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ABSTRACT
Trichloroethylene (TCE) is a chlorinated solvent used primarily as a degreaser. It has
been reported that TCE produced elevated incidences of tumors in rodents by both the
oral and inhalation routes of exposure. There is limited evidence to support TCE as a
cause of cancer in humans. Trichloroacetatic acid (TCA) is of considerable interest to the
scientific and regulatory communities, since it is a toxicologically important metabolite
of TCE and perchloroethylene (PERC), as well as one of the byproducts of drinking
water chlorination. TCA is generally believed to be the proximate hepatocarcinogenic
metabolite of TCE in mice. CYP2EL, which catalyzes the oxidation of many small
volatile organic chemicals, is responsible for the first step of TCE oxidation. CYP2EL is
induced by a variety of xenobiotics (i.e., ethanol, acetone and aspirin), as well as by
certain conditions and diseases (i.e., obesity, alcoholism and diabetes). Thus, induction of

CYP2EL1 is generally expected to cause a significant increase in the biotransformation of



highly metabolized compounds, such as TCE, possibly leading to an increase in cancer
risks. Low-level TCE exposure scenarios have not received much attention. Information
on the carcinogenic responses to TCE and its metabolites has been obtained at very high
doses, which have been used to predict cancer risks of low-level TCE exposure by linear
extrapolation. Thus, the main objective was to investigate changes in the metabolism of
low doses of TCE and on the pharmacokinetics of downstream metabolites (especially
TCA), due to CYP2EL induction by pyridazine (PZ) as a inducer. The most prominent
effects of CYP2E1 induction were on the toxicokinetic profiles of TCA. The data suggest
that CYP2EL induction enhances systemic and renal clearance of TCA, possibly by
affecting organic anion transporters/multidrug resistance-related protein (OATs/MRPS) in
the kidneys. So, future investigation of OATs/MRPs should provide a better
understanding of the urinary elimination mechanism of small organic acids such as TCA.
Rapid clearance of the TCA may, in fact, be beneficial in that liver cancer risk from TCE

would be reduced.
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CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW

Trichloroethylene (TCE) is a volatile, lipophilic chlorinated alkenyl halide. Since
its first commercial production in the 1920s, by chlorination of ethylene, TCE has been
used as a general purpose solvent for degreasing and was introduced in use for dry
cleaning in the 1930s. TCE was much less toxic than other similar volatile organic
chemicals (VOCs), such as carbon tetrachloride (CCly) and chloroform (CHCls).
Currently, about 80 ~ 90 % of TCE usage worldwide is for degreasing in metal cleaning
operations, but it also has been used as paint stripper, adhesive solvent, ingredient in
paints, precursor for solvents or polymers and for plutonium disposition in nuclear
production facilities.

TCE is mainly released to air as vapor from degreasing operation sites, as well as
lesser amounts from waste disposal and treatment facilities (U.S. EPA, 1985). Poor
handling and improper disposal of TCE in landfills have been the main causes of
groundwater contamination and release to surface waters from industrial discharges
(IPCS, 1985). Thus TCE is the most abundant contaminant of groundwater at Superfund
sites (identified at 47 % of > 1,000 NPL sites) in US. Up to 34 % of municipal drinking

water supplies tested had TCE contamination (ATSDR, 1993).

TCE is prevalent in urban air, water, soil and even in food, but the U.S. EPA
concluded that exposure of the general population to TCE from food was probably low
(U.S. EPA, 2001). In the atmosphere, TCE is highly reactive and does not persist for a

significant length of time. In surface water, TCE is mainly removed via volatilization



with minor contributions from photo-degradation and hydrolysis. TCE is degraded slowly
by microorganisms in groundwater (ATSDR, 1993). TCE has been found in animal and
human biological specimens, such as blood, breast milk, sweat, saliva, seminal fluids and
particularly in adipose tissues. Certain TCE metabolites (i.e., trichloroacetic and
dichloroacetic acids (TCA and DCA)) are also produced during disinfection of drinking
water by chlorination or chloramination (U.S. EPA, 1985). In the U.S., TCE is listed as a
priority pollutant under the Clean Water Act (CWA) and Safe Drinking Water Act
(SDWA), with maximum contaminant limit set at 5 ug/L (ppb). TCE is also regulated
under the Resource Conservation and Recovery Act (RCRA) as a spent solvent process
waste and as a characteristically toxic waste (any material leaching at more than 0.5
mg/L). The Comprehensive Environmental Response, Compensation, and Liability Act
(CERCLA) requires reporting of releases of TCE above 100 pounds (about 8 gallons),
while the Superfund Amendments and Reauthorization Act (SARA) lists TCE as a

chemical requiring reporting under its community right-to-know provisions.

TCA, a major end metabolite of TCE, has been used as a laboratory reagent in the
synthesis of various medicinal and organic chemicals, as a soil sterilizer and a selective
herbicide for control of many annual and perennial grasses in crop and non-crop fields
(Hoekstra, 2003). Medical uses of TCA include application as an antiseptic and a peeling
agent used for the topical treatment of warts and other dermatological conditions. TCA
also is used as an etching agent for the metal surfaces, and as a solvent in the plastics and

textile industries (HSDB, 2002).
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In the atmosphere, TCA can be formed as a combustion by-product of organic
compounds in the presence of chlorine and as a photo-oxidation product of
tetrachloroethylene and TCE (Juuti and Hoekstra, 1998). However, Sidebottom and
Franklin suggested that atmospheric degradation of chlorinated solvents contributes only
a minor amount of TCA to the atmosphere (Sidebottom & Franklin, 1996). Also, the U.S.
EPA data for U.S. drinking water supplies indicate that TCA is detected in groundwater
and surface water at mean concentrations of 5.3 and 16 pg/L, respectively. It has been
measured in concentrations ranging up to 80 pg/L in groundwater and up to 174 pg/L in
surface water distribution systems. TCA is also likely to be found as a disinfection by-
product in meat and other food products, as chlorine is used in food production processes

including disinfection of chicken in poultry plants (U.S. EPA, 2002).

Toxicokinetic aspects of TCE and TCA

TCE is readily absorbed across biological membranes, as a result of its volatile
and lipophilic properties. At high vapor levels, TCE is an eye and skin irritant. There are
essentially three routes of exposures to consider for humans or laboratory animals:
inhalation (vapor), dermal (vapor or liquid), and oral (liquid). The most common route of
TCE in occupational settings is inhalation. Ingestion is another major route of exposure to
TCE, particularly in environmental settings. Since TCE is uncharged and highly
lipophilic, uptake can readily occur by passive diffusion via the gastrointestinal (GI) tract,

skin and mucous membranes, and alveoli.

With inhalation and oral administration, TCE is rapidly and extensively absorbed

into the systemic circulation, and subsequently distributed to different target organs (e.g.,
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lungs, liver, kidneys, and nervous system, etc.) according to their blood supply and lipid
content (Lee et al., 1996). Clearance occurs by two major processes: exhalation of the
parent compound; and by metabolism, mainly in liver with subsequent urinary and biliary
elimination of metabolites. Most of the TCE absorbed from the GI tract goes to the liver,
where much of low doses is metabolized. The lipophilic chemical primarily accumulates
in adipose tissue, regardless of the route of administration. Estimated TCE half-lives in
richly and poorly perfused compartments (e.g., adipose tissue) are 2 ~4 min vs. 3.5 ~ 5

hr, respectively (Davidson and Beliles, 1991).

Many studies have showed marked differences in TCE pharmacokinetics in
rodents and humans. Prout et al., (1985) demonstrated the different elimination patterns
in rats and mice given a single po dose (10 to 2,000 mg/kg) of isotope-labeled TCE.
Linear kinetics were observed in the mouse at dose of 1,000 mg/kg and above (Prout et
al., 1985). They showed mice and rats metabolized TCE almost completely at a 10 mg/kg
dosage. Sixty % of this dose was excreted as metabolites in urine with only ~ 4 %
eliminated unchanged in expired air during the first 24-hr period. However, almost 78 %
of the dose was eliminated unchanged in the rat with 2,000 mg/kg TCE dose, compared
to only 14 % in the mouse. These findings reveal at high dosages, the mouse is exposed
to significantly higher concentrations of potentially toxic and/or carcinogenic TCE
metabolites than the rat. The researchers also examined differences in pharmacokinetics
of TCE and its metabolites in the blood, with mice exhibiting higher rates of metabolism,
with the mouse exhibiting significantly higher blood concentrations of both

trichloroethanol (TCOH) and TCA than the rat (4-fold and 7-fold differences,
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respectively). They reported the time for reaching maximum metabolite concentration to

be 2 hr for mice and more than 10 hr for rats.

Human TCE pharmacokinetic data come mostly from the case studies after
accidental or intentional exposure. Yoshida et al. (1996) reported the pharmacokinetic
profiles of TCE and its metabolites in blood and urine following accidental TCE
ingestion. The authors described two different phases of TCE elimination from the serum
and urine with excretion persisting for 2 days. The half-life of urinary TCA excretion was
26 hr for the initial phase versus 52 hr for the terminal elimination phase (Yoshida et al.,

1996).

Differences in partition coefficients for TCE (including blood/air, Pg; fat/blood,
Prat; liver/blood, Priver; and rapidly perfused tissue, Prap) across the species have been
reported. For example, Allen and Fisher (1993) and Fisher et al. (1991) reported that
TCE’s partition coefficient for blood/air (Pg) is higher in mice (14.0) and rats (18.5) than
that in humans (9.2). This is another important factor to be considered when extrapolating

animal data to humans (Allen and Fisher, 1993; Fisher et al., 1991).

Due to its high water solubility (ca. 13 g/L), TCA is rapidly absorbed from the GI
tract of rats and humans (Kim and Weisel, 1998). It is then distributed primarily into the
plasma and richly perfused organs, leading to lower concentrations in fat. The majority of
TCA is excreted in urine unchanged in humans and rodents (Larson and Bull, 1992b).

Thus, TCA’s toxicokinetic profiles are much different from those of TCE. The half-life
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of TCA is much longer than that of TCE, whether given orally or formed as a metabolite

after the administration of TCE or TCOH.

The toxicokinetics of TCA also show clear differences across species. Fisher et al.
and Schultz et al. showed that the plasma half-lives for TCA were much shorter in
rodents than in humans. For example, a TCA plasma half-life of 12 hr was found after the
iv injection of 5 mg/kg TCA in male rats. Male mice given intraperitoneal doses of 5 mg
TCA/kg exhibited a plasma half-life of 7 hr. In humans, administration of 3 mg TCA/kg
resulted in a plasma half-life of 51 hr (Fisher et al. 1991; Fisher et al. 1998; Allen and
Fisher 1993; Schultz et al. 1999). Volkel et al. (1998) reported the mean elimination half-
lives for TCA in urine (46 hr in humans and 11 hr in rats) from a study of the inhalation
of perchloroethylene, which is also metabolized to TCA. Fisher et al. (1991) estimated
the half-lives of TCA formed after TCE exposure. The plasma TCA half-life in male
mice exposed for 4 hr to TCE vapors (42 ~ 889 ppm) was estimated to be 16 hr, which is
comparable to 15 hr for rats exposed to TCE vapors (500 ~ 600 ppm). In contrast, the
plasma half-life of TCA in humans after TCE inhalation of either 50 or 100 ppm was

significantly longer (86 to 99 hr) (Fisher et al., 1998).

Another important property of TCA is its plasma protein binding (or
sequestration) capacity. This plays a major role in distribution and elimination of TCA,
and leads to differences in TCA dosimetry in different species. Many studies have
demonstrated that TCA binds in significant amounts to plasma proteins. For example,
Muller et al. (1972) stated that approximately 90 % of TCA in human blood was bound

to plasma proteins, but provided no binding data.
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Protein binding capacity (Bmax) of TCA shows marked species dependence.
Templin et al. (1995) investigated the binding of TCA to plasma proteins in the rat, dog,
mouse and human. The authors reported that rat plasma had approximately one-half the
TCA binding capacity of human plasma (Templin et al., 1995). Lumpkin et al. (2003)
reported that the fraction of TCA bound to plasma proteins was both species- and TCA
concentration-dependent. They reported the binding capacities (709, 283 and 29 uM,
respectively) and mean percentage bound values (82 %, 39 % and 19 %, respectively) for
humans, rats and mice. This suggests the relatively low plasma binding of TCA in

rodents would result in higher TCA exposures of their liver (Lumpkin et al., 2003).

TCE is a modest toxic substance, as revealed by many studies of a wide range of
toxic end-points (NTP, 1990; Barton et al., 1996; Kaneko et al., 1997). Due to its
relatively poor solubility in water (1.1 ~ 1.4 g/L), few researchers used water as a vehicle
in their toxicity or carcinogenicity studies. Many such study results are therefore
confounded by the use of a vegetable oil diluent, which has been found to alter TCE
pharmacokinetics and to affect lipid metabolism and other pharmacodynamic processes
(ATSDR, 1997; Tucker et al., 1982).

Acute exposures of rats and mice have shown TCE to have low toxicity following
inhalation and oral exposure. Oral LDs, values were determined to be 2,400 mg/kg in
mice (Tucker et al., 1982) and 4,920 mg/kg in rats in a 14-day acute toxicity study (IPCS,
1985; ATSDR, 1997). Long-term gavage studies in rats and mice with very high doses
TCE have been revealed nephropathy (with its characteristic degenerative changes in the

renal tubular epithelium) (NCI, 1976), along with toxic nephrosis in other cancer
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bioassays in mice and rats (characterized by cytomegaly of the renal tubular epithelium)
(NTP, 1988 and NTP, 1990). When TCE toxicity was investigated using F344 rats and
B6C3F1 mice given 500 or 1,000 mg/kg in corn oil 5 days per week, for 103 weeks, the
rate of survival was reduced in male rats and mice (NTP, 1983). The Lowest Observed
Adverse Effect Level (LOAEL) of this chronic study was 500 mg/kg/day for rats and

1,000 mg/kg/day for mice (NTP, 1990).

TCE has not caused biologically-significant embryotoxic or teratogenic effects in
animal studies. Evidence for mutagenic effects was inconclusive. There is clear evidence
that TCE is carcinogenic in B6C3F1 mice after lifetime (2-year) inhalation exposures to
1,620 mg/m’/kg/day (or 300 ppm/day) or oral administration of 700 — 1,200 mg/kg/day.
There is also evidence that TCE caused a low incidence of renal tumors in some strains of
rats exposed for 2 years to levels of 3,240 mg/m’/day (or 600 ppm/day) by inhalation or
to 500 - 1,000 mg/kg/day orally (NCI, 1976; NTP, 1988; NTP, 1990). Liver tumor
induction in mice by TCE is one of the most critical effects from the standpoint of

environmental regulations.

In humans, exposure to high enough dose of TCE causes a variety of disorders,
including central nervous system (CNS) depression, hepatotoxicity and nephrotoxicity
(IPCS, 1985). The LOAEL for CNS depression from acute TCE exposure is > 200 ppm,
with symptoms including dizziness, headache, nausea and blurred vision, etc. Anesthesia
occurs upon inhalation of > 2,000 ppm. Coma and even death, associated with cardiac

arrhythmias and respiratory failure, have been reported at 10,000 ppm or higher
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concentrations. For example, a case of accidental TCE exposure was reported by Yoshida
et al. (1996). A worker fell into a TCE reservoir bath, resulting in deep coma. Unlike the
positive findings in the studies with rodents, carcinogenic effects of TCE and its
metabolites in human exposure are not clear. The official classification of TCE by the
International Agency for Research on Cancer (IARC) is "probable carcinogen to humans’
(Group 2A). Nonetheless this designation was based on limited evidence from several

human epidemiological studies (IARC, 1995).

TCA exposure

Effects of acute TCA exposure were reported by Davis (1998) in a study of the
oral administration of TCA (30 or 300 mg/kg/day for 7 days) in the drinking water of
rats. At high dose of TCA (or DCA), weight loss along with decreased food consumption

was observed. These were attributed to decreased water consumption (Davis, 1986).

A study of the effects of subchronic administration of TCA (or DCA), at doses as
low as 350 mg/kg/day for 90 days, showed decreased body weight and substantial
toxicity to the liver and kidney, along with histopathologic changes in male S-D rats.
These doses, of course, are far greater than those expected to occur in the environment
(Mather et al., 1990). In another 90-day subchronic study, the toxic effects of
monochloroacetic acid (MCA), DCA and TCA were compared after oral exposure of rats
via their drinking water. Morphological changes were predominantly localized to the
portal triads in the liver, which were mildly to moderately enlarged. Minimal alterations
were observed in the lungs. This study also indicated that DCA was more toxic than TCA

(Bhat et al., 1991).
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In a long-term exposure study by DeAngelo et al. (1997), groups of male F344
rats were given TCA in drinking-water at 0.05, 0.5 or 5.0 g/L (3.6, 32.5 or 364 mg/kg per
day) for 2 years. Some effects were observed including increased serum alanine
aminotransferase (ALT) activity and limited hepatic necrosis only at the highest dosage
level. No changes in kidney, spleen or testis weights were observed at the same dose, nor
was there evidence of hepatocellular proliferation, as measured by radiolabelled
thymidine incorporation rates. The investigators reported the NOAEL for this study to be
32.5 mg/kg of body weight per day, based on non neoplastic effects (DeAngelo et al.,

1997).

