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ABSTRACT 

 Trends in global temperature anomalies from the past half century are investigated. To 

account for the seasonality of the data, a statistical model that includes monthly intercept and 

slope terms will be developed. Atmospheric CO2  concentrations, sunspot numbers, and various 

global pressure oscillations will also be included in the model. Least squares estimates of all 

parameters in the model will be derived, as will standard errors that account for temporal 

correlations in the data. To this end, standardized residuals will be modeled using an 

autoregressive moving average (ARMA) model. Derived standard errors will be based on the 

fitted ARMA model. 
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CHAPTER 1 

INTRODUCTION 

In popular literature, the global temperature trend over the past millennium is often compared to 

the shape of a hockey stick – relatively flat for a long period of time, followed by an abrupt 

increase. This abrupt increase, depicted by the blade of the stick, represents the trend in global 

temperatures over the past century. To this end, the comparison is spot on. Global temperatures 

have clearly been trending upwards during the past century. Over the past fifteen years, however, 

the rate of increase appears to have slowed down. Some point to this as evidence that warming 

has stopped altogether, while others contend that this is not the case and warming will continue 

into the foreseeable future.  

 The objective of this research is to investigate global temperature trends since the mid-

1900s. In doing so, we will weigh in on the point of contention mentioned in the previous 

paragraph. The data set we will use is NASA’s Global Land-Ocean Temperature index, which 

reports average monthly global temperature anomalies (the difference between the average 

global temperature for a given month and the average global temperature over a 30 year base 

period). To account for the seasonality of the data, a model that includes monthly intercepts and 

monthly trend parameters will be considered. Some variables that have long been associated with 

global temperatures will also be considered: atmospheric CO2 concentrations, sunspot numbers, 

and a few global pressure oscillations.  

 It is not uncommon for the error terms of models based on climate data to be correlated. 

However, this correlation violates one of the basic assumptions of the general linear model. 
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When the residuals show positive serial correlation, standard errors of the parameter estimates 

will be underestimated, as will significance levels of the parameter effects (Lund, Seymour, and 

Kafadar, 2001). With artificially small significance levels, statistical significance might be 

inferred incorrectly. After arriving at a final model, standard errors that take residual correlation 

into account will need to be estimated. The new standard errors will then be used to calculate 

accurate test statistics and significance levels. If necessary, these new significance levels will be 

used to adjust the model and the process of calculating accurate standard errors will be repeated. 
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CHAPTER 2 

DATA 

2.1 Temperature Anomalies 

A temperature anomaly measures the difference between the mean global temperature for a 

given month (in 0.01 degrees Celsius) and the mean global temperature for that month from 1951 

to 1980. NASA reports that mean global temperature anomalies are computed from station 

temperature anomalies and the station temperature anomalies come from a regularly spaced array 

of virtual stations covering both land and ocean. At each station, an average daily temperature is 

calculated by averaging the daily high and the daily low (Dunbar, 2005). These average daily 

temperatures can be averaged over the course of a month to yield the average monthly 

temperature. With the average monthly temperature, a temperature anomaly can be calculated. A 

positive temperature anomaly indicates that the average global temperature for the month is 

higher than the average global temperature for that month during the 30 year base period; a 

negative temperature anomaly indicates the reverse. Figure 1 depicts the anomalies for January 

1880 through January 2014. From the late 1970s to the present, it is clear that the temperature 

anomalies have been increasing, but the rate of increase appears to have slowed in recent years. 
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Figure 1: Average monthly temperature anomalies from January 1880 to January 2014 

 The temperature anomaly data set used in this paper can be found online at 

http://data.giss.nasa.gov. The data set reports monthly global temperature anomalies for every 

month from January, 1880, to the present. The data are adjusted for station moves, equipment 

updates, and any other non-climatic temperature jumps. 

2.2 Atmospheric CO2 Concentrations 

Greenhouse gases are known to affect temperatures on the Earth. As CO2 is one of the primary 

greenhouse gases, it is imperative to consider the role of atmospheric CO2 concentrations when 

studying global temperatures. 

 Since the late 1950s, daily atmospheric CO2 concentrations have been taken at the Mauna 

Loa Observatory in Hawaii. As monthly means, these data are available online at co2now.org. 

The website reports that, “Monthly mean CO2 concentrations are determined from daily averages 

for the number of CO2 molecules in every one million molecules of dried air (water vapor 

removed).” The data, recorded in parts per million (ppm), are graphed in Figure 2.  
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Figure 2: Average monthly atmospheric CO2 concentration from January 1959 to January 2014 

 Clearly, atmospheric CO2 concentrations have been increasing since the Mauna Loa 

record began in the late 1950s. It is also worth noting that CO2 concentrations are known to be 

well mixed in the atmosphere, so using concentrations from just one site should not introduce 

any bias.  

