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ABSTRACT 

 With the advent of the Semantic Web, a huge number of Resource Description 

Framework (RDF) documents are being published into the Linked Open Data (LOD) 

Cloud. Some of these documents contain statistical data that encompasses information 

from various industries such as government, healthcare, schools, science, etc. Analysis of 

such datasets gives us valuable insights on the current socio-economic status and helps us 

in making decisions to improve the existing conditions. Our system offers support for 

executing statistical queries against RDF data. These queries are implemented as part of 

the SPARQL query language according to the SPARQL 1.1 specification. A library of 

functions is implemented, which can be added to user queries in order to incorporate 

statistical analysis on RDF data. Also, this library is deployed to Apache Jena Fuseki, 

which is a SPARQL server and accepts queries through a SPARQL endpoint. This adds to 

the usability of SPARQL-R library.  
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CHAPTER 1 

INTRODUCTION 

 This thesis describes the design and implementation of SPARQL-R, a system for 

executing statistical queries from SPARQL using R. In this chapter, we discuss the 

significance of statistical analysis and how it is the basis for decision making for many 

organizations. Also, we explain how we can apply statistical analysis techniques for 

Resource Description Framework (RDF) data and give a brief overview of our approach in 

analyzing statistical data.  

1.1 Introduction 

 With the advent of Semantic Web, increasing amount of data is being published as 

RDF data. Governments, various organizations and companies are offering their data 

through public end-points so that others can reuse it and produce valuable insights. These 

insights can further be used in solving many problems and in decision making to improve 

socio-economic conditions. Much of this data has statistical content that is devoid of proper 

analytical applications. As such, there is a danger of pushing data into a black hole. 

         In response to this potential threat, research community came up with various 

applications that help with the analysis of RDF datasets using various frameworks that 

work with SPARQL endpoints and also on Linked Open Data. These include processing, 

visualization, analytics and discovery of information in RDF data. While some applications 

concentrate on data collection and data publication, others concentrate on analysis and 
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visualization of such data. Additionally, there are standards that describe and publish 

statistical data namely RDF Data Cube vocabulary [8]. 

         A number of these applications are based on the idea of querying the data from an 

endpoint and further processing the result set in a way specific to the application. So, as 

part of these applications, SPARQL queries are used to query the RDF data through an 

endpoint or the Linked Open Data. Subsequently, the results set is loaded into a target 

environment which has the analytical processing capabilities and further analysis is done 

there. In addition to this process, various categories of other applications are there, and a 

predominant category is visualization tools. 

         The computation environments utilize statistical analysis capabilities, and a few of 

such environments include R, SAS and Matlab. Once the analysis is done, the resultant 

insights can be further utilized by the users. 

However, the data size could be large and the process of taking the data to the 

computation environment is time consuming and ineffective. In addition to this, statistical 

analysis is not offered natively through SPARQL queries. Users always have to rely on 

other external frameworks to get insights into their data. There are a variety of such 

applications, one of which is LODVader [11]. 

Also, there are some domain or application specific querying capabilities 

implemented as part of SPARQL that help users fire application specific queries. These 

include Jena Full Text Search, Jena-jdbc, Spatial Searches with SPARQL, etc. Our 

implementation of a statistical function library for Apache Jena is based on these ideas of 

adding application specific querying capabilities. 
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1.2 Contribution 

Our work on SPARQL-R is to offer statistical queries as part of SPARQL so that 

users can execute these queries directly through SPARQL endpoints and get the results 

displayed on the console. In order to implement SPARQL-R, we have utilized SPARQL’s 

support for custom aggregates and user-defined functions. The main notion behind 

SPARQL-R is to leverage R’s out of the box statistical functions and invoke them through 

SPARQL queries. This allows users to perform statistical analysis on RDF data and retrieve 

valuable insights. 

The statistical functions are offered as a library of SPARQL functions. The library 

is available as a Java jar file, which should be included with the user’s code in order to 

execute SPARQL queries enhanced with statistical analysis. Also, the library is deployed 

in Apache Jena Fuseki server which is a Web application that receives SPARQL queries 

through a REST endpoint.  

The rest of this document is organized as follows: Chapter 2 provides a brief 

overview of the Semantic Web, RDF model, SPARQL, Query Processing Engines and the 

R system. Chapter 3 discusses work in the area of statistical analysis of RDF data and 

various application specific libraries implemented as part of SPARQL. Chapter 4 discusses 

our idea and solution to offer statistical queries using SPARQL. Chapter 5 explains the 

approach we took and the implementation details. Chapter 6 presents the application that 

we developed that is helpful in visualization of data using our statistical queries. Chapter 7 

provides the conclusion and future work. 
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CHAPTER 2 

BACKGROUND 

2.1 Semantic Web 

Semantic Web is a collection of standards that extends the current web and gives 

well defined meaning to the web documents so that applications can work in co-operation 

with each other [1]. As per Semantic Web standards, the data format used in Semantic Web 

technologies is the Resource Description Framework (RDF). This leads to what is called 

the Web of Data where web documents are interlinked, and in-turn support interaction and 

traversal through various documents. The documents comprise of machine readable 

metadata that denotes how the current document is interlinked to other documents. Stated 

in other words, Semantic Web is defined as a web of data that can be processed by machines 

[5]. Various applications are implemented using Semantic Web standards. The purpose of 

these applications is to process the data available on the web using smart agents or 

machines without much human interaction. Some of these applications include DBpedia, 

Friend of A Friend (FOAF), Simple Knowledge Organization System (SKOS) and many 

others.  

2.2 Resource Description Framework (RDF) 

RDF is part of World Wide Web Consortium (W3C) specifications for data 

modeling [6]. This in general is used for modeling of information. It is viewed as a data 

model that facilitates sharing data through the web. It does not have a schema and follows 

a graph-structure. The idea of RDF is to make statements about resources. Resources in 
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Semantic Web are represented using “Uniform Resource Identifier” URI notation. URI is 

a string of characters used to identify a resource. URIs uniquely identify a resource and can 

refer to people, places and any physical or logical entity in the real world. Using RDF, we 

make statements about the entities represented by the URIs. Each statement consists of a 

subject, a predicate and an object. The subject refers to the entity about which we are 

making the statement. The predicate represents the property or attribute of the subject and 

using the object we specify the value of the given property. Predicate can indicate 

relationship between a subject and a predicate as well. Subjects and predicates are 

represented using URIs whereas an object can be either an URI or a literal. The entire RDF 

document is comprised of these statements which are also called triples based on the 

subject-predicate-object format. 

RDF data can be thought of as a directed labelled graph, and the direction is always 

from subjects to objects and predicates are edge labels. Such data is stored in tables in a 

three-column format. These are called triple store databases. Some of these frequently used 

RDF storage systems include OpenLink Virtuoso, Apache Jena TDB and AllegroGraph. 

         The RDF data is represented using various serialization formats. This enables 

storage, transmission and reconstruction of data effectively. Various serialization formats 

are in use today including Turtle, N-Triples, N-Quads, JSON-LD, N3 and RDF/XML. This 

RDF data can be stored in databases and many organizations are offering it as a service 

through application specific end points. This enables users to utilize the content in RDF 

and gain valuable insights from the data.  
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2.3 SPARQL Protocol and RDF Query Language (SPARQL) 

SPARQL [4] is a query language that can be used to query RDF data in the same 

way SQL is used to query relational data. This is specified as part of Semantic Web 

standards by W3C. The purpose of SPARQL is to retrieve and manage data stored as RDF. 

SPARQL queries are run against end-points that are offered by various data providers or 

by third party applications. 

         A SPARQL query is comprised of basic graph pattern which is again a set of triples. 

The triples in a SPARQL query and those in a RDF document are different in that SPARQL 

triples may consist of variables as well. All the triples in a given RDF document are 

evaluated against the specified triple pattern or graph pattern in the query and all the triples 

matching the query pattern are added to the result set and returned as results.  

A SPARQL query is comprised of the following constructs: 

1. Prefix declarations – to abbreviate the URIs. 

2. Dataset definition – to specify what RDF graphs are being queried 

3. Result clause – to specify what information should be returned from the query 

4. Query pattern – to specify what to query in the underlying dataset 

5. Query modifiers – to specify ordering, grouping qualifiers 
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# prefix declarations 

PREFIX foo: <http://example.com/resources/> 

... 

# dataset definition 

FROM ... 

# result clause 

SELECT ... 

# query pattern 

WHERE { 

   ... 

} 

# query modifiers 

ORDER BY ... 

 

 

 

SPARQL has various query forms that are illustrated with some examples below: 

1. Select query: Select query is used to retrieve values from the RDF document, and the 

result is represented in a tabular format. 

Query: Find all the people in Tim-Berners-Lee’s FOAF file that has names and email 

addresses [19]. 

PREFIX foaf:  <http://xmlns.com/foaf/0.1/> 

SELECT * 

WHERE { 

    ?person foaf:name ?name . 

    ?person foaf:mbox ?email . 

}   

 

2. Construct query: Construct query is used to extract information from an RDF document 

[20]. Additionally, it also converts the result set into a valid RDF document or graph.  

Query: Creates triples based on who is whose grandfather. 

PREFIX : <http://www.snee.com/ns/demo#> 

CONSTRUCT { ?p :hasGrandfather ?g . } 

WHERE {?p   :hasParent ?parent . 

    ?parent :hasParent ?g . 
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    ?g      :gender :male . 

         } 

 

 

3. Ask Query: This set of queries gives a Yes/No answer [21]. It tests whether a query 

pattern has a solution. 

PREFIX foaf: <http://xmlns.com/foaf/0.1/> 

ASK  { ?x foaf:name  "Alice" ; 

             foaf:mbox  <mailto:alice@work.example> } 

 

4. Describe Query: The Describe query is used to extract an RDF graph from the SPARQL 

endpoints [18]. It returns information about a resource. 

Query: Describe resources that have mbox value as alice@org 

PREFIX foaf:   <http://xmlns.com/foaf/0.1/> 

DESCRIBE ?x 

WHERE  

{  

?x foaf:mbox <mailto:alice@org>  

} 

 

  

2.4 SPARQL Query Processing and ARQ 

Query processing involves various phases before we get the final result. The given 

query is read and parsed by the engine. From the grammar, an abstract syntax tree is 

generated. But if the query is simple then an explicit syntax tree may not be generated. 

