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ABSTRACT

I constructed a stochastic, spatially-explicit landscape model to seek optimal
forest management decisions for long-term persistence of populations of red-cockaded
woodpecker (Picoides borealis) and wood thrush (Hylocichla mustelina) on the Piedmont
National Wildlife Refuge in Georgia, USA.  I addressed uncertainty in decision making
by considering alternative model forms that expressed different mechanisms of response
by the forest and the bird populations to silvicultural actions.  The implication of model
uncertainty in this system is that conservation tradeoffs for both species differ according
to choice of model.  Decision variables in each model were the spatial scheduling of
forest compartments for silvicultural treatments and the average periodicity of prescribed
burning in compartments.  Model responses were the number of active woodpecker
clusters and abundance of wood thrushes.  Additionally, I obtained a composite response
as the average of the two abundance responses, each scaled by its standard error.  I
simulated each model under extremes of the decision alternatives, and I found a near-
optimal management schedule for each model and for each of the responses.  I also found
near-optimal schedules for the case of complete uncertainty with regard to all models in
the model set.  Forest and bird monitoring data collected on the Refuge are the means by
which measures of belief in each model are updated and decisions are adaptively
improved.  In nearly all models, both species responded strongly, but in opposite
directions, to burning, and woodpeckers were sensitive to compartment scheduling. 
Consequently, optimal decisions were mostly similar among models, and values of
information computed for each response suggested that little would be gained in
management performance by resolving uncertainty among these models.  However,
fundamental uncertainties in the management of this system were probably not captured
in this model set, and adaptive approaches therefore still hold promise for Refuge
management.  Current impediments to conducting adaptive management on the Refuge
are (1) uncertainties regarding objectives, (2) lack of a comprehensive forest monitoring
system, (3) inadequate system models, and (4) constraints in the expression and breadth



of decision alternatives.  I discuss critical information needed for the adaptive
management of this and similar resource systems.
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CHAPTER 1

INTRODUCTION

During the past decade in North America, many government agencies with

jurisdiction over natural resources adopted an ecosystem approach to guide their

management decisions (Congressional Research Service 1994, Interagency Ecosystem

Management Task Force 1995, Brown and Marshall 1996, Keiter 1998, Malone 2000,

Nelson et al. 2000).  Under this approach, an emphasis on the preservation of ecosystem

function and integrity replaces the traditional management focus on maximum return of

individual resource commodities, such as wood fiber, food crops, cattle forage, fish, or

game (Grumbine 1994, Keiter 1998).  Such conventional, rigid control of natural

resource systems is thought to reduce system resiliency and induce long-term declines in

ecological goods and services (Holling and Meffe 1996).  Decision-making tools that

were once adequate under the traditional paradigm of resource management are now

largely inappropriate, as they often fail to take into account complexities faced by

managers of ecosystems (Rauscher 1999).  Among these complexities include temporal

and spatial dynamics in populations, landscape heterogeneity and scale dependencies,

response uncertainty, and multiple dimensions of ecosystem health (Christensen et al.

1996).

Forest management is one such area in which the traditional extraction of

renewable resources has been intensively and critically reviewed in an ecosystem context
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(Hansen et al. 1995, Carey and Curtis 1996).  The controversy surrounding management

of forests in the Pacific Northwest may be the most familiar example (Caldwell et al.

1994).  There, the population status and habitat needs of a threatened species, the

northern spotted owl (Strix occidentalis caurina), placed into question the customary

forest values and management approaches used in that system (Forsman et al. 1984, Doak

1989, Thomas et al. 1990, Bart and Forsman 1992, Murphy and Noon 1992).  In the

southeastern U.S., maintaining habitat for an endangered species, the red-cockaded

woodpecker (Picoides borealis), has profound implications for the conduct of

commodity-oriented silviculture, including determination of species composition,

rotation length, stocking density, intermediate treatments, and placement and size of cuts

(Ligon et al. 1986, Jackson 1994, Wigley et al. 1999).

In circumstances where forest resource extraction is not a primary objective, for

example, within the U.S. National Wildlife Refuge System (U.S. Fish and Wildlife

Service 1976), resource managers may nevertheless face challenges in choosing

management actions that meet ecosystem objectives.  For example, recovery of an

endangered species may be a primary concern of forest management, but not an exclusive

concern.  In particular, if actions oriented toward recovery of the species are thought to

be at least partly detrimental to other species, then the manager must choose an

appropriate level of trade-off among species population objectives.  Even then, the

optimal choice of actions may not be obvious as responses by populations to forest

management actions are typically highly uncertain (Figure 1).

The ability to make optimal resource decisions often eludes managers because

practically all natural systems are characterized by uncertainty, complexity, and dynamic



3

behavior.  Instead, decisions are frequently made with a degree of risk-aversion and with

some unknown opportunity cost (Walters and Holling 1990), and progress is rarely made

toward the resolution of uncertainty.  Worse, uncertainty may not even be acknowledged,

and decisions are then made under unreasonable or unverifiable assumptions about how

the managed system operates (Conroy 1993).

A more desirable management approach would be one that provides decisions that

are optimal with respect both to the resource conditional on the current degree of

uncertainty and to the collection of information that reduces this uncertainty.  The

objective of my research is to apply this adaptive approach to the development of a

decision-making framework for management of a forest.  Here, silvicultural actions are

carried out on a wildlife refuge where growth of the red-cockaded woodpecker

population is but one goal of management.  Refuge managers are also charged with the

provision of habitat for other wildlife species, habitat which may be degraded or

destroyed by actions designed to benefit the woodpecker.  The primary feature of this

decision framework is the recognition and accommodation of uncertainties regarding

responses by wildlife populations to management.  Foremost is the uncertainty about the

degree of benefit received by woodpeckers and the degree of harm inflicted on other

species as a result of woodpecker-oriented silvicultural actions.  The decision framework

also features stochastic, spatially-explicit population models as woodpecker population

dynamics are thought to strongly depend on spatial distribution of both habitat and

woodpeckers (Walters 1991, Thomlinson 1995, Letcher et al. 1998, Walters et al. 2002). 

Outputs of predictive models are measurable in the field.  Thus, data collected regularly
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in the forest provide the means to assess progress toward population objectives and to

validate decision-making models.

ELEMENTS OF MAKING AN INFORMED DECISION

Three elements comprise any approach to making optimal decisions for a

managed system: a formal statement of one or more objectives, a set of available decision

alternatives, and a model that relates the state of the system, each decision action, and the

objective function (Walters and Hilborn 1978; Williams 1982, 1989; Figure 2). 

Specifically, the model predicts response by the objective function to alternative decision

actions for any given system state.  As many decision problems in natural resource

management involve recurring decision opportunities through time, the model must also

describe the dynamics of the system; in particular, the model should forecast future

system states in response to decision actions and current states (Williams 1982, 1989). 

Following specification of all three elements, and given a measured state of the system

(e.g., via a monitoring program), an optimal, or nearly optimal, decision can be identified

for either the case of a static or dynamic system (Williams 1989).

If decision making is to explicitly address uncertainty regarding the system

model, then an additional element, a model set, is required.  Uncertainty may be manifest

in terms of structural uncertainty, where two or more models provide alternative,

structurally distinct representations of the system (e.g., Williams 2001; Figure 3), or in

terms of parametric uncertainty, in which a continuum of an infinite number of models

portrays uncertainty about the specific value of a model parameter (e.g., McAllister and

Kirkwood 1998).  In either case, a discrete or continuous distribution of subjective

probability, respectively, is assigned to all models in the model set.
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For dynamic systems, the probability distribution may be updated through time by

comparing alternative model predictions of the system state to the measured conditions

(Figure 4).  In this case, the monitoring program serves two purposes: for choosing the

appropriate state-specific optimal action at each decision opportunity and for periodically

updating belief in each alternative model or parameter value (Williams and Nichols

2001).  Thus, information is accumulated through time as decisions are made and the

system response is monitored.  Because optimal decisions are conditional on this

“information state” as well as on the physical system state, the (physical) state-specific

decision policy adapts over time as information is accumulated.  That is, even if

information is completely lacking (i.e., noninformative prior probabilities are placed on

each model or each possible parameter value), an optimal state-specific decision policy

may nevertheless be attained, with the recognition that the collection of information will

only contribute toward management objectives and thus improve decision making

(Conroy and Moore 2002).  In this way, the collection of data helps to inform future

decision making.

MANAGEMENT ON THE PIEDMONT NATIONAL WILDLIFE REFUGE

I conducted my work on the U.S. Fish and Wildlife Service Piedmont National

Wildlife Refuge (hereafter, “Refuge”) in central Georgia, USA (Figure 5).  The Refuge

hosts the largest population of red-cockaded woodpeckers that occur in the Piedmont

physiographic province of the southeastern U.S.  This population, approximately 40

breeding groups in 2000 (U.S. Fish and Wildlife Service Piedmont National Wildlife

Refuge, unpublished data), and a smaller population of 18 groups on the adjoining USDA

Forest Service Oconee National Forest (unpublished report, “Management Indicator
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Species Population and Habitat Trends Chattahoochee-Oconee National Forests,” U.S.

Forest Service Southern Region, 2000) were designated a secondary core population for

recovery purposes (U.S. Fish and Wildlife Service 2000).  Under the Endangered Species

Act and related directives, refuges are mandated to maintain and improve habitat for red-

cockaded woodpeckers where they do or could occur (U.S. Fish and Wildlife Service

1998).

Consequently, management of the loblolly pine (Pinus taeda) forest on the

Refuge is oriented toward the creation and retention of suitable habitats for nesting and

foraging.  These habitats are characterized by open stands of mature pines, herbaceous

understories, and nearly absent midstories (Ligon et al. 1986, Walters 1991, James et al.

2001).  These conditions are especially critical in nesting habitats (Hovis and Labisky

1985, Loeb et al. 1992), in which clusters of very old ($80 years) living trees are

preferred for nest and roost cavities (Hovis and Labisky 1985, DeLotelle and Epting

1988, Walters 1991).  To this end, aggressive programs of prescribed burning and

midstory reduction are carried out on the Refuge (unpublished report, Habitat

Management Plan, U.S. Fish and Wildlife Service, Piedmont National Wildlife Refuge,

1982; hereafter “Refuge Habitat Management Plan”).

At the same time, closed canopy and shrubby understory conditions that occur in

both pine and hardwood stands throughout the Refuge provide nesting habitat for a

number of terrestrial and arboreal species, including the wood thrush (Hylocichla

mustelina).  Wood thrushes, like several other species of forest-interior neotropical

migratory birds, are of concern to management agencies because of their range-wide
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population decline (U.S. Fish and Wildlife Service 1995).  The Refuge is also charged

with managing for this group of birds (U.S. Fish and Wildlife Service 1988).

Thus, improvement of habitat conditions for one trust species apparently occurs at

the cost of habitat for the other.  The term “apparently” is meaningful here because

outcomes of management for these species are not certain.  A previous investigation of

wood thrush response to woodpecker-oriented management found no effect of

management on many vital rates of wood thrushes; in fact, and counter intuitively,

positive responses were detected in many demographic parameters (Powell et al. 2000). 

Though these results do not agree with naturalist intuition about the wood thrush, they

are not entirely unexpected given the high level of measurement error experienced in the

study and the moderate nature of the treatments (Powell et al. 2000).  Therefore,

managers should not interpret the failure to detect anthropogenic effects as a

demonstration of absence of such effects.  Consequently, despite the effort and expense

in conducting crucial experiments, a course of silvicultural action may not be obvious to

managers.  This scenario is often the case in conservation management, where decisions

cannot be delayed until all uncertainties have been resolved.

Uncertainty over wood thrush response aside, management solely for woodpecker

objectives is not clear-cut, given the complexity in population dynamics thought to exist

for this species.  The woodpecker’s elaborate social structure, its limited dispersal, and its

requirement for specific, ephemeral, unfragmented (Conner and Rudolph 1991) habitat

suggest that woodpecker populations are sensitive to spatial arrangements of treatments,

stochastic disturbances, and woodpeckers themselves (Walters 1991).  Thus, decision

models for woodpecker management likely require some form of spatially-explicit
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representation (Pulliam et al. 1992, Dunning et al. 1995, Letcher et al. 1998). 

Consequently, optimal decision making becomes extremely difficult as the set of

management options explodes into an overwhelming number of alternative spatial

arrangements of forest actions.

Thus, managers of the Refuge’s wildlife resources face the difficult challenge of

choosing the best course of management when satisfaction of multiple objectives appear

to call for completely different strategies, when responses by the populations to

management are not clearly known, and when complexity in population dynamics admits

an inconceivably large set of management options.  Unfortunately, such challenges are

not unique in conservation management, and managers require decision tools that will

help them confront these difficulties.

RESEARCH OBJECTIVES

My research had four objectives.  First, I wanted to develop one or more

prediction models for the long-term response of habitat and bird populations

(woodpecker and wood thrush) to spatially-distributed forest management.  These models

would be developed from data in the published literature, from data collected on-site at

the Refuge, or from reasoned, intuitive guesses.  By formulating a set of alternative,

plausible competing models, my intent was to place reasonable bounds on uncertainty

about forest and bird responses.

My second objective was to identify optimal courses of management for bird

population objectives, conditional on model choice.  Here I wanted to find how to

distribute forest actions over space and time to separately maximize abundance of

woodpecker groups, abundance of wood thrushes, and a composite abundance measure of
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both species.  Results of these analyses would indicate sensitivity of the optimal strategy

to choice of the decision model and objective function.

Thirdly, I wanted to find optimal decision strategies for each response with

explicit recognition of uncertainty among all models.  I wished to demonstrate that even

when critical data are lacking for model building, decision making can nevertheless

proceed provided that uncertainty is explicitly acknowledged.  This analysis would also

indicate the expected gain in value of each management objective brought about by the

reduction of uncertainty.

Finally, based on my modeling and analysis results, I wanted to provide

recommendations to the Refuge for conducting habitat and bird monitoring.  Such a

monitoring program is key to making management truly informative and adaptive.
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CHAPTER 2

LITERATURE REVIEW

SOURCES OF UNCERTAINTY

Four sources of uncertainty often frustrate decision making for natural resource

objectives (Nichols et al. 1995, Williams 1997, Charles 1998).  As stated earlier, a

decision model describes how a system and the objective function respond to a given

management action from a starting system state.  The first source of uncertainty is that of

partial observability, in which the system state is not completely observed or is measured

with error, for example, the estimation of forest understory density based on a sample of

sites.  Partial observability implies that decisions are made based on apparent rather than

real states of the system, and that assessment of decision impacts on the system or on the

objective is imprecise.

The second source is environmental uncertainty, which encompasses all forms of

variability intrinsic to the biotic and abiotic components of the system, principally

demographic and environmental stochasticity.  Partial controllability, the third source,

reflects the degree to which a realized decision action departs from the intended action,

for example, how closely a prescribed fire burns its intended coverage at its intended

intensity.

The last source, structural uncertainty, is uncertainty regarding the fundamental

nature of the system response to the management action.  As previously discussed, this
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source of uncertainty can be represented as uncertainty about a specific parameter value

or in the model’s structural form itself.  Together, the four sources of uncertainty imply

that the system response to a given decision action inherits a probability distribution,

obscured by partial observability, that is unique to each uncertain system model or

parameter value (Williams 2001, Williams and Nichols 2001).

STRUCTURAL UNCERTAINTY, MODES OF DECISION MAKING, AND ADAPTIVE

MANAGEMENT

All sources of uncertainty described above are troublesome for decision makers,

but perhaps none more so than structural uncertainty.  Faced with uncertainty among

multiple models or within a continuum of possible values for a parameter, managers rely

on one of several modes of decision making (Peterman and Anderson 1999).  The first is

to manage as if no structural uncertainty exists, either through ignorance or more

consciously through explicit denial of uncertainty.  For example, one very common way

of developing a decision model is to fit a set of data to each of several competing models,

then select a winning model based on some goodness-of-fit criterion (Collie and Walters

1993).  Behaving as though this model represents truth can have serious consequences for

the decision maker, the agency, and the resource (Conroy 1993, Radomski and Goeman

1996).  The manager may rationalize this mode of decision making by arguing that

whatever uncertainty exists is likely to be small or that unexpected responses by the

system to an action can be corrected or compensated for in the next decision cycle.  Of

course, without consideration of competing models, these speculations cannot be verified

and the manager may never know how far from optimal a course of management may be

under a single model (Pascual et al. 1997).  Worse, if after a series of decisions it finally
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becomes clear that the model is unsuitable, the manager is left with no knowledge about

the relative performance of models not considered, only that the chosen model was

unsatisfactory.

Another mode of decision making acknowledges uncertainty, but it emphasizes a

policy that averts risk toward one principal resource objective.  In conservation settings,

risk is a function of the cost of an undesirable management outcome and its probability of

occurrence (Mowrer 2000).  A manager facing a decision problem for which several

models are all plausible may arbitrarily emphasize the model that forecasts the greatest

likelihood of unacceptable resource loss under certain decision actions.  Conditional on

this model selection, the manager then chooses the action that is expected to incur the

least harm to the resource.  Such precautionary approaches to decision making are

commonly endorsed for endangered species management and biodiversity conservation

(Myers 1993).  Here, the costs of action may be high, but appropriate selection of a

resource utility (benefit) measure or selection of a sufficiently pessimistic management

model will nevertheless tend to call for these actions to minimize chance of extirpation or

extinction.  Of course, this approach invites controversy because the issue of whether

recovery goals can be met at less cost is never addressed (Lindley 1985:187-189,

Bodansky 1991, Schweder 2001).

In the worst cases, uncertainties and stakes may be so great that a decision-

making paralysis sets in.  Often in such circumstances, the decision that is ultimately

made is one that either maintains a status quo or is politically expedient (Walters

1986:30-35, Walters and Holling 1990).
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Alternatively, the decision maker can use principles of adaptive management and

adaptive optimization to explicitly confront uncertainty among system models (Walters

and Hilborn 1978, Walters 1986, Williams 1996).  These approaches permit optimal

decision making under simultaneous consideration of all uncertain models, and no model

must be subjectively favored over any other as is the case under the other modes of

decision making.  The primary difference between this and non-adaptive approaches is

that the system is measured with respect to both its physical state and an information

state.  The information state simply reflects the current degree of belief or credibility,

expressed as a probability, in each of the alternative models or parameter values.  To the

extent that the distribution of credibility weights can be adjusted from an even

distribution among models to one that places all weight on one of the models,

management decisions can be continuously improved, as measured by progress toward

resource objectives.  The principal means by which information states are adjusted is

through the collection of monitoring data and by comparing the observed state of the

system to predictions generated by each of the models.  Bayes’ Theorem is the formal

mechanism that carries out these probability adjustments given the model predictions

(Lindley 1985).  The continuous cycle of decision making, prediction, data collection,

and information updating constitutes adaptive management (Johnson et al. 1993).

Optimization under model uncertainty can be approached in either of two ways. 

In a passive approach, the information state (belief in each model) is assumed to stay

constant through time (Walters and Hilborn 1978, Williams 1997).  Therefore, the

optimization framework does not anticipate change in the information state in response to

management actions.  Of course, the information state can be updated by application of
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Bayes’ rule following any management action, so in implementation, the information

state indeed changes through time.  The optimization can be repeated at the next decision

cycle, at which time the updated information state is again assumed to remain fixed. 

Thus, while information is nevertheless accumulated through management by this

approach, it is not actively pursued; its collection occurs only as an unplanned by-product

of management.

In contrast, an active approach to optimization anticipates change in the

information state as a consequence of management decisions (Walters and Hilborn 1978,

Williams 1997).  Because the information state can be changed through management, the

selection of optimal decisions for the resource objective depends on the current level of

uncertainty and how effectively decisions can be used to reduce uncertainty.  Thus,

information is actively pursued, and the reduction of uncertainty becomes an implicit co-

objective of management.  When uncertainty is high, optimal decision actions are those

that gently prod the system to elicit information.  As uncertainty decreases and evidence

accumulates toward a single model or parameter value, optimal decisions reflect the

increasing influence of that model or value.

POPULATION BIOLOGY OF THE RED-COCKADED WOODPECKER

The red-cockaded woodpecker is a non-migratory territorial cavity-nester

(Jackson 1994).  Once widespread through the southeastern U.S. (Jackson 1994), the

woodpecker was declared endangered in 1970 (Ligon et al. 1986).  The species is

endemic to the longleaf pine (P. palustris)-wiregrass (Aristida spp.) ecosystem of the

coastal plain region, but isolated populations also occur in loblolly or shortleaf (P.

echinata ) forests as far north as the Cumberland Plateau and southeastern Virginia
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(Jackson 1994).  The longleaf-wiregrass community, historically maintained by frequent

wildfire, provides the conditions preferred by woodpeckers for foraging and nesting: a

sparse overstory of mature pine, a relatively absent midstory, and an herbaceous

understory (Ligon et al. 1986, Jackson 1994).  These habitats began to disappear in the

19th century as fire was suppressed and as woodlands were converted to agriculture and

short-rotation wood fiber production (Ligon et al. 1986, Jackson 1994).  Successful

management of the woodpecker largely depends on the effectiveness of restoring these

habitats through silvicultural means, primarily regeneration cutting, thinning, midstory

removal, and prescribed burning (Ligon et al. 1986, Jones 1993, U.S. Fish and Wildlife

Service 2000).  Publicly-owned lands, on which management objectives do not focus on

timber revenues, are the main target of recovery efforts (U.S. Fish and Wildlife Service

2000).

Red-cockaded woodpeckers excavate nesting and roosting cavities in the

heartwood of mature living pines (DeLotelle and Epting 1988).  Very old trees (usually

$80 years) are required for cavity excavation, as they generally provide a suitably soft

and suitably large volume of heartwood at a suitable bole height (6-15 m; Walters 1991,

U.S. Fish and Wildlife Service 2000).  Furthermore, cavity excavation is an arduous (1-

15 yr) and hazardous undertaking for a woodpecker (Walters 1991, U.S. Fish and

Wildlife Service 2000).   Thus, adequate cavity habitat is quite ephemeral and difficult to

generate by natural means.  For this reason, artificial means of cavity supplementation

developed by Copeyon (1990) and other workers were heralded by woodpecker managers

as a breakthrough for woodpecker recovery efforts (Costa 1995).
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Woodpeckers form and maintain family groups within clusters of cavity trees

(Walters 1991, Jackson 1994).  Clusters either are actively populated by woodpeckers or

are inactive, available for occupation by dispersing woodpeckers.  Fledglings of both

sexes typically disperse in their natal year to seek breeding opportunities in nearby

clusters.  However, some fledglings, most often males, remain with the family group and

help with the upbringing of subsequent broods.  In this way, male helpers are poised to

replace the breeding male should he die or abandon the group.  For both males and

females, dispersals are fairly local (median distance <4 km; Walters 1991).

Though the habitat needs of the woodpecker are well known in a general sense,

there is disagreement and uncertainty regarding specific guidelines for habitat

management.  In 1985, the U.S. Fish and Wildlife Service published quantitative criteria

for the establishment and maintenance of foraging habitat around each cluster (U.S. Fish

and Wildlife Service 1985).  These guidelines prescribed a minimum of 51 ha of

preferred foraging habitat made available within 800 m of the cluster.  According to the

guidelines, preferred foraging habitat comprised trees at least 30 years old with 40% or

more of the basal area in trees at least 60 years old.  A number of researchers have taken

issue with these guidelines and others modeled after them (Jackson 1994).  Ligon et al.

(1986) pointed out that the guideline values were derived from an analysis of a single,

small population of birds occurring in superior habitat.  They believed that these values

were insufficient in light of the widespread distribution of woodpeckers across a variety

of habitats, and they therefore recommended more restrictive area and age composition

criteria.  Beyer et al. (1996) found no association between amount of foraging habitat and

woodpecker productivity on a national forest in Florida.  Similarly, Wigley et al. (1999)
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detected no habitat-productivity association on intensively-managed private forests in

Louisiana.  In the North Carolina Sandhills, Davenport et al. (2000) found a

counterintuitive negative relationship between productivity and tree diameter, a finding

that they attributed to an unmeasured interaction, to an unexplored threshold effect, or to

incomplete sampling of the foraging area.  James et al. (2001) concluded that not only

were the attribute guideline values inappropriate, the choice of attributes themselves was

inappropriate.  They recommended expression of guidelines in terms of forest and

understory structure (i.e., tree age distributions and vegetation composition) rather than

in terms of total quantities of stems or basal area (James et al. 2001).

Increasing foraging habitat may be effective in increasing fledgling productivity

or adult survival, and therefore, total population size (Heppell et al. 1994).  However,

availability of nest cavities apparently limits the number of breeding pairs in many

populations (Walters 1991, James et al. 1997), so manipulation of foraging habitat alone

may be ineffective in increasing number of family groups (Walters 1991, Heppell et al.

1994).  The pool of helpers simply expands or contracts with changes in survival and

productivity conditions, but because of cavity limitation, the total population of family

groups remains mostly stable (Walters 1991, Heppell et al. 1994).  Thus, the principal

means by which a woodpecker population is grown is through the artificial or natural

creation of new nesting clusters, not through means that increase survival or productivity. 

Furthermore, successful occupation of clusters is dependent on degree of isolation from

other clusters and habitat fragmentation between clusters (Thomlinson 1995).

Thus, predicting the effects of management on red-cockaded woodpecker

populations is not straightforward.  Woodpeckers appear sensitive to forest fragmentation
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(Conner and Rudolph 1991), and the very specific and ephemeral nature of the required

nesting habitat, the family group structure of the population, and the limited dispersal of

fledglings (Walters 1991) suggest that successful habitat planning for woodpeckers must

be carefully coordinated through time and over space, perhaps at the resolution of

individual forest stands.

For at least two reasons, prescribed burning is an important management tool for

red-cockaded woodpeckers.  First, burning retards the encroachment of midstory

hardwood vegetation within woodpecker clusters (Jones 1993).  Cluster use has long

been associated with reduced hardwood midstory encroachment (Van Balen and Doerr

1978, Hovis and Labisky 1985, Loeb et al. 1992).  Midstory encroachment may facilitate

access to the nest cavity by avian, mammalian, and reptilian nest predators (Loeb et al.

1992).  Encroachment may also encourage cavity expropriation by avian and mammalian

kleptoparasites, such as pileated woodpeckers (Dryocopus pileatus) and flying squirrels

(Glaucomys volans) (Conner and Rudolph 1989).

Secondly, prescribed burning promotes existence of an herbaceous understory

(Masters et al. 1996, James et al. 1997).  An important dietary source for woodpeckers

are arthropods found in understory vegetation (Hess and James 1998).  Productivity and

fledgling survival may depend on availability of these diverse food sources (James et al.

1997).

The U.S. Fish and Wildlife Service identified a recovery goal of 96 woodpecker

groups on 7776 ha of pine habitat at the Refuge (U.S. Fish and Wildlife Service 1998,

2000).  According to the Service’s projection of 10% annual population growth under

this recovery plan (U.S. Fish and Wildlife Service 2000), the goal should be reached in



19

10 years.  The pine habitat quantity in this goal reflects the intent of Refuge managers to

permit hardwood succession to eventually comprise 40% of all forested area (Refuge

Habitat Management Plan), or approximately 5654 ha of the 14,136-ha Refuge.  To meet

this population goal, the recovery guidelines call for growing-season prescribed burning

on a 3-5 year basis (U.S. Fish and Wildlife Service 2000).

However, the recovery guidelines also call for an ecosystem approach to

management, in which management mimics natural processes to the extent possible, does

not focus on single-species objectives, and operates in a landscape rather than a patch-

oriented context (U.S. Fish and Wildlife Service 2000).  Despite the obviously important

role of public lands in woodpecker recovery objectives, this mandate may pose a

troublesome dilemma for woodpecker management at the Refuge.  Longleaf-wiregrass

systems in the southeastern coastal plain were historically maintained by lightning-

induced fires occurring on a 1-3 year basis (Frost 1998).  Therefore, single-species

management oriented toward the red-cockaded woodpecker could be justified in this case

as the woodpecker is arguably an indicator/keystone/umbrella species in that system

(U.S. Fish and Wildlife Service 2000).  However, Piedmont loblolly forest communities

are more structurally diverse than longleaf-wiregrass systems and experienced naturally-

induced fires less frequently (4-6 years; Frost 1998).  In the absence of fire, disturbed

areas in the Piedmont quickly succeed to hardwood climax conditions (Johnston and

Odum 1956).  A hardwood forest was predominant in the eastern half of the Georgia

Piedmont prior to European settlement (Nelson 1957).  Although the woodpecker was

once widespread throughout the southeast in a variety of pine ecosystems (Jackson

1994), it is not unreasonable to expect that woodpecker populations followed cycles of
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extirpation and resettlement in areas that are characterized by occasional patch

disturbance, relatively infrequent fire, and rapid rates of hardwood succession.  In other

words, the red-cockaded woodpecker may be an ecological indicator species for only a

transitory state of the Piedmont forest.  Therefore, a single-species focus may be less

justifiable in the Piedmont than in the coastal plain, at least from an ecosystem

perspective.  Furthermore, the application of high management inputs to maintain the

forest in an artificial state of hardwood suppression seems to conflict with the principles

of ecosystem management.  Therefore, relative to management in coastal plain

environments, conservation objectives for the Refuge may not be as clearly or

unanimously established.

POPULATION BIOLOGY OF THE WOOD THRUSH

The wood thrush is a neotropical migratory bird of eastern North American

forests (Roth et al. 1996).  Beginning in early April, wood thrushes arrive in Georgia

(Weaver 1949) from their wintering grounds in the Yucatan Peninsula southward to

Panama (Roth et al. 1996); breeding commences at the Refuge by early May (Powell

1998).  Wood thrushes are believed to be monogamous within the breeding season but

seldom are found with the same mate in successive breeding seasons (Roth et al. 1996). 

Pairs typically attempt more than one brood each year and often raise two broods

(Weaver 1949, Brackbill 1958, Roth et al. 1996).  Wood thrushes forage predominantly

for invertebrates in leaf litter, but the diet includes fruits, especially in the late summer

and fall (Roth et al. 1996).  Wood thrush nests are constructed of a variety of natural and

man-made materials interwoven in mud or rotting vegetation (Weaver 1949, Roth et al.
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1996, Powell 1998).  Nests are located in shrubs or in the lower branches of trees, usually

<6 m from the ground (Roth et al. 1996).

Archetypical breeding habitat of the wood thrush is the interior of mature, closed-

canopy, deciduous or mixed composition woodlands (Weaver 1949, Hamel et al. 1982,

Roth et al. 1996).  Some authors, observing that wood thrush territories often incorporate

forest edges, classify the bird as an interior-edge species (Whitcomb et al. 1981).  The

wood thrush requires a sparse to moderate deciduous understory for perching and nest

placement; an absent or sparse ground cover facilitates foraging (Roth et al. 1996).  Nest

sites are often found in bottomlands, upland draws, and other mesic habitats that provide

the necessary substrate for foraging and nest-building activities (Weaver 1949, Bertin

1977, James et al. 1984, Roth et al. 1996, Powell 1998).

Populations of wood thrush are believed to have declined throughout their range

since the early 1980s (Peterjohn et al. 1995).  As is the case with many other declining

populations of forest-dwelling neotropical migrants, researchers and managers are

uncertain whether declines stem from loss or degradation of breeding habitat, wintering

habitat, migration habitat, or all three (Sherry and Holmes 1992, 1995).  Many forest

interior migrants are thought to be sensitive to forest fragmentation and patch isolation of

breeding areas (Whitcomb et al. 1981, Temple and Cary 1988, Hansen and Urban 1992). 

Lynch and Whigham (1984) observed a negative association between densities of wood

thrush and a measure of patch isolation (distance to nearest forest $50 ha).  Similarly,

Robbins et al. (1989) found that forest patch size and patch isolation interacted with

respect to detection of wood thrushes: detection rate was consistent in different patch

sizes when patches were minimally isolated ($67% forest #2 km of patch) but was
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negatively correlated with patch size when patches were greatly isolated (#33% forest

#2 km of patch).  Keller et al. (1993) were more likely to detect wood thrushes in wider

rather than narrower riparian forest buffers.  Small patches may occur as population sinks

that are continually replenished by dispersing or displaced wood thrushes from nearby

source habitats (Pulliam 1988).  Brawn and Robinson (1996) attributed low rates of wood

thrush productivity in a highly fragmented Wisconsin landscape to high rates of nest

predation and brown-headed cowbird (Molothrus ater) nest parasitism.  The range-wide

population decline and degradation of breeding habitat prompted Partners in Flight to

identify the wood thrush as a species of high management concern in the southeastern

U.S. (Hunter et al. 1992).

Though much evidence suggests that wood thrush breeding populations are

negatively affected by increased fragmentation of the landscape into forest and non-forest

uses (Donovan et al. 1995; but see Friesen et al. 1999), it is less clear whether

disturbances and fragmentation brought about by silvicultural practices similarly affect

densities and other demographic parameters (Duguay et al. 2001).  Silvicultural practices

alter canopy cover, understory composition, and other components of wood thrush

breeding habitats, and it is reasonable to expect that these practices potentially affect

wood thrushes at both the forest stand and landscape scales.  Certainly, even-aged

regeneration treatments (clearcuts, seed tree cuts, shelterwood cuts; Thompson et al.

1995), which remove all or major portions of the canopy cover, temporarily (12-30 yr)

displace local wood thrush populations as late-succession breeding habitats (Johnston

and Odum 1956, Meyers and Johnson 1978) yield to unsuitable early-succession habitats

(Conner and Adkisson 1975, Dickson et al. 1993, Annand and Thompson 1997).  The
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various forms of uneven-aged management (single-tree selection, group selection,

fuelwood harvest; Chadwick et al. 1986, Thompson et al. 1995) affect the forest canopy

less severely than even-aged approaches.  Thus, wood thrushes may persist in the stand,

albeit at reduced densities (Crawford et al. 1981, Chadwick et al. 1986, Annand and

Thompson 1997).  At the scale of a forest landscape, however, interspersion of clearcuts

and other regeneration cuts within the forest appear to not affect densities of wood

thrushes in neighboring mature stands (Thompson et al. 1992).  Duguay et al. (2001)

found no evidence that forests fragmented by various even-aged silvicultural treatments

created population sinks for wood thrushes.

A number of intermediate silvicultural practices may take place over the life of a

stand (Thompson et al. 1995); those most pertinent to this study are overstory thinning,

hardwood midstory reduction, and prescribed burning (Refuge Habitat Management

Plan).  Few experimental studies have addressed the response of wood thrushes to such

periodic treatments.  Dickson (1981) speculated that densities of shrub-nesting forest

birds are reduced in proportion to amount of understory vegetation removed by burning. 

Relative to untreated stands, Rodewald and Smith (1998) found sharply reduced densities

of wood thrushes in oak (Quercus spp.)-hickory (Carya spp.) stands where hardwood

understory vegetation had been mechanically removed.

Several observational studies investigated intermediate treatments oriented

specifically toward red-cockaded woodpeckers and responses by non-target bird species

to those treatments (hardwood reduction by dormant-season prescribed burning and by

mechanical or herbicidal means).  In all studies, and to varying degrees, wood thrushes

were less abundant or less common in treated than in untreated stands (Lucas 1994,
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Brennan et al. 1995, Burger et al. 1998, Raftovich 1998, Hines 1999).  In an experimental

study of thinning and dormant-season burning in mixed stands managed for red-cockaded

woodpeckers, Wilson et al. (1995) found that treated stands, compared to control stands,

generally contained fewer individuals of hardwood-dependent forest-interior bird species;

however, the wood thrush was not one of their studied species.  Block et al. (1995)

concluded that woodpecker-oriented management was not necessarily incompatible with

management for forest-interior neotropical migrants, and they urged further experimental

research into non-target bird response to variations in woodpecker management practices

and habitats.

The only experimental investigation of wood thrush demographic parameter

response to intermediate forest treatments occurred at the Refuge (Powell 1998, Powell et

al. 2000).  In this study, control and treated management compartments were compared

before and after application of thinning and burning treatments.  No effects of treatment

were detected on wood thrush densities, adult or juvenile rates of survival (Powell et al.

2000), or daily nest success (Powell 1998).  In fact, most estimated treatment-control

differences were positive (Powell 1998).  Treatments did not affect juvenile dispersal

distances, but adults in treated areas were less likely to disperse within the breeding

season than those in control areas (Powell 1998).  Wood thrushes on treated areas more

strongly selected hardwood habitats and avoided pine habitats following the treatment

than before, whereas habitat preferences on untreated units were similar before and after

treatments (Powell 1998).  Powell (1998) speculated that the relatively modest impacts of

the treatments, the mobile nature of wood thrushes, and the ability of wood thrushes to

employ a somewhat wide range of nesting and foraging habitats may explain the failure
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to detect treatment effects in this study population.  Furthermore, many estimates of

treatment effect were highly uncertain despite intensive field efforts to control and reduce

sources of variability (Powell et al. 2000).  Powell et al. (2000) concluded that

management oriented toward red-cockaded woodpecker habitat creation and

maintenance, as currently practiced on the Refuge, does not negatively affect wood

thrush population density or growth rate.  However, recognizing the high variability in

many of the measured parameters, they nevertheless recommended an adaptive course of

management that incorporates a program of habitat and population monitoring (Powell et

al. 2000).

MODELING BIRD POPULATION RESPONSES TO HABITAT MANAGEMENT

ALTERNATIVES

Models linking habitat management decisions to bird population outcomes fall

into three general classes.  The first class employs an observed statistical (or speculated)

link between habitat conditions and bird occurrences or abundances to make predictions

about bird response to unobserved future conditions (Verner et al. 1986, Buckland and

Elston 1993, Hepinstall and Sader 1997).  The advantage of these models is their easy

linkage to geographic information system (GIS) habitat mapping resources and their

resultant spatial detail.  Their disadvantage is their underlying premise that population

abundance is a monotonic function of habitat quality, independent of local population

dynamics (Van Horne 1983, Pulliam 1988, Conroy 1993, Conroy and Noon 1996). 

These models are entirely phenomenological, that is, they lack a mechanistic link that

describes how changes in habitat affect population demographic parameters such as

survival, productivity, and dispersal.  Thus, such prediction models are of dubious
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reliability under conditions different from the ones under which they were developed

(Conroy and Moore 2002).

A second class of models is non-spatially explicit demographic models (Shaffer

1981, Noon and Sauer 1992, Caswell 2001).  These models use demographic information

on survival and productivity, often specific to different life stages, to project populations

through time.  The models can be examined for sensitivity to habitat actions that are

believed to affect demographic parameters.  These models may provide the mechanistic

link between habitat and demographic response, but they have limited realism for

systems in a spatially heterogeneous landscape.  Such models may be entirely suitable for

management problems in which the target species is highly mobile and not strongly tied

to a specific, patchily-distributed habitat feature.

The third class of models, spatially-explicit population models, integrate spatial

representations of the habitat with animal population dynamics (Pulliam et al. 1992,

Dunning et al. 1995).  Habitat features may vary through time and throughout the

landscape according to a management and succession model, and they are linked to

elements (individuals, groups, or subpopulations) of an animal population model (Holt et

al. 1995).  Animals in the model respond both to distribution of habitats and to other

animals.  As with habitat association models, spatially-explicit population models are

easily bridged to GIS resources.  Unlike those models however, spatially-explicit

population models incorporate survival, recruitment, and dispersal mechanisms. 

Spatially-explicit population models may be most useful for species that are rare or

dependent on patchily-distributed habitat elements.  Although such models offer a great

degree of ecological realism, they are very difficult to parameterize and uncertainties in
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the parameters compound to render output of questionable reliability (Conroy et al.

1995).

MANAGEMENT MODELS FOR THE RED-COCKADED WOODPECKER

Models of all three classes have been proposed for managing red-cockaded

woodpecker populations.  Many investigators postulated or statistically inferred

relationships between habitat measurements and a response variable (e.g., woodpecker

occurrence, nest site occurrence, nest site activity) to generate predictive habitat

association models at the forest stand (Connor and Rudolph 1989, Loeb et al. 1992,

Thomlinson 1996, Doster and James 1998, Wigley et al. 1999, Davenport et al. 2000),

landscape (Seagle et al. 1987, Azevedo et al. 2000), and regional (Flather and King 1992)

scales.  The model of Loeb et al. (1992), which associated cluster activity with degree of

hardwood midstory encroachment, was developed from data collected at the Refuge.

Reed et al. (1993) and Stevens (1995) used non-spatially explicit population

models to estimate effective sizes (Ne) of woodpecker populations.  Stevens (1995)

acquired demographic data from a population study conducted on the Refuge (Lennartz

and Heckel 1987) to parameterize both a deterministic, analytic model and a stochastic

simulation model.  Based on sensitivity analysis of the simulation model, he concluded

that management focused on increasing female adult and fledgling survival was more

effective in increasing the Refuge population than actions designed to increase

productivity.  Constructing artificial cavities, he suggested, would stem off-site dispersal

by females (Stevens 1995).  Using the data of Lennartz and Heckel (1987) plus additional

resighting data collected by the authors, Maguire et al. (1995) also developed a stochastic

population viability model.  Results of their analysis were equivocal, however.  The
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authors, uncertain over the appropriate set of data to use for survival calculations, found

evidence both for population growth and population decline.  In the face of this

uncertainty, the authors recommended, as did Stevens (1995), that woodpecker

management should aggressively pursue measures to reduce fledgling mortality,

specifically, through the construction of artificial cavities.  In each of the foregoing

population modeling exercises, however, all authors pointed out the deficiencies of their

models with respect to the complex woodpecker social structure and dispersal dynamics.

In their population model, Heppell et al. (1994) attempted to explicitly take into

account male woodpecker social structure.  They constructed a deterministic stage-based

population model using demographic data collected in the North Carolina Sandhills

region.  Stages in the model were mutually exclusive social classes of breeding and

nonbreeding males.  They informally linked their model to management by

experimentally adjusting productivity and transition parameters according to how they

believed different actions would affect the parameters.  This form of sensitivity analysis

suggested that hardwood removal in occupied areas and constructing artificial cavities in

unoccupied areas were most likely to increase numbers of breeding groups.  Other

actions (e.g., exclusion of cavity competitors, improving foraging habitat) were believed

to enhance average group size rather than increase group numbers.

Letcher et al. (1998) developed an individually-based, spatially-explicit

demographic model to investigate woodpecker population persistence under varying

degrees of territory aggregation.  The authors simulated production, dispersal, pair-

bonding, and mortality events of individuals on an artificial, homogeneous landscape. 

The events were chosen randomly from fixed probability distributions, thus the model
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featured demographic stochasticity.  The principal finding was that small populations

were just as persistent as larger ones provided that territories were sufficiently clumped

rather than dispersed.  The pool of male helpers in highly aggregated territories

maintained population stability in the presence of demographic variability (Letcher et al.

1998).  Walters et al. (2002) improved on the Letcher et al. (1998) model by

incorporating environmental stochasticity in demographic parameters; nevertheless, their

findings regarding effects of spatial aggregation of territories were much the same as

those of Letcher et al. (1998).  However, neither model was linked to a habitat

component and therefore did not accommodate habitat variability through time or across

space.

In contrast, Hughell (1996) analyzed a spatially-explicit woodpecker population

model that did incorporate and respond to habitat variability.  Compared to the Letcher et

al. (1998) and Walters et al. (2002) models, Hughell’s (1996) model was

demographically simpler because the population unit of interest was the breeding group,

not the individual.  His model tracked the status of breeding groups in three artificial

landscapes and in one real landscape, each landscape partitioned into 4-ha hexagonal

cells.  Breeding groups persisted, died, or “budded” into neighboring habitat cells

according to stochastic rules moderated by local habitat conditions.

Hughell’s (1996) work provided the only example in which dynamic, map-

referenced vegetation growth models linked woodpecker population status to alternative

management scenarios.  As timber production was a co-objective of management in his

study, he employed yield equations to project timber volume through time.  He estimated

stand-scale foraging habitat quality on the basis of locally-measured site index and stand
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age, and probabilities of breeding group persistence and expansion were governed by

quantity of suitable foraging habitat in the neighborhood of the group.  Hughell (1996)

used his model to optimally schedule stand-level harvests through time, given a degree of

trade-off between harvesting volume and foraging resource objectives.  Seagle et al.

(1987) also presented a stand-based forest decision simulation model, but stand age was

evidently the sole habitat variable they modeled.  Their model did not explicitly tie

woodpecker response to management actions; rather, they evaluated alternative decision

scenarios only in terms of suitable woodpecker habitat (defined as area of forest

exceeding minimum threshold ages) created.

