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ABSTRACT

RNA regulatory elements play a significant role in gene regulation. Riboswitches are regulatory elements

which function by forming a ligand-induced alternative fold that controls access to ribosome binding sites

or other regulatory sites in RNA. Traditionally, riboswitches have been identified based on sequence and

structural homology. In this work, in an attempt to devise an ab initio method for identification of regulatory

elements, mainly riboswitches, we derive and implement Shannon’s entropy of the SCFG ensemble on an

RNA sequence in polynomial time for both structurally ambiguous and unambiguous grammars. We then

evaluate the significance of this new measure of structural entropy in identifying riboswitches. Finally, sim-

ple lightweight stochastic context-free grammar folding models assign significant values to long extensive

secondary structures in Bacillus subtilis.
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Chapter 1

Introduction and Literature Review

With the exponential growth in genomic data, there is a fascinating opportunity to understand the blueprints

of life. The interactions taking place between various molecules within living organisms, such as deoxyri-

bonucleic acids (DNA) and ribonucleic acids (RNA), and proteins have informed us about the biological

functions and pathways in the ever evolving kingdom of life.

Traditionally, protein-coding genes have been at the center of evolutionary biology studies, as molecular

units of heredity. In fact, metabolic pathways can be comprised of complex systems of gene expression,

which in turn are triggered by transcription of the DNA and subsequent translation of the messenger RNA

(mRNA) into protein. A major class of molecules in the regulation of transcription and translation of genes

are the non-protein-coding RNAs (ncRNA) (Morris, 2008; Barrandon et al., 2008; Repoila and Darfeuille,

2009; Morris, 2012). Non-protein-coding RNAs have been left on the invisible side of genomic research for

some time (Eddy, 2001). They have certain functional similarities with proteins in that some ncRNAs can

carry out catalytic activities. Also, the structure of such regulatory RNAs as well as their folding dynamics

is essential to their function (Hall et al., 1982; Lu et al., 1996; Simmonds et al., 2008).

Comparative genomics in prokaryotes, which have simpler and a smaller genomes than that of eukary-

otes, have led to the discovery of many ncRNAs that take part in the regulation of their downstream coding

sequences [reviewed by Grundy and Henkin (2006)], a process known as cis-regulation. One of the earliest

discovered regulatory RNA elements was the upstream region of the tryptophan operon in Escherichia coli

(Oppenheim and Yanofsky, 1980), which is involved in the regulation of tryptophan biosynthesis.
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1.1 Riboswitches

Cis-Regulatory RNA elements play an important role in the activation or termination of transcription and

translation by altering their conformation. In this way these RNA regulatory elements can block or sequester

translation start sites of downstream operons. They can potentially bind to a variety of protein factors, tR-

NAs, metabolites, amino acids, and other small molecules with high affinity and specificity to allow a

specific response to signals in the cell or environment. They can also respond to changes in environmental

factors such as pH, temperature, and ion concentration.

Recent sequence homology searches upstream of bacterial coding regions have led to the discovery

of many riboswitches (Mironov et al., 2002; Nahvi et al., 2002; Winkler et al., 2002a). Riboswitches are

defined as regulatory elements that do not require protein factors for their function, although the term ri-

boswitch has had varying uses. Riboswitches, are usually located in the non-coding regions of the mRNA

(Breaker, 2012) and are capable of regulating genes through both activation and attenuation of either tran-

scription or translation [reviewed by Henkin (2008)].

1.2 Structural Homology

In many cases, elements that belong to the same class of riboswitch but reside in different organisms are

observed to have similar conformations. Serganov et al. (2004) discuss this similarity for the purine ri-

boswitches. Structural homology searches based on the RNA secondary structure upstream of prokaryotic

untranslated regions have been very rewarding in discovering novel cis-regulatory elements over the past

twenty years (Weinberg et al., 2007, 2010). Serganov and Nudler (2013) review the structural and func-

tional complexities of already discovered riboswitches. Indeed, the secondary structure of the RNA plays

a critical role in scaffolding the tertiary structure (Cech et al., 1994; Batey et al., 1999; Tinoco and Busta-

mante, 1999; Westhof et al., 2011; Bernauer et al., 2011).

However, structural homology methods have not always been successful in identification of all struc-

tural variants of riboswitches that bind to the same ligand across prokaryotes. Weinberg et al. (2008) de-

scribe the failure of detecting SAM-IV riboswitches in similarity searches based on structural profiles built

from SAM-I riboswitches. They further hypothesized a far greater structural diversity for undiscovered ri-
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boswitches and suggested a possible lack of connection between structures of riboswitches and the nature

of their cognate metabolites. Alternative approaches in riboswitch identification, are hence, more desirable

than ever. Breaker (2012) raises the possibility of at least 100 more undiscovered riboswitches in the avail-

able bacterial genomes.

1.3 Ab initio Identification of Riboswitches

Experimental methods such as liquid-state nuclear magnetic resonance (NMR) [A review done by Scott and

Hennig (2008)] can be effectively used to determine RNA structure. Structural alignment has also been used

to trace conservation across homologous RNA genes (A collection are available in Rfam database [Griffiths-

Jones et al. (2005); Gardner et al. (2009)]). On the computational side, however, there are two main methods

to infer the secondary structure of a given RNA sequence: covariance models using stochastic context-free

grammars (SCFG) (Chomsky, 1959; Dowell and Eddy, 2004; Nawrocki and Eddy, 2013) and minimiza-

tion of folding energy on the RNA secondary structural level (MFE) (Zuker and Stiegler, 1981; McCaskill,

1990). Other predictions based on the Boltzmann ensemble such as the centroid-based approaches have also

been calculated (Sato et al., 2009). The prediction of the final folding state of the riboswitch can be very

informative and can assist us in inferring their biological functions.

Among other intriguing features of riboswitches are their ability to fold into two mutually exclusive

secondary structures required by their biological function, hence the term riboswitch. In fact, the folding

dynamics of riboswitches have been of great interest. Quarta et al. (2009) presented a case study of the TPP

riboswitch by examining its energy landscape. They sampled the energy landscape of the TPP riboswitch

and clustered the sampled structures into two groups based on their pair-wise base-pair distances. After

repeating this process for various choices of length of the TPP riboswitch, they showed that for certain

ranges of length, the each cluster corresponds to one of the two structures of the riboswitch (see Figure 1.1).

However, to date there has not been a computational method that can identify the diverse and structurally

complex riboswitches with high confidence.

In this work we have attempted to devise an ab initio method aimed at characterizing the folding space

of the riboswitch which has applications to RNAs with the potential to have alternative fold(s). We de-

3



Figure 1.1: Energy Landscape of The TPP Riboswitch. A: Tertiary structure of an E. coli TPP (or thi-
box) riboswitch bound to thiamine pyrophosphate (Edwards and Ferre-D’Amare, 2006). The image was
generated by the Jmol from the PDB:2hoj structure taken from the Rfam website (Griffiths-Jones et al.,
2005). B: Ligand-bound and unbound secondary structures of a TPP riboswitch in B. subtilis, taken from
Quarta et al. (2009). C: Energy landscape of the B. subtilis riboswitch taken from Quarta et al. (2009). Set-1
and Set-2 clusters correspond to the two mutually exclusive secondary structures of the TPP riboswitch.
Pairwise Base-pairing distance used as a measure of distance between two structures. Please refer to Quarta
et al. (2009) for detailed information about the figure and clustering details.
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ploy information-theoretic uncertainty or Shannon’s entropy (Shannon, 1948) as a quantitative method to

measure the diversity of the complete folding space of the RNA sequence under various SCFGs. Being a

measure of entropy of a given probabilistic distribution1, Shannon’s entropy has been shown to be a very

useful measure across various fields of science. In Chapter 2, we offer the derivations for calculating the

Information-theoretic uncertainty of the secondary-structural folding space of any RNA sequence under a

given SCFG folding model as a measure of structural entropy. We then investigate the significance of struc-

tural entropy of various RNA families not limited to riboswitches. This was done under various SCFGs and

randomization tests. The work presented in Chapter 2 has been published in the journal of theoretical biol-

ogy http://www.sciencedirect.com/science/article/pii/S0022519312005620.

After evaluating the structural entropy of various SCFG and their relationship to sequence and struc-

tural features of RNA structure, in Chapter 3 we focus on riboswitches, devising an ab initio approach for

riboswitch identification based on structural entropy. The significance of structural entropy of riboswitches

with respect to other biological sequences was then studied along with other measures of structural diversity.

Unlike Chapter 2, in Chapter 3 we use to real biological sequences such as the antisense sequence of the

riboswitch and intergenic regions of prokaryotes, avoiding the use of computer-generated random sequences

for statistical analyses. We then report our results for various riboswitch identifiers tested against the Bacil-

lus subtilis intergenic regions. Finally, the conclusions of our work is presented in chapter 4.

1The specific formulation of Shannon’s entropy makes it possible to account for all structures in an SCFG-modeled
RNA secondary structure space in polynomial time. The formulation has been used here mainly due to its compu-
tational convenience. Other formulations of entropy that do not use the log term in their definitions may not lead to
polynomial time calculations. Shannon entropy, however, is not necessarily the best way to infer the entropy of a given
distribution in itself. In fact, Christiansen et al. (2013) reject the validity of the underlying assumptions of Shannon
entropy in the discipline of secure systems.
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Chapter 2

Information-Theoretic Uncertainty of

SCFG-Modeled Folding Space of The

Non-coding RNA

Amirhossein Manzourolajdad, Yingfeng Wang, Timothy I. Shaw, and Russell L. Malmberg. Journal of

Theoretical Biology. Year: 2013. Volume 318, 7 February 2013, Pages 140-163. Reprinted with permission

of publisher.
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2.1 Abstract

RNA secondary structure ensembles define probability distributions for alternative equilibrium secondary

structures of an RNA sequence. Shannon’s Entropy is a measure for the amount of diversity present in any

ensemble. In this work, Shannon’s entropy of the SCFG ensemble on an RNA sequence is derived and

implemented in polynomial time for both structurally ambiguous and unambiguous grammars. Micro RNA

sequences generally have low folding entropy, as previously discovered. Surprisingly, signs of significantly

high folding entropy were observed in certain ncRNA families. More effective models coupled with tar-

geted randomization tests can lead to a better insight into folding features of these families. Availability:

http://www.plantbio.uga.edu/~russell/index.php?s=1&n=5&r=0.

2.2 Introduction

Non-protein-coding RNAs (ncRNA) have a critical role in gene regulation (Morris, 2008, 2012; Barrandon

et al., 2008; Repoila and Darfeuille, 2009). They act as transcriptional and post-transcriptional regulators

and are guides of chromatin-modifying complexes. Like protein-coding genes, small RNAs can also func-

tion either as activators or inhibitors of various genetic diseases (Taft et al., 2010). The function of a ncRNA

is highly associated with its folding conformation (Hall et al., 1982; Lu et al., 1996; Simmonds et al., 2008).

Non-coding RNA sequences have different folding characteristics. Certain families of ncRNAs such

as micro RNAs (miRNA) are believed to have a stable conformation definable by their secondary structure,

while the folding conformation of transfer RNAs (tRNAs) is more complex and involves tertiary interactions

(Scarabino et al., 1999; Du and Wang, 2003). Furthermore, depending on their regulatory roles, ncRNAs

might possess more than one single conformation in vivo. Riboswitches are a group of regulatory ncRNAs

that are generally required to have two alternative folds to perform their biological functions (Vitreschak

et al., 2004; Quarta et al., 2009; Bocobza et al., 2007; Barash et al., 2006; Gilbert et al., 2007). Ribonuclease

P (RNase P) sequences, another group of ncRNAs, are more complex in that they have an RNA component

which directly binds to its protein component (Kazantsev and Pace, 2006; Niranjanakumari et al., 1998).

The function of RNase P is to cleave off an extra, or precursor, sequence of RNA on tRNA molecules

(Guerrier-Takada and Altman, 1993; Brannvall et al., 1998; Kazantsev and Pace, 2006; Niranjanakumari
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et al., 1998). RNase P sequences are generally longer than miRNAs and riboswitches and possess several

pseudoknots in their conformation.

The secondary structure of RNA plays a critical role by scaffolding the tertiary structure (Cech et al.,

1994; Batey et al., 1999; Tinoco and Bustamante, 1999; Westhof et al., 2011; Bernauer et al., 2011) making

the RNA secondary structure modeling critical to ncRNA-related studies. The secondary structure consists

of single strand loops enclosed by double-stranded helices formed by stacked canonical (here, Watson-Crick

and Wobble) base-pairs of nucleotides. RNA secondary structure is mainly modeled based on the Minimum

Free Energy (MFE) criterion; the structural conformation with the least free energy from amongst all possi-

ble conformations in a thermodynamic model is predicted as the secondary structure of the sequence. The

MFE structure of the RNA sequence can be found through a dynamic programming optimization in polyno-

mial time O(n3) (Zuker and Stiegler, 1981; McCaskill, 1990). Secondary structure prediction programs can

achieve up to 70% accuracy by minimizing the global energy sum via dynamic programming (Zuker, 2003;

Knudsen and Hein, 2003; Hofacker, 2003).

In addition to the thermodynamic models, Stochastic Context-free Grammars (SCFGs) have also been

used for RNA secondary structure prediction and searches. A context-free grammar (CFG) is a formal de-

scriptive system consisting of symbolic rewriting rules to generate languages of strings. For the alphabet

of the four nucleotides, such grammars describe languages of RNA sequences, whose generations (called

derivations) are by a series of rewriting rule applications. Context-free rules of form X → aY b model pair-

ing between (possibly distant) nucleotides a and b. These pairings are either the result of hydrogen-bonds

between complementary base pairs A-U and C-G, or the wobble pair G-U. A derivation process of a sequence

thus yields an associated secondary structure. A stochastic CFG, with rules associated with probabilities,

defines alternative structures of different probabilities for the same sequence, rendering an RNA secondary

structure ensemble. In addition, a SCFG is reconfigurable for defining ncRNAs of specific secondary struc-

tures, e.g., in a structural homology search.

Accurate modeling of RNA folding is essential to ncRNA ab initio gene finding and structure prediction.

Proper estimation of the probabilities associated with RNA structures is essential to developing an effective

SCFG model. Maximum likelihood (ML) approaches such as the Cocke-Younger-Kasami (CYK)-based

methods have demonstrated their merits in both SCFG-modeled RNA structure detection and prediction

studies (Dowell and Eddy, 2004).

8



While ML approaches enable prediction of RNA structure under a probabilistic model, other targeted

statistics may also lead to characterization of various ncRNA sequences. For instance, sampling of the fold-

ing space of certain ncRNA sequences under the Boltzmann thermodynamic model has proven useful in

investigating alternative structures as well as distinguishing RNA sequences from random sequences (Ding

and Lawrence, 2003; Chan and Ding, 2008; Miklos et al., 2005).

Our goal in this work was to define an application of Shannon’s entropy to RNA structures and their

structural variability to identify riboswitches. Our theoretical approach used stochastic context free gram-

mars (SCFG) as folding models. We examined the properties of this measure by investigating the entropy

of RNA sequences of various families under several well-established SCFG models. Additional tests are

designed to investigate the possibility of significance of this measure on RNA sequences and various factors

associated with it.

Information-theoretic uncertainty or Shannon’s entropy H(S) (Shannon, 1948) is a quantitative mea-

sure for the amount of (un)certainty about a random variable S, H(S) =
∑

s∈S p(s) log p(s). It can also

be interpreted as the measure of diversity within a given distribution of values or probabilities. The ability

of Shannon’s entropy to capture the diversity in a given ensemble has made it useful for various disciplines

of research such as genetic/biological evolutionary studies (Adami et al., 2000; Yockey, 2005) as well as

characterization of DNA sequence motifs (Schneider and Stephens, 1990; D’Haeseleer, 2006). Shannon’s

entropy has also been deployed in RNA structural studies. A formulation for the base-pairing certainty has

been introduced in (Huynen et al., 1997) and was shown to be able to capture effectively the structural stabil-

ity of certain ncRNAs under both the Boltzmann and SCFG ensembles (Mathews, 2004; Wang et al., 2012;

Shaw et al., 2011). Various formulations of base-pairing certainty, however, are only approximations of the

secondary structural (un)certainty of a sequence. Here, we present a direct derivation of the information-

theoretic uncertainty of the SCFG-modeled folding space of the RNA sequence, computable in polynomial

time.

Sections 2 and 3 present our formulation of structural entropy using SCFG. Sections 4 and 5 consider

the application of SCFG models to several RNA families with known structure. Results from applying the

structural entropy to these RNAs are presented in section 6. Finally, sections 7 and 8 contain our discussion

and overall conclusion.
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2.3 Stochastic Context-Free Grammar (SCFG) ensemble of RNA secondary structure

The SCFG-modeled secondary structure space of a given sequence assigns posterior probabilities to all pos-

sible secondary structures definable over the sequence. The resulting ensemble of structures is pseudoknot-

free conformations, due to the context-free nature of the grammar. That is, for any four nucleotides of

positions, i < j < k < l, base pairs between positions i and k and between j and l cannot occur at the

same time1. This constraint greatly reduces the structural space and ensures computational efficiency of

structure prediction algorithms. Both RNA sequences and their secondary structures can be described

with SCFGs. Since a CFG defines a language of strings using generating rules, a collection of RNA se-

quences can be defined by CFG using the alphabet Σ = {A, C, G, U}. Formally, let y = y1y2 . . . yn be a

given sequence, where yk ∈ Σ, where k = 1, 2, . . . , n. A derivation π of y by the grammar is:

S0 = γ0 ⇒ γ1 ⇒ γ2 ⇒ · · · ⇒ γnπ = y (2.1)

where γi ∈ (N ∪ Σ)∗, and γi ⇒ γi+1 satisfies that γi = ωXβ and γi+1 = ωαβ for some ω ∈ Σ∗,

β ∈ (N ∪ Σ)∗ and rule X → α in the grammar, i.e., the occurrence of nonterminal X is rewritten with

string α. The derivation is also called a left-most derivation because the nonterminal X , chosen to be

replaced by α, is the left-most nonterminal on the string γi (note ω is a string of all terminals).

We denote the derivation (2.1) by S0 ⇒∗
π y. Left-most derivations have one-to-one correspondence with

derivation trees (or parsing trees). Each such derivation (and the corresponding parsing tree) contains all the

information of the corresponding secondary structure folded by the sequence. Equation (2.2) illustrates the

correspondence between derivations and secondary structures with CFG, where an example grammar with

only four types of generic rules is used:

X → aY bZ, X → aY b, X → aY, X → a (2.2)

where X,Y and Z are non-terminals and a and b are terminals for nucleotides in Σ. The first two rules

define base pairs between two nucleotides represented by a and b, the last two define unpaired nucleotides

represented by a. The first rule also allows assembly of parallel substructures.
1Structures with pseudoknots are of much higher computational complexity and are not considered in this paper.
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Since sequences and derivations are completely defined by the grammar G, it also defines the space of

structures for all sequences that it can derive. The probability distribution of the structures in the space is

the probability distribution associated with derivations of all derivable sequences by G. In particular, the

probability P (S0 ⇒∗
π y) associated with the derivation π of sequence y in (2.1) under a given SCFG Model

(G,Θ) is defined as

p(π, y|G,Θ) ≡ p(π, y) = P (S0 ⇒∗
π y) =

nπ∏
i=1

P (Ri
π) (2.3)

where Ri
π is the grammar rule associated with the one-step derivation γi−1 ⇒ γi in (2.1).

2.4 Structural entropy over SCFG ensembles

As noted previously, Shannon’s entropy measures the (un)certainty associated with a random event. When

the secondary structure folding of a given RNA sequence y is considered as such an event, it refers to the

entropy of the probability distribution of the folding space of the given sequence. Denoted as H(Π|y,G,Θ),

the folding entropy is both function of sequence y and folding model (G,Θ). In this section, we derive a

closed form for the structural entropy of sequence y, which is computable in polynomial time. Let’s use

H(Π|y) rather than H(Π|y,G,Θ) for simplicity of notation. Substituting P (π, y) = P (S0 ⇒∗
π y) and

P (y) = P (S0 ⇒∗ y) yields the structural entropy of a sequence y, H(Π|y) to be equal to:

logP (S0 ⇒∗ y)− 1

P (S0 ⇒∗ y)

∑
π∈Π(y)

P (S0 ⇒∗
π y) logP (S0 ⇒∗

π y) (2.4)

where Π(y) is the space of secondary structures into which y can fold, defined by the underlying RNA

secondary structure ensemble. The nonterminal S0 ∈ N is the start nonterminal symbol of the given SCFG

and N is the set of nonterminals. We now show that the structure entropy can be directly derived over any

given SCFG ensemble.

The total probability of y P (S0 ⇒∗ y) can be computed as α(S0, 1, ny, y). The inclusive definition of

the Inside probability function α is used, here (Durbin, 1998). (See A.1)
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We introduce some notations for the convenience of discussion. As used earlier, let π be a specific

structure for y, defined by a specific left-most derivation S0 ⇒∗
π y. We use ⟨X → γ, i, j⟩π to denote the

instance of rule X → γ applied in π such that X derives yi . . . yj in the left-most derivation S0 ⇒∗
π y, i.e.,

S0 ⇒∗
π y1 . . . yi−1Xλ ⇒∗

π y1 . . . yi−1γλ

⇒∗
π y1 . . . yi−1yi . . . yjλ ⇒∗

π y1 . . . yjyj+1 . . . yny = y

for some λ ∈ (N ∪ Σ)∗, where Σ = {A, C, G, U}.

Likewise, we denote an instance of rule X → γ applied in some structure by ⟨X → γ, i, j⟩. Note

that the applications of rule X → γ in ⟨X → γ, i, j⟩π and in ⟨X → γ, i, j⟩ have the same probability,

which is the probability F(X → γ) for rule X → γ given in the SCFG. The term
∑

π∈Π(y)

P (S0 ⇒∗
π

y) logP (S0 ⇒∗
π y) in (2.4) becomes

∑
π∈Π(y)

∏
⟨Y→δ,k,l⟩π

F(Y → δ) log
∏

⟨X→γ,i,j⟩π

F(X → γ)

=
∑

π∈Π(y)

∏
⟨Y→δ,k,l⟩π

F(Y → δ)
∑

⟨X→γ,i,j⟩π

logF(X → γ)

=
∑

⟨X→γ,i,j⟩

logF(X → γ)
∑

π∋⟨X→γ,i,j⟩

∏
⟨Y→δ,k,l⟩π

F(Y → δ) (2.5)

where term ∑
π∋⟨X→γ,i,j⟩

∏
⟨Y→δ,k,l⟩π

F(Y → δ)

is actually the total probability of all the left-most derivations S0 ⇒∗
π y for all π that contain ⟨X → γ, i, j⟩.

That is, for y = y1 . . . yny ∑
π∋⟨X→γ,i,j⟩

∏
⟨Y→δ,k,l⟩π

F(Y → δ) =

∑
ω,λ P (S0 ⇒∗ ωXλ, ω ⇒∗ y1 . . . yi, λ ⇒∗ yj . . . yny)

×P (X → γ, γ ⇒∗ yi+1 . . . yj−1)

= β(X, i, j, y)F(X → γ)P (γ ⇒∗ yi+1 . . . yj−1)
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where the Outside probability function β is the inclusive definition of the outside probability function

(Durbin, 1998). (See A.1) Replacing the corresponding terms in formulae (2.4) and (2.5) with the

above derivations, the structural entropy of given sequence y is computed as

logα0 −
1

α0

∑
i≤j

∑
X→γ

β(X, i, j, y)F(X → γ) logF(X → γ)P (γ ⇒∗ yi+1 . . . yj−1) (2.6)

where α0 = α(S0, 1, ny, y). Further derivations from P (γ ⇒∗ yi . . . yj) will be γ-specific, though the

technique is general and applicable to any SCFG. We will use the grammar rules of the four types given

in (2.2), for simplicity of presentation (See A.1 for a derivation generalized to all types of non-stacking2

grammar rules). Based on them, term
∑

X→γ in (2.6) can be computed as

β(X, i, j, y) [ f(X, aY bZ)
∑

i+2<k<j−1

α(Y, i+ 2, k − 1, y)α(Z, k + 1, j − 1, y)

+f(X, aY b)α(Y, i+ 2, j − 2, y) + f(X, aY )α(Y, i+ 2, j − 1) + δ(i+ 2 = j)f(X, a)) ] (2.7)

where a = yi+1, b = yj−1, δ(i = j) is the characteristic function, and the shorthand f(X, γ) is used for

f(X, γ) = F(X → γ) logF(X → γ).

Equation (2.7) is valid for all non-stacking structurally unambiguous grammars. In the case of struc-

turally ambiguous grammars, however, the inside and outside probability functions in (2.7) must be modi-

fied according to the left-most derivation criterion to avoid redundant enumeration of derivation trees. A.1

contains the algorithmic details of a derivation generalized to ambiguous grammars. In dealing with struc-

turally ambiguous grammars, we refer to (2.7) as the redundant derivation and its modified version in A.1

as the left-most derivation. The computational complexity of the left-most derivation entropy is the same as

that of redundant derivation with the memory allocation being twice as high.

The uncertainty about the occurrence of a substructure s′ can be computed via Shannon entropy H(Is′) =

−p(s′) log p(s′)− (1− p(s′)) log(1− p(s′)). The most fundamental substructure of the secondary structure

space of a sequence is the occurrence of pairing between two nucleotides. By summing up all the individual
2Non-stacking grammar rules here include: X → a, X → aY, X → Y a, X → aY bZ, X → Y aZb, and

X → aY b, but not X → ϵ.
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base-pairing uncertainties, we can formulate a measure for the total pairing uncertainties for sequence y. We

will refer to this figure as Total pairing (TP) entropy:

TP Entropy(y) =
∑
i<j

H(Ii,j |y) (2.8)

Where Ii,j is a binary random variable representing one for pairing and zero for non-pairing events between

two nucleotides i and j, and H(Ii,j |y) is the uncertainty for the pairing of nucleotides of positions i and j in

the sequence; H(Ii,j |y) = −p(i, j) log p(i, j)− (1− p(i, j)) log(1− p(i, j)), where p(i, j) refers to pairing

probability of i and j. The total pairing entropy, however, is not a valid entropy of all base-pairs, since

it neglects the interdependencies across base-pairs introduced by the corresponding SCFG. It can be easily

shown that the total pairing entropy is an upper bound for the structural entropy for any given sequence and

under any given SCFG model so long as the grammar model is structurally unambiguous (See A.9.1).

H(Π|y) ≤ TP Entropy(y) (2.9)

2.5 Evaluating the Structural Entropy of ncRNAs

The structural3 entropy of a sequence can depend on various factors ranging from sequence and model fea-

tures to folding characteristics of the family that the sequence belongs to. Primary structural variants such

as sequence length and nucleotide composition can all affect the structural entropy of the RNA sequence.

For instance, higher length is expected to increase the number of folding scenarios valid on the sequence,

which in turn may increase folding entropy. High GC- or AU-composition can also affect the folding en-

tropy of the sequence, since all folding models favor canonical base-pairs. Also, various modeling factors

such as grammar rule design, grammar rule probability assignment, model accuracy to annotated secondary

structure of the RNA sequence, inclusion of base-pair stacking in the model, and structural ambiguity of

the grammar could all have an impact on the folding space and entropy of the sequence. Finally, in vivo

conformational dynamics such as folding (in)stability, multiple folds, and formation of pseudoknots could

all affect the structural entropy, since they are directly related to the folding distribution. There is no reason

to believe that the entropy of sequences with such different structural features will have a similar behavior.
3Terms folding entropy and structural entropy both refer to the secondary structural entropy here

and are used interchangeably in the text.
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The impact of the above factors on the structural entropy makes the investigation of folding entropy

of ncRNAs a challenging task. The degree of sensitivity of the structural entropy to a factor and how it

might vary in the light of other factors is not known. Also, limitations of the secondary-structure modeling

in capturing the tertiary conformation and its dynamics further complicates comparisons and biological in-

terpretations based on the entropy, making co-evaluation of modeling and ncRNA conformational features

inevitable. A thorough and comprehensive study is needed to effectively explore and compare the folding

entropy of various classes of ncRNAs. Here, we only intend to offer a preliminary insight into this compar-

ison with the specific goal of evaluating the significance of the mentioned factors on the folding entropy of

the ncRNA. Tests are devised to study as many factors as possible given the time and complexity limitations

of this work.

2.5.1 Prior Assumptions about the Micro RNA

A sequence of a single stable fold should have low entropy under a reasonably accurate folding model,

since folding alternatives will be unlikely to occur for that sequence under the given model. Micro RNA

sequences are known for a single and a stable secondary structure, having distinguishably low base-pairing

entropy. We also expect the structural entropy of the miRNA to be low. This assumption, however, is only

an intuition and is different from the null-hypotheses of various statistical tests performed here. As shall be

described later in more detail, the null-hypothesis is that folding entropy values of classes of ncRNAs are

neither significantly different from one another nor are they from that of a random sequence. Speculations

about the entropy of miRNA shall be verified throughout the test. Should this assumption be confirmed, it

may assist us in better investigating the impact of various modeling factors on the structural entropy.

2.6 Methodology

2.6.1 Choice of Folding Model

Two types of non-stacking grammars are considered here as representative folding models. The first type

contains well-established CFG designs along with their corresponding parameter sets trained to imitate
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RNA secondary structure. Three grammar models were arbitrarily selected from the four structurally unam-

biguous non-stacking grammars presented in (Dowell and Eddy, 2004) along with their trained parameters.

Grammars G4 (RUN), originally developed jointly by (Dowell and Eddy, 2004) and Graeme Mitchison, G5

(IVO), developed jointly by (Dowell and Eddy, 2004) and Ivo Hofacker, and G6 (BJK), by Knudsen/Hein

originally used in the Pfold package (Knudsen and Hein, 1999, 2003), were chosen. We used the conus

software (Dowell and Eddy, 2004) to train each individual model based on the CYK-based training method

described in (Dowell and Eddy, 2004). Three training sets: benchmark, mixed80, and rfamv5 (Dowell and

Eddy, 2004) were deployed for training purposes. We use the notation grammar (data set) to refer to

a particular grammar and its choice of parameter set. For instance RUN (benchmark) refers to deploy-

ment of the RUN grammar design whose corresponding parameter sets are obtained by training the model

on the benchmark data set. Please refer to (Dowell and Eddy, 2004) for details about grammar rules and

training data sets.

All the above three models structurally unambiguous with rule probabilities estimated by CYK-based

training approaches. In order to avoid potential bias of results towards factors such as structural unambigu-

ity and/or CYK-based model-training algorithms, we chose the second type of grammars to be structurally

ambiguous with symmetrical rules and arbitrary rule probabilities:

S → a (pt), S → aS (pn), S → Sa (pn)

S → aSbS (pn), S → SaSb (pn), S → aSb (pn)

Values pt and pn are probabilities for the terminal rule and nonterminal rules, respectively. We examined

two variations of the above model. In model denoted as RND1, we set pt = pn and in the model denoted

as RND10 we set pt = 0.1pn. Rule probabilities were then normalized for both models. Single nucleotide

generation probabilities are set to 0.25 for all four nucleotides in both RND1 and RND10 models. For both

models, the probability distribution of {0.25, 0.25, 0.17, 0.17, 0.08, 0.08} is given to six canonical base-

pairs G-C, C-G, A-U, U-A,G-U, and U-G, respectively. All non-canonical base pairs probabilities are set

to zero. Both redundant and left-most derivation structural entropy calculation was implemented for RND1

and RND10 models, due to their structural ambiguity.
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Folding models considered here are limited to non-stacking models, due to implementation constraints.

In non-stacking grammars, base-pair probabilities are a priori independent of surrounding base-pairs. This is

a great approximation of secondary structural folding compared to stacking models. Stacking SCFG models

are much better imitations of the state-of-the-are thermodynamic folding models.

2.6.2 Data Collection

Having a reliable annotated secondary structure for the RNA sequence is essential to evaluating its fold-

ing entropy. Bralibase annotated secondary structures (Gardner et al., 2005) were carefully selected by the

authors to be highly reliable. Bralibase secondary structures, however, are only available for a few classes

of RNA sequences, namely tRNA, g2intron, U5, and rRNA. Rfam alignments, on the other hand, include

more diverse classes and sequences than Bralibase. Rfam contains consensus secondary structure based on

published literature or predicted using automated covariance-based methods (Gardner et al., 2009; Griffiths-

Jones et al., 2005); however, the predicted structures are generally less reliable than Bralibase.

Finally, Rfam contains both SEED and FULL alignments. Unlike the SEED alignments, FULL align-

ments are not manually curated and often contain computationally predicted sequences, while they contain

greater number and diversity of sequences. We chose the data of the Rfam SEED alignment for this study

as a compromise between sequence diversity and reliability of annotated secondary structure. Conclusions

about the relationship between model accuracy and structural entropy of the ncRNA, however, will then

have to be made with great caution.

We downloaded 45 Rfam sequences from Rfam 10.0 SEED alignments. Our data set includes sequences

of one stable secondary structure, such as miRNAs, as well as sequences known to have higher tertiary in-

teractions such as tRNAs. Various sub-families of riboswitches are also included. Riboswitch sequences are

known for alternative folds in vivo. The data also contain sequences known to have pseudoknots, such as

RNAse P. Various other sequences are also included to have a more diverse general picture.

A total of 4116 sequences were downloaded. RNA families that were included in this work were:

miRNA (12 families: 170 sequences), riboswitch (15 families: 1334 sequences, snRNA: 31 sequences),

RNase MRP (1 family: 67 sequences), RNase P (4 families: 537 sequences) rRNA (3 families, 927 se-

quences), tRNA (1 family: 967 sequences), and snoRNAs (83 sequences). The detailed selection of Rfam
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accession number and additional information about the sequences regarding their average length and aver-

age identity is included in A.2.

Model Accuracy to Annotated Secondary Structure of ncRNAs

In order to evaluate the accuracy of the above folding models in predicting the RNA secondary structure,

their CYK-based predictions were compared to the Bralibase annotated structures (Gardner et al., 2005) for

the available sequences. Sensitivity and specificity of each model was calculated according to (Do et al.,

2006), which is based on matched base-pairs and uses the Predictive Positive Value (PPV) as a means of

model specificity.

The sensitivity and specificity of selected models for both Bralibase and Rfam SEED secondary struc-

tures is calculated to gain better insight into the overall accuracy of each model. Tables A.2 and A.3 contain

average sensitivity and specificity (PPV) of various models to annotated secondary structure of classes of

ncRNAs available in Bralibase and Rfam databases. The sensitivity and specificity of RUN and BJK gram-

mars are significantly higher than those for the IVO grammar in both Bralibase and Rfam secondary structure

annotations.

2.6.3 Measuring the Significance of Folding Entropy

Various primary and secondary structure randomizations have been performed to evaluate both folding sig-

nificance of ncRNAs and investigate its relationship to various model-specific and sequence-specific factors.

The p-value of folding entropy of various ncRNA sequences have been calculated against random back-

ground of sequences having similar length and nucleotide composition, since a priori we know that such

primary structure features can each affect the structural entropy of the sequence. Hence, the general null-

hypothesis is that structural entropy of classes of ncRNAs are neither significantly different from each other

nor are they significantly different than that of a random sequence of similar length and nucleotide compo-

sition under any folding model. Various randomization techniques applied here will have a more specific

null-hypothesis corresponding to the nature of the generated random sequence. Should the null-hypotheses

be rejected, various sequence and model specific factors associated with significant folding entropy values

are of interest.
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In the first randomization, the significance of entropy values was calculated against a background of ran-

dom sequences with the same length and nucleotide composition. Single-nucleotide composition preserved

random sequences were generated using GenRGenS for each sequence, separately. P-values were then em-

pirically obtained by comparing the entropy of the sequence to its corresponding distribution of structural

entropy of random sequences. The null-hypothesis here is that the structural entropy of classes of ncRNAs

are neither significantly different from each other nor are they significantly different than that of a random

sequence of the same length and single-nucleotide composition under any folding model.

In the second randomization, the significance of entropy values was calculated against a background of

random sequences with the same length and di-nucleotide composition. Random sequences with their di-

nucleotide composition preserved were generated using the Altschul-Erikson algorithm for each sequence,

separately. The algorithm was originally described in Altschul and Erickson (1985) and subsequently im-

plemented and used in Clote et al. (2005) for comparison of structural RNA folding energy to random RNA.

P-values were obtained by comparing the entropy of the sequence to its corresponding distribution of struc-

tural entropy of random sequences. The null-hypothesis here is that the structural entropy of classes of

ncRNAs are neither significantly different from each other nor are they significantly different than that of a

random sequence of the same length and di-nucleotide composition under any folding model.

A stability test of p-values on miRNAs and tRNAs with length 100 nucleotides under the BJK (mixed80)

model was performed. The test shows that a random ensemble of size 100 will result in highly stable p-values

(See A.7 for details of the stability test). Although the stability test results cannot be generalized to all se-

quences and choices of model, we chose the random ensemble size to be linearly proportional to sequence

length for calculating p-values of ncRNA sequences in both single-nucleotide and di-nucleotide randomiza-

tion tests; in the first and second randomization tests. Results for the rli54 riboswitch (5 sequences) are not

available for randomization tests, due to high computational time. Also, results for bacterial type A RNase

P and nuclear RNase P sequences are not available for the first and second randomization tests, due to their

high computational time. Finally, only partial result is available for bacterial type B RNase P sequences in

the first and second tests. (34 sequences out of the total of 114 in the single-nucleotide randomization test

and 60 sequences for the di-nucleotide randomization test)4

4RNase P sequences used in single- and di-nucleotide randomization tests were limited, due to high computational
time of the tests. 34 sequences were arbitrarily chosen for the single nucleotide randomization and are included in
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In the third randomization, the significance of entropy values was calculated against a background of

random sequences with structures typical of the corresponding model. The procedure is as follows: We first

clustered sequences according to their length and nucleotide composition. Three-group k-means clustering

of sequence lengths, yields cluster centers of {93, 185, 366}. We limited our test in this step to shortest

cluster of ncRNA sequences. We then performed a second phase of clustering on single-nucleotide compo-

sition. A three-group clustering was chosen to be reasonable based on the k-means clustering curve (data

not shown). The three-group clustering resulted clustering of short sequence into high, low, and average

GC-composition, which are denoted as Clusters 1, 2, and 3, respectively. The sequences were then filtered

for having length 93 ± 5, due to the observed high sensitivity of entropy to sequence length. Details about

clusters and their corresponding sequences are available in A.5. The GenRGenS software package (Ponty

et al., 2006) was then used to generate random sequences with structure typical of the given folding model.

GenRGenS has the ability to generate random sequences of desired length from a given primary or sec-

ondary structural model. A.4 contains details about generating random structures for each model. In this

randomization, only one background of random sequences is generated for a given cluster of sequences and a

choice of model, rather than for each sequence separately as done in the first and second randomization tests.

The above clustering scheme was arbitrarily selected as a compromise between significance and accuracy

of comparison; i.e., further clustering sequences based on higher order of nucleotide composition, such as

di-nucleotide composition, would yield a more accurate comparison between folding entropy of sequences

while the generation of corresponding random sequences with structure would be less typical of the model,

making investigations the significance of entropy values very difficult. Other clustering schemes may result

in more comprehensive comparisons between ncRNAs with similar length and nucleotide composition. The

null-hypothesis here is that the structural entropies of classes of ncRNAs are neither significantly different

from each other nor are they significantly different than that of a sequence having a random secondary-

structure of similar length and single-nucleotide composition under any folding model.

the 60 sequences used for di-nucleotide shuffling test. Number of sequences with available results slightly vary for
various models.
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2.6.4 Comparing Structural and Base-pairing Entropies

In order to evaluate the statistical power of structural entropy in characterizing ncRNAs compared to the

entropy of their base-pairs, we compared the structural entropy with a formulation of their base-pairing

entropy introduced in (Huynen et al., 1997). We refer to this formulation as base-pairing (BP) entropy:

BP Entropy(y) =
∑
i<j

−p(i, j) log p(i, j)

Where p(i, j) refers to the pairing probability of nucleotides positioned at i and j in the given sequence y.

Neither the total pairing entropy introduced in (2.8) nor base-pairing entropy are equal to the actual over-

all base-pairing entropy of the sequence, since they both ignore base-pair dependencies introduced under

the corresponding SCFG model. They both, however, have significantly similar statistics. In this work, we

selected base-pairing entropy for making various comparisons with structural entropy. The first and second

randomization tests were applied for base-pairing entropy in the same manner as the structural entropy.

2.7 Results

Entropy values of collected sequences were calculated under all selected folding models. Impact of various

factors such as sequence length and choice of grammar model were investigated. Also, the folding entropy

p-values of sequences were calculated and organized according to their class in various randomization tests

to investigate the significance of folding entropy of classes of ncRNAs and their relationship to various fold-

ing models.

Figure 2.1 shows the distribution of entropy values of all collected 4116 sequences with respect to se-

quence length, under each model. The left-most derivation entropy of RND1 and RND10 models greatly

reduces folding diversity compared to redundant derivation of entropy, with their average value for collected

sequences being reduced from 132 and 105 to 116 and 85, respectively. Structural entropy and sequence

length have a linear relationship regardless of the choice of folding model for the range of tested sequences

{60nt− 600nt}5. This is also true for redundant derivation of structural entropy for the structurally am-

5Simulation results suggest higher-order relationship between sequence length and its structural entropy for length
values higher than 600nt (data not shown).
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biguous models RND1 and RND10 (data not shown). The structural entropy across all grammars shows that

the BJK grammar has a significantly more deterministic folding space compared to other grammars. The

RND1 grammar shows significantly higher folding diversity than other grammars including RND10. This

indicates that the ratio of terminal to nonterminal probabilities has a major effect on the structural entropy.