Then an operator graph with logical operators is generated. Optimizations are applied using 

the operator graph and a final query plan is generated. Code is generated for the selected 

query plan and execution is performed. Finally, the result is produced. 

         As there are many triple stores implemented, so there are many query processing 

engines and each of them has its own capabilities and application specific implementations 
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added. Some of the prominent query processing engines include ARQ, Fuseki, OpenLink 

Virtuoso, Sesame, Stardog, Bigdata (R) etc., [3]. 

         In our work, we are concentrating on ARQ which is supported by Apache Jena for 

processing SPARQL queries in Jena. 

2.5 ARQ: 

ARQ is developed in order to support SPARQL query processing in Apache Jena. 

ARQ processes SPARQL queries in a way similar to relational query processing where in 

the parsing engine parses the query, generates grammar, applies optimization rules, 

generates code and then executes it to produce the results. After the query is parsed, the 

SPARQL algebra for the query is generated. A high-level optimization is applied by 

introducing new operators that optimize the results. At a later stage low level storage 

specific optimization is applied. 

         ARQ at present supports SPARQL 1.1 standards and as part of this, ARQ 

implementation supports extension of SPARQL functions and capabilities. It has support 

for extension mechanisms that enable us to write custom expression functions and property 

functions. Also, ARQ gives us the facility to introduce our own algebra operators. These 

features of ARQ [8] enables users to implement application and domain specific queries. 

Below is a list of features that ARQ gives its users to extend SPARQL’s querying 

capabilities. 

1. SPARQL/Update 

2. Extension of SPARQL Algebra 

3. Support for custom filter functions 

4. Property functions for custom processing of semantic relationships 
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5. Custom aggregates 

6. Support for federated queries 

7. Support for extension to other storage systems 

8. Client-support for remote access to any SPARQL endpoint 

9. Support to extend ARQ query execution 

2.6 R Programming language 

R is one of the statistical analysis software in popularity like SAS [22], SPSS [23], 

etc. When it comes to analytics, R has seen a phenomenal rise in the recent years. R is a 

software suite that facilitates data manipulation, calculation and graphical display of 

various results. It is efficient when it comes to data handling and graphical facilities. R is 

considered to be a statistics system because of its heavy usage when it comes to statistics. 

Its inbuilt data structures such as vectors, matrices, factors, lists and data-frames support 

analysis of data effectively. 
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CHAPTER 3 

RELATED WORK 

Using Apache Jena ARQ’s extension capabilities, various researchers have 

implemented application specific libraries. Also, many frameworks are built to enable users 

to perform analytics on RDF data. This allows users to utilize information in RDF content 

and prompts more users to follow semantic web standards to publish their content. This 

enables web of data to increase, thus, allowing more data to be interlinked.   

3.1 Jena Full Text Search 

Text Search is implemented using ARQ’s support for extension functions [13]. The 

extension functions utilize search capabilities provided by Apache Lucene or Elasticsearch. 

Consequently, the search mechanism is provided directly with SPARQL queries. The idea 

behind this is to index the documents for quick and easy retrieval. Each document is 

considered to be a collection of fields. The values in these fields are indexed using Lucene. 

When searches match the contents of a given field, a reference to the document containing 

that field is returned. In terms of RDF, each document is associated with a triple such that 

the predicate denotes the field in the document and the object denotes the value of the field. 

When a search is made, the subject is returned that satisfies the matching predicate field 

and object value.  

Example: 

PREFIX   ex: <http://www.example.org/resources#> 

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> 

PREFIX text: <http://jena.apache.org/text#> 
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SELECT ?s ?lbl 

WHERE { 

 ?s a ex:Product ; 

    text:query (rdfs:label 'printer') ; 

    rdfs:label ?lbl 

} 

 

Explanation of the query: The search examines all the triples with predicate rdfs:label and 

prepares a text query for value ‘printer’ on the rdfs:label property. It retrieves the complete 

label for each match.  

3.2 SPARQL Update 

Support for update operations has been added starting with SPARQL 1.1. SPARQL 

Update allows us to modify the graph store. Using the update queries, we can insert triples 

into the RDF graph, delete triples from a graph, load an RDF graph into store, clear an 

RDF graph from graph store, copy, move or add content from one RDF graph to another. 

Example: 

PREFIX dc: <http://purl.org/dc/elements/1.1/> 

INSERT { <http://example/egbook> dc:title  "This is an example title" } WHERE {} 

 

Explanation of the query: This query inserts a triple with subject 

“<http://example/egbook>”, predicate “dc:title” and object with literal value as “This is an 

example title”.  

3.3 Extension of SPARQL Algebra 

SPARQL algebra specifies the semantics for SPARQL. By extending the SPARQL 

algebra, we can add new operators. These operators can be inserted into the query 

expression and evaluated using a custom query engine. With custom query engines, we can 

specify which high-level or low-level optimizations we can apply on the given query. Thus, 



 

13 

SPARQL allows introduction of new operators and query optimization to be done as per 

user needs, using algebra extension and the capabilities of custom query engine.  

3.4 Custom Functions 

The ARQ query engine can be extended using our own functions. These include 

extensions of property functions, expression functions and describe handlers. Property 

functions enable additional filtering on triple pattern matching. Full Text Search in Apache 

Jena is implemented by extending the Property functions. 

Example: 

select ?x, ?y 

where { 

?x someProp1 SomeOb1 

?y someProp2 SomeOb2 

?x someLoc:propFunc ?y 

} 

 

 

Explanation of the query: The property function “propFunc” is used to apply filtering on 

the retrieved subjects, ?x and ?y in the first two lines of the “where” clause.  

SPARQL supports extensions of expression functions, in addition to property 

functions. This enables users to query domain-specific data. Expression functions allow 

additional operations to be performed with filter, bind and select operations. We can add 

our own function library to Apache Jena, and examples include Leviathan Function 

Library, custom aggregates and filter functions. Leviathan function library supports queries 

with mathematical operators such as sin, cos, cosec, cot, tan, log, ln, pow etc. 

Example: 

SELECT (<http://example/countLiterals>(?o) AS ?x) {?s ?p ?o} 
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Explanation of the query: This query uses the user defined function that counts the 

number of objects that are literals. 

3.5 Federated Queries 

We may encounter scenarios where querying should be done across multiple data 

sources. These data sources are distributed over multiple endpoints. SPARQL 1.1 supports 

queries that merge data which may be distributed, and we query against multiple datasets 

using Federated queries. 

Example 

The shown below query uses a second RDF graph “http://example.org/myfoaf.rdf” in 

addition to the default document [24]. 

PREFIX foaf:   <http://xmlns.com/foaf/0.1/> 

SELECT ?name 

FROM <http://example.org/myfoaf.rdf> 

WHERE 

{ 

  <http://example.org/myfoaf/I> foaf:knows ?person . 

  SERVICE <http://people.example.org/sparql> { 

 ?person foaf:name ?name . } 

} 

 

Explanation of the query: This federated query uses both foaf rdf document and the rdf 

document that comes from the end-point http://people.example.org/sparql  to answer the 

request to retrieve the names of all persons known by the resource 

“http://example.org/myfoaf/I”. 

3.6 Spatial SPARQL queries 

This is yet another extension of Apache Jena ARQ that allows users to perform 

simple spatial searches [11]. In such scenarios, we need to work with a spatial dataset, and 

RDF data is supported with Geo data for indexing and querying. Two such RDF 

http://people.example.org/sparql
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representations of Geo data are available: Latitude/Longitude format and “Well Known 

Text Literal” format. This geo data is loaded in spatial data set and queries are executed. 

Some sample queries include finding nearby places within a circle, within a box, north 

locations, south locations, west and east locations etc. 

Example: 

PREFIX spatial: <http://jena.apache.org/spatial#> 

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> 

  

SELECT ?placeName 

{ 

 ?place spatial:nearby (51.46 2.6 10 'km') . 

 ?place rdfs:label ?placeName 

} 

 

Explanation of the query: This query is to find the nearby places, within a 10km radius of 

the given center, for all the subjects.   

Given various application specific functions till now, SPARQL does not stand out 

in terms of post processing of resultant data. In various applications, the results from the 

SPARQL queries are extracted and further processed using various programming 

environments. This is done by converting the result set from SPARQL to native data 

structures in Java, Python, R, etc for any additional post-processing. An example 

application that follows this process is RDFReactor [7]. In this application, RDF data is 

packed into Java objects, and the data in the objects is queried using Java methods.  

There are also applications that help with analytics by implementing a separate 

framework where in RDF data is fetched from Linked Open Data cloud as a stream, and is 

given for analytics and visualization of data through an interface. LODVader (LOD 

Visualization, Analytics and DiscovERY in Real-time) is one such application [11]. Using 
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this application, one can search, download and create indexes for data in LOD cloud. 

Further the users can analyze the data in terms of page ranking, find similarity measures 

and get top-N links between two datasets etc.  

3.7 RDF Data Cube Vocabulary 

RDF Data cube vocabulary is a Semantic Web standard that allows users to publish 

multi-dimensional data and also to link it to other related data sets [8]. It has become a core 

foundation that supports publication of statistical data and other multi-dimensional data 

sets. The cube model used here can be used for other data sets and OLAP cubes as well. 

The cube model is comprised of dimensions, attributes and measures, which are 

collectively called components. The dimension components identify the observations and 

these dimensions are collections of related attributes. For example, a product dimension 

has attributes product name, product id, product category, product quality, etc. The measure 

represents the aggregation of numeric values that are being observed. Attributes specify 

the variable for which observation is being made and allow us to interpret the observed 

value. 

Below is a sample definition of a datacube which consists of dimensions, measures and 

attributes. 

eg:dsd-le a qb:DataStructureDefinition; 

 # The dimensions 

 qb:component [ qb:dimension eg:refArea;      qb:order 1 ]; 

 qb:component [ qb:dimension eg:refPeriod;    qb:order 2 ]; 

 qb:component [ qb:dimension sdmx-dimension:sex; qb:order 3 ]; 

 # The measure(s) 

 qb:component [ qb:measure eg:lifeExpectancy]; 

 # The attributes 

 qb:component [ qb:attribute sdmx-attribute:unitMeasure; 

                qb:componentRequired "true"^^xsd:boolean; 

                qb:componentAttachment qb:DataSet; ] . 
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 3.8 OpenCube Toolkit 

OpenCube Toolkit project offers a Software Development Kit that allows users to 

use the linked data cubes and build their own custom applications [15]. It has support to 

build projects under various use-cases. Also, this project supports effective utilization of 

linked data cubes. It solves the users’ problems to expose statistical data as linked open 

data in a standard way. Also, users can apply advanced visualization techniques and 

perform complex statistical calculations. 