MANAGEMENT MODELS FOR THE WOOD THRUSH

Demographic models for migratory birds are challenging to develop as the

constituent model parameters are difficult to measure in the field (Noon and Sauer 1992). 

Nevertheless, Noon and Sauer (1992) demonstrated the use of a simple stage-structured

population model for wood thrush to gain insight into effective management approaches. 

Donovan et al. (1995) employed a two-stage wood thrush projection model to distinguish

source from sink forested habitats in the midwestern U.S.  Substituting locally-measured

estimates of productivity and adult survival in the same model, Simons et al. (2000)

estimated a wood thrush production surplus (population growth rate > 1) in the Great

Smoky Mountains National Park.  In similar use of the model of Donovan et al. (1995),

Duguay et al. (2001) also concluded that all the forested areas they studied in West

Virginia produced a surplus of young available for dispersal.

Habitat models for wood thrush, on the other hand, are relatively simple to

develop, are easily linkable to maps of vegetation and physiography, and thus have
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received greater attention by researchers.  Point counts of wood thrushes have been

correlated to forest stand structural variables (DeGraaf et al. 1998), edge types (Mancke

and Gavin 2000), and to vegetation characteristics and landscape metrics (Fauth et al.

2000, Penhollow and Stauffer 2000).  Similarly, binary detection/non-detection data have

been correlated to physiographic features (Dettmers and Bart 1999), to habitat and

topographical characteristics (Simons et al. 2000), and to landscape metrics and

vegetation attributes (Mitchell et al. 2001).  Hoover and Brittingham (1998) used

measured vegetation features to distinguish nest sites from randomly-chosen non-nest

sites.  Powell et al. (2000) estimated wood thrush density in each of several forest

management compartments on the Refuge and correlated densities with amount of upland

and bottomland forest in each compartment.

Powell (1998) developed a stochastic dynamic model to investigate the effects of

spatially-distributed silvicultural actions on the Refuge wood thrush population.  His is

apparently the only model that integrates habitat dynamics with a demographic model for

wood thrush.  His model was spatially-based but not fully spatially-explicit.  That is,

wood thrush population transitions were accounted for on a forest compartment-level

basis, but the spatial arrangement of the compartments was not explicitly recognized in

the model.  Type of silvicultural treatment applied to compartments (i.e., burned/thinned

versus untreated) determined within-season productivity rate, age and sex-specific

survival rates, and sex-specific inter-compartment movement rates.  A forest transition

model calculated between-season overstory and understory responses to treatments.
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MODEL-BASED DECISION MAKING IN CONSERVATION MANAGEMENT

Responsible conservation management implies that decision actions should be

optimal in some measure, including those actions designed to minimize risk of an

undesirable outcome.  An ecosystem approach to natural resource management

recognizes that resources are dynamic and most often governed by spatial processes, that

responses to management are largely uncertain, and that decisions should not be

evaluated on a single response measure (Christensen et al. 1996).  Although there exist

numerous optimization examples that take into account these concerns individually, none

appear to comprehensively address all these issues.

MODEL-CERTAIN APPROACHES

By far, most applications of optimization principles in conservation management

are in cases where underlying habitat and population models are considered certain.  That

is, the model’s structure and parameterization are regarded as known, even though other

forms of stochastic uncertainty (partial observability, environmental uncertainty, and

partial controllability) may occur in the model.

Often forest planning for wildlife considerations involves specifying goals and

constraints in terms of landscape configurations or abundance of specific habitat types. 

These metrics serve as surrogates for population responses; they may or may not relate to

population viability.  Kurttila (2001) reviewed many of these habitat-based approaches. 

Nevo and Garcia (1996) used habitat suitability indices to develop nonlinear

programming models for optimal habitat planning.  Bettinger et al. (1997) used a

heuristic search algorithm for optimal stand harvest schedules that met minimum cover

and foraging goals for Rocky Mountain elk (Cervus elaphus nelsoni).  Loehle (2000)
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described another heuristic search algorithm that finds an optimal stand harvesting

schedule that leaves a remnant patch of sufficient size for wildlife and with minimum

patch edge.

However, a number of recent studies have investigated optimization based on

models of population growth and dispersal among habitat patches.  Hof et al. (1994)

solved a mixed-integer programming problem in which forest harvesting decisions

through time on an artificial landscape altered carrying capacity, and thus population

growth and dispersal, for two species that favored different forest seral stages.  Hof and

Raphael (1997) combined simulation with linear optimization to explore alternative

arrangements of habitat for the northern spotted owl.  They used a population simulation

model to estimate population limitation and carrying-capacity functions for owls, and

they provided these functions in linearized form to a solver.  However, theirs was a static

optimization, which they justified by pointing out the semi-permanence of habitat

decisions (Hof and Raphael 1997).

Haight (1995) analyzed a stochastic metapopulation model to find forest

harvesting policies that maximize financial return while meeting pre-specified

probabilistic levels of vertebrate species viability.  In his model, amount of timber

harvest influenced both the carrying capacity of a patch and degree of dispersal from the

patch.  In a related problem, Haight and Travis (1997) constructed a stochastic

metapopulation model for gray wolves (Canis lupus) in the upper Great Lakes region,

and they described random search techniques to find the minimum amount of habitat to

preserve to assure population viability in one of the patches.
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Lubow (1996) modeled two spatially disconnected populations of organisms in

which demographic and environmental stochasticity, catastrophic events, and density

dependence all regulated population growth.  He used stochastic dynamic programming

(Bellman 1957, Dreyfus and Law 1977) to select number of individuals to translocate

between populations, conditional on current size of each population, to maximize

probability of long-term persistence of the populations.

Doherty et al. (1999) used dynamic programming to find woodlot management

decisions that were optimal for a ratio of bird population size to revenue loss, given

current woodlot size distribution within the landscape.  They captured output from a

stochastic, individually-based, spatially-explicit population model of Carolina chickadees

(Poecile carolinensis) and used these quantities as single-stage payoff values in the

dynamic programming algorithm.

Conroy and Moore (2001) modeled a simple forest system that existed in two

seral stages, where transitions between stages were governed by natural succession or

were manipulated by harvest.  Each seral stage served as source habitat for one bird

species, and they embedded simple stochastic source-sink models into a dynamic

programming algorithm to derive optimal harvest decisions conditional on the current

habitat distribution of the forest and species abundances.  Tuck and Possingham (2000)

used dynamic programming to analyze harvest of a fishery that comprised both exploited

and protected populations in a demographically connected metapopulation.

Moore et al. (2000) modeled forest growth on an artificial landscape divided into

management compartments.  They used a model of basal area yield to project habitat

conditions forward through time and in response to compartment-specific thinning and
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harvesting decisions.  Population dynamics of a generic bird species favoring old-growth

habitat were regulated by source-sink relationships and distance-moderated inter-

compartmental dispersals.  They used a genetic algorithm (Goldberg 1989) to find near-

optimal spatial and temporal schedules of silvicultural activities designed to maximize

long-term bird abundance, given an initial state of the forest landscape.

Several of the above studies explicitly addressed the issue of multiple objectives

and trade-offs between satisfying each objective.  In some cases, individual resource

objectives were weighted and combined in some fashion to form a single composite

objective statement (Hof et al. 1994, Nevo and Garcia 1996, Doherty et al. 1999, Conroy

and Moore 2001).  In other cases, the optimization procedure explicitly acknowledged

one of the resource objectives and constrained solutions to meet threshold values of other

objectives (Haight 1995, Nevo and Garcia 1996, Haight and Travis 1997, Moore et al.

2000).  Still others used graphical techniques to examine the production possibilities

frontier and analyze trade-offs among competing resource objectives (Rohweder et al.

2000).  For example, Lin and Buongiorno (1998) optimized a Markovian forest landscape

model and graphically portrayed trade-offs in optimal management for maximum forest

income, forest diversity, and landscape diversity.

OPTIMAL MANAGEMENT UNDER MODEL UNCERTAINTY

In contrast to the model-certain approaches, model-uncertain, or adaptive,

approaches do not presume knowledge of any single model structure or parameterization. 

Assuming structural knowledge in an uncertain environment may easily lead to sub-

optimal (i.e., overly costly either in terms of the resource or in implementation)

conservation strategies (Dakins 1999).  Adaptive approaches embrace the notion that
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improvements in management can be gained whenever information is available and

applied to the reduction of uncertainty.  This is the idea of dual control: some sacrifice in

short-term resource objectives can be tolerated if, as an outcome of decision making,

knowledge is gained that will lead to better management over the longer term (Walters

and Hilborn 1978, Walters 1986:257, Williams et al. 1996).  More than 100 years ago,

Chamberlin (1890) appealed to the scientific community to employ not one but a family

of working hypotheses for the conduct of scientific inquiry.  Adaptive management gives

Chamberlin’s (1890) proposal operational footing and provides resource managers a way

out of seemingly intractable and contentious decision problems.

Hughell’s (1996) work on forest management for the red-cockaded woodpecker

was purportedly an implementation of adaptive management.  He used a genetic

algorithm to find an optimal spatially-explicit timber harvest schedule given current

forest status and woodpecker distribution.  He then simulated the schedule for one time

period and recorded the expected response by the woodpecker population.  With change

in the woodpecker distribution likely, subsequent steps of the decision schedule could

then become infeasible.  Therefore, these steps of optimization and simulation were

repeated throughout the planning horizon.  This example does not qualify as adaptive

management, in the sense of Walters (1986) or Williams (1996), as the model structure

and parameters are completely determined.  The chance redistribution of birds is

apparently the “information feedback” in this problem, and the fact that the decision

schedule must change in light of the new system state is evidently the “adaptation” being

described.  This case exemplifies a misconception in conservation management that the

ability to alter decision actions in response to the changing state of a resource is a
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sufficient condition to classify a management program as "adaptive."  In fact, this

condition is necessary but not sufficient in an adaptive policy; the sufficiency is satisfied

when information is used to update parameters of the resource model.

Anderson (1975) provided one of the earliest treatments of optimal harvesting of

a wildlife resource in a stochastic, dynamic environment.  His effort is noteworthy

because he specifically addressed the issue of uncertainty about the degree of

compensation in mallard (Anas platyrhynchos) harvest mortality, an issue that continues

to vex harvest management decision making (Nichols et al. 1984).  Anderson (1975) did

not espouse one model over another, but he recommended that management under either

model should be periodically evaluated and perhaps adjusted if new data shed further

light on model appropriateness.  Johnson et al. (1993) later formalized the treatment of

model uncertainty when they proposed the development of an adaptive waterfowl harvest

strategy.

As stated earlier, adaptive management applications can be described in terms of

structural uncertainty type (model structure versus parametric uncertainty) and in

aggressiveness of information pursuit (passive versus active).  Parametric uncertainty is

often addressed through formal Bayesian methods.  McAllister and Kirkwood (1998)

used a Bayesian analysis to update probability distributions on the parameters of a

logistic growth model for a fish stock.  Given the growth model, an optimal harvest

decision action was identified on the basis of the posterior distribution of a computed

catch statistic from the model.  Following each decision, data from the fishery were used

to again update the model.  Pascual and Hilborn (1995) conducted a simulation exercise

in which the optimal rate of wildebeest (Connochaetes taurinus) harvest was dependent
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on identification of parameters in a stochastic habitat and population growth model. 

They estimated posterior probabilities of the parameters via a Bayesian analysis, and they

used simulation to determine how well alternative recruitment hypotheses (different

specific settings of parameter values) were distinguished under each harvest regime.  In

both of these cases, information was pursued passively as the different harvest options

were not evaluated in terms of future information gain (Collie and Walters 1993).

A weakness exhibited in the above Bayesian approaches to optimal decision

making is that, although system processes are dynamic, management actions, once

chosen, are assumed to be fixed through time.  This is not realistic management behavior

for a large class of dynamic problems, and Collie and Walters (1993) pointed out the

difficulty in simulating expected management actions in response to future system

behavior and information accrual.  Dynamic programming methods, on the other hand,

entertain the possibility of different optimal management actions with changing future

system states over finite or infinite time horizons (Bellman 1957, Dreyfus and Law

1977).  In addition, transitions in the information state of the system may be modeled so

that optimal actions could also depend on the current degree of knowledge about the

system (Williams 1996).  These methods, however, require discrete representation of the

entire system, that is, all state variables, stochastic variables, and decision variables must

take on discrete values (Lubow 1995).  Therefore, dynamic optimization approaches that

address model uncertainty do so with respect either to different model structures or to

different distinct values of parameters.

Johnson et al. (1997) used dynamic programming to optimize a model of

waterfowl harvest under uncertainty about model structure.  They constructed a
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population dynamics and harvest model for the continental breeding population of

mallard.  They proposed two alternative hypotheses concerning degree of density

dependence in reproduction and two hypotheses regarding degree of harvest

compensation, thus yielding four alternative models of population dynamics.  Each model

was optimized individually, and each produced a state-specific table of harvest decisions

that maximized a total harvest function over an infinite time horizon.  A composite table

was also generated, in which a weighted sum of harvest returns by all four models was

optimized.  Equal belief weights of 0.25 were assigned to each model, representing

complete uncertainty among models.  The optimal harvest strategy thus produced was

passive, in that changes in the information state were not anticipated in the optimization. 

However, Williams (1996) developed a computer algorithm to derive active adaptive

decision policies dependent on both resource state and information state.  He

demonstrated his program on the models developed by Anderson (1975).

An alternative approach to representing system uncertainty is through a Bayesian

belief network (Rieman et al. 2001).  Here, one builds a single network that qualitatively

describes process pathways of the managed system and assigns conditional transition

probabilities between network nodes.  The network is then analyzed to estimate

probability of occurrence of specific outcomes, conditional on the network probabilities. 

Data collected from the system can be used to update the estimates of conditional

probability.  The advantage of using such networks is that conditional probabilities can

be established either empirically, when data are available, or subjectively based on expert

opinion when data are lacking (Rieman et al. 2001).
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RESEARCH JUSTIFICATION

Previous authors have urged adaptive approaches to conservation management

(Irwin and Wigley 1993, Nichols et al. 1995, Lancia et al. 1996, Marzluff et al. 2000),

including recovery efforts for the red-cockaded woodpecker (U.S. Fish and Wildlife

Service 2000).  Adaptive approaches in natural resource management offer a number of

advantages (Williams 1997, Johnson and Williams 1999), particularly in the area of

conservation management where scientific uncertainty is profound.  Foremost, adaptive

management provides greater objectivity and transparency in decision making, in that

optimal decisions can be made not only in the face of uncertainty, but in a fashion to

actively reduce that uncertainty.  Adaptive management forces a clear, public discussion

of scientific uncertainty apart from discussions concerning conservation objectives. 

Thus, scientific uncertainty under this approach cannot be used to cloak fundamental

disagreements over management objectives and preferred decision alternatives.  Also,

adaptive management provides explicit, critical, and collaborative roles for efforts in

monitoring, research, management, and policy making.

Unfortunately, examples of adaptive management are rare in conservation

management.  My research attempts to illustrate adaptive management in a context that

integrates spatial modeling, model uncertainty, multi-species response, and monitoring. 

The application specifically addresses management of the red-cockaded woodpecker and

associated songbirds, but the approach could be tailored to address other conservation

problems.  Uncertainty in this modeled system focuses on the form of the relationships

between habitat and woodpecker productivity and between habitat and wood thrush
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abundance.  Decision options are the possible ordering of forest compartments to treat

through time and the frequency of prescribed burning.

The models I report here are based on my best understanding of bird ecology and

interpretation of limited data.  They offer no particular improvements or novel

alternatives to models previously developed, and their many weaknesses could be pointed

out.  However, my intent is to illustrate that perfect models are not needed in the support

of decision making, only a set of plausible, if imperfect, alternative models.  Model

improvements will come as systems are monitored over time and the effects of

management on bird populations are better understood.  In the meantime, decisions may

nevertheless be made even when uncertainty about managed systems is very high.  In the

sections that follow, I describe methods of data collection, map creation, development,

simulation and analysis of models, and optimization analysis.



42

CHAPTER 3

DATA COLLECTION AND ANALYSIS

This research focuses on management conducted at the 14,136-ha Piedmont

National Wildlife Refuge in central Georgia, USA.  In the sections that follow, I describe

the history and characteristics of the Refuge, data collection efforts, and data analysis.

PIEDMONT NATIONAL WILDLIFE REFUGE

The Refuge is located in Jasper and Jones counties, at the southern edge of the

Piedmont physiographic province (Figure 5).  The topographic, edaphic, and vegetation

features of the Refuge are representative of the region (Lennartz and Heckel 1987, Loeb

et al. 1992).

HISTORY

Prior to European settlement in the early 19th century, a hardwood-dominated

climax forest likely covered uplands of this region (Nelson 1957).  Following settlement

and continuing until the Depression, repeated cycles of land clearing, crop cultivation,

and farm abandonment occurred throughout the southern Piedmont (Brender 1974).  Soil-

depleting farming practices destroyed the topsoil and led to widespread erosion in all

areas of the region (Brender 1974), including those lands that eventually formed the

Refuge.  The region quickly reforested in loblolly and shortleaf (P. echinata) pine,

concurrent with the growth of a vigorous forest products industry in the early 20th

century.  Natural fire regimes were suppressed in the nascent forest, and aggressive
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encroachment by shade-tolerant understory hardwood species soon followed (Brender

1974).

Lands acquired under the Resettlement Administration during the New Deal were

transferred to the U.S. Bureau of Biological Survey in 1939 for the creation of the Refuge

(Gabrielson 1943:109-110).  The Refuge was established for the promotion and

representation of native upland game wildlife.  Very little vegetative cover occurred on

the Refuge at the time, and the land suffered severe erosion damage (Gabrielson 1943). 

The aim of the Refuge was to demonstrate the application of sound management for

restoring the degraded landscape and wildlife populations of the region (Czuhai and

Cushwa 1968), but because of the extreme degree of damage, Gabrielson (1943) forecast

that this goal would not be realized for many years.

DESCRIPTION

The Refuge lies to the east of the Ocmulgee River and entirely within the

Ocmulgee watershed.  The Hitchiti Experimental Forest (HEF) of the Oconee National

Forest (ONF) and some private lands split (approx. 2 km separation) the Refuge into

northern (12,127 ha) and southern (2009 ha) tracts.  The northern Refuge border adjoins

the ONF and some private properties; all other borders adjoin private land.  The Refuge

envelops 332 ha of private inholdings; most (98%) of this area occurs in four large (40-

147 ha) inholdings on the eastern side of the northern tract.

Numerous stream beds and bottomlands dissect the gently to somewhat steeply

undulating terrain.  Clayey, acidic, and highly erodible Davidson soils occur in most of

the upland areas, whereas the more sandy Congaree and Toccoa soils occur in

bottomlands (Long and Carr 1916, Payne 1976).
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Forests covered most (96%) of the Refuge in 1982 (Refuge Habitat Management

Plan).  Pine cover, primarily loblolly but also some shortleaf, was the dominant overstory

cover type in 75% of the forest.  White oak (Quercus alba), southern red oak (Q. falcata),

and hickories (Carya spp.) were the dominant overstory species on upland hardwood

sites, comprising 12% of the forest.  Sweetgum (Liquidambar styraciflua) and yellow

poplar (Liriodendron tulipifera) were the dominant overstory species in bottomland

forests.  Roads, impoundments, and permanent openings comprised the non-forested

portions of the Refuge (Refuge Habitat Management Plan).

MANAGEMENT

The Refuge is divided into 34 management compartments along road and stream

boundaries.  Compartments are managed to be representative of overall forest

composition and age structure of the Refuge (Refuge Habitat Management Plan).  Each

compartment belongs to one of eight permanent management groups (Figure 6). 

Assignment of compartments to groups facilitates forest planning on an eight-year

compartment visitation schedule.  All four (or five) compartments within a management

group are evaluated and treated simultaneously, and different groups are treated in

different years.  Because no two compartments assigned to the same group share a

common border, forest treatments are dispersed across the Refuge in any year.  Refuge

personnel conduct a timber cruise and prepare a management prescription for each

compartment in a group.  The prescription identifies regeneration and thinning harvest

actions on a stand-level basis within the compartment.  Private contractors then conduct

any forest harvesting actions called for in the prescription.
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The silvicultural system used for pine management at the Refuge is retention

(irregular) shelterwood (Refuge Habitat Management Plan; J. D. Metteauer, Piedmont

National Wildlife Refuge, personal communication), an even-aged regeneration system in

which some of the standing shelter trees are left on-site until the following rotation

(Smith 1962).  In addition to protecting the developing seedling crop, the retained trees

may serve as red-cockaded woodpecker foraging (U.S. Fish and Wildlife Service 1998)

or nesting (Conner et al. 1991) habitat.  Refuge managers designate pine stands as either

sapling (P1; <16 yr), poletimber (P2; approx. 16-40 yr), or sawtimber (P3; $40 yr).

Pine stands are managed on an 80-year average rotation length; the specific length

depends upon site fertility (Refuge Habitat Management Plan).  A recovery plan for the

red-cockaded woodpecker, however, calls for a minimum rotation length of 100 years for

loblolly pine (U.S. Fish and Wildlife Service 1998).  A series of intermediate thinnings is

carried out over the rotation to achieve specified density and crown closure goals for red-

cockaded woodpecker (Refuge Habitat Management Plan).  Degree of crown closure is

used to further classify sawtimber stands: dense (P3A; $70% closure), intermediate

(P3B; 40-70%), and sparse (P3C; <40%) closure.

Refuge managers used dormant-season fire sporadically prior to the 1960s

(Czuhai and Cushwa 1968) but more consistently since (Lennartz and Heckel 1987; J. D.

Metteauer, Piedmont National Wildlife Refuge, personal communication).  Managers

evaluate need for fire annually on a Refuge-wide basis.  Fire use through the 1990s was

concentrated along the west side of the Refuge (Figure 7) coinciding with the distribution

of red-cockaded woodpecker clusters.  Managers attempt to burn woodpecker nesting and
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foraging areas on a 2-3 year cycle, but inter-burning periods often vary among specific

sites (J. D. Metteauer, Piedmont National Wildlife Refuge, personal communication).

Hardwood species are aggressively encroaching into pine stands throughout the

Refuge (Refuge Habitat Management Plan).  Refuge managers use fire and mechanical

removal to control the hardwood understory in those stands where woodpeckers exist or

are desired.  However, in an effort to increase Refuge habitat diversity, managers do not

try to impede hardwood succession on many other upland areas (Refuge Habitat

Management Plan).  Managers forecasted in 1982 that succession will continue until 40%

of the forest cover comprises upland (UH) and bottomland (BH) hardwood types (Refuge

Habitat Management Plan).

DATA COLLECTION

Data required for this research came from several sources.  Refuge personnel

provided data on red-cockaded woodpecker productivity, general stand conditions, and

treatment history.  I obtained spatial data for GIS development from public spatial data

sources.  My University of Georgia research colleagues (M. C. Anderson, L. F. Dawood,

W. T. Plummer) collected data on bird and vegetation status in conjunction with this

study.  These data provided estimated wood thrush densities (W. T. Plummer, University

of Georgia, unpublished data) which I used in my management models.

WOOD THRUSH SURVEYS

My colleagues collected counts of wood thrushes during 1996-2000 in transect-

based distance surveys of forest birds; complete details of methods and results regarding

these surveys are described elsewhere (M. J. Conroy et al., Final Report: Adaptive

Management Framework for the Monitoring of Forest Wildlife Populations on National
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Wildlife Refuges, 2001, unpublished report) (hereafter, “Final Report”).  A survey route

was established in each of ten Refuge compartments (compartments 5, 6, 8, 11, 12, 16,

23, 24, 25, and 31) in 1996 and in two additional compartments (27 and 33) in 1997. 

Survey compartments were chosen to represent the range of treatment actions (no action;

thinning or burning only; combined thinning and burning) expected to occur throughout

the Refuge over the course of the study.

Survey routes often followed Refuge logging roads, streams, county gravel roads,

or Powell’s (1998) wood thrush transect lines, but many followed no pre-existing course. 

Route length varied (2.4-4.8 km) depending on the compartment size, shape, and

availability of usable paths.  Routes were laid out in closed circuits to minimize multiple

encounters of individual birds, and they were configured to sample habitats in proportion

to their occurrence in the compartment.

Under relatively calm conditions (no rain or high wind), a single observer walked

the survey route during a three-hour period starting at daybreak.  For each detected wood

thrush, the observer recorded time of day, overstory habitat (by direct sight, or if distant,

by judgment from Refuge stand maps), detection type (visual or audible), and estimated

distance to the bird.  The observer recorded each detection without regard as to whether

the bird was detected alone or in a pair.

Transects were surveyed seven times each breeding season, except in 1997 (five

times each) and in 2000 (three times each).  The reduction of survey effort in 2000

coincided with the start of a Refuge-wide point count survey (Final Report).  Counts

were conducted in May and June of each year, except in 1996 when some surveys

continued into July.
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Survey protocols were adjusted over time in response to problems encountered in

the surveys.  Routes were redesigned after 1996 to better reflect compartment habitat

compositions.  Also that year, the practice of obtaining distance by extrapolating a

measurement between subjectively placed points on a map was abandoned in favor of

directly estimating distance in the field.  Prior to 1999, all surveys of a single route were

usually assigned to a single observer.  To diminish the effect of within-year observer

variability among routes, observers since 1998 were rotated among the different surveys

for a single route.  Though many standardization protocols (e.g., selection of consistent

timing and environmental conditions) helped provide among-year survey consistency,

observer detection proficiency nevertheless changed each year with the composition of

the survey crew (Final Report).

VEGETATION SURVEYS

Surveys of vegetation conditions along bird transects were carried out in July and

August of 1996-1999.  On each transect, the survey team paced 100-m intervals and

established a series of survey stations on alternating sides of the transect, 50 m

perpendicular from the transect.  In 2000, vegetation data were collected in conjunction

with the songbird point count survey (Final Report) at 240 survey stations distributed

across 21 Refuge compartments.  For the 2000 survey, each survey station comprised five

sampling points, with four points arrayed in each of the cardinal directions 50 m distant

from a central sampling point.

Attributes of vegetation and physiography were measured at each station or

survey point, following modifications on methods suggested by James and Shugart

(1970) and Noon (1981).  Overstory attributes included dominant overstory type (BH,
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UH, P1, P2, P3, or open), secondary overstory type, if any, and degree of canopy closure

(0-100%).  Total basal area (m2/ha) was measured for both pine and hardwood

components.  Vertical vegetation density at each of three height strata (0 m, 0-2 m, >2 m)

was estimated as the proportion of ground obscured by vegetation in a 10-m radius circle. 

Horizontal vegetation density was estimated as the proportion of squares on a density

grid board, 10 m away from the observer, that was not obscured by vegetation. 

Measurements were taken in three height strata of the density board: 0-0.3 m, 0.3-1.0 m,

and 1.0-2.0 m.  Slope position (top, bottom, midslope) and slope aspect were also

recorded at the site.

COLLECTION AND ASSEMBLY OF SPATIAL DATA

I created a GIS to supply data in support of spatially-based forest and bird

modeling efforts for the Refuge.  The principal source of data for the GIS was the set of

compartment type maps maintained by the Refuge (J. D. Metteauer, Piedmont National

Wildlife Refuge, personal communication).  A type map reflects general land cover

conditions in a compartment as well as physical features including roads, trails, stream

beds, and structures.  Refuge forest managers revise the type map every eight years when

management prescriptions are being prepared for the compartment.  Thus, a complete set

of the most recent compartment maps does not reflect Refuge-wide conditions at a single

point in time.  My goals were to

1) Digitize the most recent type maps to create a complete digital spatial record

of Refuge features and land coverages,

2) Estimate physiographic attributes of the landscape from digital elevation

models,
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3) Render the GIS into a cellular representation suitable for forest and bird

population modeling, and

4) Synchronize elements of the GIS to reflect estimated contemporaneous forest

conditions at any chosen point in time.

POLYGON AND LINEAR FEATURES

Refuge personnel scanned the most recent version of each of the 34 Refuge

compartment type maps into a JPG-format image file.  I used digital aerial photographic

images (U.S. Geological Survey 3.75-minute digital orthophoto quarter quadrangle, 1993

photograph date) to register Universal Transverse Mercator (UTM) coordinates of

prominent landscape features on the maps.  I then projected the map images into a UTM

coordinate system using the ARC/INFO (ESRI, Inc.) Rectify command.

I created several theme layers from the type map images.  I first created a

compartment theme (Figure 8) by digitizing compartment boundaries directly from the

type map images.  I digitized compartments in spatial sequence starting in the northeast

corner of the Refuge (compartment 5).  Each new compartment was digitized by

appending a polygon to the set of polygons already completed.  Because type maps had

been created in isolation of one another, and because the digitizing work proceeded from

northeast to southwest, compartment boundaries in the GIS and in the type maps tended

to disagree with each other mostly along the northern and eastern sides.  These

discrepancies were most apparent where upper reaches of streams separate compartments

(e.g., 5 and 12, 2 and 6), as these stream channels are often hard to identify on a

photograph and transfer to a type map.  I excluded private inholdings on the Refuge from

the compartment theme.
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I split the compartment polygons into individual forest stands and non-forest land

types to create a stands theme (Figure 8).  In accordance with the type maps, I assigned

each stand polygon to one of the nine type classes depicted in the Refuge Habitat

Management Plan: pine types P1, P2, P3A, P3B, and P3C; hardwood types UH and BH;

open land; and impoundments.  Based on descriptions of general silvicultural conditions

at the time of the most recent management prescription, I assigned approximate age and

basal area (m2/ha) map attributes to all P2 and P3 pine stands in the compartment.  These

measures were often no more than midpoints of roughly-estimated data ranges, and I

applied a single set of age and density measures to all stands of the same type class

within a compartment.  In cases where management prescription reports supplied no

estimate at all of pine type age and basal area, I used approximate values based on size-

age relationships summarized in the Refuge Habitat Management Plan.  These age and

basal area approximations were 28 years and 16.1 m2/ha (70 ft2/ac) for P2, 64 years and

19.5 m2/ha (85 ft2/ac) for P3A, 64 years and 16.1 m2/ha for P3B, and 64 years and 12.6

m2/ha (55 ft2/ac) for P3C.  In contrast, type maps usually supplied a distinct year of

establishment for each P1 stand, and I input these values to the GIS.  Basal areas of P1

stands were unknown, but I later estimated P1 basal area using a variation of the Bailey

and Ware (1983) mensuration model (see Forest State Synchronization, below).

I converted a copy of the stands polygon theme into a line segment theme.  From

this theme, I created separate themes for roads and streams (Figure 8) by joining or

cutting away certain line segments.  Therefore, roads and streams that form stand or

compartment boundaries were portrayed consistently with those boundaries.  I gave road

and stream segments unique identifiers according to a “tree-and-branch” nomenclature
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system.  For example, the identifier A.300.140.030 in the streams theme represented the

3rd tertiary branch of the 14th secondary branch of the 30th primary branch (Allison Creek)

of the main stem A (Falling Creek).

PHYSIOGRAPHIC GRID THEMES

I calculated two grid layers, slope position and site index, from a 30-m resolution

digital elevation model (DEM) (U.S. Geological Survey 7.5-minute DEM, published

1979).  First, I used the Spatial Analyst tool in ArcView GIS (ESRI, Inc.) to calculate

slope (GiN; i.e., first elevation gradient), curvature (GiO; second elevation gradient), and

aspect (Qi) values for each pixel i in the DEM.  I compared the elevation of each pixel to

the range of elevations in a 13×13 square neighborhood of pixel i, and I classified the

focal pixel as to whether its elevation occurred in the upper (Ui = 1) or lower (Ui = 0) half

of the neighborhood elevation range.  For each pixel i, I created a categorical attribute,

slope position Pi, that took on one of five ordinal values according to the following rules:

Pi Condition
1: Bottom (GiN # 5%) and (GiO $ 0.1 or Ui = 0)
2: Foot (GiN > 5%) and (GiO > 0.2)
3: Mid (GiN > 5%) and (-0.2 # GiO # 0.2)
4: Shoulder (GiN > 5%) and (GiO < -0.2)
5: Top (GiN # 5%) and (GiO # -0.1 or Ui = 1) and (Pi … 1)

I predicted site index for each pixel as a function of slope (% slope/100), aspect

(degrees azimuth) and slope position:

Si = exp[ b0 + b1GiNcos(Qi) + b2GiNsin(Qi) + b3GiN + b4(Pi-1) + ,i(F2) ],

where Si is predicted site index (m, at base age 50 years) for pixel i and ,i(F2) is a random

variable drawn from a normal distribution with mean 0 and variance F2.  The values bk

and F2 are model parameters.  This function was based on one by Stage (1976), who
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proposed the use of slope-aspect interactions and additive habitat effects in predictive

models for site quality.  I used a stochastic version of the model, however, and I included

a parameter, b4, that related site index to slope position, here expressed as an ordinal

value.  At the Refuge, slope positions are approximate indicators of forest ecotypes or

habitats, among which I would expect site index to vary.

I chose parameter values for this function subjectively through trial and error. 

However, I attempted to calibrate the model so that model output matched historical

summary estimates of site index.  Measurements based on 1% cruise samples carried out

across the Refuge in 1982 yielded a mean site index value of 24.8 m (81.3 ft) for upland

pine stands and 30.2 m (99 ft) for bottomland hardwood stands (Refuge Habitat

Management Plan).  A study on the neighboring HEF provided a coefficient of variation

value of 12.8% for site index (Bailey and Ware 1983).  For each trial set of parameter

values, I used the model to calculate a site index value for every pixel.  I randomly

assigned the pixels into 100 equal-sized groups and calculated summaries of predicted

site index values within each group.  I did so to replicate the 1982 sampling procedure

and to thus provide a basis of comparison of the model output to the historical estimates. 

Following many such trials, I settled on the values b0 = 3.407, b1 = 0.8, b2 = 0.8,

b3 = -0.13, b4 = -0.074, and F2 = 0.1032.  In most of the 100 sample groups, these

parameter values yielded site index summaries within three decimal places of the

historical means and variances for both measured habitat classes.  Based on predictions

from this model (Figure 9), the approximate range of site index values for the entire

Refuge was 14.7-46.6 m (48.3-152.8 ft), and the approximate central 90% of the

distribution ranged 20.4-33.6 m (66.8-110.1 ft).  Site index range for non-bottomland



54

sites (Pi $ 4) was 14.7-40.7 m (48.3-133.7 ft), and central 90% distribution range was

20.8-29.0 m (68.2-95.0 ft).  I used SAS (SAS Institute, Inc.) to conduct all analyses  of

site index (Appendix C.1-C.2).

CELLULAR RENDERING OF THE GIS

Because modeling and decision support activities are difficult to carry out on a

map with irregular polygonal features, I rendered elements of the map in a theme layer of

4.05-ha (10-ac) hexagonal cells (Appendix C.3-C.5).  Hexagons have simple geometric

properties yet they permit a degree of realism and flexibility in the construction of spatial

models.  Their use is becoming commonplace in spatially-explicit population models of

red-cockaded woodpecker (Hughell 1996) and other birds (Pulliam et al. 1992).  I chose

the 4.05-ha hexagon size for consistency with management recommendations for

minimum red-cockaded woodpecker cluster size (U.S. Fish and Wildlife Service 1998,

2000).

Using ARC/INFO (ESRI, Inc.), I intersected a grid of 4.05-ha hexagons with the

compartment theme constructed earlier.  To each hexagon, I assigned the identifier of the

compartment comprising the greatest area within the hexagon.  Hexagons that intersected

the Refuge property boundary were split along the boundary, and I calculated the area

contained in the portion that remained.  I dropped from the resulting hexagon coverage

any hexagon fragment smaller than 0.1 ha (0.247 ac), as such fragments contained

unreliably small samples of physiographic pixel data (see below).  Fifty-one of 3840

hexagons and hexagon fragments (1.3%) fell below this threshold; together they

accounted for only 1.5 ha (0.01%) of total Refuge area.
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I also intersected the hexagon grid with the stands theme to assign stand attributes

to each hexagon.  For each of the four non-pine classes (BH, UH, open, water) found

within a hexagon, I summed areas of all habitat fragments within class.  For each pine

class found within a hexagon, I set age and basal area of each fragment to the values for

the largest fragment of that class.  For example, age and basal area of all P3B stand

fragments within a hexagon were set to the values for the largest P3B fragment.  For

hexagons contained entirely within a compartment, this reassignment of stand age and

basal area had no effect on P2 or P3 stands because these stands had already been

assigned consistent values for age and basal area.  However, P1 stands within a

compartment could vary in age, so the reassignment likely altered ages of some P1

fragments.  Likewise, fragments of stands within hexagons that crossed compartment

boundaries were also affected by the reassignment of age and basal area.

After fragment ages and basal areas were made consistent within each hexagon

and pine type class, I calculated total fragment area by pine type class and identified

those classes occurring in greatest and second-greatest abundance within the hexagon. 

Areas contained in other pine classes, if any, were absorbed by the two dominating

classes in proportion to the areas occupied by these two classes.  Consolidating pine areas

into fewer classes per hexagon simplified the data structure and facilitated modeling, and

the procedure introduced negligible error in pine class area representation (on average,

99.1% of all pine area in each cell was contained in one or two pine classes).  Thus, each

hexagon cell contained none, one, or two consolidated pine classes.  I denote these

consolidated areas as “stands” in further discussion of the GIS and associated decision

models.  After consolidation of these fragments, I assigned a value of percent canopy
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closure to each stand based on its type class.  I used values of 40% for P3C stands, 70%

for P2 and P3B stands, and 100% for P3A stands (Refuge Habitat Management Plan).  I

used a canopy closure model to calculate the canopy closure value for P1 stands (see

Forest State Synchronization, below).

Values of management variables were also assigned to each hexagon.  From

compartment prescription maps displaying the most recent thinning activities, I identified

those hexagons that most closely coincided with treatment areas.  I assigned a variable

representing year of last thinning treatment to each hexagon containing a P2 or P3 stand

(Figure 10).  I assumed that cells not thinned at the most recent treatment cycle were

thinned in the previous cycle, and for those cells, I set year-of-last-thinning to this earlier

year value.  In a similar way, I assigned values of year-of-last-burning based on Refuge

maps of burning activity (Figure 7).  However, I analyzed a 10-year burning record

(1991-2000) of all compartments to make these determinations.  If a cell had not been

burned at all in this time period, I set the year-of-last-burning variable equal to 1990,

effectively indicating a “never burned” state.

I also intersected the slope position and site index grid-based physiographic

themes with the hexagon theme.  These intersections assigned grid pixels to hexagons;

thus, I obtained a suite of summary statistics of slope position and site index for each

hexagon.

Lastly, I calculated a set of feature distance and buffer composition measures for

each hexagon.  I obtained a stream density measure (m/ha) by intersecting the streams

theme with the hexagon theme.  I also calculated distance (m) from each hexagon center

point to the nearest stream.  Around each center point, I calculated land area in Refuge
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ownership, in ONF ownership, and in private ownership occurring in radial buffers of

400 m, 800 m, and 3220 m.

The complete forest data theme thus contained information on the following

attributes in each hexagon (Appendix C.5):

1) Hexagon size and location;

2) Compartment membership;

3) Most recent prescription year, year of last thinning, and fire history;

4) Distribution of area in non-pine types;

5) Distribution of area in up to two dominating pine components;

6) Age, basal area, and canopy closure status of each pine component at the most

recent prescription year;

7) Summary measures of slope position and site index;

8) Stream nearest-distance and density measures; and

9) Land ownership distribution in circular neighborhoods.

FOREST STATE SYNCHRONIZATION

Because I assembled the GIS from temporally-distinct type maps (range 1984-

1998), the GIS to this point did not reflect contemporaneous forest conditions. 

Therefore, in each hexagon, I used a basal area growth model and a canopy-closure rate

model to advance pine stand conditions forward from compartment-specific starting

times to a common point in time (year 2000) (Appendix C.6-C.8).

Letting tj represent the year of the most recent management prescription for

compartment j, I advanced pine basal area of compartment j from year tj to year T = 2000. 
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I applied the Bailey-Ware (1983) mensuration formula to each pine stand in each cell of

compartment j:

Bt+w = Bt
( At / At+w ) exp[ $1 (1 - At /At+w) + $2 XJ (1/At+w - 1/At) / (AJ At+w) + $3 S (1-At /At+w) ].

Here, Bt is stand basal area at time t, w represents a time span, At is stand age at time t, AJ

is stand age at last thinning, XJ is a “thinning index” (Bailey and Ware 1983), S is the

median value of site index for the focal cell, and $1, $2, and $3 are model parameters. 

For a given compartment j, I used values t =  tj and w = T - tj in the model.  I used a

thinning index value of XJ = 0.6 to reflect the “thinning from below” (Smith 1962, Bailey

and Ware 1983) type of stem removal carried out by managers at the Refuge.  I used the

parameter values $1 = 2.81706, $2 = -11935.2, and $3 = 0.043493, as provided by Bailey

and Ware (1983) for natural loblolly pine stands measured in the adjoining HEF.  Under

this mensuration formula, cell-specific values of site index project growth to year 2000

differently for each stand.  Values of stand basal area for the same type class, which I

assumed to be consistent throughout the compartment at the time of prescription, may

therefore vary within the compartment when projected to year 2000 conditions.

I estimated basal area for P1 stands at time T with a modification of the Bailey-

Ware (1983) model:

   B0
( A0 / At+w ) exp[ $1 (1 - A0 /At+w) + $3 S (1-A0 /At+w) ], A0 < At+w

Bt+w  = 9 B0, otherwise.

As before, t =  tj and w = T - tj.  The new model parameters reflect a constant basal area

value B0 occurring through age A0.  Beyond age A0, basal area growth followed the

Bailey-Ware model.  I chose B0 = 0.46 m2/ha and A0 = 8 years because these values

projected basal area for an unthinned stand to reach 24.3 m2/ha (106 ft2/ac) by age 51, the
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average density and age of dense P3A stands as reported in the Refuge Habitat

Management Plan.

I projected canopy closure using a growth formula by Valverde and Silvertown

(1997):

Ct+w = 100 - (100 - Ct) (w

where Ct is canopy closure (%) at time t and ( is a canopy closure rate.  As did Powell

(1998) in his forest succession model, I set the rate of closure at ( = 0.79 (Valverde and

Silvertown 1997).  For P2 or P3 stands in compartment j, Ct was the canopy closure

amount at the initial time tj, and w = T - tj.  For P1 stands, Ct = 0 and w = AT, that is,

canopy closure amount was a direct function of age at time T.

Refuge personnel provided me UTM coordinates of the center of each red-

cockaded woodpecker cluster.  I assigned each cluster to the center point of the hexagon

containing the cluster, and no cell received more than one cluster assignment (Figures 7,

10).  I also recorded in the GIS the year 2000 activity status of each cluster.  Because

each cell could contain at most one cluster, the terms “cluster” and “cell” appear

interchangeably throughout the text wherever it is clear that model structure is being

discussed.

ANALYSIS OF SURVEY DATA

Population densities of wood thrush were estimated from distance data collected

on the bird transects (Final Report; W. T. Plummer, University of Georgia, unpublished

data).  Estimates were obtained for years 1997-2000 only; inconsistencies in survey

procedures in 1996 precluded use of those data.
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Distance methods (Buckland et al. 1993) were used to estimate bird densities. 

Distances from the observer to wood thrushes, detected either aurally or visually, were

supplied to program DISTANCE (version 3.5; Thomas et al. 1998) as were transect

length and dominant overstory type associated with the detection.  For portions of

transects following compartment boundaries, portion lengths were halved as birds were

surveyed on only one side of the transect.  Three treatments of the data improved

estimation of detection functions.  First, bird detections were pooled over all habitat types

and compartments within years.  Distances were right-truncated to 120 m or to the 95%

distance percentile, whichever was smaller (Buckland et al. 1993).  Lastly, because of the

high degree of error that likely occurred in the field estimates of distance, the default

distance intervals calculated by program DISTANCE were used in the computations

(Thomas et al. 1998).  The AIC value (Akaike Information Criterion; Akaike 1973,

Burnham and Anderson 1998) indicated a superior detection model function among the

alternatives (uniform cosine, half-normal hermite polynomial, half-normal cosine, hazard

rate cosine, and hazard rate simple polynomial).  Given the annual estimated detection

function, distance data were post-stratified (Buckland et al. 1993) for density estimation

according to habitat type and compartment membership.  Thus, wood thrush density

estimates were specific to combinations of years, compartments, and overstory (pine

versus hardwood-dominant) types.

