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Abstract

Topological data analysis (TDA) is a rapidly developing collection of methods for studying

the shape of data. Persistent homology is a prominent branch of TDA which analyzes the

dynamics of topological features of a data set. We introduce statistical inference and learning

methods for persistent homology of three types of data: point clouds, fingerprints, and rock

images. First, we illustrate a topological inference plot for point cloud data, called the per-

sistence terrace. The suggested plot allows robust and scale-free inference on the size and

point density of topological features. Second, we suggest a new interface between persistent

homology and machine learning algorithms and apply it to the problem of sorting finger-

prints into pre-determined groups. We achieve near state-of-the-art classification accuracy

rates by applying TDA to minutiae points and ink-roll images. Last, we present a statistical

model for analysis of porous materials using persistent homology. Our model enables us to

predict the geophysical properties of rocks based on their geometry and connectivity.
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Chapter 1

Introduction

A defining characteristic of many modern data applications – whether they fall under the

heading of “Big Data” or not – is their unstructured nature. It can no longer be assumed that

data will come to us for analysis in regular arrays with fixed numbers of rows and columns

and a single observation in each cell, usually representing the measured value of a particular

variable for a particular unit. Similarly, questions of scientific interest have been shifting in

recent years. In settings such as neuroimaging and genetics, to give two prominent examples,

researchers are focusing on questions about network structure, interactions between brain

regions or regions on the genome, and the like. Such questions are not amenable to traditional

statistical procedures based on simple array-structured data. Accordingly, recent years have

seen the development of methods for functional (Ramsay and Silverman, 2005), object-

oriented (Marron and Alonso, 2014), and symbolic (Billard and Diday, 2007) data. All of

these aim to tackle situations where the basic unit of analysis is something other than a

traditional observation; rather, it can now be an entire image, or a histogram, or a function.

A relatively new, emergent approach is topological data analysis (TDA), which focuses

on the “shape” or “structure” of a data set (Carlsson, 2009; Lum et al., 2013). TDA pro-

vides quantitative methods to analyze the underlying geometric and topological structures

of data. TDA has been successfully applied to various areas; examples include the study of

brain artery structure (Bendich et al., 2016); brain network (Lee et al., 2012; Petri et al.,

2014); protein structure (Gameiro et al., 2015); granular packing (Saadatfar et al., 2017);

viral genomics (Chan et al., 2013); porous material (Robins et al., 2016); dynamical system

(Adams et al., 2017); bone structure (Heo et al., 2012; Turner et al., 2014); and breast cancer

1
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(Nicolau et al., 2011). However, a statistical approach, which takes into account randomness

and noise of data, has started to be considered very recently (Chazal and Michel, 2017). A

major challenge in the TDA approach is to decide which features are real, in the sense of

representing meaningful structure in the data, and which are artifacts of the noise inherent

in all measured data. This is a question of statistical inference, and as such, recent years

have seen the development of statistical methods to blend with the topological concepts

underlying TDA.

In this dissertation, we propose statistical learning methods and data analysis pipelines

for topological inference using a prominent branch of TDA called persistent homology. We

also establish our approaches by presenting applications to various types of data. The rest of

this dissertation is organized as follows. In the rest of Chapter 1, we summarize the theoretical

background of (persistent) homology (Hatcher, 2002; Edelsbrunner and Harer, 2008, 2010;

Ghrist, 2008; Zomorodian and Carlsson, 2005; Zomorodian, 2012). Chapter 2 introduces a

summary plot for point cloud data called the persistence terrace and demonstrates its use

with simulated and real data. In Chapter 3 we explore the interface between topological data

analysis and machine learning as applied to the fingerprint classification problem. Chapter 4

explains a statistical pipeline for porous material images using persistent homology and

presents analysis results. Finally, in Chapter 5, we summarize our main findings and propose

directions for future work.

1.1 Complexes

A topological space is a mathematical object abstracting the intuitive notions of nearness,

connectivity, and continuity. In order to perform computations on a topological space, one

needs to discretize and represent the space with a finite amount of information. Fortunately,

this is possible for most spaces appearing in practice through the process of triangulation: we

encode the space as a simplicial complex, which means a collection of vertices (0-simplex),
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edges (1-simplex), triangles (2-simplex), tetrahedra (3-simplex), and higher-dimensional sim-

plices, together with the data of how all these pieces are attached. In the construction of the

simplicial complex, simplexes are glued together in a way that two adjacent simplexes share

their faces. For instance, the circle is a single vertex with a single edge attached at both ends

to the vertex. There exist different ways to build the simplicial complex and we will explain

two approaches: Cĕch and Vietoris-Rips complexes.

Let X be a set of points in a metric space. For a given filtration value ε, we draw

balls of radius ε/2 centered at the data points. First, a Cĕch complex is defined by the

intersection between those balls. If there are n balls that share the intersection region, then

the corresponding n data points form an n− 1-simplex. The Cĕch complex at the filtration

value ε is a union of those simplexes and is represented as C(X, ε). The Cĕch complex has

the property called the Cĕch theorem or the nerve theorem (Borsuk, 1948). The theorem

states that if we sample enough data from a topological space T and construct the Cĕch

complex, then the complex reflects the topology of T . Thus, the Cĕch complex can model

the topology of a point cloud data. However, a drawback of the Cĕch complex is that it is

computationally expensive.

A Vietoris-Rips (Rips) complex is a good approximation of the Cĕch complex. The Rips

complex requires less computational load than the Cĕch complex because it is determined

by only pairwise distances between points. Let’s assume that we have the same point cloud

data X. For given ε, m data points whose pairwise distances are smaller than ε form a

(m− 1)-simplex. The Rips complex of X given ε is a union of the simplexes and expressed

as R(X, ε).

The cost of constructing the Rips complex instead of the Cĕch complex exist: it is hard

to guarantee the Cĕch theorem for the Rips complex. The Rips complex might not fully

demonstrate the topology of the corresponding space. However, the Rips complex still carries

topological properties of point cloud data. For all ε > 0, the following relationships hold:

C(X, ε) ⊂ R(X, ε) ⊂ C(X, 2ε).
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Although the Rips complexR(X, ε) does not satisfy the nerve theorem, it contains topological

information of the Cĕch complexes somewhere between C(X, ε) and C(X, 2ε). Therefore, the

Rips complex can be a good alternative to the Cĕch complex.

Figure 1.1: Scatterplot of points (upper-left), balls of diameter ε centered at the points
(upper-right), Cĕch complex (lower-left), and Vietoris-Rips complex (lower-right). Figure
from Ghrist (2008)

Figure 1.1 illustrates the construction of the Cĕch complex and Rips complex for point

cloud data of 15 data points. The difference between the two complexes can be seen in the

green region on the lower right (six points). The six points construct a set of multiple 2-

simplexes (triangles) in the Cĕch complex. On the other hand, the same points construct a

5-simplex in the Rips complex because pairwise distances are smaller than ε.

1.2 Homology

Any metric space (such as Rn), or a subset thereof, can be viewed as a topological space.

Homology is used to quantify the topological characteristics of a topological space. Let

K be a simplicial complex such as C(X, ε) and R(X, ε). An orientation of a n-simplex
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σ = {v0, v1, · · · , vn}, where v’s are vertices of K, is an equivalence class of orderings of

vertices of σ. An oriented simplex is denoted as [σ]. The nth chain group Cn(K) is the

free Abelian group on K’s oriented n-simplices. An element of Cn(K) is called the n-chain

c =
∑

i ci [σi]. The boundary operator ∂n is a homomorphism defined on an oriented simplex

in the n-chain c:

∂n [v0, · · · , vn] =
∑
i

(−1)i [v0, · · · , v̂i, · · · , vn] ,

where v̂i indicates that vi is not included in the sequence. The boundary operator connects

the chain groups as a chain complex C∗ as

· · · → Cn+1
∂n+1−→ Cn

∂n−→ Cn−1 → · · · .

We can define subgroups of kernel and image using the boundary operator. If c ∈ Cn and

∂n(c) = 0, then c is called a cycle. The set of cycles in Cn is the kernel of ∂n, denoted as

Zn = ker(∂n). Also, Bn is the boundary group Bn = im(∂n+1). These subgroups are nested

as Bn ⊂ Zn ⊂ Cn and the relationships are presented in Figure 1.2. The nth homology group

Figure 1.2: Chain, cycle, and boundary groups. Figure from Zomorodian and Carlsson (2005).

Hn is defined using a quotient group

Hn = ker(∂n)/im(∂n+1) = Zn/Bn.

The rank of Hn is called the nth Betti number, βn = rank(Hn) = rank(Zn)−rank(Bn). Hence,

the nth Betti number represents the number of n-dimensional holes of the topological space.
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Table 1.1: Interpretation of Betti numbers of dimension zero, one and two (β0, β1 and β2).

Symbol Dimension Counts

β0 0 Number of connected components

β1 1 Number of loops

β2 2 Number of enclosed voids

Table 1.1 gives geometric interpretations of the n = 0, 1, 2 Betti numbers. Betti numbers are

the numerical summary of homological characteristics of a topological space.

Figure 1.3 illustrates a point, circle, and torus (hollow donut) with their Betti numbers.

Each has a single connected component; the circle has a single loop; the torus has two

loops (in the vertical and horizontal directions) and encloses a single solid void. Topological

characteristics of the three different objects are summarized with three-dimensional Betti

numbers.

Figure 1.3: Betti numbers of a point (left), circle (center), and torus (right).

1.3 Persistent Homology

For a 1-parameter family of topological spaces, or simplicial complexes, persistent homology

offers a method of quantifying the dynamics of topological features (e.g., when holes appear
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and disappear). A 1-parameter family of simplicial complexes where simplices are added but

never removed is called a filtered simplicial complex

∅ = K0 ⊆ K1 ⊆ · · · ⊆ Km = K.

The parameter is then usually called a filtration parameter. Let us assume that a filtration

is defined to be a radius of a ball as illustrated in Section 1.1. Then, as the filtration value

increases, the size of balls of diameter ε gets bigger. Therefore, the number of data points

whose balls share the intersection region (the Cĕch complex) or whose pairwise distances

are smaller than ε (the Rips complex) increases. These data points form higher dimensional

simplices and are added to the filtered simplicial complex. Both Cĕch and Rips complexes

have the inclusion relationship such that

K1 = R(X, ε1) ⊆ K2 = R(X, ε2),

for ε1 ≤ ε2. Figure 1.4 illustrates the sequential changes of the Rips complex.

For i ≤ j and filtered simplicial complexes Ki ⊆ Kj, the nth (i, j)-persistent homology

ιn(i, j) is defined to be the image of the induced homomorphism between the homology

groups,

ιn(i, j) : Hn(Ki)→ Hn(Kj).

The ranks of the images of ιn(i, j), βi,jn = rank(im(ιn(i, j))), are called the persistent Betti

numbers of ι. We may define the persistent homology group of Ki in a different way:

H i,j
n = Zin/

(
Bi+jn ∩ Zin

)
,

where H i
n, Zin, and Bin are the groups associated with Ki and a boundary operator ∂in.

The barcode records the “birth” (appear) and “death” (disappear) of a specific n-

dimensional hole over the filtration. As the filtration varies, the n-simplex either creates a

n-dimensional hole or destroys a n − 1-dimensional hole. Each topological feature can be

matched with its creator and destroyer. The lifetime of a homology class is given in the form

of interval data of [birth filtration value, death filtration value]. The relationship between
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Figure 1.4: Sequence of Vietoris-Rips complex for point data and the corresponding barcode
plot. Figure from Ghrist (2008)

the Betti number and the barcode can be easily understood with the popular two economics

terms stocks and flows. The Betti number is a stock variable that counts the number of

n-dimensional holes of the filtered simplicial complex at a certain filtration value. It does

not report how topological features persist over the filtration range. On the other hand, the

barcodes work as a flow variable that describes the persistence of the topological feature.

The nth Betti number of R(X, εi) is the same as the total number of n-dimensional barcodes

standing at εi.

1.3.1 Summary Plots

Persistent homology can be visually summarized with the barcode plot : for each dimension k,

plot a collection of horizontal intervals whose left endpoint is the filtration value at which a
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particular k-dimensional homology class is born and whose right endpoint indicates its death.

The number of intervals over a filtration value is the Betti number βk at that value. A more

compact visual summary is the persistence diagram: here each homology class is plotted as

a point whose x-coordinate is the birth time and y-coordinate is the death time; different

symbols are used to distinguish homological dimension. The prominence, or persistence, of

a topological feature corresponds to the length of a bar in a barcode plot, or to the height

above the diagonal line y = x in a persistence diagram.

(a) Scatterplot (b) Barcode plot (c) Persistence diagram

Figure 1.5: Scatterplot of points concentrating around two circles and the corresponding
barcode plots and persistence diagrams.

Figure 1.5 shows the scatterplot, barcode plot, and persistence diagram obtained using

the Rips complex. There are two long lines on dimension 0 and 1 barcode plots and two

points of dimension 0 and 1 far from 45-degree line on persistence diagrams. From the both

summary plots, we can see that two significant connected components and two loops exist.

1.3.2 Comparison of Results

As presented in the previous subsection, persistence can be encoded in barcodes, a mul-

tiset of intervals. If noise or measurement errors on data significantly affect barcodes, then

features might not be represented well. Therefore, stability of the persistence information

under perturbations is important for making inference. This topic has been studied for the

persistence diagrams. Let DX and DY be the persistence diagrams of metric space X and

Y . For given metrics d1 on persistence diagrams and d2 on the metric spaces, the stability
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of persistence diagrams holds when

d1(DX , DY ) ≤ d2(X, Y ).

