
 

 

SUPPORTING KEYWORD SEARCH ON SEMANTIC WEB DOCUMENTS 

by 

RAVI PAVAGADA 

(Under the Direction of Dr. Amit P. Sheth) 

ABSTRACT 

Most contemporary search engines [8, 17, 41] allow searches on keywords and support direct 

matching of the keywords with document contents. These search engine return Web pages that 

contain the search terms by performing the direct or pattern matching of search terms with the 

page contents. Additionally, the matched search terms might appear in any paragraph of the 

returned page. Hence, most of these searches return large set of matched Web pages that may or 

may not be relevant to the context of search.  Thus, more often than not the users have to sift 

through the retrieved pages to find the information they are looking for. In this thesis, we address 

this problem of search by returning meaningful results that are relevant to the search. We present 

a prototype search and retrieval system for retrieving information from RDF which represents 

the knowledge contained in the Web documents.  We have addressed the problem of search by 

returning meaningful results that are relevant to the query. Our proposed system uses the concept 

of keyword search by extending the concept of keyword search, to ontological classes, literals 

and relationship. The system processes the entered search terms by matching them to the 

ontological concepts and relationships. The results returned by our system are either a set of 

triples or a sub-graph relevant to the query. Our system currently doesn’t allow searches on 

documents, but can be extended to support searches on annotated documents. The key feature of 



 

our system is that it exploits relationships in RDF and returns a sub-graph relevant to the query 

and allows users to enter keywords that are related to the ontological concepts and relationships. 

We adopt an integrated approach that uses the existing knowledge in the ontology and WordNet 

[38] along with lexical processing to find related words, unlike other systems that either use 

WordNet [37] or a domain specific ontology [3, 9, 31] to find related words. Additionally, our 

system accepts multiple search terms per search, unlike other systems [9, 12, 14, 24] that allows 

a single search term or literal per search. 

We compared the precision values of a keyword based retrieval system [8] with that of our 

system. The comparison indicated that the results returned by our system were very accurate and 

relevant to the query. On the other hand, the other retrieval system returned many Web pages 

which weren’t relevant to the search.  

 

INDEX WORDS: Keyword, Semantic Web, RDF (Resource Description Framework), XML, 

ontology, Semantic Information Retrieval, Relationship based retrieval, 

Semantic Document Retrieval 



 

 

 

SUPPORTING KEYWORD SEARCH ON SEMANTIC WEB DOCUMENTS 

 

by 

 

RAVI PAVAGADA 

Bachelor of Engineering (BE), Kuvempu University, India, 2001 

 

 

 

 

 

 

 

A Dissertation Submitted to the Graduate Faculty of The University of Georgia in Partial 

Fulfillment of the Requirements for the Degree 

 

MASTER OF SCIENCE 

 

ATHENS, GEORGIA 

2006 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2006 

Ravi Pavagada 

All Rights Reserved 



 

 

 

SUPPORTING KEYWORD SEARCH ON SEMANTIC WEB DOCUMENTS 

 

by 

 

RAVI PAVAGADA 

 

 

 

 

 

 

 

 

 

 

Major Professor: Amit P. Sheth 

 

Committee: John A. Miller 

Prashant Doshi 

 

 

 

 

 

 

 

 

 

 

 

Electronic Version Approved: 

 

Maureen Grasso 

Dean of the Graduate School 

The University of Georgia 

August, 2006  

 



 

iv 

 

 

DEDICATION 

I would like to dedicate this thesis to my parents Raghavendra Rao and Sandhya, sister Roopa 

and my brother Ajay. 

 



 

v 

 

 

ACKNOWLEDGEMENTS 

I would like to thank my major advisor Dr. Amit P. Sheth for all the support and guidance he 

extended to me throughout this work. I also would like to thank my co-worker Kemafor 

Anayanwu for all her suggestions and help.  I would like to thank Dr. John A. Miller and Dr. 

Prashant Doshi for being part of my committee and for their support. Special thanks, to Angela 

Maduko for all her help and support.  I would like to thank Dr. Willam S. York for his 

continuous guidance and support in the Glycomic’s project.  I thoroughly appreciate my 

interactions with the other members of the LSDIS Lab including Tian Hao, Christopher Thomas, 

Mathew Perry, Kunal Verma, Matthew Evanson, Meena Nagarajan, Cartic Ramakrishnan, 

Farshad Hakimpour, Cory Henson and Aleman Meza.  I would like to thank my maternal uncles 

for their continuous encouragement and love. Finally, I sincerely thank my parents for their 

support and the sacrifices they made to get me into graduate school. Words are inadequate to 

express my gratitude to them for giving me the strength and courage needed to fulfill my goals. 

 



 

vi 

 

 

TABLE OF CONTENTS 

Page 

ACKNOWLEDGEMENTS ............................................................................................................ v 

LIST OF TABLES ........................................................................................................................vii 

LIST OF FIGURES......................................................................................................................viii 

CHAPTER 

1 Introduction ................................................................................................................... 1 

2 Background ................................................................................................................... 7 

3 Approach ..................................................................................................................... 18 

4 Architecture of the system........................................................................................... 19 

5 Pre-processing phase ................................................................................................... 21 

6 Query processing phase............................................................................................... 29 

7 Implementation Details and Comparison.................................................................... 36 

8 Related Work............................................................................................................... 42 

9 Conclusion and Future Work ...................................................................................... 45 

REFERENCES.............................................................................................................................. 46 

APPENDICES............................................................................................................................... 50 

A Screenshots of some of the searches in our system..................................................... 50 

B Glossary of Acronyms................................................................................................. 56 

 



 

vii 

 

 

LIST OF TABLES 

Page 

Table 1: Precision values of a keyword based search and retrieval system. ................................. 37 

Table 2: Precision values for our system. ..................................................................................... 39 

 



 

viii 

 

 

LIST OF FIGURES 

Page 

Figure 1: RDF graph of LSDIS lab portal ontology........................................................................ 4 

Figure 2: Semantic Web layer cake................................................................................................. 9 

Figure 3: An example of a RDF:Seq (Sequence).......................................................................... 11 

Figure 4: Architecture of the system............................................................................................. 19 

Figure 5: Screenshot of our search and retrieval system............................................................... 50 

Figure 6: Retrieved triples for the query: professor sheth advises student ................................... 51 

Figure 7: TouchGraph display for the query: professor sheth advises student ............................. 52 

Figure 8: Retrieved triples for the query: Sheth instructs courses ................................................ 53 

Figure 9: Retrieved triples for the query: Sheth teaches classes................................................... 54 

Figure 10: TouchGraph display for the query: Sheth teaches classes........................................... 55 

 

 

 

 

 

 

 

 

 



 

1 

Chapter 1 – Introduction 

The techniques used by present-day keyword search systems for the Web such as Google [8], 

Yahoo [41], MSN [17] rely primarily on document content for determining relevance. For such 

systems, only documents which contain the search terms are considered relevant and heuristics 

are employed to determine the relevance for each document. Typically, a very large collection of 

documents are returned for a given query and users are left with the time-consuming task of 

extracting specific information items of interest from such a collection. Further, given that the 

information items that a user may be interested in may be located in different documents, it is 

often necessary for users to iteratively refine their search terms in order to obtain different sets of 

documents which may hold additional or related pieces of information that they may need.  

The limitation of Web search systems is rooted in the fact that the Web is simply a network of 

documents with little discernible meaning associated with the contents of the documents and the 

links connecting them. The vision of the Semantic Web [27] proposed by Tim Berners-Lee [6] is 

to improve upon this by evolving the Web to a Web of “named” objects linked by “named” 

relationships with meaning ascribed to its objects and relationships. Some of the advancement 

towards realizing this goal is development of standards for expressing and exchanging metadata 

such as which model relationship as first class objects. Another important building block is the 

bootstrapping of the Semantic Web from the current Web using automatic metadata extraction.  

For example, the Semantic Enhancement Engine [5] discussed the ability to support ontology-

driven metadata extraction of a very large number of textual documents, and SemTag [33] 

demonstrated Web scale (albeit shallower) semantic tagging of approximately 264 million Web 

pages and could generate 434 million automatically disambiguated semantic tags for annotations. 

The Semantic Web environment provides a good foundation for building advanced semantic 



 

2 

search systems that can overcome the limitations of present-day approaches. Thus, metadata can 

be extracted from a set of documents and be used to improve on the problems that exist in the 

contemporary search engines.  

In this thesis, we present a system that uses semantic search to improve the accuracy of the 

search. The system searches on the meta-data which has been extracted from a set of documents 

and returns a set of triples or a sub-graph relevant to the query. Our system currently doesn’t 

allow searches on documents, but can be extended to support searches on annotated documents. 

We present a prototype search and retrieval system that allows keyword searches on related 

words of ontological classes, relationships. To our knowledge, this is the first system that allows 

multiple search terms per search, unlike other systems [9, 12, 14, 24] that allows single search 

term or literal. This is also the first system that uses a unique keyword expansion technique that 

uses the knowledge in WordNet along with a conversion algorithm and ontology to expand 

search terms. Ours is also the first system that allows searches on related words of ontological 

classes or relationships. Additionally, our system displays a sub-graph that is relevant to the 

query, unlike other systems [9, 12, 14, 24] that display either the matched triples or the matched 

literal, property, or classes. 

The vision of developing semantics-driven search systems for the Semantic Web is based on a 

shared understanding or common agreement on the information captured in the ontology. Hence, 

any storage systems must provide support for retrieving the captured information. While many of 

these systems [16, 30] are based on formal querying languages [7, 22, 32], a few [9, 14, 24] 

allow the querying of Semantic Web repositories using keyword queries. [24] uses a spread 

activation algorithm to find related instances for a given set of concepts using a initial set of 

relationship weights. Swoogle [14] is a search and retrieval system for finding ontologies on the 



 

3 

Web and allows pattern based searches of classes, and properties. We believe that the latter 

approach or keyword search is very powerful because of its ease of use and wide spread 

familiarity to everyday users.   

