
Tunneling in low-dimensional and strongly correlated electron systems

by

Kelly R. Patton

(Under the direction of Michael R. Geller)

Abstract

It is well known that the tunneling density of states has anomalies (cusps, algebraic sup-

pressions, and pseudogaps) at the Fermi energy in a wide variety of low-dimensional and

strongly correlated electron systems. We propose that the origin of these anomalies is the

infrared catastrophe associated with the sudden introduction of a new electron into a con-

ductor during a tunneling event. A nonperturbative theory of the electron propagator is

developed to correctly account for this infrared catastrophe. The method uses a Hubbard-

Stratonovich transformation to decouple the electron-electron interactions, subsequently rep-

resenting the electron Green’s function as a weighted functional average of noninteracting

Green’s functions in the presence of space- and time-dependent external potentials. The

field configurations responsible for the infrared catastrophes are then treated using methods

developed for the x-ray edge problem.
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Chapter 1

Overview

In the conventional many-body theory treatment of tunneling, the low-temperature tunneling

current between an ordinary metal and a strongly correlated electron system is controlled by

the single-particle density of states (DOS) of the correlated system. Tunneling experiments

are therefore often used as a probe of the DOS. In a wide variety of low dimensional and

strongly correlated electron systems, including all 1D metals, the 2D diffusive metal, the

2D Hall fluid, and the edge of the sharply confined Hall fluid, the DOS exhibits anomalies

such as cusps, algebraic suppressions, and pseudogaps at the Fermi energy. We proposed

that the origin of these anomalies is the infrared catastrophe caused by the response of the

host electron gas to the sudden introduction of a new particle that occurs during a tunneling

event [1]. The infrared catastrophe is a singular screening response of a degenerate Fermi

gas to a localized potential applied abruptly in time.

In the following chapters we will present a plausibility argument establishing the con-

nection between the infrared catastrophe and tunneling into low-dimenstional and strongly

correlated conductors. We then proceed to incorporated infrared catastrophe physics into a

calculation of the tunneling DOS (or more precisely a Green’s function) for a wide variety

of systems. We do this in two stages. After a Hubbard-Stratonovich transformation of the

interacting Green’s function we single out the auxiliary field(s) that are responsible for the

infrared catastrophe. In Chapters 1 and 2 we treat the most important of these fields in an

approximate and exact way, obtaining qualitatively good results. In Chapter 3 we go beyond

this so called “x-ray edge limit” to include a wider set of the Hubbard-Stratonovich field,

obtaining quantitatively correct results.
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Chapter 2

Tunneling and the infrared catastrophe

2.1 Introduction

The tunneling density of states (DOS) is known to exhibit spectral anomalies such as

cusps, algebraic suppressions, and pseudogaps at the Fermi energy in a wide variety of

low-dimensional and strongly correlated electron systems, including

(i) all 1D metals;[2, 3, 4, 5, 6, 7, 8]

(ii) the 2D diffusive metal;[9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]

(iii) the 2D Hall fluid;[21, 22, 23, 24, 25, 26, 27, 28, 29, 30]

(iv) the edge of the confined Hall fluid.[31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44,

45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63]

In this chapter we propose a unified explanation for these anomalies, develop a nonperturba-

tive functional-integral formalism for calculating the electron propagator that captures the

essential low-energy physics, and apply a simplified approximate version of the method to

cases (i) and (iii).

We claim that the physical origin of the DOS anomalies in the above systems is the

infrared catastrophe of the host electron gas caused by the sudden perturbation produced by

an electron when added to the system during a tunneling event. This infrared catastrophe, a

singular screening response of a conductor to a localized potential turned on abruptly in time

caused by the large number of electron-hole pairs made available by the presence of a sharp

Fermi surface, is known to be responsible for the singular x-ray optical and photoemission
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3

spectra of metals, [64, 65, 66] Anderson’s related orthogonality catastrophe, [67, 68] and

the Kondo effect [69, 70]. To understand the connection to tunneling, imagine the tunneling

electron being replaced by a negatively charged, distinguishable particle with mass M . In

the M →∞ limit, the potential produced by the tunneling particle is identical—up to a

sign—to the abruptly turned-on hole potential of the x-ray edge problem, and an infrared

catastrophe of the host electrons would be expected.

Tunneling of a real, finite-mass electron is different because it recoils, softening the poten-

tial produced. However, in the four cases listed above, there is some dynamical effect that

suppresses recoil and produces a potential similar to that of the infinite-mass limit: In case

(i) the dimensionality of the system makes charge relaxation slow; In case (ii), the disorder

suppresses charge relaxation; In case (iii), the Lorentz force keeps the injected charge local-

ized; and case (iv) is a combination of cases (i) and (iii). It is therefore reasonable to expect

remnants of the infinite-mass behavior.

Our analysis proceeds as follows: We use a Hubbard-Stratonovich transformation to

obtain an exact functional-integral representation for the imaginary-time Green’s function

G(rfσf , riσi, τ0) ≡ −
〈
Tψσf

(rf , τ0)ψ̄σi
(ri, 0)

〉
H
, (2.1)

and identify a “dangerous” scalar field configuration φxr(r, τ) that causes an infrared catas-

trophe. Assuming τ0 ≥ 0 and an electron-electron interaction potential U(r),

φxr(r, τ) ≡ U
[
r−R(τ)

]
Θ(τ)Θ(τ0 − τ), (2.2)

where R(τ) ≡ ri + (rf−ri

τ0
)τ is the straight-line trajectory connecting ri to rf with velocity

(rf − ri)/τ0. For the case of the tunneling DOS at point r0, we have ri = rf = r0 and

φxr(r, τ) = U(r− r0)Θ(τ)Θ(τ0 − τ), (2.3)

which is the potential that would be produced by the added particle in (2.1) if it had an

infinite mass. Fluctuations about φxr account for the recoil of the finite-mass tunneling

electron. In this chapter we introduce an approximation where the fluctuations about φxr
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are entirely neglected, which we shall refer to as the extreme x-ray edge limit. We expect

the x-ray edge limit to give qualitatively correct results in the systems (i) through (iv) listed

above; the effect of fluctuations will be addressed in Chapter 4.

The x-ray edge limit of our formalism can be implemented exactly, without further

approximation, only for a few specific models. These include the 1D electron gas and 2D

spin-polarized Hall fluid, both having a short-range interaction of the form

U(r) = λδ(r). (2.4)

Here we will instead carry out an approximate but more generally applicable analysis of the

x-ray edge limit for these two models, by resumming a divergent perturbation series caused

by the infrared catastrophe. The exact implementation of the x-ray edge limit for these cases

will be presented in Chapter 3.

2.2 Formalism

We consider a D-dimensional interacting electron system, possibly in an external magnetic

field. The grand-canonical Hamiltonian is

H =
∑

σ

∫
dDr ψ†σ(r)

[
Π2

2m
+ v0(r)− µ0

]
ψσ(r)

+ 1
2

∑
σσ′

∫
dDr dDr′ ψ†σ(r)ψ†σ′(r

′)U(r−r′)ψσ′(r
′)ψσ(r),

where Π ≡ p + e
c
A, and where v0(r) is any single-particle potential energy, which may

include a periodic lattice potential or disorder or both. Apart from an additive constant we

can write H as H0 + V , where

H0 ≡
∑

σ

∫
dDr ψ†σ(r)

[
Π2

2m
+ v(r)− µ

]
ψσ(r) (2.5)

and

V ≡ 1
2

∫
dDr dDr′ δn(r)U(r− r′) δn(r′). (2.6)
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H0 is the Hamiltonian in the Hartree approximation. The single-particle potential v(r)

includes the Hartree interaction with the self-consistent density n0(r),

v(r) = v0(r) +

∫
dDr′ U(r−r′)n0(r

′),

and the chemical potential has been shifted by −U(0)/2. In a translationally invariant

system the equilibrium density is unaffected by interactions, but in a disordered or inho-

mogeneous system it will be necessary to distinguish between the approximate Hartree and

the exact density distributions. V is written in terms of the density fluctuation δn(r) ≡∑
σ ψ

†
σ(r)ψσ(r)− n0(r).