The top row of figure 2.1 shows consistently high entropy for rfamv5-trained parameter sets compared to

those for benchmark and mixed80 regardless of choice of grammar.

2.7.1 Significance of Folding Entropy of non-coding RNAs

The folding entropy significance of every ncRNA sequence was empirically calculated by comparing it to

entropy values corresponding to ensemble of random sequences of same length and single-nucleotide com-

position (first randomization). The significance of folding entropy of each ncRNA was also calculated by

comparing it to an ensemble of random sequences with same length and same di-nucleotide composition

(second randomization). The above tests were applied under each model, separately. Figure 2.2 shows the

structural entropy p-value distribution of classes of ncRNAs under the RUN (benchmark) model. We used

this model for further examination, since the p-values obtained for all ncRNAs have a fairly uniform dis-

tribution 6 (see A.4). As we can see, various classes of ncRNAs have different p-value distribution. For

instance, miRNA has a left-tilted distribution with 70% of its sequences having significantly low folding

entropy (p-value less than or equal to 0.05). Bacterial RNase P type B sequences, on the other hand, have

a right-tilted p-value distribution with 33% of sequences with significantly high structural entropy (p-value

greater than or equal to 0.95). The distributions of p-values of other classes of ncRNAs are also different

from one another.

As mentioned before, p-values obtained from steps 1 and 2 randomization tests are expected to be inde-

pendent of sequence length making possible comparisons of folding entropy between sequences of different

length. A qualitative inspection of p-values of various classes of ncRNAs with respect to their length also

confirms this assumption (See A.5); i.e., p-values of some sequences belonging to a ncRNA class do not

seem to be a function of length.
6Even though p-values are observed to be uniformly distributed across sequences, the inter-family p-value distribu-

tion distance is not maximal for RUN (benchmark) (See tables A.7 and A.8 for sum of pair-wise Kolmogorov-Smirnov
(KS) distance corresponding to RNA families for each model)
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Figure 2.1: Entropy vs. Length. Structural entropy of all 4116 collected sequences with respect to their
lengths. The top row corresponds to RUN, IVO, and BJK grammars, respectively. Values obtained from
various model parameter sets are plotted for each grammar. Parameters are according to (Dowell and Eddy,
2004). The bottom graph plots structural entropy of sequences under various models. Benchmark-trained
model parameters were selected for RUN, IVO, and BJK grammars. Values for RND1 and RND10 models
correspond to left-most derivation of entropy.
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Figure 2.2: Structural Entropy p-Value Distribution. Structural entropy empirical p-values of ncRNAs fami-
lies against dinucleotide-preserved random shuffles using the RUN (benchmark) model: Dinucleotide shuf-
fling algorithm originally described in (Altschul and Erickson, 1985) and subsequently implemented in
(Clote et al., 2005) was used to generate shuffled random sequence ensembles for each individual sequence,
separately. Random sequences were of the same length and dinucleotide distribution as the original se-
quence. The size of the random ensemble was proportional to the original sequence length.

The p-values obtained from first and second randomization tests are also expected to be independent

of single- and di-nucleotide compositions, respectively. However, this is not the case. Table A.9 contains

correlation values between di-nucleotide composition and structural entropy p-values of two ncRNAs hav-

ing most distant average p-values, i.e., miRNA and bacterial type B RNase P. The correlation values of

miRNA and bacterial type B RNase P have opposite signs for most nucleotide compositions with values

corresponding to UA-dinucleotide compositions having most correlation difference. Figure A.6 is a plot

between entropy p-values obtained from di-nucleotide shuffling with respect to UA-dinucleotide compo-

sitions for miRNA and bacterial type B RNase P sequences under the RUN (benchmark) model. Micro

RNA sequences of higher UA-dinucleotide composition tend to have lower entropy under the di-nucleotide

shuffling test while the opposite is true for bacterial type B RNase P sequences. Hence, entropy p-values ob-

tained from di-nucleotide randomization are not independent of di-nucleotide composition of that sequence.

Furthermore, this dependence can have varying behavior depending on the class of the ncRNA sequence.
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The p-value distribution of folding entropy of sequences belonging to the same class of ncRNA has been

observed to be more linear than normal in most cases and under most models (data only shown for the RUN

(benchmark) model, figure 2.2). The average p-value can be a useful representation of the folding entropy in

making comparisons across various classes of ncRNAs. Average p-values of various ncRNA families from

first and second randomization tests were observed to have fairly consistent ranking regardless of choice of

parameter set under a given the grammar model (Table A.5 contains average p-values of various models for

different ncRNA families). Hence, in order to have an overall view of the behavior of each model with re-

spect to folding entropy of various classes of ncRNAs, we first averaged the p-values of the sequences across

parameter sets of a given model. We then applied a second level of averaging across all sequences belonging

to the same class of ncRNA for each model. Figure 2.3 contains average p-values for all classes of ncRNAs

and under different grammars. The left bar-plots contain values corresponding to di-nucleotide shuffling

test and the right bar-plots contains values corresponding to single-nucleotide composition randomization.

The choice of grammar design has a high impact on structural entropy p-values obtained under various

randomization tests. BJK and RND10 models yield lower p-values while the IVO grammar shows high av-

erage p-values. The ordering of average p-values of ncRNA families is fairly consistent between single- and

di-nucleotide composition randomization tests under a given folding model. Furthermore, average folding

entropy p-values of classes of ncRNAs are different from one another. The ranking of the average structural

entropy p-values of ncRNA families, however, are consistent across most models. Micro RNAs have the

lowest average p-values under all models and randomizations excluding results for di-nucleotide shuffling

test under the IVO grammar model. Folding entropy of the miRNA is also significantly lower than that of

a random sequence with same length and nucleotide composition under most models. On the other hand,

results of RND10 and RUN models assign highest structural entropy average p-values to bacterial type B

RNase P sequences under both single- and di-nucleotide randomization tests. SnoRNAs and riboswitches

also show high average p-values than tRNA, rRNA, and RNase MRP under the same models. The BJK

grammar shows slightly different results in this regard with snoRNA having highest p-value average than

other ncRNAs.

The same statistical test was performed to assess the significance of base-pairing entropy of ncRNAs

and make comparisons with structural entropy. Figure 2.4 is a bar plot of the corresponding base-pairing

entropy p-values for each grammar design. Similar to results of the structural entropy statistics, the base-
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Figure 2.3: Structural Entropy p-Value Average. Average structural entropy p-values of ncRNA families
under different models and randomization tests. P-values were averaged across results from three differ-
ent training sets (benchmark, mixed80, and rfam5) for each individual model. The four sets of plots on
the left are average p-values against dinucleotide-preserved random shuffles (Altschul and Erickson, 1985).
The four sets of plots on the right are average p-values against single nucleotide-preserved random se-
quences using GenRGenS Software (Ponty et al., 2006). Independent random ensembles were generated
for each individual sequence, separately. The random ensemble size was chosen proportional to sequence
length. Sequences containing ambiguous nucleotides were eliminated. Sequences used are miRNA (163
sequences), riboswitch (1359 sequences), RNase (54 sequences), rRNAs (926 sequences), tRNA (966 se-
quences), snoRNA (82 sequences), and bacterial type B RNase P (34 sequences).
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pairing entropy p-values of miRNAs are significantly lower than that of other classes of ncRNAs. The

p-values of miRNAs are also significantly lower than random sequences of same length and nucleotide

compositions under most models. Also, bacterial type B RNase P sequences have higher folding entropy

average p-values than other classes of ncRNAs. SnoRNAs and riboswitches have similar results to the struc-

tural entropy statistics. Slight difference of ranking of classes of ncRNAs between structural entropy and

base-pairing entropy is observed. Furthermore, p-values obtained from structural entropy tend to be gener-

ally higher than those for base-pair entropy especially under the di-nucleotide shuffling randomization test.

For instance, average structural entropy p-value of the bacterial type B RNase P under the RUN model is

0.83 while its average base-pairing entropy p-value is 0.62 under the same model.

In order to further investigate the statistically high structural entropy of bacterial type B RNase P, we

performed the dinucleotide randomization test on all 114 bacterial type B sequences along with all 117

nuclear and all 306 bacterial type A RNase P sequences. The RUN (benchmark) folding model was used.

Figure 2.5 shows that the distribution of structural entropy p-values of bacterial type B RNase P is signifi-

cantly tilted to the right (31% of sequences with p-value higher than or equal to 0.95) compared to those for

bacterial type A RNase P and nuclear RNase P.

The collected riboswitches (1365 sequences) contain several sub-families. We calculated the average p-

values for each sub-family under the RND10, RUN, and BJK models to evaluate sub-family specific folding

entropy behavior of riboswitch sequences under the above models. Benchmark-trained parameter sets were

used arbitrarily for the BJK and RUN models. Values for other parameter sets vary slightly. Figure 2.6 con-

tains structural entropy average p-values of riboswitch sub-families under various folding models. Results

suggest that modeling has a great impact on folding entropy significance of riboswitch sequences. The RUN

(benchmark) model generally assigns higher p-values to sequences while the BJK (benchmark) model as-

signs lower p-values. This is true for most cases of riboswitch sub-families. The sub-class of the riboswitch

also has an impact on structural entropy p-values. Average p-values of various folding models are closer

for certain classes of riboswitch, such as Hammerhead, while they may drastically vary for certain other

riboswitches, for example rli62. Figure 2.7 shows the structural entropy p-values of ncRNAs empiri-

cally calculated against random sequences with structure (third randomization). The top row corresponds to

cluster of high GC-composition sequences (cluster 1), the middle row corresponds to low GC-composition

sequences (cluster 2), and the bottom row corresponds to average GC-composition sequences (cluster 3)
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Figure 2.4: Base-pairing Entropy p-Value Average. Average base-pairing entropy p-values of ncRNA fam-
ilies under different models and randomization tests. P-values were averaged across results from three
different training sets (benchmark, mixed80, and rfam5) for each individual model. The four sets of plots
on the left are average p-values against dinucleotide-preserved random shuffles (Altschul and Erickson,
1985). The four sets of plots on the right are average p-values against single nucleotide-preserved random
sequences using GenRGenS Software (Ponty et al., 2006). Independent random ensembles were generated
for each individual sequence, separately. The random ensemble size was chosen proportional to sequence
length. Sequences containing ambiguous nucleotides were eliminated. Sequences used are miRNA (163
sequences), riboswitch (1359 sequences), RNase (54 sequences), rRNAs (926 sequences), tRNA (966 se-
quences), snoRNA (82 sequences), and bacterial type B RNase P (34 sequences).
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Figure 2.5: Structural Entropy p-Values of RNase P. Structural entropy p-values of bacterial type A RNase
P (306 sequences), bacterial type B RNase P (114 sequences), and nuclear RNase P (117 sequences). P-
values were obtained from dinucleotide shuffling of sequences and under the RUN (benchmark) folding
space model.

Figure 2.6: Structural Entropy p-Values of Riboswitches. Average structural entropy p-values of riboswitch
sub-families under RUN (benchmark), BJK (benchmark), and RND10 models using di-nucleotide shuffling
randomization test (Altschul and Erickson, 1985). The numbers of sequences in each sub-family are: Cobal-
amin (431), FMN (146), glmS (17), Glycine (44), Hammerhead 1 (30), Lysine (47), Mg sensor (4), MOCO
RNA motif (179), PreQ1 (42), preQ1-II (14), Purine (133), rli52 (6), rli53 (5), rli55 (3), rli56 (6), rli61
(4), rli62 (2), SAH riboswitch (52), SAM alpha (40), SAM IV (40), TPP (115). Results for rli54 (5) is not
available. Please refer to table A.1 for information about sequences.
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(See A.5 for details about clusters and sequences). Results for the IVO (benchmark) grammar are moved

to A.1. A qualitative inspection suggests that entropy values of ncRNAs and their significance vary across

models and depending on their GC-composition. By looking at the columns of figure 2.7, we can see that the

significance of entropy p-values of classes of ncRNAs varies across models. For instance, the tested tRNAs

have significantly lower entropy under the RND10 model compared to other models. Also, by inspecting the

rows of figure 2.7, we can see that under certain GC-compositions, various classes of ncRNA are relatively

more distinguishable. For instance, riboswitch sequences have higher entropy than micro RNAs where

GC-composition is either high or low. Average GC-composition sequences, however, do not show such

distinction. The above observation about riboswitch entropy p-values being relatively higher than those for

miRNAs is examined further. Table A.4 is a quantitative comparison of the percentage of sequences with

significantly high structural entropy from both classes of miRNA and riboswitch across all models. The

tested riboswitch sequences have higher folding entropy than miRNAs for most nucleotide compositions

and under most of the models. Furthermore, p-values corresponding to the riboswitch sequences are overall

significantly higher than expected from a random sequence with structure. Finally, results from the IVO

grammar do not suggest any distinction between entropy of various classes of ncRNAs. (See figure A.1 and

table A.4)

2.7.2 Model Accuracy and Structural Entropy

In order to gain insight into the impact of folding model accuracy on the structural entropy of a sequence,

we selected three sets of results where significant value of folding entropy is observed:

1. Significantly low folding entropy of micro RNA sequences in di-nucleotide shuffling test; Observation of

Figure 2.3.

2. Significantly high folding entropy of bacterial type B RNase P sequences in di-nucleotide shuffling test

under the RUN folding model; Observation of Figure 2.3.

3. Significantly high folding entropy of the high GC-composition riboswitch sequences of length 93± 5 in

the random sequence with structure test; Observations of Figure 2.7 and Table A.4.

The folding entropy p-values of miRNA sequences obtained from di-nucleotide shuffling were plot-

ted against sensitivity and specificity folding model to their corresponding annotated secondary structures.

30



Figure 2.7: Structural Entropy p-Values of Structural Randomization. Structural entropy p-values of short
ncRNAs sequences against random sequences with structure (See A.5 for details about clusters and se-
quences). Benchmark-trained parameter sets were arbitrary selected for RUN and BJK grammars. Other
parameter sets yield similar results (See table A.4).
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Figure 2.8: Structural Entropy p-Values of miRNAs vs. Model Sensitivity. Structural entropy p-values
of miRNA sequences against folding model sensitivity to their secondary structure. Di-nucleotide shuffling
was used to calculate p-values. 2-order polynomial trendline of p-values are shown for each grammar model.

Figures 2.8 and 2.9 show the relationship of structural entropy p-values of miRNA sequences to model sen-

sitivity and specificity to annotated secondary structure, under various models. Results from IVO grammar

is excluded due to the small range of available sensitivity values. Figure 2.8 shows that lower folding en-

tropy p-value and model sensitivity to miRNA annotated structure are correlated with each other regardless

of choice of model. Similar observation is made with respect to model specificity (See 2.9). The relationship

between folding entropy p-value and model accuracy is slightly stronger under the BJK model than for the

RUN model, regardless of choice of parameter set.

We also plotted the structural entropy p-values of the bacterial type B RNase P sequences obtained from

di-nucleotide shuffling against model sensitivity and specificity to annotated secondary structure. Figure A.7
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Figure 2.9: Structural Entropy p-Values of miRNAs vs. Model Specificity. Structural entropy p-values
of miRNA sequences against folding model specificity to their secondary structure. Di-nucleotide shuffling
was used to calculate p-values. 2-order polynomial trendline of p-values are shown for each grammar model.
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plots p-values against model sensitivity. Similar to results from miRNA, the trendline suggests that higher

entropy p-values are associated with lower sensitivity. This relationship is, however, less significant under

the RUN model, due to lower range of available sensitivity values. Assessing relationship between p-values

and model specificity was not possible, due to the unavailability of a reasonable range of specificity values.

Figures 2.10 and 2.11 plot structural entropy p-values of the riboswitch sequences against model sen-

sitivity and specificity, respectively. Riboswitch sequences here have high GC-composition and belong to

cluster 1. (For results of riboswitches in clusters 2 and 3, see A.8, A.9, A.10, and A.11). In contrary to

results obtained from di-nucleotide shuffling about the miRNA, low folding entropy p-values do not seem

to be associated with high model accuracy to annotated secondary structure. Results from the BJK model,

suggest that significantly high structural entropy p-values of the riboswitch are not associated with lower

model accuracy. Results from riboswitches in clusters 2 and 3 also suggest independence of folding entropy

from model sensitivity to annotated secondary structure under the BJK grammar model. Results from the

RUN grammar model are unclear, due to lower range of available sensitivity values.

2.8 Discussion

2.8.1 Discerning Structural Ambiguity

Shannon’s entropy of SCFG ensembles on a given sequence was derived and implemented for both struc-

turally ambiguous and unambiguous grammars. A.1 offers the modifications needed for generalization of

structural entropy for structurally ambiguous grammars. The modifications insure non-redundant counts of

derivation trees in calculating the structural entropy compared to the redundant derivation. Implementation

of left-most derivation entropy can be used to calculate the entropy of any folding model, so long as it can

be mirrored to a non-stacking SCFG, regardless of its ambiguity.
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Figure 2.10: Structural Entropy p-Values of Riboswitches vs. Model Sensitivity. Structural entropy p-
values of high-GC composition riboswitch sequences of length 93 ± 5 against folding model sensitivity to
their secondary structure. Riboswitch sequences belong to cluster 1 (See A.5 for details about sequences
and clusters.). P-values calculated empirically by comparing with random sequences with structure (See A.4
for details about generating random structures for each model). 2-order polynomial trendline of p-values are
shown for each grammar model.
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Figure 2.11: Structural Entropy p-Values of Riboswitches vs. Model Specificity. Structural entropy p-
values of high-GC composition riboswitch sequences of length 93 ± 5 against folding model specificity to
their secondary structure. Riboswitch sequences belong to cluster 1 (See A.5 for details about sequences
and clusters.). P-values calculated empirically by comparing with random sequences with structure (See A.4
for details about generating random structures for each model). 2-order polynomial trendline of p-values are
shown for each grammar model.
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Both the redundant derivation and the left-most derivation entropy must yield the same entropy value on

any sequence as long as the folding model is structurally unambiguous. For a structurally ambiguous model,

however, the redundant derivation entropy must be higher than or equal to that of the left-most derivation.

Our results were in line with the above claims (data not shown). Hence, the two implementations can be

used to discern the structural ambiguity of a model in a given set of RNA sequences.

2.8.2 Dominating Factors in Entropy Calculation

Factors such as length of the sequence, choice of CFG design, structural ambiguity of the model and

terminal-to-nonterminal probability ratio have a much more significant impact on the entropy value than

other factors such as CYK-trained model parameters, nucleotide composition, and class of the ncRNA se-

quence under investigation (See figure 2.1).

2.8.3 The Significance of Folding Entropy of ncRNAs

A qualitative inspection of figures 2.3 and 2.7 is sufficient to reject the null-hypotheses in all three random-

ization tests; both the choice of model and the class of the ncRNA can have an impact on the folding entropy

causing it to be significantly low or high in certain cases. Co-association of model accuracy and entropy

p-values, however, were observed under first and second randomization tests. Comparing average sensitivity

and specificity values in A.3 to average entropy p-values in 2.3 shows that this co-association exists across

classes of sequences and choices of models. The impacts of choice of model and class of the ncRNA on the

structural entropy of the sequence are separately analyzed in the following:

Impact of Choice of Model

Various CFG designs yield different structural entropy p-value distributions for ncRNAs under both the

single- and di-nucleotide composition randomization tests (See A.3 and A.4). ncRNA structural entropy

p-values under the BJK and RND10 folding models are tilted to the left with average p-values less than 0.5

while p-values corresponding to the IVO grammar are tilted towards right with an average higher than 0.5,
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under the di-nucleotide shuffling test. Furthermore, comparison of the rankings of average structural en-

tropy p-values of various classes of ncRNAs to their corresponding average model sensitivity and specificity

shows consistency between the two (See tables A.3 and A.5). Hence, high model accuracy and low folding

entropy are generally associated with each other under the single- and di-nucleotide randomization test.

A qualitative observation of results from the third randomization test, also suggests that modeling can

affect the significance of folding entropy. The RND10 model shows a slight distinction between various

classes of ncRNAs, namely miRNA and riboswitch. Results from the RUN and BJK grammar are also

consistent with that of RND10. Entropy p-values corresponding to the IVO model, which is relatively less

accurate than RUN and BJK grammar models, are not as suggestive.

Impact of Class of ncRNA

The average structural entropy p-values obtained from single- and di-nucleotide randomization tests show

a somewhat consistent ranking across most models (See figure 2.3 and tables A.5 and A.6). The third

randomization test also suggests association of entropy p-value with the class of the ncRNA. Nucleotide

composition also has an impact on the significance of folding entropy of various classes of ncRNAs under

the third randomization test, regardless of choice of model.

Structural entropy is not necessarily similar across sub-families of the same class of ncRNA. Figure 2.5

shows that entropy p-values obtained in di-nucleotide randomization test have different distributions across

various sub-families of the RNase P sequences. Sub-families of the riboswitch sequences also have differ-

ent entropy p-values in the same randomization test (See 2.6 for average p-values of riboswitch sub-families

under various folding models).

2.8.4 Micro RNA Has Low Secondary-Structural Entropy

Micro RNA structural entropy p-values obtained from the third randomization are not significantly higher

than random sequences with structure under most folding models (See figure 2.7 and table A.4). This im-

plies that the entropy of miRNA sequences is very typical of that of a sequence with a single structure.

Furthermore, both single- and di-nucleotide composition randomizations yield lower entropy p-values
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for miRNA sequences than other classes of ncRNAs under all models, excluding the IVO grammar. The

P-values of most miRNA sequences are also significantly lower than random sequences of same length

and single- and di-nucleotide composition under various models. This significance reaches its maximum

in the single-nucleotide composition randomization test and under the un-trained structurally ambiguous

RND10 model, with its average being 0.029 (89% of sequences having values less than or equal to 0.05).

This implies that perturbing the nucleotide arrangement of the miRNA sequence significantly increases the

uncertainty about its secondary structural fold. A closer look at individual p-values of sequences and the ac-

curacy of their corresponding model to annotated secondary structure shows that more accurate modeling of

the secondary structural conformation leads lower folding entropy, further distinguishing the miRNA from

a random background (See figures 2.8 and 2.9). The low folding entropy results of the miRNA are also in

line with results of the base-pairing entropy test presented here, 2.4, and previous findings about the more

deterministic folding behavior of miRNA. Our overall conclusion about the miRNA results is that not only

do these sequences tend to have low secondary structural entropy, but also the annotated secondary structure

seems sufficient to characterize this class of ncRNA.

2.8.5 Unexpectedly High Folding Entropy Observed

As mentioned before, entropy captures the (un)certainty of a probabilistic model. A low entropy value

could imply more deterministic behavior, while a high entropy value describes more diversity in a given

distribution, depending on the application. The observation of significantly high entropy, more than what

is expected from a random event, is an unintuitive but theoretically possible observation. An example of

significantly high structural entropy is offered in A.9.3 where the entropy p-value of a hypothetical miRNA

can be as high as 1 in di-nucleotide randomization and under an arbitrary single stem-loop SCFG model.

The interested reader in this regard is also referred to A.9.2 for a more mathematical justification.

The prior intention of this work, and the design of the methodology, was in favor of a one-tailed test;

i.e., significantly low entropy could imply a more deterministic folding scenario, while anything else is ran-

dom. Our results, however, show signs of significantly higher folding entropy than expected from a random

sequence. The following three cases were observed:
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1. High folding entropy of miRNA in di-nucleotide shuffling test under the IVO model: A re-evaluation

of results from figure 2.3 with taking into account the knowledge about miRNA folding, shows that inaccu-

rate modeling coupled with di-nucleotide shuffling randomization test could lead to contradictory results.

2. High folding entropy of bacterial type B RNase P in di-nucleotide shuffling test under the RUN model

(Figure 2.3). 31% of sequences of all sequences in this class of ncRNA had p-values higher than or equal

to 0.95). The RUN model is less accurate on the annotated structure of the RNase P compared to that of

miRNA and hence, higher p-values of the RNase P are generally associated with lower model accuracy.

At this point, the reason for high folding entropy of RNase P is unclear. The two following scenarios are

possible:

a. Scenario 1: High entropy could be due to lower model accuracy, since high p-values of the di-nucleotide

shuffling test are generally associated with low model accuracy. A plot of p-values of RNase P against

model accuracy is also suggestive in this regard (See A.7). Furthermore, poor modeling of the RNA sec-

ondary structure can be very misleading in assessing the structural diversity especially under di-nucleotide

shuffling, since miRNA sequences have higher p-values than other sequences under the inaccurate IVO

model (See 2.3).

b. Scenario 2: High entropy could imply high folding diversity in this class of RNase P. None of the average

p-values obtained the performed single- and di-shuffling randomization test, including the untrained models

suggest low entropy for the bacterial type B RNase P. In other words, perturbing the nucleotide arrangement

of this class of ncRNA does not significantly increase the uncertainty about its folding, within the limits of

our models. Furthermore, the plot of A.7 shows that p-values of bacterial type B RNase P that correspond to

sequences whose model sensitivity is close to zero, are higher than that of miRNAs under the same model

(Comparing results of the RUN grammar of figure A.7 to 2.8). Model sensitivity may not be sufficient to

explain high p-values of RNase P. Finally, the same di-nucleotide frequencies that are associated with low

folding entropy p-values for the miRNA are associated with high p-values for the bacterial type B RNase P

(See table A.9 and figure A.6). This can mean that various primary-structural motifs, possibly higher order

nucleotide frequencies, residing in such RNase P sequences may be the cause of its high structural entropy

p-values. We have not found independent evidence regarding high structural entropy for the RNase P.

Our overall conclusion about high p-values of folding entropy of the bacterial type B RNase P and other

classes in the di-nucleotide shuffling test is that this test may not be suitable for investigating the folding
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diversity of an RNA sequence segment. We believe that the di-nucleotide shuffling test and other primary-

structure randomization/perturbation tests are more suitable for a one-tailed test; i.e., perturbing the primary

structure is expected to disturb the fairly deterministic secondary structure of the sequence such as that of

the miRNA, but its effect on the folding distribution of an RNA with a diverse secondary structural space

is unclear if not confusing. This could be partly due to the fact that SCFG models are non-linear models,

meaning that one-sided generation of sequences is not possible while di-nucleotide shuffling randomization

and other primary-structure tests are usually linear procedures, meaning that statistics needed to perform ran-

domization can be derived from one-sided observation of the sequences; for example counting di-nucleotide

frequency can be done from one-side but counting base-pairs cannot.

3. High entropy p-values of certain riboswitch sequences in the third randomization; Random sequences

with structure: Certain riboswitch sequences of length 93 ± 5, especially high GC-composition sequences

were observed to have significantly higher folding entropy values than both miRNAs and random sequences

with single structure. This was true for the three models RUN, BJK, and the untrained RND10 model. 71%

of high GC-composition sequences had p-values higher than or equal to 0.95 under the BJK (benchmark)

model. Results from IVO and RND1 models have higher significance but a qualitative inspection of fig-

ures 2.7 and A.1 suggests that high p-values of RND10 and IVO are more associated with the length of the

sequence rather than what class it belongs to. Plots of p-values against model sensitivity and specificity,

figures 2.10 and 2.11, show that high structural entropy p-value of the high GC-composition riboswitch

sequences are independent of model accuracy to annotated secondary structure of these sequences under

the BJK model. We consider this a significant observation, since clustering was performed regardless of

which family the sequences belong to. On one hand, BJK model being relatively more accurate than other

models, assigns higher folding entropy to selected riboswitches and better distinguishes them from miRNAs

of the same cluster. On the other hand, the three BJK models, suggest that accuracy to annotated secondary

structure and significantly high folding entropy are unrelated. This means that high p-values of selected

riboswitches are not only unrelated to model inaccuracy, but they are also unrelated to annotated secondary

structures of these sequences.

Our overall conclusion about the selected riboswitch sequences is that their high folding diversity is

more due to nucleotide arrangements intrinsic to these sequences and less due to their annotated secondary

structures. As we know, riboswitches can have alternative conformations vivo. At this point, it is not clear
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whether high folding entropy is specifically related to this folding dynamic feature of riboswitches or not.

A thorough and comprehensive examination of riboswitches is needed in this regard.

2.8.6 Structural and Base-pairing Entropies

The overall statistical power of structural entropy and base-pairing entropy are similar in distinguishing

miRNA sequences from random shuffles (See figures 2.3 and 2.4, and tables A.5 and A.6). Average struc-

tural entropy p-values of classes of ncRNAs obtained from di-nucleotide randomization test are slightly

more distant from one another than that of the base-pairing entropy statistics, under various models. This is

a confirmation on structural entropy being generally more informative than base-pairing entropy as expected

(2.9). Conclusions derived from the di-nucleotide randomization test are, however, subject to flaws of this

test, as previously discussed.

2.8.7 SCFG Modeling of Non-coding RNA Sequences

Grammar Design

In characterizing ncRNA sequences, the performance of structurally unambiguous models trained to pre-

dict annotated secondary structure is not significantly greater than the structurally ambiguous folding with

whose rule probabilities arbitrary assigned. The RND10 model actually has a slightly higher performance

than the relatively accurate BJK model in distinguishing miRNAs from random sequences. Also, results ob-

tained from both RND1 and RND10 are very consistent with the BJK model in characterizing the selected

riboswitch sequences and distinguishing them from either miRNAs or random structures. Performance of

the RND10 model is surprising; Even the left-most derivation of folding entropy values of sequences un-

der this model shows higher folding diversity of sequences than the BJK model (See 2.1). Our conclusion

about grammar design is that structural ambiguity can play a major role in characterizing ncRNA sequences.
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Model Training

Model accuracy to annotated secondary-structure is essential to but not sufficient for characterizing all

classes of ncRNA sequences. Being relatively more accurate than the other CYK-trained models, the BJK

grammar models can effectively characterize miRNA sequences against random sequences. Furthermore,

the BJK model was observed to distinguish riboswitch sequences from both miRNAs and random sequences

having single structure in some cases. Hence, an effective grammar design trained to best predict RNA an-

notated secondary structure is very essential in investigating folding features of various classes of ncRNAs.

However, plots of p-value vs. sensitivity and specificity of BJK models to annotated secondary structure

in the above test, 2.8 and 2.9, suggest that high entropy is not necessarily related to model accuracy to

annotated secondary structure in these sequence. In other words, annotated secondary structure cannot be

the only criterion in capturing the folding features of certain sequences belonging to this class of ncRNA;

i.e., diversity of folding distribution (here, Shannon’s entropy) can also contain information about a class

of ncRNA, regardless of how well its most likely scenario predicts the annotated secondary structure. Our

overall conclusion of comparisons across various CYK-trained models is that model accuracy to annotated

secondary structure is necessary but not sufficient for an effective SCFG to capture folding features of cer-

tain ncRNAs.
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2.9 Conclusion

We developed a method for applying Shannon’s entropy to RNA secondary structures, using SCFG. The

analysis of known RNA structures showed this method could be useful provided an appropriate grammar is

chosen. Used as a quantitative method for capturing the folding diversity of an RNA sequence, Shannon’s

entropy was shown to successfully capture the deterministic folding behavior of biological sequences on the

secondary structural level. Signs of distinctly high folding diversity were also observed in certain classes

of ncRNA sequences. While predicted secondary structure is essential to understanding the functions of

the many ncRNAs, the diversity of folding space distribution of the sequence should not be overlooked.

In certain cases, this diversity can lead to further characterization of the ncRNA as well as exploration into

the limits of secondary structural modeling in understanding the in vivo conformational behavior of ncRNAs.
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Chapter 3

Ab initio Riboswitch Identification Based on

The Secondary Structure Folding Space

3.1 Introduction

Non-protein-coding RNA (ncRNA) elements play an important role in biological pathways such as gene

regulation across the kingdom of life (Morris, 2008, 2012; Barrandon et al., 2008; Repoila and Darfeuille,

2009). It has been shown that conformational features of many such RNA elements play a major part in their

biological function (Hall et al., 1982; Simmonds et al., 2008). In bacteria, RNA structural rearrangements

can have a major effect on the expression of their downstream coding sequences [reviewed by Grundy and

Henkin (2006)], a process known as cis-regulation. A classic example and one of the earliest such ele-

ments discovered is the complex regulatory mechanism that takes place upstream of the tryptophan operon

in Escherichia coli during its expression (Oppenheim and Yanofsky, 1980). Regulation of the tryptophan

biosynthetic operon, however, is achieved via different mechanisms in other organisms, such as B. subtilis

and Lactobacillus lactis [reviewed by Merino and Yanofsky (2005)]. With much attention given to protein-

coding genes in the past, ncRNAs have been left on the invisible side of genomic research for some time

(Eddy, 2001).
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3.1.1 Riboswitches

An interesting group of RNA regulatory elements are riboswitches. Originally found through sequence ho-

mology upstream of bacterial coding regions dating back about ten years ago (Mironov et al., 2002; Nahvi

et al., 2002; Winkler et al., 2002a), these regulatory elements have been shown to be more abundant than

previously expected. Riboswitches are defined as regulatory elements that take part in biological pathways

by selectively binding to a specific ligand or metabolite, or uncharged tRNAs, without the need for pro-

tein factors. Environmental factors such as pH, ion concentration, and temperature can also trigger RNA

conformational changes affecting gene regulation. Furthermore, nearly all riboswitches are located in the

non-coding regions of messenger RNAs (Breaker, 2012) and are capable of regulating genes through both

activation and attenuation of either transcription or translation [reviewed by Henkin (2008)]. Finally, other

factors such as the transcription rate of RNA polymerase and concentration rates of the ligand and metabo-

lites to be bound to the riboswitches add other dimensions to categorizing riboswitches, mapping them to a

spectrum of kinetic/thermodynamic-driven folding trajectories in which to function. Riboswitches have also

been found in cooperative or tandem arrangements (Breaker, 2012). It is speculated that there are at least

100 more undiscovered riboswitches in already sequenced bacterial genomes (Breaker, 2012). Conforma-

tional factors are essential to ligand-binding specificity of riboswitches. Many riboswitches can discriminate

between similar small molecules with the aid of their structural geometry. For instance, the thiamine py-

rophosphate (TPP) and SAM riboswitches measure the length of the ligand that binds to them (Thore et al.,

2006; Serganov et al., 2006; Montange and Batey, 2006).

3.1.2 RNA Secondary Structure

The secondary structural topology of the RNA is very effective in scaffolding the tertiary conformation.

Secondary structure mainly consists of a two-dimensional schema that depicts the base-pairing interactions

within the RNA structure and is dominated by Watson-Crick base-pairing. One major computational method

to predict RNA secondary structure is minimization of its free energy (MFE) within a thermodynamic en-

semble, such as the Boltzmann ensemble Minimum Free Energy (Zuker and Stiegler, 1981; McCaskill,

1990). State-of-the-art thermodynamic models have proven to be effective in RNA secondary structural pre-

46



dictions in the cases of most RNA elements (one exception being Hammerhead type I ribozyme where loop

tertiary interactions have a dominating effect on the structural conformation [Canny et al. (2004)]), although

most programs may give multiple predictions with similar energy levels.

Stochastic context-free grammars (SCFG) have also been shown to be effective in secondary structural

prediction of various RNA regulatory elements. SCFGs have a similar logic to Markov models except

that they are nonlinear. Under such models, a secondary structure is recursively constructed through base-

pairing and loop prediction given grammar rules and corresponding probabilities. Markov models, on the

other hand aim to predict nucleotide arrangements from one side of the sequence to the other. Nawrocki and

Eddy (2013) have shown that more sophisticated grammars, designed to mirror the thermodynamic models

can exhaust the limits of prediction accuracy of structures, once trained on known RNA structures based

on maximum-likelihood criteria. Pseudoknots, another RNA structural feature, are a kind of base-pairings

that resemble structural knots and cannot be predicted via context-free grammars. Predictions of pseudo-

knots based on minimum free energy and context-sensitive grammars are possible, though computationally

expensive (Rivas and Eddy, 1999).

Most classes of riboswitches, such as the purine riboswitches, exhibit strong secondary structural con-

servation. The add adenine riboswitch from V. vulnificus and xpt guanine riboswitch B. subtilis have very

similar tertiary as well as secondary conformations, despite different crystal packing interactions, pH, and

Mg crystallization conditions (Serganov et al., 2004). In fact, investigation of secondary-structural homol-

ogy upstream of genomic regions containing the same genes has led to the discovery of more cis-regulatory

elements in bacteria (Weinberg et al., 2007, 2010), making them the major current approach for riboswitch

identification.

In addition, efforts have also been made to discover novel regulatory elements based on combining

structural motifs gathered from a variety of known ncRNA genes. Tran et al. (2009) apply a neural-network

classifier to Escherichia coli and Sulfolobus solfataricus for genome-wide prediction of ncRNAs based on

features derived from sequences and structures of discovered ncRNAs that are available. Most of the discov-

ered RNA regulatory elements are located upstream of the genes they regulate, as cis-regulatory elements

and exhibit strong secondary structural conservation. Some exceptions to cis-regulation of prokaryotic ri-

boswitches are two trans-acting S-adenosylmethionine (SAM) riboswitches (Loh et al., 2009) and an an-

tisense regulation of a vitamin B12-binding riboswitch (Mellin et al., 2013) in Listeria monocytogenes.
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Serganov and Nudler (2013) have offered insights into structural and functional complexity of riboswitches

already discovered.

It is difficult, however, to assess just how much secondary structural conservation is expected to be

prevalent in undiscovered regulatory elements, since the methodologies that led to the discovery of known

regulatory elements have for the most part been based on homology methods. Structural homology is not

always successful in riboswitch identification. Though both SAM-I and SAM-IV riboswitches bind to the

same ligand, Weinberg et al. (2008) indicated that all their efforts failed to detect SAM-IV riboswitches,

despite rigorous sequence and structural homology searches based on the SAM-I riboswitch. The authors

further hypothesized that the structural diversity of riboswitches could be far greater than what has been al-

ready observed. Serganov and Nudler (2013) suggest that there may not even be an interconnection between

the structures of riboswitches and the nature of their cognate metabolites and consequently, the biochem-

ical and structural information gathered so far may not be as useful in riboswitch validation as expected.

Hence, de novo riboswitch prediction approaches would be very useful to help with finding new classes of

riboswitches.

3.1.3 Conformational Dynamics

While secondary-structure conformational features are very descriptive of many classes of riboswitches,

their folding dynamics are also critical. One of the major computational tools to explore possible folding

trajectories is the free energy landscape. Originally defined for protein folding (Bryngelson et al., 1995),

the probability for each structure is associated with a free energy and a distance from other possibilities.

In an effort to investigate the thermodynamic equilibrium of RNA folding, Quarta et al. (2009) presented

a case study of the folding landscape of the TPP riboswitch where the base-pairing distances between the

structural possibilities form two major clusters, each of which correspond to either a native or ligand-bound

structural conformation. Quarta et al. (2012) investigated the dynamics of energy landscapes across elon-

gation of various riboswitches and showed that such landscapes have different clustering dynamics across

kinetically and thermodynamically driven riboswitches. In a more recent work, energy landscape analyses

led to strong evidence of evolutionary co-variation of base-pairs that favor conserved alternative structure of

the purine riboswitch (Ritz et al., 2013). In addition, Freyhult et al. (2007) examined the lowest free energy
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structural conformations having a certain base-pairing distance to the actual structure of the RNA to explore

the structural neighbors of an intermediate, biologically active structure.

Investigation into the folding dynamics of the nascent RNA based on its free energy sampling and

corresponding pair-wise structural distance was computationally expensive according to our computations.

Sampling the very large folding space of the RNA element in such a way that reflects its overall behav-

ior and examining pair-wise base-pairing distances between predicted structures can be difficult and prone

to model parameter biases. Furthermore, even if optimized parameters and sufficient samples of folding

scenarios were available, finding the statistics that can lead to an effective quantified comparative measure

across various RNA sequences would be a formidable challenge. The latter is mainly due to the fact that the

characteristics of folding distribution (here, free energy vs. structural distance within a given ensemble of

secondary structures) are not well understood. For instance, in a typical case of a stable single structure, we

expect the free energy of the structural neighbors to the minimum free structure to have a funnel-like shape,

where predictions with higher free energy are more distant than the MFE prediction. As for RNA elements

with two functional and mutually exclusive secondary structures, more than one hill in the energy landscape

may be detectable in certain cases. Obtaining a universal criterion that reflects RNA folding dynamics and

potential for structural alternative(s), however, could be a formidable task.

One statistic to evaluate the distribution characteristics of any probabilistic model is the Shannon entropy

(Shannon, 1948). While the conformation with maximum-likelihood under a given SCFG is referred to as

the optimum structure under that model, all of the other sub-optimal conformations can be associated with

a probability. The information-theoretic uncertainty (or here structural entropy) of SCFG-modeled folding

space of an RNA is computationally convenient and can be calculated in polynomial time (Manzourolaj-

dad et al., 2013). In this work, we have investigated the significance of structural entropy in capturing the

thermodynamic characteristics of RNA elements having potential for an alternative fold. We then made an

attempt to develop a computational method for ab initio riboswitch identification via structural entropy. We

then evaluated a diverse set of prokaryotic RNA elements validated to have such potential.
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3.2 Results

3.2.1 Considerations of our Approach in ab initio Riboswitch Identification

The folding model for which the structural entropy of the RNA is computed is very critical. SCFG folding

models can be very lightweight and consist of only few grammar rules and parameters, or they can be very

sophisticated. Parameters of SCFG models are usually set by maximizing their prediction accuracy of the

actual RNA secondary structures using maximum-likelihood approaches. There is no guarantee, however,

that folding models optimized for such criteria also preserve information about folding dynamics of such

RNAs. It could be that increasing the accuracy of folding models under current approaches is done at the

expense of altering the folding space of possible structures under that model and hence losing the informa-

tion about folding dynamics of the RNA. Hence, it is essential that we examine the significance of structural

entropy of RNAs under models not trained to best predict secondary structure, as well.