If the persistence diagram is stable, then small changes in metric spaces (measured as

d2(X, Y )) induce small changes in persistence diagrams (measured as d1(DX , DY )). There-

fore, persistence diagrams can be used to measure geometric or topological differences

between spaces.

The persistence diagram distances measure the dissimilarity between diagrams. The per-

sistence diagram distance needs to compare diagrams that include different numbers of

points. This is because the number of barcodes created varies from dataset to dataset. Also,

the distances need to satisfy an important property called stability under perturbations. In

this subsection, we illustrate three persistence diagram distances; Wasserstein, bottleneck,

and persistent landscape distances.

Let xi = (ai, bi), yj = (aj, bj), and d(xi, yj) = ||xi − yj||∞ = max (|bi − bj|, |ai − aj|).

Bottleneck distance between persistence diagrams DX and DY is defined as

W∞(DX , DY ) = inf
γ

sup
x∈DX

d (x, γ(x)) = inf
γ

sup
x∈DX

||x− γ(x)||∞

where γ is the bijections from DX to DY . Bottleneck distance between two persistence

diagrams has an upper bound by L∞-distance. The stability of the bottleneck distance is

shown in Cohen-Steiner et al. (2007) and Chazal et al. (2012).

p-Wasserstein distance between DX and DY is given by

Wp(DX , DY ) =

(
inf
γ

∑
x∈DX

d (x, γ(x))p
) 1

p

=

(
inf
γ

∑
x∈DX

||x− γ(x)||p∞

) 1
p

Figure 1.6 shows the computation of the Wasserstein distance. Two persistence diagrams

are presented in Figure 1.6a with purple squares and green circles. The Wasserstein distance

minimizes the cost of coupling on the weighted graph in Figure 1.6b. The chosen couplings are

shown as lines in Figure 1.6a and bold lines in Figure 1.6b. Wasserstein distance’s stability

conditions and results are shown in Cohen-Steiner et al. (2010).
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(a) Two persistence diagrams (b) Weighted graph

Figure 1.6: Two persistence diagrams of purple squares and green circles (left) and the
weighted graph for Wasserstein distance computation (right). Figure from Munch et al.
(2015).

Bubenik (2015) defines the landscape distance on the persistence landscape. Let M be

the persistence module. A rank function λ is defined as

λ(a, b) =


βa,b if a ≤ b

0 otherwise,

where βa,b = dim(im(M(a ≤ b))). The persistent landscape is a sequence of functions λk(t) =

λ(k, t), where

λk(t) = sup(m ≥ 0|βt−m,t+m ≥ k)

for m = (a+ b)/2. Let λX and λY be the persistence landscapes of persistence diagrams DX

and DY . Then, the p-landscape distance is defined as

Λp(DX , DY ) = ||λX − λY ||p,

where ||λ||p =
∞∑
k=1

||λk||p. The stability of the persistent landscape distance is proven in

Bubenik (2015).



Chapter 2

Topological Inference Tool for Point Cloud Data: Persistence Terrace

2.1 Point Cloud Data

A point cloud—a finite, unordered collection of points in Rn or some other metric space—is

uninteresting as a topological space since it is discrete: β0 is the number of points in the

cloud and βk = 0 for all k ≥ 1. Such data commonly arise through discrete sampling of

continuous objects, the locations of events, and structure of crystals, etc. Figure 2.1 shows

examples of point cloud data.

Figure 2.1: Examples of point cloud data. Points taken from the surface of a teapot from
MATLAB (2016) (left) and Locations of earthquakes from Kious and Tilling (1996) (right).

The goal of point cloud data analysis is to reconstruct the objects/processes producing the

point clouds and/or to compare structural properties of the point clouds themselves. TDA

introduces methods of building a filtered simplicial complex from a point cloud, thereby

reconstructing multi-scale topological features of the object or distribution from which the

12
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points are sampled. The standard approach is the Rips complex: points in the cloud serve as

vertices; pairs of points are joined by an edge when their distance is less than the filtration

value.

2.2 Two Estimation Methods

2.2.1 Direct Estimation

Point Cloud Data → Nested Complexes → Persistence Diagram or Barcode Plot

We denote direct estimation as an approach to construct complexes directly from point cloud

data and compute persistent homology. The persistence of a topological feature is heavily

affected by its size. For example, Figure 1.5 summarizes persistent homology computation

result by direct estimation. The longer dimension one line (red) in Figure 1.5b and the red

triangle on the top in Figure1.5c correspond to the large circle in Figure 1.5a. The persistence

of the dimension one feature is proportional to the radius of the circle it comes from.

(a) Scatterplot (b) Barcode plot (c) Persistence diagram

Figure 2.2: Scatterplots of noise added data of Figure 1.5 and the corresponding barcode
plots and persistence diagrams. Noise in the data creates many “false” loops.

Figure 2.2 shows the noise-added scatterplot, barcode plot, and persistence diagram

obtained using the Rips complex. When noise is added, many false loops appear, and it

becomes difficult to infer the actual number of circles in the point cloud.



14

2.2.2 Robust Estimation

Point Cloud Data → Manifold → Level Sets → Persistence Diagram or Barcode Plot

To overcome sensitivity to noise and outliers, robust TDA approaches have been developed

using distance to a measure (Chazal et al., 2011, 2017), kernel distances (Phillips et al.,

2013), kernel density estimators (Fasy et al., 2014), and kernel estimations (Bobrowski et al.,

2017). These methods first transform a discrete point cloud into a continuous manifold via

a smoothing function.

Figure 2.3: Super-level sets of a heel bone structure. Modified Figure 12 of Turner et al.
(2014)

Let M be a manifold and f : M→ R be a function. A function f can be seen as a height

function in a certain direction. A level set Mf is the subset of the manifold in the direction of

f . For example, a super-level set is defined as Mf≥a = {x ∈M | f(x) ≥ a} = f−1([a,∞)). If

a is the minimum value of the function, then M = Mf≥a. Figure 2.3 shows super-level sets of

a heel bone. In this example, f is the height of the bone in the vertical direction. Topological

characteristic of a manifold can be revealed if the function is appropriately defined. Let M

be the nested manifolds M : Mf≥a1 ⊆Mf≥a2 ⊆ · · · ⊆Mf≥an , where a1 ≥ a2 ≥ · · · ≥ an. The

image of a homomorphism f i,jk : Hk(Mf≥ai) → Hk(Mf≥aj) is the persistent homology. We

can analyze the topological characteristics by computing Betti numbers and barcodes using

the persistent homology.

For example, graphing the mth nearest neighbor function turns a point cloud in R2 into a

surface in R3; the larger the value of m, the more rounded this surface will be. The manifold



15

thus obtained can be filtered by its super-level sets, sets above a threshold value. The filtered

super-level sets yield a 1-parameter family of topological spaces—which, when triangulated

for computational purposes, is a filtered simplicial complex called the Morse complex of the

point cloud—so once again persistent homology can be computed. The Morse complex is

constructed with the smoothing function; the resulting persistent homology is more robust

than that of the Rips complex. In the Morse-based approach, choosing the appropriate

smoothing parameter is important for topological inference. Chazal et al. (2017) suggest a

method for choosing the optimal smoothing parameter using information measures.

(a) Manifold at bandwidth 0.03 (b) Manifold at bandwidth 0.2

(c) Persistence diagram at bandwidth 0.03 (d) Persistence diagram at bandwidth 0.2

Figure 2.4: Manifolds and Morse-based persistence diagrams at two smoothing parameters
for the “two noisy circles” point cloud in Figure 2.2a. Each smoothing parameter leads to
only one persistent loop; a circle is lost no matter what smoothing parameter we choose.
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There are disadvantages to these robust Morse-based smoothing approaches. First, there

might not exist a single optimal smoothing parameter such that the corresponding persistent

homology reveals features occurring at different scales. For example, in Figure 2.4 we use

the “two noisy circles” data from Figure 2.2a and apply the kernel density estimator with

two different bandwidth values. From the persistence diagrams, we see that the noise has

been cleaned up by switching from the Rips to the Morse complex—but for both smoothing

parameter values, one of the two circles has been washed away in the process. A second issue

is that the Morse filtration only computes the number of k-dimensional holes of the level sets,

not their sizes, so important scale information is lost. Figure 2.5 shows a point cloud with

three circles, each containing 200 points, and its persistence diagram using kernel density

estimator with bandwidth 0.2. The Morse persistence diagram indicates three prominent

loops in the data, but the height of each triangle above the diagonal line (the “persistence”)

positively relates to the density of points on the corresponding circle and thus is negatively

related to the radius.

(a) Scatterplot (b) Persistence diagram of Morse filtration

Figure 2.5: Scatterplot of three 200-point circles and a Morse persistence diagram. We label
the circles and the corresponding β1 features in the persistence diagram to illustrate the
inverse relation here between feature persistence and circle radius due to point density.
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2.2.3 Comparisons of Two Estimation Methods

The significance of a topological feature, in general, is recognized by the height-above-

diagonal of a point in the persistence diagram. Despite important steps toward a statis-

tical theory of quantifying significance and producing confidence interval type analysis for

persistent homology (Fasy et al., 2014; Chazal et al., 2015), serious conceptual challenges

remain.

In direct estimation, a small feature with high density is usually seen as insignificant

because the Cĕch or Rips complex fills in the hole so quickly. On the other hand, for the

robust Morse-based approach, the significance depends, in addition to height-above-diagonal,

on the smoothing parameter. The smoothing parameter is chosen based on the size of data

features one aims to uncover, but then height-above-diagonal in the persistence diagram

reflects the density of points more than their significance (recall Figure 2.5). Therefore,

whether using direct or robust estimation, it is impossible to fully capture significance with

a single diagram: the significance of a feature depends on both its size and density. Table 2.1

summarizes the characteristics of the two estimation methods.

Table 2.1: Comparison of direct and robust estimation approaches

Direct Estimation Robust Estimation
Pros Fast and simple Robust
Cons Sensitive Smoothing parameter selection
Significance Size Point density

In the following section, we introduce the persistence terrace which is robust to noise

and simultaneously reveals significance with regard to both size and point density of each

topological feature.

2.3 Persistence Terrace

The persistence terrace uses robust Morse-based persistent homology but incorporates a

range of smoothing parameters instead of a single optimal value, similar to a scale space
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analysis (Chaudhuri and Marron, 1999, 2000). For each dimension k, we plot a surface where

the x-axis is the smoothing parameter, the y-axis is the filtration value, and the z-axis is

the Betti number βk. Thus, for a point cloud in Rn, a point on the persistence terrace with

coordinates (x0, y0, z0) means there are z0 holes of dimension k on the Euclidean subset

{~v ∈ Rn | fx0(~v) ≥ y0},

where fx0 : Rn → R is the chosen smoothing function corresponding to parameter x0. In

this analysis, we use a Gaussian kernel density estimator as the smoothing function and

the bandwidth becomes the smoothing parameter. Note that this subset is topologically

equivalent to its graph in Rn+1 under the function fx0 , which is the super-level set used in

Morse-based persistent homology.

(a) Overall view (b) Satellite view

Figure 2.6: The β1 persistence terrace for the three circles data of Figure 2.5a. The labels in
Figure 2.6b match the three terrace layers with the corresponding circles in Figure 2.5a.

Figure 2.6 shows the β1 persistence terrace of the three circles point cloud from Figure 2.5a

using 50 bandwidth values from 0.01 to 1.5. Because Betti numbers are always integers, and

they tend not to have gaps when the two parameters (smoothing and filtration) vary by small

amounts, the surfaces plotted in a persistence terrace consist of flat layers that somewhat

resemble a rice terrace (see Figure 2.6a). Each k-dimensional topological feature in the point
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cloud contributes a layer to the persistence terrace; when there is a range of parameters for

which multiple features are detectable, the corresponding layers in the terrace stack on top

of each other and result in a higher altitude layer over their intersection.

The topological features in the point cloud are represented as terrace layers in the per-

sistence terrace and the shape and location of the layers reflect the size and density of the

corresponding features. In the satellite view of a persistence terrace, the horizontal width

(x-axis direction) is positively related to the size of the feature and the vertical length of a

terrace layer (y-axis direction) is proportional to the point density. Thus, we can match the

topological features to the terrace regions according to their size and the point density. For

example, the large-sized but low density circle a in Figure 2.5a is represented as the long

horizontal width but short vertical length terrace region (layer a) in Figure 2.6b.

Figure 2.7: The terrace area plot of the persistence terrace in Figure 2.6. The near-zero
flattening of the graph at terrace height 4 correctly suggests that there are 3 significant
topological features in the data (the height ≥ 4 layers are noise).

When the number of topological features is large it can be difficult to separate distinct

terrace layers by eye. We suggest a terrace area plot to aid in determining the significant

features. The terrace area plot presents the total area of each height in the persistence terrace.

Because the scales of the filtration and smoothing parameter vary from dataset to dataset,

we normalize each axis so that the total area is one. The persistence terrace in Figure 2.6 has

the terrace area plot seen in Figure 2.7; we see that the layers of height greater than or equal
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to four are all quite small, indicating that they correspond to spikes near the origin resulting

from noise, so the terrace area plot helps confirm that there are three significant topological

features. Thus the terrace area plot can be used to select significant layers similar to a scree

plot for a principal component analysis (though the areas in the terrace area plot can increase

unlike the variances in the scree plot). The largest height among the selected layers, three

in Figure 2.7, is the minimum number of significant features for which the corresponding

terrace layers simultaneously overlap. If one can find layers that do not overlap with the

selected height layer, then they can be counted as additional significant features, though in

practice this can be tricky.

The relationship between the persistence terrace and barcodes is illustrated in Figure 2.8.