The Euclidean propagator (2.1) can be written in the interaction representation with

respect to H0 as

G(rfσf , riσi, τ0) = −〈Tψσf
(rf , τ0)ψ̄σi

(ri, 0)e−
R β
0 dτ V (τ)〉0

〈Te−
R β
0 dτ V (τ)〉0

= N
∫
Dµ[φ] g(rfσf , riσi, τ0|φ), (2.7)

where

Dµ[φ] ≡ Dφe−
1
2

R
φU−1φ∫

Dφ e−
1
2

R
φU−1φ

and

∫
Dµ[φ] = 1. (2.8)

Here N ≡〈T exp(−
∫ β

0
dτ V )〉−1

0 is a τ0-independent constant, and

g(rfσf , riσi, τ0|φ) ≡ −
〈
Tψσf

(rf , τ0)ψ̄σi
(ri, 0) ei

R β
0 dτ

R
dDr φ(r,τ) δn(r,τ)

〉
0

(2.9)

is a correlation function describing noninteracting electrons in the presence of a purely imag-

inary scalar potential −iφ(r, τ).

Next we deform the contour of the functional integral by making the substitution φ →

iφxr + φ, leading to [71]

G(rfσf , riσi, τ0) = N e
1
2

R
φxrU−1φxr

∫
Dµ[φ] e−i

R
φU−1φxr g(rfσf , riσi, τ0|iφxr + φ). (2.10)

This is an exact representation for the interacting Green’s function, where φ now describes

the fluctuations of the Hubbard-Stratonovich field about φxr.
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2.3 DOS in the x-ray edge limit

As explained above, our method involves identifying a certain field configuration φxr that

would be the potential produced by the tunneling particle if it had an infinite mass. Apart

from a sign change, this potential is the same as that caused by a localized hole in the

valence band of an optically excited metal. As is well known from work on the x-ray edge

singularities, such fields cause an infrared catastrophe in the screening response. Fluctuations

about φxr account for the recoil of a real, finite-mass tunneling electron.

In this section we introduce an approximation where these fluctuations are entirely

neglected, which we shall refer to as the extreme x-ray edge limit. The approximation can

itself be implemented in two different ways, perturbatively in the sense of Mahan [64] and

exactly in the sense of Nozières and De Dominicis [65]. In Sec. 2.6, we apply the perturbative

x-ray edge method to the 1D electron gas, including spin, and to the 2D spin-polarized Hall

fluid. The x-ray edge method will be implemented exactly for these models in Chapter 3 .

In the following analysis we assume τ0 ≥ 0.

In the x-ray edge limit, we ignore fluctuations about φxr in g(rfσf , riσi, τ0|iφxr+φ), approx-

imating it by g(rfσf , riσi, τ0|iφxr) [72]. Then we obtain, from Eq. (2.10),

G(rfσf , riσi, τ0) = N g(rfσf , riσi, τ0|iφxr), (2.11)

where, according to (2.9),

g(rfσf , riσi, τ0|iφxr) = −〈Tψσf
(rf , τ0)ψ̄σi

(ri, 0) e−
R

φxr δn〉0. (2.12)

Eqs. (2.11) and (2.12) define the interacting propagator in the x-ray edge limit. The local

tunneling DOS at position r0 is obtained by setting ri = rf = r0 and σi = σf = σ0, and

summing over σ0.
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2.4 Infrared catastrophe and divergence of perturbation theory

To establish the connection between Eqs. (2.11) and (2.12) and the x-ray edge problem, we

first calculate the tunneling DOS at r0 by evaluating (2.12) perturbatively in φxr,

g(r0σ0, r0σ0, τ0|iφxr) = G0(r0σ0, r0σ0, τ0)

+

∫
dDr1 dτ1 φxr(r1, τ1)G0(r0σ0, r1σ0, τ0 − τ1)G0(r1σ0, r0σ0, τ1)

+

∫
dDr1 d

Dr2 dτ1 dτ2 φxr(r1, τ1)φxr(r2, τ2)

×
[
G0(r0σ0, r1σ0, τ0 − τ1)G0(r1σ0, r2σ0, τ1 − τ2)G0(r2σ0, r0σ0, τ2)

− 1
2
G0(r0σ0, r0σ0, τ0) Π0(r1, r2, τ1 − τ2)

]
+O

(
φ3

xr

)
, (2.13)

Here G0(rσ, r
′σ′, τ) ≡ −〈Tψσ(r, τ)ψ̄σ′(r

′, 0)〉0 is the mean-field Green’s function associated

with H0, and

Π0(r, r
′, τ) ≡ −〈Tδn(r, τ) δn(r′, 0)〉0

is the density-density correlation function, given by
∑

σ G0(rσ, r
′σ, τ)G0(r

′σ, rσ,−τ). Now

we use (2.3), and assume the short-range interaction (2.4). Then Eq. (2.13) reduces to

g(r0σ0, r0σ0, τ0|iφxr) = G0(r0σ, r0σ, τ0) + λ

∫ τ0

0

dτ1G0(r0σ0, r0σ0, τ0 − τ1)G0(r0σ0, r0σ0, τ1)

+ λ2

∫ τ0

0

dτ1 dτ2

[
G0(r0σ0, r0σ0, τ0 − τ1)G0(r0σ0, r0σ0, τ1 − τ2)G0(r0σ0, r0σ0, τ2)

− 1
2
G0(r0σ0, r0σ0, τ0) Π0(r0, r0, τ1 − τ2)

]
+O

(
λ3

)
. (2.14)

We evaluate (2.14) for the 1D electron gas and the 2D Hall fluid in the large τ0εF limit

using the low-energy propagators of Appendix A. εF is the Fermi energy. In the 1D electron

gas case this leads to

g(r0σ0, r0σ0, τ0|iφxr) =

G0(r0σ0, r0σ0, τ0)

{
1− 2λN0 ln(τ0εF) + λ2N2

0

[
2 ln2(τ0εF)− 2 ln(τ0εF) +

π

2
τ0εF

]
+ · · ·

}
,

(2.15)
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where we have used the asymptotic results given in Appendix B and have kept only the

corrections through order λ2 that diverge in the large τ0 limit. Here N0 is the noninteracting

DOS per spin component at εF [73]. These divergences are caused by the infrared catastrophe

and the associated breakdown of perturbation theory at low energies. Similarly, for the Hall

fluid we find

g(r0σ0, r0σ0, τ0|iφxr) = G0(r0σ0, r0σ0, τ0)

{
1−λ

(
1− ν

2π`2

)
τ0 +

1

2
λ2

(
1− ν

2π`2

)2

τ 2
0 + · · ·

}
, (2.16)

where ν is the filling factor and ` is the magnetic length. The divergence in this case is stronger

because of the infinite compressibility of the fractionally filled Landau level at mean field

level.