It has been previously shown that both high and low entropy values of certain classes of ncRNAs can be

potentially significant with respect to random sequences of similar nucleotide composition and under certain

SCFGs. It was also shown that factors, such as sequence length and model structures, are dominant factors in

entropy calculations. Finally, it was shown that structural entropy is sensitive to factors such as grammar pa-

rameters and nucleotide composition (Manzourolajdad et al., 2013). For instance, for certain riboswitches,

GC-composition was co-associated with significantly high entropy. Comparisons between RNA sequences

and computer-generated random ones could be problematic, since structural entropy is highly sensitive to

primary structural features as well as folding model parameters and conclusions based on comparisons with

computer-generated sequences may not apply. This argument is further strengthened by the fact that some

ncRNA sequences had higher folding entropy than random ones, which is counter-intuitive. Structural en-

tropy of random sequences, whether generated based on primary or secondary structural features, could be

too distant from that of real biological RNA sequences. Hence, we refrained from using random sequences

in our assessment of significance of structural entropy.

Although riboswitches are very diverse in sequence and structure, there is a significant amount of se-

quence and/or structural similarity within each class of riboswitch. This is due to the fact that these ri-

boswitches have been discovered using homology as explained above. In order for our approach not to be

dominated by structural homology, we avoided using homologous RNA sequences or sequences that belong
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to closely related organisms, where possible. We also resorted to only evaluating riboswitches that have

been experimentally validated to be functional rather than computationally discovered ones. The data set

gathered in this work (see Materials and Methods) is a compromise between the above considerations and

the need to include a diverse set of riboswitches in our data set. In this work, we use the term riboswitch for

all gathered sequences including ribo-regulators such as the Tryptophan RNA element.

3.2.2 Using The Antisense as Internal Negative Control

Riboswitches are under selective pressure to preserve their potential for alternative folds due to their bi-

ological role. In this work, we made the assumption that there is more selective pressure for alternative

fold on the sense sequences vs. the antisense strand, on average. We make this assumption based on the

fact that cis-regulatory elements typically undergo conformational rearrangement which affects downstream

gene regulation while the antisense strand does not necessarily have such a regulatory role. The sensitivity

of structural entropy to various sequence and structural features is either very high (Manzourolajdad et al.,

2013) or unknown. Using the antisense sequence to a putative riboswitch as negative control has the addi-

tional statistical convenience of enabling us to evaluate the significance of an ensemble of real sequences

having identical sequence and structural features, such as length, GC-composition, and complementary G-C

base-pairings.

Apart from the antisense sequence, untranslated regions (UTR) shorter than 80 nt have been selected as

another negative set, since they are unlikely to contain structures over such a short length. Some riboswitch

sequence segments, however, were selected to be shorter than this length. The length of the corresponding

UTR (from transcription binding site to the translation start codon) for riboswitches, however, were not

shorter than 80 nt. UTRs corresponding to the σ-70 in E. coli with distance less than 80 nt from the transla-

tion start codon were used here as sequences that do not contain structure (see Materials and Methods). We

also included various features that were correlated with entropy such as MFE, length, and GC-composition.

The reason for inclusion of MFE as a feature was that higher structural stability has been previously shown

to be related to structural entropy for sequences of a single stable structure, namely microRNAs (miRNA)

(Manzourolajdad et al., 2013). We also examined the utility of energy features such as alternatives to MFE

(Ding et al., 2005). We then examined the performance of classifiers optimized for antisense discrimination
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on the Bacillus subtilis and Escherichia coli genomes, since most of the riboswitches were from these two

organisms. Finally, the significance of structural entropy of the riboswitch was also evaluated in comparison

to mutants altered to have less potential for alternative fold. We used biologically tested mutants in this

regard.

3.2.3 Classification Results

Classification of the RNA sequence into three categories of having potential for alternative structure, one

structure, or no structure were evaluated. We used a multinomial logistic regression approach for classifi-

cation of sequences. Sequence features, such as Length (L), MFE, GC-composition (GC), and secondary

structural entropy of the SCFG-modeled folding distribution of the RNA sequence (Manzourolajdad et al.,

2013) were used for classification. One new feature considered was the free energy of the centroid struc-

ture (Ding et al., 2005) calculated by CentroidFold c⃝(Sato et al., 2009), denoted here as CFE. The two

lightweight SCFG folding models used to calculate folding entropy are denoted here as BJK and RND mod-

els, which are taken from the literature (see Materials and Methods). Other features, such as the base-pairing

entropy of the BJK model BJKbp as defined by Huynen et al. (1997) and two-cluster average silhouette in-

dex of the energy landscape of the RNA Sil as calculated by Quarta et al. (2012) were also included. RNA

encoded sequence from Bacteria validated to have potential for two alternative folds were gathered from the

literature (see Table 3.1) as representatives of RNAs having potential for alterative folding. This generally

consisted of riboswitches and some other ribo-regulators, although we refer to all these sequences as ri-

boswitches, here. A sub-set of such sequences were selected as the positive control set of sequences having

two structures. The criterion for selecting such a sub-set was minimum length of the RNA that exhibits alter-

native folds for each sequence. This criterion is further explained in Materials and Methods. The resulting

set of length variant sequences was then divided into training and test sets described in Tables 3.1and B.1.

Sequence segments and their corresponding structures are included in B.5.1 and B.5.2. The antisense of

each of the sequence segments was used as an internal control, which represents sequences having only one

structure. Antisense sequences were assumed not to have potential for two alternative structures while they

may have at most one structure, since they are complementary to the sense; a cis-regulator has an alternative

fold, typically through conformational rearrangements of the expression platform to be able to regulate the
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expression of the downstream genes in the same mRNA, while the antisense is not under such evolutionary

pressure. A shortcoming for sense/antisense comparisons, however, is possible co-association with other

sequence features such as U-composition; G-C base-pairs also exist on the antisense, while G-U pairs may

differ between sense and antisense structures, under simple Watson-Crick and Wobble-pair folding models.

30 sequence segments were selected from σ-70 E. coli UTRs shorter than 80 nt, since they were believed

to not form structure (see Table B.3 for information on sequence locations). They were fairly divided into

training and test sets based on their MFE, and GC-compositions (See B.4 for average and standard deviation

of features L, MFE, and GC for the training and test sets). The section Materials and Methods extensively

discusses the criteria for selecting the sub-set, dividing the riboswitches and E. coli UTRs into training/test

sets, as well as information on data sets.

An initial investigation of the power of selected features in sense/antisense discrimination was done via

cross-validation for all the 104 (52 riboswitches and 52 antisense) sequences consisting of both the training

and test sets. E. coli UTRs were excluded at this phase. Binomial logistic regression classification proba-

bilities were assigned to each sequence based on the other 104 sense and antisense sequences. It is shown

in Table B.2 that Features {L,GC,GCU,Sil} result in the highest true positive rate, lowest false positive

rate, and highest area under the receiver operating characteristic (ROC) curve. Computing the Sil feature

was based on the energy landscape structural sampling and was computationally expensive (See Materials

and Methods for details). From amongst features that incorporate various entropy values, the features sets

{L,MFE,GC,RND} and {L,MFE,GC,BJK} had a fairly acceptable performance, which was higher than that

of the {L,MFE,GC} classifier without the SCFG feature (See Table B.2). We conclude classification based

on the SCFG feature is significant, since length and GC-composition between sense and antisense are equal

for every riboswitch and its corresponding antisense. The performance of other classifiers that involved

Uracil composition were more dependent on sequence features rather that structural. Furthermore, the per-

formance of the feature set {L,MFE,GC,U} was lower than that of {L,MFE,GC}, and hence not included

in results. We selected classifiers {L,MFE,GC,RND}, {L,MFE,GC,BJK}, and {L,MFE,GC} for further in-

vestigation and will refer to them as LMFEGCRND, LMFEGCBJK, and LMFEGC, respectively. The ROC

curve corresponding to these classifiers is shown in Figure B.1.

The performance of the tri-state classifier was evaluated by estimating classifier parameters from multi-

nomial logistic regression of the training sets and then calculating the correct classification of sequences
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having zero (E. coli), one (antisense), or two (riboswitch) structures that are in the test set. 3D-plot of

the MFE, GC-composition, and Entropy values under the RND model for sequence of the training set are

depicted in figure 3.1. This distinction, however, becomes more subtle in comparison to the antisense

control. Top and bottom views of the grid-view of values normalized to sequence length roughly shows

this distinction (see Table 3.1). Sense-antisense differential entropy (∆Entropy = 100× (Entropysense−

Entropyantisense)/Entropyantisense) against the minimum free energy between the sense and the antisense

(∆MFE% = 100 × (MFEsense − MFEantisense)/abs(MFEantisense)) under RND and BJK models

have been shown in Figures B.2 and B.3). Classification performance values are denoted in Table 3.2 along

with sensitivity of each classifier. Sensitivity of tri-state classifiers were defined here as total number of cor-

rectly classified sequences divided by total number of sequences classified. Model LMFEGCBJK resulted in

both highest sensitivity (80.2%) and highest percentage of correctly classified riboswitches (91.3%). Model

LMFEGCRND had a sensitivity 73.9% which is slightly lower than the LMFEGC Model that excludes

structural entropy. Regression coefficients of the classifiers are shown in Table 3.4. Testing the classifiers

on constant lengths of sequences (for all training and test sets) did not increase performance (see Table

B.5), although the RND was significant for sequences of length 150 nt in the training set. Constant length

selection was based on extending (or shortening) the original choice of length of sequences from both 5’

and 3’ directions such that the center of the sequence does not change. We refer to this original choice of

length as the actual length, hereon. We chose this scheme for simplicity. Other sequence selection methods

may be preferred, since the alternative fold may occur on varying part (5’ or 3’) of the riboswitch sequence,

in general. Substitution of CFE feature instead of MFE feature resulted in lower performance of classifiers

(comparing Table 3.3 to Table 3.2).

3.2.4 Bacillus subtilis

The performance of the three tri-state classifiers on the eleven riboswitches and all other intergenic regions

of the gram-positive bacterium, Bacillus subtilis are shown in Tables 3.5 and B.6, for the actual variable

lengths and constant lengths of the test set, respectively. Operon coordinates were taken from Taboada et al.
1Table 3.1: This sequence overlaps codons. pH also has a role in alteration of structure.
2Table 3.1: Downstream-peptide
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Figure 3.1: Structural Entropy vs. GC-comp. and MFE. 3D-plot of features MFE, Length and Structural
Entropy of the training set sequences classifier under the RND model. Grid-view of different sets of se-
quences are shown in the top and Bottom views, riboswitches, E. coli UTRs, and antisense sequences.
Axes RND/L and MFE/L show Structural Entropy and MFE normalized by the length of the sequence,
respectively. Euclidean distance to actual values was used to generate the grids.
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(2012). The details of the pipeline is described in Materials and Methods and Figure 3.3. Performance of

classifiers was higher for length 157 nt rather than lengths 100 nt, 150 nt, or 200 nt. This was true even

though overlapping sliding windows were used for those lengths (sequence segment with highest overlap

was selected as positive hit). In addition, we can see from Table B.6 that as window size increased, the

number of intergenic regions classified as riboswitches (TP2%) decreased. The classification performance

of the LMFEGCRND model, however, was maximum at length 157 nt. (Length 157 was found using a

rough optimization of various constant-length sequence selection and under the LMFEGCBJK model). We

further examined the 157 nt length for two different sets of tests. In the first case, 157 nt-long segments were

selected centered at the riboswitch (routine procedure) and in the second case, 157 nt extension of the 5’ start

of sequences were chosen. Classification performance is shown in Tables and 3.5 and 3.6. Performance was

very sensitive to positioning of the sequence segment of constant length. For the case of 5’ selections, the

LMFEGCBJK model outperformed other models having TP% = 90.9 while the centered-segment test had

a performance even lower than choosing random positioning. Hence, the LMFEGCBJK is more suitable for

high performance where computational complexity is not an issue. For faster genome-wide tests where ex-

amining all sequence positions is not possible the LMFEGCRND seemed more appropriate (TP = 81.8%)

and was based on selection of segments in a non-overlaping fashion, starting at the start codon for each

operon. Selecting segments centered at riboswitches resulted in poor performance in B. subtilis.

The performance of classifiers on the eleven riboswitches were highly dependent on the length and po-

sitioning of sequence segments to be tested (see Tables 3.5, 3.6, and B.6). Furthermore, various riboswitches

had different sensitivities to such features (data not shown). We found that sequence segments of length 157

nt resulted in higher performance compared to other lengths tested. Also, without knowledge of the exact

location of the riboswitch, the LMFEGCRND model outperformed the LMFEGCBJK model, though the

LMFEGCBJK model had a significantly higher performance if sequence segments were positioned at the

right locations on the riboswitch. The likelihood for such desired positioning is very low; 1/WL for each

riboswitch, where WL is the length of the non-overlapping sliding window.
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The ranking of B. subtilis riboswitches using their actual length and constant length of 157 nt are shown

in Tables 3.7 and 3.8, respectively. Classification probability of the LMFEGCRND model corresponding to

the sequence segment overlapping with the TPP riboswitch (0.76) was higher than that of other riboswitches

with ranking empirical p-value 0.0122. Results for the SAM-I riboswitch, however, were very poor. Inter-

estingly, the actual length of the SAM-I riboswitch used in this study was also 157 nt.

Table B.7 contains the top 50 best hits from each strand of the B. subtilis intergenic regions and their cor-

responding probability values. Sequence segments having classification probabilities higher than or equal

to 0.8 fall in the top 50. Plot of Entropy under the RND model and Uracil composition of the sequence

segments form the B. subtilis showed that entropy values were correlated with higher Uracil composition

(see Figure B.4). This may have been partly due to the fact that Uracil can bind with more nucleotides

to form base-pairs under folding models. In order to suppress the effect of high Uracil composition, we

sorted the top hits having Uracil compositions within the range of known riboswitches in B. subtilis in Table

B.8. The location distribution of these hits can be seen in Figure 3.2. Sequence segments predicted to be

riboswitches were not uniformly distributed across the genome. In order to investigate sequence location

of segments having significantly high entropy values, regardless of their regression probabilities, we sorted

segments having significantly low MFE (empirical p-value <0.05) while also having entropy values on the

high 50 percentile. Hits with significant values that had GC and U compositions within the range of known

riboswitches in B. subtilis are shown in Table 3.9. Interestingly, all of the hits also had significant Entropy

p-values (<0.05). P-values are calculated empirically and separately for each choice of window size in the

genome-wide scan. Finally, significantly high Entropy values of the 200 nt window scan that also have

probability values higher than 0.8, along with other significant hits, are available in Tables B.9 and B.10

regardless of their MFE or nucleotide compositions.
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Table 3.1: Data Collection. Collected sequences from literature observed to have more than one secondary
structure. P corresponds to gram-positive and N corresponds to gram-negative. Genomic locations are
available in Table B.1.

ID Riboswitch Organism (P/N) Alteration Grouping References
ID01 Alpha Operon Escherichia coli (N) slow-fast Train (Gluick et al., 1997; Schlax et al., 2001)
ID02 ATP Bacillus subtilis (P) enzyme Test (Watson and Fedor, 2012)

ATP1 Salmonella (N) enzyme None (Lee and Groisman, 2012)
ID03 c-di-GMP Geobacter sulfurreducens (N) ligand Train (Weinberg et al., 2007)
ID04 c-di-GMP Candidatus Desulforudis (P) ligand Test (Smith et al., 2009)
ID05 Cobalamin Escherichia coli (N) ligand Train (Nahvi et al., 2002)
ID06 Cobalamin Bradyrhizobium japonicum (N) ligand Train (Vitreschak et al., 2003)
ID07 Cobalamin Salmonella (N) ligand Test (Ravnum and Andersson, 2001)

D. peptide2 Synechococcus sp. CC9902 (N) motif None (Ames and Breaker, 2011)
ID08 Fluoride Pseudomonas syringae (N) ligand Train (Baker et al., 2012)
ID09 Fluoride Thermotoga petrophila (N) ligand Train (Ren et al., 2012)
ID10 Fluoride Bacillus cereus (P) ligand Test (Baker et al., 2012)
ID11 FMN Fusobacterium nucleatum (N) ligand Train (Serganov et al., 2009; Vicens et al., 2011)
ID12 FMN Escherichia coli (N) ligand Train (Winkler et al., 2002c; Hollands, 2012)
ID13 FMN Bacillus subtilis (P) ligand Test (Winkler et al., 2002c; Serganov et al., 2009; Vicens

et al., 2011)
glmS T. tengcongensis (N) None None (Barrick et al., 2004; Winkler et al., 2004; Cochrane

et al., 2007; Klein and Ferre-D’Amare, 2009)
glnA Synechococcus elongatus (N) motif None (Ames and Breaker, 2011)

ID14 Glycine Fusobacterium nucleatum (N) ligand Train (Mandal et al., 2004; Kwon and Strobel, 2008; But-
ler et al., 2011)

ID15 Glycine Bacillus subtilis (P) ligand Test (Mandal et al., 2004)
Hammerhead I Schistosoma Mansoni (-) None None (Canny et al., 2004; Martick and Scott, 2006)
Hammerhead II Marine metagenome (-) None None (Perreault et al., 2011)

ID16 Lysine Thermotoga maritima (N) ligand Train (Serganov et al., 2008; Garst et al., 2008)
ID17 Lysine Bacillus subtilis (P) ligand Test (Garst et al., 2008)
ID18 Magnesium Salmonella enterica (N) Mg2+ Train (Cromie et al., 2006; Hollands, 2012)
ID19 Magnesium Escherichia coli (N) Mg2+ Train (Cromie et al., 2006)
ID20 Magnesium Bacillus subtilis (P) Mg2+ Test (Dann et al., 2007)
ID21 Moco Escherichia coli (N) ligand Train (Regulski et al., 2008)
ID22 pH-responsive Escherichia coli (N) pH Train (Nechooshtan, 2009)
ID23 pH-responsive Serratia marcescens (N) pH Test (Nechooshtan, 2009)
ID24 preQ1 II Streptococcus pneumoniae (P) ligand Train (Weinberg et al., 2007; Meyer et al., 2008)
ID25 preQ1 I Bacillus subtilis (P) ligand Test (Klein et al., 2009)
ID26 Purine (Adenine) Vibrio vulnificus (N) ligand Train (Serganov et al., 2004)
ID27 Purine (Adenine) Bacillus subtilis (P) ligand Test (Serganov et al., 2004)
ID28 Purine (Guanine) Bacillus subtilis (P) ligand Test (Serganov et al., 2004; Batey et al., 2004)
ID29 ROSE-1 Bradyrhizobium japonicum (N) Heat Train (Nocker et al., 2001; Chowdhury et al., 2006)
ID30 ROSE-2 Escherichia coli (N) Heat Train (Nocker et al., 2001)
ID31 ROSE-2387 Mesorhizobium loti (N) Heat Test (Nocker et al., 2001)
ID32 ROSE-N1 Rhizobium (N) Heat Test (Nocker et al., 2001)
ID33 ROSE-P2 Bradyrhizobium (N) Heat Train (Nocker et al., 2001)
ID34 SAH Ralstonia solanacearum (N) ligand Train (Weinberg et al., 2007; Edwards et al., 2010)
ID35 SAM-I T. tengcongensis (N) ligand Train (Montange and Batey, 2006)
ID36 SAM-I Bacillus subtilis (P) ligand Test (Grundy and Henkin, 1998; Tomsic et al., 2008; Lu

et al., 2010; Boyapati et al., 2012)
ID37 SAM-II Agrobacterium tumefaciens (N) ligand Train (Corbino et al., 2005)
ID38 SAM-III (SMK) Streptococcus gordonii (P) ligand Train (Fuchs et al., 2006)
ID39 SAM-III (SMK) Enterococcus faecalis (P) ligand Test (Fuchs et al., 2006; Lu et al., 2008; Wilson et al.,

2011)
ID40 SAM-IV Streptomyces coelicolor (P) ligand Train (Weinberg et al., 2008)
ID41 SAM-IV Mycobacterium tuberculosis (P) ligand Test (Weinberg et al., 2008)
ID42 SAM-SAH Roseobacter (N) ligand Train (Weinberg et al., 2010)
ID43 SAM-SAH Oceanibulbus indolifex (N) ligand Test (Weinberg et al., 2010)
ID44 SAM-V Cand. P. ubique (N) ligand Train (Poiata et al., 2009)
ID45 SAM-V Cand. P. ubique (N) ligand Test (Meyer et al., 2009)
ID46 THF Eubacterium siraeum (P) ligand Train (Ames et al., 2010; Huang et al., 2011)
ID47 THF Clostridium kluyveri (P) ligand Test (Ames et al., 2010)
ID48 TPP Escherichia coli (N) ligand Train (Winkler et al., 2002b; Serganov et al., 2006;

Nudler, 2006; Haller et al., 2013)
ID49 TPP Bacillus subtilis (P) ligand Test (Mironov et al., 2002; Nudler, 2006)
ID50 Tryptophan Escherichia coli (N) complex Train (Oppenheim and Yanofsky, 1980; Neidhardt, 1996)
ID51 Tryptophan Bacillus subtilis (P) complex Test (Babitzke and Gollnick, 2001; Babitzke et al., 2003)
ID52 Tuco Geobacter metallireducens (N) ligand Test (Regulski et al., 2008)

yxkD Bacillus subtilis (P) motif None (Barrick et al., 2004)
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Table 3.2: Classification Performance. Classifier Performance. Actual length of sequences used. Column
Classifier denotes features used from the training set. TP% denotes percentage of true positives.
FP1% and FP2% represent the percentages of antisense sequences and E. coli UTRs that are misclassified
as riboswitches, respectively. Sensitivity denotes overall percentage of correctly classified sequences. Sig.
denotes significant (less than 0.05 in the training set) features of the multinomial classifier.

Classifier TP% FP1% FP2% Sensitivity Sig.
LMFEGCBJK 91.3 43.5 15.4 72.9 MFE
LMFEGC 82.6 30.4 23.1 71.2 MFE
LMFEGCRND 73.9 30.4 38.5 64.4 L,MFE

Table 3.3: Classification Performance Using Centroid Free Energy. Classifier Performance. Actual length
of sequences used. Feature CFE denotes centroid free energy as calculated by CentroidFold c⃝(Sato et al.,
2009). Column Classifier denotes features used from the training set. TP% denotes percentage of
true positives. FP1% and FP2% represent the percentages of antisense sequences and E. coli UTRs that
are misclassified as riboswitches, respectively. Sensitivity denotes overall percentage of correctly classified
sequences. Sig. denotes significant (less than 0.05 in the training set) features of the multinomial classifier.

Classifier TP% FP1% FP2% Sensitivity Sig.
LCFEGCRND 65.2 30.4 15.4 66.1 CFE
LCFEGC 78.3 56.5 15.4 61 L,CFE
LCFEGCBJK 82.6 65.2 15.4 59.3 GC

Table 3.4: Logistic Regression Coefficients of Classifiers. Regression coefficients (exponents) of the multi-
nomial logistic regression classifier: intercept, Length, MFE, GC-composition, Entropy. Parameter vectors
β1 and β2 denote coefficients for E. coli UTRs and ribswitch sense sequences for the riboswitches of the
training set, respectively. Coefficients normalized with respect to those for riboswitch antisenses. i. e.
antisense coeficients being 0.

Classifier β1 β2

LMFEGCRND 3.191,.336,.683,-.723,-.465 5.052,-.161,-.089,-7.454,.220
LMFEGCBJK 10.597,-.203,.367,-10.856,.651 5.524,-.082,-.132,-9.247,.120
LMFEGC 3.869,.052,.525,-1.419 3.373,-.025,-.068,-6.234

Table 3.5: Classification Performance in B. subtilis. Classifier Performance on the eleven B. subtilis ri-
boswitches. Actual length of sequences used. Column Features denotes features used from the training
set. TP% denotes percentage of true positives. FP1% represent the percentages of antisense sequences that
are misclassified as riboswitches.

Classifier TP% FP1%

LMFEGCBJK 91.1 54.5
LMFEGC 81.2 36.4
LMFEGCRND 72.7 36.4
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Table 3.6: Classification Performance in B. subtilis Under Constant Length. Classifier performance on the
eleven riboswitches in B. subtilis. Constant length of 157 nt from 5’ of riboswitch downstream is used for
riboswitches (first two columns). Constant length of 157 nt centered at the center of riboswitches used (last
two columns). TP% denotes percentages of correctly classified riboswitches. FP1% denotes percentage of
misclassified antisense.

Segment 5’ center
Classifier TP% FP1% TP% FP1%

L,MFE,GC,BJK 90.9 9.1 63.4 18.2
L,MFE,GC,RND 54.5 0 63.4 36.4
L,MFE,GC 72.7 9.1 63.4 18.2

Table 3.7: B. subtilis Riboswitches Ranking Under Actual-Length Test. Ranking probabilities of the eleven
B. subtilis riboswitches of B. subtilis under the LMFEGCBJK classifier. Actual sequence length used as
test. Column Probability is the classification probability that the sequence is a riboswitch.

Name Probability

Adenine 0.82
FMN 0.70
TPP 0.68
Tryptophan 0.67
Glycine 0.63
Lysine 0.63
Guanine 0.60
ATP 0.58
Magnesium 0.54
SAM-I 0.53
preQ1 0.451

Table 3.8: B. subtilis Riboswitches Ranking Under Constant-Length Test. Ranking probabilities of the
eleven B. subtilis riboswitches within the 157 nt non-overlaping window scan of the intergenic regions of
B. subtilis under the LMFEGCRND classifier. Total of 28340 sequence segments belonging to intergenic
regions longer than 150 nt were analyzed. Operon coordinates: (Taboada et al., 2012). Overlap denotes the
percentage of overlap of the sequence segment with the riboswitch. Column p-Value is the ranking divided
by 28340. Column Probability is the classification probability that the sequence is a riboswitch.

Name Overlap Rank p-Value Probability

TPP 82.9 347 0.0122 0.76
Guanine 90.1 535 0.0189 0.735
ATP 85.6 1159 0.0409 0.676
Lysine 83.5 2278 0.0804 0.612
Adenine 100 2459 0.0868 0.604
FMN 51.7 3880 0.1369 0.547
preQ1 80 4051 0.1429 0.541
Magnesium 62.3 4212 0.1486 0.536
Glycine 91.7 5200 0.1835 0.508
Tryptophan 100 6074 0.2143 0.484
SAM-I 68.8 12330 0.4351 0.356
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Table 3.9: Top Entropy Hits in B. subtilis Filtered for GC-comp. and Uracil-comp. Significant hits of the
forward and reverse strands of the B. subtilis intergenic regions having significantly high RND entropy (p-
Val.<0.0500), significantly low (p.Val.<0.050), GC and Uracil compositions within the range of those for
known riboswitches Threshold values and their corresponding p-values have been calculated separately for
each genome-wide test. No overlap used for 157 nt scan (28340 segments). 175nt overlap used for 150 nt
scan (60204 segments). 100 nt overlap used for 200 nt scan (44847 segments). Distance from upstream
and downstream operons are the distance from the center of the hit to the stop and start codons of upstream
and downstream operons, respectively. Probability denotes the multinomial regression likelihood of being a
riboswitch under the LMFEGCRND model. Negative values indicate distance to upstream operon. Columns
Upsream/Downstream Operon show gene ID within the operon.

B. subtilis Start End Strand Upstream Operon Upstream Gene Dist. to Upstream MFE MFE p. Val. GC RND RND p. Val. Uracil Dist. to Downstream Downstream Gene Downstream Operon Probability
157nt 191850 192006 forward BSU01590 ybaS -12186 -54.16 0.01 0.4904 94.7470016 0.0359 0.3057 2277 trnSL-Glu2 BSU_tRNA_75 0.8561704159
157nt 749147 749303 forward BSU06780 yeeC -3069 -49.19 - 0.4458 94.8936005 0.0310 0.3630 550 yeeG BSU06820 0.8463344574
157nt 665425 665581 forward BSU06130 ydjC -677 -51.50 - 0.4968 95.6813965 0.0169 0.3439 1963 gutB BSU06150 0.8462108970
157nt 1017114 1017270 forward BSU09400 spoVR 18 -53.10 - 0.4968 94.5084991 0.0412 0.3376 1806 lytE BSU09420 0.8305525184
157nt 823013 823169 forward BSU07480 yfmG -604 -48.60 - 0.5032 94.2139969 0.0507 0.2866 4161 yfmA BSU07540 0.7458834648
157nt 3421066 3421222 reverse BSU33340 sspJ -320 -49.40 - 0.4713 97.1984024 0.0049 0.3312 79 lysP BSU33330 0.8851321340
157nt 3158851 3159007 reverse BSU30890 ytxO -328 -48.50 - 0.4395 95.1657028 0.0250 0.3630 3376 ytdA BSU30850 0.8522043228
157nt 736435 736591 reverse BSU06740 yefB -2481 -50.51 - 0.4904 95.0205994 0.0279 0.3376 3690 yerO BSU06700 0.8204180002
157nt 201248 201404 reverse BSU01800 alkA -1220 -49.46 - 0.4968 95.0683975 0.0269 0.2930 7301 ybbK BSU01720 0.8003951907
157nt 4129689 4129845 reverse BSU40200 yydD -810 -48.40 - 0.4904 94.8125000 0.0332 0.3567 2120 yydF BSU40180 0.7834032774
150nt 4134601 4134750 forward BSU40190 fbp -4483 -50.91 - 0.4733 91.2214966 - 0.3800 677 yycS BSU40240 0.8779885173
150nt 3359819 3359968 forward BSU32650 yurS -5258 -46.80 - 0.4600 92.3918991 - 0.3600 12677 yuzL BSU32849 0.8770275712
150nt 749175 749324 forward BSU06780 yeeC -3102 -46.50 - 0.4600 92.0363998 - 0.3867 527 yeeG BSU06820 0.8652582169
150nt 1958237 1958386 forward BSU18190 yngC -9899 -48.30 - 0.4733 90.9682007 - 0.3533 44327 iseA BSU18380 0.8436317444
150nt 1540761 1540910 forward BSU14680 ykzC -1995 -46.42 - 0.4333 90.3455963 - 0.3400 1052 ylaA BSU14710 0.8428211212
150nt 3199841 3199990 forward BSU31170 yulF -1875 -47.20 - 0.4467 89.9530029 - 0.3733 12677 tgl BSU31270 0.8267914653
150nt 3421066 3421215 reverse BSU33340 sspJ -325 -49.40 - 0.4800 93.4540024 - 0.3333 74 lysP BSU33330 0.9072541595
150nt 933665 933814 reverse BSU08620 yfhP -718 -49.54 - 0.4600 89.9813995 - 0.3733 5474 sspK BSU08550 0.8426564932
200nt 3359769 3359968 forward BSU32650 yurS -5183 -66.40 - 0.4600 123.4530029 - 0.3450 12702 yuzL BSU32849 0.9236087203
200nt 339225 339424 forward BSU03130 nadE -20 -63.60 - 0.4700 121.1809998 - 0.3250 702 aroK BSU03150 0.8414211273
200nt 1678852 1679051 reverse BSU17060 ymzD -101667 -62.81 - 0.4750 122.0299988 - 0.3300 7299 ylqB BSU15960 0.8517054319
200nt 3717398 3717597 reverse BSU36100 ywrD -1637 -51.30 - 0.3650 130.8540039 - 0.3950 399 cotH BSU36060 0.9702541828
200nt 198226 198425 reverse BSU01800 alkA -4222 -30.81 - 0.3750 130.7449951 - 0.5150 4299 ybbK BSU01720 0.8267450333

157nt 235800 235956 reverse BSU02180 ybfE -2285 -54.99 - 0.3312 66.4815979 07 0.3439 550 glpT BSU02140 0.0401644297

200nt 3236257 3236456 forward BSU31500 yuxK 61 -82.70 - 0.4200 93.3933029 08 0.2650 802 yufL BSU31520 0.0853443071

3.2.5 Escherichia coli

Nine out of the 29 riboswitches in the training set are from the E. coli genome. As a test of the generality

of the results on B. subtilis, we evaluated the performance of the three classifiers on various constant-length

riboswitches, 100 nt, 150 nt, 157 nt, and 200 nt on E. coli. The performance of the LMFEGCRND classi-

fier for the 100 nt-constant length was slightly higher than other tests (data not shown). Hence, the 100 nt

constant-length window scan of 50 nt overlap was used to examine the intergenic regions of E. coli. The

operon coordinates were taken from RegulonDB website (Salgado et al., 2013). Top 50 hits on each strands

are available in Table B.11. Top 50 hits having Uracil compositions within the range of known riboswitches

are organized in Table B.12. The genomic distribution of the latter set is shown in Figure 3.2. Sequence

segments having significant MFE and high Entropy values are sorted in Tables 3.10, and B.13 for significant

and insignificant entropy values, respectively.

7Table 3.9: The entropy of this sequence is the lowest within the test. The significance of this value is also shown
in B.4 as the lowest blue point on the graph.

8Table 3.9: The entropy of this sequence is the lowest within the test.
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Table 3.10: Top Entropy Hits of E. coli Filtered for GC- and Uracil-comp. Significant hits of the forward and
reverse strands of the E. coli intergenic regions having significantly high RND entropy (p-Val.<0.0500), sig-
nificantly low (p.Val.<0.050), GC and Uracil compositions within the range of those for known riboswitches
Threshold values and their corresponding p-values have been calculated separately for each genome-wide
test. 50 nt overlap used for 100 nt scan (100090 segments). 175 nt overlap used for 150 nt scan (66414 seg-
ments). Distance from upstream and downstream operons are the distance from the center of the hit to the
stop and start codons of upstream and downstream operons, respectively. Probability denotes the multino-
mial regression likelihood of being a riboswitch under the LMFEGCRND model. Positions are according to
gb|U00096.2 version of E. coli and not gb|U00096.3 version. Negative values indicate distance to upstream
operon. Columns Upsream/Downstream Operon show gene ID within the operon.

E. coli Start End Strand Upstream Operon Dist. to Upstream MFE MFE p. Val. GC RND RND p. Val. Uracil Dist. to Downstream Downstream Operon Probability
100nt 4083889 4083988 forward yiiF -5848 -38.4 0.0267 0.53 58.6367989 0.0365 0.29 102 fdhD 0.789
100nt 187962 188061 forward cdaR -4293 -36.4 0.0466 0.53 59.0985985 0.0229 0.32 1702 rpsB,tff,tsf 0.776
100nt 952485 952584 forward ycaK -2955 -36.8 0.0419 0.52 58.3203011 0.0494 0.27 3452 ycaP 0.765
100nt 4115038 4115137 forward uspD,yiiS -3245 -37 0.0396 0.53 58.3563995 0.0477 0.33 1452 zapB 0.756

E. coli Start End Strand Upstream Operon Dist. to Upstream MFE MFE p. Val. GC RND RND p. Val. Uracil Dist. to Downstream Downstream Operon Probability
150nt 2686923 2687072 forward hmp -1802 -56.00 - 0.5333 90.7522964 0.0077 0.32000 6827 mltF 0.8671584129
150nt 2887386 2887535 forward iap -11672 -56.40 - 0.5333 89.1240005 - 0.0294 2777 queD 0.8254097700
150nt 3467187 3467336 forward gspO9 -2871 -56.10 - 0.5200 88.5419006 0.0450 0.29333 8402 slyX 0.8172816634
150nt 3576825 3576974 reverse yhhW -74 -55.60 - 0.4800 88.6371994 0.0419 0.30666 149 gntK,gntR,gntU 0.8547886610
150nt 2195866 2196015 reverse yehS -13808 -58.00 - 0.5333 88.6897964 0.0405 0.27333 3749 mrp 0.8320623040

9Table 3.10: Complete list of genes in this operon is gspC,gspD,gspE,gspF,gspG,gspH,gspI,gspJ,gspK,
gspL,gspM,gspO.
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Figure 3.2: Structural Entropy Genomic Distribution. Left: Bacillus subtilis. Distribution of locations of
sequence segments of the non-overlapping 157 nt window scan of the B. subtilis intergenic regions. Location
of all segments tested is depicted as grey. Location of segments with Uracil composition between 0.2484
and 0.40127 and probabilities higher than 0.8 under the classifier LMFEGCRND are shown in red. (Please
see Table B.8 for more information on the hits). Outer circle represents the direct strand while the inner
circle represents the complementary strand. 72.2% (39 out of 54) of hits on the forward strand are located
in the first half of the genome. 69.6% (32 out of 46) of the hits on the reverse strand are located in the
second half of the genome. Right: Escherichia coli. Distribution of locations of sequence segments of
the 50 nt-overlapping 100 nt window scan of the E. coli non-annotated intergenic regions. Location of
all segments tested is depicted as grey. Location of segments with Uracil composition between 0.23 and
0.34 and probabilities higher than 0.768 under the classifier LMFEGCRND are shown in red (Please see
Table B.12 for more information on the hits). Outer circle represents the direct strand while the inner circle
represents the complementary strand. 64.2% (34 out of 53) of hits on the forward strand are located in the
first half of the genome. 60% (36 out of 60) of the hits on the reverse strand are located in the second half
of the genome.
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3.2.6 Mutagenesis

In order to investigate the sensitivity of various structural features to the folding space of the riboswitches,

we compared their wild-type value to that of structural mutants. By structural mutants, we mean those

mutant sequences that were designed to disrupt either of the two biologically functional conformations of

the riboswitch. Such structural mutants whose regulatory functions had been experimentally investigated

were gathered from the literature. The percentage of change in entropy values for mutants relative to the

wild type is shown in Table 3.12. These mutant sequences may not have been naturally occurring biological

sequences, but they had very similar sequence features to their wild type, enabling us to evaluate the varia-

tions of structural features with respect to loss of functionality.

The criterion for the performance of each feature was as follows: For each riboswitch, we compared

entropy values of mutants with structural alteration (denoted as YES) with those of the wild type and non-

structural alterations (denoted as NO). We then counted the structural mutants that have lower values than

those for both the wild type and non-structural mutants and divided it by the total number of structural mu-

tants. We did this for every features and riboswitch. We then averaged the computed percentages across all

riboswitches, since each riboswitch can be looked at as an independent test. Performance of each feature

is shown in Table 3.12. The performance of the base-pairing entropy BJKbp is higher than other features

on average. This suggests that structural mutants are expected to have lower base-pairing entropy than non-

structural mutants and wild type 77.8 percent of the time, regardless of the riboswitch tested. For certain

riboswitches or riboswitch segments, such as the B. subtilis Magnesium and the expression platform of the

Salmonella Cobalamin riboswitch, however, various structural entropy values have higher entropy than the

wild type, which means that our hypothesis of higher entropy and alternative fold does not always hold.

The average silhouette index of energy landscapes (Sil) has a much better performance for the mentioned

riboswitches.
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Table 3.11: Mutagenesis. Percentage of change in entropy values of mutants compared to wild type. Muta-
tion names are according to the literature. Type of disruption to wild type activity/conformation is denoted
in column function (Please see references for more detail on mutation information). Mutants have same
length as the wild type, except for the ROSE-P2 thermosensor. Wild-type segments are the same as gathered
data, except for the SAM-I riboswitch where a homologue has been used. ∆RND% and ∆BJK%, refer to
structural entropy values for the RND and BJK models, respectively. ∆BJKbp% refers to the base-pairing
entropy of the BJK model as defined by (Huynen et al., 1997). ∆Sil% refers to the two-cluster average
silhouette index of the energy landscape of the RNA as calculated by (Quarta et al., 2012). Sensitivity%
and specificity% refer to BJK model accuracy to the secondary structural conformation, with disregard to
pseudoknots.