However, these approaches still have room for improvement. First, it will be helpful for such 

systems to depart from the document-centric view where logical information units are documents 

and adopt finer grained and contextually meaningful information units. This may help alleviate 

the problem of users having to rummage through several documents in order to piece together 

the pieces of information relevant to them. For example, a user supplying the keywords “Tim” 

“Berners-Lee” “Semantic” “Web” is more likely to be interested in a seeing a summary of the 

relationships (paths) between both entities including talks, papers, etc, than to see a set of 

Semantic Web documents containing assertions about such relationships. This is particularly 

important because, if a relationship connecting the two entities forms a path of more than one 

hop, then users may have to chase down these links by looking at several documents. A more 

natural representation of such a result is a labeled graph showing all the relationships found.   

This is similar to the approaches proposed for supporting keyword searches over relational [2, 

11] and XML [10] databases which return sub-graphs of the data graph as query results. 

However, these approaches often limit their search to the set of literal values i.e. leaves or 

terminal nodes, e.g. the title of a book or an author’s name. However, we observe that sometimes 

a keyword has the role of qualifying other keywords. For example, consider the query Amit-

Sheth writings. Please refer to Figure 1 which shows the RDF [20] graph of a portal ontology for 

the above example. The graph shown in the figure has some of the most important classes, 

instances and relationships that exist in the schema and data of the ontology. It contains most up 

to date information of real world entities and has been populated with the most recent up to date 



 

4 

information of entities such as professors, publications, research labs, etc.  It has 17 unique 

properties, around 1558 literals, 112 schema properties (properties connecting the classes) and 

1024 instance statements (instance triples).  Given this query, the user will be interested in seeing 

a sub-graph that connects the instance Amit Sheth to all of his papers, articles, book chapters and 

presentations.  Therefore, all nodes and edges of a data graph should be included in the search 

space. 

A second issue is that of semantic query expansion, a hallmark of semantic querying techniques. 

This is an important feature that allows a query context to be expanded beyond the set of 

keywords given by a user. Most semantic search approaches support this by expanding keywords 

using hierarchical relationships such as hyper/hyponymy defined in either a domain-specific 

ontology or a general purpose nomenclature and terminological system such as WordNet. 

 

 

works_for

Paper

na
m
e

Professor

xsd:String

University

Conference 

cites

author_of

is_published_in

xsd:String

ha
s_
tit
le

ad
vi
so
r_
of

xsd:String

nam
e

Student has_taught

Course

Workshop 

is_
pu
blis
he
d_
in

xsd:String

te
a
c
h
e
s

Res. Lab
director_of

fac_mem_of

na
m
e

& univ 1

“SEMDIS”

& Lab 1& Course 1& Prof 2& Prof 1& Conf 1 & Paper 1 & Project 1

“UGA” nam
e

“Angela”

n
a
m
e

ad
viso

r_
of

& Stud 1 & Stud 2

a
d
v
is
o
r_
o
f

is_published_in

fac_mem_of
author_of

ha
s_
ta
ug
ht

“Semantic Web”

director_of project_of

h
a
s
_
ti
tl
e

“SemRank”

nam
e

na
m
e

xsd:String

nam
e

“WWW”

n
a
m
e

“Amit Sheth”

na
m
e

name

author_of

“Aleman”

n
a
m
e

project_of

Research Project

xsd:String

n
a
m
e

“John”

publishes

publishes

teaches

 

 
typeOf 

 

Figure 1: RDF graph of a LSDIS lab portal ontology 

RDF 

Schema 

 



 

5 

The approach described in this thesis, offers significant advantages over the current 

approaches for several reasons. First, we adopt the philosophy of a graph as a query result. In 

other words, given a set of keywords as a query, the result of the query is the relevant sub-graph 

of the data graph which connects the keywords given in the query. Named relationships in the 

graph paradigm give a significantly richer description of information in the query result. Further, 

it uses an advanced semantic query expansion technique that combines information about 

relationships between terms from both domain-specific ontology (RDFS) and the WordNet. 

More importantly, is uses other kinds of relationships besides hierarchical relationships. In 

particular for Semantic Web data graphs that have labels for nodes and edges, it is entirely 

possibly that a keyword that represents a noun may exist in a data graph in its verb form, perhaps 

labeling a relationship edge. Therefore, the semantic query expansion is performed by exploiting 

a variety of term relationships for expanding query context. For example, consider the above 

example Amit Sheth Writings. The ontology might contain a relationship author_of. The word 

writings cannot by any means be mapped on the author_of by performing WordNet expansion on 

writings. The related words such as writing, authorship, composition and penning can be 

obtained by performing direct expansion using WordNet.  This set of expanded words is not 

related to the relationship author_of or the word author. 

Another important feature is that of dealing with syntactic and lexical issues that arise when 

dealing with ontologies. Often, an ontology may label an edge or node with a compound words 

sometimes separated using separator character. For example, the relationships such as has_title, 

author_of, has_taught from Figure 1 contain multiple words separated by a separator or 

delimiter. Such occurrences will be missed without the use of special handling techniques.   



 

6 

In this thesis, we have presented an approach that goes beyond the direct text or pattern based 

search. And Hence, we are able to get results such as the one mentioned above. The following 

are the research contributions: 

1 We propose a prototype system that allows keyword searches on direct or related words 

of a class, relationship or a literal. 

2 We propose several pre-computed indices including the related word index and the 

Lucene [15] triple index that are used during query expansion. The pre-computation of 

indices helps in reducing the query processing time. The related word index stores 

information of each class or relationship to its set of related words. This index is unique 

since it uses the knowledge in WordNet and domain specific ontology to find related 

words. It uses a unique conversion algorithm to convert noun to verbs and verb to nouns. 

We have explained the importance of this algorithm and the intuition behind the creation 

of this algorithm in the pre-processing phase. As discussed earlier, most systems expand 

search terms using either WordNet or a domain-specific ontology. 

3 We propose a semantic expansion technique which performs query expansion using the 

pre-computed indices. 

4 We propose a filtering algorithm that filters triples 

 

 

 

 

 

 



 

7 

Chapter 2 – Background 

2.1 Semantic Web  

The current Web is a network of interlinked information that lacks semantics. The user 

navigates through a network of hyperlinked pages without having the prior knowledge of pages 

selected page.  Semantic Web envisioned by Berners-Lee aims at solving this problem by adding 

metadata to the existing Web. This is a two step process which involves metadata extraction and 

annotation. This metadata mainly captures the relationships that exist between the resources of 

the Web. Adding metadata to the Web helps in making the Web machine readable and thus 

allowing software agents to process the contents of the annotated page. Many existing 

applications can take advantage of annotated Web resources. One of the applications that can 

benefit heavily are search engines. The current search engines retrieve Web pages by performing 

direct matches of search terms to the Web page contents. Thus, the trouble of extracting the 

relevant information is left to the users of the system. The users generally have to sift through the 

large set of retrieved pages to find the relevant information. This problem can considerably be 

reduced and even eliminated if the documents or pages are semantically marked-up or annotated 

with metadata. There are different techniques which have been used to extract metadata. The 

extraction of metadata can be done using semi-automatic techniques as in  CREAM [25] or by 

using automatic techniques as in SemTag [33], SCORE [5] or Semagix Freedom.   SemTag 

describes a Seeker platform for large scale text analytics, which can automatically generate 

semantic tags. SemTag was able to perform semantic tagging of approximately 264 million Web 

pages and could generate 434 million automatically disambiguated semantic tags for annotations.  

The extraction of metadata is done by populating the ontology with the extracted disambiguated 

entities. After populating the entities ontology is further enriched with additional relationships 



 

8 

that connect these entities.  Thus, the extracted metadata needs to be enriched with relationships 

and validated before extracting more information. This process is repeated until a comprehensive 

ontology is obtained. The two most commonly addressed issues are entity identification and 

entity disambiguation. There are different techniques used in entity identification. The Semagix 

Freedom uses regular expressions to identify entities. The entity disambiguation is a tough 

problem [4]. The extracted information can now be represented in RDF, or OWL [19].  

Generally, the information extraction is done on Web pages of a particular domain. Recently, the 

researchers in the semantic Web community have been focusing heavily on extracting 

information and storing them in ontologies represented in RDF or OWL, leading to large 

publicly available general and domain specific ontologies. 

 

2.2 Semantic Web layer cake  

The W3C organization has been a leader in developing technologies for the Web. Tim 

Berners-Lee, the founder of current Web is the director of World Wide Web Consortium. At 

W3C, Berners-Lee has actively been involved in the development of Semantic Web technologies 

for his envisioned Semantic Web.  The Semantic Web layered Cake [28] is a layered set of 

Semantic technologies of Semantic Web, according to Berners-Lee and W3C. The Figure 2 

shows the different layers of Semantic Web. 

The W3C has been actively involved in the development of standards for each of the layers in 

the Semantic Web layered cake. In the Semantic Web layer cake, each layer can be seen as 

building on the below layers. Each layer in the layer cake uses the technologies or support of the 

layers below it as it gets more specialized and complex as we move higher in the layer cake. 

Currently, there are seven layers in the Semantic Web layer cake.  



