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Abstract

While much work toward constructing quantum field theories has already been done in

the case of a flat space-time, the discipline is not nearly as well-developed in the case of

a curved space-time. The axioms offered by Wightman provide a mathematically rigorous

system for the construction of a quantum field theory on Minkowski space. I extend this

axiomatic approach in order to develop a model for a free scalar quantum field theory in the

case of a two-dimensional curved space-time by offering a set of axioms for a quantum state

field which can then be used to create a quantum operator field by second quantization using

the Segal field operator. I then demonstrate an example of a mathematically rigorous free

scalar quantum field theory on a curved space-time satisfying these axioms. Finally I use

Wigner’s contraction method to demonstrate that these free quantum fields on the curved

ax+ b space-time limit to certain quantum fields on the flat plane, R2.
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Chapter 1

Introduction

The reconciliation of general relativity with quantum mechanics has been one of the greatest

challenges in physics for almost one hundred years. Much work has been done to integrate

the observations of quantum mechanics into a field – a function of time and position –

which can be used to model a changing number of particles. Concurrently much work has

been accomplished in understanding general relativity, especially in the use of differential

geometry to describe curved space-time. However these two physical theories remain distinct

and discordant. This thesis is a mathematical attempt to continue in the physical tradition

of marrying these two ideas.

Physicists traditionally approach the construction of a quantum field theory by considering

operator-valued fields which can be used to study identical particles. However much of their

work is not presented in a mathematically rigorous fashion. By formulating axioms for a

quantum field theory and requiring certain physical properties hold, we can give quantum

field theory a firm mathematical basis.

One such attempt to axiomatize quantum field theory was offered by Wightman. These

axioms offer an elegant framework by which a quantum field theory can be constructed on

(flat) Minkowski space. We hope to extend this axiomatic approach in order to develop a
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model for a free scalar quantum field theory in the case of a two-dimensional curved space-

time. The quantum fields throughout this thesis are assumed to be scalar, i.e. they have no

spin. Studying scalar fields allows for a thorough study of quantum field theories without

the added complexity of spin. The lack of interaction between the particles makes this study

simpler physically while maintaining compatibility with special relativity. Mathematically,

by considering a free quantum field theory, we are able to reduce these axioms and then

using these simplified rules adapt them to the curved case.

One test for any such theory is to see how it limits to the flat case as the space-time becomes

less curved. We will equip the curved space-time with a non-negative parameter, ρ, and study

the effects of the contraction on the space-time and its symmetry group. The contraction

technique demonstrated by Wigner will be invaluable in this respect.

In this introductory chapter, we introduce the necessary background material concerning

the flat and curved space-times as well as the main tools needed throughout this thesis.

In the next chapter, we state a simplified version of the Wightman axioms and offer an

example using these simplified axioms. In chapter three, we demonstrate the extension of

these simplified axioms to the curved case in order to construct a quantum field theory

on a two-dimensional space-time and show how such a field theory limits to the flat case

considered with reduced symmetry. The final chapter discusses future research directions

and unresolved questions.
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1.1 The Minkowski Plane, Representations,

and Fock Spaces

The Minkowski space-time is the manifold model most often used to study special relativ-

ity. As this thesis is an attempt to extend to a two-dimensional curved case, the Minkowski

plane, which is defined as M = R1+1 with coordinates (t, x) and the metric

〈u, v〉 = 〈(u0, u1), (v0, v1)〉 = u0v0 − u1v1

will serve as an excellent progenitor. This metric can alternatively be written in matrix form:

µ =

1 0

0 −1


This metric induces a causal structure on the Minkowski plane. Two space-time points,

u = (u0, u1) and v = (v0, v1), are said to be light-like separated if 〈u − v, u − v〉 = 0,

time-like separated if 〈u− v, u− v〉 > 0, and space-like separated if 〈u− v, u− v〉 < 0.

Two space-time points can be causally connected only if they are not space-like separated.

Physically this corresponds to space-time points which can be reached from one another

without exceeding the speed of light, which we have set to be unity.

The Lorentz group, L = O(1, 1) is the group of linear isometries of the Minkowski

plane. It can be realized as {G ∈ GL2(R)|G>µG = µ}. This group has four connected

components:

L++ =


cosh(τ) sinh(τ)

sinh(τ) cosh(τ)

 |τ ∈ R

 L+− =


 cosh(τ) sinh(τ)

− sinh(τ) − cosh(τ)

 |τ ∈ R


L−+ =


− cosh(τ) − sinh(τ)

sinh(τ) cosh(τ)

 |τ ∈ R

 L−− =


− cosh(τ) − sinh(τ)

− sinh(τ) − cosh(τ)

 |τ ∈ R


3



Viewing the first component of our space-time point as time, L++
∼= SO(1, 1)o is the

subgroup of isometries that preserve the direction of time and the orientation of space, while

elements of L±− reverse the orientation of space and elements of L−± reverse the direction

of time. For physical reasons, we need only consider the first subgroup. It will be convenient

to refer to elements of this group by the tau argument (Λτ ). We will be interested in orbits

of the Minkowski plane under SO(1, 1)o, particularly the points of the mass hyperbolae –

defined to be H(m,0) = {(E, p) ∈ R2|E2 − p2 = m2, E ≥ 0} for m ≥ 0 – the zero subscript

denotes the spin. Since the mass hyperbola is an orbit under the action of SO(1, 1)o in the

dual space to the Minkowski plane, for each m > 0 there exists a bijection between H(m,0)

and SO(1, 1)o given by (E, p) 7→ λ where λ(m, 0) = (E, p). Note that E =
√
p2 +m2.

Thus SO(1, 1)o ∼= H(m,0)
∼= R since λ(m, 0) 7→ (

√
p2 +m2, p) is a one-to-one map. However

instead of Lebesgue measure, we will employ a measure on H(m,0) which is invariant under

Lorentz transformations: dΩ(m,0) =
dp√

p2 +m2
. We require any physical measurement to

be preserved by the action of this group; we also wish for invariance of measurement under

translations in M . Hence we consider the identity component of the Poincaré group 1:

Po2 = R2 o SO(1, 1)o

where by abuse of notation R2 denotes the translations on R2 – ((T,X),1) will be used to

denote Trans(T,X), translation by (T,X). The group operation for the Poincaré group is

given by ((t, x),Λ)((t′, x′),Λ′) = ((t, x) + Λ(t′, x′),ΛΛ′) and ((t, x),Λ)−1 = (−Λ−1(t, x),Λ−1).

The Poincaré group acts on the Minkowski plane by:

((T,X),Λ) · (t, x) = Trans(T,X) ◦ Λ(t, x) = Λ(t, x) + (T,X)

1also known as the inhomogeneous Lorentz group
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With our space-time in place, we now turn our attention to the space of states. The

states of a quantum field can be modeled by points in a separable Hilbert space in which the

inner product corresponds to measurements within the model. Thus to construct a quantum

field in Minkowski space-time, we will require a unitary representation of Po2 on the Hilbert

space of states.

Definition 1.1.1. A group representation of a group G on a vector space V is a group

homomorphism from G into GL(V ).

• If Φ : G→ GL(V ) is a representation, then Φ(g · h) = Φ(g) · Φ(h) for all g, h ∈ G.

• A representation is called (algebraically) irreducible if the only subspaces of V which

are invariant under the action of G are the zero-dimensional subspace and V itself.

In this thesis, we will be primarily concerned with representations on separable Hilbert spaces.

• A representation is unitary if it preserves the inner product on H

〈Φg(v),Φg(w)〉 = 〈v, w〉 for every g ∈ G and v, w ∈ H.

• A representation on a Hilbert space which has no invariant closed subspaces except the

zero-dimensional subspace and H itself is said to be irreducible.

• Two representations of a group G, Φ1 on H1 and Φ2 on H2, are equivalent if there

exists an isometric isomorphism γ : H1 → H2 such that Φ2(g) = γ ◦Φ1(g) ◦ γ−1 for all

g ∈ G.

• Finally a strongly continuous representations is one in which for each fixed v ∈ H,

the map g 7→ Φg(v) is continuous with respect to the Schwartz topology.
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When considering a free field, it is often convenient to regard the Hilbert space H as

the one-particle state space for a boson2 and its induced Fock space as the space of finite-

particle states. A Fock space is an infinite-dimensional vector space and is a natural tool for

quantum field theory. This mathematical construction is used to manufacture the quantum

states of a multi-particle system from a single particle system. In order to model the chang-

ing number of particles in a given state, for each space-time point in the Minkowski plane

M we demand operators on the Hilbert space of states that model creation and annihilation

of a particle in a small neighborhood of that point. The creation and annihilation operators

are used to account for the introduction and removal of particles, allowing us to describe a

system with a variable number of particles.

In order to construct a Fock space from the Hilbert space H, we must first construct the

tensor powers of H. The tensor product H⊗H describes a system consisting of two identical

non-interacting particles.3 We then denote the Hilbert space completion of the ordinary

algebraic tensor power by H⊗̂H. Similarly we will denote the Hilbert space completion of

the ordinary algebraic m-fold tensor product by H⊗̂m.

As this thesis is concerned with particles with spin zero, we need only consider the bosonic

case which corresponds to symmetric tensors.4 The symmetric part of a general tensor T of

order m can be found by utilizing the Sym operator:

SymT = 1
m!

∑
σ∈Sm

τσT

where τσTv1,v2...vm = Tvσ(1),vσ(2)...vσ(m)

2for simplicity, we will consider only the neutral pi meson
3In quantum mechanics identical particles are indistinguishable. Thus in a Fock space, all particles must

be identical. In order to consider multiple types of particles, one must take the tensor product of different
Fock spaces - one for each species.

4Recall a symmetric tensor is one that is invariant under any permutation of its vector indices.
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For notational convenience, we will denote the Hilbert-space completion of the symmetric

m-fold tensor products by Symm(H). We define F0 to be the set of elements of the form

ψ = (ψ(0), ψ(1), ψ(2), . . . )

where only finitely many ψ(i) are non-zero, ψ(0) ∈ C, ψ(1) ∈ H, and ψ(m) ∈ Symm(H).

Finally we define the Fock space induced from the Hilbert space H to be:

FH = F0 =
∞⊕
m=0

Symm(H) = C⊕H⊕ Sym2(H)⊕ Sym3(H)⊕ · · ·

where C has been used to denote the vacuum state.

This Fock space is itself an infinite-dimensional complex Hilbert space with inner product:

〈φ|ψ〉 :=
∞∑
m=0

〈φ(m)|ψ(m)〉m

which is in turn defined by the inner product on each of the constituent spaces. The inner

products on C and H are multiplication and the Hilbert space inner product respectively.

The inner product on Sym2(H) is given by:

〈φ(2)
1 ⊗ φ

(2)
2 |ψ

(2)
1 ⊗ ψ

(2)
2 〉2 = 〈φ(2)

1 |ψ
(2)
1 〉〈φ

(2)
2 |ψ

(2)
2 〉

The inner product for higher tensor powers is defined analogously. We require that for all

ψ ∈ FH, ‖ψ‖2 = 〈ψ, ψ〉 <∞.

In order to pass from an m-particle state to an (m+1)-particle state, we use the creation

operator cmu : Symm(H)→ Symm+1(H) given by:

v1 ⊗ · · · ⊗ vm 7→
√
m+ 1 Sym (u⊗ v1 ⊗ · · · ⊗ vm)

To pass from an m-particle state to an (m − 1)-particle state, we use the annihilation

operator amu : Symm(H)→ Symm−1(H) given by:

v1 ⊗ · · · ⊗ vm 7→
√
m〈u, v1〉v2 ⊗ · · · ⊗ vm

7



The creation operator cm is also denoted (am+1)† since it is the adjoint to the annihilation

operator am+1. One other property of these operators that we will find useful is that cuau

gives the number of particles in the normalized state u. These well-known relations can be

found in a number of physics and mathematical physics texts including [4] and [12]. The root

factors included in these operators are there for physical reasons and are necessary for the

number operator of quantum field theory; they have been included in order to be consistent

with the existing literature but have little bearing upon the mathematics. For each u ∈ H

we create operators Cm
u and Amu on the Fock space which act as the identity on all the

constituent spaces except the m-particle state where they act by cmu and amu respectively.

Finally we construct operators Cu and Au which act by cmu and amu respectively for each

m = 0, 1, 2, . . .

For a unitary operator Ug on H, we can define an operator U
(m)
g on the simple tensors:

⊗mi=1f
(m)
i 7→ ⊗mi=1Ugf

(m)
i

We can then induce an action on finite sums of simple tensors and subsequently extend to

the Hilbert-space completion of these sums, H⊗̂m. By restricting to the symmetric subspace

Symm(H), we can produce an operator mapping the Hilbert-space completion of the sym-

metric m-fold tensor product to itself. Finally we can produce an operator Ug on FH which,

by abuse of notation, we will write as:

Ugf = ⊕∞m=0U
(m)
g

(
⊗mi=1f

(m)
i

)
= ⊕∞m=0 ⊗mi=1 Ugf

(m)
i

1.2 The ax + b group

In order to simplify the study of a quantum field on a curved space-time, we have chosen

to consider such a field in the 1+1-dimensional case. While lower-dimensional analysis is

not directly applicable to the physical 1+3-dimensional space-time, it captures much of the

theory and nuance of the curved case without extra complexity.
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The group of affine linear transformations on R is known as the ax + b group due to its

action on the real line: T(a,b) : R→ R given by T(a,b)(x) = ax+ b for a > 0 and b ∈ R. In this

paper, we have adapted these coordinates to be (b, α) ∈ R2 where α = ln(a). This ordering

of the coordinates follows the physical convention of listing the temporal coordinate before

the spatial one. The ax + b group is isomorphic to a two-dimensional subgroup of Po2 , the

three-dimensional connected Poincaré group – the inclusion map will be shown presently.

