing the detection or 

nondetection of a species at site i, as Xit. 

Sampling design 

 We envision a design in which repeated samples occur at two different scales within a 

site. The replication in these samples could be spatial (Fig. 2.1), temporal, or both. We 

assume that detection of a species at a site, visit, or subsample is independent of the 

detection of that species in another respective site, visit, or subsample.   

The model 

 When simultaneously estimating occupancy and use, there are two levels of 

detectability involved: use and detection. The probability of detection can be used to 

correct the probability of use for situations in which a species uses a site but is not 

detected. The corrected probability of use can then be used to correct the probability of 

occupancy for situations in which a site is occupied but not used during the sample 

period. 

 Suppose a site is visited 2 times with 3 subsamples at each visit. The species is only 

detected on the 3rd subsample of the first visit thus producing the detection history of 001 

000. The probability of the detection history from the first visit is similar to the single 

season model of MacKenzie et al. (2002) with u replacing Ψ. 

 ))(1)(1()001Pr( 3,1,2,1,1,1,1,1, iiiii pppuX −−==      (1) 

We then expand the single season model to estimate u as a second level of detectability. 

Here we know the site is occupied from the first visit but do not know whether the site is 

used during the second visit. The probability of the detection history from the second 

visit is then: 
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Finally, suppose no individuals were detected during the 2 visits to the site (i.e., 000 000). 

In this case, the site was not occupied, occupied but not used during the 2 visits, or 

occupied, used during at least one of the visits, and not detected during the expected 

number of visits in which the site would have been used. The probability of the detection 

history is: 
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The sampling distribution of the model is then:  
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Parameters can be estimated by either maximum likelihood or Bayesian techniques. 

Covariates and missing data 

 Both covariates and missing data can be easily incorporated into multi-scale 

occupancy models in the same way as other occupancy models. Effects of covariates on 

Ψ, u, and p can be modeled by the logistic model given in MacKenzie et al. (2002), 

where θ is the parameter of interest, X is the covariate information, and B is the vector of 

model parameters.  

 
)exp(1

)exp(
XB

XB
+

=θ          (5) 

Missing data can be accommodated by removing parameters corresponding to those data. 

Incorporation of covariates and missing values in occupancy models have been discussed 

at length by MacKenzie et al. (2002, 2003).  
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SIMULATION STUDY 

Simulation methods 

 We evaluated the performance of multi-scale occupancy models under 28 likely 

scenarios. We randomly drew a sample size of 50 sites with 5 visits and 5 subsamples per 

visit and all possible combinations of Ψ = 0.9, 0.7, 0.5, u = 0.9, 0.7, 0.5, and p = 0.9, 0.4, 

0.1. We developed a Bayesian implementation of the multi-scale occupancy models using 

Markov chain Monte Carlo (MCMC). Although it can be relatively simple to implement 

complex models in MCMC, it is also computationally intensive, thus we used 40 

repetitions per scenario in the simulation with enough iterations to achieve convergence 

within each run. For each scenario, we calculated the bias of the mean estimate and the 

percent of time the 95% credibility interval (a Bayesian confidence interval) contained 

the true value. We used the methods of Raftery and Lewis (1992a, 1992b) with the 

default methods implemented in CODA (Plummer et al. 2006) to assess model 

convergence. 

 Bayesian statistics require the specification of any information relevant to the 

problem not included in the data. This information is summarized as prior distributions 

around all parameters.  In this simulation, all parameters were estimated on the logit 

scale, which only allows values to asymptotically approach 0 or 1, so we used a uniform 

prior distribution of -20 to 20 (or effectively 0 to 1 for the real parameters) on Ψ, u, and 

p. 

Simulation results 
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 Simulation results provided relatively unbiased estimates except in situations with 

low detectability in relation to the number of repeated samples. These results are similar 

to those reported by MacKenzie et al. (2002). However, in multi-scale occupancy models, 

biased estimates are not necessarily caused by low detectability at only one scale, as all 

scenarios with use of 0.9 and detectability of 0.1 were relatively unbiased. Model 

performance best related to the overall probability of detecting a species at an occupied 

site. This quantity is the probability that a species is detected at least once during a 

subsample, 1-(1-p)S, times the probability of use, and is equivalent to the p in a single 

season occupancy model without subsamples. Models began to underestimate parameters 

and credibility interval coverage once the probability of detecting a species at an 

occupied site was <0.3. At low probability of detection (given occupancy), when Ψ was 

high (0.9), u was the most biased (Fig. 2.2), whereas when Ψ was low (0.5), Ψ was the 

most biased (Fig. 2.3). In all cases, the bias could be removed by increasing the number 

of repeated visits and subsamples. 

BRIEF EXAMPLE WITH GREEN FROGS IN LOUISIANA 

Example methods 

 We provide a brief example of multi-scale occupancy modeling with data on green 

frogs collected in 2005 by the Louisiana Amphibian Monitoring Program (LAMP). The 

LAMP follows the protocol of the North American Amphibian Monitoring Program 

where a set of sites is visited multiple times (visits) each year. Detections of frogs are 

predominately auditory so visits are spaced out across the season to accommodate 

differences in singing phenology between species. Each visit is a transect with a 

subsample of 10 stops along that transect. 
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 In this example, u more closely represents availability for detection than actual use by 

an individual, because we would expect frogs to not be vocalizing at certain sites if it is 

either too early or too late in the season. Therefore, Ψ is the probability that the route is 

occupied, u is the probability green frogs are available for detection given the site is 

occupied, and p is the probability of detecting a green frog given they are available for 

detection. Temperature and the time of season can influence detectability (e.g., Weir et al. 

2005) while regional variation can influence occupancy (Manley et al. 2005) in many 

species of frogs. Therefore, we compared 18 models comprised of all possible 

combinations of a temperature or visit effect on u and p and a region effect of Ψ. We 

separated Louisiana into 2 regions: North and South. All sampling sites from Vernon, 

Rapides, and Avoyelles parishes and North were considered in the North Region while all 

other counties were in the South region. 

 In 2005, there were 3 visits performed in Louisiana. The first visits occurred between 

January 10 and March 9, the second visits were from March 21 to May 9, and the third 

visits were from April 29 to July 16. The visits represented sampling done progressively 

later in the season so we estimated the visit effect as a separate u for each visit. 

Temperature was the mean temperature recorded during each visit. There was also a large 

amount of missing data in 2005 with only 7 out of 18 sites having information for all 3 

visits. Just as in the simulations, we used the MCMC toolkit PyMC with a uniform prior 

of -20 and 20 on the logit scale for Ψ, u, and p. We also used a uniform prior of -10 and 

10 on the logit scale for the effect of covariates. We assessed convergence by the 

methods of Raftery and Lewis (1992a, 1992b) using the default values implemented in 

CODA (Plummer et al. 2006) and compared all models using the Akaike’s Information 
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Criterion (AIC, Burnham and Anderson 2002). To facilitate comparison of AIC values 

we constructed AIC weights as described by Burnham and Anderson (2002). 

Example results 

 Three models had substantial empirical support (∆AIC<2, Burnham and Anderson 

2002) with a combined Akaike weight of 0.67 (Table 2.1). Two of these models included 

visit-specific effects on both u and p and one included a positive effect on occupancy of 

being in the northern region (1.14, BCI: -3.9 - 5). Estimates from one of these models 

suggested that use, representing the availability for detection, increased across time (from 

visit 1 to 3, Fig. 2.4) while the probability of detection peaked during visit 2 (Fig. 2.5).  