 

9 

 

 

 

Figure 2:  Semantic Web layer cake (proposed by Tim Berners-Lee) 

We have explained each of the following layers in detail: 

 

2.2.1 UNICODE and URI 

URI (http://en.wikipedia.org/wiki/Uniform_Resource_Identifier) is a short string of characters 

used to identify a name or a resource. A URI can be used for locating a resource on the Web. 

Unicode [36] is an industry standard designed to allow symbols and text to be consistently 

represented and manipulated by computers. 

 

 

 

                   UNICODE                 URI 

                         XML + NS + XML SCHEMA 

                                 RDF + RDF SCHEMA 

                            LOGIC 

                 PROOF 

        TRUST 

 
D

i

g

i 

t

a

l

  

S

i

g

n

a

t

u

r

e



 

10 

2.2.2 XML, NS and XML Schema 

XML [39] or Extensible Markup Language is a meta-language or a language for defining other 

languages. XML does not have a fixed syntax as HTML and allows creation of markup 

languages.  

An XML namespace (NS) is a collection of names, identified by a URI reference, which are 

used in XML documents as element types and attribute names. 

XML Schema [40] defines the semantics structure and contents of a XML document. XML 

Schema can be used to express shared vocabularies and allows machines to process XML 

documents based on the rules specified in the schema. 

.  

2.2.3 RDF and RDF Schema 

RDF is metadata model recommended by W3C to model metadata about the resources on the 

Web. The basic element of a RDF model is a triple, which is comprised of a subject, predicate 

and an object.  RDF model can be viewed as a directed labeled graph whose nodes represent 

entities and edges represent relationships which connect a pair of entities. Figure 1 shows the 

RDF graph model of the LSDIS Lab portal ontology. Additionally, RDF supports container such 

as Sequence, Bag or Alternative. A Sequence (RDF: Seq) represents a group of unique or 

duplicate resources or literals in a particular order. This, it is used when the order of the 

resources or literals is important. A Bag (RDF: Bag) represents a group of unique or duplicate 

resources or literals. The Bag does not take care of ordering of the resources or literals. An 

Alternative (RDF: Alt) represents a group of resources or literals that are alternatives. An 

example would a list of Websites where a particular book might be found. The Figure 3 shows 

the RDF graph model of a Sequence. A Sequence might be used to store information of all the 



 

11 

publications sorted in an alphabetical order.  It shows the two publications of a resource Amit. 

The resource Amit is connected to a blank node which in turn connects to the publication 

resources via URI http://w3.org/1999/02/22-RDF-syntax-ns#ns_1 or http://w3.org/1999/02/22-

RDF-syntax-ns#ns_2.  

  

 Figure 3: An example of a container RDF: Seq 

 

RDF Schema [21] is a semantic extension of RDF for describing groups of related resources and 

their relationships with each other.  RDF Schema defines a set of concepts and their relationship 

with each other.  

 

 

 

http://example.org/professor/Amit 

http://example.org/publication#pub_1 

 

http://example.org/publication#pub_2 

http://example.org/professor/vocab#author_of 

http://w3.org/1999/02/22-RDF-syntax-ns#_2 

http://w3.org/1999/02/22-RDF-syntax-ns#type 

http://w3.org/1999/02/22-RDF-syntax-

ns_1 

http://w3.org/1999/02/22-RDF-syntax-ns#Seq 



 

12 

2.2.4 Ontology 

An Ontology forms the core of the Semantic Web technologies. Ontology [35] is described as 

a specification of conceptualization of a knowledge domain. An ontology can also be described 

as a controlled vocabulary which describes concepts and relationships of a domain in a formal 

and meaningful manner. This vocabulary also helps in representing an unambiguous view of a 

domain. Ontologies are represented using RDF and RDFS, OWL, or in DAML (DARPA Agent 

Markup Language).  

 

2.2.5 Logic and Proof 

The Logic and Proof are two different layers in Semantic Web stack. The Logic layer provides 

logical reasoning and the proof layer is responsible for deriving conclusions from proofs. Thus, it 

can derive conclusions which were not explicitly stated. 

 

2.2.6 Trust 

Trust layer is responsible for providing support for verification of trustworthiness of data, Web 

services and agents.  

 

2.3 OWL 

OWL is a formal language of modeling ontologies in the Semantic Web and facilitates greater 

machine interpreting capabilities by providing additional vocabulary support and formal 

semantics compared to RDF/RDFS, or XML. It has three sub languages OWL Lite, OWL DL 

and OWL Full which support increasing expressivity. OWL Lite supports simple constraints, 

classification hierarchies and reasoning. OWL DL supports expressivity through its language 



 

13 

constructs based on Description Logic. All constructs in OWL DL which are computationally 

complete and decidable. OWL Full offers maximum expressiveness, but offers no computational 

guarantees. 

 

2.4 RDF Storage and Retrieval Systems 

RDF and OWL have become W3C standard for modeling metadata for Semantic Web. With 

the increasing focus on data extraction, there has been a considerable interest among the 

Semantic Web community to develop efficient storage and retrieval system. Currently, there 

exist many open source storage and retrieval systems which provide query language support for 

information retrieval. The most well know systems are Jena [16], Sesame [30], and Redland [23]. 

Our lab i.e. LSDIS, has two different RDF main memory model implementations namely 

SemDis or Semantic Discovery API and BRAHMS.  

 

2.5 BRAHMS 

BRAHMS [13] was implemented in C++ as part of the SemDis or Semantic Discovery 

research project funded by NSF. BRAHMS was developed for faster access of RDF/RDFS 

information and was designed for loading large ontologies. It was designed as a main memory 

storage system. Currently, BRAHMS is being extended to provide SPARQL [32] support. 

 

2.6 Semantic Discovery (SemDis) API 

Semantic Discovery API [29] was influenced by BRAHMS RDF Store design and has the 

object design similar to that of BRAHMS. SemDis API uses an ARP RDF parser 

(http://www.hpl.hp.com/personal/jjc/arp/) to parse RDF.  It provides a common high level 



 

14 

Interface for accessing information from RDF data. This high level Interface provides various 

abstract method implementations for retrieving paths, or instances, or literals, or classes, or 

relationships from the RDF graph.  

 

2.7 Jena 

Jena is storage and retrieval system developed by RDF Core Working Group of HP Labs. Jena 

is a Java API frame work for developing Semantic Web applications. It provides SPARQL query 

language support for accessing parts of RDF/RDF or OWL and inference capabilities through 

SPARQL’s inference engine. SPARQL can be used to extract RDF sub-graphs, construct new 

RDF graphs based on the information in queried graphs and extract information in the form of 

URIs, blank nodes, and literals. 

Jena uses ARP RDF parser to parse RDF or OWL. It provides persistent storage of RDF using 

relational database. Some of the relational databases supported by Jena include ORACLE, 

MySQL, Microsoft SQL Server, and PostgreSQL.  

 

2.8 Sesame 

Sesame is an open source RDF storage and retrieval system which provides relational database 

support for storing RDF and provides inferencing and querying support. Sesame provides 

support for various query languages including SPARQL which is similar to SQL. Sesame 

provides flexibility of the underlying storage system and supports various storage systems 

including relational database, main memory storage, file systems etc.  

 

 



 

15 

2.9 Lucene 

Lucene search engine is a Jakarta open source project used to build and search indexes. It can 

index text documents and retrieve them based on various search criteria. It provides a basic 

framework which can be used to build a full-featured search engine. Lucene indexes using 

document objects. Thus, the text documents which are to be indexed have to be converted to 

document objects. Each document object consists of a set of field objects containing name and 

value pairs. The name is of type String and value can either be a String or a Reader object. Field 

class in Lucene provides various methods depending on whether the text in the value part of the 

field is tokenized, indexed or stored.  Depending on the requirements some of the text 

information is tokenized, indexed or stored. A Lucene allows users to search on the values of 

these fields and this is done using an IndexSearcher object. All query terms are parsed using an 

analyzer, which is wrapped within the query object.  Lucene provides four different analyzers to 

parse the search terms in the query:  the StopAnalyzer, WhiteSpaceAnalyzer, SimpleAnalyzer, 

and StandardAnalyzer. An analyzer takes in a stream of text and returns a set of tokens. Lucene 

tokenizes the queries depending on the kind of analyzer. The StopAnalyzer is used to split the 

terms and eliminate any stop words that exists in the query. The WhiteSpaceAnalyzer splits the 

query terms based on white space. The SimpleAnalyzer splits the text at non-character 

boundaries, such as special characters (‘@’,’&’ etc.). The StandardAnalyzer is the most 

sophisticated parser with rules for email addresses, acronyms, hostnames, floating point 

numbers, as well as the lowercasing and stop word removal. Lucene provides two important 

classes to build and search on a index. IndexWriter class is used to build the index and 

IndexSearcher class to search on the built index. Lucene provides tools to generate query objects 

called Query Parser. The QueryParser class takes the search terms or queries and wraps them in a 



 

16 

query object. This query object is later used by the search method in the IndexSearcher class. 

Later, the IndexSearcher returns the Hits object for the query.  This Hits object is similar to a 

vector and contains the ranked list of document objects for a given query. For our use, we have 

implemented a PorterStemAnalyzer by extending Lucene’s analyzer class and have used it to 

stem the words to its base forms to eliminate any stop words. 

 

2.10 WordNet 

The WordNet is an online lexical reference system developed at the Cognitive Science Lab of 

Princeton University.  Currently WordNet contains about 150000 words organized into 115,000 

synsets of nouns, verbs, adjectives and adverbs.  Each synset or set of words are related to other 

synsets by common relationships such as hypernym or hyponym, and meronym or holonym, 

verb groups i.e. groups of related verb forms, synonyms or similar meaning words, derivational 

forms or morphological forms etc. There exist different groups of synonymous words that are 

grouped based on the sense of a particular word.  For example, the word faculty has two synsets 

since it has different senses based on the usage context.  