This Lie group follows the group law: (B,A) · (b, α) = (B + eAb, A + α). It follows that

(b, α)−1 = (−e−αb,−α). By considering the conjugation action, it follows that the subgroup

B = {(b, 0) : b ∈ R} is normal. Furthermore we can define a map

φ : A = {(0, α) : α ∈ R} → Aut(B)

by φ(0,α)(b, 0) = (0, α) · (b, 0) · (0, α)−1 = (eαb, 0).

We can therefore identify this non-abelian, simply-connected, two-dimensional, solvable5 Lie

group as being isomorphic to R o R.

The ax+ b group can be naturally generalized by considering a family of Lie groups

{Gρ : ρ ≥ 0} with adapted group law (B,A)ρ · (b, α)ρ = (B + eρAb, A + α)ρ. For ρ > 0,

Gρ can be seen to be isomorphic to G1 by mapping (b, α)ρ to (b, ρα)1. Notice that when

ρ = 0, the group multiplication deteriorates to addition in R2. In Wigner’s terminology, this

corresponds to the contraction of the ax + b group with respect to the B subgroup. This

will be discussed in further detail in Section 3.3. For notational simplicity, we will normally

suppress the ρ subscript and note it only where confusion might arise. The group will play

two distinct roles in our constructions:

• a two-dimensional space-time R2 with a Lorentz metric to be discussed shortly

• the two-dimensional group of symmetries of this space-time

5the subnormal series 1 �B �G has abelian factor groups
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In order to distinguish when we have used the group as a space-time and when we have

used it as an acting symmetry group, we will denote it as Sρ and Gρ respectively. This ρ

parameter will allow us to control the curvature of the space-time, Sρ.

The group Gρ can be included into the Poincaré group by the map ι : Gρ ↪→ Po2 :

(b, α) 7→


cosh(ρα) sinh(ρα) 1

ρ
(cosh(ρα)− 1) + b

sinh(ρα) cosh(ρα) 1
ρ

sinh(ρα) + b

0 0 1

 for ρ > 0

Allowing ρ → 0 and applying L’Hôpital’s rule where necessary, we may extend this

inclusion map to the case where ρ = 0:

(b, α) 7→


1 0 b

0 1 α + b

0 0 1


Since the group multiplication is preserved by this map (ι(B,A)·ι(b, α) = ι ((B,A) · (b, α))),

we conclude that the map is an injective homomorphism.

This inclusion produces an action of Gρ on the Minkowski plane M :

For ρ > 0

ι(b,α)(0, 0) =


cosh(ρα) sinh(ρα) 1

ρ
(cosh(ρα)− 1) + b

sinh(ρα) cosh(ρα) 1
ρ

sinh(ρα) + b

0 0 1




0

0

1



=


1
ρ
(cosh(ρα)− 1) + b

1
ρ

sinh(ρα) + b

1

 = (1
ρ
(cosh(ρα)− 1) + b, 1

ρ
sinh(ρα) + b)

For ρ = 0

ι(b,α)(0, 0) =


1 0 b

0 1 α + b

0 0 1




0

0

1

 =


b

α + b

1

 = (b, α + b)
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Unlike the Minkowski plane which has the same Lorentz metric at each point of the

space-time, the metric for Sρ varies from point to point. The standard Lorentz metric with

respect to the basis { ∂
∂b
, ∂
∂α
} on TeSρ, the tangent space to Sρ at the identity, e = (0, 0), is: ∂

∂b
· ∂
∂b

∂
∂α
· ∂
∂b

∂
∂b
· ∂
∂α

∂
∂α
· ∂
∂α


∣∣∣∣∣∣∣
(0,0)

=

1 0

0 −1


In order to calculate the metric at a generic point (b, α) ∈ Sρ, we translate the tangent space

(T(b,α)Sρ) at that generic point (b, α) to the tangent space at the identity e using the map

induced by multiplication by the inverse from the left.

x ∂
∂b

∣∣
(b,α)

+ y ∂
∂α

∣∣
(b,α)

(L(b,α)−1 )?
−→ x ∂

∂b

∣∣
(0,0)

+ y ∂
∂α

∣∣
(0,0)

(x, y) 7→ (b, α)−1(x, y) = (−e−ραb+ e−ραx,−α + y)

Therefore the Lorentz metric at a generic point (b, α) ∈ Sρ with respect to the basis { ∂
∂b
, ∂
∂α
}

is:

γ =

 ∂
∂x
· ∂
∂x

∂
∂y
· ∂
∂x

∂
∂x
· ∂
∂y

∂
∂y
· ∂
∂y


∣∣∣∣∣∣∣
(b,α)

=

e−2ρα 0

0 −1


This matrix is referred to as the First Fundamental Form (Ip) of Sρ. This matrix corre-

sponds to the metric ds2 = e−2ραdb2−dα2. Since the metric is independent of time coordinate

b, our curved space-time, Sρ, is a static space-time like its flat cousin the Minkwoski plane.

These space-times are the simplest Lorentzian manifolds as the geometry of these space-times

do not change over time.

Proposition 1.2.1. The Lorentz metric is invariant under the left multiplication action of

the group.
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Proof. Consider the left multiplication action L(B,A) on a point (b, α) of the space-time Sρ:

L(B,A)(b, α) = (B,A)(b, α) = (B + eρAb, A+ α)

Thus the action on the tangent space can be given by the matrix:

(L(B,A))? =

 ∂
∂b

(B + eρAb) ∂
∂α

(B + eρAb)

∂
∂b

(A+ α) ∂
∂α

(A+ α)

 =

eρA 0

0 1


Thus (L(B,A))? : Te(G)→ T(B,A)(G) is given by

(x, y) 7→

eρA 0

0 1


x
y

 =

xeρA
y



The Lorentz norm at the identity is:

(
x y

)1 0

0 −1


x
y

 = x2 − y2

while the Lorentz norm at the point (B,A) is:

(
xeρA y

)e−2ρA 0

0 −1


xeρA

y

 = x2− y2

Hence the Lorentzian norm is preserved by the multiplication from the left.

We can exploit the left-invariance of the Lorentz metric to calculate the effect that right

translation has upon the metric. Consider:

R(B,A) ◦ L(B,A)−1(b, α) = (−Be−ρA + e−ρA(b+ eραB), α)

Thus
(
R(B,A) ◦ L(B,A)−1

)
?

is given by the matrixe−ρA e−ρAρeραB

0 1


Since

(
R(B,A) ◦ L(B,A)−1

)
?

: Te(G)→ Te(G), we can calculate that

(x, y) 7→

e−ρA e−ρAρB

0 1


x
y

 =

xe−ρA + yρBe−ρA

y


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The Lorentzian norm of this point is:

x2e−2ρA + 2xyρBe−2ρA + y2ρ2B2e−2ρA − y2

which can also be described by:

(
x y

) e−2ρA ρBe−2ρA

ρBe−2ρA ρ2B2e−2ρA − 1


x
y


Since the left translation by (B,A)−1 has no effect on the metric, we conclude that right

translation by (B,A) is responsible for the new Lorentz metric with matrix representation: e−2ρA ρBe−2ρA

ρBe−2ρA ρ2B2e−2ρA − 1



Our study will primarily employ the first fundamental form, which can be thought of as the

matrix representation of the “standard” left-invariant Lorentz metric. The first fundamental

form

E F

F G

 =

e−2ρα 0

0 −1

 can be used to compute the Gaussian curvature of the

surface, Sρ. Since this parametrization is orthogonal, we may use the simple formula offered

in O’Neill’s Semi-Riemannian Geometry text:

K =
−1√
|EG|

(
∂

∂b

(
∂
∂b

√
|G|√
|E|

)
− ∂

∂α

(
∂
∂α

√
|E|√
|G|

))

K = −eρα
(
0− ∂

∂α
(−ρe−ρα)

)
= −eρα(−ρ2e−ρα) = ρ2

Notice that Sρ has positive curvature for ρ > 0 and the Minkowski plane (S0) has zero

curvature, which agrees with our intuition that it is flat.

We note that this formula for Gaussian curvature is similar to the formula offered on

page 60 of Shifrin’s Differential Geometry text [14]:

K =
−1

2
√
EG

(
∂

∂α

(
∂E
∂α√
EG

)
+

∂

∂b

(
∂G
∂b√
EG

))

13



However since the product EG is negative, it must be adapted from the Riemannian case to

the Lorentzian case, paying special attention to signs.

We can also use the first fundamental form to write the d’Alembert operator following

the algorithm given by Jost on page 110. [6]

2ρ = A ∂2

∂b2
+ 2B ∂2

∂b∂α
+ C ∂2

∂α2 +D ∂
∂b

+ E ∂
∂α

where

A B

B C

 =

E F

F G


−1

=

e−2ρα 0

0 −1


−1

=

e2ρα 0

0 −1


In order to compute the lower order terms, let

d = det(Ip) = det

∣∣∣∣∣∣∣
e−2ρα 0

0 −1

∣∣∣∣∣∣∣ = −e−2ρα

D = 1√
|d|

(
∂
∂b

(A
√
|d|) + ∂

∂α
(B
√
|d|)
)

= eρα
(
∂
∂b

(e2ραe−ρα) + ∂
∂α

(0)
)

= 0

and

E = 1√
|d|

(
∂
∂b

(B
√
|d|) + ∂

∂α
(C
√
|d|)
)

= eρα
(
∂
∂b

(0) + ∂
∂α

(−e−ρα)
)

= ρ

Hence the d’Alembert operator for the space-time Sρ is given by:

2ρ = e2ρα ∂2

∂b2
− ∂2

∂α2 + ρ ∂
∂α

Having a firm understanding of the mathematical structure of the ax + b space-time

Gρ, we can now impose physical interpretations. The causal influence of a space-time point

(b, α) is called the forward light cone of (b, α). These are the points in space-time which

can be reached from (b, α) by traveling forward in time without exceeding the speed of

light. Geometrically, the light-like directions for a point (b, α) ∈ Sρ are given by the

(x, y) ∈ T(b,α)(Sρ) with Lorentz norm equal to zero – i.e. (x, y) such that

(
x y

)e−2ρα 0

0 −1


x
y

 = e−2ραx2 − y2 = 0
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Thus in the light-like directions, x = ±eραy. It follows that
b′(T )

α′(T )
=
x

y
= ±eρα

We now consider two cases, which will turn out to be the two light-like directions.

• Suppose
b′(T )

α′(T )
= eρα and b′(T ) = 1.

Solving the system of differential equations b′(T ) = 1 and eρα(T )α′(T ) = 1 and using

the initial condition (b(0), α(0)) = (b0, α0), we conclude that b(T ) = T + b0 and

α(T ) = 1
ρ

ln(ρT + eρα0) for T > −1
ρ
eρα0

• Suppose
b′(T )

α′(T )
= −eρα and b′(T ) = 1.

Solving the system of differential equations b′(T ) = 1 and eρα(T )α′(T ) = −1 and using

the initial condition (b(0), α(0)) = (b0, α0), we conclude that b(T ) = T + b0 and

α(T ) = 1
ρ

ln(−ρT + eρα0) for T < 1
ρ
eρα0

Thus the forward light cone at a point (b0, α0) can be defined to be the set:

C(b0,α0) = {(b, α) ∈ Sρ | b− b0 ≥ 1
ρ
|eρα − eρα0|

}
Points on the interior are said to be time-like separated from (b0, α0), while points on the

boundary (where b− b0 = 1
ρ
|eρα − eρα0|) are said to be light-like separated from (b0, α0).

A backward light cone can be constructed by considering all of the points (b, α) for which

(b0, α0) ∈ C(b,α). These are the space-time points which could have causal influence on

(b0, α0). If two space-time points are such that neither lies in the forward light cone of the

other( |B − b| < 1
ρ
|eρA − eρα|), they are said to be space-like separated.

Since the ax + b space-time is homogeneous, understanding the light cone at any point

allows us to understand the light cone at any other point. Furthermore since the space-time

is simply connected, these geodesics are all complete. Note that the light cone does not

look symmetric with “Euclidean eyes,” but this is unsurprising as we are regarding a curved

space-time with a Lorentz metric on a flat page in our Riemannian world. The light cone

seems to flatten out as α decreases. This is due to the dependence of the metric on α.
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The light-like directions in the tangent space to Sρ at (b, α) = (0, 0) form the typical light

cone of flat space-time, | ∂
∂b
| = | ∂

∂α
|. However the light-like directions in the tangent space at

(b, α) = (0, 1) form a steeper light cone, | ∂
∂b
| = eρ| ∂

∂α
|, while the light-like directions in the

tangent space at (b, α) = (0,−1) form a shallower light cone, | ∂
∂b
| = e−ρ| ∂

∂α
|. Since the metric

is independent of b, the light-like directions are unaffected by changes in the b coordinate.