DISCUSSION 

  Questions about occupancy and use dominate much of the ecological literature. 

Despite the inherent relationship between occupancy and use, existing approaches that 

account for detectability only estimate either one or the other. Here we presented the first 

approach to simultaneously estimate occupancy and use from detection-nondetection data 

while accounting for detectability.  

  The simulation study suggested that 5 visits with 5 subsamples within each visit 

provides relatively unbiased estimates and credibility interval coverage when the 

probability of detecting a species at a site given occupancy is ≥0.3. This directly 

corresponds to the detectability (<0.3) at which single season occupancy models become 

biased at 5 visits (MacKenzie et al. 2002). When designing a multi-scale occupancy study 

for species which may have a low combined probability of detection and use it will be 

important to ensure that there are enough visits and subsamples to provide unbiased 

estimates. 
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 Detectability is often thought of as a nuisance parameter which must be modeled to 

get unbiased estimates of another quantity of interest. If a species is always using a site 

(or always available for detection), this is generally not a problem; however, in many 

situations this is not true. The probability of detection would then combine the probability 

of use (u), something potentially of interest, and the probability of detection given use 

(p).  

 There are many ways multi-scale occupancy modeling can be used to separate u and p 

in contemporary ecological problems. One common example involves large-ranging 

organisms which are not present during all visits to the site. In this scenario, an 

investigator may want to model patterns of occupancy at the site-level and patterns of use 

within the site. Another common situation, as illustrated by the green frog analysis, 

involves a species that can be present during all visits to a site but is not always available 

for detection. Separately modeling u and p would be particularly informative when, as 

was the case with the green frog example, there can be different patterns in u and p in 

relation to a factor of interest. 

 Covariates may even affect u and p in completely different ways when a species is 

not always available for detection. Imagine a forest-associated species which rarely uses 

non-forested habitat but is easier to detect in areas with no forest. A single-season 

occupancy model could estimate occupancy in forested and non-forested habitat to be 

roughly equal and there would be no way to separate the contribution of use versus 

detectability. 

  Multi-scale occupancy modeling could be expanded in numerous ways. Current 

extensions to single-season occupancy models such as species interactions (MacKenzie et 
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al. 2004), community-level metrics (Dorazio and Royle 2005, Dorazio et al. 2006), multi-

season models (MacKenzie et al. 2003), and false positives (Royle and Link 2006) could 

all be applied to multi-scale occupancy models. Additionally, detection probability at any 

scale could be estimated with double-observer sampling (Cook and Jacobson 1979), 

removal models (Moran 1951, Seber 1982), or distance sampling (Reynolds et al. 1980, 

Buckland et al. 1993). Incorporating both removal models and distance sampling is an 

active area of ongoing research. 
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TABLE 2.1.    Model selection results for the effect of temperature (temp) and visit on use 

(u) and detection (p), and region on occupancy (Ψ) for green frogs (Lithobates clamitans) 

in Louisiana. Models are ordered by the difference in Akaike Information Criterion 

(∆AIC) and Akaike weights (wi). Only models with ∆AIC < 10 are shown. 

 

Model ΔAIC wi k deviance
Ψ(.) u(.) p(visit) 0.0 0.28 5 127.6
Ψ(.) u(visit) p(visit) 0.3 0.24 7 123.9
Ψ(region) u(visit) p(visit) 1.2 0.15 8 122.8
Ψ(region) u(visit) p(.) 2.1 0.10 6 128.4
Ψ(.) u(visit) p(.) 2.6 0.08 5 130.2
Ψ(region) u(temp) p(visit) 3.0 0.06 7 126.6
Ψ(.) u(temp) p(visit) 3.5 0.05 6 129.1
Ψ(region) u(visit) p(temp) 4.8 0.03 7 128.4
Ψ(.) u(visit) p(temp) 8.2 0.00 6 133.8
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 Fig. 2.1.   Example multi-scale occupancy design with only spatial replication. The 

probability of detection is calculated using subsamples within a patch (denoted by Xs). 

Use is the probability that the species is present in a patch and occupancy is the 

probability that a species is present in at least one of the patches within the square. 
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Fig. 2.2.   Bias in estimated Ψ in relation to an interaction between simulated Ψ and 

 the probability of detecting a species given occupancy. 
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Fig. 2.3.   Bias in estimated u in relation to an interaction between simulated Ψ and  

 the probability of detecting a species given occupancy. 
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Fig. 2.4.   Visit-specific availability for detection (u) in green frog (Lithobates  

 clamitans) example based on one of the top models (Ψ(.) u(visit) p(visit)). Error bars 

indicate 95% credibility intervals (Bayesian confidence intervals) 
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Fig. 2.5.   Visit-specific detectability (p) in green frog (Lithobates clamitans)  

example based on one of the top models (Ψ(.) u(visit) p(visit)). Error bars indicate 95% 

credibility intervals (Bayesian confidence intervals) 
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CHAPTER 3 

CORRECTING FOR THE PROPORTION OF AREA SAMPLED: A CASE STUDY OF 

IVORY-BILLED WOODPECKER EVIDENCE IN ARKANSAS1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
1 Mordecai, R. S., R. W. Rohrbaugh Jr., J. T. Peterson, C. T. Moore, B. J. Mattsson, R. J. Cooper, and M. J. 
Conroy. To be submitted to Auk. 
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ABSTRACT: Initial surveys for rare and elusive species often utilize ad hoc schemes for 

the selection of temporal and spatial sampling units in an effort to maximize the total 

number of species detections. The resulting variations in area sampled and time spent in 

each area can strongly bias results, and controlling for that bias can be particularly 

challenging. We use newly-developed multi-scale occupancy models to relate the density 

of big trees (>60.96 cm dbh) and density of snags to high interest acoustic evidence 

(hereafter; evidence) of Ivory-billed Woodpeckers from Arkansas in 2004 and 2005 

while controlling for the proportion of area sampled and time spent in that area. Density 

of big trees (AIC weight=0.54) best predicted patch occupancy, percent area surveyed 

(AIC weight =0.61) best predicted the probability that evidence was available within the 

patch (use), and density of big trees (AIC weight =0.61) best predicted the probability 

that evidence was detected given that it was available. Model-averaged predictions 

correctly classified 68% of 22 patches. The number of 14-day sessions of acoustic 

sampling required to be 90% confident that evidence would be detected given that it was 

present ranged from 7.4 (95% Bayesian credible interval (BCI): 3-12) in low densities of 

big trees to 360.8 (95% BCI: 3-1158) in high densities of big trees. The negative 

relationship between percent area surveyed and the availability of evidence to an ARU 

likely resulted from a pattern of nonrandom sampling. In “hot spots” with much 

additional evidence of Ivory-billed Woodpecker presence (e.g., sightings, feeding sign), 

recording units were generally placed near such evidence rather than in a random or 

evenly-distributed sampling design. In patches with little or no previous evidence, 

recording units were more evenly distributed in an ad-hoc fashion.  Thus, the percent 
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patch surveyed represents the level of nonrandom sampling within the patch. Multi-scale 

occupancy models effectively controlled for proportion area surveyed and can be an 

important tool to account for sampling bias in occupancy studies.    