WordNet can retrieve the different sets of related word information depending on the POS 

(Part of Speech) of the word. For example, the word teaches has related word forms such as verb 

groups, synonyms, derivational forms, and hyponyms. The hyponym or hyponym relationship 

indicates that one (hyponym) is a kind of other (hypernym). The meronym or holonym 

relationship indicates that one (meronym) is a part of other (holonym). The derivational form of 

a word is given by adding the morphological suffixes. For example, derivational form of a word 

write is writing.  



 

17 

WordNet indexes all words in its singular form or in its base form depending on whether the 

word is a noun or verb, respectively. Hence, all nouns have to be converted to its singular form 

and all verbs have to be reduced to its base form before searching in WordNet. As part of this 

research, we have implemented a conversion algorithm that converts plural words to singular 

form. We have also implemented a stemmer to reduce a verb to its base form. Additionally, we 

have implemented an algorithm which returns all the derivational forms of a word. 

 

2.11 Touch Graph 

TouchGraph (www.touchgraph.com) uses a spring-embedding algorithm to display graphs. 

There are many applications that are developed using TouchGraph. TouchGraph basically reads 

an XML file and outputs a graph that is representative of the XML file.  

Our system uses a TouchGraph applet to display the sub-graphs.  This is done by serializing 

the resultant triples in a XML file, which is read by TouchGraph. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

18 

Chapter 3 – Approach 

We have developed a prototype search and retrieval system which provides answers to the 

queries entered by the users. The system accepts queries in the form of keywords and returns a 

sub-graph relevant to the query. The system supports different types of searches. Our system 

uses an integrated approach that completely utilizes the knowledge in the WordNet and the 

ontology to expand search terms. A unique feature of our system is that it allows keyword 

searches on direct or related words of ontological classes or relationships or literals.  There exist 

to main phases in our system: pre-processing phase and the query processing phase. During the 

pre-processing phase the system builds various indices which are used in the query processing 

phase. The system builds different indices including the related word index and the Lucene triple 

index. We have explained each of them in detail in the following chapters. The system pre-

computes all the indices at the pre-processing phase in order to reduce the time needed for query 

processing. Each of the indices built during the pre-processing phase has its own significance 

during query processing. During the query processing phase, the system processes all the search 

terms, expands them and finds matches in the ontology. Since our system accepts keywords, 

there exist times wherein the search term matches a class and a relationship. In which case, the 

system needs consider one of them. We handle this using an elimination algorithm which is 

explained in the following chapter. The expanded sets of words are later matched to the 

ontological instances, classes and relationships. After the semantic query expansion, the system 

matches the expanded terms on to the instances, classes and relationships in the schema and 

instance file. Later, it retrieves the triples using the Lucene triple index. Then, the retrieved 

triples are filtered and later joined to form a meaningful sub-graph, which are later displayed to 

the users.  



 

19 

Chapter 4 – Architecture of the system 

 

WordNet

Index

Store

Architecture of the System

Loader

Lucene

Triple

Store

Storage Manager

RDF

Documents

Search 

and 

Result 

Interface

User Subsystem

Result

Cache

Lucene Triple Index 

Generator

Pre-processor
Related Words Index

Generator

Semantic Query 

Expansion Encoder

Filter Connector

Query Processor

WordNet

Index

Store

Architecture of the System

Loader

Lucene

Triple

Store

Storage Manager

RDF

Documents

Search 

and 

Result 

Interface

User Subsystem

Result

Cache

Lucene Triple Index 

Generator

Pre-processor
Related Words Index

Generator

Semantic Query 

Expansion Encoder

Filter Connector

Query Processor

 

Figure 4:  Architecture of the System 

 

Currently, the system is designed as a client/server or Web based application. The system 

administrator of the system will be responsible for loading the ontology and building of indices.  

Initially, the system administrator uploads the RDF documents into the system using a Loader, 

which loads the RDF documents into memory. Later, the users of the system are allowed to 

query on the uploaded RDF documents. Then, the RDF encoder encodes the classes, instances 

and relationships in the ontology and data file by assigning unique numbers. The encoding is 

done for efficiency reason. Thus, each URI in the RDF graph is assigned a unique number.   



 

20 

After encoding the graph, the system builds the triple indices and related word indices, which are 

later serialized to disk by the storage manger. The related word indices are generated using 

WordNet and NLP (Natural Language Processing) techniques and are built for every class and 

relationship in the ontology. Additionally, the generator creates an inverted index that stores the 

information of the related words to its respective class or relationship in the ontology. The 

system also generates Lucene triple index for every triple in the RDF documents. All the indices 

which are pre-computed during the preprocessing phase are used during the query processing 

phase while performing query expansion and filtering of triples.  During the query processing 

phase, each of the search terms are expanded and matched to the ontological classes, 

relationships and instances. Matching to ontological concepts and relationships has posed 

challenges. Most ontologies contain relationship (URI’s without namespace information) which 

are comprised of words separated by a delimiter. The relationship names such as has_Name, 

has_first_name, has_Course_Name, teaches_course are some of the examples of such URIs. We 

have tried to address these issues. We have used tokenizers to tokenize them to individual terms, 

stop word removers to remove any stop words from the compound word, stemmers to reduce 

words to their base form and converters to make conversions from plural to singular form. Once 

the pre-processing is complete, the system is ready for querying.  The query processor expands 

the entered search terms and matches the expanded set of terms to the ontological classes, 

instances and relationships to retrieve relevant triples that match the expanded set of terms. The 

filtering module helps the query processor to filter the irrelevant triples and displays only the 

triples that are relevant to the query. Later, the triples are connected to form a meaningful sub 

graph by the Connector.  

 



 

21 

Chapter 5 – Preprocessing Phase 

The system builds various indices including two main indices: Lucene triple index and the 

related word index during the preprocessing phase. As explained earlier, all these indices are pre-

computed to reduce the query processing time. During pre-processing phase, the system encodes 

all the nodes and edges of the RDF graph. The encoder gives unique number to the nodes 

depending on whether the node is a literal, instance or a class and is used during the query 

processing to retrieve triples. The encoder also builds an index that stores information of each of 

the class ID, instance ID or relationship ID or a literal ID to its respective URI and an inverted 

index for the same. The system also builds other indices such as class to derived instance index, 

and instance URI to its respective literal index. Later, all the created indices are serialized to 

disk.  We have explained each of them in the following sub chapters. 

 

5.1 Lucene triple index generator 

It builds Lucene triple index for all the triples in the schema and instance file. As mentioned in 

the previous chapter, Lucene can be used to build and search index. Lucene allows loading of 

large RDF documents without having to constrain to the memory of the machine and allows 

faster retrieval matched of RDF triples. The significance of this index is that it allows faster 

retrieval of triples. This index is used in the query processing phase to retrieve triples that 

matched the classes, relationships or literals. The index generator builds this index in the 

following steps: 

Initially, the Lucene triple generator gets all the triples in the dataset and schema from the 

loader and builds the index for every triple using its subject, predicate and object or literal and 

their respective encoded numbers. It creates Lucene field objects for each of the subject, 



 

22 

predicate, object or literals in the triple and their respective encoded numbers. These triple 

indices are later used by the query processor to retrieve triples based on a subject, or literal, or a 

property from the index store. In order to allow searches on property names, we have indexed all 

the property URI’s without any separators or delimiters. For example, the property has_name 

was converted to “has name” before indexing the triple associated with this property.  

Indexing RDF documents using Lucene is little different from indexing text files. Lucene has 

primarily been used for indexing unstructured text. Recently, Lucene has been used to index 

RDF triples [34]. The ways in which these triples are indexed is very much dependent on its 

usage. We have indexed RDF triples by the creating Lucene field objects for each of the subject, 

predicate and object or literal. We have also created field objects that stores subject ID, predicate 

ID and literal or object ID.  Thus, each triple has six field objects which are wrapped in a 

document object. This allows searches either on subject, predicate, object or literal and can 

retrieve the triples and their respective subject, predicate, and object ID’s. We have created triple 

index on literal statements or triples that contain literals, triples that are comprised of domain or 

range classes and on triples that contain only instances (instance URI).  

 

5.2 Related word index generator 

It builds the related word index for each of the classes and relationships in the ontology. This 

index significantly reduces the query processing time of a query. The index generator builds this 

index using the information in WordNet and ontology which is the most unique part of our 

system.  The Query Processor uses this index to find related words of a given search term.  The 

index also helps in matching of the search terms to ontological classes, and relationships. This 

was possible because of its unique processing of URI or label while building the index.  



 

23 

The related word index generator uses a unique conversion algorithm that helps in matching the 

related words of a class to its respective relationship. We have explained this at the end of this 

sub-chapter. The same applies to properties in the opposite manner. Hence, conversion algorithm 

is vital for our system. Most ontologies contain classes such as Author and relationships such as 

has_publication, or author_of, has_composed etc associated with that class Author. Consider 

another example, class Instructor might have relationship such as instructs,or teaches_course, 

teaches etc. The only way we can match to these relationships or classes is by using the 

conversion algorithm that converts noun to verbs or verb to nouns depending on the POS of the 

word. Thus, the queries such as “Eric Miller” instructor or “Eric Miller” teacher return similar 

results. The results of this query are the courses or classes thought by Eric Miller.  

This index also helps in entity disambiguation. The entity disambiguation is done based on the 

type of the literal. Hence, a query like Teacher Eric Course should return similar results as 

Instructor Eric Course, even though ontology may or may not contain a class related to Course. 

This is because the words Teacher and Instructor are related to each other.  