(a) T(0,−1)Sρ (b) T(0,0)Sρ (c) T(0,1)Sρ

Figure 1.1: Light Cones in Different Tangent Spaces
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1.3 The Wightman Axioms

Quantum field theory developed in the early twentieth century as an attempt to amalga-

mate quantum mechanics and special relativity using the classical models for electromagnetic

fields. The founders of quantum field theory – namely Heisenberg, Pauli, and Dirac – encoun-

tered many mathematical difficulties in developing such theories and the fields themselves

were left only vaguely defined. Physicists of the 1940’s established systematic perturbation

theory. The resulting calculations agreed strongly with experimental verification suggesting

that there were sound mathematical models within quantum field theory. This prompted

G̊arding and Wightman to devise a definition of a “quantum field” by suggesting a set

of mathematical properties which they contended every quantum field theory should have.

These properties are called the Wightman axioms. The axioms provide a mathematical

construction of a quantum field – or what we will call a quantum operator field6– on (flat)

Minkowski space by providing precise mathematical requirements corresponding to physical

properties desired of such a quantum field.

A quantum field theory in this context can be described by a quadruple {Φ, U,H,D}

where H is a separable Hilbert space with dense linear subspace D, U is a unitary repre-

sentation of Po2 on H, and Φ is an operator-valued distribution on the Minkowski plane M .

That is to say that Φ is a map from the smooth, compactly-supported functions on M –

denoted C∞cpt(M) – to the endomorphisms of D. Since C∞cpt(M) ⊂ S (M), the Schwartz space

of function on M , we can place a topology on C∞cpt(M) by restricting the Schwartz topology.

Recall [15] that in the Schwartz topology, a sequence {fn} ⊂ S (M) converges to f ∈ S (M)

if for each r, s ∈ Z≥0,

lim
n→∞

∑
|k|≤r

∑
|l|≤s

sup
x∈M
|xkDl(fn − f)(x)| = 0

6The use of the extra qualifier “operator” will be made clear in the next chapter
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For a quantum operator field theory, we require that the quadruple {Φ, U,H,D} satisfy

the following axioms [18, 12]:

1: (Regularity) For f ∈ C∞cpt(M), f 7→ 〈ψ,Φ(f)ψ̃〉 is a continuous C-linear functional for

each ψ, ψ̃ ∈ D, using the Schwartz topology restricted to C∞cpt(M).

2: (Vacuum Cyclicity) There is a unique (up to scalar multiple) U -invariant vector Ω ∈ D

with ||Ω|| = 1 such that the linear span of vectors of the form Φ(f1) · · ·Φ(fn)Ω for

fj ∈ C∞cpt(M) is dense in H.

3: (Symmetry) 〈ψ,Φ(f)ψ̃〉 = 〈Φ(f̄)ψ, ψ̃〉 for all f ∈ C∞cpt(M) and ψ, ψ̃ ∈ D.

4: (Equivariance) U((T,X),Λ)Φ(f)U−1
((T,X),Λ) = Φ(f ◦ ((T,X),Λ)−1) for all f ∈ C∞cpt(M) and

((T,X),Λ) ∈ Po2 .

5: (Causality) [Φ(f),Φ(g)] = 0 if the supports of f, g ∈ C∞cpt(M) are space-like separated.

6: (Spectral Condition) The infinitesimal generator of U((t, 0),1), the time translation

subgroup, has non-negative spectrum.

Regularity requires that Φ be a tempered distribution, which makes the mathematics

far more manageable. The other axioms correspond to physical properties desired of the

quantum field theory. The second axiom allows us to generate particles from the vacuum by

exchanging energy with mass in order to produce any state with a finite number of particles.

Furthermore, the density restriction ensures that the Fock space is not “too large” to be

described by a single field. The symmetry axiom asserts control over the spectrum of the

operators generated by Φ; in particular, if f is real-valued, then Φ(f) = Φ(f)† and Φ(f)

must have a real spectrum and thus can describe an observable. The equivariance condi-

tion guarantees that transformations of space-time are consistent with transformations of

measurements of states. Places of space-time that cannot communicate without exceeding
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the speed of light should not affect measurements in one another’s regions. This is axioma-

tized by the causality stipulation. Finally the spectral condition asserts that the energy of

a configuration of states must be bounded below.

1.4 The Mackey Machine

The Mackey Machine is an algorithm that can be used to discover irreducible unitary repre-

sentations of a group by using representations of a normal subgroup. This is best developed

in the case of semi-direct products (which the Poincaré group and the ax+ b group are). For

a summary of these methods, see Mackey [8]; for a detailed treatment also see chapter 17 of

Barut and Raczka [1].

Let G = N oφ H with N an abelian normal subgroup of G, a locally compact group.

The action of H on N (φ : H → Aut(N)) induces an action of H on the (one-dimensional)

characters of N , φ̂ : H → Aut(N̂) where N̂ is the group of continuous homomorphisms from

N to the units in the complex plane. A typical element of N̂ has the form χx(n) = eix·n. Since

N is abelian, each irreducible representation must be one-dimensional; hence N̂ contains all

of the irreducible representations of N . In order to construct an irreducible representation

of G from an irreducible representation of H, we use the following method:

(1) Consider the orbits {Oj} of N̂ under the action of H

(2) Choose a representative element from an orbit χj ∈ Oj

(3) Let Lj = StabH(χj) = {h ∈ H|φ̂h(χj) = χj}

This is often referred to as Wigner’s Little Group

(4) Fix an irreducible unitary representation of Lj

V j : Lj → U (H)
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(5) Form the semi-direct product Gj = N o Lj

(6) Define a representation of Gj, M j : Gj → U (H), by M j
(n,h) = χj(n)V j(h)

• this coincides with V j = 1 · V j on {e}o Lj

• this coincides with χj = χj · I on N o {e}

(7) The representation UMj
= IndGH of G induced from M j is the desired irreducible

unitary representation. An induced representation can take one of two related forms:

• UMj
can be a representation on the induced representation space

{f : G→ H|f(hg) = M j(h)f(g) and f ∈ L2(G,Haar)}

on which G acts by right translation: g · f(x) 7→ f(xg)

• Alternatively, UMj
can be a representation on the induced representation space

{f : G→ H|f(gh) = M j(h)f(g) and f ∈ L2(G,Haar)}

on which G acts by left translation by the inverse: g · f(x) 7→ f(g−1x).

The former is the more common construction and will be used in chapter three; the latter

will be employed in chapter two.

Mackey showed that every irreducible representation of G can be obtained in this manner

and that two representations are equivalent if and only if they come from the same orbit

and use unitarily equivalent representations V j and Ṽ j. If H is also abelian, then the

irreducible representations V j are well-known and a complete description of the irreducible

representations of G can be given.
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Chapter 2

Simplification of the Wightman

Axioms

In this chapter, we present a set of axioms for a quantum state field which can be used to

create a free quantum field theory which satisfies the Wightman axioms. This is accomplished

with the aid of the Segal field operator. We then consider an example of a quantum state

field on the Minkowski plane.

2.1 Axioms for a Quantum State Field

The Wightman axioms depict a general quantum field theory. One goal of this thesis is to

modify these axioms in the simplified case of a free quantum field theory for particles of

mass m ≥ 0 and spin zero. We begin by taking a step backwards. Instead of describing an

operator-valued distribution (Φ), we will consider a Hilbert-space-valued distribution on M ,

which we will refer to as a quantum state field:

Ψ : C∞cpt(M)→ H
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The proposed axioms for the quantum state field characterized by the Hilbert-space-valued

distribution Ψ on the space-time (M,µ) with values in the dense subspace D of H and

(strongly continuous) unitary representation1 U of Po2 in H are:

0: Ψ satisfies the Klein-Gordon equation – the equation of a free quantum scalar field:

(2 +m2)Ψ = 0 2,3

1: For f ∈ C∞cpt(M), f 7→ 〈ψ,Ψ(f)〉 is a continuous (with respect to the Schwartz topol-

ogy) C-linear functional for each ψ ∈ H.

2: The image of C∞cpt(M) under Ψ is dense in H.

3: 〈 this space is intentionally left blank in order to have axiom numbers align 〉

4: U((T,X),Λ)Ψ(f) = Ψ(f ◦ ((T,X),Λ)−1) for all f ∈ C∞cpt(M) and ((T,X),Λ) ∈ Po2 .

5: If f, g ∈ C∞cpt(M) are two real-valued functions whose supports are space-like sepa-

rated, then Im〈Ψ(f),Ψ(g)〉H = 0.

6: The infinitesimal generator of the time translation subgroup, i dU((1, 0),0), has non-

negative spectrum.

As in the case of the Wightman axioms we may describe this quantum state field theory as a

quadruple {Ψ, U,H,D}. We will call a quantum state field irreducible if the representation

U is irreducible.

1To avoid trivialities, we do not allow a one-dimensional Hilbert space with a trivial group action.
2More precisely (2 +m2)Ψ(f) is the zero vector in H for all f ∈ C∞cpt(M).
3This additional axiom determines the mass of the particle under consideration.
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2.2 Connection of Quantum State Field

to the Quantum Operator Field

One powerful tool for constructing a quantum operator field from a quantum state field is

second quantization which describes the many-particle system using a basis that expresses

the number of particles occupying each state. One such operator is the Segal field operator

[12] which maps from a Hilbert space to the self-adjoint operators on its induced Fock space.

Letting the separable Hilbert space H denote the single-particle states and F0 denote a dense

linear subspace of the induced Fock space FH, the Segal field operator

Φs : H → End(F0)

is given by:

Φs(u) = 1√
2
(Au + Cu) for u ∈ H

where Au and Cu are the operators defined on page 8.

We can define the quantum operator field Φ : C∞cpt(M)→ End(F0) by

Φ(f) = Φs(Ψ(f1)) + iΦs(Ψ(f2)) = Φ(f1) + iΦ(f2)

= 1√
2

(
AΨ(f1) + CΨ(f1) + iAΨ(f2) + iCΨ(f2)

)
where f = f1 + if2 for f1 and f2 are real-valued. Φ is C-linear by construction.

Notice however

Φ(f) 6= Φs(Ψ(f1 + if2)) = Φs(Ψ(f1) + iΨ(f2)) = 1√
2

(
AΨ(f1)+iΨ(f2) + CΨ(f1)+iΨ(f2)

)
= 1√

2

(
AΨ(f1) − iAΨ(f2) + CΨ(f1) + iCΨ(f2)

)
This is due to the fact that while the creation operator Cu is C-linear in u, the annihilation

operator Au is C-anti-linear in u.4 Hence Φs is R-linear, but not C-linear.

4The operators Cu and Au are C-linear over F for all u ∈ H
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The Segal field operator has many interesting properties, many of which are shown in

Theorem X.41 of Reed and Simon [12]. One of the most useful to us is:

For each ψ ∈ F0 and u, v ∈ H

[Φs(u),Φs(v)]ψ = Φs(u)Φs(v)ψ − Φs(v)Φs(u)ψ = i Im〈u, v〉Hψ.

We can now construct a free scalar quantum operator field satisfying the Wightman

axioms from the quantum state field in the Minkowski plane using the Segal field operator.

2.3 An Example: A Free Scalar Quantum Field Theory

on Minkowski Space

In order to verify the consistency of the axioms of section 2.1, we now construct an example

of an irreducible quantum state field. The necessary “ingredients” for a free quantum field

theory are:

• Space-time with a Lorentz metric (M,γ)

– we will use (R1+1, µ) where the flat metric µ has signature (+,−)

• A connected Lie group of symmetries of the space-time M , G ⊂ Isom(M,γ)

– we will use the connected Poincaré group, Po2 = R1+1 o SO(1, 1)o

• A one-particle Hilbert space H

• A (strongly continuous) unitary representation of G on H
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We use the Mackey Machine to construct an irreducible representation of Po2 .

The action of SO(1, 1)o on R1+1 is given by φΛ(t, x) = Λ−1(t, x)

This induces an action φ̂ of SO(1, 1)o on the characters R̂1+1 given by(
φ̂Λ(χ(E,p))

)
(t, x) = χΛ−1(E,p)(t, x) = eiΛ

−1(E,p)·(t,x) = ei(E,p)·Λ(t,x)

Since dΩ(m,0) is invariant under the action of the Lorentz group, the inner product is preserved

and gives the last equality.

(1) The families of orbits of R̂1+1 under SO(1, 1)o are:

(a) E2 − p2 = m2 with E > 0 for each m > 0

(b) E2 − p2 = m2 with E < 0 for each m > 0

(c) E2 − p2 = 0 with E = 0

(d) E2 − p2 = 0 with E > 0, p > 0

(e) E2 − p2 = 0 with E > 0, p < 0

(f) E2 − p2 = 0 with E < 0, p > 0

(g) E2 − p2 = 0 with E < 0, p < 0

(h) E2 − p2 = −m2 for each m > 0, p > 0

(i) E2 − p2 = −m2 for each m > 0, p < 0

Since we are interested in the physical case in which there is positive mass and positive

energy, the first family of orbits is the only one of interest.