INTRODUCTION 

Species of greatest conservation concern tend to be rare and elusive. Initial 

sampling effort for these species is often distributed in an ad hoc manner in both space 

and time with the ultimate goal of documenting species presence. Unfortunately, the 

difficulty in detecting many of these species will likely lead to several areas in which the 

species is present but is not detected (a false absence). Moreover, the proportion of the 

total area surveyed (hereafter; proportion area surveyed) and the sampling effort at each 

survey location will likely impact the probability of a false absence (MacKenzie et al. 

2002, Williams et al. 2002)  

The Ivory-billed Woodpecker may be the most rare and elusive bird species in the 

United States and thus presents a great challenge for designing efficient and effective 

surveys. The species once existed at low densities in the southeastern U.S. from Florida 

to Texas and as far North as Illinois and Indiana and are thought to have used extensive 

forested areas with very large trees and many dead trees (Jackson 2002). In 1938, Tanner 

(1942) took the last universally accepted photograph of this species in the U.S.; however, 

intriguing sightings continued throughout the 20th century (Jackson 2002, Fitzpatrick et 

al. 2005, Hill et al. 2006). Recent evidence that the Ivory-billed Woodpecker 

(Campephilus principalis) persists in both Arkansas (Fitzpatrick et al. 2005) and Florida 

(Hill et al. 2006) has reinvigorated the hope that this species can be saved from 

extinction.  
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Despite historic records and the contributions of Allen and Kellogg (1937), 

Tanner (1942), and others, we still know very little about Ivory-billed Woodpeckers. 

Most of the historic information on habitat associations comes from one site (the Singer 

Tract in Louisiana), which may not be representative of typical Ivory-billed Woodpecker 

habitat and may poorly reflect historical or current habitat associations. We know even 

less about the survey effort required to be relatively confident that the bird is not there; 

although it is probably high given the expected density of the species (1 pair per 16-44 

km2, Tanner 1942). 

We use newly-developed multi-scale occupancy models (Chapter 1) and audio 

evidence to estimate the relationship between habitat and patterns of occupancy and 

detectability of Ivory-billed Woodpecker evidence while controlling for the proportion of 

patch sampled at the Cache and White River National Wildlife Refuges in Arkansas from 

2004-2005. Although there is not yet consensus about the persistence of the Ivory-billed 

Woodpecker in North America (Jackson 2006, Collinson 2007, Sibley et al. 2007), the 

relationship between habitat and “high interest” evidence (hereafter; evidence) can 

provide valuable guidance for ongoing search efforts. To further inform these search 

efforts we also use the estimated habitat relationships to determine the sampling effort 

required to be 90% confident that not detecting evidence indicates a true absence of 

evidence in a patch. 

METHODS 

Study site 

 Our study area encompassed 22 stands, ranging in size from 1.2 to 7 km2 (mean = 

2 km2), within the Cache (35.06°N, 91.33°W) and White River National Wildlife Refuge 

 38



in Arkansas (34.29°N, 90.08°W). We used existing stand boundaries delineated by the 

Lower Mississippi Valley Joint Venture (Lower Mississippi Joint Venture unpubl. data). 

The Joint Venture delineated these boundaries to construct stands averaging roughly 2-

km2 using natural features and management history. 

Acoustic sampling 

 Autonomous recording units (ARUs) recorded 16,248 hours (2,031 days) of 

ambient sound using throughout the Cache and White River National Wildlife Refuge 

from December 18, 2004 to May 31, 2005. Each ARU recorded sound for two 4 hr 

periods, the first from 30-45 min before sunrise and the second terminating 30-45 min 

after sunset. ARU deployments lasted between 6 and 41 days. Recording sites were 

selected based on perceived habitat quality (i.e. many large and dead trees) and prior 

evidence of Ivory-billed Woodpecker presence such as sightings, acoustic encounters, 

and feeding sign.     

Acoustic analysis 

 There are two commonly described sounds produced by Ivory-billed 

Woodpeckers: a kent call and a double knock (Jackson 2002). In 1935, Arthur Allen 

made the only known recording of a kent call (Allen and Kellogg 1937), a call often 

described as sounding like a toy trumpet or clarinet. There is no known recording of the 

Ivory-billed Woodpecker double knock; however, historic descriptions of “double 

resounding whacks” produced by Ivory-billed Woodpeckers (Allen and Kellogg 1937) 

agree well with double knocks produced by other woodpeckers in the genus 

Campephilus. 
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We first used the XBAT software system (http://xbat.org/) to identify sounds 

similar to Arthur Allen’s recordings of Ivory-billed Woodpecker kent calls and double 

knocks from Pale-billed Woodpeckers (Campephilus guatemalensis) and Powerful 

Woodpeckers (Campephilus pollens). XBAT compares spectrogram cross-correlations 

between a template and unclassified sounds and retains only sounds with correlations 

above a specified threshold (henceforth, signals). We used a conservatively low threshold 

(0.25) to insure that signals were not prematurely removed from consideration. This 

threshold, however, resulted in hundreds of thousands of signals that were obviously not 

produced by an Ivory-billed Woodpecker. 

In an attempt to exclude false detections, we then subjected signals identified by 

the XBAT system to a 3-stage expert review process. First, one of six acoustic analysts 

reviews the signals and easily removes most of them (>99%) from consideration due to a 

strong dissimilarity from historical records of Ivory-billed Woodpecker sounds. Then at 

least five acoustic analysts vote on whether the remaining signals are potentially 

produced by Ivory-billed Woodpeckers. Signals accepted by at least 60% of analysts 

reach the next level of review (henceforth, detections). A panel of at least three experts 

outside the acoustic analysis team perform the final review and classify (by consensus) 

these detections as A2 (rejected), A3 (moderate interest), or A4 (high interest). A3 

detections lack “a compelling qualitative resemblance” to Ivory-billed Woodpecker 

sounds but could not be confidently rejected based on quantitative evidence. A4 

detections could not be separated from template sounds based on qualitative or 

quantitative criteria. Quantitative criteria included double knock interval and fundamental 

frequency (for kent calls). Qualitative criteria involved the absence of a probable 
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alternative sound source and the general impression of a human observer that a signal 

sounded like a Campephilus woodpecker. We used only detection classified as A4 (high 

interest) in this analysis. 

Vegetation sampling 

We used stand-level estimates of big trees/ha (>60.96 cm dbh) and snags/ha from 

the Lower Mississippi Valley Joint Venture Ivory-billed Woodpecker habitat inventory 

and assessment. Historic accounts of Ivory-billed Woodpeckers typically mention a 

strong association with many big trees and many dead trees (e.g. Allen and Kellogg 1937, 

Tanner 1942). In each stand, the Joint Venture randomly selected four 322m transects. 

Every 80.5m on those transect they estimated the number of big trees and the number of 

snags within a 16m radius. Detailed methods for this habitat inventory are available at 

http://www.lmvjv.org/IBWO_habitat_inventory_&_assessment.htm. 

Statistical analysis 

 We used multi-scale occupancy modeling (Chapter 1) to accommodate the 

hierarchical nature of the data. These models estimate three parameters based on repeated 

visits at two scales: occupancy (probability of species presence in an area), use 

(probability of species presence at a smaller scale within that area given occupancy), and 

detection (probability of detecting a species given use). As we could not confirm with 

certainty whether Ivory-billed Woodpeckers were present in any of the patches, we 

define occupancy as the probability that putative acoustic evidence (hereafter; evidence) 

was present in a stand.  We then defined use as the probability that evidence was 

available within the stand, given it is present, during the deployment of an ARU, and 
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detectability as the probability of detecting such evidence on a given day of the ARU 

deployment given use. 