As for the possible carcinogenicity, TCA has given mixed results in in vitro
assays for mutations and chromosomal aberrations and has been reported to cause
chromosomal aberrations in in vivo studies. IARC concluded that TCA is not classifiable
as to its human carcinogenicity (Group 3), due to inadequate evidence for the toxicity and
carcinogenicity (IARC, 2002; IARC, 2004). There are major health concerns about TCA
(and TCE) mainly because TCA induces peroxisome proliferation in mouse liver (but
does not induce the same response in rats) in the same range of doses that induces hepatic
tumors (Prout et al., 1985). U.S. EPA also classified TCA as C, possible human
carcinogen in 1994, in accordance with the 1986 EPA Guidelines for Carcinogen Risk
Assessment (U.S. EPA, 1994). However, under the 1999 EPA Draft Guidelines for
Carcinogen Risk Assessment (U.S. EPA, 1999), there is suggestive evidence of TCA
carcinogenicity, but the data are not sufficient to assess human carcinogenicity (U.S.

EPA, 2002).
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TCE risk assessment

Assessment of the human health risks due to TCE exposure remains challenging,
because TCE is a chemical with inherently complex metabolism, effects, and mode of
action (MOA). Since U.S. EPA began to publish TCE health risk assessments in the late
1980s (U.S. EPA, 1985; U.S. EPA 1987), a substantial amount of scientific research
assessing TCE health risks has been reported. Yet, there is a wide spectrum of
perspectives on a number of critical and controversial scientific issues related to TCE
health risks. These are currently the subject of a scientific review by the National
Academy of Sciences (NAS) co-sponsored by a number of federal agencies, including the
U.S. EPA, the U.S. Air Force, and the U.S. Department of Energy, etc. State-of-the-
science (SOS) papers were published as a monograph in Environmental Health
Perspectives Supplement (Scott and Cogliano, 2000), which reviewed a range of
scientific subjects relevant to TCE health risk assessment, including pharmacokinetics,
MOA, epidemiology and dose—response analysis. Since then, a substantial amount of new
literature relevant to characterization of the human health risks from TCE have been

published and reviewed extensively (Chiu, et al., 2006; NRC, 2006).

As stated, many aspects of human health risks from TCE have to be considered to
attempt to correlate between the exposure to a chemical, its toxicity and subsequent
cancer risks, such as dose, duration and route of exposure, different susceptibilities, etc.
By definition, U.S. EPA dose-response-based cancer risk assessments as well as the
reference dose-reference concentration (RfD/RfC) approach for non-cancer risk

assessments are assumed to protect vulnerable subpopulations (Renwick and Lazarus,

19



1998). However, many of these applications have been based on default assumptions,
without considering specific biological data. The EPA’s default cancer risk assessment
policy is applied to most chemicals, including TCE. It is based on a linear extrapolation
from effects of high doses in rodents to risks for humans at low doses. However, data
from many metabolism, toxicology and epidemiology studies on TCE and its metabolites
casted doubts on this traditional approach. Many studies, including one by Steinberg and
DeSesso (1993) suggested that it is possible to increase substantially the allowable TCE
level in drinking water without increasing health hazards using a more appropriate
threshold model, rather than a straight-line extrapolation model. Chlorination of drinking
water can produce much higher levels of haloacetic acids (HAAs) than originate from
metabolism of TCE under current regulations (Steinberg and DeSesso, 1993). The U.S.
EPA Guidelines for Risk Characterization of 2005 have since emphasized the need to
identify and include susceptible populations in risk assessment processes (U.S. EPA,
2005). Predisposing factors (susceptibilities) in subpopulations include genetic factors
(e.g., specific polymorphisms), acquired factors (prior and/or concurrent exposure to
other substances), behavioral patterns (smoking, drinking), altered health status (diabetes,

acute renal failure) as well as fasting, obesity and age differences.

In this project, the aim has been to develop a specific P450-induced animal model
with S-D rats, which mimics some altered physiological conditions/disease states (e.g.,
obesity, fasting, P450-inducing xenobiotics, diabetes) in which CYP2E1 is elevated,
possibly resulting in increased formation of carcinogenic metabolites and resulting

increased cancer risks. For the convenience of this discussion, background information
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on the metabolism of TCE and its major metabolites is described before the elucidation of
experimental aspects of this work. The following discussion summarizes the
experimental evidences accumulated to date on the metabolism and pharmacokinetics of
TCE and its major oxidative metabolites, including TCA, TCOH, chloral hydrate (CH)

and DCA, some of which are believed to play a role in cancer risks posed by TCE.

TCE and TCA Metabolism

A schematic diagram of TCE metabolism pathways is shown in Figure 1-1. Based
on both in vivo and in vitro data, TCE is known to be metabolized by: 1) a P450-
dependent oxidative pathway; catalyzed by CYP2E1 and certain other P450s and 2)
glutathione (GSH)-dependent pathway, mediated by glutathione-S-transferases (GSTs).
The two key enzymes, CYP2E1 and GST, exhibit different kinetics (i.e., affinity and
capacity) for each pathway. Shown on the right side of the diagram is the major
oxidative pathway, which consists of TCE oxidation to CH by CYP450, followed by
either oxidation of CH to TCA by aldehyde dehydrogenase (ALDH), or reduction of CH
to TCOH by alcohol dehydrogenase (ADH). The oxidative metabolism of TCE takes
place primarily (but not exclusively) in the liver, which has the highest quantities and
activities of the CYP2E1 and other P450s. The minor pathway is far less important
quantitatively and is present mainly in the liver and kidney. It involves conjugation of
TCE with GSH and is shown to the left. TCE metabolism may also occur in lungs,
spleen, small intestines and brain. CYP2EI is believed to be present in rat kidney
proximal tubules. The GSH-dependent conjugation pathway is believed to be responsible

for the metabolites that are detoxified or activated in the kidney. Certain of these are
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thought to be responsible for nephrotoxicity and potential nephrocarcinogenicity
(Cummings et al., 2001; Lash et al., 1995). But, in accord to the purpose of the current

project, the focus will be on the oxidative pathway.

The first oxidation step catalyzed by CYP2E1 involves formation of a TCE-
oxygen-P450 (or epoxide) intermediate. It rearranges to form the oxidative metabolites
chloral and CH. Relatively small amounts of CH can be recovered in vivo, as it is rapidly
converted to other compounds in the liver. Thus the circulating concentration of CH in
the blood is relatively low compared to levels of TCA and TCOH, as shown by

experiments demonstrated in Chapter 2.

CH is not likely to be a major hepatotoxic or hepatocarcinogenic metabolite, due
to its lack of longevity in vivo. Mayers et al. found that CH was detectable for several
hours in children given 50 mg/kg, which is contrary to what has been observed in the
adult, whose clearance profile is characterized by rapid and almost complete clearance of
CH. The authors suggested a continuing production of CH from TCOH, since blood
concentrations of CH resembled the time-course profile of TCOH, but were
approximately an order of magnitude lower (Mayers et al., 1991; Mayers et al., 1992).
CH is commonly-used sedative for dental, diagnostic and minor surgical procedures in

children.

One of the distinctive examples of CH toxicity, however, is in the lungs of male
CD-1 mice. Forkert and Birch showed Clara cell injury after TCE exposure was
attributed to the accumulation of CH (Forkert and Birch, 1989; Forkert and Birch, 1993).

The metabolism of CH is much slower than the conversion from TCE to CH in Clara
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cells, leading to the buildup of CH (Odum et al., 1992). Furthermore, the rate of
formation of CH in mouse lung was found to be markedly higher than that in either rat or

human lungs, in addition to the slower rate of CH metabolism (Green et al., 1997).

Metabolism of CH involves several steps and other oxidative and reductive
enzymes, besides P450. CH is reduced to TCOH in the cytosol or oxidized to TCA in
either the cytosol or mitochondria, with marked species differences (Ikeda et al., 1980).
CH can be either reduced, which requires NADH as a cofactor, by alcohol dehydrogenase
(ADH) to TCOH, or oxidized by aldehyde dehydrogenase (ALDH) to TCA in the
presence of NAD" (Larson and Bull, 1989). Metabolism studies of CH by Ni et al. (1996)
and by Lipscomb et al. (1996) with the male B6C3F1 mouse have suggested the
involvement of CYP2E1 in TCOH formation in mouse liver. The precise role of each

enzyme in conversion of CH to TCOH, however, remains to yet be determined.

A relatively small proportion of TCA may be metabolized (reduced) in the liver to
DCA, which is considered hepatotoxic and hepatocarcinogenic along with TCA, although
there have been considerable controversies about the formation of DCA especially in rats
and humans (Lipscomb et al., 1996; Templin et al., 1993). In some studies, DCA has
been identified as a metabolic product of both TCOH and TCA in rodents and humans.
For example, after TCE administration to mice via gavage, low DCA concentrations were
found in blood and tissue samples (Abbas and Fisher, 1997). Bruning et al. (1998)
identified DCA and MCA for the first time in human urine as metabolites of TCE ina 17-

year-old male who ingested approximately 70 ml of TCE in a suicide attempt. In a study
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by Larson and Bull, the formation of DCA along with carbon dioxide, glyoxylic acid,
oxalic acid, glycolic acid was observed in rats and mice following oral administration of
20 or 200 mg/kg of isotope-labeled '*C-TCA. The authors suggested that TCA was
metabolized by reductive dehalogenation to DCA, while others suggested that DCA
could be formed from dichloroacetyl chloride via TCE oxide (Hathway, 1980; Larson

and Bull, 1992a).

Other investigators have argued that metabolism of TCA to DCA may have been
over-reported in some of the earlier studies due to analytical artifacts (Lash et al., 2000).
A study by Yu et al., (2000) reported that in Fischer 344 rats given intravenous injections
of isotope-labeled '*C-TCA at doses of 6.1, 61 or 300 pmol/kg (approximately 1, 10 or
50 mg/kg), as much as 84 % of the administered radioactivity was excreted in the urine
within 24 h of dosing. Furthermore, HPLC assay of plasma, urine and liver homogenate
failed to detect any oxalate, glyoxalate, glycolate or DCA, suggesting that TCA was
poorly metabolized by the rats (Yu et al., 2000). Clear conclusions and accurate
quantitative analyses of DCA have been hindered by post sampling conversion of TCA to

DCA (Brown et al., 2003; Dixon et al., 2005).

Another important question about the TCE oxidative pathway is the identity of the
enzyme(s) responsible for the conversion of TCOH to TCA. Direct conversion of TCA to
TCOH is highly unlikely. CYP2E1 has been postulated to be the predominant isoform to
catalyze the oxidation of TCOH to TCA (Larson and Bull, 1989), and this issue will be

addressed in TCOH or TCA intravenous administration experiments in Chapters 3.
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A substantial percentage of TCOH, recovered in the urine and bile of animals and
humans exposed to TCE, has undergone glucuronidation by UDP-
glucuronosyltransferase (UGT) to TCOH-glucuronide (TCOG) in the liver. TCOG in bile
may undergo bacterial cleavage of the glucuronide and enterohepatic recirculation of the
TCOH rather than fecal excretion. Once TCOG returns to the liver, it may be hydrolyzed
back to TCOH and be metabolized further to TCA or DCA. The involvement of UGT in
TCE metabolism raises the question of whether CYP2EI inducers would also cause

induction of UGT.

CYP450s and CYP2E1

The key mechanistic aspects of the isozymes responsible for the metabolism of
TCE, their induction mechanism and its significance are described below. Cytochrome
P450s (CYP450s) are a superfamily of Phase I drug-metabolizing enzymes with a heme-
containing moiety. CYP450s are the major catalysts involved in the bio-activation and
bio-transformation of many xenobiotics, including drugs, toxicants and potential
chemical carcinogens. CYP450s frequently convert chemicals to potentially reactive
products, which can cause cell toxicity and even cancer. Other groups of compounds are
detoxified by P450s. A limited number of other CYP450s is also responsible for the
metabolic conversion of endogenous compounds such as steroid hormones and bile acids,
as well as the metabolism of retinoic acid and fatty acids, including prostaglandins and
eicosanoids. Thus, CYP450s have become a significant focus of interest, especially in the
areas of drug metabolism, pharmacology and toxicology. Although most of the reactions

mediated by CYP450s are oxidation processes, they also catalyze a variety of other
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reactions, including reduction, desaturation, ring formation and expansion, dehydration,
one-electron oxidation, coupling reactions, etc. Since a single CYP450 can metabolize a
large number of structurally-diverse compounds, these isozymes can collectively
metabolize a wide array of drugs and other chemicals in the diet, environment and

workplace (Guengerich, 2001; Guengerich, 2004; Guengerich, 2006).

Among the various member of the CYP450 superfamily (xenobiotic-metabolizing
CYP450s are found in families 1 through 4), four different isoforms (CYP1A1/2,
CYP2B1/2, CYP2C11/6 and CYP2EI) have been identified in rodents as playing a role
in TCE metabolism. CYP2E1 (EC 1.14.14.1) is the major isoform for metabolism of low
dose TCE in rodents and humans, as it is a high affinity and low capacity isoform
(Guengerich et al., 1991; Nakajima et al., 1990). In rats, CYP2E1 was found to account
for more than 60 % of TCE metabolism, with smaller contributions from CYPI1AI,
CYP1A2 and CYP3A4. The identity of other isoforms that participate in metabolism of
high TCE doses in humans is not still clear (Nakajima et al., 1992a). CYP2E1, which is
the only constitutive isozyme of the 2E subfamily in humans and in rats, is responsible
for the oxidative xenobiotic biotransformation of various endogenous and exogenous
compounds, including ethanol, isoniazid and acetaminophen, as well as volatile
hydrocarbons of low molecular weight (Nakajima, 1997; Guengerich et al., 1991).
CYP2EI is found mainly in the liver, but also exists in the extra-hepatic tissues including
lungs, GI tract, testes, brain, etc. CYP2E] is expressed in different levels in these tissues,
in different species and among different humans. Previous structural and immunoassay

studies have shown that CYP2E1 has well conserved gene and protein among P450s with
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high similarities between the human and rat (Snawder and Lipscomb, 2000). Thus, the rat
appears to be an excellent animal model to generate data relevant to CYP2E1

metabolism, which can be extrapolated to humans.

CYP2EL1 induction and inducers

While baseline CYP2E1 activity in human liver showed interindividual variation
of ~ 7-fold, control levels of CYP2E1 fluctuated only + 20 % in rats (Lipscomb et al.,
1997). Nakajima et al., (1992b) showed sex-, pregnancy-, and age-related differences in
metabolism of VOCs can result from variations in CYP2E1 content. Many structurally-
diverse chemicals participate in microsomal enzyme induction, leading to up-regulation
of a wide array of hepatic multifunction oxidases (MFOs). These microsomal enzyme
inducers can affect other drug-metabolizing enzymes as well, including UGTs and GSTs.
These, of course, are Phase II drug-metabolizing enzymes that are necessary for adding
conjugates or co-substrates to xenobiotics to further enhance the chemicals’

hydrophilicity, and thus facilitate elimination.

Induction of most CYP450s and other drug-metabolizing enzymes by microsomal
enzyme inducers generally occurs at the transcription level, resulting in subsequent
increases in CYP450 proteins and their functional activities. These inducers also can be
classified as ligands for different nuclear receptors and DNA enhancer elements that
influence the genes and their transcriptional activation. For example, Wilson and Safe
showed that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and other CYP1A inducers bind
to the aryl hydrocarbon receptor (AhR). The subsequent protein complex, in turn,

undergoes nuclear translocation and dimerization with AhR cofactor. This nuclear
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heterodimer interacts with the xenobiotic response element (XRE) and activates CYP1A
transcription (Wilson and Safe, 1998). However, the regulation involving CYP2E1
expression seems to be more complicated. It generally appears to be under tight control,
since mRNA and protein levels are typically elevated. Several mechanisms of CYP2E1
induction have been proposed. These other mechanisms include: 1) increases of CYP2EI
mRNA due to transcriptional activation or post-transcriptional change (e.g., mRNA
stabilization); 2) an increase in mRNA translation, and 3) decrease in CYP2EI

degradation due to protein stabilization (Koop et al., 1991).

CYP2EI levels are altered in response to endogenous pathophysiological
conditions caused by hormones such as insulin and by growth factors (including
epidermal growth factor). Xenobiotic inducers also elevate CYP2E]1 protein levels
through both increased translation and stabilization of the protein from degradation,
which appear to occur primarily through ubiquitination and proteasomal degradation
(Novak and Woodcroft, 2000). The induction of CYP2E1 expression in liver can also be
affected by other factors, including prior- or co-exposure to xenobiotics, fasting (Soh et
al., 1996) and obesity (Murray, 2006), smoking (Czekaj et al., 2005) and by acute renal
failure (via increases in plasma urea in conjunction with L-arginine metabolism) (Chung
et al., 2002). Parkinson et al. (2004) showed that CYP2EI (along with CYP1A2,
CYP2B6, CYP2C19, and CYP2D6) activity in human liver microsomes appeared to
decrease (at least 25 %) with age when subjects were grouped as follows < 20 years, 20

to 60 years, and 60 + years. However, it seemed doubtful that whether these decreases
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would be biologically significant. The authors pointed out that the clearance (and volume

of distribution of many drugs) is generally diminished in elderly people.

Although it is quite unrealistic to expect that CYP2E1 inducers will influence
only CYP2EI, a list of CYP2EI inducers presented in the following discussion
encompasses ‘relatively’ specific ones. An original aim of this dissertation work was to
establish a robust CYP2E1 induction model with ethanol, which then could be employed

to test assumptions about the inducer’s impact on TCE metabolism.