I used habitat and compartment-level estimates of wood thrush density to develop

habitat-association models.  Data from vegetation transect surveys served as predictor

variables for these models.  I summarized these data by averaging vegetation attributes

from all sample sites within an overstory type and compartment.
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CHAPTER 4

DECISION MODELING

As discussed earlier (Chapter 1), the making of optimal decisions for a dynamic

resource has four requisite components: (1) a measurement of system state, (2) an explicit

statement of management objectives, (3) a set of alternative management decisions

available at each decision opportunity, and (4) a model describing how the system state

and management objectives change in response to decision actions and other influences

(Figure 2).  The system state for the Refuge includes forest (overstory status, age

structure, understory conditions) and bird population conditions.  The system state is

informative of not only the abundance of the various attributes but also their spatial

distribution.  A more thorough discussion of the Refuge’s monitoring efforts appears in a

later chapter.

The focus of this chapter is on development of the latter three components above. 

My interest was in how the activities of forest cutting (regeneration and thinning),

prescribed burning, and installation of artificial woodpecker cavities could be distributed

through space and time to bring about desired outcomes for both woodpecker and wood

thrush populations.  Therefore, I built a set of stochastic, spatially-explicit simulation

models, each of which forecast the state of the forest landscape, the abundance of birds,

and the distribution of birds in annual time steps in response to these activities (Figure

11).  The set of alternative models reflected my uncertainty regarding aspects of forest
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composition dynamics, woodpecker habitat-productivity relationships, and wood thrush

habitat-abundance relationships.  Models therefore differed with respect to parameters

that controlled these particular dynamics.  The representation of uncertainty through a set

of alternative models is a novel feature in this work and underscores my main argument

that the formal recognition of structural uncertainty is prerequisite to adaptive

management for conservation objectives.

To capture management activities in a model, I found it necessary to distinguish

strategic management decisions, which were made at the Refuge-wide level, from more

tactical management actions, which were essentially a fixed set of action rules to be

followed at the stand level.  For example, given direction on which Refuge compartments

to visit for cutting treatments in a particular year, prescriptions of exactly which stands to

treat and by which treatment were dictated according to adjacency constraints, stand age

priorities, and other fixed criteria.  However, the choice of which compartments to visit

was a more strategic type of decision and was one that I explored using the models. 

Given (1) a specific compartment visit schedule through time and (2) a number of

compartments to be burned annually, my models executed a fixed set of rules to simulate

the thinning and regeneration of stands in certain landscape cells, the installation of

artificial nest cavities in other cells, and the selection of compartments for burning

(Figure 11).

The forest responded to the variety and distribution of treatments throughout the

landscape (Figure 11).  Some areas in pine cover converted to hardwood according to a

stochastic rate of hardwood succession.  Basal area and canopy closure of the residual

pine forest increased in untreated areas and decreased where cutting occurred.  Stochastic
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disturbances regenerated patches of forest.  Understory vegetation density responded to

changes in attributes of the overstory.

Bird populations then responded to the change in the forest state (Figure 11).  I

used an individual-based, process-oriented, spatially-explicit population model to project

the population of active and inactive woodpecker clusters through time and space. 

Clusters either remained active or were abandoned according to amount of hardwood

midstory that occurred in the cluster cell.  Similarly, inactive clusters became active if

hardwood midstory was not excessive; however, a proximate and sufficiently large pool

of dispersing young was also necessary to change the status of an inactive cluster.  In

contrast, I used a population-level, statistical, non spatially-explicit model to predict the

abundance of wood thrush in each compartment.  The prediction model used overstory

and understory attributes of the pine cover component of the forest.

Thus, the models were hierarchical in nature (Figure 11).  Forest treatments, in

part, regulated the forest response, and, in turn, the new state of the forest influenced

responses by the woodpecker and wood thrush populations.

I used each alternative model to find an optimal treatment combination

(compartment visitation schedule through time and number of compartments to burn

annually) for each of three population metrics.  The metrics were all long-term (100 yr)

population outcomes, and they differed in degree of influence provided to red-cockaded

woodpecker and wood thrush population objectives.

This chapter is divided into three sections.  The second section details the layout

of the spatially-explicit simulation model.  Within the model, a set of fixed rules

prescribes how regeneration cuts are to be distributed throughout the landscape. 
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However, guidance on the total amount to cut is provided externally to the model via

output from a companion model.  This model, a non-spatially explicit forest overstory

compartment model, is described in the first section of the chapter.  I used this model to

derive optimal regeneration amounts in each of three pine age classes, given the current

cover type composition of the forest, for achieving an old-growth pine habitat objective. 

The decision table provided by this compartment model was accessed by the spatially-

explicit model to determine the regeneration amount at each time step.  Thus, by this

approach, I separated the question of how much to regenerate annually from the issue of

where to locate the regeneration.  The third section of the chapter describes the process I

used to construct the list of decision alternatives, the analysis of decision outcomes under

each of the models and under uncertainty among models, and the updating of the

information state through comparison of model predictions to field observations.

OVERSTORY TRANSITION MODEL

A plan for recovery of the red-cockaded woodpecker (U.S. Fish and Wildlife

Service 1998:28-32) provided guidelines for regeneration of pine forest stands. 

Specifically, the recovery plan called for the annual amount regenerated to be

proportional to the ratio of compartment visitation periodicity to rotation length.  Given

the minimum loblolly rotation length of 100 years (U.S. Fish and Wildlife Service 1998)

and given the Refuge’s compartment visitation periodicity of eight years, the fixed

amount regenerated by this “area control” method is 8% of the pine acreage each year. 

Recognizing that age distributions in most national wildlife refuge forests are not

currently uniform, the recovery plan recommended avoiding harvests of the two oldest
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age classes (where age classes are defined by compartment visitation periodicity) in any

year, until a uniform age distribution is achieved (U.S. Fish and Wildlife Service 1998).

The recovery plan therefore suggested that when age distribution is not uniform,

regeneration activities should be targeted at specific age classes.  Furthermore, hardwood

encroachment on the Refuge is ongoing and is projected to reach a maximum level of

40% of total Refuge area (Refuge Habitat Management Plan).  Therefore, regeneration

decisions made today that do not take into account future expected losses in pine to

hardwood encroachment may be suboptimal in terms of providing sufficient nesting and

foraging habitats for the woodpecker over the long term.  Finally, annual losses of pine to

hardwood recruitment and to environmental disturbances are stochastic events.  Treating

such events as deterministic rather than stochastic may also be suboptimal.

To determine if optimal regeneration decisions were dependent on current forest

age structure, on hardwood encroachment, and on stochastic pine losses, I built and

optimized a dynamic model describing transitions among pine age classes and upland

hardwood forest types.  The model was in the form of a Markovian stage-based matrix

model (Caswell 2001).  Parameters of the model were rates of transition among these age

classes and between the age classes and the upland hardwood component.

I considered four pine age classes in the model, P1 (age 0-16 yr), P2 (16-40 yr),

P3 (40-80 yr), and P4 ($80 yr).  For modeling purposes, I split the Refuge’s single $40-

yr pine class into the classes P3 and P4 because of the need to specifically recognize and

manage for very old stands suitable for red-cockaded woodpecker nesting habitat.

I used the model to derive a stationary harvest policy for maximizing the amount

of persistent old-growth forest (age class P4) at the Refuge.  The policy was indexed by
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relative amounts of forest in each of the classes P1-P4 and UH.  I did not consider the BH

class in this model because I assumed that bottomland hardwood habitats remained

unchanged over time.  However, the upland hardwood cover class was dynamic in the

model, allowing the possibility of pine succession to hardwood.  Each unique distribution

of forest habitat types indicated optimal amounts of forest from classes P2-P4 to annually

regenerate.  The array of decision values served as a large “look-up” table of regeneration

quotas called upon by the Refuge management simulation model (see Spatially-Explicit

Forest Management Model, below).

MODEL DEVELOPMENT

The age composition within each pine age class was unknown, but I assumed it to

be uniform.  I also assumed that mortality and harvest decisions equally affected all ages

within an age class.

A vector yt held Refuge-wide proportions of the four pine age classes and the

upland hardwood class occurring at time t.  The model projected this composition vector

from year t to year t+1:

yt+1 = 7t  yt .

Here, 7t is the matrix product Ct G Ht Dt.  The components of this product represent

processes of forest disturbance (Ct), growth (G), hardwood encroachment (Ht), and

regeneration decisions (Dt), respectively.  All processes except that of growth (matrix G)

were time-specific, and thus are indexed by t.  The five forest class proportions (P1, P2,

P3, P4, UH) occurred in positions 2-6 of the state vector yt.  Position 1 was a forest class

used to temporarily store the current year’s regeneration cut (see below).
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The first step of the model applied a set of cutting decisions {d2t, d3t, d4t} to the

pine age classes P2, P3, and P4 at time t.  These decisions transferred d2t + d3t + d4t

amount of pine forest into a temporary “regeneration” class (Figure 12).  This

regeneration class was used only for accounting purposes in the model and prevents

newly regenerated forest from immediately growing into the P2 class.  After the model

calculated the growth transitions (G, see below), the regeneration class was completely

emptied into the P1 class and was thus zeroed out.  Matrix Dt was as follows:
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The model next calculated portions of the pine forest lost to hardwood

encroachment (Figure 12).  I assumed that the rate of loss is persistent each year but is

controllable by the amount of harvest taken from each pine class.  Thus, through regular

cutting, managers may slow or stop the rate of pine cover loss.  I assumed that the loss

rate, eit, i = 1, 2, 3, 4 for the 4 pine classes, was stochastic.  The realized rate of loss, Eit,

was the positive amount of eit that exceeded dit, i.e.,

Eit = max( 0, eit-dit ).

Note that because d1t = 0 (i.e., no harvest in P1), E1t = e1t.  Each simulation year, I drew a

random variate xt from a beta distribution with mean : and coefficient of variation ve.  I

obtained the individual eit by applying a set of scaling factors :(ei) to xt.  Thus, the eit

were random, but they covaried perfectly with each other.  The Eit were applied in the

model as follows:
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Following loss to hardwood encroachment, portions of each pine class graduated

to the next older class (Figure 12).  Transition rates were constant through time and were

denoted Jij, where the transition occurs from the younger class j to the older class i. 

Parameters J21, J32, and J43 described the rates of transition from P1 to P2, from P2 to P3,

and from P3 to P4, respectively.  A portion of P4 automatically regenerated each year,

and I denoted this rate by J14.  Because not all sites on the Refuge are of sufficient quality

to support the oldest stands of trees (Refuge Habitat Management Plan), only a portion, k,

of the P3 class eligible to graduate actually entered the P4 stage.  I assumed that the

remainder regenerated as P1.  Finally, the model emptied the temporary regeneration

class into the P1 class.  These transitions appear as follows:
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The last component of the model applied an annual stochastic catastrophic or

disturbance event ct to the older pine classes and to the UH class (Figure 12).  The event

converted the affected pine cover into the P1 type. Only a portion, q, of the affected

hardwood type regenerated as pine cover.  The rest remained as type UH.  The ct were
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drawn from a beta distribution with mean :(c) and variance F2(c).  The matrix C carries

out these transitions as follows:
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The matrix product of Ct, G, Ht, and Dt provided 7t.  Elements in 7t specified

rates of transition among all compartments of the model (Figure 13).

MODEL PARAMETERIZATION

Thirteen parameters controlled this model.  Unfortunately, no data exist from the

Refuge to estimate any of them.  I chose all of the following parameter values

subjectively, though some have more empirical support than others.

I fixed values for the age class transitions (J21, J32, J43, J14) at (1/16, 1/24, 1/40,

1/40).  In other words, I assumed that rates of transition among age classes occurred in

proportion to the time span of the younger age class.  This is a reasonable assumption if

ages are uniformly distributed within an age class.  I fixed the value of k at 0.5.  This

value means that only half of the forest type leaving the P3 age class can enter the P4

class.  This parameter setting seemed reasonable for the Refuge, as only approximately

half of the Refuge is of sufficient fertility to support the oldest stands of pine (Refuge

Habitat Management Plan).

I drew random values of ct from a beta distribution with mean 0.003394 and

variance 0.0003572.  This distribution provided a 98th percentile value of 0.05 and a

99.8th percentile value of 0.20.  In other words, I expected destruction of 5% of the forest
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during a 50-year disturbance event and 20% destruction during a 500-year event.  These

probabilities appear consistent with estimates of tornado (Peterson 2000) and hurricane

(Hooper and McAdie 1995) strike probabilities for the region.  Below the 90th percentile

(i.e., 10-year and more common events), practically none (<0.002) of the forest is

destroyed.  I fixed q at 0.25 to represent the chance that a hardwood stand destroyed by a

catastrophic event regenerates as pine cover.

I had little objective guidance in choosing values for the :(ei) and ve parameters. 

After much trial and error, I chose the values (0.0006, 0.015, 0.015, 0.03) for the :(ei),

i = 1, 2, 3, 4, and I fixed the value of ve at 40%.  The ve value was small enough to

provide a somewhat symmetric distribution of beta variates yet large enough to

realistically reflect considerable ecological variability.  I believed that the rate of

hardwood encroachment should be larger in older than in younger stands, thus :(ei)

increases with stand age.  Simulations of the model with these values and with harvest

rates fixed at the values dit = :(ei) projected the UH component to grow to an asymptotic

limit of ~50%.  Though these values may be the most arbitrary of the entire set, they are

consistent with some empirical evidence.  The average of the :(ei), weighted by the age

class transition rates Jij, was 0.012, comparable to the 0.0087 annualized rate of

hardwood encroachment in natural loblolly stands in Georgia during the period 1961-

1972 (Bechtold et al. 1991).

MODEL OPTIMIZATION

The goal of this work was to derive a state-specific, stationary (time-independent)

regeneration policy that maximizes the amount of nesting habitat available for the red-

cockaded woodpecker.  The estimated minimum amount of nesting habitat needed to
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support the recovery goal of 96 woodpecker groups (U.S. Fish and Wildlife Service

1998, 2000) is 388.5 ha, or 0.03096 of the modeled forest cover, assuming a 4.05-ha

minimum cluster size (U.S. Fish and Wildlife Service 1998, 2000) and assuming total

forest cover (pine and hardwood) remains constant.  For optimization, I placed primary

emphasis on provision of the minimum amount of habitat and secondary emphasis on

total habitat amount.  Therefore, I maximized the objective function

  1000 + yP4, t+1 - YP4, yP4, t+1 $ YP4
   J  = 9     0, yP4, t+1 < YP4

where yP4, t+1 is the amount of habitat in the P4 class expected at the next time period, and

YP4 = 0.03096 is the nesting habitat threshold.  This objective function greatly penalized

any decision outcome that did not result in the minimum nesting habitat required.  The

objective function also recognizes total habitat abundance, but only if the minimum is

attained.

I used stochastic dynamic programming to search for an optimal decision policy

under this model (Dreyfus and Law 1977).  I prepared the model for analysis in program

ASDP (B. C. Lubow, USGS Colorado Cooperative Fish and Wildlife Research Unit,

personal communication), a successor to the program SDP (Lubow 1995).

One difficult aspect of analyzing this model was the fact that ASDP offers no

efficient way to handle dependencies or sum constraints among elements of the system

state.  The state elements in this forest model (yt) must sum to 1.0.  Therefore, I used a set

of logistic-power transformations in the model dynamics to make a roughly linear

association between ASDP’s state vector indices (positive integers) and forest state
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values (proportions).  I applied the following transformation to convert a state variable

index I into a logit L:
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where Z is the number of discrete levels of a state variable, M is the number of

independent state variables, and B0 is a “base” proportion value corresponding to the

index value I = 1. Parameter W may be any positive exponent.  Because the ratio in

parentheses may be negative and thus invalidate exponentiation by a non-integer value of

W, a negative ratio is first made positive, then the exponentiated result is negated to

preserve the sign.  For a vector of M indices, a set of M logits is thus obtained.  I

converted the logits to proportion values in the usual way:
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Five forest components comprised my model, and I represented them with M = 4

independent state variables each discretized into Z = 11 steps.  The values B0 = 0.001 and

W = 2.5 provided a nearly linear relationship between the ASDP index values and forest

proportion values.  I discretized each of the three decision variables (d2, d3, d4) into

eleven values over the range 0.0-0.2 in steps of 0.02.  I also expressed probability

distributions for both hardwood loss and forest disturbance as discrete distributions with

five outcomes each (Appendix C.9).
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ASDP searched for an optimal pine regeneration policy indexed to relative

amounts of the four pine age classes and the upland hardwood class.  I forced ASDP to

consider at least 20 stage (year) iterations, but I imposed a maximum computing limit of

500 iterations or the iteration at which the decision policy matrix remained unchanged in

three successive iterations, whichever occurred first.  At this point, I assumed that ASDP

arrived at a stationary optimal policy.

SENSITIVITY ANALYSIS

Because of the uncertainty in the selection of parameters for this model, I

performed a sensitivity analysis to measure how the model behaved in response to

perturbations in the model parameters.  In one form of the analysis, I looked at sensitivity

of responses of the overstory class proportions to perturbations of each of the 13

parameters in turn.  I used numerical methods to calculate elasticity (Caswell 2001) for

each composition response yj with respect to each of the parameters 2i:
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Elasticity is approximated by the relative difference in the jth function response when a

small (10-12) value * is added to 2i.  The model responses fj were the average results of

500 replicate runs of the model simulated under the optimal decision policy over a 500-

year time span.  To investigate whether sensitivity varied over levels of 2i, I also

calculated elasticity values at 0.52i and 22i.

In the second form of sensitivity analysis, I investigated behavior of the optimal

decision policy in response to perturbations in the parameters.  I used ASDP to calculate

optimal decision policies under two alternative scenarios to the default model (model
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F0): (1) parameter values that projected a lower rate of transition to the P4 type and a

higher transition rate to the hardwood type (model F1) relative to model F0 (Appendix

C.10), and (2) parameter values that projected a higher rate of transition to the P4 type

and a lower transition rate to the hardwood type (model F2) relative to model F0

(Appendix C.11).  I chose values for each scenario as follows:

Parameter Model F0 Model F1 Model F2
J14 1/40 1/20 1/60
:(e1) 0.0006 0.0012 0.0003
:(e2) 0.015 0.03 0.0075
:(e3) 0.015 0.03 0.0075
:(e4) 0.03 0.06 0.015
ve 40% 80% 20%
k 0.5 0.25 1.0
q 0.25 0.125 0.5
:(c) 0.003394 0.001707 0.006711
F2(c) 0.0003572 0.0001816 0.0006911

Annual mortality risk (J14) of the P4 class is increased in model F1 and decreased in

model F2.  Similarly, the fraction of P3 eligible to graduate to P4 (k) is reduced in model

F1 and increased in F2.  Disturbance events are less likely in model F1 (5% destruction

in 100-year event; 20% destruction in 1000-year event) than in F0, but they are more

likely in model F2 (5% destruction in 25-year event; 20% destruction in 250-year event). 

I did not alter values for parameters J21, J32, and J43 among scenarios because I assumed

that they consistently reflected transitions between age classes under any model.

I compared the alternative decision policies with respect to their aggressiveness of

cutting actions in each of the pine types.  I also compared optimal regeneration decisions

for the estimated state of the Refuge forest in year 2000.
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SPATIALLY-EXPLICIT FOREST MANAGEMENT MODEL

I constructed a spatially-explicit computer model to forecast responses of the

forest landscape, and consequently, responses by red-cockaded woodpeckers and wood

thrushes, to alternative decision actions at the Refuge (Appendix C.12).  I regulated

model behavior by setting model parameters to specific values, so that a user could

explore any number of alternative system models through appropriate selection of

parameter values.  I looked specifically at three groups of alternative settings.  One group

contrasted the influence of quantity of foraging habitat on red-cockaded woodpecker

recruitment.  Another compared a linear to a nonlinear description of wood thrush

response to habitat.  The third considered the three alternative scenarios of forest

overstory transitions examined in the sensitivity analysis of the forest overstory model

(see Overstory Growth and Harvest Model, above).

Given a sequence of compartment-level management decisions to be carried out

over time (i.e., a schedule of compartments to visit and the extent of burning), the model

simulated the annual processes of management activities, forest response, and bird

response (Figure 11).  At each time step, the model first simulated stand-level activities

of regeneration, thinning, burning, and recruitment cluster creation.  Next, the model

simulated annual change in forest structure, including hardwood encroachment in pine

stands, pine basal area growth and canopy closure, forest disturbance, and understory

vegetation growth.  Finally, in response to changes in forest structure and landscape, the

model forecast cluster activity status of red-cockaded woodpeckers and breeding density

of wood thrushes.  Thus the model projected the complete state of the forest, expressed in

the GIS, from one simulation year to the next.  Pertinent model output included predicted
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number and location of woodpecker potential breeding groups (adult male and female in

cluster; U.S. Fish and Wildlife Service 2000) and predicted density of wood thrushes.

The model was spatially-explicit.  On a cell-by-cell basis, the model manipulated

forest attributes that were captured in the cellular rendering phase of the GIS work.  All

of the stand-level management actions (regeneration, thinning, burning, recruitment

cluster establishment) were dependent on current forest or bird attributes of neighboring

hexagons.  Additionally, dynamics of the red-cockaded woodpecker population were

driven by spatially-computed measures of dispersal potential.

A deterministic set of rules drove all of the stand-level management actions, but

several of the forest structure and bird population processes were stochastic.  The model

randomly chose rates of hardwood encroachment and total disturbance area at each time

step.  It identified cells at random to regenerate through disturbance.  Probabilistic

outcomes determined abandonment of active woodpecker clusters, production of young,

and occupation of inactive clusters.

I wrote the model in the matrix-based language GAUSS (Aptech, Inc.).  Despite

the software’s speed in processing matrix-based data elements such as the ones I used,

each simulation run was extremely computationally laborious.  A single 100-year

simulation of the model required approximately ten minutes on a 1.0-Ghz processor.

MANAGEMENT ACTIVITIES

In each simulation year, a list of the specific compartments to visit for cutting

treatments and the maximum number of compartments to be burned were externally

provided to the model.  Under this general guidance, the model simulated execution of

management activities on the Refuge.  Forest regeneration and thinning were carried out
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within the identified compartments, but prescribed burning and the establishment of

recruitment clusters were activities that occurred Refuge-wide.  All action rules carried

out by the model were determined by current conditions of the forest and woodpecker

populations.  The rules were based on constraints and guidelines prescribed either by the

Refuge Habitat Management Plan or by one of the woodpecker recovery plans (U.S. Fish

and Wildlife Service 1998, 2000).  The model simulated management actions in the

following sequence (Figure 11):

1) Cells were selected for regeneration from the current management group of

compartments;

2) Of those not chosen, other cells in the group were identified for thinning;

3) Based on estimated understory vegetation conditions, entire compartments

were chosen from the Refuge at large for prescribed burning; and

4) All cells Refuge-wide were assessed for placement of new woodpecker

recruitment clusters.

Forest Regeneration

Each action cycle in the model began with placement of patches for regeneration

cutting.  Given a group of compartments to visit in the current cycle and given a

regeneration quota, the procedure initiated cutting in a “seed” cell chosen from the group,

increased the regeneration patch by finding qualifying neighboring cells, and closed out

the patch to further cutting upon reaching a patch size limit or fulfilling the quota.  If the

quota was not satisfied, the procedure repeated these steps for a new seed cell found

elsewhere in the management group.  The procedure stopped either after reaching the

regeneration quota or exhausting candidate regeneration cells.
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I identified regeneration quotas for each of pine types P2, P3, and P4 as follows.  I

calculated Refuge-wide area totals of P1, P2, P3, P4, and UH stands for the current time

period from the map of forest attributes.  Using these totals as look-up values, I consulted

the decision table of optimal regeneration quantities computed in the optimization

analysis of the forest overstory model (see Overstory Growth and Harvest Model, above). 

The table (Appendix D) provided optimal amounts of forest to regenerate in classes P2,

P3, and P4.

For non-zero quotas, the procedure began a search for cells qualifying for

regeneration in the group of treatment compartments.  Adhering to woodpecker recovery

plan guidelines (U.S. Fish and Wildlife Service 2000), I first eliminated from candidacy

any cells containing or adjacent to a red-cockaded woodpecker cluster or a P1 stand. 

Desirable locations for cutting were those that were far from existing woodpecker

clusters and that provided a large quantity of forest area to more quickly satisfy any of

the quotas.  Isolation from woodpecker clusters reduces the chance that the regeneration

cut creates a barrier between the cluster and foraging habitat (U.S. Fish and Wildlife

Service 1998).  Therefore, I used an average of cluster distance and pine type area to rank

each of the candidate cells for selection.  For each cell, I calculated mean distance to the

three nearest woodpecker clusters.  I standardized mean distances by dividing each value

by the range of mean distance. Similarly, I obtained amount of hexagon area in each of

the P2, P3, and P4 forest types, and I standardized these quantities using corresponding

range statistics.  For each of the area quantities, I computed a weighted geometric mean

of the quantity with the distance measurement.  In my use of the model, I provided equal

weight to the area and distance components.
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For the largest of the three regeneration quotas, the procedure located the cell

with the greatest mean distance-area score for that quota type.  If none of this quota type

remained in the candidate list, the program reduced that quota to 0 and turned to the next

largest quota type.  Otherwise, the cell identified became the seed cell for a regeneration

cut.  Within the cell, any pine stand (again, “stands” are seral type subunits of the cell)

with an unfilled quota was cut, and corresponding regeneration quotas were reduced by

these amounts.  These amounts also initialized a patch size accumulator which I used to

monitor compliance with the 10.1-ha regeneration patch size limitation (U.S. Fish and

Wildlife Service 1998, 2000).  Simulation of a “cut” in the model amounted to converting

a stand’s age, basal area, and canopy closure values to 0.  Thus, the model simulates a

clearcut rather than a shelterwood type of cut that the Refuge employs.

Following cutting of the seed cell, I investigated the group of up to six candidate

cells “ringing” (adjacent to) the seed cell.  The procedure identified the ring cell

containing the greatest quantity of pine type for the largest quota amount.  If none could

be found for this quota type, the program looked instead for the cell offering the greatest

pine type quantity for the next largest quota amount.  Any ring cell selected contained

either one or two pine stands.  The program cut pine stands in order such that the largest

quota amount was reduced first.  The area of a cut stand was subtracted from the

corresponding pine type quota and added to the patch size accumulator.  The program

allowed a stand cut only if the regeneration quota for that stand exceeded 0 and if the

resulting accumulated patch size would not exceed the patch size limit.  The program

searched each ring cell in this way until the ring group was exhausted.  At this point, the

program identified all cells containing a regenerated stand and all their adjacent cells. 
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These cells were removed from the list of candidate cells, and the program searched for

another seed cell.  The procedure continued in this manner until all regeneration quotas

were achieved or the list of candidates was exhausted.

Thinning

The next process in the forest action cycle carried out pine stand thinning in the

selected compartments.  All stands older than 16 years of age and exceeding 18.37 m2/ha

(80 ft2/ac) basal area density were thinned to a residual basal area of 13.77 m2/ha (60

ft2/ac).  However, stands occurring in a circular 49-cell foraging neighborhood (198.5 ha,

794-m average radius) of a red-cockaded woodpecker cluster (active or inactive) were

not thinned if the neighborhood supported less than 50.6 ha (125 ac) of foraging-quality

habitat (U.S. Fish and Wildlife Service 1998).  Pine stands at least 40 years old and

between 9.18-18.37 m2/ha (40-80 ft2/ac) in basal area density qualified as foraging-

quality habitat (U.S. Fish and Wildlife Service 2000).  However, for purposes of

assessing stands for thinning, I did not enforce the upper density limit in foraging areas as

thinning, by definition, removed that limitation.

Circular foraging areas often occurred beyond Refuge boundaries.  In such cases,

I multiplied land ownership proportions in an 800-m circular buffer around a cluster by

foraging habitat provision rates corresponding to ownership types.  A provision rate

reflected the proportion of an off-Refuge site providing foraging-quality habitat.  I did

not know the values of these rates, so I arbitrarily fixed them at 0.5 for the ONF/HEF and

0.2 for private lands.  For example, the estimated amount of off-Refuge foraging habitat

for a cluster at the center of an 800-m circle (201.1 ha) that comprised 40% private land

and 10% ONF/HEF land was 201.1 ha × (0.40 × 0.2 + 0.10 × 0.5) = 26.1 ha.  I used the
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same approximations to calculate foraging habitat amount for recruitment cluster

placement (below) and for woodpecker recruitment modeling (see Red-cockaded

Woodpecker, below).

Burning

Following thinning, the model carried out prescribed burning in compartments

selected from across the Refuge, up to a given maximum number of compartments. 

Compartments selected for burning were those that ranked highest on a composite score

that assessed understory vegetation conditions in woodpecker nesting habitats, foraging

habitats, and all other pine habitats.  This approach attempts to balance need for burning

with respect to all three components of the forest and is consistent with guidelines

expressed in the woodpecker draft recovery plan (U.S. Fish and Wildlife Service 2000). 

For the nesting habitat score, I computed the maximum vegetation density (see

Understory Vegetation Density, below) among cluster cells in each compartment. 

Compartments lacking a cluster cell were assigned the minimum score obtained from all

other compartments.  The model next computed compartment averages of vegetation

density in cells belonging to 49-cell (198.5 ha) foraging neighborhoods of woodpecker

clusters.  As with the nesting habitat score, compartments containing no foraging habitat

cells were assigned the minimum value computed from all other compartments.  Lastly,

the model computed compartment averages of vegetation density in all cells mostly

(>50% by area) in pine habitat and not classified as a foraging habitat cell.  For each

compartment, I averaged the three scores to obtain the compartment composite score. 

Based on the composite score ranks, the model simulated burning in the N top-ranked
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compartments, where N was the fixed maximum number of compartments to be burned,

by updating the age-at-last-burn variable for all pine stands $16 years old.

Recruitment Cluster Placement

The model next determined number and placement of woodpecker recruitment

clusters according to guidelines in the red-cockaded woodpecker recovery plans (U.S.

Fish and Wildlife Service 1998, 2000).  Beginning in simulation year 2001 and in any

simulation year evenly divisible by 5, the model calculated a recruitment cluster

establishment quota as the number of active clusters times 0.10, the recommended 5-year

rate of increase in recruitment clusters (U.S. Fish and Wildlife Service 1998, 2000). 

According to the guidelines, existing recruitment clusters, which I considered as any

intact, non-active woodpecker cluster created either naturally or artificially, count against

the establishment quota.  Therefore, the number of recruitment clusters to establish in any

simulation year was

K = quota - existing recruitment clusters,

or K = 0, if the number of existing recruitment clusters exceeded the quota.

The model placed the K clusters one at a time in cells across the landscape.  In

each placement trial, the program first found a candidate set of cells which passed all of

several location and habitat criteria established by the draft recovery plan (U.S. Fish and

Wildlife Service 2000) and then selected a superior cell from the candidate set.  The

candidate set excluded those cells (a) falling on interior or exterior Refuge boundaries,

(b) within 125 m (measured to cell center) of a stream, (c) within 402 m (1/4 mi) of an

active or inactive cluster cell (measured between cell centers), (d) containing <85% of

area (<3.44 ha) in pine habitat $40 years old, (e) containing <50% of area (<2.02 ha) in
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pine habitat $60 years old, or (f) farther than 1609 m (1 mi) from an active cluster.  If no

cells met these conditions, I relaxed condition (f) in 402-m increments and searched

again, up to a maximum distance of 3219 m (2 mi).  Initially, the model also eliminated

from candidacy those cells (g) not surrounded by a circular 49-cell neighborhood

containing $50.6 ha of foraging-quality habitat or (h) not surrounded by a circular 13-

cell neighborhood (52.6 ha, 409-m average radius) containing $25.3 ha of foraging-

quality habitat, with off-Refuge habitat contributions approximated according to

ownership type (see Thinning, above).  However, I was forced to drop these latter

restrictions as they were too computationally strenuous to evaluate.

Assuming that the candidate set was not depleted at this point, the model selected

the cell containing the oldest pine stands (evaluated by area-weighted mean age of stands

in the cell) as the location of the recruitment cluster, and K was reduced by 1.  I updated

the GIS database with the location of this new recruitment cluster.  The model continued

searching for new cluster cells until K was reduced to zero.

FOREST RESPONSE

Following the simulated management actions, the model advanced the forest state

from the current time period into the next, in response partly to those actions (Figure 11). 

A series of growth and disturbance processes took place, commencing with hardwood

encroachment.

Hardwood Encroachment

Refuge managers acknowledge that a significant portion of the current pine

landscape will be lost to hardwood encroachment over time (Refuge Habitat Management

Plan), and I encoded this scenario in the forest overstory optimization model (see
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Overstory Growth and Harvest Model, above).  In the spatially-explicit simulation

model, I also applied stochastic rates of conversion of pine area to hardwood area.  I used

the same age-specific average annual rates of conversion as I did in the default overstory

model (model F0): 0.0006, 0.015, 0.015, and 0.03 for classes P1, P2, P3, and P4,

respectively.  Given these age-specific means, and based on variances corresponding to a

fixed coefficient of variation of 40% (see Overstory Growth and Harvest Model, above),

I drew a random conversion rate value from a beta distribution for each pine stand in the

landscape.  The pine stand area was reduced by that proportion, and the lost area was

added to the upland hardwood component in the same landscape cell.  Because fire and

thinning activities should delay encroachment by hardwood, I did not convert any

portions of non-P1 stands which had been burned or thinned in the previous five years.

Basal Area Growth and Canopy Closure

The model next advanced age, basal area, and canopy closure values of each stand

into the successive time period.  I used the Bailey and Ware (1983) and the Valverde and

Silvertown (1997) models for basal area growth and canopy closure almost exactly as

described earlier (see Forest State Synchronization, Chapter 3).  The only departure from

before was that w = 1 for all stands across the Refuge, that is, every stand was advanced

by a single year rather than by a compartment-specific time span.

Forest Disturbance

As did the default overstory optimization model F0 (see Overstory Growth and

Harvest Model, above), the forest landscape model simulated stochastic forest

disturbance events.  I drew a random value from a beta distribution with mean 0.003394

and variance 0.0003572 to represent the proportion of the Refuge affected by disturbance
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events in a year.  These values corresponded to a 5% forest destruction rate during a 50-

year event and a 20% rate of destruction during a 500-year event.  I multiplied the beta

variate by total Refuge area to obtain the total forest disturbance, and I distributed the

disturbance area randomly to landscape cells throughout the Refuge.  Both pine stands in

an affected cell converted to age 0 pine.  One quarter of upland hardwood area in an

affected cell also converted to age 0 pine; the remainder persisted as upland hardwood. 

Any woodpecker cluster occurring in the cell was destroyed.  I did not control the spatial

dispersion of the disturbance in any way, therefore large-scale, concentrated disturbance

events such as windstorms, ice storms, or wildfires were not spatially realistic.

Understory Vegetation Density

I next predicted understory vegetation density (kg dry weight/ha) in all pine

stands across the entire Refuge.  The prediction model used was one developed by

Conroy et al. (1982) for natural loblolly stands in the southern Piedmont of Virginia. 

Understory vegetation density responded to overstory basal area, degree of canopy

closure, and slope position in their model.  I modified this model to reflect suppressed

understory conditions due to recent application of fire.  Masters et al. (1996) compared

burned to unburned control stands managed intensively for red-cockaded woodpeckers in

west central Arkansas.  They provided data on density of understory vegetation over

three years post-burn.  I fit a simple linear regression model to their data to estimate

degree of understory suppression conditional on number of years since burning.  I

estimated 0.760, 0.866, and 0.973 rates of suppression for years 1, 2, and 3 post-burn,

respectively.  I multiplied these estimated rates by output from the Conroy et al. (1982)

model to produce a fire-influenced prediction of understory vegetation density in each
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stand.  I computed the mean value of understory vegetation density across both stands in

each cell, weighting the average by stand area.

ALTERNATIVE FOREST RESPONSE MODELS

As I did for the overstory transition model, I proposed two models of forest

response as alternatives to this baseline model (model F0).  For these alternatives, I set

parameter values corresponding to those used in the sensitivity analysis of the overstory

transition model.  The first alternative (model F1) proposed that rate of hardwood

encroachment was rapid and rate of forest disturbance was low.  Here, I doubled values

of HWD_P1, HWD_P2, HWD_P3, HWD_P4, and HWD_CV (Table 1; correspond to

overstory model parameters :(ei), i = 1, . . . , 4 and ve, respectively), halved the value of

DSTRB_HW (Table 1; corresponds to parameter q in overstory model), and reduced the

mean rate (DSTRB_MN = 0.001707, Table 1) and variance (DSTRB_VR = 0.0001816,

Table 1) of forest disturbance (correspond to overstory model parameters :(c) and F2(c),

respectively).  I made the opposite adjustments to create alternative model F2, which

simulated a low rate of hardwood encroachment and high rate of forest disturbance. 

Values of forest disturbance parameters in this model were DSTRB_MN = 0.006711 and

DSTRB_VR = 0.0006911.  When simulating these alternative models, I used

regeneration decision tables computed in the sensitivity analysis of the overstory

transition model (see Overstory Growth and Harvest Model, above).

AVIAN POPULATION RESPONSE

Once the model projects the landscape into the next time period (now time t),

submodels for wood thrush and red-cockaded woodpecker predict responses by these
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species to the habitat and, in the case of the woodpecker, to the current population

distribution (Figure 11).

Red-cockaded Woodpecker

The red-cockaded woodpecker’s requirements for a rare, ephemeral, and specific

type of habitat, its dispersal behavior, and its social structure imply a unique course of

management focused both at a rather fine spatial scale toward individual breeding groups

(e.g., placement of recruitment clusters) and at more extensive scales (e.g., silvicultural

planning and application of fire) (Walters 1991, U.S. Fish and Wildlife Service 2000).  In

Walters’ (1991) view, the helper class in a population expands and contracts with

variations in survival and productivity whereas the number of breeding groups remains

mostly unchanged.  Therefore, management to increase survival and productivity of

individual birds is less effective in recovering populations than is management that

encourages creation of breeding groups, namely, through provision of recruitment

clusters (Walters 1991).

The most recent recovery plan for the red-cockaded woodpecker identified the

breeding group as the population unit by which recovery should be assessed (U.S. Fish

and Wildlife Service 2000), therefore, my woodpecker population model projects

dynamics of breeding groups of woodpeckers, rather than individuals.  Although the

growth of a population is undoubtedly dependent on the population’s social structure

(Heppell et al. 1994) and the spatial distribution of that structure (Letcher et al. 1998),

such representations of the population are not useful for this implementation of

landscape-level decision making.  First, estimates of transitions among age and social

classes are unavailable for the Refuge, and Refuge managers are unable to annually
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estimate the population structure as birds are not individually banded.  Second, it is not

clear whether modeling at the level of individuals is helpful or even necessary in a model

such as mine in which landscape patterns are highly variable and highly influential in the

dynamics of breeding groups.

I developed models that predicted current-year red-cockaded woodpecker cluster

activity conditional on prior-year occupancy status and current-year habitat condition and

productivity level.  I created two complementary models: one which modeled the

probability that an occupied cluster would remain active at the next time period (herein

referred to as the “persistence” model), and another which modeled the probability that

an unoccupied cluster would become active (the “settlement” model).

The question of persistence of cluster occupation is not the question addressed by

many cluster occupancy studies.  These are often cross-sectional studies comparing

habitat attributes of occupied to unoccupied sites (e.g., Kalisz and Boettcher 1991, Loeb

et al. 1992, Thomlinson 1995) and thus cannot address occupation probability given

previous occupancy status.  Walters (1991) and Jackson (1994) noted that red-cockaded

woodpeckers tenaciously maintain cluster occupancy, even as surrounding habitat

becomes degraded.  Therefore, it seems reasonable to presume that a cluster already

occupied is more likely to remain in that status than would an unoccupied cluster to

become newly occupied in similar habitat.

To calculate persistence probability for occupied clusters, I began with the habitat

model empirically derived by Loeb et al. (1992):

Pr(Xit = 1 | MBAit) = logit-1(5.134 - 0.4574 MBAit),
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where Xit is a binary indicator of cluster occupancy in cell i at time t, MBAit is total

midstory basal area (m2/ha) at the cluster site at time t, and logit-1(x) = exp(x)[1+exp(x)]-1

is the inverse logit function of x.  The form of the occupancy probability curve is

sigmoidal, falling with greater values of MBA (Figure 14).  However, I wanted to

postpone the decay of the curve to accommodate a degree of tenacity by cluster

occupants.  I did so through a linear function that dampened the size of MBAit:

MBAitN = 1.2 MBAit - 8.264.

By substituting the dampened value MBAitN in place of MBAit, I obtained a model of

cluster occupancy conditional on prior occupancy:

Pr(Xit = 1 | Xi,t-1 = 1, MBAit) = logit-1(8.914 - 0.5489 MBAit). (1)

I chose the parameter values in MBAitN subjectively but in such a way that the resulting

curve (equation 1) forecasts 0.80 probability of occupancy when midstory basal area is

approximately 13.8 m2/ha (60 ft2/ac); beyond this level, the curve drops rapidly to 0

(Figure 14).  In the original model of Loeb et al. (1992), probability of occupancy is 0.20

at this same level of hardwood midstory density.

Midstory basal area was not a quantity measured in vegetation surveys or tracked

in the simulation model, nor is it routinely measured by Refuge foresters in compartment

management assessments (J. D. Metteauer, Piedmont National Wildlife Refuge, personal

communication).  To permit use of the woodpecker persistence model, I transformed

computed values of understory vegetation density, V (see Understory Vegetation Density,

above), into surrogate values for midstory basal area.  I lacked information on the nature

of the relationship between MBA and V.  I therefore assumed that V 2/3 was directly

proportional to MBA and that a positive correspondence could be formed between the
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two quantities on the basis of Refuge-wide summary statistics.  From results reported by

Loeb et al. (1992), who summarized data collected at the Refuge in 1984, I calculated

MBA mean (x2MBA = 9.174 m2/ha) and variance (s2
MBA = 46.55) pooled over active and

inactive clusters.  I compared these statistics with those that I calculated for V 2/3

(x2V = 85.13 [kg/ha]2/3; s2
V = 6807) from all old ($80 years) pine stands of moderate

density (11.48-16.07 m2/ha [50-70 ft2/ac]) in simulation year 2000.  The transformation

that I used,
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scaled the new values so that their Refuge-wide mean and coefficient of variation

matched those summary statistics obtained from the 1984 midstory basal area

measurements.

The simulation model checked every map cell containing a woodpecker cluster. 

If the pine stands in the cell had been previously destroyed by random disturbance, the

procedure changed cluster status of the cell from “present” to “absent.”  If not, and if the

cluster was active in the previous year, the program computed the estimated value of

MBAit for the cell and the probability Pr(Xit = 1 | Xi,t-1 = 1, MBAit) (equation 1).  The

program drew a random value from a uniform distribution and classified cell i as “active”

in time period t if the calculated probability value exceeded the random value or

“inactive” otherwise.

Red-cockaded woodpecker populations are limited by availability of nesting

habitat (Walters 1991), and establishment of recruitment clusters is the principal means

by which the population of breeders may be increased (Walters 1991, Heppell et al.
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1994).  Quality of nesting habitat, proximity to active clusters, and ample recruitment

into the population are probably the most important factors influencing settlement of

inactive clusters (Doerr et al. 1989, Thomlinson 1995, Thomlinson 1996, Azevedo et al.

2000).

I extended the Loeb et al. (1992) model to produce a model of settlement sensitive

to both habitat quality and reproductive isolation (Figure 15):

Pr(Xit = 1 | Xi,t-1 = 0, MBAit, Rit) =

logit-1{5.134 - 0.4574 MBAit + a(Rit - R0) I(Rit > R0)}, (2)

where I(x), the indicator function of x, is 1 when x is true and is 0 otherwise.  In this

model, a and R0 were additional parameters and Rit was a measure of reproductive

isolation (km2/recruit) for cluster i at time t.  I modified the isolation coefficient used by

Thomlinson (1995) to reflect reproductive isolation from all J active clusters in the

population at time t:

 .R rit
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Here rjt was recruitment from active cluster j at time t and Dij was distance (km) from

cluster i to active cluster j.