2.5 Perturbation series resummation

A logarithmically divergent perturbation series similar to (2.15) occurs in the x-ray edge

problem, where it is known that qualitatively correct results are obtained by reorganizing

the series into a second-order cumulant expansion. Here we will carry out such a resummation

for both (2.15) and (2.16).

In the electron gas case this leads to

g(r0σ0, r0σ0, τ0|iφxr) ≈G0(r0σ0, r0σ0, τ0)

(
1

τ0εF

)α

e
π
2
λ2N2

0 τ0εF , (2.17)

where

α ≡ 2λN0 + 2λ2N2
0 . (2.18)

The exponential factor in (2.17), after analytic continuation, produces a negative energy shift.

However, this shift depends sensitively on the short-time regularization and is not reliably

calculated with our method. α is equal to the x-ray absorption/emisssion edge exponent

2(δ/π) + 2(δ/π)2

of Nozières and De Dominicis [65] (including spin) for a repulsive potential, with δ ≡

arctan(πλN0) the phase shift at εF, when expanded to order λ2.
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In the Hall case

g(r0σ0, r0σ0, τ0|iφxr) ≈
ν − 1

2π`2
eγ(ν−1)τ0 , (2.19)

where

γ ≡ λ

2π`2
(2.20)

is an interaction strength with dimensions of energy. This time the infrared catastrophe

causes a positive energy shift and no transient relaxation. The energy shift in this case is

predominantly determined by long-time dynamics and is physically meaningful.

2.6 Applications of the perturbative x-ray edge limit

The tunneling DOS is obtained by analytic continuation. We take the zero of energy to be

the mean-field Fermi energy.

2.6.1 1D electron gas

For the 1D electron gas case we find a power-law

N(ε) = const×εα, (2.21)

where the exponent α is given in (2.18). In (2.21) we have neglected the energy shift appearing

in (2.17).

The power-law DOS we obtain is qualitatively correct, although the value of the exponent

certainly is not. The exponent will be modified by carrying out the x-ray edge limit exactly,

and also presumably by including fluctuations about φxr. However, the fact that we recover

the generic algebraic DOS of the Tomonaga-Luttinger liquid phase is at least consistent with

our assertion that the algebraic DOS in 1D metals is caused by the infrared catastrophe.

We note that the x-ray edge approximation actually predicts a power-law DOS in clean

2D and 3D electron systems in zero field as well. However, in those cases there is no reason

to expect the x-ray edge limit to be relevant: In those cases the electron recoil and hence

fluctuations about φxr are large.
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2.6.2 2D Hall fluid

For the 2D Hall fluid we obtain

N(ε) = const×δ
(
ε− [1− ν]γ

)
. (2.22)

The lowest Landau level is moved up in energy by an amount

λ
1− ν

2π`2
. (2.23)

The DOS (2.22) is also qualitatively correct, in the following sense: The actual DOS in

this system is thought to be a broadened peak at an energy of about e2/κ`, with κ the

dielectric constant of the host semiconductor, producing a pseudogap at εF. Of course the

magnetic field dependence of the peak positions are different, but the physical system has a

screened Coulomb interaction, and and here we obtain a hard “gap” of size (2.23) at εF. We

speculate that the cumulant expansion gives the exact x-ray edge result for this model, but

that fluctuations about φxr will broaden the peak in (2.22).

2.7 Discussion

The results and (2.21) and (2.22) are consistent with our claim that the DOS anomalies in

the 1D electron gas and the 2D spin-polarized Hall fluid are caused by an infrared catas-

trophe, similar to that responsible for the singular x-ray spectra of metals, the orthogonality

catastrophe, and the Kondo effect. Anderson has gone even further and proposed that the

effect we describe causes a complete breakdown of Fermi liquid theory in 2D electron systems,

such as the Hubbard model, in zero field [74, 75, 76]. We are at present unable to address

this question with the methods described here, which assume that the effects of fluctuations

about φxr are small.

In addition to providing a common explanation for a variety of tunneling anomalies,

our method may provide a means of calculating the DOS in strongly correlated and low-

dimensional systems, such as at the edge of the sharply confined Hall fluid investigated
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experimentally by Grayson et al., [42] Chang et al., [51] and by Hilke et al., [53] where

existing theoretical methods fail.



Chapter 3

Exact solutions of the x-ray edge limit

3.1 Introduction

To obtain quantitatively correct results it will be necessary to go beyond this “perturba-

tive” x-ray edge limit. In Chapter 3 [77] we proposed and investigated a functional cumulant

expansion method that includes field fluctuations away from φxr(r, τ), and treats field config-

urations close to φxr(r, τ) perturbatively as in Chapter 1 [1]. Although the improved method

yields the exact DOS exponent for the important Tomonaga-Luttinger model, calculable by

bosonization, we do not expect it to be generally exact in 1D. (Furthermore, the method fails

in the presence of a strong magnetic field because of the ground state degeneracy.) In this

paper we neglect fluctuations about φxr(r, τ) but treat that field configuration exactly (in

the relevant long τ0 asymptotic limit). This is accomplished by finding the exact low-energy

solution of the Dyson equation for noninteracting electrons in the presence of φxr(r, τ), which

we refer to as the Nozières-De Dominicis equation. We carry out this analysis for the 1D

electron and 2D Hall fluid, both with short range interaction. To this end we obtain, for the

first time, an exact solution of the Nozières-De Dominicis equation for the 2D electron gas

in the lowest Landau level.

3.2 Formalism

In the x-ray edge limit, we ignore fluctuations about φxr, in which case

G(rfσf , riσi, τ0) ≈ N g(rfσf , riσi, τ0|iφxr). (3.1)

12
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Eq. (3.1) defines the interacting propagator in the x-ray edge limit. The local tunneling DOS

at position r0 is obtained by setting ri = rf = r0 and σi = σf = σ0, and summing over σ0. In

the remainder of this paper we will evaluate (3.1) for the 1D electron gas and the 2D Hall

fluid, with a short-range interaction of the form

U(r) = λδ(r). (3.2)

3.3 X-ray Green’s function

The quantity g(rfσf , riσi, τ0|iφxr) required in (3.1) is related to the Euclidean propagator,

Gxr(rστ, r
′σ′τ ′) ≡ −〈Tψσ(r, τ)ψ̄σ′(r

′, τ ′)e−
R

φxrδn〉0
〈Te−

R
φxrδn〉0

,

according to

g(rfσf , riσi, τ0|iφxr) = Gxr(rfσfτ0, riσi0)Zxr(τ0), (3.3)

with

Zxr(τ0) ≡ 〈Te−
R β
0 dτ

R
dDr φxr(r,τ) δn(r,τ)〉0. (3.4)

We refer to Gxr(rστ, r
′σ′τ ′) as the x-ray Green’s function which describes noninteracting

electrons in the presence of a real-valued potential φxr(r, τ). It satisfies the Dyson equation

Gxr(rστ, r
′στ ′) = G0(rσ, r

′σ, τ − τ ′) +

∫
dDr̄ dτ̄ G0(rσ, r̄σ, τ − τ̄)φxr(r̄, τ̄)Gxr(r̄στ̄ , r

′στ ′).