 We corrected for the proportion area sampled by modeling the effect of percent 

patch surveyed on use; thus linking the availability of evidence to the total area sampled. 

We used ArcGIS 9.1 (Environmental Systems Research Institute, Redland, California) to 

place 200m buffers around all ARU locations and calculated percent patch surveyed as 

the percent of each patch covered by at least one buffer. Buffers of 200m roughly 

correspond to the suspected distance at which a signal from an Ivory-billed Woodpecker 

would likely be detected by an ARU (Ron Rohrbaugh, Jr. unpubl. data)  

 We identified 32 candidate models using all possible combinations of density of 

big trees and density of snags to explain occupancy and detection, and percent area 

surveyed to explain use. We compared models using mean Akaike’s information criterion 

(AIC) and interpreted parameter estimates using model averaging (Burnham and 

Anderson 2002) . To estimate the relative importance of each parameter we summed the 

Akaike weight of all models in which the parameter occurs (importance weight (w), 

Burnham and Anderson 2002). To test model fit, we compared model-averaged 

predictions from all models with AIC<4 to stand-level patterns of detections. If the 

model-averaged prediction of occupancy was greater that 0.5, and there was at least one 

detection in that stand, the stand was considered classified correctly.  

Using the model with the lowest AIC value, we also calculated the number of 14-

day sampling periods required to be 90% confident that a stand was not occupied. The 

probability of no detections after 14-days of sampling (period14), given presence, is the 

probability that evidence is available during the sampling period (use) times the 
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probability that the species is not detected over the 14 days ((1-p)14). We solve for the 

number of sampling periods (X) required to be 90% confidence that a stand is not 

occupied by setting the equation 1-(1-period14)X, the probability that at least one of the 

sampling periods produces a detection given presence, equal to .90.  

 We analyzed candidate models with moBayes 

(http://code.google.com/p/mobayes/). moBayes uses the Markov chain Monte Carlo 

(MCMC) toolkit PyMC (http://code.google.com/p/pymc/) to estimate multi-scale 

occupancy models. This program uses a Bayesian approach to estimation and thus 

requires the specification of all information relevant to the problem in the form of a prior 

distribution around all parameters (Link et al. 2002, Gelman et al. 2003). There was scant 

prior information regarding occupancy, use or detection for this species, so we used a 

uniform distribution from -20 to 20 on the logit scale for all intercepts and -10 to 10 for 

all covariates. We used PyMC to estimate the number of 14-day sampling periods 

required to be 90% confident the species was not present.  

 MCMC uses simulation to generate parameter estimates; therefore, determining 

the number of iterations required to estimate a parameter at a desired level of accuracy is 

essential. After running a sufficient number of iterations (to achieve the desired accuracy) 

a parameter is said to have converged (Raftery and Lewis 1992a, Raftery and Lewis 

1992b). To ensure convergence of model parameters, we used both visual inspection of 

simulation values and the methods of Raftery and Lewis (1992a, 1992b) with the default 

options in CODA (Plummer et al. 2006). 

 MCMC requires initial values for all parameters to begin the simulation and one 

fundamental assumption of MCMC is that accepted values do not depend on those initial 
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values (Gelman et al. 2003). Typically, values from early iterations, which may still be 

dependent, are ignored (also known as burn-in). We used a burn-in period of 5,000 

iterations and tested its adequacy using visual inspection and the methods of Raftery and 

Lewis (1992a, 1992b) with the default options in CODA (Plummer et al. 2006). 

RESULTS 

Four models had a mean ∆AIC < 2 (Table 3.1). The null model had a ∆AIC of 

4.54 and an Akaike weight of 0.02. Model-averaged predictions classified 68% of 22 

stands correctly with 5 false positives and 2 false negatives.  Percent patch surveyed 

(w=0.61) and the effect of density of big trees on detection (w=0.61) had the greatest 

importance weights followed by the effect of big tree density on occupancy (w=0.54), 

snag density on occupancy (w=0.35), and sang density on detection (w=0.23). Although 

95% credible intervals (a Bayesian confidence interval, BCI) did not overlap zero for the 

effect of big tree density on occupancy or detection in most of the top models (Table 3.1), 

model-averaged BCIs for the effect of big tree density on occupancy (-0.35, 0.09) and 

detection (-.68, .60) did.  The model-averaged BCI for the effect of percent patch 

surveyed on use was between -2.33 and 2.23.  

Model-averaged predictions of occupancy declined with greater big tree density 

(Fig. 3.1), use declined with greater percent patch surveyed (Fig. 3.2), and detection was 

relatively unaffected by big tree density (Fig. 3.3). The number of 14-day acoustic 

sampling periods required for 90% confidence in detecting evidence given that it is 

present ranged from 7.4 (95% BCI: 3-12) in low densities of big trees to 360.8 (95% BCI: 

3-1158) in high densities of big trees (Fig. 3.4). 
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DISCUSSION 

The probability that Ivory-billed Woodpecker evidence was available to an 

individual ARU increased as the percent patch surveyed declined, while holding survey 

effort constant. One likely explanation for this relationship is nonrandom sampling. In 

“hot spots” with much evidence of Ivory-billed Woodpecker presence (e.g. sightings, 

feeding sign), recording units were generally placed near such evidence. In patches with 

little evidence, recording units were more evenly distributed; thus, the percent patch 

surveyed also represents the level of nonrandom sampling within the patch. Although 

multi-scale occupancy modeling allowed us to control for this bias, there was a large 

amount of uncertainty introduced by statistically controlling it.  

The best way to control for sampling bias is to include some random sampling in 

the design of surveys for rare and elusive species. Such randomization is important even 

for preliminary or initial surveys.  The ideal form of randomization depends on the 

ecology of the species. While a completely randomized or stratified random design may 

work best for more evenly dispersed species, newer methods such as adaptive cluster 

sampling may be better for highly clustered populations (Thompson 1990, 1991, 

Thompson and Seber 1996). 

Even without sampling bias, interpretation of occupancy surveys for large-ranging 

organisms can be particularly challenging. Researchers are often interested in patterns of 

occupancy at scales much smaller than the species’ typical range of movement. In this 

situation, the probability of detection in occupancy models is a combination of the 

probability that a species is present during the sample period and the probability that it is 

detected given presence. The probability of detection given presence, generally thought 
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of as a nuisance parameter to be statistically controlled, is now confounded by the 

probability that the species was present during the sample, something potentially of 

interest. 

Previously published estimates of Ivory-billed Woodpecker density are far greater 

than the roughly 2-km2 patches in which we analyzed acoustic evidence. We used each 

day of recording from an ARU as a repeated sample to estimate the probability of 

detection. Therefore, because the woodpecker could potentially leave and/or return to the 

patch during those days, the probability of detection combines the probability of 

detection given presence and the probability of presence during the sample. As we can 

not separate these two probabilities, we cannot determine whether habitat influences the 

actual use of the area, our ability to detect that use, or both.   

Our finding that the probability of evidence being present and/or detection of such 

evidence increased with declining big tree density may seem counterintuitive. Ivory-

billed Woodpeckers are historically associated with areas of large trees, and one might 

expect dense stands of large trees to attract this woodpecker. Density of big trees (>60.96 

cm dbh) in this area, however, decreases with increasing density of even bigger trees 

(>91.44 cm dbh, M. Lammertink pers. obs.), so the decrease in big tree density probably 

represents an ecological transition to fewer, but even larger, trees. Unfortunately, we did 

not have data on the density of trees >91.44 cm for our study area. As all of the stands in 

our study were older and dominated by big or even bigger trees, further study is needed 

in younger stands dominated by smaller trees. 