I derived a probability distribution for recruitment per active cluster, rjt, from field

data collected at the Refuge since 1990 (J. A. Mason, Piedmont National Wildlife

Refuge, personal communication) and from literature sources.  The Refuge’s woodpecker

productivity surveys yield annual counts of nestlings (njt), but fledglings (fjt) have not

been counted since 1995.  I calculated a nestling group size distribution (pn(x)) by

pooling 1990-2000 counts of nestlings produced per active cluster (Table 2).  I also
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cross-tabulated nestling group size by fledgling group size using pooled data from 1990-

1995 (Table 2).  From this table, I calculated empirical probabilities of fledgling group

size conditional on nestling group size (pf |n(x | n), Table 2).  I calculated the

unconditional fledgling group size distribution by multiplying the conditional

probabilities by their corresponding nestling group size probabilities, then summing over

all nestling group size classes (Table 2):

pf(x) = 3pf |n(x | j)pn(j).

Using the estimated N = 0.38 rate of fledgling survival to adulthood (Maguire et al. 1995)

and assuming that fledgling fates were independent, I calculated recruitment group size

distribution per active cluster (Table 2):
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The computer model drew stochastic integer values of rjt for all active clusters at

time t based on the probability distribution pr(x).  Then for each inactive cluster i, the

program computed the value of Rit and provided it into the settlement model (equation 2)

along with the cell value of MBAit.  In the model, I chose parameter values a = -0.691 and

R0 = 0.0810.  I made both selections subjectively, however, because I lacked data to

estimate these values.  The value R0 = 0.0810 corresponded to the availability of two

recruits in the population, both within a 402-m radius of the cluster site, and implied that

the cluster site is effectively not reproductively isolated in this circumstance (i.e., the

effect of reproductive isolation on settlement probability was zero for any smaller value

of R).  The coefficient a was negative, reflecting the negative relationship between

reproductive isolation and settlement probability for a fixed value of habitat quality.  The
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value a = -0.691 corresponded to 0.01 probability of settlement for an inactive cluster

with low midstory density (MBA = 5.74 m2/ha [25 ft2/ac]) but with moderately high

reproductive isolation (Rit = 10.37, or equivalent to one recruit in the population at a

distance of 3220 m).  I compared the probability value returned by the model to a random

value drawn from a uniform distribution.  If the probability value exceeded the random

value, the status of the inactive cluster was changed to “active”; otherwise, the cluster

was left as “inactive.”

The HEF provides foraging habitat for woodpeckers on the Refuge, serves as a

dispersal corridor between the northern and southern portions of the Refuge, and

produces birds that may ultimately settle in the Refuge.  Managers of the ONF and HEF

conduct cluster monitoring annually, but because birds are not banded, population

recruitment and dispersal cannot be estimated.  The 1999 survey of the ONF yielded 18

active clusters, most occurring in the HEF (E. D. Caldwell, Oconee National Forest,

personal communication).  Because the simulation model did not address the mostly

unknown habitat and bird dynamics on the HEF, I had no explicit way to incorporate

dispersal from HEF to the Refuge.  I instead assumed a constant productivity rate of six

recruits annually on the HEF, and I assumed all were available at a single cluster located

near the center of the HEF.  I obtained this recruitment value by assuming a constant

population of 12 active clusters in the HEF and by assuming that average rates of

fledglings produced per cluster (1.32) and fledgling survival to adulthood (0.38)

computed for the Refuge also apply to the HEF.

One of the significant uncertainties facing managers of red-cockaded woodpecker

populations is the relationship between quality or quantity of foraging habitat and



94

woodpecker productivity and recruitment.  The first recovery plan for the species

emphasized adherence to minimum constraints on amounts and distributions of stem

sizes and ages within 805-m (½-mile) foraging buffers of clusters (U.S. Fish and Wildlife

Service 1985).  Ligon et al. (1986) criticized the threshold values chosen, pointing out

that they were based on study of a single population in favorable habitat.  Beyer et al.

(1996), Wigley et al. (1999), and studies cited therein found no association between

amount of foraging habitat and productivity.  On the other hand, Conner et al. (1999) and

Davenport et al. (2000) reported relationships between foraging habitat quality and group

fitness.

I proposed an alternative parameterization (model W1) to the base recruitment

model (model W0) that allowed amount of foraging-quality habitat (pine $40 years old,

9.18-18.37 m2/ha basal area) to influence the probability distribution of fledgling group

size, pf(x), and rate of fledgling survival to adulthood, N.  I calculated R(hi), a scaled

habitat quantity measure as
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where . was a scaling coefficient, hi was the amount of foraging-quality habitat within a

circular 49-cell neighborhood (198.5 ha) of active cluster i, and hN was a central habitat

quantity.  Where the circular neighborhoods included off-Refuge lands, habitat

contributions by ownership type were approximated as before (see Thinning, above). 

The transformation provided a habitat effect multiplier for pf(x) and for N.  When . > 0,

habitat quantity exceeding the central value hN yielded R(hi) > 1.0, and habitat quantity

falling below hN provided R(hi) < 1.0.  I used a central value of 75 ha for hN.
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I applied the habitat quantity multiplier to the fledgling group size distribution to

produce a habitat-influenced distribution of fledgling group sizes:
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In this model, the probabilities pf(xi) were enhanced or reduced according to the value of

the habitat multiplier.  The exponent (xi - fN)/fN modified the multiplier such that

probability enhancements (or reductions) for large values of xi were offset by reductions

(enhancements) in probability for small values of xi.  I chose the 1990-2000 estimated

mean rate of fledgling production at the Refuge, 1.32, as the central value fN.  The

denominator of this model simply served to scale the habitat-modified probabilities pfN(xi)

so that they added to 1.0.  I used the value . = 0.8 in the alternative model W1.  This

value permitted average fledgling production per active cluster to vary from 0.20 to 2.29

for the poor and excellent habitat extremes, respectively (Figure 16A).

I also used the habitat quantity multiplier to modify fledgling survival to

adulthood:

NN = logit-1{ log(N/(1-N)) + " (R-1) }.

Here, " was a parameter controlling the strength of the habitat influence, and I fixed this

value at " = 2 in the alternative model.  Though my choices of . and " were subjective,

they allowed NN to vary over a reasonable range (0.11-0.90) among poor and excellent

habitats (Figure 16B).

I computed a habitat-influenced distribution of recruitment group size per active

cluster by substituting the values pN(f) and NN in the model for p(r):
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Note that pr(x) = prN(x) when . = " = 0.  Thus, the original model W0 is a specific case of

the general habitat-influenced model W1.

When I simulated model W1, the procedure, as before, drew random integer

values of recruitment for the active clusters, but it drew from the alternative recruitment

group size distribution prN(x).  From this point, computation of cluster settlement

proceeded exactly as before.

Wood Thrush

Unlike the population model for red-cockaded woodpecker, and unlike the

approach taken by Powell (1998), I modeled wood thrush population density in a fully

habitat-correlative, non-spatially explicit manner.  Wood thrushes are not nearly as

habitat-limited as are red-cockaded woodpeckers; by comparison their habitat affinities

are quite plastic within mature forest conditions (Hamel et al. 1982, Roth et al. 1996).  A

wood thrush population would not likely be as sensitive to a distribution of targeted,

small-scale management actions as would a population of woodpeckers.  Furthermore,

data on wood thrush were only available at the compartment-summary level and only for

general cover types (pine and hardwood).  This was in contrast to the type of data

collected for woodpeckers and their associated habitats, available at the resolution of the

individual cluster.   Therefore, it seemed reasonable to model wood thrush density

without spatially-explicit reference, and without individual or territory-level process

detail.
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My challenge in modeling this system was to reconcile scale differences between

compartment-level bird density estimates, habitat data measured at intervals on fixed

survey routes, and predicted habitat features available through the landscape simulation

model.  I developed a two-stage set of statistical models.  The first stage related

compartment-wide estimated wood thrush densities to compartment-averaged field

measurements.  The second stage associated the field measurements with landscape cell

features averaged at the compartment level.  Thus, the linkage between the landscape

model and predicted wood thrush densities was indirect in this approach.

Although wood thrush density was often separately estimable by forest overstory

type within a compartment, the landscape model simulated habitat characteristics (e.g.,

basal area, canopy closure, understory vegetation density) only within the pine type. 

Therefore, I developed two first-stage models.  For each model, I used within-

compartment averages of pine habitat attributes as predictors for wood thrush density. 

However, in one model, the response variable was density of wood thrush in the

compartment’s pine habitats.  In the other, the response was density in hardwood

habitats.

I restricted my analysis to bird and vegetation data collected in 1998 and 1999, as

surveys conducted in those years were most consistent and provided the greatest number

of valid compartment-level wood thrush density estimates.  Based on patterns I observed

in simple scatter plots, I selected four vegetation variables (see Vegetation Surveys,

Chapter 3) for analysis, all obtained from pine stands 16 years of age or older: BA, the

basal area of softwoods, CC, the degree (0.0-1.0) of canopy closure, DB12A, the average

of the proportions of cells covered by vegetation in the 0.0-0.3 m and the 0.3-1.0 m
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ranges of the density board, and DB12L, the logit (log-ratio) of these two proportions. 

The latter two variables reflected overall vegetation coverage and vegetation structure

near (#1.0 m) the forest floor.  I obtained average values of all vegetation variables at the

compartment level.

I used simple linear regression in conducting all analyses.  Because the

distribution of wood thrush density was highly right-skewed, I instead analyzed

log(density) as the regression response variable.  Furthermore, because each density

value was statistically estimated and therefore conveyed a unique level of precision to the

analysis, I weighted each response by the coefficient of variation of density, a value

approximately equal to the inverse of the standard error of log(density).

I first fit a model containing all four of the vegetation effects to each set (pine and

hardwood habitats) of density responses to screen for influential or outlying data points. 

For the density response in hardwood habitats, I found no evidence of any outlying or

influential observations.  However, I found a single observation of wood thrush density

in pine habitat (1998, compartment 12, D$ = 0.0102) that was much smaller in residual

value (Studentized residual = -3.15) than any other value.  In subsequent analyses of the

density response in pine habitat, I excluded this observation.

To each set of responses, I fit all possible linear models formed from the four

main effects and the six two-way interactions.  Of models containing interaction terms, I

considered only those that also included constituent main-effect terms of the interactions. 

I calculated the AIC score (Akaike 1973, Burnham and Anderson 1998) for each model,

and I selected the superior model on the basis of the lowest AIC score.
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The best model for wood thrush density in hardwood habitats, based on attributes

measured in neighboring pine stands, was

log(D$H) = 18.89 - 0.4544 BA - 26.77 CC - 1.823 DB12A + 0.5539 BA×CC

(R2 = 0.531, AIC = 5.524, dfe = 11).  Explanatory variables in this model were highly

collinear.  Thus, it was not surprising that none of the effects were large relative to their

standard errors (SE = 22.39, 0.3341, 24.91, 1.314, 0.3747, respectively).  For given

compartment values of pine habitat BA, CC, and DB12A, I predicted values of wood

thrush density in hardwood habitat, corrected for back-transformation bias, as follows:

D$H(BA, CC, DB12A) = exp( log(D$H) + FD$(H)2/2 ),

where FD$(H)2 was the estimated variance of the predicted conditional mean for the

response.

The model implied that wood thrush density in hardwood habitats increased as

total understory vegetation coverage in neighboring pine habitats decreased, for example,

through burning.  The interaction between basal area and canopy closure suggested that

bird density in hardwood habitats was not responsive to pine overstory conditions unless

those conditions were dense: when pine basal area and canopy closure were very high

(BA $ 18.4 m2/ha, CC $0.90), wood thrush density sharply increased in hardwood

habitats.

For the response in pine habitats, the best linear model was

log(D$P) = -7.803 + 0.09640 BA - 4.658 DB12A

- 14.81 DB12L + 0.2518 BA×DB12L - 5.997 DB12A×DB12L

(R2 = 0.797, AIC = -15.02, dfe = 9).  In contrast to the model for the response in

hardwood, parameter estimates were large relative to their standard errors (SE = 1.631,
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0.02757, 0.9824, 4.705, 0.07882, 2.880, respectively).  Wood thrush densities in pine

habitats responded positively to pine basal area, and the magnitude of this relationship

became greater as floor-level vegetation increased relative to mid-level vegetation (larger

values of DB12L).  Densities in pine habitats decreased with total vegetation coverage

(DB12A), and the negative relationship became more pronounced with greater values of

DB12L.  To back-transform estimated densities of wood thrush in pine habitats given

values of BA, DB12A, and DB12L, I used the following formula:

D$P(BA, DB12A, DB12L) = exp( log(D$P) + FD$(P)2/2 ),

where FD$(P)2 was the estimated variance of the predicted conditional mean for the

response.

Thus, models for wood thrush density in each habitat type were conditional on

compartment averages of pine basal area, canopy closure, and two understory vegetation

measures.  The landscape simulation model tracked stand-level values of basal area and

canopy closure.  Therefore, I obtained values of BA and CC for the wood thrush models

directly by computing area-weighted averages of these quantities by compartment for all

stands $16 years old.

I built the second-stage models to provide estimated values for DB12A and

DB12L given compartment-level summaries of forest variables from the landscape

model.  I synchronized the simulation model to each of the years 1998 and 1999 using the

approach described earlier (see Forest State Synchronization, Chapter 3).  I computed

stand-level values of basal area, canopy closure, time since last burning (TSLB), and

understory vegetation density (V), and I averaged these values by compartment for each

year.
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I used ordinary least squares regression to find associations between simulation-

derived habitat conditions and the field-measured values of DB12A and DB12L.  I fit all

possible models formed by combinations of BA, CC, TSLB, and V to each of the

responses.  I considered only main-effects models and did not consider interactions

between variables.  I computed AIC for each model and selected models yielding lowest

AIC.

The top-ranked model for DB12A (AIC = -55.7) contained only the variable

TSLB (P = 0.020):

y$DB12A = 0.3482 + 0.02332 TSLB (R2 = 0.43, dfe = 10).

Thus, the average of the vegetation coverage proportions measured by the lowest two

sections of the density board was positively related to number of years since burning. 

The next-highest ranked model (AIC = -54.5) contained positive and negative terms in

TSLB and CC, respectively.

The best model for DB12L (AIC = -42.7) contained the variables TSLB

(P = 0.146) and V (P = 0.474):

y$DB12L = -0.5966 + 0.03339 TSLB + 1.554×10-4 V (R2 = 0.46, dfe = 9).

In this model, the coverage of floor-level vegetation (0.0-0.3 m) relative to mid-level

vegetation (0.3-1.0 m) increased with time since burning and with estimated overall

vegetation density.  TSLB and V were moderately correlated (r = 0.60).  Thus, the

overall model fit is stronger than is suggested by the precision estimates for the variables.

Thus, I used compartment-averaged values of V and TSLB from the simulation

model to predict values of DB12A and DB12L.  These predicted values, in conjunction

with BA and CC calculated from the simulation model, then became input to the wood
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thrush density models.  I calculated compartment-level abundance of wood thrush from

the estimated quantities D$P and D$H and from total area in pine and hardwood habitats.

The models were developed on the assumption of linearity between responses and

explanatory variables, but this assumption must ultimately fail at some unknown point

beyond (or possibly within) the range of the calibration data.  Therefore, I proposed an

alternative structural form to this base model (model T0).  For each of the D$P and D$H

model inputs, I specified lower and upper response limits corresponding to the range of

field data used to fit the models.  In the alternative model (model T1), an input value

lower than its lower field-measured limit or greater than its upper field-measured limit

was replaced by the limit value.  The modified value was supplied to the model set as if it

was the measured value.  This action effectively forces abrupt nonlinearities into the

model at the data extremes.  Above (or below) an input value extreme, wood thrush

density no longer responds to further increases (or decreases) in the variable.

PARAMETER SELECTION

Behavior of the Refuge management model was governed by 118 parameters

(Table 1).  I chose values for many parameters subjectively, but all had some degree of

empirical, statutory, or conceptual support.  Rationale for most of my choices appears

earlier in this chapter.

Despite whatever sound rationale may exist for the parameter values used in this

model, considerable uncertainty about parameter values exists nonetheless.  Sensitivity

analysis, which portrays sensitivity of model output to perturbations in the parameters, is

out of the question because of the many parameters, the model’s long execution time, and
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output stochasticity.  However, field data measurements of birds may be used as a crude

validation of the model; validation and model updating are treated below.

MODEL SIMULATION UNDER DECISION ALTERNATIVES

As described above, the stand-level silvicultural actions carried out in the model

are rule-based and are conditional on the current status of the forest and the red-cockaded

woodpecker population distribution.  That is, current conditions dictate to the manager,

through fixed rules, a set of tactical operations concerning exactly where, in what

manner, and how much to cut.

I believed that enforcing fixed, rule-based actions in the simulation model was

necessary for two reasons.  First, although in practice managers routinely alter stand

cutting actions on a case-by-case basis, managers are nevertheless cognizant of and tend

to adhere to fundamental action rules (e.g., minimum distance from active woodpecker

cluster required for placement of recruitment cluster).  Second, management alternatives

available to the Refuge are somewhat constrained as statutory and recovery plan

obligations often dictate the range of alternatives and many of the decisions.  I saw no

reason to further complicate the model by incorporating softer or dynamically varying

rules.

Rather than place focus on these more tactical types of actions, I confined the

search for optimal management decisions within the more strategic context of current

Refuge management.  Specifically, for a given population objective, I hoped to find the

following using the simulation model: (1) an optimal compartment permutation sequence,

and (2) an optimal compartment burn limit.



104

The compartment permutation sequence specifies the assignment of

compartments into management groups and is one of the inputs to the model.  Currently,

the Refuge uses the following permutation sequence (Figure 6):

Group Compartments
1 1, 8, 13, 24, 32
2 9, 12, 21, 25
3 10, 27, 30, 33
4 6, 14, 23, 29
5 4, 7, 18, 22
6 3, 5, 15, 20
7 11, 17, 26, 34
8 2, 16, 19, 28, 31

The permutation sequence dictates the order of compartments that the simulation model

visits through time for silvicultural operations.  All compartments in a single group are

processed in one simulation year.  After processing group 8, the simulation program

returns to group 1 compartments in the next time period.  Any of the groups may be

specified for the initial time period.  The simulation model cycles through the

compartment groups until reaching the chosen time horizon.  Given the spatial nature of

red-cockaded woodpecker population dynamics, the woodpecker population response

may depend on compartment visit order.

The compartment burn limit is a user-supplied value that specifies the number of

compartments to burn annually.  In each simulation year, the burning submodel ranks the

compartments by understory vegetation conditions and burns the highest-ranked

compartments up to the compartment burn limit (see Burning, above).  Inverting the burn

limit value and multiplying by 34 provides an average measure of compartment burn

periodicity.  Burn periodicity may be influential for populations of both red-cockaded

woodpeckers and wood thrushes.
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Additional parameters provide control over the stochastic features of the model. 

One parameter sets the number of iterations of the model, so that returns for decision

alternatives may be examined in terms of their expected values.  The other parameter sets

a seed value for the random number generator, allowing the user to control the random

number stream.

SELECTION OF DECISION ALTERNATIVES

There are >1026 ways of grouping 34 compartments into eight management

groups, assuming that two of the groups contain five compartments and the remainder

contain four as shown above.  However, the number of valid permutations in which no

compartment in a single management group is physically adjacent to another (by

“adjacency” I mean sharing a common linear boundary) is unknown.  I wrote a computer

program to randomly search compartment permutations and to extract 10,000

permutations that satisfied the criterion of non-adjacency within management groups

(Appendix C.13).  I found, on average, a valid permutation in every 1328 trials, leading

me to estimate that there exist 8.1 × 1022 permutation sequences that meet the non-

adjacency criterion.

I first programmed a genetic algorithm to search for near-optimal permutation

sequences to maximize red-cockaded woodpecker and wood thrush population

objectives.  Despite the fact that the number of qualifying permutations was only a

fraction of the number of all permutations, even this number of decision alternatives is

overwhelming for any search algorithm, particularly when evaluation of each decision

could take several minutes to possibly a few hours.  Unfortunately, this was also the case

for the genetic algorithm approach, and I was forced to abandon it.  I instead elected to



106

use simulation to evaluate a much smaller, manageable number of permutation

alternatives that I chose judiciously from the sample of 10,000 valid alternatives.

I used the GIS to locate the geographic center of each compartment.  Given a set

of compartments in a management group, I calculated average inter-compartment

distance for the group.  For a single permutation sequence, I averaged these mean

distances over all the groups in the sequence to obtain a measure of within-year spatial

dispersion.  I also computed average distance between compartments in temporally

adjacent groups (i.e., compartments where visits were separated by one year in time) for a

measure of successive-year spatial dispersion (Appendix C.14).

I ranked the entire set of 10,000 permutation sequences on the basis of within-

year spatial dispersion and successive-year spatial dispersion.  For each permutation, I

computed the average of the two ranks and the difference between the ranks.  I chose for

analysis the sequences with the two highest average ranks and the sequences with the two

lowest average ranks.  In the first case, compartment selections were maximally

dispersed both within years and between successive years.  In the second case, just the

opposite was true: compartment selections were minimally dispersed both within year

and between successive years.  I also chose the sequences with the two highest and the

two lowest rank differences.  In one case, compartment selections were maximally

dispersed within years but minimally dispersed between successive years, and the

converse was true for the other case.  Thus, the eight permutation sequences that I chose

provided extremes in spatial dispersion of compartments both within time periods and

between time periods.  Although simulation of this set of permutation sequences does not

constitute a true optimization study with respect to all possible sequences, I believed that
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if an optimum does exist for any objective function, it is likely to occur for a sequence

that resembles one of the eight extremes.  To this set of eight, I added the Refuge’s

operational permutation sequence (Figure 6) for comparison.

I simulated each of the nine permutation sequences in combination with two

compartment burn limit settings.  I chose burn limits of seventeen compartments,

representing an average two-year burn cycle, and seven compartments, representing an

average five-year burn cycle.  The latter setting is approximately consistent with the level

of burning currently employed at the Refuge (4-9 compartments [$40.5 ha] burned

annually 1991-2000, x2 = 6.1 compartments).

SIMULATION AND ANALYSIS OF DECISION ALTERNATIVES UNDER MODEL UNCERTAINTY

I simulated the decision alternatives under different model scenarios and

conducted analyses to investigate patterns in optimal decisions.  My analysis goals were

to (1) find optimal management actions for bird population objectives under each

alternative model of forest and bird dynamics, (2) determine whether optimal actions

differed among the uncertain models and among objective functions, and (3) estimate the

expected benefit in reducing model uncertainty.

I formed twelve alternative models from combinations of the three submodels of

forest dynamics (F0, F1, F2), the two submodels of woodpecker response (W0, W1), and

the two submodels of wood thrush response (T0, T1).  I denoted each model as MFWT

where the subscripts take on values denoting the specific submodel contained.

Thus, I simulated eighteen decision alternatives under each of the twelve

alternative models.  I ran each model-decision combination over a 100-year time horizon

beginning from estimated forest conditions and measured woodpecker conditions at year
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2000.  I recorded 100-year compartment-level totals of active red-cockaded woodpecker

clusters and wood thrush abundance.  Because the simulation models were stochastic, I

repeated each run twenty times.

For each model alternative, I used analysis of variance to test effects of the

decision alternatives on final total population size of active clusters and final total

population size of wood thrushes.  Additionally, I analyzed a composite measure of the

two abundance quantities.  I scaled each abundance quantity by its standard deviation

computed from all (360) replicate runs for each model, then I calculated the simple

average of the scaled values.

The experimental design was in the form of a split-plot.  Permutation sequences

served as the main-plot experimental units.  I analyzed levels of within-year spatial

dispersion (DWT) and successive-year spatial dispersion (DBT) in a factorial

arrangement at the main-plot level.  Because I assigned burning periodicity after

selecting the set of permutation sequences, levels of compartment burn limit (BURN)

served as the split-plot effect.  I obtained estimates of treatment level means and standard

errors following this analysis.  To preserve analytical balance, I excluded the Refuge

operational permutation sequence from the split-plot analysis.  However, I obtained mean

outcomes for the operational sequence and compared them to the means for the other

treatment levels.

Lastly, I ranked decision alternatives according to model-averaged measures of

the three population objectives.  For each model and decision alternative, I multiplied the

mean outcome by a model confidence weight, then I added the products to yield a model-

averaged score for the decision.  To reflect complete uncertainty among models, I
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assigned a confidence weight of 1/12 to each model.  The top-ranked decision alternative

for each objective was my assessment of the optimal management action under

uncertainty about bird and forest response to management.  From these data, I computed

value of information, expressed in units of the resource, for each objective response

(Lindley 1985:120, Dakins 1999).

MODEL VALIDATION AND MODEL UPDATING

Each alternative model provided a predicted distribution of active woodpecker

clusters (cell level) and wood thrushes (compartment level) in response to simulated

management actions.  In particular, each model provided a prediction of year 2001 bird

population status conditional on management actions and forest state in year 2000.  The

Refuge provided me data on year 2001 woodpecker cluster status and distribution (J. A.

Mason, Piedmont National Wildlife Refuge, personal communication).  The most recent

data on wood thrush abundance, however, were only available for year 2000 as part of

the Refuge-wide point count study (W. T. Plummer, University of Georgia, unpublished

data).

Because the models were developed independently of the 2001 woodpecker data,

this data set provided some basis for a crude validation of each model and for updating

confidence weight in each.  I simulated each model 1000 times over the single time step

from 2000 to 2001.  For this analysis, I simulated harvesting and burning activities that

occurred on the Refuge between breeding seasons 2000 and 2001.  I aggregated model

output and field data counts of active woodpecker clusters to the compartment level.  I

assumed that each predicted average outcome for each compartment specified a mean for

a Poisson probability distribution for number of active clusters.  Given the mean :ij in
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compartment j under model i, I calculated a probability value of active cluster abundance

Xj:

Pr(Xj | :ij) = :ij
Xj e:ij / Xj! .

I assumed the compartment-level cluster abundance outcomes were independent.  Thus, I

multiplied the Pr(Xj | :ij) over all compartments j to obtain a total likelihood Li(X) for

each model i.  Note that Pr(Xj | :ij) is undefined when :ij = 0, therefore, compartments for

which  :ij = 0 were excluded from the calculation.

Given the model-specific likelihoods for response X and given the set of equal

prior confidence weights (p0i = p0 = 1/12), I used Bayes’ formula to compute posterior

confidence weights p1i among models:
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Thus, belief weight was redistributed among models in response to the confrontation of

each model to monitoring data.
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CHAPTER 5

RESULTS

WOOD THRUSH SURVEYS

Wood thrushes were commonly encountered throughout the Refuge in all years

and under both hardwood and pine overstories.  Densities of wood thrush were generally

greater in 1999 than in 1998, but no overstory habitat type contained consistently greater

densities than the other (Table 3).  Range of density estimates (0.0067-0.1084 birds/ha)

was consistent with, but lower than, the range (0.0150-0.1302 males/ha) reported by

Powell et al. (2000), and both were well below the maximum density (1.0 territories/ha)

encountered in certain other habitats (Roth et al. 1996).  Populations of wood thrush were

somewhat less dense in habitats that had recently been burned than in those that had not

(Final Report; W. T. Plummer, University of Georgia, unpublished data).

OVERSTORY TRANSITION MODEL

OPTIMIZATION

Program ASDP required 179 hours to evaluate 500 stage iterations of the

overstory transition model.  Despite the effort, the program did not converge on a

stationary optimal decision policy for maximizing amount of old-growth forest habitat. 

However, by the end of the iterations, decision values between successive iterations were

changing in fewer than ten of the 14,641 (0.07%) state value combinations.  Thus, the
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policy that resulted (Appendix D) was likely very similar in appearance to a stationary

optimal policy.

SENSITIVITY ANALYSIS

Each response of the overstory transition model was highly sensitive to

perturbations in at least one of the parameter values (Table 4).  Varying any parameter

that controlled the rate of transition between two pine age classes (J21, J32, J43, J14)

produced a large, negative estimate of elasticity for the donor age class and large,

positive estimates of elasticity in the receiving age class and all older classes.  I found

these patterns at all levels of the adjusted parameter.  The upland hardwood response

variable was mostly unaffected by perturbations in the age class transition parameters.

Elasticities for the pine class responses were negative with respect to the

hardwood encroachment parameters (:(ei)) and the encroachment rate variability

parameter (ve), but elasticities for the upland hardwood response variable for these same

variables were positive (Table 4).  Magnitude of elasticity was larger when the perturbed

parameter was tested at high rather than low levels (Table 4).

Of all responses, elasticities for the P4 age class were the greatest with respect to

parameter k, which controlled the amount of forest successfully entering the P4 state

(Table 4).  For the parameter controlling the amount of hardwood reverting to pine (q), I

found large negative values of elasticity for the upland hardwood response (Table 4).

With respect to the parameter controlling mean disturbance rate, :(c), positive

responses in elasticity by the P1 and P2 age classes were matched by negative responses

for the upland hardwood class (Table 4).  Largest magnitudes of the elasticity response

occurred for the largest value of :(c).
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All of the model responses were highly sensitive to perturbations in the variance

of the disturbance rate (F2(c)), and magnitude of the elasticity responses increased with

increases in the parameter value (Table 4).  Elasticity responses by the pine classes were

positive, and those by the hardwood class were negative.

The optimal harvest decision policy for the woodpecker nesting habitat objective

was highly sensitive to alternative model scenarios (Figure 17, Appendix D).  For model

F1, ASDP failed to converge on a stationary policy after 500 stage iterations, though the

policy derived was likely similar to a stationary policy (<0.1% of all state value

combinations changed in decision value between successive iterations).  However, ASDP

did arrive at a stationary policy for model F2 after 214 iterations.  Under optimal policies

for either model F1 or model F2, harvesting in all age classes was less aggressive overall

than for the policy corresponding to the base model F0 (Figure 17).

I used the synchronized GIS to estimate year 2000 forest type distribution.  For

this distribution and for the objective of maximizing woodpecker nesting habitat, I

determined optimal regeneration decisions under each of the three models.  Choice of

pine types targeted for cutting was highly dependent on choice of the appropriate forest

dynamics model.  In particular, model F1 (low rate of transition to P4) indicated

extensive harvesting of the P3 type whereas model F2 (high rate of transition to P4)

suggested concentration of harvest in the P2 type:
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Year 2000
Estimated

Cover

Optimal Harvest Decisions

Base Model F0 Model F1 Model F2

Cover
Type

Area
(ha) %

% of
type

Area
(ha)

% of
type

Area
(ha)

% of
type

Area
(ha)

P1 385 3
P2 1924 15 4 77 0 0 14 269
P3 7090 57 2 142 12 851 0 0
P4 828 7 4 33 6 50 0 0
UH 2319 18
Total 12546 100 252 901 269

I was unable to obtain comparable regeneration statistics from compartment prescription

data for the Refuge.  However, during the decade 1989-1998, the average area of pine

habitat regenerated into the P1 type was 53.6 ha (J. D. Metteauer, Piedmont National

Wildlife Refuge, personal communication), a substantially smaller total regeneration

amount than any estimated as optimal by these models.

SPATIALLY-EXPLICIT FOREST MANAGEMENT MODEL

SELECTION OF PERMUTATION SEQUENCES

I found eight permutation sequences that provided high contrast in between-year

and within-year inter-compartment distance measures (Table 5).  In comparison, distance

measures for the Refuge’s current operational sequence were intermediate.  Ranks for the

operational sequence were extreme for neither the within-year (5051, 50.5%) nor the

successive-year (3602, 36.0%) dispersion measures (Table 5).

ANALYSIS OF DECISION OPTIMA

I ran 4320 simulations (12 model alternatives × 9 permutation sequences × 2 burn

scenarios × 20 replications) using 519 processor-hours of computer time.  Mean 100-year

populations sizes were 123 active red-cockaded woodpecker clusters (range 10-246) and
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4.28×1013 wood thrushes (range 253-6.17×1016).  Predicted wood thrush abundances were

right-skewed, and, for one class of prediction models, were implausibly large.  I therefore

doubly log-transformed (log-log-transform) wood thrush abundances in all subsequent

analyses.  The stochastic nature of the model is clearly evident in a sample of 20 runs for

the Refuge’s operational permutation sequence (Figure 18).

Red-cockaded Woodpecker Response

Numbers of active red-cockaded woodpecker clusters were highly sensitive to the

decision alternatives, and the patterns of variation differed among simulation models

(Table 6).  Under every model, cluster number responded strongly to the maximum

compartment limit imposed on burning (effect BURN, P # 0.001, Table 6).  On average,

burning seventeen rather than seven compartments annually produced 80 more active

clusters at 100 years (Table 7), and the direction of the difference was consistent among

models.

I found evidence in many models that cluster numbers also responded to

compartment permutations.  Choice of forest overstory submodel more than any other

type of submodel appeared to have greatest influence in the pattern of variation with

respect to permutations.  Among the four models of moderate transition to the P4 type

(models M0••), average number of clusters was greater when successive-year

compartment dispersion was small rather than large (Table 7), though evidence for these

differences was slight (effect DBT, 0.104 # P # 0.226, Table 6).  This effect was not

important in any other model (P $ 0.413, Table 6) except in model M200 (P = 0.024,

Table 6), which predicted a high rate of transition into the P4 type.  Under this model,

cluster number was greater when successive-year compartment dispersion was high
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rather than low (Table 7).  Though differences were not significant, greater mean number

of clusters tended to occur when successive-year compartment dispersion was large for

the models in class M1•• (low rate of transition to P4) and when dispersion was low for

models in class M2•• (Table 7).

Within-year compartment dispersion (effect DWT) influenced cluster outcome,

and its influence also varied mostly among forest overstory submodels.  The effect was

strongest among the models in class M2•• (0.016 # P # 0.229, Table 6).  In all cases for

this model class, mean number of clusters was greatest when within-year compartment

dispersion was high rather than low (Table 7).  In the other overstory model classes,

mean cluster numbers tended to be greatest under low within-year dispersion for models

in class M0•• and under high within-year dispersion for models in class M1•• (Table 7).

The interaction between the two types of compartment dispersion (effect DBT ×

DWT) was weakly to strongly influential on mean cluster numbers under models M000,

M001, M011, M200, and M201 (0.003 # P # 0.188, Table 6).  The treatment level

corresponding to the greatest mean response was consistent in ten of the twelve models:

low degree of successive-year compartment dispersion and high degree of within-year

dispersion (Table 7).  However, the treatment level corresponding to the lowest mean

response differed among models but was generally consistent within overstory

submodels.  For all models in the class M0••, the lowest mean response occurred for the

combination of high successive-year dispersion and high within-year dispersion (Table

7).  For the other two classes, the lowest mean response occurred most often for the

combination of low successive-year dispersion and low within-year dispersion (Table 7).
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The overall woodpecker response mean was highly sensitive to the choice of

overstory model.  The overall mean was greatest for the M2•• class (x) = 138.4, SE = 0.95),

lowest for the M1•• class (x) = 107.4, SE = 0.42), and intermediate for the M0•• class

(x) = 124.0, SE = 0.47) (Table 7).  With regard to the woodpecker submodels, however,

the difference in mean responses for the set of habitat-insensitive productivity submodels

M•0• (x) = 124.0, SE = 0.54) and the set of habitat-sensitive submodels M•1• (x) = 122.6,

SE = 0.54) was statistically significant (P = 0.067) but biologically trivial.

Though the overall means varied by model, optimal decision alternatives for the

woodpecker response were mostly unaffected by model choice (Table 8).  In ten of the

twelve models, the optimal decision alternative was that of frequent burning, combined

with a compartment visit schedule that maximized within-year compartment dispersion

and minimized successive-year dispersion (x) = 168.3, Table 8).  For all models,

infrequent burning was always suboptimal, but the worst decisions with regard to

compartment permutations depended on choice of model.  For the model class M0••, high

between-year and high within-year compartment dispersions were almost uniformly the

worst decision (x) = 79.8, Table 8), whereas low levels of both types of dispersion were

usually worst for models in classes M1•• and M2•• (x) = 78.7, Table 8).

Relative performance of the Refuge’s current operational compartment visitation

sequence differed among models and levels of burning (Table 8).  In the case of

infrequent burning, the operational permutation was inferior to all other permutations in

nine of the twelve models (Table 8).  When burning was more frequent, the operational

sequence was often favorably ranked, but never top-ranked (Table 8).
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Under complete uncertainty about choice of the correct model, decision actions

utilizing frequent burning were superior to those that did not (ranks for model-averaged

outcomes, Table 8).  The optimal permutation sequence for the woodpecker response

differed with respect to burning periodicity.  Under frequent burning, the low-high

combination of successive/within-year compartment dispersions was optimal, whereas

the high-low combination was optimal under infrequent burning (Table 8).  Furthermore,

the Refuge’s operational permutation was the second-ranked alternative overall, although

its expected return was practically indistinguishable from those of the other suboptimal

alternatives under frequent burning (Table 8).  Under infrequent burning, however, the

operational sequence was the worst alternative (Table 8).

Wood Thrush Response

In all but one model (M200), wood thrush abundances were highly sensitive to

management decisions, particularly with respect to the frequency of burning (P # 0.086,

Table 6).  On average, densities of wood thrush were approximately five times as great in

lightly-burned landscapes as in intensively-burned landscapes (x) difference in log-log

abundance = 0.182, Table 7).

Few of the compartment dispersion effects were particularly strong (Table 6). 

Effect DWT was significant in only one instance (Model M211, P = 0.050, Table 6). 

However, comparison of means for this effect in all models suggested a consistently

greater abundance of wood thrushes when within-year compartment dispersion is high

rather than low (Table 7).  Analysis of means for the interaction effect similarly

suggested greater abundances when the DWT component of the interaction is at its high
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value (Table 7).  I saw no pattern in wood thrush abundances with regard to successive-

year compartment dispersion (Table 7).

Overall mean of the wood thrush response was strongly dependent on both choice

of overstory submodel and wood thrush habitat-association submodel.  Mean wood

thrush response was greatest for models of class M1•• (x) = 2.332, SE = 0.00618), least for

models of class M2•• (x) = 1.982, SE = 0.00185), and intermediate for models of class M0••

(x) = 2.120, SE = 0.00323) (Table 7).  Thus, predicted population abundance of wood

thrush was positively associated with predicted rate of overstory transition into the

hardwood class.

Mean response for the linear habitat-association model class (M••0, x) = 2.295,

SE = 0.00476) was greater than that for the nonlinear model class (M••1, x) = 1.995,

SE = 0.00068) (Table 7).  Thus, population abundances corresponding to the linear

version of the habitat model exceeded those corresponding to the nonlinear version by

more than an order of magnitude.

The two models in the class M1•0, which projected a high rate of overstory

transition into the hardwood type and a linear response by wood thrushes to habitat

conditions, produced wildly implausible estimates of 100-year bird abundance

(maximum projected 100-year total abundance = 6.17×1016).  The models predicted

average 100-year outcomes of approximately 18,000 (approx. 1.3 birds/ha) and 3×108

(approx. 21,000 birds/ha) birds in frequently-burned and infrequently-burned landscapes,

respectively (Table 7).  While the first of these estimates is not beyond the realm of

credibility for typical wood thrush densities (0.1-1.0 territories/ha; Roth et al. 1996),

certainly the second estimate is biologically unreasonable.  The behavior of this pair of
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models suggests that the assumption of model linearity over the range of simulated

habitat conditions is unreasonable and that prediction of wood thrush density in

hardwood stands based on observed vegetation characteristics in neighboring pine stands

is suspect.

The selection of optimal burning and compartment permutation design

alternatives was sensitive to model choice for the wood thrush response (Table 9).  For

most models (all models of classes M0•• and M1••), infrequent burning was clearly superior

to frequent burning under any permutation alternative (Table 9).  However, for models in

the class M2••, the better alternatives did not always correspond to infrequent burning

(Table 9).  Under model M210, the optimal decision called for frequent burning and high

between-year and within-year compartment dispersion (Table 9).  Under model M211, the

worst-ranked alternative corresponded to the Refuge’s operational permutation sequence

combined with infrequent burning (Table 9).

In light of the evident absence of wood thrush response variation with respect to

permutation design (Table 6), apparent model-specific differences in decision alternative

ranks within levels of burning could be due to chance (Table 9).  Nevertheless, most of

the apparently optimal permutation designs within each level of burning were those with

high within-year compartment dispersion (9 of 12 models for infrequent burning, 10 of

12 for frequent burning; Table 9).

Thus, optimal management for wood thrush may in fact be model dependent, at

least with regard to forest overstory model alternatives.  I found no indication that

optimal wood thrush management depended on choice of the habitat-association

submodel.
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The Refuge’s operational permutation sequence was globally top-ranked in one

case (model M011) and bottom-ranked in five cases (models M000, M010, M110, M111, M211)

(Table 9).  Within each level of burning, the operational permutation sequence was

inferior to the middle-ranked alternative in eight of the twelve models (Table 9).

Under model uncertainty for the wood thrush response, any decision alternative in

which burning was conducted infrequently was superior to alternatives in which burning

was frequent (ranks for model-averaged outcomes, Table 9).  Within levels of burning,

permutation designs that featured high within-year compartment dispersion were

generally superior to those that did not (Table 9).  The Refuge’s operational permutation

sequence performed poorly both within each level of burning and overall (Table 9).

Composite Species Response

Despite the equal weighting given to the standardized woodpecker and wood

thrush components of the composite species score, the composite score responded to

management in ways similar to the woodpecker response, at least with regard to

periodicity of burning.  More frequent burning brought about greater mean responses in

the composite species score, though burning effect sizes were moderate relative to those

for the woodpecker response (P # 0.144, Tables 6-7).

With regard to compartment permutation design, patterns in variation for the

composite species response showed characteristics expressed by one or the other of the

constituent responses, and the patterns appeared model-related.  For models in the class

M0••, none of the successive-year, within-year, or interaction dispersion effects were of

significance (P $ 0.124, Table 6), but the pattern of effect means resembled that for the

woodpecker response (Table 7).  The composite mean response was positively associated
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with a combination of low successive-year and high within-year compartment dispersion,

but the association was less distinct as it was for the woodpecker response (Table 7).

For models in classes M1•• and M2••, main effects for permutation design were

significant only in isolated cases (Table 6).  However, a consistent pattern emerged

among the effect means.  In all models, the composite species response was greater when

within-year dispersion was high rather than small (Table 7).  The successive-year

dispersion effect expressed a pattern dependent on choice of the wood thrush habitat

relationship submodel.  The mean response was generally greater when successive-year

dispersion was high rather than low in the linear forms of the model (models M1•0 and

M2•0) and when dispersion was low rather than high in the nonlinear forms (models M1•1

and M2•1) (Table 7).

Composite response mean varied by submodel type.  The composite response

mean was greatest for models in class M2•• (x) = 21.94, SE = 0.0229), least for models in

class M0•• (x) = 16.69, SE = 0.0116), and intermediate for models in class M1•• (x) = 19.60,

SE = 0.0130).  The mean for the habitat-sensitive versions of the woodpecker

productivity model (class M•1•; x) = 19.92, SE = 0.0121) was greater than that for the

alternative submodel (class M•0•; x) = 18.89, SE = 0.0149).  The mean for the nonlinear

forms of the wood thrush habitat-association model (class M••1; x) = 29.76, SE = 0.0135)

was far greater than that for the alternative submodel (class M••0; x) = 9.050, SE = 0.0136),

a result explained by the great difference in variation of wood thrush outcomes produced

by the two classes of model.

The optimal decision alternative for the composite response depended on model

choice (Table 10).  Under all models, the optimal decision alternative incorporated
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frequent burning, whereas the bottom-ranked alternative employed infrequent burning. 

However, the form of the overstory transition model affected the clarity of the

segregation of superior from inferior decisions.  For most models in the classes M0•• and

M2••, the five top-ranked decision alternatives corresponded to frequent burning, whereas

for models in class M1••, some of the poorer alternatives used frequent burning (Table

10).

Within the high level of burning, the optimal decision alternative incorporated

high within-year compartment dispersion in ten of the twelve models (Table 10).  Of

these ten, eight also employed low successive-year compartment dispersion (Table 10). 

Over all twelve models, the low-high combination of successive/within-year dispersion

under frequent burning was never worse than the third-ranked decision alternative. 

Under the low level of burning, no particular expression of compartment dispersion

conferred a clear advantage to the composite response (Table 10).  The pattern of optimal

permutation decisions under high burning frequency was almost identical to that for the

woodpecker response (Table 8), whereas the pattern under low burning frequency closely

resembled that for the wood thrush response (Table 9).

The Refuge’s operational compartment permutation sequence, when applied

under a regime of infrequent burning, was the poorest decision alternative, or very nearly

so, for eleven of the twelve models (Table 10).  Under more frequent burning, the

operational sequence was the second-highest ranked alternative for five of the models but

fared relatively poorly (no higher than fourth-ranked) for the other seven (Table 10).