Wild-type Riboswitch (Length) Organism Sensitivity % Specificity %

ID49 TPP (158) B. subtilis 56.9 51.8

Mutants (Mironov et al., 2002) Function Disruption of only one struc-

ture

∆RND % ∆BJK % ∆BJKbp % ∆Sil %

+30 Disrupts anti-antiterminator Yes 0.7 -2.6 -3.9 -55.2

+118 Disrupts anti-terminator Yes -0.4 5.3 -0.7 -50.3

+80 Disrupts thi-box No 0.8 3.3 0.8 -38.2

+97 Disrupts thi-box No -0.8 1.9 1.6 -63.2

Wild-type Riboswitch (Length) Organism Sensitivity % Specificity %

ID13 FMN (236) B. subtilis 81.81 64.3

Mutants (Mironov et al., 2002) Function Disruption of only one struc-

ture

∆RND % ∆BJK % ∆BJKbp % ∆Sil %

G34C/G35C Disrupts anti-terminator Yes -1.6 -5.5 -2.4 15.4

C86T Disrupts rfn-box No 0.2 -0.1 0.6 11.8

C49T Disrupts rfn-box No 0.3 0.5 0 -14.3

G157A/G160A Disrupts anti-antiterminator Yes 0 -0.7 -0.9 66.7

Wild-type Riboswitch (Length) Organism Sensitivity % Specificity %

ID36.12 SAM-I (159) B. subtilis 94 88.7

Mutants (Winkler et al., 2003) Function Disruption of only one struc-

ture

∆RND % ∆BJK % ∆BJKbp % ∆Sil %

Ma Disturbs both structures No 2.3 15.8 10.7 -48.8

Mab Disrupts anti-terminator Yes -2.3 -0.29 -0.4 4.1

Mc Disrupts anti-terminator Yes 0.3 -0.31 -0.8 -0.3

Mabc Compensates mutations to

wild type

No -1.1 -0.32 -0.7 -3.2

Wild-type Riboswitch (Length) Organism Reference Sensitivity % Specificity %

ID18 Magnesium (172) Salmonella enterica 64.53 43.5

Mutant (Hollands, 2012) Function Disruption of only one struc-

ture

∆RND % ∆BJK % ∆BJKbp % ∆Sil %

C145G Favors high Mg2+ conforma-

tion

Yes 1.7 -1.8 -4.7 -10.1

Wild-type Riboswitch (Length) Organism Sensitivity % Specificity %

ID12 FMN (264) E. coli 38.9 32.3

Mutants (Hollands, 2012) Function Disruption of only one struc-

ture

∆RND % ∆BJK % ∆BJKbp % ∆Sil %

M1 Favors +FMN conformation Yes 0.4 -3.8 -5.8 -43

M2 Favors -FMN conformation Yes -1.4 -1.9 -1.2 -5.7

Wild-type Riboswitch (Length) Organism Sensitivity % Specificity %

Continued on

next page

65



– continued from

previous page

ID20 Magnesium (204) B. subtilis 78 65

Mutants (Dann et al., 2007) Function Disruption of only one struc-

ture

∆RND % ∆BJK % ∆BJKbp % ∆Sil %

M5 Disrupts termination Yes 2.7 0.9 0.7 -12.3

M6 Distrupts anti-terminator Yes 3.9 12.4 8 -14.8

Wild-type Riboswitch (Length) Organism Sensitivity % Specificity %

ID07 Cobalamin (95) Salmonella 59.4 61.3

Mutants (Ravnum and Andersson, 2001) Function Disruption of only one struc-

ture

∆RND % ∆BJK % ∆BJKbp % ∆Sil %

G373 →C Distrupts alteration4 Yes 1.9 7.4 5.2 31.3

G375 →C Distrupts alteration Yes 0.6 10.7 5.1 13.2

G376 →C Distrupts alteration Yes 1.3 1.4 0.2 5.1

C440 →G Distrupts alteration Yes 5.8 11.8 5.5 -22.8

C441 →G Distrupts alteration Yes 3.7 10.1 5.4 -11.1

C443G460 →GC Distrupts alteration Yes 1.4 -3.2 -2.1 -1.9

G373C443G460 →CGC Compensates mutations to

wild type

No -0.2 6.5 4.3 8.6

Wild-type Riboswitch (Length) Organism Sensitivity % Specificity %

ID33 ROSE-P2 (135) Bradyrhizobium 22.75 22.2

Mutant (Chowdhury et al., 2006) Function Disruption of only one struc-

ture

∆RND % ∆BJK % ∆BJKbp % ∆Sil %

∆G836 Deletion of a critical nu-

cleotide

Yes -2.6 -8.1 -4.7 8.6

We also used the Ribex (Abreu-Goodger and Merino, 2005) tool in order to have an overall view of

the identification power of riboswitches in the test set based on their sequence annotation. This tool uses

similarity measures and annotation information from sequenced bacterial genomes to identify the type and

position of a given RNA sequence based on other riboswitches. Performance of the riboswitch identification

tool is denoted in Table 3.13. The tool was set to search sequences predicted to be ribo-regulators, as well.

Twelve out of the 23 riboswitches (52.17%) in the test set are correctly identified as riboswitches using

the search tool. However, if we exclude the annotation of corresponding family of the riboswitch from the
1Table 3.11: Two out of the 55 base-pairings of the B. subtilis FMN sequence are G-A pairs.
2Table 3.11: ID36.1 is the metI SAM-I riboswitch in B. subtilis and has sequence identity of 76% with ID36

yitJ B. subtilis SAM-I riboswitch using BLAST c⃝. Sequence location on Location on the B. subtilis str. 168 strain
emb|AL009126.3 (1258304-1258462), forward strand.

3Table 3.11: CYK structural prediction under the BJK model and that of the MFE model via vienna c⃝detect
different alteration of the Magnesium riboswitch in Salmonella enterica serovar Typhimurium. Structural distance of
the MFE prediction to the high Mg2+ and low Mg2+ structures are 28 and 120, respectively while they are 114 and
74, under CYK-based structural prediction of the BJK model. Sensitivity and specificity values for the BJK model
prediction of the low Mg2+ conformation are 22% and 22%.

4Table 3.11: All mutations in expression platform of the Salmonella Cobalamin riboswitch tested here, disrupt
pseudoknot formation in the encompassing structure. Results may not apply to our hypothesis.

5Table 3.11: One out of the 44 base-pairings of the Bradyrhizobium ROSE-P2 sequence is a G-G pair.
6Table 3.11: The ∆G83 mutant is one nucleotide shorter than the ROSE-P2 135nt-long wild type.
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Table 3.12: Mutagenesis Results. Percentages (%) of mutants having lower value than both wild-type and
non structural mutations. Base-pairing entropy (BJKbp), Structural entropy under BJK and RND models,
(BJK) and (RND), and two-cluster average silhouette index of energy landscape (Sil) were investigated.
Percentages were calculated as follows: For each riboswitch, the percentage of structural mutants (annotated
by YES in Table 3.11) having lower values than both the wild type and non-structural mutations (annotated
by NO in Table 3.11) were calculated. Then, the average of percentage is taken accross the six riboswitches
of Table 3.11. For the case of the Bradyrhizobium ROSE-P2, entropy values were compared with −0.74
rather than zero for wild type, since the length of the 135nt-long riboswitch was decreased by 1 and this
decrease in length is expected to have linear effect on structural entropy values.

Feature (%)
BJKbp 77.8
BJK 61.1
Sil 58.3
RND 41.6

search, this number drops down to 2 (8.7%). Only Fluoride and preQ1 were identified correctly. It is worth

noting that the aforementioned tool involves searching the intergenic regions of different organisms and the

comparison to ab initio riboswitch identification may not be applicable.

Table 3.13: Ribex Performance. Performance of Ribex (Abreu-Goodger and Merino, 2005) to identify the
riboswitches. riboswitch known/unknown denotes if the family of the riboswitch is known to the tool or not,
if Yes, it implies, the search tool will search genomic regions corresponding to that riboswitch. Ribo. %
denotes percentage of the test-set riboswitches correctly identified as a riboswitch.

Sequence Num. Ribo. % Ribo. Not Ribo.
riboswitch known 23 52.17 12 11
riboswitch unknown 23 8.7 21 21
antisense 23 0 0 23

3.3 Discussion

Riboswitches are comprised of a diversity of biological functionality, as well as having different conforma-

tional dynamics. In this work, we made an attempt to characterize the potential for an alternative fold ubiq-

uitous in various regulatory elements, regardless of their annotation and structural complexities. Secondary

Structural entropy of the SCFG-modeled folding space of the RNA was used as one of the main features

in this regard, based on the assumption that there should to be a relationship between theoretical diversity
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of possible folding scenarios (here, folding entropy) and the potential for the RNA to have an alternative

stable secondary structure. We purposely refrained from including homologous sequences in our data set to

avoid bias to a specific family of riboswitches. Regression approaches to estimate the structural entropy of

the riboswitch with respect to various sequence and structural features, such as MFE, lead to higher classifi-

cation performance in discriminating riboswitches from their antisense control, compared to classfiers that

do not incorporate the structural entropy measure. We believe this increase in performance is significant,

since it is least likely to be caused by primary structural biases; both sense and antisense sequences have

the same GC composition and length. Other primary structural features were not included in our classifiers,

since they may cause bias towards certain sequences. In fact, the inclusion of Uracil composition did not

yield better results in most cases. We hypothesize that the folding entropy value of riboswitches may be

a significant factor within the context of their length, GC-composition, and folding stability (here, MFE).

Multinomial logistic regression based classifiers based on structural entropy were successfully designed as

ab initio riboswitch identifiers.

Some of the challenges in our approach to develop ab initio riboswitch identifiers were choices of se-

quence segment and folding model. We found it very difficult to find a subset of sequence segments from

riboswitches for our training set that had the highest structural entropy. These difficulties included but

were not limited to high sensitivity of structural entropy to sequence length and location and the possible

varying lengths of riboswitches that have alternative structures. We arbitrarily included varying lengths of

riboswitches in our training set rather than constant length, since the performance of classifiers with constant

length was either lower or similar to those with varying length.

The optimum length of a sequence segment that leads to identifying riboswitches can vary from one or-

ganism to another; Constant length of 100 nt segments for E. coli are more suitable, while 157 nt segments

lead to higher performance for B. subtilis riboswitches. Results about sequence segments, however, had low

significance due to low number of riboswitches tested in each case. We only propose that it may be possible

that riboswitches from different organisms may have different ranges of sequence lengths over which alter-

native structure prediction becomes significant. Optimizing search parameters on a new organism sequence

is potentially a difficult task. One alternative may be evaluating the behavior of entropy based classifiers on

data sets that are peculiar to that organism. We have not explored this approach.
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3.3.1 Choice of Model

Classification performance of sense/antisense, genome-wide sliding window tests, and mutagenesis all sug-

gest that the BJK folding model is more sensitive to changes in the folding space than the structurally

ambiguous RND model. The classification performance of the LMFEGCBJK model both on the test set and

on the B. subtilis riboswitches is high given the right sequence segment is chosen. Also, the RND model

does very poorly in distinguishing the folding space of riboswitch mutants from that of their wild types. On

the other hand, binomial logistic regression based classification of sense and antisense of all riboswitches

assigns slightly higher ROC area to the classifier that deploys the RND model (see Figure B.1). Further-

more, riboswitch identifiers based on the RND model are more robust in terms of sequence positioning than

their BJK counterparts. The RND model only enforces Watson-Crick and G-U base-pairing and is fairly

a simplistic structural model. The acceptable performance of the RND model in genome-wide approaches

may be due to having less structural constraints than BJK. It may be possible that training secondary struc-

tural folding models to predict RNA secondary structures comes at the cost of loss in folding information.

3.3.2 Genome-wide Analysis

Sequence segments predicted to have potential for alternative fold for the two B. subtilis and E. coli inter-

genic regions are presented in the Results section. Many such hits fell immediately upstream of operons,

which could be indicative of cis-regulation. A rigorous analysis of all predictions under various hypotheses,

however, falls outside the scope of this work. Here we discuss only a few significant hits.

The cotH Gene

The top two sequence segments predicted to be riboswitches are both upstream of cotH gene and in close

proximity of one another (see top two rows of Table B.7). In fact, a 628 nt long segment is classified to be

a riboswitch (four consecutive sequence segments). the 5’ half of this segment, {3717412 nt - 3717725 nt},

contains the top two hits which are also predicted to be riboswitches by the model LMFEGCBJK in position

{3717098 nt - 3717725 nt} on the complementary strand of B. subtilis. Naclerio et al. (1996) discuss possi-

ble regulation in the vicinity of cotH gene. They also stated that no homology to this gene was revealed in the
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sequences presented in the data bank at the time. They hypothesized that this gene plays an important role

in the formation of the spore coat. A more recent paper (Giglio et al., 2011) reports about the cotH promoter

mapping 812 bp upstream of beginning of its coding region. This region covers the top two hits we have.

In fact, 200 nt scan reveals that many consecutive segments belonging to this region have significant RND

entropy values (<0.05). Most interestingly, the segment with highest RND entropy value on a genome-wide

level and under the 200 nt window occurs 399 nt upstream of the cotH gene at location {3717398-3717597

+}. The authors also talk about cotG and cotH genes and that they are both divergently transcribed by σ-K

and a potential for extensive secondary RNA structures in this unusually long untranslated region. The cotG

is located in the forward strand. There are also many hits around 2000 nt upstream of the cotG-containing

operon under various sliding window tests. An interesting observation about the nucleotide composition of

the top hit reveals that it uniquely contains periodic runs of 6 consecutive thymines with periodicity of 12

and 15 interchangeably. A search for similar runs of thymines was done on both strands of B. subtilis by re-

laxing perdiodicity to 10 nt to 18 nt and constraining it to having at least six consecutive runs of 6-thymines

using the pattern locator software (Mrazek and Xie, 2006). The only two hits were found both on the reverse

strand and overlapping with the top hit:{3717502-3717606} and {3717367-3717468}.

The most significant structural entropy value for the longest window size (200 nt) on the B. subtilis

genome occurred in an unusually extensive secondary structure within that genome. It may be possible

that RNA structures contain segments having significantly high secondary structural space (here shannon’s

entropy) on a genome-wide scale. This implies that long ncRNAs potentially have a uniquely high number

of secondary structural conformations. This unusually high secondary structural diversity may be related

to their regulatory role. We have not yet examined the secondary structural space of other long secondary

structures in various organisms. The significantly high secondary-structural-entropy feature, however, may

be typical of other longer secondary strucures. In a recent study on the newly discovered class of RNAs

known as long ncRNAs (lncRNA), Cloutier et al. (2013) show that yeast lncRNAs are involved in the timing

of gene expression. Hence, it may be possible that the proposed lncRNA-dependent quick shift of gene

expression be related to their luxury of having a potential for diverse secondary structural conformations.
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The BSU tRNA 75 Operon

The sequence segment with highest classification probability that also has signficant MFE and entropy val-

ues is located about 2277 nt of the upstream region of the BSU tRNA 75 Operon. The antisense control of

this segment is located in a putative transcriptional regulator. It is interesting, however, that this hit occurs

upstream of a tRNA operon. A 200 nt scan reveals more hits upstream of this operon that have significant

entropy values some of which are closer to the tRNA operon (around 2000 nt upstream). From locations

of tRNA operon (Chan and Lowe, 2009), it can be seen that out of the five consecutive tRNA genes with

isotypes Glu, Val, Thr, Tyr, and Gln, The Thr operon has attenuation (Kolter and Yanofsky, 1982). Although

the long distance from the downstream translation start codon does not make this a reliable riboswitch pre-

diction, the significance of hits in the intergenic region upstream of the Thr gene and the fact that the other

top hit in our classification approach was located in a long RNA, suggest the possibility that there may be

a long regulatory RNA residing upstream of the mentioned tRNA operon, raising the interesting possibility

of a putative riboswitch regulating an attenuation mechanism.

lysP

One of the most significant hits in our classification under the 157 nt scan occurs immediately upstream

of the lysP gene. The segment corresponding to this location also has the most significant (highest) RND

entropy value while having significantly low MFE (p-Val. <0.05) on a genome-wide level. This is also

true for the 150 nt window scan. Furthermore, the 200 nt scan assigns significantly high structural entropy

(RND p-Val. <0.05) as well as classification probability of higher than 0.8 for this location. The 150 nt-long

segment is located at {3421066-3421215 -} between the lysine permease and BSU MISC RNA 54. Other

adjacent hits that overlap BSU MISC RNA 54 do not have such high entropy or classification probability. It

may be possible that this segment plays a crucial role in regulating the downstream gene.

71



3.4 conclusion

In this work, structural entropy was investigated for characterization of RNA potential for alternative folds.

Classifiers based on structural entropy optimized via sequence and structural features were devised to dis-

criminate between the putative riboswitch and the antisense control. They were also used as ab initio ri-

boswitch identifiers in B. subtilis and E. coli. It was shown that secondary structural entropy is an effective

feature for capturing folding characteristics of riboswitches as a whole and could be a potential alternative

method to homology searches. In addition, although structural entropy is very sensitive to model parameters

and sequence features, when it comes to longer sequences (>150 nt), simplistic folding models tend to have

a very consistent and robust result in distinguishing extensive secondary structures from other intergenic

regions on genome-wide scale, regardless of test parameters. Application of structural entropy in finding

RNA genes that regulate, especially for longer sequences, may be very rewarding.

3.5 Materials and Methods

3.5.1 Data Collection

Sequences with concrete evidence of alternative structures were gathered from the literature (See Table 3.1).

Prokaryotic sequences believed not to have structure were selected from E. coli and are listed in Table B.3

as negative set. 30 genome locations corresponding to σ-70 transcription factor binding sites that are less

than 80 nt upstream of their corresponding start codon were randomly chosen from E. coli such that they

are fairly evenly distributed across the genome. Data was manually gathered from the EcoCyc website

(http://ecocyc.org/).

3.5.2 Classification

Preparing the Positive Control set: The criterion for building the positive control set was taking the

minimum-length sub-sequence for the corresponding riboswitch with evidence for alternative structures.

Comprehensive structure information was not available for certain sequences. We decided to include them

to increase our data set size. The structures of most sequences were experimentally validated, although a
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few structures of the riboswitches were inferred in combination with structural homology approaches. Only

the expression platform components for the Cobalamin riboswitches were used, since they contain alter-

ations; a typical riboswitch has an aptamer and an expression platform component, where the aptamer binds

to the ligand, triggering allosteric rearrangement of the conformation of the expression platform component

of the riboswitch which in turn regulates the expression of the downstream gene. Cobalamin riboswitches

are also significantly longer than other sequences, e.g. Salmonella enterica serovar Typhimurium’s Cobal-

amin riboswitch was over 300 nt long. Including such long sequences could have been problematic, both

for sensitivity of structural entropy on sequence length and the fact that RNA structures longer than 200 nt

are usually predicted with low confidence under SCFG models as well as computational constraints. Also,

certain sequences were excluded from the test. In the column Grouping of Table 3.1 we denote None

for such sequences. Excluded sequences are as follows: Salmonella ATP regulatory element, located in the

mgtM gene before the mgtCBR operon, was excluded since it was the only RNA in our set that had complete

overlap with codons (Lee and Groisman, 2012). Synechococcus sp. CC9902 Downstream-peptide motif

was excluded, since evidence for alteration was not available. T. tengcongensis glmS ribozyme-riboswitch

was excluded, since the glmS ribozyme does not undergo “large conformational changes concomitant with

ligand binding” (Ferre-D’Amare, 2010) and is the only RNA element in our gathered data that functions

as a self-cleaving ribozyme upon binding to glucosamine-6-phosphate (GlcN6P) ligand (Winkler et al.,

2004). Synechococcus elongatus glnA motif was excluded, since no evidence of alteration was available.

Schistosoma Mansoni Hammerhead type I ribozyme was excluded, since its structure does not alter. The

pseudoknotted marine metagenome Hammerhead type II ribozyme was also excluded, since there was no

evidence of alteration of the secondary structure. Finally, Bacillus subtilis yxkD motif was excluded, since

there was no concrete biological evidence for it being a functional riboswitch or ribo-regulator, although it

is predicted partially to have an alternative structure (Barrick et al., 2004).

Training and Test Sets: The positive control set was divided into the training and test sets. Distributions

of training and test sets were similar in differential entropy vs. differential MFE (see Figures B.2 and B.3).

While most gathered sequences were in the two organisms, B. subtilis and E. coli, they cover a variety of

biological functions and structures. We were interested in an ab initio method that can identify potential

for the RNA to have an alternative secondary structure from a thermodynamic perspective regardless of

a specific function or a secondary structural conformation. Hence, the categorization was done such that
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each of the training and test sets would contain as diverse sequences and structures as possible. Further-

more, the training sequences contain those from E. coli while the test set contains those of B. subtilis. For

those riboswitches that did not exist in both gram-positive and gram-negatives, they were evenly distributed

between the two tests. Division of data into training and test sets was a compromise between having as di-

verse riboswitches as possible while being able to assess significance of classification on riboswitches from

phylogenetically distant organisms, namely the gram-positive B. subtilis and the gram-negative E. coli. In

the column Grouping of Table 3.1, the categorization of each sequence is shown. There are a total of

29 sequences in the training set and 23 sequences, in the test set. The 30 E. coli UTRs were divided into

sets of 17 and 13 for training and test sets, respectively. The categorization was selected such that for an

extension of 100 nt UTRs upstream of their corresponding start codons, GC-composition, and the minimum

free energy having similar distribution in both sets. A further internal control was the antisense sequence of

the riboswitch, adding additional sets of sequences of size 29 and 23 sequence to the training and test sets,

respectively. Various classifications in this work always use antisense sequences of riboswitches of identical

length for training and test sets, unless indicated otherwise.

Classification Criterion: Classification probabilities of having an alternative fold (riboswitch), possibly

only one fold (antisense), or no structure (E. coli UTR) were assigned to each sequence based on multino-

mial logistic regression of sequences in the training. SPSS 16.0 c⃝software was used to estimate the cor-

responding parameter vectors. Entropy calculations were done according to Manzourolajdad et al. (2013).

Two different lightweight context-free secondary structural models were used as folding distribution mod-

els. The first model, denoted here as BJK, was developed by Knudsen/Hein and originally used in the Pfold

package (Knudsen and Hein, 1999, 2003). The structurally unambiguous grammar was subsequently used in

Dowell and Eddy (2004) under the name G6 to predict RNA secondary structure using different training sets

for RNA secondary structures. Model parameters used here correspond to the benchmark-trained version

of this grammar (Dowell and Eddy, 2004) and will be referred to as the BJK model. Average sensitivity and

specificity values for the BJK model on the test set of riboswitches are 75.6 and 76.3, respectively. The sec-

ond model, denoted here as RND was introduced in Manzourolajdad et al. (2013) under the name RND10.

This model consists of a structurally ambiguous simple grammar with symmetric rules and probabilities set

according to Manzourolajdad et al. (2013). Also, an effort was done to convert non-stacking heavyweight

grammars from Nawrocki and Eddy (2013). Such grammars aim at mirroring the state-of-the-art thermo-
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dynamic folding models and are extremely sophisticated, requiring their specific software implementation.

The translation of these models into our simple implementation eliminated many of its features. What was

left did not yield original performance of the model to predict RNA secondary structure, nor was its entropy

showing any significant performance in the classifier (data not shown). Minimum-free-energy calculation

was done by Vienna c⃝Software Package (Hofacker, 2003) using default parameters. Base-pairing entropy

for the BJK model, denoted here as BJKbp, was calculated as defined in Huynen et al. (1997) [implemen-

tation by Manzourolajdad et al. (2013)]. The two-cluster average Silhouette index of energy landscape,

denoted here as Sil, was calculated according to the pipeline used in Quarta et al. (2012) with the exception

that we did not account for pseudoknots and only used MFE predictions of the Vienna c⃝Software Package

for prediction of structures.

Ribex (Abreu-Goodger and Merino, 2005) riboswitch identification tool that uses annotations was also used

for performance comparisons (see Table 3.13). We also tried to explore GC composition information up-

stream of gathered sequences relative to that in the riboswitch which did not yield significantly better results.

Sequence-similarity method such, as BLAST c⃝and profile Hidden Markov Models were also examined as

classifiers with the mentioned training and test sets. The pipeline was implemented according to Singh et al.

(2009). These methods did not result in significant classification performance even after lowering the corre-

sponding threshold to insignificant values.

3.5.3 Genome-wide scan of the B. subtilis and E. coli intergenic regions

Bacillus subtilis subsp. subtilis str. 168 (taxid:224308) and Escherichia coli str. K-12 substr. MG1655

(GenBank c⃝ID: U00096.2) were downloaded from the National Center for Biotechnology Information

(NCBI) c⃝(Sayers et al., 2009; Benson et al., 2009). The newer version of E. coli str. K-12 genome

(gb|U00096.3) was not used, since operon and σ-70 UTR locations were given in the old version. Cor-

responding locations of E. coli riboswitches in the old version were used, where necessary. The operon-

location information file for B. subtilis was downloaded from Taboada et al. (2012). Candidates consisted of

sequence segments of lengths 100 nt, 150 nt, and 157 nt. Each intergenic region was divided into segments

of such length such that the most downstream segment in each intergenic region ends at the start codon.

Only intergenic regions higher than 150 nt were considered. The same process was applied to the E. coli
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Figure 3.3: Riboswitch Identification Pipeline. Riboswitch classification and identification pipeline.

genome. Operon locations for the E. coli genome were downloaded from the RegulonDB website (Salgado

et al., 2013). Operon locations in E. coli also contained RNA elements in our data set. Hence, results for the

genome-wide scan of E. coli did not contain any sequence within the operon locations and only contained

non annotated regions. MySQL, java, and R programming languages were used in various phases of our

pipeline (see figure 3.3).

76



Chapter 4

Conclusion

In this work, we examined the conformational dynamics of non-coding RNA sequences with a focus on

discovering riboswitches using their information-theoretic folding space and stochastic context-free gram-

mar folding models, referred to here as structural entropy. We focused on the folding space of riboswitches

mainly because they each typically have potential for forming mutually exclusive secondary structures that

are biologically functional. Furthermore, riboswitches do not require protein factors for their regulatory

activities, increasing the likelihood that the folding space of a given riboswitch may contain critical infor-

mation about its potential for having such alternative folds. Models used here included those trained to

predict the secondary structures of various RNA sequences, as well as those having minimal number of

parameters and assumptions.

As a theoretical contribution, we offered a computationally convenient algorithm for calculating the

Shannon entropy of structurally ambiguous grammars generalized for all non-stacking SCFG-modeled fold-

ing models (Manzourolajdad et al., 2013). In Chapter 2, we also showed that structural entropy can indeed

be significantly higher, as well as significantly lower, depending on the family of the RNA and its GC-

composition. A fresh approach using a notion of significantly higher entropy of certain ncRNAs with respect

to random sequences and structures was then used in chapter 3 as a potential ab initio method for charac-

terization and identification of riboswitches versus their antisense sequences and other intergenic regions

belonging to the organism hosting the riboswitches. Models and relevant potential features for this goal
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were based on results of chapter 2. A data set of riboswitches1 with diverse structures as well as functions

was collected with the special consideration to avoiding homologous sequences. Riboswitch sequence seg-

ments of different lengths were selected based on the criterion of alternative fold as discussed in Materials

and Methods of chapter 3.

The evaluation of folding space of collected riboswitches versus their antisense sequences showed that

riboswitches on average have a distinct folding space than their antisense controls. Binomial logistic re-

gression using features such are Length, GC-composition, GU-composition, and an index derived from

clustering the RNA energy landscape (Quarta et al., 2012) resulted in 75% true positive rate and 25% false

positive rate. In an analysis based on the RNA energy landscape, calculations were less computationally con-

venient than those for structural entropy while classifiers that incorporated RNA energy landscape clustering

features lead to higher performance in sense/antisense discrimination, compared to those that incorporated

structural entropy instead. Multinomial logistic regression classifiers incorporating structural entropy and

other features were then devised based on known riboswitches, their antisense control, and a collection of

short UTR sequences corresponding to σ-70 in E. coli. We used regression values of gram-negative domi-

nated data set of riboswitches as our training set and tested it on our gram-positive dominated test set.

The BJK folding model was developed by Knudsen/Hein and originally used in the Pfold package

(Knudsen and Hein, 1999, 2003). It was subsequently used in Dowell and Eddy (2004) under the name

G6 to predict RNA secondary structure using different training sets for RNA secondary structures. Model

parameters used here correspond to the benchmark-trained version of this grammar (Dowell and Eddy,

2004). The second model that was incorporated in the regression-based classification was denoted here as

RND and is described in chapter 2 under the name RND10. This model consists of a structurally ambigu-

ous simple grammar with symmetric rules and probabilities set according to Manzourolajdad et al. (2013).

Classifiers LMFEGCBJK and LMFEGCRND use structural entropy under the BJK and RND models, re-

spectively. The LMFEGCBJK model had significantly better performance in distinguishing riboswitches

form their antisense and short UTRs compared to the LMFEGCRND and LMFEGC models. The most

challenging part of our evaluation was the choice of length of the riboswitch. One one hand, structural

entropy is very sensitive to various sequence and structural features (data not shown). On the other hand,
1Certain ribo-regulators having alternative secondary structures such as the tryptophan element were included. We

refer to all such sequences in our data set as riboswitches for simplicity.
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sense/antisense classification performance was observed to vary differently for different riboswitches upon

change of length; performance on some riboswitches was very sensitive to choice of length and location of

their corresponding sequence segment while this was not the case for other riboswitches (data not shown).

Variable-length sequences were preferred over constant-length data sets, since classification performance

for the former was slightly higher than the latter.

Genome-wide scans of the intergenic regions of the B. subtilis genome using various choices of classi-

fiers and lengths of sliding windows, revealed that the model LMFEGCRND for sliding window of length

157 nt yields higher performance of riboswitch identification over other choices on lengths and models. Al-

though the more detailed BJK folding model yields better results upon knowledge of riboswitch location (the

LMFEGCBJK classifier), when it comes to blind searches, the simple RND folding model (incorporated in

LMFEGCRND classifier), outperforms other models. The optimum length for riboswitch identification in

the gram negative E. coli was found to be 100 nt. The high performance of the RND model and comparison

of optimum length of sliding windows between B. subtilis and E. coli raised several observations about our

classifiers.

First, the optimum length of sequence segment used to identify riboswitches based on their structural

entropy could be organism dependent. It may be possible that factors such as different rates of transcrip-

tion by RNA polymerase in different organisms affects the length of the segment of the riboswitch over

which alternative structures exist. The number of riboswitches considered, however, is too small to derive

any statistically significant conclusion. Second, sequences surrounding riboswitches may be informative of

potential for alternative fold and should be taken into consideration. Third, the fact that certain position-

ing of sequence segments may increase riboswitch identification performance for folding models trained to

predict RNA structure (here, the BJK model), could be due to the fact that these models are biased towards

certain conformations in the training set and does not necessarily imply their merit. As a larger set becomes

available, a better choice of segment length may come available. This argument is strengthened by the fact

that the simple RND model with arbitrary parameters was more robust in genome-wide searches blind to

the exact position of riboswitches. Given both our genome-wide results and results of chapter 2 for various

models, it may that training SCFG models to best predict RNA secondary structure using current optimiza-

tion methods is done at the cost of losing critical information about the folding diversity intrinsic to certain

regulatory elements.
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Interestingly, the simple RND folding model and using a 200 nt sliding-window scan of 100 nt over-

lap was shown to be sufficient in identification of extensive secondary structures in B. subtilis intergenic

regions. A scan of 200 nt sliding window assigns the highest RND entropy value to the unusually long

(812 bp) untranslated region upstream of the cotH gene. MFE values of corresponding sequence segments

did not have such high significance on the genome-wide level. We consider this finding significant, since

the RND model was a priori designed, and 200 nt was sufficient to show the distinction of the mentioned

untranslated region. We conclude that longer secondary structures may have signatures of significantly high

structural entropy values within them with respect to other intergenic regions of their organism. The fact

that this significance turns out to be high, rather than low, is subject to various speculations about folding

space or RNA structure, in general. It may simply be that longer RNAs are more likely to have alternative

structures.

4.1 Future Work

In this work, we showed that simple SCFG models can be very informative about the folding space of ri-

boswitches as a whole. Our data set selection was constrained to experimentally validated sequences. Other

choices of riboswitches, for instance larger data sets that also include non-validated riboswitches, may lead

to better results for the formidable task of ab initio riboswitch identification. The approaches presented in

this work are only a first step towards this endeavor. In addition, most of our conclusions about the genome-

wide significance of structural entropy is based on the performance of an arbitrary RND model. Other

choices of parameters aimed at characterizing the folding space of riboswitches or extensively long RNA

secondary structures, rather than trained to best predict their final conformation, may give a clearer view

of their folding space characteristics. Finally, the Shannon entropy of RNA secondary structural space, is a

fairly new quantitative measure and its relationship with other features such as MFE, pseudoknots, sequence

length and composition, tertiary interactions, etc... is not very well understood. The reason for its high

genome-wide significance for RNA sequences of longer lengths is one interesting question that remains to

be answered.
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Appendix A

Structural Entropy Derivations

A.1 Structural Entropy of Structurally Ambiguous Non-stacking Grammars

In the case of structurally ambiguous grammars, the left-most derivation constraint makes it possible to
uniquely enumerate over left-most derivation trees of structures by avoiding redundant counts of trees:
Without loss of generality to all non-stacking grammar rules, we have:
Upon consecutive generation of ci and cj substructures in a left-most derivation tree, the following ordering
of rules abides by the left-most derivation constraint:

λ → ci ω;ω → γ cj

While the following does not:
ω → γ cj ; γ → ci δ (A.1)

Where ci and cj are substructures: ci, cj ∈ {a, aY b}, and λ, ω, γ, and δ are all nonterminals where
λ = ω = γ = δ. Y is any nonterminal.

By having a closer look at A.1, we can see that when ω → γ cj is applied anywhere on the sequence, it
puts constraint on the inside probability function deriving γ, since it cannot contain any rule of type γ → ci δ
at its outermost step. Note: γ = δ. We will refer to this particular inside probability function as the left-most
derivation inside probability function: αl(γ, i, j, y).
On the other hand, when γ → ci δ is applied anywhere on the sequence, it puts constraint on the outside
probability function deriving γ, since it cannot contain any rule of type ω → γ cj at its innermost step.
Note: ω = γ. We will refer to this particular outside probability function as the left-most derivation outside
probability function: βl(γ, i, j, y).

Application of rule of type γ → ci does not require any constraint on the last step of the outside prob-
ability function that produces γ. Also, substructure Y surrounded by a base-pair: aY b does not put any
constraint on the last step of the inside probability function that produces Y .

Applying the above logic yields the structural entropy of ambiguous grammars to be equal to (2.7) with
the following modifications for the expression containing the inside and outside probability function coefi-
cients:

For the case of rule: X → aY bZ:
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If X ̸= Z:

β(X, i, j, y) [ f(X, aY bZ)
∑

i+2<k<j−1

α(Y, i+ 2, k − 1, y)α(Z, k + 1, j − 1, y)]

If X = Z:

βl(X, i, j, y) [ f(X, aY bZ)
∑

i+2<k<j−1

α(Y, i+ 2, k − 1, y)α(Z, k + 1, j − 1, y)]

For the case of rule: X → Y aZb:
If X ̸= Y :

β(X, i, j, y) [ f(X,Y aZb)
∑

i+1<k<j−2

α(Y, i+ 1, k − 1, y)α(Z, k + 1, j − 2, y)]

If X = Y :

β(X, i, j, y) [ f(X,Y aZb)
∑

i+1<k<j−2

αl(Y, i+ 1, k − 1, y)α(Z, k + 1, j − 2, y)]

For the case of rule: X → aY :
if X ̸= Y :

β(X, i, j, y)f(X, aY )α(Y, i+ 2, j − 1, y)

If X = Y :
βl(X, i, j, y)f(X, aY )α(Y, i+ 2, j − 1, y)

For the case of rule: X → Y a:
If X ̸= Y :

β(X, i, j, y)f(X,Y a)α(Y, i+ 1, j − 2, y)

If X = Y :
β(X, i, j, y)f(X,Y a)αl(Y, i+ 1, j − 2, y)

Where α(X, i, j, y), αl(X, i, j, y), β(X, i, j, y), and βl(X, i, j, y) are recursively defined as follows:
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Note: The If statements in the following recursions are not mutually excusive from one another. (A
grammar rule can apply to more than one term of the recursion). The following inside-outside probability
functions are defined for the X symbol that refers to a particular non-terminal. Hence, symbol X on either
side of the (→) of grammar rules refers to the same non-terminal, here. This is while symbols Y and Z in
the grammar rules symbolize any non-terminal.

α(X, i, j, y) = α(Y, i+ 1, j, y)× p(X → aY )

+ {ifX ̸= Y : α(Y, i, j − 1, y)× p(X → Y a), else αl(Y, i, j − 1, y)× p(X → Y a)}

+
∑

i+1<k<j

α(Y, i+ 1, k − 1, y)× α(Z, k + 1, j, y)× p(X → aY bZ)

+

[
ifX ̸= Y :

∑
i<k<j−1

α(Y, i, k − 1, y)× α(Z, k + 1, j − 1, y)× p(X → Y aZb),

else
∑

i<k<j−1

αl(Y, i, k − 1, y)× α(Z, k + 1, j − 1, y)× p(X → Y aZb)

]
+α(Y, i+ 1, j − 1, y)× p(X → aY b)

β(X, i, j, y) =

[
ifY ̸= X : β(Y, i− 1, j, y)× p(Y → aX)

else βl(Y, i− 1, j, y)× p(Y → aX)

]
+β(Y, i, j + 1, y)× p(Y → Xa)

+

[
ifY ̸= X :

∑
0<k<i−1

β(Y, k − 1, j, y)× α(Z, k + 1, i− 1, y)× p(Y → aZbX)

else
∑

0<k<i−1

βl(Y, k − 1, j, y)× α(Z, k + 1, i− 1, y)× p(Y → aZbX)

]

+
[
ifY ̸= Z :

∑
j<k<ny+1

β(Y, i− 1, k + 1, y)× α(Z, j + 1, k, y)× p(Y → aXbZ)

else
∑

j<k<ny+1

βl(Y, i− 1, k + 1, y)× α(Z, j + 1, k, y)× p(Y → aXbZ)

]

+

[
ifY ̸= Z :

∑
0<k<i

β(Y, k − 1, j + 1, y)× α(Z, k, i− 1, y)× p(Y → ZaXb),

else
∑

0<k<i

β(Y, k − 1, j + 1, y)× αl(Z, k, i− 1, y)× p(Y → ZaXb)

]

93



+
∑

j+1<k<ny+1

β(Y, i, k + 1, y)× α(Z, j + 1, k − 1, y)× p(Y → XaZb)

+β(Y, i− 1, j + 1, y)× p(Y → aXb)
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αl(X, i, j, y) = {ifX ̸= Y : α(Y, i+ 1, j, y)× p(X → aY ), else 0}

+ {ifX ̸= Y : α(Y, i, j − 1, y)× p(X → Y a), else αl(Y, i, j − 1, y)× p(X → Y a)}

+

ifX ̸= Z :
∑

i+1<k<j

α(Y, i+ 1, k − 1, y)× α(Z, k + 1, j, y)× p(X → aY bZ), else 0


+

[
ifX ̸= Y :

∑
i<k<j−1

α(Y, i, k − 1, y)× α(Z, k + 1, j − 1, y)× p(X → Y aZb),

else
∑

i<k<j−1

αl(Y, i, k − 1, y)× α(Z, k + 1, j − 1, y)× p(X → Y aZb)

]
+α(Y, i+ 1, j − 1, y)× p(X → aY b)

βl(X, i, j, y) =

[
ifY ̸= X : β(Y, i− 1, j, y)× p(Y → aX)

else βl(Y, i− 1, j, y)× p(Y → aX)

]
+ {ifY ̸= X : β(Y, i, j + 1, y)× p(Y → Xa), else 0}

+

[
ifY ̸= X :

∑
0<k<i−1

β(Y, k − 1, j, y)× α(Z, k + 1, i− 1, y)× p(Y → aZbX)

else
∑

0<k<i−1

βl(Y, k − 1, j, y)× α(Z, k + 1, i− 1, y)× p(Y → aZbX)

]

+
[
ifY ̸= Z :

∑
j<k<ny+1

β(Y, i− 1, k + 1, y)× α(Z, j + 1, k, y)× p(Y → aXbZ)

else
∑

j<k<ny+1

βl(Y, i− 1, k + 1, y)× α(Z, j + 1, k, y)× p(Y → aXbZ)

]

+

[
ifY ̸= Z :

∑
0<k<i

β(Y, k − 1, j + 1, y)× α(Z, k, i− 1, y)× p(Y → ZaXb),

else
∑

0<k<i

β(Y, k − 1, j + 1, y)× αl(Z, k, i− 1, y)× p(Y → ZaXb)

]

+

ifY ̸= X :
∑

j+1<k<ny+1

β(Y, i, k + 1, y)× α(Z, j + 1, k − 1, y)× p(Y → XaZb), else 0


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+β(Y, i− 1, j + 1, y)× p(Y → aXb)

With initialization:
αl(X, i, i, y) = α(X, i, i, y) = p(X → a), ∀i

βl(X, 0, ny + 1, y) = β(X, 0, ny + 1, y) = 1, ifX = S0, else 0

βl(X, i, ny + 1, y) = β(X, i, ny + 1, y), ∀i
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A.2 Data Collection

Sequences were downloaded from Rfam 10.0. The SEED sequences were downloaded for the following
RNAs:

Table A.1: Downloaded sequences from Rfam 10.0

Accession Name Type No. Seed Average Length Average % Identity
RF00002 5_8S_rRNA rRNA 61 152 70
RF00001 5S_rRNA rRNA 712 116 59
RF00013 6S rRNA 154 180 45
RF00174 Cobalamin riboswitch 431 203 54
RF00050 FMN riboswitch 146 136 72
RF00234 glmS riboswitch 17 182 59
RF00504 Glycine riboswitch 44 100 55
RF00163 Hammerhead_1 riboswitch 30 59 70
RF00168 Lysine riboswitch 47 183 51
RF01056 Mg_sensor riboswitch 4 114 78
RF00802 mir-207 miRNA 7 78 85
RF00838 mir-252 miRNA 6 79 71
RF00717 mir-315 miRNA 16 82 75
RF00770 mir-330 miRNA 6 97 91
RF00842 MIR403 miRNA 11 106 68
RF00711 mir-449 miRNA 57 91 58
RF00776 mir-540 miRNA 3 82 78
RF00849 mir-60 miRNA 4 72 89
RF00957 mir-663 miRNA 14 89 77
RF00844 mir-67 miRNA 16 65 79
RF00917 mir-708 miRNA 24 83 78
RF00830 mir-74 miRNA 6 95 67
RF01055 MOCO_RNA_motif riboswitch 179 141 59
RF00522 PreQ1 riboswitch 42 45 67
RF01054 preQ1-II riboswitch 14 104 68
RF00167 Purine riboswitch 133 100 56
RF01480 rli52 snRNA/riboswitch 6 95 95
RF01481 rli53 snRNA/riboswitch 5 173 97
RF01491 rli54 snRNA/riboswitch 5 283 99
RF01482 rli55 snRNA/riboswitch 3 100 99
RF01483 rli56 snRNA/riboswitch 6 181 96
RF01485 rli61 snRNA/riboswitch 4 106 99
RF01486 rli62 snRNA/riboswitch 2 172 98
RF01057 SAH_riboswitch riboswitch 52 84 63
RF00521 SAM_alpha riboswitch 40 79 71
RF00634 SAM-IV riboswitch 40 115 73
RF00065 snoR9 snoRNA 5 127 85
RF00072 SNORA75 snoRNA 6 135 74
RF00067 SNORD15 snoRNA 18 124 59
RF00068 SNORD21 snoRNA 5 92 73
RF00069 SNORD24 snoRNA 14 77 71
RF00070 SNORD29 snoRNA 10 73 76
RF00071 SNORD73 snoRNA 25 70 77
RF00059 TPP riboswitch 115 111 56
RF00005 tRNA tRNA 967 73 45
RF00030 MRP RNase 67 321 46
RF00009 nuclear RNase P 117 312 48
RF00011 bact. type B RNase P 114 367 68
RF00010 bact. type A RNase P 306 380 62
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A.3 Sensitivity and Specificity (PPV) of models to Annotated Secondary Structure of ncRNAs

Table A.2: Structural Entropy p-Value vs. Accuracy for Bralibase Predictions. Percent(%) of Sensitivity
(Sen.) and Specificity (Sp.) of SCFG Models to Bralibase Annotated Secondary Structures. Number of
sequences and structures: One annotated secondary structure for each alignment. All alignments have five
sequences in them. g2intron (460 sequences; 92 structures), rRNA (445 sequences; 89 structures), tRNA
(490 sequences; 98 structures), and U5 (540 sequences; 108 structures).