Hu et al. (1995) showed that the chronic ethanol exposure caused the marked
induction of CYP2ELI in the centrilobular liver region, where alcoholic damage
commonly is initiated, using male Wistar rats. Although the level of induction was very
high (20-fold increase of liver CYP2EI protein and 16-fold increase of catalytic activity,
respectively), a very complicated and impractical induction protocol was provided. To
maintain high levels (20 ~ 70 mM) of ethanol in blood, the authors initiated ethanol
tolerance in animals by addition of ethanol to the drinking water by stepwise increase
from 3 to 7 %, starting at 6 days prior to the forced ethanol administration regimen.
Ethanol was then dosed by gavage as a 20 % (v/v) solution, increasing the total daily
dose from 8.5 to 12 g/kg. In addition, all animals had to be subsequently maintained on
water containing 7 % ethanol (Hu et al., 1995). Bardag-Gorce et al. (2005) utilized a
simpler induction protocol that produced a 3.5-fold induction of CYP2EI in male Wistar
rats fed intragastrically with a liquid diet containing ethanol (13 g/kg/day) feeding for 15

days (Bardag-Gorce et al., 2005).
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Some of the published induction regimens, like that of Hu et al. (1995) were too
complex and time consuming. Several reported regiments for CYP2EI induction models
with ethanol in rats were tried, but our results from the set of pilot experiments were
inconsistent and the extent of induction less impressive than anticipated. The decision
was made to select a CYP2EI inducer other than ethanol for the initial phase of the
current project. It was also recognized that ethanol also competes for enzymes

responsible for later steps in the oxidative pathway.

There were several examples of CYP2E] induction by acetone. For example, a
study by Buhler et al. (1992) showed that CYP2E1 induction by acetone (along with
CYP2CI11 and CYP3A1 induction) were occurred in the centrilobular area of the rat’s
liver, where they are constitutively expressed. This was the case irrespective of inducers
(Buhler et al., 1992). Forkert et al. (1994) observed that both an acute treatment (5 ml/kg,
single dose, intragastric) and a subacute regimen (1 % acetone in drinking water for 8
days) produced significant increase in the level of CYP2EI protein (by 4.4- and 5.3-fold,
respectively) in mice without significant alterations in the levels of CYP2E1 mRNA. P-
Nitrophenol (PNP) hydroxylation was also increased in liver microsomes of acutely and
chronically exposed animals (by 2.3- and 3.7-fold, respectively), when compared with

controls (Forkert et al., 1994).

Longo and Ingelman-Sundberg (1993) examined the inducibility and molecular
regulation of CYP2EI in nasal mucosa of rats after acetone (5 mL/kg) treatment for 2
days. They showed that the amount of CYP2EI, as well as the rate of microsomal PNP

hydroxylase activity, had increased by 2- to 3-fold in microsomes isolated from nasal
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mucosa 24 hours following treatment with acetone. Interestingly they reported the
CYP2EI increase was accompanied by a corresponding increase of CYP2E1 mRNA,

which was contrary to conclusions of others.

Pankow et al. (1994) showed increased PNP hydroxylase activity in liver
microsomes from rats pretreated with acetylsalicylic acid (ASA), suggesting CYP2E1
involvement in the metabolism of salicylic acid (SA), and SA as an inducer of CYP2EI.
Studies by Damme et al. (1996) of the mechanism of CYP2E1 induction by ASA or its
metabolite salicylate (SAL) showed significantly elevated CYP2E1I mRNA levels in
livers of ASA-treated rats compared with the control group. Pretreatment of ASA-treated
rats with a blocker of mRNA transcription, actinomycin D, or a blocker of protein
synthesis, cycloheximide, markedly suppressed PNP hydroxylase activity. This
mechanism of CYP2E] is different from that of certain other inducers of CYP2E1, which
achieve induction via post-transcriptional activation without elevation of the mRNA level

(Dammeet al., 1996).

Kim et al. (2001) showed that pyridine induced CYP2EI1 protein in the absence of
an increase in CYP2E1 mRNA levels. CYP2B1/2, CYP3A1 and CYP3A2 protein levels
and their mRNA levels, however, were increased. Hotchkiss et al. (1995) demonstrated a
selective induction of CYP2E]1 in kidney tubular epithelial cells, providing a basis for
organ-specific nephrotoxicity, when certain xenobiotics are bioactivated to toxic

metabolites by renal CYP2E] in situ.

Schoedel and Tyndale (2003) found that nicotine also induced CYP2EI protein
levels and activity, without producing changes in levels of CYP2EI mRNA. The authors

also demonstrated that ethanol treatments increased CYP2B1 protein, mRNA and
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CYP2B1-mediated nicotine metabolism, suggesting that metabolic cross-tolerance may

occur between nicotine and ethanol.

Other xenobiotic compounds identified as CYP2E1 inducers include skatole (a
tryptophan derivative produced in the hind-gut of pigs and metabolized via hepatic
CYP2E1), which showed post-translational induction (Doran et al., 2002); dimethyl
sulfoxide (CYP2E1 mRNA level was induced, while the UGT1A9 mRNA level was
decreased by 2.5 % DMSO) (Nishimura et al., 2003); 4-methylpyrazole (which also
induced several other CYP450s (Wu and Cederbaum, 1993; Wu and Cederbaum, 1994);
isoniazid (CYP2E1 induction by isoniazid is due to activation of CYP2E1 mRNA
translation) (Park et al., 1993; Poloyac et al., 2004); and GYKI-47261, a new AMPA [2-
amino-3-(3-hydroxymethylisoxazole-4-yl)propionic acid] antagonist (Tamasi et al.,

2003), etc.

Morel et al. (1999) studied the effects of the sex of animals on rat CYP2E1
activity by estimating the responses of 5-, 7- and 9-week-old male and female rats to
different induction conditions. The results showed that hepatic PNP hydroxylase activity
decreased significantly in control male rats in as animals matured. CYP2E1 induction by
ethanol also decreased during this period. The effects of ethanol, acetone and pyridine on
PNP hydroxylase activity were evaluated in 7-week-old male and female rats. The male
rats exhibited significantly higher PNP hydroxylation than females. Seven-week-old male
controls had higher PNP hydroxylase activity than male controls in age-groups, as well as
larger increases in the enzyme’s activity in response to the inducers, suggesting this is the
most suitable age for CYP2E1 induction experiments. Morel et al.’s results strongly

suggested that 7-week-old male S-D rats would be appropriate animal models for
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studying the role of CYP2E1 in the metabolism of TCE and the toxicokinetics of it and

its metabolites in the current research project.

Some of the most useful information for the present experimental design came
from the report by Kim and Novak (1993). They studied several structurally-related
sulfur- and nitrogen-containing heterocycles including thiazole, pyrazine, pyridazine,
pyrimidine, thiophene and triazole, which are present in tobacco, tobacco smoke and
certain foods. These compounds have been employed to obtain not only profiles of the
inhibition and expression of CYP2ETI in hepatic tissue, but the molecular basis for the
regulatory events governing induction. The results of Kim and Novak’s study showed
pyrazine and pyridazine (PZ) to increase CYP2E]1 levels ~ 4- and 5-fold, respectively.
They also showed that CYP2EI induction by these compounds resulted in a substantial
decrease in CYP2EI poly (A) + RNA levels in treated animals relative to untreated

animals, thus differentially affecting its protein expression.

Induction of CYP2E1 by some exogenous chemicals (including long-term
exposure of ethanol at highly intoxicating levels) appear to primarily reflect a post-
transcriptional mechanism, associated with a decrease in the rate of protein degradation
due to inhibition of oxidative uncoupling by substrate ligands (Wu and Cederbaum,
1993). On the other hand, induction of CYP2E1 activity by fasting, diabetes and obesity,
etc has been attributed to CYP2EI transcriptional and post-transcriptional changes (Hu et
al., 1995). It is very important to mention that many of these compounds and inducers are

suspected of inducing classes of CYP450s, in addition to CYP2EI. It should be also
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noted that there are several types of compounds that suppress constitutive and inducible
expression of CYP2E1, including organosulfur compounds (for example, allylsulfide,
allylmercaptan and allylmethylsulfide) (Kwak et al., 1994). There are also studies that
which showed metabolic interactions between VOCs metabolized by CYP2E1 (Kedderis,
1997; Gonzalez, 2005). Concurrent exposures to sufficiently high doses of such

chemicals can result in competitive metabolic inhibition.

Muller et al. (1975) examined metabolism of TCE when it was co-administered
with ethanol in humans. Such an investigation provides information pertinent to the
influences of alcohol on TCE hepatotoxicity and carcinogenicity. Volunteers inhaled 50
ppm TCE for 6 hr per day on 5 consecutive days and were subjected to simultaneous
ethanol ingestion (blood level of 0.6 %). The authors reported that the simultaneous
exposure to TCE and ethanol caused inhibition of the metabolism of TCE to TCOH and
TCA by 40 % on the average. They also reported the increases of TCE concentration in
the blood (2.5-fold) and in the expired air (4-fold), as compared to TCE inhalation
without ethanol. They reported that no change was observed in the glucuronidation of
TCOH.

A study by Larson and Bull (1989) also investigated co-administration of ethanol
and TCE in male S-D rats. The animals were administered oral doses 0f 0.2, 0.6 or3 g
TCE/kg, while the ethanol-treatment group was given an additional 0.07, 0.2, or 2 g/kg
ethanol, respectively. The researchers reported that the peak-concentration time (Tmax) Of
metabolites was delayed with increasing doses of ethanol. TCE and its metabolites’

elimination was prolonged in the ethanol-treatment groups. Authors also reported that
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decreased net metabolic conversion of TCE, even at the high dose of TCE where
metabolism was saturated. They found that ethanol decreased blood levels of TCA, but
only at early times at the highest TCE dose. The urinary TCOH/TCA ratio was increased
at all dose-levels, suggesting the metabolism of TCE was shifted toward reduction to

TCOH, away from oxidation to TCA (Larson and Bull, 1989).

Watanabe et al. (1998) investigated the effect of 2 mM (common concentration of
consumed) ethanol on TCE metabolism in perfused Wistar rat liver. They showed that
ethanol infusion significantly increased the rate of TCOH production (and TCOH/TCA
ratio), while producing a comparable decrease in the TCA production rate. These
observed shifts in TCE metabolism in the presence of ethanol suggested that alcohol
altered the NAD+/NADH ratio (intracellular oxidation-reduction state) in the hepatocytes

(Watanabe et al., 1998).

An in vitro metabolism study by Nakashima et al. (1990) of TCE and TCOH
using liver microsomes from control and ethanol-treated rats showed that ethanol
pretreatment enhanced TCE metabolism, predominantly at low TCE concentrations. A
microsomal TCOH-metabolizing enzyme was induced. They observed TCE metabolism
by enzymes from ethanol-treated rats was inhibited by the substrate (TCE) itself at high
concentrations (suicide inhibition). They argued that ethanol pretreatment enhanced the
microsomal conversion of TCOH to CH in vitro (Nakajima et al., 1990). This conversion
was not observed in vivo in the current project when pyridazine (PZ) was used as a

inducer.

Dekant et al. (1986) used radioisotope-labeled '*C-TCE to demonstrate changes

in TCE metabolism after P450 induction by phenobarbital (PB) in Wister rats. They
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showed an increase in radioactivity covalently bound to liver and kidney macromolecules
in induced rats, suggesting a dose-dependent increase in TCE metabolic capacity. TCA,
TCOH and TCOG comprised 89 to 94 % of the radioactivity excreted in the urine,
according to HPLC analysis (which is consistent with data presented in Chapter 2 and 3).
Other minor metabolites including N-(hydroxyacetyl)aminoethanol (< 7 %), DCA (<2

%) and oxalic acid (< 2 %) were found in urine by Dekant et al. (1986).

Pankow et al. (1994) showed that pretreatment of rats with ASA or sodium
salicylate stimulated the metabolism of dichloromethane to carbon monoxide, as
measured by the carboxyhemoglobin level in blood. They also showed simultaneous
administration of dichloromethane and ASA or sodium salicylate was accompanied by

reduced carboxyhemoglobin formation.

Raucy et al. (1993) also found that CYP2E1 induction by prior exposure to
ethanol played a pivotal role in potentiating the toxicity of halogenated hydrocarbons
including TCE. Kraner et al. (1993) demonstrated that acetone increased CYP2E1 protein
levels in cultured rabbit hepatocytes. Furthermore, CYP2E1 was also shown to be
induced by acute renal failure and by certain drugs (including aspirin) (Peng et al., 1983).
These diverse factors have the potential to alter TCE metabolism by induction of

CYP2EI, thereby affecting the susceptibility of individuals to TCE.
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ANAYLTICAL PERSPECTIVE

Overview

It is necessary to search for ideal instrumental conditions to apply to separation,
identification and quantitation of TCE and its metabolites in different matrices (e.g.,
blood, urine, different types of tissues). An extensive review of this subject was provided
by Delinsky et al. (2005). Utilization of GC with electron capture detection (ECD) is
prevalent for the separation and detection of chlorinated volatiles (TCE and its
metabolites). A number of scientists have used GC with mass spectrometry (MS) in
tandem in order to improve sensitivity. Since, the real-time and rapid quantitation of TCE
and its metabolites in large number of blood and tissue samples was more important than
the detection limit in this work, GC-ECD was chosen as the analytical tool. GC-MS was
not needed to identify the compounds responsible for the peaks obtained by GC-ECD
analysis. A general description of GC, ECD and headspace GC, along with some of the

drawbacks, are described below.

Headspace Gas Chromatography

Many types of chromatography (including ion-pair; reverse phase; ion-exchange;
hydrophilic interaction) can be used in the analysis of TCE and its metabolites
(particularly, DCA and TCA) in combination with HPLC. Still, GC is by far the most

commonly used procedure for separation and quantification for the analysis of TCE and
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related compounds. Headspace analysis is generally defined as a vapor-phase extraction,
involving the partitioning of analytes between liquid and vapor phases. There were
essentially two types of headspace-sampling techniques available as headspace-GC:
dynamic (trap-and-purge analysis) and static (vapor-phase extraction). These have been
repeatedly renovated and have become automated. These techniques have been reviewed
extensively in the literature (Hachenberg and Schmidt, 1977; Kolb and Ettre, 1997). With
dynamic headspace analysis, a continuous flow of gas is swept over the surface of the
sample matrix. Volatiles from the sample matrix are conveyed into a trap where the
volatile analytes are accumulated prior to analysis. This trap usually consists of a column
containing a sorbent such as Tenex®, Chromosorb®, Porapak® or Amberlite® XAD
resins (B'Hymer, 2003). Because the “total” amount of a volatile substance is extracted,
trapped and analyzed at one time, dynamic headspace analysis is particularly suited for
the determination of VOCs at very low concentrations (detection limits up to pg/mL
levels) (Camarasu et al., 1998). The classical static headspace technique is the simplest
method. A liquid sample is placed into a sealed vial that is heated (and also pressurized
which allows more rapid analyte transfer and equilibration) until a thermodynamic
equilibrium between the sample and the gas phase is reached. An aliquot of the
headspace gas is transferred via a heated transfer line and injected automatically into the
GC for analysis. The main advantages of static headspace analysis are the ease of use and
automation as a result of available commercial systems from major manufacturers. Many
of these have detection limits as low as ng/mL (Camarasu et al., 1998). Among other

techniques, sorbent-based solid-phase microextraction (SPME) and its combination with
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headspace analysis is used much more extensively in recent years, as reviewed by

Pawliszyn (2001) and by Mills and Walker (2000).

Electron Capture Detector

The requirements for a GC detector include a fast and linear response, high
sensitivity, good stability and uniform response to various chemical species. Flame
ionization detection (FID) and electron capture detection (ECD) can be used along with
mass selective detection (MS). The latter is frequently employed for the quantitation of

TCE (Brown et al., 2003; Dixon et al., 2005).

ECD, invented by Lovelock in late 1950s, uses a radioactive B-emitter (such as
5Ni or tritium absorbed on platinum foil). An electron from the emitter causes ionization
of the carrier gas (often N, or Ar/CH,4) and the production of a burst of electrons. In the
absence of analyte, a constant standing current is generated from the ionization process.
This current decreases, however, in the presence of those organic molecules that tend to
capture electrons (Lovelock, 2001). ECD is selective and sensitive to molecules
containing highly electronegative functional groups, while it is insensitive toward
functional groups such as amines, alcohols, and hydrocarbons. Therefore, ECD remains
one of the most widely used GC detectors for determination of halogenated solvents and

pesticides.

Some of the U.S. EPA-approved methods employ GC-ECD. EPA Method 551.1,
demonstrated by Munch and Hautman (1995) for measuring TCE in drinking-water,

involves a liquid-liquid extraction procedure, followed by GC-ECD. GC-ECD is used to
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monitor the levels of HAAs in drinking water in the U.S. and other countries (Krasner et
al., 1989; Williams et al., 1997), as demonstrated by EPA Method 552.1 and EPA

Method 552.2 (APHA, 1998).

GC-ECD is also used for the simultaneous analysis of TCE and its metabolites in
several biological matrices, including lung, liver, kidney, and blood. Merdink et al.
(1998) studied DCA as a possible metabolite after dosing of male B6C3F1 mice with
TCE, CH, TCOH, or TCA. TCE, CH along with methyl esters of DCA and TCA (after
derivatization) were analyzed by headspace GC-ECD. The investigators could not detect
DCA in the blood of mice dosed with any of the above compounds, possibly due to
inadequate sensitivity. Muralidhara and Bruckner (1999) reported a rather simple method
for the determination of TCE, TCA, TCOH and DCA in rat lung, liver, kidney and blood
by headspace GC-ECD. A mixture of water: sulfuric acid: methanol (6:5:1) was used to
derivatize DCA and TCA to their methyl esters. The authors reported a LOD of 5~ 10
ng/mL for each compound and percent recovery values for TCE metabolites, including
TCA and TCOH (68 ~ 100 % in blood, 57 ~ 87 % in liver, 63 ~ 86 % in kidney and 64 ~

98 % in lung) at different concentrations.