It is a two way index that stores the information of each class or relationship to its respective 

set of related words, and from the set of related words back to its respective class or relationship 

in the ontology. The system creates these indices for each of the class or property label or URI in 

the ontology. Hence, the names of URI or the label need to be meaningful enough to create these 

indices. The system also provides an option for the system administrator to choose either the 

label or URI based on the ontology. The indexer also generates information that links each class 

to its respective direct or derived instances. The derived instances can be defined as instances of 

all the sub classes of a class. It also builds an inverted index that stores information of each 

instance bag to its respective class in the ontology. This index is used during the query 



 

24 

processing to filter any unwanted triples. Initially, it builds the related word indices for all the 

classes in the ontology. Later, it builds the indices for all the properties in the ontology in a 

similar manner.  

The related word index generator performs the following steps for building indices for each of 

the classes and properties in the ontology: 

Step 1: Processing of URI or label: The index generator does processing depending on whether 

the index generator creates indices using URI or label. The creation of indices on class or 

property label is a straightforward process compared to the creation of indices on URI. It 

processes each of the URI by tokenizing using different sets of commonly occurring delimiters. 

Then, it removes any stop words occurring in the tokenized words. Later, it performs stemming 

or conversion from plural to singular based on whether the term is verb or noun. This is 

necessary since WordNet indexes on singular forms of the nouns or base forms of the verbs. 

Hence, all words have to be processed before searching in WordNet index. The index generator 

uses a stemmer to remove stop words and to reduce the word to its base form.  

The conversion algorithm converts a word to its singular form. This is done based on certain 

linguistic rules and string manipulation. The conversion algorithm uses a set of plural suffixes 

and its respective singular suffixes to convert a word from its plural to singular form. It works by 

pattern matching of all the suffixes against the word and if a match is found, it is replaced with a 

sub-string based on the linguistic rule associated with the suffix. The word is checked against all 

the suffixes and later, validated by searching in the WordNet. This ensures that the converted 

word is valid and is in its singular form.   

We have extended Lucene Analyzer and created our own analyzer class named 

PorterStemAnalyzer. This analyzer processes input text by converting input text to lower case, 



 

25 

tokenizing it using the commonly occurring delimiter, removing any stop words and stemming 

words to its root forms or base form. It removes any stop words defined in the stop word array of 

this class. We have used this analyzer to reduce the words (verbs) to its base form. 

Step 2: Later, it finds the all related word for each of the words. The related word for a given 

word can be retrieved by searching the WordNet for related words such as hypernym, hyponym, 

related verb forms, synonyms, meronyms, and inherited member holonyms. Currently, the index 

generator considers only the most frequently occurring sense of the related word. There exist a 

many senses for a given word. As explained earlier, the word faculty, has two senses and each of 

the sense has many synsets. In order to reduce the amount of expanded words, we have 

considered only the most frequently occurring sense. As explained earlier, our expansion 

technique exploits the hierarchical information in the ontology. The generator adds all the super-

classes or super-properties of all the tokenized words to the bag of related words. This process is 

important since the index generator uses knowledge present the ontology and WordNet to build 

related word index. 

Step 3: Then, for each of words in the bag, the index generator does conversions from noun to 

verb or verb to noun and gets the related words for each the converted words by searching in 

WordNet. This conversion is very important since relationships such as teaches, or instructs will 

have related words such as teacher or instructor respectively. This algorithm works by using a 

set of linguistic rules to convert a word in one form to other. Based on the POS of the word, the 

word is either converted to verb form or noun form respectively.  It works by pattern matching 

either on the noun to verb suffixes or verb to noun suffixes. Later, it adds the suffix based on the 

linguistic rule associated with the matched suffix.  Then, the algorithm adds all the related words 



 

26 

of the converted words by searching for all the related words in WordNet. It searches for all the 

related words explained in step 2. 

Step 4: It then adds all the derivational forms of all the words in the bag, which is obtained from 

the derivational form algorithm. The derivational form of word write is writing. The derivational 

algorithm works by initially checking the POS of the word. Then, depending on the POS of the 

word, the algorithm performs pattern matches either on the noun suffixes or verb suffixes 

respectively. Once a match is found, the algorithm replaces the suffix with its respective suffix 

based on a linguistic rule.  Later, the retrieved words are validated by searching in WordNet 

before updating them in the bag of related words.  

At the end, the index generator associates the processed URI or label to the computed set of 

related words. The indices are later serialized on to disk by the storage manager.  

The following example illustrates the creation of a related word index for author_of relationship. 

The index generator initially tokenizes the relationship into two words author and of. Then, it 

removes any stop words that exists in the set of tokenized words.  Thus, the word of is removed. 

The word author is in its singular form and hence it does not have to do any conversion. Later, it 

gets all related words of author including writer and adds them to the bag along with its super-

classes or super-properties. Then, it gets all the verb forms of the word writer such as write, from 

the conversion algorithm. Later, it adds all the related words of write such as compose, pen, and 

indite into the bag. At last, it adds all the derivational forms of all the words in the bag. The 

derivational form of word write is writing. Thus, the related words of author_of relationship are 

writing, write, indite, compose, pen, writer, author etc.  

Consider another relationship teaches_course. The index generator initially splits the 

relationship into two words teaches and course and removes stop words.  Then, it gets all the 



 

27 

range classes of the relationship and eliminates any range class that exists in the string URI of 

the relationship. In our example, it eliminates the word course. Later, it reduces the word teaches 

to its base form teach before finding the related words using WordNet and the conversion 

algorithm, which allows searches only on the singular form or base form of a word. It now stores 

the information from the relationship teaches_course to the related words of teach.  

Consider the class URI or label Professor.  The index generator processes this label by finding 

the related words using the WordNet and conversion algorithm. Here, the conversion algorithm 

will not be of much help. The related words of Professor will come in handy while processing 

the query. The user can enter related words of class Professor and also the sub-classes of class 

Professor. This index allows the system to find all the direct and derived instances of the class 

for any word related to the word Professor. Thus, a query like Faculty Sheth writings and 

Professor Sheth writings will return similar results even though ontology does not contain any 

sub-classes of Professor. Now consider another class URI or label Author. The index generator 

processes this label by finding all the related words of Author such as Writer. The index 

generator also obtains other related words which we have not mentioned in this example. The 

index generator then converts the word Writer to verb write and also gets the derivational forms 

such as writing, writes etc. Later, it gets the related words of all the words. Hence, it has related 

words such as compose, pen, publish etc. which are obtained through the conversion and 

searching of related words in WordNet for all the words in the bag. Consider a scenario wherein 

the ontology has relationship such as publishes or has_published or composes which connects 

the class Author to his writings. The user enters the query Sheth writer or Sheth Composer will 

be able to retrieve all the writings of Amit Sheth 

 



 

28 

5.3 Class to derived instance index 

This index store information of each of class to its respective direct and derived or indirect 

instances. This index is necessary during query processing and is used by filtering algorithm to 

remove irrelevant triples. We will discuss this index in the query processing chapter. This index 

is used during query processing to find all the instances of a matched class.  

 

5.4 Instance URI to literal index 

The instance URI to literal index stores information of each instance URI to its lateral. Most 

RDF documents have instances defined using relationships such as RDF labels or RDF.  This 

index stores information of each URI to its respective literal that are connected by the 

relationships such as RDF labels, RDF name, RDF given name, RDF last name, etc. This index 

is used during the query processing to find the URI associated with the literal.  

 

 

 

 

 

 

 

 

 

 

 



 

29 

Chapter 6 – Query processing phase 

The system processes the search terms during the query processing phase. The query processor 

uses several pre-computed indices in this phase to expand search terms. It performs the semantic 

query expansion of search terms and matches the expanded terms onto the ontological classes or 

relationships. Later, the filtering algorithm does the filtering of triples depending on the query.      

 

6.1 Semantic Query Expansion 

The query processor performs the expansion of search terms using a unique semantic 

expansion technique. The expansion of search terms is done using various pre-computed indices 

which were created during the pre-processing phase. The query expansion works by expanding 

the search terms depending on whether it is a literal or a word that is related to a class, or a 

relationship. Later, the query processor expands the search terms using the direct or related 

words of ontological classes or properties. Later, the query processor finds the related words for 

a given search term using a pre-computed related word index. As discussed earlier, the related 

word index stores information of each class or relationship to its respective bag or set of related 

words. Additionally, the query processor also keeps track of any matched literals, classes or 

relationships. The matching of triples is done by searching for each of the expanded terms in the 

pre-computed Lucene triple index. Later, the filtering algorithm filters any irrelevant triples. 

The semantic query expansion involves the following steps:  

Step 1: The search terms are initially compared to the instance labels or names in the ontology. If 

the match is found, the respective instance label or name is added to list of found instances. It 

uses the pre-computed indices and performs pattern matching of each of the search terms to the 



 

30 

instance labels or full names (including given name or first name and last name) in the ontology. 

Later, it adds all the found literals to the bag of expanded terms. 

Step 2: The search terms are matched against the classes in the ontology. This is done by initially 

converting each of the search terms to its singular form or base form. Later, it performs direct or 

pattern matches of each of the converted words to the words (keys) in the pre-computed related 

word index. This index stores information of each class (reduced to it base form or singular 

form) to its respective set of related words. If the match occurs, the query processor updates the 

bag of expanded query terms along with its related words. Otherwise, the transformed search 

term is matched against each of the word in the bag or set of related words.  The bag of related 

words is obtained for each class using the pre-computed related word index.  If there was a 

match, it adds the all the found classes and related words to the bag of expanded query terms. 

Step 3: Similar steps are carried out while matching the search terms against the ontological 

properties. It uses the pre-computed property indices that stores information of each of the 

property to its respective related words.  