2.3 Sunspot Numbers 

A sunspot is a visibly dark spot that appears on the surface of the sun. These spots are dark 

because they are cooler than the sun’s surrounding surface area – this is a product of magnetic 

activity. Whether or not sunspots affect Earth’s climate is still up for debate. However, periods of 

low solar activity have occurred in conjunction with cooler global temperatures in the past. The 

Maunder Minimum, for example, was a period of decreased solar activity that coincided with 

part of the Little Ice Age (1645 – 1715). Thus, there has been speculation that sunspots have 

some effect on the global climate. 
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 Sunspots can occur individually or in groups. A sunspot group will contain an average of 

ten spots. The sunspot number can be calculated by summing the number of individual spots and 

ten times the number of groups. NASA provides sunspot number data online at 

solarscience.msfc.nasa.gov. Monthly means are available from 1749 to the present. Means from 

January 1948 to January 2014 are plotted in Figure 3. The cycle seen in the data is roughly 

eleven years. 

 

Figure 3: Average monthly sunspot number from January 1948 to January 2014 

2.4 Global Pressure Oscillations 

A global pressure oscillation is an oscillation in surface air pressure between two or more poles. 

These oscillations can have pronounced effects on the global climate, though these effects can be 

complex. One global pressure oscillation discussed herein is the El Niño Southern Oscillation 

(ENSO). According to the NOAA, “The ENSO cycle refers to the coherent and sometimes very 

strong year-to-year variations in sea surface temperatures, convective rainfall, surface air 
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pressure, and atmospheric circulation that occur across the equatorial Pacific Ocean. El Niño and 

La Niña represent opposite extremes in the ENSO cycle.” 

 The strength of a pressure oscillation is usually reported as a function of the difference in 

air pressure between the poles of the oscillation. Or, perhaps more precisely, the oscillation is a 

function of the heights at which a certain level of air pressure occurs. The ENSO, for example, is 

a function of the 500 millibar (mb) heights in Tahiti and Darwin, Australia. The 500mb height is 

the height at which 500mb of air pressure occurs. (As a reference, air pressure at sea level hovers 

around 1000mb and decreases as elevation increases.) In this paper, 500mb heights are used 

instead of surface pressure measurements because the poles may be located at different heights 

above sea level. Thus, the surface pressure at one of the poles might always be higher than the 

surface pressure at another pole. In a manner of speaking, comparing the 500mb heights instead 

of surface pressure serves to level the playing field. Figure 4 depicts monthly averages of the 

500mb height in Darwin from January 1948 to January 2014. 

 

Figure 4: Average monthly 500mb height in Darwin from January 1948 to January 2014 
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 Two other pressure oscillations will be considered in this paper: the North Atlantic 

Oscillation (NAO) and the Interdecadal Pacific Oscillation (IPO). The NAO has poles in Azores 

and Iceland. Concerning the positive and negative phases of the NAO, the NOAA reports that, 

“Both are associated with changes in the intensity and location of the North Atlantic jet stream 

and storm track, and in large-scale modulations of the normal patterns of zonal and meridional 

heat and moisture transport, which in turn results in changes in temperature and precipitation 

patterns often extending from eastern North America to western and central Europe.” Figure 5 

depicts monthly averages of the 500mb heights in Iceland from January 1948 to January 2014.  

 

Figure 5: Average monthly 500mb height in Iceland from January 1948 to January 2014 

 The IPO has poles in the North Central Pacific Ocean (NCP) and the Gulf of Alaska 

(GOA). Like ENSO and NAO, phases of the IPO can affect the climate both globally and 

locally. Average monthly 500mb heights in NCP from January 1948 to January 2014 are shown 

in Figure 6. 
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Figure 6: Average monthly 500mb height in NCP from January 1948 to January 2014 

 The average monthly 500mb heights of the poles of each of these oscillations are 

available from the NOAA website. GPS coordinates of each pole are shown in Table 1. The data 

run from January 1948 to January 2014. 