GC-ECD was utilized in the analysis of TCE and its metabolites in seminal fluids
of workers exposed to TCE occupationally. Forkert et al. (2003) measured levels of TCE,
TCOH, DCA and TCA with headspace GC-ECD analysis in the seminal fluid of eight
infertile mechanics. TCE and TCOH were found in all of the workers, while TCA was
found in one individual, and DCA was found in two people. When urine of the same
eight workers was analyzed for TCA and TCOH, all workers had observable levels of

each metabolite (Forkert et al., 2003). Other examples of GC-ECD uses include
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determination of other disinfection by-products in drinking water (Weisel et al., 1999)
and the analysis of polychlorinated biphenyls (PCBs) in human serum (DeCaprio et al.,

2000).

Derivatization for GC analysis of TCE and metabolites

It is important to take appropriate steps to minimize errors associated with sample
preparation and handling to ensure reproducibility in any assay dealing with volatile or
acid-labile compounds. Should any reaction occur with the analytes, the entire reaction
products should be identified along with the extent of this change. Thus, more studies
may be needed to evaluate the changes of analytes which occur after sample collection. It
is necessary to find out 1) if there is a loss, whether it is accountable and consistent; 2)
whether any other change is happening to the analytes during the process of analysis and
how it happens. Thus, in the course of analysis for TCE and its metabolites, it is essential
to ensure the reliability of the assay for measuring the concentration and/or amount of
TCE and its metabolites in biological samples. Thus, for reliable measurement and
analysis of TCE (since it is volatile) and its metabolites (since they are intrinsically labile
and unstable, especially in the acidic media) in the blood, urine and target tissues, several
potential sources of species conversion and possible loss of analytes during the analysis
should be addressed. It is also possible to assume enzymatic involvement in converting
one chemical entity to another after the sample collection. For example, it is possible that
TCA (due to its long half-life) may be enzymatically converted to DCA after samples
have been collected. A simple method to negate the enzyme involvement (not the

chemical processes) at the time of sampling would be ideal. Some possibilities include
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freezing, denaturation of proteins in samples (which is actually achieved at the time of
derivatization by the addition of the acidic solution). But, as with all the methods
considered, balances between the benefits and disadvantages (including, increased time

and labor) have to be weighed.

The most complicated matter in the analyses of TCE and its metabolites is the
measurement of TCA (and DCA). Due to their low pKa (pKa’s of DCA and TCA are
approximately 1.5 and 0.5 at 25 °C, respectively), the two haloacetic acids are found
predominantly as their anionic (ionized) form (Jia et al., 2003; Sarzanini et al., 1999;
Urbansky, 2000). As a result, it is impossible to measure them directly with most of GC
analytical methods currently available. Thus, in order to measure them by GC-ECD, it is
prerequisite to include a step converting TCA and DCA to more volatile and stable forms
(most commonly into their corresponding ester forms), as described in the previous

publications.

In the derivatization process, HAAs are commonly converted to the
corresponding volatile methyl esters, thus enabling the hydrophilic HAAs to be more
readily available for headspace GC analysis. A mixture of sulfuric acid, methanol and
water is one of the most common and simple ways for the esterification as described by
Muralidhara and Bruckner (1999). Furthermore, for the analysis of HAAs (including
DCA and TCA) in drinking water, other derivatization methods with diazomethane have
been used for analysis of HAAs in drinking water as demonstrated by EPA method
552.1 (Ko et al., 2000). However, it should be duly noted with this method that the

sample preparation procedures and GC analysis involved disadvantages of complexity,
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labor intensity and lengthy sample pretreatment and analytical time, in addition to the

potential explosiveness of diazomethane.

One of the pitfalls of the esterification of TCA and DCA to corresponding esters
with a solution mixture of sulfuric acid, methanol and water was recognized by Ketcha et
al. (1996). In developing a method for esterification of TCA and DCA, the conversion of
TCA to DCA was observed in freshly-drawn blood upon the addition of acid for the
derivatization resulting in artificially high DCA concentrations. Although, the amount of
TCA converted to DCA by the addition of acid decreased with time, this conversion
could be prevented by freezing blood samples overnight prior to derivatization. This
indicated that reduced hemoglobin was involved in the acid-catalyzed conversion of TCA
to DCA. Lead acetate has been added to samples to prevent the conversion of TCA to
DCA (Narayanan et al., 1999). Ketcha et al (1996), however, determined that the
addition of lead acetate resulted in 80 % conversion of TCA to DCA after TCA was

derivatized.

Instead of derivatizing TCA, adjustment of the pH to less than 0.5 by addition of
acids was also utilized in U.S. EPA Method 552.2 (U.S. EPA, 1995). Since, the pKa of
TCA is approximately 0.5, at pH 0.5 TCA exists as both protonated (50 %) and
deprotonated (50 %) forms. Therefore, many acidification methods require many liquid-
liquid extractions to recover almost all of anionic TCA to its protonated form.
Furthermore, the selection of appropriate acids for acidifying (and for derivatizing)
samples has to be considered. For example, Dalvi et al (2000) showed much higher levels

of TCA are formed in the presence of chlorine ions, indicating that use of HCI for sample
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acidification may convert DCA to TCA. Similarly, Shorney and Randtke (1994) reported
increased speciation shifts when hydrochloric acid (rather than sulfuric acid) was used

with methanol in the analysis of HAAs. Thus, the issues regarding derivatization of TCA
(or DCA) and the possible conversion of TCA to DCA during the assay remain the major

concerns about the analysis of TCE and its metabolites.

Selected GC-ECD, derivatization methods and other miscellaneous issues

The analytical method for TCE and its metabolites in this work was headspace
GC coupled with ECD. The protocol was modified from the one described by
Muralidhara and Bruckner (1999). Even though there are some shortcomings with this
technique (for example, the issue of derivatization of TCA into its ester form as discussed
earlier), its ease and the very short time required for treatment of samples, as well as the
simultaneous detection of TCE and its metabolites in one run provided a convenient and
rapid real-time analysis of the large number of blood and urine samples generated in
time-course toxicokinetic profile studies. The conditions for headspace GC were: 1) the
temperature gradient condition with a starting temperature of 120 °C for 3 min, with
increases up to 170 °c by 25 0C/rnin, held for 3 min, 2) detector temperature, 360 0C;
injector temperature, 200 °C, 3) 10' x 1/8" stainless steel column packed with 10 %
customized coating of OV-17 (phenylpolysiloxane) on 80/100 pm mesh size matrix
SUPELCOPORT™ (Supelco Inc, Bellefonte, PA) and 4) nitrogen as carrier gas (25 psi).
The calibration curves were prepared using external standards and checked daily, then

analyzed concurrently with the blood and urine samples.
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U.S. FDA Guidance for Industry: Bioanalytical method validation, by the U.S.
FDA mandates that autosampler stability should be checked (USFDA, 2001). This is to
ensure that the concentration of analyte remains the same (or almost the same) from the
time it is placed into the autosampler until the time it is actually analyzed. For example,
in a typical time-course experiment in this project involving 6 rats, almost 100 samples
are generated (excluding the number of standard samples for the calibration curve),
which is comparable to the autosampler capacity (110 samples at one run). It takes
usually up to 12 min from the time of one sample injection to next, so total time required
to assay all the samples from even one experiment is long. Thus, the analytes must be
stable for a prolonged period and the condition of GC and the detector have to remain

constant.

CYP2EL1 activity measurement

The activity of CYP2E1 can be measured with a few specific substrates with
precautionary interpretation of the data in mind. As substrates/probes for CYP2E1
activity, p-nitrophenol (PNP) and chlorzoxazone (CLZ) are widely used as substrates.
PNP undergoes 2-hydroxylation by CYP2EI, but other P450 enzymes including
CYP3A4 in animal and humans are also believed to participate in its metabolism.
Nevertheless, over 90 % of PNP hydroxylase activity is believed to be catalyzed by
CYP2E1 (Tierney et al., 1992; Zerilli et al., 1997). Chlorzoxazone (CLZ), used as a
centrally-acting muscle relaxant and a noninvasive in vivo probe, undergoes 6-
hydroxylation by CYP2E1. CYPI1A1 is also believed to be involved in its oxidation

(Carriere et al., 1993). Thus, these results taken together indicate that PNP and CLZ can
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be used as in vitro and in vivo measures of CYP2E1 activity, although they are not
entirely CYP2E1-specific. However, the relative Km of CYP2E1 for PNP and CLZ
compared with those of CYP1A1/CYP3A4, combined with the relative levels of these
enzymes in the liver, suggest that CYP2EI is the major isoform in vivo that oxidizes PNP

and CLZ.

Toxicokinetic data analysis

The area-under-the-curve (AUCy_,) was calculated in this project by the linear
trapezoidal method, with the terminal portion of the curve extrapolated to infinity by
Cv./B (Cyhy: the concentration at the last observation, B: the slope of the terminal phase
determined by linear regression). The elimination half-life (t i) was calculated as
B/0.693. In order to calculate estimates of total body clearance (CLy) and apparent
volume of distribution at steady-state (Vss) using WinNonlin 4.1 (Pharsight Corp., Cary,
NC), the individual blood concentration-time profiles (iv or po) were analyzed by two-
compartmental methods. The blood concentration-time profiles of the metabolites formed
were analyzed by non-compartmental methods (Perrier and Gibaldi, 1982). The renal
clearance of TCA (CLg) could be calculated as CLg = X;;0—«/AUC¢_s« from the urinary
excretion data (for example, Xy0-,: the total amount of TCA recovered in the urine).
Estimates of the peak blood concentration (Cyax) and the time of occurrence (Tyax) were
also calculated with WinNonlin, where their initial estimates were obtained using the

method of residuals.
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CONCLUSIONS

Issues associated with the potential carcinogenicity of TCE and its metabolites
have been debated for the past several decades. Determining the human relevance of
animal carcinogenicity data and applying them to risk assessment of TCE and its
metabolites has been a major source of controversy ever since. The U.S. EPA, with other
federal agencies, is again reviewing carcinogenicity, toxicity and toxicokinetic data on
TCE and its metabolites, in order to update its cancer and non-cancer risk assessments of

TCE

The main objective of this study was to characterize the dose-dependency and
effects of CYP2EI induction on the TK of TCE and its major metabolites. PZ was
selected as a CYP2E1 inducer in young adult male S-D rats. This age of rats exhibits the
highest constitutive CYP2E1 activity and is most responsive to inducers. This animal
model is intended to represent potentially sensitive subpopulations, which have
environmentally- or genetically-determined elevated expression of hepatic microsomal
CYP2EI activity. Such subpopulations might be expected to form larger quantities of
carcinogenic metabolites from a given dose of TCE than the “normal” populations. It is
postulated that this may not be the case with low environmentally-relevant doses of TCE,
since TCE is a blood-flow limited, rather than capacity-limited compound (i.e., even
persons with the lowest levels in the general population of CYP2E1 have the isozyme in

excess of that needed to metabolize all of trace levels of TCE). Proving this postulate can

47



have a profound impact on logic the USEPA uses to rationalize its adoption of the

linearized, no-threshold cancer risk assessment model for TCE.

Therefore, following the literature reviews in Chapter 1, the effects of CYP2E1 induction
by PZ on TCE metabolism are discussed in Chapter 2, by comparing the toxicokinetic
parameters of TCE and its metabolites (TCOH, CH and TCA) between the control groups
and CYP2E1-induced groups after administration of different doses of TCE. In Chapter
3, the influence of PZ-induction on TCA toxicokinetics after TCE, TCOH and TCA

administration and its significance in TCE risk assessment are discussed.

Although it is important to consider the entire TCE metabolism pathway, an individual
step may also be important for understanding the toxicity of TCE, if TCE toxicity is
strongly dependent on the toxicokinetics of the specific metabolite (e.g., TCA). The
aforementioned data and discussions will provide clues not only on the individual steps
(e.g., from TCOH to TCA), but also on the overall picture of TCE metabolism. Better
understanding of TCE metabolism, especially at low concentrations with the induction of
CYP2EI is needed. Data from this induction model can be applied to not only the risk
assessment and regulation of TCE, but also to the broad range of halogenated
hydrocarbons and other small organic molecules that utilize similar CYP2E1-mediated
oxidative pathways. In order to obtain accurate information relevant to the risk
assessment of TCE, DCA and TCA, it is also necessary to utilize robust analytical

methods.
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CHAPTER 2. Cytochrome P450 2E1 Induction by Pyridazine Produces
Qualitative and Quantitative Changes in the Metabolism of

Trichloroethylene to Potentially Hepatocarcinogenic Metabolites®

1S, Lee, C. A. White, S. Muralidhara, and J. V. Bruckner. To be submitted to Drug
Metabolism and Disposition.
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ABSTRACT:

Cytochrome P4502E1 (CYP2EL), which catalyzes the oxidation of many small
volatile organic chemicals (VOCs) such as 1,1,1-trichloroethylene (TCE), is induced by a
variety of xenobiotics, as well as by certain disease states. It is widely accepted that
CYP2EI induction results in increased production of bioactive metabolites from TCE,
leading to the potential for increased cancer risks. Trichloroacetic acid (TCA) is
generally believed to be a proximate mouse hepatocarcinogen. One objective of this
project is to test the hypothesis that CYP2E1 induction results in relatively minor
increases in TCE metabolism at low doses. Another objective is to characterize the effect
of CYP2EL1 induction by pyridazine (PZ) on TCE’s metabolic profile, including the
toxicokinetics (TK) of its primary downstream metabolites, chloral hydrate (CH),
trichloroethanol (TCOH) and TCA. Young male Sprague-Dawley rats (175 ~ 200 g)
were pretreated with PZ (200 mg/kg, 1.p.) in saline or saline (controls) daily for 3 days.
The animals were then administered TCE (10, 50 or 200 mg/kg, p.o.). PZ pretreatment
resulted in moderate decrease in TCE AUCs with the 50 and 200 mg/kg doses. The PZ
and control TCE AUCs were not significantly different at the lowest (10 mg/kg) dose.
The CYP2E1 induction enhanced the CH AUC for the higher TCE doses. The magnitude
of the increase in the CH AUC over controls was quite modest at the lowest TCE dose.
PZ elicited no significant increases in plasma TCOH levels the lowest TCE dose.
Enhanced biotransformation of TCE to TCA by PZ was manifested by ~ 2-fold increase
in TCA Cpax values at 50 and 200 mg/kg doses of TCE, as well as shorter Tpax’s. The

most striking influence of PZ on TCE TK was enhancement of its clearance from the
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bloodstream. This phenomenon was evidenced by ~ 2 to 3-fold decreases in TCA t/2 and
AUC values at 10, 50 and 200 mg TCE/kg. PZ may exert this effect by enhancing TCA
renal clearance. More rapid clearance may result in lower liver cancer risks from TCE in
P450-induced populations. Findings in this investigation also offer support for the
hypothesis that elevated CYP2ET1 activity has diminishing influence on TCE metabolic

activation, the lower the exposure to this well metabolized blood flow-limited chemical.
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Introduction

1,1,2-Trichloroethylene (TCE) is a volatile organic chemical (VOC) that has been
widely utilized as an organic solvent and a degreaser for metal parts (ATSDR, 1997).
Due to its extensive use, TCE is now a frequent drinking water contaminant in the U.S.,
and is the most commonly-found pollutant of groundwater at Superfund sites (Fay and
Mumtaz, 1996; Fay, 2006). TCE volatizes into the atmosphere and enters surface and
groundwater by leaching from disposal operations and hazardous waste sites. TCE is
also often found in indoor air due to the use of TCE-containing consumer products and
volatilization from the water supply (Weisel and Jo, 1996; Wu and Schaum, 2000). TCE,
perchloroethylene (PCE) and several other VOCs have frequently been detected in the
blood of a large percentage of non-occupationally-exposed adults monitored across the
U.S. (Churchill et al., 2001; Blount et al., 2006).

TCE is metabolically activated by two pathways, oxidation and glutathione
conjugation, to bioactive metabolites (Lash et al., 2000; Clewell et al., 2001). The
oxidative pathway predominates quantitatively in the liver, where the majority of TCE
biotransformation occurs. Nakajima et al. (1990, 1993) found that Cytochrome P4502E1
(CYP2E1), a high-affinity/low-capacity isoform, was primarily responsible for
metabolism of low TCE concentrations in rat liver. CYP2B1/2 was most important at
high TCE concentrations, with CYP1A1/2 and CYP2C11 making minor contributions.
CYP2EI is a constitutive isozyme in both rat and human liver. Guengerich et al. (1991)

found that CYP2E1 in human liver oxidizes TCE and a number of other VOCs. P450-
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mediated oxidation of TCE yields chloral and chloral hydrate (CH). The latter is both
oxidized to trichloroacetic acid (TCA) and reduced to trichloroethanol (TCOH). Much of
the TCOH is conjugated with glucuronide and excreted in the urine and bile.
Dichloroacetic acid (DCA) is also formed from TCE in mice, but its origins are unclear.
Only traces of DCA are sometimes found in rats and humans. Both TCA and DCA
appear to contribute to TCE hepatocarcinogenesis in mice (Bull et al., 2002). The
principal mode of action of TCA in the liver is as a peroxisome proliferator-activated
receptor alpha (PPARa) agonist. PPARa stimulation alters cell signaling, potentially
enhancing DNA synthesis and inhibiting apoptosis in the precancerous clones and
depressing replication of normal hepatocytes (Bull, 2000). Nevertheless, this is a non-
genotoxic mechanism of carcinogenesis.