Under model uncertainty, the optimal decision alternative for the composite

response was one in which burning was frequent, successive-year compartment
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dispersion was low, and within-year dispersion was high (ranks of model-averaged

outcomes, Table 10).  Within levels of burning, superior decision alternatives tended to

be those having high within-year compartment dispersion, and the Refuge’s operational

permutation sequence was among the poorest alternatives (Table 10).  Under frequent

burning, the ranking of decisions for the composite response was identical to that for the

woodpecker response (Table 8); under infrequent burning, the decision ranks were almost

identical to those for the wood thrush response (Table 9).

ESTIMATION OF VALUE OF INFORMATION

The central notion of adaptive resource management is that while uncertainty

about the response of a system to management is a primary impediment to its optimal

management for a desired objective, management may nonetheless be directed, or at least

evaluated a posteriori, toward the resolution of this uncertainty (Walters 1986).  This

notion brings forth at least two important implications that concern my simulation of

management decision making at the Refuge.  The first is that uncertainty about the

system must be portrayed in a set of models that induce distinct model-dependent

patterns of response to system management (Walters 1986:169, Johnson et al. 1993).  If

they do not, then resolution of model uncertainty is irrelevant as any model could be

arbitrarily chosen to find an optimal decision action.  If they do, then implicitly there

exists a “value of information,” expressible in units of the managed resource (Lindley

1985:120, Walters 1986:197, Dakins 1999).  Value of information is the gain in the

resource expected by reducing system uncertainty.  Secondly, there must exist a source of

data, for example, an ongoing monitoring program, and a means to apply these data to the

reduction of uncertainty (Johnson et al. 1993).
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I found that mean responses varied among uncertain models, as indicated by

model-specific sets of outcome rankings (Tables 8-10).  However, mean responses were

stochastic, implying that different runs of the same models could produce different

outcome rankings.  Thus, some disagreements among models in decision alternative

ranks are less meaningful than others, and in these cases, resolution of model uncertainty

is not expected to be as helpful as may be apparent.  For example, consider the optimal

red-cockaded woodpecker response among models (Table 8).  The top-ranked decision

under model M100 was the fifth-ranked alternative under model M000.  However, the

optimal objective value under model M100 was not statistically distinct from that of the

second-ranked alternative, which was the optimal decision alternative in the majority (10)

of the other models compared.  Thus, in a practical sense, the optimal decision alternative

was the same in eleven of the twelve models, and resolution of model uncertainty for this

response may be an irrelevant exercise.

Values of information (Lindley 1985:120) computed from the simulation outcome

means of each of the uncertain models (Tables 8-10) were 0.73 for the woodpecker

cluster response, 0.006 for the wood thrush response, and 0.013 for the composite

response.  These values were small in comparison to corresponding average standard

error values for the mean outcomes (Tables 8-10).  Thus, when judged in the light of

response precision, values of information may be negligible for these responses.  On the

other hand, because value of information is a measure derived from quantities subject to

sampling variability, the measure itself has variability and an associated confidence

interval, which may span a considerable range.
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MODEL VALIDATION AND MODEL UPDATING

Prescribed burning was the only significant bird habitat management action

occurring on the Refuge between the bird breeding seasons of 2000 and 2001 (J. A.

Mason, Piedmont National Wildlife Refuge, personal communication).  In the model, I

updated the age-at-last-burn variable for those pine stands burned in the winter of 2000-

2001.  No stand-level thinning or regeneration took place in this period; managers carried

out only isolated cuttings in response to southern pine beetle (Dendroctonus frontalis)

infestations.  No new recruitment clusters were installed in this time period.

Thirty-nine active red-cockaded woodpecker clusters were detected in sixteen

compartments in 2001 (range 1-6 active clusters per occupied compartment, Table 11). 

Each model generally over-predicted cluster abundance at both the compartment and

Refuge (range 42.6-42.9 mean active clusters) levels.  The models all predicted some

probability of occupation in 23 compartments (range 0.35-5.99 mean active clusters per

occupied compartment, Table 11).

Conditional likelihood for the woodpecker response was greatest for model M111

and least for model M100 (Table 12).  Corresponding posterior probabilities (p1) for these

models were 0.0896 and 0.0771, respectively (Table 12).  Totaling p1 over the wood

thrush submodels yielded posterior probabilities 0.163, 0.169, 0.165, 0.175, 0.163, and

0.164 for model classes M00•, M01•, M10•, M11•, M20•, and M21•, respectively (compare to

equal prior probabilities of 0.167).  Thus, based on the woodpecker cluster response,

evidence accumulated toward the model classes M01• and M11• and diminished from the

others.  These two classes differed in the rate of transition to hardwood, but they both

proposed that woodpecker recruitment was sensitive to foraging habitat abundance. 
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Posterior probabilities totaled over both the woodpecker and wood thrush submodels

were 0.332, 0.340, and 0.328 for model classes M0••, M1••, and M3••, respectively (compare

to equal prior probabilities of 0.333).  Thus, the woodpecker cluster response was more

consistent with the hypothesis of aggressive hardwood encroachment than with the

hypothesis of old-growth pine retention.  Total posterior probabilities with respect to the

woodpecker submodels were 0.491 for class M•0• and 0.509 for class M•1• (compare to

equal prior probabilities of 0.500).  Therefore, models that proposed habitat-sensitive

woodpecker recruitment received a slightly larger share of credibility weight following

data collection.
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CHAPTER 6

DISCUSSION

SYNTHESIS OF MODELING RESULTS

Populations of red-cockaded woodpeckers and wood thrushes, as expressed

through the set of simulation models, were sensitive to the decision alternatives.  For both

populations, annual extent of burning greatly influenced the predicted 100-year

abundance of birds.  Woodpecker populations responded positively to increased burning,

whereas wood thrushes responded negatively.  The specific configuration of

compartments into management groups was less influential on mean outcomes.  In

general, the woodpecker population received the greatest benefit from management when

compartments within management groups were widely dispersed and when

compartments in successive-year groupings were close to each other.  Wood thrushes

generally benefitted under management group configurations that maximized within-year

compartment dispersion.  Optimal decision actions for the composite species score more

closely resembled those for the woodpecker response than those for the wood thrush

response.

Likewise, predicted abundances of both woodpeckers and wood thrushes were

sensitive to choice of system dynamics model.  Abundance of active woodpecker clusters

responded strongly to choice of forest overstory submodel and less strongly to choice of
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woodpecker productivity submodel.  Choices of forest overstory and wood thrush

habitat-association submodels both substantially influenced wood thrush mean outcome.

Despite the unquestionable influence of both decision action and model choice on

mean outcome, the selection of the optimal decision action for each response appeared

mostly insensitive to model choice.  Even for the case of wood thrush, where decision

outcome rankings were most variable among models, superiority of decisions was not

clearly evident as differences in decision outcomes were not large relative to outcome

variability.  Furthermore, estimated values of information were extremely low relative to

outcome variances, suggesting that little management value is to be gained by resolving

uncertainty among these models.

The models all over-predicted abundance of active woodpecker clusters in 2001. 

Model-specific outcomes for a single-year time step were highly consistent with each

another.  However, some models performed slightly better than others in projecting the

year 2001 abundance of clusters.  As a result, models which proposed aggressive

hardwood encroachment and habitat-influenced woodpecker recruitment received greater

credibility weight after confrontation with data than those that did not.  Re-computation

of model-averaged outcomes through application of the posterior probabilities (Table 12)

to model-specific decision outcomes (Tables 8-10) did not change the decision ranking

for the woodpecker response (Table 8).  However, the second and third-ranked decision

alternatives for the composite species response under model uncertainty (Table 10)

swapped rankings following updating of the model credibility weights.

The updating of the credibility weights described above is an example of passive

adaptation.  Furthermore, my simulation and optimization approach was an example of
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open-loop rather than closed-loop optimization (Dreyfus and Law 1977).  That is, the

approach assumed that the optimal decision constituted a fixed time series of decisions,

rather than a single current-time decision anticipating change in the future system state. 

The optimal decision for a given system state under closed-loop optimization is not

necessarily the same as that under open-loop optimization because the past history of the

system is irrelevant in the former case (Markovian) but not in the latter case (non-

Markovian).  Closed-loop optimization requires dynamic programming methodology,

which was clearly unable to accommodate this problem.  Unfortunately, because open-

loop approaches do not anticipate changes in the system state, closed-loop approaches

may be the only ones capable of delivering actively adaptive decision policies.

IMPLICATIONS FOR REFUGE MANAGEMENT

The optimal decision under model uncertainty for a composite woodpecker and

wood thrush population response called for extensive burning and compartment

groupings having high within-group dispersion and low successive-group dispersion. 

This decision corresponded to equal weight provided to the variance-scaled responses for

woodpecker and wood thrush.  Allocating more weight to the wood thrush response

would indicate a different optimal decision.

Relative to these actions, Refuge burning is limited in area, and current inter-

compartment dispersion is moderate both within management groups and between

successive groups.  Whereas increasing the extent of burning may be difficult within

current resource levels and operational constraints, management group configuration may

be feasible to address.
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I found little variation in the optimal decision among models, and I did not detect

high values of information in the analysis.  Nevertheless, one should not conclude that

key uncertainties do not exist in this system nor that management cannot be used to

improve quality of decisions.  In fact, my work has revealed that this system is highly

uncertain, and model-based decision making on the Refuge remains frustrated by four

main obstacles: doubt over clarity and appropriateness of objectives, insufficient resource

data at appropriate resolutions, lack of suitable predictive models, and unclear expression

and questionable breadth of decision alternatives.

OBJECTIVES

The form of an optimal policy is determined by the objectives.  I analyzed bird

abundance outcomes separately over a 100-year time horizon using 20 iterations of each

model for each decision alternative.  My selection of this time frame and number of

iterations was a compromise between the desire to obtain a consistent, long-term

depiction of management results on the Refuge and the need to complete the simulations

in a reasonable time period.  The time frame was just sufficient to cover a single forest

rotation.  Given the extensive degree of hardwood encroachment evident in the

simulations, a longer time frame would have suggested different decision outcomes.  In

the example set of simulations (Figure 18), abundance of active red-cockaded

woodpecker clusters appeared to peak, then decline.

I also analyzed bird outcomes simultaneously through the use of a composite

measure.  By choosing this measure, I attempted to balance influences by the individual

components in the selection of optimal decision alternatives.  Though I gave each

component equal weight in the composite score, precision scaling supplied greater
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influence to the woodpecker component than to the wood thrush component.  Although it

is reasonable and is common practice to apply an inverse-variance scaling when

averaging components measured on highly dissimilar scales, the scaling quantity that I

chose likely reflected differences in the quality or structure of the population models and

their inputs rather than true differences in population variability.

A more troublesome issue is whether overall conservation planning for the

Refuge is even properly accomplished through the maximization of abundance of two

forest bird species.  As discussed earlier (Chapter 2), conservation objectives for the

Refuge are not totally clear-cut, given the desire to perpetuate the red-cockaded

woodpecker population within the context of ecosystem management.  If ecosystem

management implies the use of management to mimic historical ecological processes and

patterns, then the persistence of woodpeckers in this landscape, over any long-term basis,

is a questionable goal for management.  Instead, a management objective that seeks to

optimize a broader but measurable index of biotic diversity may be more appropriate, as

might be one that spatially separates species objectives.

Although I selected the wood thrush as a representative species of understory-

dependent non-target fauna, how well it represents those fauna is unknown.  Because the

wood thrush migrates, inferences on forms of management that appear benign to the

wood thrush certainly cannot be extended to terrestrial organisms.  Within closed-canopy

forest conditions, wood thrushes are to some degree habitat generalists.  Therefore, forest

management that appears beneficial or, at least, not harmful to wood thrushes may be

highly destructive to a single species of plant.
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RESOURCE DATA

Modeling and validation efforts for projecting forest response to management are

presently hampered for lack of a systematic, comprehensive forest data collection

program at the Refuge.  Any forest decision-making endeavor, whether adaptive or not,

must be based on a program of regular forest monitoring.  Monitoring data provide the

means by which progress toward objectives are measured, and, in an adaptive setting,

they arbitrate among competing decision models.  Furthermore, they can be used to

develop or refine models.

The habitat inputs that I supplied to the models were measured at different

extremes of spatial scale (approx. range 4-400 ha) and precision.  For example, I initiated

stand basal area in the GIS by calculating the midpoint of an estimated compartment-

wide range of basal area then propagating the estimate into all stands.  Such gross spatial

inaccuracies bring into question the merit of any spatially-explicit modeling effort. 

Furthermore, no data exist to validate the alternative forest overstory models I developed. 

As all species responses and optimal regeneration decisions were highly sensitive to

choice of forest overstory model, lacking the means to resolve uncertainty among these

models is a serious impediment to improved decision making.  Finally, records of

management actions are maintained in paper form.  These records are difficult to

synthesize in a format useful for understanding the timing, distribution, and effects of

historical decision actions.

To make management more informative, I strongly encourage the Refuge to

initiate a point-based monitoring and data management system.  Such a system would

provide spatially-referenced data on site characteristics, forest conditions, management
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history, disturbances, and certain forest fauna.  Presently, stand polygons are the basic

mapping element on compartment maps.  This representation of the forest is too coarse to

be useful in the construction of spatially-explicit forest and animal population or

community models.  Instead, my modeling efforts point to the versatility and usefulness

of a point-based monitoring program.  A monitoring system established on a regular,

fixed grid of sampling points would provide data in a form that is readily incorporated in

a GIS and linkable to predictive models.

At each of 0.0405-ha (0.1-ac) permanent plots, conditions of the site (site index,

topographic characteristics) and the overstory and midstory layers (composition, age,

basal area, canopy closure and volume) would be collected.  One-percent coverage of the

Refuge would require approximately 3500 such plots.  However, because these forest

attributes change through time somewhat slowly (or not at all), all plots in a compartment

could be sampled only when the compartment is visited for silvicultural treatment. 

Because the treatment cycle occurs over eight years, fewer than 500 plots would be

surveyed for these attributes in any single year.  Although this approach samples only a

portion of the Refuge each year, a composite picture of forest conditions throughout the

Refuge can be generated whenever desired.  Forest growth models embedded in the

database can advance forest attributes to any chosen point in time.

In contrast, dynamics of the understory occur rapidly, and decisions on burning

are made annually on a Refuge-wide basis.  Therefore, data on understory conditions

should be collected each year on a random or systematic sample of plots throughout the

Refuge.  A sample of 700 plots provides approximately 0.2% Refuge coverage.  The
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principal attributes collected in this survey are those depicting understory vegetation

composition and density.

At each point affected by a management action, data on timing, type, and

characteristics of the action should be recorded in the database immediately following the

action.  Important attributes to be recorded include the date and duration of the most

recent cutting activity, the type of cut, residual basal area and canopy closure, year of

pine establishment, date of most recent prescribed burn, and characteristics of the burn. 

Similarly, immediately following a forest disturbance, data would be recorded for each

point affected by the disturbance.  Recorded attributes include timing and type of

disturbance (e.g., beetle damage, wind throw, etc.) and characteristics of the residual

stand.

Separate protocols should be established for forest wildlife monitoring.  However,

many vertebrate and invertebrate monitoring designs can be overlaid on the forest

sampling grid.  For example, surveys of songbirds could be conducted on a habitat-

stratified sample of the forest monitoring points.  Currently, point counts of songbirds are

collected annually, but the sample design is not stratified and the data collected do not

yield songbird density.  By recording distances to birds detected, estimates of songbird

density can be made in each compartment and habitat stratum.  For certain other species

however, monitoring is best accomplished by restricting sampling to specific habitats

(e.g., streams) or sites (e.g., woodpecker clusters).

Improvements in the models of woodpecker cluster dynamics will only occur with

better woodpecker demographic data.  Data currently collected are numbers of active

woodpecker clusters, group size per cluster, and productivity per cluster.  These data are
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collected annually at all clusters throughout the Refuge.  However, woodpeckers are not

banded.  Thus, inferences on survival, pair fidelity, and dispersal are not available from

the data.

Data provided by the proposed monitoring system could generate high-resolution

GIS information layers and provide spatially relevant input to decision models.  These

data would be absolutely critical for assessing performance of competing decision

models, redistributing belief weight among models, refining model structure and

parameters, and providing a basis for the development of new models.  Furthermore, the

use of systematic surveys gives managers a means of mapping the biological diversity of

the Refuge and tracking its response to management.  As Refuge management continues

to emphasize woodpecker recovery objectives, a systematic monitoring program is the

best means by which to assess effects of management on non-target organisms.

PREDICTIVE MODELS

All analyses I performed were conditional on the model structure and parameter

values that I chose, and I made many choices subjectively.  The models were assembled

from assorted component models – some components were developed from data

collected on the Refuge while others were developed for situations elsewhere.  Some of

the component models were process-oriented (e.g., woodpecker productivity) while

others were statistical (e.g., wood thrush abundance).  A sensitivity analysis could reveal

those parts of the simulation model most vulnerable to uncertain parametric controls, but

this sort of analysis was not possible to perform under the extreme computing demands

of the model.  Thus, there is no assurance that the alternative model forms I used actually

reflect the greatest uncertainties about forest and bird management in this system.
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Recent modeling efforts for the red-cockaded woodpecker have emphasized

spatially-explicit, individual-based approaches (Hughell 1996, Letcher et al. 1998,

Walters et al. 2002), but such approaches involve the specification of a number of

unknown parameters with uncertain implications for model reliability (Conroy et al.

1995, Ruckelshaus et al. 1997).  Furthermore, such models must be linked to the

landscape when spatially-distributed habitat management actions are of interest.  Though

these models are increasingly recognized as important tools for conservation

management, they are difficult to develop, and few examples exist of their use in

conservation management.

To my knowledge, there exists no management model that treats red-cockaded

woodpecker population dynamics in a spatially-explicit, individual-based (or group-

based) form and in response to local habitat conditions, yet this is the type of model

believed to be required for recovery and conservation planning for the woodpecker (U.S.

Fish and Wildlife Service 2000).  The models I developed represent a first step toward

this goal in that they contain mathematical structures that relate the life processes of the

woodpecker family group to the habitat, the population, and the stochastic environment. 

Though some parameter values were derived from study of the Refuge population, others

were merely best guesses.

Models for forest overstory dynamics were based mostly on supposition about

habitat succession processes and very little on empirical data, whereas models for wood

thrush abundances were based entirely on observed correlations and not at all on

population dynamics.  These approaches may have been reasonable in light of the data

available, but certainly others have equal merit.  To produce a set of models likely to
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encompass the principal uncertainties in the bird conservation community, a

collaboration among resource biologists is almost compulsory.

Because many model parameters were set either subjectively or on the basis of

off-site empirical data, these models must be considered provisional until data on the

Refuge either confirm these values or indicate better ones.  Thus, data obtained through a

Refuge-wide systematic monitoring program are vital to the improvement of these

models and the development of new models.

The models I used are highly detailed and contain many parameters.  This is a

consequence of my decision to employ spatially-explicit, breeding-group-based

population models on a heterogeneous, dynamic landscape.  An obvious question is

whether such an approach is unnecessarily complicated and whether some simplification

of decision models is justified.  Clearly, sensitivity analysis could address this question,

but this was not feasible for the landscape simulation model.  Because woodpecker

dispersal is so limited and because woodpeckers are so highly restricted to an ephemeral

habitat, I concur with the view that management purely for woodpecker objectives should

proceed in a spatially-explicit, stand-level, and individual-based context (U.S. Fish and

Wildlife Service 2000).  This may especially be the case in the Piedmont and in other

non-longleaf pine habitats outside of the coastal plain.  In terms of physiographic,

edaphic, and forest cover attributes, these areas tend to be more spatially heterogeneous

than the coastal plain, and maintaining a stream of suitable habitat in appropriate spatial

configurations is relatively difficult to assure.

However, simplification may be warranted where forest biological diversity is the

objective of management.  In this case, landscape attributes that are controllable by
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management activities may be related to diversity outcomes (e.g., total species in an area,

number of rare species) through relatively simple, correlative, non-dynamic models. 

Thus, whereas the abundance and distribution of old pine habitat may be predicted in a

landscape model, woodpecker use of that habitat may be predicted only in probabilistic

terms.

In the case of forest overstory transition, a simple model seemed reasonable to

apply, and this model provided great insight into regeneration planning on the Refuge. 

Under any scenario of hardwood encroachment under this model, optimal pine harvest

amount (252-901 ha) for an old-growth pine objective far exceeded the average amount

(54 ha) that the Refuge is currently harvesting.  The model alternatives project greatly

different overstory composition trajectories through time.  Although it is not known

which of these alternatives most closely approximates truth, the facts that the alternatives

are so different, that they imply very different optimal harvest decisions, and that these

decisions all exceed current regeneration quantities provide some indication that the

current rate of regeneration is, in fact, suboptimal for providing woodpecker nesting

habitat.

The divergent approaches that I took in the modeling of woodpecker and wood

thrush population responses suggest three levels in the hierarchy of structural uncertainty:

uncertainty with regard to the class of model (e.g., population dynamics vs. habitat-

correlative), uncertainty in the mathematical structure of a model, and parametric

uncertainty.  However, these distinctions are important only to the extent that they

indicate differential responses to management (Walters 1986).  I was not able to easily
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explore alternative model classes in my work, in part because I lacked the critical data

needed to build and evaluate such models.

As stated earlier, information about the relative merit of each alternative model is

not available without a concurrent program of systematic Refuge monitoring.  With the

exception of woodpecker monitoring, no feature of the forest is currently measured that

allows the updating of model information, at least not at the resolution or in the metric

consistent with model output.  Therefore, the Refuge would benefit from a program of

monitoring (see above) that informs managers about the results of their actions.

I combined the separate forest dynamics, woodpecker, and wood thrush

component models into twelve distinct simulation models, and I used the 2001

woodpecker data to infer quality of each combination.  A better approach would be to

evaluate the components separately using corresponding sets of data.  For example,

spatial data collected on forest overstory composition could inform the manager on the

relative quality of each of the three forest submodels.  Furthermore, despite the fact that

the monitoring program I propose only samples the overstory in one-eighth

(approximately) of the compartments each year, the revolving protocol for sampling

would nevertheless provide for the annual updating of forest models.

DECISION ALTERNATIVES

Especially challenging was establishing and modeling the set of decision

alternatives.  Decisions had to permit spatial flexibility, yet belong to a sufficiently

limited set to facilitate simulation over a long time frame.  Decisions had to be

operationally feasible such that all actions called for in a simulation year could actually



141

be implemented by Refuge managers.  Decisions also had to conform to restrictions

imposed by legal mandates and species recovery plans.

The set of decision alternatives I used may have been too narrow to meaningfully

address uncertainty.  The few combinations of compartment permutation and burn

periodicity that I selected were only a fraction of the range of available decision

alternatives.  Furthermore, this total range of alternatives was itself quite narrow because

I restricted my focus to compartment permutation alternatives of the type that is currently

employed by the Refuge.  In addition, I enforced a rule-based set of stand-level actions in

conformance with guidelines in red-cockaded woodpecker recovery plan documents

(U.S. Fish and Wildlife Service 1998, 2000).

Part of the difficulty in establishing decision options was due to the range of

spatial and temporal scales of the actions and the inconsistency of these scales with

resource measurement scales.  For example, decisions on regeneration and thinning are

made both at the management group (multi-compartment) and stand scales at eight-year

intervals.  After a compartment is treated, it is not reevaluated for further cutting

treatment (excluding treatments for insect damages and other localized disturbances) for

eight years.  In contrast, woodpeckers are counted annually at the cluster scale and wood

thrushes are monitored at the compartment scale.  Thus information extracted from the

system is available at relatively fine scales of time (year) and space (compartment), but it

is unclear how to effect a mid-course correction in the management group rotation

sequence in response to the collected information.  One alternative is to simply reevaluate

the question of compartment visitation each year.  That is, a new optimal compartment

configuration is estimated and acted upon as if it will be in place for eight years.
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The analysis indicated that the woodpecker population was most responsive to a

particular schedule of compartment silvicultural treatments.  Perhaps by fixing this

schedule in the simulation model, other sets of decision alternatives could be considered

and explored more fully.  For example, given the high degree of habitat heterogeneity

and biotic diversity of Refuge, decision alternatives relating to type of silvicultural

system (e.g., even-aged versus uneven-aged management) or aggressiveness of hardwood

midstory reduction (e.g., dormant versus growing-season burning, mechanical removal,

or combinations of burning and mechanical removal) may be more appropriate avenues

of investigation than the ones I explored.

ADAPTIVE MANAGEMENT IN LANDSCAPE-LEVEL CONSERVATION PROBLEMS

My work attempted to investigate and demonstrate how principles of adaptive

management can be applied to conservation management in a landscape setting.  There

are clear advantages to using adaptive approaches in conservation management, though

there also exist many challenges in their application.

Adaptive management allows decision making to proceed in the data-poor

environments that often characterize conservation problems.  The key is the development

of alternative plausible system models that capture the breadth of system uncertainty. 

Each model admits a competing view on how populations respond to management, and

each implies a different optimal course of management.  Though data may be helpful in

constructing the models, they are not absolutely necessary.  Thus, with a robust set of 

decision models, where each model is developed conceptually rather than empirically, an

optimal course of management can be derived even in the absence of data.
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However, regardless of the availability of data for model development, adaptive

management requires a commitment to resource monitoring.  The collection of data on

the managed system is the means by which the competing models are given either greater

or less influence in future decisions.  Data should be collected on all resource

components for which competing models generate predictions.  For the Refuge case,

these components would be forest overstory composition, woodpecker cluster status, and

wood thrush abundance.

Controversy that arises due to uncertainty in the management of a resource can be

controlled and directed through adaptive management.  Because adaptive management

requires formal statements of management objectives and explicit models of system

response to management, disagreements over management objectives are decoupled from

uncertainties about responses.  Any stakeholder in the decision is eligible to submit a

system model that expresses their belief in the behavior of the system.  Monitoring data

are then used to arbitrate among the competing models.  Therefore, disagreements in the

objectives of management, which may be vigorous and may require painful negotiation

among parties, cannot be disguised in unwinnable arguments over whose version of

science and favored management policy is “right.”

Defining the objectives of conservation management is often not straightforward. 

I chose long-term abundances of two species as objectives in this study.  Whether or not

these objectives are appropriate for Refuge management is open to debate, but such

objectives are probably overly simplistic in some management settings.  In most

conservation settings, a broader diversity objective is likely to be favored, but diversity

objectives cannot be entertained without also making a commitment to a program of
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system monitoring.  Managers and policy makers face challenges in defining the future

states they would like to achieve, keeping these goals explicit, and assuring that these

goals do not change with each decision cycle.

Collaboration is practically a necessity for successful application of adaptive

management.  Conservation biologists and other qualified decision stakeholders may best

be able to summarize the scientific literature, as well as express their own perceptions,

convictions, and biases, in a set of competing models.  Resource managers are best suited

for taking the lead in developing the set of decision alternatives and in devising a

monitoring program.  Policy makers have an important role in collecting input from all

decision stakeholders and developing a clear statement of management objectives.  Team

members should be able to contribute skills in statistics, monitoring design, computer

science, human dimensions study, operations research, GIS and database architecture,

and population modeling.

Efforts to make management models and decision alternatives increasingly

realistic, for example, use of high spatial resolution, multiple stochastic elements, or

elaborate demographic structure, will be met by greater computational challenges in their

analysis.  Until substantial increases in computing power or innovations in computational

technique are realized, closed-loop, active adaptive optimization may be unavailable for

all but the most simplistically-formulated conservation problems.  Even so, simulation-

based approaches may compare favorably to bona fide optimization (Moore et al. 2000,

Conroy and Moore 2001; Appendix E).

Sets of competing decision models, monitoring programs for data feedback,

explicit statements of objectives, and interdisciplinary collaboration are elements not
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often found in the decision making toolboxes of many resource management agencies. 

Yet these tools are necessary for successful implementation of adaptive management.  If

adaptive management is to become reality in resource agencies, agencies must commit to

adopting such tools and to creating a genuine environment in which scientific uncertainty

is admitted and confronted.
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CHAPTER 7

CONCLUSION

My work demonstrated the application of adaptive management principles to a

problem in landscape management where the resources of interest are dynamic, sensitive

to the spatial distribution of management actions, and differentially responsive to a single

set of actions.  Each of the tools of adaptive management found use in my application: (1)

a set of competing, predictive system models, (2) an explicit statement of management

objectives, (3) a list of decision alternatives, (4) a program of monitoring responses to

management, and (5) assignment of credibility measures to each competing model and a

means of updating these measures through the confrontation of model predictions to

resource data.

I found that extensive use of fire and allocation of forest cutting actions (thinning

and regeneration) in a particular type of spatial sequence over time was most beneficial

for a composite measure of response by populations of red-cockaded woodpecker and

wood thrush.  This finding was mostly consistent over all model scenarios.  Thus, the

resolution of uncertainty with regard to the system models that I used would not be

profitable in terms of improved management performance.

For several reasons, however, these results should be considered provisional. 

First, the objectives I investigated, long-term abundances of active woodpecker clusters

and wood thrushes, may not best reflect a forest diversity response, if that is the true goal
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of Refuge management.  Second, most model parameters either were chosen subjectively

or were based on data collected off-site, therefore, applicability of the models in this

system are tentative until model parameters can be investigated for sensitivity or until

they can be estimated from data obtained at the Refuge.  Third, the greater influence of

the woodpecker response in the composite species response could have been an artifact

of my use of completely different forms of population model for the woodpecker and

wood thrush response.  Fourth, the set of decision alternatives was somewhat narrowly

defined by institutional, logistical, and computational constraints.  In particular, the

response to alternative silvicultural systems would be a worthwhile topic of study, but it

was not addressed in my work.

Finally, the Refuge lacks a program of systematic forest monitoring and data

storage.  Establishing such a program is a matter of high priority if management is to be

informative.  A forest monitoring program would supply a baseline of data on forest

diversity, and effects of management on diversity can be tracked.  A monitoring program

would provide information for improving decision models and for evaluating

performance among models.  The monitoring program would also preserve data on

management history performed throughout the Refuge so that the link between action and

response can be better understood.  My decision modeling led to specific

recommendations for the conduct of system monitoring at the Refuge.

Adaptive management serves as a means of making resource management more

transparent among managers, scientists, policy makers, and the public.  The explicit steps

in setting objectives, listing decision alternatives, and forecasting possible system

responses to each action bring openness and a measure of discipline to the decision-
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making process, a process that often involves multiple stakeholders.  Such a degree of

transparency in decision making is not customarily encountered in traditional approaches

to natural resource management.  Despite the many technical challenges involved in

implementing a model-based approach to decision making, certainly such an approach is

preferable to one in which a decision maker does not or cannot describe his beliefs and

personal biases about the effects of management on the system (i.e., the system is treated

as a “black box”), disagreeing stakeholders cannot express how their opinions differ

regarding system response to management, or in which the definition of a “successful”

management decision is left to the subjective judgment of the decision maker.  Adaptive

management provides a framework that exposes each of these elements to critical

examination and public discussion.

In the new environment of ecosystem management, natural resource agencies are

placing greater emphasis on managing for ecosystem-wide structure, services, and

processes and less emphasis on the return of single-resource commodities (Christensen et

al. 1996, Keiter 1998, Malone 2000).  Grumbine (1994) describes ecosystem

management as a participatory framework for the application of scientific knowledge to

the making of management decisions for diverse ecological and social objectives.  Thus,

adaptive management serves as a natural vehicle for achieving the goals of ecosystem

management (Grumbine 1994, Christensen et al. 1996, Jensen et al. 1996).  Predictions of

ecosystem response to management actions and stochastic events are only available

through system models.  Understanding of ecosystem processes is increased only through

the collection of data, and this increased understanding is expressed through improved

models.  Finally, avenues for participation by scientists, managers, and stakeholders
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occur throughout the steps of forming objectives, developing models, and monitoring the

system.  For these reasons, it is hard to imagine progress toward ecosystem goals in

conservation management without an adaptive approach to decision making.
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Table 1.  Parameters and parameter values used in Refuge management simulation
model.

Parameter Description Value
Basal area growth model and modifications (Bailey and Ware 1983)

THININDX Thinning type 0.6
B1 Age coefficient 2.81706
B2 Thinning coefficient -11935.2
B3 Site index coefficient 0.043493
AGE0 Model discontinuity point 8
BA0 Basal area for age<AGE0 0.46
BA_MAX Basal area max 35

Canopy closure model (Valverde and Silvertown 1997)
CCRATE Annual rate of canopy closure 0.79

Understory vegetation density model and modifications (Conroy et al. 1982)
V1 Intercept -1461.4
V2 Basal area coefficient 36554.6
V3 Canopy cover coefficient 21.4
V4 Slope position coefficient 100.0
V5 Canopy cover-slope position interaction -14.8
V6 Basal area-slope position interaction 13.8
BURNPARM1 Vegetation reduction 1 year post-burn 0.76
BURNPARM2 Vegetation reduction 2 years post-burn 0.87
BURNPARM3 Vegetation reduction 3 years post-burn 0.97

Regeneration patch selection parameters
WT_AREA Weight for area component of selection criterion 1
WT_DIST Weight for distance component of selection criterion 1
CUTLIMIT Patch size limit (ha) 10.1171

Thinning selection parameters
BA_THIN Residual basal area (m2/ha) 13.7741
BA_CEIL Ceiling basal area (m2/ha) 18.3655
THIN_AGE Min age eligible for thinning 16

800-m radius foraging habitat parameters
FH1_AGE Min stand age 40
FH1_BA1 Min basal area (m2/ha) 9.1827
FH1_BA2 Max basal area (m2/ha) 18.3655
FH1_AREA Min area of habitat in buffer (ha) 50.5857
OUT800_1 Portion of adjacent ONF site providing foraging habitat 0.5
OUT800_2 Portion of adjacent private site providing foraging habitat 0.2
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Parameter Description Value
Recruitment cluster placement

CLUSGROW Target growth rate of active clusters 0.10
STRMDIST Min distance (m) of cluster to stream 125
RC_AGE1 Nesting habitat min age requirement 1 40
RC_AMT1 Min proportion of cell RC_AGE1 or older 0.85
RC_AGE2 Nesting habitat min age requirement 2 60
RC_AMT2 Min proportion of cell RC_AGE2 or older 0.50
CLUS_D1 Min nearest-neighbor distance (m) to any cluster 402.336
CLUS_D2A Max desired distance (m) from any active cluster 1609.344
CLUS_D2B Max permissible distance (m) from any active cluster 3218.688
CLUS_INC Relaxation increment (m) for distance test 402.336

Hardwood encroachment parameters
BURNLIM Period (yrs) of no encroachment following burning 5
THINLIM Period (yrs) of no encroachment following thinning 5
HWD_P1 Annual avg rate of P1 pine loss to hardwood 0.0006
HWD_P2 Annual avg rate of P2 pine loss to hardwood 0.015
HWD_P3 Annual avg rate of P3 pine loss to hardwood 0.015
HWD_P4 Annual avg rate of P4 pine loss to hardwood 0.03
HWD_CV CV (%) for random encroachment rate 40

Forest disturbance parameters
DSTRB_MN Mean rate (area proportion) of disturbance 0.003394
DSTRB_VR Variance of disturbance proportion 0.0003572
DSTRB_HW Portion of upland hardwood regenerating as pine 0.25

Woodpecker cluster occupancy model and modifications (Loeb et al. 1992)
LOEBPARM1 Intercept for occupancy model 5.134
LOEBPARM2 Slope for occupancy model -0.45738
BA_ADJ1 Scale parameter for persistence adjustment 1.2
BA_ADJ2 Constant for persistence adjustment 8.26446
TBA Exponent for vegetation density conversion 0.66667
AVG_TVD Mean transformed vegetation density (kg/ha) in old stands 85.132063
AVG_MBA Weighted mean midstory basal area (m2/ha) 9.174073
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Parameter Description Value
Red-cockaded woodpecker productivity parameters

FLEDG_DIST Distribution of fledgling group size (Table 2)
FA_0 Intercept value for R function (ha) 75
SURV_FL Fledgling survival to adulthood 0.380
ZETA . value for alternative habitat-sensitive model 0.8
ALPHA " value for alternative habitat-sensitive model 2
A Scale parameter for recruitment isolation effect -0.69077
R0 Constant for recruitment isolation effect 0.080979
HEF_X X-coordinate (UTM) of approximate HEF center 250500
HEF_Y Y-coordinate (UTM) of approximate HEF center 3661000
HEF_PROD Annual recruitment size of HEF clusters 6

Wood thrush regression model parameters (variances and covariances not reported)
DB12A_1 Intercept for DB12A model 0.34823
DB12A_2 Time-since-burn slope for DB12A model 0.02332
DB12L_1 Intercept for DB12L model -0.59658
DB12L_2 Time-since-burn slope for DB12L model 0.03339
DB12L_3 Vegetation density slope for DB12L model 0.00015544
DH_1 Intercept for DH model 18.89173
DH_2 Basal area slope for DH model -0.45437
DH_3 Canopy closure slope for DH model -26.77392
DH_4 DB12A slope for DH model -1.82827
DH_5 Basal area-canopy closure interaction for DH model 0.55391
DP_1 Intercept for DP model -7.80291
DP_2 Basal area slope for DP model 0.09640
DP_3 DB12A slope for DP model -4.65806
DP_4 DB12L slope for DP model -14.80672
DP_5 Basal area-DB12L interaction for DP model 0.25183
DP_6 DB12A-DB12L interaction for DP model -5.99684
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Table 2.  Calculations of group size distributions per active cluster for nestlings (pn(x)), fledglings within nestling size class
(pf |n(y | x)), fledglings unconditional on nestling size class (pf(x)), and recruits into adulthood (pr(x)) of red-cockaded
woodpeckers on the Piedmont National Wildlife Refuge, 1990-2000.

Nestlings
(1990-2000)

Fledglings by nestling size classes (1990-1995) Size class
distributionsSize class Counts in fledgling size class y Conditional frequencies pf |n(y | x)

x n pn(x) 0 1 2 3 4 Total 0 1 2 3 4 pf(x) pr(x)
0 110 0.336 40 40 1 0.405 0.6272
1 23 0.070 0 13 13 0 1 0.115 0.2607
2 73 0.223 3 3 23 29 0.103 0.103 0.793 0.264 0.0977
3 90 0.275 5 3 11 26 45 0.111 0.067 0.244 0.578 0.192 0.0139
4 28 0.086 3 0 4 8 6 21 0.143 0 0.190 0.381 0.286 0.024 0.0005
5 2 0.006 1 0 1 0 0 2 0.500 0 0.500 0 0 0 0
6 1 0.003 0 1 0 0 0 1 0 1 0 0 0 0 0
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Table 3.  Estimated mean (x)) and standard error (SE) of wood thrush density (birds/ha), by year and overstory cover type, in surveyed
compartments of the Piedmont National Wildlife Refuge, 1998-1999.

Year
1998 1999

Overstory Cover Type Overstory Cover Type
Hardwood Pine Hardwood Pine

Compartment x) SE x) SE x) SE x) SE
12 0.0204 0.0065 0.0102 0.0046 0.0561 0.0120 0.0357 0.0095
16 0.0067 0.0039 0.0357 0.0089 0.0479 0.0157 0.0360 0.0132
23 0.0115 0.0056 0.0390 0.0120 0.0397 0.0099 0.0298 0.0086
24 0.0105 0.0053 0.0368 0.0098 0.0381 0.0114 0.0871 0.0193
25 0.0307 0.0074 0.0108 0.0044 0.0929 0.0235 0.0221 0.0103
27 0.0158 0.0064 0.0158 0.0064 0.0298 0.0105 0.0149 0.0074
31 0.0339 0.0102 0.0308 0.0097 0.1084 0.0231 0.0542 0.0163
33 0.0197 0.0070 0.0222 0.0074 0.0197 0.0070 0.0222 0.0074
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Table 4.  Elasticity values for forest overstory model, estimated for five model responses (proportions of forest in five cover types) at
each of three alternative settings (0.5×, 1.0×, 2.0×) of each model parameter.  Values of elasticity exceeding 0.20 in absolute
value appear in boldface for emphasis.

Model responsesa

P1 P2 P3 P4 UH
Parameter 0.5× 1.0× 2.0× 0.5× 1.0× 2.0× 0.5× 1.0× 2.0× 0.5× 1.0× 2.0× 0.5× 1.0× 2.0×
J21 -0.36 -0.45 -0.56 0.63 0.54 0.44 0.62 0.54 0.44 0.62 0.54 0.43 0.08 0.04 -0.02
J32 -0.14 -0.16 -0.12 -0.29 -0.40 -0.55 0.71 0.60 0.45 0.70 0.60 0.45 0.12 0.11 0.09
J43 0.02 0.03 -0.02 0.02 0.04 -0.01 -0.31 -0.44 -0.59 0.69 0.56 0.41 0.07 0.05 0.08
J14 0.03 0.04 0.06 0.03 0.04 0.06 0.03 0.04 0.06 -0.22 -0.35 -0.53 -0.03 -0.05 -0.07
:(e1) -0.05 -0.11 -0.23 -0.05 -0.11 -0.23 -0.05 -0.11 -0.23 -0.05 -0.10 -0.22 0.10 0.19 0.27
:(e2) 0.00 -0.10 -0.41 0.00 -0.11 -0.59 0.00 -0.11 -0.51 0.00 -0.11 -0.47 0.00 0.18 0.48
:(e3) -0.04 -0.36 -0.91 -0.04 -0.36 -0.91 -0.04 -0.43 -1.02 -0.05 -0.43 -1.04 0.09 0.62 0.67
:(e4) -0.03 -0.22 -0.34 -0.03 -0.21 -0.34 -0.03 -0.20 -0.33 -0.06 -0.54 -1.00 0.07 0.37 0.30
ve -0.08 -0.30 -1.01 -0.08 -0.30 -1.11 -0.09 -0.34 -1.17 -0.10 -0.42 -1.43 0.18 0.52 1.00
k -0.09 -0.11 -0.17 -0.09 -0.11 -0.17 -0.09 -0.10 -0.16 0.91 0.90 0.84 0.12 0.12 0.19
q 0.10 0.16 0.21 0.10 0.16 0.21 0.10 0.15 0.21 0.09 0.15 0.20 -0.13 -0.26 -0.46
:(c) 0.14 0.24 0.46 0.12 0.21 0.34 0.08 0.12 0.14 0.04 0.05 -0.01 -0.16 -0.34 -0.75
F2(c) 0.66 1.14 1.93 0.58 1.02 1.62 0.33 0.62 0.94 0.12 0.27 0.38 -0.96 -1.66 -2.64

a Model responses are proportions of forest overstory in P1 (pine, <16 years), P2 (pine, 16-40 years), P3 (pine, 40-80 years), P4 (pine,
$80 years), and UH (upland hardwood).
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Table 5.  Compartment permutation sequences selected for simulation experiment and
associated inter-compartment distance statistics.

Sequence
Group 1 2 3 4 5 6 7 8 Ca

1 5 13 4 9 9 13 8 11 1
17 19 9 13 22 17 15 17 8
21 26 16 17 24 27 19 23 13
28 32 22 23 27 31 23 25 24
32 34 27 27 33 33 27 33 32

2 15 4 3 1 5 1 3 2 9
24 17 12 12 13 3 14 12 12
29 21 23 20 17 6 24 20 21
31 25 33 33 28 20 30 31 25

3 3 8 7 7 20 18 7 1 10
6 11 14 18 30 23 10 8 27

20 24 19 22 32 28 16 24 30
25 27 26 31 34 30 29 30 33

4 1 14 1 3 3 4 6 4 6
2 18 5 10 10 9 9 15 14
7 22 20 16 16 16 21 26 23

10 31 30 24 21 22 26 32 29

5 4 7 2 5 2 12 2 3 4
13 10 10 6 7 24 11 10 7
19 12 18 30 11 25 18 27 18
27 16 24 34 31 32 33 29 22

6 8 1 6 11 4 5 4 9 3
11 2 21 14 8 7 12 18 5
14 9 25 19 23 10 28 19 15
26 15 29 26 25 19 32 28 20

7 9 3 8 4 15 2 1 7 11
12 5 13 21 18 8 25 13 17
23 6 17 25 26 15 31 16 26
33 29 32 32 29 34 34 22 34
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Sequence
Group 1 2 3 4 5 6 7 8 Ca

8 16 20 11 2 1 11 5 5 2
18 23 15 8 6 14 13 6 16
22 28 28 15 12 21 17 14 19
30 30 31 28 14 26 20 21 28
34 33 34 29 19 29 22 34 31

DBT (m)b 6989 7096 7732 7800 8092 8255 7276 7240 7489
rank (%)b 0.13 0.49 87.93 93.69 99.76 99.96 4.06 2.77 36.02
DWT (m)c 7175 6949 8601 8503 6953 7133 8651 8619 8118
rank (%)c 0.37 0.03 98.78 95.43 0.04 0.26 99.49 99.09 50.50

a Operational permutation sequence in current use by Piedmont National Wildlife Refuge.
b Average distance between compartments in successive years, and percent rank of

average distance.
c Average distance between compartments within years, and percent rank of average

distance.
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Table 6.  Split-plot analysis of variance for simulation outcomes, by model alternative, for 100-year total abundances of red-cockaded
woodpecker (RCW) active clusters, wood thrush (WOTH, doubly log-transformed), and composite species score.  Sources of
variation were compartment burn limit (BURN), levels of average successive-year inter-compartment distance (DBT), levels
of average within-year inter-compartment distance (DWT), and the DBT × DWT interaction.