Fixing a value of the smoothing parameter corresponds to taking a vertical slice of the

persistence terrace. While this slice of the terrace shows the Betti number βk at each filtration

value, the barcode indicates this Betti number with βk separate horizontal intervals. In

Figure 2.8 we have chosen three different values of the smoothing parameter (0.2, 0.6 and 1)

at which to slice the terrace and draw the corresponding barcode.

The persistence terrace allows us to separate out topological features even when there is

no value of the smoothing parameter that could detect all features. Recall that in Figure 2.4

we try two different values of the smoothing parameter and in each case lost the information

of one of the two circles (the low density large circle or the high density small circle).

Nonetheless, the persistence terrace in Figure 2.9b shows two clear, distinct height-one layers;

any optimal range of smoothing parameter is so small it is essentially impossible to locate.

Thus, one readily infers two distinct loops in the data, one large and the other smaller and

denser—even though the standard Rips approach fails due to noise and the robust Morse

approaches fail due to inadequacies of smoothing.
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Figure 2.8: Barcode plots at smoothing parameters 0.2, 0.6 and 1, corresponding to vertical
slices of the persistence terrace. Barcode plots traditionally use the x-axis for the filtration
value so we rotated counterclockwise 90 degrees to match with the y-axis of the terrace.

2.3.1 Computational algorithm

We introduce the R package “pterrace” for creating persistence terraces and terrace area

plots. The computation of a persistence terrace can be divided into three algorithmic steps:

Point cloud data
Step 1−→ Barcodes

Step 2−→ Betti numbers
Step 3−→ Persistence terrace
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(a) Scatterplot (b) Persistence terrace (satellite view)

Figure 2.9: Scatterplot of the noise-added two circles data and β1 persistence terrace. The
two distinct terrace layers correctly suggest two significant topological features, which would
be nearly impossible to detect using conventional Rips or Morse approaches.

First, we compute the barcodes for the Morse complexes corresponding to a pre-defined

vector of smoothing parameter values, using a specified smoothing function. This is accom-

plished using a simple “for loop” and any of the pre-existing persistent homology software

packages that includes Morse complex barcodes. We use the R package TDA (Fasy et al.,

2014) for this step. Second (Algorithm 1 in Appendix), we fix a dimension k and for each

fixed value of the smoothing parameter compute the Betti number βk using the k-dimensional

barcodes. Third (Algorithm2 in Appendix), we use the fact that for each fixed smoothing

parameter value the function βk just computed is a step function, only changing at the fil-

tration values computed in the previous step, in order to assemble all the Betti numbers into

the persistence terrace.

2.3.2 Detection of Features with Different Densities

We can use the persistence terrace to identify differences in the densities of data points

that make up the various topological features in the point cloud. As discussed earlier, the



23

persistence terrace can often be visually decomposed into height-one layers that overlap with

each other in various regions. The length of each height-one layer along the y-axis positively

relates to the density of points in that feature. Indeed, high density means that the smoothing

function will take large values, so the manifold it produces will be very tall over high density

regions and consequently that portion of its level set topology will remain constant for a

large range of filtration values.

(a) Scatterplot (top) and manifold from band-
width 0.2 (bottom) (b) Satellite view of β1 persistence terrace

Figure 2.10: Scatterplot, manifold, and persistence terrace of two circles data with different
densities. The high density circle b smooths to a high altitude volcano and appears as a
persistence terrace layer stretching along the y-axis in the satellite view (layer b).

To illustrate this, we generate 100 and 400 random points from two equal sized circles.

Figure 2.10a shows how the higher point density of the second circle is manifest as a higher

altitude volcano-shaped manifold after smoothing with bandwidth 0.2. In the β1 persistence

terrace, we see two height-one terrace layers with a clear region of height-two overlap. Looking

at the satellite view of the persistence terrace in Figure 2.10b, we see that both layers reach

horizontally to equal maximal values of the smoothing parameter (which, as we discuss in

the next subsection, stems from the fact that the circles have the same radius), but one layer

reaches much further vertically along the filtration axis. This taller terrace layer represents

the denser circle since for large values of the filtration parameter the super-level set of the
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tall volcano will be an annulus (which, topologically, is a circle) while that of the short

volcano will be empty. If we were to remove the dense circle from the point cloud and re-plot

the persistence terrace, we would see this tall terrace removed (so the height-two overlap

would drop down to height one) and the shorter terrace layer would remain unchanged.

Thus the two topological signals have been completely disentangled and identified by their

corresponding point densities.

2.3.3 Detection of Features with Different Sizes

We can also infer the size of topological features in a point cloud from the persistence

terrace. Just as density is measured by how far a terrace layer stretches along the y-axis in

the satellite view, size is measured by how far it stretches along the x-axis—that is, by the

range of smoothing parameters for which the corresponding feature is detectable. Indeed, as

the smoothing parameter increases, the corresponding manifolds become more rounded so

the finer topological features of the super-level sets get washed away.

(a) Scatterplot (top) and manifold from band-
width 0.5 (bottom) (b) Satellite view of β1 persistence terrace

Figure 2.11: Scatterplot, manifold, and persistence terrace of two circles with equal density
but unequal radius data. The volcano manifold from the small circle a fills in more quickly
as the smoothing parameter increases and appears as a persistence terrace layer stretching
along a narrow stretch of the x-axis in the satellite view (layer a).
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To illustrate this, we generate 200 points on a radius 1 circle and 800 points on a radius

4 circle so that the two circles have almost the same point densities. We see in Figure 2.11a

that they smooth into volcanoes of similar height. The β1 persistence terrace in Figure 2.11b

clearly consists of two overlapping height-one layers. These layers reach to roughly com-

parable heights along the y-axis since the two densities agree, but one terrace layer reaches

much further along the x-axis: the volcano coming from the smaller circle fills in more quickly

than that of the larger circle as the smoothing parameter increases.

2.4 Simulation Study

The data sets in the previous section are deliberately very simple in order to focus the

discussion and analysis of persistence terraces on specific attributes and behaviors. In this

section we explore two data sets that are less artificial: one involves different shapes and

more noise/distortions, the other comes from medical imaging.

2.4.1 Features with Noise

Here we demonstrate that the persistence terrace can be used to help analyze data that are

both noisy and less uniform than in the previous section. We generate a planar point cloud

with points clustering around four “holes” so that four topological loops should be present

(see Figure 2.12a). Specifically, we place 400 points uniformly randomly on a 1.5×1.5 square

then perturb these points with random N(0, 0.15) noise (square a). We create 800 points

around a radius 1 circle b: for the inside and outside of the circle, 400 points are generated

that follow an exponential distribution with rates 4 and 10, respectively. We also create an

equilateral triangle c and an isosceles triangle d, by placing 200 points randomly uniformly

on each triangle edge, but then perturb these points with N(0, 0.15) noise. The persistence

diagram in Figure 2.12b is computed using the Rips complex. While some triangles in that

diagram are far above the diagonal line, suggesting persistent loops in the data, there is far

too much noise to be able to infer the correct number of loops, namely β1 = 4.
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(a) Scatterplot (b) Persistence diagram

Figure 2.12: Scatterplot of four noisy shapes data and the Rips persistence diagram from
which it is essentially impossible to infer precisely four significant topological features.

We compute the β1 persistence terrace using 50 smoothing parameter values evenly dis-

tributed between 0.01 to 0.6. The persistence terrace detects up to 83 loops in the data, but

most of these only occur for relatively small values of the smoothing parameter. We show the

terrace area plot up to height 20 and persistence terrace in Figure 2.13. The rapid decline in

the terrace area plot through height four suggests there are at least three significant features

in the data. Although we expect the layers of height greater than three to be considered

noise, we put all levels greater than six into a single category in the persistence terrace

Figure 2.13b to avoid erroneous interpretation. The height-three layer in the persistence ter-

race is an overlap of the layers a, b, and c. The layer d is a distinct layer that is disjoint from

the height-three region and should therefore be interpreted as another significant feature.

Thus, by analyzing both the persistence terrace and the terrace area plot we find 4 = 3 + 1

significant loops in the data, as expected. We note, however, that there is a genuine chance

of misreading these plots—particularly as the data sets become more complicated—so these
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plots should be viewed as tools to help study the topology of data, rather than a fool-proof

methodology.

(a) Terrace area plot (b) β1 persistence terrace

Figure 2.13: Terrace area plot and satellite view of β1 persistence terrace for the noisy four
shape data. There are four prominent layers, corresponding to the four shapes, though one
of them (layer c) is stacked on top of another (layer b).

We can use the methods from the previous section to give a rough, qualitative description

of the four loops identified by the persistence terrace. The two largest loops (layer a and b)

have roughly the same size though one has slightly greater point density; this latter density

matches the density of another, slightly smaller loop (layer c); finally, the fourth loop (layer

d) is both smaller and denser than the rest. This description appears to accord with the

square, circle, isosceles triangle and equilateral triangle, respectively.

2.4.2 Counting Muscle Fibers

Muscle tissue consists of tube-like shapes known as muscle fibers which are bundles of fila-

ments ensheathed by a connective tissue known as endomysium. A cross-section of a muscle

thus reveals a collection of semi-homogeneous regions (if one blurs the filaments together),

one for each muscle fiber, that are delineated by walls made of endomysium. Counting the

number of muscle fibers in a cross-sectional slice of a tissue sample can, therefore, be viewed

as a topological problem: we need to compute the number of independent loops formed by
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the endomysium. Since the sizes of the loops vary and the cross-sectional image is bound to

have noise, this is a natural setting to apply the persistence terrace. For this example, we

adapt Figure 1 of Mula et al. (2013), the muscle tissue cross-section image.

Figure 2.14: Scatterplot of 6,500 points sampled from a muscle tissue cross-sectional image,
with added boundary lines to close the muscle fiber loops.

The first step in applying the persistence terrace method is to convert the cross-sectional

image into a point cloud. Since we are interested in the loops made from the endomysium,

we should sample points from the endomysium in the cross-sectional image. To do this, we

first convert the original RGB image to a grayscale intensity image. Next, we randomly

select 5,000 endomysial points from the grayscale image. We sample in proportion to the

grayscale intensity so that darker pixels have a higher likelihood to be selected. Since the

cross-sectional image contains several incomplete muscle fibers at the boundary that we

would like to include in the count, we add lines around the boundary of the black-and-white

image to artificially close off all the broken loops. For the particular cross-sectional image we

are using here, this results in 11 muscle fibers, including these partial boundary fibers. We

generate an additional 1,500 points by randomly sampling from the boundary. The resulting

point cloud is shown in Figure 2.14.

Note that the muscle fiber cross-sections vary considerably in size, shape, and convexity.

Note also that there are two types of noise: black pixels within the muscle fibers and white
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pixels within the endomysium, both due to sampling error. There is a further, more substan-

tial complication to the data: while muscle fibers are packed together rather tightly, there

are nonetheless small gaps where multiple fibers come together. Biologically, this means

there are small chambers enclosed by endomysium that are devoid of filaments and thus not

considered muscle fibers. From a data perspective, this means there are small white regions

within the walls that lead to small loops in the point cloud that should not contribute to the

muscle fiber count. The speckling noise renders Rips persistent homology inadequate while

these gap loops make it nearly impossible to choose a single optimal smoothing parameter.

These are both motivations for using the persistence terrace.

To build the β1 persistence terrace, we use 100 smoothing parameter values between 2

and 40. Figure 2.15 shows the terrace area plot and persistence terrace. The terrace area plot

shows that the minimum number of significant loops is either 9 or 10; the areas greater than

9 or 10 are small enough to be considered as noise. We color the heights greater than 12,

considered to be noise, as a single category in the persistence terrace Figure 2.15b. Also, we

can find a height-one triangular region, appearing around filtration value 20µ and smoothing

parameter 8 (indicated by an arrow), which does not overlap with the height 9-10 terrace

region. This suggests that we can count one additional small-sized high point density muscle

fiber. Therefore, by considering the additional triangular region, we find 10-11 muscle fibers

in total.

We can also see that there is a fairly prominent vertically oriented region extending to

filtration value 60µ, giving terrace heights in the range 1-3. This implies that there is a small

sized but high point density loop. The terrace region may correspond to the muscle fiber

gaps (loops in the endomysium that do not enclose any filaments). It is difficult to get a

precise reading of all the gaps in the scatterplot of Figure 2.14 because they are filled with

noise pixels. These non-fiber loops are small in size but have comparable point density to the

actual muscle fibers. Thus, they correspond to the top-left region in the persistence terrace.



30

(a) Terrace area plot

(b) β1 persistence terrace

Figure 2.15: Terrace area plot and satellite view of the β1 persistence terrace of the point
cloud sampled from the muscle tissue cross-sectional image. The shape of the terrace area
plot suggests at least 9–10 overlapping terrace layers, and the hand-drawn arrow in the
persistence terrace reveals a non-overlapping layer, giving 10–11 total loops in the data.

While this portion of the analysis is more murky, it does seem that the persistence terrace

is also able to detect and count some of the evident muscle fiber gaps.
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2.5 Discussion

2.5.1 Algorithmic Improvements

To create a persistence terrace, we compute the Morse complex persistent homology for each

value of the smoothing parameter specified in a pre-determined range. For large data sets,

each persistent homology computation can be intensive. Fortunately, since these persistent

homology computations are all independent, the procedure is embarrassingly parallelizable:

just compute persistent homology for each smoothing value on separate processors then

assemble. In our R package, we provide this parallel computing option.

We choose the range of smoothing parameter values heuristically then subdivide into

equally sized intervals; if the terrace plot appears truncated horizontally, the range should

be widened. A more subtle issue is choosing the number of intervals: too many intervals and

the computational time becomes unreasonable, too few and the persistence terrace looks

coarse and becomes difficult to read. Figure 1 in Appendix shows four persistence terraces

computed from the Figure 2.5a data, using 25, 50, 75, and 100 smoothing parameter values.