The toolkit offers a browser that enables users to specify the attributes for 

construction of data cubes and further allows roll-up and drill-down operations. These 

cubes define an aggregation set. One of the interesting features of this toolkit is that it 

facilitates the usage of R within the framework. R is run as a web service using “Rserve” 

package in R. An R script is executed as part of this and generates a data frame which in 

turn is converted to RDF. 

3.9 Programmable Analytics for Linked Open Data 

 This is an initiative towards a programmable web of Linked Open Data. Huge 

amount of RDF data is available as part of Linked Open Data (LOD) cloud. This project is 

about integrating computations on linked data with the statistical programming platform R 

[9].  R has a package named “SPARQL” which is helpful in querying RDF data through 

SPARQL endpoints. In this work, RDF resources are mapped to R variables. An RDF 

instance data is converted to R dataframe. Further more, the native functions in R are 

applied on RDF content loaded in R environment. 
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CHAPTER 4 

SPARQL-R EXTENSIBILITY MECHANISMS 

4.1 Motivation 

In the existing implementations of the SPARQL query processors and various 

applications implemented on top of RDF modeling, there is not much support in terms of 

functions that natively facilitate analytical queries. These analytical queries help us to 

process the RDF documents and retrieve some useful insights based on the results from 

SPARQL queries. 

At present, there are various applications to analyze numerical data. SAS, R, and 

Matlab are the most prominent among them. For this, users fire some preliminary SPARQL 

queries, get the result set from SPARQL, then load the result set into the computation 

environment. Users further run the queries using the programming language of their choice, 

using for example R, Python, Matlab, etc. 

Over the past few years, there has been a significant increase in using R for data 

analysis. Also, R has seemingly endless support from the developer community in terms 

of adding new packages that are domain specific. R has various packages that help with 

data analysis. Some of them include mgcv, randomForest, multcomp, caret etc. There are 

few packages namely ‘RRDF’ and ‘SPARQL’ that help with loading of RDF data in R. 

Users work with it by querying locally loaded data or data available through remote end 

points. For this purpose, R’s native data structures (like matrix or data-frame) can be used 

[10]. The RDF file is loaded into R data structures and this data is queried using SPARQL. 
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In addition to SPARQL queries, we can also use R packages to do analytics on RDF data 

and retrieve useful insights. Users can follow a similar approach in environments like SAS 

and Matlab wherein users load the data into native data structures and analyze it using 

locally available functions. 

4.2 Extensions 

In the current work, we analyzed the existing aggregates, expression functions, and 

property functions and worked on extending the ARQ with statistical capabilities. This 

system works in reverse when compared to other analytical platforms wherein we provide 

native support for RDF data analysis using SPARQL queries. This has been implemented 

by using the SPARQL 1.1 support for extensions to the query processing engine in ARQ. 

This system is similar to other extension libraries like jena-jdbc, jena-spatial, and jena-text. 

A function library is developed to facilitate statistical queries on numerical data. 

These statistical queries include mean, median, standard deviation, variance, correlations 

like Pearson, Spearman, Kendall and test statistics such as Z-Test, T-Test and P-Test. 

These statistical functions are offered as aggregate functions and expression 

functions using user-defined functions [14] in SPARQL. These user-defined functions in 

turn use the R library functions and accomplish the given task by retrieving the results from 

R. The ARQ engine is written in Java. So, we are defining our functions in Java. Also, R 

is interoperable with Java, and this is accomplished with third party integration libraries 

like Java-R-Interface (JRI). Our user-defined functions in ARQ call the R methods, which 

invoke the statistical functions in R. These functions take as input the numerical values in 

the given RDF dataset and work on literals and in turn provide us the results as point values. 
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In addition to providing the results on the console, this module is integrated with Apache 

Jena Fuseki which is a rest endpoint for SPARQL queries. Due to this offering, the results 

of statistical queries can also be used as part of web applications. 
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CHAPTER 5 

SPARQL-R IMPLEMENTATION 

         The SPARQL-R system has been implemented in the Java programming language. 

We used Apache Jena and Java-R Integration (JRI) libraries for adding extensions to the 

SPARQL queries. 

5.1 Architecture          

 

 

Figure 1: Architecture of SPARQL-R system. 
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The system is split into two modules. The first module has the implementation for 

SPARQL extension functions for custom aggregates and user defined functions. This 

module is named ‘Jena Extension’. The second module has the classes that executes R 

functions. This module is named ‘R-Integration.’ 

The R-Integration module utilizes JRI (Java-R Interface) library [12] to call and 

execute R functions in Java. The Rengine in JRI library is responsible for allowing us to 

write and execute R functions as Java statements. The reason behind using JRI is that we 

are leveraging the statistical functions available in R for our SPARQL statistical functions 

implemented in Java. This module has various classes and methods written to execute the 

statistical functions namely: mean, median, standard deviation, variance, skewness, z-test, 

t-test, pearson correlation, kendall correlation, and spearman correlation. 

The ‘Jena Extension’ module allows us to execute statistical functions in SPARQL 

queries. Jena Extension does the below tasks: 

1. Read the variables from the user query 

2. Get a list of bindings for query variables 

3. Aggregate the data values bound to the variables 

4. Call the R statistical function 

5. Retrieve the result and prepare it as a node value or RDF result set 

6. Display the results in desired format for the user 

         In addition to writing extension modules, we have enabled the execution of queries 

from console application and Apache Jena Fuseki. Apache Jena Fuseki is a SPARQL server 

that can run as a Java web application, an operating system service or as a standalone 

server.  Fuseki has integration with Transactional Database (TDB) to provide a persistent 
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storage layer. We can upload the datasets to Fuseki and make them available as service 

through a SPARQL endpoint. The whole Fuseki setup allows us to query the datasets 

through rest endpoint.  

 The extensions are built as a jar file and this jar file is deployed to the Fuseki Web 

application. Through this, our extensions work as part of the web application through rest 

endpoint in addition to console-based application.  

5.2 Implementation 

Extensions for statistical functions are implemented using the support for 

extensions in SPARQL 1.1. In our system, we are adding the extensions to Apache Jena 

under two categories: 

1. Custom Aggregates. 

2. User-defined functions. 

Using these extension mechanisms, we have implement statistical functions as a Java 

library. 

5.3 Custom Aggregates 

Custom aggregates allow us to define our own aggregates that work on grouping 

over a single field. Examples include finding a maximum value among the given attribute 

values, finding minimum, etc. Using SPARQL’s ability to implement custom aggregates, 

we implemented the below statistical functions: 

1. Mean 

2. Median 

3. Standard Deviation 

4. Variance 
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5. Skewness 

Even though, the names of these statistical functions are intuitive, a brief description is 

provided on each of these functions.  

Mean:  

For a given dataset, the mean implies the average value. To be specific, it is the 

value given by sum of all the numbers in the dataset divided by the count of the values in 

the dataset. In the field of probability and statistics, mean and expected value can be used 

synonymously. The formula for mean is: 

 𝜇 =
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
 

Here μ denotes mean, n indicates the number of values. A summation of all the values 

divided by the count of the values gives the mean of a given variable in the dataset. 

Median: 

  Median is the value that separates lower half from the higher half when the values 

are ordered in ascending or descending order. It is the middle value in the given dataset. 

Medians are helpful in understanding the distribution of data. This can be done by 

comparing mean and median values. By observing the difference between these values we 

can understand whether the data is left skewed or right skewed. The formula for median is: 

     Median =  ((n + 1)/2)th number in the series where the numbers are 

ordered. Here, n denotes the number of values for the given variable. 

Standard Deviation:  

Standard deviation signifies the amount of deviation of values from the mean of the 

dataset. It indicates how the data is distributed in a given dataset. A low value of standard 
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deviation implies that the values are close to the mean and a high value implies that the 

values are farther from the mean of the dataset. The formula for standard deviation is: 

 s =  √
∑(𝑥−�̅�)2

𝑛−1
 

Here s denotes the standard deviation, n gives the number of values, x is the data value and 

x̅ indicates the mean of the variable in the dataset. 

Variance:  

Variance is the expectation of the deviation from the mean of the dataset. It 

measures how far a value can go from the mean. Mathematically, the variance is the square 

of the standard deviation. 

  ν = s2 

Here v denotes the variance and s denotes the standard deviation of the values. 

Skewness: 

Skewness is a measure of the asymmetry of distribution of data around the mean of 

the dataset. Negative skewness value indicates that more values lie towards left side of the 

mean value. A positive skewness indicates that more values lie towards the right side of 

the mean value. 

5.4 Custom Aggregates Implementation: 

For writing custom aggregates, we use the Accumulator and AccumulatorFactory 

interfaces in Apache Jena to define the rules for accumulating the values over a given 

predicate.  
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Accumulator 

We need to implement the Accumulator interface to define our own logic for 

accumulating the object literals. For this purpose, the following methods of Accumulator 

interface should be implemented: 

1. void accumulate (Binding binding, FunctionEnv functionEnv): The accumulate 

method is used to get the bound value to the given variable in the query. It tests 

whether a variable is bound to some object and if it is bound, we get the value. This 

value is added to a required datastructure (like list) that helps us in preserving the 

value for further calculation. 

2. NodeValue getValue(): The getValue method helps us in retrieving the final result 

as RDF NodeValue. Inside this method we can add the logic for calculating the 

required statistical function over all the values that are accumulated in the 

accumulate method. It is here that we call the methods of R classes to calculate the 

desired R statistical function. 