Table 1: GPS Coordinates 

Pole Coordinates Pole Coordinates 

Darwin (ENSO) 12 S, 131 E Tahiti (ENSO) 18 S, 150 W 

Azores (NAO) 39 N, 24 W Iceland (NAO) 64 N, 24 W 

NCP (IPO) 20 N, 170 W GOA (IPO) 55 N, 150 W 

 Summary statistics for all nine variables discussed in this chapter are shown in Table 2. It 

is worth noting that the CO2 data do not extend as far back in time as the other data sets do. In 

the sections that follow, all models will use data from January 1959 to January 2014. For this 

reason, the summary statistics shown in Table 2 only reflect data from January 1959. 
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Table 2: Summary Statistics 

Variable n Mean SD Minimum Maximum 

TA 661 25.12 25.58 -35.00 93.00 

CO2 656 350.13 24.05 313.26 399.76 

SSN 661 65.29 49.97 0.00 217.40 

Darwin 661 5857.17 12.75 5817.74 5901.80 

Tahiti 661 5855.47 13.39 5806.23 5903.43 

Azores 661 5740.98 90.51 5478.21 5910.84 

Iceland 661 5367.88 132.12 5019.14 5636.42 

NCP 661 5854.56 21.63 5769.45 5902.20 

GOA 661 5422.82 140.22 5132.61 5738.42 

2.5 Multicollinearity 

Since each of the eight independent variables mentioned in this section is climate-related, an 

investigation of their correlations is warranted. Correlations between the independent variables 

and the temperature anomalies are shown in Table 3. Note that the eight independent variables 

have not been seasonally adjusted, so each probably features a seasonal component. Because of 

this, these correlations are likely inflated. All correlations were calculated based on data from 

January 1959 to January 2014.  

Table 3: Correlation Matrix 

 TA CO2 SSN Darwin Tahiti Azores Iceland NCP GOA 

TA 1.00 0.86 -0.06 0.57 0.52 0.04 -0.01 0.27 -0.03 

CO2 0.86 1.00 -0.19 0.48 0.49 0.04 0.03 0.18 0.03 

SSN -0.06 -0.19 1.00 0.08 -0.03 0.03 -0.05 0.03 0.03 

Darwin 0.57 0.48 0.08 1.00 0.67 0.21 0.29 0.58 0.18 

Tahiti 0.52 0.49 -0.03 0.67 1.00 0.02 0.18 0.30 0.09 

Azores 0.04 0.04 0.03 0.21 0.02 1.00 0.48 0.60 0.71 

Iceland -0.01 0.03 -0.05 0.29 0.18 0.48 1.00 0.51 0.72 

NCP 0.27 0.18 0.03 0.58 0.30 0.60 0.51 1.00 0.43 

GOA -0.03 0.03 0.03 0.18 0.09 0.71 0.72 0.43 1.00 
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 The variable showing the strongest correlation with the temperature anomalies is 

atmospheric CO2 concentrations (r = 0.86). As expected, the poles of each oscillation show 

correlation with each other (r = 0.67 for ENSO, r = 0.48 for NAO, and r = 0.43 for IPO). We also 

see a good deal of correlation across oscillations – GOA and Iceland (r = 0.72), GOA and Azores 

(r = 0.71), and NCP and Azores (r = 0.60), to name a few. Again, recall that these correlations 

could be inflated. The independent variables could also show strong correlation with the monthly 

intercept and slope terms. All correlations will be taken into consideration when fitting models, 

as multicollinearity can inflate the variance (and therefore standard error) of the coefficient 

estimates. With inflated standard errors, picking which predictors to include can be difficult and 

the exact effect of each predictor might be unclear. 
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CHAPTER 3 

STATISTICAL METHODS 

3.1 Regression Model 

The regression model we will consider is: 

                
                                                         

   
 
                                            

   
  
       

 
    

 
        

  
                                 

                                                           

(3.1) 

where       represents the average global temperature anomaly during the     month of year 

     . Time will be scaled such that n = 0 represents January, 1959. Naturally, v = 1 corresponds 

to January, v = 2 corresponds to February, and so on. The period of the data, T, is 12. The 

expression (nT + v) can be thought of as an index. 

            represents the average 500mb height in Darwin for the     month of year n, 

and  
 
 represents the expected change in the mean global temperature anomaly for a one meter 

increase in the average 500mb height in Darwin while all other variables are held constant. 

Similar definitions can be provided for the other explanatory variables and their coefficients.  

 The monthly intercept terms ( 
  
       

 
    

 
        

  
) represent deviations from the 

average August temperature anomaly during month v without trend. The monthly slope terms 

(                       ) represent deviations from the average August temperature anomaly 

change rate during month v. Thus,    represents the difference between the year to year 

temperature anomaly change rates (in 0.01 degrees Celsius) during the months of January and 
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August. This rate of change might vary from month to month, so terms are included for each 

month. The    variables are indicator variables that will equal 1 during month v and 0 otherwise. 

By itself,   can be thought of as a baseline change rate. 

