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ABSTRACT

Even though the relation between asset return and its risk is a fundamental of finance,

the empirical evidence using the generalized autoregressive conditional Heteroskedasticity

in mean (GARCH-M) model has been conflicted. This dissertation focuses on the risk-

return tradeoff in the U.S. equity market. The first study investigates the factors causing

empirical results of the risk-return tradeoff in stock market and finds that the risk-return

tradeoff is hidden by market aggregation. The second study concentrates on the relation

between risk and return in agribusiness stock portfolios and finds supporting evidence of a

positive risk-return tradeoff and suggests multivariate GARCH-M specifications to produce

better results. The third study employs multivariate GARCH-M models and examines

Merton (1973) intertemporal capital asset pricing model (ICAPM). In this study, robust

estimates of a positive risk-return tradeoff for individual portfolios and the market portfolio

is revealed.
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CHAPTER 1

INTRODUCTION

The risk return tradeoff is fundamental to modern finance. Since the intertemporal

capital asset pricing model (ICAPM) was introduced by Merton(1973) numerous stud-

ies have explored the tradeoff between market expected return and conditional volatility.

Following Engle (1982)’s model of autoregressive conditional heteroskedasticity (ARCH),

many modified models (for example, GARCH(1986); TARCH(1993); EGARCH (1991))

have been developed and they have become a popular workhorse to estimate the evolution

of volatility as a proxy of portfolio risk. My main research focus is on empirical studies

with Bayesian inference using the GARCH-in-mean (GARCH-M) framework which de-

scribes the linear relation between expected risk and expected return designed by Engle,

Lilien, and Robins (1987) and Bollerslev, Engle, and Wooldridge (1988).

Previously, empirical results with the GARCH-M framework have faced two major

econometric difficulties in estimating the risk-return tradeoff precisely. First, even though

the belief that riskier assets must have higher expected returns is widely accepted, some

studies have found negative risk-return tradeoffs (cf., Nelson, 1991 and Glosten, Jagan-

nathan, and Runkle, 1993). Another difficulty is that most of those results are not statis-

tically significant. To solve those problems, possible solutions have been suggested ranging

from longer data series, the specification of the volatility evolution, and the presence of an
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intercept. My research has focused on resolving past econometric difficulties and estimating

the risk-return tradeoff accurately through Bayesian inference.

In the first study, I provide a new solution to estimate a positive, significant risk-return

tradeoff. The aggregation of different companies into the U.S. total market hides the true

company-level relation between risk and return. Using disaggregated portfolios by market

cap, book to market ratio, dividend yield, momemtum and industry, I find most of them

follow ICAPM except the largest market cap stock portfolio regardless of the volatility

specification and the largest 10% market cap stocks are the main cause of inaccurate past

results. Especially, higher market cap stock portfolios with lower book to market ratio and

higher momemtum show very weak risk-return tradeoff.

My research interest expands the univariate GARCH-M model to a multivariate

GARCH-M framework in the second study. Multivariate GARCH models have been com-

monly employed to estimate time-varying conditional covariances between asset returns

(for example, Bollerslev (1990); Engle and Kroner (1995); Engle (2002)). I investigate the

risk-return tradeoff in agribusiness stocks, specifically those in the agricultural production

and food manufacturing industries. The expected positive relation between stock return

and its risk holds for both industries, but the posterior probability of a positive tradeoff

is lower for the food manufacturing industry. The sign of the risk-return tradeoff is not

sensitive to volatility specification. A positive, significant risk-return tradeoff for the total

U.S. market portfolio is estimated in the bivariate GARCH-M framework. This implies

that a multivariate GARCH-M framework should be employed to demonstrate Merton’s

ICAPM as it may offer improved empirical results.

In the third study, using bivariate GARCH-M models, I find strong evidence of a

positive relation between expected return and time-varying (co)variance for individual
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portfolios formed by market size, book to market ratio, dividend yield, momentum and

industry and the market portfolio. I also construct a robust estimate for the positive risk-

return tradeoff across model specifications using Bayesian model averaging. A positive

risk-return tradeoff is estimated with high posterior probability and Merton’s ICAPM is

empirically supported.
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CHAPTER 2

IS AGGREGATION HIDING THE RISK-RETURN TRADEOFF?

2.1 INTRODUCTION

Since Merton’s (1973) seminal study it has been widely accepted throughout economics

and finance that investors expect higher returns in exchange for holding riskier assets.

While this theory has remained undisputed for almost forty years, the empirical evidence

of this relationship has been spottier than would be expected for so widely held a belief.

Researchers have encountered two major difficulties in estimating the risk-return tradeoff

for U.S. and U.K. stock market portfolios (the most common empirical examples). In some

studies, the econometric models find the expected positive relationship between risk and

returns but the relationship is not statistically significant. In other studies, researchers have

even estimated negative risk-return tradeoffs (cf., Nelson, 1991 and Glosten, Jagannathan,

and Runkle, 1993).

Researchers have rarely doubted the theory at the heart of the issue, but rather have

searched for an econometric answer to the dilemma. Most empirical research has utilized

either ARCH (Engle, 1982) or GARCH (Bollerslev, 1986) models to represent the stock

market excess return data and the evolution over time of the portfolio risk (measured

commonly by the conditional volatility of the excess returns). Thus, poor empirical results
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have spurred researchers to invent new, more flexible variance specifications resulting in

the introduction of such models as EGARCH, TARCH, QGARCH, and NAGARCH to

name some of the most common varieties (Nelson, 1991; Rabemananjara and Zakoian,

1995; Glosten, Jagannathan, and Runkle, 1993; Campbell and Hentschel, 1992; Sentana,

1995; Engle and Ng, 1993). Other researchers have investigated the potential role of the

data span (Lundblad, 2007), that is the length of time for which data is collected, the data

frequency (Anderson and Bollerslev, 1998 and Bali and Peng, 2006), and the role of an

intercept term in the relationship linking excess returns to risk (Scruggs, 1998; Lanne and

Saikkonen, 2006; Lanne and Luoto 2008). While many of these approaches have yielded

some improvement in empirical results, all such improvements seem fragile rather than

being robust across specification, data sample, or data source.

In this study we investigate a different cause for these empirical difficulties: the aggre-

gation of many individual companies into the stock portfolios examined and, simultane-

ously, whether investors use the same measure of risk for all types of stocks. If investors in

different types of stocks all have the same risk-return tradeoff (demand the same expected

excess return for an additional amount of risk), that would tend to make aggregation of

the stock returns into a total market portfolio acceptable. However, a second condition

is neccesary; the measure of risk must also be the same across the different stocks or at

least economists must use the correct measure for each stock in constructing the aggre-

gate variables to use in research. If either of these conditions do not hold, then empirical

research performed with aggregate, total stock market data will be prone to yield false

conclusions from econometric studies. In this paper, we contend that the second condition

does not hold and this difference in risk measures causes the empirical confusion in trying

to estimate the risk-return tradeoff.
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Merton’s theory says expected excess returns should be a linear function of the risk

of an investment. Econometricians searching for empirical evidence to support his theory

have, at least since the introduction of GARCH models (Bollerslev, 1986); traditionally

employed the conditional volatility of excess returns as the measure of risk. Implicitly or

explicitly, this is an assumption; that is, conditional volatility is a proxy for the investor’s

expected risk of that investment. Depending on the investor’s time horizon, knowledge

base, risk attitudes, and investment goals, conditional volatility might be a good or even

excellent proxy for risk, or it might be a very poor one. If risk is not well proxied by

conditional volatility, then the model estimated suffers from an error-in-variables (or mea-

surement error if you prefer) problem and the estimators obtained will not provide consis-

tent estimates of the risk-return tradeoff. Ludvigson and Ng (2007) point out that too few

conditioning variables create insignificant results which implies the time-varying volatility

may not be an ideal proxy for the risk and Ghysels, Santa-Clara, and Valkanov (2005)

propose a different volatility estimator to find the positive risk-return tradeoff. Risk would

also not be well-proxied for by conditional volatility under Campbell and Vuolteenaho’s

(2004) two-beta model, where cash-flow risk and discount-rate risk have different prices.

Campbell and Vuolteenaho find different stocks have different mixes of these two betas

and thus command different expected excess returns.

In this chapter, we will examine whether aggregation of stock return data into market

aggregate portfolios is a factor of the empirical shortcomings that have been experienced

in the estimation of the risk-return tradeoff. In searching for aggregation issues we will

employ data on U.S. stock returns that are disaggregated from the total market in multiple

dimensions as we search for the dimension in which aggregation might be causing the prob-

lems. Thus, we will set up less aggregated portfolios that are deconstructed along market
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capitalization, book-to-market ratios, dividend yield, momentum and industry lines. If

risk attitudes, or investors’ perceived risk measures vary across these different dimensions

our empirical results should uncover those differences and allow us to create improved

estimates of the risk-return tradeoff.

The remainder of the chapter is organized as follow. Section 2 describes the mean

equation and the variance equation in the GARCH-M framework and explains our Bayesian

computation method. Section 3 provides the data description. Section 4 discusses the

empirical results from estimating the risk-return tradeoff for total U.S. stock market returns

and a variety of less aggregated portfolios sorted by the different market characteristics

mentioned above. Section 5 looks at the aggregation issue and what might be causing it

in more depth. Section 6 concludes.

2.2 ECONOMETRIC METHODOLOGY

2.2.1 PREVIOUS WORK AND BASIC MODELS

The GARCH in mean (GARCH-M) model (Engle, Lilien, and Robins, 1987 and Boller-

slev, Engle, and Wooldridge, 1988) has been employed and modified to examine the risk

return tradeoff in numerous previous works. The GARCH-M model consists of the mean

equation and the volitility specification. The mean equation in the GARCH-M framework

describes the linear relation between expected return and expected variance. The mean

equation which has been widely used in empirical literature can be written as

rt = µ+ λht + εt, εt ∼ N(0, ht) (1)
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where rt is the excess return in period t, λ is the coefficient of relative risk aversion, and

ht is the conditional volatility of returns which is the proxy of the risk of the portfolio.

The volatility specification characterizes the progress of the conditional variance of

the error from the mean equation as a function of past conditional variances and lagged

errors. Previously, the conditional variance specifications have been considered one of the

most critical causes for the confounding empirical results. To remove this suspicion and

demonstrate the consistent results across the conditional volatility specifications, we em-

ploy three popular alternative specifications in this study. They are as follows: GARCH

(Bollerslev, 1986), TARCH (Rabemananjara and Zakoian, 1995; Glosten, Jagannathan,

and Runkle, 1993), QGARCH (Campbell and Hentschel, 1992; Sentana, 1995). Since the

GARCH specification imposes a symmetric response to return shocks in conditional volatil-

ity, numerous refinements of the GARCH model such as EGARCH, NGARCH, TARCH,

and QGARCH have been developed by researchers to better reflect the feature of the eq-

uity market which is commonly called the leverage effect. The TARCH and QGARCH

specifications are popular modifications of the GARCH model to capture an asymmetric

response with negative return errors having a bigger effect on conditional volatility than

positive return errors. These different models for the evolution of volatility are as follows:

GARCH (1,1) : ht = ω + αε2t−1 + βht−1

TARCH (1,1) : ht = ω + αε2t−1 + γIt−1ε
2
t−1 + βht−1

QGARCH(1,1) : ht = ω + α(εt−1 − γ)2 + βht−1 (2)

where It−1 in the TARCH model is an indicator function that equals one when εt−1 is

negative and zero otherwise.
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Campbell and Hentschel (1992) point out that the sign of γ is expected to be positive

because a positive γ creates a negative relation between a market or portfolio error, εt−1,

and conditional volatility the next period, ht.

In Merton’s work, the expected excess return is a linear relation with its conditional

variance and covariance between the market portfolio and the hedging instrument. Gener-

ally, time varying volatility, ht, is considered to proxy the market risk, however, investers’

expected risk could be different from the estimated conditional volatiltiy. If conditional

volatility is a suitable as a risk proxy, the risk-return tradeoff should be positive and

significant.

2.2.2 THE BAYESIAN ESTIMATION ALGORITHM

We utilize a simple Bayesian estimation approach because of its benefits in the presence

of inequality restrictions (Geweke, 1986). The hope is that improving estimation of the

volatility equation will yield better estimates of conditional volatility. If this provides a

better proxy for risk, it might help resolve past empirical difficulties. The prior distribution

and the likelihood function are two key components in a Bayesian analysis of a statistical

model. The posterior distribution results from the product of the prior and the likelihood

and is an optimal combination of those two information sources (Zellner, 1971).

We assume that the error term follows a normal density. The log likelihood function

constructed by summing the log normal densities can be expressed as

L(r|θ) =
∑
t=1

Lt(r|θ); Lt(r|θ) = −1/2 · log ht − ε2t/2ht. (3)
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The prior distribution summarizes the information in the researcher’s subjective beliefs

about model parameters prior to seeing the data. Our prior beliefs are simply that the

conditional volatility should be positive in all the time. Instead of following past practices of

imposing positivity on the individual parameters of variance specifications in equation (2),

we impose positivity directly on volatility. This opens the possibility that the coefficients in

equation (2) could be negative if negative parameters are more appropriate than positive

ones. Independent normal prior densities are chosen for all individual parameters and

represented by N(mean, variance). All prior means are set to zeros. Given the magnitude

of the variances, those independent normal priors are relatively diffuse except for the

information from the indicator function, I(ht) and the assumed lack of correlation between

coefficients. This prior can be represented as

p(µ, λ, ω, α, γ, β) = I(ht) ·Nµ(0, 5) ·Nλ(0, 5) ·Nω(0, 5) ·Nα(0, 5) ·Nγ(0, 5) ·Nβ(0, 5). (4)

An indicator function (I(ht)) in the prior density equals one if a parameter vector

generates positive and finite conditional volatility in all time periods and zero otherwise.

The posterior density is proportional to the likelihood function times the prior distri-

bution. When a simple analytical formula for the posterior density doesn’t exist, posterior

simulation is required to calculate posterior results. This arises most commonly from com-

plicated prior density. Since our prior density is truncated by inequality constraints and a

nonlinear function, it is not feasible to compute the posterior distribution analytically.

Previously, various posterior simulations have been employed in Bayesian studies on

GARCH models. Geweke (1989) and Kleibergen and van Dijk (1993) used importance

sampling to formulate exact predictive densities and to explore the nonstationarity of
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GARCH specifications, respectively. Bauwens and Lubrano (1998, 2002) employed the

Griddy-Gibbs sampler and compared the performances of Bayesian simulations using an

asymmetric GARCH specification (TARCH). Nakatsuma (2000) proposed a new Markov

chain Monte Carlo (MCMC) method for the ARMA-GARCH model. Vrontos et al. (2000)

demonstrated full Bayesian inference for GARCH and EGARCH models and Osiewalski

and Pipien (2004) performed Bayesian inference on a multivariate GARCH model with

the Metropolis-Hastings algorithm. In our study, the Random Walk Chain Metropolis-

Hastings algorithm (Koop, 2003) is employed to estimate the posterior distribution. For-

mally, the Random Walk Chain Metropolis-Hastings algorithm generates candidate draws

according to

θ∗ = θ(s−1) + z (5)

where z is called the increment random variable. Equation (5) implies that candidates are

generated by a random walk and the current candidate is drawn randomly by addition of

the increment random variable, z, to the previous parameter vector. The coefficients from

maximum likelihood estimation (MLE) can be used as the starting value, θ(0) . Each draw

is accepted with the acceptance probability

α(θ∗|θ(s−1)) = min
[ p(θ = θ∗|r)
p(θ = θ(s−1)|r)

, 1
]

(6)

where p(θ|y) is the posterior distribution. If a current draw is not accepted, the previous

draw is reused.