Mixed80-trained BJK Sen. BJK Sp. RUN Sen. RUN Sp. IVO Sen. IVO Sp.
g2intron 64 55 23 16 3 5
rRNA 42 43 16 13 2 2
tRNA 77 78 30 25 4 7
U5 64 59 11 8 1 2

Benchmark-trained BJK Sen. BJK Sp. RUN Sen. RUN Sp. IVO Sen. IVO Sp.
g2intron 66 57 29 19 3 3
rRNA 42 41 19 15 2 3
tRNA 76 76 33 27 6 7
U5 64 57 18 12 1 1

Rfam5-trained BJK Sen. BJK Sp. RUN Sen. RUN Sp. IVO Sen. IVO Sp.
g2intron 52 44 6 5 2 4
rRNA 38 36 12 10 2 2
tRNA 64 64 22 21 4 7
U5 71 60 6 4 1 2

Table A.3: Structural Entropy p-Value vs. Accuracy for Rfam Predictions. Percent(%) of Sensitivity (Sen.)
and Specificity (Sp.) of SCFG Models to Rfam Annotated Secondary Structures.

Mixed80-trained BJK Sen. BJK Sp. RUN Sen. RUN Sp. IVO Sen. IVO Sp.
miRNA 74 66 57 46 2 4
riboswitch 51 39 13 8 2 2
RNase MRP 46 28 19 10 2 1
RNase P 50 41 9 6 2 2
rRNA 42 40 23 17 2 2
tRNA 73 74 30 25 5 8
snoRNA 45 14 60 12 7 3

Benchmark-trained BJK Sen. BJK Sp. RUN Sen. RUN Sp. IVO Sen. IVO Sp.
miRNA 77 66 64 50 4 4
riboswitch 49 38 14 9 2 2
RNase MRP 43 26 21 11 2 1
RNase P 49 40 10 7 2 2
rRNA 42 39 27 20 3 3
tRNA 71 71 34 27 7 7
snoRNA 43 13 50 10 10 3

Rfam5-trained BJK Sen. BJK Sp. RUN Sen. RUN Sp. IVO Sen. IVO Sp.
miRNA 77 63 49 44 2 4
riboswitch 43 32 9 6 2 2
RNase MRP 37 21 15 9 1 1
RNase P 40 31 6 5 2 2
rRNA 39 36 14 12 2 2
tRNA 58 60 23 21 5 8
snoRNA 39 12 43 10 8 3

A.4 Generating random structures

In order to generate random sequences with structure, we used the GenRGenS Software package (Ponty
et al., 2006). For each grammar, we generated a pool of random sequences of length 93. The procedure
for generating random sequences with structure are as follows: SCFGs were converted to their equivalent
Weighted Context-Free Grammar (WCFG) format for this purpose. We then filtered random sequences
to find the desired nucleotide composition sets. Standard deviation for each nucleotide in each cluster is
0.02. Standard deviation of nucleotide composition for ncRNA sequences in each cluster is roughly 0.05.
Converting SCFGs to their equivalent WCFG together with filtering of sequences causes the posterior prob-
abilities of grammar rules to be different their prior probabilities defined by their corresponding SCFG. In
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order to reduce the effects of such difference of probabilities and also have a more general understanding of
the behavior of each CFG design, we combined all random sequences generated by different parameter sets
of a given model. Having one single pool of random sequences for each grammar and for each cluster, we
calculated structural entropy of these sequences using the different parameter sets, of their corresponding
model, separately.

A.5 Short ncRNA Sequence Clustering

Cluster 1 (high GC content):
The nucleotide composition of sequences in this cluster are 0.192, 0.294, 0.328, 0.186 for A, C, G, and U,
respectively. Standard deviation for each nucleotide is roughly 0.05. The length of ncRNAs is between 88
and 98 nucleotides. Sequences in this cluster: miRNAs (43 sequences), tRNAs (4 sequences), riboswitch
(24 sequences: 9 Glycine, 1 Hammerhead, 2 preQ1-II, 1 Purine, 11 TPP), snoRNA (4 sequences) and rRNAs
(2 5SrRNA sequences).
Cluster 2 (low GC content):
The nucleotide composition of sequences in this cluster are 0.331, 0.169, 0.186, 0.315 for A, C, G, and U,
respectively. Standard deviation for each nucleotide is roughly 0.05. The length of ncRNAs is between 88
and 98 nucleotides. Sequences in this cluster: miRNAs (4 sequences), riboswitch (41 sequences: 4 preQ1-
II, 21 Purine, 6 rli52, and 10 TPP) and snoRNA (5 sequences).
Cluster 3 (medium GC content):
The nucleotide composition of sequences in this cluster are 0.246, 0.231, 0.278, 0.245 for A, C, G, and U,
respectively. Standard deviation for each nucleotide is roughly 0.05. The length of ncRNAs is between 88
and 98 nucleotides. Sequences in this cluster: miRNAs (16 sequences), tRNA (6 sequences), riboswitch (19
sequences: 9 Glycine, 8 SAH, and 2 TPP) and rRNA (1 5SrRNA sequence).
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A.6 Structural Entropy P-values of Short Non-coding RNAs Against Random Sequences with Struc-
ture

Table A.4: Structural Entropy p-Values of miRNA and Riboswitches with Different GC-comp. Under All
Models. Structural entropy p-values of riboswitch and miRNA sequences against random sequences with
structure under various folding models (See A.5 for details about clusters and sequences). Corresponding
values represent percentage of sequences having p-values higher than 0.95. Labels H, L, and A represent
high, low and average GC-compositions, respectively.

Grammar: RUN RUN RUN RUN RUN RUN RUN RUN RUN

Training: Mixed80 Mixed80 Mixed80 Benchmark Benchmark Benchmark Rfam5 Rfam5 Rfam5
GC-comp. H L A H L A H L A
miRNA 16 0 0 12 0 0 12 0 0
Riboswitch 58 51 11 58 51 11 63 78 21

Grammar: IVO IVO IVO IVO IVO IVO IVO IVO IVO

Training: Mixed80 Mixed80 Mixed80 Benchmark Benchmark Benchmark Rfam5 Rfam5 Rfam5
GC-comp. H L A H L A H L A
miRNA 33 0 75 49 0 63 47 0 63
Riboswitch 42 80 42 54 88 47 58 93 53

Grammar: BJK BJK BJK BJK BJK BJK BJK BJK BJK

Training: Mixed80 Mixed80 Mixed80 Benchmark Benchmark Benchmark Rfam5 Rfam5 Rfam5
GC-comp. H L A H L A H L A
miRNA 0 0 0 0 0 0 0 0 0
Riboswitch 50 10 0 50 15 0 71 29 0

Grammar: RND1 RND1 RND1 RND10 RND10 RND10

Training: None None None None None None
GC-comp. H L A H L A
miRNA 9 0 63 0 0 25
Riboswitch 21 76 26 17 51 5
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Figure A.1: Structural Entropy p-Values Under Inaccurate Modeling. Structural entropy p-values of short
ncRNA sequences against random sequences with structure under the IVO model (See A.5 for information
about clusters and sequences). Benchmark training set was used. Other training sets yield similar results
(See A.4).
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Figure A.2: P-Value Stability Test. Dinucleotide shuffling tests were performed for miRNAs (170 se-
quences) and tRNAs with lengths between 75 and 100 nucleotides (145 sequences). BJK grammar model
was used with trained parameters based on the mixed80 data set. Various numbers of random shuffles of 20,
50, 100, and 200 were used for p-value calculation of individual sequences. The test was then repeated for a
second time. The plot is the correlation between corresponding p-values obtained in the first and the second
test. Micro RNA average p-value is 0.070 ± 0.001 in all cases. tRNA average p-value is 0.155 ± 0.005 in
all cases.

A.7 P-value Stability Test for Dinucleotide Shuffling
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Figure A.3: Structural and Base-pairing Entropy p-Values under Single-nucleotide Randomization. Struc-
tural entropy (top row) and base-pairing entropy (bottom row) empirical p-values of all ncRNAs against
random sequences: Total of 447 long sequences (24 bacterial type B RNase P, 117 nuclear RNase P, and 306
bacterial type A RNase P) were excluded due to high computational complexity. GenRGenS (Ponty et al.,
2006) was used to generate random sequence ensembles for each individual sequence separately. Random
sequences were of the same length and single nucleotide distribution as the original sequence. Size of the
random ensemble is proportional to the original sequence length.

A.8 Structural Entropy Empirical P-values for single nucleotide composition and dinucleotide shuf-
fling tests
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Figure A.4: Structural and Base-pairing Entropy p-Values under Di-nucleotide Randomization. Structural
entropy (top row) and base-pairing entropy (bottom row) empirical p-values of all ncRNAs against random
shuffles: Total of 447 long sequences (24 bacterial type B RNase P, 117 nuclear RNase P, and 306 bacterial
type A RNase P) were excluded due to high computational complexity. (Altschul and Erickson, 1985) was
used to generate shuffled random sequence ensembles for each individual sequence, separately. Random
sequences were of the same length and dinucleotide distribution as the original sequence. Size of the random
ensemble is proportional to the original sequence length.

A.9 Structural Entropy and Total Base-pairing Entropy

A.9.1 Relationship between structural and total-pairing entropy

In the following, we show that in the case of structurally unambiguous grammars, total pairing entropy is
the upper bound of structural entropy. We know that for structurally unambiguous grammar spaces there is
a one-to-one relationship between all possible structures π on sequence y and pairing/non-pairing represen-
tations of all nucleotide so long as pairing/non-pairing representations are valid pseudoknot-free secondary
structure representations. If we assign the same probability to valid pairing/non-pairing representations as
their corresponding π and zero for non-valid ones, then the entropy of both sets of probabilities will be
equal:

H(Π|y) = H(IM |y)

Where IM = [I1,2 . . . Ii,j . . . Iny−1,ny ] is a random variable vector of the size M whose every element is
binary. Value M is the total number of unique pairs of nucleotides definable on sequence y, which is choose
2 from ny. |IM | = 2M .

The independence bound on entropy states that the total uncertainty about multiple random events is
always less than or equal to the sum of their individual uncertainties (Cover and Thomas, Theorem 2.6.6,
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Table A.5: Structural Entropy p-Values Average Under All Models. Average structural entropy p-values for
ncRNA families against dinucleotide shuffles (Di.) and single nucleotide composition random sequences
(Sing.) under BJK, RUN, and IVO model

Mixed80-trained BJK (Di.) RUN (Di.) IVO (Di.) BJK (Sing.) RUN (Sing.) IVO (Sing.)

miRNA 0.068 0.115 0.758 0.045 0.086 0.287
riboswitch 0.288 0.611 0.729 0.212 0.399 0.362
RNase 0.171 0.553 0.648 0.163 0.389 0.36
RNaseP 0.281 0.847 0.581 0.26 0.502 0.381
rRNAs 0.281 0.428 0.693 0.242 0.285 0.326
tRNA 0.174 0.558 0.891 0.122 0.353 0.403
snoRNA 0.525 0.671 0.783 0.449 0.357 0.285

Benchmark-trained BJK (Di.) RUN (Di.) IVO (Di.) BJK (Sing.) RUN (Sing.) IVO (Sing.)

miRNA 0.065 0.097 0.814 0.042 0.057 0.255
riboswitch 0.311 0.596 0.773 0.226 0.368 0.332
RNase 0.178 0.522 0.692 0.167 0.353 0.335
RNaseP 0.299 0.783 0.544 0.274 0.436 0.348
rRNAs 0.286 0.411 0.736 0.241 0.251 0.292
tRNA 0.187 0.525 0.914 0.127 0.293 0.352
snoRNA 0.528 0.616 0.839 0.439 0.297 0.259

Rfam5-trained BJK (Di.) RUN (Di.) IVO (Di.) BJK (Sing.) RUN (Sing.) IVO (Sing.)
miRNA 0.059 0.221 0.919 0.037 0.069 0.143
riboswitch 0.361 0.671 0.887 0.255 0.334 0.22
RNase 0.171 0.556 0.821 0.15 0.275 0.248
RNaseP 0.335 0.866 0.661 0.27 0.519 0.256
rRNAs 0.324 0.481 0.891 0.259 0.199 0.182
tRNA 0.216 0.588 0.977 0.13 0.209 0.19
snoRNA 0.496 0.753 0.968 0.354 0.305 0.16

Table A.6: Structural Entropy p-Values Average Under a Random Model. Average structural entropy p-
values for ncRNA families against dinucleotide shuffles (Di.) and single nucleotide composition random
sequences (Sing.) under RND10 Model

ncRNA Family RND10 (Di.) RND10 (Sing.)

miRNA 0.076 0.029
riboswitch 0.473 0.288
RNase 0.115 0.076
RNaseP 0.512 0.404
rRNAs 0.257 0.141
tRNA 0.209 0.091
snoRNA 0.476 0.24

pg. 30).

H(X1 . . . XN ) ≤
N∑
i=1

H(Xi)

Substituting for pairing uncertainties gives

H(Π|y) ≤ TP Entropy(y)

A.9.2 Random fold and random sequence fold

Random fold refers to uniformly distributed probability assignments to all possible folds given both a se-
quence and a folding model that can satisfy such a folding distribution (if they exist!). Let’s call the cor-
responding variables y∗, G∗, Θ∗, and Π(y∗). Maximum Entropy Theorem (Cover and Thomas, pg. 409)
states that the Shannon folding entropy of such a distribution is higher than any other folding distribution so
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Table A.7: Kolmogorov-Smirnov Distance of p-Values Under All Models. Kolmogorov-Smirnov test statis-
tic distance of dinucleotide-shuffled base-pairing (BP) and structural (SCFG) entropy p-values of RNA
families were calculated. Below is the sum of all pairwise distances for each folding model. RNA families
used: miRNA, riboswitch, RNase MRP, bacterial type B RNase P (64 sequences), rRNA, snoRNA, and
tRNA.

Parameter Set BJK(BP) RUN(BP) IVO(BP) BJK(SCFG) RUN(SCFG) IVO(SCFG)
Mixed80-trained 8.485828 9.990327 5.605391 8.370136 8.783326 5.580663
Benchmark-trained 8.621376 9.881117 5.631987 8.544915 8.294112 6.488109
Rfam5-trained 8.834326 9.218774 5.817303 8.711496 8.473245 8.293196

Table A.8: Kolmogorov-Smirnov Distance of p-Values Under a Random Model. Kolmogorov-Smirnov test
statistic distance of dinucleotide-shuffled base-pairing (BP) and structural (SCFG) entropy p-values of RNA
families were calculated. Below is the sum of all pairwise distances for each folding model. RNA families
used: miRNA, riboswitch, RNase MRP, bacterial type B RNase P (64 sequences), rRNA, snoRNA, and
tRNA. (Red.) refers to values obtained using the not-left-most-derivation-restricted inside and outside prob-
ability functions. (Left.) refers to values corresponding to left-most restricted inside and outside probability
functions (see A.1).

RND1(BP) RND10(BP) RND1(SCFG) RND10(SCFG) RND1(SCFG) RND10(SCFG)
Red. 5.085642 9.931111 5.637075 10.161575 Left. 5.40582 9.988141

long as the sizes of the possible folds are kept equal.

H(Π|y∗, G∗,Θ∗) ≥ H(Π|y,G,Θ) ∀y,G,Θ, where |Π(y)| = |Π(y∗)|

Since Π(y∗) is a uniformly distributed discrete random variable,

p(π|y∗) = 1

|Π(y∗)|
, ∀π ∈ Π(y∗)

The maximum entropy theorem also implies that the random sequence variable constructed of iid1 nu-
cleotides with uniform alphabet distribution will have higher entropy than any other sequences of the same
lengh and alphabet. Let’s call this random sequence space Y ∗∗.

H(Y ∗∗) ≥ H(Y ) ∀Y, where|Y | = |Y ∗∗|

Since Y ∗∗ is a uniformly distributed discrete variable,

p(y∗∗) =
1

|Y ∗∗|
, ∀y∗∗ ∈ Y ∗∗

However, the notion of random sequence fold, used in this paper, refers to the folding distribution of the ran-
dom sequence. The maximum entropy theorem does not guarantee maximum folding entropy for the random
sequence under an arbitrary model H(Π|Y ∗∗, G, θ) or even under the model (G∗,Θ∗), H(Π|Y ∗∗, G∗, θ∗)
nor does it guarantee maximum folding entropy for a typical2 instance of the random sequence y∗∗ under

1iid is the shorthand for independent and identically distributed random variables
2The typical set is a set of sequences whose probability is close to one (Cover and Thomas, pg. 62).
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Figure A.5: Structural Entropy p-Value vs. Length. Average structural entropy p-values of ncRNA se-
quences are plotted with respect to their length. RUN (benchmark) model was used. P-values were obtained
by performing dinucleotide-preserved shuffling test.

the folding model (G∗,Θ∗), H(Π|y∗∗, G∗,Θ∗). The next section contains an example which shows that
less conserved primary structure does not necessarily lead to less conserved secondary structure.

Entropy of a mapped random variable

The probability assignment that maximizes the entropy of a random variable does not necessarily maximize
the entropy of all probabilistic functions defined over it:

∃f(.), X1, X2 : H(f(X1)) < H(f(X2))
where H(X1) > H(X2)

(A.2)

Consider the following scenario:
Let X1 and X2 be two distinct probability assignments for the binary random variable {0, 1}.

pX1(0) = 1/2 pX1(1) = 1/2

pX2(0) = 3/5 pX2(1) = 2/5
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Figure A.6: Structural Entropy p-Value vs. UA-comp. Structural entropy p-values of miRNA and 34
bacterial type B RNase P sequences are plotted with respect to their UA-dinucleotide composition. RUN
(benchmark) grammar was used as folding space model. P-values empirically calculated from dinucleotide
shuffling test.
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Figure A.7: Structural Entropy p-Value of RNase P vs. Model Sensitivity. Structural entropy p-values
of Bacterial type B RNase P sequences against folding model sensitivity to their secondary structure. Di-
nucleotide shuffling was used to calculate p-values. 2-order polynomial trendline of p-values are shown for
each grammar model.
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Figure A.8: Structural Entropy p-Value of Low-GC Riboswitches vs. Model Sensitivity. Structural entropy
p-values of low-GC composition riboswitch sequences of length 93± 5 against folding model sensitivity to
their secondary structure. Riboswitch sequences belong to cluster 2 (See A.5 for details about sequences
and clusters.). P-values calculated empirically by comparing with random sequences with structure (See A.4
for details about generating random structures for each model). 2-order polynomial trendline of p-values are
shown for each grammar model.
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Figure A.9: Structural Entropy p-Value of Low-GC Riboswitches vs. Model Specificity. Structural entropy
p-values of low-GC composition riboswitch sequences of length 93 ± 5 against folding model specificity
to their secondary structure. Riboswitch sequences belong to cluster 2 (See A.5 for details about sequences
and clusters.). P-values calculated empirically by comparing with random sequences with structure (See A.4
for details about generating random structures for each model). 2-order polynomial trendline of p-values are
shown for each grammar model.
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Figure A.10: Structural Entropy p-Value of Ave.-GC Riboswitches vs. Model Sensitivity. Structural entropy
p-values of average-GC composition riboswitch sequences of length 93±5 against folding model sensitivity
to their secondary structure. Riboswitch sequences belong to cluster 3 (See A.5 for details about sequences
and clusters.). P-values calculated empirically by comparing with random sequences with structure (See A.4
for details about generating random structures for each model). 2-order polynomial trendline of p-values are
shown for each grammar model.
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Figure A.11: Structural Entropy p-Value of Ave.-GC Riboswitches vs. Model Specificity. Structural entropy
p-values of average-GC composition riboswitch sequences of length 93±5 against folding model specificity
to their secondary structure. Riboswitch sequences belong to cluster 3 (See A.5 for details about sequences
and clusters.). P-values calculated empirically by comparing with random sequences with structure (See A.4
for details about generating random structures for each model). 2-order polynomial trendline of p-values are
shown for each grammar model.
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Table A.9: Structural Entropy p-Value Correlation. Correlation of structural entropy p-values and dinu-
cleotide composition for miRNA and 34 bacterial type B RNAse P sequences. RUN (benchmark) was used
as folding model. P-values were obtained from dinucleotide shuffling test

AA CA GA UA
miRNA -0.28 -0.35 0.12 -0.36
RNase P (bact. Type B) 0.39 0 -0.14 0.53

AC CC GC UC
miRNA -0.22 0.21 0.14 0.33
RNase P (bact. Type B) 0.4 -0.49 -0.41 -0.45

AG CG GG UG
miRNA -0.01 0.22 0.44 -0.23
RNase P (bact. Type B) 0.22 -0.4 -0.33 -0.31

AU CU GU UU
miRNA -0.33 0.29 -0.18 -0.07
RNase P (bact. Type B) 0.21 -0.24 0.3 0.41

And let the following probabilistic binary function f(.) ∈ {0, 1} definable over the binary random variable
have the following assignment:

p(f(.)) :

{
p(f(0) = 0) = 2/3, p(f(0) = 1) = 1/3
p(f(1) = 0) = 1/4, p(f(1) = 1) = 3/4

}
Entropy values for X1 and X2 are

H(X1) = −(1/2) log(1/2)− (1/2) log(1/2) = 1
H(X2) = −(3/5) log(3/5)− (2/5) log(2/5) = 0.971

While Entropy values for f(X1) and f(X2) random variables are,

H(f(X1)) = −((1/2)(2/3) + (1/2)(1/4)) log ((1/2)(2/3) + (1/2)(1/4))
−((1/2)(1/3) + (1/2)(3/4)) log ((1/2)(1/3) + (1/2)(3/4)) = 0.995

H(f(X2)) = −((3/5)(2/3) + (2/5)(1/4)) log ((3/5)(2/3) + (2/5)(1/4))
−((3/5)(1/3) + (2/5)(3/4)) log ((3/5)(1/3) + (2/5)(3/4)) = 1

Hence, function f(.), X1, and X2 satisfy A.2.
In fact, the above argument can be generalized to the following binary streams:
Let XL

1 and XL
2 be binary stream random variables of length L consisting of iid variables X1 and X2,

respectively. Also, let F (.) be a binary stream random variable consisting of iid transition probabilities f(.)
such that:

p(F (xL)) =

L∏
i=1

p(f(xi))

The corresponding entropy values for the above random variables are:

H(XL
1 ) = L

H(XL
2 ) = 0.971L

H(F (XL
1 )) = 0.995L

H(F (XL
2 )) = L
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The above scenario of binary streams (xL1 and xL2 ) and their mapping functions F (xL) can be easily ex-
tended to RNA sequences and folding spaces, without loss of generality (i.e., F (xL) is not a valid folding
model and used here only as an example). Hence, we have found at least one model under which a typical
sequence xL2 is slightly more conserved than xL1 while its folding space is more diverse.

A.9.3 An Example of a High Structural Entropy P-value of a Hypothetical Micro RNA
Sequence Against the Di-nucleotide Shuffling Test under a Single Stem-Loop SCFG
Model

Consider the following 31-nucleotide long hypothetical micro RNA sequence with a single hairpin loop:
GGGGGGGGGGGCGCGCGCGCGCCCCCCCCCC
((((((((((...........))))))))))

The following SCFG has arbitrary assigned rule probabilities and attempts to capture the structural fea-
tures of the hypothetical miRNA enforcing a single stem-loop structure:

S → aXb (1) X → aXb (0.5)|aL (0.5) L → aL (0.9)|a (0.1)

Where non-terminal S is the starting non-terminal, non-terminal X is the stem generation nonterminal, and
non-terminal L denotes the generation of the loop.
We also assign 0.5 base-pairing probabilities to G-C and C-G and zero to other pairings. Also, loop
generation probabilities are equally divided amongst all four nucleotides.
The Structural Entropy of the hypothetical miRNA is 0.631783 while all 100 di-nucleotide shuffled
sequences have lower folding entropy. The following are various scenarios of di-nucleotide shuffled
sequences and their corresponding CYK-based predicted structure and folding entropy:
GGGGGGGGGCCGCGCGGCCCCGCCCCCCGGC
(.............................); 0
GGGCCCCCCGGGCCGGGGGGGCGCCCGCGCC
((...........................)); 0.453339
GGGGGCGGCGGCCGCGCCCCCCCGGGGGCCC
(((.........................))); 0.58333
GCCCCCCCCCGCCGCGGGGGGCGGGGCGGGC
((((.......................)))); 0.619343
GCCCCCCGCGGCGCCCCGGGCCGGGGGGGGC
(((((((.................))))))); 0.631615
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Appendix B

Riboswitch Classification

B.1 Data and Classification Results

Table B.1: Genomic locations of collected sequences. Column ID corresponds riboswitches in Table 3.1.

ID Accession start end strand Length
ID01 U00096.3 3442440 3442547 - 108
ID02 NC_000964.3 486099 486230 + 132
ID03 AE017180.2 2773395 2773492 + 98
ID04 CP000860.1 1860063 1860186 - 124
ID05 U00096.3 4163564 4163632 + 69
ID06 BA000040.2 5279368 5279482 - 115
ID07 AE006468.1 2113803 2113897 - 95
ID08 CP000075.1 1675079 1675157 - 79
ID09 CP000702.1 1794825 1794895 + 71
ID10 AE017194.1 4815592 4815665 + 74
ID11 AE009951.2 2496 2668 + 173
ID12 U00096.3 3184455 3184718 - 264
ID13 NC_000964.3 2431380 2431615 - 236
ID14 AE009951.2 963901 963988 - 89
ID15 NC_000964.3 2549381 2549501 - 121
ID16 AE000512.1 1519015 1519250 - 236
ID17 NC_000964.3 2910878 2911045 - 170
ID18 CP001363.1 4712312 4712483 + 172
ID19 U00096.3 4467416 4467525 + 110
ID20 NC_000964.3 1395622 1395825 + 204
ID21 U00096.3 816923 817041 + 119
ID22 U00096.3 3238486 3238569 + 84
ID23 CP003959.1 4635235 4635309 + 75
ID24 AE007317.1 904178 904257 + 80
ID25 NC_000964.3 1439279 1439338 + 60
ID26 AE016796.2 504379 504491 + 113
ID27 NC_000964.3 626329 626426 - 98
ID28 NC_000964.3 2320055 2320196 - 142
ID29 U55047.1 3107 3215 + 109
ID30 U00096.3 3867416 3867488 - 73
ID31 BA000012.4 1943727 1943820 - 94
ID32 AY316747.1 197909 198004 + 96
ID33 AP012279.1 5017601 5017677 - 135
ID34 AL646052.1 1348529 1348625 + 97
ID35 AE008691.1 1750249 1750372 - 124
ID36 NC_000964.3 1180646 1180802 - 157
ID37 AE007869.2 2703460 2703559 + 100
ID38 CP000725.1 1038292 1038371 + 80
ID39 CP003726.1 618415 618496 + 82
ID40 NC_003888.3 2308634 2308770 - 137
ID41 AE000516.2 3723565 3723713 + 149
ID42 AAYC01000001.1 142052 142099 + 48
ID43 ABID01000011.1 17036 17084 - 49
ID44 CP000084.1 1005827 1005879 + 53
ID45 CP000084.1 1127359 1127423 - 65
ID46 FP929059.1 95139 95281 - 144
ID47 NC_009706.1 3903929 3904072 + 144
ID48 U00096.3 2185279 2185426 - 148
ID49 NC_000964.3 1242265 1242422 + 158
ID50 U00096.3 1322975 1323055 - 81
ID51 NC_000964.3 2377419 2377559 - 141
ID52 CP000148.1 1157816 1157926 - 111
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Figure B.1: Classification ROC Curve. ROC curves of 104-fold binomial simple logistic classifiers on all
the 52 riboswitch sequences and their antisense sequences. classifier features shown in legend. Weka c⃝open
source software package used to assess probability distributions.
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Figure B.2: Sense-antisense Differential Entropy of Shorter Riboswitches. Sense-Antisense differen-
tial entropy (∆Entropy% = 100 × (Entropysense − Entropyantisense)/Entropyantisense) of se-
quences in the training and test sets with lengths less than 125nt have been shown against the mini-
mum free energy difference between the sense and the antisense (∆MFE% = 100 × (MFEsense −
MFEantisense)/abs(MFEantisense)) under the RND model. Blue represents the training set while red
represents the test set. Trendlines are shown as dashed lines. GC-composition average and standard devia-
tions for the training and test sets are 0.51± 0.10 and 0.49± 0.09, respectively.
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Figure B.3: Sense-antisense Differential Entropy of Longer Riboswitches. Sense-Antisense differential
entropy (∆Entropy% = 100 × (Entropysense − Entropyantisense)/Entropyantisense) of sequences
in the training and test sets with lengths between 125nt and 175nt have been shown against the mini-
mum free energy difference between the sense and the antisense (∆MFE% = 100 × (MFEsense −
MFEantisense)/abs(MFEantisense)) under the BJK model. Blue represents the training set while red rep-
resents the test set. Trendlines are shown as dashed lines. GC-composition average and standard deviations
for the training and test sets are 0.55± 0.11 and 0.49± 0.10, respectively.
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Table B.2: Classification Performance Using Cross Validation. 104-fold binomial logistic classifiers on all of
the 52 riboswitch sequences and their antisense sequences. classifier features shown in legend. Weka c⃝open
source software package used. Features L,MFE,GC,GU,GCU and U denote length, MFE, GC-composition,
and Uracil frequency, respectively. Features RND and BJK denote structural entropy of the RND and BJK
models, respectively. as defined in (Huynen et al., 1997). Feature BJKbp denotes base-pairing entropy as
defined in (Huynen et al., 1997). Feature Sil denotes the two-cluster average Silhouette index of energy
landscape as calculated in (Quarta et al., 2012).

Classifier TP Rate FP Rate MCC R.O.C. Area
{L,GC,GU,Sil} 0.750 0.250 0.500 0.826
{L,GC,GU} 0.673 0.327 0.346 0.700
{L,GC,GU,BJK} 0.644 0.356 0.289 0.691
{L,GC,GU,BJKbp} 0.654 0.346 0.309 0.690
{L,GC,GU,RND} 0.654 0.346 0.308 0.689
{L,MFE,GC,GU,RND} 0.673 0.327 0.346 0.714
{L,MFE,GC,GU} 0.654 0.346 0.308 0.707
{L,MFE,GC,GU,BJK} 0.663 0.337 0.327 0.703
{L,MFE,GC,GU,BJKbp} 0.663 0.337 0.327 0.701
{L,MFE,GC,GU,Sil} 0.625 0.375 0.250 0.697
{L,MFE,GU} 0.663 0.337 0.327 0.710
{L,MFE,GU,RND} 0.663 0.337 0.327 0.702
{L,MFE,GU,BJKbp} 0.663 0.337 0.32 0.701
{L,MFE,GU,Sil} 0.654 0.346 0.308 0.701
{L,MFE,GU,BJK} 0.644 0.356 0.289 0.699
{L,MFE,GC,RND} 0.663 0.337 0.327 0.708
{L,MFE,GC,BJK} 0.663 0.337 0.327 0.703
{L,MFE,GC,BJKbp} 0.635 0.365 0.269 0.683
{L,MFE,GC} 0.606 0.394 0.212 0.650
{L,MFE,GC,Sil} 0.635 0.365 0.270 0.644
{L,MFE,GCU,RND} 0.644 0.356 0.289 0.693
{L,MFE,GCU,BJK} 0.625 0.375 0.250 0.617
{L,MFE,GCU,BJKbp} 0.596 0.404 0.193 0.595
{L,MFE,GCU} 0.587 0.413 0.174 0.581
{L,MFE,GCU,Sil} 0.548 0.452 0.097 0.554

B.2 Bacillus subtilis Classification Results

B.3 Bacillus subtilis Genome-wide Scan Results
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Figure B.4: Structural Entropy vs. Uracil-comp. in B. subtilis. Entropy Distribution of the 157 nt window-
scan results. 28340 candidate segments of B. subtilis against Uracil composition. Blue denotes all segments.
Red denotes those with classification probabilities under the LMFEGCRND are higher than 0.8. Green
denotes the eleven bonafide riboswitches of the test set that are in B. subtilis.
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Table B.3: Short UTR Collection. 30 randomly chosen untranslated regions of lengths less than 80 nt
corresponding to the σ-70 transcription factor binding sites in Escherichia coli str. K-12 substr. MG1655
(GenBank c⃝ID: U00096.2). Column Start denotes start of the binding site. End denotes the downstream
start codon. Gene denotes the name of the first gene in the corresponding mRNA. Length denotes the
length of the UTR.

Start End Strand Gene Length
42325 42403 + fixA 79
246641 246712 + yafL 72
570070 570116 + ybcL 47
848134 848173 - dps 40
879876 879950 + dacC 75
989579 989637 - pncB 59

1108480 1108558 + mdoG 79
1331812 1331879 + cysB 68
1397550 1397576 - fnr 27
1570069 1570096 - gadB 28
1732381 1732459 + mepH 79
1927731 1927756 - yebE 26
2039370 2039399 + zinT 30
2268700 2268748 + rtn 49
2380676 2380735 + elaD 60
2541550 2541579 - cysP 30
2823813 2823854 + srlA 42
2982146 2982216 - kduI 71
3134393 3134425 - pitB 33
3276888 3276936 + kbaZ 49
3467875 3467918 - chiA 44
3651959 3651984 + slp 26
3735493 3735520 + malS 28
3845190 3845221 - uhpT 32
3909548 3909591 - pstS 44
4028994 4029036 - fadB 43
4213425 4213501 + aceB 77
4244442 4244487 - malE 46
4358054 4358129 - cadB 76
4492620 4492646 + indK 27

Table B.4: Riboswitch Statistics. Average and standard deviation values of Length, MFE, and GC-
compositions of the training and test sets. Column Sense denotes riboswitches. Column UTR denotes
E. coli UTR sequences collected.

Total L MFE GC std(L) std(MFE) std(GC)
Sense 117.04 -42.63 0.51 47.81 21.54 0.09

antisense 117.04 -37.73 0.51 47.81 19.55 0.09
UTR 49.53 -6.48 0.37 19.37 5.77 0.08

Train L MFE GC std(L) std(MFE) std(GC)
Sense 114.1 -41.05 0.52 49.27 23.83 0.1

antisense 114.1 -37.73 0.52 49.27 21.32 0.1
UTR 48.18 -5.4 0.35 18.27 5.1 0.08

Test L MFE GC std(L) std(MFE) std(GC)
Sense 120.74 -44.63 0.49 46.71 18.6 0.09

antisense 120.74 -37.74 0.49 46.71 17.54 0.09
UTR 51.31 -7.9 0.39 21.35 6.47 0.08
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Table B.5: Classification Performance for Different Choices of Length. Sub-section Variable Length
refers to results of actual sequence lenghts for both training and test sets (equal number of varying sequence
lengths of 100, 150, and 200 from E. coli UTR chosen as negative set). Sub-sections 100, 150, and
200 refers to results where all sequences in the training and test sets have a constant length. Column
Features denotes features used from the training set. TP% denotes percentage of true positives. FP1%
and FP2% represent the percentages of antisense sequences and E. coli UTRs that are misclassified as
riboswitches, respectively. Sensitivity denotes overall percentage of correctly classified sequences. Sig.
denotes significant (less than 0.05 in the training set) features of the multinomial classifier.

Variable Length
Features TP% FP1% FP2% Sensitivity Sig.
L,MFE,GC,RND 69.6 39.1 7.7 61 MFE,GC
L,MFE,GC,BJK 87.0 34.8 0.0 71.2 GC
L,MFE,GC 87.0 30.4 0.0 76.3 L,MFE

100
Features TP% FP1% FP2% Sensitivity Sig.
MFE,GC,RND 69.6 26.1 7.7 66.1 -
MFE,GC,BJK 65.2 21.7 7.7 64.4 -
MFE,GC 56.5 21.7 15.4 64.4 -

150
Features TP% FP1% FP2% Sensitivity Sig.
MFE,GC,RND 69.6 26.1 23.1 57.6 MFE,RND
MFE,GC,BJK 69.6 39.1 7.7 59.3 MFE
MFE,GC 69.6 39.1 0.0 64.4 -

200
Features TP% FP1% FP2% Sensitivity Sig.
MFE,GC,RND 65.2 34.8 7.7 62.7 MFE
MFE,GC,BJK 78.3 34.8 7.7 66.1 MFE
MFE,GC 82.6 39.1 0.0 76.3 MFE
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Table B.6: Classification Performance for Different Choices of Length in B. subtilis. Classifier Performance
on the eleven B. subtilis riboswitches. Constant length of 100 nt, 150 nt, 157 nt, and 200 nt used for test.
TP% denotes percentage of true positives. FP2% represent the overall percentage of sequences that are
classified as riboswitches within the B. subtilis genome. 50 nt, 75 nt, and 100 nt overlaps were used for for
sliding windows of lengths 100 nt, 150 nt, and 200 nt, respectively. No overlaps were used for the 157 nt
window. True Positive sequences were according to maximum overlap with the location of the actual length
of riboswitches.

100nt window TP% FP2%

LMFEGCRND 63.6 29.8
LMFEGCBJK 27.3 15.4
LMFEGC 18.2 9.0

150nt window TP% FP2%

LMFEGCRND 72.7 20.5
LMFEGCBJK 63.6 9.6
LMFEGC 45.5 3.2

157nt window TP% FP2%

LMFEGCRND 81.8 19.5
LMFEGCBJK 54.5 8.3
LMFEGC 63.6 2.1

200nt window TP% FP2%

LMFEGCRND 72.7 14.2
LMFEGCBJK 45.5 6.7
LMFEGC 18.2 1.3
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Table B.7: Top Classification Hits in B. subtilis. Top 50 hits of the forward and reverse strands of the
B. subtilis intergenic regions using no-overlap 157 nt window and under the LMFEGCRND model. The
ranking of each hit is denoted in column R. Distance from upstream and downstream operons are the distance
from the center of the hit to the stop and start codons of upstream and downstream operons, respectively.
Probability denotes the multinomial regression likelihood of being a riboswitch under the LMFEGCRND
model.