 The error terms,      , are assumed to be normally distributed with a mean of zero and a 

constant variance. Further, these terms are often assumed to be independently distributed. As 

noted in the introduction, it is this second assumption that we anticipate will be violated. If this 

proves to be the case, the standard errors of the model parameters will be underestimated, test 

statistics will be inflated, and significance levels will be artificially small. Accurate standard 

errors that account for residual correlation will need to be derived. This process will be described 

in a later section. 

3.2 Parameter Estimation 

Parameter estimates will be calculated according to the method of ordinary least squares. Using 

matrix notation, (3.1) can be represented as:  

           

where X =               is a vector containing the average monthly global temperature anomalies 

from January 1959 to January 2014, D is the m   32 design matrix (described below), 

      
 
       

 
   

 
       

 
   

 
       

  
                               is the parameter vector, and 

                  is a vector of regression errors.  

 The first column of D will correspond to the intercept term, so it will be a vector of 1s. 

The next six columns of the design matrix D will correspond to the average 500mb heights at 

Darwin, Tahiti, Iceland, Azores, NCP (North-Central Pacific), and GOA (Gulf of Alaska). Thus, 

the entry in the first row of the second column of D is the average 500mb height in Darwin for 

January 1959. The entry in the last row of the second column is the average 500mb height in 
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Darwin for January 2014. The eighth and ninth columns will correspond to the average 

atmospheric CO2 levels and the average sunspot number, respectively. Columns ten through 

twenty correspond to the eleven monthly intercept terms. Again, note that these terms represent 

deviations from the average August temperature anomaly during month v without trend. An entry 

in column ten will be 1 if the data in that row are from January, 0 otherwise. Using the remaining 

ten months, similar statements can be made about entries in columns eleven through twenty. 

Column 21 will be equal to the index, nT + v. Columns 22 through 32 will correspond to the 

eleven monthly slope deviation terms. An entry in column 22 will be nT + v if the data in that 

row are from January, 0 otherwise. The first nine rows of columns ten through 32 will look like:  

                       

                       

                       

                       

                       

                       

                       

                       

                       

 

As the model is adjusted, of course, D will need to be adjusted as well.  

 An estimator of   can be computed using the ordinary least squares formula: 

  ̂   (   )-    .  

 The standard error of the     parameter estimate in  ̂ will be the square root of the (    )   

entry in the variance-covariance matrix of  ̂: 

 var( ̂)     (   )   (3.2) 

where    can be estimated by the mean squared error: 

 
 ̂
     SE   

 (      
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where p is the number of parameters in the model. Again, note that the standard errors described 

above will be underestimated if the model error terms are found to be positively correlated. As a 

result, parameter significance levels will also be underestimated. The process of calculating 

accurate standard errors and significance levels is described in the next section. For ease, the 

underestimated significance levels will be used until we arrive at a final model. Note that if a 

parameter is found to be statistically insignificant with an underestimated significance level, it 

will also be statistically insignificant when a more accurate significance level is calculated. Thus, 

using the underestimated significance levels will not increase the chances of erroneously tossing 

a statistically significant variable.  

 In progressing towards a final model, we will first remove insignificant variables by 

backwards elimination (     .  ). After all remaining variables are significant, variance inflation 

factors (VIF) will be used to address any issues with multicollinearity. The VIF measures how 

much the variances of estimated regression coefficients are inflated when compared to having 

uncorrelated predictors, thus quantifying the severity of multicollinearity in a model. A VIF 

above 10 indicates that multicollinearity may have pronounced effects on the least squares 

estimates of the regression coefficients (Kutner, Nachtsheim, Neter, and Li, 2005). The variance 

inflation factor for the j
th

 variable can be calculated: 

       
 

      
 
 

where   
  is the R

2
 value of a model with response variable j and with explanatory variables 

which are the remaining explanatory variables from the original model. A backwards elimination 

approach with respect to VIFs will be used with a cutoff of 10. After examining variance 

inflation factors, residual plots will be used to judge the validity of the model. If the residual plot 

shows that the fit is inadequate, the model will need to be adjusted.  
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3.3 Correlated Residuals 

Upon arriving at a final model, we will investigate the residuals further for correlation. To this 

end, we will look at an ACF plot of the residuals and also run the Durbin-Watson test. The null 

hypothesis for this test is that autocorrelation is not present. Thus, if the Durbin-Watson test 

returns a p-value less than 0.05, we can say that the residuals are correlated. The consequences of 

correlation in the residuals have already been noted. If the assumption that residuals are 

independently distributed is found to be violated, the variance-covariance matrix in (3.2) will 

need to be recalculated. The adjusted variance-covariance matrix will be calculated as: 

 var( ̂)   (   )  (    )(   )   (3.3) 

where   is the variance-covariance matrix of the error terms. Because it is common for climate 

data (temperature data especially) to show seasonal cycles in variability, we may not want to 

estimate   directly from the sample. Lund et al. (2001) suggest that the error terms may be 

modeled as the product of a periodic function and a stationary series: 