We want a high proportion of the candidate draws to be from the areas of high

posterior probability but also want to adequately sample from the regions of low posterior
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probability. The acceptance probability accomplishes this by favoring draws from areas of

high posterior probability while still sometimes keeping draws from low probability regions

according to acceptance probability in eq. (6). The candidate generating density for the

Random Walk Chain Metropolis-Hastings algorithm is determined by the density of the

increment random variable, z. The multivariate normal distribution is a common and

convenient choice of density for z and we employ it here. The var(θ̂ML)=Σ̂ from MLE

is used in the candidate generating density along with c, a tuning constant to adjust the

acceptance rate. The candidate generating density then can be written as

q(θ|θ(s−1)) = N(θ(s−1), c · Σ̂). (7)

There is no general rule for an optimal acceptance rate. However, as Koop (2003)

points out, too small an acceptance rate implies that the chain will not move enough to

get information about the entire posterior density because candidate draws are almost

always rejected and the region where the chain explores stays too close to the initial

value, θ(0). On the other hand, too high an acceptance rate (close to unity) will result in

needing an unfeasibly large number of candidate draws to ensure that the chain collects

information about the entire posterior density. Koop suggests that an acceptance rate of

roughly 0.5 works best empirically. The value of c for each estimation is set to around 0.05

(c ≈ 0.05), in each case making the acceptance rate approximately 0.45. 50,000 draws are

generated and the first 10,000 draws discarded to remove the effect of initial value for each

prior, saving 40,000 draws for computations. Each accepted draw weights equally in the

Metropolis-Hastings algorithm and the simple average is the estimated posterior mean. In

other words, the average value of any general function of the model parameters, g(θ), of
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the S draws from the posterior distribution is the estimated posterior mean of the function

g(θ). This can be expressed as

ĝS =
1
S

S∑
r=1

g(θ(s)). (8)

The posterior mean is usually employed as the point estimator of the posterior density,

and we follow that convention here.

2.3 DATA DESCRIPTION

We use monthly return data for the period 1927 ∼ 2008 (T=984) compiled by the

CRSP (Center for Research in Security Prices). The value-weighted CRSP index of NYSE,

AMEX, and Nasdaq is employed for the U.S. total market returns. The excess return on

the market, the difference between market return and risk free asset return, is the value-

weighted return on all NYSE, AMEX, and NASDAQ stocks (from CRSP) minus the one-

month Treasury bill rate (from Ibbotson Associates). To investigate the risk-return tradeoff

of decomposed market return portfolios, monthly returns of 10 decile portfolios formed on

market capitalization, book to market (BM; A ratio used to find the value of a company by

comparing the book value of a firm to its market value), dividend yield, momentum and 17

industry-specific portfolios are used. Two subsets of five-by-five quiltile portfolios formed

by market cap and book to market ratio and market cap and momentum are also em-

ployed to investigate in additional detail. The S5B5 (biggest market cap, highest BM) and

S5M1 (biggest market cap, lowest momemtum) portfolios have missing observations. For

the S5B5 portfolio, we use the period of data after the missing observations (from 1931).

There are 4 missing data point in the S5M1 portfolio, so we replace the missing values with
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the average of S5M1 portfolio. The sample period of the returns formed on market capi-

talization, book to market, and industry is 1927 ∼ 2008 (T=984). The data on portfolios

formed by dividend yield are from the period 1928 ∼ 2008 (T=972). In this study, we cre-

ated value weighted lower 50% to 90% portfolios based on market cap to demonstrate the

effect of aggregation. All returns were obtained from the Kenneth R. French on-line data

library (http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html).

2.4 EMPIRICAL RESULTS OF UNIDIRECTIONAL DISAGGREGATION

Table I shows the posterior results of the risk return tradeoff for the U.S. total market

return. Even though the estimated λs are positive across all three volatility specifications,

they are not particularly statistically significant. The symmetric, standard GARCH model

performs best, with a 91% posterior probability of a positive risk-return tradeoff. The other

two specifications have below an 80% posterior probability of positive λ. These results are

fairly standard for this type of analysis (for example, Nelson, 1991; Glosten, Jagannathan,

and Runkle, 1993; Campbell and Hentschel, 1992).

2.4.1 DISAGGREGATING BY MARKET CAPITALIZATION

To investigate the aggregation effect of total market portfolio, we look at the portfolio

disaggregated by market cap first. Table II provides the empirical estimates of the risk-

return tradeoff, λ in equation (1), for 10 decile portfolios formed by market cap for three

different volatility specifications. If aggregation across firms of different market size is

leading to the empirical difficulty in estimating the risk return tradeoff, these results should

reveal it. The results in table II confirm that removing the effect of aggregation greatly
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improves the estimation of the risk return tradeoff. Regardless of the variance specification,

a positive relation between expected return and expected volatility is estimated for each

size portfolio. However, while λ is always positive, it is not always statistically significant.

The results in table II show a clear pattern of more statistically precise estimates for smaller

cap portfolios, with the probability of positive risk-return tradeoff highest for stocks with

smaller market cap.

An important result from Table II is that the biggest size portfolio (decile 10) does

not have a statistically significant risk-return tradeoff for any of the three volatility spec-

ifications. With the symmetric specification, GARCH, we find a significant, positive λ

through decile 1 to 9. For portfolios of decile 1 to 9, the probability of a positive λ exceeds

95% in all cases, but the probability drops to the 85% for decile 10 portfolio. However,

the probability of a positive λ drops sooner for the relatively larger size portfolios with the

asymmetric specifications, TARCH and QGARCH. The TARCH model results show the

estimated λ is strongly positive (probability > 90%) for portfolios from decile 1 to 8 while

the first 9 size portfolios show a probability of being positive that exceeds 90% for the

relation between return and conditional variance with the QGARCH specification. The

aggregation of market cap portfolios appears to hide the expected behavior of smaller size

portfolios. It is only the largest market cap stocks that cause the statistical difficulties.

The estimation issues in earlier studies using the total market portfolio are possibly due

to the market portfolio data being dominated by companies with the larger market caps.

Figure 1 shows the time varying conditional volatility of the portfolios from deciles 2

to 10 based on market cap from the GARCH variance specification. As the market cap of

the portfolio increases, the estimated mean and standard deviation of conditional volatility

decreases. The figure clearly shows that ht, the proxy for risk, declines as the market cap
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of firms in the portfolio increases. The figure raises the possibility that the much lower

volatility in large cap stocks is contributing to the econometric difficulty in estimating the

risk-return tradeoff.

Table III shows the empirical results of the market-cap-weighted, cumulative portfolios

containing from 50% to 90% of total firms and market portfolio. These results confirm

the phonomenon revealed in the previous results on individual decile portfolios and show

again that the larger market cap stocks are the cause of the difficulty in estimating the

risk-return tradeoff. For all three variance specifications, a positive risk-return tradeoff

is estimated with a high probability of being positive for all portfolios except the total

market portfolio. Interestingly, the probability of positive λ drops dramatically across all

three volatility specifications when we move from the 90% cumulative market cap portfolio

to the total U.S. market portfolio. The largest 10% of stocks by market cap severely

degrades the empirical results when estimating the risk-return tradeoff. Figure 2 displays

the posterior distributions of λ for the low 60%, low 80%, and the total market portfolio

from the TARCH specification. The posterior distributions of the risk return tradeoff move

toward zero as bigger stocks are added and the inclusion of the largest decile stocks moves

the posterior distribution strongly toward zero and significantly increases the posterior

standard deviation.

Is it aggregation in general that matters or is it the firm size (as measured by market

cap) that matters? To investigate this further, we look at disaggregated portfolios in four

other dimensions.

16



2.4.2 DISAGGREGATING BY BOOK TO MARKET (BM)

First, we look at portfolios comprising deciles of the total U.S. market decomposed

by book to market ratio (BM). The empirical results for the 10 decile portfolios formed on

book to market (BM) are provided in table IV. The revealed pattern on these portfolios

is not as clear as the results of the 10 decile portfolios based on market cap. Generally, a

positive sign for λ is estimated, but two negative signs of the estimated λ also are found

in the lowest book to market portfolios in the asymmetric specifications (TARCH and

QGARCH). Depending on the variance specification, we find the probability of a positive

risk return tradeoff exceeds 90% for 7 (GARCH), 5 (TARCH), or 4 (QGARCH) of the 10

portfolios. There is no clear trend to the probabilities as BM increases. Figure 3 shows

the time varying conditional volatility of deciles 2 to 10 formed on book to market from

the GARCH specification. Unlike in figure 1, no clear pattern is revealed. These results

suggest that the risk-return tradeoff does not vary systematically by book to market ratio.

However, the portfolios from deciles 7 to 10 show a statistically positive risk-return tradeoff

regardless of volatility specifications, so we can say that a significant and positive λ is

usually revealed on higher book to market ratio portfolios.

2.4.3 DISAGGREGATING ON DIVIDEND YIELD

To further determine if market cap is the key characteristic, we also looked at portfolios

disaggregated by dividend yield. Table V provides the empirical results of the risk-return

tradeoff with 10 decile portfolios formed by dividend yield. Except for the decile 1 port-

folio with the TARCH model, a positive relation between risk and return is found on all

portfolios. However, the number of portfolios with statistically strong evidence is fewer

17



than that of portfolios formed by market cap and book to market (BM). With the GARCH

and QGARCH specifications, five portfolios (decile 6 through 10) have probabilities greater

than 90% of a positive λ. However, for the TARCH specification, only 4 deciles match that

standard. No clear pattern is revealed across all deciles but the stocks with higher divi-

dend yield seem to produce a stronger positive risk return tradeoff across three volatility

specifications. In examining the estimated mean and standard deviation of ht, no general

tendency emerges. While the smaller market cap portfolios have relatively larger estimated

mean and standard deviation than the bigger market cap portfolios and the bigger book to

market portfolios have relatively larger estimated mean and standard deviation than the

smaller book to market portfolios across the volatility specifications, the estimated mean

and standard deviation of ht for the portfolios formed by dividend yield show no particular

pattern (see figure 4). Even though there is no clear pattern from decile 1 to 10 as in the

market cap portfolios, we can find a very similar trend to the portfolios formed on book to

market. The statistically positive risk-return tradeoff is easily estimated on the portfolios

from higher dividend yield portfolios (decile 8 to 10) across volatility specifications.

2.4.4 DISAGGREGATING ON MOMENTUM

Table VI shows the empirical results of the risk-return tradeoff for 10 decile portfolios

formed by momentum for three variance equations. The results of 10 decile momemtum

portfolios are close to those of 10 decile market cap portfolios; the significant, positive risk-

return tradeoff is revealed on smaller momemtum portfolios across volatility specifications.

With the GARCH specification, the probability of a positive λ exceeds 90% for deciles

1 to 7 portfolios while portfolios for deciles 1,2,3,4, and 6 have even more statistically

accurate estimates (probability > 95%). The probability of positive λ decreases sooner for
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the higher momentum portfolios with asymmetric volatility specifications, TARCH and

QGARCH. This pattern is very similar to that of market cap portfolios. For the first 4

decile portfolios, a significant, positive λ is estimated on TARCH and QGARCH but the

probability of positive λ drops with higher momemtum portfolios.

Another interesting result of disaggregating portfolios on momentum is that a negative

risk-return tradeoff is estimated on the decile 10 portfolio with all volatility specifications.

With GARCH and QGARCH specifications, the probability of negative λ exceeds 90%.

The highest momemtum portfolio plays the same role in causing the econometric difficulty

in estimating the precise risk-return tradeoff as the largest market cap portfolio does.

Figure 5 displays the time varying conditional volatility of the portfolios from decile 2

to 10 based on momentum from the GARCH volatility specification. These figures show

a similar pattern to that of the market cap portfolios; as the momemtum increases, the

estimated mean and standard deviation of conditional volatility decreases.

2.4.5 THE MONTHLY RISK RETURN TRADEOFF OF THE PORTFOLIOS FORMED

BY INDUSTRY

As a final test of the impact of disaggregation on estimation of the risk-return tradeoff,

we examine seventeen industry-specific portfolios. If certain industries behave differently,

this should reveal a pattern. Table VII shows the results of the estimation of λ for the 17

industry-specific portfolios. A negative risk return tradeoff is estimated for both the oil and

utility industries with all three specifications and for the two asymmetric specifications the

mining industry portfolio has a negative estimated risk-return but none of these negative

estimates are significant. Strongly positive risk-return tradeoffs are difficult to find. Out of

the seventeen industries, the results reveal either nine (GARCH), two (TARCH), or seven
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(QGARCH) estimated λs with greater than 90% probabilities of being positive. Six of the

seven industries with significant results for QGARCH are also significant for the GARCH

specification and the two industries with good results under the TARCH variance model

also have significant λs under the other two specifications, so the industries that have

good estimates are quite consistent, but not many industries show positive and significant

estimates of the risk-return tradeoff. Clearly, disaggregation by industry does not improve

empirical results when estimating the risk-return tradeoff.

2.5 SEARCHING FOR A CAUSE: BIDIRECTIONAL DISAGGREGATION

Given the empirical results from the previous section, we know much more about

the causes of past statistical difficulties in estimating the risk-return tradeoff. First, the

volatility specification is not a major issue as our results are generally robust across three

variance specifications. Second, insufficient data span and the presence of an intercept

are not the main culprits to the empirical difficulties. Instead, we find that the key is

aggregation of stock data into a total market portfolio. By disaggregating the data in

many dimensions, we have uncovered the role of market capitalization as perhaps the most

useful direction in which to disaggregate the data. Some of the other dimensions of data

disaggregation also reveal insights, particularly momentum, but none are as clear as when

the data is disaggregated by the stocks’ market caps.

In this section, we try to narrow down our focus on the cause of the empirical diffi-

culties in estimating the risk return tradeoff by disaggregating the total market portfolio

in two new ways. The new portfolio sets contain 25 portfolios each, with the market dis-

aggregated into quintiles in the directions of market cap versus book to market ratio or
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versus momentum. The hope is that these five-by-five portfolios will allow us to pinpoint

more precisely why the very large market cap stocks behave differently with respect to risk

and expected returns.

2.5.1 BIDIRECTIONAL EXAMINATION OF MARKET CAP AND BOOK TO MAR-

KET RATIO

Table VIII presents the empirical results of the risk-return tradeoff on the five-by-five

quintile portfolios formed by market cap and book to market ratio. For the sake of simplity,

we characterize all portfolios by capital letters and numbers, for example, S1B1 represents

the portfolio formed by smallest market cap with lowest book to market ratio. Regardless

of the volatility specifications and book to market ratio, the smallest market cap portfolios

don’t have any problem in estimating statistically significant and positive λ. All of their

probabilities of positive λ exceed 95%. For quintile 2 market cap portfolios, all of estimated

λs are stastically significant and positive with the symmetric GARCH specification and

only S2B1 shows insignificant results from the asymmetric specifications. A pattern of

difficulty in estimating λ from the portfolios formed with larger market cap and lower

book to market ratio becomes clear as the rest of Table VIII is examined. For portfolios

with large market caps and low book to market ratio, we have difficulty estimating a

significant, positive risk-return tradeoff. This results suggest that the difficulty lies not

just with the largest market cap stocks, but with those large cap stocks with lower book

to market ratios.
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2.5.2 BIDIRECTIONAL EXAMINATION OF MARKET CAP AND MOMENTUM

Table IX shows the empirical results of the risk-return tradeoff on the five-by-five

quintile portfolios formed by market cap and momentum and the results confirm that

the portfolios formed by larger market cap stocks with higher momentum are another

cause of the conundrum in previous research. The smallest market cap portfolios have

significant positive λs (probability > 95%) across the volatility specifications regardless

of the momentum quintile. However, as market cap increases failures in estimating a

significant, positive λ begin to emerge. These failures are particularly focused on the

high-momentum quintiles (the lower right part of each five-by-five block of results). The

combination of top quintile market cap with top quintile momentum yields a portfolio with

a negative estimated risk-return tradeoff for all three volatility specifications. Clearly large

cap, high momentum stocks are a subset to be explored in finding the behavioral cause of

these confounding empirical results.

With the cause narrowed down to large cap stocks that also have either low book to

market ratios or high momentum, the question is why do these stocks cause the empirical

difficulty? The most likely answer is that investors perceive the risk of these stocks dif-

ferently. Large caps stocks may be seen as safer than represented by numerical measures

such as volatility, thus causing investors not to demand as much return to hold them. Low

book to market and high momentum stocks are unlikely to be perceived as safe, but high

momentum stocks certainly have classes of investors who favor them. The demand by in-

vestors to ”get on the bandwagon” of these high momentum stocks may be a contributing

factor by bidding up price now thereby lowering future expected returns at the same time

risk is likely increasing. Following Campbell and Vuolteenaho (2004) one would postulate

that these large cap/high momentum/low book to market stocks have a different mix of
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good and bad betas, leading to very different risk-return tradeoffs in the aggregate. Trying

to estimate a single λ for the total U.S. stock market would not be appropriate.

In summary, the behavior of investors in a small subset of the stock market is distorting

the empirical finding based on total market portfolio. It may be that risk of these stocks

is not well represented by conditional volatility, or that investors’ perceived risk measure

differs from actual risk.

2.6 CONCLUSION

Even though there is general agreement that the risk return tradeoff is positive, the

evidence from the total U.S. equity market from GARCH-M models in previous research

has been mixed and often statistically insignificant depending on volatility specifications.