Response Variable
RCW log-log(WOTH) Compositeb

Modela Source df MS P MS P MS P
M000 DBT 1 1386.11 0.104 0.030323 0.384 0.000050 0.990

DWT 1 9.11 0.873 0.017469 0.500 0.116488 0.565
DBT × DWT 1 1638.05 0.085 0.040881 0.320 0.845515 0.166
errorc 4 314.27 0.415 0.031771 0.451 0.296331 0.429
BURN 1 519064.20 <0.001 6.852933 <0.001 3.564908 0.008
errord 7 277.84 0.672 0.030602 0.259 0.271241 0.277
residual 304 397.01 0.023869 0.217485

M001 DBT 1 1562.03 0.128 0.000062 0.820 0.118466 0.501
DWT 1 50.40 0.748 0.000005 0.949 0.002732 0.916
DBT × DWT 1 1762.50 0.112 0.001823 0.257 0.003132 0.910
errorc 4 426.60 0.348 0.001045 0.515 0.217188 0.515
BURN 1 514483.00 <0.001 0.261219 <0.001 2.967860 0.010
errord 7 321.65 0.555 0.001169 0.211 0.242949 0.365
residual 304 383.09 0.000844 0.221641
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Response Variable
RCW log-log(WOTH) Compositeb

Modela Source df MS P MS P MS P
M010 DBT 1 2025.08 0.222 0.002556 0.650 0.363516 0.243

DWT 1 222.78 0.657 0.013562 0.322 0.197783 0.369
DBT × DWT 1 222.78 0.657 0.029340 0.172 0.335656 0.258
errorc 4 972.55 0.037 0.010644 0.782 0.193704 0.355
BURN 1 596764.88 <0.001 6.783955 <0.001 3.327772 0.002
errord 7 206.86 0.779 0.024629 0.327 0.148453 0.665
residual 304 362.30 0.021273 0.209723

M011 DBT 1 994.05 0.226 0.002353 0.103 0.956877 0.124
DWT 1 30.01 0.816 0.000024 0.842 0.015326 0.818
DBT × DWT 1 1224.61 0.188 0.001224 0.203 0.704320 0.171
errorc 4 486.71 0.432 0.000531 0.449 0.254287 0.411
BURN 1 561795.20 <0.001 0.242493 <0.001 3.016155 0.008
errord 7 448.21 0.312 0.000509 0.687 0.222910 0.488
residual 304 378.79 0.000745 0.241157
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Response Variable
RCW log-log(WOTH) Compositeb

Modela Source df MS P MS P MS P
M100 DBT 1 858.05 0.413 0.426130 0.184 1.288760 0.183

DWT 1 1891.51 0.247 0.334553 0.228 1.485318 0.159
DBT × DWT 1 238.05 0.656 0.027241 0.706 0.147768 0.615
errorc 4 1031.88 0.118 0.165689 0.424 0.498725 0.342
BURN 1 465735.20 <0.001 36.248289 <0.001 1.192793 0.116
errord 7 379.38 0.111 0.149696 0.009 0.370272 0.012
residual 304 224.69 0.054750 0.140197

M101 DBT 1 23.65 0.799 0.003960 0.067 0.902022 0.061
DWT 1 1197.38 0.124 0.000038 0.818 0.259079 0.239
DBT × DWT 1 178.50 0.495 0.000069 0.757 0.085051 0.473
errorc 4 317.93 0.529 0.000634 0.450 0.135772 0.821
BURN 1 499043.03 <0.001 0.151793 <0.001 4.534170 0.010
errord 7 367.48 0.064 0.000609 0.314 0.364130 0.077
residual 304 189.97 0.000516 0.196235
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Response Variable
RCW log-log(WOTH) Compositeb

Modela Source df MS P MS P MS P
M110 DBT 1 359.13 0.565 0.205997 0.185 0.600558 0.260

DWT 1 948.75 0.366 0.000455 0.944 0.118156 0.592
DBT × DWT 1 279.38 0.610 0.006527 0.790 0.010612 0.870
errorc 4 914.43 0.019 0.080446 0.579 0.349847 0.358
BURN 1 479647.88 <0.001 38.151555 <0.001 0.730445 0.144
errord 7 149.10 0.640 0.104905 0.063 0.269930 0.051
residual 304 202.21 0.054039 0.132932

M111 DBT 1 0.00 0.999 0.001443 0.437 0.406274 0.559
DWT 1 306.15 0.588 0.001415 0.441 0.166222 0.705
DBT × DWT 1 630.00 0.447 0.000001 0.983 0.091809 0.777
errorc 4 886.04 0.045 0.001939 0.009 1.001722 0.001
BURN 1 419847.75 <0.001 0.146190 <0.001 3.389662 <0.001
errord 7 204.40 0.399 0.000233 0.710 0.065808 0.901
residual 304 195.41 0.000356 0.163908
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Response Variable
RCW log-log(WOTH) Compositeb

Modela Source df MS P MS P MS P
M200 DBT 1 1252.15 0.024 0.000111 0.923 0.080885 0.699

DWT 1 1615.50 0.016 0.002984 0.622 0.593085 0.323
DBT × DWT 1 4039.90 0.003 0.003900 0.575 0.047887 0.765
errorc 4 99.27 0.993 0.010497 0.485 0.468409 0.785
BURN 1 550207.38 <0.001 0.002031 0.679 51.025950 <0.001
errord 7 1785.66 0.011 0.010935 0.053 1.095490 0.007
residual 304 672.46 0.005418 0.388344

M201 DBT 1 21.01 0.844 0.000563 0.652 0.134452 0.696
DWT 1 1155.20 0.195 0.000928 0.566 0.594762 0.426
DBT × DWT 1 1970.11 0.112 0.000502 0.670 0.600147 0.424
errorc 4 477.73 0.636 0.002377 0.221 0.759168 0.231
BURN 1 491097.80 <0.001 0.015397 0.010 34.025086 <0.001
errord 7 718.12 0.318 0.001271 0.484 0.418973 0.501
residual 304 612.53 0.001368 0.461672
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Response Variable
RCW log-log(WOTH) Compositeb

Modela Source df MS P MS P MS P
M210 DBT 1 51.20 0.767 0.003179 0.436 0.135456 0.507

DWT 1 1022.45 0.229 0.004406 0.366 0.687145 0.176
DBT × DWT 1 762.61 0.287 0.001227 0.619 0.000003 0.997
errorc 4 507.02 0.578 0.004245 0.166 0.255488 0.471
BURN 1 596160.45 <0.001 0.007547 0.086 47.424564 <0.001
errord 7 659.19 0.411 0.001899 0.876 0.257593 0.747
residual 304 641.34 0.004305 0.421786

M211 DBT 1 165.31 0.528 0.000485 0.484 0.026068 0.765
DWT 1 3604.61 0.032 0.006330 0.050 3.056891 0.026
DBT × DWT 1 3.61 0.924 0.000013 0.907 0.000773 0.959
errorc 4 347.16 0.916 0.000817 0.633 0.254870 0.840
BURN 1 455718.05 <0.001 0.017074 0.007 31.308462 <0.001
errord 7 1539.74 0.013 0.001219 0.452 0.741135 0.108
residual 304 596.14 0.001254 0.435578

a Alternative models are combinations of hypotheses regarding creation and persistence of old pine habitat (subscript 1; 0 = moderate
persistence, 1 = low persistence, 2 = high persistence), sensitivity of woodpecker productivity to amount of foraging habitat
(subscript 2; 0 = insensitive, 1 = sensitive), and linearity of wood thrush response to habitat conditions (subscript 3; 0 = linear,
1 = nonlinear).
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b Average of outcomes for total active red-cockaded woodpecker clusters and for log-log(wood thrush abundance), each component
scaled by its within-model standard deviation.

c Pooled variance among permutation sequence means within combinations of  DWT and DBT.  Low P for this source suggests
variance within DWT-DBT combinations was larger than variance within BURN-DWT-DBT combinations.  This source
serves as the error mean square for the main-plot effects (DBT and DWT) and interaction (DBT × DWT).

d Pooled variance among burn level means within combinations of BURN, DWT, and DBT.  Low P for this source suggests variance
within BURN-DWT-DBT combinations was larger than sequence replication variance.  This source serves as the error mean
square for the BURN split-plot effect.
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Table 7.  Mean simulation outcomes and standard error estimates of 100-year total
abundances of red-cockaded woodpecker (RCW) active clusters, wood thrush
(WOTH, doubly log-transformed), and composite species score, by simulation
model alternative and decision class level.  Decision classes were levels of
average successive-year inter-compartment distance (DBT, low vs. high), levels
of average within-year inter-compartment distance (DWT, low vs. high), and
compartment burn limits (BURN, 7 vs. 17).

RCW log-log(WOTH) Compositeb

Modela Effect Level x) SE x) SE x) SE
M000 DBT Low 126.97 1.401 2.243 0.0141 6.631 0.0430

High 122.81  2.262  6.630

DWT Low 125.06 1.401 2.260 0.0141 6.650 0.0430
High 124.72  2.245  6.612  

DBT Lo/Lo 124.88 1.982 2.239 0.0199 6.599 0.0609
  × DWT Lo/Hi 129.06  2.247  6.663  

Hi/Lo 125.24  2.281  6.701  
Hi/Hi 120.38  2.244  6.560  

BURN 7 84.61 1.318 2.399 0.0138 6.525 0.0412
17 165.16  2.106  6.736  

overall mean 124.89 0.951 2.253 0.0069 6.631 0.0184

M001 DBT Low 126.36 1.633 1.995 0.0026 25.888 0.0368
High 121.94  1.996  25.850  

DWT Low 124.55 1.633 1.995 0.0026 25.872 0.0368
High 123.76  1.995  25.866  

DBT Lo/Lo 124.41 2.309 1.997 0.0036 25.894 0.0521
  × DWT Lo/Hi 128.31  1.993  25.882  

Hi/Lo 124.69  1.993  25.850  
Hi/Hi 119.20  1.998  25.850  

BURN 7 84.06 1.418 2.024 0.0027 25.773 0.0390
17 164.25  1.967  25.966  

overall model
mean

124.15 0.780 1.995 0.0015 25.869 0.0204
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RCW log-log(WOTH) Compositeb

Modela Effect Level x) SE x) SE x) SE
M010 DBT Low 125.97 2.465 2.240 0.0082 6.841 0.0348

High 120.94  2.235  6.773  

DWT Low 122.62 2.465 2.231 0.0082 6.782 0.0348
High 124.29  2.244  6.832  

DBT Lo/Lo 124.30 3.487 2.224 0.0115 6.784 0.0492
  × DWT Lo/Hi 127.64  2.256  6.898  

Hi/Lo 120.94  2.238  6.781  
Hi/Hi 120.94  2.232  6.766  

BURN 7 80.27 1.137 2.383 0.0124 6.705 0.0305
17 166.64  2.092  6.909  

overall model
mean

123.45 0.588 2.238 0.0108 6.807 0.0264

M011 DBT Low 125.34 1.744 1.998 0.0018 27.495 0.0399
High 121.81  1.993  27.385  

DWT Low 123.88 1.744 1.996 0.0018 27.447 0.0399
High 123.27  1.995  27.433  

DBT Lo/Lo 123.69 2.467 1.997 0.0026 27.455 0.0564
  × DWT Lo/Hi 126.99  2.000  27.535  

Hi/Lo 124.08  1.995  27.439  
Hi/Hi 119.55  1.991  27.331  

BURN 7 81.68 1.674 2.023 0.0018 27.343 0.0373
17 165.48  1.968  27.537  

overall model
mean

123.58 1.302 1.995 0.0012 27.440 0.0265
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RCW log-log(WOTH) Compositeb

Modela Effect Level x) SE x) SE x) SE
M100 DBT Low 105.47 2.540 2.583 0.0322 4.365 0.0558

High 108.74  2.656  4.492  

DWT Low 104.68 2.540 2.587 0.0322 4.360 0.0558
High 109.54  2.651  4.496  

DBT Lo/Lo 102.18 3.591 2.541 0.0455 4.275 0.0790
  × DWT Lo/Hi 108.76  2.624  4.454  

Hi/Lo 107.18  2.632  4.445  
Hi/Hi 110.31  2.679  4.538  

BURN 7 68.96 1.540 2.956 0.0306 4.367 0.0481
17 145.26  2.282  4.489  

overall model
mean

107.11 1.001 2.619 0.0189 4.428 0.0264

M101 DBT Low 109.43 1.410 2.042 0.0020 33.989 0.0291
High 109.98  2.035  33.883  

DWT Low 107.77 1.410 2.039 0.0020 33.908 0.0291
High 111.64  2.039  33.965  

DBT Lo/Lo 106.75 1.994 2.042 0.0028 33.944 0.0412
  × DWT Lo/Hi 112.11  2.043  34.034  

Hi/Lo 108.79  2.036  33.871  
Hi/Hi 111.16  2.035  33.895  

BURN 7 70.21 1.515 2.061 0.0020 33.817 0.0477
17 149.19  2.017  34.055  

overall model
mean

109.70 1.037 2.039 0.0014 33.936 0.0332
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RCW log-log(WOTH) Compositeb

Modela Effect Level x) SE x) SE x) SE
M110 DBT Low 105.71 2.391 2.603 0.0224 4.409 0.0468

High 107.83  2.654  4.496  

DWT Low 105.04 2.391 2.630 0.0224 4.433 0.0468
High 108.49  2.628  4.472  

DBT Lo/Lo 103.05 3.381 2.609 0.0317 4.384 0.0661
  × DWT Lo/Hi 108.36  2.598  4.434  

Hi/Lo 107.04  2.651  4.482  
Hi/Hi 108.61  2.657  4.509  

BURN 7 68.05 0.965 2.974 0.0256 4.405 0.0411
17 145.48  2.283  4.500  

overall model
mean

106.77 0.656 2.629 0.0158 4.452 0.0253

M111 DBT Low 105.93 2.353 2.044 0.0035 35.604 0.0791
High 105.93  2.039  35.533  

DWT Low 106.91 2.353 2.040 0.0035 35.546 0.0791
High 104.95  2.044  35.591  

DBT Lo/Lo 108.31 3.328 2.042 0.0049 35.598 0.1119
  × DWT Lo/Hi 103.55  2.046  35.610  

Hi/Lo 105.50  2.037  35.493  
Hi/Hi 106.35  2.042  35.573  

BURN 7 69.71 1.130 2.063 0.0012 35.466 0.0203
17 142.15  2.020  35.672  

overall model
mean

105.93 0.578 2.042 0.0010 35.569 0.0158
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RCW log-log(WOTH) Compositeb

Modela Effect Level x) SE x) SE x) SE
M200 DBT Low 137.61 0.788 2.014 0.0081 14.898 0.0541

High 141.57  2.013  14.930  

DWT Low 137.34 0.788 2.010 0.0081 14.871 0.0541
High 141.84  2.016  14.957  

DBT Lo/Lo 131.81 1.114 2.014 0.0115 14.842 0.0765
  × DWT Lo/Hi 143.41  2.013  14.953  

Hi/Lo 142.88  2.006  14.899  
Hi/Hi 140.26  2.019  14.960  

BURN 7 98.13 3.341 2.016 0.0083 14.514 0.0827
17 181.06  2.011  15.313  

overall model
mean

139.59 2.240 2.013 0.0062 14.914 0.0578

M201 DBT Low 138.66 1.728 1.950 0.0039 27.578 0.0689
High 138.14  1.947  27.537  

DWT Low 136.50 1.728 1.947 0.0039 27.514 0.0689
High 140.30  1.950  27.601  

DBT Lo/Lo 134.28 2.444 1.947 0.0055 27.492 0.0974
  × DWT Lo/Hi 143.04  1.953  27.664  

Hi/Lo 138.73  1.946  27.537  
Hi/Hi 137.56  1.947  27.537  

BURN 7 99.23 2.119 1.955 0.0028 27.231 0.0512
17 177.58  1.941  27.884  

overall model
mean

138.40 1.367 1.948 0.0026 27.557 0.0454
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RCW log-log(WOTH) Compositeb

Modela Effect Level x) SE x) SE x) SE
M210 DBT Low 140.77 1.780 2.016 0.0052 17.047 0.0400

High 139.97  2.023  17.088  

DWT Low 138.58 1.780 2.016 0.0052 17.021 0.0400
High 142.16  2.023  17.114  

DBT Lo/Lo 137.44 2.517 2.015 0.0073 17.001 0.0565
  × DWT Lo/Hi 144.10  2.018  17.093  

Hi/Lo 139.73  2.017  17.042  
Hi/Hi 140.21  2.028  17.134  

BURN 7 97.21 2.030 2.024 0.0034 16.682 0.0401
17 183.53  2.015  17.452  

overall model
mean

140.37 1.688 2.019 0.0026 17.067 0.0302

M211 DBT Low 136.01 1.473 1.947 0.0023 28.202 0.0399
High 134.58  1.950  28.220  

DWT Low 131.94 1.473 1.944 0.0023 28.113 0.0399
High 138.65  1.953  28.309  

DBT Lo/Lo 132.55 2.083 1.943 0.0032 28.106 0.0564
  × DWT Lo/Hi 139.48  1.952  28.298  

Hi/Lo 131.33  1.945  28.121  
Hi/Hi 137.83  1.955  28.319  

BURN 7 97.56 3.102 1.956 0.0028 27.898 0.0681
17 173.03  1.941  28.524  

overall model
mean

135.29 2.158 1.949 0.0018 28.211 0.0455

a Alternative models are combinations of hypotheses regarding creation and persistence
of old pine habitat (subscript 1; 0 = moderate persistence, 1 = low persistence, 2 =
high persistence), sensitivity of woodpecker productivity to amount of foraging
habitat (subscript 2; 0 = insensitive, 1 = sensitive), and linearity of wood thrush
response to habitat conditions (subscript 3; 0 = linear, 1 = nonlinear).

b Average of outcomes for total active red-cockaded woodpecker clusters and for log-
log(wood thrush abundance), each component scaled by its within-model standard
deviation.
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Table 8.  Mean simulation outcomes and ranks, by simulation model alternative and averaged over all models, of 100-year total
abundance of red-cockaded woodpecker active clusters.  Outcomes were averaged over both permutation sequences within a
decision class.  Decision classes were combinations of compartment burn limits (BURN, 7 vs. 17), levels of average
successive-year inter-compartment distance (DBT, Low vs. High), and levels of average within-year inter-compartment
distance (DWT, Low vs. High).  Estimates of standard error were based on between-sequence variation within decision
classes.  Means for operational PNWR permutation sequences (DBT = “C”, DWT = “C”) are also presented and ranked.

Modela

M000 M001 M010 M011

BURN DBT DWT x) rank x) rank x) rank x) rank (continued)
7 L L 86.30 7 81.63 8 80.18 7 82.85 8

L H 87.08 6 86.70 6 82.18 6 82.20 9
H L 83.55 8 86.58 7 80.18 7 83.78 7
H H 81.53 9 81.33 9 78.55 9 77.88 10
C C 81.25 10 79.35 10 78.15 10 88.05 6

17 L L 163.45 4 167.20 2 168.43 2 164.53 3
L H 171.05 1 169.93 1 173.10 1 171.78 1
H L 166.93 3 162.80 4 161.70 4 164.38 4
H H 159.23 5 157.08 5 163.33 3 161.23 5
C C 168.20 2 164.25 3 159.40 5 164.70 2

SE for means 2.689 2.206 1.662 3.684
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Modela

M100 M101 M110 M111

BURN DBT DWT x) rank x) rank x) rank x) rank (continued)
7 L L 62.03 10 66.33 9 64.05 9 69.15 8

L H 69.35 8 71.68 7 67.95 8 67.85 9
H L 72.43 6 72.63 6 70.10 6 71.08 6
H H 72.03 7 70.23 8 70.10 6 70.75 7
C C 63.70 9 64.75 10 62.75 10 64.10 10

17 L L 142.33 3 147.18 4 142.05 5 147.48 1
L H 148.18 2 152.55 1 148.78 1 139.25 5
H L 141.93 4 144.95 5 143.98 4 139.93 4
H H 148.60 1 152.10 2 147.13 2 141.95 3
C C 137.80 5 149.00 3 145.20 3 142.15 2

SE for means 2.830 2.934 1.855 1.636
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Modela Model
averageM200 M201 M210 M211

BURN DBT DWT x) rank x) rank x) rank x) rank x) rank
7 L L 89.25 10 96.25 9 93.58 9 89.30 9 80.07 9

L H 95.80 8 99.05 8 99.63 6 100.20 7 84.14 7
H L 107.35 6 100.45 7 99.55 7 95.98 8 85.30 6
H H 100.10 7 101.15 6 96.08 8 104.75 6 83.70 8
C C 90.40 9 85.95 10 85.30 10 88.65 10 77.70 10

17 L L 174.38 5 172.30 4 181.30 4 175.80 3 162.20 3
L H 191.03 1 187.03 1 188.58 1 178.75 1 168.33 1
H L 178.40 4 177.00 2 179.90 5 166.68 5 160.71 5
H H 180.43 3 173.98 3 184.35 3 170.90 4 161.69 4
C C 184.60 2 169.15 5 186.80 2 176.85 2 162.34 2

SE for means 6.335 3.867 4.774 6.105

a Alternative models are combinations of hypotheses regarding creation and persistence of old pine habitat (subscript 1; 0 = moderate
persistence, 1 = low persistence, 2 = high persistence), sensitivity of woodpecker productivity to amount of foraging habitat
(subscript 2; 0 = insensitive, 1 = sensitive), and linearity of wood thrush response to habitat conditions (subscript 3; 0 = linear,
1 = nonlinear).
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Table 9.  Mean simulation outcomes and ranks, by simulation model alternative and averaged over all models, of 100-year total
abundances of wood thrush (doubly log-transformed).  Outcomes were averaged over both permutation sequences within a
decision class.  Decision classes were combinations of compartment burn limits (BURN, 7 vs. 17), levels of average
successive-year inter-compartment distance (DBT, Low vs. High), and levels of average within-year inter-compartment
distance (DWT, Low vs. High).  Estimates of standard error were based on between-sequence variation within decision
classes.  Means for operational PNWR permutation sequences (DBT = “C”, DWT = “C”) are also presented and ranked.

Modela

M000 M001 M010 M011

BURN DBT DWT x) rank x) rank x) rank x) rank (continued)
7 L L 2.397 3 2.029 1 2.372 3 2.026 2

L H 2.374 5 2.014 5 2.403 1 2.025 3
H L 2.405 2 2.024 4 2.370 4 2.025 4
H H 2.420 1 2.029 2 2.388 2 2.016 5
C C 2.397 4 2.027 3 2.357 5 2.027 1

17 L L 2.080 8 1.965 9 2.077 8 1.967 8
L H 2.120 7 1.971 6 2.110 6 1.974 6
H L 2.157 6 1.963 10 2.105 7 1.965 10
H H 2.067 9 1.968 8 2.075 9 1.965 9
C C 2.042 10 1.970 7 2.073 10 1.972 7

SE for means 0.0194 0.0043 0.0305 0.0034
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Modela

M100 M101 M110 M111

BURN DBT DWT x) rank x) rank x) rank x) rank (continued)
7 L L 2.811 5 2.062 2 2.960 3 2.064 3

L H 2.951 4 2.063 1 2.885 4 2.067 1
H L 3.011 3 2.061 3 3.037 1 2.057 5
H H 3.049 1 2.056 5 3.014 2 2.064 2
C C 3.015 2 2.057 4 2.829 5 2.059 4

17 L L 2.271 8 2.021 7 2.258 9 2.020 7
L H 2.297 7 2.023 6 2.310 6 2.025 6
H L 2.254 10 2.010 10 2.265 8 2.018 9
H H 2.308 6 2.015 8 2.300 7 2.019 8
C C 2.270 9 2.014 9 2.258 10 2.003 10

SE for means 0.0535 0.0040 0.0447 0.0027
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Modela Model
averageM200 M201 M210 M211

BURN DBT DWT x) rank x) rank x) rank x) rank x) rank
7 L L 2.007 8 1.953 5 2.021 6 1.946 4 2.221 5

L H 2.007 7 1.960 1 2.022 5 1.959 2 2.228 3
H L 2.021 3 1.955 2 2.027 3 1.951 3 2.245 2
H H 2.027 1 1.954 3 2.027 2 1.968 1 2.251 1
C C 2.014 5 1.953 4 2.013 8 1.936 10 2.224 4

17 L L 2.021 2 1.940 8 2.008 9 1.940 8 2.047 9
L H 2.019 4 1.946 6 2.014 7 1.944 5 2.063 6
H L 1.991 10 1.938 10 2.007 10 1.939 9 2.051 8
H H 2.011 6 1.941 7 2.029 1 1.941 7 2.053 7
C C 2.006 9 1.938 9 2.025 4 1.943 6 2.043 10

SE for means 0.0175 0.0074 0.0073 0.0051

a Alternative models are combinations of hypotheses regarding creation and persistence of old pine habitat (subscript 1; 0 = moderate
persistence, 1 = low persistence, 2 = high persistence), sensitivity of woodpecker productivity to amount of foraging habitat
(subscript 2; 0 = insensitive, 1 = sensitive), and linearity of wood thrush response to habitat conditions (subscript 3; 0 = linear,
1 = nonlinear).
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Table 10.  Mean simulation outcomes and ranks, by simulation model alternative and averaged over all models, of 100-year total
values of composite species averagea.  Outcomes were averaged over both permutation sequences within a decision class. 
Decision classes were combinations of compartment burn limits (BURN, 7 vs. 17), levels of average successive-year inter-
compartment distance (DBT, Low vs. High), and levels of average within-year inter-compartment distance (DWT, Low vs.
High).  Estimates of standard error were based on between-sequence variation within decision classes.  Means for operational
PNWR permutation sequences (DBT = “C”, DWT = “C”) are also presented and ranked.

Modelb

M000 M001 M010 M011

BURN DBT DWT x) rank x) rank x) rank x) rank (continued)
7 L L 6.540 6 25.810 6 6.676 8 27.397 7

L H 6.494 9 25.684 10 6.774 6 27.379 9
H L 6.527 8 25.796 8 6.672 9 27.391 8
H H 6.539 7 25.801 7 6.699 7 27.205 10
C C 6.484 10 25.764 9 6.618 10 27.469 5

17 L L 6.657 3 25.979 3 6.891 2 27.512 3
L H 6.833 2 26.080 1 7.023 1 27.690 1
H L 6.875 1 25.903 4 6.890 3 27.487 4
H H 6.580 5 25.899 5 6.833 4 27.458 6
C C 6.621 4 26.007 2 6.787 5 27.578 2

SE for means 0.0522 0.0578 0.0747 0.0749
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Modelb

M100 M101 M110 M111

BURN DBT DWT x) rank x) rank x) rank x) rank (continued)
7 L L 4.111 10 33.794 8 4.339 8 35.468 7

L H 4.367 9 33.879 6 4.296 9 35.512 5
H L 4.475 4 33.855 7 4.505 3 35.382 8
H H 4.516 3 33.740 9 4.478 4 35.500 6
C C 4.375 8 33.689 10 4.166 10 35.325 10

17 L L 4.440 5 34.095 2 4.429 7 35.728 1
L H 4.542 2 34.189 1 4.572 1 35.708 2
H L 4.415 6 33.887 5 4.460 6 35.605 4
H H 4.561 1 34.050 3 4.540 2 35.645 3
C C 4.384 7 33.997 4 4.467 5 35.378 9

SE for means 0.0748 0.0939 0.0715 0.0447
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Modelb Model
averageM200 M201 M210 M211

BURN DBT DWT x) rank x) rank x) rank x) rank x) rank
7 L L 14.368 10 27.170 9 16.622 9 27.672 9 19.164 9

L H 14.436 8 27.288 6 16.688 8 27.969 7 19.230 8
H L 14.642 6 27.239 7 16.724 6 27.816 8 19.252 7
H H 14.612 7 27.229 8 16.696 7 28.136 6 19.263 6
C C 14.426 9 27.065 10 16.479 10 27.532 10 19.116 10

17 L L 15.317 3 27.813 4 17.379 4 28.540 3 19.565 3
L H 15.470 1 28.041 1 17.499 3 28.628 1 19.690 1
H L 15.155 5 27.835 3 17.359 5 28.425 5 19.525 5
H H 15.309 4 27.844 2 17.573 1 28.503 4 19.566 2
C C 15.320 2 27.752 5 17.561 2 28.594 2 19.537 4

SE for means 0.1634 0.1284 0.0855 0.1288

a Average of outcomes for total active red-cockaded woodpecker clusters and for log-log(wood thrush abundance), each component
scaled by its within-model standard deviation.

b Alternative models are combinations of hypotheses regarding creation and persistence of old pine habitat (subscript 1; 0 = moderate
persistence, 1 = low persistence, 2 = high persistence), sensitivity of woodpecker productivity to amount of foraging habitat
(subscript 2; 0 = insensitive, 1 = sensitive), and linearity of wood thrush response to habitat conditions (subscript 3; 0 = linear,
1 = nonlinear).
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Table 11.  Abundance of red-cockaded woodpecker active clusters on Piedmont National
Wildlife Refuge in 2001, by Refuge compartment, and mean and range of average
predicted values of 2001 cluster abundance for twelve alternative forest
simulation models.

Average Predicted Abundance
Compartment Survey x) range

1 0 0.000 0.000 - 0.000
2 6 5.976 5.953 - 5.994
3 5 4.980 4.962 - 4.994
4 1 0.995 0.990 - 0.999
5 0 0.000 0.000 - 0.000
6 2 1.993 1.985 - 1.999
7 1 1.986 1.974 - 1.994
8 2 1.980 1.975 - 1.987
9 0 1.948 1.935 - 1.963
10 2 1.065 1.042 - 1.082
11 0 0.000 0.000 - 0.000
12 0 0.000 0.000 - 0.000
13 0 0.961 0.951 - 0.968
14 2 2.860 2.824 - 2.885
15 2 1.985 1.972 - 1.993
16 2 2.365 2.346 - 2.380
17 1 0.980 0.970 - 0.990
18 0 0.000 0.000 - 0.000
19 2 1.992 1.978 - 1.998
20 0 0.000 0.000 - 0.000
21 3 1.859 1.838 - 1.894
22 3 2.988 2.975 - 2.997
23 1 0.996 0.991 - 0.999
24 4 1.536 1.504 - 1.554
25 0 0.886 0.868 - 0.912
26 0 0.000 0.000 - 0.000
27 0 0.000 0.000 - 0.000
28 0 0.634 0.613 - 0.671
29 0 0.388 0.354 - 0.409
30 0 0.425 0.395 - 0.446
31 0 0.000 0.000 - 0.000
32 0 0.000 0.000 - 0.000
33 0 0.000 0.000 - 0.000
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Average Predicted Abundance
Compartment Survey x) range

34 0 0.994 0.989 - 1.000
Total 39 42.772 42.567 - 42.926
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Table 12.  Likelihood values (L) and posterior probabilities (p1), conditional on year
2001 observed abundances of active woodpecker clusters and prior probabilities
(p0), for alternative forest and bird simulation models.

Mode
l

p0 L p1

M000 0.0833 8.74 × 10-14 0.0808
M001 0.0833 8.87 × 10-14 0.0820
M010 0.0833 9.17 × 10-14 0.0848
M011 0.0833 9.15 × 10-14 0.0846
M100 0.0833 8.34 × 10-14 0.0771
M101 0.0833 9.47 × 10-14 0.0876
M110 0.0833 9.28 × 10-14 0.0858
M111 0.0833 9.69 × 10-14 0.0896
M200 0.0833 9.00 × 10-14 0.0832
M201 0.0833 8.66 × 10-14 0.0801
M210 0.0833 8.88 × 10-14 0.0821
M211 0.0833 8.90 × 10-14 0.0823
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Figure 1.  Uncertainty in resource response implies an unknown degree of trade-off
among multiple resource objectives.  Hypothetical responses by two bird species to a
management action are displayed, but response by one species is uncertain and two
alternatives for its response are represented by dashed lines.  If the objective of
management is to maximize a composite response of the two species, then the optimal
action under each uncertain alternative is indicated by a shaded arrow.  If the true
response by the bird species is alternative A, then management trade-off between the two
species is slight, as responses by both bird populations at arrow A are near their maxima. 
However, if the true response is alternative B, then management trade-off is more severe.
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Figure 2.  Diagram of a dynamic decision making process.  The resource state, X, is
advanced from time t to time t+1 through a management decision, D, made at time t. 
Each decision in the decision set generates a reward, and the value of the reward, u, is
determined by a model.  The model also provides a prediction X* of the state of the
system at time t+1.  The decision cycle then repeats at time t+1.
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Figure 3.  Structural uncertainty in decision making implies a choice among multiple,
plausible system models.  Selection of the optimal decision and the forecast of the future
system state depends upon the model in which the decision maker places his belief.
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Figure 4.  Cycle of decision making, monitoring, and information updating that
characterizes adaptive management.  Given the resource state X at time t and information
regarding the relative degree of credibility in each model at time t, a single best decision
is made that drives the system to a new state at time t+1.  Following the decision, the
system is observed at time t+1, and the observation is compared to predictions of system
state, X*, generated by each alternative model.  Through application of Bayes’ Rule, these
comparisons update the information state and thus the degree of credibility allocated to
each model at time t+1, at which time the process is repeated.
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Figure 5.  Piedmont National Wildlife Refuge, Georgia, USA, and southern extent of Piedmont
physiographic province (shaded).
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Figure 6.  Management group assignments of Piedmont National Wildlife Refuge
compartments.
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Figure 7.  Burn frequency 1991-2000 for Piedmont National Wildlife Refuge.  Hexagons
containing a red-cockaded woodpecker cluster in year 2000 are indicated.
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Figure 8.  Forest stands, compartments, roads, streams, and red-cockaded woodpecker
cluster locations displayed as GIS themes for the Piedmont National Wildlife Refuge.
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Figure 9.  Predicted site index (base year 50) for Piedmont National Wildlife Refuge.
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Figure 10.  Time since last thinning in year 2000 for Piedmont National Wildlife Refuge. 
Hexagons containing a red-cockaded woodpecker cluster are indicated.
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Figure 11.  Sequence of management decisions, management actions, forest responses,
and bird population responses portrayed in Refuge management simulation model.
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Figure 12.  Transitions among cover types of forest overstory model, displayed for
successive processes within a single time step.
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Figure 13.  Total single-step transition probabilities between forest cover types in forest
overstory model.
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Figure 14.  Model of Loeb et al. (1992) for unconditional probability of red-cockaded
woodpecker cluster occupancy as a function of midstory basal area (solid line), and an
alternative model representing probability of persistence conditional on cluster occupation
(dashed line).  Models were most distinct near 13.8 m2/ha (60 ft2/ac, vertical reference line),
where approximate unconditional and conditional probabilities were 0.20 and 0.80,
respectively.



212

Midstory Basal Area (m2/ha)
0 5 10 15 20 25

Pr
ob

ab
ilit

y

0.0

0.2

0.4

0.6

0.8

1.0

10

8

6

4

2

Figure 15.  Model of Loeb et al. (1992) for unconditional probability of red-cockaded
woodpecker cluster occupancy as a function of midstory basal area (heavy solid line), and
an alternative model reflecting probability of inactive cluster settlement displayed at
different levels of cluster reproductive isolation.
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Figure 16.  Alternative models of red-cockaded woodpecker fledglings per active
cluster (A) and fledgling survival (B).  Models proposed that responses were either
insensitive (solid line) or sensitive (dashed line) to amount of foraging-quality
habitat.



214

Model Alternative
P2 P3 P4 P2 P3 P4 P2 P3 P4

Pe
rc

en
t o

f A
ct

io
ns

0

20

40

60

80

100
F1 F2F0

Figure 17.  Sensitivity of optimal decision policy to parameterization of overstory
transition model.  Distributions of three types of decision actions, amount of regeneration
cutting in P2, P3, and P4 stand classes, are displayed for each of the three model
alternatives: original model (F0), model of low transition into P4 (F1), and model of high
transmission into P4 (F2).  The eight decision actions, a series of regeneration quantities
0.00, 0.02, ..., 0.14, are expressed in order by progressive light-to-dark shading.
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Figure 18.  Red-cockaded woodpecker (A) and wood thrush (B)
population responses in twenty replicate runs of the spatially-explicit
forest management simulation model.  Results are displayed for model
M000 in which overstory transition into the old-growth class (P4) was
moderate, woodpecker productivity was insensitive to foraging habitat,
and wood thrush density was linearly related to habitat measures. 
Management decisions are simulated under the current Refuge
compartment permutation sequence and under a low regime of burning
(seven compartments burned annually).
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Appendix C.1.  Read Grid Data.SAS.  SAS program reads and merges DEM grid-based ASCII data files exported from ArcView. 
Files merged are slope, aspect, curvature, slope position, and the DEM.  Output is saved as the SAS file PNWRGRID.

** READ GRID DATA.SAS **;

** Libname for permanent SAS data file of grid information **;
libname out 'c:\giscov\dem2';

** Location of ASCII export file of elevation values **;
filename in1 'c:\giscov\dem2\refuge_dem.asc';

** Location of ASCII export file of slope values **;
filename in2 'c:\giscov\dem2\refuge_slope.asc';

** Location of ASCII export file of aspect values **;
filename in3 'c:\giscov\dem2\refuge_aspect.asc';

** Location of ASCII export file of curvature values **;
filename in4 'c:\giscov\dem2\refuge_curvature.asc';

** Location of ASCII export file of slope position values **;
filename in5 'c:\giscov\dem2\refuge_slope_pos.asc';

** Read elevation grid data.  Limit for COL variable must be the
   same as NCOLS= value in header of ASCII file **;
data a1;
  infile in1 lrecl=10000;
  if _n_=1 then input /////;
  row = _n_;
  do col=1 to 1179;
    input elev @;
    output;
  end;
  run;

proc univariate data=a1;  var row col elev;  run;

** Delete missing values **;
data a1;
  set a1;
  if elev^=-9999;
  run;

proc univariate data=a1;  var row col elev;  run;

** Read slope grid data.  Limit for COL variable must be the
   same as NCOLS= value in header of ASCII file **;
data a2;
  infile in2 lrecl=10000;
  if _n_=1 then input /////;
  row = _n_;
  do col=1 to 1179;
    input slope @;
    output;
  end;
  run;

proc univariate data=a2;  var row col slope;  run;

** Delete missing values **;
data a2;
  set a2;
  if slope^=-9999;
  run;

proc univariate data=a2;  var row col slope;  run;

** Read aspect grid data.  Limit for COL variable must be the
   same as NCOLS= value in header of ASCII file **;
** Read grid data;
data a3;
  infile in3 lrecl=10000;
  if _n_=1 then input /////;
  row = _n_;
  do col=1 to 1179;
    input aspect @;
    output;
  end;
  run;

proc univariate data=a3;  var row col aspect;  run;

** Delete missing values **;
data a3;
  set a3;
  if aspect^=-9999;
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  run;

proc univariate data=a3;  var row col aspect;  run;

** Read curvature grid data.  Limit for COL variable must be the
   same as NCOLS= value in header of ASCII file **;
data a4;
  infile in4 lrecl=10000;
  if _n_=1 then input /////;
  row = _n_;
  do col=1 to 1179;
    input curvatur @;
    output;
  end;
  run;

proc univariate data=a4;  var row col curvatur;  run;

** Delete missing values **;
data a4;
  set a4;
  if curvatur^=-9999;
  run;

proc univariate data=a4;  var row col curvatur;  run;

** Read slope position grid data.  Limit for COL variable must be the
   same as NCOLS= value in header of ASCII file **;
data a5;
  infile in5 lrecl=10000;
  if _n_=1 then input /////;
  row = _n_;
  do col=1 to 1179;
    input slopepos @;
    output;
  end;
  run;

proc univariate data=a5;  var row col slopepos;  run;

** Delete missing values **;
data a5;
  set a5;

  if slopepos^=-9999;
  run;

proc univariate data=a5;  var row col slopepos;  run;

** Create permanent dataset by combining A1-A5 **;
data out.pnwrgrid;
  merge a1 a2 a3 a4 a5;
  by row col;
  run;

** Univariate and frequency summaries of combined dataset **;
proc univariate data=out.pnwrgrid;
  var elev slope aspect curvatur slopepos;
  run;

proc freq data=out.pnwrgrid;
  table slopepos;
  run;
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Appendix C.2.  Analyze Grid Data.SAS.  Given a set of site index model parameters, SAS program estimates site index for every 30-m
exported grid cell and computes summaries of the index value for 1% groups of cells selected at random.  Cell values of site
index are exported to an ASCII file for later import into ArcView.

** ANALYZE GRID DATA.SAS **;

** Input site index prediction model parameters here **;
%let b0 = log(99/3.280839895);
%let b1 = 0.08;
%let b2 = 0.08;
%let b3 = -0.13;
%let b4 = -0.074;
%let b5 = 0;
%let s = 0.103;

** Set a seed value for random number generator (0 = clock-set) **;
%let ranseed = 868521597;

** Libname of SAS database with grid information **;
libname out 'c:\giscov\dem2';

** Location of an ASCII grid export file **;
filename in1 'c:\giscov\dem2\refuge_dem.asc';

** Location of ASCII output file of site index values **;
filename in2 'c:\giscov\dem2\refuge_si.asc';
filename in2 'c:\temp\refuge_si.asc';

** Apply site index model;
data a;
  set out.pnwrgrid;
  dev = &s*rannor(&ranseed);
  rannum = ranuni(&ranseed);
  ** GROUP is a number (1-100) that represents a 1% sampling group
        of all pixels in dataset **;
  group = ceil(rannum*100);
  rads = aspect*arcos(0)/180;
  slope = slope/100;
  pred = &b0 + &b1*slope*cos(rads) + &b2*slope*sin(rads) + &b3*slope
             + &b4*(slopepos-1) + &b5*(slopepos-1)**2 + dev;
  si = exp(pred)*3.280839895;
  if slopepos=1 then bottom = 1;
  else bottom = 0;

  run;

proc univariate data=a;
  var si;
  run;

** Statistics for site index by GROUP number **;
title1 "Parameter set (&b0, &b1, &b2, &b3, &b4, &b5, &s)";
proc means noprint data=a n mean std min max;
  class group bottom;
  var si;
  output out=b n=n_si mean=mean_si std=std_si min=min_si max=max_si;
  run;

proc sort data=b (where=(_type_=3)) out=b1;  by bottom group;  run;

proc print data=b1;
  by bottom;
  var group n_si mean_si std_si min_si max_si;
  run;

** Area-wide (BOTTOM=.) and habitat-specific site index statistics **;
proc print data=b (where=(_type_<=1));
  var bottom n_si mean_si std_si min_si max_si;
  run;

** Means of GROUP-based statistics for site index **;
proc means data=b (where=(_type_=3)) mean nway;
  class bottom;
  var n_si mean_si std_si min_si max_si;
  run;

** Create a template for grid data export.
   Upper limit for COL has to be the same as the NCOLS value
   in the ASCII file.  **;
data a1;
  infile in1 lrecl=10000;
  if _n_=1 then input /////;
  row = _n_;
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  do col=1 to 1179;
    input elev @;
    output;
  end;
  run;

** Merge site index values data with grid data, then export grid.
   The header information that appears after the IF _N_=1 line should
   be copied from the ASCII file read above **;
data _null_;
  merge a1 a (keep=row col si);
  by row col;
  file in2 lrecl=20000;
  if si=. then si = -9999;
  if _n_=1 then put
     'ncols         1179' /
     'nrows         1406' /
     'xllcorner     231390.022207'  /
     'yllcorner     3640510.733316' /
     'cellsize      30'   /
     'NODATA_value  -9999';
  if ^last.row then put si @;
  else put si;
  run;
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Appendix C.3.  Hexagon Grid Create.SAS.  SAS program creates a text file of vertices for creation of a hexagon grid theme in
ArcInfo.