      ( )   

where   is a non-negative periodic function with period T (in our case, T = 12), and {Am} is a 

mean zero stationary series with autocovariance  
 
( )    ov           at lag h. The parameters 

     can be estimated as monthly standard deviations, and {Am} = {    
-1
  } can be modeled 

with the autoregressive moving average (ARMA) family of models. With small samples, the 

AICc statistic will select a more parsimonious ARMA model than will the AIC statistic (Hurvich 

and Tsai, 1989). Though this distinction may be lost in larger samples, we will use the AICc 

statistic in selecting a best model. Because it is not computationally difficult, the AIC statistic 

and the BIC statistic will also be considered. After fitting an ARMA model to {Am}, an estimate 

for  
 
( ) can be calculated for h     ,  , … , m – 1). Using these estimates, we can estimate  : 
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 ̂       ̂ (   ⌊

 

 
⌋)  ̂ (   ⌊

 

 
⌋)  ̂

 
 |   |  (3.4) 

where i and j each range from 1 to m, and where ⌊ ⌋ represents the greatest integer function. 

(Thus, each index of  ̂ in (3.4) will range from 1 to 12.) 

 Before inserting (3.4) into (3.3), the residuals of the ARMA model will need to be 

examined – both a residual plot and an ACF plot of the residuals will be considered, as will a test 

for serial correlation. The Durbin-Watson test is known to be biased for ARMA models, so the 

Ljung-Box test will be used in its place. Like the Durbin-Watson test, the null hypothesis for the 

Ljung-Box test is that autocorrelation is not present. The Ljung-Box test, however, tests for 

overall randomness based on a certain number of lags instead of testing for autocorrelation at 

each distinct lag. There does not seem to be a consensus on the number of lags to use when 

running this test. Tsay (2005) suggests using ln(N) lags (where N is the length of the series) to 

provide the best power performance. Alternatively, if the data are seasonal, Tsay (2005) suggests 

using some multiple of the period. To this end, we will run the test using 12 lags, 24 lags, 36 

lags, and also 48 lags. Ideally, we will fail to reject the null hypothesis in each case and conclude 

that the residuals of the ARMA model are essentially white noise. If this is the case, then the 

autocovariance structure of the model can be used to estimate  . Using this estimate, accurate 

standard errors will be calculated with (3.3). With accurate standard errors, accurate test statistics 

and significance levels can be calculated. If some of the new significance levels are found to be 

greater than 0.05, this entire process will need to be repeated with an updated model. 
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CHAPTER 4 

RESULTS 

4.1 Fitting a Model 

After using backwards selection and removing significant multicollinearity, (3.1) reduced to: 

 

               
                                                       

    
 
                                                   

   
  
    

  
        . 

(4.1) 

 Model (4.1) produces an RMSE of 11.39 and an R
2
 value of 0.81, suggesting this model 

can account for 81% of the variation in the temperature anomalies. Parameter estimates, standard 

errors, test statistics, and significance levels are provided in Table 4. 
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Table 4: Model Results for (4.1) 

Parameter Estimate Standard error Test statistic P-value 

 
 
 -4338.089 294.569 -14.727 < 0.001 

 
 
 (Darwin) 0.498 0.057 8.663 < 0.001 

 
 
 (Iceland) 0.014 0.007 2.196 0.028 

 
 
 (Azores) 0.025 0.008 3.013 0.003 

 
 
 (NCP) 0.160 0.035 4.585 < 0.001 

 
 
 (CO2) 0.795 0.024 33.528 < 0.001 

 
 
 (SSN) 0.025 0.010 2.610 0.010 

 
 
 24.731 3.105 7.964 < 0.001 

 
 
 25.305 3.123 8.104 < 0.001 

 
 
 21.360 2.964 7.207 < 0.001 

 
 
 9.630 2.459 3.917 < 0.001 

 
 
 4.197 1.787 2.349 0.019 

 
  

 7.591 2.055 3.694 < 0.001 

 
  

 12.783 2.443 5.233 < 0.001 

 
  

 16.193 2.867 5.648 < 0.001 

 Observed and fitted values for (4.1) are shown in Figure 7. 

 

Figure 7: Observed and fitted values for (4.1) 
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 The model does seem to capture the overall trend of the temperature anomalies, though it 

looks like the model underestimates observed values for the first few years of the record. A 

residual plot for (4.1) is shown in Figure 7. A reference line at 0 is included. 