R Start End Strand Upstream Operon Upstream
Gene

Dist. to Up-
stream

Uracil Dist. to
Down-
stream

Downstream
Gene

Downstream
Operon

Probability

1 3717569 3717725 reverse BSU36100 ywrD -1486 0.4076 550 cotH BSU36060 0.943
2 3717412 3717568 reverse BSU36100 ywrD -1643 0.4076 393 cotH BSU36060 0.935
3 4134175 4134331 reverse BSU40230 yydA -182 0.3439 79 yydB BSU40220 0.931
4 3714883 3715039 forward BSU36030 ywrK -859 0.3949 2277 cotG BSU36070 0.922
5 748990 749146 forward BSU06780 yeeC -2912 0.414 707 yeeG BSU06820 0.919
6 3666640 3666796 reverse BSU35680 ggaB -490 0.4968 1335 mnaA BSU35660 0.908
7 3866327 3866483 reverse BSU37690 ywfG -1881 0.3503 79 eutD BSU37660 0.903
8 681153 681309 forward BSU06260 ydjN -201 0.3885 5731 yeaB BSU06320 0.899
9 2987548 2987704 reverse BSU29200 accA -104 0.4268 79 pfkA BSU29190 0.898
10 1680274 1680430 forward BSU16080 ylqH 63 0.3822 79 sucC BSU16090 0.897
11 2730227 2730383 reverse BSU26730 yrdF -254 0.4204 79 azlB BSU26720 0.896
12 2316268 2316424 reverse BSU22040 ypbQ -99 0.363 236 ypbR BSU22030 0.896
13 2219985 2220141 forward BSU20929 yoyI -6828 0.4204 2277 yonP BSU21030 0.896
14 688027 688183 forward BSU06320 yeaB -114 0.3885 79 yeaC BSU06330 0.893
15 243578 243734 forward BSU02170 ybfB -5370 0.363 236 purT BSU02230 0.89
16 984466 984622 reverse BSU09120 yhcK -1189 0.3885 79 cspB BSU09100 0.889
17 2376780 2376936 forward BSU22510 ypjC -15199 0.4395 16564 ypzI BSU22869 0.888
18 748205 748361 forward BSU06780 yeeC -2127 0.4395 1492 yeeG BSU06820 0.886
19 3421066 3421222 reverse BSU33340 sspJ -320 0.3312 79 lysP BSU33330 0.885
20 2093235 2093391 forward BSU19200 desR -852 0.4331 4789 yoyB BSU19259 0.88
21 3941212 3941368 reverse BSU38430 gspA -3269 0.4777 1649 ywbA BSU38390 0.879
22 1493630 1493786 forward BSU14230 ykuV -230 0.3503 79 rok BSU14240 0.879
23 2531945 2532101 forward BSU24210 yqiG -14308 0.3439 9028 yqhQ BSU24490 0.879
24 746478 746634 forward BSU06780 yeeC -400 0.5095 3219 yeeG BSU06820 0.878
25 2096100 2096256 reverse BSU19230 yocJ -171 0.4268 393 yocI BSU19220 0.877
26 300673 300829 forward BSU02770 yccK -1196 0.3822 79 ycdB BSU02790 0.875
27 3373963 3374119 reverse BSU32890 yusQ -2575 0.4076 393 fadM BSU32850 0.874
28 3686143 3686299 forward BSU35770 tagC -1298 0.4586 2591 gerBA BSU35800 0.87
29 1335487 1335643 reverse BSU12820 spoIISB -12876 0.5032 13895 xre BSU12510 0.868
30 4139318 4139474 forward BSU40240 yycS -3475 0.3567 864 rapG BSU40300 0.865
31 1268672 1268828 forward BSU11970 yjcS -1 0.4458 79 yjdA BSU11980 0.865
32 3685829 3685985 forward BSU35770 tagC -984 0.414 2905 gerBA BSU35800 0.865
33 3681213 3681369 forward BSU35670 gtaB -14627 0.363 79 tagA BSU35750 0.864
34 1122705 1122861 forward BSU10490 sipV 55 0.4013 79 yhjG BSU10500 0.86
35 3671690 3671846 reverse BSU35700 tagH -1795 0.3694 393 ggaA BSU35690 0.859
36 2160701 2160857 forward BSU20000 yosU -1938 0.4395 9028 yosA BSU20190 0.859
37 1097850 1098006 reverse BSU10230 yhfH -191 0.465 79 gltT BSU10220 0.858
38 1467020 1467176 forward BSU13960 ykwC -342 0.414 707 pbpH BSU13980 0.857
39 191850 192006 forward BSU01590 ybaS -12186 0.3057 2277 trnSL-Glu2 BSU_tRNA_75 0.856
40 20723 20879 forward BSU00120 yaaE -86 0.3185 79 serS BSU00130 0.856
41 2691445 2691601 reverse BSU26240 yqaO -1121 0.3439 79 yqaQ BSU26220 0.852
42 3158851 3159007 reverse BSU30890 ytxO -328 0.363 3376 ytdA BSU30850 0.852
43 1958206 1958362 forward BSU18190 yngC -9863 0.3949 44353 iseA BSU18380 0.852
44 557716 557872 forward BSU05100 yddT -188 0.3503 79 ydzN BSU05109 0.851
45 3907629 3907785 reverse BSU38100 ywcH -2594 0.3567 393 ywcI BSU38080 0.851
46 1926523 1926679 forward BSU17950 yneJ -1482 0.3949 79 citB BSU18000 0.851
47 1017271 1017427 forward BSU09400 spoVR -139 0.363 1649 lytE BSU09420 0.85
48 1493595 1493751 reverse BSU14250 yknT -729 0.4522 1649 ykuT BSU14210 0.85
49 2477743 2477899 forward BSU23830 yqjL 66 0.4076 1335 zwf BSU23850 0.849
50 2769617 2769773 reverse BSU27160 cypB -4194 0.3185 1021 yrhP BSU27100 0.849
51 2739991 2740147 reverse BSU26830 yrpE -1287 0.3694 3533 aadK BSU26790 0.849
52 644384 644540 forward BSU05940 gcp -7 0.3694 2120 moaC BSU05960 0.848
53 4039599 4039755 forward BSU39100 yxiO -23552 0.4713 1806 hutP BSU39340 0.847
54 2203622 2203778 forward BSU20580 yoqM -7279 0.363 79 yopS BSU20780 0.847
55 3014345 3014501 reverse BSU29460 moaB -90 0.3694 79 argG BSU29450 0.847
56 749147 749303 forward BSU06780 yeeC -3069 0.363 550 yeeG BSU06820 0.846
57 665425 665581 forward BSU06130 ydjC -677 0.3439 1963 gutB BSU06150 0.846
58 2106272 2106428 reverse BSU19360 odhB -1154 0.3949 79 yocR BSU19340 0.846
59 226409 226565 forward BSU02050 ybdO -82 0.3885 79 ybxG BSU02060 0.844
60 2106333 2106489 forward BSU19330 sodF -1353 0.3885 79 yocS BSU19350 0.844
61 308175 308331 forward BSU02840 ycdG 48 0.3503 79 adcA BSU02850 0.843
62 2678925 2679081 forward BSU26050 yqdB -427 0.363 12639 yqaP BSU26230 0.843
63 3875571 3875727 reverse BSU37760 rocC -130 0.3121 79 ywfA BSU37750 0.843
64 2433680 2433836 reverse BSU23340 ypuB -384 0.3885 236 ypzJ BSU23328 0.843
65 2879134 2879290 reverse BSU28190 engB -669 0.4013 79 hemA BSU28170 0.842
66 1533806 1533962 forward BSU14610 pdhD -445 0.3503 236 ykzW BSU14629 0.841
67 368137 368293 forward BSU03360 yciC -802 0.3312 1021 yckC BSU03390 0.841
68 447000 447156 forward BSU03930 gdh -792 0.3121 2120 ycnL BSU03970 0.84
69 3726630 3726786 forward BSU36160 ywqM -2216 0.4331 7144 ywqB BSU36270 0.84
70 543132 543288 reverse BSU05000 yddK -2955 0.4904 11697 immR BSU04820 0.84
71 3268320 3268476 forward BSU31810 yuzE -4017 0.4522 8557 yukF BSU31920 0.84
72 2065804 2065960 forward BSU18960 yozM -348 0.3758 8557 yobN BSU19020 0.839
73 45296 45452 reverse BSU01550 gerD -113140 0.3822 236 abrB BSU00370 0.837
74 2048779 2048935 reverse BSU18810 yobA -1092 0.363 550 yoaZ BSU18790 0.836

125



75 3153718 3153874 reverse BSU30850 ytdA -938 0.3439 79 menF BSU30830 0.836
76 3388260 3388416 reverse BSU33040 fumC -685 0.3312 393 yuzO BSU33029 0.834
77 205252 205408 forward BSU01820 adaB -283 0.3248 79 ndhF BSU01830 0.834
78 469269 469425 forward BSU04160 mtlR 24 0.3121 79 ydaB BSU04170 0.834
79 1868460 1868616 forward BSU17360 ymzA -7 0.3885 79 nrdI BSU17370 0.834
80 3746069 3746225 forward BSU36380 rapD -577 0.3822 2905 ywoH BSU36440 0.833
81 3467327 3467483 reverse BSU33800 opuCD -140 0.3376 79 sdpR BSU33790 0.832
82 1264932 1265088 reverse BSU11990 yjdB -4722 0.5223 79 yjcM BSU11910 0.832
83 1903262 1903418 reverse BSU17690 yncM -170 0.3822 1963 cotU BSU17670 0.831
84 4204441 4204597 reverse BSU40960 parB -1036 0.414 79 yyaD BSU40940 0.831
85 1017114 1017270 forward BSU09400 spoVR 18 0.3376 1806 lytE BSU09420 0.831
86 2709577 2709733 reverse BSU26490 yrkJ -346 0.3503 236 yrkK BSU26480 0.829
87 955738 955894 forward BSU08780 ygaJ -74 0.3822 79 thiC BSU08790 0.828
88 554386 554542 reverse BSU05130 ydeB -5686 0.4395 1963 lrpB BSU05060 0.828
89 3988764 3988920 reverse BSU38860 galE -1105 0.293 79 yxkD BSU38840 0.825
90 2186812 2186968 reverse BSU20420 yorD -94 0.2611 79 yorE BSU20410 0.825
91 2926840 2926996 reverse BSU28630 pheT -89 0.3185 1021 yshA BSU28610 0.823
92 2054401 2054557 reverse BSU18840 xynA -119 0.3822 550 pps BSU18830 0.822
93 610963 611119 reverse BSU05660 ydgI -1149 0.3121 2277 dinB BSU05630 0.822
94 3457144 3457300 reverse BSU33700 opuBD -2583 0.3185 707 yvzC BSU33650 0.821
95 736435 736591 reverse BSU06740 yefB -2481 0.3376 3690 yerO BSU06700 0.82
96 2061478 2061634 reverse BSU18930 yobH -1953 0.3439 864 yozJ BSU18900 0.82
97 2262616 2262772 reverse BSU21440 bdbB -2530 0.3885 15151 youB BSU21329 0.819
98 4118717 4118873 reverse BSU40110 bglA -2370 0.3758 5574 glxK BSU40040 0.818
99 4204755 4204911 reverse BSU40960 parB -722 0.3949 393 yyaD BSU40940 0.818
100 3648264 3648420 reverse BSU35530 tagO -311 0.363 1806 degS BSU35500 0.818
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Table B.8: Top Classification Hits in B. subtilis Uracil-comp. Constrained. Top 50 hits of the forward
and reverse strands of the B. subtilis intergenic regions using no-overlap 157 nt window and under the
LMFEGCRND model. Uracil composition constrained to that of the range of known riboswitches in B.
subtilis (between 0.2484 and 0.40127). The ranking of each hit is denoted in column R. Distance from
upstream and downstream operons are the distance from the center of the hit to the stop and start codons of
upstream and downstream operons, respectively. Probability denotes the multinomial regression likelihood
of being a riboswitch under the LMFEGCRND model.

R Start End Strand Upstream Operon Upstream
Gene

Dist. to Up-
stream

Uracil Dist. to
Down-
stream

Downstream
Gene

Downstream
Operon

Probability

1 4134175 4134331 reverse BSU40230 yydA -182 0.3439 79 yydB BSU40220 0.931
2 3714883 3715039 forward BSU36030 ywrK -859 0.3949 2277 cotG BSU36070 0.922
3 3866327 3866483 reverse BSU37690 ywfG -1881 0.3503 79 eutD BSU37660 0.903
4 681153 681309 forward BSU06260 ydjN -201 0.3885 5731 yeaB BSU06320 0.899
5 1680274 1680430 forward BSU16080 ylqH 63 0.3822 79 sucC BSU16090 0.897
6 2316268 2316424 reverse BSU22040 ypbQ -99 0.363 236 ypbR BSU22030 0.896
7 688027 688183 forward BSU06320 yeaB -114 0.3885 79 yeaC BSU06330 0.893
8 243578 243734 forward BSU02170 ybfB -5370 0.363 236 purT BSU02230 0.89
9 984466 984622 reverse BSU09120 yhcK -1189 0.3885 79 cspB BSU09100 0.889
10 3421066 3421222 reverse BSU33340 sspJ -320 0.3312 79 lysP BSU33330 0.885
11 1493630 1493786 forward BSU14230 ykuV -230 0.3503 79 rok BSU14240 0.879
12 2531945 2532101 forward BSU24210 yqiG -14308 0.3439 9028 yqhQ BSU24490 0.879
13 300673 300829 forward BSU02770 yccK -1196 0.3822 79 ycdB BSU02790 0.875
14 4139318 4139474 forward BSU40240 yycS -3475 0.3567 864 rapG BSU40300 0.865
15 3681213 3681369 forward BSU35670 gtaB -14627 0.363 79 tagA BSU35750 0.864
16 3671690 3671846 reverse BSU35700 tagH -1795 0.3694 393 ggaA BSU35690 0.859
17 191850 192006 forward BSU01590 ybaS -12186 0.3057 2277 trnSL-Glu2 BSU_tRNA_75 0.856
18 20723 20879 forward BSU00120 yaaE -86 0.3185 79 serS BSU00130 0.856
19 2691445 2691601 reverse BSU26240 yqaO -1121 0.3439 79 yqaQ BSU26220 0.852
20 3158851 3159007 reverse BSU30890 ytxO -328 0.363 3376 ytdA BSU30850 0.852
21 1958206 1958362 forward BSU18190 yngC -9863 0.3949 44353 iseA BSU18380 0.852
22 557716 557872 forward BSU05100 yddT -188 0.3503 79 ydzN BSU05109 0.851
23 3907629 3907785 reverse BSU38100 ywcH -2594 0.3567 393 ywcI BSU38080 0.851
24 1926523 1926679 forward BSU17950 yneJ -1482 0.3949 79 citB BSU18000 0.851
25 1017271 1017427 forward BSU09400 spoVR -139 0.363 1649 lytE BSU09420 0.85
26 2769617 2769773 reverse BSU27160 cypB -4194 0.3185 1021 yrhP BSU27100 0.849
27 2739991 2740147 reverse BSU26830 yrpE -1287 0.3694 3533 aadK BSU26790 0.849
28 644384 644540 forward BSU05940 gcp -7 0.3694 2120 moaC BSU05960 0.848
29 2203622 2203778 forward BSU20580 yoqM -7279 0.363 79 yopS BSU20780 0.847
30 3014345 3014501 reverse BSU29460 moaB -90 0.3694 79 argG BSU29450 0.847
31 749147 749303 forward BSU06780 yeeC -3069 0.363 550 yeeG BSU06820 0.846
32 665425 665581 forward BSU06130 ydjC -677 0.3439 1963 gutB BSU06150 0.846
33 2106272 2106428 reverse BSU19360 odhB -1154 0.3949 79 yocR BSU19340 0.846
34 226409 226565 forward BSU02050 ybdO -82 0.3885 79 ybxG BSU02060 0.844
35 2106333 2106489 forward BSU19330 sodF -1353 0.3885 79 yocS BSU19350 0.844
36 308175 308331 forward BSU02840 ycdG 48 0.3503 79 adcA BSU02850 0.843
37 2678925 2679081 forward BSU26050 yqdB -427 0.363 12639 yqaP BSU26230 0.843
38 3875571 3875727 reverse BSU37760 rocC -130 0.3121 79 ywfA BSU37750 0.843
39 2433680 2433836 reverse BSU23340 ypuB -384 0.3885 236 ypzJ BSU23328 0.843
40 1533806 1533962 forward BSU14610 pdhD -445 0.3503 236 ykzW BSU14629 0.841
41 368137 368293 forward BSU03360 yciC -802 0.3312 1021 yckC BSU03390 0.841
42 447000 447156 forward BSU03930 gdh -792 0.3121 2120 ycnL BSU03970 0.84
43 2065804 2065960 forward BSU18960 yozM -348 0.3758 8557 yobN BSU19020 0.839
44 45296 45452 reverse BSU01550 gerD -113140 0.3822 236 abrB BSU00370 0.837
45 2048779 2048935 reverse BSU18810 yobA -1092 0.363 550 yoaZ BSU18790 0.836
46 3153718 3153874 reverse BSU30850 ytdA -938 0.3439 79 menF BSU30830 0.836
47 3388260 3388416 reverse BSU33040 fumC -685 0.3312 393 yuzO BSU33029 0.834
48 205252 205408 forward BSU01820 adaB -283 0.3248 79 ndhF BSU01830 0.834
49 469269 469425 forward BSU04160 mtlR 24 0.3121 79 ydaB BSU04170 0.834
50 1868460 1868616 forward BSU17360 ymzA -7 0.3885 79 nrdI BSU17370 0.834
51 3746069 3746225 forward BSU36380 rapD -577 0.3822 2905 ywoH BSU36440 0.833
52 3467327 3467483 reverse BSU33800 opuCD -140 0.3376 79 sdpR BSU33790 0.832
53 1903262 1903418 reverse BSU17690 yncM -170 0.3822 1963 cotU BSU17670 0.831
54 1017114 1017270 forward BSU09400 spoVR 18 0.3376 1806 lytE BSU09420 0.831
55 2709577 2709733 reverse BSU26490 yrkJ -346 0.3503 236 yrkK BSU26480 0.829
56 955738 955894 forward BSU08780 ygaJ -74 0.3822 79 thiC BSU08790 0.828
57 1283149 1283305 forward BSU12100 yjeA -539 0.3758 236 yjfC BSU12130 0.827
58 3988764 3988920 reverse BSU38860 galE -1105 0.293 79 yxkD BSU38840 0.825
59 200120 200276 forward BSU01770 glmM -198 0.2611 79 glmS BSU01780 0.825
60 2186812 2186968 reverse BSU20420 yorD -94 0.2611 79 yorE BSU20410 0.825
61 2926840 2926996 reverse BSU28630 pheT -89 0.3185 1021 yshA BSU28610 0.823
62 2054401 2054557 reverse BSU18840 xynA -119 0.3822 550 pps BSU18830 0.822
63 610963 611119 reverse BSU05660 ydgI -1149 0.3121 2277 dinB BSU05630 0.822
64 3457144 3457300 reverse BSU33700 opuBD -2583 0.3185 707 yvzC BSU33650 0.821
65 736435 736591 reverse BSU06740 yefB -2481 0.3376 3690 yerO BSU06700 0.82
66 2061478 2061634 reverse BSU18930 yobH -1953 0.3439 864 yozJ BSU18900 0.82
67 3268477 3268633 forward BSU31810 yuzE -4174 0.3949 8400 yukF BSU31920 0.82
68 3107044 3107200 forward BSU30340 ytvA 30 0.2675 1492 yttA BSU30360 0.82
69 2262616 2262772 reverse BSU21440 bdbB -2530 0.3885 15151 youB BSU21329 0.819
70 4118717 4118873 reverse BSU40110 bglA -2370 0.3758 5574 glxK BSU40040 0.818
71 4204755 4204911 reverse BSU40960 parB -722 0.3949 393 yyaD BSU40940 0.818
72 252357 252513 forward BSU02320 ybfP 36 0.3822 79 ybfQ BSU02330 0.818
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73 3648264 3648420 reverse BSU35530 tagO -311 0.363 1806 degS BSU35500 0.818
74 850053 850209 forward BSU07750 yflA -3789 0.3694 236 treP BSU07800 0.817
75 255279 255435 forward BSU02330 ybfQ -1718 0.2994 2434 ybgA BSU02370 0.816
76 1541729 1541885 forward BSU14680 ykzC -2958 0.3376 79 ylaA BSU14710 0.816
77 909862 910018 forward BSU08330 yfiN -658 0.3503 79 estB BSU08350 0.816
78 4109617 4109773 reverse BSU40030 yxaB -1253 0.3885 79 yxaD BSU40010 0.813
79 3252983 3253139 forward BSU31660 mrpG -538 0.3949 4632 yuzC BSU31730 0.811
80 4066294 4066450 reverse BSU39600 yxeC -234 0.3567 864 yxeF BSU39570 0.81
81 1923077 1923233 forward BSU17910 yneF -231 0.3248 79 ccdA BSU17930 0.809
82 1540787 1540943 forward BSU14680 ykzC -2016 0.3503 1021 ylaA BSU14710 0.809
83 3665472 3665628 forward BSU35650 lytR -1192 0.3376 79 gtaB BSU35670 0.808
84 1679031 1679187 reverse BSU17060 ymzD -101508 0.3503 7458 ylqB BSU15960 0.808
85 2698717 2698873 reverse BSU26360 yqaD -714 0.363 79 yqaF BSU26340 0.808
86 3604725 3604881 reverse BSU35100 yvlD -1958 0.363 236 yvmC BSU35070 0.808
87 3354671 3354827 forward BSU32650 yurS -105 0.3057 17820 yuzL BSU32849 0.807
88 3052234 3052390 forward BSU29710 acuC -9600 0.3503 2434 ytoQ BSU29850 0.806
89 188867 189023 forward BSU01590 ybaS -9203 0.3185 5260 trnSL-Glu2 BSU_tRNA_75 0.806
90 245389 245545 reverse BSU02340 gltP -8050 0.363 1806 ybfI BSU02220 0.805
91 1445373 1445529 reverse BSU13810 ykvS -2210 0.3439 2748 ykvN BSU13760 0.804
92 2249114 2249270 reverse BSU21440 bdbB -16032 0.3439 1649 youB BSU21329 0.803
93 3918262 3918418 reverse BSU38190 galT -752 0.3057 79 qoxA BSU38170 0.801
94 933760 933916 reverse BSU08620 yfhP -618 0.3439 5574 sspK BSU08550 0.8
95 201248 201404 reverse BSU01800 alkA -1220 0.293 7301 ybbK BSU01720 0.8
96 3684268 3684424 reverse BSU35780 lytD -479 0.3439 3376 tagD BSU35740 0.8
97 2739834 2739990 reverse BSU26830 yrpE -1444 0.3439 3376 aadK BSU26790 0.799
98 2252097 2252253 reverse BSU21440 bdbB -13049 0.3949 4632 youB BSU21329 0.798
99 1601271 1601427 reverse BSU15640 yloA -34781 0.3503 24100 ylbP BSU15100 0.797
100 2111609 2111765 reverse BSU19380 yojO -149 0.3439 79 sucA BSU19370 0.796
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Table B.9: Top Entropy Hits in B. subtilis Forward Strand. Significant hits of the forward and reverse
strands (only showing forward strand here) of the B. subtilis intergenic regions having significantly high
RND entropy (p-Val.<0.0500) and LMFEGCRND probability higher than 0.8. 100 nt overlap used for 200
nt scan (44847 segments). Distance from upstream and downstream operons are the distance from the center
of the hit to the stop and start codons of upstream and downstream operons, respectively. Probability denotes
the likelihood of being a riboswitch under the LMFEGCRND model. Negative values indicate distance to
upstream operon. Columns Upsream/Downstream Operon show gene ID within the operon.

B. subtilis Start End Strand Upstream Operon Upstream Gene Dist. to Upstream MFE MFE p. Val. GC RND RND p. Val. Uracil Dist. to Downstream Downstream Gene Downstream Operon Probability
200nt 3714838 3715037 forward BSU36030 ywrK -794 -49.70 - 0.3300 126.0619965 - 0.3850 2302 cotG BSU36070 0.9275143743
200nt 3359769 3359968 forward BSU32650 yurS -5183 -66.40 - 0.4600 123.4530029 - 0.3450 12702 yuzL BSU32849 0.9236087203
200nt 243592 243791 forward BSU02170 ybfB -5364 -57.00 - 0.4450 126.5479965 - 0.3700 202 purT BSU02230 0.9204539061
200nt 2093202 2093401 forward BSU19200 desR -799 -55.20 - 0.4350 126.5859985 - 0.4400 4802 yoyB BSU19259 0.9146069884
200nt 749075 749274 forward BSU06780 yeeC -2977 -58.19 - 0.4450 125.6159973 - 0.3900 602 yeeG BSU06820 0.9128865004
200nt 1467005 1467204 forward BSU13960 ykwC -307 -60.40 - 0.4100 123.2139969 - 0.4150 702 pbpH BSU13980 0.9070840478
200nt 2281367 2281566 forward BSU21620 yokE 95 -44.60 - 0.2600 124.4599991 - 0.4300 202 yokD BSU21630 0.9058990479
200nt 850067 850266 forward BSU07750 yflA -3783 -57.20 - 0.4000 124.1029968 - 0.3800 202 treP BSU07800 0.9058393836
200nt 1466905 1467104 forward BSU13960 ykwC -207 -56.93 - 0.3900 123.7220001 - 0.4200 802 pbpH BSU13980 0.9029595852
200nt 3759694 3759893 forward BSU36530 bcrC -467 -62.40 - 0.3850 121.3089981 - 0.4500 902 ywnH BSU36560 0.9023656249
200nt 3268355 3268554 forward BSU31810 yuzE -4032 -44.66 - 0.3750 127.7630005 - 0.4450 8502 yukF BSU31920 0.8946693540
200nt 2073039 2073238 forward BSU18960 yozM -7563 -52.00 - 0.3250 123.0869980 - 0.4450 1302 yobN BSU19020 0.8944090009
200nt 748975 749174 forward BSU06780 yeeC -2877 -58.80 - 0.4750 125.1039963 - 0.3750 702 yeeG BSU06820 0.8876969814
200nt 432172 432371 forward BSU03780 phrC -1988 -51.70 - 0.3050 122.0960007 - 0.3450 102 yclN BSU03800 0.8850299716
200nt 4039583 4039782 forward BSU39100 yxiO -23516 -53.00 - 0.4350 125.9430008 - 0.4350 1802 hutP BSU39340 0.8843178153
200nt 531587 531786 forward BSU_tRNA_51 trnS-Leu2 -2066 -46.60 - 0.2650 122.5979996 - 0.3850 102 sacV BSU04830 0.8803396225
200nt 665366 665565 forward BSU06130 ydjC -598 -64.50 - 0.4900 122.9229965 - 0.3300 2002 gutB BSU06150 0.8790112138
200nt 3714938 3715137 forward BSU36030 ywrK -894 -41.70 - 0.3350 126.8040009 - 0.3550 2202 cotG BSU36070 0.8768669963
200nt 3685812 3686011 forward BSU35770 tagC -947 -51.80 - 0.3900 124.4950027 - 0.4150 2902 gerBA BSU35800 0.8747953176
200nt 2093302 2093501 forward BSU19200 desR -899 -61.40 - 0.4400 122.2649994 - 0.3700 4702 yoyB BSU19259 0.8738172650
200nt 1012447 1012646 forward BSU09360 yhdC -598 -51.20 - 0.3650 123.8079987 - 0.4100 3102 spoVR BSU09400 0.8727893829
200nt 955595 955794 forward BSU08780 ygaJ 89 -59.79 - 0.4050 121.6190033 - 0.3600 202 thiC BSU08790 0.8710888028
200nt 3685912 3686111 forward BSU35770 tagC -1047 -53.60 - 0.3950 123.7610016 - 0.3950 2802 gerBA BSU35800 0.8705116510
200nt 4134651 4134850 forward BSU40190 fbp -4508 -58.20 - 0.4900 125.0049973 - 0.3900 602 yycS BSU40240 0.8676616549
200nt 45433 45632 forward BSU00360 yabC -535 -42.70 - 0.3000 124.7969971 - 0.4200 102 metS BSU00380 0.8666248322
200nt 2531951 2532150 forward BSU24210 yqiG -14294 -62.90 - 0.5050 123.5699997 - 0.3450 9002 yqhQ BSU24490 0.8666005135
200nt 1540786 1540985 forward BSU14680 ykzC -1995 -57.52 - 0.4350 123.3629990 - 0.3750 1002 ylaA BSU14710 0.8663020134
200nt 1406312 1406511 forward BSU13390 ykoT -1721 -71.55 - 0.5450 121.3809967 - 0.3250 3502 ykoX BSU13430 0.8654530644
200nt 4029283 4029482 forward BSU39100 yxiO -13216 -50.90 - 0.3850 124.3079987 - 0.4000 12102 hutP BSU39340 0.8653051257
200nt 1526531 1526730 forward BSU14550 ykrA -273 -63.20 - 0.4800 122.5350037 - 0.3350 602 ykyA BSU14570 0.8648978472
200nt 2220040 2220239 forward BSU20929 yoyI -6863 -38.72 - 0.3800 129.0460052 - 0.3700 2202 yonP BSU21030 0.8647925854
200nt 192105 192304 forward BSU01590 ybaS -12421 -51.20 - 0.4350 125.8399963 - 0.4100 2002 trnSL-Glu2 BSU_tRNA_75 0.8642573953
200nt 1780406 1780605 forward BSU17050 mutL -87 -52.60 - 0.3550 122.5059967 - 0.3650 1402 pksA BSU17080 0.8627771139
200nt 4037783 4037982 forward BSU39100 yxiO -21716 -57.74 - 0.4400 123.2249985 - 0.3950 3602 hutP BSU39340 0.8606380820
200nt 1264357 1264556 forward BSU_tRNA_83 trnSL-Val2 -1397 -33.05 - 0.2700 127.4010010 - 0.4200 602 yjcN BSU11920 0.8592507839
200nt 847767 847966 forward BSU07750 yflA -1483 -59.62 - 0.4500 122.6080017 - 0.3550 2502 treP BSU07800 0.8554052114
200nt 226266 226465 forward BSU02050 ybdO 81 -37.20 - 0.2300 124.2030029 - 0.3550 202 ybxG BSU02060 0.8548350334
200nt 3052246 3052445 forward BSU29710 acuC -9592 -61.90 - 0.4900 123.0039978 - 0.3400 2402 ytoQ BSU29850 0.8543979526
200nt 530887 531086 forward BSU_tRNA_51 trnS-Leu2 -1366 -42.20 - 0.3250 125.3190002 - 0.4000 802 sacV BSU04830 0.8526363969
200nt 2617117 2617316 forward BSU25220 antE -13743 -59.90 - 0.4500 122.3389969 - 0.4200 3502 yqeW BSU25420 0.8511158824
200nt 2221540 2221739 forward BSU20929 yoyI -8363 -46.30 - 0.2850 122.2210007 - 0.3450 702 yonP BSU21030 0.8502966762
200nt 2054178 2054377 forward BSU18820 yobB -3127 -48.70 - 0.3450 123.2819977 - 0.4000 2002 yobD BSU18850 0.8502687216
200nt 3042946 3043145 forward BSU29710 acuC -292 -49.94 - 0.4350 125.8190002 - 0.4150 11702 ytoQ BSU29850 0.8499680161
200nt 2780909 2781108 forward BSU27150 yrhK -7164 -47.80 - 0.3250 122.8980026 - 0.3750 202 yrhE BSU27220 0.8482846022
200nt 2723337 2723536 forward BSU26630 yrdQ -594 -44.00 - 0.2950 123.3580017 - 0.4300 2402 gltR BSU26670 0.8465546370
200nt 683762 683961 forward BSU06260 ydjN -2790 -59.40 - 0.4800 123.3310013 - 0.3600 3102 yeaB BSU06320 0.8446838856
200nt 3052346 3052545 forward BSU29710 acuC -9692 -56.62 - 0.4400 123.0849991 - 0.3800 2302 ytoQ BSU29850 0.8442399502
200nt 2405829 2406028 forward BSU22869 ypzI -12171 -60.30 - 0.4650 122.4049988 - 0.4150 3802 fer BSU23040 0.8431282043
200nt 579341 579540 forward BSU05329 ydzO -10 -47.40 - 0.3850 124.9130020 - 0.3050 102 aseR BSU05330 0.8431255221
200nt 748875 749074 forward BSU06780 yeeC -2777 -60.60 - 0.4600 122.0989990 - 0.3950 802 yeeG BSU06820 0.8426845670
200nt 339225 339424 forward BSU03130 nadE -20 -63.60 - 0.4700 121.1809998 - 0.3250 702 aroK BSU03150 0.8414211273
200nt 1251377 1251576 forward BSU11730 cotO -1930 -35.49 - 0.3200 127.4260025 - 0.4800 702 yjcA BSU11790 0.8401102424
200nt 3640353 3640552 forward BSU35210 yvkA -19956 -52.60 - 0.3600 121.8539963 - 0.4250 6302 yvyE BSU35510 0.8399478197
200nt 3686112 3686311 forward BSU35770 tagC -1247 -51.99 - 0.3750 122.5879974 - 0.4300 2602 gerBA BSU35800 0.8393257856
200nt 1494405 1494604 forward BSU14240 rok 56 -52.70 - 0.4100 123.4729996 - 0.4150 1002 mobA BSU14260 0.8389207721
200nt 373532 373731 forward BSU03410 bglC -1741 -56.90 - 0.4500 123.1060028 - 0.3800 2402 hxlR BSU03470 0.8382304311
200nt 3686212 3686411 forward BSU35770 tagC -1347 -45.70 - 0.4000 125.9280014 - 0.4250 2502 gerBA BSU35800 0.8377878666
200nt 374532 374731 forward BSU03410 bglC -2741 -56.99 - 0.3750 120.5049973 - 0.3400 1402 hxlR BSU03470 0.8375294805
200nt 1540186 1540385 forward BSU14680 ykzC -1395 -61.11 - 0.4650 121.7969971 - 0.3500 1602 ylaA BSU14710 0.8347978592
200nt 360837 361036 forward BSU03270 ycgT -6870 -59.70 - 0.5000 123.5510025 - 0.3300 2002 nasA BSU03330 0.8347288966
200nt 213641 213840 forward BSU01900 ybcM -73 -36.30 - 0.2750 125.3079987 - 0.3950 202 skfA BSU01910 0.8321032524
200nt 739678 739877 forward BSU06730 yefA -597 -51.16 - 0.3900 123.1309967 - 0.4150 102 yefC BSU06750 0.8301935792
200nt 1495005 1495204 forward BSU14240 rok -544 -50.26 - 0.4150 124.2959976 - 0.3800 402 mobA BSU14260 0.8287579417
200nt 1541686 1541885 forward BSU14680 ykzC -2895 -43.10 - 0.3250 124.1309967 - 0.3650 102 ylaA BSU14710 0.8283772469
200nt 1268629 1268828 forward BSU11970 yjcS 62 -40.70 - 0.2700 123.2060013 - 0.4250 102 yjdA BSU11980 0.8273611665
200nt 652232 652431 forward BSU06030 groEL -265 -37.70 - 0.2950 125.2659988 - 0.4500 1102 ydiM BSU06040 0.8273396492
200nt 2108093 2108292 forward BSU19350 yocS -539 -59.80 - 0.4700 122.2429962 - 0.3700 11202 yojI BSU19440 0.8269666433
200nt 728532 728731 forward BSU06640 yerI -2436 -46.30 - 0.3100 122.2779999 - 0.3600 102 gatC BSU06670 0.8268005848
200nt 1540686 1540885 forward BSU14680 ykzC -1895 -60.72 - 0.4350 120.6729965 - 0.3350 1102 ylaA BSU14710 0.8265900016
200nt 3746052 3746251 forward BSU36380 rapD -540 -57.10 - 0.4350 122.1200027 - 0.3850 2902 ywoH BSU36440 0.8260388970
200nt 1495105 1495304 forward BSU14240 rok -644 -55.30 - 0.3950 121.4899979 - 0.4000 302 mobA BSU14260 0.8259468675
200nt 1923034 1923233 forward BSU17910 yneF -168 -40.60 - 0.2500 122.5039978 - 0.3500 102 ccdA BSU17930 0.8253148198
200nt 746475 746674 forward BSU06780 yeeC -377 -31.51 - 0.2650 126.6760025 - 0.5000 3202 yeeG BSU06820 0.8248795867
200nt 2625315 2625514 forward BSU25420 yqeW -3576 -54.30 - 0.4850 124.8850021 - 0.3550 10402 rpsT BSU25550 0.8240758777
200nt 4007404 4007603 forward BSU39020 yxjA -360 -48.97 - 0.4150 124.6660004 - 0.3950 2902 citH BSU39060 0.8239642382
200nt 2376722 2376921 forward BSU22510 ypjC -15121 -44.40 - 0.3450 124.1429977 - 0.4000 16602 ypzI BSU22869 0.8239628077
200nt 3640453 3640652 forward BSU35210 yvkA -20056 -45.52 - 0.3450 123.6029968 - 0.4400 6202 yvyE BSU35510 0.8211722970
200nt 530787 530986 forward BSU_tRNA_51 trnS-Leu2 -1266 -47.10 - 0.3350 122.6100006 - 0.3850 902 sacV BSU04830 0.8206871748
200nt 4139260 4139459 forward BSU40240 yycS -3397 -60.10 - 0.5050 123.1039963 - 0.3450 902 rapG BSU40300 0.8204663396
200nt 184305 184504 forward BSU01590 ybaS -4621 -44.20 - 0.4000 125.9649963 - 0.4400 9802 trnSL-Glu2 BSU_tRNA_75 0.8200225234
200nt 792182 792381 forward BSU07230 yetM -656 -69.00 - 0.5400 120.5859985 - 0.3000 402 yetO BSU07250 0.8170907497
200nt 4007304 4007503 forward BSU39020 yxjA -260 -49.30 - 0.4200 124.4300003 - 0.3950 3002 citH BSU39060 0.8151187301
200nt 3726352 3726551 forward BSU36160 ywqM -1918 -63.90 - 0.5250 122.0380020 - 0.3200 7402 ywqB BSU36270 0.8136813045
200nt 3201391 3201590 forward BSU31170 yulF -3400 -50.17 - 0.4150 123.8629990 - 0.3950 11102 tgl BSU31270 0.8136008978
200nt 3714738 3714937 forward BSU36030 ywrK -694 -38.82 - 0.3050 124.7269974 - 0.4300 2402 cotG BSU36070 0.8135811090
200nt 2160707 2160906 forward BSU20000 yosU -1924 -34.70 - 0.3050 126.3850021 - 0.4300 9002 yosA BSU20190 0.8132891059
200nt 192805 193004 forward BSU01590 ybaS -13121 -48.80 - 0.4150 124.4029999 - 0.3650 1302 trnSL-Glu2 BSU_tRNA_75 0.8131257892
200nt 2217640 2217839 forward BSU20929 yoyI -4463 -44.10 - 0.2800 121.7109985 - 0.4100 4602 yonP BSU21030 0.8124790788
200nt 182405 182604 forward BSU01590 ybaS -2721 -53.80 - 0.4150 122.3399963 - 0.3550 11702 trnSL-Glu2 BSU_tRNA_75 0.8117757440
200nt 2276877 2277076 forward BSU21520 yolC -4287 -38.90 - 0.3250 125.3180008 - 0.4500 3002 yokF BSU21610 0.8117634654
200nt 1997137 1997336 forward BSU18190 yngC -48774 -50.97 - 0.4000 122.9609985 - 0.3250 5402 iseA BSU18380 0.8112495542
200nt 2276977 2277176 forward BSU21520 yolC -4387 -39.30 - 0.3200 124.9540024 - 0.4200 2902 yokF BSU21610 0.8106592894
200nt 749175 749374 forward BSU06780 yeeC -3077 -58.49 - 0.4600 121.9140015 - 0.3700 502 yeeG BSU06820 0.8099753261
200nt 3726652 3726851 forward BSU36160 ywqM -2218 -52.11 - 0.4550 124.3000031 - 0.3950 7102 ywqB BSU36270 0.8091073036
200nt 1251277 1251476 forward BSU11730 cotO -1830 -37.50 - 0.3650 127.1539993 - 0.5150 802 yjcA BSU11790 0.8088676929
200nt 1405212 1405411 forward BSU13390 ykoT -621 -56.26 - 0.4050 120.9140015 - 0.3500 4602 ykoX BSU13430 0.8086636066
200nt 3268455 3268654 forward BSU31810 yuzE -4132 -52.90 - 0.3900 121.7509995 - 0.4200 8402 yukF BSU31920 0.8081850410
200nt 1467105 1467304 forward BSU13960 ykwC -407 -41.17 - 0.3700 125.7789993 - 0.4650 602 pbpH BSU13980 0.8068280816
200nt 1406412 1406611 forward BSU13390 ykoT -1821 -67.24 - 0.5600 121.6240005 - 0.3150 3402 ykoX BSU13430 0.8052443266
200nt 2897488 2897687 forward BSU28180 ysxD -17529 -28.00 - 0.2150 125.7649994 - 0.4100 202 ysnD BSU28320 0.8036175966
200nt 1474672 1474871 forward BSU14010 cheV -57 -50.60 - 0.3800 122.1959991 - 0.3650 3302 ykuF BSU14060 0.8031342626
200nt 746375 746574 forward BSU06780 yeeC -277 -31.50 - 0.2800 126.4580002 - 0.5000 3302 yeeG BSU06820 0.8004485369
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Table B.10: Top Entropy Hits in B. subtilis Reverse Strand. Significant hits of the forward and reverse
strands (only showing reverse strand here) of the B. subtilis intergenic regions having significantly high RND
entropy (p-Val.<0.0500) and LMFEGCRND probability higher than 0.8. 100 nt overlap used for 200 nt scan
(44847 segments). Distance from upstream and downstream operons are the distance from the center of the
hit to the stop and start codons of upstream and downstream operons, respectively. Probability denotes the
multinomial regression likelihood of being a riboswitch under the LMFEGCRND model. Negative values
indicate distance to upstream operon. Columns Upsream/Downstream Operon show gene ID within
the operon.