Below is the sample code that shows the logic to create an accumulator. 

static class MeanAccumulator implements Accumulator{ 

   double meanValue = 0; 

   private AggCustom aggCustom; 

 

   MeanAccumulator(AggCustom aggCustom){ 

       this.aggCustom = aggCustom; 

   } 

 

   @Override 

   public void accumulate(Binding binding, FunctionEnv functionEnv) { 

       ExprList exprList = aggCustom.getExprList(); 
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       for (Expr expr : 

               exprList) { 

           try{ 

               NodeValue nv = expr.eval(binding, functionEnv); 

               if(nv.isLiteral()){ 

                   arrayList.add(Double.parseDouble(nv.asUnquotedString())); 

               } 

           }catch (ExprEvalException ex) { 

               ex.printStackTrace(); 

           } 

       } 

 

   } 

   @Override 

   public NodeValue getValue() { 

       Mean mean = new Mean(); 

       meanValue = mean.getMean(arrayList); 

       DecimalFormat decimalFormat = new DecimalFormat("#.#####"); 

       double result = Double.parseDouble(decimalFormat.format(meanValue)); 

       return NodeValue.makeDecimal(result); 

   } 

} 

 

Below is the sample code that calculates the mean values using the R engine. 

public double getMean(ArrayList<Double> list){ 

   Rengine rengine = Rengine.getMainEngine(); 

   if(rengine == null){ 

       rengine = new Rengine(new String[] {"--no-save"},false,null); 

   } 
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   StringBuilder stringBuilder = new StringBuilder(); 

   stringBuilder.append("c("); 

   for(int i = 0;i<list.size();i++){ 

       stringBuilder.append(Double.toString(list.get(i))); 

       if(i<list.size()-1) 

           stringBuilder.append(","); 

    } 

   stringBuilder.append(")"); 

 

   String jVector = stringBuilder.toString(); 

   rengine.eval("rVector="+jVector); 

   rengine.eval("rMean=mean(rVector,na.rm=TRUE)"); 

   double mean = rengine.eval("rMean").asDouble(); 

   if(rengine != null) 

       rengine.end(); 

   return mean; 

} 

AccumulatorFactory 

AccumulatorFactory is a factory to create accumulators. Once we create our own 

accumulator that implements the Accumulator interface, we need to instantiate our 

accumulator using the createAccumulator method of the AccumulatorFactory interface. 

Below is the code that instantiates the implemented accumulator. 

static AccumulatorFactory myAccumulatorFactory = new AccumulatorFactory() { 

 

   @Override 

   public Accumulator createAccumulator(AggCustom agg, boolean distinct) { 

       return new MeanAccumulator(agg); 

   } 

}; 
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Once we have the factory, we register the factory along with a URI that identifies 

our custom aggregate method with the AggregateRegistry class. This AggregateRegistry 

class is a single global registry of custom aggregates. 

String aggUri = "http://example.org/function#mean" ; 

AggregateRegistry.register(aggUri,myAccumulatorFactory); 

 

Once we have the URI for our user defined aggregate available in the AggregateRegistry, 

we can call the method using this URI. This can be used as part of the SPARQL queries.  

All the statistical functions that rely on aggregation can be implemented using 

Custom Aggregators. There are other set of statistical functions that do not need 

aggregation but take in multiple inputs to give us a result. Such functions are implemented 

using user-defined Functions in Apache Jena. 

5.5 User-Defined Functions   

User defined functions allow us to write our own functions that work along with 

other SPARQL functions. For implementing user defined functions, we can either 

implement the Function interface or extend one of the base classes among FunctionBase, 

FunctionBase0, FunctionBase1, FunctionBase2, FunctionBase3, and FunctionBase4 

depending on the number of arguments that our function takes.  

The following set of statistical functions are identified that can be implemented 

using SPARQL 1.1 extensions for user defined functions.  

1. Correlation functions: 

Pearson correlation, 

Kendall correlation, and 

Spearman correlation.        
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         2.  Test statistic functions 

     One Sample T- test, 

     Two Sample T-test, 

     One Sample Z-test, and 

     Two Sample Z-test.    

Correlation: 

Correlation is a concept that helps us in understanding the relationship between two 

different variables in the given dataset. This measure helps us to understand if there is a 

directly or indirectly proportional relationship and also signifies the strength of the relation. 

Correlation helps us to compare disparate variables in datasets and understand the 

relationship between them. 

         Correlation coefficient is a number that signifies the type of correlation or 

dependence between variables. It gives a measure of the strength and direction of the linear 

relationship between two variables. The value of the coefficient lies between +1 and -1.  

There are three types of correlation coefficients: 

1. Positive correlation: A positive coefficient indicates that as the value of one variable 

increases, so does the value of the second variable. 

2. Negative correlation: A negative value indicates that as the value of one variable 

increases, there is a decrease in the value of the second variable. 

3. None: There is no relationship between the values of the two variables. The second 

variable is unaffected by the increase or decrease of the first variable. Such values are close 

to 0.  

In statistics, we primarily consider or measure three types of correlations: 
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1.  Pearson Correlation, 

2.  Spearman Correlation, and 

3.  Kendall Correlation. 

Pearson Correlation: This is one of the most widely used correlations to measure the 

relationship between variables that are linearly related. Also, the Pearson Correlation is 

unaffected by the linear transformations in the variable values. The value of the coefficient 

is interpreted in different ways depending on the type of dataset. For example, in social-

sciences, the values near 1, such as 0.8, 0.9, are considered as high linear correlation values. 

While measuring physical laws a value of 0.8 may not be considered good enough to state 

a high linear correlation.  

Spearman Correlation: Unlike the Pearson Correlation which considers the data values, 

the Spearman Correlation considers the rank of the data. Ranking is done by putting the 

values of a given variable in order and assigning the numbers to the order. It is a non-

parametric test and the results are distribution free. Instead of measuring a linear 

relationship, the Spearman Correlation helps us in understanding monotonic relations. In 

Spearman Correlation, the calculations are based on the deviations in the data. This test is 

sensitive to error and discrepancies in the data.  

Kendall Correlation: Similar to the Spearman Correlation, the Kendall Correlation also 

considers the ranks of the data. A positive Kendall coefficient signifies that the ranks of 

both variables are increasing whereas negative value signifies that the ranks are inversely 

related. With the Kendall Correlation, calculations are based on concordant and discordant 

pairs of data. Concordant and discordant pairs indicate the distribution of ranks in a dataset. 

A concordant pair is one where a subject or a statistic ranked higher on one observation 
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also ranks higher on the second observation. A discordant pair is one where a statistic 

ranking is higher on one observation ranks lower on the second observation.  

Test Statistics  

Test statistics are used in scenarios where we do hypothesis testing. Such statistics 

help us in deciding whether to accept or reject a null hypothesis. Hypothesis testing allows 

us to test if our assumption based on the observations is true or not. Hypothesis testing is a 

way to figure out if results from a test are valid or repeatable. For example, if someone said 

they had found a new drug that cures cancer, you would want to be sure that it is true. A 

hypothesis test will tell you if it is probably true, or probably not true. 

         While performing a hypothesis test, a dataset with distribution like t-distribution or 

a normal distribution is used. The t-test and the z-test compare statistical measures like 

means of the given inputs and check if they are same or different and allow us to conclude 

on our hypothesis. Also, such tests give us an idea on how significant the difference 

between the statistical measures is.  

An example scenario: 

         A drug company wants to test a new cancer drug. The company tests some people 

by splitting them into two groups. One group is given a placebo pill and the second group 

is given the new drug. The company then checks the life expectancy of two groups. It is 

noticed that the first group shows a life expectancy increased by 5 years while second group 

shows an increase by 6 years. Then it is observed that the drug works. For testing this, test 

statistics namely t-test or z-test are applied to determine if the same experiment is 

repeatable for entire population and the results are as expected. (Example taken from 

http://www.statisticshowto.com/probability-and-statistics/hypothesis-testing/ ) 

http://www.statisticshowto.com/probability-and-statistics/hypothesis-testing/


 

33 

From this scenario, we propose two hypotheses. 

1.  Null Hypothesis: The drug has no effect on the life expectancy. This stated in terms 

of statistics is, the mean life expectancy of the group taking the drug is equal to the mean 

life expectancy of the group that does not consume the drug. 

  H0: µ1 = µ2 

 2.  Alternative Hypothesis: The drug has an effect on the life expectancy. This stated 

in terms of statistics is, the mean life expectancy of the group taking the drug is not equal 

to the mean life expectancy of the group that doesn’t take the drug. 

  Ha: µ1 ≠ µ2 

Our testing should give us an answer if the null hypothesis is true or the alternative 

hypothesis is true. For each of these hypotheses, we test the samples we take and obtain 

probabilities under each category to support our results.  

Below is a description on the test statistic functions. 

Z Test: One of the common measures to test a hypothesis is Z test. A Z test is conducted 

when the sample size is large and the population standard deviation or variance is known. 

Also, the dataset should approximately follow a normal distribution.  

To check whether the dataset follows a normal distribution, we can use a histogram 

plot or Q-Q plot (Quantile-Qunatile plot). The histogram should imitate a bell curve if the 

data follows a normal distribution. In our project, we accept some skewness in the 

distribution of data and we leave it to the statisticians to normalize the data before 

conducting the tests.  
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Figure 2: Histogram distribution of a sample data. This indicates that the data is slightly 

skewed towards the right. However, we consider the data to follow a near normal 

distribution. 

We read the confidence level (c) or significance level (α) and determine the Z value 

from the Z scores table. We accept or reject the null hypothesis based on whether the 

calculated Z score is less than or greater than the required value. Also, the conditions are 

based on whether we are conducting an upper tailed or lower tailed or two-tailed Z test. 

For an upper tailed test, if the calculated z score is greater than the Z score from the table 

(http://www.statisticshowto.com/tables/z-table/), we reject the null hypothesis. For a lower 

tailed test, if the calculated Z score is greater than the Z score from the table, we reject the 

null hypothesis. For a two-tailed test, if the calculated value is greater than the positive Z 

score or less than the negative z scores from the table, we reject the null hypothesis.  

Also, we conduct the Z test with a single sample or two samples to understand the 

differences in a single population or between two populations. 

http://www.statisticshowto.com/tables/z-table/
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T Test: A T test is used for hypothesis testing if our data has certain constraints. The 

constraints are the sample size should be small, i.e., less than 30 and the population 

standard distribution or variance is unknown. Also, the data follows a T-distribution. A T-

distribution curve is highly similar to normal distribution curve with the area under curve 

being slightly fatter and shorter. This implies that the tails are fatter. 

 The analysis based on the results of T score is similar to that of Z score but we use 

a T table (http://www.statisticshowto.com/tables/t-distribution-table/) to fix our threshold 

values. Instead of using just significance level, we use the degrees of freedom (sample size 

minus one) to read and determine the required T scores from the T table. 

5.6 User-Defined Functions Implementation 

 Unlike custom aggregates, for implementing correlations and test statistics we use 

extension functions. Apache Jena provides interfaces and abstract classes to implement or 

override to realize our own custom function evaluation. The classes that we can extend are 

FunctionBase, FunctionBase0, FunctionBase1, FunctionBase2, FunctionBase3, and 

FunctionBase4. The suffix digit indicates the number of arguments that the function takes. 