 

Figure 8: Residuals of (4.1) 

 Ideally, residuals will be evenly scattered around 0. As seen in Figure 7, the model tends 

to underestimate in the first few years of the record. This pattern is also observable in Figure 8. 

Further, it appears the residuals follow a slight U-shape. The U-shape suggests that the linear fit 

may not be adequate. To address this issue, a quadratic term was added to the model:  

                
                                                       

    
 
                                                   

   
  
    

  
    (      )         . 

(4.2) 

 Here, the interpretation for   is not as simple as the interpretations for the other 

parameters. However, note that the index, (nT+ v), is essentially a function of time. Thus, (nT + 

v)
2
 could be considered an increasing function of time. To a certain extent, we can say   is 
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capturing the effect of time. Parameter estimates, standard error estimates, test statistics, and 

significance levels for (4.2) are shown in Table 5.  

Table 5: Model Results for (4.2) 

Parameter Estimate Standard error Test statistic P-value 

 
 
 -4476.958 291.578 -15.354 < 0.001 

 
 
 (Darwin) 0.579 0.059 9.774 < 0.001 

 
 
 (Iceland) 0.009 0.007 1.377 0.169 

 
 
 (Azores) 0.022 0.008 2.686 0.007 

 
 
 (NCP) 0.146 0.034 4.224 < 0.001 

 
 
 (CO2) 0.153 0.141 1.087 0.278 

 
 
 (SSN) 0.030 0.009 3.161 0.002 

 
 
 22.830 3.085 7.400 < 0.001 

 
 
 23.831 3.091 7.710 < 0.001 

 
 
 19.760 2.938 6.725 < 0.001 

 
 
 8.723 2.429 3.591 < 0.001 

 
 
 1.333 1.865 0.714 0.475 

 
  

 3.882 2.177 1.783 0.075 

 
  

 9.544 2.506 3.809 < 0.001 

 
  

 13.505 2.883 4.685 < 0.001 

  1.164e-04 2.524e-05 4.612 < 0.001 

 Note that after introducing the quadratic piece to the model, several variables are no 

longer significant. Further, the test statistic for CO2 decreased from 33.528 to 1.087 (while its 

standard error increased from 0.024 to 0.141). This is likely due to multicollinearity, as CO2 and 

  had VIFs of 58.59 and 55.32 respectively. These two variables may essentially be measuring 

the same thing. After removing the insignificant parameters and multicollinearity from (4.2), the 

model reduced to: 
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(4.3) 

 This model produced an RMSE of 11.33 and an R
2
 value of 0.82, suggesting that it can 

account for about 82% of the variation in the temperature anomalies. Parameter estimates, 

standard error estimates, test statistics, and significance levels are shown in Table 6. Note that for 

(4.3), the matrix D′D (where D is the design matrix) was found to be singular. 

Table 6: Model Results for (4.3) 

Parameter Estimate Standard error Test statistic P-value 

 
 
 -4431.779 279.194 -15.873 < 0.001 

 
 
 (Darwin) 0.595 0.055 10.884 < 0.001 

 
 
 (Azores) 0.018 0.008 2.354 0.019 

 
 
 (NCP) 0.143 0.034 4.188 < 0.001 

 
 
 (SSN) 0.033 0.009 3.510 < 0.001 

 
 
 19.412 2.144 9.055 < 0.001 

 
 
 20.220 2.188 9.242 < 0.001 

 
 
 16.202 2.113 7.668 < 0.001 

 
 
 5.818 2.021 2.879 0.004 

 
  

 6.542 1.788 3.659 < 0.001 

 
  

 9.924 1.942 5.109 < 0.001 

  1.455e-04 4.160e-06 34.973 < 0.001 

 Observed and fitted values for this model are shown in Figure 9. 
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Figure 9: Observed and fitted values for (4.3) 

 Like in (4.1), this model seems to capture the overall trend of the temperature anomalies 

well, and we see less variation in the fitted values. Residuals for (4.3) are shown in Figure 10. 

 

Figure 10: Residuals of (4.3) 
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 Including the quadratic term did dampen the U-shape, though it doesn’t look like the 

trend has entirely been removed. This leaves us at a bit of a crossroads – continue with (4.1) or 

continue with (4.3)? By RMSE (11.39, 11.33) and R
2
 (0.81, 0.82), the models are very similar. 