Variations in levels and activity of hepatic microsomal CYP2E1 may: alter the
bioavailability and therapeutic efficacy of drugs metabolized by the isoform; provide
protection by enhancing the metabolic clearance of toxic xenobiotics; or enhance the
bioactivation of some xenobiotics to cytotoxic and/or mutagenic metabolites.
Guengerich et al. (1991), for example, showed that human CYP2E1 was responsible for
the metabolic activation of some 15 suspected carcinogens, including vinyl chloride,
styrene, benzene, chloroform and TCE. CYP2E1 induction occurs in response to a
variety of drugs (e.g., isoniazid, aspirin, chlorzoxazone, caffeine, tamoxifen) and certain
conditions (e.g., fasting, acute renal failure, obesity, diabetes, chronic alcohol
consumption) (Lieber, 1997; Gonzalez, 2005; Cederbaum, 2006). Polymorphisms in the
CYP2EI gene are another source of intersubject variability in activity and levels of the

isoform in different ethnic groups (Stevens et al., 1994; McCarver et al., 1998). Ten
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polymorphic loci on the human CYP2E1 gene have been reported, with most of them in
the promoter and intron regions (Harada et al., 2001). Snawder and Lipscomb (2000)
found a 12-fold variation in CYP2E]1 protein content in hepatic microsomes from 40

organ donors, due to genetic and/or environmental factors.

It is widely recognized that induction of CYP2E1 can enhance TCE metabolism
and potentiate the toxicity of high doses of the VOC. Cornish and Adefuin (1966) and
Carlson (1974) were among the first researchers to demonstrate that pretreatment of rats
with different P450 inducers enhanced acute liver injury by single, high doses of TCE.
Buben and O’Flaherty (1985) concluded from a dose-response study in mice that
hepatotoxicity caused by high doses of TCE and perchloroethylene (PCE) was due to
their metabolites. TCE and PCE hepatocytotoxicity are usually of minor concern,
however, due to the VOCs’ low potency as cytotoxins. The influence of CYP2EI
inducers on formation of potentially carcinogenic metabolites at moderate and low TCE
exposure levels are of primary concern in occupational and environmental situations,
respectively. There is limited empirical evidence that CYP2E1 induction can have a
significant effect on metabolic clearance of moderate and high doses of TCE in rats, but
have little influence on low doses (Kaneko et al., 1994). Kedderis (1997) predicted that a
10-fold increased in the maximal rate of hepatic metabolism of TCE would result in only
a 2 % increase in metabolite formation by a human inhaling 10 ppm of the chemical for 4
h. A physiologically-based pharmacokinetic (PBPK) model was used to make this

prediction in the absence of laboratory data.
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It has been assumed that CYP2E1 induction will enhance the formation of
potentially carcinogenic metabolites from TCE and therefore increase cancer risks. In
vitro metabolism data provide much of the support for this assumption. There are very
few relevant data from in vivo experiments. Kaneko et al. (1994) demonstrated that
CYP2EI induction by ethanol had little effect on low TCE doses by monitoring
cumulative urinary excretion of TCA and TCOH. These data provide no information of
ethanol’s effect on the time-course [e.g., areas under the blood concentration versus time
curves (AUCs) or peak blood concentration (Cpaxs)] of these or other key metabolites.
Thus, one of the primary objectives of the current investigation was to characterize the
action of pyridazine, a potent CYP2E1 inducer (Kim and Novak, 1993), on the internal
dosimetry of the parent compound (TCE) and its major biotransformation products. Such
dosimetry data are essential for estimation of cancer risks for different exposure scenarios.
The second primary objective was to test the hypothesis that the influence of CYP2E1
induction on TCE metabolism is inversely related to TCE dose. This hypothesis, if true,
would counter the assumption that elevated CYP2E1 activity/level increases formation of
potentially carcinogenic metabolites and the attendant cancer risks of low,

environmentally-relevant exposures to TCE.
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Materials and Methods

Chemicals: 1,1,2-Trichloroethylene (TCE) (> 99.9 % of purity);
trichloroethanol (TCOH), trichloroacetic acid (TCA), chloral hydrate (CH) and
dichloroacetic acid (DCA) (all > 99.9 % purity); and pyridazine (PZ) were purchased
from Aldrich Chemical Co (Milwaukee, WI)). Isooctane (ACS spectrophotometric
grade) was obtained from Sigma Aldrich (St. Louis, MO). Sulfuric acid and methanol
were obtained from J.T. Baker (Phillipsburg, NJ) and Sigma Aldrich, respectively.
Alkamuls EL-620" (formerly Emulphor®), a polyethoxylated vegetable oil supplied by

Rhone-Poulenc (Cranbury, NJ), was used to prepare stable aqueous TCE emulsions.

Animals: Male Sprague-Dawley (S-D) rats of 100 — 125 g were purchased from
Charles River Laboratories (Raleigh, NC). The animals were housed 2 rats per cage in
their own limited-access room of an AAALAC-accredited animal facility. The room was
maintained at 21°C and 50 £ 10 % humidity with a 12-h light/dark cycle. Full spectrum
fluorescent lights were on daily from 0600 — 1800 h. The rats were supplied Purina Rat
Chow No. 5001® and tap water ad libitum during an acclimation period of at least 1 week.
The study protocol was approved by the University of Georgia Animal Care and Use

Committee.
Dosage and Sample Collection Regimens: Groups of 6 male S-D rats were

injected with 200 mg PZ/kg i.p. in saline for 3 days between 0900 and 1000 h. Kim and

Novak (1993) reported this dosage regimen to produce a 4- to 5-fold increase in hepatic
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microsomal p-nitrophenol (PNP) hydroxylase activity in male Harlan S-D rats. Our S-D
rats from Charles River exhibited a 2.5-fold increase in PNP hydroxylation under these
conditions (data not shown). Control rats were injected i.p. with saline for 3 consecutive
days. A cocktail of ketamine HC1 (100 mg/ml): acepromazine maleate (20 mg/ml):
xylazine HC1 (10 mg/ml) in a proportion of 3:2:1 (v/v/v) was then injected i.m. in a
volume of 0.8 ml/kg to produce surgical anesthesia. A PE-50 cannula (OD = 0.97 mm,
ID = 0.58 mm) was implanted in the left carotid artery of each animal on the third day,
soon after administration of the last PZ/saline dose. The cannula was filled with
heparinized saline (1,000 U/ml) to maintain its patency. Each cannula was tunneled s.c.
and exited at the nape of the neck, so the animal could move freely and serial blood
samples be taken upon recovery. Food was withheld during the 24-h recovery period to
minimize intersubject variability in GI absorption of TCE. Water was available during
this time. Control and PZ-pretreated groups were gavaged with 10, 50 or 200 mg
TCE/kg in a 5 % aqueous Alkamuls EL-620" emulsion in a total dosing volume of 1
ml/kg. Serial micro (10 to 50 pl) blood samples were taken from the carotid cannula for
up to 24 h post dosing. An equivalent volume of heparinized saline was injected after
each sampling into the cannula to replace lost blood volume. Access to food was allowed

during the 24-h monitoring period.

Sample Analyses. The blood samples were collected on ice and transferred to
20-ml gas chromatography headspace (GC) vials containing 200 pl of esterification
solution comprised of distilled water, concentrated sulfuric acid and methanol in a ratio

of 6:5:1 (v/v/v). The headspace vials were capped with polytetrafluoroethylene (PTFE)-
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coated rubber septa and aluminum cap, then tightly crimped. The contents were
ultrasonicated for 1 min. The procedure converted TCA and DCA to their volatile
methyl esters (Muralidhara and Bruckner, 1999). TCE, TCOH and CH were sufficiently
volatile at the GC temperatures employed. TCE, TCA, DCA, CH and TCOH could thus
be quantified in each 10-50-p1 blood sample by headspace analysis. The vials were
placed into a TurboMatrix 110™ thermostat-controlled autosampler attached to a Perkin-
Elmer Clarus 500 GC equipped with an electron capture detector. The GC headspace
sampler was maintained at a constant 125°C. The temperature of the column was kept at
120°C for 3 min, then increased 25 C/min up to 170°C and maintained there for 3 min for
each sample. The injector and detector temperatures were 200 and 360 C, respectively.
Analyses were carried out on a 10’ X 4" stainless steel column packed with a 10 %
customized column coating of OV-17 (phenylpolysiloxane) on the 80/100-um mesh size
matrix Supelcoport® (Supelco Inc., Bellefonte, PA). Nitrogen was used as the carrier gas
at 25 psi. TCA, DCA, CH and TCOH standards were prepared daily in HPLC grade
water and analyzed concurrently with the blood samples (There were no difference
between the results of the standards with water or blood as matrices). Isooctane was
utilized for TCE. The limits of detection and quantitation for each analyte were ~ 5 and

20 ng/ml, respectively.

Calculation of Kinetic Parameters: Blood TCE concentration versus time
profiles were evaluated using WinNonlin Professional Version 4.1 (Pharsight Co.,
Mountain View, CA). The individual TCE time-courses of orally-dosed rats were

analyzed by compartmental models using standard equations, for calculation of relevant
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parameters [i.e., terminal elimination half-life (Tgy), total body clearance (CL), volume of
distribution (Vd) and area-under blood concentration versus time curves (AUCs)].
Individual CH, TCOH and TCA blood time profiles were analyzed by non-
compartmental methods using standard equations (Perrier and Gibaldi, 1982). Maximum

blood concentrations (Cpax) and times to Cpax (Tmax) Were observed means values.

Statistical Analyses: Student’s t-test was used to determine the statistical

significance (p < 0.05) of differences in each pharmacokinetic parameter as a function of

TCE dose and PZ-pretreatment.
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Results

Orally-administered TCE exhibits dose-dependent kinetics in the 10 — 200 mg/kg
dosage range and is eliminated more rapidly in PZ-pretreated animals. The blood TCE
time-profiles for the 10, 50 and 200 mg TCE/kg p.o. groups are shown in Figs. 1A, B and
C, respectively, and as expected difference in distribution phase is apparent with the
increase of TCE dose. TCE is absorbed very rapidly from the GI tract of fasted rats
administered the chemical in an aqueous emulsion. This is not evident in Figs. 1A — C,
due to the compression of the time scale on the X axis. An increase in the observed Tpax
is evident, however, with increase in dose (Table 1). The control TCE AUCs increase
disproportionately with dose above 10 mg/kg, indicative of the onset of metabolic
saturation. The increases in Ty, values with dosage are another indicator of metabolic
saturation. PZ pretreatment results in modest decreases in half-lives, but manifests
smaller AUC values for the two higher TCE dosage-levels. The PZ-induced reduction in
TCE AUCs becomes less pronounced with decrease in TCE dose (Fig. 2A, Table 1).
TCE AUC, Cpax and Tgy, values for the control and PZ groups are significantly different

at the highest (200 mg/kg) TCE dose.

Blood TCA time-courses in PZ-pretreated rats were quite different from those that
were anticipated. It would be expected that CYP2E1 induction would result in increased
TCA formation, manifested by higher blood TCA levels and AUCs. Blood TCA
concentrations were significantly higher in induced animals than in controls during the

initial 3 h in the groups ingesting 10, 50 and 200 mg TCE/kg (Figs. 1A, B). This is
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reflected in the PZ-pretreated groups with shorter Tyax values and higher Cyaxs at 50 mg
TCE/kg (Table 2). However, the decrease in blood TCA levels was prominent after 2 h
post dosing in PZ-treated groups. TCA concentrations in controls exceeded those in the
PZ-pretreated groups for the duration of the 24-h sampling period at all three TCE dosage
levels (Figs. 1A — C). This situation was most pronounced for the highest TCE dose (Fig.
2B). The control TCA AUC was ~ 3-fold higher and the Tpy, was significantly longer in
this instance (Table 2). This pattern was similar but showed less pronounced differences
for the two lower TCE doses.

Blood DCA concentrations, as noted in the Materials and Methods, were analyzed
in all blood samples. DCA was consistently quantifiable only in blood samples from the
200 mg TCE/kg PZ-pretreatment group (data not shown). Trace levels of DCA were

only found sporadically in other treatment and dosing groups.

Evaluation of the TCOH time-course data revealed a TCE dose-dependent
increase in TCOH AUCs, as well as PZ-induced increases in blood TCOH concentrations.
Apparent saturation of TCOH production was evidenced by 2-fold increases in the TCOH
AUCs with 5- and 4-fold incremental increases in the amount of TCE administered in
control groups (Table 3). Disproportionate increases in Cpax Were also exhibited with the
increase in TCE dosage. At the highest TCE dose, PZ-pretreatment resulted in modest
increases over controls in TCOH AUC and C,,x values. These modest increases over
controls in blood TCOH levels can be visualized in plots of blood TCOH time-courses in

Fig. 3. The PZ-induced increases in TCOH AUCs were inversely related to the TCE
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dose (Fig. 4A). The control and PZ AUC Tpy, and Cax values were not different at the
lowest (10 mg/kg) TCE dosage.

Effects of the TCE dosage and PZ pretreatment on TK parameter estimates for
CH showed were not as consistent as was the case with the other metabolites. CH AUC
Chax and Tpax values increased disproportionately (3-fold increases in the CH AUCs with
5- and 4-fold incremental increases with TCE dose) in controls, indicative of saturation of
TCE oxidation to this intermediate metabolite (Table 4). PZ pretreatment resulted in an
expected larger AUC at the intermediate (50 mg/kg) and higher (200 mg/kg) TCE dosage
level (Figs. 4B, C). PZ did not significantly alter Tgy,, Cimax OF Trax values of CH from
controls at any TCE dose. Ty, of CH, a metabolite of TCE, was expected to be shorter
than that of parent compound, but shorter Tpy, of CH than TCE Tgy, was noted at 50 and
200 TCE/kg. Although the estimated Tgy, values of CH were statistically significant
shorter than those of TCE at 50 and 200 mg TCE/kg dose level, this was attributed to the
more significantly lower blood concentration of CH (evidenced by much smaller Cpaxs
than those of TCE), which can easily be converted to next metabolites. Inspection of the
CH time-courses in Fig. 3 revealed considerable fluctuations in blood concentrations of

the metabolite in both the control and PZ groups, especially at the highest TCE dose.
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Discussion

Findings in the current study provide insight into the absorption of orally-
administered TCE, especially in the presence of elevated activities of CYP2EI. The
chemical is very rapidly absorbed into the arterial circulation from the GI tract of fasted
rats. The Tmax’s ranged from 2.8 min for the lowest dose to 9.7 min for the highest dose
(Table 1). Lee et al. (2000) previously observed that the rapidity of oral absorption of
TCE decreased with increase in dose. TCE rapidly diffuses through the gastric and
intestinal membranes, as it is a small, unchanged, lipophilic molecule. Giving the VOC
as an aqueous emulsion should promote its absorption. TCE will quickly volatilize from
an emulsion’s micelles within the warm luminal environment (Lee et al., 1997), resulting
in relatively large quantities of the chemical coming into direct content with epithelial
membranes. D’Souza et al. (1985) report that > 90 % of TCE is absorbed systemically
when administered in a similar manner to fasted rats. Rats are frequently fasted to
minimize inter-subject variability in absorption and bioavailability. Fatty foods, in
particular, retard the absorption of lipophilic chemicals such as TCE. Vegetable oils are
known to act as a reservoir in the gut for carbon tetrachloride (CCly), delaying its
absorption until they are emulsified, cleaved by lipases and absorbed (Kim et al., 1990).

TCE data from the present investigation also provide information about the
metabolism and elimination of the VOC. Evaluation of the dose-dependency of the AUC,
Tpy, and Cax values reveals saturation of TCE metabolism. The 5-fold increase in TCE
dose from 10 to 50 mg/kg resulted in a 12-fold increase in the TCE AUC (Table 1). Lee

et al. (2000) report the onset of metabolic saturation between oral bolus doses of 8 and 16
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mg TCE/kg in male S-D rats. It should be recognized that metabolic saturation is not an
“all or nothing” event. Its onset is gradual and its course progressive, with higher and
higher TCE doses resulting in smaller and smaller increments in metabolites. TCE’s
terminal elimination of half-life becomes progressively longer with increase in dose, also
evidenced at higher doses in this study. This occurs despite increases in the amount of
the VOC that is exhaled (Dekant et al., 1986). Although no tissue deposition data were
collected in the present study, TCE is known to be distributed to tissues largely according
to their blood flow rate and fat content (Davidsohn and Beliles, 1991). TCE that escapes
exhalation and metabolism at high dosage levels is largely deposited in adipose tissue.
High lipid:blood partition coefficient of TCE and slow rate of blood flow to the adipose
tissue result in prolongation of TCE’s residence time in the body, despite its propensity
for metabolism (Bruckner et al., 2006).

It is a widely-held principle of toxicology that induction of enzymes responsible
for metabolic activation (i.e., conversion of a parent compound to a more cytotoxic or
mutagenic metabolite) may result in increased formation of reactive metabolites and a
resulting increased likelihood of toxicity. This principle, as described in the Introduction,
is known to be applicable to high doses of TCE and halocarbons. Researchers have
clearly shown that pretreatment of rodents with a variety of P450 inducers will potentiate
the toxicity of hepatotoxic solvents. Folland et al. (1976) describes a case involving a
woman and other workers at an isopropyl alcohol bottling plant who became ill after a
subsequent exposure to a quantity of CCl4 that by itself was not toxic. The woman
developed liver injury and kidney failure, because repeated exposures to isopropanol

markedly induced CYP2E1 in her liver, resulting in a marked increase in metabolism of
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CCl4to reactive, cytotoxic free radicals. Manno et al. (1996) described a case of
potentiation of CC14 hepatotoxicity an alcoholic in an occupational setting. It is
important to recognize that workers may frequently be subjected to relatively high
exposures to CCly, TCE and other VOCs.