If we have more than 4 arguments to pass in, we can always extend the FunctionBase class 

and define our own extension class. 

 The FunctionBase family of classes has two methods that can be overridden and 

one abstract method that can be implemented.  

1. checkBuild(String uri, ExprList args): checks whether the number of 

arguments is  as expected. Otherwise it throws a QueryBuildException. 

http://www.statisticshowto.com/tables/t-distribution-table/


 

36 

2. Exec(List<NodeValue> args): checks the number of arguments and converts 

each argument as a separate NodeValue argument to the abstract function 

exec(); 

3. Abstract NodeValue exec(NodeValue v1, NodeValue v2……): This method 

can be overridden by the extending class in order to evaluate the function 

expressions in a desired way by the user. 

Below is the sample code for implementing Pearson Correlation.  

public class PearsonCorrelation extends FunctionBase2{ 

    static {        

FunctionRegistry.get().put("http://example.org/function#pearsoncorr",PearsonCorrelati

on.class); 

    } 

 

    public static void init(){        

FunctionRegistry.get().put("http://example.org/function#pearsoncorr",PearsonCorrelati

on.class); 

    } 

 

    public double getPearsonCorrelation(String input1, String input2){ 

        Correlation correlation = new Correlation(); 

        return correlation.getPearsonCorrelation(input1,input2); 

    } 

 

    @Override 

    public NodeValue exec(NodeValue v1, NodeValue v2) { 

        double pearsonCorrelationVal =  

getPearsonCorrelation(v1.asUnquotedString(),v2.asUnquotedString()); 

        DecimalFormat decimalFormat = new DecimalFormat("#.#####"); 
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        double result = 

Double.parseDouble(decimalFormat.format(pearsonCorrelationVal)); 

        return NodeValue.makeDecimal(result); 

    } 

} 

 

This function tests and retrieves the strength of correlation between two variables. 

So, we pass in two variables to the functions and retrieve the correlation value. In the exec 

method, we are getting the variables bound to data. This data is in turn sent to the R-

Integration module for evaluating results.  

Below is the R code for computing Pearson Correlation value. 

public double getPearsonCorrelation(String input1, String input2){ 

    double correlationValue =0; 

    StringBuilder stringBuilderInput1 = new StringBuilder(); 

    StringBuilder stringBuilderInput2 = new StringBuilder(); 

    String[] inputArr1 = input1.split(","); 

    String[] inputArr2 = input2.split(","); 

    int len = 0; 

    if(inputArr1.length < inputArr2.length) 

        len = inputArr1.length; 

    else 

        len = inputArr2.length; 

 

    String[] inputArr1Dst = Arrays.copyOf(inputArr1,len); 

    String[] inputArr2Dst = Arrays.copyOf(inputArr2,len); 

 

    input1 =  Arrays.toString(inputArr1Dst); 

    input2 = Arrays.toString(inputArr2Dst); 

    input1 = input1.substring(1,input1.length()-1); 
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    input2 = input2.substring(1, input2.length()-1); 

    stringBuilderInput1.append("c("); 

    stringBuilderInput2.append("c("); 

    stringBuilderInput1.append(input1); 

    stringBuilderInput2.append(input2); 

    stringBuilderInput1.append(")"); 

    stringBuilderInput2.append(")"); 

 

    Rengine rengine = Rengine.getMainEngine(); 

    if(rengine == null){ 

        rengine = new Rengine(new String[] {"--no-save"},false,null); 

    } 

    rengine.eval("rXVector=as.numeric("+stringBuilderInput1.toString()+")"); 

    rengine.eval("rYVector=as.numeric("+stringBuilderInput2.toString()+")"); 

    rengine.eval("result=cor(rXVector,rYVector,method=c('pearson'))"); 

    correlationValue = rengine.eval("result").asDouble(); 

 

    if(rengine!= null) 

        rengine.end(); 

    return correlationValue; 

} 

 

 

We construct the R vectors from the given strings in Java and evaluate the correlation 

function in R. The result is returned as a double value. This result is again constructed as a 

NodeValue in the Extension module and the final result is sent to the user. All functions 

that utilize Jena’s user-defined function extension mechanism are implemented in a similar 

fashion. 
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CHAPTER 6 

EVALUATION 

The goal of our library is to allow users to execute statistical queries on RDF data.  

This still requires users to have a basic understanding of writing SPARQL queries and 

using functions. For demonstrating the usage and evaluating the queries, we used Apache 

Jena Fuseki endpoint, which acts a SPARQL endpoint for the RDF datasets we load into 

the triple store. Also, the same functions are executed in R by exporting the dataset to R. 

This is to check if the results retrieved from SPARQL and R are the same or not. We either 

export the sample dataset to R or use RRDF and SPARQL libraries in R to query directly 

against the Fuseki endpoint.  

The datasets are from Data.gov (https://www.data.gov/) and include both federal 

and state datasets. These datasets are provided by the US government as part of the Open 

Data initiative. Citizens can leverage this open data in various studies to understand the 

hidden implications. Also, the site acts as a rich resource for data scientists, tech 

entrepreneurs, and developers to conduct various studies. Even though most of the data is 

represented in the form of csv, json and xml, we have a good number of datasets 

represented in RDF to perform evaluation for this work. We have loaded the datasets into 

Apache Jena Fuseki endpoint and executed test queries.  

 

 

 

https://www.data.gov/
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6.1 Mean 

For evaluating the mean functionality, we utilized Behavioral Risk Factor data 

(https://catalog.data.gov/dataset/behavioral-risk-factor-data-heart-disease-amp-stroke-

prevention) from Data.gov and below are the queries with test results. 

Query 1: To get the average value of “Prevalence of major cardiovascular diseases among 

adults in the US”. 

PREFIX fn:<http://example.org/function#> 

SELECT (fn:mean(?o) AS ?mean) 

WHERE { 

  ?s <https://chronicdata.cdc.gov/resource/_4ny5-qn3w/indicator> "Prevalence of 

major cardiovascular disease among US adults (18+); BRFSS" . 

  ?s <https://chronicdata.cdc.gov/resource/_4ny5-qn3w/data_value> ?o . 

  FILTER(regex(?o,'[0-9.]')) 

} 

 

Figure 3: Query result from Apache Jena Fuseki endpoint for mean of “Prevalence of 

major cardiovascular diseases” in Behavioral Risk factors dataset.                                                        

In this query, fn:mean indicates that this is a function from our library. fn:mean 

function aggregates the results that are bound to the variable ?o, and gets the average value 

as output. When the data was exported and tested in R, we got the same result 10.55682, 

as shown in below figure. For testing in R, we created a vector with all data values for the 

https://catalog.data.gov/dataset/behavioral-risk-factor-data-heart-disease-amp-stroke-prevention
https://catalog.data.gov/dataset/behavioral-risk-factor-data-heart-disease-amp-stroke-prevention
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given constraints.

 

Figure 4: SPARQL query in R for mean where a vector of data values is given as input. 

Also, we repeated the same experiment using SPARQL package in R. SPARQL package 

allows us to query the endpoint directly. The resultant mean value is the same as in the 

previous cases. 

 

Figure 5: Result in R when mean is queried through SPARQL package in R. 

Query 2: Retrieve a list of all subjects with a data value greater than the mean value of 

“Prevalence of major cardiovascular diseases”. 

PREFIX fn:<http://example.org/function#>  

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> 

SELECT ?s1 ?of 

WHERE{ 

  ?s1 <https://chronicdata.cdc.gov/resource/_4ny5-qn3w/indicator> "Prevalence of 

major cardiovascular disease among US adults (18+); BRFSS" . 

  ?s1 <https://chronicdata.cdc.gov/resource/_4ny5-qn3w/data_value> ?of .  

 { 

 SELECT (fn:mean(?o) AS ?mean) 

 WHERE 
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 {?s <https://chronicdata.cdc.gov/resource/_4ny5-qn3w/indicator> "Prevalence 

of major cardiovascular disease among US adults (18+); BRFSS" . 

   ?s <https://chronicdata.cdc.gov/resource/_4ny5-qn3w/data_value> ?o . 

 FILTER(regex(?o,'[0-9]')) . 

    } 

} 

  FILTER (xsd:decimal(?of)  > ?mean) 

} 

 

Figure 6: Query result in Apache Jena Fuseki endpoint for retrieving a list of subjects with 

data value greater than mean value.  

We got 114 subjects that have their data value greater than the mean value of “Prevalence 

of major cardiovascular disease among US adults”.  

We repeated the same experiment in R using SPARQL package and below are the results. 

 

Figure 7: Results in R for data value greater than mean value.  
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These results indicate that there are 114 rows that come as output from the above query, 

and this is the same as the results in Fuseki endpoint. 

6.2 Median 

For demonstrating the results of the median, we used a dataset that contains 

information about Chronic Diseases. (https://catalog.data.gov/dataset/u-s-chronic-disease-

indicators-cdi-e50c9). 

Query 3: To get the median of all data values associated with “Alcohol usage among 

youth”. 

PREFIX fn:<http://example.org/function#>  

SELECT (fn:median(?o) AS ?median) 

WHERE{ 

?s <http://chronicdata.cdc.gov/resource/g4ie-h725/question> "Alcohol use among 

youth" .   

 ?s <http://chronicdata.cdc.gov/resource/g4ie-h725/datavalue> ?o . 

  FILTER(regex(?o,'[0-9.]')) 

} 

 

Figure 8: Query result in Apache Jena Fuseki endpoint for median of alcohol usage among 

youth in Chronic Diseases dataset. 

When the data was exported and tested in R, the result was 32.2 and this is shown in the 

figure below. 

https://catalog.data.gov/dataset/u-s-chronic-disease-indicators-cdi-e50c9
https://catalog.data.gov/dataset/u-s-chronic-disease-indicators-cdi-e50c9
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Figure 9: SPARQL query executed in R for retrieving median value. 

Query 4: To retrieve a list of all subjects that lie to the right of the median value. 

PREFIX fn:<http://example.org/function#>  

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> 

SELECT ?s1 ?of 

WHERE{ 

  ?s1 <http://chronicdata.cdc.gov/resource/g4ie-h725/question> "Alcohol use among 

youth" . 