(2) For fixedm > 0, we choose χ(E,p) = χ(m,0) as the representative of the orbit Om = H(m,0)

(3) Lm = StabSO(1,1)o(χ(m,0)) = {1}

(4) Let V m be the trivial representation of Lm on C
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(5) Gm = R1+1 o Lm = R1+1 o 1

(6) Mm = χ(m,0) o V m : Gm → U (C) given by Mm
((t,x),1)(z) = χ(m,0)(t, x)V m(1)(z) = eimtz

Figure 2.1: Generic Orbits of R̂1+1 under SO(1, 1)o

We are now ready to construct the induced representation of Po2

U = ind
Po2
Gm

(Mm)

on a Hilbert space

W = {F : Po2 → C|F
(
((t, x), λ)((T,X),1)

)
= Mm((T,X),1)F ((t, x), λ),

F is measurable, and

∫
Po2/Gm

|F (0, 0,Λ)|2 dν <∞}

• The modulus of functions is fixed on the left cosets of Gm in Po2 :

|F
(
((t, x), λ)((T,X),1)

)
| = |Mm((T,X),1)F ((t, x), λ)|

= |χ(m,0)((T,X))V m(1)F ((t, x), λ)| = |ei(m,0)·(T,X)F ((t, x), λ)| = |F ((t, x), λ)|

• Thus the right action of Gm does not affect the norm of the function.
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• We may therefore define an (right) invariant Haar measure ν on Po2/Gm

R1+1 acts trivially on Po2/Gm, while g′ ∈ SO(1, 1)o sends gG1 → g′gG1.

Hence ν is also left-invariant.

• The measure dν can be explicitly described using the correspondence (E, p) ↔ λ if

λ(m, 0) = (E, p) and the associated measure correspondence dν(λ)↔ dΩ(m,0)

We desire the measure to be invariant under Lorentz transformations

– i.e. the measure should not be affected by the action (T,X,Λ) · (E, p) = Λ(E, p)

(0, 0, λτ )(m, 0) = (m cosh(τ),m sinh(τ))

which corresponds to the measure dΩ(m,0) =
dp√

p2 +m2

Substituting in the expressions for the transformed p,

d(m sinh(τ))√
m2 sinh2(τ) +m2

=
m cosh(τ)dτ

m cosh(τ)
= dτ

we conclude the correct measure to use is dτ .

We then define U : Po2 → Aut(W) to be:

U((T,X),Λ)F ((t, x), λ) = F (((T,X),Λ)−1((t, x), λ))

We stop to verify that U((T,X),Λ) does in fact map W to itself.

Let F ∈ W .

U((T,X),Λ)F (((t, x), λ)) = F (((T,X),Λ)−1((t, x), λ)) = F (Λ−1(t, x)− Λ−1(T,X),Λ−1λ)

= F ((Λ−1(t, x),Λ−1λ)(−λ−1(T,X),1))
f∈W
= e−i(m,0)λ−1(T,X)F (Λ−1(t, x),Λ−1λ)

U((T,X),Λ)F has the same norm as F over Po2/Gm.
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Left multiplication commutes with right multiplication; therefore the transformation law

is also preserved. Since F satisfies the transformation and integrability properties of W , so

does U((T,X),Λ)F and we conclude U((T,X),Λ) maps W to itself.

In their second volume on Methods of Modern Mathematical Physics, Reed and Simon

offer the following unitary representation of the Poincaré group on L2(H(m,0), dΩ(m,0))

– see page 4 to recall the definition of the mass hyperbola H(m,0) and the Lorentz invariant

measure dΩ(m,0).

V((T,X),Λ)f(E, p) = e−i(ET−pX)f(Λ−1(E, p))

This representation is equivalent to the one offered above. As mentioned in the first chapter,

the action of the Poincaré group on the mass hyperbola (((T,X),Λ) · (E, p) = Λ(E, p)) gives

a correspondence between H(m,0) and SO(1, 1)o:

(E, p)↔ λ for λ(m, 0) = (E, p)

Let f be a function on L2(H(m,0), dΩ(m,0)).

Define a function f̃ on {(0, 0)}o SO(1, 1)o by f̃(0, 0, λ) = f(E, p)

A simple computation shows that f̃ satisfies the integrability condition.∫
Po2/Gm

|f̃ |2 dν =

∫
SO(1,1)o

|f̃(λ)|2 dν(λ) =

∫
R
|f̃(λτ )|2 dτ =

∫
R
|f(E, p)|2 dΩ(m,0)(p) <∞

Using the transformation law of W , we can define f̃ on all of the Poincaré group:

f̃(t, x, λ) := f̃ ((0, 0, λ)(λ−1(t, x),1)) = e−i(m,0)·λ−1(t,x)f̃(0, 0, λ)

= e−iλ(m,0)·(t,x)f̃(0, 0, λ) = e−i(E,p)·(t,x)f̃(0, 0, λ)

where the second equality utilizes the preservation of the Lorentz inner product under the

action of the Lorentz transformation λ ∈ SO(1, 1)o.

28



Using this correspondence we see that:

V(T,X,Λ)(f)(E, p) = U(T,X,Λ)f̃(0, 0, λ) = f̃ ((T,X,Λ)−1(0, 0, λ))

= f̃ (−Λ−1(T,X),Λ−1)(0, 0, λ)) = f̃(−Λ−1(T,X),Λ−1λ)

= f̃ ((0, 0,Λ−1λ)(−λ−1(T,X),1)) = e−i(m,0)·λ−1(T,X)f̃(0, 0,Λ−1λ)

= e−iλ(m,0)·(T,X)f̃(0, 0,Λ−1λ) = e−i(E,p)·(T,X)f̃(0, 0,Λ−1λ)

= e−i(E,p)·(T,X)f(Λ−1(E, p))

The last equality follows since Λ−1λ(m, 0) = Λ−1(E, p) and thus Λ−1λ↔ Λ−1(E, p).

Hence the representation V on L2(H(m,0), dΩ(m,0)) offered by Reed and Simon can be

derived from our representation U on W presented above using the transformation property

of elements of W .

With our representation defined and analyzed, we may now use it and the other components

to construct a quantum state field.

Proposition 2.3.1. Let Ψ = F |Hm be the Fourier transform restricted to the mass hy-

perboloid and S (H(m,0)) be the Schwartz functions on the mass hyperbola. The quadruple

{Ψ, V, L2(H(m,0), dΩ),S (H(m,0))} satisfies the quantum state field axioms. When composed

with the Segal field operator in the prescribed way, a quantum field theory is produced.

Proof. Let f ∈ C∞cpt(M). (
(2 +m2)Ψ

)
(f) = Ψ

((
∂2

∂t2
− ∂2

∂x2 +m2
)
f
)

Recall that under the Fourier transform, differentiation on the space side ( d
dx

) corresponds

to multiplication by iξ on the frequency side.

Hence 2f
F↔ ((iE)2 − (ip)2)f̂ = (−E2 + p2)f̂ = −m2f̂ .

Therefore
(
(2 +m2)Ψ

)
(f) = 0 for all f ∈ C∞cpt(M).

The Fourier transform is a continuous complex-linear functional [12]. Hence quantum

state field axiom 1 follows immediately.
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The smooth, compactly-supported functions on the Minkowski plane form a dense subset

of the Schwartz functions on the Minkowski plane. Since the Fourier transform is a linear

isomorphism – and therefore a continuous surjection – from S (M) to S (M∗), the image of

C∞cpt(M) under the Fourier transform is dense in S (M∗) which is in turn dense in L2(M∗).

By restricting to H(m,0) ⊂M∗, we may conclude that the image of C∞cpt(M) under Ψ is dense

in L2(H(m,0), dΩ). Hence quantum state field axiom 2 is satisfied.

In order to show equivariance, we must compare

V((T,X),Λ)Ψ(f)(E, p) and Ψ(f ◦ ((T,X),Λ)−1)(E, p) for (E, p) ∈ H(m,0)

f(t, x)
Ψ7−→
∫

R2

f(t, x)e−i(E,p)·(t,x) dt dx
V((T,X),Λ)7−→ e−i(ET−pX)

∫
R2

f(t, x)e−iΛ
−1(E,p)·(t,x) dt dx

f(t, x)
R((T,X),Λ)−1

7−→ f(Λ−1(t− T, x−X))
Ψ7−→
∫

R2

f(Λ−1(t− T, x−X))e−i(E,p)·(t,x) dt dx

Using the change of variables (τ, ξ) = Λ−1(t− T, x−X), this last integral becomes 5:∫
R2

f(τ, ξ)e−i(E,p)·(Λ(τ,ξ)+(T,X)) dτ dξ = e−i(ET−pX)

∫
R2

f(τ, ξ)e−i(E,p)·Λ(τ,ξ) dτ dξ

= e−i(ET−pX)

∫
R2

f(τ, ξ)e−iΛ
−1(E,p)·(τ,ξ) dτ dξ

We conclude V((T,X),Λ)Ψ(f)(E, p) = Ψ(f ◦ ((T,X),Λ)−1)(E, p) for (E, p) ∈ H(m,0) and the

equivariance condition holds.

Let f, g ∈ C∞cpt(M) be real-valued and have space-like separated supports. We compute

〈Ψ(f),Ψ(g)〉L2(H(m,0),dΩ)

=

∫
H(m,0)

(∫
R2

f(t, x)e−i(Et−px)dtdx

)(∫
R2

g(t′, x′)e−i(Et
′−px′)dt′dx′

)
dΩ

=

∫
H(m,0)

∫
R4

f(t, x)g(t′, x′)ei(E,p)·(t−t
′,x−x′) dtdxdt′dx′ dΩ

Thus 2i Im〈Ψ(f),Ψ(g)〉H = 〈Ψ(f),Ψ(g)〉 − 〈Ψ(g),Ψ(f)〉

=

∫
H(m,0)

∫
R4

f(t, x)g(t′, x′)
(
ei(E,p)·(t−t

′,x−x′) − ei(E,p)·(t′−t,x′−x)
)
dtdxdt′dx′ dΩ

5Since Λ has determinant equal to one, dt dx = dτ dξ
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Showing this integral to be zero for space-like separated supports is non-trivial and requires

use of the two-point function ∆+(x,m2). A full discussion of this result can be seen in Reed

and Simon [12], specifically Theorem IX.48 on page 106 and Theorem X.42 on page 214.

Fortunately the corresponding axiom in Chapter 3 of this thesis requires no such outside

machinery.

Since V((T,X),Λ)f(E, p) = e−i(ET−pX)f(Λ−1(E, p)), it follows that i dV((1,0),0)f = E · f .

Since E > 0, i dV((1,0),0) has non-negative spectrum.

The transmogrification from the quantum state axioms to the quantum field theory using

the Segal field operator is treated thoroughly in Section X.7 of Reed and Simon[12].
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Chapter 3

Extension of Axioms

to the Curved Space-time Sρ

In this chapter we present a synopsis of our free quantum theoretic results on the curved ax+b

space-time. We begin by using the Mackey machine to generate an irreducible representation

of the symmetry group for our two-dimensional curved space-time and then show how this

representation can be related to one offered by Wigner and Inönü. Next we adapt the

quantum state field construction from the previous chapter to the curved case and offer an

example. In fact, we construct a family of quantum state fields Ψη depending on a positive

parameter η. Finally we utilize Wigner’s contraction method to study how the proposed

quantum fields in a curved space-time limit to a quantum field in a flat space-time. We will

see that the flat case limit concerns a lesser-known field theory due to reduced symmetry.
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3.1 Setting up an Example on Curved Space-time:

Ingredients

We now repeat the process presented in chapter two for the curved space-time, Sρ for ρ > 0.

We first outline our “ingredients.”

• Space-time with a Lorentz metric (M,γ)

– Sρ = (R2, γ) where γ is the left-invariant Lorentz metric with matrix:e−2ρα 0

0 −1


with respect to the basis { ∂

∂b
, ∂
∂α
}

• A connected Lie group of symmetries of the space-time M

– the group Gρ - i.e. R2 acting by group multiplication from the right.

R(B,A)(b, α) = (b, α)(B,A) = (b+ eραB,α + A)

• A one-particle Hilbert space H

• A unitary representation U of the symmetry group on H

As before, we can use the Mackey Machine to produce an irreducible unitary representa-

tion of Gρ = BoφA ∼= RoR for ρ > 0, where the action of A on B is given by φα(b) = eραb.

This induces an action φ̂ of A on B̂ given by
(
φ̂α(χx)

)
(b) = χeραx(b) = eie

ραx·b

(1) The orbits of B̂ under A are {R+,R−, {0}}

(2) We choose χ1 ∈ O+ as the representative from the orbit O+ = R+

(3) L+ = StabA(χ1) = {0}
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(4) Let V + be the trivial representation.

(5) G+ = B o L+ = B o {0}

(6) M+ : G+ → U (C) given by M+
(b,0)(z) := χ1(b)V +(0)(z) = χ1(b)z = eibz

The representation induced by the Mackey machine will act on the Hilbert space:

Hρ = {F : Gρ → C|F ((B, 0)(b, α)) = χ1(B)F (b, α) = eiBF (b, α),

F is measurable, and

∫
R
|F (0, α)|2dα <∞}

• G+\Gρ = (B o {0})\(B o A) ∼= (R o {0})\(R o R) ∼= R

• For any F ∈ Hρ, we may write

F (b, α) = F ((b, 0)(0, α)) = χ1(b)F (0, α) = eibF (0, α)

• The modulus of functions is fixed on the right cosets of G+

• Thus the left action of G+ does not affect the norm of the function.