(3.5)

Here we have used that fact that the x-ray Green’s function is diagonal in spin. For a

calculation of the DOS we use the form (??), in which case (3.5) becomes

Gxr(rστ, r
′στ ′) = G0(rσ, r

′σ, τ − τ ′) + λ

∫ τ0

0

dt G0(rσ, r0σ, τ − t)Gxr(r0σt, r
′στ ′), (3.6)

where we have assumed the short-range interaction (3.2).

By using the linked cluster expansion and coupling-constant integration, Zxr can be shown

to be related to the x-ray Green’s function by [65]

Zxr(τ0) = en0λτ0e−λ
P

σ

R 1
0dξ

R τ0
0 dτ Gξ

xr(r0στ,r0στ+), (3.7)
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where Gξ
xr(rστ, r

′στ ′) is the solution of (3.6) with scaled coupling constant ξλ.

There is no r0 dependence in the DOS for the translationally invariant models considered

here and we can take r0 = 0.

3.4 1D electron gas

Gxr(0στ, 0στ
′) was calculated exactly in the large τ0, asymptotic limit for the 3D electron

gas in zero field by Nozières and De Dominicis [65]. Their result is actually valid for arbitrary

spatial dimension D if the appropriate noninteracting DOS is used.

We take the asymptotic form of the noninteracting propagator as

G0(τ) ≈ −P
N0

τ
, with N0 ≡

1

πvF

. (3.8)

N0 is the noninteracting DOS per spin component at εF, and P denotes the principal part.

The solution of (3.6) for this model with r = r′ = 0 is

Gxr(τ0) = −N0 cos(δλ)

[
P

cos(δλ)

τ0
+ π sin(δλ)δ(τ0)

](
a

τ0

)2δλ/π

, (3.9)

and

Zxr(τ0) =

(
a

τ0

)2(δλ/π)2

, (3.10)

where δλ is the scattering phase shift of the electrons caused by the potential φxr given by

δλ = arctan(N0πλ) (3.11)

and a is a short time cut-off on the order of the Fermi energy.

Thus

G(τ0) ≈ g(τ0|iφxr) ∼
(

1

τ0

)1+2δλ/π+2(δλ/π)2

(3.12)

which gives a DOS in the x-ray edge limit as

N(ε) ∼ ε2δλ/π+2(δλ/π)2 . (3.13)

By expanding the exponent in (3.13) in powers of the coupling paramenter λ one recovers

the perturbative x-ray result of Chapter 1 [1].
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3.5 2D Hall fluid

Unlike the low-energy Dyson equation for the 1D electron gas, which is solvable by Hilbert

transform techniques, there are no standard methods available to solve the corresponding

integral equation for the Hall fluid. We were able to guess the exact analytic solution, aided

by perturbation theory and by numerical studies carried out by expansion in a plane-wave

basis followed by matrix inversion.

We assume the system to be spin-polarized and spin labels are suppressed. In the Landau

gauge A = Bxey, the noninteracting propagator in the |τ | � ω−1
c limit is

G0(r, r
′, τ) = Γ(r, r′) [ν −Θ(τ)], (3.14)

where ν is the filling factor satisfying 0 ≤ ν ≤ 1, and

Γ(r, r′) ≡ 1

2π`2
e−|r−r′|2/4`2 e−i(x+x′)(y−y′)/2`2 . (3.15)

First consider the case where ri = rf = r0. We can let r0 = 0 without loss of generality

and at the origin (3.6) reduces to

Gxr(0τ, 0τ
′) =

ν −Θ(τ − τ ′)

2π`2
+ γ

∫ τ0

0

dt
[
ν −Θ(τ − t)

]
Gxr(0t, 0τ

′), (3.16)

where

γ ≡ λ

2π`2
(3.17)

is an interaction strength with dimensions of energy.

The time arguments of Gxr(0τ, 0τ
′) on the left side of Eq. (3.16) can assume the 12

possible orderings k = 1, 2, · · · , 12 defined in Fig. 3.1; the right side produces terms with

two or more different orderings k′, k′′, · · · . We therefore seek a solution of the form

Gxr(0τ, 0τ
′) =

∑
k

Ak Wk(τ, τ
′) fk(τ), (3.18)

where Wk(τ, τ
′) is unity if τ and τ ′ have ordering k and zero otherwise; an explicit form

for Wk(τ, τ
′) is given in Appendix C. The functions fk(τ) are chosen to reflect the fact that
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Figure 3.1: The 12 possible time orderings k = 1, 2, · · ·, 12 of Gxr(0τ, 0τ
′). τ0 is assumed to

be nonnegative.
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an electron accumulates an additional phase γ∆τ while in the presence of φxr for a time

∆τ , whereas a hole acquires a phase −γ∆τ . The 12 unknown coefficients Ak (which depend

parametrically on τ0 and τ ′) are obtained by solving the 12 linearly independent equations

resulting from the decomposition of (3.16) into distinct time orderings k = 1, 2, · · · , 12. The

result is

Gxr(0τ, 0τ
′) =

1

2π`2

(
1

1− ν + νe−γτ0

)
×

[
(ν − 1)

(
W1 +W5

)
+ νe−γτ0

(
W2 +W6

)
+ (ν − 1)e−γ(τ−τ ′)W3

+ νe−γτ0eγ(τ ′−τ)W4 + (ν − 1)e−γτ W7 + (ν − 1)e−γτ0 W8 + νe−γ(τ0−τ ′)W9

+ (ν − 1)e−γ(τ0−τ ′)W10 + ν W11 + νe−γτ W12

]
. (3.19)

As a side note, the solution for general ri and rf is obtained using the same method and

when both τ and τ ′ are in the interval (0, τ0), the result is

Gxr(rτ, r
′τ ′) = [ν−Θ(τ − τ ′)]

[
Γ(r, r′)− 2π`2 Γ(r, 0) Γ(0, r′)

]
+ 2π`2 Γ(r, 0) Γ(0, r′)

[
(ν − 1) Θ(τ − τ ′) + νe−γτ0 Θ(τ ′ − τ)

1− ν + νe−γτ0

]
e−γ(τ−τ ′); (3.20)

the other cases follow similarly. At the origin (3.20) reduces to

Gxr(0τ, 0τ
′) =

1

2π`2

[
(ν − 1) Θ(τ − τ ′) + νe−γτ0 Θ(τ ′ − τ)

1− ν + νe−γτ0

]
e−γ(τ−τ ′). (3.21)

Finally

Gxr(0τ0, 00) =
1

2π`2

(
ν − 1

1− ν + νe−γτ0

)
e−γτ0 . (3.22)

Using Eq. (3.7) we obtain

Zxr = eνγτ0(1− ν + νe−γτ0), (3.23)

therefore

g(r0σ0, r0σ0, τ0|iφxr) =
ν − 1

2π`2
eγ(ν−1)τ0 . (3.24)

This is identical to what we obtained in Chapter 1 [1]. The tunneling DOS is therefore

N(ε) = const×δ
(
ε− [1− ν]γ

)
. (3.25)
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3.6 Discussion

In this chapter, we have carried out an exact treatment of the x-ray edge limit introduced

in Chapter 1 [1], for the same models considered there. Whereas the 1D electron gas result

(3.13) would be expected, the DOS of the 2D Hall fluid remains gapped as in Chapter 1 [1].

A generalization of our method that accounts for fluctuations about φxr, and that can be

used in a magnetic field, will be needed to recover the actual pseudogap of the Hall fluid

[21, 22, 23, 24, 25, 26, 27, 28, 29, 30].