B. subtilis Start End Strand Upstream Operon Upstream Gene Dist. to Upstream MFE MFE p. Val. GC RND RND p. Val. Uracil Dist. to Downstream Downstream Gene Downstream Operon Probability
200nt 3717398 3717597 reverse BSU36100 ywrD -1637 -51.30 - 0.3650 130.8540039 - 0.3950 399 cotH BSU36060 0.9702541828
200nt 3717498 3717697 reverse BSU36100 ywrD -1537 -50.60 - 0.3500 129.2720032 - 0.4000 499 cotH BSU36060 0.9603169560
200nt 4066209 4066408 reverse BSU39600 yxeC -299 -67.50 - 0.4900 125.4860001 - 0.3650 799 yxeF BSU39570 0.9434255362
200nt 786306 786505 reverse BSU07220 yetL -3247 -72.30 - 0.5600 125.9049988 - 0.3050 499 yetH BSU07160 0.9432973266
200nt 2249144 2249343 reverse BSU21440 bdbB -15982 -49.00 - 0.3700 127.3170013 - 0.3850 1699 youB BSU21329 0.9216341376
200nt 2596201 2596400 reverse BSU25170 yqfO -1202 -42.96 - 0.3650 129.5290070 - 0.4950 799 cshB BSU25140 0.9206426144
200nt 3717298 3717497 reverse BSU36100 ywrD -1737 -45.43 - 0.3750 128.8240051 - 0.4200 299 cotH BSU36060 0.9199228883
200nt 3671576 3671775 reverse BSU35700 tagH -1889 -33.00 - 0.2350 128.6049957 - 0.4550 299 ggaA BSU35690 0.9113640189
200nt 3717598 3717797 reverse BSU36100 ywrD -1437 -50.50 - 0.3850 126.3860016 - 0.4350 599 cotH BSU36060 0.9073441625
200nt 3373949 3374148 reverse BSU32890 yusQ -2569 -67.60 - 0.4800 122.0930023 - 0.3600 399 fadM BSU32850 0.8957566023
200nt 3666584 3666783 reverse BSU35680 ggaB -526 -44.06 - 0.3300 126.5329971 - 0.4650 1299 mnaA BSU35660 0.8957416415
200nt 3941142 3941341 reverse BSU38430 gspA -3319 -43.33 - 0.3950 128.7100067 - 0.4800 1599 ywbA BSU38390 0.8889677525
200nt 2879134 2879333 reverse BSU28190 engB -649 -38.80 - 0.2800 126.4779968 - 0.4100 99 hemA BSU28170 0.8852627277
200nt 3907615 3907814 reverse BSU38100 ywcH -2588 -46.12 - 0.2950 123.9560013 - 0.3600 399 ywcI BSU38080 0.8837128878
200nt 1248822 1249021 reverse BSU11740 cotZ -521 -54.90 - 0.5300 128.1889954 - 0.4000 8799 yjbP BSU11630 0.8796436787
200nt 2004047 2004246 reverse BSU18400 yoeD -116 -40.10 - 0.3150 126.8629990 - 0.3900 199 yoeC BSU18390 0.8789740205
200nt 3671676 3671875 reverse BSU35700 tagH -1789 -35.80 - 0.2600 126.5380020 - 0.3900 399 ggaA BSU35690 0.8741892576
200nt 2257744 2257943 reverse BSU21440 bdbB -7382 -38.35 - 0.3350 128.0359955 - 0.4600 10299 youB BSU21329 0.8739098310
200nt 2294238 2294437 reverse BSU21800 ypkP -1645 -57.60 - 0.3900 122.0520020 - 0.3950 299 ilvA BSU21770 0.8724481463
200nt 791156 791355 reverse BSU07240 yetN -207 -70.84 - 0.5850 123.2480011 - 0.2900 1099 yetL BSU07220 0.8711011410
200nt 494742 494941 reverse BSU04430 ydbD -899 -52.90 - 0.4250 125.0230026 - 0.4350 1399 ydaT BSU04380 0.8695754409
200nt 1355092 1355291 reverse BSU12900 htrA -2745 -71.91 - 0.5400 121.2139969 - 0.3050 2499 ykbA BSU12860 0.8692007065
200nt 737924 738123 reverse BSU06740 yefB -972 -70.30 - 0.5400 121.8629990 - 0.3150 5199 yerO BSU06700 0.8691427112
200nt 937998 938197 reverse BSU08700 ygaE -3071 -54.20 - 0.4350 124.7170029 - 0.4200 1099 yfhS BSU08640 0.8665797114
200nt 3421066 3421265 reverse BSU33340 sspJ -300 -64.50 - 0.4850 122.1780014 - 0.3150 99 lysP BSU33330 0.8648849726
200nt 2739937 2740136 reverse BSU26830 yrpE -1321 -49.69 - 0.4200 125.9660034 - 0.3800 3499 aadK BSU26790 0.8648592830
200nt 1097850 1098049 reverse BSU10230 yhfH -171 -36.90 - 0.2550 125.4639969 - 0.4450 99 gltT BSU10220 0.8626419306
200nt 3851617 3851816 reverse BSU37520 ywhD -470 -68.42 - 0.5500 122.7009964 - 0.3000 2099 speE BSU37500 0.8624630570
200nt 2724828 2725027 reverse BSU26660 yrdN -187 -37.44 - 0.2200 124.0479965 - 0.3800 99 czcD BSU26650 0.8623370528
200nt 1204503 1204702 reverse BSU11270 yjzD -129 -59.84 - 0.5050 124.6380005 - 0.3600 13299 yitU BSU11140 0.8622197509
200nt 2692345 2692544 reverse BSU26240 yqaO -201 -47.40 - 0.3350 123.8980026 - 0.4100 999 yqaQ BSU26220 0.8618891239
200nt 3108926 3109125 reverse BSU30370 bceB -372 -32.52 - 0.3250 129.4949951 - 0.5250 599 yttB BSU30350 0.8596788645
200nt 1493525 1493724 reverse BSU14250 yknT -779 -39.60 - 0.2150 122.8750000 - 0.4750 1599 ykuT BSU14210 0.8589127660
200nt 2111609 2111808 reverse BSU19380 yojO -129 -37.20 - 0.2700 125.5370026 - 0.4050 99 sucA BSU19370 0.8542534709
200nt 1678852 1679051 reverse BSU17060 ymzD -101667 -62.81 - 0.4750 122.0299988 - 0.3300 7299 ylqB BSU15960 0.8517054319
200nt 4109617 4109816 reverse BSU40030 yxaB -1233 -52.14 - 0.3400 121.7229996 - 0.3900 99 yxaD BSU40010 0.8503260016
200nt 3373849 3374048 reverse BSU32890 yusQ -2669 -56.90 - 0.5000 125.1539993 - 0.3500 299 fadM BSU32850 0.8485122919
200nt 1886780 1886979 reverse BSU17590 xylR -3633 -42.30 - 0.3150 124.7409973 - 0.3500 13299 cwlC BSU17410 0.8470579386
200nt 3153718 3153917 reverse BSU30850 ytdA -918 -51.80 - 0.3600 122.3779984 - 0.3500 99 menF BSU30830 0.8457853198
200nt 984466 984665 reverse BSU09120 yhcK -1169 -40.11 - 0.2800 124.3939972 - 0.3750 99 cspB BSU09100 0.8457109332
200nt 3464551 3464750 reverse BSU33780 sdpI -1784 -40.60 - 0.3100 125.1740036 - 0.4450 1399 opuBA BSU33730 0.8446103930
200nt 3684271 3684470 reverse BSU35780 lytD -456 -43.90 - 0.3450 125.0149994 - 0.3500 3399 tagD BSU35740 0.8443253636
200nt 2770775 2770974 reverse BSU27160 cypB -3016 -41.20 - 0.3550 126.4410019 - 0.4050 2199 yrhP BSU27100 0.8441781402
200nt 1666288 1666487 reverse BSU15960 ylqB -4779 -56.60 - 0.4500 123.3949966 - 0.3650 10599 rpmB BSU15820 0.8431691527
200nt 2343862 2344061 reverse BSU22330 ypoC -303 -43.50 - 0.3800 126.2779999 - 0.4850 3199 yppC BSU22300 0.8418609500
200nt 3158854 3159053 reverse BSU30890 ytxO -305 -56.71 - 0.4200 122.1419983 - 0.3650 3399 ytdA BSU30850 0.8375009298
200nt 4129648 4129847 reverse BSU40200 yydD -831 -66.70 - 0.5050 120.9280014 - 0.3350 2099 yydF BSU40180 0.8359215260
200nt 4134175 4134374 reverse BSU40230 yydA -162 -30.70 - 0.2450 126.6350021 - 0.3400 99 yydB BSU40220 0.8344783783
200nt 245362 245561 reverse BSU02340 gltP -8057 -57.10 - 0.4500 122.8600006 - 0.3500 1799 ybfI BSU02220 0.8332447410
200nt 3996389 3996588 reverse BSU38970 yxjF -4051 -40.50 - 0.3750 126.9710007 - 0.4250 4899 yxkA BSU38870 0.8313001394
200nt 2739837 2740036 reverse BSU26830 yrpE -1421 -64.40 - 0.4950 121.3069992 - 0.3300 3399 aadK BSU26790 0.8294041157
200nt 1903178 1903377 reverse BSU17690 yncM -234 -35.20 - 0.2700 125.4830017 - 0.4250 1899 cotU BSU17670 0.8289884329
200nt 933665 933864 reverse BSU08620 yfhP -693 -62.04 - 0.4700 121.3809967 - 0.3750 5499 sspK BSU08550 0.8283531070
200nt 2054430 2054629 reverse BSU18840 xynA -70 -52.10 - 0.3850 122.5159988 - 0.3450 599 pps BSU18830 0.8281581998
200nt 737824 738023 reverse BSU06740 yefB -1072 -69.00 - 0.5350 120.7480011 - 0.3100 5099 yerO BSU06700 0.8277365565
200nt 198226 198425 reverse BSU01800 alkA -4222 -30.81 - 0.3750 130.7449951 - 0.5150 4299 ybbK BSU01720 0.8267450333
200nt 3604668 3604867 reverse BSU35100 yvlD -1995 -39.30 - 0.2750 123.9219971 - 0.3550 199 yvmC BSU35070 0.8267388940
200nt 3098465 3098664 reverse BSU30310 ytwF -3637 -48.30 - 0.3850 123.9609985 - 0.4100 1999 ytaP BSU30250 0.8252500296
200nt 419514 419713 reverse BSU03690 yczF -150 -54.00 - 0.4400 123.4860001 - 0.3300 1899 dtpT BSU03670 0.8242135644
200nt 2221888 2222087 reverse BSU21080 yonI -6769 -36.60 - 0.3550 127.6279984 - 0.3150 599 yonR BSU21020 0.8236665726
200nt 2434023 2434222 reverse BSU23340 ypuB -21 -56.65 - 0.4750 123.5520020 - 0.3050 599 ypzJ BSU23328 0.8226841688
200nt 3241980 3242179 reverse BSU31590 yufS -4073 -57.60 - 0.4600 122.6460037 - 0.3500 5099 yufK BSU31510 0.8222519755
200nt 1700752 1700951 reverse BSU17060 ymzD -79767 -52.70 - 0.4300 123.5100021 - 0.3150 29199 ylqB BSU15960 0.8189544678
200nt 2709820 2710019 reverse BSU26490 yrkJ -83 -48.40 - 0.3600 122.8440018 - 0.3550 499 yrkK BSU26480 0.8178487420
200nt 153939 154138 reverse BSU01550 gerD -4477 -50.70 - 0.4100 123.6019974 - 0.3700 108899 abrB BSU00370 0.8176639676
200nt 3239080 3239279 reverse BSU31590 yufS -6973 -58.30 - 0.4150 120.6800003 - 0.3750 2199 yufK BSU31510 0.8171101809
200nt 3467327 3467526 reverse BSU33800 opuCD -120 -32.10 - 0.2350 125.1719971 - 0.3550 99 sdpR BSU33790 0.8168275952
200nt 543114 543313 reverse BSU05000 yddK -2953 -43.99 - 0.3600 124.5599976 - 0.4700 11699 immR BSU04820 0.8156080246
200nt 3108826 3109025 reverse BSU30370 bceB -472 -37.52 - 0.3400 126.4919968 - 0.4900 499 yttB BSU30350 0.8153505921
200nt 3334388 3334587 reverse BSU32470 pucE -1264 -54.50 - 0.4850 124.4670029 - 0.3050 5899 pucH BSU32410 0.8130649924
200nt 3684371 3684570 reverse BSU35780 lytD -356 -42.00 - 0.3250 124.1009979 - 0.3650 3499 tagD BSU35740 0.8130072355
200nt 881307 881506 reverse BSU08120 yfjF -4438 -52.36 - 0.4850 125.3059998 - 0.3900 9099 yfjQ BSU08000 0.8121696115
200nt 2926798 2926997 reverse BSU28630 pheT -111 -60.46 - 0.4950 122.2929993 - 0.3200 999 yshA BSU28610 0.8096395731
200nt 4066309 4066508 reverse BSU39600 yxeC -199 -55.60 - 0.4600 123.0559998 - 0.3600 899 yxeF BSU39570 0.8090547919
200nt 3688648 3688847 reverse BSU35830 ywtG -3786 -49.93 - 0.3300 120.9260025 - 0.3550 199 yvyI BSU35790 0.8084035516
200nt 1668788 1668987 reverse BSU15960 ylqB -2279 -51.60 - 0.4050 122.7809982 - 0.4150 13099 rpmB BSU15820 0.8080439568
200nt 3334288 3334487 reverse BSU32470 pucE -1364 -62.06 - 0.4700 120.7320023 - 0.2950 5799 pucH BSU32410 0.8073683381
200nt 3723732 3723931 reverse BSU36170 ywqL -589 -55.50 - 0.4550 122.8669968 - 0.3300 499 ywqN BSU36150 0.8070057034
200nt 899787 899986 reverse BSU08340 padR -9312 -54.60 - 0.3900 121.0039978 - 0.3550 10199 yfjA BSU08170 0.8061554432
200nt 2813434 2813633 reverse BSU27540 yrvM -110 -48.20 - 0.3850 123.3710022 - 0.4200 1399 cymR BSU27520 0.8043378592
200nt 3458216 3458415 reverse BSU33700 opuBD -1491 -44.09 - 0.3500 123.8420029 - 0.4200 1799 yvzC BSU33650 0.8041363358
200nt 3918262 3918461 reverse BSU38190 galT -732 -37.50 - 0.2900 124.4739990 - 0.3100 99 qoxA BSU38170 0.8040998578
200nt 2576788 2576987 reverse BSU24950 pstBB -323 -53.30 - 0.3700 120.7910004 - 0.4100 699 yqgL BSU24920 0.8040402532
200nt 2316211 2316410 reverse BSU22040 ypbQ -136 -50.40 - 0.3350 120.7730026 - 0.3850 199 ypbR BSU22030 0.8038558364
200nt 2249344 2249543 reverse BSU21440 bdbB -15782 -43.38 - 0.3500 124.1179962 - 0.4650 1899 youB BSU21329 0.8037469983
200nt 2333112 2333311 reverse BSU22210 yprB -113 -43.21 - 0.3300 123.4840012 - 0.4200 199 cotD BSU22200 0.8028732538
200nt 2116670 2116869 reverse BSU19420 yojK -282 -43.45 - 0.3300 123.3679962 - 0.3150 99 cwlS BSU19410 0.8022140265
200nt 3941242 3941441 reverse BSU38430 gspA -3219 -42.84 - 0.4300 126.9950027 - 0.4600 1699 ywbA BSU38390 0.8019362092
200nt 1248722 1248921 reverse BSU11740 cotZ -621 -64.39 - 0.5300 121.6650009 - 0.3550 8699 yjbP BSU11630 0.8019282818
200nt 3014345 3014544 reverse BSU29460 moaB -70 -39.90 - 0.2550 122.2269974 - 0.3300 99 argG BSU29450 0.8009542227
200nt 2542225 2542424 reverse BSU24510 yqhO -115 -57.14 - 0.4800 122.8730011 - 0.4100 1499 yqhR BSU24480 0.8008475304
200nt 2096086 2096285 reverse BSU19230 yocJ -165 -39.50 - 0.2800 123.2190018 - 0.4150 399 yocI BSU19220 0.8003621101
200nt 4107928 4108127 reverse BSU40010 yxaD -1158 -51.01 - 0.4150 123.1330032 - 0.3800 99 yxaF BSU39990 0.8002312183
200nt 2659771 2659970 reverse BSU25880 yqxJ -3681 -49.60 - 0.3800 122.5149994 - 0.3600 1099 yqcI BSU25820 0.8001416922
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Table B.11: Top Classification Hits in E. coli. Top 50 hits of the forward and reverse strands of the E. coli
intergenic regions using 50 nt-overlap 100 nt window and under the LMFEGCRND model. The ranking
of each hit is denoted in column R. Distance from upstream and downstream operons are the distance from
the center of the hit to the stop and start codons of upstream and downstream operons, respectively. Proba-
bility denotes the multinomial regression likelihood of being a riboswitch under the LMFEGCRND model.
Positions are according to gb|U00096.2 version of E. coli and not gb|U00096.3 version.

R Start End Strand Upstream Operon Dist. to Up-
stream

Uracil Dist. to
Down-
stream

Downstream Operon Probability

1 384006 384105 forward insC-1,insCD-1,insD-1 -2154 0.52 402 tauA,tauB,tauC,tauD 0.942
2 237185 237284 forward aspV -129 0.47 102 yafT 0.934
3 2777119 2777218 forward yfjX,yfjY,yfjZ,ypjF,ypjJ -1266 0.38 7252 ygaQ_1,ygaQ_2 0.925
4 2304856 2304955 forward eco -2392 0.45 6202 micF 0.923
5 83968 84067 forward setA,sgrS,sgrT -5120 0.49 352 leuO 0.92
6 2902496 2902595 reverse queE -224 0.48 4249 ygcW 0.918
7 294815 294914 forward yagJ -3311 0.43 7352 yagU 0.914
8 4554566 4554665 forward uxuR -1145 0.48 402 iraD 0.913
9 405479 405578 forward yaiI 16 0.45 102 aroL,aroM,yaiA 0.908
10 4570237 4570336 forward yjiS -250 0.38 152 yjiT 0.906
11 754000 754099 forward nei,ybgI,ybgJ,ybgK,ybgL -8002 0.4 352 sdhA1 0.905
12 2054653 2054752 reverse asnW -1349 0.44 3349 yeeL_1,yeeL_2 0.905
13 2202241 2202340 reverse yehS -7458 0.44 10099 mrp 0.903
14 330995 331094 forward betT -226 0.52 552 yahA 0.9
15 3183291 3183390 reverse glgS -6421 0.44 599 ribB,sroG 0.9
16 384056 384155 forward insC-1,insCD-1,insD-1 -2204 0.43 352 tauA,tauB,tauC,tauD 0.898
17 4570187 4570286 forward yjiS -200 0.42 202 yjiT 0.898
18 557285 557384 forward cysS -2017 0.35 102 sfmA 0.894
19 3190062 3190161 reverse sibD -2632 0.37 149 glgS 0.893
20 1543575 1543674 forward nhoA -10633 0.45 1802 fdnG,fdnH,fdnI 0.89
21 2190295 2190394 reverse yehE -193 0.46 99 yehA,yehB,yehC,yehD 0.89
22 3181507 3181606 reverse ribB,sroG -279 0.43 1099 ygiD 0.89
23 3834703 3834802 reverse nlpA -2446 0.37 799 yicI,yicJ 0.889
24 1753166 1753265 reverse ynhG -2530 0.45 49 ydhZ 0.888
25 819916 820015 forward ybhL -56 0.41 52 ybhM 0.887
26 2901746 2901845 reverse queE -974 0.51 3499 ygcW 0.887
27 651208 651307 forward ybdR -8610 0.49 202 dpiA,dpiB 0.886
28 584973 585072 forward appY -1271 0.57 9802 cusA,cusB,cusC,cusF 0.886
29 2362398 2362497 reverse ais -593 0.48 149 yfaZ 0.886
30 1596214 1596313 forward osmC -41085 0.39 3252 lsrA,lsrB,lsrC,lsrD,lsrF,lsrG,tam 0.882
31 522335 522434 forward ybbA,ybbP -232 0.39 102 rhsD,ybbC,ybbD,ylbH 0.881
32 3490420 3490519 reverse php,yhfS,yhfT,yhfU,yhfW,yhfX -12488 0.39 149 ppiA 0.88
33 1986023 1986122 reverse yecH -1203 0.45 49 isrB 0.879
34 3217299 3217398 reverse ygjH -1589 0.42 249 aer 0.878
35 2714626 2714725 forward eamB -545 0.45 102 ung 0.877
36 3984255 3984354 forward aslB -1990 0.42 152 glmZ 0.877
37 2651611 2651710 reverse sseB -519 0.5 99 C0614 0.877
38 4516300 4516399 forward insO-2,yjhV,yjhW -8095 0.39 202 insA-7 0.876
39 3886253 3886352 reverse purP -6993 0.31 4549 dnaA,dnaN,recF 0.876
40 1577414 1577513 forward osmC -22285 0.41 22052 lsrA,lsrB,lsrC,lsrD,lsrF,lsrG,tam 0.875
41 776349 776448 reverse zitB -6707 0.39 11299 mngR 0.874
42 1543625 1543724 forward nhoA -10683 0.46 1752 fdnG,fdnH,fdnI 0.871
43 29201 29300 forward dapB 43 0.49 402 carA,carB 0.871
44 1542975 1543074 forward nhoA -10033 0.39 2402 fdnG,fdnH,fdnI 0.871
45 3768179 3768278 reverse yibH,yibI -38 0.41 8249 yibF 0.871
46 3631114 3631213 forward yhhI -7528 0.4 1702 yhiM 0.87
47 2166486 2166585 forward cyaR -1213 0.41 202 yegS 0.87
48 4578972 4579071 forward symR -989 0.38 5952 mrr 0.869
49 522235 522334 forward ybbA,ybbP -132 0.39 202 rhsD,ybbC,ybbD,ylbH 0.869
50 2383795 2383894 reverse yfbN -1888 0.48 99 yfbK 0.869
51 4577258 4577357 forward yjiV -2331 0.36 552 symR 0.868
52 153855 153954 forward yadD -5936 0.37 8202 hrpB 0.868
53 3665704 3665803 reverse yhjA -61 0.42 149 gadA,gadW,gadX 0.868
54 3651672 3651771 reverse hdeA,hdeB,yhiD -1557 0.45 499 insH-11 0.868
55 4619642 4619741 forward deoA,deoB,deoC,deoD 32 0.38 102 yjjJ 0.867
56 1645875 1645974 reverse ynfP -4828 0.45 49 dicC,ydfW,ydfX 0.867
57 4554516 4554615 forward uxuR -1095 0.42 452 iraD 0.866
58 4539860 4539959 forward fimB -229 0.41 152 fimE 0.866
59 1588711 1588810 reverse hipA,hipB -118 0.4 199 yneL 0.866
60 3181557 3181656 reverse ribB,sroG -229 0.33 1149 ygiD 0.865
61 269657 269756 reverse insH-1 -3619 0.45 299 perR 0.864
62 3925028 3925127 forward cbrB,cbrC -28347 0.47 102 asnA 0.863
63 4538580 4538679 forward yjhR -4477 0.43 352 fimB 0.863
64 4077095 4077194 reverse fdhE,fdoG,fdoH,fdoI -1178 0.39 5549 yihS,yihT,yihU 0.863
65 1210379 1210478 reverse iraM -475 0.42 1549 stfE,tfaE 0.862
66 4213351 4213450 forward metA -70 0.37 102 aceA,aceB,aceK 0.861
67 578853 578952 forward essD,rrrD,rzpD -1013 0.49 202 ybcW 0.861
68 3755951 3756050 reverse selA,selB -40 0.33 149 yiaY 0.861
69 924768 924867 forward clpA 44 0.36 7002 lrp 0.86
70 2520650 2520749 reverse xapA,xapB -52 0.42 199 xapR 0.86
71 582454 582553 forward tfaX -122 0.44 402 appY 0.859
72 1049984 1050083 forward insA-4,insAB-4,insB-4 -182 0.38 652 cspG 0.859
73 3767704 3767803 forward yibG -994 0.36 2552 mtlA,mtlD,mtlR 0.859
74 2383745 2383844 reverse yfbN -1938 0.45 49 yfbK 0.859
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75 1005025 1005124 forward pyrD 25 0.46 102 zapC 0.858
76 157105 157204 forward yadD -9186 0.34 4952 hrpB 0.858
77 1669567 1669666 reverse mdtI,mdtJ -1228 0.46 1999 ynfL 0.858
78 3800263 3800362 forward rfaD,waaC,waaF,waaL -3984 0.35 6252 coaD,waaA 0.856
79 2784960 2785059 reverse ygaU -9350 0.41 1149 ileY 0.856
80 2468130 2468229 reverse yfdK,yfdL,yfdM,yfdN,yfdO -920 0.49 5149 mlaA 0.855
81 2991883 2991982 reverse ygeK,ygeL -550 0.39 3549 yqeK 0.855
82 2859337 2859436 reverse nlpD,rpoS -5195 0.42 99 ygbI 0.855
83 3490370 3490469 reverse php,yhfS,yhfT,yhfU,yhfW,yhfX -12538 0.32 99 ppiA 0.854
84 4220501 4220600 forward aceA,aceB,aceK -2097 0.37 1302 metH 0.853
85 715871 715970 reverse potE,speF -249 0.37 99 ybfG,ybfH 0.853
86 2461957 2462056 reverse mlaA -268 0.45 3049 yfcZ 0.852
87 2876502 2876601 reverse cas1,cas2,casA,casB,casC,casD,casE -40 0.34 2199 cysC,cysD,cysN 0.851
88 4084875 4084974 forward fdhD 46 0.42 102 yiiG 0.85
89 4535630 4535729 forward yjhR -1527 0.31 3302 fimB 0.849
90 1635392 1635491 reverse gnsB -192 0.42 1049 nohA,tfaQ,ydfN 0.849
91 3497220 3497319 reverse php,yhfS,yhfT,yhfU,yhfW,yhfX -5688 0.33 6949 ppiA 0.849
92 3266938 3267037 reverse garK,garL,garP,garR,rnpB -1251 0.35 1899 tdcA,tdcB,tdcC,tdcD,tdcE,tdcF,tdcG 0.848
93 2267568 2267667 reverse yejG -8298 0.34 4299 yeiW 0.848
94 3580990 3581089 reverse ggt -2065 0.4 1999 ryhB 0.848
95 1811219 1811318 reverse cedA -177 0.5 99 ydjO 0.845
96 583210 583309 reverse envY,ompT -644 0.4 1299 ybcY 0.845
97 3576850 3576949 reverse yhhW -74 0.33 149 gntK,gntR,gntU 0.844
98 3266488 3266587 reverse garK,garL,garP,garR,rnpB -1701 0.43 1449 tdcA,tdcB,tdcC,tdcD,tdcE,tdcF,tdcG 0.843
99 2055603 2055702 reverse asnW -399 0.33 4299 yeeL_1,yeeL_2 0.843
100 2739273 2739372 reverse rimM,rplS,rpsP,trmD -2883 0.3 149 aroF,tyrA 0.842

1Table B.11: Complete list of genes in this operon is sdhA,sdhB,sdhC,sdhD,sucA,sucB,sucC,sucD.
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Table B.12: Top Classification Hits in E. coli Uracil-comp. Constrained. Top 50 hits of the forward and
reverse strands of the E. coli intergenic regions that have Uracil composition within the range of known
riboswitches in E. coli (between 0.23 and 0.34). 50 nt-overlap 100 nt window used. The ranking of each hit
is denoted in column R. Distance from upstream and downstream operons are the distance from the center of
the hit to the stop and start codons of upstream and downstream operons, respectively. Probability denotes
the multinomial regression likelihood of being a riboswitch under the LMFEGCRND model. Positions are
according to gb|U00096.2 version of E. coli and not gb|U00096.3 version.

R Start End Strand Upstream Operon Dist. to Up-
stream

Uracil Dist. to
Down-
stream

Downstream Operon Probability

1 3886253 3886352 reverse purP -6993 0.31 4549 dnaA,dnaN,recF 0.876
2 3181557 3181656 reverse ribB,sroG -229 0.33 1149 ygiD 0.865
3 3755951 3756050 reverse selA,selB -40 0.33 149 yiaY 0.861
4 3490370 3490469 reverse php,yhfS,yhfT,yhfU,yhfW,yhfX -12538 0.32 99 ppiA 0.854
5 4535630 4535729 forward yjhR -1527 0.31 3302 fimB 0.849
6 3497220 3497319 reverse php,yhfS,yhfT,yhfU,yhfW,yhfX -5688 0.33 6949 ppiA 0.849
7 3576850 3576949 reverse yhhW -74 0.33 149 gntK,gntR,gntU 0.844
8 2055603 2055702 reverse asnW -399 0.33 4299 yeeL_1,yeeL_2 0.843
9 2739273 2739372 reverse rimM,rplS,rpsP,trmD -2883 0.3 149 aroF,tyrA 0.842
10 2698570 2698669 reverse acpS,era,pdxJ,recO,rnc -21 0.31 399 shoB 0.84
11 3945101 3945200 reverse hdfR -1 0.3 5799 hsrA,yieP 0.835
12 2739223 2739322 reverse rimM,rplS,rpsP,trmD -2933 0.31 99 aroF,tyrA 0.832
13 3453521 3453620 reverse bfd,bfr -10701 0.32 149 gspA,gspB 0.825
14 4274265 4274364 reverse soxS -769 0.32 1249 yjcB 0.822
15 1467282 1467381 forward ydbA_1 -1259 0.32 52 insI-2 0.82
16 3116880 3116979 forward pheV -8368 0.33 2452 C0719 0.819
17 790896 790995 forward aroG -4939 0.26 3052 acrZ 0.817
18 2777069 2777168 forward yfjX,yfjY,yfjZ,ypjF,ypjJ -1216 0.33 7302 ygaQ_1,ygaQ_2 0.817
19 3189691 3189790 reverse glgS -21 0.31 6999 ribB,sroG 0.817
20 1694096 1694195 reverse uidR -341 0.33 49 uidA,uidB,uidC 0.815
21 2823699 2823798 reverse norR -5049 0.31 149 mltB 0.81
22 1805258 1805357 reverse yniB -1414 0.32 1199 ydiY 0.809
23 3382541 3382640 reverse yhcO -1289 0.33 299 mdh 0.809
24 1868697 1868796 reverse yoaI -3356 0.29 4249 mipA 0.808
25 2386449 2386548 reverse nuoA1 -1572 0.31 49 yfbN 0.807
26 3617057 3617156 reverse rbbA,yhhJ,yhiI -6596 0.3 7349 yhhS 0.806
27 2815604 2815703 forward micA -2660 0.29 8202 gutM,gutQ,srlA,srlB,srlD,srlE,srlR 0.805
28 2943865 2943964 reverse mltA -189 0.31 49 tcdA 0.804
29 1983499 1983598 forward uspC -5245 0.31 1402 ftnB 0.803
30 150155 150254 forward yadD -2236 0.32 11902 hrpB 0.801
31 2553093 2553192 forward amiA,hemF -898 0.33 3652 intZ 0.8
32 2876452 2876551 reverse cas1,cas2,casA,casB,casC,casD,casE -90 0.31 2149 cysC,cysD,cysN 0.8
33 1217949 1218048 reverse ymgD,ymgG -3530 0.33 3299 bluF 0.8
34 3346238 3346337 reverse elbB,mtgA -816 0.33 8199 mlaB,mlaC,mlaD,mlaE,mlaF 0.798
35 1174989 1175088 reverse ycfZ,ymfA -4664 0.3 649 ycfT 0.798
36 4298873 4298972 forward gltP -5007 0.26 12452 rpiB 0.797
37 585173 585272 forward appY -1471 0.29 9602 cusA,cusB,cusC,cusF 0.796
38 1397665 1397764 forward ynaJ -1970 0.32 5052 abgR 0.795
39 4492546 4492645 forward lptF,lptG -6074 0.29 52 idnK 0.795
40 655892 655991 reverse crcB -837 0.32 749 dcuC 0.795
41 266028 266127 reverse yafZ,ykfA -331 0.28 299 yafW2 0.795
42 2033559 2033658 reverse yedV,yedW -1210 0.32 2099 yedJ,yedR 0.794
43 3963904 3964003 reverse aslA -18422 0.32 299 rhlB 0.794
44 1463517 1463616 reverse insC-2,insCD-2,insD-2 -2379 0.33 11899 paaZ 0.794
45 2650116 2650215 forward xseA -16443 0.31 352 sseA 0.793
46 582654 582753 forward tfaX -322 0.3 202 appY 0.793
47 4076645 4076744 reverse fdhE,fdoG,fdoH,fdoI -1628 0.29 5099 yihS,yihT,yihU 0.793
48 2033409 2033508 reverse yedV,yedW -1360 0.32 1949 yedJ,yedR 0.793
49 1762598 1762697 forward lpp -6868 0.27 4452 ydiK 0.792
50 4501881 4501980 forward yjgZ -2220 0.32 152 yjhB,yjhC 0.792
51 1676251 1676350 forward tqsA -3231 0.33 152 ydgH 0.791
52 2166386 2166485 forward cyaR -1113 0.32 302 yegS 0.789
53 2429322 2429421 forward folX,yfcH -8650 0.28 6602 flk 0.789
54 4083889 4083988 forward yiiF -5848 0.29 102 fdhD 0.789
55 2491327 2491426 reverse yfdX -413 0.32 99 frc 0.789
56 1165025 1165124 reverse comR -2349 0.31 4299 fhuE 0.789
57 1933126 1933225 forward purT -2994 0.3 1502 yebK 0.787
58 1204407 1204506 reverse stfE,tfaE -3284 0.25 2299 ymfK 0.787
59 1493112 1493211 forward trg -929 0.32 152 ydcJ 0.786
60 1714050 1714149 forward gstA -995 0.31 3802 slyB 0.786
61 1397615 1397714 forward ynaJ -1920 0.32 5102 abgR 0.784
62 5034 5133 forward thrA,thrB,thrC,thrL 35 0.27 152 yaaX 0.784
63 4547775 4547874 reverse gntP -152 0.25 10299 nanC,nanM 0.784
64 2257385 2257484 forward yeiL -3300 0.3 4452 setB 0.783
65 660791 660890 forward tatE -2369 0.29 13402 ybeL 0.781
66 3945051 3945150 reverse hdfR -51 0.29 5749 hsrA,yieP 0.781
67 2238382 2238481 forward preA,preT -3811 0.33 3502 yeiG 0.779
68 925014 925113 reverse serW -44 0.31 3249 cspD 0.779
69 13587 13686 reverse hokC,mokC -3115 0.3 1849 yaaI 0.779
70 2734984 2735083 reverse aroF,tyrA -1937 0.33 999 rluD,yfiH 0.778
71 2880686 2880785 forward iap -4997 0.32 9502 queD 0.777
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72 1078128 1078227 forward rutR -3976 0.29 352 putP 0.776
73 187962 188061 forward cdaR -4293 0.32 1702 rpsB,tff,tsf 0.776
74 497037 497136 reverse aes -1152 0.25 7049 priC,ybaM 0.776
75 3181662 3181761 forward zupT -268 0.3 1152 yqiC 0.775
76 593123 593222 forward appY -9421 0.29 1652 cusA,cusB,cusC,cusF 0.775
77 1250189 1250288 forward ycgY -5317 0.33 52 dhaR 0.775
78 3597882 3597981 reverse rpoH -21 0.32 249 livJ 0.775
79 117883 117982 forward guaC -3347 0.33 802 ampD,ampE 0.774
80 1073265 1073364 forward ymdF -5739 0.31 152 rutR 0.774
81 3416188 3416287 reverse alaU,ileU,rrfD,rrfF,rrlD,rrsD,thrV -5208 0.28 4749 envR 0.774
82 4238098 4238197 forward yjbE,yjbF,yjbG,yjbH -296 0.33 202 psiE 0.773
83 3313859 3313958 forward psrO -4390 0.32 2752 argG 0.773
84 238253 238352 reverse yafU -444 0.29 2299 rnhA 0.773
85 2627711 2627810 reverse guaA,guaB -1220 0.31 799 yfgF 0.773
86 4156263 4156362 forward argB,argC,argH 32 0.3 202 oxyR 0.772
87 58274 58373 forward djlA -46 0.32 152 yabP,yabQ 0.772
88 3108528 3108627 reverse yghD,yghE -35 0.33 1399 speC 0.772
89 2750731 2750830 reverse ratA,ratB -1250 0.31 2049 grpE 0.772
90 454057 454156 forward bolA 5 0.32 252 tig 0.771
91 573621 573720 forward ybcQ -10 0.26 2952 essD,rrrD,rzpD 0.771
92 905496 905595 forward amiD,ybjQ -481 0.31 10152 ybjD 0.771
93 2407114 2407213 reverse yfbS -379 0.32 2499 lrhA 0.771
94 1733426 1733525 reverse ydhP -670 0.31 1349 grxD 0.771
95 604509 604608 forward pheP -1902 0.33 2502 hokE 0.77
96 1431895 1431994 forward lomR_2,stfR,tfaR -836 0.31 3202 micC 0.77
97 1395289 1395388 forward insH-4 -124 0.28 52 ynaJ 0.769
98 253317 253416 forward dinB,yafN,yafO,yafP -107 0.3 102 prfH,ykfJ 0.768
99 573571 573670 forward ybcQ 40 0.28 3002 essD,rrrD,rzpD 0.768
100 3986826 3986925 forward glmZ -2151 0.32 2302 cyaA 0.768

1Table B.12: Complete list of genes in this operon is nuoA,nuoB,nuoC,nuoE,nuoF,nuoG,nuoH,
nuoI,nuoJ,nuoK,nuoL,nuoM,nuoN.

2Table B.12: Complete list of genes in this operon is yafW,yafX,yafY,ykfB,ykfF,ykfG,ykfH,ykfI.
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B.5 Positive-Control-Set Sequence Segments

B.5.1 Training Set
>Alpha Operon: E. coli, Alteration: Unique: Slow/Fast + Complex Regulatory Mechanism.