• We may therefore define an invariant measure dα on G+\Gρ
∼= R

Define U := U
Gρ
G+

(M+) : Gρ → Aut(Hρ) by
(
U(B,A)F

)
(b, α) = F ((b, α)(B,A))

• Since the action of Gρ from the left commutes with the action of Gρ from the right,

the transformation law will be preserved.

•
(
U(B,A)(B′,A′)F

)
(b, α) = F ((b, α)(B,A)(B′, A′))

= (U(B′,A′)F ((b, α)(B,A)) = (U(B,A)

(
U(B′,A′)F

)
(b, α) =

(
U(B,A)U(B′,A′)F

)
(b, α)

Therefore U is in fact a group action.
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The Mackey machine guarantees that the representation U of Gρ is irreducible. However

we must verify that it is also unitary.∫
R
|U(B,A)F (0, α)|2 dα =

∫
R
|F (eραB,α + A)|2 dα

=

∫
R
|eieραBF (0, α + A)|2 dα =

∫
R
|F (0, α + A)|2 dα =

∫
R
|F (0, α′)|2 dα′

This additionally shows that integrability is preserved. Since the transformation law and

integrability are respected by the representation, we conclude that U maps Hρ to itself.

Using the non-negative variable x = eρα, we define an associated function

F̃ (x) = F (0, 1
ρ

ln(x))

Note that we have passed from the additive group (R,+) to the multiplicative group (R+,×)

and hence we pass from the invariant measure dα on R to the invariant Haar measure dx
x

on

R+. Thus F̃ ∈ L2(R+, dx
x

) whenever F ∈ Hρ.

We then define a related representation Ũ i on L2(R+, dx
x

):

Ũ i
(B,A)F̃ (x) := U(B,A)F (0, 1

ρ
ln(x)) = F

(
(0, 1

ρ
ln(x))(B,A)

)
= F (Bx,A+ 1

ρ
ln(x)) = eiBxF (0, A+ 1

ρ
ln(x)) = eiBxF̃ (eρAx)

First we verify that the representation is unitary.∫
R+

|
(
Ũ i

(B,A)F̃
)

(x)|2 dx
x

=

∫
R+

|eiBxF̃ (eρAx)|2 dx
x

Letting y = eρAx, x = e−ρAy and dx = e−ρAdy. Hence
dx

x
=
e−ρAdy

e−ρAy
=
dy

y
.

Therefore ∫
R+

|
(
Ũ i

(B,A)F̃
)

(x)|2 dx
x

=

∫
R+

|F̃ (eρAx)|2 dx
x

=

∫
R+

|F̃ (y)|2 dy
y

We have therefore produced a unitary representation Ũ i on L2(R+, dx
x

).
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The representation Ũ i on L2(R+, dx
x

) is equivalent to the representation U on Hρ.

Consider φ : Hρ → L2(R+, dx
x

) given by F (b, α) 7→ 1√
ρ
F (0, α) = 1√

ρ
F (0, 1

ρ
ln(x)) = 1√

ρ
F̃ (x)

We first verify that the inner product is preserved.

〈φ(F ), φ(G)〉L2 =

∫
R+

1
√
ρ
F

(
0,

1

ρ
ln(x)

)
1
√
ρ
G

(
0,

1

ρ
ln(x)

)
dx
x

Using α = 1
ρ

ln(x), it follows that x = eρα and dx = ρeραdα. Hence

〈φ(F ), φ(G)〉L2 = 1
ρ

∫
R
F (0, α)G(0, α)ρ dα = 〈F,G〉Hρ

Since the inner product is preserved, it follows that φ preserves the norm as well.

Furthermore φ intertwines the two representations.

F (b, α)
φ−−−→ 1√

ρ
F (0, 1

ρ
ln(x))

U(B,A)

y Ũ i
(B,A)

y
eie

ραBF (b, α + A) 1√
ρ
eiBxF (0, 1

ρ
ln(x) + A)∥∥∥ ∥∥∥

g(b, α)
φ−−−→ 1√

ρ
g(0, 1

ρ
ln(x))

Alternatively we can employ standard Lebesgue measure dx on L2(R+).

We define another related representation Ũ q on L2(R+, dx) by:

Ũ q
(B,A)F̃ (x) = e

ρA
2 U(B,A)F (0, 1

ρ
ln(x)) = e

ρA
2 F (Bx,A+ 1

ρ
ln(x))

= e
ρA
2 eiBxF (0, A+ 1

ρ
ln(x)) = e

ρA
2 eiBxF̃ (eρAx)

The extra factor of e
ρA
2 (sometimes called a density factor) ensures that the represen-

tation is unitary for Lebesgue measure.∫
R+

|
(
Ũ q

(B,A)F̃
)

(x)|2 dx =

∫
R+

|e
ρA
2 eiBxF̃ (eρAx)|2 dx

=

∫
R+

eρA|F̃ (eρAx)|2 dx =

∫
R+

eρA|F̃ (eρAx)|2 dx
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Letting y = eρAx, we see that∫
R+

|
(
Ũ q

(B,A)F̃
)

(x)|2 dx =

∫
R+

|F̃ (y)|2 dy

The aforementioned density factor accounts for the dilation of measure under the group

action. The Lebesgue measure is said not to be invariant under the group action. In essence

for each g ∈ Gρ we produce a new measure µg on G+\Gρ by the left action of g on G+ from

the Lebesgue measure µ by defining µg(E) = µ(g−1E) for each measurable set E ⊂ G1. Two

measures that can be obtained from one another by:

µg(E) =

∫
E

%(s) dµ(s)

(
=

∫
E⊂G+\Gρ

e−ρA dµ(x) = e−ρAµ(E)

)
are said to belong to the same class. Since µg and Lebesgue measure are of the same class

for all g ∈ G, Lebesgue measure is said to be quasi-invariant under the action of Ũ q. [8]

There was no need for a density factor in the previous representation Ũ i as the measure
dx

x

is invariant under the action of Ũ i.

The representations Ũ q on L2(R+, dx) and Ũ i on L2(R+, dx
x

) are also equivalent.

Consider φ : L2(R+, dx)→ L2(R+, dx
x

) given by F̃ (x) 7→ F̃ (x)
√
x

We verify that the inner product is preserved by this map.

〈φ(F ), φ(G)〉 dx
x

=

∫
G1\Gρ

eibF̃ (x)
√
xeibG̃(x)

√
x dx

x
=

∫
G1\Gρ

F̃ (x)G̃(x)eibeib dx = 〈F,G〉dx

Since the inner product is preserved, it follows that φ preserves the norm as well.

All that remains to be shown is that φ intertwines the two representations Ũ q and Ũ i.

Fix (B,A) ∈ Gρ and F̃ ∈ L2(R+, dx)

Ũ i
(B,A)

(
φ(F̃ )

)
(x) = eie

ραBφ(F̃ )(eρAx) = eie
ραBF̃ (eρAx)

√
eρAx

φ
(
Ũ q

(B,A)(F̃ )
)

(x) = Ũ q
(B,A)

(
F̃ (x)

√
x
)

= eie
ραBF̃ (eρAx)

√
eρAx
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Hence we conclude that φ is the intertwining isomorphism between (L2(R+, dx), Ũ q) and

(L2(R+, dx
x

), Ũ i). Hence we have produced three equivalent irreducible, unitary representa-

tions of the generalized ax+ b group Gρ:

• U on Hρ given by
(
U(B,A)F

)
(b, α) = F ((b, α)(B,A))

• Ũ i on L2(R+, dx
x

) given by
(
Ũ i

(B,A)F̃
)

(x) = eiBxF (eρAx)

• Ũ q on L2(R+, dx) given by
(
Ũ q

(B,A)F̃
)

(x) = e
ρA
2 eiBxF (eρAx)

Choosing the R− orbit in the Mackey machine produces a family of non-equivalent rep-

resentations which can derived from the above family by using the outer-automorphism

B 7→ −B. For each s ∈ R, there is a unitary finite-dimensional representation of the Gρ

on C given by: Υs
(B,A)(z) = eisA · z for (B,A) ∈ Gρ and z ∈ C. Choosing the zero-orbit in

the Mackey machine produces these one-dimensional representations. Thus the collection of

equivalence classes of representations of Gρ consists of two infinite-dimensional representa-

tions (stars) and a continuum of one-dimensional representations:

?

←→
?

In their 1953 paper, Wigner and Inönü [20] offered the following representation of the

ax+ b group on L2(R+, dx):

Φ(B,A)ψ(x) = e
A
2

+iBxψ(eAx) for (B,A) ∈ G and ψ(x) ∈ L2(R+, dx)

This representation is Ũ q as defined above1 with ρ = 1 (the ax+ b group corresponds to G1).

Ũ q
(B,A)F̃ (x) = e

A
2

+iBxF̃ (eAx) = Φ(B,A)F̃ (x)

1see page 36
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3.2 An Example: A Free Scalar Quantum Field Theory

on a Two-Dimensional Curved Space-time

With all of our components now defined, we commence with an example.

Fix η > 0 and define a Hilbert-space valued distribution on Sρ:

Ψη : C∞cpt(Sρ)→ Hρ

given by:

Ψη(f)(b, α) = eib
∫

R
f(β, α)e−iβη dβ = eibgη(α)

Notice that Ψη and gη(α) are dependent upon η. Ψη is the Fourier transform of f(β, α) with

respect to the β variable evaluated at η with a modulation factor eib. Since f ∈ C∞cpt(Sρ),

Ψη can be evaluated for sharply defined η; if f was simply an element of the larger space

L2(Sρ), this would not be the case.

We must first verify the integrability of Ψη(f) for f ∈ C∞cpt(Sρ).

||Ψη(f)||2Hρ =

∫
R
|Ψη(f)(0, α)|2 dα

=

∫
R

∣∣∣∣∫
R
f(β, α)e−iβηdβ

∣∣∣∣2 dα ≤ ∫
R

∫
R
|f(β, α)|2 dβdα <∞

for f ∈ C∞cpt(Sρ)

Next we must check that Ψη(f) satisfies the transformation property of Hρ.

Ψη(f)((B, 0)(b, α)) = Ψη(f)(B + b, α)

= ei(B+b)

∫
R
f(β, α)e−iβη dβ = eiBeib

∫
R
f(β, α)e−iβη dβ = eiBΨη(f)(b, α)

Since Ψη(f) satisfies the transformation law and Ψ(f) ∈ L2(Rα), we conclude Ψη(f) ∈ Hρ

for f ∈ C∞cpt(Sρ).
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Notice however that different values of η produce different quantum state fields as the

frequency term varies with η. We will offer a discussion of the interpretation of the η

parameter in Section 3.3.

We hope to impose the same axioms for a quantum state field to the curved case as we

did to the flat case. The proposed axioms for the quantum state field characterized by the

Hilbert-space-valued distribution Ψη for η > 0 on the space-time (Sρ, γ) for ρ > 0 with values

in the dense subspace D of Hρ and unitary representation U of Gρ in Hρ are:

1: For f ∈ C∞cpt(Sρ), f 7→ 〈ψ,Ψη(f)〉 is a continuous (with respect to the Schwartz topol-

ogy) C-linear functional for ψ ∈ Hρ.

2: The image of C∞cpt(Sρ) under Ψη is dense in Hρ.

3: 〈 this space is intentionally left blank in order to have axiom numbers align 〉

4: U(B,A)Ψη(f) = Ψη(f ◦R(B,A)) for all f ∈ C∞cpt(Sρ) and (B,A) ∈ Gρ

where R(B,A) denotes right multiplication by (B,A).

5: If f, g ∈ C∞cpt(Sρ) are two real-valued functions whose supports are space-like sepa-

rated, then Im〈Ψ(f),Ψ(g)〉Hρ = 0.

6: The infinitesimal generator of the time translation subgroup2, 1
i
dU(1, 0), has non-

negative spectrum.

Again we will refer to a quantum state field quadruple {Ψ, U,H,D} as being irreducible if

the representation U is irreducible.

2In the flat case, the corresponding axiom used generator i dU(1, 0); this disparity can be reconciled
by altering the transformation property or by redefining the correspondence between H(m,0) and SO(1, 1)o

introduced on page 4 or by using the (outer) automorphism (T,X) 7→ (−T,X).
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Proposition 3.2.1. The irreducible quantum state field quadruple {Ψη, U,Hρ,Ψη(C
∞
cpt(Sρ))}

satisfies these quantum state field axioms.

Proof. Let f ∈ C∞cpt, F ∈ Hρ, (b, α) ∈ Sρ, and (B,A) ∈ Gρ

1: Continuity of this linear functional can be shown by showing that the map Ψη from

C∞cpt(Sρ) to Hρ is continuous - i.e. for {fj} ⊂ C∞cpt(Sρ) if fj
S→ 0, then Ψ(fj)

Hρ→ 0.

Let {fj} be such a sequence. Notice that fj → 0 pointwise as well.

‖Ψηfj‖2
Hρ =

∫
R

∣∣∣∣∫
R
fj(β, α)e−iβηdβ

∣∣∣∣2 dα ≤ ∫
R2

|fj(β, α)|2 dβdα

Since fj ∈ C∞cpt(Sρ) ⊂ S (Sρ) and fj
S→ 0,

lim
j→∞

sup
x∈Sρ
|β4fj + 2β2α2fj + α4fj| = lim

j→∞
sup
x∈Sρ

(β2 + α2)2|fj| = 0

Thus there exists an M such that for all j, sup
x∈Sρ

(β2 + α2)2|fj| ≤M .