A decrease in big tree density may also have increased the probability of detection 

by allowing acoustic signals to travel farther. Fewer trees could have resulted in fewer 
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obstructions for kent calls and double knocks, thus increasing the probability that a signal 

would be detected. 

There remains much uncertainty as to whether density of big trees affects 

presence of evidence for Ivory-billed Woodpecker, detection of that evidence, or both. 

Much of this uncertainty probably results from very low detectability in areas with a high 

density of big trees making it hard to separate species absence from species that are 

simple difficult to detect. 

Information on detectability, and particularly how it responds to habitat variables, 

is extremely valuable in the design of bird surveys. Mackenzie and Royle (2005) discuss 

how estimates of occupancy and detectability can be used to estimate the optimal number 

of repeated visits for an occupancy survey. The optimal number of repeated visits 

decreases with higher detectability and lower occupancy (Mackenzie and Royle 2005). 

For situations in which occupancy and detectability vary with habitat, such as this study, 

the optimal number of repeated visits will also likely vary by habitat. 

Detectability can also be used to estimate the amount of effort required to 

demonstrate that a species is not present at a certain level of confidence. When working 

with endangered species, this quantity can be very important, as it allows natural resource 

professionals to adopt consistent standards for determining the presence/absence of a 

species. When using acoustic surveys for evidence of Ivory-billed Woodpecker, our 

results suggest that demonstrating absence at a 90% confidence level, even at low 

densities of big trees, would be difficult. In particular, the lowest estimated effort would 

require more than 100 days of acoustic sampling per patch and thus analysis of more than 

800 hours of recordings. The intensive sampling required and potentially costly analysis 
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of acoustic data suggests that demonstrating absence of evidence at a 90% confidence 

level within a 2-km2 patch will not be feasible without more efficient survey methods 

(i.e., methods with a higher probability of detection). 

Multi-scale occupancy models effectively controlled for the proportion area 

surveyed. While in some cases a larger area sampled may have a positive effect on the 

availability of the species, in situations where sample locations are clustered around 

specific prior information of species presence the trend may be reversed. Regardless of 

the relationship with proportion area surveyed, the approach appears to be a valuable tool 

to account for sampling bias in occupancy studies.  
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Table 3.1. Model selection results for the effect of big tree (B) and snag (S) density on 

 occupancy (ψ) and detection (p), and percent patch surveyed (Sur) on use. Models are  

ordered by the difference in Akaike Information Criterion (∆AIC) and Akaike weights  

(wi). Superscripts of + or – indicate the direction of the estimate and * indicates 95%  

credible intervals (Bayesian confidence intervals) that do not overlap zero. Only models  

with ∆AIC < 4 are shown. 

ψ Use p Deviance K ∆AIC wi

. Sur(-) B(-)* 106.67 5 0 0.20 
B(-)* . . 109.7 4 1.03 0.12 
S(-) Sur(-) B(-)* 106.05 6 1.38 0.10 
B(-) Sur(-) B(-)* 106.53 6 1.86 0.08 
B(-)*S(-) . . 109.27 5 2.6 0.05 
. Sur(-) B(-)*S(-) 107.69 6 3.02 0.04 
B(-)* . S(-) 109.68 5 3.01 0.04 
B(-)* Sur(-) . 109.76 5 3.09 0.04 
B(-)* . B(-) 109.8 5 3.13 0.04 
B(-)S(-) Sur(-) B(-)* 105.98 7 3.31 0.04 
S(-) Sur(-) B(-)*S(+) 106.6 7 3.93 0.03 
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FIG 3.1. Model-averaged association between big trees/ha and the probability of 

occupancy by Ivory-billed Woodpecker (i.e., probability that evidence was present in a 

stand). Observed values of big tree density ranged from 1-14.5. Error bars indicate 95% 

credible intervals (Bayesian confidence intervals). 
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FIG 3.2. Model-averaged association between percent of patch surveyed and the 

probability of use by Ivory-billed Woodpecker (i.e., probability that evidence was present 

during the deployment of an autonomous recording unit). Observed values of percent 

patch surveyed ranged from 4.8-47.2. Error bars indicate 95% credible intervals 

(Bayesian confidence intervals). 
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FIG 3.3. Model-averaged association between big trees/ha and detectability of evidence 

for Ivory-billed Woodpecker (i.e., probability of detecting evidence during a one-day 

deployment of an autonomous recording unit). Observed values of big tree density ranged 

from 1-14.5. Error bars indicate 95% credible intervals (Bayesian confidence intervals). 
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FIG 3.4. Number of 14-day sampling periods required to be 90% confident that  

evidence of Ivory-billed Woodpecker is absent from a stand based on the model with the 

lowest AIC value. Points correspond to observed values of big trees/ha. Error bars 

indicate 95% credible intervals (Bayesian confidence intervals). Number of sampling 

periods is plotted on the log scale. 
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CHAPTER 4 

A THRESHOLD RESPONSE TO HABITAT DISTURBANCE BY FOREST BIRDS IN 

NORTHWEST ECUADOR1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
1 Mordecai, R. S., R. J. Cooper, and R. Justicia. To be submitted to Conservation Biology. 
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ABSTRACT: Understanding how organisms use disturbed habitats and how that use can be 

increased is a pivotal question in conservation biology. We analyzed the relationship 

between upper canopy cover, an indicator of disturbance, and occupancy and use by 18 

forest bird species in northwest Ecuador. From May 22 to June 28, 2006 we conducted 

five, 10-min 50m-radius point counts at 28 sites (140 total) representing a gradient of 

habitat disturbance from 1285 – 1787m in elevation. Both occupancy and use showed 

strong threshold responses at 21-40% upper canopy cover with the probability of 

occupancy increasing from roughly 0 to 1 and emigration (the probability that a species 

would stop using the site during the study period) decreasing from roughly 1 to 0. Bird 

surveys ended near the beginning of the dry season and high levels of emigration in more 

disturbed areas imply that forest birds stopped using these areas as the dry season 

approached, possibly due to a shift in food resources.  Patterns of use and occupancy 

suggest that disturbed habitat in the region (which is primarily abandoned pasture) may 

only be valuable to forest birds after a specific level of regeneration and during certain 

times of the season. 

INTRODUCTION 

 With the increasing evidence that protected areas alone are not enough to 

conserve most of the world’s biodiversity (Liu et al. 2001, Dirzo and Raven 2003), many 

authors are highlighting the importance of disturbed habitats in tropical bird conservation 

(e.g. Welford 2000, Peh et al. 2006, Sekercioglu et al. 2007). Disturbed habitats, which 

range from regenerating pastures (Welford 2000) to agricultural systems such as coffee 

(e.g. Mas and Dietsch 2003, Bhagwat et al. 2005), cacao (e.g. Greenberg et al. 2000, 

Verea and Solozano 2005), and cardamom (Raman 2006), can contain many of the 
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forest-associated species found in nearby mature forests and can provide important 

buffers around, or connections between, forested areas (Castellon and Sieving 2006). 

 The time spent in disturbed habitat by forest birds, however, may be short-lived 

(DaSilva et al. 1996, but see Sekercioglu et al. 2007) and highly-dependent on the 

distance to the nearest forest patch (DaSilva et al. 1996). For example, DaSilva et al. 