  ?s1 <http://chronicdata.cdc.gov/resource/g4ie-h725/datavalue> ?of .   

 { 

 SELECT (fn:median(?o) AS ?median) 

 WHERE{ 

 ?s <http://chronicdata.cdc.gov/resource/g4ie-h725/question> "Alcohol use 

among youth" .   

  ?s <http://chronicdata.cdc.gov/resource/g4ie-h725/datavalue> ?o . 

   FILTER(regex(?o,'[0-9.]')) . 

 } 

  } 

  FILTER(regex(?of,'[0-9.]')) . 

  FILTER (xsd:decimal(?of)  > ?median) 

} 
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Figure 10: Query result in Apache Jena Fuseki endpoint for data values which are greater 

than the median.  

This indicates that there are 20 subjects with a data value greater than the median value. 

The results show that there are 20 such subjects which have average alcohol usage above 

the median value. The same experiment is repeated in R using SPARQL package. 
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Figure 11: SPARQL query executed in R for data value greater than the median.  

The result in R is the same as in Apache Jena Fuseki. The result set has 20 observations. 

The results in R also indicate that there are 20 subjects with a data value greater than the 

median. 

Query 5: To get the list of all subjects that lie to the left of the median value. 

PREFIX fn:<http://example.org/function#>  

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> 

SELECT ?s1 ?of 

WHERE{ 

  ?s1 <http://chronicdata.cdc.gov/resource/g4ie-h725/question> "Alcohol use among 

youth" . 

  ?s1 <http://chronicdata.cdc.gov/resource/g4ie-h725/datavalue> ?of .   

 { 
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 SELECT (fn:median(?o) AS ?median) 

 WHERE{ 

 ?s <http://chronicdata.cdc.gov/resource/g4ie-h725/question> "Alcohol use 

among youth" .   

  ?s <http://chronicdata.cdc.gov/resource/g4ie-h725/datavalue> ?o . 

   FILTER(regex(?o,'[0-9.]')) . 

 } 

  } 

  FILTER(regex(?of,'[0-9.]')) . 

  FILTER (xsd:decimal(?of)  < ?median) 

} 

 

Figure 12: Query result in Apache Jena Fuseki for data values lesser than the median.  

This indicates that there are 20 subjects with a data value lesser than the median value. 

The same experiment is repeated in R and the results are as shown in the figure below. 
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Figure 13: SPARQL query executed in R for data values lesser than the median.  

The result in R is the same as in Apache Jena Fuseki. The result set in R has 20 

observations. 

6.3 Standard Deviation 

For testing standard deviation function, the dataset with information on Chronic diseases 

is used. 

Query 6: To get the standard deviation in the data values related to “Alcohol usage among 

youth”. 

PREFIX fn:<http://example.org/function#>  
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> 
SELECT (fn:sd(?o) AS ?standardDeviation) 
WHERE{ 
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?s <http://chronicdata.cdc.gov/resource/g4ie-h725/question> "Alcohol use among 
youth" .   
?s <http://chronicdata.cdc.gov/resource/g4ie-h725/datavalue> ?o . 
FILTER(regex(?o,'[0-9.]')) . 
} 

 

 

Figure 14: Query result in Apache Jena Fuseki for standard deviation. 

When the data was loaded in R, it gave the same resultant standard deviation as 5.32177. 

 

Figure 15: SPARQL query result in R for standard deviation. 

Query 7: Get the list of subjects that are within one standard deviation for “Alcohol usage 

among youth”. 

PREFIX fn:<http://example.org/function#>  

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> 

SELECT ?s1 ?value ?mean ?sd 

WHERE{ 

  ?s1 <http://chronicdata.cdc.gov/resource/g4ie-h725/question> "Alcohol use among 

youth" . 

  ?s1 <http://chronicdata.cdc.gov/resource/g4ie-h725/datavalue> ?value .   

 { 
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 SELECT (fn:sd(?o) AS ?sd) (fn:mean(?o) AS ?mean) 

 WHERE{ 

 ?s <http://chronicdata.cdc.gov/resource/g4ie-h725/question> "Alcohol use 

among youth" .   

  ?s <http://chronicdata.cdc.gov/resource/g4ie-h725/datavalue> ?o . 

   FILTER(regex(?o,'[0-9.]')) . 

 }  

  } 

  FILTER(regex(?value,'[0-9.]')) . 

  FILTER (xsd:decimal(?value)  <= (?mean + ?sd)) . 

 FILTER (xsd:decimal(?value) >= (?mean - ?sd)) 

} 

 

 

Figure 16: Query result in Apache Jena Fuseki for subjects with alcohol usage value within 

one standard deviation. The result set has 30 such subjects. 

When the same experiment was repeated in R, it gave similar results as shown below. 
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Figure 17: SPARQL query executed in R for subjects with alcohol usage value within 

one standard deviation. The result in R is the same as in Apache Jena Fuseki. The result 

set has 30 observations. 
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Query 8: Get the list of subjects that are within two standard deviations for “Alcohol 

usage among youth”. 

PREFIX fn:<http://example.org/function#>  

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> 

SELECT ?s1 ?of ?mean ?sd 

WHERE{ 

  ?s1 <http://chronicdata.cdc.gov/resource/g4ie-h725/question> "Alcohol use among 

youth" . 

  ?s1 <http://chronicdata.cdc.gov/resource/g4ie-h725/datavalue> ?of .  

  

 { 

 SELECT (fn:sd(?o) AS ?sd) (fn:mean(?o) AS ?mean) 

 WHERE{ 

 ?s <http://chronicdata.cdc.gov/resource/g4ie-h725/question> "Alcohol use 

among youth" .   

  ?s <http://chronicdata.cdc.gov/resource/g4ie-h725/datavalue> ?o . 

   FILTER(regex(?o,'[0-9.]')) . 

 }  

  } 

 

  FILTER(regex(?of,'[0-9.]')) . 

  FILTER (xsd:decimal(?of)  <= (?mean + (2*?sd))) . 

  FILTER (xsd:decimal(?of) >= (?mean - (2*?sd))) 

} 
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Figure 18: Query result in Apache Jena Fuseki for subjects with alcohol usage value within 

two standard deviations. The result set has 40 such subjects. 

The results from R also return 40 rows as indicated in the above image. 

 

Figure 19: SPARQL query executed in R for subjects with alcohol usage value within two 

standard deviations.  

The result in R is the same as in Apache Jena Fuseki. The result set has 40 observations. 
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6.4 Variance 

For testing the variance, the same Chronic Diseases dataset is used. 

Query 9: To get the variance of the data values associated with the “Alcohol usage among 

youth”. 

PREFIX fn:<http://example.org/function#>  

SELECT (fn:variance(?o) AS ?var)  

 WHERE{ 

 ?s <http://chronicdata.cdc.gov/resource/g4ie-h725/question> "Alcohol use 

among youth" .   

  ?s <http://chronicdata.cdc.gov/resource/g4ie-h725/datavalue> ?o . 

   FILTER(regex(?o,'[0-9.]')) . 

 } 

 

 

Figure 20: Query result in Apache Jena Fuseki for variance. 

The resultant variance when tested in R is found to be 28.32128 as shown in the figure 

below. 

 

Figure 21: SPARQL query executed in R for variance.  

The result in R is the same as in Apache Jena Fuseki.  



 

55 

6.5 Skewness 

Skewness characterizes the variability and measures the symmetry in the dataset. 

Data with normal distribution has skewness of 0. This implies that there exists a symmetry 

in the distribution of data. However, in reality, data that has perfect normal distribution is 

very rare. Below are some scenarios that show skewness in the data and to demonstrate 

these, we used the Chronic Diseases dataset. 

Query 10: To understand how the data values related to “Alcohol usage among youth” are 

distributed. 

PREFIX fn:<http://example.org/function#>  

SELECT (fn:skewness(?o) AS ?skewness)  

 WHERE{ 

 ?s <http://chronicdata.cdc.gov/resource/g4ie-h725/question> "Alcohol use 

among youth" .   

  ?s <http://chronicdata.cdc.gov/resource/g4ie-h725/datavalue> ?o . 

   FILTER(regex(?o,'[0-9.]')) . 

 } 

 

 

Figure 22: Query result in Apache Jena Fuseki to show skewness towards the left. 

A negative value of skewness indicates that the data is skewed towards the left. This implies 

that the tail towards the left end is longer. A histogram plot of this data indicates the same. 
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Figure 23: Histogram plot of the data values for Alcohol usage among the youth in 

Chronic Diseases dataset. 

We repeat the same test in R and the results indicate that we got the same value in R as 

well. 

 

Figure 24: SPARQL query executed in R that indicates left skewed data.  

The result in R is the same as in Apache Jena Fuseki.  

Query 11: To get the skewness of distribution among the data values related to “Binge 

drinking habits among adults”. 

PREFIX fn:<http://example.org/function#>  

SELECT (fn:skewness(?o) AS ?skewness)  

 WHERE{ 
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 ?s <http://chronicdata.cdc.gov/resource/g4ie-h725/question> "Binge drinking 

prevalence among adults aged >= 18 years" .   

 ?s <http://chronicdata.cdc.gov/resource/g4ie-h725/datavalue> ?o . 

  FILTER(regex(?o,'[0-9.]')) . 

 } 

 

Figure 25: Query result in Apache Jena Fuseki with positive skewness. 

The positive value here indicates that the data is slightly skewed towards the right. Since 

the value is less, this is nearly normally distributed data. A histogram plot in R shows the 

skewness in the data. 

 

Figure 26: Histogram plot of the data values for Binge Drinking Prevalence among adults, 

which has a slightly longer right tail.  



 

58 

We repeated this test in R and results indicated that we got the same value in R as well. 

 

Figure 27: SPARQL query executed in R that indicates right skewed data.  

The result in R is the same as in Apache Jena Fuseki.  

Query 12: To get skewness in high confidence limit values in Chronic Diseases dataset. 

The result value shows a clear skewness in the dataset. 

PREFIX fn:<http://example.org/function#>  

SELECT (fn:skewness(?o) AS ?skewness)  

WHERE 

{ 

?s <http://chronicdata.cdc.gov/resource/g4ie-h725/highconfidencelimit> ?o 

} 

 

 

Figure 28: Skewness query result in Apache Jena Fuseki to indicate longer right tail. 

A histogram plot in R shows that the right tail is longer and the data is skewed towards the 

right. 
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Figure 29: Histogram plot of the data values used for high confidence limit to show a 

longer right tail. 