UGUGCGUUUCCAUUUGAGUAUCCUGAAAACGGGCUUUUCAGCAUGGAACGUACAUAUUAAAUAGUAGGAGUGCAUAGUGGCCCGUAUAGCAGGCAUUAACAUUCCUGA
(((((((.(((((........[[[[....[[[[.....))))))))))))..........................]]]].....]]]]...........
>3_166_234 Cobalamin riboswitch: E. coli, Alteration: Normal. Expression Platform, Only.
GUCGCAUCUGGUUCUCAUCAUCGCGUAAUAUUGAUGAAACCUGCGGCAUCCUUCUUCUAUUGUGGAUGC
((((((...................................))))))......................
..............((((((...........))))))........((((((............))))))
>Cobalamin riboswitch: Bradyrhizobium japonicum. Alteration: Normal. Expression Platform, Only.1

GUCACACGCGAAGAUGUCGGUCGGGGAGUACAGGCAUUAGCUUCACCGGAGCAAUCGAUUGCUCCGCCGUAAAGCCUCGUUCGCUGUGACGUGCCACUGACGUCAUGCCGAGGUU
((((((.(((((.........(((((..(((.(((....)))....((((((((....))))))))..)))...))))))))))))))))........(((.((.....)).)))
.....(((.(((((((((.(((.....).)).)))))...))))..((((((((....)))))))).)))..(((((((...((.(((((((.......))))))))))))))))
>Fluoride riboswitch crcB motif.: Pseudomonas syringae. Alteration: Normal.
GAUCGGCGCAUUGGAGAUGGCAUUCCUCCAUUAACAAACCGCUGCGCCCGUAGCAGCUGAUGAUGCCUACAGAAACCUG
...........[[[[[..((((((.]]]]]..........(((((.......)))))....))))))............
>Fluoride rigoswitch: Thermotoga petrophila. Alteration: Normal.
GGGCGAUGAGGCCCGCCCAAACUGCCCUGAAAAGGGCUGAUGGCCUCUACUGGCUUGAUCAGUAGAGGCCA
.((((........))))......(((((....)))))...(((((((((((((.....)))))))))))))
.((((.[[[[[[))))......(((((....)))))..]]]]]].......................
>FMN riboswitch: Fusobacterium nucleatum. Alteration: Normal.
UCUUCGGGGCAGGGUGAAAUUCCCGACCGGUGGUAUAGUCCACGAAAGUAUUUGCUUUGAUUUGGUGAAAUUCCAAAACCGACAGUAGAGUCUGGAUGAGAGAAGAAAAGAAAUU
..((((((...(((.......))).....((((......))))..((((....))))...(((((.......))))).....(((......))).....................
(((((......(((.......))).....((((......))))..((((....))))...(((((.......))))).....(((......))).......))))).........
UAAGUUUUUUAACUUGUUUUCUACAUUUUAGUAAUCUUACCCGAAUUCUAUAAUUCGG
.......................................)))))).............
........................................(((((((....)))))))
>FMN riboswitch ribB leader: E. coli. Alteration: Normal.
GCUUAUUCUCAGGGCGGGGCGAAAUUCCCCACCGGCGGUAAAUCAACUCAGUUGAAAGCCCGCGAGCGCUUUGGGUGCGAACUCAAAGGACAGCAGAUCCGGUGUAAUUCCGGGG
..((((((((.....((((.......))))....((((....(((((...)))))....)))).....((((((((....))))))))..........((((.......))))..
CCGACGGUUAGAGUCCGGAUGGGAGAGAGUAACGAUUCUGUCGGGCAUGGACCCGCUCACGUUAUUUUGGCUAUAUGCCGCCACUCCUAAGACUGCCCUGAUUCUGGUAACCAUA
....(((.......))).......)))))))).................................................................((((((((((((.....(
AUUUUAGUGAGGUUUUUUUACCAUGAAUCAGACG
(((((...))))))....))))).)))))))...
>c-di-GMP riboswitch GEMM motif: Geobacter sulfurreducens. Alteration: Normal.
CUAAACCAUCCGCGAGGAUGGGGCGGAAAGCCCACAGGGUCUCACGAAGACAGCCGGGUUGCCGAACUAUCACACCACGAUAGGGCGGCGGCCCGGCU
((...((((((....))))))...))..((((..(.((((((.....)))))..))))))......................................
>Glycine riboswitch: aptamer 2 + 10 nt downstream: Fusobacterium nucleatum. Alteration: Normal.2

CUCUGGAGAGCUUAUCUAAGAGAUAACACCGAAGGAGCAAAGCUAAUUUUAGCCUAAACUCUCAGGUAAAAGGACGGAGAUAAUUGUGC
(((((......(((((.....))))).(((...((((....((((....)))).....))))..))).......)))))..........
>Lysine riboswitch: Thermotoga maritima. Alteration: Normal.
GACCCGACGGAGGCGCGCCCGAGAUGAGUAGGCUGUCCCAUCAGGGGAGGAAUCGGGGACGGCUGAAAGGCGAGGGCGCCGAAGGGUGCAGAGUUCCUCCCGCUCUGCAUGCCUG
..............(((((((((((((.(((((((((((..(.[[[[[[...)))))))))))))))))))))))))...((((((((((((.]]]]]]))))))))).)))(
((((((((((....(((((((((((((.(((((((((((..(.[[[[[[...)))))))))))))))))))))))))...((((((((((((.]]]]]]))))))))).)))(
GGGGUAUGGGGAAUACCCAUACCACUGUCACGGAGGUCUCUCCGUGGAGAGCCGAUCGGGUCUGGAAUCAGAAAAAGAUUUCAGACCUGAUUUGGCGUCUCUUCGGGGAGCGAAG
((((((((((.....)))))))))))...((((((....))))))((((((((((((((((((((((((.......)))))))))))))).))))).))))).............
((((((((((.....))))))))))).((((((((....))))))))....))).)))))))................................(((((((((((.....)))))
AGACGC
......
))))))
>Magnesium riboswitch mgtA: Salmonella enterica serovar Typhimurium. Alteration: Normal
CUUACCGGAGGCGACAUGGACCCUGAACCCACCCCUCUCCCGCGAUGGAGAAUUUUCCUUUUCCGGUAAGCCUGCCUCUGCUGUCUUACCGGUGUGUAAGACAGUGACACAAUAA
..............................................................((((((((...((....))...)))))))).....(((((((.(((.......
(((((((((((.....(((.........)))....(((((......)))))........))))))))))).........((((((((((......))))))))))..........
CGUCCCUGUUUUUAUUUAAACAUUGCUCAUCGGGCAAGGCUUUGCCGUGCCUGAAGA
.))).)))))))....(((((.((((((...)))))).).)))).............
......(((((......)))))....((.(((((((.(((...))).))))))).))
>Magnesium riboswitch mgtA: E. coli. Alteration: Normal.
CUUACCGGAGGUUAUAUGGAACCUGAUCCCACGCCUCUCCCUCGACGGAGAUUAAAACUUUUCCGGUAAGCCCGUCUUUUCACGGCGUUACCGGAUGCGUAAGGCCGUGA
(((((((((((((....(((......)))......(((((......)))))....))))..))))))))).........(((((((.((((.......)))).)))))))
.............................................................((((((((..((((......))))..))))))))...............
>Moco riboswitch: E. coli. Alteration: Normal.
ACACUCUAGCCUCUGCACCUGGGUCAACUGAUACGGUGCUUUGGCCGUGACAAUGCUCGUAAAGAUUGCCACCAGGGCGAAGGAAGAAAUGACUUCGCCUCCCGUAUCUGGAAAG
((((.(..(((...(((((...(((....)))..)))))...))).(((.((((..........)))).)))..((((((((..(....)..))))))))((.......))...)
GUGU
))))
>pH-responsive riboswitch PRE-alx RNA: E. coli. Alteration: pH.
AAGUGAGACCUUGCCGGAAGGCGAGGUCUAUGCAUAAAAAGCAGCGGCUGACGUCUUCCGACGUUGGCCGUUUUUUUAUGUGUA
......(((((((((....)))))))))(((((((((((((..((((((((((((....)))))))))))))))))))))))))
((((....))))(.(((((((((.((((..(((.......)))..))))..))))))))).)......................
>preQ1 riboswitch Class II: Streptococcus pneumoniae. Alteration: Normal.
GUUGAAUGAAUCAACCCUUGGUGCUUAGCUUCUUUCACCAAGCAUAUUACACGCGGAUAACCGCCAAAGGAGAAAAGAUG
(((((.....))))).(((((((......[[[[[[)))))))..........((((....)))).]]]]].]........
>Purine riboswitch Adenine-sensing add mRNA aptamer domain: V. vulnificus. Alteration: Normal.
CGCUUCAUAUAAUCCUAAUGAUAUGGUUUGGGAGUUUCUACCAAGAGCCUUAAACUCUUGAUUAUGAAGUCUGUCGCUUUAUCCGAAAUUUUAUAAAGAGAAGACUCAUGAAU
............(((((((.......)))))))........((((((.......)))))).((((((.((((.((.((((((..........)))))).))))))))))))..
(((((((((..(((((((..[[.[[)))))))[.....]((((((]]..]].))))))..)))))))))..........................................
>ROSE-1 riboswitch: Bradyrhizobium japonicum. Alteration: Heat. Not exact match in genome

10Table B.13: Complete list of genes in this operon is gspC,gspD,gspE,gspF,gspG,
gspH,gspI,gspJ,gspK,gspL,gspM,gspO.

1Structure partially validated, partially predicted via Vienna Software where not available.
2Ten nucleotides added to the structure with no structure.
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GCCGCGACAAGCGGUCCGGGCGCCCUAGGGGCCCGGCGGAGACGGGCGCCGGAGGUGUCCGACGCCUGCUCGUACCCAUCUUGCUCCUUGGAGGAUUUGGCUAUGAGGA
(((((.....)))))((((((.((....))))))))......((((((.((((....)))).))))))((((((.(((..((.(((....)))))..))).))))))..
>36_1_135 ROSE-P2 riboswitch: Bradyrhizobium. Alteration: Heat. Not exact match with genome
GCCGCUUACGGGCGGUGCGCGGGCGCCAGGUUGGGCUCGGCCAAAGCAACCAGGGCGCCGGACAGGUGUCUUGCACCGAUCGUCUUGCGCUCCUUCGUAUCCAUCUUGCUCUCUG
((((((....))))))(.((((((.((.....)))))))))...........((((((.((((.((((.....))))....)))).))))))(((((((.(((..((.(((....
GAGGACUUGGCUAUGAGGAC
)))))..))).)))))))..
>ROSE-2 riboswitch: E. coli. Alteration: Heat.
UCUGGCUACCUGACCUGUCCAUUGUGGAAGGUCUUACAUUCUCGCUGAUUUCAGGAGCUAUUGAUUAUGCGUA
..(((((.((((((((.(((.....))))))))......((.....))....)))))))).............
....((.....(((((.(((.....))))))))...((..(((.(((....))))))....)).....))...
>SAH riboswitch upstream of ahcY: Ralstonia solanacearum. Alteration: Normal. Inferred structural homology.
AAGUUUGCGAUCCGCUAACCGGUCAAGCCGUGUCGCGGAAGGUUGAUGAACCCGCUGAACUCCGGCAGACCCGGAGAAAGGUGAGCGCCCCAUGACU
.....(((..(((((....((((...))))....))))).((((....))))((((...((((((.....))))))...)))).)))..........
>SAM-I riboswitch metFH2: Thermoanaerobacter tengcongensis. Alteration: Normal.
AAUCUCUUAUCAAGAGAGGUGGAGGGACUGGCCCGAUGAAACCCGGCAACCAGCCUUAGGGCAUGGUGCCAAUUCCUGCAGCGGUUUCGCUGAAAGAUGAGAGAUUCUUGUAGUC
.................(((...(((.[[[[)))......))).(((..((((((....))).))).)))....]]]](((((....))))).((((.((((((((.....))))
(((((((((((......(((...(((.[[[[)))......))).(((..((((((....))).))).)))....]]]](((((....)))))...))))))))))).........
UCUUCUUUU
)))).))))
.........
>SAM-II riboswitch metA: Agrobacterium tumefaciens. Alteration: Normal. Structural Homology Inferred.
AGUGGUGAUUUGCCGACCGGCUUGCAGCCACUUUAAAGAAGUCGCUAAAGGGUCGAGGAAAAGGGCAAUUUCCUGGGACCGGCCGCGAUUUCGCUGCCGG
((((((.......[[[[[........))))))..................]]]]]....(((......))).......(((((((((....)))))))))
>SAM-III riboswitch SMK: Streptococcus gordonii. Alteration: Normal.
AGUUAUAUAGUCCCGAUAAGAUGGUAGGAAACUUCUAUCAGUUCUUUGUAACUCUAUAACAAUAUUUUUUAAGGGGGGAC
(((((((.((...........(((((((.....)))))))...)).)))))))...........................
.((((((..[[[[[...(((.(((((((.....)))))))...)))........))))))...............]]]]]
>SAM-IV riboswitch xylE gene: Streptomyces coelicolor. Alteration: Normal. Structural Homology Inferred.
GGUCAUGAGUGACAGUCAUGAGGCCCCGGCCGACUGUCCGGCAACCCUCCGUCCGUGGCGGGGUGCCCCGGGUGAAGACCAGGUCGUGGACAGCAAGGUCCACGGCAAGCGCGGA
((((....(.(((((((....(([[[[[[))))))))))(((..(((.(())..))).)))]]]]].]..))))..(((((((((......)))))))))....
CCCCUCGCGGAACCAGGGGUCC
.....................
>SAM-V riboswitch 62 metY: Candidatus Pelagibacter ubique. Alteration: Normal.
AGGCGCAUUUGAACUGUAUUGUACGCCUUGCAUAAAGCAAAAGUACUAAAAAA
((((..............[[[[[[))))..............]]]].]]....
>SAM-SAH riboswitch metK: Roseobacter sp. SK209-2-6. Alteration: Normal. Structural Homology Inferred.
CCUGUCACAACGGCUUCCUGGCGUGACGAGGUGACCUCAGUGGAGCAA
((((((((.....[[[[.....))))).)))..........]]]]...
>THF riboswitch folT: Eubacterium siraeum. Alteration: Normal.3

GGACAGAGUAGGUAAACGUGCGUAAAGUGCCUGAGGGACGGGGAGUUGUCCUCAGGACGAACACCGAAAGGUGGCGGUACGUUUACCGCAUCUCGCUGUUCCAUAUAAGAGAUAA
..........((((((((((........(((((((((((......).))))))))))....(((((..)))))....))))))))))...........((((((((...(.((((
((((((....((((((((((.((.....(((((((((((.[[[[.).))))))))))....(((((..)))))))..))))))))))...]]]].))))))..............
UCGCCGUAUUUAUCCCGCAUUAUGCGAUU
(.........))))).)....))))))))
.............................
>TPP riboswitch thiM mRNA: E. coli. Alteration: Normal.
GACUCGGGGUGCCCUUCUGCGUGAAGGCUGAGAAAUACCCGUAUCACCUGAUCUGGAUAAUGCCAGCGUAGGGAAGUCACGGACCACCAGGUCAUUGCUUCUUCACGUUAUGGCA
......(((((.(((((.....)))))........)))))......((((..((((......))))..))))((((.....................))))..............
((((..(((((.(((((.....)))))........)))))......((((..((((......))))..))))..))))..((((((...((((..((((((((((.....))).)
GGAGCAAACUAUGCAAGUCGACCUGCUGGGUUC
.................................
)))))).............))))...))).)))
>Tryptophan riboswitch trp Operon: E. coli. Alteration: Normal.
UGGUGGCGCACUUCCUGAAACGGGCAGUGUAUUCACCAUGCGUAAAGCAAUCAGAUACCCAGCCCGCCUAAUGAGCGGGCU
(((((...((((.((.......)).))))....)))))(((.....)))...........(((((((.......)))))))
....................(((((...(((.((....(((.....)))....)))))...)))))...............

B.5.2 Test Set
>ATP riboswitch: B. subtilis. ydaO Motif. Alteration: Normal.

AAUCGCUUAAUCUGAAAUCAGAGCGGGGGACCCAAUAGAACGGGUUUUUCCCGUAGGGGUGAAUCCUUUUUAGGUAGGGCUAACUCUCAUAUGCCCGAAUCCGUCAGCUAACCUC
((.(((((..((((....))))((((((...(((.....(((((.....))))))))(((...((((....))).)((((...[[[[[....))))..)))..........))))
GUAAGCGUUCGUGAGAG
)))))))))...]]]]]
>Cobalamin riboswitch: Salmonella. Alteration: Normal. Expression Platform, Only.
ACUUCGGUGGGAAGUGGGUUGCGAAGACGCGUACAGUCGAAAGACUGAACAUGCGCGUACCUGUAUACCCCUACCACCCUGAACAGGAUCAGGGU
(((((.....)))))((((((((...((((((((((((....)))))....)))))))...)))).)))).....(((((((......)))))))
>Fluoride riboswitch: Bacillus cereus. Alteration: Normal.
UAGGCGAUGGAGUUCGCCAUAAACGCUGCUUAGCUAAUGACUCCUACCAGUAUCACUACUGGUAGGAGUCUAUU
..((((........))))......(((....))).(((((((((((((((((....)))))))))))))).)))
..((((...[[[[[))))......(((....)))....]]]]]...............................
>FMN riboswitch ypaA mRNA: B. subtilis. Alteration: Normal.
UAUCCUUCGGGGCAGGGUGGAAAUCCCGACCGGCGGUAGUAAAGCACAUUUGCUUUAGAGCCCGUGACCCGUGUGCAUAAGCACGCGGUGGAUUCAGUUUAAGCUGAAGCCGACA
(((((((((...(.(((.......))))....((((...(((((((....)))))))....))))...((((((((....))))))))....(((((......)))))....(((
GUGAAAGUCUGGAUGGGAGAAGGAUGAUGAGCCGCUAUGCAAAAUGUUUAAAAAUGCAUAGUGUUAUUUCCUAUUGCGUAAAAUACCUAAAGCCCCGAAUUUUUUAUAAAUUCGG
(.......)))).....)))))))))..............................................................((((((((((((((.....))))))))
GGCUUU
))))))
>c-di-GMP riboswitch GEMM motif: Candidatus Desulforudis. Alteration: Normal.4

ACCCCGAAAGGGCAAACCGGUACGAAAGUCCGGGACGCAAAGCUACGGGUCCUUAAGUUCCAUGGGGAAUAGGACGGCUGAGCCGCUGGGGUUAUUACUUUCGCGGAGCCGCCCU
...........((...((((.((....))))))...))....................(((....)))(((((((((((...((((((((((....)))))))))))))))))))

3Partially predicted.
4Structural Homology Inferred.
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((((((.....((...((((.((....))))))...))...(((.((((((......((((....))))...)))..))))))...))))))................((((((.
AUGGGGCGG
)).......
...))))))
>Glycine riboswitch aptamer 2 + alteration of termination: Bacillus subtilis. Alteration: Normal.
CUCUGGAGAGUGUUUGUGCGGAUGCGCAAACCACCAAAGGGGACGUCUUUGCGUAUGCAAAGUAAACUUUCAGGUGCCAGGACAGAGAACCUUCAUUUUACAUGAGGUGUUUCUC
...........((((((((....)))))))).(((...((((...(.(((((....))))))....))))..)))...(((((((((((.....................)))))
(((((......((((((((....)))))))).(((...((((...(.(((((....))))))....))))..))).......)))))...((((((.....))))))........
UGUCCU
))))))
......
>Lysine riboswitch: B. subtilis. Alteration: Normal. Not the genome version.
GGAUAGAGGUGCGAACUUCAAGAGUAUGCCUUUGGAGAAAGAUGGAUUCUGUGAAAAAGGCUGAAAGGGGAGCGUCGCCGAAGCAAAUAAAACCCCAUCGGUAUUAUUUGCUGGC
((((((((.((((.(((((....((.((((((((((((.[[[[[.)))...))))))))).))...)))))..)))))..(((((((((.(((]]]]]))).)))))))))(((
CGGGCAUUGAAUAAAUGUCAGGCUGUCAAGAAAUCAUUUUCUUGGAGGGCUAUCC
((((((((.....)))))))))))(((((............))))).)))))))
>Magnesium riboswitch M-box of MgtE gene: B. subtilis. Alteration: Normal.
CUUCGUUAGGUGAGGCUCCUGUAUGGAGAUACGCUGCUGCCCAAAAAUGUCCAAAGACGCCAAUGGGUCAACAGAAAUCAUCGACAUAAGGUGAUUUUUAAUGCAGCUGGAUGCU
...........(((((..((((((((......(((((((((((....((((....))))....))))....))(((((((((.......)))))))))....))))).((((...
((((((.....(((((..((((((((......(((((((((((....((((....))))....))))....))(((((((((.......)))))))))....))))).((((...
UGUCCUAUGCCAUACAGUGCUAAAGCUCUACGAUUGAAGGCGCCCGCACGCUUUUUUUGCCGUGCUUCUUUCACCUUCAAUCCCGAAGG
.))))....)))))))).)).....)))...(((((((((.................................))))))))).......
.))))....)))))))).)).....))).))....))))..................................(((((......)))))
>Tuco riboswitch. Geobacter metallireducens. Alteration: Normal.
UAGUUUUUUCUCCGAUCCGUCAUACCUACCAGGCGCAGAGCCUCACGGUAUGCGGUCAACGGGUUCCGCUGGAAACGGCGGUGCCUCCCUUUUGGAAAGGAGAACUCUUUA
(((....((((((...((((..((((....((((.....))))...)))).)))).....((((.((((((....)))))).))))((.....))...))))))....)))
>pH-responsive riboswitch: Serratia marcescens. Alteration: pH.
AAGUGAGACCUUGCCGGAAGGCGAGGUUUGCUUGCAGCGUUCAUAGAGCGGCUGGCGUCUUCCGACGUUGGCCGU
......(((((((((....)))))))))...................((((((((((((....))))))))))))
((((....))))......(((((.((((.((((((.............)))).))))..))))))).........
>preQ1 riboswitch Class I subtype II: B. Subtilis. Alteration: Normal.
AGAGGUUCUAGCUACACCCUCUAUAAAAAACUAAGGACGAGCUGUAUCCUUGGAUACGGC
(((((............)))))........(((((((.........))))))).......
((((([[[[......)))))......]]]]......(((((((((..)))))))))
>Purine riboswitch Adenine-sensing ydhL mRNA aptamer domain: B. subtilis. Alteration: Normal.
UUGUAUAACCUCAAUAAUAUGGUUUGAGGGUGUCUACCAGGAACCGUAAAAUCCUGAUUACAAAAUUUGUUUAUGACAUUUUUUGUAAUCAGGAUUUU
........(((((((.......)))))))..................((((((((((((((((((..((((...))))..))))))))))))))))))
(((((...(((((((.......)))))))........((((((.......))))))..)))))...................................
>Purine riboswitch Guanine-sensing xpt mRNA aptamer domain: B. subtilis. Alteration: Normal.
CACUCAUAUAAUCGCGUGGAUAUGGCACGCAAGUUUCUACCGGGCACCGUAAAUGUCCGACUAUGGGUGAGCAAUGGAACCGCACGUGUACGGUUUUUUGUGAUAUCAGCAUUGC
.....(((...(((((((.......)))))))........((((((.......))))))..)))((((((((((((.(((((........)))))..............))))))
((((((((..(((((((..[[.[[)))))))[.....]((((((]]..]].))))))..))))))))........(((((........)))))............((((((((
UUGCUCUUUAUUUGAGCGGGCAAUGCU
)))))).....................
((((((.......))))))))))))))
>ROSE-N1 riboswitch: Rhizobium. Alteration: Heat.
GCCGAUGCCAAUUGGGUCGGCAUGGUCAGGGAGCGCCACGCUUCUUGGCGCUUCCUCGUAUCUAUGUUGCUCUACGGAGGAUGUAGCUAUGAGAAC
((((((.((....))))))))...(((((((((((...))))))))))).....((((((.(((((((.(((....)))))))))).))))))...
>ROSE-2387 riboswitch: Mesorhizobium loti. Alteration: Heat.
GUCGGUCGCCGCAUAAGGGGCCGAUGUGUCAGGGAGCGCCAUGCUUCUUGGCGUUCCCUCGUAUCUAUGUUGCUCCAAGGAGGAUGUAGUUAUG
(((((((.((......))))))))).....(((((((((((.......)))))))))))((((.(((((((.(((....)))))))))).))))
>SAM-I riboswitch apo yitJ S-box: B. subtilis. Alteration: Normal.
UUCUUAUCAAGAGAAGCAGAGGGACUGGCCCGACGAAGCUUCAGCAACCGGUGUAAUGGCGAUCAGCCAUGACCAAGGUGCUAAAUCCAGCAAGCUCGAACAGCUUGGAAGAUAA
.............((((...(((.....)))......)))).(((.((((((...(((((.....))))).)))..))))))........((((((.....)))))).....(((
((((((((....(((((.(((((.[[[[)))...)).)))))((((.(((((...(((((.....))))).)))..))))))...(]]]]((((((.....))))))..))))))
GAAGAGACAAAAUCACUGACAAAGUCUUCUUCUUAAGAGGAC
((((((((...............))).)))))))).......
)))....................((((((((...))))))))
>SAM-III riboswitch metK SMK box: Enterococcus faecalis. Alteration: Normal.
GUUACAAGUUCCCGAAAGGAUUUAGCAAGUAAUUGUCGUUACUUACUAAAGAUGCCUUGUAACCGAAACUAUUUAGGGGGAA
((((((((............(((((.((((((......)))))).))))).....))))))))...................
........(((((...(((.(((((.((((((......)))))).)))))....)))....................)))))
>SAM-IV riboswitch: Mycobacterium tuberculosis. Alteration: Normal.
CUAGGCUUCGAGUCGGUCAUGAGCGCCAGCGUCAAGCCCCGGCUUGCUGGCCGGCAACCCUCCAACCGCGGUGGGGUGCCCCGGGUGAUGACCAGGUUGAGUAGCCAUCGCCGGC
..............((((....(.((((((....(([[[[[[)).)))))))(((..(((.((......))..))).)))]]]]].]..))))..(((((((((((......)))
UGCGCGGCAAGCGCGGGUCCGCCAUGACGGGCCC
))))))))......(((((((......)))))))
>SAM-V riboswitch: Candidatus Pelagibacter ubique. Alteration: Normal. 5

AAUUAAGCCGGGCAGUUGAACCAUAUUGUGCGCCCUGCAUUUGCUUAAGCACUAAAAAGGAGAAA
......((.((((.((.............)))))).))...(((....)))..............
>SAM-SAH riboswitch: Oceanibulbus indolifex. Alteration: Normal. 6

AGAGCAUCACAACGGCUUCCUGACGUGGUGCGUAAUUUUUAUUGGAGCA
...(((((((..((([[[[)))..))))))).............]]]].
>THF riboswitch: Clostridium kluyveri. Alteration: Normal. 7

AGCAGAGUAGAACGUUGUGCGUAAAUCAUUGAUUUGCAGUGCCUUCUGAACGGGGAGUUGUCAGAGGGACGAAAAGCCUUUUAGGGCUUACGGUACAAGGUUCGCAUCCCGCUGC
.((((....((((.(((((((((((((...))))))).((.((((((((((.....))..))))))))))...((((((....))))))...)))))).)))).(((..((((((
UGCAUAAGGAGAAGCGGUGUAAUGAUUGU
(...........)))))))..))).))))
>TPP riboswitch thi-box tenA: B. subtilis. Alteration: Normal. 8

AACCACUAGGGGUGUCCUUCAUAAGGGCUGAGAUAAAAGUGUGACUUUUAGACCCUCAUAACUUGAACAGGUUCAGACCUGCGUAGGGAAGUGGAGCGGUAUUUGUGUUAUUUUA
..(((((.((((((((((.....))))).....((((((.....)))))).))))).....((((..(((((....)))))..))))..)))))...(((((..(((......))
CUAUGCCAAUUCCAAACCACUUUUCCUUGCGGGAAAGUGGUUU

5predicted by pknotsRG c⃝program. (Reeder et al., 2007).
6Structural Homology Inferred.
7predicted by Vienna.
8partially predicted by Vienna.
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).)))))......(((((((((((((....)))))))))))))
>Tryptophan riboswitch trp Operon: B. subtilis. Alteration: Normal.
GGUAGCAGAGAAUGAGUUUAGUUGAGCUGAGACAUUAUGUUUAUUCUACCCAAAAGAAGUCUUUCUUUUGGGUUUAUUUGUUAUAUAGUAUUUUAUCCUCUCAUGCCAUCUUCUC
(((((..(((((((((......((.(((((((...(((((.......(((((((((((....))))))))))).........)))))...........))))).))))....)))
.................................(((((((.((....(((((((((((....))))))))))).....))..))))))).....................(((((
AUUCUCCUUGCCAUAAGGAGUGAGAG
)))))).)))))..............
(..((((((.....))))))))))))

B.5.3 Excluded Set
>ATP Operon: Salmonella, Aleration: Unique: Temperature + Overlap with codons of mgtM.

UGGCAAGUUAACGCACGCUAUUCCUGCGCUGCUUGCCGAACCGGUGGGCAGC
((((((((...((((.........))))..))))))))..............
...........................(((((((((((...)))))))))))
>glms riboswitch: Thermoanaerobacter tengcongensis. Alteration: none.
AGCGCCUGGACUUAAAGCCTTAAGGCUUUAAGUUGACGAGGGCAGGGUUUAUCGAGACAUCGGCGGGUGCCCUGCGGUCUUCCUGCGACCGUUAGAGGACUGGUAAAACCACAGG
..[[[[.[(((((((((((....)))))))))))..[[[...((((((...]]](....)]]]]]...))))))(((((.[[[[[[)))))....((((((((..(((((((((.
CGACUGUGGCAUAGAGCAGUCCGGGCAGGAA
...)))))))))..).))))))).]]]]]].
>GlnA riboswitch: Synechococcus elongatus. Alteration: motif.
CGUUGGCCCAGUUUAUCUGGGUGGAAGUAAGGUCUUUGGCCUGAAGCAACGCGCCUCUCA
(((((.(((((.....)))))..[.....(((((...)))))....)))))]........
>58_1_57 Downstream-peptide motif: Synechococcus sp. CC9902. Alteration: motif.
CGUUGAGCUUCCAAUCGAAGCUGCAGUCAGACCCAUGCCAAGCAACGGGGGCGUGGG
(((((.(((((.....))))).........[[[[[[[[...)))))]].]]]]]]
>Hammerhead ribozyme Type I: Schistosoma Mansoni. Alteration: none. Tertiary stability.
GCAGGUACAUCCAGCUGAUGAGUCCCAAAUAGGACGAAAUGCCGGCAUCCUGGAUUCCACUGC
(((((...(((((((....)(((((......)))))..((((())))).)))))).)..))))
>Hammerhead ribozyme Type II: Marine metagenome. Alteration: none. Tertiary stability + pseudoknot.
GCGUGUCGGCCACGGCCCCUUCUGGACCUCGUCCGUGGCCCUGACGAGUAGGGUCCAGAGGGGACGAAACACGC
((((((.(((((((([[[[[[[[[[[[[[...))))))))......(((.]]]]]]]]]]]]])))..))))))
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Table B.13: Top Entropy Hits in E. coli. Significant hits of the forward and reverse strands of the E.
coli intergenic regions having high RND entropy (p-Val.<0.500), significantly low (p.Val.<0.050), GC and
Uracil compositions within the range of those for known riboswitches Threshold values and their corre-
sponding p-values have been calculated separately for each genome-wide test. 50 nt overlap used for 100
nt scan (100090 segments). 175 nt overlap used for 150 nt scan (66414 segments). Distance from up-
stream and downstream operons are the distance from the center of the hit to the stop and start codons of
upstream and downstream operons, respectively. Probability denotes the multinomial regression likelihood
of being a riboswitch under the LMFEGCRND model. Positions are according to gb|U00096.2 version
of E. coli and not gb|U00096.3 version. Negative values indicate distance to upstream operon. Columns
Upsream/Downstream Operon show gene ID within the operon.

E. coli Start End Strand Upstream Operon Dist. to Upstream MFE MFE p. Val. GC RND RND p. Val. Uracil Dist. to Downstream Downstream Operon Probability
100nt 4083889 4083988 forward yiiF -5848 -38.4 0.0267 0.53 58.6367989 0.0365 0.29 102 fdhD 0.789
100nt 187962 188061 forward cdaR -4293 -36.4 0.0466 0.53 59.0985985 0.0229 0.32 1702 rpsB,tff,tsf 0.776
100nt 952485 952584 forward ycaK -2955 -36.8 0.0419 0.52 58.3203011 0.0494 0.27 3452 ycaP 0.765
100nt 4115038 4115137 forward uspD,yiiS -3245 -37 0.0396 0.53 58.3563995 0.0477 0.33 1452 zapB 0.756

E. coli Start End Strand Upstream Operon Dist. to Upstream MFE MFE p. Val. GC RND RND p. Val. Uracil Dist. to Downstream Downstream Operon Probability
150nt 2686923 2687072 forward hmp -1797 -56.00 - 0.5333 90.7522964 0.0077 0.32000 6822 mltF 0.8671584129
150nt 452721 452870 forward yajQ -8244 -60.90 - 0.5200 88.2920990 - 0.23333 897 bolA 0.8664909005
150nt 1100699 1100848 forward ycdZ -610 -58.70 - 0.4933 87.8781967 - 0.30666 2397 csgA,csgB,csgC 0.8559710383
150nt 2887386 2887535 forward iap -11667 -56.40 - 0.5333 89.1240005 0.0294 0.31333 2772 queD 0.8254097700
150nt 3467187 3467336 forward gspO10 -2866 -56.10 - 0.5200 88.5419006 0.0450 0.29333 8397 slyX 0.8172816634
150nt 2553118 2553267 forward amiA,hemF -893 -57.40 - 0.5133 87.6467972 - 0.28666 3597 intZ 0.8125300407
150nt 2660264 2660413 forward ryfA -8005 -56.90 - 0.5000 87.1239014 - 0.32000 1122 suhB 0.8031908870
150nt 1766798 1766947 forward lpp -11038 -57.00 - 0.4800 85.6548004 - 0.25333 222 ydiK 0.7757616639
150nt 1718374 1718523 forward slyB 72 -58.70 - 0.4867 85.1240005 - 0.32666 597 ydhI,ydhJ,ydhK 0.7731205821
150nt 4356712 4356861 forward yjdK,yjdO -5529 -58.80 - 0.5200 86.0333023 - 0.26000 9897 fxsA 0.7661048174
150nt 149580 149729 forward yadD -1631 -57.80 - 0.4600 84.3807983 - 0.30666 12447 hrpB 0.7651519775
150nt 4604476 4604625 forward yjjZ -334 -57.20 - 0.4867 85.4507980 - 0.27333 1272 holD,rimI,yjjG 0.7621335387
150nt 3120069 3120218 forward C0719 -389 -56.40 - 0.5267 87.1032028 - 0.27333 6147 glcC 0.7610746622
150nt 1982024 1982173 forward uspC -3740 -56.20 - 0.5333 87.3750000 - 0.26666 2847 ftnB 0.7596676350
150nt 3921878 3922027 forward cbrB,cbrC -25167 -56.00 - 0.4933 85.5883026 - 0.30666 3222 asnA 0.7384917736
150nt 790921 791070 forward aroG -4934 -57.00 - 0.5333 86.4469986 - 0.28000 2997 acrZ 0.7345629930
150nt 4482291 4482440 forward yjgN -3263 -58.30 - 0.5200 85.4577026 - 0.28666 1872 lptF,lptG 0.7340587974
150nt 518357 518506 forward ybbL,ybbM -1692 -57.10 - 0.5000 85.1729965 - 0.26000 522 ybbA,ybbP 0.7300664783
150nt 1167546 1167695 forward ycfJ -106 -57.70 - 0.5333 85.9982986 - 0.27333 672 bhsA 0.7274026275
150nt 1642496 1642645 forward cspF -2326 -56.00 - 0.5333 86.4957962 - 0.25333 1347 ydfV 0.7190257311
150nt 3916103 3916252 forward cbrB,cbrC -19392 -60.90 - 0.5200 84.0416031 - 0.30000 8997 asnA 0.7181233764
150nt 3258127 3258276 forward yhaK,yhaL -4819 -55.70 - 0.5267 86.1580963 - 0.26000 7197 tdcR 0.7085512877
150nt 3721360 3721509 forward insK -1209 -57.70 - 0.5133 84.8648987 - 0.26000 2472 wecH 0.7070741653
150nt 2438211 2438360 forward flk -1165 -58.50 - 0.5267 84.9561996 - 0.24000 1497 mnmC 0.7053987384
150nt 1268246 1268395 forward kdsA,ychA,ychQ 75 -56.90 - 0.4933 84.3839035 - 0.29333 222 rdlA 0.7012539506
150nt 219458 219607 forward arfB,nlpE,yaeQ -3400 -59.90 - 0.5267 84.2009964 - 0.27333 3297 gmhB 0.6966923475
150nt 3514668 3514817 forward frlA,frlB,frlC,frlD,frlR -11784 -56.50 - 0.5333 85.6490021 - 0.27333 6147 mrcA 0.6895118356
150nt 3313884 3314033 forward psrO -4385 -55.60 - 0.5067 84.9284973 - 0.28666 2697 argG 0.6809250712
150nt 649808 649957 forward ybdR -7180 -58.10 - 0.5333 84.6990967 - 0.25333 1572 dpiA,dpiB 0.6750817299
150nt 2243989 2244138 forward yeiG -1142 -57.10 - 0.5333 84.3582993 - 0.26000 3672 yeiH 0.6381362677
150nt 4253685 4253834 forward ubiA,ubiC -1695 -55.80 - 0.5267 84.4711990 - 0.29333 897 dgkA 0.6285824776
150nt 2866503 2866652 forward ygbN -1937 -56.80 - 0.5333 84.2586975 - 0.30000 8022 iap 0.6268372536
150nt 3576825 3576974 reverse yhhW -69 -55.60 - 0.4800 88.6371994 0.0419 0.30666 154 gntK,gntR,gntU 0.8547886610
150nt 260750 260899 reverse yafW,yafX,yafY,ykfB,ykfF,ykfG,ykfH,ykfI -1723 -62.00 - 0.5267 86.8554001 - 0.32000 1504 phoE 0.8323625326
150nt 2195866 2196015 reverse yehS -13803 -58.00 - 0.5333 88.6897964 0.0405 0.27333 3754 mrp 0.8320623040
150nt 4176725 4176874 reverse sroH -11546 -58.80 - 0.5333 88.1481018 - 0.28000 3754 coaA 0.8252514601
150nt 133211 133360 reverse speD,speE,yacC -1498 -56.40 - 0.5133 88.0559998 - 0.28000 2029 yacH 0.8126859665
150nt 44332 44481 reverse apaG,apaH,lptD,pdxA,rsmA,surA -5969 -64.00 - 0.5333 85.3160019 - 0.26000 2479 caiA,caiB,caiC,caiD,caiE,caiT 0.8009238243
150nt 2248916 2249065 reverse nupX -1922 -55.70 - 0.5333 88.3962021 - 0.28000 1354 yeiE 0.7910096645
150nt 2774331 2774480 reverse ypjA -1758 -55.60 - 0.5200 87.4978027 - 0.26666 3229 ypjM_1,ypjM_2 0.7727379203
150nt 2184269 2184418 reverse yehA,yehB,yehC,yehD -1054 -56.20 - 0.5333 87.6942978 - 0.30666 529 rcnR 0.7722578049
150nt 1655707 1655856 reverse mlc,ynfK -8762 -58.20 - 0.5267 86.6440964 - 0.24000 304 ynfC 0.7716723680
150nt 2168389 2168538 reverse gatR_2 -951 -56.70 - 0.5133 86.7958984 - 0.31333 304 gatR_1 0.7715415359
150nt 3481959 3482108 reverse yhfA -1398 -57.90 - 0.5333 86.7799988 - 0.25333 2854 kefB,kefG,yheV 0.7633723617
150nt 314642 314791 reverse ykgA -953 -58.20 - 0.5067 85.1943970 - 0.32000 2254 ykgR 0.7403761148
150nt 2783559 2783708 reverse ileY -146 -56.20 - 0.4667 84.4744034 - 0.26666 604 ypjC 0.7329583764
150nt 4050403 4050552 reverse glnA,glnG,glnL -1410 -56.70 - 0.5267 86.2409973 - 0.27333 1729 yihA 0.7301918864
150nt 2465055 2465204 reverse yfdK,yfdL,yfdM,yfdN,yfdO -3965 -58.50 - 0.5333 85.6035004 - 0.25333 2104 mlaA 0.7242872119
150nt 2809717 2809866 reverse luxS -2444 -56.20 - 0.5333 86.4486008 - 0.29333 11779 ygaC 0.7205215693
150nt 3341463 3341612 reverse elbB,mtgA -5561 -57.50 - 0.5000 84.6742020 - 0.28000 3454 mlaB,mlaC,mlaD,mlaE,mlaF 0.7152099609
150nt 1950122 1950271 reverse torY,torZ -2401 -56.44 - 0.5200 85.7341003 - 0.24666 1654 aspS 0.7131192684
150nt 3059434 3059583 reverse ygfI -4786 -56.20 - 0.4933 84.9087982 - 0.27333 1879 yqfE 0.7122740149
150nt 2530006 2530155 reverse pdxK -4323 -58.20 - 0.5000 84.2724991 - 0.25333 829 zipA 0.7098694444
150nt 757742 757891 reverse mngR -6555 -57.90 - 0.4867 83.9291000 - 0.31333 4129 gltA 0.7092900276
150nt 4452551 4452700 reverse fbp -4 -56.90 - 0.5200 85.3691025 - 0.29333 4954 ppa 0.7049999237
150nt 3584997 3585146 reverse ugpA,ugpB,ugpC,ugpE,ugpQ -317 -59.30 - 0.5133 84.1650009 - 0.32000 229 ggt 0.7046704292
150nt 3459796 3459945 reverse bfd,bfr -4396 -59.60 - 0.5200 84.1896973 - 0.23333 6454 gspA,gspB 0.7009978294
150nt 3395856 3396005 reverse mreB,mreC,mreD -474 -56.20 - 0.5000 84.8627014 - 0.25333 1654 yhdP 0.6998521686
150nt 2321601 2321750 reverse yfaA,yfaP,yfaQ,yfaS_1,yfaS_2,yfaT -3709 -61.10 - 0.5333 83.9000015 - 0.24000 3829 rcsC 0.6947578788
150nt 4169919 4170068 reverse coaA -2101 -56.20 - 0.4933 84.4697037 - 0.26000 8704 trmA 0.6920779943
150nt 4029970 4030119 reverse mobA,mobB -8880 -57.80 - 0.5133 84.4968033 - 0.30000 1054 fadA,fadB 0.6919249892
150nt 2366493 2366642 reverse pmrD -4722 -56.00 - 0.5200 85.1843033 - 0.28000 2929 ais 0.6792802215
150nt 1850076 1850225 reverse ydjE -490 -57.40 - 0.5267 84.6417999 - 0.27333 3454 selD,topB,ydjA 0.6695327163
150nt 3246739 3246888 reverse yhaJ -4522 -56.00 - 0.4867 83.8035965 - 0.26000 4054 uxaA,uxaC 0.6671289802
150nt 3883703 3883852 reverse purP -9513 -56.60 - 0.5200 84.5989990 - 0.28000 2029 dnaA,dnaN,recF 0.6626442075
150nt 4395241 4395390 reverse yjfN -18720 -56.20 - 0.5267 84.9857025 - 0.29333 3229 queG 0.6626062393
150nt 2664571 2664720 reverse hcaT -79 -56.20 - 0.5267 84.7899017 - 0.24666 3304 trmJ 0.6529098153
150nt 2975533 2975682 reverse lysA -47 -57.20 - 0.5333 84.5955963 - 0.24666 1204 omrB 0.6521243453
150nt 796718 796867 reverse ybhA -39 -58.40 - 0.5333 83.8794022 - 0.26666 2929 modE,modF 0.6405209899
150nt 3288088 3288237 reverse rsmI -2330 -55.90 - 0.5067 83.9057007 - 0.28000 11479 agaR 0.6363855004
150nt 3211791 3211940 reverse mug -1119 -56.10 - 0.5200 84.1829987 - 0.25333 3304 tsaD 0.6315983534
150nt 2161503 2161652 reverse ogrK -3744 -55.70 - 0.5333 84.3114014 - 0.29333 10429 yegK,yegL 0.6064385772
150nt 3284413 3284562 reverse rsmI -6005 -55.60 - 0.5333 84.2777023 - 0.25333 7804 agaR 0.6025381684
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