There is emerging empirical evidence that the effects of CYP2E1 inducers on
moderate to high doses of TCE and other well-metabolized VOCs may not be applicable
to low-dose exposure situations. Kaneko et al. (1994) utilized an ethanol dosage regimen
that increased the metabolism of TCE and 1,1,1-trichloroethane (TRI) by rat liver
microsomes 5-fold. The systemic clearance and metabolism of TRI, a poorly
metabolized congener, were significantly increased. With such a compound, whose
intrinsic clearance is lower than its hepatic blood flow rate, the maximum rate of its
metabolism (Viax) is independent of dose (i.e., P450 induction induces TRI’s metabolism,
even at low exposure levels). Kaneko and co-workers’ ethanol dosage regimen did not
affect the elimination of low to moderate doses of TCE from the animals’ blood or their
urinary excretion of TCOH or TCA. Enzyme induction should have little or no effect on
the metabolism of low concentrations of extensively-metabolized chemicals (Sato, 1991;
Wang et al., 1996; Lipscomb et al., 2003). Hepatic blood flow limits the extent of
metabolism of such chemicals. Kedderis (1997) utilized a PBPK model to predict that
10-fold increase in Vi, would result in only a 2 % increase in the amount of TCE
metabolized by a human inhaling 10 ppm TCE for 4 h. Lipscomb et al. (2003)
subsequently used a PBPK model that forecast a 2 % increase in the quantity of TCE

oxidized by people ingesting 2 L of water containing 5 ng TCE/L (5 ppb). These
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modelers did not have laboratory data for verification of the accuracy/validity of their
calculations.

The current investigation provides evidence to support the hypothesis that the
influence of hepatic CYP2E1 induction on TCE metabolism is inversely related to TCE
dose. It should be recalled that our PZ dosing regimen produced a 2.5-fold increase in
CYP2EI activity. This is less than the 4- to 5-fold elevation Kim and Novak (1993)
reported, likely due to a ~ 2-fold induction by the 24-h fasting before the oral exposure of
TCE we employ in controls and PZ-pretreated animals. PZ pretreatment of the 50 and
200 mg TCE/kg groups generally produces larger AUCs and higher Cy.xs for TCE
metabolites, TCOH and CH, than were manifested in controls (Tables 3 and 4).
Occasional exceptions, for which there are no ready explanations, are present. The
increases in CH and TCOH AUC values in the 50 and 200 mg TCE/kg groups are
relatively modest. More pronounced changes would be anticipated at higher TCE doses
(Kaneko et al., 1994). The influence of PZ on TCA kinetics is discussed below. A key
finding in this phase of the project is the lack of significant effects of PZ pretreatment on
TCOH and CH AUC or Cyax values at the lowest TCE dosage (10 mg/kg). The very
slight, but consistent changes at 10 mg/kg would likely disappear at even lower TCE
doses. The lack of a statistically significant effect of CYP2E]1 induction on
biotransformation of 10 mg TCE/kg, which is far greater than environmentally-relevant
TCE level, is also manifested by the absence of alterations of TCE kinetic parameters
(Table 1).

Assessment of human health risks from TCE has been challenging, because

TCE’s metabolism, TK and mode(s) of action (MOA) are inherently complex.
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Assessment of cancer risks of trace, environmentally-relevant levels of TCE is a subject
of major public health concern. The EPA’s standard default policy, in the absence of
adequate experimental evidences to the contrary, has been to utilize a linear, multistage
model to extrapolate from high-dose rodent cancer bioassay data to predict human cancer
risks from environmental exposures. This very conservative approach assumes there is
no threshold dose for cancer causation and results in high cancer risk estimates. It has
recently been opined by a panel convened by the National Academy of Sciences that
there is insufficient knowledge of TCE’s MOA and low dose TK to adopt a biologically-
based dose-response model, rather than the linear default mode (NRC, 2006). A key
argument in favor of use of the conservative linear model is that it will be protective of
subpopulations that have environmentally- or genetically-based high TCE metabolic
activation capacity. Data from the present study support the aforementioned PBPK
modeling efforts that refute this argument/assumption. Humans whose CYP2E1 gene is
expressed should have CYP2EI activity far in excess of that necessary to metabolize all
of very low TCE doses. Therefore, it is reasonable to conclude that genetically-or
environmentally-determined increased in CYP2E1-mediated metabolic capacity are
inconsequential for most TCE environmental exposure scenarios. This conclusion should
also apply to other extensively-metabolized environmental contaminants such as vinyl
chloride, benzene, chloroform, etc.

There is very little information from in vivo experiments on the influence of
CYP2EI induction on TCE’s oxidation to CH and its two major “downstream”
metabolites, TCOH and TCA. Most of our current knowledge comes from measurements

of the metabolites in liver microsomes from pretreated animals (Nakajima et al., 1990,
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1993; Lash et al., 2000), cultured hepatocytes (Woodcraft and Novak, 1998) or other in
vitro systems. Some investigations (Larson and Bull, 1989; Kaneko et al., 1994) have
assessed effects of CYP2E1 inducers such as ethanol on TCE metabolism by monitoring
urinary excretion of TCOH and TCA. There are very few blood or tissue time-course
data for metabolites of TCE or other VOCs. Blood time-course studies of the influence
of P450 inducers on parent drugs and their metabolites in laboratory animal and human
blood are relatively common (e.g., Fromm et al., 1996; Lin et al., 1999; Monsarrat et al.,
1998). Internal dosimetry data on TCE’s metabolites are essential for constructing and
validating PBPK models, as well as for extrapolating from high-dose rodent experiments
to low-dose human exposure scenarios for non-cancer and cancer risk assessments. This
is exemplified by our unanticipated finding of a marked reduction in blood TCA levels in
PZ-pretreated rats. Such a marked reduction in concentrations of this mouse
hepatocarcinogenic metabolite implies that liver cancer risks may be substantially
reduced under such circumstances. Subsequent publications from the present study
describe further investigations of the phenomenon, as well as evaluation of the ability of

other CYP2E1 inducers to exert such an unexpected effect.
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Legends for figures

FIG. 1. Male S-D rats were injected with saline (control) or 200 mg PZ/kg i.p. for
3 days. They were then gavaged with 10, 50 or 200 mg TCE/kg, serial blood samples
taken for 24 h via an indwelling cannula, and the samples analyzed for their TCE and
TCA content. TCE and TCA time profiles for the 10, 50 and 200 mg TCE/kg p.o. groups
of controls (dashed lines) and PZ-induced (solid lines) are pictured in plates A, B and C,
respectively. Points represent means + S.E. for groups of 4 — 5 rats. Lines were drawn
point to point to connect between the mean values. Some of the error bars not apparent,
because S.E. was so small to fit within the data point. Designation of significant

differences is omitted for sake of clarity.

FIG 2. Effect of 3 days of 200 mg PZ/kg i.p. pretreatment on blood TCE and
TCA AUC;24 values for control (clear bars) and PZ-induced (shaded bars) groups of
male S-D rats gavaged with 10, 50 or 200 mg TCE/kg. Insets show 10 and 50 mg
TCE/kg values more clearly. Bar heights represent means (= S.E., n =4 —5). Asterisks

indicate statistically significant difference between control and PZ-pretreated groups.

FIG. 3. Male S-D rats were injected with saline (control) or 200 mg PZ/kg i.p. for
3 days. They were then gavaged with 10, 50 or 200 mg TCE/kg, serial blood samples
taken for 24 h via an indwelling cannula, and the samples analyzed for their TCOH and
CH content. CH and TCOH time profiles for the 10, 50 and 200 mg TCE/kg p.o. groups

of controls (dashed lines) and PZ-induced (solid lines) are pictured in plates A, B and C,
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respectively. Points represent means + S.E. for groups of 4 — 5 rats. Lines were drawn
point to point to connect between the mean values. Error bars not shown fit within the
data point. Some of the error bars not apparent, because S.E. was so small to fit within

the data point. Designation of significant differences is omitted for sake of clarity.

FIG 4. Effect of 3 days of 200 mg PZ/kg i.p. pretreatment on blood TCOH and
CH AUC_,24 values for control (clear bars) and PZ-induced (shaded bars) groups of male
S-D rats gavaged with 10, 50 or 200 mg TCE/kg. Bar heights represent means (£ S.E., n
=4 —5). Asterisks indicate statistically significant difference between control and PZ-

pretreated groups.
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Figures and Tables
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FIG. 2
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FIG. 3
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FIG. 4.
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Table 1. TCE toxicokinetic parameter estimates for control and PZ-pretreated rats

TCE AUC (ug*h/ml) Tgi2 (h) Cmax (ug/ml) Tmax (min)
T((r:nEg E;ie Control PZ-induced Control PZ-induced Control PZ-induced Control PZ-induced
10 1.0+0.2 0.7+0.1 1.2°+0.1 0.9+ 0.1 3.1+£0.7 23+0.2 44+13 2.8+0.5
50 1.64+1.1  85°+04  3.7°+03  3.1°+03  107+1.1  11.1+13 7.6+12 7.0+ 1.6
200 49.0+29 363%+22 40x35 40103 246A%t22 132B£03 9722 44108

Male S-D rats were injected with saline (controls) or 200 mg PZ/kg i.p. for 3 days. They then were gavaged with 10, 50 or 200 mg
TCE/kg. Serial micro-blood samples were taken from the freely-moving animals via a carotid artery cannula for 24 h post dosing and
analyzed for their content of TCE and its metabolites (TCA, TCOH and CH) by headspace GC. Different lower case letters indicate a
statistically significant difference between TCE dosage level values. Different upper case letters indicate a significant difference

between control and PZ-pretreated group values (p < 0.05). Results are expressed as mean £ S.E. (n=4 ~5).
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Table 2. TCA toxicokinetic parameter estimates for control and PZ-pretreated rats

TCA AUC (pg*h/ml) Tgi2 (h) Cmax (pg/ml) Tmax (min)
T(?nEg }?{Se Control PZ-induced Control PZ-induced Control PZ-induced Control PZ-induced
10 33.1%°+2.6 1935+ 2.6 10.14+ 0.3 57°+03 1.8+0.2 1.9+03 300%+54 84°+19
50 12624 +10.0 84.6°+9.0 102*°+1.0 63°+08 63%°+16 12.1°+19 240°+0 128°+19
200 46324+ 180 17558+94 1324+06 428B+03 166A+12 2368B+12 180A+0 138+ 15
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Table 3. TCOH toxicokinetic parameter estimates for control and PZ-pretreated rats

TCOH AUC (pg*h/ml) Tg, , (hr) Cmax (ug/ml) Tmax (min)

T(?nEg }?{Se Control PZ-induced Control PZ-induced Control PZ-induced Control PZ-induced
10 50+£0.5 54+0.8 8.1+0.5 7.1+1.1 1.2+0.1 1.9+0.3 43+6 39+3
50 10.1°+04  13.6°+0.9 5.6+0.5 6.5+0.5 3.1£0.6 2.6+0.1 54+4 60+0
200 26.1+3.7 30.1£2.1 29+0.2 41+0.2 5604 6.2+0.1 779 51+4
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Table 4. CH toxicokinetic parameter estimates for control and PZ-pretreated rats

CH AUC (pg*h/ml) T, ), (hr) Cmax (ug/ml) Tmax (min)
T(?nEg }?{Se Control PZ-induced Control PZ-induced Control PZ-induced Control PZ-induced
10 1.3+0.1 1.5+0.1 1.5+£0.2 22+0.1 09+0.1 1.2+0.2 13+3 17+£2
50 334403 6.1°+0.8 2.6+0.3 23+0.5 1.7+0.2 23+0.2 48+ 6 33+7
200 6.1"+0.7 11.0°+ 1.4 2.1+0.1 2.7+0.6 22+0.2 3.0+£0.2 72+ 6 48+ 6
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CHAPTER 3. Different TCA Toxicokinetics after TCE, TCOH and TCA
administration Due to CYP2E1 Induction by Pyridazine

in Male Sprague-Dawley Rats?

2S. Lee, C. A. White, S. Muralidhara, and J. V. Bruckner. To be submitted to Drug
Metabolism and Disposition.
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ABSTRACT:

Trichloroacetatic acid (TCA) is a toxicologically important metabolite of 1,1,2-
trichloroethylene (TCE) and perchloroethylene (PCE), as well as a byproduct of
chlorination of drinking water. TCA is generally believed to be a proximate mouse
hepatocarcinogen. Previous experiments revealed that pretreatment of male Sprague-
Dawley (S-D) rats with pyridazine (PZ), a cytochrome P4502E1 (CYP2E1) inducer,
resulted in a marked, unexpected increase in clearance of TCA from the bloodstream
after the administration of TCE p.o. The objective of the current investigation was to
determine the cause of this phenomenon, as well as to assess the influence of PZ on the
toxicokinetics (TK) of TCA and trichloroethanol (TCOH), the other end metabolite of
TCE.

Young (bw = 200 g) male S-D rats were given 200 mg PZ/kg in saline i.p. for 3
consecutive days. Controls received i1.p. saline injections. Groups of rats then received:
10 or 50 mg TCE/kg p.o.; 10 or 50 mg TCA/kg i.v.; 50 mg TCOH/kg i.v. Serial blood
samples were then taken for up to 48 h and analyzed by headspace gas chromatography
for their TCE, TCA and/or TCOH. Additional groups of PZ-pretreated and control rats
were administered 10 or 50 mg TCA/kg i.v. and their urine collected for delineation of
cumulative urinary TCA excretion. PZ pretreatment apparently did not significantly alter
the in vivo metabolism of TK of TCOH. A portion of the TCOH dose was converted to
TCA, but this was markedly inhibited by PZ. PZ had a profound impact on the TK of i.v.
TCA, as evidenced by marked decreases from controls in TCA AUCs and shorter half-

lives. These effects were found to be due largely to enhanced urinary TCA excretion. A
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less pronounced increase at the higher (50 mg/kg i.v.) dose is suggestive of saturation of
some processes, possibly transport of TCA from blood into the urinary filtrate by an
organic anion transporter. The mechanism(s) by which TCA enters the urinary filtrate is
unknown. The substantial decreases observed here in internal TCA are contrary to what
would be anticipated with pretreatment with PZ, a CYP2E1 inducer. This phenomenon,
if shared by other common CYP2E1 inducers, may have a profound impact on standard
assumptions made by the U.S. EPA in its cancer risk assessments of TCE, PCE and other

solvents that are metabolically activated by CYP2E1.
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Introduction

Trichloroacetic acid (TCA) is presently of considerable interest to the scientific
and regulatory communities. It is a toxicologically-significant end metabolites of the
oxidative pathways fro 1,1,2-trhchloroethylene (TCE), perchloroethylene (PCE) and
other chlorinated volatile organic chemical (VOC) environmental contaminants in
rodents and humans (Green and Prout, 1985; Odum et al., 1988; Lash et al., 2000). TCA,
along with dichloroacetic acid (DCA) and chloroform are major byproducts of
chlorination of drinking water (Weisel et al., 1999). TCA has been used as a soil sterilant
and a selective herbicide for control of many annual and perennial grasses in agriculture.
TCA is also used as an etching agent for metal surfaces, a solvent in the plastics industry,
and even as an antiseptic, hemostatic, and keratolytic in medicine (Hoekstra, 2003;
HSDB, 2002). TCA exposure is currently widespread in the U.S. It was found in 76 %
of the urine specimens of 402 U.S. residents surveyed (Calafat et al., 2003).

The primary toxicological concern about TCA is its potential carcinogenicity.
Results of a number of studies indicate that TCA and/or DCA are proximate B6C3F1
mouse liver carcinogen(s) in TCE-exposed animals (Bull, 2000; Bull et al., 2002). Bull
et al. (1990) has previously shown that TCA produces liver adenomas and carcinomas in
both sexes of B6C3F1 mice when given in their drinking water. Peroxisome proliferation
is thought to be the major, non-genotoxic mechanism of action of TCA (Maloney and
Waxman, 1999; Bull, 2000, NRC, 2006). Direct interaction of TCA with the nuclear
proxisome proliferator-activated receptor alpha (PPARa) modifies signals, involving cell

proliferation, inhibition and apoptosis, in different populations of hepatocytes. Transcript
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profiling shows that 93 % of all gene expression changes in wild-type mice are dependent
on PPARa, including gene involved in cell growth (Laughter et al., 2004). A lack of
such concordance in PPARa-null mice led the researchers to conclude that activation of
PPARa by TCA plays a dominant role in TCE-induced hepatocarcinogenesis. TCA is
also known to induce DNA hypomethylation, which may increase oncogene expression
(Ge et al., 2001; Tao et al., 1998).

Much about the toxicokinetics (TK) of TCA has been well characterized. Orally-
administered TCA is rapidly and extensively absorbed by mice (Gonzalez-Leon et al.,
1999; Xu et al., 1995). TCA injected i.v. quickly exits the vasculature of rats, as reflected
by a short distribution phase and rapid equilibration with tissues (Schultz et al., 1999; Yu
et al, 2000). Schultz et al. report that TCA’s steady-state volume of distribution
approximates total body water. A number of research groups (e.g., Merdink et al., 1995)
observe that TCA has a particularly long half-life in the blood of rodents. Substantial
interspecies differences in half-life are described [e.g., 8 h after 65 mg TCA/kg iv in rats
(Schultz et al, 1999) versus 51 h following 200 ppm TCE/kg oral exposure in humans
(Fisher et al., 1998)]. The TCA binding capacity of human plasma in vitro is
considerably higher than that of rat plasma. Mouse plasma TCA binding is much lower
than that in the rat (Lumpkin et al., 2003; Templin et al., 1995).

TCA is slowly cleared from the systemic circulation due to a combination of
factors including its strong plasma protein binding, large volume of distribution, poor
metabolism, possible reabsorption from the bladder and/or urine, and enterohepatic
recirculation of trichloroethanol (TCOH) and its conversion to TCA (Hobara et al., 1988;

Lumpkin et al., 2003; Schultz et al., 1999; Stenner et al., 1997; Yu et al., 2000).
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Relatively little, however, is known about TCA’s elimination. Very little is excreted in
the feces (Yu et al., 2000). Renal clearance appears to be moderate, though it is not
known whether TCA is freely filtered in the glomerulus and/or serves as a substrate for
active renal tubular transporters.