Chapter 4

Beyond the x-ray edge limit

4.1 Introduction

In the previous chapters we introduced an exact functional-integral representation for the

interacting propagator, and developed a nonperturbative technique for calculating it by

identifying a “dangerous” scalar field configuration of the form (2.2), and then treating this

special field configuration by using methods developed for the x-ray edge problem. All other

field configurations were ignored, thereby reducing the tunneling problem to an x-ray edge

problem. Nonetheless, qualitatively correct results were obtained for the 1D electron gas and

the 2D Hall fluid using this approach. In this chapter we attempt to go beyond this so-called

x-ray edge limit by including fluctuations about φxr. We find that by including fluctuations

through the use of a simple functional cumulant expansion, a qualitatively correct DOS is

obtained for electrons with short-range interaction and no disorder in one, two, and three

dimensions. We also show that and when applied to the solvable Tomonaga-Luttinger model,

the low-energy fixed-point Hamiltonian for most 1D metals, the exact DOS is obtained.

4.2 General formalism and cumulant expansion method

Following Chapter 1 [1], we use a Hubbard-Stratonovich transformation to write the exact

Euclidean propagator

G(rfσf , riσi, τ0) ≡ −
〈
Tψσf

(rf , τ0)ψ̄σi
(ri, 0)

〉
H
, (4.1)

in the form

G(rfσf , riσi, τ0) = N
∫
Dφe−

1
2

R
φU−1φg(rfσf , riσi, τ0|φ)∫
Dφe−

1
2

R
φU−1φ

(4.2)
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where

g(φ) ≡ −
〈
Tψσf

(rf , τ0)ψ̄σi
(ri, 0) ei

R
φ(r,τ) δn(r,τ)

〉
0

(4.3)

is a noninteracting correlation function in the presence of a purely imaginary scalar potential

iφ(r, τ), and N ≡ 〈T exp(−
∫ β

0
dτ V )〉−1

0 is a constant, independent of τ0. Eq. (4.2) is an exact

expression for the interacting Green’s function.

The region of function space that contributes to the functional integrals in (4.2) is con-

trolled by the width of the Gaussian, which in the small U limit becomes strongly local-

ized around φ = 0. By expanding (4.3) in powers of φ and doing the functional integrals

term by term, one simply recovers the standard perturbative expansion for G(rfσf , riσi, τ0)

in powers of U . Therefore, it will be necessary to go beyond a perturbative expansion for

g(rfσf , riσi, τ0|φ). We evaluate g(rfσf , riσi, τ0|φ) approximately, using a second-order func-

tional cumulant expansion. Such an expansion amounts to a resummation of the most diver-

gent terms in the perturbation series when φ = φxr and the infrared catastrophe occurs.

Indeed, one can view our resulting expression for g(rfσf , riσi, τ0|φ) as a functional general-

ization of Mahan’s “perturbative” result for a similar correlation function.[64] Furthermore,

for field configurations far from φxr, the cumulant expansion will yield a result that is, by

construction, exact through second order in U . After carrying this out we obtain

g(φ) ≈ G0(rfσf , riσi, τ0)e
R

C1(rτ) φ(r,τ)+
R

C2(rτ,r′τ ′) φ(r,τ) φ(r′,τ ′), (4.4)

where

C1(rτ) =
g1(rτ)

G0(rfσf , riσi, τ0)
(4.5)

and

C2(rτ, r
′τ ′) =

g2(rτ, r
′τ ′)

G0(rfσf , riσi, τ0)
− g1(rτ) g1(r

′τ ′)

2 [G0(rfσf , riσi, τ0)]2
. (4.6)

Here

gn(r1τ1, · · · , rnτn) ≡ − in

n!

〈
Tψσf

(rf , τ0)ψ̄σi
(ri, 0) δn(r1τ1) · · · δn(rnτn)

〉
0

(4.7)
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is the coefficient of φn appearing in the perturbative expansion of (4.3), as in

g(rfσf , riσi, τ0|φ) = G0(rfσf , riσi, τ0) +
∞∑

n=1

∫
gn(r1τ1, · · · , rnτn)φ(r1, τ1) · · ·φ(rn, τn). (4.8)

The cumulants C1 and C2 in terms of G0 are

C1(rτ) = −i
∑

σ

G0(rfσf , rσ, τ0 − τ)G0(rσ, riσi, τ)

G0(rfσf , riσi, τ0)
(4.9)

and (suppressing spin for clarity)

C2(rτ, r
′τ ′) =

1

2G0(rf , ri, τ0)2

{
[G0(r, r

′, τ − τ ′)G0(rf , ri, τ0)

−G0(r, ri, τ)G0(rf , r
′, τ0 − τ ′)][r↔ r′, τ ↔ τ ′]

}
(4.10)

The functional integral in (4.2) can now be done exactly, leading to

G(rfσf , riσi, τ0) = A(τ0) G0(rfσf , riσi, τ0) e
−S(τ0), (4.11)

where

A ≡ N
∫
Dφ e−

1
2

R
φ(U−1−2C2)φ∫

Dφ e−
1
2

R
φU−1φ

= N
[
det (1− 2C2U)

]− 1
2 , (4.12)

and

S ≡ 1

2

∫ β

0

dτ dτ ′
∫
dDr dDr′ρ(r, τ)Ueff(rτ, r′τ ′) ρ(r′, τ ′). (4.13)

Here

ρ(r, τ) ≡ −i C1(rτ) = −
∑

σ

G0(rfσf , rσ, τ0 − τ)G0(rσ, riσi, τ)

G0(rfσf , riσi, τ0)
, (4.14)

and

Ueff(rτ, r′τ ′) ≡
[
U−1(r− r′)δ(τ − τ ′)− 2C2(rτ, r

′τ ′)
]−1

(4.15)

is a screened interaction.

Because spin-orbit coupling has been neglected in H, the noninteracting Green’s function

is diagonal in spin, and

ρ(r, τ) = −G0(rfσi, rσi, τ0 − τ)G0(rσi, riσi, τ)

G0(rfσi, riσi, τ0)
δσiσf

. (4.16)

Eq. (4.11) is the principal result of this work.
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4.3 Charge spreading interpretation

We interpret (4.11) as follows: S is the Euclidean action [78] for a time-dependent charge

distribution ρ(r, τ). We shall show that ρ(r, τ) acts like a charge density associated with an

electron being inserted at ri at τ =0 and removed at rf at τ0. This charge density interacts

via an effective interaction Ueff(rτ, r′τ ′) that accounts for the modification of the electron-

electron interaction by dynamic screening [79]. Our result can therefore be regarded as a

variant of the intuitive but phenomenological “charge spreading” picture of Spivak [80] and

of Levitov and Shytov [15]. However, here the dynamics of ρ(r, τ) is completely determined

by the mean-field Hamiltonian, and has the dynamics of essentially noninteracting electrons.

First consider the integrated charge,

Q(τ) ≡
∫
dDr ρ(r, τ) = −

∫
dDr G0(rf , r, τ0 − τ)G0(r, ri, τ)

G0(rf , ri, τ0)
. (4.17)

Using exact eigenfunction expansions for the Green’s functions we obtain

Q(τ) = −

[∑
α

Φ∗
α(rf)Φα(ri)e

−(εα−µ)τ0 [nF(εα − µ)− 1].