(1996) observed 18 species of frugivorous forest birds flying from secondary forest to 

abandoned pastures in eastern Amazonia. These species spent only a few minutes in the 

pastures and rarely traveled more than 80 m from the forest patch. Therefore, although 

these frugivorous birds were present in the abandoned pasture, their limited use of this 

habitat suggests that it is of lesser importance than the secondary forest. 

 The Choco-Andean corridor was initiated by Fundación Maquipucuna and 

numerous nongovernmental partners in 1992.  Its goal is to create a network of protected 

areas and managed human landscapes that extend from the western crest of the Andes 

Mountains in northwestern Ecuador to the coastal mangroves of the Pacific Ocean. To 

date, most of the efforts to connect protected areas have focused on promoting shade-

grown cacao, shade-grown coffee, reforestation, and strategic land purchases. 

Understanding how forest birds use these disturbed habitats and how those habitats can 

be manipulated to increase that use will be essential in conservation planning throughout 

the corridor. 

We examine the association between upper canopy cover and patterns of 

occupancy (the probability of species presence) and use (proportion of time spent in an 

area given presence) for 18 forest interior species (hereafter; forest species) in the tropical 

Andes region of northwest Ecuador. We use an information-theoretic approach (Burnham 

 58



and Anderson 2002) to evaluate 3 hypotheses about the relationship between occupancy 

and increasing upper canopy cover (greater occupancy, greater use, and greater 

occupancy and use) and 5 hypotheses about the relationship between use and increasing 

canopy cover (greater use, lower emigration, higher immigration and lower emigration, 

no effect: emigration, and no effect: stable).  

METHODS 

Study area 

 We sampled birds in regenerating and mature forests in the Pichincha province of 

northwest Ecuador (0.1°N, 78.6°W) from 1285 – 1787m in elevation. This area is part of 

the Tropical Andes biodiversity hotspot which is the richest and most diverse hotspot on 

earth (Myers et al. 2000). Average daily minimum and maximum air temperature ranges 

from 17-26°C with little seasonal change (Rhoades and Coleman 1999). Average annual 

precipitation is 3200 mm with a distinct dry period in August and September when 

monthly precipitation drops to less than 100 mm (Rhoades and Coleman 1999).  

Sampling 

From May 22 to June 28, 2006 one observer conducted five, 10-min 50m-radius 

point counts from 6:15 to 10:00 a.m. at 28 sites (140 total) representing a gradient of 

habitat disturbance. Each site was separated by at least 150 meters to reduce the 

likelihood that individual birds were detected in more than one count. We recorded all 

birds seen or heard during the count and the time interval in which it was first detected 

(first 3 min, middle 2 min, or final 5 min, Ralph et al. 1995).  We visited sites in order so 

that the first count at all sites occurred during roughly the same date then the second, 

third, fourth, and fifth counts at all sites occurred during subsequent and roughly 
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equivalent dates, respectively. This design allowed us to look at patterns of occupancy 

and use over time within each site. 

We measured the percent of total canopy cover and upper canopy cover (trees 

>5m, Gale 2000) through ocular estimation within the 50m count radius in 5 categories: 

0, 1-10, 11-20, 21-40, 41-60, 61-80, and >80%. We used ocular estimation to measure the 

average percent epiphyte cover for trees within the 50m count radius in 3 categories: 0,1-

40, and >40%. We estimated elevation at each site using a Garmin GPS12XL GPS unit. 

To represent the gradient of habitat disturbance, we considered total canopy 

cover, upper canopy cover, and an interaction between canopy cover and epiphytes. Once 

total canopy cover reached 41-60% only epiphyte cover could distinguish primary from 

secondary forest; therefore, an interaction between total canopy cover and epiphytes 

would also represent the transition from secondary to primary forest (Mordecai unpubl. 

data). All 3 representations of habitat disturbance were highly correlated (Pearson 

Correlation coefficients >0.72), so we chose to only include the measurement of 

disturbance which was easiest to take in the field, upper canopy cover, in the analysis. 

Data analysis 

We examined support for 3 hypotheses about the association between forest bird 

occupancy and upper canopy cover: 1) greater occupancy, 2) greater use, and 3) greater 

occupancy and use. The greater occupancy hypothesis predicts that forest birds are more 

likely to occupy sites with greater canopy cover. The greater use hypothesis predicts that 

the time a forest bird spends in the site is positively related to upper canopy cover. The 

greater occupancy and use hypothesis is a combination of the first two hypotheses. We 
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defined forest birds as birds either not described as using forest edge or open habitats or 

described as rarely using forest edge in Ridgely and Greenfield (2001b). 

We began by using the detection or nondetection of individual forest species over 

multiple visits to each site, occupancy modeling (MacKenzie et al. 2002), and program 

PRESENCE (available at www.mbr-pwrc.usgs.gov/software.html) to analyze the 

relationship between occupancy and detectability of forest bird species and upper canopy 

cover. This allowed us to evaluate the greater occupancy hypothesis.  

We also indirectly evaluated the greater use hypothesis through the probability of 

detection. In this study some forest birds will probably leave the 50m radius of a point 

count between repeated visits to a site; therefore, the probability of detecting a species 

given that it occupies the site (i.e., detectability) is a combination of the probability that 

the species is detected given that it is in the 50m radius and the probability that it is inside 

that radius and thus available to be detected. The probability of being inside the radius 

would be a direct measure of use; however, it is confounded by the probability of 

detecting the species when it is inside that radius.  

Although we cannot explicitly separate these two quantities at this first stage, 

there are certain situations in which the relationship between the estimated detection 

probability and upper canopy cover can be highly suggestive of a relationship driven by 

amount of use. For example, as canopy cover increases, the greater amount of vegetation 

potentially between the bird and the observer should make birds within the count radius 

harder to detect by both sight and sound. Therefore, if the probability of detection 

increases with upper canopy cover, it suggests that availability for detection (i.e., time 

spent) in the count is also increasing. 
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Then, we directly investigated the relationship between upper canopy cover and 

use by examining support for 5 hypotheses: 1) Greater use, 2) Lower emigration, 3) 

Higher immigrations and lower emigration, 4) No effect: emigration, and 5) No effect: 

stable. The greater use hypothesis predicts that use of habitat by forest species increases 

with upper canopy cover. The lower emigration hypothesis predicts that the probability of 

a forest species leaving the site over the sampling period declines with increasing canopy 

cover. This hypothesis represents an interaction between season and use where, as the 

season progresses, the relationship between upper canopy cover and use changes. The 

higher immigration and lower emigration hypothesis predicts that the probability of a 

forest species leaving the site over the sampling period declines while the probability that 

a new forest species enters the site increases with increasing canopy cover. The no effect: 

stable hypothesis predicts that use does not change over sampling period and is not 

related to canopy cover while the no effect: emigration hypothesis predicts that although 

use is not related to canopy cover it still declines over the sample period.  

We used time of first detection during multiple visits to each site, multi-season 

occupancy models (MacKenzie et al. 2003), and program PRESENCE to separate level 

of use and detectability. To analyze time of first detection data in program PRESENCE, 

we treated all periods after a detection as missing data. We assumed that species do not 

leave the count radius during the 10 min count but can leave and reenter between visits. 

This species turnover between counts allowed us to directly estimate patterns of use. 