In this paper, we find that the choice of portfolio is the key cause of those problems.

First, larger market cap stocks degrade the empirical results of the risk-return tradeoff

with the inclusion of the largest 10% of stocks by market cap dramatically weakening

the statistical relation between risk and return in the U.S. total market portfolio. Our

finding shows that an aggregation with larger market cap stocks can hide the relation

between risk premium and return which exists in all our portfolios of smaller cap stocks.

Second, higher momentum stocks play the same role as larger market cap stocks: the

risk premium is easily revealed on lower momentum stocks. A negative risk premium is

even uncovered with the highest 10% momentum portfolio. Third, other disaggregations

by book to market, dividend yield, and industry don’t show any clear pattern to the

estimation results for the risk-return tradeoff.

We also explore the risk premium with bidirectional disaggregated portfolios and

find that the larger market cap portfolios with lower book to market ratio and higher
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momemtum are the main causes creating econometric difficulty in estimating the risk

premium of the total U.S. equity market. The difficulty is not the data span, the presence

of an intercept, or the volatility specification, all of which have been previously suspected.

Instead it appears to be either that conditional volatility is not the correct proxy for

risk for a subset of stocks (e.g., large caps) or that investors in some market segments

are misperceiving the riskiness of their investments. Disaggregation of the total market

portfolio solves most of econometric difficulty yet it is not enough to solve the larger market

caps puzzle. Possible avenues for further exploration of the remaining puzzle have been

proposed recently. As Ludvigson and Ng (2007) suggest, more conditioning variables might

be needed to resolve this problem for large market cap portfolios. Alternatively standard

conditional volatility in GARCH-in-mean models could be replaced by separate measures

of cash flow and discount rate risk for portfolios of large market cap stocks in accordance

with the two beta theory advanced by Campbell and Vuolteenaho (2004).
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Table 2.1

The Monthly Risk-Return Tradeoff of U.S. Market Return

GARCH TARCH QGARCH

µ 0.0056 0.0053 0.0053
(0.0019) (0.0022) (0.002)

λ 1.0772 0.7447 0.5766
(0.7978) (0.9113) (0.7574)

ω × 102 0.0078 0.0105 0.0078
(0.0026) (0.0032) (0.003)

α 0.1418 0.0726 0.134
(0.0236) (0.0278) (0.0216)

γ 0.1178 0.0186
(0.0453) (0.0057)

β 0.8388 0.832 0.8253
(0.0214) (0.0232) (0.0225)

Prob(λ > 0) 0.9091 0.7950 0.7827
Mean(ht) 0.0031 0.0030 0.0029
S.E.(ht) 0.0044 0.0037 0.0039

Note: Standard errors are reported in parentheses.
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Table 2.2

The Monthly Risk-Return Tradeoff of 10 Decile Portfolios formed on Size

GARCH TARCH QGARCH

Decile 1 0.7238 1.5182 0.8145
(0.9929) (1.0000) (0.9902)

Decile 2 0.9733 1.1352 0.9242
(0.9981) (0.9970) (0.9876)

Decile 3 1.0093 1.1565 1.0295
(0.9846) (0.9934) (0.9819)

Decile 4 1.2025 1.1677 0.9948
(0.9937) (0.9926) (0.9770)

Decile 5 1.2333 1.2788 1.2059
(0.9852) (0.9739) (0.9720)

Decile 6 1.1499 1.1325 1.0416
(0.9710) (0.9696) (0.9345)

Decile 7 1.2278 0.9255 0.9053
(0.9770) (0.9113) (0.9109)

Decile 8 1.3754 1.2332 1.2276
(0.9771) (0.9494) (0.9451)

Decile 9 1.1814 0.8330 0.9198
(0.9735) (0.8851) (0.9261)

Decile 10 0.9869 0.3781 0.5255
(0.8588) (0.6607) (0.7278)

Note: Numbers without parentheses are the estimated λ and probability of positive λ is
reported in parentheses.
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Table 2.3

The Monthly Risk-Return Tradeoff of Portfolios formed on Size from low 50% to 90%

GARCH TARCH QGARCH

50% 1.2436 1.2339 1.0670
(0.9944) (0.9925) (0.9763)

60% 1.2447 1.2092 1.0785
(0.9966) (0.9724) (0.9686)

70% 1.2380 1.1478 0.9827
(0.9855) (0.9677) (0.9579)

80% 1.2254 1.0982 1.1411
(0.9726) (0.9554) (0.9486)

90% 1.2644 0.9598 1.0359
(0.9697) (0.9250) (0.9314)

Total 1.0772 0.7447 0.5766
market (0.9091) (0.7950) (0.7827)

Note: Standard error is reported in parentheses
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Table 2.4

The Monthly Risk-Return Tradeoff of 10 Decile Portfolios formed on Book to Market

GARCH TARCH QGARCH

Decile 1 0.4989 -0.2456 -0.1304
(0.7061) (0.3722) (0.4564)

Decile 2 1.3058 0.9215 0.8440
(0.9561) (0.8352) (0.8350)

Decile 3 1.1964 0.9990 0.6719
(0.9310) (0.9035) (0.7881)

Decile 4 0.6833 0.2290 0.5487
(0.8934) (0.6246) (0.7693)

Decile 5 0.9478 0.4843 0.6614
(0.9167) (0.7083) (0.8214)

Decile 6 0.6984 0.6669 0.6394
(0.8802) (0.8261) (0.8032)

Decile 7 1.0031 1.1674 1.0010
(0.9604) (0.9745) (0.9389)

Decile 8 1.2115 0.9205 1.1730
(0.9760) (0.9372) (0.9861)

Decile 9 1.2456 1.0048 1.0012
(0.9977) (0.9706) (0.9688)

Decile 10 0.6963 0.7276 0.6363
(0.9948) (0.9748) (0.9554)

Note: Numbers without parentheses are the estimated λ and probability of positive λ is
reported in parentheses.
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Table 2.5

The Monthly Risk-Return Tradeoff of 10 Decile Portfolios formed on Dividend

GARCH TARCH QGARCH

Decile 1 0.3469 -0.0876 0.1059
(0.6782) (0.4519) (0.5382)

Decile 2 1.0973 0.7583 0.8993
(0.8852) (0.8424) (0.8714)

Decile 3 0.3867 0.2725 0.3152
(0.6854) (0.6639) (0.6468)

Decile 4 0.8312 0.1000 0.2422
(0.8499) (0.5260) (0.5908)

Decile 5 0.9608 0.4653 0.8590
(0.8998) (0.7402) (0.8411)

Decile 6 1.4573 1.2015 1.3083
(0.9683) (0.9326) (0.9419)

Decile 7 1.3445 0.6370 1.2805
(0.9381) (0.7430) (0.9128)

Decile 8 1.4247 0.9385 1.1736
(0.9893) (0.9347) (0.9373)

Decile 9 1.6685 1.2067 1.2874
(0.9957) (0.9648) (0.9789)

Decile 10 1.4196 0.9604 1.5670
(0.9959) (0.9813) (1.0000)

Note: Numbers without parentheses are the estimated λ and probability of positive λ is
reported in parentheses.
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Table 2.6

The Monthly Risk-Return Tradeoff of 10 Decile Portfolios formed on Momentum

GARCH TARCH QGARCH

Decile 1 0.8596 0.8373 0.7176
(0.9876) (0.9780) (0.9638)

Decile 2 1.0380 0.5174 1.1420
(0.9947) (0.9174) (0.9938)

Decile 3 1.0307 0.6202 0.9704
(0.9869) (0.9220) (0.951)1

Decile 4 1.4243 0.9947 1.2766
(0.9943) (0.9629) (0.9705)

Decile 5 0.9918 0.7887 0.8235
(0.9360) (0.8846) (0.8734)

Decile 6 1.1541 0.8629 1.0168
(0.9536) (0.8814) (0.9109)

Decile 7 1.2367 1.0831 1.2090
(0.9100) (0.8882) (0.9135)

Decile 8 0.8452 0.6416 0.8826
(0.7917) (0.7132) (0.799)1

Decile 9 0.2792 0.2421 0.3631
(0.6032) (0.5863) (0.6287)

Decile 10 -1.4733 -1.0241 -1.3292
(0.0897) (0.1586) (0.0798)

Note: Numbers without parentheses are the estimated λ and probability of positive λ is
reported in parentheses.
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Table 2.7. The Monthly Risk-Return Tradeoff of Industry Specific Portfolios

GARCH TARCH QGARCH

Foods 1.2974 0.3788 1.1438
(0.9134) (0.6187) (0.9282)

Mines 0.2077 -0.1141 -0.1339
(0.6094) (0.4348) (0.4389)

Oil -0.0113 -0.1493 -0.1350
(0.4817) (0.4108) (0.4187)

Clothes 1.3905 0.8455 0.5340
(0.9720) (0.8727) (0.7311)

Durable 0.8578 0.6098 0.6582
(0.9550) (0.8599) (0.9076)

Chemical 0.9061 0.6986 0.6675
(0.8759) (0.8221) (0.7812)

Consumer 1.3817 0.7944 0.8545
(0.8659) (0.7126) (0.7938)

Construction 0.8190 0.7096 0.7926
(0.8789) (0.8541) (0.9231)

Steel 0.7479 0.5143 0.6402
(0.9126) (0.8560) (0.9176)

Fabricated 1.4287 1.1064 1.3573
(0.9667) (0.9353) (0.9724)

Mechanical 0.7127 0.2712 0.5003
(0.8717) (0.6555) (0.7887)

Cars 0.9931 1.1448 0.9413
(0.9593) (0.9677) (0.9608)

Transportation 0.9941 0.8058 0.6047
(0.9502) (0.8953) (0.8213)

Utilities -0.0625 -0.2232 -0.0845
(0.4799) (0.3528) (0.4424)

Retail 0.8427 0.6462 0.9192
(0.9004) (0.7856) (0.9070)

Finance 0.8427 0.5519 0.8018
(0.9518) (0.8626) (0.9400)

Others 0.4696 0.3346 0.4676
(0.6848) (0.6770) (0.6927)

Note: Numbers without parentheses are the estimated λ and probability of positive λ is
reported in parentheses.
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Table 2.8

The Monthly Risk-Return Tradeoff of Portfolios formed by 5 × 5 Size-Book to Market

GARCH B1 B2 B3 B4 B5
S1 0.6234 0.6338 0.9804 1.0744 0.9079

(0.9702) (0.9870) (0.9941) (0.9963) (0.9976)
S2 0.9687 1.0130 1.1584 1.2081 1.0120

(0.9597) (0.9813) (0.9926) (0.9840) (0.9955)
S3 0.6206 1.2579 1.4012 1.4273 1.0665

(0.8834) (0.9742) (0.9914) (0.9877) (0.9967)
S4 0.4107 1.1662 0.9686 1.3488 0.9739

(0.7097) (0.9603) (0.9257) (0.9951) (0.9916)
S5 0.6212 0.6784 0.6165 0.9207 1.2266

(0.7400) (0.7960) (0.8236) (0.9594) (0.9824)

TARCH B1 B2 B3 B4 B5
S1 0.7087 0.8467 0.9490 1.2808 1.7755

(0.9903) (0.9935) (0.9929) (0.9922) (1.0000)
S2 0.6303 1.2130 1.1574 1.3980 1.0359

(0.8537) (0.9792) (0.9807) (0.9923) (0.9889)
S3 0.3752 1.0066 1.1211 1.2778 0.9680

(0.7546) (0.9265) (0.9619) (0.9783) (0.9839)
S4 0.0389 0.9289 1.0992 1.2950 0.8342

(0.5160) (0.8909) (0.9266) (0.9831) (0.9839)
S5 0.2009 0.2556 0.0969 0.7211 1.1589

(0.5991) (0.6178) (0.5596) (0.9136) (0.9831)

QGARCH B1 B2 B3 B4 B5
S1 0.5730 0.6508 0.8950 0.9877 0.9455

(0.9555) (0.9808) (0.9941) (0.9865) (0.9943)
S2 0.7383 0.9996 1.0804 1.1606 0.8063

(0.8940) (0.9740) (0.9691) (0.9792) (0.9571)
S3 0.4057 1.0315 1.2163 1.0999 0.8901

(0.7505) (0.9403) (0.9687) (0.9548) (0.9722)
S4 0.1001 0.9636 0.7797 1.2313 0.8846

(0.5655) (0.9037) (0.8509) (0.9816) (0.9863)
S5 0.3761 0.2259 0.4972 0.9496 1.0336

(0.6571) (0.6034) (0.7476) (0.9526) (0.9489)

Note: Numbers without parentheses are the estimated λ. Numbers in parentheses are
prob(λ >0).
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Table 2.9

The Monthly Risk-Return Tradeoff of Portfolios formed by 5 × 5 Size-Momentum

GARCH M1 M2 M3 M4 M5
S1 0.9879 1.0269 0.9570 0.9735 0.9277

(0.9994) (0.9986) (0.9949) (0.9956) (0.9708)
S2 1.0589 1.4062 1.1408 1.0886 0.8282

(0.9994) (0.9994) (0.9841) (0.9705) (0.9135)
S3 1.0004 1.2532 1.1936 1.0321 0.7965

(0.9950) (0.9964) (0.9818) (0.9261) (0.8274)
S4 0.6370 1.1609 1.5064 1.5361 0.2794

(0.9822) (0.9887) (0.9906) (0.9788) (0.6088)
S5 0.8021 1.1555 0.9389 0.8984 -1.2216

(0.9864) (0.9789) (0.9211) (0.8271) (0.1387)

TARCH M1 M2 M3 M4 M5
S1 1.5305 1.3700 1.1559 1.0738 1.0049

(1.0000) (1.0000) (0.9963) (0.9887) (0.9881)
S2 1.1180 1.5200 1.1333 1.2338 0.7509

(0.9975) (0.9997) (0.9777) (0.9792) (0.8919)
S3 0.9913 1.0549 1.0609 0.9568 0.7926

(0.9920) (0.9879) (0.9631) (0.8992) (0.8250)
S4 0.7328 0.7360 1.2392 1.3408 0.4333

(0.9790) (0.9326) (0.9676) (0.9605) (0.6633)
S5 0.0983 0.6289 0.7557 0.8573 -0.7640

(0.6084) (0.8789) (0.8607) (0.7901) (0.2191)

QGARCH M1 M2 M3 M4 M5
S1 1.0595 1.0089 0.9354 0.9470 0.9351

(0.9998) (0.9966) (0.9924) (0.9930) (0.9797)
S2 0.9545 1.2717 1.0280 0.9786 0.7099

(0.9764) (0.9942) (0.9718) (0.9481) (0.8458)
S3 0.8884 1.1056 1.0137 0.9165 0.6348

(0.9793) (0.9871) (0.9548) (0.8883) (0.7856)
S4 0.6559 1.1539 1.2221 1.4670 0.2323

(0.9652) (0.9817) (0.9697) (0.9765) (0.5809)
S5 0.8038 1.1138 0.7354 0.8466 -1.2071

(0.9704) (0.9711) (0.8354) (0.7874) (0.1007)

Note: Numbers without parentheses are the estimated λ. Numbers in parentheses are
prob(λ >0).
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Figure 2.1 Conditional volatilities of the portfolios formed on size from the
GARCH model
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Figure 2.2 Marginal posterior distributions of the risk return tradeoff of the
portfolios formed on size from the TARCH model
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Figure 2.3 Conditional volatilities of the portfolios formed on book to market
from the GARCH model
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Figure 2.4 Conditional volatilities of the portfolios formed on dividend yield
from the GARCH model
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Figure 2.5 Conditional volatilities of the portfolios formed on momentum from
the GARCH model
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CHAPTER 3

ESTIMATING THE RISK RETURN TRADEOFF IN AGRIBUSINESS STOCKS:

LINKAGES WITH THE BROADER STOCK MARKET

3.1 INTRODUCTION

With the recent turmoil in world financial markets and the additional volatility in agricul-

tural commodity markets enhanced by the impact of biofuel policies, it is vital to better

understand the volatility in, and linkages between, the agricultural sector, the food man-

ufacturing sector, and the broad stock market. This paper examines the stock returns

and volatility of those returns for the U.S. agricultural and food manufacturing industries.

We study the relationship between volatility and returns for each industry and the role of

correlation with volatility in the U.S. stock market. Improved knowledge of these links is

needed for investors, farmers, and food processors to properly diversify their asset holdings

and manage their risks.