We see in that figure that the persistence terrace stabilizes with respect to this increase

in resolution rather quickly. For more noisy and complicated data this stabilization will

naturally require a greater number of smoothing parameter intervals.

2.5.2 Varying the Dimensions

In this chapter we have focused on the β1 persistence terraces for planar point clouds.

Extending from point clouds in R2 to arbitrary Rn is trivial: all steps in the algorithms

already allow for this possibility, as does the qualitative analysis of the resulting persistence

terraces. One can also extend from β1 topological features (i.e., loops) to any other dimen-

sion. For higher dimensions, the overall analysis should be quite similar. Most applications

of TDA in the literature focus on β1 and β0, so we did not explore β2 or higher persistence

terraces in our analysis but one could certainly find applications. On the other hand, we
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try some experiments with β0 persistence terraces and were unable to draw any conclusions.

Since β0 is the number of connected components, the β0 persistence terraces should encode

multi-scale clustering information about the point cloud, but it is limited by the fact that

clustering involves more than just point density. We will explore this point in future work.



Chapter 3

Interface between Topological Data Analysis and Statistical/Machine

Learning

3.1 Background

TDA provides information about the shape of data, which can reveal different aspects com-

pared to existing approaches. Therefore, statistical/machine learning (SML) results may be

improved by combining information obtained by TDA. However, persistent homology com-

putation results have complex structures; they are given in intervals, and the number of

intervals generated varies from dataset to dataset. These facts make it difficult to implement

persistent homology results directly into SML methods because most of the latter take a

vector as the input variable. There are two main ways of combining SML algorithms with

persistent homology. First, a kernel method defines distances between persistence diagrams

or embeds persistence diagrams in reproducing kernel Hilbert spaces (Kwitt et al., 2015;

Kusano et al., 2016; Robins and Turner, 2016). Second, a feature method transforms the

output of persistent homology into the standard vectorized format so that a real vector is

associated with each barcode (Adcock et al., 2016; Kalǐsnik, 2018). The computed output

vectors can be used as input variables in SML. In this chapter, we suggest an improved

approach for a feature method. We first present a list of features and discuss methods to

choose a subset of features.

In the following subsections, we introduce the potential features using the following nota-

tion: consider a k-dimensional barcode with n number of bars, denote the left endpoint of

the ith bar by xi, the right endpoint by yi, the length of bar by yi − xi and let ymax denote

the right-most endpoint of any bar appearing in the barcode.

33
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3.2 Features for Interface between TDA and SML

Adcock et al. (2016) suggest using the polynomial functions and Kalǐsnik (2018) pro-

poses using tropical coordinates on the barcode space. Tropical coordinates are defined

based on tropical (max-plus) algebra, which studies the tropical semiring (R ∪ {∞},⊕,⊗),

with the operations x ⊕ y = min{x, y} and x ⊗ y = x + y (Speyer and Sturmfels, 2009;

Maclagan and Sturmfels, 2015). Carlsson and Verovšek (2016) define min-plus and max-

plus polynomials as a linear combination of products of elements in the tropical semiring

and rational tropical functions as a quotient of min/max-plus polynomial expressions,

and Kalǐsnik (2018) finds sets of the polynomials and rational functions that can be used

for barcodes. For example, one of the max-plus polynomials used in Kalǐsnik (2018) is

maxp<q<r ((yp − xp) + (yq − xq) + (yr − xr)), where r ≤ n. These approaches offer barcode

features given in a real vector that can be used in the existing SML algorithms.

Data → Nested Complexes → Set of Intervals → Euclidean Vector

In their examples, these authors show high classification rates using a small number of

features. However, the suggested polynomial features in Adcock et al. (2016) are case-specific.

The tropical coordinates suggested in Kalǐsnik (2018) satisfy a stability property with respect

to Wasserstein and bottleneck distances, but the size of an all possible set of features is large.

A disadvantage of both of these approaches is that, for a given application, it is not known

how to efficiently select the specific features to be used in the analysis. In addition, the

topological characteristics of the features are not given. These make it difficult to apply and

interpret the SML result. Instead, we suggest a new approach using a larger set of barcode

features along with brief explanations.

3.2.1 Summary Statistics and Polynomials

The simplest way to summarize numeric values is using summary statistics: mean, stan-

dard deviation, quartile, maximum, minimum, etc. Most of these statistics are for univariate
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variables, which cannot be directly applied to interval data. Intervals obtained from per-

sistent homology cannot be analyzed by symbolic data analysis Billard and Diday (2007);

the barcodes are not interval-valued symbolic random variables and the number of barcodes

generated varies from dataset to dataset. We convert interval values into univariate variables

and describe distributional information such as a center and spread. Examples of functions

and univariate variables are listed in Table 3.1. Polynomials suggested in Adcock et al. (2016)

are a subset of the combination of the listed functions and variables. Although the converted

univariate variables may not contain entire information as barcodes, we expect the statistics

to reveal different aspects. Researchers may investigate different aspects of intervals by com-

bining functions and variables such as assigning different weights to the length by selecting

different degrees and using functions such as log and exponential. As an example, let us

assume that interval values vary from 0 to 1. If the degrees are set to be a > b > 1 for the

variable xai (yi − xi)b, then the variable will give more weight to the shorter-length intervals.

Also, other than simple statistics, we can also consider creating functions combined with

certain conditions. For example, we can compute the sum of the k largest/smallest values

instead of the sum of all values. Combination of functions such as the sum of yi − xi where

xi > Q3(xi) might uncover different information.

Table 3.1: List of possible functions and variables

Functions

Mean
Quartile
Standard deviation
Order statistics (i.e. max/min)
Sum
Conditional sum

Variables

xi
yi
yi − xi
ymax − yi
xmax − xi
Combination of above variables (i.e. xai (yi − xi)b)
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The basic statistics could also be computed for the persistence landscape. For example,

one can count the number of peaks, or compute the area under the persistence landscape,

or compute the same statistics as in Table 3.1 for the bars that are used to construct each

persistence landscape.

3.2.2 Regression Coefficients

An alternative approach to bridging the gap between TDA and machine learning is comparing

the compactness of data using dimension 0 barcodes obtained from the direct estimation

method. For direct estimation, dimension 0 barcodes illustrate the life of components that

are created at ε = 0 and merged at ε = yi (endpoints). Because all data are considered

as separate components at the filtration value ε = 0, the number of dimension 0 barcodes

created is same as the number of data points. As the filtration value increases, the size of

balls increases, and data points start to be connected. The endpoint of the dimension 0

barcode represents the filtration value at which the separate components are all merged into

one connected component. Even though dimension 0 barcodes are given in interval form, it

is sufficient to analyze only endpoint values because they all start at the same place. Thus,

for the regular TDA’s dimension 0 analysis, we can convert the interval data of (xi, yi) into

the single value data yi.

Once the number of the connected components is computed, we can plot them according

to the filtration. Such a plot would visualize the compactness of the data. For example, if we

analyze two datasets with different densities, then the number of connected components will

decrease faster for the dense dataset as the filtration increases. Moreover, we can fit a model

to the number of connected components. The coefficients of the fitted model represent the

density or the compactness of data. We can build classifiers with coefficients values using

existing classification methods. The endpoint curve of dimension 0 (xi = 0) is used to

compare compactness of brain networks in Lee et al. (2011).
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We show how regression coefficients can be applied to compare compactness using a

simulation study. We apply regular TDA to data with four different densities. For each

setting, we place 360 data points on the three-by-three square. As shown in Figure 3.1,

different numbers of random bivariate uniform data are assigned to each one-by-one square.

The data points of setting 1 are concentrated on the left-upper part of the square, and

the points of setting 4 are uniformly distributed across the region. The data points get less

compact as the setting numbers increase.

Figure 3.1: Scatterplots of four density settings

We generate 20 sets of data for each setting and run regular TDA with dimension 0

barcodes as in the previous subsection. Figure 3.2 shows the number of connected components

according to the filtration value. Under setting 1 (red), data are connected quickly until

around 30 connected components are left, and the merging speed gets slower after that. This

agrees with the distribution of setting 1 that has three one-by-one squares of 10 points in the

lower-right corner. On the other hand, setting 4 trends (purple) decrease at a constant rate

and look like straight lines. This is because the 360 data points are uniformly distributed on

the three-by-three square.

We fit four models; first-, second-, and third-degree polynomial and logit models. Figure

3.3 shows the coefficients of the fitted models. Compactness of data is summarized into

numeric coefficient values. The first-degree polynomial and logit models successfully separate

data with different densities just with two coefficients.
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Figure 3.2: Number of connected components of density data

3.3 Feature Selection and Learning Methods

The number of features that can be generated in an example such as that of Section 3.2 can

easily exceed the number of observations. Feature selection methods should be used to select

a subset of features for constructing (prediction/classification/clustering) model. In many

applications, it has become necessary to use feature selection methods. These methods have

been used to 1) prevent over-fitting of the model, 2) improve model performance, 3) lower

computational cost and 4) gain better insight from data (Guyon and Elisseeff, 2003; Fan and

Fan, 2008; Li et al., 2017). Although the art/science of choosing barcodes themselves is still

in the early stages, there exist several approaches that can be utilized for barcode feature

selection.

Feature selection methods generally focus on reducing two different types of features;

redundant and irrelevant variables (Guyon and Elisseeff, 2003). If features contain similar
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(a) First degree polynomial
(b) Second degree polynomial

(c) Third degree polynomial

(d) Logit model

Figure 3.3: Coefficients of fitted models

information about the data, then they are redundant. In many cases, performance of methods

improves when redundant features are removed. One of the ways to identify redundant fea-

tures is through the use of correlation (Hall, 1999). For example, when two features are highly

correlated, then one of the features that is more highly correlated with the other variables can
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be dropped. Backwards elimination can also be applied to remove irrelevant features (Miller,

1990); this is a greedy algorithm that removes features one at a time, choosing a single

feature at each step whose removal maximizes the accuracy rate. As features are removed

in this manner, accuracy rates generally first increase (as over-fitting is reduced) and then

decrease (as under-fitting begins to take over). The peak of this backwards elimination curve

indicates a reasonable balance and identifies a moderately sized collection of features that

work well together for classification.

3.4 Application to Fingerprint Classification

Near the end of the 19th century, Sir Francis Galton introduced a systematic framework for

fingerprint analysis (Galton, 1892). One component of his work was to divide all fingerprints

into three classes: arch, loop, and whorl. This classification, often with refinements (such

as subdividing arches into plain and tented types, and dividing whorls into singles and

doubles) is still used by nearly every fingerprint classification scheme today. Automated

fingerprint classification is useful for fingerprint matching algorithms, since it reduces the

search space involved; it also provides a fertile testing ground for more general explorations

in pattern analysis. There is a wide variety of approaches to automated classification, tested

on various real and simulated fingerprint databases; see the survey articles Yager and Amin

(2004); Ahmad and Mohamed (2009) and the book chapter of Maltoni et al. (2009) for

more background and context, an overview of proposed methodologies, and a comparison of

performances.

3.4.1 Fingerprint Data

We test our methods on the National Institute of Standards and Technology Special Database

27 (NIST SD-27). The database is a forensically-oriented fingerprint database designed to

help researchers develop and hone matching algorithms for fingerprints of varying quality. It



41

was originally released in 2000 and then re-released in 2010 with higher resolution images.

The database is composed of 258 fingerprint entries, each containing the following data:

• A latent fingerprint image obtained from a crime scene. The finger could be any of the

ten digits, and the quality varies from “good” to “bad” to “ugly”.

• A police department ink-roll, called a tenprint, of the same finger on the same individual

as the latent print. While these images are higher quality than even the best latents,

they still contain noise, noticeable imperfections, and cropping artifacts inherent to the

ink-roll process that pre-dates modern digital fingerprint imaging technology.

• A fingerprint class identified by a human expert: plain arch, tented arch, right slant

loop, left slant loop, whorl, or unclassifiable (see Figure 3.4 for some examples).

• Four sets of minutiae points that were hand-identified by experts: (1) all the minutiae

that were directly discerned on the latent print (called ideal latent minutiae), (2)

all the minutiae that were directly discerned on the tenprint (called ideal tenprint

minutiae), (3) the latent minutiae that were identified with corresponding tenprint

minutiae (called matched latent minutiae), and (4) the tenprint minutiae that were

identified with corresponding latent minutiae (called matched tenprint minutiae). Each

minutiae point is recorded by its coordinates in the fingerprint image; also recorded is

the orientation, a radial measure of the direction of the bifurcation/termination where

the minutiae point occurs (see Figure 3.5).

Some fingerprint entries are missing an ink-roll image or have the class listed as unclas-

sifiable; we remove these from the database, resulting in 245 of the original 258 entries. In

some cases the fingerprint expert could not decide on a single class and so listed multiple

possible classes; in such cases we use the first listed class as that is the one in which the

expert had the greatest confidence. The distribution of classes in the 245 fingerprints is then:

5.3% arches, 58.4% loops, and 36.3% whorls. According to Wilson et al. (1993), the naturally

occurring probabilities of these classes in a general human population are 6.6% arches, 65.5%
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(a) Arch (b) Loop (c) Whorl

Figure 3.4: Examples of the three fingerprint classes from the dataset NIST SD-27

(a) Types of minutiae (b) Minutiae on fingerprint image

Figure 3.5: Minutiae

loops, and 27.9% whorls, so this NIST database is fairly representative in this regard. The

number of minutiae points in these 245 fingerprints ranges from 48 to 193.

As can be seen in Figure 3.4, the ink-roll images in this database include varying amounts

of white space and regions of the finger (often extending past the first joint) and they
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frequently contain extraneous markings. The only image-processing we perform is manual

cropping to mostly eliminate the white space and focus the image on the region of the

fingerprint above the main horizontal crease in each finger. Some examples of cropped images

are shown in Figure 3.6.