We tested 4 structural models for each occupancy hypothesis: main effects alone, 

main effects and an influence of elevation on occupancy and detection, main effects and 

species-specific detectability, and main effects, elevation, and species specific 
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detectability. This resulted in 12 total models for the analysis of occupancy. We tested 5 

structural models for each use hypothesis: main effects alone, main effects and an 

influence of elevation on the main effects, main effects and species-specific detectability, 

main effects and an influence of upper canopy cover on detectability, and main effects, 

elevations, upper canopy cover on detectability, and species-specific detectability. This 

resulted in 30 total models for the analysis of use.   

RESULTS 

We detected 18 species of forest birds during point count surveys (Table 4.1). 

One of these species is primarily frugivorous, six are omnivorous, and the rest are 

insectivorous (Ridgely and Greenfield 2001a). All sites, with the exception of one with 

no upper canopy cover, had forest bird detections.   

 One model, representing the greater occupancy hypothesis, best fit patterns of 

forest bird detections (AIC weight = .84, all other models with ΔAIC>4.26, Table 4.2). 

Occupancy was very low (0.001 to 0.033) from 0-10% upper canopy cover with a sharp 

increase from 11-40%, which then leveled off to almost 1 at >41% (Fig. 4.1). Species-

specific detectability ranged from 0.01 (CI: 0.001-0.07) for the Ochre-breasted Antpitta 

and Collared Trogon to 0.49 (CI: 0.39-0.59) for the Orange-billed Euphonia (scientific 

names appear in Table 4.1). Elevation had a negative but non significant association with 

occupancy (CI: -3.7-0.23) and a significant positive association with detectability (CI 

0.16-0.50) on the logit scale. 

 Models using all three time periods within a count (first 3 min, middle 2 min, and 

final 5 min) to examine forest bird use failed to converge so we limited our analysis to 

only the first two time periods. Even after focusing only on the first two time periods, 
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models with species-specific detectability and those controlling for elevation failed to 

converge so we only considered models without species-specific detectability and 

elevation. This resulted in 2 structural models for each of the 5 use-related hypotheses. 

Two models, both representing the lower emigration hypothesis, had good empirical 

support (∆AIC<4, Burnham and Anderson 2002, Table 4.3). The model-averaged 

estimate of emigration was essentially 1 from 0 to 10% upper canopy cover with a sharp 

decrease from 11 to 20%, which then leveled off to almost 0 for >21% upper canopy 

cover (Fig. 4.2). Estimates of detectability from the best model (All other models with 

∆AIC>2, Burnham and Anderson 2002) was 0.19 (CI: 0-.99) for the first 3 min and 0.07 

(CI: 0-0.99) for the middle 2 min. 

DISCUSSION 

 Forest birds exhibited a strong threshold response to disturbance in both 

occupancy and use. When upper canopy cover decreased below 21-40%, there was a 

sharp decline in both forest bird occupancy and the probability that a forest bird would 

continue to use the area as the season progressed. This suggests that disturbed habitat in 

the region (which is primarily abandoned pasture) may only be valuable to forest birds 

after a certain level of regeneration.  

To our knowledge, this is the first study to demonstrate a threshold response to 

disturbance in both occupancy and within-year use. An ecological threshold is a region or 

point where an abrupt change occurs from one ecosystem condition to another (Luck 

2005, Groffman et al. 2006, Denoel and Ficetola 2007). Although the use of thresholds in 

conservation and management holds great promise (Drinnan 2005, Guenette and Villard 

2005, Denoel and Ficetola 2007), empirical studies have shown mixed results (reviewed 
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in Huggett 2005). For example, while bird, frog, plant, and fungi richness show a 

threshold response to habitat fragmentation in urban areas of Sydney, Australia (Drinnan 

2005), an examination of the response of mammal, reptile and bird communities in 

southeastern Australia to variation in patterns of native and exotic vegetation cover found 

no evidence of a threshold (Lindenmayer et al. 1999, Lindenmayer et al. 2002, 

Lindenmayer et al. 2005). 

 To our knowledge, this is also the first study to demonstrate a threshold response 

to disturbance in the tropics while quantitatively accounting for differences in 

detectability. The issue of detectability further complicates not only the investigation of 

ecological thresholds but any analysis of species-habitat relationships. Few species are 

always detected when present and if detectability varies with habitat than estimated 

relationships can be biased (reviewed in Thompson 2002). Although accounting for 

detectability in estimation of species-habitat relationships is becoming more common 

(e.g. O'Connell et al. 2006, Yates and Muzika 2006, Huste and Boulinier 2007),  existing 

studies investigating ecological thresholds have not (e.g. Drinnan 2005, Guenette and 

Villard 2005, Lindenmayer et al. 2005). 

 The threshold level identified in this study corresponds well with management 

recommendations for another disturbed habitat of potential conservation value, coffee. 

Certification guidelines by the Smithsonian Institution for “bird friendly” coffee 

(available at 

http://nationalzoo.si.edu/ConservationAndScience/MigratoryBirds/Coffee/Certification/cr

iteria.cfm) and by the Rainforest Alliance for “sustainable” coffee (available at 

http://www.rainforest-alliance.org/programs/agriculture/certified-
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crops/standards_2005.html) require at least 40% total canopy cover. Of the 6 sites with 

an upper canopy cover of 21-40% (the identified threshold), 3 sites had a total canopy 

cover of 41-60% and 1 site had a total canopy cover of 61-80% (Mordecai unpubl. data). 

The agreement between our results and management recommendations from these two 

organizations suggests that there may be consistent threshold responses to disturbance by 

forest birds in a variety of tropical areas. 

This threshold response probably occurs only in disturbed areas near forest. All of 

our study sites were adjacent to forested areas and thus our results only apply to disturbed 

areas near forests; however, many studies have shown that the distance to nearby forest 

can strongly affect bird communities (e.g. Luck and Daily 2003, Perfecto et al. 2003). 

The importance of nearby forest in previous studies further supports the contention that 

the primary value of disturbed habitats is as a buffer around, or a connector between, 

protected forests. 

Aside from providing preliminary guidance for conservation planning, our results 

also demonstrate the value of investigating patterns of both use and occupancy across 

ecological gradients. While forest bird occupancy showed a relatively simple threshold 

response to upper canopy cover, the analysis of use revealed a more complex pattern. The 

negative relationship between upper canopy cover and emigration during the study period 

suggests that use of disturbed habitats by forest birds can be strongly seasonal.  

The desertion of more disturbed habitats in this study corresponds with the onset 

of the dry season. During the wet and dry season in Panama, Richards and Windsor 

(2007) compared arthropod abundance between canopy gaps and nearby understory. 

During the wet season they found 34% more arthropods in canopy gaps but in the dry 
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season they found 32% more arthropods in nearby understory. Arthropods comprise at 

least part of the diet of 17 of the 18 forest birds examined in this study and it is possible 

that the shift in use away from disturbed habitat leading up to the dry season may be 

driven by concurrent changes in food resources (i.e. arthropods).  

The threshold identified in this study will provide a preliminary quantitative target 

for conservation planning throughout the Choco-Andean Corridor. This target, however, 

is only preliminary and we have established a long-term bird monitoring program 

throughout the corridor to examine numerous unresolved issues. These issues include:  

potential threshold responses to canopy cover and tree diversity in shade-grown coffee 

and shade-grown cacao, seasonal trends in occupancy and use, and the influence of 

landscape context on regional bird communities. 
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Table 4.1. Forest species detected during point count surveys from May 22 to June 28, 

2006 at 1285 – 1787m in elevation. Association with forest and diet (F = frugivorous, O 

= omnivorous, I = insectivorous) from Ridgely and Greenfield (2001b, 2001a). 