6.6 Pearson Correlation 

 As part of evaluating correlation, we are testing Pearson Correlation, Spearman 

Correlation and Kendall Correlation. Some of the datasets are taken from Data.gov and 

some are constructed as RDF documents. We have constructed the RDF documents 

explicitly so that the dataset has readings for the same subjects. We consider two variables 

for correlation testing wherein one is treated as an independent variable and the other is 

treated as a dependent variable. We measure both strength and direction of the correlation.  

In this section we test the Pearson Correlation. The dataset we are considering here 

is related to SAT test results for the year 2012 in New York city 

(https://catalog.data.gov/dataset/sat-results-e88d7). We are comparing the correlations 

between reading and writing scores. 

https://catalog.data.gov/dataset/sat-results-e88d7
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Query 13: Pearson correlation to understand the correlation between SAT critical reading 

and writing scores. 

PREFIX fn:<http://example.org/function#> 

SELECT 

(fn:pearsoncorr(group_concat(?o1;separator=':'),group_concat(?o2;separator=':')) AS 

?corr) 

WHERE{ 

?s <https://data.cityofnewyork.us/resource/f9bf-2cp4/sat_critical_reading_avg_score> 

?o1 . 

?s <https://data.cityofnewyork.us/resource/f9bf-2cp4/sat_writing_avg_score> ?o2 . 

 FILTER(regex(?o1,'[0-9.]'))  . 

 FILTER(regex(?o2,'[0-9.]'))  . 

} 

 

Figure 30: Pearson correlation query result in Apache Jena Fuseki for SAT dataset. 

This value indicates a very positive correlation between SAT reading and writing scores as 

the result is close to 1. The same test is performed in R by taking the data-values of critical 

reading and writing scores as two vectors. 
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Figure 31: Pearson correlation calculated in R for SAT dataset.  

The data values are stored in vectors and we utilized R’s inbuilt functions to calculate the 

Pearson coefficient. 

The second dataset we are considering is cars dataset. This dataset is taken from 

http://www-bcf.usc.edu/~gareth/ISL/data.html. This dataset is available in csv format, but 

we converted it to RDF format for our analysis.  

Query 14: Pearson correlation between the number of cylinders and the displacement in a 

car.  

We are trying to understand the relationship between the number of cylinders in a car and 

the displacement the car offers. Here, the number of cylinders is an independent variable 

for the Pearson correlation and the displacement is a dependent variable for this correlation. 

PREFIX fn:<http://example.org/function#> 

SELECT 

(fn:pearsoncorr(group_concat(?cy;separator=':'),group_concat(?di;separator=':')) AS 

?corr) 

                WHERE 

                { 

http://www-bcf.usc.edu/~gareth/ISL/data.html
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                ?s <http://mdsp.org/data/Auto#cylinders> ?cy . 

                ?s <http://mdsp.org/data/Auto#displacement> ?di . 

                FILTER(regex(?di ,'[0-9.]')) . 

                FILTER(regex(?cy ,'[0-9.]')) 

                } 

 

 

 

Figure 32: Pearson correlation query result in Apache Jena Fuseki for Automobile dataset 

which indicates positive correlation. 

Since the result is close to 1, we can conclude that there is a high correlation between the 

number of cylinders in a car and the displacement it offers.  The same test is repeated in R 

and we obtained similar results as indicated below. 

 

Figure 33: Pearson correlation calculated in R using R’s inbuilt function for Automobile 

dataset indicating positive correlation.  
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The dataset is loaded as a csv file in R and computations are performed on the values read 

from the csv file. 

Query 15: Relation between the weight and the miles per gallon (mpg). Here, weight is the 

independent variable and the mpg is the dependent variable. 

PREFIX fn:<http://example.org/function#> 

SELECT 

(fn:pearsoncorr(group_concat(?mpg;separator=':'),group_concat(?wt;separator=':')) AS 

?corr) 

                WHERE 

                { 

                ?s <http://mdsp.org/data/Auto#mpg> ?mpg . 

                ?s <http://mdsp.org/data/Auto#weight> ?wt . 

                FILTER(regex(?mpg ,'[0-9.]')) . 

                FILTER(regex(?wt ,'[0-9.]')) 

                } 

 

Figure 34: Pearson correlation query result in Apache Jena Fuseki for SAT dataset to show 

negative correlation. 

Since the value is negative and close to -1, we conclude that there is a strong inverse 

relationship between the weight of the car and the mpg. Stated in other terms, as the weight 

of the car increases, the mpg value decreases. So, we conclude that heavier cars give less 

mileage. 

This test is repeated in R and it gives similar results as indicated below. 
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Figure 35: Pearson correlation calculated in R using R’s inbuilt function for Automobile 

dataset indicating negative correlation. 

6.7 Spearman Correlation 

 Spearman correlation is used when one of the variables is ranked and the data 

values don’t follow a bivariate normal distribution. Instead of testing a linear relationship, 

spearman correlation helps us in testing monotonic relations. For evaluating Spearman 

correlation, we are using datasets that have information on cars. Spearman takes one of the 

variables as a ranked variable. 

Query 16: Relation between the number of cylinders and acceleration that a car offers.  

There is a repetition of values for number of cylinders in the dataset as cars can have 4, 6 

or 8 cylinders. Hence, we can consider the ranking of the cylinders variable and test the 

correlation using spearman correlation. The ranked variable is given as the first parameter. 

PREFIX fn:<http://example.org/function#> 

SELECT 

(fn:spearmancorr(group_concat(?cy;separator=':'),group_concat(?ac;separator=':')) AS 

?corr) 

                WHERE 

                { 

                ?s <http://mdsp.org/data/Auto#cylinders> ?cy . 

                ?s <http://mdsp.org/data/Auto#acceleration> ?ac . 

                FILTER(regex(?cy ,'[0-9.]')) . 

                FILTER(regex(?ac ,'[0-9.]')) 

                } 
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Figure 36: Spearman correlation query result in Apache Jena Fuseki for Automobile 

dataset indicating insignificant negative correlation. 

Since the result is negative, we can say that there is inverse relation. But the value indicates 

that the strength of correlation is not enough to conclude that the two variables are inversely 

related.  

We repeat the same test in R and, as shown below, the test gives the same result. 

 

Figure 37: Spearman correlation calculated in R using R’s inbuilt function for Automobile 

dataset indicating insignificant negative correlation. 

6.8 Kendall Correlation 

We perform Kendall correlation between two ranked variables. This way we 

understand the concordant and discordant pairs. Concordant pairs are how many larger 

ranks are below a certain rank. Discordant pairs indicate how the variables’ values differ 
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in ranking. Here, we consider the ranking among the data values for the two variables. A 

perfect correlation exists when both values get same order of ranks. 

 For testing the Kendall correlation, we are using the same cars dataset that we used 

in the Pearson and the Spearman correlations. 

Query 17: To find the correlation between the number of cylinders and the mpg. Here, 

cylinders and mpg both have repetitive data values. Hence, we can rank them in order to 

understand the correlation in a better way.  

PREFIX fn:<http://example.org/function#> 

SELECT 

(fn:kendallcorr(group_concat(?cy;separator=':'),group_concat(?mpg;separator=':')) AS 

?corr) 

                WHERE 

                { 

                ?s <http://mdsp.org/data/Auto#cylinders> ?cy . 

                ?s <http://mdsp.org/data/Auto#mpg> ?mpg . 

                FILTER(regex(?cy ,'[0-9.]')) . 

                FILTER(regex(?mpg ,'[0-9.]'))    

                } 

 

Figure 38: Kendall correlation query result in Apache Jena Fuseki for Automobile dataset 

indicating negative correlation. 

This value suggests that there is a significant inverse relationship between the number of 

cylinders and the mpg. We repeat the same test in R and the results are shown below. 
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Figure 39: Kendall correlation calculated in R using R’s inbuilt function for Automobile 

dataset indicating negative correlation. 

6.9 Z Test 

 In R, there is no pre-defined function for evaluating Z Test. We are writing R 

scripts in Java and calling these scripts from SPARQL user-defined functions. 

For conducting Z test, the dataset from Center for Disease Control is utilized. 

(https://catalog.data.gov/dataset/behavioral-risk-factor-data-tobacco-use-2011-to-

present-e0ad1) 

Query 18: One sampled upper tailed Z test 

Hypothesis: The average tobacco usage in Georgia has increased between 2014-2015. It 

was observed that the average tobacco usage among adult population between 2013-2014 

was 17.576%. The standard deviation of the population was 4.21377. The sample size we 

are considering is 30.  

From the above hypothesis, we state the null hypothesis and the alternative hypothesis and 

take a confidence value of 95%. 

Null Hypothesis H0: µ = 17.576 

Alternate Hypothesis Ha: µ > 17.576 

α: 0.05 (Taken from 95% confidence). Z score at 95 percent confidence = 1.64 

Analysis plan: If the z score of our evaluation is greater than 1.64, our value lies in the 

rejection region and hence we reject the null hypothesis. 

https://catalog.data.gov/dataset/behavioral-risk-factor-data-tobacco-use-2011-to-present-e0ad1
https://catalog.data.gov/dataset/behavioral-risk-factor-data-tobacco-use-2011-to-present-e0ad1
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Since we are stating that the average has increased, we are conducting an upper-tailed Z 

test.  

Query:  

PREFIX fn:<http://example.org/function#>  

SELECT (fn:oneZTest(group_concat(?o;separator=','),17.57692,17.75583,30) AS 

?zstatistic)   

WHERE { 

 ?s <https://chronicdata.cdc.gov/resource/wsas-xwh5/locationabbr> "GA" . 

 ?s <https://chronicdata.cdc.gov/resource/wsas-xwh5/year> "2014-2015"  . 

 ?s <https://chronicdata.cdc.gov/resource/wsas-xwh5/topicdesc> "Cigarette Use 

(Adults)" . 

 ?s <https://chronicdata.cdc.gov/resource/wsas-xwh5/data_value> ?o .  

FILTER(regex(?o ,'[0-9.]'))  

}    

  

 

Figure 40: One sample Z test query result in Apache Jena Fuseki for Tobacco usage 

dataset. 

Since z score is greater than 1.64, we reject the null hypothesis and conclude that the 

average tobacco usage has increased.   

The query when executed in R gives us the same result as shown below. 



 

69 

 

Figure 41: One sample Z test calculated in R for Tobacco usage dataset. 