An investigation was recently conducted to elucidate the influence of pyridazine
(PZ), a potent Cytochrome P450 2E1 (CYP2E1) inducer, on blood profiles of chloral
hydrate (CH) and its major “downstream” metabolites, TCOH and TCA, in TCE-dosed
rats (Lee et al., 2006). Blood concentrations of CH and TCOH were moderately
increased in the PZ-pretreated rats that ingested moderate TCE doses. Unexpectedly,
blood TCA concentrations in these animals diminished more rapidly to much lower levels
than in controls. Such an effect could have important consequences in cancer risk
assessments of TCE, PERC and TCA as TCA internal dosimetry serves as the basis of
species-, dose- and route of exposure extrapolations. The objective of the current study is
to clarify the effects of PZ on TCA and TCOH kinetics, in order to gain a better

understanding of the basis for the marked reduction in TCA’s bioavailability.
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Materials and Methods

Chemicals: 1,1,2-Trichloroethylene (TCE) (> 99.9 % of purity); trichloroethanol
(TCOH), trichloroacetic acid (TCA), chloral hydrate (CH) and dichloroacetic acid (DCA)
(all > 99.9 % purity); and pyridazine (PZ) were purchased from Aldrich Chemical Co
(Milwaukee, WI)). Isooctane (ACS spectrophotometric grade) was obtained from Sigma
Aldrich (St. Louis, MO). Sulfuric acid and methanol were obtained from J.T. Baker
(Phillipsburg, NJ) and Sigma Aldrich, respectively. Alkamuls EL-620" (formerly
Emulphor™), a polyethoxylated vegetable oil supplied by Rhone-Poulenc (Cranbury, NJ),

was used to prepare stable aqueous TCE emulsions.

Animals: Male Sprague-Dawley (S-D) rats of 100 — 125 g were purchased from
Charles River Laboratories (Raleigh, NC). The animals were housed 2 rats per cage in
their own limited-access room of an AAALAC-accredited animal facility. The room was
maintained at 21°C and 50 £ 10 % humidity with a 12-h light/dark cycle. Full spectrum
fluorescent lights were on daily from 0600 — 1800 h. The rats were supplied Purina Rat
Chow No. 5001 and tap water ad libitum during an acclimation period of at least 1 week.
The study protocol was approved by the University of Georgia Animal Care and Use

Committee.

Dosage and Sample Collection Regimens: Groups of 6 male S-D rats were

injected with 200 mg PZ/kg i.p. in saline for 3 days between 0900 and 1000 h. Kim and

Novak (1993) reported this dosage regimen to produce a 4- to 5-fold increase in hepatic
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microsomal p-nitrophenol (PNP) hydroxylase activity in male Harlan S-D rats. Our S-D
rats from Charles River exhibited a 2.5-fold increase in PNP hydroxylation under these
conditions (data not shown). Control rats were injected i.p. with saline for 3 consecutive
days. A cocktail of ketamine HC1 (100 mg/ml): acepromazine maleate (20 mg/ml):
xylazine HC1 (10 mg/ml) in a proportion of 3:2:1 (v/v/v) was then injected i.m. in a
volume of 0.8 ml/kg to produce surgical anesthesia. An Indwelling PE-50 cannulae (OD
=0.97 mm, ID = 0.58 mm) were implanted into the left jugular vein for i.v. TCA or
TCOH administration and into the left carotid artery for serial blood sampling from each
animal on the third day, soon after i.p. injection of the last PZ/saline dose. Groups of rats
given TCE orally had only a carotid cannula implanted installed. The cannulae were
filled with heparinized saline (1,000 U/ml) to maintain their patency. An equivalent
volume of heparinized saline was injected via the cannula after each sampling to
replenish blood volumes. Each cannula was tunneled s.c. and exited at the nape of the
neck, so the animal could move freely and serial blood samples be taken with a minimum
of stress upon recovery. Food was withheld during a 24-h recovery period, but water was
provided ad libitum.

Experiments were conducted to assess the influence of PZ-pretreatment on blood
TCA concentration profiles. Data from a previous study (Lee et al., 2006) were used to
illustrate the effect on PZ or the kinetics of TCA generated from TCE. PZ-pretreated and
control groups had been gavaged with 10 or 50 mg TCE/kg in a 5 % aqueous Alkamuls
EL-620" emulsion. In a second experiment, PZ and control groups received 10 or 50 mg
TCA/kg in saline by injection into the jugular vein cannula. Other PZ-pretreated and

control groups were given 50 mg TCOH/kg in saline i.v. in the third experiment. The
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total dosing volume was 1 ml/kg for all the experiments. Serial arterial micro (10 to 50
ul) blood samples were taken from all the animals for 48 or 96 h post dosing and TCA
concentrations quantified as described below. The estimation of TK parameters is also
detailed below.

Cumulative urinary excretion of TCA was monitored in a separate study. Twenty
rats were housed individually for a 2-day acclimation period in Nalgene 650-0100"
metabolic cages for small rats. The cages were designed for separate collection of urine
and feces. Food and water were available ad libitum during the 2 days of acclimation in
the cages. Ten animals were injected with 200 mg/kg i.p. daily for 3 days. The others
were given i.p. injections of saline for 3 days and served as controls. Soon after i.p.
injection of the last PZ/saline dose, each animal was anesthesized, surgically implanted
with a jugular vein cannula, as described before. Animals were placed back into
metabolism cages upon recovery, food was withheld during a 24-h recovery period, but
water was provided ad libitum.

One set of 5 control and 5 PZ-pretreated rats received 10 mg TCA/kg via the
jugular cannula. Another set of 5 control and 5 PZ rats received 50 mg TCA/kg i.v.
Voided urine was collected on ice from the individual animals 2, 4, 8, 12, 24, and 48 h
post dosing (72 h was final urine collection time point for control groups given 50 mg
TCA/kg i.v.). The volume for each collection period was recorded. The urine samples
were transferred to 1.5 ml microfuge tubes and stored at — 80 ° C until analysis. Access

to food and water was provided during the collection period.
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Sample Analyses. Urine samples were diluted with HPLC-grade water up to
1:1000. Less concentrated samples at later time-points were diluted 1:250 or 1:500.
Blood and diluted urine samples were transferred to 20-ml gas chromatography (GC)
headspace vials, containing 200 pl of esterification solution comprised of distilled water,
concentrated sulfuric acid and methanol in a ratio of 6:5:1 (v/v/v), topped with aluminum
caps with polytetrafluoroethylene (PTFE)-coated rubber septa and then tightly crimped.
The contents were ultrasonicated for 1 min. The procedure converted TCA (and DCA, if
any) in the blood and urine to their volatile methyl esters (Muralidhara and Bruckner,
1999). TCE, TCOH and CH were sufficiently volatile at the GC temperatures employed.
TCE, TCA, DCA, CH and TCOH could thus be quantified in each 10 to 50-ul blood
sample by headspace analysis. The vials were placed into a TurboMatrix 110
thermostat-controlled autosampler attached to a Perkin-Elmer Clarus 500 GC equipped
with an electron capture detector. The GC headspace sampler was maintained at a
constant 125" C. The temperature of the column was kept at 120 C for 3 min, then
increased 25 C/min up to 170" C and maintained there for 3 min for each sample. The
injector and detector temperatures were 200 and 360  C, respectively. Analyses were
carried out on a 10" X 4" stainless steel column packed with a 10 % customized column
coating of OV-17 (phenylpolysiloxane) on the 80/100-um mesh size matrix Supelcoport”™
(Supelco Inc., Bellefonte, PA). Nitrogen was used as the carrier gas at 25 psi. TCA,
DCA, CH and TCOH standards were prepared daily in HPLC grade water and analyzed
concurrently with the blood samples. (There was no difference between the results of the
standards with water or blood as matrices). Isooctane was utilized for TCE. The limits

of detection and quantitation for each analyte were ~ 5 and 20 ng/ml, respectively.
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Calculation of Kinetic Parameters: Blood TCA concentration versus time
profiles were evaluated using WinNonlin Professional Version 4.1 (Pharsight Co.,
Mountain View, CA). The individual TCA time-courses of i.v.-dosed rats were analyzed
by compartmental models using standard equations, for calculation of relevant
parameters [i.e., terminal elimination half-life (tg,), total body clearance (CL), volume of
distribution (Vd) and area-under blood concentration versus time curves (AUCs)].
Individual TCA blood time-course profiles after TCE or TCOH administration were
analyzed by noncompartmental methods using standard equations (Perrier and Gibaldi,
1982). Maximum blood concentrations (Cpax) and times to Cpax (Tmax) Were observed
values. In TCOH i.v. administration studies, fraction of initial TCOH dose converted to
TCA [(Fm (rcon -stca)] was calculated from the equation of Fm = {[TCA AUC (after
TCOH 1i.v. administration, min*umole/ml) X TCA CL (TCA i.v. administration,
ml/min/kg)]}/ [TCOH i.v. dose, umole/kg)]. TCOH formation clearance (CLF), then was
calculated from the equation of CLr = Fm X CLtcoy. In TCA urinary elimination
experiments of TCA i.v. administration, fraction of initial dose excreted in urine (Fgjim) of
TCA (of each animal) was calculated from [cumulative excreted amount of TCA in

urine] divided by [dose X body weight].

Statistical Analyses: One- or two-way analysis of variance ANOVA was used to

determine the statistical significance of differences in TK parameters as a function of

PZ-treatment and dose, with p < 0.05 as the level of significance.
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Results

PZ-pretreatment of rats has pronounced effects on blood TCA TK under a variety
of exposure conditions. TK parameter estimates are listed in Table 1, while blood TCA
time-courses are pictured in Fig 1, 3 and 4. A 5-fold increase in the oral TCE dose
resulted in 3.5- and 6.4-fold increases of the TCA Cmax in control and PZ-treated
animals, respectively (Table 1). PZ-pretreatment produced a doubling of the TCA Cmax
at 50 mg TCE/kg p.o. The TCA Tmax values are significantly shorter in PZ-pretreated
rats than controls at each TCE dosage-level. These shorter Tmax’s and higher Cmax’s
are apparent in Fig. 1. It is also apparent here that TCA is eliminated more quickly from
the bloodstream of the PZ-pretreated rats at each TCE dose. The overall influence of
these changes on TCA AUC values is illustrated in Fig. 2.

The results of the TCA i.v. injection experiments were consistent with a PZ-
induced increase in systemic TCA clearance. TCA Tg:, and clearance (CL) values in
controls did not exhibit dose-dependence (Table 1). CL was significantly higher with
increase in TCA dose in the PZ-treated than in the control groups. The PZ-pretreatment
regimen resulted in a significant increase in clearance of both i.v. doses of TCA. This was
reflected by TCA half-lives that were one-half as long as those in controls. The relatively
rapid rate of TCA elimination in the PZ groups is obvious in Figs 3 A and B. The impact
of PZ on TCA AUCs was even more prominent at 50 than at 10 mg TCA/kg i.v. (Fig 2),
which is consistent with the observed non-linear increase in clearance.

PZ-pretreatment has a pronounced effect on blood TCA concentrations in rats

given 50 mg TCOH/kg i.v. Blood TCA levels in control animals confirm that TCOH, an

120



end metabolite of TCE, is converted to TCA to some extent. The PZ treatment regimen
substantially reduces the TCA Cmax and half-life in the TCOH-dosed animals (Table 1).
The striking decrease from controls in TCA blood concentrations over time can be seen
in Fig. 4A. There is a ~ 50 fold-reduction from controls in the PZ-group’s TCA AUC
value. TCOH fraction metabolized to TCA [Fm (tcon -rtca)] and clearance formation
(CLF) in PZ-treated groups also showed 20- and 10-fold decreases from those of controls,
respectively (Table 1). As described in the Discussion, this diminished formation of
TCA from TCOH appears to be in tandem with increased renal clearance of TCA.
Assessment of urinary excretion of TCA reveals that PZ pretreatment did indeed
accentuate this process. Cumulative urinary excretion plots of TCA in control (dashed
lines) and PZ-pretreated (solid lines) rats given 10 or 50 mg TCA/kg, i.v. are shown in
Figs. 5A and B. It appears here that the difference between control and pretreated
animals is larger at the lower dosage-level. Examination of the data in Table 2 reveals
that PZ-pretreatment resulted in ~ 3.6-fold and 1.8-fold increases in the amount of TCA
excreted during the first 2 h in the 10 and 50 mg TCA/kg i.v. groups, respectively. A
similar pattern is true for: the amount of TCA excreted during the initial 2 hr, expressed
as % of initial dose administered; and the cumulative amount of TCA excreted during the
48-h monitoring period. TCA is eliminated more rapidly during the first four hours after

dosing, but continuous to be excreted for the entire 48-h interval.
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Discussion

A basic premise in toxicology is that induction of hepatic microsomal cytochrome
P450s will result in potentiation of the hepatotoxicity (and possibly
hepatocarcinogenicity) of a number of VOCs by increasing their metabolic activation to
reactive, cytotoxic metabolites. Much of the support for this premise has come from in
vitro experiments with liver microsomes. Researchers have reported potentiation of acute
liver injury in rodents and humans subjected to a variety of CYP2E1 inducers before
subsequent exposures to high doses of VOCs such as TCE, benzene and carbon
tetrachloride (CC1y4) (Cornish and Adefuin, 1966; Folland et al., 1976; Manno et al.,
1996; Marrubini et al., 2003). There have also been reports of the influence of CYP2E1
induction on urinary excretion of VOC metabolites (Kaneko et al., 1994; Kenyon et al.,
1996). There are very few instances in which the influence of inducers on the time-
courses of the parent compound and its key metabolites has been delineated. These
internal dosimetry data (e.g., blood or target tissue AUCs and Cyax’s) are essential for
calculation of non-cancer and cancer risks.

The influence of pretreatment of rats with PZ on the blood time-courses of TCE
and its key metabolites was recently characterized in our laboratory (Lee et al., 2006).
This experimental approach resulted in an unexpected and heretofore unreported effect,
namely a marked decrease in TCA AUC and Cy,ax values in the CYP2E1-induced rats
after high dose (200 mg/kg) of TCE exposure. CYP2E1 catalyzes the oxidation of TCE
to a short-lived, ternary intermediate and/or epoxide and on the CH (Bull, 2000; Cai and

Guengerich, 2000), but it is not clear what effect, if any, CYP2E1 induction has on
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subsequent metabolic steps in the oxidative pathway or on metabolite binding and
excretory processes. In vivo blood time-course data from the preceding study by Lee et al.
(2006) indicates that PZ pretreatment of S-D rats results in small to moderate increases in
formation of CH, TCOH and TCA from moderate TCE doses, although TCA is cleared
much more rapidly from the bloodstream. Thus, the decision was made to further

investigate the influence of PZ on TCA’s systemic clearance and urinary elimination.

Findings in the current study clearly demonstrate that PZ pretreatment produces
more rapid clearance of TCA from S-D rats’ blood, as a result of more rapid and
extensive urinary excretion of TCA. PZ-pretreatment results in ~ 2-fold reductions in
TCA half-life and > 2-fold increases in CL at each TCA dosage-level (Table 1). The PZ-
induced increase in clearance rate was somewhat larger for the higher (50 mg/kg) i.v.
TCA dose. The PZ-induced increases, in the amount of TCA excreted during the first 2 h
and the cumulative amount excreted over 48 h, were substantially greater at the lower (10
mg/kg) TCA dose. This finding is suggestive of a saturable process, whose capacity is
being approached at the higher (50 mg/kg i.v.) dose of TCA. PZ may be acting by
enhancing an organic anion transporter in renal tubules, but no information on this
potential mechanism was located in the literature.

The TK of TCA is consistent with that of a mobile water-soluble compound. As
TCA is fully charged at physiological pH, it would not be expected to diffuse across
membranes. A substantial portion of i.v.-injected TCA quickly exited the vasculature of
S-D rats in the present study. Shultz et al. (1999) and Yu et al. (2000) also observed a

short, pronounced distribution phase and rapid equilibration with tissues of F-344 rats.
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Halestrap and Price (1999) have shown that most mammalian cells have
monocarboxylate/proton co-transporters that rapidly convey lactate, pyruvate, acetate and
ketone bodies into cells. Such transporters were found in a variety of tissues including
liver, kidney and brain, as well as skeletal, smooth and cardiac muscles. Conversely,
knowledge about transport/export of such compounds from cells is negligible. Shultz et
al. (1999) reported that TCA’s steady-state volume of distribution approximated total
body water in rats. We also observed that the estimated TCA volume of distribution (Vd)
was unaffected by PZ treatment in both 10 and 50 mg TCA/kg i.v. (~ 0.5 and 0.75 L/kg,
respectively). There was no evidence of dose-dependent TCA TK in our study, or in one
in which F-344 rats were given 1, 10 or 50 mg TCA/kg i.v. by Yu et al. (2000).

TCA is poorly metabolized by rats (Lash et al., 2000). The majority of i.v. TCA
is excreted unchanged in the urine. Fecal excretion by rats is minimal. No DCA or other
metabolites were found in blood or urine, which is consistent with the previous studies
(Temlin et al., 1995; Yu et al., 2000). It has been suggested that TCA is a source of DCA
(Larson and Bull, 1992), but experimental evidence of this conversion is lacking. As
much as 12 % of i.v. doses of TCA have been exhaled as CO; by mice and rats (Green
and Prout, 1985; Styles et al., 1991). Nevertheless, it appears unlikely that PZ induction
of TCA formation or biliary elimination would make a significant contribution to the
marked increase in TCA clearance we observed.