Common Name Scientific Name Diet 
Orange-bellied Euphonia Euphonia xanthogaster F 
Broad-billed Motmot Electron platyrhynchum I 
Esmeraldas Antbird Myrmeciza nigricauda I 
Immaculate Antbird Myrmeciza immaculata I 
Ochre-breasted Antpitta Grallaricula flavirostris I 
Plain Antvireo Dysithamnus mentalis I 
Plain-brown Woodcreeper Dendrocincla fuliginosa I 
Rufous-breasted Antthrush Formicarius rufipectus I 
Slaty Antwren Mymotherula schisticolor I 
Strong-billed Woodcreeper Xiphocolaptes promeropirhynchus I 
Three-striped Warbler Basileuterus tristriatus I 
Wedge-billed Woodcreeper Glyphorynchus spirurus I 
Chestnut-capped Brush-Finch Atlapetes brunneinucha O 
Masked Trogon Trogon personatus O 
Orange-billed Sparrow Arremon aurantiirostris O 
Rufous-throated Tanager Tangara rufigula O 
Scaled Fruiteater Ampelioides tschudii O 
Spotted Nightingale-Thrush Catharus dryas O 
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Table 4.2. Model selection results and associated hypotheses for the relationship between 

upper canopy cover (Can) and occupancy (ψ) and detection (p). Elev indicates a covariate 

for elevation and Sp indicates species-specific detection probabilities. Models are ordered 

by the difference in Akaike Information Criterion (∆i) and Akaike weights (wi). 

Superscripts of + or – indicate the direction of the estimate and * indicates 95% 

confidence intervals that do not overlap zero. Only models with some empirical support 

(∆AIC<10, Burnham and Anderson 2002) are shown. 

Hypothesis Model ∆i wi K 
↑ occupancy Ψ(Can(+)*, Elev(-)) p(Elev(+)*, Sp) 0 0.84 22
↑ use Ψ(Elev(-)) p(Can(+)*, Elev(+)*, Sp) 4.3 0.10 22
↑ occupancy ↑ use Ψ(Can(+), Elev(-)) p(Can(+), Elev(+)*, Sp) 5.7 0.05 23
↑ occupancy Ψ(Can(+)) p(Sp) 9.5 0.01 20
↑ occupancy ↑ use Ψ(Can(+)*) p(Can(+)*, Sp) 9.8 0.01 21
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Table 4.3. Model selection results and associated hypotheses for the relationship between 

upper canopy cover (Can) and initial occupancy (ψi), colonization (γ), extinction (ε), and 

detection (p). Models are ordered by the difference in Akaike Information Criterion (∆i) 

and Akaike weights (wi). Superscripts of + or – indicate the direction of the estimate and 

* indicates 95% confidence intervals that do not overlap zero. Only models with some 

empirical support (∆AIC<10, Burnham and Anderson 2002) are shown. 

Hypothesis Model ∆i wi K 
↓Emigration Ψi(.)γ(.)ε(Can(-)*)p(t) 0 0.68 6
↓Emigration Ψi(.)γ(.)ε(Can(-)*)p(Can(+),t) 2.0 0.25 8
↑Immigration ↓Emigration Ψi(Can(+))γ(Can(+))ε(Can(-)*)p(Can(+),t) 5.6 0.04 10
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Fig. 4.1. Threshold response in forest bird occupancy to upper canopy cover. Dashed 

lines indicate a 95% confidence interval for predictions. 
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Fig. 4.2. Threshold response in forest bird extinction (i.e. species stops using the patch as 

the season progresses) to upper canopy cover. Dashed lines indicate a 95% confidence 

interval for predictions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 77



 

 

CHAPTER 5 

SUMMARY AND CONCLUSIONS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 78



SUMMARY AND CONCLUSIONS 

 In the preceding chapters we provided new methods and unique approaches to the 

analysis of occupancy and use from detection-nondetection data. Despite the inherent 

relationship between occupancy and use, these two quantities are usually estimated 

separately using different data and protocols. Through these new methods and 

approaches, we demonstrate that occupancy and use can be estimated simultaneously 

using simple and easy-to-collect data. By leveraging simple and easy to collect data, the 

techniques described in this dissertation can be applied to projects ranging from large-

scale volunteer-driven monitoring programs to small-scale experiments.  

In chapter 1, we summarized literature on the estimation of occupancy and use in 

addition to providing a general introduction to Bayesian statistics and MCMC. In chapter 

2, we built on previous methods of Azuma el al. (1990), MacKenzie et al. (2002), and 

others to construct a model that estimates occupancy and use through repeated visits to a 

site and two different scales. Simulations with 5 repeated samples at each scale 

demonstrated that estimates and credible interval coverage are relatively unbiased when 

the probability of detecting a species at a site given the site is occupied is ≥0.3. Bias 

could be reduced by increasing the number of repeated samples. An example analysis of 

green frog (Lithobates clamitans) data demonstrated that use and detection can respond 

differently to a single covariate. 

 In chapter 3, we applied the newly-developed multi-scale occupancy model of 

Chapter 2 to examine the relationship between habitat and acoustic evidence of Ivory-

billed Woodpeckers while controlling for the proportion of area sampled. We found a 

negative relationship between either detection or occupancy and density of big trees. 
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Ivory-billed Woodpeckers are historically associated with areas of large trees, and one 

might expect dense stands of large trees to attract this woodpecker. Density of big trees 

(>60.96 cm dbh) in this area, however, decreases with increasing density of even bigger 

trees, so the decrease in big tree density  probably represents an ecological transition to 

fewer, but even larger, trees. When using acoustic surveys for evidence of Ivory-billed 

Woodpecker, our results suggest that demonstrating absence at a 90% confidence level, 

even at low densities of big trees, would be difficult, and more efficient survey 

techniques will be needed. A negative relationship between percent area surveyed and the 

availability of evidence to an ARU likely resulted from a pattern of nonrandom sampling. 

In “hot spots” with much additional evidence of Ivory-billed Woodpecker presence (e.g., 

sightings, feeding sign), recording units were generally placed near such evidence rather 

than a random or evenly-distributed sampling design. In patches with little or no previous 

evidence, recording units were more evenly distributed in an ad-hoc fashion.  Thus, the 

percent patch surveyed represents the level of nonrandom sampling within the patch and 

the new multi-scale occupancy models allowed us to statistically control for this 

nonrandom sampling. 

 In chapter 4, we examined the relationship between habitat disturbance and 

occupancy and use in northwest Ecuador. Both occupancy and use showed strong 

threshold responses at 21-40% upper canopy cover with the probability of occupancy 

increasing from roughly 0 to 1 and emigration (the probability that a species would stop 

using the site during the study period) decreasing from roughly 1 to 0. Bird surveys ended 

near the beginning of the dry season and high levels of emigration in more disturbed 

areas implied that forest birds stopped using these areas as the dry season approached, 
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possibly due to a shift in food resources.  Patterns of use and occupancy suggest that 

disturbed habitat in the region (which is primarily abandoned pasture) may only be 

valuable to forest birds after a specific level of regeneration and during certain times of 

the season. 

The novel insights provided throughout this dissertation highlight the value of 

analyzing both occupancy and use in a variety of ecological contexts. Whether analyzing 

a single species sampling problem (chapter 3), or a multi-species conservation problem 

(chapter 4), estimation of use and occupancy provides an efficient and unbiased method 

to understand how species interact with their environment.  
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