If consolidation continues, both in agricultural production and in food manufacturing,

more and more of these industries will consist of publicly traded companies. Investors

interested in buying such stocks want to understand the volatility of such assets and

how their returns are correlated with the broader stock market. Similarly, agricultural

producers and food manufacturers who have most of their assets (and income) within
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those sectors need to understand the same facts so that they can diversify their holdings

and reduce the risk they face from their asset concentration in a single sector.

In this study, we investigate the relation between risk and return for two industry-

specific portfolios, agricultural production and food manufacturing, and the role of time-

varying covariance between each portfolio and the total U.S. market motivated by Merton’s

(1973) intertemporal capital asset pricing model (ICAPM).

The remainder of the paper is organized as follow. Section 2 describes the univariate

and bivariate generalized autoregressive heteroskedasticity-in-mean (GARCH-M) frame-

work and explains our Bayesian estimation approach. Section 3 provides the data descrip-

tion. Section 4 discusses the empirical results from estimating the risk-return tradeoff for

our two industry-specific portfolios and the role of a time-varying covariance between the

market and the portfolio. Section 5 concludes.

3.2 ECONOMETRIC METHODOLOGY

In this study, we employ univariate and bivariate GARCH-M models introduced by Engle,

Lilien, and Robins (1987) and Bollerslev, Engle, and Wooldridge (1988) to investigate the

risk-return tradeoff. Univariate GARCH-M is used to estimate the risk-return tradeoff for

each portfolio return and then bivariate frameworks are applied to investigate the role of the

covariance between the agricultural production and food manufacturing industry-specific

portfolios and the total market return.

3.2.1 UNIVARIATE GARCH-M MODELS

In previous work, the univariate GARCH-M framework has usually been employed to esti-

mate the risk-return tradeoff for the U.S. total market. In this study, we apply this model
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to the portfolio returns of the agricultural production and food manufacturing industries.

The expected portfolio return is assumed to follow a linear relation with its time-varying

variance. The mean equation can be written as

ri,t = µ+ λiht + εi,t, εi,t ∼ N(0, ht) (1)

where ri,t is the excess return of a portfolio or asset in period t, λi is the coefficient of

relative risk aversion, and ht is conditional volatility.

Since Engle (1982) and Bollerslev (1986) introduced the ARCH and GARCH specifi-

cations, numerous modifications have been developed because the volatility specifications

have been considered one of the major causes of counter-intuituve empirical results of-

ten found when estimating the risk-return tradeoff. We employ three different variance

specifications in a univariate GARCH-M framework to protect against sensitivity of our

results to the volatility specification. They are as follows: GARCH (Bollerslev 1986),

TARCH (Rabemananjara and Zakoian 1995; Glosten, Jagannathan, and Runkle 1993),

and QGARCH (Campbell and Hentschel 1992; Sentana 1995). These volatility specifica-

tions are as follows:

GARCH (1,1) : ht = ω + αε2i,t−1 + βht−1

TARCH (1,1) : ht = ω + αε2i,t−1 + γIt−1ε
2
i,t−1 + βht−1

QGARCH(1,1) : ht = ω + α(εi,t−1 − γ)2 + βht−1 (2)

where It−1 in the TARCH model is an indicator function that equals one when εi,t−1 is

negative and zero otherwise. The TARCH and QGARCH specifications are generalized

to allow an asymmetric response to positive versus negative return shocks (the so-called

leverage effect).
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3.2.2 BIVARIATE GARCH-M MODELS

In a bivariate GARCH-M framework, our model is motivated by Merton’s ICAPM: any as-

set or portfolio return is the function of the time-varying covariance between that portfolio

and the total market return while the total market return is explained by its conditional

volatility. The mean equations of a bivariate model can be described as

ri,t = µi,t + λimhim,t + εi,t

rm,t = µm,t + λmhm,t + εm,t (3)

where ri,t is the asset or specific portfolio excess return, rm,t is the total market excess

return, him,t is the time-varying covariance between the total market return and the specific

asset or portfolio return, him,t = COV (ri,t, rm,t), and other parameters and error terms

are the logical extensions from equation (1).

Multivariate GARCH models have been commonly employed to estimate time-varying

conditional covariances between asset returns (for example, Bollerslev 1990; Engle and

Kroner 1995; Engle 2002). In this study, we employ the VECH specification introduced

by Bollerslev, Engle, and Wooldridge (1988). The specifications of the variances and

covariance are

hi,t = ωi + αiε
2
i,t−1 + βihi,t−1

hm,t = ωm + αmε
2
m,t−1 + βjhm,t−1

him,t = ωim + αimεi,t−1εm,t−1 + βimhim,t−1. (4)

Theoretically, the relation between a return and its conditional volatility is expected

to be positive and the sign of the relation between asset returns and conditional covariance

is also expected to be positive.
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3.2.3 THE BAYESIAN ESTIMATION ALGORITHM

In Bayesian inference, the posterior density summarizes all the information available from

the likelihood function and the prior density (Zellner 1971). That is, a researcher sum-

marizes prior information and beliefs in a prior density, the information in the data is

summarized by the likelihood function, and those two information sources are optimally

combined into the resulting posterior distribution according to Bayes Theorem.

We assume that the error term follows a normal density (for example, Bali 2008;

Bollerslev 1990) and the log-likelihood function is the summation of the log normal den-

sities. The log-likelihood function (ignoring normalizing constants) for a univariate model

can be described as

L(r|θ) =
∑
t=1

Lt(r|θ); Lt(r|θ) = −1/2 log(ht)− 1/2(ε2i,t/ht) (5.a)

where θ is a vector of the unknown parameters. For the bivariate model, the log-likelihood

function (again ignoring normalizing constants) can be written as

L(r|θ) =
∑
t=1

Lt(r|θ); Lt(r|θ) = −1/2 log |Ht| − 1/2ε′tH
−1
t εt (5.b)

where εt and Ht denote the error vector and time varying covariance matrix, respectively,

εt =
[
εi,t
εm,t

]
and Ht =

[
hi,t him,t
hmi,t hm,t

]
. (6)

The prior distribution reflects any belief or information the researcher has before seeing the

data. Our prior beliefs are that the conditional volatility should be positive and finite in all

time periods without any other restrictions. Commonly, inequality constraints are imposed

on the coefficients in equation (2) and (4) to keep the time-varying volatility positive. We

impose positivity directly on volatility in the process of estimation, leaving the individual
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parameters free within the parameter space that satisfies the positive volatility constraints.

For the bivariate GARCH-M model, we add one more piece of prior information: the time-

varying covariance doesn’t need to be positive but the covariance matrix, Ht has to be

positive definite. This prior should be an improvement over more restrictive inequality-

restricted maximum likelihood estimation.

Independent normal densities are selected for all individual parameters and repre-

sented by N(mean, variance). The prior mean and variance for each parameter in our

application are set to zero and five, respectively. This prior information is informative but

due to the relatively large prior variances, the information from the independent normal

densities is quite diffuse and most of the prior information is from the indicator function,

I(Ht). These prior densities for univariate and bivariate models can be represented as

p(θ) = I(Ht)×
K∏
i=1

Nθi
(0, 5) (7)

where θ is the (K × 1) vector of parameters and θi indicates a ith component of the

parameter vector. The indicator function, I(Ht), in the prior density equals one if the

parameter vector generates positive and finite conditional volatilities and a positive definite

covariance matrix in all time periods and zero otherwise.

In Bayesian inference, one of the difficulties is that simple analytic results for the

posterior are not easily derived when a prior density is a very complicated or a nonlinear

function. Since our prior is a nonlinear function of θ truncated by inequality constraints,

we need to use posterior simulation to compute posterior results. Our choice is the Random

Walk Chain Metropolis-Hastings algorithm which is very useful when a good approximating

density for the posterior cannot be found (Koop 2003). In the Random Walk Chain

Metropolis-Hastings algorithm, candidates are generated by a random walk as follows:

θ∗ = θ(s−1) + z (8)
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where z is the increment random variable, superscript numbers in parentheses index draws

from the posterior simulator, and the coefficients of MLE are used as θ(0).

For the increment random variable, the multivariate normal distribution has been a

common and convenient choice. The candidate generating density can be written as

q(θ∗|θ(s−1)) = N(θ(s−1), cΣ̂) (9)

where Σ̂ is the covariance matrix from MLE and c is a tuning constant to adjust the accep-

tance rate. Each candidate is accepted selectively using an acceptance probability which

ensures the algorithm converges to the posterior distribution. The acceptance probability

is formed as

α(θ∗|θ(s−1)) = min
[ p(θ = θ∗|r)
p(θ = θ(s−1)|r)

, 1
]

(10)

where p(θ|r) is the posterior distribution. If accepted, θ∗ becomes θ(s). If the current draw

is rejected, the previous draw is reused, so θ(s) = θ(s−1).

A proper acceptance rate is required to explore the entire posterior density and arrive

at accurate results. Exact guidance for the optimal acceptance rate does not exist, but

Koop (2003) suggests that around 0.5 is appropriate. We generate 55,000 draws and discard

the first 5,000 draws to remove the effect of the initial value. The acceptance rate is tuned

to approximate 0.45 for each estimation. All accepted draws are weighted equally, so the

estimated posterior mean is the simple average of accepted draws. Thus, the average value

of the S draws from the posterior simulator for a function of the model parameters, g(θ),

is the estimated posterior mean of g(θ). This can be expressed as

ĝS =
1
S

S∑
s=1

g(θ(s)). (11)

The posterior mean is employed here as the point estimator of the posterior density.

45



3.3 DATA DESCRIPTION

Monthly return data for the period 1927 ∼ 2008 (T=984) compiled by the Center

for Research in Security Prices (CRSP) were obtained from the Kenneth R. French

on-line data library (http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data li-

brary.html). The value-weighted CRSP index of NYSE, AMEX, and Nasdaq is employed

for the U.S. total market returns. The two industries are part of the industry-specific

returns from the 48 industry dataset. Agricultural production contains firms producing

crops, livestock, commercial fishing, feeds for animals and agricultural services. Food man-

ufacturing is industries such as food and kindred products, meat products, dairy products,

etc. Exact details of the two industries are on the French data library webpage. All asset

returns used in this study are the excess return which is the difference between the mar-

ket return and the risk free asset return. A one-month Treasury bill rate (from Ibbotson

Associates) is employed as the risk-free asset return.

3.4 EMPIRICAL RESULTS

3.4.1 UNIVARIATE MODELS

Table 1 shows the posterior results of the univariate GARCH-M model with three volatility

specifications for returns of the agricultural production industry for the period 1927 ∼

2008. A positive posterior risk-return tradeoff (represented by λi) is estimated and the

posterior probability of a positive λi exceeds 95% regardless of volatility specfication. Since

γ reflects the effect of a negative portfolio error on conditional volatility, a positive sign

for γ is expected (Campbell and Hentschel 1992) and the posterior mean of γ follows the

expectation. Thus, we confirm the leverage effect for this industry.
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The posterior results for the food manufacturing industry are presented in table 2. Al-

though positive λis are estimated across the volatility specifications, lower probabilities of

a positive risk-return tradeoff are estimated for the two asymmetric specifications, TARCH

and QGARCH. Negative and insignificant λis have been estimated with asymmetric spec-

ifications previously when looking at the total U.S. stock market (Glosten, Jagannathan,

and Runkle 1993; Nelson 1991); thus these results are an improvement. Using the sym-

metric specification, GARCH, the probability of a positive λi exceeds 95%. We also again

find strong posterior support for leverage effects.

Figures 1 displays the conditional volatility for the returns of the agricultural produc-

tion and food manufacturing industries. The conditional volatility of the food manufac-

turing industry is significantly smaller than that of the argicultural production industry.

It seems that investors recognize the food manufacturing industry is safer than the agri-

cultural production industry.

3.4.2 THE MONTHLY RISK RETURN TRADEOFF OF INDUSTRY PORTFOLIOS

FROM A BIVARIATE MODEL

The results for the bivariate GARCH-M models are presented in table 3. Positive risk-

return tradeoffs represented by λim and λm are estimated in the bivariate model for agri-

cultural production and the total U.S. market return (shown in the first column of table

3). Previously, several authors (French, Schwert and Stambaugh, 1987; Campbell and

Hentschel, 1992) have estimated a positive but insignificant λm for the total U.S. market

return in univariate models. However, in this bivariate portfolio, the risk-return tradeoff

has over a 99% posterior probability of being positive for the total U.S. market. This

suggests that multivariate models might be gainfully employed to investigate the relation

between stock market risk and return more precisely.
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The second column in table 3 shows the empirical results of the bivariate model for

food manufacturing and the total market. Both risk-return tradeoffs are positive but the

posterior probabilities of positive λim and λm are lower than for the agricultural production

bivariate model.

The coefficient of relative risk aversion for both industry-specific portfolios is bigger

than that of the total U.S. market (λim > λm). Dorfman and Park (2009) point out that

the risk-return tradeoff is easily estimated for smaller market cap portfolios while bigger

market cap portfolios are less likely to show a significant risk-return tradeoff. Our finding

is consistent with their results. When considering smaller portfolios and the total market

simultaneously, investors think the industry-specific portfolio (smaller portfolio) is likely

to be more volatile than the total market (bigger portfolio).

The sign of the parameter on the conditional covariance, λim, is positive for each

industry-specific portfolio in our results. The estimated time-varying covariance for both

portfolios with the total market is almost always positive which means that the time-

varying correlation is also positive for both assets (see figure 2). Thus, these two industry-

specific portfolios and the total market generally move in the same direction. The time-

varying covariance appears to be a good proxy of risk for each portfolio.

Figure 3 displays the conditional volatilities for agricultural production and the total

U.S. market return and their time-varying covariance. The conditional volatility for agri-

cultural production is much larger than that of the total U.S. market and the conditional

covariance is similar in magnitute to the conditional volatility of the total U.S. market.

Figure 4 shows the same series for the food manufacturing model. In contrast to agri-

cultural production, the conditional volatility of food manufacturing is smaller than that
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of the total U.S. market and the conditional covariance is also slightly smaller than the

conditional volatility of the total U.S. market.

3.5 CONCLUSION

In this study, we investigate the risk-return tradeoff in agribusiness stocks, specifically

those in the agricultural production and food manufacturing industries. The expected

positive relation between stock return and its risk holds for both industries, but the poste-

rior probability of a positive tradeoff is lower for the food manufacturing industry. The sign

of the risk-return tradeoff is not sensitive to volatility specification. A positive risk-return

tradeoff for the total U.S. market portfolio is estimated in the bivariate GARCH-M frame-

work with very strong posterior support. This implies that the multivariate GARCH-M

framework may offer improved empirical results to demonstrate Merton’s ICAPM.