Step 4: Later, the Lucene triple index is used to retrieve triples that match the expanded terms. 

This step is clearly explained in the next sub-chapter. Filtering algorithm retrieves triples using 

the Lucene triple index and performs the filtering of triples depending on the type of query. 

Consider an example query Sheth writings. Here, the user is looking to find all the writings of 

Amit Sheth.  The query processor performs the semantic query expansion using the pre-computed 

indices. It performs the semantic query expansion for the above query by performing the 

following steps: 

When the user enters the query Sheth’s writings, “writings” is initially converted to its 

singular form writing. Later, it checks the previously computed bag of related words or related 



 

31 

word index of class and relationships to see if writing belongs to any of these bags. We had 

explained the creation of related word index in the previous chapter. Later, the search term Sheth 

is matched to an instance literal Amit Sheth and writing to a relationship author_of. As discussed 

earlier, related word index is an index that stores information of a class or a property to its 

respective bag of related words.  The word writing is checked in the pre-computed related word 

indices for classes and properties. It initially checks writing with the keys in the related word 

index of classes or properties and if there wasn’t a match, it is checked in the bag (value) which 

contains a set of related words for a given word or key. The query processor was able to find the 

word writings in a bag that contains author. Later, the triples associated with the matched 

instances and properties are retrieved using a pre-computed Lucene triple index. Thus, the query 

processor retrieves all the triples associated with Amit and author using the Lucene triple index. 

The filtering algorithm performs the filtering of triples depending on the query. At the end, a 

sub-graph is displayed to the user. In the above example, a sub-graph that connects Professor 

Sheth to his writings is displayed to the user. 

 

6.2 Filter 

The filtering module in the query processor is responsible for filtering triples based on the type 

of query. As discussed earlier, the Filter allows four different kinds of queries. The filtering 

module in the query processor uses various pre-computed indices including the Lucene triple 

index to find relevant triples. The filtering algorithm retrieves all the triples that matched the 

literals and relationships in the dataset. The unique feature of this algorithm is the way in which 

it handles the RDF containers such as Sequence. This algorithm needs to detect RDF containers 

in the ontology and add the triples based on whether the matched instance or property connects 



 

32 

to a blank node or not. The number of triples that needs to be added depends on whether the 

query matched instances (i.e. instance URI associated with the matched literal) or relationships 

whose triple contain a blank node.  

Please refer Figure 3 for the following example. Figure 3 shows a resource or entity of type 

Professor connected via relationship author_of to a blank node of type RDF Sequence. Later, the 

blank node is connected to other instances via RDF sequence number relationships. Thus, a 

query such as Amit Writings should retrieve the following triples:  

1. A triple that connects the literal Amit to instance URI Amit. 

2. A triple that connects the instance URI Amit to the blank node 

3. A set of triples that connect the blank node to a set of papers, articles, presentations etc. 

4. A set of literals associated with the instance URIs of papers, articles, presentations etc. 

The algorithm retrieves the following triples in case the matched triples do not contain blank 

nodes. 

1. A triple that connects the literal Amit to instance URI Amit. 

2. A set of triples that connect the instance URI Amit to a set of papers, articles, 

presentations etc via relationship author_of. 

3. A set of literals associated with the instance URIs of papers, articles, presentations etc. 

 

The filtering algorithm within the filtering module works in the following steps: 

Step 1: Initially, the filtering algorithm builds an index that stores information of each of the 

instances (instance URI) of the matched class to its respective literal.  This is done in the 

following manner:  



 

33 

After performing semantic query expansion, the filtering algorithm uses a pre-computed index 

which stores information of each class to its respective derived instance to find all the derived 

instances of the matched classes. Later, it gets the instance URI for each of the derived instances 

and builds an index that stores information associated with each of the instance URI of the 

matched class to its respective literal. 

Step 2: eliminates any irrelevant relationships using an elimination algorithm.  As discussed 

earlier, sometimes there might be instances where a search term matches a class and a 

relationship in the ontology.  This causes problems during filtering since the filtering algorithm 

needs to perform the filtering of triples depending on whether the search terms matched the 

classes, the relationships or the literals.  Hence, the removal of irrelevant properties is necessary 

before retrieving and filtering triples. This is done by the elimination algorithm.  

The elimination algorithm uses two indices: one of them stores information of each of the 

matched instance URI and its respective literal and the other stores information of each of the 

matched class instance URI and its respective literal. These indices are built at the query 

processing time using a pre-processed index which contains information of each of the literal to 

its respective instance URI. The elimination algorithm works by retrieving all the triples that 

contain the matched properties and then checking to see if the triples contain either the matched 

instance URI or the URI of the derived instances of the matched class. If the triple does not 

contain any of the URI, then the property is removed from the set of matched properties.  

The filtering algorithm filters the triples depending on whether the search terms matched the 

ontological classes, relationships or literals. The first kind of query matches the search terms to 

the ontological classes and instances.  The second query type matches the search terms to the 

instances and properties in the ontology. The third kind of query matches the search terms to the 



 

34 

classes, instances and relationships in the ontology.  The fourth type of query matches the search 

terms to a class or an instance or a relationship in the ontology. As discussed earlier, the system 

allows users to search using the direct and related words of the classes, relationships or instances 

in the ontology. The results of the search are triples that contain the matched classes, or instances 

or relationships. 

Consider an example Professor Amit. This type can also be used for analysis and validation of 

information. If a user wants to know if Amit is a Professor, he can always check by searching 

using the above mentioned query. Sometimes the entered search term may not directly match the 

classes or relationships. The system uses the related word index generated at the pre-processing 

time to handle this problem. Also, the ontology may not have any direct instances associated 

with the given class. Initially, the algorithm gets the derived instances of the class. Later, the 

filtering algorithm filters based on whether the query term matches the classes, instances or 

properties. The above query matches search terms to the classes and instances in the ontology. 

Thus, the filtering algorithm must be able eliminate any irrelevant triples that do not have Amit. 

Furthermore, the filter algorithm removes any triples that are not the instance of class Professor 

using a pre-computed index that stores the information of each class to its respective derived 

instances.  

The filtering algorithm performs the following steps upon matching the instances and 

relationships in the ontology. Initially, it gets all the triple labels that contain the matched 

instance URIs.  Then, it gets the triples that contain the matched relationships and checks to see 

if triples contain the matched subject or object URIs. If there was a match, it adds both of them 

to the triple set. It then checks to see if the triple contains a blank node which connects to other 

instances.  If the blank node exists, it adds all the triples associated with the blank node. Later, it 



 

35 

adds all the subject and object labels associated with the triples. An example will be Sheth 

writings as explained earlier or Sheth Semantic Web, wherein the user expects to see all 

information that has links Sheth to Semantic Web. 

The last type of query matches the search terms against the classes, instances and relationships 

in the ontology. This query can be used to disambiguate entity. The algorithm initially gets all 

the triple labels which are associated with the matched class instances. Then, it checks to see if 

the retrieved triples contain the matched instance URIs.  Later, it gets all the triples that contain 

the matched relationships and checks to see if any triple contains the subject or object URIs.  If 

the matched triple contains a blank node which connects to other instances, the filtering 

algorithm adds the triples associated with the blank node.  Later, the subject, and object labels 

associated with the triples are added. An example for the given query will be Professor Sheth 

writings as explained earlier or Courses Sheth instructs, wherein the user expects to see all 

courses that Professor Sheth instructs.  

 

6.3 Connector 

This is a component of the query processor. Here, the retrieved triples are joined on the 

common subject or object. It also adds the literal statements associated which are associated with 

each of the instance URI. The resultant sub-graph is later displayed to the user. The connecter 

joins the triples using the encoded ID which were retrieved along with the triple.  

 

 

 

 

 



 

36 

Chapter 7 –Implementation Details and Comparison 

This application is a Web based application, developed using Apache Tomcat, Servlets, 

TouchGraph applet, SemDis API, Lucene, and WordNet. The application has two main phases: 

pre-processing phase and query processing phase. During the pre-processing phase, the RDF 

files including the schema and instance file are loaded in to the system. We have used SemDis 

API to load RDF files. Later, the indices are created and serialized on to disk. The entire pre-

processing phase is handled by the System Administrator.  During pre-processing the system 

creates a static object of the ontology model of RDF documents. This ensures that there exists 

only one model in the memory.  

The serialized indices are loaded into memory during the query processing phase. Again, all 

the objects were made static to ensure that the indices are loaded only once and any subsequent 

request will use the loaded indices. After query expansion and filtering, the system displays the 

resultant output in the form of a graph. We have used TouchGraph to display graphs. The system 

is designed to store information of all the previous searches such as matched literals, 

relationships, or classes. This information is stored in static maps and the map is updated every 

time a new search is performed. The current system returns results by displaying two sets of 

triples namely: literal statements and instance statements respectively. It can also to display a 

sub-graph of the retrieved triples.   

Comparison was done by comparing the precision values of our system to a well known 

keyword based retrieval system like Google. We have calculated the values for different queries 

supported by our system and have used the LSDIS lab portal ontology for the comparison. The 

ontology contains most up to date information of real world entities and has been populated with 

the most recent information of entities such as professors, publications, research labs etc.  It has 



 

37 

17 unique properties, around 1558 literals, 112 schema properties (properties connecting the 

classes) and 1024 instance statements ( properties connecting instances).   

Currently, our system can only extract the metadata information relevant to the query, but can 

easily be extended to retrieve semantically annotated documents. The comparison was not 

straight forward since Google returned documents, while our system returned a sub-graph.  