3.4.2 Persistent Homology Modeling

Minutiae-based Approach

A natural TDA approach is to view fingerprint minutiae points as a point cloud in R2—

that is, to use minutiae point locations as the input for persistent homology. As we later

discuss in Section 3.4.4, this yields a rather mediocre classification performance. A remarkable

improvement is obtained by incorporating the minutiae point orientations. The key insight

for how to do this is that persistent homology allows the point cloud to live in any metric

space, not just Euclidean space Rm. Minutiae point orientations are simply angles, so they are

naturally viewed as points on the unit circle S1. The minutiae points on a given fingerprint

then form a point cloud in the manifold R2 × S1, which is a higher-dimensional analogue

of the cylinder. There are various natural choices for endowing this product space with a

metric. The choices we use are based on the `1 metric (taxicab or Manhattan), the `2 metric

(Euclidean), and the `3 metric. Given the set of N minutiae points

p1 = (a1, b1, θ1), . . . , pN = (aN , bN , θN) ∈ R2 × S1

of a fingerprint, we first normalize by replacing each ai with

ai −min1≤j≤N{aj}
max1≤j≤N{aj} −min1≤j≤N{aj}

and similarly for bi, and each θi with θi
max1≤j≤N{θj}

, so that all coordinates and angles are

between 0 and 1. We then define five different metrics computing distances between any pair

of these normalized points:
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(c) 0.0 0.1 0.2 0.3 0.4 0.5
time
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time
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time

(d) 0.0 0.1 0.2 0.3 0.4 0.5
time
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time
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time

Figure 3.6: (a) Cropped images of a loop (left), whorl (middle), and arch (right). (b) Scat-
terplots of the corresponding normalized minutiae coordinates (the vertical axis is the ori-
entation, so the top and bottom squares should be identified). (c) The 0-dimensional (gray)
and 1-dimensional (black) barcodes for the unoriented minutiae point clouds in R2. (d) The
barcodes for the minutiae point clouds in R2 × S1 with the metric d2 defined earlier. Pre-
cisely interpreting these barcodes is not necessary; for the purposes of supervised learning
we simply need that the barcodes reflect some relevant global geometric structure in the
fingerprints.
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d1(pi,pj) = |ai − aj|+ |bi − bj|+ θij

d1, 1
3
(pi,pj) =

1

3
(|ai − aj|+ |bi − bj|) +

2

3
θij

d1, 2
3
(pi,pj) =

2

3
(|ai − aj|+ |bi − bj|) +

1

3
θij

d2(pi,pj) =
√

(ai − aj)2 + (bi − bj)2 + θ2ij

d3(pi,pj) = 3

√
(ai − aj)3 + (bi − bj)3 + θ3ij

where

θij =


|θi − θj| if |θi − θj| ≤ 1

2

1− |θi − θj| if |θi − θj| > 1
2

.

For each of the 245 fingerprints of interest in NIST SD-27, we compute 12 distinct bar-

codes: the 0- and 1-dimensional persistent homology for the minutiae point clouds in R2

(with Euclidean metric and orientations ignored) and in R2 × S1 using each of the five dif-

ferent metrics listed above. We use the R package TDA (Fasy et al., 2014) for persistent

homology computation. See Figure 3.6 for an example of persistent homology compuation

results.

Image-based Approach

The point cloud approach to persistent homology is just one of several options. Another form

of persistent homology uses a discrete variant of Morse theory. We apply this Morse-based

method to fingerprint data as follows:

1. read in the 245 cropped grayscale JPEG fingerprint ink-rolls in NIST SD-27, invert

them (so that the background is black instead of white) and store as real-valued

matrices;

2. normalize each matrix by first subtracting off the minimal matrix value and then

dividing the new entries by the new maximal value;
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3. compute the 0- and 1-dimensional superlevel set persistent homology barcodes of the

surface defined by each normalized matrix (see Figure 3.7, top row), where the grid

resolution is provided by the matrix itself (i.e., each grid square is a single matrix entry,

which corresponds to a single JPEG pixel).

In principle these barcodes record the global topology of the fingerprint ridge pattern, but

there is so much noise and so many minor fluctuations that it is nearly impossible to see this.

Regardless, the supervised learning classification pipeline works better when accessing finer

geometric information, which we achieve by a novel “slanting” method that we introduce

here. After normalizing the JPEG image matrices in steps 1 and 2 above, we obtain additional

barcodes as follows:

4. multiply the normalized matrix by the linear function f(x, y) = y then compute the 0-

and 1-dimensional barcodes for the superlevel set persistent homology (see Figure 3.7,

middle row); do the same for the function f(x, y) = x;

5. threshold the normalized matrix by setting all values above the mean value of the

matrix to 1 and all values below the mean to 0, then multiply by the function f(x, y) =

y and compute the 0- and 1-dimensional sublevel set barcodes (see Figure 3.7, bottom

row); do the same for the linear function f(x, y) = x and the non-linear function

f(x, y) = xy.

This yields 12 barcodes for each fingerprint—six 0-dimensional and six 1-dimensional—just

as we have with the minutiae-based approach. The motivation for this slanting process is

that the persistent homology of the sublevel/superlevel sets after slanting is related to the

“sweep across” persistent homology of the ridge curves and so measures the tortuosity of the

ridges, not just their global topology. The thresholding step accentuates the ridge pattern

and provides another way to increase the number of barcodes available (as does alternating

between superlevel sets versus sublevel sets).
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time

Figure 3.7: Top row: an ink-roll JPEG, after normalizing and inverting, viewed as a 3D
surface, and the 0-dimensional (gray) and 1-dimensional (black) barcodes of the superlevel
sets. Middle row: the same image after slanting by the function f(x, y) = y, and its superlevel
set barcodes. Bottom row: same slanting, but first the image is thresholded to convert from
grayscale to black-and-white, and here the barcodes use sublevel sets. We employ these
variants (and the others described earlier) in an effort to access as much geometry of the
ridge pattern as possible.



48

3.4.3 Features Used in Classification

We use the same notation as Section 3.2. We draw our feature vectors from the following

collection of real-valued functions defined on the space of barcodes:

• Statistical features

The distribution of bars provides the following statistical features:

g1 = mean{xi} g2 = mean{yi} g3 = mean{ymax − yi} g4 = mean{yi − xi}

g5 = median{xi} g6 = median{yi} g7 = median{ymax − yi} g8 = median{yi − xi}

g9 = SD{xi} g10 = SD{yi} g11 = SD{ymax − yi} g12 = SD{yi − xi}.

• Polynomial features

We use the following polynomial features:

f1 =
∑n

i=1(yi − xi) f2 =
∑n

i=1 n(yi − xi)

f3 =
∑n

i=1(ymax − yi)(yi − xi) f4 =
∑n

i=1 n(ymax − yi)(yi − xi)

f5 =
∑n

i=1(ymax − yi)2(yi − xi)4 f6 =
∑n

i=1 n(ymax − yi)2(yi − xi)4.

The even-numbered features (f2, f4, f6) include the number of intervals n so that they

can consider spread of variables. Also, features using higher degree terms (f5 and f6)

give higher weight to the longer length bars compared to f3 and f4.

• Regression coefficients

We sort the endpoints y1, . . . , yn in decreasing order and fit a degree ` polynomial

regression model. The coefficients c`0, . . . , c
`
` are used as features. We use ` = 1 and

` = 2.

In total this yields 23 = 6 + 5 + 12 features for each barcode. Since we have 12 minutiae-

based barcodes and 12 image-based barcodes, we obtain 552 = 23(12 + 12) features for each

fingerprint, though some features will be identically zero so we omit these (and many of

these features are highly correlated—a point we return to shortly). As is common practice in

machine learning, we normalize the feature vectors so that each has mean zero and standard

deviation one.
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We use linear discriminant analysis (LDA) classifiers (Fisher, 1936), one of the classic

classifier, to show that the classification result is mostly due to the features, not a state-of-

the-art classification algorithm itself. Since our database is rather small (there are 143 loops,

89 whorls, and only 13 arches), two important steps are necessary: (1) feature selection is

first performed to mitigate the curse of dimensionality, and (2) rather than subdividing into

training and testing subsets, we use the leave-one-out-cross-validation (LOOCV) method

(Stone, 1974; Geisser, 1975; Picard and Cook, 1984). That is, after fixing an appropriate

subset of the 552 features, we consider each fingerprint Fi and train an LDA classifier on the

244 complementary fingerprints {Fj}j 6=i then attempt to classify Fi; the LOOCV accuracy

rate is the number of correct classifications, for i = 1, . . . , 245, divided by 245. This is a

standard machine learning technique when dealing with small data sets (James et al., 2013).

For feature selection, we employ two established techniques. First, once a collection of

features of interest has been chosen manually (e.g., all the minutiae-based barcodes or all the

image-based barcodes), we use the findCorrelation function in the R package “caret” to

remove redundant features that are highly correlated with other features, based on a cutoff

value 0.9. Next, we perform backwards elimination to remove irrelevant features. Although

this tends not to find the optimal subset of features for classifying, it is a reasonable approx-

imation given the computational infeasibility of searching all 2552 possible subsets.

3.4.4 Classification Results

Since the dominant fingerprint class in this database is the loop, with 143 out of 245 occur-

rences, the baseline accuracy rate that all approaches here should be compared to is 58.4%.

The accuracy rates we obtain using persistent homology are summarized in Table 3.2, though

first some explanation is in order. For each collection of features, we choose a cutoff value

such that after removing the highly correlated features within this collection determined

by findCorrelation, there are between 70 and 90 features remaining (except for “unori-

ented minutiae features,” meaning the minutiae point clouds in R2, since there are only 46
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features before removing the highly correlated ones). We then run backwards elimination

on these latter features to thin them down further and select the subset of features with

the highest accuracy rate among those tested during the backwards elimination. This is the

“peak accuracy rate” reported in the table. The “number of features” indicates the size of

the subset(s) found by backwards elimination that yields this peak accuracy rate (in some

cases multiple subsets achieved the same peak accuracy rate). The minutiae-based features

are mostly much stronger than the image-based features, except a few of the thresholded

image xy-slant features are fairly competitive. Also, the unoriented minutiae-based features

are not as strong as any of the oriented variants.

Table 3.2: The peak accuracy rates obtained when selecting various sets of features, removing
highly correlated ones, then performing backwards elimination on the remaining ones. The
rate listed is the maximum obtained this way for each group, and the number of features is
the size of the subset(s) of features achieving this rate.

Peak accuracy rate Number of features
All 552 features 93.1% 32

The 276 0-dimensional features 82.0% 19, 25, 28
The 276 1-dimensional features 93.1% 32, 33

The 276 minutiae-based features 91.4% 48
The 276 image-based features 77.1% 37, 40

The 46 unoriented minutiae features 62.9% 11

It is difficult to pin down an accuracy rate for state-of-the-art methods appearing in

the literature, since different data sets are used, different preprocessing steps are permitted,

different numbers of classes are considered, etc. Useful tables of accuracy comparisons among

a wide range of methods are given in Maltoni et al. (2009) and in Yager and Amin (2004).

Most of these methods use larger databases, which would improve a supervised learning

method such as ours, but they also allow four or five classes instead of our three, which

certainly makes the classification problem harder. Regardless, we get a coarse estimate by

noting that all these published accuracy rates range between 81% and 97%. It should be

noted, however, that some of these reported scores in other literatures are slightly inflated
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Table 3.3: The confusion matrices for the two best classifiers using 32 features selected from
552 features (top) and 1-dimensional features (bottom).

Predicted
Loop Arch Whorl Total

Actual
Loop 138 2 3 143
Arch 6 7 0 13
Whorl 6 0 83 89
Total 150 9 86 245

Predicted
Loop Arch Whorl Total

Actual
Loop 137 0 6 143
Arch 5 8 0 13
Whorl 6 0 83 89
Total 148 8 89 245

compared to what we report in Table 3.2. For some fingerprints, it is difficult to classify

them into a single class. In these cases, fingerprints are given multiple classes. Some studies

considered an observation to be correctly classified if the algorithm yields any of the listed

classes fingerprints labelled with multiple classes. On the other hand, we only accept the first

class listed by the NIST experts. Also, some studies allow a certain rejection rate, meaning

a fixed percentage of difficult fingerprints are removed from the database prior to computing

an overall accuracy rate—we use a 0% rejection rate: every fingerprint in NIST SD-27 that

has a class indicated and a matching JPEG image is included.

The confusion matrices in Table 3.3 show that for our two best classifiers, nearly half

of the arch fingerprints are misclassified as loops but most loops and whorls are correctly

classified. A larger training set could help with this issue, but inspecting fingerprints (B) and

(C) in Figure 3.4 shows that loops and arches can in fact appear quite similar.

We see from Table 3.4 that for the best subset of features we found among the 552, most

but not all are 1-dimensional, there is a mix of minutiae-based and image-based, and certain

functions (such as g11 = SD{ymax − yi}) show up much more frequently than others. The
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Table 3.4: With the notation for our features introduced in Section 3.4.3, these are the 32
features selected from among all 552 that achieve our best rate, 93.1%.

0-dimensional
Minutiae cloud d3 metric f5 g11

Image surface g11
Image x-slant f5

Image thresholded xy-slant g11

1-dimensional
Minutiae cloud d1 metric g8

Minutiae cloud d1, 1
3

metric f5 g8
Minutiae cloud d1, 2

3
metric f3 f6

Minutiae cloud d2 metric c11 g1 g3 g4 g8 g10 g12
Minutiae cloud d3 metric c22 f6 g3

Image surface f5
Image y-slant g3

Image thresholded x-slant f2 g11
Image thresholded y-slant c21 c22 g4 g11 g12

Image thresholded xy-slant c22 g1 g2

strongest features tend to be 1-dimensional, though the 0-dimensional features provide some

crucial arch versus loop/whorl separation.