The positive sign on the covariance between each industry and the total market, com-

bined with the positive covariance itself, suggests that periods where agribusiness returns

are more tightly correlated with the broader market are correctly perceived by the stock

market as riskier periods for holding those assets. With correlations between both agricul-

tural production and food manufacturing portfolios and the total market between 0.7 and

0.9 for most of the sample period, investors looking to diversify holdings won’t find much

to like here.
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Table 3.1 The monthly risk-return tradeoff of agricultural production industry

µ λ ω × 102 α γ β Prob(λ > 0)

GARCH 0.0015 1.4853 0.0304 0.1324 0.8127 0.9850
(0.0033) (0.7071) (0.0095) (0.0222) (0.0308)

TARCH -0.0031 2.1165 0.0473 0.0382 0.1659 0.7832 0.9960
(0.0039) (0.8414) (0.0127) (0.0230) (0.0426) (0.0381)

QGARCH -0.0012 1.7119 0.0367 0.1292 0.0279 0.7771 0.9823
(0.0039) (0.8306) (0.0116) (0.0243) (0.0093) (0.0409)

Note: Posterior standard deviation is reported in parentheses.
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Table 3.2 The monthly risk-return tradeoff of food manufacturing industry

µ λ ω × 102 α γ β Prob(λ > 0)

GARCH 0.0042 1.5999 0.0053 0.1112 0.8731 0.9587
(0.0021) (0.9665) (0.0020) (0.0173) (0.0182)

TARCH 0.0055 0.5920 0.0071 0.0556 0.1115 0.8628 0.7215
(0.0021) (1.0139) (0.0025) (0.0188) (0.0369) (0.0194)

QGARCH 0.0044 1.2071 0.0052 0.1053 0.0109 0.8711 0.8944
(0.0021) (0.9790) (0.0021) (0.0160) (0.0046) (0.0179)

Note: Posterior standard deviation is reported in parentheses.
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Table 3.3 The risk-return tradeoff of bivariate GARCH-in-mean model

AG - Market Food - Market

µi -0.0012 0.0044
(0.0034) (0.0018)

λi,m 4.7804 1.1673
(1.5494) (0.9283)

ωi × 102 0.0485 0.0062
(0.0104) (0.0018)

αi 0.1598 0.1037
(0.0249) (0.0135)

βi 0.7508 0.8736
(0.0338) (0.0166)

µm 0.0031 0.0048
(0.0022) (0.0021)

λm 2.2859 0.8601
(0.9275) (0.8508)

ωm × 102 0.0127 0.0085
(0.0030) (0.0023)

αm 0.1127 0.1103
(0.0192) (0.0129)

βm 0.8388 0.8621
(0.0223) (0.0164)

ωi,m × 102 0.0154 0.0066
(0.0029) (0.0018)

αi,m 0.0943 0.1036
(0.0146) (0.0123)

βi,m 0.8328 0.8671
(0.0174) (0.0169)

Prob(λi,m > 0) 0.9999 0.8935
Prob(λm > 0) 0.9984 0.8478

Note:Posterior standard deviation is reported in parentheses
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(A) Agricultural production (B) Food manufacturing

Figure 3.1 Conditional volatility from univariate GARCH models
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(A) Agricultural production (B) Food manufacturing

Figure 3.2 Time-varying correlation with total stock market
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Conditional Volatility Conditional Volatility Conditional covariance
of Agriculture of Total Market between Ag. and Market

Figure 3.3 Conditional volatilities and covariance from the agricultural pro-
duction bivariate model
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Conditional Volatility Conditional Volatility Conditional covariance
of Food of Total Market between Food and Market

Figure 3.4 Conditional volatilities and covariance from the food manufacturing
bivariate model
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CHAPTER 4

SMALLER PORTFOLIO RETURNS AND THE RISK RETURN TRADEOFF

FOR THE WHOLE MARKET

4.1 INTRODUCTION

Since Merton’s (1973) pathbreaking article deriving the intertemporal capital asset

pricing model (ICAPM), the relation between expected return and risk has centered on

this foundation of modern finance theory and numerous studies have explored this risk-

return tradeoff in attempts to estimate the magnitude of the tradeoff itself. Researchers

have mainly focused on the nature of the relation between the market portfolio and its con-

ditional variance using the popular generalized autoregressive heteroskedasticity-in-mean

(GARCH-M) framework which estimates the expected return and conditional volatility

jointly. However, some difficulties of estimating a risk-return tradeoff have emerged. Sur-

prisingly, the empirical evidence has been somewhat mixed. Just naming a few studies

and confining the listing to studies using some form of GARCH-M models, we find con-

firmation of the positive risk-return tradeoff in French, Schwert, and Stambaugh (1987),

Chou (1988), Baillie and DeGennaro (1990), and Campbell and Hentschel (1992), while a

negative risk-return tradeoff was estimated by Nelson (1991) and Glosten, Jagannathan,
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and Runkle (1993). Also, most empirical studies report a statistically insignificant coeffi-

cient of the risk-return tradeoff. This leads researchers to investigate possible causes and

solutions of this difficulty. For instance, Lundblad (2007) finds that a very long data span

is required to discover a strong relation between expected return and risk. Anderson and

Bollerslev (1998) and Bali and Peng (2006) show that high frequency data dramatically

improves conditional volatility estimation. Ghysels, Santa-Clara, and Valkanov (2005)

propose a different volatility estimator and Ludvigson and Ng (2007) suggest that more

conditioning variables might be needed to resolve this problem. Despite these suggestions,

a robust answer for the risk-return tradeoff is still being investigated.

In this paper, we jointly investigate the nature of the risk-return tradeoff for the

market portfolio and individual assets using bivariate GARCH-M models. We also employ

Bayesian inference to resolve the difficulty of maximum likelihood estimation (MLE) which

has usually been employed to estimate conditional volatility in GARCH specifications and

take advantage of the existence of prior information. Lanne and Saikkonen (2006) report

that high correlation between maximum likelihood estimates exists which leads statistical

tests for a positive risk-return tradeoff to have low power. Employing Bayesian estimation

can help avoid possible effects from the problem of high correlation. Using the prior den-

sity, inequality constraints on the GARCH-M model volatilities are imposed properly in

comparison with some previous studies. With five different categories of portfolios made up

of tenths of the market divided by sorting on measures such as market capitalization, book

to market ratio, dividend yield, momentum factor and industries, we estimate high proba-

bilities of positive risk aversion coefficients for the time-varying covariance and conditional

volatility for each asset and the market portfolio. Thus, by utilizing the additional, less
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aggregated, information in the decile and industry portfolios, we get improved estimates

of the risk-return tradeoff for the market portfolio.

Since previous empirical results seem to be very sensitive to variance specification,

we also consider symmetric and asymmetric volatility specification and, with two possible

assumptions of the risk-return tradeoff, we find that Merton’s theory is proper to explain

the relation between return and risk. A Bayesian model averaging technique is also em-

ployed to construct a robust estimate across models under consideration. The results are

in general agreement that the risk-return tradeoffs of the market and individual portfolios

are positive. However, a sufficient data span remains a critical factor to estimate this re-

lation. With a shorter data span, we still have problems estimating a positive risk-return

tradeoff except for market capitalization portfolios. As Lundblad points out, since the

explanatory power of conditional volatility and covariance is extremely low, a long data

period is demanded and our posterior results are consistent with his findings.

The remainder of the chapter is organized as follows. Section 1 describes Merton’s

ICAPM and the mean and variance equations in the GARCH-M framework. Section 2

explains Bayesian inference and our Bayesian computation method, the Random Walk

Chain Metropolis-Hasting algorithm. Section 3 provides the data description. Section

4 discusses the empirical results and section 5 explains Bayesian model averaging and

presents these empirical results. Section 6 concludes.
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4.2 ECONOMETRIC METHODOLOGY

4.2.1 THEORETICAL MODEL

The seminal work of Merton, in the ICAPM, describes the relation between return

and its own variance and covariance with the state variables of the investment opportunity

set. Without the state variables, this relation focuses on the risk-return tradeoff. For any

risky asset or portfolio, this relation can be written as

ri − rf = λimσim (1)

where ri and rf represent a return of a risky asset and a risk free asset return, respectively,

and σim is the covariance between the return of the risky asset or portfolio i and the market

portfolio m.

For the market portfolio, the return can be described by a linear relation to its own

risk:

rm − rf = λmσ
2
m (2)

where σ2
m is the variance of return on the market portfolio m and rm is the return of

the market portfolio. λim in Eq. (1) and λm in Eq. (2) are the coefficients of relative

risk aversion for a ith asset and the market portfolio, respectively, and λm, the market

risk-return tradeoff, is expected to be positive.
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4.2.2 EMPIRICAL FRAMEWORK

To investigate this relation empirically, GARCH in mean models (GARCH-M: Engle,

Lilien, and Robins, 1987; Bollerslev, Engle, and Wooldridge, 1988) have usually been em-

ployed. Most previous studies have been focused on the risk-return tradeoff for the market

portfolio in Eq. (2) using an univariate GARCH-M model (for instance, French, Schwert,

and Stambaugh, 1987; Chou, 1988). A bivariate GARCH-M framework has been used

to investigate the time-varying covariance between the return of the market portfolio and

bond yield as a state variable of the investment opportunity set (for instance, Scruggs,

1998; Scruggs and Glabadanidis, 2003). Bali (2008) employed the bivariate GARCH spec-

ification to estimate the covariance between the return of the market portfolio and an

individual asset. We employ bivariate GARCH-M frameworks and examine an ith asset

or portfolio and the market portfolio simultanuously.

GARCH-M consists of mean and variance equations. In our framework, we use two

different mean equations and sets of volatility specification. The first set of mean equations

we employ can be written as follows:

ri,t − rf,t = µi + λimhim,t + εi,t

rm,t − rf,t = µm + λmhm,t + εm,t (3)

where him,t is the time-varying covariance between the returns of the market portfolio and

the ith asset and hm,t is the conditional volatility of the return of market portfolio. The

second set of mean equations used are:

ri,t − rf,t = µi + λihi,t + λimhim,t + εi,t
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rm,t − rf,t = µm + λmhm,t + εm,t (4)

where hi,t is the conditional volatility of the return of ith risky asset.

The mean equation in Eq. (3) describes Merton’s ICAPM, but in Eq. (4) we assume

that an individual risky asset is affected by not only the time varying covariance with the

market portfolio but also by its own conditional volatility.

A volatility specification is the key component of a GARCH-M model because covari-

ances and volatilities are critical factors for investigating the movement of risky assets.

Since the autoregressive conditional heteroskedasticity (ARCH) specification was intro-

duced by Engle (1982), many researchers have designed refinements of ARCH or similar

models used to investigate the conditional volatility. A partial list includes Bollerslev

(1986), Baillie and DeGennaro (1990), Nelson (1991), Campbell and Hentschel (1992),

Glosten, Jagannathan, and Runkle (1993), Sentana (1995), Hentschel (1995), Rabem-

ananjara and Zakoian (1995), and Lundblad (2007). Various specifications of time-varying

covariance have been developed and employed in other studies. For example, Bollerslev,

Engle, and Wooldridge (1988) introduce the VECH (vector-GARCH) specification and En-

gle and Kroner (1995) suggest a BKKK model. The factor-ARCH covariance structure is

developed by Engle, Ng, and Rothschild (1990). Bollerslev (1990) and Engle (2002) design

new specifications for multivariate GARCH frameworks, the constant conditional correla-

tion (CCC) and dynamic conditional correlation (DCC) models, to estimate a conditional

covariance conveniently.

In this study, we employ both symmetric and asymmetric VECH specifications (Kro-

ner and Ng, 1998) to model the conditional variances and covariances. These specfications

can be described as follows.
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Symmetric VECH (Standard GARCH):

hi,t = ωi + αiε
2
i,t−1 + βihi,t−1

hm,t = ωm + αmε
2
m,t−1 + βmhm,t−1

him,t = ωim + αimεi,t−1εm,t−1 + βimhim,t−1 (5)

Asymmetric VECH (TARCH):

hi,t = ωi + αiε
2
i,t−1 + Iγiε

2
i,t−1 + βihi,t−1

hm,t = ωm + αmε
2
m,t−1 +Mγmε

2
m,t−1 + βmhm,t−1

him,t = ωim + αimεi,t−1εm,t−1 + γimIεi,t−1Mεm,t−1 + βimhim,t−1 (6)

where I and M are indicator functions for εi,t−1 and εm,t−1 respectively. If εi,t−1 or εm,t−1

is negative, the respective indicator function, I or M , equals one, and otherwise, they

equal zero. This model is designed to allow negative errors to increase volatility in the

next period more than positive errors. Typically this phonomenon is called the “leverage

effect.” The strength of the asymmetric response to previous errors is reflected in the

parameter γ in each volatility specification. As Campbell and Hentschel (1992) point out,

we expect γ, the coefficient for negative errors, to be positive since a positive γ makes the

conditional variance and covariance in next period increase.

Following previous studies (for instance, Lundblad, 2007; Bali, 2008), we assume that

the error term follows a normal density and the log-likelihood function is the summation
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of the log normal densities. The log-likelihood function (ignoring normalizing constants)

for the bivariate model can be written as

L(r|θ) =
∑
t=1

Lt(r|θ); Lt(r|θ) = −1/2 · log |Ht| − 1/2ε′tH
−1
t εt (7)

where θ is a vector of the unknown parameters and εt and Ht denote the error vector and

time varying covariance matrix, respectively,

εt =
[
εi,t
εm,t

]
and Ht =

[
hi,t him,t
hmi,t hm,t

]
(8)

where him,t, the time-varying covariance, doesn’t need to be positive but the covariance

matrix, Ht, has to be positive definite.

4.3 BAYESIAN INFERENCE

In this study, we employ Bayesian inference to estimate the GARCH-M model be-

cause of difficulties with maximum likelihood estimation (MLE). As discussed in Lanne

and Saikkonen (2006), high correlation typically exists between ML estimators of the in-

tercept and risk aversion coefficient expressed as µ and λ in the mean equation on the

univariate GARCH-M model. This creates a problem similar to multicollinearity in a nor-

mal regression model and leads to low power for statistical tests of whether λ is positive.

The effect from this high correlation between parameters in the mean equation can exist

in the multivariate GARCH-M framework. Further, imposing positivity on conditional

variances without restricting individual parameters of equation (5) and (6) is easier in the

Bayesian framework than with MLE.
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The benefit of the prior distribution is one of the reasons for using Bayesian. In

Bayesian inference, the posterior distribution is proportional to the likelihood function

times the prior distribution. The prior distribution, a key component of Bayesian esti-

mation, reflects the researcher’s subjective beliefs for the parameters of the model before

seeing the data. Therefore, the posterior distribution summarizes all available information

from the likelihood function and the prior information (Zellner, 1971).

Our prior beliefs are related to the natures of the time-varying variance and the co-

variance matrix. First, the conditional volatility over time needs to be positive without

imposing any restrictions on the variance equation to manipulate a positive volatility. In

the prior distribution, we allow the parameters on the variance equations to be negative

because of the absence of inequality constraints. This opens the possibility that the co-

efficients in Eq. (5) and (6) could be negative if negative parameters are more proper

than positive ones and removes the chance of possible bias being introduced into the pa-

rameter estimates through unneeded nonnegativity constraints on the parameters in the

(co)variance equations. Second, the conditional covariance can be negative but the time-

varying covariance matrix must be positive definite over time. Using an indicator function,

the positivity constraints are imposed on the conditional volatility directly instead of the

parameters to keep the time-varying variance positive. Our prior distribution can be de-

scribed as below:

p(θ) = I(Ht) ·
K∏
i=1

Nθi
(0, 102) (9)

where θ is the (K × 1) vector of parameters such as µ, λ, ω, α, and β and θi indicates

the ith component of the parameter vector. The indicator function, I(Ht), in the prior
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density equals one if the conditional variances for each time-series and covariance matrix

in all time periods fulfill the conditions of positivity and zero otherwise.

The prior densities for the individual parameters are set to independent normal densi-

ties with zero means and variance = 102. This prior distribution is informative but because

of the large prior variances, our prior distribution can be considered a diffuse prior. Most

of the information for the researcher’s prior beliefs is created by the indicator function,

I(Ht). As Bauwens and Lubrano (1998) did, the initial variances hi,0, hm,0, and him,0 are

treated as a known constant. We can write our posterior distribution as below:

p(θ|r) ∝ p(r|θ)p(θ) (10)

where p(θ|r) denotes the posterior density and p(r|θ) and p(θ) are the likelihood funtion

and the prior distribution, respectively.

4.3.1 THE BAYESIAN ESTIMATION ALGORITHM

Previously, numerous studies have employed Bayesian inference to investigate the

nature of GARCH processes (for example, Geweke, 1989; Kleibergen and van Dijk, 1993;

Bauwens and Lubrano, 1998 and 2002; Nakatsuma, 2000; Vrontos, Dellaportas, and Politis,

2000; Osiewalski and Pipien, 2004; Lanne and Luoto, 2008). Most of the studies with

Bayesian inference employ posterior simulators such as the Markov Chain Monte Carlo

(MCMC) algorithm and Monte Carlo integration to estimate the posterior distribution

because it is not feasible to compute the posterior analytically when the prior distribution

is nonlinear or complicated. In this study, we employ the Random Walk Chain Metropolis-

Hastings algorithm because of its benefits in the absence of a good approximating density

for the posterior distribution (Koop, 2003).
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In the Random Walk Chain Metropolis-Hastings algorithm, candidate draws are gen-

erated by a random walk process,

θ∗ = θ(s−1) + z, (11)

where z is called the increment random variable. θ∗ and θ(s−1) are a candidate and previous

draw from the posterior simulation, respectively. For an initial value of candidate draws,

θ(0), coefficients of maximum likelihood estimation (MLE) are used1.

The distribution for z, the increment random variable, becomes the candidate gener-

ating density and the multivariate normal distribution is chosen in this study due to its

convenience and our assumption of normality for the error term in Eq. (7). The candidate

generating density can be described as follows:

q(θ∗|θ(s−1)) = N(θ(s−1), c · Σ̂) (12)

where Σ̂ is the covariance matrix from MLE and c is set to achieve an optimal acceptance

rate.