]−1 ∑
α

Φ∗
α(rf)Φα(ri)e

−(εα−µ)τ0

×
{
[nF(εα − µ)− 1]2Θ(τ0 − τ)Θ(τ) + nF(εα − µ)[nF(εα − µ)− 1] [Θ(−τ) + Θ(τ − τ0)]

}
(4.18)

where nF is the Fermi distribution function and the Φα are the single-particle eigenfunctions

of H0. In the zero temperature limit

Q(τ) =

−

∑
α

Φ∗
α(rf)Φα(ri)e

−(εα−µ)τ0
{
(Nα − 1)2Θ(τ0 − τ)Θ(τ) +Nα(Nα − 1) [Θ(−τ) + Θ(τ − τ0)]

}
∑

α

Φ∗
α(rf)Φα(ri)e

−(εα−µ)τ0(Nα − 1)
,

(4.19)

where Nα is the ground-state occupation number of state α, which in the absence of ground

state degeneracy takes the value of 0 or 1. In this case (4.19) reduces to

Q(τ) = Θ(τ0 − τ)Θ(τ). (4.20)
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When the sum rule (4.20) holds, the net added charge, as described by ρ(r, τ), is unity (in

units of the electron charge) for times between 0 and τ0, and zero otherwise. This behavior

correctly mimics the action of the field operators in (4.1).

At short times, τ � τ0, the charge density is approximately

ρ(r, τ) ∼ −G0(r, ri, τ) (4.21)

which is localized around r = ri. As time evolves this distribution relaxes. Then as τ

approaches τ0 the charge density again becomes localized around r = rf ,

ρ(r, τ) ∼ −G0(rf , r, τ0 − τ). (4.22)

A plot of ρ(r, τ) for the 1D electron gas is given in Fig. 4.1.

The dynamics of ρ(r, τ) can be shown to be governed by the equation of motion

[∂τ +H0(r)] ρ(r, τ) = −δ(rf − r)δ(τ0 − τ ′) + δ(r− ri)δ(τ). (4.23)

This can be seen by noting that the noninteracting Green’s function satisfies

[∂τ +H0(r)]G0(r, r
′, τ, τ ′) = −δ(r− r′)δ(τ − τ ′). (4.24)

Then, using the definition (4.14) one can obtain (4.23). Again, we stress that ρ(r, τ) is

describing the dynamics of noninteracting electrons, governed by the mean-field Hamiltonian

H0.

Although ρ(r, τ) has many properties that make it reasonable to interpret as the charge

density associated with the added and subsequently removed electron in the Green’s function

(4.1), one should not take this interpretation too literally. For instance, the sum rule (4.20)

only holds in the zero temperature limit and in the absence of ground state degeneracy. Also,

as will be seen below in Sec. 4.4.3, ρ(r, τ) may even be complex valued.

4.4 Applications of the cumulant method

In the following examples we will assume electrons with a short-range interaction U , no

disorder, and no magnetic field. In Sec. 4.4.1 we show that our method correctly predicts a
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constant DOS near the Fermi energy in 2D and 3D, and in Sec. 4.4.2 we obtain a power-law

DOS in 1D, in qualitative agreement with Luttinger liquid theory.[2, 3, 4, 5, 6, 7, 8] Finally,

in Sec. 4.4.3 we use our method to calculate the DOS for the solvable Tomonaga-Luttinger

model, obtaining the exact DOS exponent.

4.4.1 2D and 3D electron gas: Recovery of the Fermi liquid phase

The sum rule (4.20) allows one to determine the energy dependence of the DOS in D dimen-

sions, asymptotically in the low-energy limit, as follows: In the absence of disorder, a droplet

of charge injected into a degenerate Fermi gas with velocity vF will relax to a size of order

` ∼ vFτ after a time τ . Approximating ρ(r, τ) to be of uniform magnitude in a region of size

` and vanishing elsewhere, the sum rule then requires the magnitude or ρ to vary as `−D.

The interaction energy of such a charge distribution (assuming a short-range interaction) is

E =
U

2

∫
dDr [ρ(r)]2 ∼ U

`D
, (4.25)

which varies with time as τ−D. The action accumulated up to time τ0 therefore scales as

S ∼ U

τD−1
0

if D ≥ 2 (4.26)

or

S ∼ U ln τ0 if D = 1. (4.27)

The cases (4.26) and (4.27) are dramatically different: In 2D and 3D the action vanishes

a long times, and the propagator (4.11) is therefore not appreciably affected by interactions.

The resulting DOS is energy independent at low energies, and the expected Fermi liquid

behavior is recovered. In 1D, however, the action diverges logarithmically, leading to an

algebraic DOS.
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4.4.2 1D electron gas: Recovery of the Luttinger liquid phase

The scaling argument of the previous section showed that the DOS in the 1D electron gas with

short-range interaction is algebraic, as expected. In this section we calculate the associated

exponent.

We proceed in two stages. Initially we keep only the first cumulant C1, and then afterwards

we discuss the effect of C2. In 1D it is possible to calculate the action (4.13) exactly in the

long-time asymptotic limit at the first-cumulant level. Setting xf = xi = 0, we have [see

(4.11)]

G(τ0) = const×G0(τ0) e
−S(τ0). (4.28)

Considering a local interaction of the form U(x− x′) = U0λδ(x− x′) the action is

S(τ0) =
U0λ

2

∫ β

0

dτ

∫ ∞

−∞
dx

[
ρ(x, τ)

]2
. (4.29)

By linearizing the spectrum around the Fermi energy, the zero-temperature propagator at

low energies is

G0(x, τ) =
1

π
Im

(
eikFx

x+ ivFτ

)
=
x sin kFx− vFτ cos kFx

π(x2 + v2
Fτ

2)
. (4.30)

The charge density (4.14) in this case is

ρ(x, τ) =
vFτ0
π

x sin kFx− vF(τ0 − τ) cos kFx

x2 + v2
F(τ − τ0)2

x sin kFx− vFτ cos kFx

x2 + v2
Fτ

2
. (4.31)

Fig. (4.1) shows the charge density ρ(x, τ) as it spreads in time from its initially localized

position. By a lengthy but straightforward calculation it can be shown that

S(τ0) =
3

8

U0λ

vFπ
ln

(
τ0
a

)
, (4.32)

where a is a microscopic cutoff. This leads to a power-law decay of the interacting propagator

as

G(τ) ∼ 1

τα
, (4.33)

where

α =
3

8

U0λ

vFπ
+ 1 (4.34)
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Figure 4.1: Charge density ρ(x, τ) for the 1D electron gas at two times, showing Friedel
oscillations and gradual spreading.



27

is the propagator exponent. The DOS exponent δ, defined as

N(ε) = const× εδ, (4.35)

is given in this case by

δ =
3

8

U0λ

vFπ
. (4.36)

The effects of the second cumulant C2 are now straightforward to understand: In addition

to introducing a slowly varying prefactor A, whose only τ0 dependence comes from the time

dependence of the screening in (4.15), the second cumulant screens the bare interaction

and does not prevent the logarithmic divergence of the action, but it does modify the DOS

exponent. It is interesting, however, that in the large U limit, the effective interaction becomes

independent of U, a clear indication of nonperturbative behavior.

It is illustrative to compare (4.36) to the prediction of the perturbative x-ray edge limit

of Chapter 2, where one neglects all field configurations in (4.2) except φxr. There we found

(for this same short-range interaction model),

δ = 2
U0λ

vFπ
(4.37)

to leading order in U. The DOS exponents (4.36) and (4.37) are in qualitative agreement,

but the inclusion of fluctuations about φxr in (4.36) softens the exponent by almost a factor

of four, as one might expect.