3.5 Discussion

3.5.1 Stability of Suggested Features

Among the features listed in Section 3.2, only the tropical coordinates of Kalǐsnik (2018) have

been proven to satisfy stability. However, it does not mean that all the non-tropical features

should not be considered. The non-tropical coordinates features have also achieved good

performance in applications. In the handwritten digit classification application in Kalǐsnik

(2018), the classification rate of tropical coordinates differs by a small amount (less than

1.5% point differences) compared to that of polynomials of Adcock et al. (2016). The higher
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prediction rate in Kalǐsnik (2018) could be due to the larger number of features (six features in

tropical coordinates vs. four features of polynomials) not the stability of tropical coordinates.

As seen in our fingerprint application, the non-tropical coordinates features also achieve

high classification rate. Especially, we believe that stability might not be a big concern in

our suggested pipeline. We expect that features that are not stable might be automatically

removed during the feature selection process. Also, it has not been established theoretically

that only stable features guarantee good classification results. It is possible that features

could measure variabilities in a transformed persistence diagram, therefore, do not satisfy

stability theorem with respect to the Wasserstein or bottleneck distances.

3.5.2 Fingerprint Data Analysis

The assertion in Yager and Amin (2004) that minutiae points are not useful for classifica-

tion is unfounded and, evidently, untrue. While it is difficult to compare the performance

of automated fingerprint classification algorithms across different databases and methodolo-

gies, our minutiae-based persistent homology (with a peak accuracy rate of 91.4% in our

3-class setting) appears to perform squarely within the range of accuracies demonstrated by

other published fingerprint classification methods. Interestingly, however, the performance

precipitously drops when we use only the minutiae locations, rather than the locations and

orientations (indeed, our peak accuracy rate there is 62.9%, barely above the baseline com-

parison rate of 58.4% achieved by always guessing “loop”). From a practical perspective,

this reduces the utility of our method since many databases do not include the minutiae

orientations and automatically extracting them is an additional non-trivial layer of prepro-

cessing. From a theoretical perspective, however, this prominent role played by the minutiae

orientations provides some novel insight into how the global geometry of fingerprint classes

influences the local geometry of the ridge pattern—though making this precise remains a

challenge.
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Turning to our image-based persistent homology approach, we find a peak accuracy rate,

77.1%, that is significantly above the baseline comparison but somewhat short of the state-of-

the-art methods in the literature. However, the fact that the only preprocessing this method

uses is cropping (not rotating, translating, smoothing, cleaning the image, etc.) means that

it still shows significant promise and should be studied further. Moreover, by combining the

image-based approach with the minutiae-based approach, our peak accuracy rate increases by

1.7 percentage points (from 91.4% to 93.1%), a small but non-trivial improvement. Intrigu-

ingly, in the set of features selected by backwards elimination to achieve this peak accuracy

rate, nearly half are image-based (15 out of 32, see Table 3.4) even though in terms of clas-

sification (Table 3.2) the minutiae-based features are much stronger than the image-based

ones. One possible explanation for this is that the minutiae-based features classify quite well

and do the bulk of the work, but to push the rate even higher one needs to add geometric

information that is dissimilar to what the minutiae data discern—and while the image-based

features accomplish this, each one is so weak that it takes a fairly large number of them to

yield a noticeable improvement.



Chapter 4

Statistical Analysis Pipeline for Porous Material Images using

Topological Data Analysis

4.1 Background

Algebraic topology offers powerful mathematical tools for describing the connectivity of

space, and how the connectivity varies. It connects the local shapes in a dataset to several

global connectivity properties, in a concrete, measurable way. Porous materials have been

studied using pore geometry and topological characteristics (Scholz et al., 2012; Herring et al.,

2013). These approaches focus on analyzing materials by computing Euler characteristics χ,

which is the alternating sum of Betti numbers (χ = β0 − β1 + β2 − β3 + · · · ). On the

other hand, persistent homology provides a numerical summary of the topological features

(connected components, loops, shells, etc.) as a function of a metric. Persistent homology

enables researchers to quantify dynamics of topological characteristics and to predict physical

behavior of porous materials. It can provide more information than reporting the Betti

numbers or Euler characteristics (Robins et al., 2016). In this chapter, we propose a statistical

porous materials analysis pipeline using persistent homology.

4.2 Data

We analyze three types of rock data in this chapter. The first is a Focus Ion Beam-Scanning

Electron Microscopes (FIB-SEM) dataset of Selma Chalk. The FIB cuts the surface of

materials and SEM provides a high resolution image of the surface. The Selma Chalk

dataset is based on previously binarized images used in the study by Yoon and Dewers

55
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(2013). Figure 4.1 shows original and binarized images of the Selma Chalk. The original

dataset includes a grayscale image that is 930 × 520 × 962 voxels with 15.6 nm resolution

(14.8× 8.3× 15.3 microns in size). There are in total six different sizes of subvolumes: 1503,

3003, 4003, 5003, 600 × 520 × 600, and 765 × 520 × ×765 voxels. Yoon and Dewers (2013)

estimate parameters for each subvolume including porosity, permeability, tortuosity, and

anisotropy. Second, we analyze two types of sandstones; Bentheimer and Doddington. The

images are 700×700×700 and 600×600×700 voxels in size. The geophysical properties for

these sandstones are not computed. Last, we analyze sandstone images obtained under nine

different stress-strain levels. The stress-strain dataset is generated by simulations. Table 4.1

summarizes the three types of material image data.

Figure 4.1: Grayscale (left) and binarized (right) image slices of the Selma Chalk by Yoon
and Dewers (2013).

Table 4.1: Data summary

Rock type Generation Size (pixels) Data type Properties known

Selma Chalk FIB-SIM 930× 520× 962
Grayscale,
Binary

Porosity, Permeability,
Anisotropy, Tortuosity

Bentheimer
Doddington

FIB-SIM
700× 700× 700
600× 600× 700

Grayscale -

Sandstone Simulations - Grayscale -

4.3 Statistical Analysis Pipeline

In this section, we explain a porous materials analysis pipeline using persistent homology.

The analytic scheme is summarized below. Based on the persistent homology computation
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result, we suggest methods to determine an appropriate sampling size called the statistical

Representative Elementary Volume (sREV) and to predict geophysical properties.

1. Data pre-processing I

• Original Images → Binary images

2. Persistent homology computation (Robins et al., 2011, 2016)

• Binary images → Transformed grayscale images → Cubical complexes → Persis-

tence diagrams

3. Data pre-processing II

• Persistence diagrams → Vectorized persistence diagrams

4. Application I: Sampling

• Generate different sized sub-volumes → Compute persistent homology → Vec-

torize persistence diagrams

• Vectorized persistence diagrams → Similarity metric → Determine sREV

5. Feature extraction

• Vectorized persistence diagrams → Principal component analysis → Loadings

6. Application II: Modelling

• Fit a penalized regression model → Prediction

• Fit SML models → Clustering/classification

4.3.1 Persistent Homology Computation

We use the persistent homology computation framework of Robins et al. (2011, 2016). In

Robins et al. (2016), the geometric characteristics of the binary image are defined by the
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Signed Euclidean Distance Transform (SEDT). The SEDT assigns a numeric value to each

pixel: negative for pore and positive for grain. Its magnitude represents the Euclidean dis-

tance between a pixel and the closest opposite status pixel; a large negative value indicates

a large pore size, and a large positive value indicates a large grain size. Then, a cubical cell

complex is defined based on the discrete Morse function. The SEDT value of a cell is the

maximum value of all of its vertices. The cubical cell complex is an appropriate topological

space for the images. The components of cubical cell complexes are 0-cell (vertex), 1-cell

(edge), 2-cell (patch) and 3-cell (solid). Figure 4.2 shows the four components of a cubical

cell complex.

Figure 4.2: Components of a cubical cell complex; 0-cell, 1-cell, 2-cell, and 3-cell, from left
to right.

As we change the filtration value, k-cell components are added to the cubical cell complex.

That is, we add cells one by one in order of increasing SEDT value, thus a cell is added when

the current filtration value reaches the maximum value of all of its vertices. By Morse theory,

it is sufficient to track critical points: local minimum (0-cell), local maximum (3-cell), saddle

points (1-cell and 2-cell). By tracking the homology of the sequence of cubical complexes, we

can compute the persistent homology. An example of sequential changes of cell complexes is

shown in Figure 4.3. At first, fhe pixels at the middle of the large pore (large negative SEDT

value) first appear in the cell complex. As the filtration moves to the positive direction, pixels

in the grain phase are added to the complex. We use the persistent homology computation

code Diamorse (Delgado-Friedrichs, 2015).
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Figure 4.3: SEDT converted image (left) and sequential changes of cubical cell complexes of
the images. Blue colored pixels construct the cubical complexes. Modified Figure of Robins
et al. (2016).

The persistent homology computation results for each dimension are reported separately:

the zero-, one-, and two-dimensional homology groups. Figure 4.4 shows examples of com-

putation results summarized by persistence diagrams. For each dimension’s persistence dia-

Figure 4.4: Examples of persistence diagrams dimension 0, 1, and 2

gram, the different quadrants of its image reveal different aspects of materials (Robins et al.,

2011, 2016). Table 4.2 interprets the regions labeled in Figure 4.4. Visual examples of corre-

sponding structures are given in Figure 2 in the Appendix.

4.3.2 Vectorization of Persistence Diagram

As explained in Chapter 3, classical SML methods cannot be directly applied to the per-

sistence homology computation results; interval data is a non-classical data type and the

number of intervals generated varies from dataset to dataset. To overcome the difficulties
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Table 4.2: Interpretation of persistence diagrams

Dim. Region Structure Value of X (Birth) Value of Y (Death)
0 A Disconnected pore Size of pore Narrowest grain contact

B Connected pore Size of pore Pore throat radius
1 C Contact grain Pore tube radius Grain contact radius

D Non-convex pore Pore tube radius Non-convex pore throat radius
E Non-convex grain Grain tube radius Non-convex grain throat radius

2 F Grain Grain-contact radius Size of grain

of directly using intervals, researchers have suggested using vectorized persistence diagrams.

There have been different approaches proposed to vectorize persistence diagrams; among

these are binning by Bendich et al. (2016) and a persistence image by Adams et al. (2017).

The vectorization process has two advantages: 1) existing techniques including image anal-

ysis and statistical learning methods can be applied; 2) the mean persistence diagram can be

computed. A disadvantage is that the comparison between vectorized persistence diagrams

will not be exact, compared to the Wasserstein or bottleneck distances for example.

However, these vectorization methods cannot be directly applied for the persistent

homology computation framework of Robins et al. (2016). First, y coordinate transforma-

tion used in these methods is not necessary and even makes it difficult to identify structural

information. Existing methods transform the mapping of (birth, death) to (birth, death–

birth) in persistence diagrams to highlight the distance of the points from the 45-degree

line. This is useful when significant features appear in the region far from the 45-degree line.

On the other hand, persistence diagrams computed as in Section 4.3.1 records structural

characteristics described in Table 4.2. Therefore, the distance from the 45-degree line is not

related to the topological significance. Also, such transformation makes it difficult to iden-

tify implications of different sections of persistence diagrams for rocks. For example, three

quadrants of dimension one persistence diagrams in Figure 4.4 imply different meanings.

The transformation maps these quadrants into differently shaped regions. Second, it is not
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applicable to vectorize a smoothed persistence diagram. The persistence image suggested in

Adams et al. (2017) enables robust transformation by applying a smoothing function on the

persistence diagram and converting the smoothed surface into a vector. However, smoothing

can make misleading influence over regions which contain different structural information.

The boundaries of quadrants in persistence diagrams becomes vague after smoothing, which

can lead to a corruption of the underlying characteristics of materials. For example, for

dimension one persistence diagrams in Figure 4.4, smoothing can make information of non-

convex pores in region D affect and be affected by information of non-convex grains in region

E. Even though we apply separate smoothing for each region, an appropriate smoothing has

not yet been studied for rocks. It is not known how noise in the original images or filters

used in a binarization step affect the persistence diagrams.

We convert persistence diagrams to image vectors similar to Bendich et al. (2016) but

without transformation. We bin the elements of the persistence diagram into m ×m bins;

each bin is an output pixel. The number of bins m2 is determined by the number of integers

from the floor of minimum to the ceiling of a maximum of the barcodes. In this way, we can

avoid having blurred boundaries of the quadrants. Then, we count the number of dots that

correspond to barcodes in each bin and assign this as the output pixel intensity. We convert

the array of pixels into a vector by scanning the columns: visit the bins in the first column

from top to bottom, then the bins in the second column, etc. We found this sufficient, but an

alternative would be to scan the image in order of a space-filling curve. Figure 4.5 illustrates

the vectorization process.

4.3.3 Determining sREV using Persistence Homology

The three-dimensional material images are expensive data to obtain. For accuracy, we need

a sufficiently large subsample; but for efficiency, we do not want to use a larger subsample

than necessary. Persistence data depends on the size of the dataset, or subsample of the
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Figure 4.5: Persistence diagram divided by 5× 5 pixels (left), concatenated persistence dia-
gram (middle) and vectorized persistence diagram (right)

dataset, being considered. But how it depends is poorly understood, and may change unpre-

dictably as the subsample size increases. Traditional statistical methods use the concept of

a representative elementary volume (REV) (Bear, 1972). The REV is the scale at which

smaller-scale fluctuations dampen out, and statistically stable properties can be defined. For

porous media, such as rocks, REVs for key parameters such as porosity, permeability, and

tortuosity enable one to apply continuum methods to predict fluid flow and transport. Also,

the REV allows the use of partial differential equations. REVs are thus useful but discard

pore-scale information.