** Hexagon grid create.SAS ***;
** Computes coordinates of a RxC hexagon grid **;

** USER INPUT AREA *************************

  OUTDIR:  Specify name of directory where output file is to be written
  OUTFILE: Name of output file
  R:       Number of rows of hexagon grid
  C:       Number of columns of hexagon grid
  X0:      X-coordinate (longitude) of center of SW hexagon
  Y0:      Y-coordinate (latitude) of center of SW hexagon
  A:       Hexagon area (keep in same units as X0, Y0);

%let outdir = c:\refuge arm\mapping;
%let x0 = 237300;
%let y0 = 3653000;

** To calculate r and c, given map width X and height Y **
**   Calculate h = sqrt(a/(2*sqrt(3)))
**   Then c = ceil(X/(sqrt(3)*h)) + 1
**        r = ceil(Y/(2*h)) + 1        **;

** 20 acres **;
%let outfile = hex20.file;
%let r = 69;
%let c = 72;
%let a = 80937.12842;      ** (80937 m^2 = 20-acre hexagons) **;

** 10 acres **;
%let outfile = hex10.file;
%let r = 98;
%let c = 101;
%let a = 40468.56421;

** test **;
%let outfile = hextest.file;
%let r = 8;
%let c = 10;
%let a = 80937.12842;      ** (80937 m^2 = 20-acre hexagons) **;

********************************************;

filename outdat "&outdir";

data _null_;
  file outdat("&outfile") ls=140;
  r = &r;
  c = &c;
  x0 = &x0;
  y0 = &y0;
  a = &a;
  h = sqrt(a/(2*sqrt(3)));
  w = h*sqrt(3)/3;
  v = h*2*sqrt(3)/3;
  index = 0;
  x = x0;
  y = y0;
  do i=1 to r;
    do j=1 to c;
      index = index+1;
      x = x0 + (j-1)*(v+w);
      y = y0 + (i-1)*2*h + (mod(j,2)=0)*h;
      x1 = x-w;  y1 = y-h;
      x2 = x+w;  y2 = y-h;
      x3 = x+v;  y3 = y;
      x4 = x+w;  y4 = y+h;
      x5 = x-w;  y5 = y+h;
      x6 = x-v;  y6 = y;
*     put @1 index 4.0 i 2.0 j 2.0 (x1 y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y6) (10.1);
      put @1 index 5.0 @6 ',' @8 x1 11.3 @19 ',' @21 y1 11.3 @32 ',' /
                              @8 x2 11.3 @19 ',' @21 y2 11.3 @32 ',' /
                              @8 x3 11.3 @19 ',' @21 y3 11.3 @32 ',' /
                              @8 x4 11.3 @19 ',' @21 y4 11.3 @32 ',' /
                              @8 x5 11.3 @19 ',' @21 y5 11.3 @32 ',' /
                              @8 x6 11.3 @19 ',' @21 y6 11.3 @32 ',' /
                              @8 x1 11.3 @19 ',' @21 y1 11.3 @32 ',' / ' END';
    end;
  end;
  put 'END';
  run;
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Appendix C.4.  Hexagon ID Assign.SAS.  SAS program reads the database for the hexagon grid theme, and it adds a new identifier
field and coordinates of hexagon centers.

** Hexagon ID assign.SAS ***;
** Reads a hexagon attribute file from ArcView, attaches a new identifier,
    hexagon row and column indices, and hexagon center point coordinates   **;

** USER INPUT AREA *************************

  OUTDIR:  Specify name of directory where output file is to be written
  OUTFILE: Name of output file (DBF format)
  INFILE:  Name of input file (DBF format)
  DBF_ID:  Name of hexagon ID variable in input file
  R:       Number of rows of hexagon grid
  C:       Number of columns of hexagon grid
  X0:      X-coordinate (longitude) of center of SW hexagon
  Y0:      Y-coordinate (latitude) of center of SW hexagon
  A:       Hexagon area (keep in same units as X0, Y0);

** To calculate r and c, given map width X and height Y **
**   Calculate h = sqrt(a/(2*sqrt(3)))
**   Then c = ceil(X/(sqrt(3)*h)) + 1
**        r = ceil(Y/(2*h)) + 1        **;

/***
** 20 acres **;
%let r = 69;
%let c = 72;
%let a = 80937.12842;      ** (80937 m^2 = 20-acre hexagons) **;
%let x0 = 237300;
%let y0 = 3653000;
%let outdir = c:\refuge arm\mapping;
%let infile = hex20 (original).dbf;
%let outfile = hex20.dbf;
%let dbf_id = hex2_;
***/

** 10 acres **;
%let r = 98;
%let c = 101;
%let a = 40468.56421;      ** (40469 m^2 = 10-acre hexagons) **;
%let x0 = 237300;

%let y0 = 3653000;
%let outdir = c:\refuge arm\mapping;
%let infile = hex10 (original).dbf;
%let outfile = hex10.dbf;
%let dbf_id = hex3_;

/***
** test **;
%let r = 8;
%let c = 10;
%let a = 80937.12842;      ** (80937 m^2 = 20-acre hexagons) **;
%let x0 = 237300;
%let y0 = 3653000;
%let outdir = c:\refuge arm\mapping;
%let infile = hextest_bak.dbf;
%let outfile = hextest.dbf;
%let dbf_id = hex00_;
***/

********************************************;

libname out "&outdir";
filename indbf "&outdir\&infile";
filename outdbf "&outdir\&outfile";

data a (keep = hex_id row col x y);
  r = &r;
  c = &c;
  x0 = &x0;
  y0 = &y0;
  a = &a;
  h = sqrt(a/(2*sqrt(3)));
  w = h*sqrt(3)/3;
  v = h*2*sqrt(3)/3;
  hex_id = 0;
  x = x0;
  y = y0;
  do row=1 to r;
    do col=1 to c;
      hex_id = hex_id+1;
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      x = x0 + (col-1)*(v+w);
      y = y0 + (row-1)*2*h + (mod(col,2)=0)*h;
      output;
    end;
  end;
  run;

proc dbf db4=indbf out=b;  run;

data b (keep=area perimeter &dbf_id hex_id sortord);
  ** Mapping of original hexagon ID variable into new HEX_ID variable **
  ** Renumbers hexagons from SW corner to NE **;
  set b;
  ** Preserve the original record order of the input file **;
  sortord = _n_;
  r = &r;
  c = &c;
  even = (mod(c,2)=0);
  k = &dbf_id-1;
  l = mod(k,c);
  l = l + c*(l=0);
  l2 = 2*l;
  m1 = l2*(l2<=c);
  m2 = (l2-c-even)*(l2>c);
  n = m1+m2;
  p = floor((k-0.5)/c);
  q = r-1-p;
  hex_id = q*c+n;
  run;

proc sort data=b;  by hex_id;  run;

data a;
  merge b a;
  by hex_id;
  format x y 11.3;
  run;

proc print data=a;
  run;

proc sort data=a out=a (drop=sortord);  by sortord;  run;

proc dbf db4=outdbf data=a;  run;



224

Appendix C.5.  Hexagon Attributes.SAS.  SAS program merges several map themes, each intersected with the hexagon shape file, to
create the SAS database of PNWR forest attributes (PNWR_HEX) used in simulation modeling. This merged file is also saved
as the ArcView theme HEX10_HEXES.DBF.

** Hexagon Attributes.SAS ***;
** Creates SAS database file of hexagon-based habitat characteristics:
   (1) Assigns each hexagon to a PNWR compartment, based on majority-area rule.
   (2) Calculate total area, and predominant age and BA of each forest type
        within each hexagon.
   (3) Make hexagon areas consistent, and allocate pine habitat measures into
        two area classes of predominating and secondary cover types.
   (4) Merge hexagon file with hexagon coverages of (a) management history,
        (b) site index, (c) slope, (d) slope position, (e) stream length,
        (f) distances to streams and property boundaries, (g) land ownership
        status in 400, 800, 1600, and 3200-m buffers around hex centroids,
        and (h) year 2000 RCW population status.
   (5) Create permanent SAS database and print some tables.
***;

%let hexsize = 10;

*** Hexagons in ArcView are generally not of the target hexagon size.  Some
      hexagons will be smaller than the target size and others larger, but
      the weighted average of these areas equals the target size. ***;
*** These are areas of 10-acre interior hexagons created by ArcView
***   (10 acre = 40468.56421 m^2)  **;
%let int10 = area in (40435.875 40437.562 40437.563 40439.250 40482.676
                      40484.365 40486.055);
%let min10 = 40435.875;
%let max10 = 40486.055;
%let target10 = 40468.564;

*** These are areas of 20-acre interior hexagons created by ArcView
***   (20 acre = 80937.12842 m^2)  **;
%let int20 = area in (80881.125 80883.512 80885.898 80947.312 80947.313
                      80949.701 80952.090);
%let min20 = 80881.125;
%let max20 = 80952.090;
%let target20 = 80937.128;

%let int = int&hexsize;
%let minint = min&hexsize;

%let maxint = max&hexsize;
%let avgint = target&hexsize;

** USER INPUT AREA *************************

  OUTDIR:  Specify name of directory where output file is to be written
  INFILE1: Name of DBF file containing the intersected STAND and hexagon info
  INFILE2: Name of DBF file containing the intersected COMPARTMENT and hex info
  INFILE3: Name of DBF file containing the hexagon shapes
  INFILE4: Name of DBF file containing hexagon cell treatments
  INFILE5: Name of DBF file containing hexagon-based site index (ft) values
  INFILE6: Name of DBF file containing hexagon-based slope values
  INFILE7: Name of DBF file containing hexagon-based slope position values
  INFILE8: Name of DBF file containing hexagon-stream intersections
  INFILE9: Name of DBF file containing distance variables
  INFILE10: Name of DBF file containing 400-m buffer-ownership intersections
  INFILE11: Name of DBF file containing 800-m buffer-ownership intersections
  INFILE12: Name of DBF file containing 1600-m buffer-ownership intersections
  INFILE13: Name of DBF file containing 3200-m buffer-ownership intersections
  INFILE14: Name of DBF file containing year 2000 RCW cluster status
  OUTFILE: Name of output file (DBF format)
*******************************************;

%let outdir = d:\pnwrmap\hex&hexsize;
%let infile1 = hex&hexsize._stands.dbf;
%let infile2 = hex&hexsize._comps.dbf;
%let infile3 = hex&hexsize._hexes (original).dbf;
%let infile4 = hex&hexsize._fire.dbf;
%let infile5 = hex&hexsize._si.dbf;
%let infile6 = hex&hexsize._slope.dbf;
%let infile7 = hex&hexsize._position.dbf;
%let infile8 = stream_density.dbf;
%let infile9 = hex&hexsize._distances.dbf;
%let infile10 = hex&hexsize._b400_own.dbf;
%let infile11 = hex&hexsize._b800_own.dbf;
%let infile12 = hex&hexsize._b1600_own.dbf;
%let infile13 = hex&hexsize._b3200_own.dbf;
%let infile14 = rcw_hexes.dbf;
%let outfile = hex&hexsize._hexes.dbf;
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********************************************;

filename infile1 "&outdir\&infile1";
filename infile2 "&outdir\&infile2";
filename infile3 "&outdir\&infile3";
filename infile4 "&outdir\&infile4";
filename infile5 "&outdir\&infile5";
filename infile6 "&outdir\&infile6";
filename infile7 "&outdir\&infile7";
filename infile8 "&outdir\&infile8";
filename infile9 "&outdir\&infile9";
filename infile10 "&outdir\&infile10";
filename infile11 "&outdir\&infile11";
filename infile12 "&outdir\&infile12";
filename infile13 "&outdir\&infile13";
filename infile14 "&outdir\&infile14";
filename outdbf "&outdir\&outfile";
libname outdata "&outdir";

** Process the COMPARTMENT-hex intersection theme **
** Input variables:
**    COMPART  -- compartment number
**    SECTION  -- section of compartment
**    GROUP    -- PNWR management group
**    ACRES, AREA, PERIMETER -- usual measurement statistics
**    HEX_ID   -- ID value assigned to hexagon
**    X, Y     -- real coordinates of hexagon center
**    ROW, COL -- grid coordinates of hexagon  **;
proc dbf db4=infile2 out=a2;  run;

proc sort data=a2;  by hex_id descending area;  run;

/*****
proc summary data=a2 nway;
  class hex_id;
  var area;
  output out=b n=n;
  run;
proc univariate data=b;  var n;  id hex_id;  run;
*****/

** This step determines compartment membership within hexagons **;
data a2 (keep=hex_id c1-c5 dc1-dc5);
  set a2;
  by hex_id;
  retain c1-c5 dc1-dc5 . count 0;
  ** C1-C5 is compartment membership, DC1-DC5 is compartment area
     C1 and DC1 are ID and area of largest compartment member **;
  array comps[2,5] c1-c5 dc1-dc5;
  if first.hex_id then
    do;
      count = 1;
      do i=1 to 2;
        do j=2 to 5;
          comps[i,j] = .;
        end;
      end;
    end;
  else count = count+1;
  comps[1,count] = compart;
  comps[2,count] = area;
  if last.hex_id then output;
  run;

** Process the STAND-hex intersection theme **
** Input variables:
**    COMP     -- compartment number
**    SECTION  -- section of compartment
**    TRTYEAR  -- year of most recent compartment treatment
**    PREVYEAR -- year of 2nd most recent treatment
**    STAND    -- stand identifier (character)
**    STANDNUM -- number of stand within compartment and stand type
**    S_TYPE1  -- stand type (9 classes, character)
**    S_TYPE2  -- stand type (5 classes, character)
**    COVCLASS -- cover class for pine stands
**    P1YEAR   -- regeneration year of P1 stand
**    AGE, BA  -- age and basal area of pine stand, if known
**    ACRES, AREA, PERIMETER -- usual measurement statistics
**    HEX_ID   -- ID value assigned to hexagon
**    X, Y     -- real coordinates of hexagon center
**    ROW, COL -- grid coordinates of hexagon  **;
proc dbf db4=infile1 out=a1;  run;

proc sort data=a1;  by hex_id descending area;  run;
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** This step outputs a single record per hexagon.  The compartment composition
**   (C1-C5), compartment areas (DC1-DC5), and total stand type areas (D_HWB,
**   D_HWU, D_O, D_W, D_P1, D_P2, D_P3A, D_P3B, and D_P3C) within the hexagon
**   are output.  For pine stands, the age and BA of the largest stand in the
**   hexagon are also output (AGE_P1, AGE_P2, AGE_P3A, AGE_P3B, AGE_P3C, BA_P1,
**   BA_P2, BA_P3A, BA_P3B, BA_P3C), regardless of whether the hexagon
**   straddles a compartment boundary or is completely contained in a
**   compartment.  Also, the designation of most recent treatment year
**   (TRTYEAR) and 2nd most recent treatment year (PREVYEAR) associated with
**   the compartment comprising the majority of the hexagon (C1) are assigned
**   to the hexagon.                                                ****;
data a1 (keep=hex_id row col x y c1-c5 dc1-dc5 keepyr1 keepyr2
              d_hwb d_hwu d_o d_w d_p1 d_p2 d_p3a d_p3b d_p3c
              age_p1 age_p2 age_p3a age_p3b age_p3c
              ba_p1 ba_p2 ba_p3a ba_p3b ba_p3c
         rename=(keepyr1=trtyear keepyr2=prevyear));
  merge a2 a1;
  by hex_id;
  retain d_hwb d_hwu d_o d_w d_p1 d_p2 d_p3a d_p3b d_p3c keepyr1 keepyr2
         age_p1 age_p2 age_p3a age_p3b age_p3c
         ba_p1 ba_p2 ba_p3a ba_p3b ba_p3c;
  array habs[9] d_hwb d_hwu d_o d_w d_p1 d_p2 d_p3a d_p3b d_p3c;
  array habc[9] $ _temporary_ ('Hd-B' 'Hd-U' 'Open' 'Water' 'P1' 'P2'
                               'P3A' 'P3B' 'P3C');

  **  Age and BA of stands in hexagons split over compartment boundaries
  **    are assigned on the basis of the age and BA of the largest stand
  **    within the cell. **;
  array ages[5] age_p1 age_p2 age_p3a age_p3b age_p3c;
  array bas[5] ba_p1 ba_p2 ba_p3a ba_p3b ba_p3c;
  ** Replace missing AGE value in pine stands.  Values based on approx.
  **   size-age relationships in 1982 Habitat Management Plan (p. 85).;
  if age=-3 then
    do;
      if s_type1 = 'P2'  then age = 28;
      if s_type1 = 'P3A' then age = 64;
      if s_type1 = 'P3B' then age = 64;
      if s_type1 = 'P3C' then age = 64;
    end;
  ** Replace missing BA value in pine stands.  Values based roughly on
  **   BA values in measured stands.;
  if ba=-3 then
    do;

      if s_type1 = 'P2'  then ba = 70;
      if s_type1 = 'P3A' then ba = 85;
      if s_type1 = 'P3B' then ba = 70;
      if s_type1 = 'P3C' then ba = 55;
    end;
  ** For pine stands, set AGE = YEAR OF ESTABLISHMENT   **;
  if s_type1 = 'P1' then age = p1year;
  else if substr(s_type1,1,1)='P' then age = trtyear - age;
  ** Initialize area, age and BA vectors **;
  if first.hex_id then
    do;
      do i=1 to 9;
        habs[i] = 0;
      end;
      do i=1 to 5;
        ages[i] = .;
        bas[i] = .;
      end;
      keepyr = .;
    end;
  ** Augment type-specific area vector **;
  do i=1 to 9;
    if s_type1=habc[i] then habs[i]=habs[i]+area;
  end;
  ** Make sure that TRTYEAR is associated with the C1 variable **;
  if comp=c1 then
    do;
      keepyr1 = trtyear;
      keepyr2 = prevyear;
    end;
  ** Assign age and BA of the largest of each of the pine types within a
       hexagon to every stand in the hexagon.  That is, if 2 P3C stands are
       found within a hexagon, then assign age and BA for the larger stand to
       the smaller stand.  For hexagons contained entirely within a compartment,
       P2 and P3 stands already are set to consistent values of age and BA.
       For hexagons that straddle a compartment border, age and BA for a stand
       type are forced to be consistent among similar stands according to the
       age and BA of the largest of the stands.  P1 stands within a compartment
       may be of different ages--this step assures that, within a hexagon, P1
       stands are set to the same age.  **;
  do i=1 to 5;
    if s_type1=habc[i+4] then
      do;
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        if ages[i]=. then ages[i] = age;
        if bas[i]=. then bas[i] = ba;
      end;
  end;
  if last.hex_id then output;
  run;

** Read in the hex-only theme, save original sort order **;
proc dbf db4=infile3 out=b;  run;

data b;
  set b;
  sortord = _n_;
  run;

/**
** This FREQ can be run to check the distribution of areas on the hexagon
      theme (all interior hexagons should be of the same size, but are not) *;
proc freq data=b;
  tables area;
  run;
**/

proc sort data=b;  by hex_id;  run;

**  This step makes hexagon areas consistent (hexagons created by ARCView
**    vary slightly in area), with corresponding proportional adjustments to
**    areas of stands contained in each hexagon.  Also, pine stands are
**    aggregated from 5 classes into the two most dominant classes in the
**    hexagon.  Total pine area is allocated into these 2 classes in proportion
**    to the size of each class.;
data b (keep=hex_id sortord row col x y hexarea outside
             d_hwb d_hwu d_o d_w c1-c5 dc1-dc5 trtyear prevyear
               d_p1   d_p2   d_p3a   d_p3b   d_p3c
             agg_p1 agg_p2 agg_p3a agg_p3b agg_p3c harea1-harea5 hab1-hab5
             age_p1 age_p2 age_p3a age_p3b age_p3c
              ba_p1  ba_p2  ba_p3a  ba_p3b  ba_p3c);
  merge b a1;
  by hex_id;
  ** If one of the interior hexagons, amount of outside area=0 **;
  if (&&&int) then outside = 0;
  ** If not an interior hexagon, check if hexagon is intermediate in size

      between smallest and largest interior hexagons.  If it is, then let
      outside area be the difference in size from the largest hexagon **;
  else if &&&minint<area<&&&maxint then outside = &&&maxint - area;
  ** If it is not, let outside area be the difference in size from the
      target hexagon size **;
  else outside = &&&avgint - area;
  ** Store the target hexagon size in variable HEXAREA **;
  hexarea = &&&avgint;
  ** Adjust all habitat areas so that the hexagon sum is now
       HEXAREA - OUTSIDE (target hexagon size less outside area) **;
  array habs[9] d_hwb d_hwu d_o d_w d_p1 d_p2 d_p3a d_p3b d_p3c;
  do i=1 to 9;
    habs[i] = habs[i]*(hexarea-outside)/area;
  end;
  ** SORTAREA array stores the ordered pine class areas
     SORTHABS array stores the pine class indicators for the sorted list
     AGGHABS array stores aggregated pine class areas (2 aggregated classes)
     TEMPHABS is a temporary array  **;
  array sortarea[5] harea1-harea5;
  array sorthabs[5] hab1-hab5;
  array temphabs[5] tarea1-tarea5;
  array agghabs[5] agg_p1 agg_p2 agg_p3a agg_p3b agg_p3c;
  ** Initialize temporary and aggregation arrays **;
  do i=1 to 5;
    temphabs[i] = habs[i+4];
    agghabs[i] = 0;
  end;
  ** Determine rank order of pine class areas **;
  do i=1 to 5;
    maxi = -1;
    tindex = 0;
    do j=1 to 5;
      if temphabs[j]>=maxi then
        do;
          tindex = j;
          maxi = temphabs[j];
        end;
    end;
    sorthabs[i] = tindex;
    sortarea[i] = maxi;
    temphabs[tindex] = -100;
  end;
  ** Aggregate habitats only if any pine habitat exists in hexagon **;
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  if sortarea[1]>0 then
    do;
      p1 = sortarea[1]/(sortarea[1]+sortarea[2]);
      p2 = 1-p1;
      agghabs[hab1] = sortarea[1] + p1*(sortarea[3]+sortarea[4]+sortarea[5]);
      agghabs[hab2] = sortarea[2] + p2*(sortarea[3]+sortarea[4]+sortarea[5]);
    end;
  run;

** Read in the hexagon treatment theme **
** Input variables:
**    HEX_ID   -- ID value assigned to hexagon
**    ROW, COL -- grid coordinates of hexagon
**    OUTSIDE  -- difference between target and actual hexagon size
**    C1       -- compartment number
**    TRTYEAR  -- most recent compartment treatment year
**    B1991 - B2000  -- indicators of annual burns in hexagons
**    LAST     -- year of most recent burn in hexagon
**    SUM      -- total burns in hexagon 1991-2000
**    LASTTHIN -- indicator of thinning in last treatment cycle *;
proc dbf db4=infile4 out=a1;  run;

proc sort data=a1;  by hex_id;  run;

** Read in the hexagon site index theme **
** Input variables:
**    HEX_ID   -- ID value assigned to hexagon
**    COUNT    -- number of site index pixels in hexagon
**    AREA     -- hexagon area
**    MIN, MAX, RANGE, MEAN, STD, SUM
**             -- descriptive statistics of SI values in hexagon
**    VARIETY  -- number of unique SI values in hexagon
**    MAJORITY -- mode of SI values in hexagon (ties?)
**    MINORITY -- least-encountered SI value in hexagon (highest value of ties?)
**    MEDIAN   -- median of SI values in hexagon **;
proc dbf db4=infile5 out=a2;  run;

proc sort data=a2;  by hex_id;  run;

** Read in the hexagon slope theme **
** Input variables:
**    HEX_ID   -- ID value assigned to hexagon
**    COUNT    -- number of slope pixels in hexagon

**    AREA     -- hexagon area
**    MIN, MAX, RANGE, MEAN, STD, SUM
**             -- descriptive statistics of slope values in hexagon
**    VARIETY  -- number of unique slope values in hexagon
**    MAJ1     -- mode of slope values in hexagon (ties?)
**    MIN1     -- least-encountered slope value (highest value of ties?)
**    MED1     -- median of slope values in hexagon **;
proc dbf db4=infile6 out=a3;  run;

proc sort data=a3;  by hex_id;  run;

** Read in the hexagon slope position theme **
** Input variables:
**    HEX_ID   -- ID value assigned to hexagon
**    COUNT    -- number of slope position pixels in hexagon
**    AREA     -- hexagon area
**    MIN, MAX, RANGE, MEAN, STD, SUM
**             -- descriptive statistics of position values in hexagon
**    VARIETY  -- number of unique position values in hexagon
**    MAJORITY -- mode of position values in hexagon (ties?)
**    MINORITY -- least-encountered position value (highest value of ties?)
**    MEDIAN   -- median of position values in hexagon **;
proc dbf db4=infile7 out=a4;  run;

proc sort data=a4;  by hex_id;  run;

** Read in the hexagon-stream intersection theme **
** Important input variables:
**    HEX_ID   -- ID value assigned to hexagon
**    HYDRO_ID -- ID value of stream
**    LENGTH   -- length (m) of stream segment **;
proc dbf db4=infile8 out=a5;  run;

** Add length values over all streams within hexagon **;
proc summary data=a5 nway;
  class hex_id;
  var length;
  output out=a5 sum=s_dens;
  run;

** Read in the distances theme (distances from hexagon centroids) **
** Important input variables:
**    HEX_ID   -- ID value assigned to hexagon
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**    D_STREAM -- Distance to nearest stream feature
**    D_PNWR   -- Distance to PNWR border (=0 for centroids inside PNWR)
**    D_ONF    -- Distance to nearest Oconee NF border
**    D_P_IN   -- Distance to nearest private inholding
**    D_P_OUT  -- Distance to nearest surrounding private land  **;
proc dbf db4=infile9 out=a6 (drop=area);  run;

proc sort data=a6;  by hex_id;  run;

** Read in the land ownership layer intersected with 400-m circular buffers **
** Important input variables:
**    HEX_ID   -- ID value assigned to hexagon
**    OWNER    -- ownership status of polygon
**    AREA     -- area (m^2) of polygon  **;
proc dbf db4=infile10
         out=a7 (keep=hex_id ownership area rename=(ownership=owner));  run;

proc sort data=a7;  by hex_id owner;  run;

** Calculate ownership proportions in 400-m buffers **;
data a7 (drop=i owner area sumarea);
  set a7;
  by hex_id;
  retain b4_pnwr b4_onf b4_pin b4_pout sumarea;
  array own{4} b4_pnwr b4_onf b4_pin b4_pout;
  array ownclass{4} $ _temporary_ ('PNWR' 'ONF' 'Priv-In' 'Priv-Out');
  if first.hex_id then
    do i=1 to 4;
        own[i] = 0;
    end;
  do i=1 to 4;
    if ownclass[i]=owner then own[i] = area;
  end;
  if last.hex_id then
    do;
      sumarea = b4_pnwr+b4_onf+b4_pin+b4_pout;
      do i=1 to 4;
        own[i] = own[i]/sumarea;
      end;
      output;
    end;
  run;

** Read in the land ownership layer intersected with 800-m circular buffers **
** Important input variables:
**    HEX_ID   -- ID value assigned to hexagon
**    OWNER    -- ownership status of polygon
**    AREA     -- area (m^2) of polygon  **;
proc dbf db4=infile11
         out=a8 (keep=hex_id ownership area rename=(ownership=owner));  run;

proc sort data=a8;  by hex_id owner;  run;

** Calculate ownership proportions in 800-m buffers **;
data a8 (drop=i owner area sumarea);
  set a8;
  by hex_id;
  retain b8_pnwr b8_onf b8_pin b8_pout sumarea;
  array own{4} b8_pnwr b8_onf b8_pin b8_pout;
  array ownclass{4} $ _temporary_ ('PNWR' 'ONF' 'Priv-In' 'Priv-Out');
  if first.hex_id then
    do i=1 to 4;
        own[i] = 0;
    end;
  do i=1 to 4;
    if ownclass[i]=owner then own[i] = area;
  end;
  if last.hex_id then
    do;
      sumarea = b8_pnwr+b8_onf+b8_pin+b8_pout;
      do i=1 to 4;
        own[i] = own[i]/sumarea;
      end;
      output;
    end;
  run;

** Read in the land ownership layer intersected with 1600-m circular buffers **
** Important input variables:
**    HEX_ID   -- ID value assigned to hexagon
**    OWNER    -- ownership status of polygon
**    AREA     -- area (m^2) of polygon  **;
proc dbf db4=infile12
         out=a9 (keep=hex_id ownership area rename=(ownership=owner));  run;

proc sort data=a9;  by hex_id owner;  run;
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** Calculate ownership proportions in 1600-m buffers **;
data a9 (drop=i owner area sumarea);
  set a9;
  by hex_id;
  retain b16_pnwr b16_onf b16_pin b16_pout sumarea;
  array own{4} b16_pnwr b16_onf b16_pin b16_pout;
  array ownclass{4} $ _temporary_ ('PNWR' 'ONF' 'Priv-In' 'Priv-Out');
  if first.hex_id then
    do i=1 to 4;
        own[i] = 0;
    end;
  do i=1 to 4;
    if ownclass[i]=owner then own[i] = area;
  end;
  if last.hex_id then
    do;
      sumarea = b16_pnwr+b16_onf+b16_pin+b16_pout;
      do i=1 to 4;
        own[i] = own[i]/sumarea;
      end;
      output;
    end;
  run;

** Read in the land ownership layer intersected with 3200-m circular buffers **
** Important input variables:
**    HEX_ID   -- ID value assigned to hexagon
**    OWNER    -- ownership status of polygon
**    AREA     -- area (m^2) of polygon  **;
proc dbf db4=infile13
         out=a10 (keep=hex_id ownership area rename=(ownership=owner));  run;

proc sort data=a10;  by hex_id owner;  run;

** Calculate ownership proportions in 3200-m buffers **;
data a10 (drop=i owner area sumarea);
  set a10;
  by hex_id;
  retain b32_pnwr b32_onf b32_pin b32_pout sumarea;
  array own{4} b32_pnwr b32_onf b32_pin b32_pout;
  array ownclass{4} $ _temporary_ ('PNWR' 'ONF' 'Priv-In' 'Priv-Out');
  if first.hex_id then
    do i=1 to 4;

        own[i] = 0;
    end;
  do i=1 to 4;
    if ownclass[i]=owner then own[i] = area;
  end;
  if last.hex_id then
    do;
      sumarea = b32_pnwr+b32_onf+b32_pin+b32_pout;
      do i=1 to 4;
        own[i] = own[i]/sumarea;
      end;
      output;
    end;
  run;

** Read in the year 2000 RCW population status **
** Important input variables:
**    HEX_ID   -- ID value assigned to hexagon
**    RCW2000  -- Active/inactive status
**    CLUSTYPE -- Cluster type is active (A) or recruitment (R) **;
proc dbf db4=infile14 out=a11 (rename=(clus_type=clustype));  run;

proc sort data=a11;  by hex_id;  run;

**  This step merges the files of hexagon stand attributes, hexagon treatment
**    histories, and statistics on site index, slope, slope position,
**    stream length, distance, and ownership portions.  The pine stand
**    information is saved in two sets of variables representing the first
**    and second-dominating types.  **;
data b (keep=hex_id sortord row col x y hexarea outside inside
             d_hwb d_hwu d_o d_w c1-c5 trtyear prevyear
             ptype1 ptype2 area1 area2 ba1 ba2 age1 age2 cc1 cc2 sumarea
             burnhist last lastthin tsburn tsthin
             i_n i_min i_max i_rng i_mean i_std i_vals i_mode i_medn
             s_n s_min s_max s_rng s_mean s_std s_vals s_mode s_medn
             p_n p_min p_max p_rng p_mean p_std p_vals p_mode p_medn
             s_dens d_stream d_pnwr d_onf d_p_in d_p_out
             b4_pnwr b4_onf b4_pin b4_pout
             b8_pnwr b8_onf b8_pin b8_pout
             b16_pnwr b16_onf b16_pin b16_pout
             b32_pnwr b32_onf b32_pin b32_pout
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             rcw2000 clustype
        rename=(last=lastburn));
  retain hex_id sortord row col x y hexarea outside inside c1-c5
             trtyear prevyear d_hwb d_hwu d_o d_w
             ptype1 area1 age1 ba1 cc1 ptype2 area2 age2 ba2 cc2 sumarea
             burnhist last lastthin tsburn tsthin
             i_n i_min i_max i_rng i_mean i_std i_vals i_mode i_medn
             s_n s_min s_max s_rng s_mean s_std s_vals s_mode s_medn
             p_n p_min p_max p_rng p_mean p_std p_vals p_mode p_medn
             s_dens d_stream d_pnwr d_onf d_p_in d_p_out
             b4_pnwr b4_onf b4_pin b4_pout
             b8_pnwr b8_onf b8_pin b8_pout
             b16_pnwr b16_onf b16_pin b16_pout
             b32_pnwr b32_onf b32_pin b32_pout
             rcw2000 clustype;
  merge b
        a1 (keep=hex_id b1991-b2000 last lastthin)
        a2 (drop=area sum minority
            rename=(count=i_n min=i_min max=i_max range=i_rng mean=i_mean
                    std=i_std variety=i_vals majority=i_mode median=i_medn) )
        a3 (drop=area sum min1
            rename=(count=s_n min=s_min max=s_max range=s_rng mean=s_mean
                    std=s_std variety=s_vals maj1=s_mode med1=s_medn) )
        a4 (drop=area sum minority
            rename=(count=p_n min=p_min max=p_max range=p_rng mean=p_mean
                    std=p_std variety=p_vals majority=p_mode median=p_medn) )
        a5 (keep=hex_id s_dens)
        a6 a7 a8 a9 a10
        a11 (keep=hex_id rcw2000 clustype);
  by hex_id;
  inside = hexarea-outside;
  if s_dens<0 then s_dens = 0;
  s_dens = s_dens/inside;
  format d_hwb d_hwu d_o d_w area1 area2 outside hexarea 10.8
         ba1 ba2 age1 age2 cc1 cc2 6.2;
  length burnhist $ 10;
  burnhist = put(b1991,1.) || put(b1992,1.) || put(b1993,1.) ||
             put(b1994,1.) || put(b1995,1.) || put(b1996,1.) ||
             put(b1997,1.) || put(b1998,1.) || put(b1999,1.) ||
             put(b2000,1.);
  array habs[5] agg_p1 agg_p2 agg_p3a agg_p3b agg_p3c;
  array ages[5] age_p1 age_p2 age_p3a age_p3b age_p3c;
  array bas[5] ba_p1 ba_p2 ba_p3a ba_p3b ba_p3c;

  array ccs[5] _temporary_ (100 70 100 70 40);
  array labels[5] $ _temporary_ ('P1' 'P2' 'P3A' 'P3B' 'P3C');
  length ptype1 ptype2 $ 3;
  ptype1 = '   ';
  ptype2 = '   ';
  area1 = 0;
  area2 = 0;
  ba1 = -1;
  ba2 = -1;
  age1 = -1;
  age2 = -1;
  cc1 = -1;
  cc2 = -1;
  if harea1>0 then
    do;
      ptype1 = labels[hab1];
      area1 = habs[hab1];
      ba1 = bas[hab1];
      age1 = ages[hab1];
      cc1 = ccs[hab1];
    end;
  if harea2>0 then
    do;
      ptype2 = labels[hab2];
      area2 = habs[hab2];
      ba2 = bas[hab2];
      age2 = ages[hab2];
      cc2 = ccs[hab2];
    end;
  sumarea = sum(d_hwb,d_o,d_w,outside,d_hwu,area1,area2);
  ** If not thinned in last management cycle, set thinning date to PREVYEAR *;
  if lastthin=0 then lastthin = prevyear;
  ** Time since burn, time since thin *;
  tsburn = 2000-last;
  tsthin = 2000-lastthin;
  run;

/****
**  Create a DBF file for use in ARCView **;
proc sort data=b out=a1 (drop=sortord sumarea);  by sortord;  run;

proc dbf db4=outdbf data=a1;  run;
****/
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**  Create permanent SAS dataset **;
data outdata.pnwr_hex;
  set b;
  drop sortord sumarea;
  run;

options ls=80;
proc contents data=outdata.pnwr_hex;  run;

**  List hexagons by increasing size **;
proc sort data=b;
  by inside;
  run;

data a1;
  set b;
  retain areasum 0;
  areasum+inside;
  run;

options ls=120;
proc print data=a1;
  var hex_id inside areasum i_n i_medn s_n s_medn p_n p_medn s_dens
            /*burnhist*/;
  format hex_id 8. i_medn s_medn 8.4 s_dens 12.8;
  run;

options ls=80;
/**
proc freq data=b;
  table inside;
  run;
**/

/**
proc print data=b;
  id hex_id;
  var c1 trtyear d_hwb d_o d_w outside d_hwu ptype1 area1 ptype2 area2;
  run;

proc print data=b;
  id hex_id;
  var c1 trtyear ptype1 area1 ba1 age1 cc1 ptype2 area2 ba2 age2 cc2;

  run;

proc univariate data=b;
  var sumarea;
  run;
**/

  quit;
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Appendix C.6.  Advance cells to current.SAS.  Reads SAS file of hexagon attributes PNWR_HEX and advances the forest state
variables for pine stands (basal area and canopy closure) to a single point in time, specified in the YEARNOW macro variable.
Program uses basal area and canopy closure models as described in report. Output is SAS file PNWRHAB.

**  Advance cells to current.SAS  **
**  This program simulates growth of the forest and understory according
     to the Bailey-Ware basal area growth model.
     The forest is brought forward to a common point in time from compartment-
     specific treatment dates. **;

    ** Parameters for Bailey-Ware model **;
%let thinindx = 0.6;   ** Values <1.0 represent degree of thinning from below;
%let b1 = 2.81706;     **;
%let b2 = -11935.2;    ** Model coefficients **;
%let b3 = 0.043493;    **;
%let age0 = 8;         ** Age at which BA follows Bailey-Ware model **;
%let ba0 = 0.46;    ** Constant BA (2.00 ft^2/ac) value up through age AGE0 **;
%let ba_max = 35;   ** Maximum BA (152 ft^2/ac) allowed.  BA model is
                       sensitive to errors introduced by discretization of
                       stands and treatment years into hexagons, especially
                       for P2 stands.    ***;

    ** Parameter for canopy closure model **;
%let ccrate = 0.79;

%let yearnow = 2000;
%let workpath = d:\projects\refuge arm\refuge model;
%let datapath = d:\pnwrmap\hex10;
%let outpath = d:\projects\refuge arm\refuge model;

libname inforest "&datapath";
libname outfor "&outpath";

data outfor.pnwrhab;
  set inforest.pnwr_hex
        (keep = hex_id row col x y outside inside c1-c2 trtyear prevyear
                lastburn lastthin d_hwb d_hwu d_o d_w area1 age1 ba1 cc1
                area2 age2 ba2 cc2 i_medn s_medn p_medn
                s_dens d_stream d_pnwr d_onf d_p_in d_p_out
                b4_pnwr b4_onf b4_pin b4_pout
                b8_pnwr b8_onf b8_pin b8_pout
                b16_pnwr b16_onf b16_pin b16_pout
                b32_pnwr b32_onf b32_pin b32_pout

                rcw2000 clustype);
  ** Exclude hexagons < 1/4 acre in size **;
  if inside>=1011.714;
  ** Set parameter values **;
  x0 = (&thinindx^=0)*(1-&thinindx);       ** thinning index **;
  b1 = &b1;
  b2 = &b2;
  b3 = &b3;
  age0 = &age0;
  ba0 = &ba0;
  ba_max = &ba_max;
  ccrate = &ccrate;
  si_medn = i_medn/3.280839895; * Median of site index (m) for cell *;

  ** Calculation of contemporary basal area and canopy closure for FIRST
       component **;
  ba11 = ba1/4.356;             ** BA (m^2/ha) at treatment year **;
  ** AGE is regeneration year, AGE = -1 when missing **;
  if age1>0 then a11 = trtyear - age1;
  else a11 = age1;
  a1_t = a11 - (trtyear-lastthin);           ** Age at last thinning **;
  ** Change age, age at last thin, BA to missing if component not present
      (missing component => AGE<0 and BA<0).
      Also, age at last thin is missing if stand is P1 (AGE>-1 & BA<=0)  **;
  if a11<0 then a11 = .;
  if ba11<0 then ba11 = .;
  if a11<0 | (a11>-1 & ba11<=0) then a1_t = .;
  ** Set thinning index based on whether ever thinned **;
  if a11>. & a1_t<0 then x01 = 0;
  else if a11>. then x01 = x0;
  a12 = a11 + (&yearnow - trtyear);  ** age at YEARNOW **;
  ** P1 stands **;
  if a11>. & ba11=. then
    do;
      ** Next age is greater than age threshold **;
      if age0<a12 then
        do;
          arat = age0/a12;
          ba1 = (ba0**arat) * exp( b1*(1-arat) + b3*si_medn*(1-arat) );
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        end;
      else ba1 = ba0;
      ** Canopy closure is function of next age **;
      cc1 = 100 - 100*ccrate**a12;
    end;
  else
    do;
      arat = a11/a12;
      prod = exp( b1*(1-arat) + b2*x01*(1/a12-1/a11)/a1_t/a12
                + b3*si_medn*(1-arat) );
      ba1 = (ba11**(arat))*prod;
      ** Canopy closure is function of existing closure and time interval **;
      cc1 = 100 - (100-cc1)*ccrate**(a12-a11);
    end;
  ** Set maximum BA for P2 stands **;
  if 16<=a12<=40 then ba1 = min(ba1,ba_max);
  age1 = a12;

  ** Calculation of contemporary basal area and canopy closure for SECOND
       component **;
  ba21 = ba2/4.356;             ** BA (m^2/ha) at treatment year **;
  ** AGE is regeneration year, AGE = -1 when missing **;
  if age2>0 then a21 = trtyear - age2;
  else a21 = age2;
  a2_t = a21 - (trtyear-lastthin);           ** Age at last thinning **;
  ** Change age, age at last thin, BA to missing if component not present
      (missing component => AGE<0 and BA<0).
      Also, age at last thin is missing if stand is P1 (AGE>-1 & BA<=0)  **;
  if a21<0 then a21 = .;
  if ba21<0 then ba21 = .;
  if a21<0 | (a21>-1 & ba21<=0) then a2_t = .;
  ** Set thinning index based on whether ever thinned **;
  if a21>. & a2_t<0 then x02 = 0;
  else if a21>. then x02 = x0;
  a22 = a21 + (&yearnow - trtyear);  ** age at YEARNOW **;
  ** P1 stands **;
  if a21>. & ba21=. then
    do;
      ** Next age is greater than age threshold **;
      if age0<a22 then
        do;
          arat = age0/a22;
          ba2 = (ba0**arat) * exp( b1*(1-arat) + b3*si_medn*(1-arat) );

        end;
      else ba2 = ba0;
      ** Canopy closure is function of next age **;
      cc2 = 100 - 100*ccrate**a22;
    end;
  else
    do;
      arat = a21/a22;
      prod = exp( b1*(1-arat) + b2*x02*(1/a22-1/a21)/a2_t/a22
                + b3*si_medn*(1-arat) );
      ba2 = (ba21**(arat))*prod;
      ** Canopy closure is function of existing closure and time interval **;
      cc2 = 100 - (100-cc2)*ccrate**(a22-a21);
    end;
  ** Set maximum BA for P2 stands **;
  if 16<=a22<=40 then ba2 = min(ba2,ba_max);
  age2 = a22;

  yearnow = &yearnow;
  run;

/***  Use these steps to calculate maximum BA in P2 stands in hexagons
        contained entirely in a single compartment                      **
proc summary data=outfor.pnwrhab (where=(16<=age1<=40 & c2=.)) nway;
  var ba1;
  output out=a1 max=max_ba1;
  run;

proc summary data=outfor.pnwrhab (where=(16<=age2<=40 & c2=.)) nway;
  var ba2;
  output out=a2 max=max_ba2;
  run;

data a1;
  merge a1 (keep=max_ba1) a2 (keep=max_ba2);
  run;

proc print data=a1;  run;
****/

proc univariate data=outfor.pnwrhab;
  var ba1 ba2 cc1 cc2;
  run;  quit;
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Appendix C.7.  Export of hex data to GAUSS.SAS.  SAS program splits the SAS database PNWRHAB into two portions and writes
each to Excel files for import into GAUSS. Excel files created are HEX_FOREST.XLS and HEX_ATTRIB.XLS.

libname inforest "d:\projects\refuge arm\refuge model";

data a;
  keep   hex_id row col x y inside
         c1 trtyear prevyear lastburn lastthin
         d_hwb d_hwu d_o d_w
         area1 age1 ba1 cc1 area2 age2 ba2 cc2
         i_medn p_medn s_dens d_stream d_pnwr d_onf d_p_in d_p_out
         b4_pnwr b4_onf b4_pin b4_pout
         b8_pnwr b8_onf b8_pin b8_pout
         b16_pnwr b16_onf b16_pin b16_pout
         b32_pnwr b32_onf b32_pin b32_pout
         rcw2000 cluster;
  retain hex_id row col x y inside
         c1 trtyear prevyear lastburn lastthin
         d_hwb d_hwu d_o d_w
         area1 age1 ba1 cc1 area2 age2 ba2 cc2
         i_medn p_medn s_dens d_stream d_pnwr d_onf d_p_in d_p_out
         b4_pnwr b4_onf b4_pin b4_pout
         b8_pnwr b8_onf b8_pin b8_pout
         b16_pnwr b16_onf b16_pin b16_pout
         b32_pnwr b32_onf b32_pin b32_pout
         rcw2000 cluster;
  set inforest.pnwrhab;
  if clustype='' then cluster = 0;
  else if clustype='A' then cluster = 1;
  else if clustype='R' then cluster = 2;
  run;

data a1;
  set a;
  keep hex_id row col x y inside c1 trtyear prevyear lastburn lastthin
         d_hwb d_hwu d_o d_w area1 age1 ba1 cc1 area2 age2 ba2 cc2
         rcw2000 cluster;
  run;

proc export data=a1
            outfile= "d:\projects\refuge arm\refuge model\hex_forest.xls"
            dbms=excel5 replace;
  run;

data a1;
  set a;
  keep hex_id i_medn p_medn s_dens d_stream d_pnwr d_onf d_p_in d_p_out
         b4_pnwr b4_onf b4_pin b4_pout b8_pnwr b8_onf b8_pin b8_pout
         b16_pnwr b16_onf b16_pin b16_pout b32_pnwr b32_onf b32_pin b32_pout;
  run;

proc export data=a1
            outfile= "d:\projects\refuge arm\refuge model\hex_attrib.xls"
            dbms=excel5 replace;
  run;

quit;
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Appendix C.8.  Import hex data to GAUSS.G.  GAUSS program reads the two forest attribute Excel files and creates corresponding
files HEX_FOREST and HEX_ATTRIB GAUSS matrix files.