Similarly there exists an M0 such that for all j, sup
x∈Sρ
|fj| ≤M0.

Let A be the unit disc and χA be the characteristic function of A. For all j,

|fj| = |fjχA|+ |fjχAc | ≤
MχAc

(β2 + α2)2
+M0χA

Notice that∫
R2

MχAc

(β2 + α2)2
+M0χA dβdα =

∫ 2π

0

∫ ∞
1

M

r4
rdrdθ + πM0 <∞

Hence
MχAc

(β2 + α2)2
+M0χA is in L1(R2).

Applying the Lebesgue Dominated Convergence Theorem, we can conclude that

‖Ψηfj‖2
Hρ ≤

∫
R2

|fj(β, α)|2 dβdα→ 0

Therefore the map Ψη from C∞cpt(Sρ) to Hρ is continuous and axiom 1 is satisfied.
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2: It has been shown above that Ψη maps C∞cpt(Sρ) into Hρ. Since U is an irreducible

representation and Ψη is not the zero map, Ψη(C∞cpt(Sρ)) = Hρ

Hence the density requirement of axiom 2 is fulfilled.

4: Recall the action of Gρ on Hρ is given by:

U(B,A)(F )(b, α) = F ((b, α)(B,A)) = F (b+ eραB,α + A)

= F ((eραB, 0)(b, α + A)) = eie
ραBF (b, α + A)

We verify that the output for f ∈ C∞cpt(Sρ) of U2
(B,A) ◦Ψη and Ψη ◦R(B,A) are the same.

f(b, α)
Ψη−−−→ eib

∫
R
f(β, α)e−iβη dβ

R(B,A)

y U(B,A)

y
f(b+ eραB,α + A)

Ψη−−−→ eie
ραBeib

∫
R
f(β, α + A)e−iβη dβ

5: Let supp(f) & supp(g) be space-like separated for f, g ∈ C∞cpt(Sρ)R.

In Minkowski space-time two points (t, x) and (T,X) are space-like separated if:

||(t, x)− (T,X)||2 = 〈(t, x)− (T,X), (t, x)− (T,X)〉 = (t− T )2 − (x−X)2 < 0

In two-dimensional curved space-time two points (b, α) and (B,A) are space-like

separated if:

|b−B| < 1
ρ
(eρ|α−A| − 1)

This follows directly from the light-cone calculation. 3

3see page 16
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〈Ψη(f),Ψη(g)〉L2(R,dα) =

∫
R

(
eib
∫

R
f(β, α)e−iβηdβ

)(
eib
∫

R
g(β′, α)e−iβ

′ηdβ′
)
dα

=

∫
R

(∫
R

∫
R
f(β, α)eiβηg(β′, α)e−iβ

′ηdβdβ′
)
dα

f(β, α)g(β′, α) 6= 0 ⇔ (β, α) ∈ supp(f) and (β′, α) ∈ supp(g)

Since the supports of f and g are space-like separated, we conclude that

if f(β, α)g(β′, α) 6= 0, then |β − β′| < 1
ρ
(eρ(α−α) − 1) = 0, which is impossible.

Therefore we conclude that f(b, α)g(β, α) ≡ 0.

Hence 〈Ψη(f),Ψη(g)〉 = 0 if the supports of the real-valued functions f and g are

space-like separated.

6: U(B,A)F (b, α) = F (b+ eραB,α + A) = eie
ραBF (b, α + A)

Thus ∂
∂t

[
U(t,0)F (b, α)

]
t=0

= ∂
∂t

[
eie

ραtF (b, α)
]
t=0

= ieραF (b, α)

It follows that the operator 1
i
dU(1, 0) has positive spectrum.

As before we can use the Segal field operator (Φs) from Section 2.2 to extend from the

one-particle Hilbert space to the Fock space.

Note that given an irreducible representation, it seems superficially trivial that there

could not exist any invariant vector in the higher symmetric tensor product spaces if there is

no invariant vector in the “basic” Hilbert space. However such invariant vectors could exist

in higher symmetric spaces.
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Consider the alternating representation of S2 = {e, τ} on C

e · z = z τ · z = −z

The alternating representation is irreducible and the only complex number fixed by the

action of τ is zero. We then build Sym2(C) = C⊗
C

C = C. However

w ⊗ z τ (2)

7−→ −w ⊗−z = w ⊗ z

for any w, z ∈ C. Hence the symmetric 2-tensor space has invariant vectors. A similar issue

occurs in the second symmetric tensor powers of the spin-1 representation of SU(2).

Therefore we conclude that the invariance condition in the second Wightman axiom is a

strong requirement. Fortunately we have chosen a representation that does indeed satisfy

this stringent imperative that the vacuum be unique up to scalar multiples.

Proposition 3.2.2. The quantum operator field quadruple {Φ := Φs ◦ Ψη,U ,FHρ ,F0} sat-

isfies the Wightman axioms 4 for a free quantum operator field.

Proof. Let f = f1+if2 ∈ C∞cpt(Sρ). Fix ψ, ψ̃ ∈ F0 and write ψ = (ψ(0), ψ(1), ψ(2), . . . , ψ(n), 0, 0, . . . )

Wightman Axiom 1:

f 7→ 〈ψ,Φ(f)ψ̃〉 = 1√
2

(
〈ψ,AΨη(f1)ψ̃〉+ 〈ψ,CΨη(f1)ψ̃〉

)
+ i√

2

(
〈ψ,AΨη(f2)ψ̃〉+ 〈ψ,CΨη(f2)ψ̃〉

)
Since Au and Cu are continuous and R-linear in u , f 7→ 〈ψ,Φ(f)ψ̃〉 is a continuous C-linear

functional for each ψ, ψ̃ ∈ F0

Wightman Axiom 2:

Ω = (1, 0, 0, . . . ) plays the role of the vacuum and is invariant under the action of U since it

acts trivially on C by definition.

4appropriately modified from those on page 18 for the curved spacetime Sρ for ρ > 0 with symmetry
group Gρ in place of the Minkowski plane M with symmetry group Po2
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Next we must show the uniqueness of the vacuum.

Suppose there exists φ ∈ FHρ which is invariant under U . Each component φ(m) must

therefore be invariant under U (m). Recall how U
(m)
g acts on the simple tensors:

⊗mi=1f
(m)
i 7→ ⊗mi=1Ugf

(m)
i

Thus

⊗mi=1f
(m)
i

U
(m)
(B,0)7−→ ⊗mi=1e

iBf
(m)
i = eiBm ⊗mi=1 f

(m)
i

We can then induce an action on finite sums of simple tensors – which will preserve the

correspondence between U
(m)
(B,0) and multiplication by eiBm. Subsequently extending to the

Hilbert-space completion of these sums H⊗̂m and restricting to the symmetric subspace

Symm(H) does not affect this correspondence. For any m ≥ 0 and F (m) ∈ Symm(Hρ), there

exists a B so that eiBmF (m) 6= F (m). We conclude that there can not exist any vector F (m)

for m ≥ 1 such that U
(m)
(B,0)F

(m) = F (m) for all B. Therefore the vacuum is unique.

Next we show that the linear span of vectors of the form Φ(f1) · · ·Φ(fn)Ω for fj ∈ C∞cpt(M)

is dense in FHρ .

The span of Ω is all of C.

Since the image of C∞cpt(Sρ) under Ψη is dense in Hρ, the image of C∞cpt(Sρ) under c0
Ψη(f) is

dense in Hρ.

Thus we conclude that the linear span of the image of C∞cpt(Sρ) under Φ is dense in Hρ.

We now proceed by induction.

Suppose that the linear span of vectors of the form Φ(f1) · · ·Φ(fn)Ω for fj ∈ C∞cpt(Sρ) is dense

in C⊕Hρ⊕· · ·⊕H⊗̂mρ ; in particular the linear span of vectors of the form Φ(f1) · · ·Φ(fn)Ω for

fj ∈ C∞cpt(Sρ) is dense in Hρ and H⊗̂mρ . We can tensor these two constituent spaces to create

H⊗̂m+1
ρ . Taking linear combinations of the images of the dense sets, we can conclude that

the linear span of vectors of the form Φ(f1) · · ·Φ(fn)Ω for fj ∈ C∞cpt(Sρ) is dense in H⊗̂m+1
ρ .

By projecting onto the symmetric tensors, we conclude that the linear span of vectors of the
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form Φ(f1) · · ·Φ(fn)Ω for fj ∈ C∞cpt(Sρ) is dense in Symm+1(Hρ). Since this argument holds

for all m > 1, we conclude that the linear span of vectors of the form Φ(f1) · · ·Φ(fn)Ω for

fj ∈ C∞cpt(Sρ) is dense in F0 and hence dense in FHρ .

Wightman Axiom 3:

We compute 〈ψ,Φ(f)ψ̃〉 = 〈ψ,Φs(Ψη(f1))ψ̃〉+ i〈ψ,Φs(Ψη(f2))ψ̃〉

= 〈Φs(Ψη(f1))†ψ, ψ̃〉+ i〈Φs(Ψη(f2))†ψ, ψ̃〉

= 1√
2

(
〈(AΨη(f1) + CΨη(f1))

†ψ, ψ̃〉+ i〈(AΨη(f2) + CΨη(f2))
†ψ, ψ̃〉

)
= 1√

2

(
〈(CΨη(f1) + AΨη(f1))ψ, ψ̃〉+ i〈(CΨη(f2) + AΨη(f2))ψ, ψ̃〉

)
= 〈Φs(Ψη(f1))ψ, ψ̃〉+ i〈Φs(Ψη(f2))ψ, ψ̃〉 = 〈Φs(Ψη(f1))ψ, ψ̃〉 − 〈iΦs(Ψη(f2))ψ, ψ̃〉

= 〈(Φs(Ψη(f1))− iΦs(Ψη(f2)))ψ, ψ̃〉 = 〈(Φ(f̄)ψ, ψ̃〉

Wightman Axiom 4:

We first consider the action of U on the annihilation operator.(
U(B,A)AΨη(f)U−1

(B,A)

)
(ψ) =

(
U(B,A)AΨη(f)U(B,A)−1

) (
⊕∞n=0 ⊗ni=1 ψ

(n)
i

)
= ⊕∞n=0U

(n)
(B,A)a

n
Ψη(f)U

(n)

(B,A)−1 ⊗ni=1 ψ
(n)
i = ⊕∞n=0U

(n)
(B,A)a

n
Ψη(f) ⊗ni=1 U(B,A)−1ψ

(n)
i

= ⊕∞n=0U
(n)
(B,A)〈Ψη(f), U(B,A)−1ψ

(n)
1 〉 ⊗ni=2 U(B,A)−1ψ

(n)
i

In order to compute the inner product coefficient, we consider a generic φ ∈ H

〈Ψη(f), U(B,A)−1φ〉 = 〈Ψη(f), U−1
(B,A)φ〉 = 〈Ψη(f), U †(B,A)φ〉 = 〈U(B,A)Ψη(f), φ〉

where the second equality follows from U being a unitary operator.

Thus
(
U(B,A)AΨη(f)U−1

(B,A)

)
(ψ) = ⊕∞n=0U

(n)
(B,A)〈U(B,A)Ψη(f), ψ

(n)
1 〉 ⊗ni=2 U(B,A)−1ψ

(n)
i

= ⊕∞n=0〈U(B,A)Ψη(f), ψ
(n)
1 〉U

(n)
(B,A) ⊗

n
i=2 U(B,A)−1ψ

(n)
i

= ⊕∞n=0〈U(B,A)Ψη(f), ψ
(n)
1 〉 ⊗ni=2 ψ

(n)
i = ⊕∞n=0a

n
U(Ψη(f)) ⊗ni=1 ψ

(n)
i = AU(Ψη(f))ψ
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Similarly,

U(B,A)CΨη(f)U−1
(B,A)ψ = ⊕∞n=0U

n
(B,A)Sym(f ⊗ U(B,A)−1ψ) = ⊕∞n=0Sym(Uf ⊗ ψ) = CU(Ψη(f))ψ

Hence for real-valued f ,

UΦ(f)U−1 = UΦs(Ψη(f))U−1 = 1√
2
U(AΨη(f) + CΨη(f))U−1

= 1√
2
(AU(Ψη(f)) + CU(Ψη(f))) = Φs(U ◦Ψη(f))

Applying the quantum state equivariance axiom,

U(B,A)Φ(f)U−1
(B,A) = Φs(U(B,A) ◦Ψη(f)) = Φs(Ψη(f ◦R(B,A)) = Φ(f ◦R(B,A))

For general f = f1 + if2,

U(B,A)Φ(f1 + if2)U−1
(B,A) = U(B,A) (Φs(Ψη(f1)) + iΦs(Ψη(f2)))U−1

(B,A)

= U(B,A)Φ(f1)U−1
(B,A) + iU(B,A)Φ(f2)U−1

(B,A) = Φ(f1 ◦R(B,A)) + iΦ(f2 ◦R(B,A)) =

Φ((f1 + if2) ◦R(B,A))

Wightman Axiom 5:

Let the supports of f = f1 + if2 and g = g1 + ig2 be space-like separated.