The statistical REV, sREV, represents a scale smaller than that of the REV. The sREV

is a scale where the means of properties are constant, and their variations are small. The

concept of sREV has been used for quantifying microstructures of various materials including

single-phase flow in sandstones at the microscale Zhang et al. (2000), mechanical properties

of fiber-reinforced composites Trias Mansilla (2005), and transport properties of fuel cell

materials Wargo et al. (2012). However, until now, the sREV has not been evaluated for
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quantitative analysis of FIB-SEM data with nanopore structures observed in geo-materials:

e.g., carbonate rocks and shale mudstones. The sREV is closely related to defining the

sampling unit from the rock images, and the “right scale” for rock analysis. However, it is

computationally very expensive to determine the sREV. The key properties of materials are

computed by running extensive simulations such as the lattice Boltzmann methods (Zhang

et al., 2000).

Persistent homology, on the other hand, provides numerical summary of size, structure,

and connectivity of materials with relatively low computational load. We suggest the fol-

lowing method to determine the sREV using persistence homology. The underlying hypoth-

esis is: if the structural properties of sampled subvolumes are similar to each other, then

persistence diagrams would be similar as well. Therefore, we can determine the sREV by

measuring similarity of persistence diagrams.

We propose using similarity measures for images on the vectorized persistence dia-

grams. Similarity measures for images have been developed to be robust to differences in

shift/scale/noise (Wang et al., 2005; Li and Lu, 2009). However, an appropriate measure for

persistence diagrams should be sensitive to shift and scale differences while robust to pertur-

bations because there are no rotational or directional changes in persistence diagrams. We

consider using measures of mean squared error (MSE) and persistence landscape Bubenik

(2015). However, these approaches measure the relative distance between two persistence dia-

grams. Also, these distances depend on image scales, and so cannot be immediately applied

when comparing two subsamples of different sizes. Hence we conclude that these two mea-

sures are not the best way to determine sREV for persistent homology.

We instead suggest using the structural similarity (SSIM) of Wang et al. (2004). The

SSIM index is defined as a product of three components: the luminance l(x, y), contrast

c(x, y), and structure s(x, y). The SSIM varies from −1 to 1, where one indicates two images

x and y are identical. Formally, it is defined as
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SSIM(x, y) = l(x, y)α ∗ c(x, y)β ∗ s(x, y)γ

where

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2

s(x, y) =
σxy + C3

σxσy + C3

.

Here µ is the average intensity of image and σ is the standard deviation as a measure of

intensity spread. We use the default setting α = β = γ = 1 and C3 = C2/2 as Wang et al.

(2004) so that

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
.

Instead of computing SSIM for the whole image, Wang et al. (2004) suggest computing SSIM

for multiple local blocks of the image. The mean SSIM (MSSIM) is the average of the SSIM

values of blocks:

MSSIM(x, y) =
1

M

M∑
i=1

SSIM(xi, yi),

where xi and yi are the ith block of images x and y.

We compute the MSSIM between vectorized persistence diagrams and their mean image

for each subvolume. However, for the persistence diagrams, the MSSIM is very high because

most of the image pixels are zero, e.g., all lower diagonal pixels. Therefore, we only consider

the local blocks of mean images that have a non-zero element:

MSSIMPH(x, µ) =
1

#{k|µk 6= 0}
∑

i∈{k|µk 6=0}

SSIM(xi, µi).

Because there is no standard for deciding sREV using persistent homology, we suggest using

the threshold to be 0.9 (weak) and 0.95 (strict) for the MSSIMPH .
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4.3.4 Feature Extraction: Principal Component Analysis

We extract features of the vectorized persistence diagrams using principal component anal-

ysis (Jolliffe, 2002). First, we subtract the mean (vectorized) persistence diagram from all

the persistence diagram vectors. We compute the principal components of the covariance

matrix. The principal components form a basis to explain the vectorized persistence dia-

grams. We use the singular vector decomposition to find the principal components to reduce

the computational load. The vectorized persistence diagram can be represented as a linear

combination of the principal components.

ith dimension k persistence diagram− dimension k mean persistence diagram

= cik1 ∗ PCk1 + cik2 ∗ PCk2 + · · ·+ cikn ∗ PCkn

Figure 4.6: Representation of a vectorized persistence diagram as a linear combination of
principal components

The coefficients of the principal components are called the loadings. We can use the set

of loadings to summarize persistence diagrams. The Euclidean vector vi = {ci01, ci02, · · · cikn}

summarizes the ith porous material. Figure 4.6 illustrates the equation above with the first,

second, and third principal components of the dimension one persistence diagram.

Rock Images −→ Persistence Diagrams −→ Euclidean Vector of PC Loadings
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Once we convert data into the Euclidean vector, we can then apply classical statistical

approaches to make an inference. For example, the numeric values can be used as an explana-

tory variable for classification or regression.

4.3.5 Prediction of Fluid Flow and Transport Characteristics: Penalized

Regression Model

We would like to fit a model that explains the geometric properties (y variables) using load-

ings obtained from the principal component analysis (x variables). If there are n subvolumes,

then we will obtain n principal components for each dimension. As a result, the number of

loadings obtained for all dimensions is 3n, and is larger than the number of samples n. This

is called the “large p small n” problem.

n

p

n

p

Figure 4.7: “large n small p” vs. “large p small n” data.

One of the solutions to the “large p small n” problem is to use a penalized regression

model, an embedded feature selection method. A penalized regression model fits the same

linear regression but gives a penalty to the coefficients. The least absolute shrinkage and

selection operator (LASSO) is a penalized regression model using the L1 penalty (Tibshirani,

1996). The result of LASSO can be obtained by solving

min
β
{||y −Xβ||22 + δ||β||1}. (4.1)

It fits a regression and does variable selection at the same time. The advantage of LASSO

model is that we can see which principal components play a role in predicting fluid flow and
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transport properties. As a result, the geophysical variables could be estimated by LASSO

model using PCA loadings.

y = geophysical variables ∼ fLASSO(PCA loadings) (4.2)

4.4 Results

4.4.1 Application to Stress-strain Data

Stress-strain data are obtained by imposing different stress levels. We use a total of nine dif-

ferent pressure levels: 2%, 4%, 6%, 8%, 10%, 20%, 30%, 40%, and 50% volume decrease from

the original rock sample. The corresponding rock images are generated by simulation. We

compute the persistent homology of each rock at each stress, summarized as persistence dia-

grams. The persistence diagrams are given in Figure 3 (dimension 0), 4 (dimension 1), and 5

(dimension 2) of the Appendix. The computed persistence diagrams reflect the structural

changes that happen to the rock under stress. First, dimension zero persistence diagrams

reflect the decreasing pore size. The negative birth and death values approach to zero as

pressure changes from 2% to 50%. The dimension one barcodes represent structural changes

in the pore and grain structure. Figure 4.8 shows the percentage changes of dimension one

barcodes. The percentages of non-convex pore structures (region D in Figure 4.4) are small,

less than 2.5%, but decrease even further as pressure increases. On the other hand, percent-

ages of non-convex structure in the grain phase (region E in Figure 4.4) increase as pressure

level changes from 6% to 50%. At pressure level 50%, 90.3% of dimension one barcodes are of

non-convex grain structures. This shows that non-convex pore structures and contact grains

glue together and form non-convex grain structures as the pressure level increases. Finally,

the dimension two persistence diagrams imply that the size of the grains is increasing. As

pressure changes from 2% to 50%, the positive pixels in the persistence diagrams tend to

shift to the upper-right.
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Figure 4.8: Percentages of three regions of dimension one persistence diagram. The labels of
three regions correspond to Figure 4.4.

4.4.2 Determination of sREV

We use two datasets for determining sREV; Selma group chalk data of Yoon and Dewers

(2013) and Sandstone data (Bentheimer and Doddington).

Selma Group Chalk

Yoon and Dewers (2013) determine sREV of the Selma group chalk data by comparing the

variation of five geophysical characteristics; porosity, permeability, tortuosity, anisotropy, and

specific surface area. A criterion for sREV scale is set to be the size when the coefficient of

variation (the standard deviation divided by the mean) is less than 15% for the five properties.
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As a result, the sREV is determined as 4003 voxels under the weak condition (considering

variabilities of porosity, tortuosity, and specific surface area) and 600 × 520 × 600 voxels

under the strict condition (considering all the five properties).

Figure 4.9: Average SSIM (MSSIMPH) of Selma group chalk.

We determine the sREV for the Selma group chalk data as explained in Subsection 4.3.3.

Figure 4.9 shows the average SSIM of the mean persistence diagram and persistence dia-

grams (MSSIMPH(x, µ)) for six subvolumes. The similarities are measured for persistence

diagrams of three dimensions (dimension 0, 1, and 2). As the size of subvolume increases,

structures become similar, and the average MSSIMPH values increases. For the Selma group

chalk, the biggest differences appear in the dimension 2 persistence diagrams. This implies

that the largest variability of Selma group chalk comes from the irregular-sized grains. The

average MSSIMPH of dimension 2 exceeds 0.9 and 0.95 at 3003 and 5003 subvolume sizes,

respectively. Therefore, 3003 and 5003 subvolumes could be considered as sREV under the

proposed conditions. Whereas Yoon and Dewers (2013) determine the sREV by comparing



70

the stability of geophysical property values, our persistent homology approach directly com-

pares structural similarities. Also, sREV can be determined with much less computational

load by persistent homology.

Two Sandstones

For the Bentheimer and Doddington sandstone data we generate four sizes of subvolumes:

1003, 1503, 200× 200× 150, and 300× 300× 200. The number of subvolumes is 100, 64, 36

and 12, and they are selected to have minimal overlapping regions.

The average SSIM (MSSIMPH) of two sandstones for four subvolumes is computed using

persistent homology and Figure 4.10 presents the results. The sandstones show differences

compared to the Selma Chalk data. The largest dissimilarity (low MSSIM) for Bentheimer

occurs in the dimension 0 persistence diagrams whereas Doddington’s appears in the dimen-

sion 1 aspects. This implies that the largest structural variability of Bentheimer comes from

the differences in size of pore spaces. On the other hand, Doddington has more variability

in non-convex pore/grain structures. By applying the same decision rule, the sREV of the

Benthheimer is determined to be the size of 1503 (weak) and 200 × 200 × 150 (strict), and

Doddington is determined as size of 1503 (weak) and 300× 300× 200 (strict).

4.4.3 Prediction of Geophysical Properties

We use the Selma group chalk data of Yoon and Dewers (2013). We fit a model only for three

smallest sizes of subvolumes (1503, 3003, and 4003) because for the other sizes the number of

subvolumes is insufficient. We have 42, 23, and 23 subvolumes for the sizes 1503, 3003, and

4003.

We fit a LASSO model to predict four fluid flow and transport properties: porosity

φ, permeability k, anisotropy λ, and tortuosity τ . We restate their definitions from Yoon

and Dewers (2013) for completeness. Porosity is the ratio of the volume of the pore space

over the total volume. Permeability measures how readily a fluid or gas flows through a
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Figure 4.10: Average SSIM (MSSIMPH) of Bentheimer (top) and Doddington (bottom).
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material. Permeability is measured in x, y, and z directions. We define the representative

permeability as a geometric mean (kx∗ky ∗kz)1/3. Anisotropy measures structural differences

along the directions. Tortuosity quantifies how much pore paths are twisted. Tortuosity is also

measured in three directions. We define the representative tortuosity as an arithmetic mean

(τx + τy + τz)/3. To decide δ in the LASSO model, we train the model with 3000 repetitions.

The ratio of training, validation, and test sets is 60%, 20%, and 20%, respectively.

The prediction results of the four properties are summarized as plots of actual vs. fitted

values in Figure 4.11. The black dots represent data points of training and validation, whereas

the red dots are the test sets. In an actual vs. fitted plot, the closer dots are to the 45-degree

line, the more accurate the prediction. For some geophysical properties, predicted values

form straight vertical lines around the total average. This is the case when LASSO drops

out loadings (x variables) because they do not contain enough information in predicting the

corresponding geophysical variables. The porosity and permeability prediction results show

the sudden increase in predictive accuracy at size 400. The anisotropy prediction results

show similar predictive accuracy between sizes 300 and 400. At the subvolume size of 400,

predictions become accurate for three fluid flow and transport variables. This corresponds

to our expectation as it is the sREV size found in Yoon and Dewers (2013).

4.5 Discussion

For two sandstones Bentheimer and Doddington, we also generate subvolumes of size 503

as the smallest subvolume. However, the MSSIMPH values of size 503 are higher than the

larger-sized subvolumes. When the subvolume size is too small, then it does not include much

grain or pore structures. As a result, only a few barcodes are generated for the small-sized

subvolumes. In terms of MSSIMPH , differences between vectorized persistence diagrams are

not that large.

We also face a similar problem in Rotleigend sandstone data sREV determination, which

is presented in Figure 6 in Appendix. We first generate five subvolumes 503, 1003, 1503,
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Figure 4.11: Fitted vs. actual plots of porosity (first row), permeability (second row),
anisotropy (third row), and tortuosity (last row) at size 1503 (first column), 3003 (second
column), and 4003 (last column). Points closer to the 45 degree line imply more accurate
prediction results.



74

200 × 200 × 150, and 300 × 300 × 200, same as other sandstones and compute MSSIMPH .

However, in some of the 503 subvolumes no dimension zero barcodes are generated, which

implies that the corresponding subvolumes are placed inside of one of the sandstone grains.

Although the Rotleigend image includes more pixels (700× 700× 980) than other sandstone

data, they are obtained in a higher resolution and smaller size. According to Figure 6, all

the MSSIMPH values are greater than 0.95, so sREV would be determined to be 1003.