The definitions of precision and recall are as follows. The precision can be defined as the ratio 

of the number of relevant results retrieved to the total number of results returned. While 

performing the evaluation, we made sure that Google retrieved Web pages that contained all of 

the queried terms and restricted the searches in Google to the LSDIS lab Web site. 

 

Table 1: Precision values of a keyword based search and retrieval system  

 

No. Query Hits Precision 

1. Sheth 

teaches 

courses 

 

9 

 

6/9 = 67% 

2. Sheth 

instructs 

courses 

 

3 

 

0/3=0% 

3. Sheth 

teaches 

classes 

 

6 

 

1/6 =16.7 % 

4. Sheth 

teaches 

14 6/14= 42.8 % 

5. Amit 

writings 

2 2/2 = 100% 

6. Sheth 

advises 

students 

 

3 

 

0/3 = 0% 

 

Table 1 shows the Google’s precision values for different queries on the LSDIS site. The 

precision values shown in Table 1 are based on the documents retrieved on June 28
th
 2006. For 



 

38 

the first query, Google retrieved 6 documents which were partially related to the query. The 

Google was able return Web pages that contained the two courses thought by Prof. Sheth and 

was also able to find pages that contained the names of the Teaching Assistants. The Google was 

not able to retrieve any relevant result for the query Sheth instructs courses. The query Sheth 

teaches classes, retrieved 6 pages which contained words such as classes, teachers or teaches 

and Sheth in it.  Only one of them was relevant to the search. The results of the fourth query 

were similar to the first query. The query Amit writings, resulted in two hits and all of them were 

relevant to the search. In query 5, the user was looking to find all the writings such as 

publications, book chapters etc. that has been authored by Professor Sheth.  The query Sheth 

advises students, retrieved 3 results and again none of them were relevant to query. In query 6, 

the user was looking to find all the students advised by Professor Sheth.  



 

39 

Table 2: Precision values for our system 

No. 

 

Query Hits 

 

Precision 

 

 

1. 

Sheth 

teaches 

courses 

 

3 

 

 

3/3= 100% 

 

2. 

Sheth 

instructs 

courses 

 

3 

 

3/3= 100% 

 

3. 

Sheth 

teaches 

classes 

 

3 

 

3/3=100% 

 

4. 

Sheth 

teaches 

 

3 

 

3/3=100% 

 

5. 

Amit 

writings 

Web 

services 

 

14 

 

14/14=100% 

 

6. 

Amit 

writings 

 

204 

 

204/204=100% 

 

7. 

Sheth 

advises 

students 

 

13 

 

13/13 =100% 

 

The Table 2 shows the precision and recall values of our system for the above queries. The 

ontology had most up to date information of all the entities. Thus, the information in the 

ontology was accurate and complete. The values were calculated based on our interpretation and 

meaning associated with the query. Our system returned accurate results for all the above 

queries. The output of the system was a relevant sub-graph relevant to the query. Please refer to 

the appendix chapter to see some of the results retrieved by our system.  

Please refer to the LSDIS portal ontology shown in Figure 1 for the above queries. Though the 

figure does not show many instances, we have populated the ontology with similar real world 

instances. For the first query, the system matched teaches in the query to the ontological 



 

40 

relationship teaches. The system matched the search terms Sheth and Courses to entity instance 

Sheth and class Course respectively. The results of the above query were all the courses thought 

by Prof. Sheth.  Consider the second query Sheth instructs Courses. Even though the ontology 

did not contain relationship instructs, the system returned results similar to the first query.  The 

system retrieved similar results for the third and fourth queries. The fourth query did not match 

to any of the classes in the ontology, but was still able to return results which were similar to the 

queries 1, or 2, or 3.  The query 5 returned all the writings of Amit Sheth, which had Web 

Services. The above query matched the search term Amit to the instance Amit and writings to the 

relationship author_of and Web Services to all the entity instances that contained Web Services in 

its RDF labels. The results of query 6 were all writings authored by Prof. Amit. In this case, it 

matched Amit and writings to instance Amit and relationship author_of respectively. The seventh 

query returned all the 13 students advised by Prof. Amit, wherein Sheth matched to an instance, 

advises matched to a relationship advisor_of and students matched the class Student in the 

ontology. Over all, we think that our searches were very accurate compared to keyword based 

retrieval system such as Google. Our system displayed sub-graph that was relevant to the search. 

Additionally, our system allows keyword searches on related words. The information retrieved 

by our system was based on knowledge available in the ontology.  Currently, the expansions of 

search terms are limited to the information in the ontology and WordNet. The results displayed 

by our system are based on the matches in the ontology. And hence in order to retrieve results, it 

is mandatory that the query matches to any of the lateral, relationship or classes in the ontology.  

Consider the query Sheth Publications. Our system was not able to find any matches for 

Publications in the ontology and hence could not retrieve any meaningful results. The system 

processes the above query in the following steps: 



 

41 

Initially, the query processor matches the search terms to the ontological classes, relationships or 

literals. The search term Sheth is matched to the literal Amit Sheth. The search term publication 

was converted to its singular form publication before searching for related words in the related 

word index. The system was not able to find any word related to publication in the related word 

index and hence could not retrieve any triples. As explained earlier, the related word index was 

created for each class or relationship in the ontology. This was done in order to reduce the 

expansion time while processing the query. Our system was developed to retrieve information 

from the ontology and hence would not return triples or sub-graph if the search term does not 

match to the ontological classes or properties or literals. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

42 

Chapter 8 – Related Work 

In this thesis, we have proposed a prototype system that allows keyword searches on direct or 

related words of an ontological class, or relationship or a literal.  We adopt an integrated 

approach which uses the knowledge in WordNet and ontology to expand search terms. The key 

feature of our system is that it allows keyword searches especially on relationships and can 

display sub-graphs that are relevant to the query. Additionally, our system allows users to enter a 

set of keywords that may or may not be related to each other. 

While many of these systems [1, 16, 30] are based on formal querying languages [7, 22, 32], a 

few allow the querying of Semantic Web repositories using keyword queries [9, 12, 14, 24] or 

rdf path fragments [34]. Our system is different from the above systems, as it supports keyword 

search not only on literals, but also on related words of classes and relationships. The systems [9, 

12, 14, 24] allows users to enter only a single keyword or literal per search, unlike our system 

which allows multiple keywords in a single search. The key feature of our system is that it 

supports searches on related words of classes and relations, unlike the direct or pattern based 

keyword searches supported in [9, 12, 14, 24]. Additionally, our system displays search results in 

the form of a sub-graph. Kowari [1] is a native RDF store that stores information using a RDF 

database. It allows users to query using iTQL RDF query language, which is similar to SQL. 

Sesame is a RDF database with support for RDF Schema inference and querying. It supports 

several query languages including SeRQL. Jena [16] provides persistent storage of RDF using 

relational database. It provides SPARQL query language support for accessing parts of 

RDF/RDF or OWL and inference capabilities through SPARQL’s inference engine. Swoogle 

[14] is a search and retrieval system for searching ontologies on the web. Swoogle uses a ranking 

scheme that utilizes relationship weights between Semantic Web Documents (SWD) to model 



 

43 

the probability of being explored.  Swoogle allows keyword searches on classes, literals or 

properties.  The system [24] uses a spread activation algorithm to find related instances or literals 

for a given set of concepts using a initial set of relationship weights. QuizRDF [12] is another 

search engine that allows keyword searches on annotated documents. The searches in QuizRDF 

are limited to literals. Beagle++ [34] is a desktop search application that supports RDF path 

fragment queries and retrieves annotated desktop resources. It uses Lucene to index RDF triples 

and paths.  The system expects the user to have knowledge of the ontology. It takes path 

sequence queries such as creator/affiliatedTo MIT to find all documents whose authors are 

affiliated to MIT.  The systems [9, 12, 14, 24, 34] do not support searches on related words of 

ontological classes or relationships, unlike our system that supports both.  The semantic search 

proposed in [9] supports keyword based queries on the existing literals in the ontology.  The 

system performs query expansion by navigating through the instances graph using a breadth first 

search. Thus, the system retrieves the other related information of the keyword by performing 

instance graph based expansion.  

Similar approaches have been proposed for supporting keyword searches over relational [2, 

11] and XML [10] databases. However, these approaches often limit their search to the set of 

literal values i.e. leaves or terminal nodes, e.g. the title of a book or an author’s name. The 

applications [2, 11] retrieve data by repeated joining of the data or tuples associated with the 

matched fields. Additionally, Banks [2] provides data and schema browsing through interactive 

displays. XRank [10] allows searches on XML elements or tags.  Our system provides keyword 

searches on RDF documents and hence the challenges are different compared to keyword 

searches on database or XML documents. Additionally, our system allows searches on related 

word of classes, relationships.  



 

44 

There exist several applications that either use WordNet [37] or a domain specific ontology [3, 

9, 31] for query expansion. We have adopted an integrated approach that uses the knowledge in 

WordNet and domain specific ontology to expand search terms. Varelas et al [37] approach the 

problem of retrieving the related documents by computing semantic similarity between the 

discovered related words in the document and the expanded query terms. Aitken and Reid [3] 

have developed a search and retrieval system for retrieving documents. It expands the search 

terms using a domain specific ontology and matches the expanded query terms to the terms in the 

document. The searches in [3] were confined to the ontological classes and expanded search 

terms using the RDF: subClassOf relationship or hierarchy information in the ontology. OWLIR 

[31] is a prototype Information Retrieval system that uses an event ontology encoded in 

DAML+OIL to retrieve documents. The system allows searches on semantically marked-up 

documents which are annotated using DAML+OIL ontology and incorporates inference services 

which can answer questions about the explicit and implicit knowledge specified in the ontology.  