[Φ(f),Φ(g)] = [Φs(Ψ(f1)) + iΦs(Ψ(f2)),Φs(Ψ(g1)) + iΦs(Ψ(g2))]

= [Φ(f1),Φ(g1)] + i[Φ(f1),Φ(g2)] + i[Φ(f2),Φ(g1)]− [Φ(f2),Φ(g2)]

Recall5 that for ψ ∈ F0 and u, v ∈ H, [Φs(u),Φs(v)]ψ = i Im〈u, v〉Hψ. Hence

[Φ(f),Φ(g)] = iIm〈Ψ(f1),Ψ(g1)〉−Im〈Ψ(f1),Ψ(g2)〉−Im〈Ψ(f2),Ψ(g1)〉 − iIm〈Ψ(f2),Ψ(g2)〉

Since supp(f) and supp(g) are space-like separated, so are supp(fi) and supp(gj)

for the real-valued functions f1, f2, g1, and g2. Applying axiom 5 for quantum state fields for

real-valued functions with space-like separated support, we conclude [Φ(f),Φ(g)] = 0.

5see page 24 or Reed and Simon’s Theorem X.41
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Wightman Axiom 6:

By quantum state field axiom 6, 1
i
dU(1, 0) has non-negative spectrum.

In other words, for all F in the domain of 1
i
dU(1, 0),

〈1
i
dU(1, 0)F, F 〉 ≥ 0

Hence on simple m-tensors (F (m)) in the domain of 1
i
dU(1, 0),

〈1
i
dU(1, 0)F (m), F (m)〉

= 〈1
i
dU(1, 0)F

(m)
1 , F

(m)
1 〉〈1

i
dU(1, 0)F

(m)
2 , F

(m)
2 〉 · · · 〈1

i
dU(1, 0)F

(m)
m , F

(m)
m 〉 ≥ 0

Taking linear combinations and closure 6 preserves this non-negative spectral condition,

as does restricting to the symmetric subspace. Since the spectral condition holds on each

component in the direct sum, it holds on F0 and thus on FHρ .

We conclude 1
i
dU(1, 0) has non-negative spectrum.

3.3 Wigner Contraction to

the Two-Dimensional Minkowski Space-time

Classical mechanics is the limiting case of relativistic mechanics. Hence the

group of the former, the Galilei group, must be in some sense a limiting case of

the relativistic mechanics’ group [the Poincaré group], the representations of the

former must be limiting cases of the latter’s representations [by taking c−1 → 0].

...[T]he inhomogeneous Lorentz group must be, in the same sense, a limiting

case of the deSitter groups [by taking the limit of zero curvature in the space-

time]. ...[T]he representation up to a factor of the Galilei group, embodied in the

6which is all of H⊗̂m since the domain of 1
i dU(1, 0) is dense in Hρ
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Schrödinger equation, appears as a limit of a representation of the inhomogeneous

Lorentz group. [20]

The symmetry group for the two-dimensional (flat) Minkowski plane is the three-dimensional

group Po2 = R1+1 o SO(1, 1)o; while the symmetry group for the two-dimensional curved

space-time Sρ is the two-dimensional subgroup Gρ = R o R ⊂ Po2 . This is due to the flat

space-time having additional symmetry. One goal of this thesis is to study the difference of

these two cases and to model the metamorphosis of one into the other. Most of the current

literature attempts to perturb or deform the special flat case into the general curved case.

In this thesis, we use a kind of inverse to the mathematical notion of a deformation of Lie

groups and algebras by contracting from the general curved case to the special flat case.

A contraction is a deformation of a group into another group using a series of non-

singular coordinate transformations whose limit is a singular transformation. Intuitively, a

contraction is performed by neglecting symmetries. Contraction is defined for a Lie group

by using its Lie algebra. The structure constants of the Lie algebra are altered in a manner

to be discussed below. The contracted Lie algebra is uniquely determined in terms of the

original algebra. This change in structure constants results in a change in the Lie group

after utilizing the diffeomorphism between the algebra and the group. Essentially all of the

calculations are performed in the algebra[13]. This transformation can be used to model

the limiting behavior of one group by affecting the structure of the group. A contraction is

carried out with respect to a subgroup; this subgroup remains unchanged by the contraction.

We will begin our study by considering the Lie algebra of Gρ. A Lie algebra L is a vector

space (for our purposes, over C) with an operation L × L → L, denoted (x, y) 7→ [x, y]

satisfying bilinearity, anti-commutativity, and the Jacobi identity ([x, [y, z]] + [y, [z, x]] +

[z, [x, y]] = 0) for all x, y, z ∈ L. [3] A Lie algebra can be described by giving a basis and a

set of relations.
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Definition 3.3.1. Given a basis {xi}ni=1 for a Lie algebra g, the relations are given by

[xi, xj] =
n∑
k=1

Ck
ijxk

These Ck
ij are known as the structure constants of g.

Since the Lie algebra bracket satisfies anti-commutativity, it follows that Ck
ij = −Ck

ji for all

i, j, k.

Example 3.3.1. In order to discover the Lie algebra gρ of Gρ, we consider a matrix repre-

sentation of Gρ

Υ : Gρ → GL2(R) given by (b, α) 7→

eρα b

0 1



• We define A := ∂Υ
∂α

(0, 0) =

ρeρα 0

0 0


∣∣∣∣∣∣∣
(0,0)

=

ρ 0

0 0



• and B := ∂Υ
∂b

(0, 0) =

0 1

0 0


∣∣∣∣∣∣∣
(0,0)

=

0 1

0 0


• {A,B} serves as a basis for the tangent space to Gρ at the identity and gρ has the

relation

[A,B] = AB −BA =

ρ 0

0 0

 ·
0 1

0 0

−
0 1

0 0

 ·
ρ 0

0 0

 = ρB

• Thus the only non-zero structure constant for gρ is CB
A,B = ρ

• This set {A,B} together with the relation [A,B] = ρB satisfies bilinearity, anti-

commutativity, and the Jacobi identity. Thus gρ is a Lie algebra.

• The derived series for g is: g(0) = g, g(1) = [g, g] = B, g(2) = [g(1), g(1)] = [B,B] = 0.

Hence g is a solvable Lie Algebra.
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• However g is not nilpotent since its descending central series is:

g0 = g, g1 = [g, g] = B, g2 = [g, g1] = [g, B] = B.

We may contract a Lie algebra g with respect to any of its subalgebras by altering the

structure constants. For a fixed subalgebra s construct a basis {xk}. Now extend this basis

to a basis for g: {xk} ∪ {xµ}. Take c to be the span of {xµ}. (Notice that c is not usually a

subalgebra of g.) We can now write g as a vector space direct sum: g = s⊕ c

In their 1953 paper, Wigner and Inönü presented a contraction process which we will

follow here. Let roman indices refer to basis elements which span s and greek indices refer

to basis elements which span c. After contraction of the Lie algebra with respect to the

subalgebra s, the new “contracted” structure constants, ckij are given by:

ckij = Ck
ij The structure constants of the subalgebra are not affected.

cµij = Cµ
ij = 0 Since s is a subalgebra, these were zero in the uncontracted algebra.

ckiµ = 0 This makes c into an ideal.

cνiµ = Cν
iµ

ckµν = cϑµν = 0 This has the effect of abelianizing c.

Alternatively, we can demonstrate how the bracket between two arbitrary elements of g

is affected by contraction with respect to s. Let [·, ·]o denote the contracted Lie algebra

relations and the unadorned bracket denote the original Lie algebra relations. Fix arbitrary

s, t ∈ s and y, z ∈ c.

[s, t]o = [s, t] The structure constants of the subalgebra are not affected.

[s, y]o = projc[s, y] These structure constants contract to the projection of the bracket

onto its component in c

[y, z]o = 0 After contraction c is abelian.
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Proposition 3.3.1. Let g be a Lie algebra with subalgebra s.

The Lie algebra produced by contracting g with respect to s can be realized as a semi-direct

product of Lie algebras.

We offer two proofs – the first is by brute force.

Proof. Bi-linearity and anti-commutativity are immediately inherited from the original Lie

algebra.

The Jacobi Identity [x[yz]o]o + [y[zx]o]o + [z[xy]o]o = 0 must be verified.

We can separate each bracket into its s and c components & write:

[x[yz]s]s + [x[yz]c]s + [x[yz]s]c + [x[yz]c]c + [y[zx]s]s + [y[zx]c]s

+[y[zx]s]c + [y[zx]c]c + [z[xy]s]s + [z[xy]c]s + [z[xy]s]c + [z[xy]c]c = 0

Thus it must be shown that

[x[yz]os]
o
s + [x[yz]oc ]

o
s + [y[zx]os]

o
s + [y[zx]oc ]

o
s + [z[xy]os]

o
s + [z[xy]oc ]

o
s = 0

and that

[x[yz]os]
o
c + [x[yz]oc ]

o
c + [y[zx]os]

o
c + [y[zx]oc ]

o
c + [z[xy]os]

o
c + [z[xy]oc ]

o
c = 0

Case 1: If x ∈ s and y, z ∈ c, then [yz]o = 0, [xy]os = 0, [zx]os = 0

Hence the first expression simplifies to:

�����[x[yz]os]
o
s +�����[x[yz]oc ]

o
s +�����[y[zx]os]

o
s + [y[zx]oc ]

o
s +�����[z[xy]os]

o
s + [z[xy]oc ]

o
s = 0

and the second simplifies to:

�����[x[yz]os]
o
c +�����[x[yz]oc ]

o
c +�����[y[zx]os]

o
c + [y[zx]oc ]

o
c +�����[z[xy]os]

o
c + [z[xy]oc ]

o
c = 0

Each of the remaining brackets is the bracket of elements in c which is abelian after contrac-

tion and thus these brackets equal zero. Hence the Jacobi Identity is satisfied.
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Case 2: If x, y ∈ s and z ∈ c, then [xy]oc = 0, [zx]os = 0, [yz]os = 0

Hence the first expression simplifies to:

�����[x[yz]os]
o
s + [x[yz]oc ]

o
s +�����[y[zx]os]

o
s + [y[zx]oc ]

o
s + [z[xy]os]

o
s +�����[z[xy]oc ]

o
s = 0

and the second simplifies to:

�����[x[yz]os]
o
c + [x[yz]oc ]

o
c +�����[y[zx]os]

o
c + [y[zx]oc ]

o
c + [z[xy]os]

o
c +�����[z[xy]oc ]

o
c = 0

Since [yz]oc,[zx]oc ∈ c, [x[yz]oc]
o
s = 0 and [y[zx]oc]

o
s = 0. [z[xy]os] ∈ c implies that [z[xy]os]

o
s = 0.

Hence the first expression equals zero.

In order to dispense with the second expression,

[x[yz]oc]
o
c + [y[zx]oc]

o
c + [z[xy]os]

o
c

we use the fact that the Jacobi Identity was satisfied in the original Lie algebra.

Separating the expression as before ...

[x[yz]s]c + [x[yz]c]c + [y[zx]s]c + [y[zx]c]c + [z[xy]s]c + [z[xy]c]c = 0

Since x, y, [yz]s, [zx]s ∈ s, the first, third, and last term are zero.

Thus [x[yz]c]c + [y[zx]c]c + [z[xy]s]c = 0 and the proof is complete.

We now consider a more elegant abstract approach.

Proof. Consider the vector space direct sum decomposition:

g = s⊕ c where c is defined as it was previously.

Define the map φ : s→ Endvs(g) where φs(x) = [s, x] for s ∈ s and x ∈ g.

This map gives an action of s on the vector space g which maps the subalgebra s to itself.

Hence there is a vector space action of s on the quotient vector space a := g / s. We can

consider this vector space a as an abelian Lie algebra. Notice that c ∼= a as vector spaces.

We now have a Lie algebra a and a Lie algebra action of s on this Lie algebra a.
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Since a vector space endomorphism on an abelian Lie algebra is automatically a Lie

algebra endomorphism, we may form the Lie algebra semi-direct product go := s o a. This

new object is isomorphic to g as a vector space and has the desired structure constant

changes.

Example 3.3.2. The Lie algebra for the generalized ax + b group is two-dimensional with

basis {A,B} and relation [AB] = ρB

• The contraction with respect to the subalgebra spanned by {A} has no effect upon the

Lie algebra structure since [A,B] = ρB which lies in the abelian ideal a

(spanned by B) as required.

• However the contraction with respect to the subalgebra spanned by {B} abelianizes the

algebra since [A,B]o must lie in the abelian ideal spanned by {A}.

Thus after contraction with respect to the subalgebra spanned by {B}, the Lie algebra

for the generalized ax+ b group becomes abelian.

We now turn our attention to the effect this contraction has first on the representation and

then on the quantum fields. With the variable parameter ρ in hand, we have a simple,

intuitive model for the concept of a group contraction. By allowing ρ→ 0, the ax+ b group

can be contracted to R2 with its usual abelian group structure. Since it has been shown that

Gρ
∼= G1 for all ρ > 0, we expect a dramatic change at ρ = 0.

In their paper, Wigner and Inönü presented a representation for the ax + b group and

then discussed the contraction process. In order to carry out the contraction process they

introduced an ε-factor – which will play the same role as our ρ – and allowed this factor to

decrease to zero.
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Following Wigner and Inönü [20] we work with the Lie algebra first. In order to discover

the representation of the Lie algebra gρ for ρ > 0, we differentiate the representation of

the Lie group. We introduce the ρ-factor by considering Φ(B,ρA) where ρ > 0 and Φ is

the Wigner-Inönü representation7 on L2(R+, dx). Unfortunately simply letting ρ go to zero

makes the action of A trivial.