The exact DOS exponent is not known for this model. In the next section we apply the

cumulant method to the Tomonaga-Luttinger model, for which the exact propagator can be

calculated using bosonization.

4.4.3 Tomonaga-Luttinger model

We consider the spinless or U(1) Tomonaga-Luttinger model. The noninteracting spectrum

is

εk = µ+ vF(±k − kF), (4.38)
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where the upper sign refers to the right branch and the lower to the left one. The interaction

is

V =
1

2

∫
dx δni(x)Uij δnj(x), (4.39)

δn±(x) ≡ lim
a→0

:ψ±(x+ a)ψ±(x) :, (4.40)

where the normal ordering is with respect to the noninteracting ground state. The matrix U

has the form

U =

 U4 U2

U2 U4

 . (4.41)

We want to calculate

G±(xfτf , xiτi) = −N 〈Tψ±(xf , τf)ψ̄±(xi, τi) e
−

R
dτV (τ)〉. (4.42)

Make a Hubbard-Stratonovich transformation of the form

e−
1
2

R
δni Uij δnj =

∫
Dφ−Dφ+ e−

1
2

R
φiU

−1
ij φj ei

R
φi δni∫

Dφ−Dφ+ e−
1
2

R
φiU

−1
ij φj

, (4.43)

which leads to

G±(xfτf , xiτi) = N
∫
Dφ−Dφ+ e−

1
2

R
φiU

−1
ij φj g±(xfτf , xiτi|φ−, φ+)∫

Dφ−Dφ+ e−
1
2

R
φiU

−1
ij φj

, (4.44)

where

g±(xfτf , xiτi|φ+, φ−) ≡ −
〈
Tψ±(xfτf)ψ̄±(xiτi) e

i
R β
0 dτ

R
dx φi(x,τ) δni(x,τ)

〉
0
. (4.45)

The correlation function (4.45) can also be written as

g±(xfτf , xiτi|φ+, φ−) = g±(xfτf , xiτi|φ±) · Z∓[φ∓], (4.46)

where

Z±[φ±] ≡
〈
Tei

R β
0 dτ

R
dx φ±(x,τ) δn±(x,τ)

〉
0,±, (4.47)

and

g±(xfτf , xiτi|φ±) = −
〈
Tψ±(xfτf)ψ̄±(xiτi) e

i
R β
0 dτ

R
dx φ±(x,τ) δn±(x,τ)

〉
0,±. (4.48)
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Next we cumulant expand both (4.47) and (4.48) to second order. For (4.47)

Z±[φ±] ≈ e
1
2

R
dτdτ ′

R
dxdx′ Π±(x−x′,τ−τ ′)φ±φ′± (4.49)

Where Π± is the noninteracting density-density correlation function

Π±(x, τ) ≡ −
〈
Tδn±(x, τ) δn±(0)

〉
0,±, (4.50)

which can be written as

Π±(x, τ) = G0,±(x, τ)G0,±(−x,−τ). (4.51)

The noninteracting chiral propagator is

G0,±(x, τ) = ± 1

2πi

e±ikFx

x± ivFτ
. (4.52)

For (4.48)

g±(xfτf , xiτi|φ±) ≈ G0,±(xfτf , xiτi|φ±)e
R

dxdτ C1,±φ±+
R

dxdx′dτdτ ′ C2,±φ±φ′± (4.53)

where

C1,±(x, τ) = −iG0,±(xf , x, τ0 − τ)G0,±(x, xi, τ),

G0,±(xf , xi, τ0)
(4.54)

and C2,± for this model reduces to

C2,±(x− x′, τ − τ ′) =
1

2
Π±(x− x′, τ − τ ′). (4.55)

Now we solve for Ueff , defined by∫
dx′′dτ ′′U−1

eff (x− x′′, τ − τ ′′)Ueff(x′′ − x′, τ ′′ − τ ′) = δ(x− x′)δ(τ − τ ′)1, (4.56)

where

U eff
ij (x, τ) =

[
U−1

ij (x, τ)− Π±(x, τ)δi+δj+ − Π∓(x, τ)δi−δj−
]−1

(4.57)

and 1 is a 2 × 2 identity matrix. To achieve this we Fourier transform (4.56). This reduces

(4.56) to a matrix equation which gives

Ueff(k, ω) =


 U4 U2

U2 U4

−1

−

 Π±(k, ω) 0

0 Π∓(k, ω)



−1

. (4.58)
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The ++ or −− component is

Ueff(k, ω) =
U4 − (U2

4 − U2
2 )Π∓(k, ω)

1− U4Πt(k, ω) + (U2
4 − U2

2 )Π+(k, ω)Π−(k, ω)
(4.59)

where

Πt(k, ω) = Π+(k, ω) + Π−(k, ω) = − 1

π

k2

(ω + ik)(ω − ik)
. (4.60)

The effective interaction for right movers is (with vF = 1)

Ueff(k, ω) = U4
(ω + ik)(ω − iuk)

(ω + ivk)(ω − ivk)
, (4.61)

where

u ≡ 1 +
(U4/2π)2 − (U2/2π)2

(U4/2π)
(4.62)

and

v ≡

√(
1 +

U4

2π

)2

−
(
U2

2π

)2

. (4.63)

The action can be written as

S =
1

2

∫
dk

2π

dω

2π
ρ±(−k,−ω)Ueff(k, ω) ρ±(k, ω). (4.64)

The chiral tunneling charge density is

ρ±(x, τ) = −G0,±(xf , x, τ0 − τ)G0,±(x, xi, τ)

G0,±(xf , xi, τ0)
. (4.65)

We now specialize to the DOS case where xi = xf = 0 and assuming right movers we set

ρ+ ≡ ρ. The tunneling charge density is

ρ(x, τ) =
vFτ0
2π

1

(x+ ivFτ)[x+ ivF(τ − τ0)]
, (4.66)

which satisfies ∫
dx ρ(x, τ) = Θ(τ) Θ(τ0 − τ). (4.67)

Fourier transforming, we find that

ρ(k, ω) =
1

iω − vFk

[(
eiωτ0 − 1

)
Θ(k) +

(
eiωτ0 − evFkτ0

)
Θ(−k)

]
(4.68)
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and

ρ(k, ω) ρ(−k,−ω) =

1

(ω + ik)2

[(
1− eiωτ0e−kτ0 + e−kτ0 − e−iωτ0

)
Θ(k) +

(
1− eiωτ0 + ekτ0 − e−iωτ0ekτ0

)
Θ(−k)

]
.

(4.69)

The action therefore is

S(τ0) =
1

2

∫
dk

2π

dω

2π

(ω + ik)(ω − iuk)

(ω + ivk)(ω − ivk)

U4

(ω + ik)2

×
[(

1− eiωτ0e−kτ0 + e−kτ0 − e−iωτ0

)
Θ(k) +

(
1− eiωτ0 + ekτ0 − e−iωτ0ekτ0

)
Θ(−k)

]
.