It answers some the known queries by initially providing the name and description of the 

retrieved result.  Later, the user can get more information through a software agent that gathers 

information from the actual website.  This system uses a fixed set of queries (questionnaires) 

which are parsed and later matched to the ontology classes.   

 

 

 

 

 



 

45 

Chapter 9 – Conclusion and Future Work 

We have proposed a prototype system that allows keyword searches on direct or related words 

of classes, relationships and instances in the schema or instance data.  We adopted an integrated 

approach that uses the knowledge in ontology and WordNet along with the lexical processing to 

expand search terms. We proposed a system that allows users to enter a set of keywords that may 

or may not be related to each other.  

  We discussed the two phases that our system uses to retrieve the triples. We discussed how 

the indices are built during the pre-processing phase and used during the query processing phase. 

Later, we described all the steps performed during query expansion and addressed different 

issues involving in matching of search terms to classes and relationships in the ontology. We also 

discussed the different queries considered by our filtering algorithm.  

We compared the results of our system with a keyword search and retrieval system such as 

Google and calculated the precision for different types of queries. The initially comparison 

indicated that the results returned by our system were very accurate and relevant to the query. On 

the other hand, the other system returned many Web documents which weren’t relevant to the 

search. Our system retrieved triples by performing matches onto the ontological classes, 

relationships or literals. Hence, it is important that entered search terms match literals or are 

related to the ontological classes or relationships to retrieve relevant meaningful sub-graphs.  

Our current system returns a set of triples and a relevant sub-graph, and can be extended to 

return a set of documents like any other contemporary search system. This can help in reducing 

the search problems that exist in the contemporary keyword based search and retrieval systems. 

 

 

 



 

46 

REFERENCES 

[1] Adams, T., Gearon, P., Wood, D., Kowari. A Platform for Semantic Web Storage and 

Analysis. http://www.itee.uq.edu.au/~dwood/docs/www2005-kowari.pdf , 2005. 

[2] Aditya, B., Bhalotia , G., Chakrabarti , S., Hulgeri , A., Nakhe , C., Parag, and Sudarshan, 

S. BANKS: Browsing and Keyword Searching in Relational Databases. In proceedings of 

VLDB, 2002. 

[3] Aitken, S, and Reid, S. Evaluation of an Ontology-Based Information retrieval Tool. 

ECAI’00, Applications of Ontologies and Problem-Solving Methods, 2000. 

[4] Aleman-Meza, B., Nagarajan, M., Ramakrishnan, C., Ding, L., Kolari, P., Sheth, A.P., 

Arpinar, I.B., Joshi, A. and Finin, T., Semantic Analytics on Social Networks: Experiences in 

Addressing the Problem of Conflict of Interest Detection. In 15th International World Wide Web 

Conference, (Edinburgh, Scotland, 2006). 

[5] B. Hammond, A. Sheth, and K. Kochut. Semantic Enhancement Engine: A Modular 

Document Enhancement Platform for Semantic Applications over Heterogeneous Content. In V. 

Kashyap & L. Shklar (Eds.), Real World Semantic Web Applications (pp. 29-49): Ios Pr Inc. 

2002. 

[6] Berners-Lee, T., Hendler, J., Lassila, O. The Semantic Web.Scientific American. May 17, 

2001. 

[7] G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis, and M. Scholl. RQL: A 

Declarative Query Language for RDF. In Proceedings of the 11th WWW Conference, Honolulu, 

Hawaii, USA, 2002 

[8] Google search engine: http://www.google.com 

[9] Guha, R., McCool, R., and Miller, E. Semantic Search. Proceedings of WWW 2003. 



 

47 

[10] Guo, L., Shao, F., Botev, C., and Shanmugasundaram, J. XRANK. Ranked keyword search 

over XML documents. In ACM SIGMOD, 2003. 

[11]  Hristidis, Vagelis and Papakonstantinou, Yannis: DISCOVER: Keyword search in 

relational databases. In VLDB, 2002. 

[12]  J. Davies, R. Weeks, and U. Krohn. QuizRDF. Search technology for the semantic Web. In 

Workshop on Real World RDF and Semantic Web Applications, WWW, 2002. 

[13] Janik, M. and Kochut, K., BRAHMS: A WorkBench RDF Store and High Performance 

Memory System for Semantic Association Discovery. In Fourth International Semantic Web 

Conference, (Galway, Ireland, 2005) 

[14] L. Ding, T. Finin, A. Joshi, R. Pan, R. S. Cost, Y. Peng, P. Reddivari, V. C. Doshi, and J. 

Sachs. Swoogle: A search and metadata engine for the semantic Web.  In Proceedings of the 

Thirteenth ACM Conference on Information and Knowledge Management, Washington, DC, 

Nov. 2004. 

[15] Lucene: http://lucene.apache.org 

[16] McBride, B. Jena: Implementing the RDF Model and Syntax Specification. Proc. of 2
nd
 

International Workshop on the Semantic Web, May 2001. 

[17] Msn: http://www.msn.com 

[18] Ontology: http://www-ksl.stanford.edu/kst/what-is-an-ontology.html 

[19] OWL: http://www.w3.org/TR/owl-features/ 

[20] RDF: http://www.w3.org/TR/rdf-concepts 

[21] RDF Schema: http://www.w3.org/TR/rdf-schema 

[22] RDQL: http://www.w3.org/Submission/2004/SUBM-RDQL-20040109 

[23] Redland: http://librdf.org 



 

48 

[24] Rocha, C., Schwabe, D., Poggi de Aragao, M. A Hybrid Approach for Searching in the 

Semantic Web. WWW2004. 

[25] S. Handschuh and S. Staab. Authoring and Annotation of Web Pages in CREAM. In 

Proceedings of the 11
th
 International World Wide Web Conference, WWW 2002, Honolulu, 

Hawaii, May 7-11, 2002, pages 462–473. ACM Press, 2002. 

[26] S. Handschuh, S. Staab, and F. Ciravegna. S-CREAM –Semi-automatic CREAtion of 

Metadata. In Proceedings of EKAW 2002, LNCS, pages 358–372, 2002. 

[27] Semantic Web: http://www.w3.org/ 

[28] Semantic Web layer cake: http://www.w3.org/2000/Talks/1206-xml2k-tbl/slide10-0.html 

[29] SEMDIS: http://lsdis.cs.uga.edu/projects/semdis/sweto/index.php?page=5 

[30] Sesame: http://www.openrdf.org 

[31] Shah, U., Finin, T., and Joshi, A. Information Retrieval on the Semantic Web. Proc. of the 

Eleventh International Conference on Information and Knowledge Management, McLean, VA, 

USA, 2002. 

[32] SPARQL: http://www.w3.org/TR/rdf-sparql-query 

[33] Stephen Dill, Nadav Eiron, David Gibson, Daniel Gruhl, R. Guha, Anant Jhingran, Tapas 

Kanungo, Sridhar Rajagopalan, Andrew Tomkins, John A. Tomlin, and Jason Y. Zien. Semtag 

and seeker: bootstrapping the semantic Web via automated semantic annotation. In Proceedings 

of the Twelfth International Conference on World Wide Web, pages 178–186. ACM Press, 2003. 

[34] T. Iofciu, C. Kohlsch¨utter, W. Nejdl, and R. Paiu. Keywords and RDF fragments. 

Integrating metadata and full-text search in beagle++. In Proc. of the Semantic Desktop 

Workshop held at the 4th International Semantic Web Conference, 2005. 



 

49 

[35] Thomas Gruber.  It Is What It Does: The Pragmatics of Ontology.   Invited presentation to 

the meeting of the CIDOC Conceptual Reference Model committee, Smithsonian Museum, 

Washington, D.C., March 26, 2003.  

[36] Unicode: http://en.wikipedia.org/wiki/Unicode 

[37] Varelas, Giannis, Voutsakis, Epimenidis, Raftopoulou, Paraskevi, G.M. Petrakis, Euripides, 

Evangelos, E. Milios. Semantic Similarity Methods in WordNet and their Application to 

Information Retrieval on the Web. 7th ACM International Workshop on Web Information and 

Data Management (WIDM 2005), pp. 10-16, Nov. 5, 2005, Bremen, Germany.  

[38] WordNet: http://wordnet.princeton.edu 

[39] XML: http://www.w3.org/XML 

[40] XML Schema: http://www.w3.org/XML/Schema 

[41] Yahoo: http://www.yahoo.com 

 

 

 

 

 

 

 

 

 

 

 



 

50 

APPENDIX A – Screenshots of some of the searches in our system 

Figure 5: Screenshot of our search and retrieval system 

 

 

 

 

 

 

 

 



 

51 

Figure 6: Retrieved triples for the query: professor sheth advises student  

 

  

 

 

 



 

52 

Figure 7: TouchGraph display for the query: professor sheth advises student 

 

 

 

 

 



 

53 

 

Figure 8: Retrieved triples for the query: Sheth instructs 

courses.

  

 

 

 

 



 

54 

Figure 9: Retrieved triples for the query: Sheth teaches classes. 

 

 

 

 

 

 

 

 

 



 

55 

Figure 10: TouchGraph display for the query: Sheth teaches classes 

 

 

 

 

 

 



 

56 

APPENDIX B -Glossary of Acronyms  

 

RDF:    Resource Description Framework 

RDFS:    Resource Description Framework Schema 

OWL:    Web Ontology Language 

SPARQL:   Simple Protocol and RDF Query Language 

RDQL:   RDF Data Query Language 

RQL:    RDF Query Language 

SQL:    Structured Query Language 

LSDIS:   Large Scale Distributed and Information Systems Lab 

SEMDIS:   Semantic Discovery 

  

 

 

 

 