The main difference between the two is that (4.1) includes CO2 and (4.3) includes the quadratic 

parameter,  , which is not easy to interpret and which might be masking the effect of CO2. As far 

as climate goes, (4.1) certainly makes more sense than (4.3), as it is not safe to assume the 

quadratic behavior will extend beyond the range of the data. Both models have some 

deficiencies, but we will continue with (4.1). Turning our heads to positive serial correlation, an 

ACF plot of the residuals of (4.1) is shown in Figure 11. 

 

Figure 11: ACF plot of the residuals for (4.1) 

 By chance, a small amount of correlation in the residuals should be expected. However, 

the degree of correlation does not appear insignificant. Using the residuals from (4.1), the 

Durbin-Watson test returns a p-value of essentially 0, confirming that autocorrelation is present. 



 

25 

Thus, we will need to derive accurate standard errors using (3.3). The process of deriving 

accurate standard errors warrants a section of its own.  

4.2 Deriving Accurate Standard Errors 

In this section, we will consider seasonally standardized residuals of: 

 

               
                                                       

    
 
                                                   

   
  
    

  
        . 

(4.1) 

 

 

 

 

 

 

 For simplicity, let {St} represent seasonally standardized residuals of (4.1) with t = (1, 2, 

…,    ). As noted earlier, we will fit an ARMA model to {St} in order to derive accurate 

standard errors. Using AICc as the selection criterion, a zero mean ARMA(1,1) model was 

deemed the best fit for {St}. Indeed, AIC and BIC also selected an ARMA(1,1) model. A zero 

mean ARMA(1,1) model takes the general form: 

        (    )              .  

 The estimates for  
 
 and    are 0.78 and -0.45, respectively. The error terms,   , are 

assumed to be normally distributed with a mean of zero and a constant variance,   . An estimate 

for this variance is 0.14. To calculate an estimate for  , we need to examine the autocovariance 

structure of this ARMA(1,1) model. Before doing so, we must verify that the residuals of this 

model are without trend. A residual plot is shown in Figure 12. 
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Figure 12: Residuals of ARMA(1,1) fit to {St} 

 For the most part, the residuals look evenly scattered around 0. There does seem to be a 

pinch in the plot around 1992. The ACF plot shows a few significant spikes but with over 600 

lags, we should expect to see a small number of spikes (Figure 13).  

 

Figure 13: ACF plot of the residuals for the ARMA(1,1) fit to {St} 
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 Using 12, 24, 36, and 48 lags, the Ljung-Box test returns p-values of 0.60, 0.64, 0.68, and 

0.53, respectively. Lags of larger multiples of twelve were also looked at and all p-values were 

greater than 0.70. Thus, we have no reason to believe the residuals for this model are not zero 

mean white noise and the autocovariance structure of the model can be used to provide an 

estimate for  . The autocovariance at lag i,     , can be computed via the tacvfARMA function in 

R. Then, using (3.4) and (3.3), accurate standard errors, test statistics, and significance levels can 

be calculated for (4.1). Results are shown in Table 7. 

Table 7: Updated Model Results for (4.1) 

Parameter Estimate Standard error Test statistic P-value 

 
 
 -4338.089 468.069 -9.268 < 0.001 

 
 
 (Darwin) 0.498 0.082 6.069 < 0.001 

 
 
 (Iceland) 0.014 0.007 2.149 0.032 

 
 
 (Azores) 0.025 0.008 3.084 0.002 

 
 
 (NCP) 0.160 0.038 4.208 < 0.001 

 
 
 (CO2) 0.795 0.046 17.220 < 0.001 

 
 
 (SSN) 0.025 0.019 1.316 0.188 

 
 
 24.731 3.234 7.646 < 0.001 

 
 
 25.305 3.201 7.904 < 0.001 

 
 
 21.360 2.810 7.601 < 0.001 

 
 
 9.630 2.110 4.565 < 0.001 

 
 
 4.197 1.505 2.789 0.005 

 
  

 7.591 1.866 4.067 < 0.001 

 
  

 12.783 2.334 5.474 < 0.001 

 
  

 16.193 2.847 5.688 < 0.001 

 Note that the standard errors for the monthly intercepts actually decreased. This likely 

means that multicollinearity was inflating the standard errors shown in Table 4. Though (4.1) is 

without severe multicollinearity, VIFs for four of the monthly intercepts were greater than three, 

indicating some multicollinearity was present. All variables except for SSN remained statistically 
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significant. The model was refit without SSN and the process of calculating accurate standard 

errors was repeated until all remaining variables were significant. At each stage, an ARMA(1,1) 

was deemed the best fit for the seasonally standardized residuals of the model and the residuals 

of the ARMA(1,1) model passed as white noise. The final model is: 
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(4.1.2) 

 This model produced an RMSE of 11.51 and an R
2
 of 0.81. These values are very close to 

those produced by both (4.1) and (4.3). Model results are shown in Table 8. 