The candidate draws are accepted or rejected with an acceptance probability that is

computed as

α(θ∗|θ(s−1)) = min
[ p(θ = θ∗|r)
p(θ = θ(s−1)|r)

, 1
]

(13)

where p(θ|r) is the posterior distribution. If the current draw is accepted, θ(s) is θ(∗). If

rejected, the previous one is reused (θ(s) = θ(s−1)).

1 The results of λi, λim, and λm from MLE are mostly statistically insignificant.
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The acceptance rate of generated draws is critical for an accurate numerical approx-

imation to the true distribution. Suppose that this rate is too high. In this case, the

estimated posterior distribution will be very similiar to the candidate generating density.

If the acceptance rate is extremely low, it implies that the random walk chain is not moving

enough to explore the entire posterior density and the estimated posterior mean may not

be much different from initial values of coefficients. In both cases, it is highly doubtful

that the posterior simulator worked well and the estimated posterior distribution is likely

inaccurate. Unfortunately, there is no general rule for the optimal acceptance rate. The

rule of thumb often considered is that the acceptance rate for candidate draws should be

around 0.5. If you achieve roughly 0.5 as the acceptance rate, the posterior simulation

is likely to approximate the posterior density correctly (Koop, 2003). To follow Koop’s

suggestion, our acceptance rates for all estimations are calibrated to roughly 0.45 by choice

of c in Eq. (12).

The posterior mean is commonly used as the point estimator of the posterior distri-

bution. The simple average of all accepted candidate draws is the posterior mean because

in the Metropolis-Hastings algorithm, each accepted candidate draw is weighted equally.

The posterior mean, ĝS , can be written as

ĝS =
1
S

S∑
s=1

g(θ(s)). (14)

where g(θ(s)) denotes any general function of the model parameters and S is the number

of accepted draws.

The posterior simulation is executed as follow. We gather 55,000 accepted draws

and discard the first 5,000 accepted draws as the initial burn-in to eliminate the effect

of initial values. If a candidate draw does not satisfy the condition of positivity for the
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variance and covariance matrix, a draw is regenerated until it satisfies the researcher’s

subjective belief (this is an accept-reject step within our posterior simulator to handle the

truncation of the posterior distribution due to the indicator function in the prior for Ht).

The previous accepted draw remains the mean of candidated generating density until a new

candidiate draw has a positive conditional variance and positive definite covariance matrix

for the entire period. The marginal likelihood is computed to compare different models

by simple averaging of all posterior densities of accepted draws. For each estimation, we

perform Geweke’s (1992) diagnostic to check the convergence of our Metropolis-Hastings

algorithm. Let SA and SC denote first 10% and last 40% accepted draws. The test statistic

for Geweke’s convergence diagnostic (CD) can be written as

CD =
ĝSA
− ĝSC

σ̂SA√
SA

+ σ̂SC√
SA

−→ N(0, 1) (15)

where ĝSA
and ĝSC

denote the posterior means of SA and SC , respectively. The terms

σ̂SA√
SA

and σ̂SC√
SC

are the numerical standard errors of these two estimates.

In the MCMC algorithm, the posterior standard errors are different than the numerical

standard errors (NSE) since the draws are correlated and a typical central limit theorm

does not work. We compute the numerical standard errors using the formula suggested by

Koop, Poirier, and Tobias (2007). The formula for the NSE is:

NSE(ĝS) =

√√√√σ2

m

[
1 + 2

m−1∑
j=1

(
1− j

m

)σj
σ2

]
(16)

where σj is the covariance between vectors [θ1 θ2 · · · θm−j ] and [θj+1 θj+2 · · · θm] and

σ2 denotes the posterior variance of each parameter. Typically, σj >0 and the numerical

standard error is bigger than the posterior standard errors.
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A posterior model probability is used to compare model specifications. A posterior

model probability is computed by the product of marginal likelihood and prior model

probability. Let Mi denote I different considered models for i = 1, · · ·, I and p(r|Mi) and

p(Mi) are the marginal likelihood of and a prior model probability of Mi , respectively. A

posterior model probability can be described as

p(Mi|r) ∝ p(r|Mi)p(Mi). (17)

We set equal prior weights for all considered models, thus posterior model probabilities

are proportional to the marginal likelihood values from the considered models. The model

that has highest posterior model probability is considered the best specification.

4.4 DATA DESCRIPTION

We use monthly return data on individual portfolios, the market portfolio, and a

risk free asset. All portfolio returns for portfolios are the value-weighted CRSP index of

NYSE, AMEX, and Nasdaq and the one-month Treasury bill rate is employed as a risk free

asset return. Five different categories of individual portfolios (10 decile portfolios formed

on market capitalization, book to market (BM) ratio, dividend yield, momentum and

industry) are used to investigate the time-varying covariance between the market portfolio

and each portfolio. The sample period is 1927 ∼ 2008 (T=984) for portfolios formed

on market capitalization, book to market (BM) ratio, momentum and industry and the

market portfolio. For the portfolios formed on dividend yield, the sample period is 1928 ∼

2008 (T=972). All return data were obtained from Kenneth R. French on-line data library

(http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html). With 50
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different disaggregated portfolios to pair with the market portfolio and four possible model

specifications, we thus have 200 models to estimate.

4.5 EMPIRICAL RESULTS OF BIVARIATE FRAMEWORK

Since the researchers’ interest is focused on the coefficients of relative risk aversion,

we report only the results related to parameters λi, λim and λm in the tables for the

simplicity. Hereafter, we call the combination of Eq. (3) and Eq. (5) model (A) and

the combination of Eq. (3) and Eq. (6) model (B). Models (C) and (D) will be the

combination of Eq. (4) and Eq. (5) and the pairing of Eq. (4) and Eq. (6), respectively.

Bayesian posterior simulation for each estimation satisfies Geweke’ convergence diagnostic

(test statistics available from the author).

4.5.1 RELATION BETWEEN THE MARKET PORTFOLIO AND THE SIZE PORTFO-

LIOS

Table 1 provides the empirical results of bivariate GARCH-M models between the

market portfolio and 10 decile market capitalization portfolios. In the results of model

(A), most of the coefficients of relative risk aversion have greater than a 95% posterior

probability of being positive. The coefficients for the time-varying covariance, λim, have

greater than a 95% posterior probability of being positive for all portfolios. The risk-return

tradeoff for the market portfolio, λm, is strongly positive for all market cap portfolios

except the decile 9 portfolio. A similar pattern of results is revealed with model (B). In

each estimation, we discover positive λims and λms with high posterior probability.

The difference between the mean equation in Eq. (3) and Eq. (4) is the existance of

λi, the risk aversion coefficient for the time-varying variance of the return on individual
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portfolio. The posterior distribution for λi in model (C) does not show strong evidence of

being positive or negative for any individual portfolio. For portfolios of decile 5, 8, and 10,

the posterior probability of positive λim is less than 90%. but the risk aversion coefficient

for the market portfolio, λm, has over a 95% posterior probability of being positive for

all deciles. The results from model (D) are similar to those of the framework with model

(C). The risk-return tradeoff for the market portfolio has greater than a 95% of posterior

probability of being positive for all deciles. The probability of positive λim is under 90%

only for the portfolios of decile 2, 5, and 9. The posterior distributions for λi do not

strongly support either sign for all deciles.

Across the four different models, there are some consistent results. First, the risk

aversion coefficient for the market portfolio, λm has over a 95% posterior probability of

being positive for all deciles regardless of model specification. Thus, we have very robust

evidence of the positive risk-return tradeoff on the market portfolio. Second, most coef-

ficients of the time-varying covariance for each portfolio, λim, have greater than a 95%

posterior probability of being positive. This implies that individual portfolios formed by

market cap are affected by the conditional covariance between a ith asset or portfolio

and the market portfolio positively. The risk aversion coefficient of conditional volatility

of each portfolio, λi in model (C) and (D), is not a strong explanatory variable for all

deciles. Finally, the estimates of λim are usually higher than these of λm and estimated

λim decreases as the market cap of the portfolio increases (from S1 to S10). This implies

that risk-averse investors perceive the risk of portfolios by their market cap easily because

the smaller market-cap portfolios are considered a relatively riskier asset compared to the

bigger market-cap portfolios. Figure 1 shows the time-varying covariance with the market
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portfolio for decile portfolios 1, 4, 8, and 10 from model (A). The estimated conditional co-

variance decreases from decile 1 to 10 portfolio, so risk averse investors expect higher return

when they hold smaller market cap portfolios and the risk aversion coefficient increases.

Based on the posterior model probabilities for four different frameworks, Merton’s

ICAPM employed in models (A) and (B) is heavily favored relative to the mean equation

in models (C) and (D). In previous studies, the volatility specification has been considered

as a suspect in the difficulty of precisely estimating the risk-return tradeoff of the market

portfolio but the results of table 1 shows a strong and positive risk aversion coefficient, λm,

regardless of variance equation. The symmetric specification (GARCH) produces a higher

posterior model probability than the asymmetric model (TARCH) in most estimations.

In the results of models with the highest posterior model probability, nearly all of

the λim and λm have greater than a 95% posterior probability of being positive. For

seven portfolios (decile 3, 4, 5, 6, 7, and 10), model (A) has the highest posterior model

probability and all λims and λms are strongly positive with over 95% posterior probability.

Model (B) has the highest posterior model probability for portfolios of decile 1,2, and 9 and

all posterior means for risk aversion coefficients are strongly positive. The risk aversion

coefficient for the portfolio of decile 8 in model (C) does not show strong and positive

results. Model (D) never has the highest posterior model probability.

4.5.2 RELATION BETWEEN THE MARKET PORTFOLIO AND THE BOOK TO

MARKET PORTFOLIOS

The posterior empirical results of four different bivariate GARCH-M frameworks be-

tween the market portfolio and 10 decile book to market portfolios are provided in table

2. In the results of model (A), risk aversion coefficients, λim, for all BM portfolios except
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the decile 1 portfolio have greater than a 95% posterior probability of being positive. For

the risk return tradeoff of the market portfolio, λm is positive with high posterior proba-

bility for all BM portfolios except the decile 1 portfolio. Neither risk aversion coefficient

for the decile 1 portfolio has a strong posterior probability of being positive, but all other

portfolios have excellent results with model (A). In the results of model (B), six of the

risk aversion coefficients of the time-varying covariance, λim, have greater than a 95%

posterior probability of being positive coeffieicents (for portfolios of decile 2, 3, 6, 8, 9 ,

and 10) and four of the risk-return tradeoff for the market portfolio are a strongly positive

(for portfolios of decile 6, 8, 9, and 10). With the asymmetric volatility specification, the

difficulty of estimating positive risk aversion coefficients is increased.

In the results of model (C), even though many of λi and λim do not have greater

than a 95% posterior probability of being positive, the risk-return tradeoff of the market

portfolio, λm, is a strongly positive with over a 95% posterior probability for all portfolios

except decile 2 and 3 portfolios. The posterior probability for λi in the decile 1 and 10

portfolios, shows strong evidence of being negative but the posterior distirbutions of other

portfolios do not provide strong posterior support for being positive or negative. Only

four risk aversion coefficient for the time-varying covariances, λim have greater than a 95%

posterior probability for the portfolio of decile 1, 7, 8, and 10. Strong posterior evidences

of positive risk aversion coefficients are discovered for some portfolios with model (D).

Only one λi has a greater than a 95% posterior probability of being positive (a decile

4). Three portfolios (decile 1, 8, and 10) have a strong posterior probability of a positive

risk aversion coefficient for the time-varying covariance and the risk-return tradeoff of

the market portfolio has greater than a 95% posterior probability of being positive for

portfolios of decile 3, 6, 8, 9, and 10.
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In comparing models by posterior model probability, model (A) is favored over other

models for most portfolios and model (B) has the highest posterior model probability for

portfolios of decile 7 and 10. This is consistent with the results of market cap portfolios

and proves the conditional volatility of an asset or portfolio might not be a proper ex-

planatory variable. The posterior means of risk aversion coefficients in the model with

highest posterior model probability, the risk-return tradeoff of the market portfolio, λm,

and the coefficient of the time-varying covariance, λim, have strong posterior evidence of

being positive for eight portfolios. Only for portfolios of decile 1 and 7 do both coefficients

not have greater than a 95% posterior probability of being positive. Thus, the robust

posterior evidence in favor of a positive risk aversion coefficient for the market portfolio

and the relation between expected return of individual portfolios formed on market cap

and the time-varying covariance is repeated for portfolios formed on BM deciles

Regardless of model specfication, most of the estimated risk aversion coefficients of

λim and λm have greater than a 95% posterior probability of being positive for portfolios of

deciles 8, 9, and 10. This implies that the higher BM portfolios and the market portfolio are

affected by each other. Investors who bought higher BM portfolios perceive the risk of the

market portfolio very easily and it leads the risk aversion coefficient of the time-varying

covariance with higher BM portfolios to increase. The coefficients for the time-varying

covariance do not show any pattern clearly across model specifications.

4.5.3 RELATION BETWEEN THE MARKET PORTFOLIO AND THE DIVIDEND

PORTFOLIOS

In table 3, the posterior results of bivariate GARCH-M models between the market

portfolio and 10 decile dividend yield portfolios are presented. Like the results of the
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market cap and BM portfolios, the risk aversion coefficients of him,t and hm,t have mostly

greater than a 95% posterior probability of being positive except for the decile 1 portfolio

in the results of model (A). In the results of model (B), the risk aversion coefficient of the

time-varying covariance has a strong posterior probability of being positive for portfolios

of decile 2, 3, 6, 7, 8, and 9 and the positive risk-return tradeoff of the market portfolio

has strong posterior support for portfolios of decile 3, 5, 6, 7, and 8. In the posterior

results of model (C) and (D), the majority of risk aversion coefficients for hi and him do

not have strong posterior evidence of being positive. However, many of the risk-return

tradeoff parameters of the market portfolio have greater than a 95% posterior probability

of being positive in both models. Specifically, a positive λm with strong posterior evidence

is revealed in all portfolios in model (C).

Model (A) has the highest posterior model probability for portfolios of decile 1, 2, 3,

and 7 and model (B) is the most likely model for the rest of them. This is consistent with

the results of other categories of portfolios. Merton’s ICAPM is heavily supported by all

posterior evidence. In the results of the model with the highest posterior model probability,

the risk-return tradeoff of the market portfolio has over a 90% posterior probability of being

positive for all portfolios except the decile 10 portfolio. The risk aversion coefficient of the

time-varying covariance shows a strong posterior probability of being positive with over a

90% posterior probability for eight portfolios except decile 1 and 10 portfolios. The results

of dividend portfolios are relatively weak compared to those of the market cap and BM

portfolios but the results still show robust evidence of positive parameters for the risk

aversion coefficients, λim and λm.
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4.5.4 RELATION BETWEEN THE MARKET PORTFOLIO AND THE MOMENTUM

PORTFOLIOS

The results in table 4 present the posterior results of bivariate GARCH-M models

between the market portfolio and 10 decile momemtum portfolios. In the results of model

(A), all risk aversion coefficients of him and hm have greater than 95% posterior probability

of being positive. In the results of model (B), the coefficient of the time-varying covariance

has over 95% posterior probability of being positive for portfolios of deciles 1, 2, 3, 5, 6, 7,

and 10 and positive λm is estimated for portfolios of decile 3, 5, 6, 7, and 10. Many risk

aversion coefficients of Model (C) and (D) do not have strong posterior probability of being

positive. In the smaller momentum portfolios, we find over 95% posterior probability of a

positive λim for portfolios of decile 1, 3, and 4 in model (C) and decile 2 and 3 in model

(D).

Merton’s ICAPM described in model (A) and (B) is favored relative to the mean equa-

tion (4) in model (C) and (D) based on the results of posterior model probability. The

results of momentum portfolios are also relatively weak compared to those of the market

cap and BM portfolios. In the results of models with the highest posterior model probabil-

ity, some risk aversion coefficients don’t have greater than a 95% posterior probability of

being positive but the risk aversion coefficient of the market portfolio has mostly a strong

posterior evidence of being positive.

4.5.5 RELATION BETWEEN THE MARKET PORTFOLIO AND THE INDUSTRY

PORTFOLIOS

The posterior results of bivariate GARCH-M models between the market portfolio

and industry portfolios are provided in table 5. Model (A) has the highest posterior
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model probability for 9 portfolios and model (B) has one portfolio with highest posterior

model probability. This is consistent with previous results: Eq. (3) that describes Merton’s

ICAPM is mostly favored over Eq. (4). The coefficients of relative risk aversion of him and

hm in models with highest posterior model probability have greater than a 95% posterior

probability of being positive for the portfolios of Durable, Manufacturing, Hi-technology,

Telecommunications and others. Some of risk aversion coefficients of the rest of portfolios

do not have a strong posterior evidence of being positive. But, overall, the majority of risk

aversion coefficients are strongly positive.