However, this is due to the small-sized subvolumes, not the structural similarity. We expect

the MSSIMPH graph to be somewhat similar to v-shaped according to the size of subvolumes

(high MSSIMPH values for very small sized- and large sized-subvolumes, and lower MSSIMPH

values in the middle). The sREV can be selected to be the size of subvolume that exceeds 0.9

or 0.95 for the second time in that case. Also, for the consistency of analysis, we recommend

selecting subvolume size considering the resolution of images and size of materials, not just

the number of pixels.



Chapter 5

Conclusion and Future Research Directions

TDA is a relatively new approach that has revealed different aspects of data in terms of

their shape and structure. Our research focuses on providing better statistical inference and

modeling for persistent homology and extending its application boundaries.

First, we propose a novel topological summary plot, called a persistence terrace for point

cloud data. The persistence terrace incorporates a wide range of smoothing parameters sim-

ilar to a scale-space analysis and is robust, multi-scale, and parameter-free. This plot allows

one to isolate distinct topological signals that may have merged for any fixed value of the

smoothing parameter, and it also allows one to infer the size and point density of the topo-

logical features.

Second, we introduce an improved method for persistent homology to be used in SML

approaches. We suggest a large set of features that reflect variations between sets of barcodes

along with their implications, and feature selection methods for SML modeling. The proposed

method is applied to fingerprint classification and achieves near state-of-the-art classification

accuracy rates by applying it to 3-dimensional point clouds of oriented minutiae points and

fingerprint ink-roll images. The suggested approach allows us to explore feature selection

on barcodes, an important topic at the interface between persistent homology and SML

methods.

Third, we propose a porous materials analysis pipeline using persistent homology. We

first compute persistent homology of binarized 3D images of sampled material subvolumes.

We convert persistence diagrams into image vectors to analyze the similarity of the homology

of the material images using the mature tools for image analysis. Each image is treated as

75
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a vector, and we compute its principal components to extract features. We fit a statistical

model using the loadings of principal components to estimate material porosity, permeability,

anisotropy, and tortuosity. We also propose an adaptive version of the structural similarity

index as a measure to determine the statistical representative elementary volumes. Thus

we provide a capability for making a statistical inference of the fluid flow and transport

properties of porous materials based on their geometry and connectivity.

In the following subsections, we present future research topics and directions.

5.1 Improvement of Persistence Terrace as an Inference Tool

In the persistence terrace, topological features in point cloud data are represented as terrace

layers and we can make a robust estimation of the feature’s size and point density. However,

when there is a large number of features, it is difficult to disentangle the individual layers.

We recommend the terrace area plot as an aid for determining the number of significant

features, but one still needs to pay attention to the terrace layers to make an accurate

estimate; even so, there will inevitably be differing interpretations of the persistence terrace.

In a future paper, we plan to develop a method to label the different layers systematically

to help analyze topologically complicated data.

5.2 Interface and Fingerprint Application

5.2.1 Additional Features

Regression coefficients feature suggested in Subsection 3.2.2 are most beneficial if it is used

for dimension 0 of direct estimation approach. In most dimensions, birth points of barcodes

are not zero. If only endpoints are used, then the information contained in intervals would

be lost. Instead, we can fit a polynomial regression model on the transformed persistence

diagram (xi, yi − xi).
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In case of low signal-to-noise ratio data, a larger number of short-length bars would be

generated. A polynomial regression model on the transformed persistence diagram might not

reflect a small number of long-length (significant) bars. In the future research, we aim to

suggest different summary of persistent homology results called “persistence process”. Let

X(t) be the persistence process at filtration t where X(0) = 0. For each bar (xi, yi), X(t)

increases wi × (yi − xi) at t = xi and decreases the same amount at t = yi. The weight

wi can be determined by how much importance to be assigned to longer-length intervals.

The persistence process converts a set of barcodes into a single line. There is a one-to-

one correspondence between the persistence process and barcodes. The persistence image

suggested in Adams et al. (2017) converts persistence diagram into three-dimensional space

using a smoothing function. The persistence process converts barcodes into points/lines on

two-dimensional space without a smoothing function. We can fit the piecewise polynomial

(spline) and use their coefficients to compare the differences between a multiset of barcodes.

We may describe the barcodes using probability distributions. For example, we may

estimate a rate parameter λ of exponential distribution on xi ∗ (yi − xi) or shape and rate

parameters of Erlang distribution.

5.2.2 Feature Selection Methods

The forward/backward elimination which implements a greedy algorithm, is a computa-

tionally expensive method. We may use feature selection embedded SML methods, which

performs feature selection and classification at the same time. One example of the embedded

SML methods is a sparse method. There have been different approaches including sparse dis-

criminant analysis (Clemmensen et al., 2011; Gaynanova and Kolar, 2015) and sparse support

vector machine (Bradley and Mangasarian, 1998; Zhu et al., 2003). We plan to investigate

the sparse methods for barcode feature selection and compare the classification/prediction

results.
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5.2.3 Fingerprint Data Application

Since directly inferring geometric structure from complicated barcodes is not plausible, we

base our persistent homology approach on supervised learning; consequently, our results are

strongly influenced by the size of the data set. We want to use both oriented minutiae points

and matching JPEG ink-roll images, and this narrows our choice of data set down to NIST

SD-27, which is rather small compared to most fingerprint databases used in the fingerprint

community for training and testing purposes. In particular, we only have 13 arches, which

makes “learning” the shape of their barcodes quite challenging (and indeed the confusion

matrices in Table 3.3 reveal that arches have a vastly greater frequency of misclassification

than the other two classes).

Persistent homology is essentially invariant under translation and rotation—except that

our image-based method involves the choice of orthogonal directions to slant the surface, but

we do not believe the results would be very sensitive to small changes in these directions—so

there is little challenge to using our methodology across data sets, and no challenge at all to

doing so for the minutiae-based approach, and doing so should significantly improve accuracy

rates. Practically speaking, we believe that one could, for instance, train a minutiae-based

persistent homology classifier on large data sets and then apply it to any new data set that

contains minutiae point locations and orientations, no matter how they are recorded.

More generally, we believe that persistent homology provides an important new tool

for attacking difficult pattern analysis problems such as fingerprint classification. While

much remains to be understood regarding the interface between persistent homology and

machine learning, we hope that this study helps provide some insight into feature selection

on barcodes—both by summarizing and introducing a convenient collection of features and

by exploring their impact on a concrete, well-studied classification problem.

We suggest some topics for future work: (1) training and testing the method introduced in

Section 3.4 on a different fingerprint database, or a larger set of features, to see how much the

accuracy can be improved; (2) incorporating more sophisticated techniques from statistics



79

and machine learning, since there is likely room here as well for significant improvement;

(3) extend the methods by applying them to different types of minutiae (a single line and

multiple lines); (4) adapting and applying persistent homology methods to other problems

in fingerprint analysis, such as matching noisy latent prints.

5.3 Porous Material Analysis

5.3.1 Constructing Larger Database

Persistent homology provides information of structure and connectivity, and it could be

used as a “fingerprint” of materials. However, we only analyze a few types of rocks and

porous materials in Chapter 4. It would be worthwhile to build a database of “fingerprint”

of different types of materials using persistent homology.

5.3.2 Relationship with Rock Physics

We successfully estimate key geophysical variables using features extracted from persistence

diagrams. However, it has not been studied why those features have such prediction power.

We aim to further investigate a relationship between persistent homology results and rock

physics. First, we plan to study how the features selected by a penalized regression model

characterize actual rocks physics by collaborating with geologists. Also, our study assumes

that noise on the 3D material images will be removed in a binarization process. However, it

is not realistic to assume that all the measurement error is eliminated. In future research,

we plan to define types of possible noise/errors on images and examine how they affect

persistence diagrams; noise makes vertical or horizontal shift points on persistence diagrams

or their regions. Such information can be further utilized to define an appropriate smoothing

function for persistence diagram vectorization or to make comparisons.
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5.3.3 Prediction Models and Extensions to Clustering/classification

We plan to implement prediction models that can make further statistical inferences, such

as producing confidence intervals. For the SML methods, a vector of loadings computed by

applying principal component analysis to the vectorized persistence diagrams can be used as

an input object. However, we did not have enough rock types to study this. For future work,

if data on multiple rock types are given, we could attempt to classify/cluster them. Also, it

would be worthwhile to study how to apply SML methods to the persistence diagrams best,

expanding our normalization and scaling rigorously.
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(2012). Permeability of porous materials determined from the euler characteristic. Physical

Review Letters 109, 264504.

Speyer, D. and B. Sturmfels (2009). Tropical mathematics. Mathematics Magazine 82,

163–173.

https://arxiv.org/abs/1307.7760
http://dx.doi.org/10.1038/ncomms15082


88

Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. Journal

of the Royal Statistical Society. Series B (Methodological) 36, 111–147.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the

Royal Statistical Society. Series B (Methodological) 58, 267–288.

Trias Mansilla, D. (2005). Analysis and Simulation of Transverse Random Fracture of

Long Fibre Reinforced Composites. University of Girona, Spain.

Turner, K., S. Mukherjee, and D. M. Boyer (2014). Persistent homology transform for

modeling shapes and surfaces. Information and Inference: A Journal of the IMA 3, 310–

344.

Wang, L., Y. Zhang, and J. Feng (2005). On the euclidean distance of images. IEEE

Transactions on Pattern Analysis and Machine Intelligence 27, 1334–1339.

Wang, Z., A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli (2004). Image quality assess-

ment: from error visibility to structural similarity. IEEE transactions on image pro-

cessing 13, 600–612.

Wargo, E., A. Hanna, A. een, S. Kalidindi, and E. Kumbur (2012). Selection of represen-

tative volume elements for pore-scale analysis of transport in fuel cell materials. Journal

of Power Sources 197, 168–179.

Wilson, C., G. Candela, and C. Watson (1993). Neural network fingerprint classification.

Journal of Artificial Neural Networks 1, 203–228.

Yager, N. and A. Amin (2004). Fingerprint classification: a review. Pattern Analysis and

Applications 7, 77–93.

Yoon, H. and T. A. Dewers (2013). Nanopore structures, statistically representative ele-

mentary volumes, and transport properties of chalk. Geophysical Research Letters 40,

4294–4298.



89

Zhang, D., R. Zhang, S. Chen, and W. E. Soll (2000). Pore scale study of flow in porous

media: Scale dependency, REV, and statistical REV. Geophysical Research Letters 27,

1195–1198.

Zhu, J., S. Rosset, T. Hastie, and R. Tibshirani (2003). 1-norm support vector machines.

Proceedings of the 16th International Conference on Neural Information Processing Sys-

tems , 49–56.

Zomorodian, A. (2012). Topological data analysis. Advances in Applied and Computational

Topology 70, 1–39.

Zomorodian, A. and G. Carlsson (2005). Computing persistent homology. Discrete &

Computational Geometry 33, 249–274.



Appendix

Algorithm 1 Compute Betti number values and locations from barcodes

Input sp (smoothing parameter vector) and barcodes (sets of barcodes)
kholes← NULL (List of Betti number values and locations, for each smoothing parameter
value)
for i = 1→ length(sp) do
kbarcode ← barcodes[[i]]{ dim = k, birth, death } (Select k-dimensional barcode
obtained from ith smoothing parameter value)
m← column length of kbarcode (Number of k-dimensional bars)
if m = 0 (No k-dimensional bars) then
track ← { filtration=0, numk= 0}

else
filtration ← { birth values in kbarcode; death values in kbarcode }
kBetti ← { 1m; -1m }
track ← { filtration, kBetti } ( Bind two vectors into (2m × 2) matrix, thereby
assigning 1 and −1 to the birth and death points, respectively)
Sort track matrix by ‘filtration’ in ascending order
track$kBetti← cumsum(track$kBetti) (Replace the kBetti column by its cumulative
sum)

end if
kholes[[i]]← track

end for
return kholes
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Algorithm 2 Compute persistence terrace matrix from Betti number values/locations

Input sp (smoothing parameter vector) and kholes = { filtration, kth Betti number }
n← length(sp)
xvec← sp (x values vector: smoothing parameters)
yvec← NULL (y values vector: filtration values when the kth Betti number change)
for i = 1→ n do
yvec← { yvec, kholes[[i]]$filtration } (Stack all filtration values)

end for
yvec← sort(yvec) (Sort yvec in descending order)
zmat← 0length(xvec)×length(yvec) (z values matrix: kth Betti number)
for p = 1→ n do
filtration← kholes[[p]]$filtration
kBetti← kholes[[p]]$kBetti
zvec← 0length(yvec)

for q = 1→ length(kBetti) do
zvec = zvec+ (filtration[q + 1] < yvec) ∗ (yvec ≤ filtration[q]) ∗ kBetti[q] (Fill out
kth Betti numbers for all filtration values)

end for
zmat[, p]← zvec (Save zvec to pth column of zmat)

end for
return [xvec, yvec, zmat]
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(a) 25 smoothing parameters (b) 50 smoothing parameters

(c) 75 smoothing parameters (d) 100 smoothing parameters

Figure 1: Resolution of the persistence terrace according to the number of smoothing param-
eters. With an increase in the number of smoothing parameters, the resolution increases,
although the general picture stays the same.
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Figure 2: Examples of pore and grain structures in the corresponding dimension zero (top
row), one (second row), and two (last row) persistence diagrams.
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Figure 3: Dimension 0 persistence diagrams under nine stress-strain levels.
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Figure 4: Dimension 1 persistence diagrams under nine stress-strain levels.
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Figure 5: Dimension 2 persistence diagrams under nine stress-strain levels.
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Figure 6: Average SSIM (MSSIMPH) of Rotleigend.
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