Table 8: Model Results for (4.1.2) 

Parameter Estimate Standard error Test statistic P-value 

 
 
 -4338.089 476.484 -9.151 < 0.001 

 
 
 (Darwin) 0.498 0.085 6.087 < 0.001 

 
 
 (Azores) 0.025 0.008 2.671 0.008 

 
 
 (NCP) 0.160 0.039 4.207 < 0.001 

 
 
 (CO2) 0.795 0.047 16.709 < 0.001 

 
 
 24.731 2.411 8.308 < 0.001 

 
 
 25.305 2.434 8.492 < 0.001 

 
 
 21.360 2.095 8.015 < 0.001 

 
 
 9.630 1.837 3.507 < 0.001 

 
  

 7.591 1.467 3.243 0.001 

 
  

 12.783 1.670 5.292 < 0.001 

 
  

 16.193 1.979 5.849 < 0.001 

 Again, note that the standard error estimates for the monthly intercepts decreased. This 

can likely be explained by the removal of minor multicollinearity. In (4.1), VIFs for most of the 

monthly intercepts were greater than two. In (4.1.2), VIFs for all monthly intercepts included 

were less than two. With a decrease in VIFs (and therefore multicollinearity), we would expect 

the standard errors to decrease. It is also worth noting that the monthly intercepts are not 
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statistically significant when the model is void of any other independent variables. This may 

mean that these terms are handling some of the seasonality of the other variables considered. 

Recall that these other variables have not been seasonally adjusted. 

 Observed and fitted values for (4.1.2) are shown in Figure 14. 

 

Figure 14: Observed and fitted values for (4.1.2) 

 As noted, this model does have its deficiencies (mainly, it looks like the model 

underestimates temperature anomalies early in the record and then again from 2002 – 2006). 

However, this model is preferred to (4.3) because it makes more sense from a climate 

perspective – it includes atmospheric CO2 concentrations instead of a quadratic function of time 

with a murky interpretation. The quadratic behavior may not be expected to extend beyond the 

range of the data, but a continued relationship between atmospheric CO2 concentrations and 

global temperature anomalies does not seem far-fetched. 
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CHAPTER 5 

DISCUSSION 

For reference, the final model is shown below: 
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(4.1.2) 

  This model returned an R
2
 value of 0.81, suggesting that it can account for 81% of the 

variation in the global temperature anomaly data set. This model was selected over a model that 

included a quadratic function of time. It seems unlikely that time, by itself, would have such a 

statistically significant impact on temperature trends. If that were the case, then it stands to 

reason that our planet would be very, very hot by now (given its age). What’s more likely is that 

time is capturing the effect of some other variable – maybe CO2 concentrations, maybe 

atmospheric concentrations of another greenhouse gas (methane, nitrous oxide, water vapor, or 

ozone), or maybe something else not yet considered or understood.  

 The parameter estimates for Darwin, Azores, and NCP were all positive, suggesting that 

increases in the average 500mb heights at these locations are associated with increases in global 

temperatures. The average 500mb heights at each of these locations have been relatively stable 

since 1958, so it seems these variables can explain month to month or year to year variations in 

the temperature anomalies more than they can explain any long term trends.  

 The parameter estimate for CO2 is relatively large (0.795), as is the test statistic (16.709). 

Unlike the other variables considered, atmospheric CO2 concentrations have consistently and 

steadily increased since the late 1950s.  Because atmospheric CO2 concentrations have 
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consistently increased, it seems likely that they can do more than just explain month to month or 

year to year variations in the global temperature anomalies. That is, the steady increase in 

atmospheric CO2 concentrations could explain the long term trend observed in the temperature 

anomalies.  

 It is worth noting that a change point has been detected in the CO2 series around 1991, 

though this change point was not taken into consideration in this research (Gallagher, Lund, and 

Robbins, 2014). The change point is due to the eruption of Mount Pinatubo (located in the 

Philippines) in June of 1991. This eruption was one of the largest eruptions of the 20
th

 century.  

 As discussed in the introduction, the trend in global temperatures appears to have slowed 

over the past fifteen years. Some claim this is evidence that global warming has stopped entirely. 

The models considered in this paper do not support this claim. Over the past fifteen years, 

atmospheric CO2 concentrations have increased by more than 25 parts per million. If increases in 

CO2 concentrations are associated with increases in global temperatures (and we assert that they 

are), then it becomes difficult to argue that warming stopped more than a decade ago. That is, the 

evidence considered herein does not indicate that warming has stopped.  
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