Query 19: Two samples lower tailed Z test 

Hypothesis: Average tobacco consumption in Alabama is lower than the average tobacco 

consumption in Georgia. A sample of 35 members is drawn from both datasets. This test 

can be performed if we know the standard deviation or variance of both datasets. The 

variance of the Georgia dataset is 17.75583. The variance of the Alabama dataset is 25.082. 

Null hypothesis: µ1 = µ2 

Alternative Hypothesis: µ1 < µ2 

α: 0.05 (Taken from 95% confidence). Z score at 95 percent confidence = 1.64 

Analysis plan: If the Z score of our evaluation is less than -1.64, our value lies in the 

rejection region and hence we reject the null hypothesis. 

Since we are stating that the average of the first set is less than the second set, we are 

conducting lower-tailed Z test for two samples. 

Query: 

PREFIX fn:<http://example.org/function#>  

SELECT (fn:twoZTest(?oalConcat,?ogaConcat,25.082,17.75583,35) AS ?zstat)  

WHERE{  

                 {  

                SELECT (group_concat(?oal;separator=':') AS ?oalConcat)   

                                WHERE{   
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                                ?s <https://chronicdata.cdc.gov/resource/wsas-xwh5/locationabbr> 

"AL" .   

                                ?s <https://chronicdata.cdc.gov/resource/wsas-xwh5/year> "2013-

2014"  .   

                                ?s <https://chronicdata.cdc.gov/resource/wsas-xwh5/topicdesc> 

"Cigarette Use (Adults)" .   

                                ?s <https://chronicdata.cdc.gov/resource/wsas-xwh5/measuredesc> 

"Current Smoking – (2 yrs – Race/Ethnicity)" .   

                                ?s <https://chronicdata.cdc.gov/resource/wsas-xwh5/data_value> 

?oal .  

                                filter(regex(?oal ,'[0-9.]')) .  

                                }   

                  }  

                  {                  

                SELECT (group_concat(?oga;separator=':') AS ?ogaConcat)  

                WHERE{  

                    ?s1 <https://chronicdata.cdc.gov/resource/wsas-xwh5/locationabbr> 

"GA" .   

                                ?s1 <https://chronicdata.cdc.gov/resource/wsas-xwh5/year> "2013-

2014"  .   

                                ?s1 <https://chronicdata.cdc.gov/resource/wsas-xwh5/topicdesc> 

"Cigarette Use (Adults)" .   

                                ?s1 <https://chronicdata.cdc.gov/resource/wsas-

xwh5/measuredesc> "Current Smoking – (2 yrs – Race/Ethnicity)" .   

                                ?s1 <https://chronicdata.cdc.gov/resource/wsas-xwh5/data_value> 

?oga .  

                                FILTER(regex(?oga ,'[0-9.]'))   

                 }  

                }                   

                } 

 

Figure 42: Two samples Z test query result in Apache Jena Fuseki for Tobacco Usage 

dataset. 
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As per our analysis plan, we accept the null hypothesis since the z value lies in the 

acceptance region i.e., z > -1.64. And we conclude that the average tobacco consumption 

in Alabama is not lower than the average tobacco consumption in Georgia, i.e., both have 

similar consumption rates. 

We repeated the same test in R. Instead of running a SPARQL query, we used R’s z-test 

function to test the hypothesis as shown below. This is to check if there are any anomalies 

by creating the vectors with the same data values. 

 

Figure 43: Two samples Z test calculated in R for Tobacco Usage dataset.  

Here, we performed the computations local in R by writing a function for Z test since R 

doesn’t have any inbuilt package function to calculate Z test. The result indicates that the 

value in R environment is equal to the value we got in the SPARQL query. 

6.10 T-Test 

T-test is performed when the sample size is small, and we don’t know the standard 

deviation. The 1-sample T test compares the mean score of an observation sample to a 

hypothetically assumed value. The hypothetical value is the population mean where as the 

observed mean is noted for a sample of the population. The 2-sample T test compares the 

two samples to compare unrelated groups.  

Query20: One sample upper tailed T test 

Hypothesis: The average rate of prevalence of cardiovascular diseases among US adults 

between 2001-2002 is observed to be 10.10714. However, researchers believe that this has 
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increased in the duration of 2003-2004. Our hypothesis test is to understand if the average 

rate of prevalence of cardiovascular diseases among US adults has increased and what is 

the significance. The data set we are using here is Nutrition Examination Survey data. 

(https://catalog.data.gov/dataset/national-health-and-nutrition-examination-survey-nhanes 

) 

Null Hypothesis: µ= 10.10714 

Alternative Hypothesis: µ > 10.10714 

α: Here we assume 5%. i.e., confidence level = 95 percent. 

Sample size = 13 

Degrees of freedom: 12 (Sample size -1) 

Analysis result: If the resultant T score is greater than 1.782 (as observed from the t 

table), we reject Null hypothesis. Otherwise, we accept the null hypothesis. 

Query 

PREFIX fn:<http://example.org/function#> 

SELECT (fn:oneTTest(group_concat(?o;separator=','),10.10714,13) AS ?tstatistic) 

WHERE{ 

 ?s <https://chronicdata.cdc.gov/resource/_5svk-8bnq/indicator> "Prevalence of major 

cardiovascular disease among US adults (20+); NHANES" . 

 ?s <https://chronicdata.cdc.gov/resource/_5svk-8bnq/year> "2003-2004" . 

 ?s <https://chronicdata.cdc.gov/resource/_5svk-8bnq/data_value> ?o 

} 

 

Figure 44: One sample T test query result in Apache Jena Fuseki for Chronic Diseases 

Dataset. 

https://catalog.data.gov/dataset/national-health-and-nutrition-examination-survey-nhanes
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Since T value is less than 1.782, we accept the null hypothesis as this value lies in the 

acceptance region. Later, the mean of the sample during 2003-2004 is observed to be 

10.69286. The difference is not much. Hence our decision of accepting the null hypothesis 

is a valid one. 

This test is repeated in R and the results are as below: 

 

Figure 45: One sample T test calculated in R for Chronic Diseases dataset. 

Query 21: Two sample upper tailed T test 

Hypothesis: A researcher believes that mean smoking levels in Georgia are higher than 

those of Missouri. We are considering a sample size of 9 and a confidence percentage of 

95. 

Null hypothesis: µ1 = µ2 

Alternative Hypothesis: µ1 > µ2 

α: 0.05 

Sample size: 9 

Degrees of freedom: 2*sample size -2 = 16 

T score at α=0.025(since it is two sample test) and degrees of freedom 16 is 2.120 

Analysis: If the T score is greater than 2.120, we reject the null hypothesis, as the value 

lies in rejection region. 

Query 
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PREFIX fn:<http://example.org/function#>  

SELECT (fn:twoTTest(?ogaConcat,?omoConcat,9) AS ?tstatistic)  

WHERE{  

                 {  

                SELECT (group_concat(?omo;separator=':') AS ?omoConcat)   

                                WHERE{   

                                ?s <https://chronicdata.cdc.gov/resource/_4juz-x2tp/measuredesc> 

"Smoking Status" . 

    ?s <https://chronicdata.cdc.gov/resource/_4juz-x2tp/locationabbr> 

"MO" . 

         ?s <https://chronicdata.cdc.gov/resource/_4juz-x2tp/data_value> ?omo 

. 

    FILTER(regex(?omo,'[0-9.]')) 

                                }   

                  }  

                  {                  

                SELECT (group_concat(?oga;separator=':') AS ?ogaConcat)  

                WHERE{  

                    ?s1 <https://chronicdata.cdc.gov/resource/_4juz-x2tp/measuredesc> 

"Smoking Status" . 

     ?s1 <https://chronicdata.cdc.gov/resource/_4juz-x2tp/locationabbr> 

"GA" . 

     ?s1 <https://chronicdata.cdc.gov/resource/_4juz-x2tp/data_value> 

?oga . 

     FILTER(regex(?oga,'[0-9.]')) 

                 }  

                }                   

                } 

 

 

Figure 46: Two Samples T Test query result in Apache Jena Fuseki for Youth Tobacco 

Survey dataset. 
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Since, the resultant T score is greater than 2.120 from the T distribution table, the value 

lies in the rejection region. Hence, we reject null hypothesis and conclude that the Georgia 

has greater smoking levels than those of Missouri. 

The same test is repeated in R and below figure has the resultant T score same as in 

SPARQL. 

 

Figure 47: Two Samples T Test Statistic calculated in R for Youth Tobacco Survey 

dataset. 
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CHAPTER 7 

CONCLUSION AND FUTURE WORK 

 In this work, we implemented a library that allows users to query statistical data in 

RDF using SPARQL. When the library is added in the user projects, it allows users to 

query mean, median, standard deviation, variance, and skewness and also performs 

advanced statistical analytics like correlation testing and hypothesis testing. This system 

eliminates the need to transfer RDF data to other computation environments to run 

analytics. However, this system requires the users to have knowledge on writing SPARQL 

queries. Aggregation queries like mean, median, standard deviation, variance, and 

skewness work similar to other aggregation functions like max, min etc., available in the 

standard SPARQL queries. However, for writing queries related to hypothesis testing and 

correlation analysis, it requires the user to understand how such functions should be 

written. 

 There are other systems that offer statistical querying capabilities for RDF data. 

However, they all involve exporting the RDF data or other environments, modifying the 

content as per native data structures, and running the statistical functions available in the 

target environments. In contrast, our system adds support for native queries by adding 

required dependencies and evaluation of statistical functions as part of the SPARQL 

function library. Also, this can be extended to other Linked Open Data applications where 

in data can be consumed as streaming data.  
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 At present, this library works with Apache Jena alone. In the future, this can be 

extended to other SPARQL query processing environments such as OpenLink Virtuoso 

[25] and Blazegraph [26]. Also, at present, the system requires users to have knowledge on 

how to execute hypothesis testing and correlation testing queries and this runs in multiple 

steps. There is a scope for improving these queries depending on future specifications in 

SPARQL. If SPAQL specification allows for usage of List data structures in queries, these 

queries related to hypothesis testing and correlation testing can be improved. Also, the 

capabilities to run text analytics on RDF data can be added to the system in a similar 

fashion, i.e., the way we are utilizing R environment. Thus, our present work can be 

extended as a complex library that supports all forms of analytics for RDF data in SPARQL 

utilizing R. 
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