4.5.6 EMPIRICAL RESULTS FOR THE POSTWAR PERIOD

Lundblad (2007) shows that a sufficient data span is a critical factor for estimating

a positive risk-return tradeoff of the market portfolio. With a long data span, Lundblad

estimates a positive and statistically significant risk-return tradeoff of the market portfolio

regardless of volatility specification (GARCH, TARCH, QGARCH, and EGARCH). In

this section, we discuss empirical results of all portfolios and model specifications already

presented but with data for only the postwar period (1950 ∼ 2008). Our results partially

confirm what Lundblad found. Except model (A) with market cap portfolios, other risk

aversion coefficients don’t have greater than a 95% posterior probability of being positive

(not reported). Table 6 provides the posterior results of bivariate GARCH-M with model

(A) for market cap portfolios. All risk aversion coefficients of him have greater than a

95% posterior probability of being positive except the portfolio of decile 10. A positive

risk-return tradeoff of the market portfolio is revealed for portfolios of decile 3, 4, 5, 8,

and 10. Compared to table 1, the number of positive risk aversion coefficients with a

strong posterior evidence decreases. This is likely from the lack of sufficient data period.
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These results imply that the market capitalization is a convenient measure to perceive

the risk of an individual portfolio to risk averse investors. Compared to other categories

such as a book to market ratio, dividend yield, and momentum factor, the market size of

individual asset or portfolio can be considered representative of its portfolio risk. Thus, our

results support a positive risk-return tradeoff of portfolios and the need of a sufficient data

period. The coefficients of relative risk aversion for the time-varying covariance decreases

from smaller to bigger portfolio. This is consistent with the results for the longer period

(1927 ∼ 2008).

Figure 2 presents the time-varying covariance with the market portfolio for portfolios

of decile 1, 4, 8, and 10. The estimated conditional covariance decreases from decile 1 to

10 portfolio and this is consistent with the results of figure 1.

4.5.7 SUMMARY OF EMPIRICAL EVIDENCE

Using 50 pairs of an individual portfolio with the market portfolio, we estimate two

hundred risk aversion coefficients for time-varying covariance and conditional volatility.

We find that λm, a risk-return tradeoff of the market portfolio, has greater than 95%

of posterior probability of being positive in 142 out of 200 models and a risk aversion

coefficient of conditional covariance, λim, has posterior probability of being positive of

95% in 105 out of 200 models. The results with market cap portfolios are better than

those with other individual portfolios. The risk-return tradeoff of the market portfolio has

greater than 95% of posterior probability of being positive in 49 out of 50 models and

postive λim with over 95% posterior probability is estimated in 41 out of 50 models. Only

4 risk aversion coefficients for conditional volatility, λi have greater than 95% of posterior

probability of being positive. In the results of highest posterior model probability, 34
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risk aversion coefficients of time-varying covariance and 36 risk aversion coefficients of the

risk-return tradeoff of the market portfolio have posterior probability of being positive of

95% out of 50 models. Especially, with market cap porfolios, only one λim does not have

over 95% posterior probability of being positive and the risk-return tradeoff of the market

portfolio has greater than 95% of posterior probability of being positive in all estimations.

There are some consistent empirical results across model specifications and variant

data combinations. First, the mean equation of Eq. (3) in models (A) and (B) is favored

over Eq. (4) in models (C) and (D) for most estimations. With the conditional volatility of

individual portfolios, most risk aversion coefficients of him have a low posterior probability

of being positive and the posterior model probability for Eq. (4) in models (C) and (D)

is usually lower than that of Eq. (3) in models (A) and (B). This implies the conditional

volatility of an individual asset or portfolio might be an inappropriate explanatory variable

and strongly supports Merton’s ICAPM. Second, the difficulty of estimating positive risk

aversion coefficients increases with an asymmetric variance equation. With (co)variance

equations in Eq. (6), the number of positive coefficients of relative risk aversion is decresed.

These results are relatively consistent with previous studies since the negative risk aversion

coefficients are discovered with asymmetric specification such as TARCH and EGARCH

(Nelson, 1991; Glosten, Jagannathan, and Runkle, 1993). Third, in the U.S. equity mar-

ket, researchers have confirmed the existence of the leverage effect and this has led them

to develop lots of refinements to the symmetric GARCH specification. However, in the

bivariate GARCH-M models, the symmetric variance equations in Eq. (5) are favored to

the asymmetric variance equations in Eq. (6) in most estimations by the posterior model

probability. Fourth, as Lundblad said, a sufficient data period is required to estimate a

positive risk-return tradeoff and this argument is also proved by our posterior results for
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bivariate GARCH-M models with postwar periods. Some of risk aversion coefficients do

not have a strong posterior probability of being positive. This also becomes the evidence

of needing long data period to estimate the risk-return tradeoff. Finally, in the posterior

results for the models with the highest posterior model probability, most of risk aversion

coefficients have a strong posterior probability of being positive. This is empirical evi-

dence of the positive risk-return tradeoff in the equity market. Especially, in the results

of market cap portfolios, the risk aversion coefficient of the time-varying covariance, λim,

shows a decreasing trend moving from smaller to bigger market cap portfolio. Thus, in-

vestors perceive that the smaller market cap portfolio is riskier than the bigger market cap

portfolio.

4.6 BAYESIAN MODEL AVERAGING

Bayesian model averaging (BMA) is a technique designed to address the problem of

model uncertainty by averaging over models under consideration rather than by selecting a

single model. Previously, BMA has been employed to investigate stock return predictability

and its model uncertainty (for example, Avramov, 2002; Cremers, 2002). Here we use it

to address our uncertainty over specification of the mean and volatility equations for each

of the 50 different portfolios. Simply speaking, BMA is a weighted averaging of a set of

considered models by the posterior model probabilities. Let p(θ|r,Mi) and p(Mi|r) be the

posterior density of θ and a posterior model probability for Mi, respectively. The posterior

density of BMA is computed by the summation of a posterior density times a posterior

model probability of each considered model. It can be described as
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p(θ|r) =
I∑
i=1

p(θ|r,Mi)p(Mi|r). (18)

The sum of posterior model probabilities under consideration should be equal to one

in the BMA technique. This can be written as

I∑
i=1

p(Mi|r) = 1. (19)

We consider four different bivariate GARCH-M models for each estimation, so the

sum of posterior model probabilities for the four models must equal one. As mentioned

before, we set equal prior weights for all considered models, thus no prior preference for a

certain model exists.

In table 7, the results of λim and λm using BMA are reported for the period 1927 ∼

2008. A risk aversion coefficient of the market portfolio, λm, in the averaged model has

greater than a 95% posterior probability of being positive at 35 out of 50 models. A risk

aversion coefficent of time-varying covariance, λim in the averaged model has posterior

probability of being positive of 95% at 28 out of 50 models.

In the posterior results of market cap portfolios, all risk aversion coefficients, λim and

λm have greater than a 95% posterior probability of being positive except λim for decile 8

portfolio. The risk aversion coefficient of the time-varying covariance decreases from decile

1 to decile 10 portfolio. This intuitively makes sense because risk averse investors expect

higher returns from the smaller market cap portfolio because it is typically considered a

riskier asset. It seems that market capitalization is a very easy index to perceive the risk

of individual portfolio or asset. The pattern of the decreasing risk coefficients of the time-

varying covariance is only revealed from market cap portfolios. The risk-return tradeoff
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of the market portfolio represented by λm is positive for all portfolios and the estimated

coefficient for each estimation is relatively unchanged. The results of the portfolios of BM,

dividend, momentum, and industry portfolios are weak compared to market capitalization

portfolios. However, most estimated risk aversion coefficients have greater than a 90%

posterior probability of being positive. This implies that the relation between expected

return and risk would be positive and support Merton’s theory.

4.7 CONCLUSION

Since Merton’s intertemporal capital asset pricing model was introduced, the relation

between expected return and risk has been of central importance. However, the existing

empirical studies lack consistent evidence that the risk-return tradeoff is positive. In this

article, we employ bivariate GARCH-M models to investigate the nature of the intertempo-

ral risk-return tradeoff between the market and individual portfolios and find the following

general results.

First, a positive risk-return tradeoff of the market portfolio is estimated in general.

This implies that the empirical results of ICAPM might be improved in multivariate

GARCH-M models. Second, the risk aversion coefficient of the time-varying covariance

between the market and individual portfolios is also positive in portfolio-level analysis.

Using five different categories of individual portfolios, we discover the relation between in-

dividual portfolio returns and the time-varying covariance with the market portfolio have

a strong posterior probability of being positive in most estimations. Third, as Lundblad

(2007) claimed, we find that the data span is another key factor to estimate positive risk-

return relation. With a shorter data span, the postwar period, the posterior probability
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of a positive relation between expected return and risk is lower. Finally, the market cap-

italization is an easy measure of the risk of individual portfolios to risk averse investors.

The risk aversion coefficient increases from larger to smaller market cap portfolios. This

implies that the smaller portfolios are considered riskier assets and investors expect higher

returns from portfolios composed of smaller market cap stocks even if the volatility remains

constant.

A robust answer for the risk-return tradeoff is provided using the Bayesian model

averaging technique. Summarizing all available information into a posterior density, the

evidence of a positive risk-return tradeoff for the market and individual portfolios is empir-

ically estimated with very high posterior probabilities in support. Combining the evidence

from four different possible bivariate GARCH-M model specifications allows the poste-

rior density to show very strong support for the positive risk-return tradeoff both for the

market as a whole and for decile portfolios disaggregated by market capitalization.
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Table 4.1 The Bivariate GARCH-M with Market cap Portfolios

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Model(A)
λim 6.663 4.988 3.958 3.892 2.839 3.161 2.527 3.270 1.815 1.616

(1.000) (1.000) (1.000) (1.000) (1.000) (0.994) (0.995) (1.000) (0.954) (0.977)
λm 2.871 2.465 2.455 2.527 2.042 2.476 1.843 2.457 1.607 1.716

(1.000) (0.998) (0.995) (0.997) (0.992) (0.984) (0.974) (0.986) (0.931) (0.982)
Prob. 0.000 0.307 0.971 0.979 0.977 0.969 0.957 0.000 0.371 0.933

Model(B)
λim 5.155 4.084 3.459 2.974 2.356 2.609 2.214 2.496 1.931 1.763

(1.000) (1.000) (1.000) (1.000) (0.991) (0.993) (0.987) (0.997) (0.980) (0.980)
λm 2.652 2.332 2.179 1.955 1.705 2.068 1.537 1.796 1.696 1.869

(0.998) (1.000) (0.992) (0.993) (0.961) (0.981) (0.948) (0.978) (0.972) (0.986)
Prob. 0.976 0.656 0.001 0.001 0.002 0.008 0.001 0.001 0.605 0.000

Model(C)
λi -0.607 -0.317 -0.525 -0.143 0.387 -0.733 -1.098 -0.884 -1.611 0.408

(0.142) (0.337) (0.286) (0.450) (0.619) (0.277) (0.203) (0.326) (0.158) (0.569)
λim 8.677 5.661 4.861 4.136 2.404 4.091 4.233 3.884 3.799 1.180

(1.000) (1.000) (0.996) (0.975) (0.857) (0.977) (0.961) (0.899) (0.957) (0.761)
λm 3.094 2.493 2.370 2.588 2.128 2.418 2.043 2.155 1.712 1.650

(1.000) (0.993) (0.996) (0.997) (0.985) (0.991) (0.975) (0.988) (0.972) (0.992)
Prob. 0.000 0.007 0.027 0.020 0.021 0.022 0.043 0.999 0.014 0.067

Model(D)
λi 0.095 0.802 0.056 0.215 0.587 -0.248 -1.101 -1.451 -0.607 -1.806

(0.558) (0.853) (0.531) (0.628) (0.721) (0.383) (0.237) (0.240) (0.387) (0.177)
λim 5.006 2.203 3.347 2.669 1.380 2.991 3.756 4.463 2.630 4.130

(0.995) (0.877) (0.965) (0.946) (0.777) (0.953) (0.926) (0.931) (0.837) (0.986)
λm 2.442 1.928 2.115 1.987 1.549 2.127 1.720 2.281 1.712 2.487

(1.000) (0.985) (0.985) (0.983) (0.962) (0.996) (0.966) (0.989) (0.969) (0.994)
Prob. 0.024 0.031 0.000 0.000 0.000 0.000 0.000 0.000 0.010 0.000

This table reports the posterior means of risk aversion coefficients for the market portfolio and 10 decile
market capitalization portfolios in four bivariate GARCH-M models for 1927 ∼ 2008. Model (A), (B), (C),
and (D) are the combination of Eq. (3) & Eq. (5), Eq. (3) & Eq. (6), Eq. (4) & Eq. (5), and Eq. (4) &
Eq. (6), respectively. λi, λim, and λm denote the coefficients of relative risk aversion of hi, him, and hm,
respectively. Numbers in parentheses are a posterior probability of positive λ and Prob. denotes posterior
model probability.
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Table 4.2 The Bivariate GARCH-M with Book to Market Portfolios

BM1 BM2 BM3 BM4 BM5 BM6 BM7 BM8 BM9 BM10

Model(A)
λim 0.903 2.436 1.836 1.926 1.809 1.574 2.319 2.437 2.864 3.030

(0.853) (0.988) (0.986) (0.966) (0.970) (0.964) (0.990) (0.990) (1.000) (1.000)
λm 0.957 1.914 1.365 1.949 1.833 1.747 2.063 2.196 2.346 2.016

(0.895) (0.958) (0.957) (0.976) (0.982) (0.982) (0.988) (0.987) (0.999) (0.989)
Prob. 0.761 0.945 0.980 0.927 0.846 0.965 0.000 0.527 0.765 0.338

Model(B)
λim 0.367 2.040 1.433 1.226 0.851 1.502 1.022 1.708 2.214 2.517

(0.656) (0.988) (0.956) (0.875) (0.792) (0.953) (0.876) (0.994) (0.999) (0.999)
λm 0.441 1.511 0.899 1.329 1.082 1.758 0.979 1.605 1.853 1.635

(0.710) (0.944) (0.878) (0.897) (0.878) (0.973) (0.894) (0.989) (0.992) (0.966)
Prob. 0.021 0.025 0.003 0.000 0.106 0.001 0.973 0.434 0.210 0.626

Model(C)
λi -3.495 2.307 0.529 2.292 1.181 0.538 -0.925 -0.837 0.229 -1.397

(0.003) (0.900) (0.657) (0.955) (0.799) (0.698) (0.222) (0.154) (0.606) (0.048)
λim 4.977 -0.044 1.106 -1.127 0.356 0.910 3.865 4.229 2.165 7.509

(1.000) (0.494) (0.716) (0.304) (0.574) (0.684) (0.957) (0.991) (0.842) (1.000)
λm 1.665 1.677 1.125 1.694 1.744 1.877 2.175 2.533 2.020 2.650

(0.985) (0.933) (0.904) (0.957) (0.966) (0.989) (0.984) (0.999) (0.982) (0.997)
Prob. 0.214 0.029 0.017 0.073 0.043 0.034 0.000 0.016 0.017 0.000

Model(D)
λi -3.729 2.509 0.053 2.762 1.255 0.300 -0.595 -0.863 0.271 -0.785

(0.005) (0.935) (0.529) (0.956) (0.812) (0.607) (0.318) (0.117) (0.613) (0.112)
λim 4.513 -0.621 1.707 -2.114 -0.912 1.104 1.872 3.126 1.723 4.138

(0.991) (0.365) (0.875) (0.172) (0.332) (0.740) (0.805) (0.972) (0.841) (0.998)
λm 0.952 1.330 1.279 1.273 0.737 1.757 1.007 1.674 1.780 1.689

(0.854) (0.915) (0.954) (0.899) (0.769) (0.979) (0.869) (0.974) (0.983) (0.978)
Prob. 0.004 0.001 0.000 0.000 0.006 0.000 0.027 0.023 0.009 0.035

This table reports the posterior means of risk aversion coefficients for the market portfolio and 10 decile
book to market portfolios in four bivariate GARCH-M models for 1927 ∼ 2008. Model (A), (B), (C), and
(D) are the combination of Eq. (3) & Eq. (5), Eq. (3) & Eq. (6), Eq. (4) & Eq. (5), and Eq. (4) &
Eq. (6), respectively. λi, λim, and λm denote the coefficients of relative risk aversion of hi, him, and hm,
respectively. Numbers in parentheses are a posterior probability of positive λ and Prob. denotes posterior
model probability.
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Table 4.3 The Bivariate GARCH-M with dividend Portfolios