(4.70)

The action can be written as S = S> + S< where

S> =
U4

8π2

∞∫
0+

dk

∞∫
−∞

dω
(ω − iuk)

(ω + ivk)(ω − ivk)(ω + ik)

(
1− eiωτ0e−kτ0 + e−kτ0 − e−iωτ0

)
(4.71)

and

S< =
U4

8π2

0−∫
−∞

dk

∞∫
−∞

dω
(ω − iuk)

(ω + ivk)(ω − ivk)(ω + ik)

(
1− eiωτ0 + ekτ0 − e−iωτ0ekτ0

)
. (4.72)

S> = S< under change of coordinates k → −k and ω → −ω, so S = 2S>. To proceed we

need the large-τ0 asymptotic result

I(τ0) ≡
∫ ∞

0+

dk
e−kτ0

k
−→ − ln τ0 (4.73)

where the additive constant, not shown explicitly, is cutoff dependent. These lead, in the

large τ0 limit, to

S =
U4

4π

[
2(1 + u)

(1 + v)(1− v)
− u+ v

v(1− v)

]
ln(τ0) (4.74)

or

S =
U4

4π

[
v − u

v(1 + v)

]
ln(τ0). (4.75)

Finally, we obtain

S = δ ln τ0 + const +O(1/τ0) (4.76)
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and

N(ε) = const× εδ, (4.77)

where

δ =
U4

4π

v − u

v(1 + v)
=

(u− v)(1− v)

2v(1 + u)
(4.78)

=
1 + U4

2πvF
−

√(
1 + U4

2πvF

)2 −
(

U2

2πvF

)2

2
√(

1 + U4

2πvF

)2 −
(

U2

2πvF

)2
. (4.79)

This is in exact agreement with the bosonization result

δ =
g + g−1

2
− 1 (4.80)

with

g =

√√√√1 + U4

2πvF
− U2

2πvF

1 + U4

2πvF
+ U2

2πvF

. (4.81)

Why does the cumulant method give the exact result for this model? The answer is that

a second order cumulant expansion of the form used here is exact for free bosons, which are

the exact eigenstates of the Tomonaga-Luttinger model [81].

4.5 Discussion

Our principal result (4.11) suggests that the dominant effect of interaction on the low-

energy DOS in a variety of strongly correlated electron systems is to add a semiclassical

time-dependent charging energy contribution to the total potential barrier seen by a tun-

neling electron, as in Ref. [15]. The energy is computed according to classical electrostatics

with a dynamically screened two-particle interaction. In 2D and 3D the added charge is

accommodated efficiently and reaches a zero-action state at long times. In 1D the added

charge leads to diverging action, and hence suppressed tunneling.

The robustness of our method has not been fully explored, although it is known to fail

qualitatively in systems with ground state degeneracy, such as in the quantum Hall fluid.

We believe the cause of this failure to be the non-satisfiability of the sum rule (4.20) in such

situations.
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Appendix A

Low-engergy noninteracting propagator

For a noninteracting electron system with single-particle states φα(r) and spectrum εα, the

imaginary-time Green’s function defined in Eq. (4.1) is given by

G0(rσ, r
′σ′, τ) = δσσ′

∑
α

φα(r)φ∗α(r′)e−(εα−µ)τ

([
nF(εα − µ)− 1

]
Θ(τ) + nF(εα − µ)Θ(−τ)

)
,

(A.1)

where nF(ε) ≡ (eβε+1)−1 is the Fermi distribution function. In this appendix we shall evaluate

the diagonal elements G0(rσ, rσ, τ) for two models in the large |τ |, asymptotic limit.

A.1 1D electron gas

The first model is a translationally invariant electron gas at zero temperature in 1D (the

derivation we give is actually valid for any dimension D). In the limit of large εF|τ | we obtain

G0(rσ, rσ, τ) → −N0

τ
, (A.2)

whereN0 is the noninteracting DOS per spin component at the Fermi energy εF [73]. It will be

necessary to regularize the unphysical short-time behavior in Eq. (A.2). The precise method

of regularization will not affect our final results of interest, such as exponents, which are

determined by the long-time behavior. We will take the regularized asymptotic propagator

to be

G0(rσ, rσ, τ) ≈ −Re
N0

τ + i/εF
. (A.3)

When possible, we will let the short-time cutoff in (A.3) approach zero, in which case (A.3)

simplifies to

G0(rσ, rσ, τ) ≈ −P
N0

τ
, (A.4)
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where P denotes the principal part. The results (A.3) and (A.4) are valid for any spatial

dimension D; the only D dependence appears in the value of N0 for a given εF.

A.2 2D Hall fluid

The second model we consider is a 2D spin-polarized electron gas in the lowest Landau level

at zero temperature with filling factor ν. In the gauge A = Bxey,

φnk(r) = cnk e
−iky e−

1
2
(x/`−k`)2 Hn(x/`− k`), (A.5)

where cnk ≡ (2nn!π
1
2 `L)−

1
2 . Here ` ≡

√
h̄c/eB is the magnetic length and L is the system

size in the y direction. The spectrum is εn = h̄ωc(n + 1
2
), with ωc ≡ eB/m∗c the cyclotron

frequency (m∗ is the band mass). In the lowest Landau level 0 < ν ≤ 1,

φk = (π
1
2 `L)−

1
2 e−iky e−

1
2
(x/`−k`)2 . (A.6)

At long times τ � ω−1
c we find

G0(r, r, τ) =
ν −Θ(τ)

2π`2
. (A.7)



Appendix B

Asymptotic evaluation of time integrals

Here we note the asymptotics used to obtain (2.15):∫ τ0

0

dτ Re

(
1

τ0 − τ + i/εF

)
Re

(
1

τ + i/εF

)
≈ 2

τ0
ln(τ0εF), (B.1)

∫ τ0

0

dτ dτ ′ Re

(
1

τ0 − τ + i/εF

)
Re

(
1

τ − τ ′ + i/εF

)
Re

(
1

τ ′ + i/εF

)
≈ 2

τ0
ln2(τ0εF), (B.2)

and ∫ τ0

0

dτ dτ ′
[
Re

(
1

τ − τ ′ + i/εF

)]2

≈ π

2
τ0εF − 2 ln(τ0εF). (B.3)

In these expressions we have retained all terms, including subdominant contributions, that

diverge in the τ0εF →∞ limit.
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Appendix C

Time ordering functions

Let

W1(τ, τ
′) ≡ Θ(−τ) Θ(−τ ′) Θ(τ − τ ′)

W2(τ, τ
′) ≡ Θ(−τ) Θ(−τ ′) Θ(τ ′ − τ)

W3(τ, τ
′) ≡ W (τ)W (τ ′) Θ(τ − τ ′)

W4(τ, τ
′) ≡ W (τ)W (τ ′) Θ(τ ′ − τ)

W5(τ, τ
′) ≡ Θ(τ − τ0) Θ(τ ′ − τ0) Θ(τ − τ ′)

W6(τ, τ
′) ≡ Θ(τ − τ0) Θ(τ ′ − τ0) Θ(τ ′ − τ)

W7(τ, τ
′) ≡ W (τ) Θ(−τ ′)

W8(τ, τ
′) ≡ Θ(τ − τ0) Θ(−τ ′)

W9(τ, τ
′) ≡ Θ(−τ)W (τ ′)

W10(τ, τ
′) ≡ Θ(τ − τ0)W (τ ′)

W11(τ, τ
′) ≡ Θ(−τ) Θ(τ ′ − τ0)

W12(τ, τ
′) ≡ W (τ) Θ(τ ′ − τ0),

where Θ(t) is the Heaviside step function and W (with no subscripts) is the a window

function, defined as

W ≡ Θ(τ0 − τ)Θ(τ). (C.1)
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