Ũ i
(B,A)F̃ (x) = eiBxF̃ (eρAx)→ eiBxF̃ (x)

Ũ q
(B,A)F̃ (x) = e

ρA
2 eiBxF̃ (eρAx)→ eiBxF̃ (x)

Thus the representation of gρ on L2(R+, dx
x

) becomes

• πAρ := ∂
∂A
|(0,0)

(
Ũ i

(B,A)ψ
)

(x) = ∂
∂A
|(0,0)e

iBxψ(eρAx) = ρx d
dx
ψ(x)→ 0

• πBρ := ∂
∂B
|(0,0)

(
Ũ i

(B,A)ψ
)

(x) = ∂
∂B
|(0,0)e

iBxψ(eρAx) = ixψ(x)

and the representation of gρ on L2(R+, dx) which is Wigner and Inönü’s representation

becomes

• πAρ := ∂
∂A
|(0,0)

(
Ũ q

(B,A)ψ
)

(x) = ∂
∂A
|(0,0)e

ρα
2 eiBxψ(eρAx) = ‘ρ

2
ψ(x) + ρx d

dx
ψ(x)→ 0

• πBρ := ∂
∂B
|(0,0)

(
Ũ q

(B,A)ψ
)

(x) = ∂
∂B
|(0,0)e

ρα
2 eiBxψ(eρAx) = ixψ(x)

We overcome this obstacle as Wigner and Inönü did, by considering a representation

equivalent to Φ(B,ρA):

Πρ,(B,A) := M−1
if
ρ

◦ Φ(B,ρA) ◦M if
ρ

where M if
ρ

is multiplication by e
if(x)
ρ for a fixed non-constant, real-valued, differentiable

function f(x). M if
ρ

is an operator which maps L2(R+, dx) to itself isomorphically. Thus

Πρ,(B,A) is an irreducible representation of Gρ on L2(R+, dx) equivalent to Φ(B,ρA).

7see page 38
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We now wish to see the effect of the contraction ρ→ 0 on the representation.

Πρ,(B,A) := M−1
if
ρ

◦ Φ(B,ρA) ◦M if
ρ

= M−1
if
ρ

◦ Φ(B,ρA) ◦M if
ρ

Let ψ ∈ L2(R+, dx)(
Πρ,(B,A)ψ

)
(x) =

(
M−1

if
ρ

◦ Φ(B,ρA) ◦M if
ρ
ψ

)
(x)

= e
−if(x)
ρ

(
Φ(B,ρA) ◦M if

ρ
ψ
)

(x) = e
−if(x)
ρ e

ρA
2

+iBx
(
M if

ρ
ψ
)

(eρAx)

= e
−if(x)
ρ e

ρA
2

+iBxe
if(eρAx)

ρ ψ(eρAx) = ei
f(eρAx)−f(x)

ρ e
ρA
2 eiBxψ(eρAx)

We can extend this group representation to R2 by considering lim
ρ→0

(
Πρ,(B,A)ψ

)
(x)

lim
ρ→0

(
Πρ,(B,A)ψ

)
(x) = lim

ρ→0
ei
f(eρAx)−f(x)

ρ e
ρA
2 eiBxψ(eρAx)

= lim
ρ→0

eif
′(eρAx)eρAAxe

ρA
2 eiBxψ(eρAx) = eixf

′(x)AeiBxψ(x)

We can therefore define a representation Π0 of R2 on L2(R+) by:

(
Π0,(B,A)0ψ

)
(x) := eixf

′(x)AeiBxψ(x).

Note however that this representation is no longer irreducible – for example,

R = {ψ ∈ L2(R+, dx)|supp(ψ) ⊂ [0, 1]} is invariant under the action of Π0.
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We compute the representation of gρ on L2(R+, dx)

• πAρ := ∂
∂A
|(0,0)

(
Πρ,(B,A)ρψ

)
(x) = ∂

∂A
|(0,0)e

i
f(eρAx)−f(x)

ρ e
ρA
2 eiBxψ(eρAx)

= [ei
f(eρAx)−f(x)

ρ
i

ρ
f ′(eρAx)eρAxρ · e

ρA
2 eiBxψ(eρAx)

+ ei
f(eρAx)−f(x)

ρ · e ρA2 ρ
2
· eiBxψ(eρAx)

+ ei
f(eρAx)−f(x)

ρ e
ρA
2 eiBx · ψ′(eρAx)eρAxρ]|(0,0)

= i
ρ
f ′(x)xρψ(x) + ρ

2
ψ(x) + xρψ′(x) =

(
ixf ′(x) + ρ(1

2
+ x d

dx
)
)
ψ(x)

• πBρ := ∂
∂B
|(0,0)

(
Πρ,(B,A)ψ

)
(x) = ∂

∂B
|(0,0)e

i
f(eρAx)−f(x)

ρ e
ρA
2 eiBxψ(eρAx) = ixψ(x)

Notice that this operator is independent of ρ

Thus the basis for the operators in the representation of gρ on L2(R+, dx) for ρ > 0 is:

• πAρ =
(
ixf ′(x) + ρ(1

2
+ x d

dx
)
)
·

• πBρ = ix·

Notice that for ρ > 0, the operators πAρ and πBρ do not commute and that these operators

are not bounded on L2(R+, dx). In order to discover the effect after contraction, we send

ρ→ 0 and now use the basis:

• πA0 = ixf ′(x)·

• πB0 = ix·

Notice that after contracting, the operators πA0 and πB0 now commute, but remain unbounded

on L2(R+, dx).
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The alternate approach offered in this thesis uses the representation U on Hρ and con-

siders the effect of ρ → 0. This task will be simplier as the ρ parameter is already part of

our construction. The representation

U(B,A)F (b, α) = F ((b, α)(B,A)) = F (b+ eραB,α + A)

= ei(b+e
ραB)F (0, α + A) = eibeie

ραBF (0, α + A)

becomes for ρ = 0 becomes the representation,

U(B,A)F (b, α) = F ((b, α)(B,A)) = F (b+B,α + A) = ei(b+B)F (0, α + A)

on the Hilbert space H0. After contraction, notice that the representation remains faithful

– but becomes reducible, as we will soon discuss.

As before, we study the effect the contraction ρ→ 0 has on the representation of gρ on Hρ

• πAρ := ∂
∂A
|(0,0)

(
U(B,A)F

)
(b, α) = ∂

∂A
|(0,0)e

ieραBF (b, α + A) = ∂
∂α
F (b, α)→ ∂

∂α
F (b, α)

• πBρ := ∂
∂B
|(0,0)

(
U(B,A)F

)
(b, α) = ∂

∂B
|(0,0)e

ieραBF (b, α + A) = ieραF (b, α)→ i F (b, α)

These unbounded operators do not commute for ρ > 0. However after contraction (ρ→ 0),

the unbounded operators corresponding to the infinitesimal translation in the α variable

(πA0 ) and to the Fourier variable E = 1 (πB0 ) commute.

This simpler calculation highlights another advantage of our alternate representation

over the one offered by Wigner and Inönü. The drastic difference between these representa-

tions after contraction does not contradict our earlier equivalences between U and the other

representations Ũ i and Ũ q as those equivalences only hold for ρ > 0.

The above limiting procedure corresponds to contracting the Lie group with respect to

the B = {(b, 0) : b ∈ R} subgroup; the contraction of the Lie group with respect to the

A = {(0, α) : α ∈ R} subgroup has no effect on the group [20] and thus no effect on
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the representation. After contraction, the symmetry group Gρ becomes a two-dimensional

abelian subgroup G0 = R1+1 ⊂ Po2 and the limiting space-time R2 has more symmetry –

namely the Poincaré group Po2 now acts isometrically on R2 = S0. We have presented the

contracting family of groups Gρ as directly and abstractly as possible and have observed

that the contraction can be constructed within the Poincaré group using the inclusion map

offered in Section 1.2.

Consider the map φ : H0 → L2(R, dα) given by F (b, α) = eibF (0, α) 7→ F (0, α) =: ψ(α)

This map is bijective and allows us to conclude that H0 = eibL2(R, dα) ∼= L2(R, dα). That

is, for ρ = 0, the Hilbert space decomposes as:

H0
∼= L2(R, dα) =

∫ ⊕
R

C(1,p) dp

We can then define a representation u of G0 on L2(R, dα):

u(B,A)ψ(α) = eiBψ(α + A) = χ(1,0)(B,A)RAψ(α) for ψ ∈ L2(R, dα)

This representation is compatible with the representation U on H0

F (b, α) eibF (0, α)
φ−−−→ ψ(α)

U(B,A)

y u(B,A)

y
F (b+B,α + A) eiBeibF (0, α + A)

φ−−−→ eiBψ(α + A)

We observe that u is equal to the character χ(1,0) composed with the (right) translation

operator R.

The regular representation of R on L2(R, dα) decomposes as:

RA ↔
∫ ⊕

R
χp(A) dp =

∫ ⊕
R
eiAp dp

Thus

u(B,A) ↔
∫ ⊕

R
χ(1,p)(B,A) dp
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The unitary representation U is the direct integral of the characters χ(η,p) of G0 = R2

U(B,A) =

∫ ⊕
R
χ(η,p)(B,A) dp

where the energy parameter η is fixed and χ(η,p)(b, α) = ei(η,p)(b,α).

Notice that Ψη is independent of ρ while Hρ is independent of η. The “formula” for

U is independent of both ρ and η, although we must be careful to remember that U is a

representation of Hρ and therefore depends on ρ.

We see that when ρ = 0, Ψη : C∞cpt(S0)→ H0 = eib
∫ ⊕

R
C(1,p) dp.

Hence Ψη(f)(b, α) can be expressed as a direct integral:

Ψη(f)(b, α) = eib
∫ ⊕

R

∫
R
e−iαp

∫
R
f(β, α)e−iβηdβdα dp = eib

∫ ⊕
R
f̂(η, p) dp

Since the Fourier transform is an isomorphism, we may simplify this process by considering

this process on the transform side, in which case:

f̂(E, p)
Ψ̂η7−→ eibf̂(η, p)

Thus we have constructed two different fields – the first the “standard” field with full Poincaré

symmetry and the second with reduced G0 symmetry. The former uses the Fourier transform

restricted to the mass hyperbola (H(m,0)); the latter uses the Fourier transform restricted to

the line E = η with an additional“twisting” factor eib which is essential for equivariance.

(a) Fourier transform on H(m,0) (b) Fourier transform on E = η twisted by eib
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Chapter 4

Remarks and Questions

The topic of quantum field theory is nearly one hundred years old and there exists a wealth of

literature on the subject. The present work is certainly not the first to address constructing a

quantum field theory in curved space-time – for example see Wald [17] or Zee [21]. What we

have offered here is an axiomatic approach similar to Wightman in the hopes that this will

place us one step closer to the physical goal of harmonizing general relativity with quantum

field theory. Much work remains to be done in this endeavor.

As is often the case in scientific inquiry, new answers present new questions. Much of

the work presented here might be extended and may serve as a root for future research. We

now discuss several of the questions raised by the results of this thesis.

(1) In the quantum state field axioms for flat space-time presented in chapter two, we

introduced a zeroth axiom using the d’Alembert operator which was used to model the free

quantum scalar field on the Minkowski plane. Unfortunately, we were unable to formulate

such an axiom in the curved case. It is our hope that such an axiom could be introduced

and that this axiom could similarly help to define an analogue to the mass of the particle

under consideration.
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(2) Another aspect left unexplored in this thesis is an axiomatic consideration for the action

of the reduced symmetry group G0 = R2 on the Minkowski plane and how the quantum state

fields for that group should be related to the quantum state fields for the Poincaré group.

(3) We may also ask how the free quantum field theories presented here are related to general

quantization methods for static and stationary space-times.

(4) Several of our simplifying assumptions about the space-time might be discarded in future

work. Our space-times (both the Minkowski plane and Gρ) are simply connected and all

time-like geodesics are complete. This does not hold for a general space-time. Note that

many familiar spaces in Riemannian geometry do not seem to be suitable space-times. For

example, S2 does not admit a Lorentz metric and S1 × S1 might contain closed time-like

geodesics. Many of the arguments presented here might be also generalized to space-times

of higher dimension in order to more accurately represent physical models.

(5) A comprehensive study of Wigner’s contraction process should be conducted for other

Lie groups – particularly tracing the effects of a contraction on the quantum state fields and

thus on the quantum field theories.

(6) Following in the tradition of Källen and Lehmann, we can consider a “smearing” together

of the quantum state fields by considering an interval of positive η’s in order to create a

generalized free quantum state field.

(7) Our study has also been confined to particles of spin zero. However the work done

here might be extended to include positive-integer-spin particles and considerations of Yang-

Mills gauge fields. Half-integer spin particles are fermions and require a study of the anti-

symmetric Fock space versus the symmetric Fock space discussed here.

(8) In this thesis we have restricted our focus to the free case which does not account for the

interactions between particles; consideration of these interactions is a necessary part of any

final theory. This might be accomplished by considering perturbations of the free quantum

field theories presented here or might require an entirely different approach.
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