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Model(A)
λim 1.259 2.203 2.305 1.661 1.626 2.306 2.189 2.982 2.698 2.004

(0.865) (0.973) (0.988) (0.979) (0.952) (0.999) (0.981) (1.000) (0.999) (0.996)
λm 1.539 1.643 2.483 1.656 1.792 1.435 1.635 2.249 1.769 1.585

(0.933) (0.955) (0.989) (0.986) (0.967) (0.989) (0.956) (0.999) (0.972) (0.986)
Prob. 0.823 0.959 0.964 0.391 0.462 0.298 0.689 0.006 0.001 0.000

Model(B)
λim 1.139 1.832 1.804 1.275 1.236 2.207 1.387 2.259 1.976 0.865

(0.863) (0.977) (0.980) (0.921) (0.933) (0.999) (0.964) (0.991) (0.997) (0.874)
λm 1.242 1.343 1.922 1.303 1.455 1.316 1.170 1.716 1.221 0.690

(0.898) (0.939) (0.991) (0.937) (0.955) (0.961) (0.953) (0.981) (0.944) (0.823)
Prob. 0.131 0.002 0.000 0.534 0.478 0.245 0.029 0.920 0.922 0.949

Model(C)
λi 2.474 -1.467 1.384 2.757 1.674 -1.056 1.911 1.009 0.581 0.363

(0.856) (0.202) (0.812) (0.935) (0.834) (0.270) (0.836) (0.752) (0.645) (0.649)
λim -1.293 3.815 0.737 -1.364 -0.401 3.623 0.267 1.663 1.744 1.456

(0.334) (0.962) (0.634) (0.255) (0.459) (0.965) (0.528) (0.776) (0.771) (0.791)
λm 1.698 1.871 2.211 1.253 1.704 1.743 1.655 2.207 1.566 1.484

(0.957) (0.978) (0.987) (0.947) (0.970) (0.988) (0.966) (0.999) (0.958) (0.971)
Prob. 0.033 0.039 0.036 0.035 0.021 0.440 0.025 0.000 0.000 0.000

Model(D)
λi 2.261 -1.617 1.229 2.758 1.253 -1.167 0.383 1.638 1.675 1.584

(0.895) (0.174) (0.824) (0.965) (0.796) (0.264) (0.561) (0.850) (0.975) (0.910)
λim -0.949 3.656 0.683 -1.665 -0.317 3.251 0.606 0.214 -0.429 -1.594

(0.353) (0.961) (0.553) (0.185) (0.440) (0.951) (0.623) (0.513) (0.297) (0.209)
λm 1.569 1.454 2.073 1.029 1.323 1.272 0.675 1.704 0.914 0.497

(0.954) (0.950) (0.983) (0.902) (0.932) (0.965) (0.778) (0.973) (0.840) (0.727)
Prob. 0.012 0.000 0.000 0.041 0.039 0.017 0.257 0.074 0.077 0.051

This table reports the posterior means of risk aversion coefficients for the market portfolio and 10 decile
dividend portfolios in four bivariate GARCH-M models for 1928 ∼ 2008. Model (A), (B), (C), and (D)
are the combination of Eq. (3) & Eq. (5), Eq. (3) & Eq. (6), Eq. (4) & Eq. (5), and Eq. (4) &
Eq. (6), respectively. λi, λim, and λm denote the coefficients of relative risk aversion of hi, him, and hm,
respectively. Numbers in parentheses are a posterior probability of positive λ and Prob. denotes posterior
model probability.
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Table 4.4 The Bivariate GARCH-M with momentum Portfolios

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

Model(A)
λim 3.770 1.886 2.174 2.612 2.381 2.147 2.485 1.450 1.740 3.096

(0.999) (0.991) (0.996) (0.998) (0.998) (0.993) (1.000) (0.947) (0.975) (0.998)
λm 2.520 1.356 1.969 1.944 2.753 2.005 1.932 1.753 1.890 1.936

(0.988) (0.957) (0.991) (0.985) (0.999) (0.985) (0.987) (0.980) (0.995) (0.997)
Prob. 0.000 0.000 0.000 0.000 0.000 0.927 0.000 0.953 0.000 0.000

Model(B)
λim 1.946 1.110 1.332 1.347 1.881 1.635 2.638 1.223 0.662 2.333

(0.976) (0.963) (0.970) (0.921) (0.982) (0.971) (0.981) (0.885) (0.752) (0.998)
λm 1.235 0.784 1.279 1.086 2.020 1.531 2.309 1.384 0.925 1.862

(0.904) (0.875) (0.956) (0.868) (0.986) (0.970) (0.990) (0.939) (0.862) (0.987)
Prob. 0.991 0.538 0.402 0.978 0.957 0.018 0.000 0.028 0.971 0.000

Model(C)
λi -0.399 -0.274 -1.559 -1.036 0.529 1.594 -0.070 0.486 0.980 -0.039

(0.299) (0.342) (0.021) (0.221) (0.659) (0.830) (0.486) (0.608) (0.746) (0.455)
λim 4.874 2.528 5.216 4.433 1.794 0.041 2.791 0.989 0.475 0.978

(0.986) (0.931) (0.998) (0.964) (0.806) (0.508) (0.870) (0.685) (0.597) (0.704)
λm 2.663 1.460 2.434 2.240 2.623 1.762 2.657 1.784 1.595 1.830

(0.999) (0.954) (0.998) (0.989) (0.997) (0.985) (0.994) (0.973) (0.953) (0.970)
Prob. 0.000 0.000 0.000 0.000 0.000 0.055 0.992 0.018 0.000 0.000

Model(D)
λi 0.207 -1.482 -2.271 0.087 0.324 -1.932 0.361 1.153 1.420 0.367

(0.627) (0.029) (0.007) (0.521) (0.615) (0.198) (0.592) (0.768) (0.863) (0.688)
λim 1.512 3.777 5.095 1.238 1.410 3.141 1.661 0.052 -1.041 1.187

(0.822) (0.987) (0.999) (0.706) (0.762) (0.802) (0.765) (0.504) (0.267) (0.825)
λm 1.351 0.769 1.515 1.085 1.999 0.650 2.066 1.253 0.608 2.286

(0.910) (0.736) (0.984) (0.872) (0.985) (0.714) (0.980) (0.908) (0.763) (0.998)
Prob. 0.009 0.462 0.598 0.022 0.043 0.000 0.008 0.001 0.029 1.000

This table reports the posterior means of risk aversion coefficients for the market portfolio and 10 decile
momentum portfolios in four bivariate GARCH-M models for 1927 ∼ 2008. Model (A), (B), (C), and (D)
are the combination of Eq. (3) & Eq. (5), Eq. (3) & Eq. (6), Eq. (4) & Eq. (5), and Eq. (4) &
Eq. (6), respectively. λi, λim, and λm denote the coefficients of relative risk aversion of hi, him, and hm,
respectively. Numbers in parentheses are a posterior probability of positive λ and Prob. denotes posterior
model probability.
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Table 4.5 The Bivariate GARCH-M with industry Portfolios

Nodur Durbl Manuf Energy HiTech Telcm Shops Health Utility Others

Model(A)
λim 1.209 3.748 1.905 1.056 1.928 1.745 1.441 1.715 1.258 2.104

(0.918) (1.000) (0.983) (0.842) (0.987) (0.973) (0.951) (0.910) (0.894) (0.990)
λm 1.012 2.329 1.671 1.006 1.974 1.405 0.998 1.588 1.460 2.310

(0.890) (0.990) (0.972) (0.867) (0.987) (0.964) (0.894) (0.955) (0.948) (0.997)
Prob. 0.967 0.863 0.967 0.946 0.804 0.973 0.944 0.792 0.963 0.077

Model(B)
λim 0.797 3.197 2.011 0.541 1.138 1.170 1.243 0.626 0.722 2.141

(0.797) (0.997) (0.984) (0.676) (0.955) (0.934) (0.943) (0.712) (0.769) (0.983)
λm 0.604 1.981 1.713 0.728 1.223 1.088 0.945 0.624 1.240 2.409

(0.766) (0.978) (0.971) (0.778) (0.964) (0.931) (0.879) (0.761) (0.870) (0.996)
Prob. 0.000 0.110 0.002 0.000 0.002 0.002 0.000 0.159 0.000 0.889

Model(C)
λi 1.218 -0.194 1.983 -1.867 0.676 0.316 1.122 -2.681 0.529 0.112

(0.753) (0.443) (0.862) (0.127) (0.737) (0.609) (0.716) (0.068) (0.623) (0.533)
λim -0.036 3.980 -0.438 3.132 0.482 1.592 0.735 4.827 0.417 1.970

(0.488) (0.938) (0.432) (0.939) (0.589) (0.849) (0.640) (0.977) (0.559) (0.850)
λm 0.816 2.225 1.794 1.183 1.510 1.620 1.463 1.771 1.144 2.260

(0.844) (0.989) (0.971) (0.926) (0.954) (0.975) (0.957) (0.966) (0.918) (0.997)
Prob. 0.033 0.022 0.031 0.054 0.194 0.025 0.056 0.037 0.037 0.002

Model(D)
λi -1.241 1.419 2.986 -2.104 0.614 0.194 1.226 -2.739 0.578 0.451

(0.157) (0.885) (0.862) (0.112) (0.715) (0.550) (0.717) (0.054) (0.620) (0.643)
λim 1.696 1.049 -1.196 2.753 0.159 1.117 -0.126 3.616 0.268 1.479

(0.881) (0.658) (0.390) (0.907) (0.543) (0.795) (0.498) (0.951) (0.570) (0.795)
λm 0.657 2.006 1.871 0.789 1.023 1.014 0.801 0.610 1.320 2.369

(0.787) (0.996) (0.904) (0.813) (0.829) (0.907) (0.843) (0.769) (0.954) (0.990)
Prob. 0.000 0.004 0.000 0.000 0.000 0.000 0.000 0.012 0.000 0.033

This table reports the posterior means of risk aversion coefficients for the market portfolio and 10 industry-
level portfolios in four bivariate GARCH-M models for 1927 ∼ 2008. Model (A), (B), (C), and (D) are the
combination of Eq. (3) & Eq. (5), Eq. (3) & Eq. (6), Eq. (4) & Eq. (5), and Eq. (4) & Eq. (6), respectively.
λi, λim, and λm denote the coefficients of relative risk aversion of hi, him, and hm, respectively. Numbers
in parentheses are a posterior probability of positive λ and Prob. denotes posterior model probability.
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Table 4.6 The Bivariate GARCH-M with market cap Portfolios for the postwar period

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

λim 7.681 8.205 7.011 7.619 7.781 5.732 4.895 5.125 3.467 3.050
(0.991) (0.997) (0.997) (0.999) (0.999) (0.995) (0.996) (1.000) (0.953) (0.927)

λm 2.409 3.225 3.896 3.701 4.255 3.468 2.585 3.198 2.525 3.806
(0.885) (0.921) (0.967) (0.962) (0.962) (0.946) (0.880) (0.957) (0.893) (0.978)

Table 6 presents the posterior means of risk aversion coefficient for 10 decile market capitalization portfo-
lios and the market portfolio in bivariate GARCH-M model of model (A) for 1950 ∼ 2008. Numbers in
parentheses are a posterior probability of positive λ.
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Table 4.7 The results of Bayesian model averaging for Bivariate GARCH-M models

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

λim 5.152 4.314 3.982 3.895 2.829 3.177 2.600 3.882 1.921 1.587
(1.000) (0.996) (1.000) (0.999) (0.997) (0.993) (0.994) (0.899) (0.969) (0.963)

λm 2.647 2.362 2.452 2.528 2.043 2.471 1.852 2.154 1.664 1.711
(0.998) (0.999) (0.995) (0.997) (0.992) (0.984) (0.974) (0.988) (0.957) (0.983)

BM1 BM2 BM3 BM4 BM5 BM6 BM7 BM8 BM9 BM10

λim 1.776 2.351 1.822 1.703 1.630 1.552 1.045 2.166 2.706 2.748
(0.881) (0.973) (0.981) (0.917) (0.931) (0.954) (0.874) (0.991) (0.996) (0.999)

λm 1.097 1.896 1.360 1.930 1.743 1.752 0.980 1.933 2.233 1.766
(0.910) (0.956) (0.956) (0.974) (0.969) (0.982) (0.894) (0.988) (0.998) (0.974)

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

λim 1.132 2.265 2.248 1.215 1.323 2.877 1.711 2.110 1.792 0.739
(0.841) (0.973) (0.975) (0.890) (0.913) (0.983) (0.877) (0.955) (0.943) (0.840)

λm 1.505 1.651 2.473 1.428 1.611 1.539 1.375 1.718 1.198 0.680
(0.929) (0.956) (0.989) (0.955) (0.960) (0.981) (0.910) (0.981) (0.936) (0.818)

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

λim 1.942 2.342 3.581 1.344 1.860 2.021 2.782 1.434 0.613 1.187
(0.975) (0.974) (0.987) (0.916) (0.973) (0.966) (0.869) (0.941) (0.738) (0.825)

λm 1.236 0.777 1.420 1.086 2.019 1.983 2.652 1.743 0.916 2.286
(0.904) (0.811) (0.973) (0.868) (0.986) (0.985) (0.994) (0.979) (0.859) (0.998)

Nodur Durbl Manuf Energy HiTech Telcm Shops Health Utility Others

λim 1.168 3.680 1.833 1.167 1.645 1.740 1.402 1.679 1.227 2.117
(0.903) (0.997) (0.966) (0.847) (0.910) (0.970) (0.933) (0.881) (0.881) (0.977)

λm 1.005 2.287 1.675 1.016 1.882 1.410 1.024 1.430 1.448 2.400
(0.889) (0.989) (0.972) (0.870) (0.981) (0.964) (0.897) (0.922) (0.947) (0.996)

This table presents the posterior means of risk aversion coefficients by averaging of Bayesian model averaging
technique for four bivariate GARCH-M models for individual portfolios. Numbers in parentheses are a
posterior probability of positive λ.
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Figure 4.1 Time-varying covariance and variance with size portfolio for 1927 ∼ 2008

Decile 1 Decile 4

Decile 8 Decile 10
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Figure 4.2 Time-varying covariance and variance with size portfolio for 1950 ∼ 2008

Decile 1 Decile 4

Decile 8 Decile 10
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CHAPTER 5

CONCLUSION

This dissertation is composed of three essays. The first essay shows that the choice

of portfolio is a key cause of econometric difficulty in estimating the risk-return tradeoff.

Larger market cap stocks degrade the empirical results of the risk-return tradeoff with the

inclusion of the largest 10% of stocks by market cap dramatically weakening the statistical

relation between risk and return in the U.S. total market portfolio. Higher momentum

stocks also play the same role as larger market cap stocks and the risk premium is easily

revealed on lower momentum stocks. Our findings show that market aggregation can hide

the relation between risk premium and return.

The second essay investigates the risk-return tradeoff in agribusiness stocks (agri-

cultural production and food manufacturing industries). The expected positive relation

between stock return and its risk holds for both industries, but the posterior probability of

a positive tradeoff is lower for the food manufacturing industry. The sign of the risk-return

tradeoff is not sensitive to volatility specification. A positive risk-return tradeoff for the

total U.S. market portfolio is estimated in the bivariate GARCH-M framework with very

strong posterior support. This implies that the multivariate GARCH-M framework may

offer improved empirical results to demonstrate Merton’s ICAPM.

In the third essay, we employ bivariate GARCH-M models to investigate the nature

of the intertemporal risk-return tradeoff between the market and individual portfolios
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and find the following general results. First, a positive risk-return tradeoff of the market

portfolio is estimated in general. This implies that the empirical results of ICAPM might

be improved in multivariate GARCH-M models. Second, the risk aversion coefficient of

the time-varying covariance between the market and individual portfolios is also positive in

portfolio-level analysis. Using five different categories of individual portfolios, we discover

the relation between individual portfolio returns and the time-varying covariance with the

market portfolio have a strong posterior probability of being positive in most estimations.

Third, we find that the data span is another key factor to successfully estimate a positive

risk-return relation. With a shorter data span, the postwar period, the posterior probability

of a positive relation between expected return and risk is lower. Finally, the market

capitalization appears to be a good proxy of the risk of individual portfolios to risk averse

investors.
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