Plasma protein binding is an important contributor to TCA’s relatively long
terminal half-life. Human plasma exhibits the highest TCA binding capacity and mouse
plasma the lowest (Templin et al., 1995). Rat plasma binding capacity is intermediate,

ranging from 38.6 % at TCA concentrations of 100 — 500 uM to 66.6 % at 0.1 uM in
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vitro (Lumpkin et al., 2003). The partitioning of TCA from blood into tissues becomes
more pronounced when administered doses of TCA or TCE are increased (Schultz et al.,
1999; Lumpkin et al., 2006). TCA binding to tissues appears to be minimal. The latter
research group report substantially higher TCA levels in blood than in liver, kidney or
other tissues of rats gavaged with a wide range of TCE doses. It should be recognized
that TCA bound to plasma proteins is not available for uptake into tissues or renal
excretion. It is possible that renal organic anion transporters, if operative, may have a
higher affinity for TCA than does albumin. If glomerular filtration is the mechanism of
urinary excretion of TCA, only unbound TCA in blood would be available for filtration.
Yu et al. (2000) opined that free TCA is indeed filtered in the glomeruli. Furthermore,
they calculated with a kinetic model that unbound TCA molecules are filtered several
times, due to subsequent re-absorption of some of them in the urinary tract (i.e., renal
tubules and bladder). Data in support of this excretory mechanism are still lacking. If
this process does occur, displacement of TCA from albumin by PZ could contribute to
increased glomerular filtration and urinary excretion of TCA. It is not known, however,
whether PZ binds to plasma proteins, nor whether its binding affinity for plasma proteins

exceeds that of TCA.

PZ does not appear to affect the metabolism of TCOH in vivo, as there are no
significant differences in TK parameters between PZ-treated and control groups given 50
mg TCOH/kg i.v. The blood TCOH elimination curves in the two groups are parallel.
Some of the xenobiotic inducers of several other CYP isoforms, known as microsomal

enzyme inducers (MEI), also induce certain uridine diphosphate (UDP)
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glucuronosyltransferases [UGT] (Parkinson, 2001; Shelby and Klaassen, 2006), but no
evidence was found in the literature that this is the case for CYP2E1 inducers, including
PZ. In rats, glucuronides are preferentially excreted into the urine for aglycones with
molecular weights less than 250 (e.g., TCOH) (Parkinson, 2001). Renal and biliary
organic anion transport systems are responsible for secretion of such glucuronides into
the urine and bile, respectively. Stenner et al. (1997) reported that biliary TCOH
contributes significantly to blood TCA levels. B-Glucuronidase in the gut flora
hydrolyzes the conjugate to release TCOH. The TCOH is reabsorbed, apparently
converted back to CH, and oxidized to TCA. Our findings in Fig. 4 suggest the existence
of the conversion process of TCOH to TCA. CH, however, was not observed at all after
50 mg TCOH/kg i.v. dosing in both control and PZ groups (Lee et al., 2006), suggesting
TCOH was converted to TCA directly. In control groups, blood TCA levels in rats
injected with 50 mg TCOH/kg i.v. increase for the first few h after TCOH dosing, remain
constant for some 12 h, and decline slowly thereafter, where shows identical TK profiles
from TCA i.v. administration. However, PZ pretreatment results in markedly lower TCA
levels. It is evident that PZ interferes with formation of TCA from TCOH, and increases

the urinary excretion of TCA, at the same time

In summary, effects of PZ on the kinetics of TCE’s two major end-metabolites
have been characterized in a previous study. PZ-pretreatment appeared to produce
modest increases in blood levels of CH, TCOH and TCA (Lee et al., 2006). The increase
in TCA was transient, in that TCA was cleared much more rapidly in the PZ groups than

in controls. The current investigation provided insight into the increased clearance of
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TCA from the systemic circulation. It was clearly shown that PZ markedly enhanced the
urinary elimination of TCA. The process (es) by which TCA enters the urine is (are)
unknown, so the mechanism by which PZ alters urinary TCA excretion remains to be
determined. PZ had no apparent influence on TCOH metabolism or systemic clearance.
TCOH conversion to TCA was markedly inhibited by PZ-pretreatment. The substantially
lower internal doses (i.e., AUCs and Cmaxs) of TCA in TCE-exposed animals should
have a substantial impact on liver cancer risk estimates, if the effect is shared by other
common CYP2E1 inducers. Decreased internal doses of the proximate liver carcinogen

are the opposite of what would be expected with pre-exposure to a CYP2E1 inducer.
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Legends for figures

FIG. 1. Blood TCA concentrations in S-D rats following oral administration of
10 mg (squares) or 50 mg (circles) TCE/kg. The PZ-pretreated groups (solid lines)
received 200 mg PZ/kg i.p. for 3 days before their TCE ingestion. Controls (dashed
lines) were injected with saline i.p. for 3 days. Symbols represent mean concentrations
(ug/ml) = S.E. (n =4 ~5). Lines were drawn point to point to help distinguish the

elimination curves. Some S.E.’s were too small to be visible.

Fig. 2. TCA areas under the blood concentration versus time curves (AUCs) in
control S-D rats (clear bars) and groups of rats pretreated (shaded bars) with 200 mg
PZ/kg i.p for 3 days before subsequent dosing with 10 or 50 mg TCA/kg i.v.; 10 or 50 mg
TCE/kg p.o.; or 50 mg TCOH/kg i.v. Bar heights represent means (ug*h/ml) + S.E. for
groups of 4 or 5 rats. Asterisks represent statistically significant differences between
controls and PZ-pretreated groups. The mean TCA AUC value for PZ-pretreated TCOH
group is not visible on this scale (2.5 + 0.3 pg*h/ml). Insets show TCA AUC’s values

from 10 and 50 mg TCE/kg p.o.; 50 mg TCOH/kg i.v. administration more clearly.

FIG. 3. Blood TCA concentrations versus time curves of groups of S-D rats
injected with (A) 10 or (B) 50 mg TCA/kg i.v. PZ-treated groups (solid lines) received
200 mg PZ/kg i.p. for 3 days before TCA administration. Controls (dashed lines) were

injected with saline i.p. for 3 days. Symbols represent means (ug/ml) + S.E. (n=4 ~5).
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Lines were drawn point to point to help visualize the elimination curves. Some S.E.’s

were too small to be visible.

FIG. 4. Blood concentration time-profiles of (A) TCA and (B) free TCOH in S-D
rats given 50 mg TCOH/kg i.v. The pretreated groups (solid lines) received 200 mg
PZ/kg i.p. for 3 consecutive days. Controls (dashed lines) were similarly received saline.
Symbols represent means (pg/ml) £ S.E. (n =4 ~5). Lines were drawn point to point to

help identify the elimination curves.

FIG. 5. Cumulative urinary TCA excretion curves for groups of S-D rats injected
with (A) 10 or (B) 50 mg TCA/kg i.v. The PZ-pretreated groups (solid lines) received
200 mg PZ/kg i.p. for 3 consecutive days and controls (dashed lines) were similarly
received saline. Cumulative TCA excretion is presented as % of the initial dose
administered. Each point represents the means + S.E. for a group of 4 or 5 rats. Lines
were connected between the mean values to help distinguish one accumulation curve

from another. Some S.E.’s were too small to be visible.
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FIG 3.
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Table 1. Blood TCA TK parameter estimates in PZ-pretreated and control rats

T, , (hr) CL/CL (ml/min/kg) Conax (1g/ml) Tinax (min)
Dosage
Level Control PZ-induced Control PZ-induced Control PZ-induced  Control = PZ-induced

TCALV. 308210 56°+05 054401 12401 23.01+19  29.642.0 ND ND
10 mg/kg

TCALV. . ygshi01 75°:11  06°:01  18°£01 1170471 1210484  ND ND
50 mg/kg

TCEPo. 4807 578403 NA NA 18402  19+03 30054 84+ 19
10 mg/kg

TCEDO. y00hi10  63°+08 NA NA 63401  121+19 240*+0 12819
50 mg/kg
TCOHLV. 1y 507 498407  47°:07  04°+0.0  80+04  04=0.1 330°+62 105°%15
50 mg/kg

Male S-D rats were injected with saline (controls) or 200 mg PZ/kg i.p. for 3 days. On the third day, a carotid artery and/or a jugular
venous cannula were implanted surgically and the animals allowed to recover for 24 h. Groups were then gavaged with 10 or 50 mg
TCE/kg. Other groups received 10 or 50 mg TCA/kg i.v. The last group of animals was injected i.v. with 50 mg TCOH/kg. Serial
micro-blood samples were taken from the arterial cannula of each rat for up to 96 h post dosing and analyzed for their TCA content by
headspace GC. Different lower case letters indicate a statistically significant difference between TCA or TCE dosage level values.
Different upper case letters indicate a significant difference between control and PZ-pretreated group values (p < 0.05). CL of TCOH

i.v. dosing groups indicates CLr. Results are expressed as mean + S.E. for groups of 4 or 5 rats.
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Table 2. Comparison of the urine profiles between the controls and PZ-pretreated groups after 10 or 50 mg TCA/Kg, i.v.

administration in male S-D rats

Excyeted' amount of Excrgted .amount of Cumulatiye ex'creted amount Feiim in urine (48 h)
TCA in urine (pg, 2 h) TCA in urine (%, 2 h) of TCA in urine (png, 48 h)
Control PZ-induced Control PZ-induced Control PZ-induced Control PZ-induced
ITOCH‘?gi/'IZé 1089411 3911430  676°:07 240920  8664+49  14753+53 0542003 0.90°+0.03
STOCrﬁgi/'IZé 6283+90 1167.0+145 7.34*+1.0 135°°+1.7 5513.4+88  7257.5+324 0.64"+0.01 0.83%+0.02

Male S-D rats were housed individually in metabolism cages and injected with saline (controls) or 200 mg PZ/kg ip for 3 days.

Different groups then received 10 or 50 mg TCA/kg in saline i.v. Voided urine samples were collected and their volumes measured 2,

4, 8, 12, 24 and 48 h post dosing (urine samples of control groups given 50 mg TCA/kg i.v. were collected until 72 h post dosing.

TCA concentrations were measured by headspace GC. The values for the cumulative excreted amount of TCA in urine (ug) and Fgjin

in urine of control groups for 72 h after i.v. administration of 50 mg TCA/kg were 7757.8 = 132.4 and 0.91 £ 0.02, respectively.

Different lower case letters indicate a statistically significant difference between TCA dosage groups. Different upper case letters

indicate a significant difference between control and PZ-pretreated group values (p < 0.05). Results are expressed as mean + S.E. for

groups of 4 or 5 rats.
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CHAPTER 4. SUMMARY AND CONCLUSIONS

Trichloroethylene (TCE) is a common environmental contaminant at many
hazardous waste sites around the country. Issues associated with the potential
carcinogenicity of TCE and its metabolites have been debated for the past couple decades
and determining the human relevance of animal carcinogenicity data and applying them
to risk assessment of TCE and its metabolites has been controversial ever since.
Assessing cancer risks of trace environmentally-relevant levels of TCE also has been a
subject of major public health debate and scientific topic of interest. Assessment of TCE
human health risks is challenging because of its inherently complex metabolism,
toxicokinetics (TK) and mode(s) of action (MOA) and the widely varying perspectives on

many critical scientific issues.

Because of this range of issues, the U.S. Environmental Protection Agency (EPA)
solicited scientific input in development of 2001 draft health risk assessment of TCE,
which was aimed at embracing diverse perspectives. Its efforts culminated with 16 state-
of-the-science (SOS) articles, published together as an Environmental Health
Perspectives Supplement in 2000. Since that time, a significant amount of new data has
been accumulated. Nonetheless, a number of controversial scientific issues relevant to
assessing TCE health risks remain debatable, including the pharmacokinetics of TCE and

its metabolites, mode(s) of action and effects of TCE metabolites, and TCE cancer
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epidemiology. Among them, the role of different susceptibilities of individuals and/or
subpopulations in TCE health risks assessments were set to be investigated, since the
correlation has been well established between the different TCE susceptibilities and
smoking, alcohol consumption, or medications (aspirin). Population with diabetes,
different genetic factors, as well as different ages can also exhibit different

susceptibilities.

The main objective of this dissertation was to provide specific CYP2EI induction
models which could help explain different susceptibilities in TCE exposure. Thus, the
animal experiments using CYP2E1 induction models with specific inducers in young
male S-D rats were designed to account for the various physiological/pathological

conditions in environmentally relevant low-level TCE exposure scenarios.

It is believed in general that induction of enzymes (one of many causes leading to
differences in susceptibility) responsible for metabolic activation of xenobiotic substrates
would lead to increase the rate and extent of the metabolism in vitro and in vivo (though,
many physiological parameters can alter these effects in vivo). The induction may result
in increased formation of reactive metabolites and subsequently increased potential of
toxicity, which was presumed also to be applicable to high doses of TCE and other
halocarbons exposure. There are emerging evidences that the effects of CYP2EI
inducers on moderate to high doses of TCE and other well-metabolized VOCs may not be
applicable to low-dose exposure situations. Thus, in case of the environmentally relevant
low-level TCE exposure, it was hypothesized that CYP2EI induction would not result in

the increased formation of carcinogenic metabolites (TCA and/or DCA), because TCE
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itself is a well metabolized compound, and the enzymatic capacity of CYP2E1 is
inherently in excess compared with the trace levels of TCE (flow limited), thus, CYP2E1

induction would not increase subsequent cancer risks from low-level TCE exposure.

The specific aims of this dissertation were, therefore, primarily to generate
relevant data from PZ induction model on 1) the changes in TCE toxicokinetics after
TCE administration, 2) the changes of toxicokinetic profiles of TCE metabolites
(especially, TCOH and TCA), and its extrapolation for future application in TCE and

TCA risk assessments.

Following the literature review in Chapter 1, the effects of PZ-induction of
CYP2EI on TCE metabolism were discussed in Chapter 2, by comparing the
toxicokinetic parameter estimates of TCE and its metabolites (TCOH and TCA) between
the control and PZ-induced animals after TCE administration with different doses (10, 50
and 200 mg/kg p.o.). A key finding of the study in Chapter 2 was the lack of significant
effects of the pretreatment of PZ, a known CYP2E1 inducer, on TCOH and CH at the
lowest (10 mg/kg) TCE dosage (where AUC or Cpax values were not affected). These
very slight changes at 10 mg/kg TCE i.v. would likely disappear at even lower
environmentally relevant TCE doses. The lack of a significant effect of CYP2EI
induction on biotransformation of 10 mg TCE/kg was also manifested by the absence of
alterations of TCE kinetic parameters. But the most unexpected findings of the study in
Chapter 2 came from the changes in TCA TK in PZ groups. As stated, it was expected

that CYP2E1 induction would also result in increased TCA formation (manifested by the
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parameters, such as higher blood TCA AUC). Blood TCA concentrations were
significantly higher (reflected by the higher Cpmax and shorter T,k values) in PZ induced
animals than in controls during the early time points in the groups ingesting 10 and 50 mg
TCE/kg. However, this pattern was not evident for the PZ-pretreated and control groups
with 200 mg TCE/kg p.o., exhibited by the ~ 18-fold decrease of TCA AUC in PZ-
groups from that of controls. Furthermore, elimination half-life (Tgy,) of TCA in PZ
groups was decreased by ~ 14-fold. Interestingly, blood concentrations of DCA, was

consistently quantifiable only in PZ-pretreatment group at 200 mg TCE/kg p.o.

In Chapter 3, the influence of PZ-induction of CYP2E1 (which seems to bear no
direct relevance, at first glance) on TCA toxicokinetics after the administration of three
different substrates (i.e., TCE, TCOH and TCA), and its significance in TCE and TCA
cancer risk assessments were discussed. The data indicated that the increase in TCA was
transient, with TCA being cleared much more rapidly in PZ groups than in controls,
while PZ-pretreatment appeared to produce modest changes in blood levels of CH,
TCOH and TCA after 10 or 50 mg TCE/kg p.o. But, most significantly, the study
described in Chapter 3 provided insight into the increased clearance of TCA from the
systemic circulation, where data clearly demonstrated that PZ markedly enhanced TCA
systemic clearance as well as the urinary elimination of TCA. The mechanism(s) by
which TCA enters the urine is (are) unknown, although the filtration process is believed
to account for significant portion of TCA excretion, thus how PZ (or other inducers)

interact with urinary TCA excretion remains to be investigated. While, PZ had no
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apparent influence on TCOH metabolism or systemic clearance, TCOH-derived

formation of TCA was markedly interfered by PZ-pretreatment.

The EPA’s standard default policy, in the absence of adequate experimental
evidences to the contrary, has been to utilize a linear, multistage model to extrapolate
from high-dose rodent cancer bioassay data to predict human cancer risks from
environmental exposures. This very conservative approach assumes there is no threshold
dose for cancer causation and results in high cancer risk estimates. However, as
demonstrated by the studies in Chapters 2 and 3, this traditional, conservative approach
can not always be justified even in case of the induction model, where increased
formation of reactive metabolites and subsequently increased potential of toxicity were
assumed. These are some of the emerging evidences that the effects of the exposures to
moderate to high doses of TCE and other well-metabolized VOCs may not be applicable
to low-dose exposure scenarios. The substantially reduced internal dosimetry of TCA
(represented by changes in toxicokinetic parameters, such as, AUC, Cmax, Tmax, etc)
due to PZ-pretreatment in TCE-exposed animals should have a significant impact on liver
cancer risk estimates, if the effect is shared by other common CYP2E] inducers (e.g.,
acetone). Decreased internal doses of the proximate liver carcinogen are the opposite of

what would be expected with pre-exposure to a CYP2E1 inducer.

Better understanding of TCE metabolism especially at the low concentration

under the induction models remains to be further investigated, which is critical for the

elucidation of the susceptibility, and extrapolation of animal data to humans at low level
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exposures. These induction models can be applicable to the broad range of halogenated
hydrocarbons and other small VOCs in near future, where more pertinent potential
applications in environments regulation can be utilized. As the roles of physiologically-
based pharmacokinetic (PBPK) models in the application of TCE health risks
assessments are important as ever, generating more relevant and accurate induction data

from in vivo animal studies should be forthcoming.
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