@ Reads the hexagon attribute data, which was output by SAS in Excel 5
  spreadsheet format.  The data are saved in two files due to large file size:
     HEX_FOREST:  hexagon indices, compartment number, treatment data,
                     forest cover types and cover info, RCW population info
     HEX_ATTRIB:  site index, slope position, stream density, distance data,
                     ownership portions.
  The data and column headers are saved as GAUSS
  matrix files.    @

new;

@ Output file path @
pathname = "d:\\projects\\refuge arm\\refuge model";

@ Input file name for forest data @
fname = "d:\\projects\\refuge arm\\refuge model\\hex_forest.xls";

@ Columns, width, and precision in HEX_FOREST file @
hdr_for  = {hex_id     4  0,
            row        2  0,
            col        2  0,
            x         11  3,
            y         11  3,
            inside     9  3,
            c1         2  0,
            trtyear    4  0,
            prevyear   4  0,
            lastburn   4  0,
            lastthin   4  0,
            d_hwb     11  3,
            d_hwu     11  3,
            d_o       11  3,
            d_w       11  3,
            area1     11  3,
            age1       4  0,
            ba1        7  4,
            cc1        7  4,
            area2     11  3,
            age2       4  0,
            ba2        7  4,
            cc2        7  4,

            rcw2000    1  0,
            clustype   1  0};

@ Global variables for IMPORT procedure @
_dxwidth = hdr_for[.,2];
_dxprcn = hdr_for[.,3];
_dxwkshdr = 1;

{hex_for,hex1} = import(fname,0,0);
save path=^pathname hex_for, hdr_for;

@ Test print of part of input matrix @
ptfmt = "*.*lf ";
ptfmt = ptfmt*ones(rows(_dxwidth),1) ~ _dxwidth ~ _dxprcn;
print (rows(hex_for)~cols(hex_for));
call printfm(hex_for[1:10,.],1,ptfmt);
call printfmt(hdr_for[.,1],0);

@ Input file name for hexagon attribute data @
fname = "d:\\projects\\refuge arm\\refuge model\\hex_attrib.xls";

@ Columns, width, and precision in HEX_ATTRIB file @
hdr_attr = {hex_id     4  0,
            i_medn     7  4,
            p_medn     1  0,
            s_dens     8  6,
            d_stream   8  2,
            d_pnwr     8  2,
            d_onf      8  2,
            d_p_in     8  2,
            d_p_out    8  2,
            b4_pnwr    8  6,
            b4_onf     8  6,
            b4_pin     8  6,
            b4_pout    8  6,
            b8_pnwr    8  6,
            b8_onf     8  6,
            b8_pin     8  6,
            b8_pout    8  6,
            b16_pnwr   8  6,
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            b16_onf    8  6,
            b16_pin    8  6,
            b16_pout   8  6,
            b32_pnwr   8  6,
            b32_onf    8  6,
            b32_pin    8  6,
            b32_pout   8  6};

@ Global variables for IMPORT procedure @
_dxwidth = hdr_attr[.,2];
_dxprcn = hdr_attr[.,3];
_dxwkshdr = 1;

{hex_attr,hex1} = import(fname,0,0);
save path=^pathname hex_attr, hdr_attr;

@ Test print of part of input matrix @
ptfmt = "*.*lf ";
ptfmt = ptfmt*ones(rows(_dxwidth),1) ~ _dxwidth ~ _dxprcn;
print (rows(hex_attr)~cols(hex_attr));
call printfm(hex_attr[1:10,.],1,ptfmt);
call printfmt(hdr_attr[.,1],0);
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Appendix C.9.  ASDP input files for forest model F0.  State dynamics, stage return, and scenario files corresponding to model of
intermediate rate of hardwood encroachment.

State Dynamics File

#include "sd.h"
/*********************************************************************
 PNWR forest succession model
 version HWD1 -- includes hardwood component (UH) w/encroachment rates,
                 logit expression of state space
   CUR_STATE has 4 elements:  P1, P2, P3, P3RCW
     --> 5th state is UH which is obtained by subtraction <--
     A temporary 6th state (RG) is used to compute additions to the P1 class.
       It is emptied during the transitions.  Because of this additional
       component, the relationship between the temporary vectors and the
       DP vectors (CUR_STATE and NXT_STATE) is
                        CUR_STATE[i] = THIS_F[i+1].
   DEC has 3 elements:  P2 harvest, P3 harvest, P3RCW harvest
   OUTCOME has 2 elements:  overall encroachment and catastrophic loss rates
*********************************************************************/
{
  INT
            /** Indices of temporary state vectors **/
          RG = 0,
          P1 = 1,
          P2 = 2,
          P3 = 3,
          P4 = 4,
          UH = 5,
            /** Indices of decision vector **/
          H_P2 = 0,
          H_P3 = 1,
          H_P4 = 2,
            /** Number of steps corresponds to number of state variable
                increments in scenario file **/
          steps = 11,
            /** Other variables **/
          i,j,k;

  DECIMAL
            /** Smallest non-zero proportion value **/
          base_p = 0.001,
            /** Exponent to linearize relationship between logit and

                proportion **/
          power = 2.5,
            /** Mean rates of hardwood encroachment **/
          e_P1 = 0.0006,
          e_P2 = 0.015,
          e_P3 = 0.015,
          e_P4 = 0.03,
            /** UH to P1 conversion fraction **/
          q = 0.25,
            /** P3_RCW admission rate **/
          p = 0.5,
            /** (inverse) age class transition rates **/
          t21 = 16.,
          t32 = 24.,
          t43 = 40.,
          t14 = 40.,
            /** Realized rates of hardwood encroachment **/
          e1, e2, e3, e4,
            /** Harvest-adjusted rates of hardwood encroachment **/
          f1, f2, f3, f4,
            /** Rates of harvest **/
          d2, d3, d4,
            /** Realized rate of catastrophic loss **/
          c,
            /** Catastrophic loss matrix **/
          C[6][6],
            /** Age class transition matrix **/
          G[6][6],
            /** Hardwood encroachment transition matrix **/
          H[6][6],
            /** Decision matrix **/
          D[6][6],
            /** Other temporary quantities **/
          P[6][6],
          T1[6][6],
          T2[6][6],
          this_f[6],
          next_f[6],
          half, scale, lrat, diff, denom, blogit,
          l1, l2, l3, l4, g1, g2, g3, g4;
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  /** HALF is the half-way increment **/
  half = (steps+1.)/2.;
  /** Logit value for smallest non-zero proportion value  (constant in
        denominator is number of components-1)                **/
  blogit = log(base_p/(1.-4*base_p));
  /** SCALE is the scale parameter for the polynomial curve (paired negation
        operators allow exponentiation to fractional power) **/
  scale = -pow(-(1.-half),power)/blogit;

  /** Read current state variables and convert them to logits
       (Paired negation operators allow exponentiation to fractional power) **/
  diff = cur_state[P1-1]-half;
  if (diff < 0) l1 = -pow(-diff,power)/scale;
           else l1 = pow(diff,power)/scale;
  diff = cur_state[P2-1]-half;
  if (diff < 0) l2 = -pow(-diff,power)/scale;
           else l2 = pow(diff,power)/scale;
  diff = cur_state[P3-1]-half;
  if (diff < 0) l3 = -pow(-diff,power)/scale;
           else l3 = pow(diff,power)/scale;
  diff = cur_state[P4-1]-half;
  if (diff < 0) l4 = -pow(-diff,power)/scale;
           else l4 = pow(diff,power)/scale;
  denom = 1.+exp(l1)+exp(l2)+exp(l3)+exp(l4);

  /** Calculate current forest composition states **/
  this_f[RG] = 0;
  this_f[P1] = exp(l1)/denom;
  this_f[P2] = exp(l2)/denom;
  this_f[P3] = exp(l3)/denom;
  this_f[P4] = exp(l4)/denom;
  this_f[UH] = 1./denom;

  /** Set hardwood encroachment rates in proportion to rate for P1 **/
  e1 = outcome[0];
  e2 = e1 * e_P2/e_P1;
  e3 = e1 * e_P3/e_P1;
  e4 = e1 * e_P4/e_P1;

  /** Set catastrophic loss rate **/
  c = outcome[1];

  /** Matrix C (catastrophic loss) **/

  C[0][0] = 1.; C[0][1] = 0.; C[0][2] = 0.;   C[0][3] = 0.;   C[0][4] = 0.;   C[0][5]
= 0.;
  C[1][0] = 0.; C[1][1] = 1.; C[1][2] = c;    C[1][3] = c;    C[1][4] = c;    C[1][5]
= c*q;
  C[2][0] = 0.; C[2][1] = 0.; C[2][2] = 1.-c; C[2][3] = 0.;   C[2][4] = 0.;   C[2][5]
= 0.;
  C[3][0] = 0.; C[3][1] = 0.; C[3][2] = 0.;   C[3][3] = 1.-c; C[3][4] = 0.;   C[3][5]
= 0.;
  C[4][0] = 0.; C[4][1] = 0.; C[4][2] = 0.;   C[4][3] = 0.;   C[4][4] = 1.-c; C[4][5]
= 0.;
  C[5][0] = 0.; C[5][1] = 0.; C[5][2] = 0.;   C[5][3] = 0.;   C[5][4] = 0.;   C[5][5]
= 1.-c*q;

  /** Matrix G (age class transitions) **/
  g1 = 1./t21;
  g2 = 1./t32;
  g3 = 1./t43;
  g4 = 1./t14;

  G[0][0] = 0.; G[0][1] = 0.;     G[0][2] = 0.;     G[0][3] = 0.;         G[0][4] =
0.;     G[0][5] = 0.;
  G[1][0] = 1.; G[1][1] = 1.-g1;  G[1][2] = 0.;     G[1][3] = (1.-p)*g3;  G[1][4] =
g4;     G[1][5] = 0.;
  G[2][0] = 0.; G[2][1] = g1;     G[2][2] = 1.-g2;  G[2][3] = 0.;         G[2][4] =
0.;     G[2][5] = 0.;
  G[3][0] = 0.; G[3][1] = 0.;     G[3][2] = g2;     G[3][3] = 1.-g3;      G[3][4] =
0.;     G[3][5] = 0.;
  G[4][0] = 0.; G[4][1] = 0.;     G[4][2] = 0.;     G[4][3] = p*g3;       G[4][4] =
1.-g4;  G[4][5] = 0.;
  G[5][0] = 0.; G[5][1] = 0.;     G[5][2] = 0.;     G[5][3] = 0.;         G[5][4] =
0.;     G[5][5] = 1.;

  /** Matrix H (hardwood encroachment transitions) **/
  d2 = dec[H_P2];
  d3 = dec[H_P3];
  d4 = dec[H_P4];

  f1 = e1;
  f2 = max( 0, e2-d2);
  f3 = max( 0, e3-d3);
  f4 = max( 0, e4-d4);
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  H[0][0] = 1.; H[0][1] = 0.;    H[0][2] = 0.;    H[0][3] = 0.;    H[0][4] = 0.;   
H[0][5] = 0.;
  H[1][0] = 0.; H[1][1] = 1.-f1; H[1][2] = 0.;    H[1][3] = 0.;    H[1][4] = 0.;   
H[1][5] = 0.;
  H[2][0] = 0.; H[2][1] = 0.;    H[2][2] = 1.-f2; H[2][3] = 0.;    H[2][4] = 0.;   
H[2][5] = 0.;
  H[3][0] = 0.; H[3][1] = 0.;    H[3][2] = 0.;    H[3][3] = 1.-f3; H[3][4] = 0.;   
H[3][5] = 0.;
  H[4][0] = 0.; H[4][1] = 0.;    H[4][2] = 0.;    H[4][3] = 0.;    H[4][4] = 1.-f4;
H[4][5] = 0.;
  H[5][0] = 0.; H[5][1] = f1;    H[5][2] = f2;    H[5][3] = f3;    H[5][4] = f4;   
H[5][5] = 1.;

  /** Matrix D (harvest decisions) **/
  D[0][0] = 1.; D[0][1] = 0.; D[0][2] = d2;    D[0][3] = d3;    D[0][4] = d4;   
D[0][5] = 0.;
  D[1][0] = 0.; D[1][1] = 1.; D[1][2] = 0.;    D[1][3] = 0.;    D[1][4] = 0.;   
D[1][5] = 0.;
  D[2][0] = 0.; D[2][1] = 0.; D[2][2] = 1.-d2; D[2][3] = 0.;    D[2][4] = 0.;   
D[2][5] = 0.;
  D[3][0] = 0.; D[3][1] = 0.; D[3][2] = 0.;    D[3][3] = 1.-d3; D[3][4] = 0.;   
D[3][5] = 0.;
  D[4][0] = 0.; D[4][1] = 0.; D[4][2] = 0.;    D[4][3] = 0.;    D[4][4] = 1.-d4;
D[4][5] = 0.;
  D[5][0] = 0.; D[5][1] = 0.; D[5][2] = 0.;    D[5][3] = 0.;    D[5][4] = 0.;   
D[5][5] = 1.;

  /** initialize NEXT_F and temporary matrices **/
  for (i=0; i<6; i=i+1)
  {
    next_f[i] = 0.;
    for (j=0; j<6; j=j+1)
    {
      T1[i][j] = 0.;
      T2[i][j] = 0.;
      P[i][j] = 0.;
    }
  }

  /** Compute (C*G) **/
  for (i=0; i<6; i=i+1)
    for (j=0; j<6; j=j+1)
      for (k=0; k<6; k=k+1)

        T1[i][j] = T1[i][j] + C[i][k]*G[k][j];

  /** Compute ((C*G) * H) **/
  for (i=0; i<6; i=i+1)
    for (j=0; j<6; j=j+1)
      for (k=0; k<6; k=k+1)
        T2[i][j] = T2[i][j] + T1[i][k]*H[k][j];

  /** Compute ( ((C*G) * H) ) * D) **/
  for (i=0; i<6; i=i+1)
    for (j=0; j<6; j=j+1)
      for (k=0; k<6; k=k+1)
        P[i][j] = P[i][j] + T2[i][k]*D[k][j];

  /** Advance to next forest composition state **/
  for (i=0; i<6; i=i+1)
    for (k=0; k<6; k=k+1)
      next_f[i] = next_f[i] + P[i][k]*this_f[k];

/*
printf("\nthis %f %f %f %f %f
%f",this_f[0],this_f[1],this_f[2],this_f[3],this_f[4],this_f[5]);
printf("\nnext %f %f %f %f %f
%f",next_f[0],next_f[1],next_f[2],next_f[3],next_f[4],next_f[5]);
printf("\ndecisions %f %f %f",d2,d3,d4);

printf("\n%f %f %f %f %f %f",G[0][0],G[0][1],G[0][2],G[0][3],G[0][4],G[0][5]);
printf("\n%f %f %f %f %f %f",G[1][0],G[1][1],G[1][2],G[1][3],G[1][4],G[1][5]);
printf("\n%f %f %f %f %f %f",G[2][0],G[2][1],G[2][2],G[2][3],G[2][4],G[2][5]);
printf("\n%f %f %f %f %f %f",G[3][0],G[3][1],G[3][2],G[3][3],G[3][4],G[3][5]);
printf("\n%f %f %f %f %f %f",G[4][0],G[4][1],G[4][2],G[4][3],G[4][4],G[4][5]);
printf("\n%f %f %f %f %f %f",G[5][0],G[5][1],G[5][2],G[5][3],G[5][4],G[5][5]);
*/

  /** Convert logit values to state values **/
/*printf("\ngot here P1 %f %f",next_f[P1],next_f[UH]);*/
  lrat = log(next_f[P1]/next_f[UH]);
  if (lrat<0) nxt_state[P1-1] = -pow((-lrat*scale),(1./power)) + half;
         else nxt_state[P1-1] = pow((lrat*scale),(1./power)) + half;
/*printf("\ngot here P2 %f %f",next_f[P2],next_f[UH]);*/
  lrat = log(next_f[P2]/next_f[UH]);
  if (lrat<0) nxt_state[P2-1] = -pow((-lrat*scale),(1./power)) + half;
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         else nxt_state[P2-1] = pow((lrat*scale),(1./power)) + half;
/*printf("\ngot here P3 %f %f",next_f[P3],next_f[UH]);*/
  lrat = log(next_f[P3]/next_f[UH]);
  if (lrat<0) nxt_state[P3-1] = -pow((-lrat*scale),(1./power)) + half;
         else nxt_state[P3-1] = pow((lrat*scale),(1./power)) + half;
/*printf("\ngot here P4 %f %f",next_f[P4],next_f[UH]);*/
  lrat = log(next_f[P4]/next_f[UH]);
  if (lrat<0) nxt_state[P4-1] = -pow((-lrat*scale),(1./power)) + half;
         else nxt_state[P4-1] = pow((lrat*scale),(1./power)) + half;

  return;
}

Stage Return File

#include "obj.h"
/*********************************************************************
 PNWR forest succession model
 Stage return calculation
 version HWD1 -- includes hardwood component (UH) w/encroachment rates,
                 logit expression of state space
   STATE has 4 elements:  P1, P2, P3, P3RCW
     --> 5th state is UH which is obtained by subtraction <--
*********************************************************************/
{
  INT
            /** Indices of state vector **/
          P1 = 0,
          P2 = 1,
          P3 = 2,
          P4 = 3,
          UH = 4,
            /** Number of steps corresponds to number of state variable
                increments in scenario file **/
          steps = 11;

  DECIMAL
            /** Smallest non-zero proportion value **/
          base_p = 0.001,

            /** Exponent to linearize relationship between logit and
                proportion **/
          power = 2.5,
          P3R_threshold = 0.030961749,
            /** Other temporary quantities **/
          f[5],
          half, scale, diff, l1, l2, l3, l4, denom, blogit;

  /** HALF is the half-way increment **/
  half = (steps+1.)/2.;
  /** Logit value for smallest non-zero proportion value  (constant in
        denominator is number of components-1)                **/
  blogit = log(base_p/(1.-4*base_p));
  /** SCALE is the scale parameter for the polynomial curve (paired negation
        operators allow exponentiation to fractional power) **/
  scale = -pow(-(1.-half),power)/blogit;

  /** Read current state variables and convert them to logits
       (Paired negation operators allow exponentiation to fractional power) **/
  diff = cur_state[P1]-half;
  if (diff < 0) l1 = -pow(-diff,power)/scale;
           else l1 = pow(diff,power)/scale;
  diff = cur_state[P2]-half;
  if (diff < 0) l2 = -pow(-diff,power)/scale;
           else l2 = pow(diff,power)/scale;
  diff = cur_state[P3]-half;
  if (diff < 0) l3 = -pow(-diff,power)/scale;
           else l3 = pow(diff,power)/scale;
  diff = cur_state[P4]-half;
  if (diff < 0) l4 = -pow(-diff,power)/scale;
           else l4 = pow(diff,power)/scale;
  denom = 1.+exp(l1)+exp(l2)+exp(l3)+exp(l4);

  /** Calculate current forest composition states **/
  f[P1] = exp(l1)/denom;
  f[P2] = exp(l2)/denom;
  f[P3] = exp(l3)/denom;
  f[P4] = exp(l4)/denom;
  f[UH] = 1./denom;

  /** Amount of P3_RCW (P4) habitat must exceed threshold value.  If it does,
        return is 1000+(habitat-threshold).  If it does not, return is 0. **/
  if (f[P4]<P3R_threshold) result = 0.;
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  else result = 1000. + (f[P4]-threshold);

 return  (result);
}

Scenario File

!--------------------------------------------------------------------
! PNWR forest succession model -- version HWD1
!--------------------------------------------------------------------
MAX;
TITLE   ">>> PNWR forest succession model (HWD1) <<<"   ;
!REPORT_ALL      ;
!TRACE ;
ITERATIONS   20|500;
!ITERATIONS 1;
NO_CHANGE 3;

! Simulation settings
! Initial forest state is (P1=0.1227 P2=0.0741 P3=0.6173 P3R=0.001 UH=0.1849)
INIT_STATE  4.3838546  3.7726398  8.4877613  1.5290676;
SIM_TRIALS 1000;
SIM_REPORT 1 1 1 1 1 1 1;
NO_INTERP;

STATE   "P1 index";
STATE   "P2 index";
STATE   "P3 index";
STATE   "P3R index";

DECISION "P2 harvest";
DECISION "P3 harvest";
DECISION "P3R harvest";

DISTRIB "Hdwd P1";
RV "Hdwd P1";
!EVENT 1.0 0.0006;

EVENT      0.1    0.00025589412;
EVENT      0.2    0.00039234709;
EVENT      0.4    0.00057114825;
EVENT      0.2    0.00079435978;

EVENT      0.1    0.0010860989;

DISTRIB "Cat rate";
RV "Cat rate";
!EVENT 1.0 0.003394;

!EVENT   0.500   6.7989136e-014;
EVENT   0.500   0.000000000000067989136;
EVENT   0.400   0.00011697715;
EVENT   0.050   0.0058095462;
EVENT   0.045   0.045113811;
EVENT   0.005   0.20532215;

STAGE 1 1 1 1;
COMBINE 1|11 1|11 1|11 1|11,
        0|0.14|0.02 0|0.14|0.02 0|0.14|0.02,
        "Hdwd P1" "Cat rate";



243

Appendix C.10.  ASDP input files for forest model F1.  State dynamics, stage return, and scenario files corresponding to model of
rapid rate of hardwood encroachment.

State Dynamics File

#include "sd.h"
/*********************************************************************
 PNWR forest succession model (sensitivity analysis version ALT1)
 version HWD1 -- includes hardwood component (UH) w/encroachment rates,
                 logit expression of state space
   CUR_STATE has 4 elements:  P1, P2, P3, P3RCW
     --> 5th state is UH which is obtained by subtraction <--
     A temporary 6th state (RG) is used to compute additions to the P1 class.
       It is emptied during the transitions.  Because of this additional
       component, the relationship between the temporary vectors and the
       DP vectors (CUR_STATE and NXT_STATE) is
                        CUR_STATE[i] = THIS_F[i+1].
   DEC has 3 elements:  P2 harvest, P3 harvest, P3RCW harvest
   OUTCOME has 2 elements:  overall encroachment and catastrophic loss rates
*********************************************************************/
{
  INT
            /** Indices of temporary state vectors **/
          RG = 0,
          P1 = 1,
          P2 = 2,
          P3 = 3,
          P4 = 4,
          UH = 5,
            /** Indices of decision vector **/
          H_P2 = 0,
          H_P3 = 1,
          H_P4 = 2,
            /** Number of steps corresponds to number of state variable
                increments in scenario file **/
          steps = 11,
            /** Other variables **/
          i,j,k;

  DECIMAL
            /** Smallest non-zero proportion value **/
          base_p = 0.001,
            /** Exponent to linearize relationship between logit and

                proportion **/
          power = 2.5,
            /** Mean rates of hardwood encroachment **/
            /**  Rates set HIGH in this version **/
          e_base = 0.0006,
          e_P1 = 0.0012,
          e_P2 = 0.03,
          e_P3 = 0.03,
          e_P4 = 0.06,
            /** UH to P1 conversion fraction **/
            /**  Rate set LOW in this version **/
          q = 0.125,
            /** P3_RCW admission rate **/
            /**  Rate set LOW in this version **/
          p = 0.25,
            /** (inverse) age class transition rates **/
          t21 = 16.,
          t32 = 24.,
          t43 = 40.,
          t14 = 20.,   /** HIGH mortality rate in oldest age class **/
            /** Realized rates of hardwood encroachment **/
          e1, e2, e3, e4,
            /** Harvest-adjusted rates of hardwood encroachment **/
          f1, f2, f3, f4,
            /** Rates of harvest **/
          d2, d3, d4,
            /** Realized rate of catastrophic loss **/
          c,
            /** Catastrophic loss matrix **/
          C[6][6],
            /** Age class transition matrix **/
          G[6][6],
            /** Hardwood encroachment transition matrix **/
          H[6][6],
            /** Decision matrix **/
          D[6][6],
            /** Other temporary quantities **/
          P[6][6],
          T1[6][6],
          T2[6][6],
          this_f[6],
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          next_f[6],
          half, scale, lrat, diff, denom, blogit,
          l1, l2, l3, l4, g1, g2, g3, g4;

  /** HALF is the half-way increment **/
  half = (steps+1.)/2.;
  /** Logit value for smallest non-zero proportion value  (constant in
        denominator is number of components-1)                **/
  blogit = log(base_p/(1.-4*base_p));
  /** SCALE is the scale parameter for the polynomial curve (paired negation
        operators allow exponentiation to fractional power) **/
  scale = -pow(-(1.-half),power)/blogit;

  /** Read current state variables and convert them to logits
       (Paired negation operators allow exponentiation to fractional power) **/
  diff = cur_state[P1-1]-half;
  if (diff < 0) l1 = -pow(-diff,power)/scale;
           else l1 = pow(diff,power)/scale;
  diff = cur_state[P2-1]-half;
  if (diff < 0) l2 = -pow(-diff,power)/scale;
           else l2 = pow(diff,power)/scale;
  diff = cur_state[P3-1]-half;
  if (diff < 0) l3 = -pow(-diff,power)/scale;
           else l3 = pow(diff,power)/scale;
  diff = cur_state[P4-1]-half;
  if (diff < 0) l4 = -pow(-diff,power)/scale;
           else l4 = pow(diff,power)/scale;
  denom = 1.+exp(l1)+exp(l2)+exp(l3)+exp(l4);

  /** Calculate current forest composition states **/
  this_f[RG] = 0;
  this_f[P1] = exp(l1)/denom;
  this_f[P2] = exp(l2)/denom;
  this_f[P3] = exp(l3)/denom;
  this_f[P4] = exp(l4)/denom;
  this_f[UH] = 1./denom;

  /** Set hardwood encroachment rates in proportion to rate for P1 **/
  e1 = outcome[0] * e_P1/e_base;
  e2 = outcome[0] * e_P2/e_base;
  e3 = outcome[0] * e_P3/e_base;
  e4 = outcome[0] * e_P4/e_base;

  /** Set catastrophic loss rate **/
  c = outcome[1];

  /** Matrix C (catastrophic loss) **/
  C[0][0] = 1.; C[0][1] = 0.; C[0][2] = 0.;   C[0][3] = 0.;   C[0][4] = 0.;   C[0][5]
= 0.;
  C[1][0] = 0.; C[1][1] = 1.; C[1][2] = c;    C[1][3] = c;    C[1][4] = c;    C[1][5]
= c*q;
  C[2][0] = 0.; C[2][1] = 0.; C[2][2] = 1.-c; C[2][3] = 0.;   C[2][4] = 0.;   C[2][5]
= 0.;
  C[3][0] = 0.; C[3][1] = 0.; C[3][2] = 0.;   C[3][3] = 1.-c; C[3][4] = 0.;   C[3][5]
= 0.;
  C[4][0] = 0.; C[4][1] = 0.; C[4][2] = 0.;   C[4][3] = 0.;   C[4][4] = 1.-c; C[4][5]
= 0.;
  C[5][0] = 0.; C[5][1] = 0.; C[5][2] = 0.;   C[5][3] = 0.;   C[5][4] = 0.;   C[5][5]
= 1.-c*q;

  /** Matrix G (age class transitions) **/
  g1 = 1./t21;
  g2 = 1./t32;
  g3 = 1./t43;
  g4 = 1./t14;

  G[0][0] = 0.; G[0][1] = 0.;     G[0][2] = 0.;     G[0][3] = 0.;         G[0][4] =
0.;     G[0][5] = 0.;
  G[1][0] = 1.; G[1][1] = 1.-g1;  G[1][2] = 0.;     G[1][3] = (1.-p)*g3;  G[1][4] =
g4;     G[1][5] = 0.;
  G[2][0] = 0.; G[2][1] = g1;     G[2][2] = 1.-g2;  G[2][3] = 0.;         G[2][4] =
0.;     G[2][5] = 0.;
  G[3][0] = 0.; G[3][1] = 0.;     G[3][2] = g2;     G[3][3] = 1.-g3;      G[3][4] =
0.;     G[3][5] = 0.;
  G[4][0] = 0.; G[4][1] = 0.;     G[4][2] = 0.;     G[4][3] = p*g3;       G[4][4] =
1.-g4;  G[4][5] = 0.;
  G[5][0] = 0.; G[5][1] = 0.;     G[5][2] = 0.;     G[5][3] = 0.;         G[5][4] =
0.;     G[5][5] = 1.;

  /** Matrix H (hardwood encroachment transitions) **/
  d2 = dec[H_P2];
  d3 = dec[H_P3];
  d4 = dec[H_P4];

  f1 = e1;
  f2 = max( 0, e2-d2);
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  f3 = max( 0, e3-d3);
  f4 = max( 0, e4-d4);

  H[0][0] = 1.; H[0][1] = 0.;    H[0][2] = 0.;    H[0][3] = 0.;    H[0][4] = 0.;   
H[0][5] = 0.;
  H[1][0] = 0.; H[1][1] = 1.-f1; H[1][2] = 0.;    H[1][3] = 0.;    H[1][4] = 0.;   
H[1][5] = 0.;
  H[2][0] = 0.; H[2][1] = 0.;    H[2][2] = 1.-f2; H[2][3] = 0.;    H[2][4] = 0.;   
H[2][5] = 0.;
  H[3][0] = 0.; H[3][1] = 0.;    H[3][2] = 0.;    H[3][3] = 1.-f3; H[3][4] = 0.;   
H[3][5] = 0.;
  H[4][0] = 0.; H[4][1] = 0.;    H[4][2] = 0.;    H[4][3] = 0.;    H[4][4] = 1.-f4;
H[4][5] = 0.;
  H[5][0] = 0.; H[5][1] = f1;    H[5][2] = f2;    H[5][3] = f3;    H[5][4] = f4;   
H[5][5] = 1.;

  /** Matrix D (harvest decisions) **/
  D[0][0] = 1.; D[0][1] = 0.; D[0][2] = d2;    D[0][3] = d3;    D[0][4] = d4;   
D[0][5] = 0.;
  D[1][0] = 0.; D[1][1] = 1.; D[1][2] = 0.;    D[1][3] = 0.;    D[1][4] = 0.;   
D[1][5] = 0.;
  D[2][0] = 0.; D[2][1] = 0.; D[2][2] = 1.-d2; D[2][3] = 0.;    D[2][4] = 0.;   
D[2][5] = 0.;
  D[3][0] = 0.; D[3][1] = 0.; D[3][2] = 0.;    D[3][3] = 1.-d3; D[3][4] = 0.;   
D[3][5] = 0.;
  D[4][0] = 0.; D[4][1] = 0.; D[4][2] = 0.;    D[4][3] = 0.;    D[4][4] = 1.-d4;
D[4][5] = 0.;
  D[5][0] = 0.; D[5][1] = 0.; D[5][2] = 0.;    D[5][3] = 0.;    D[5][4] = 0.;   
D[5][5] = 1.;

  /** initialize NEXT_F and temporary matrices **/
  for (i=0; i<6; i=i+1)
  {
    next_f[i] = 0.;
    for (j=0; j<6; j=j+1)
    {
      T1[i][j] = 0.;
      T2[i][j] = 0.;
      P[i][j] = 0.;
    }
  }

  /** Compute (C*G) **/

  for (i=0; i<6; i=i+1)
    for (j=0; j<6; j=j+1)
      for (k=0; k<6; k=k+1)
        T1[i][j] = T1[i][j] + C[i][k]*G[k][j];

  /** Compute ((C*G) * H) **/
  for (i=0; i<6; i=i+1)
    for (j=0; j<6; j=j+1)
      for (k=0; k<6; k=k+1)
        T2[i][j] = T2[i][j] + T1[i][k]*H[k][j];

  /** Compute ( ((C*G) * H) ) * D) **/
  for (i=0; i<6; i=i+1)
    for (j=0; j<6; j=j+1)
      for (k=0; k<6; k=k+1)
        P[i][j] = P[i][j] + T2[i][k]*D[k][j];

  /** Advance to next forest composition state **/
  for (i=0; i<6; i=i+1)
    for (k=0; k<6; k=k+1)
      next_f[i] = next_f[i] + P[i][k]*this_f[k];

/*
printf("\nthis %f %f %f %f %f
%f",this_f[0],this_f[1],this_f[2],this_f[3],this_f[4],this_f[5]);
printf("\nnext %f %f %f %f %f
%f",next_f[0],next_f[1],next_f[2],next_f[3],next_f[4],next_f[5]);
printf("\ndecisions %f %f %f",d2,d3,d4);

printf("\n%f %f %f %f %f %f",G[0][0],G[0][1],G[0][2],G[0][3],G[0][4],G[0][5]);
printf("\n%f %f %f %f %f %f",G[1][0],G[1][1],G[1][2],G[1][3],G[1][4],G[1][5]);
printf("\n%f %f %f %f %f %f",G[2][0],G[2][1],G[2][2],G[2][3],G[2][4],G[2][5]);
printf("\n%f %f %f %f %f %f",G[3][0],G[3][1],G[3][2],G[3][3],G[3][4],G[3][5]);
printf("\n%f %f %f %f %f %f",G[4][0],G[4][1],G[4][2],G[4][3],G[4][4],G[4][5]);
printf("\n%f %f %f %f %f %f",G[5][0],G[5][1],G[5][2],G[5][3],G[5][4],G[5][5]);
*/

  /** Convert logit values to state values **/
/*printf("\ngot here P1 %f %f",next_f[P1],next_f[UH]);*/
  lrat = log(next_f[P1]/next_f[UH]);
  if (lrat<0) nxt_state[P1-1] = -pow((-lrat*scale),(1./power)) + half;
         else nxt_state[P1-1] = pow((lrat*scale),(1./power)) + half;
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/*printf("\ngot here P2 %f %f",next_f[P2],next_f[UH]);*/
  lrat = log(next_f[P2]/next_f[UH]);
  if (lrat<0) nxt_state[P2-1] = -pow((-lrat*scale),(1./power)) + half;
         else nxt_state[P2-1] = pow((lrat*scale),(1./power)) + half;
/*printf("\ngot here P3 %f %f",next_f[P3],next_f[UH]);*/
  lrat = log(next_f[P3]/next_f[UH]);
  if (lrat<0) nxt_state[P3-1] = -pow((-lrat*scale),(1./power)) + half;
         else nxt_state[P3-1] = pow((lrat*scale),(1./power)) + half;
/*printf("\ngot here P4 %f %f",next_f[P4],next_f[UH]);*/
  lrat = log(next_f[P4]/next_f[UH]);
  if (lrat<0) nxt_state[P4-1] = -pow((-lrat*scale),(1./power)) + half;
         else nxt_state[P4-1] = pow((lrat*scale),(1./power)) + half;

  return;
}

Stage Return File

#include "obj.h"
/*********************************************************************
 PNWR forest succession model
 Stage return calculation
 version HWD1 -- includes hardwood component (UH) w/encroachment rates,
                 logit expression of state space
   STATE has 4 elements:  P1, P2, P3, P3RCW
     --> 5th state is UH which is obtained by subtraction <--
*********************************************************************/
{
  INT
            /** Indices of state vector **/
          P1 = 0,
          P2 = 1,
          P3 = 2,
          P4 = 3,
          UH = 4,
            /** Number of steps corresponds to number of state variable
                increments in scenario file **/
          steps = 11;

  DECIMAL
            /** Smallest non-zero proportion value **/
          base_p = 0.001,
            /** Exponent to linearize relationship between logit and
                proportion **/
          power = 2.5,
          P3R_threshold = 0.030961749,
            /** Other temporary quantities **/
          f[5],
          half, scale, diff, l1, l2, l3, l4, denom, blogit;

  /** HALF is the half-way increment **/
  half = (steps+1.)/2.;
  /** Logit value for smallest non-zero proportion value  (constant in
        denominator is number of components-1)                **/
  blogit = log(base_p/(1.-4*base_p));
  /** SCALE is the scale parameter for the polynomial curve (paired negation
        operators allow exponentiation to fractional power) **/
  scale = -pow(-(1.-half),power)/blogit;

  /** Read current state variables and convert them to logits
       (Paired negation operators allow exponentiation to fractional power) **/
  diff = cur_state[P1]-half;
  if (diff < 0) l1 = -pow(-diff,power)/scale;
           else l1 = pow(diff,power)/scale;
  diff = cur_state[P2]-half;
  if (diff < 0) l2 = -pow(-diff,power)/scale;
           else l2 = pow(diff,power)/scale;
  diff = cur_state[P3]-half;
  if (diff < 0) l3 = -pow(-diff,power)/scale;
           else l3 = pow(diff,power)/scale;
  diff = cur_state[P4]-half;
  if (diff < 0) l4 = -pow(-diff,power)/scale;
           else l4 = pow(diff,power)/scale;
  denom = 1.+exp(l1)+exp(l2)+exp(l3)+exp(l4);

  /** Calculate current forest composition states **/
  f[P1] = exp(l1)/denom;
  f[P2] = exp(l2)/denom;
  f[P3] = exp(l3)/denom;
  f[P4] = exp(l4)/denom;
  f[UH] = 1./denom;
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  /** Amount of P3_RCW (P4) habitat must exceed threshold value.  If it does,
        return is 1000+(habitat-threshold).  If it does not, return is 0. **/
  if (f[P4]<P3R_threshold) result = 0.;
  else result = 1000. + (f[P4]-threshold);

 return  (result);
}

Scenario File

!--------------------------------------------------------------------
! PNWR forest succession model -- version HWD1, ALT1
!--------------------------------------------------------------------
MAX;
TITLE   ">>> PNWR forest succession model (HWD1) <<<"   ;
!REPORT_ALL      ;
!TRACE ;
ITERATIONS   20|500;
!ITERATIONS 1;
NO_CHANGE 3;

! Simulation settings
! Initial forest state is (P1=0.1227 P2=0.0741 P3=0.6173 P3R=0.001 UH=0.1849)
INIT_STATE  4.3838546  3.7726398  8.4877613  1.5290676;
SIM_TRIALS 1000;
SIM_REPORT 1 1 1 1 1 1 1;
NO_INTERP;

STATE   "P1 index";
STATE   "P2 index";
STATE   "P3 index";
STATE   "P3R index";

DECISION "P2 harvest";
DECISION "P3 harvest";
DECISION "P3R harvest";

DISTRIB "Hdwd P1";
RV "Hdwd P1";

!EVENT 1.0 0.0006;

EVENT      0.1    0.000072137044;
EVENT      0.2     0.00020748589;
EVENT      0.4     0.00048900905;
EVENT      0.2     0.00094358994;
EVENT      0.1      0.0016696751;

DISTRIB "Cat rate";
RV "Cat rate";
!EVENT 1.0 0.003394;

EVENT   0.500   0.00000000000000000000000093853655;
EVENT   0.400   0.0000014526682;
EVENT   0.050   0.00052868322;
EVENT   0.045   0.019829935;
EVENT   0.005   0.15752754;

STAGE 1 1 1 1;
COMBINE 1|11 1|11 1|11 1|11,
        0|0.14|0.02 0|0.14|0.02 0|0.14|0.02,
        "Hdwd P1" "Cat rate";
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Appendix C.11.  ASDP input files for forest model F2.  State dynamics, stage return, and scenario files corresponding to model of
slow rate of hardwood encroachment.

State Dynamics File

#include "sd.h"
/*********************************************************************
 PNWR forest succession model (sensitivity analysis version ALT2)
 version HWD1 -- includes hardwood component (UH) w/encroachment rates,
                 logit expression of state space
   CUR_STATE has 4 elements:  P1, P2, P3, P3RCW
     --> 5th state is UH which is obtained by subtraction <--
     A temporary 6th state (RG) is used to compute additions to the P1 class.
       It is emptied during the transitions.  Because of this additional
       component, the relationship between the temporary vectors and the
       DP vectors (CUR_STATE and NXT_STATE) is
                        CUR_STATE[i] = THIS_F[i+1].
   DEC has 3 elements:  P2 harvest, P3 harvest, P3RCW harvest
   OUTCOME has 2 elements:  overall encroachment and catastrophic loss rates
*********************************************************************/
{
  INT
            /** Indices of temporary state vectors **/
          RG = 0,
          P1 = 1,
          P2 = 2,
          P3 = 3,
          P4 = 4,
          UH = 5,
            /** Indices of decision vector **/
          H_P2 = 0,
          H_P3 = 1,
          H_P4 = 2,
            /** Number of steps corresponds to number of state variable
                increments in scenario file **/
          steps = 11,
            /** Other variables **/
          i,j,k;

  DECIMAL
            /** Smallest non-zero proportion value **/
          base_p = 0.001,
            /** Exponent to linearize relationship between logit and

                proportion **/
          power = 2.5,
            /** Mean rates of hardwood encroachment **/
            /**  Rates set LOW in this version **/
          e_base = 0.0006,
          e_P1 = 0.0003,
          e_P2 = 0.0075,
          e_P3 = 0.0075,
          e_P4 = 0.015,
            /** UH to P1 conversion fraction **/
            /**  Rate set HIGH in this version **/
          q = 0.5,
            /** P3_RCW admission rate **/
            /**  Rate set HIGH in this version **/
          p = 1.0,
            /** (inverse) age class transition rates **/
          t21 = 16.,
          t32 = 24.,
          t43 = 40.,
          t14 = 60.,   /** LOW mortality rate in oldest age class **/
            /** Realized rates of hardwood encroachment **/
          e1, e2, e3, e4,
            /** Harvest-adjusted rates of hardwood encroachment **/
          f1, f2, f3, f4,
            /** Rates of harvest **/
          d2, d3, d4,
            /** Realized rate of catastrophic loss **/
          c,
            /** Catastrophic loss matrix **/
          C[6][6],
            /** Age class transition matrix **/
          G[6][6],
            /** Hardwood encroachment transition matrix **/
          H[6][6],
            /** Decision matrix **/
          D[6][6],
            /** Other temporary quantities **/
          P[6][6],
          T1[6][6],
          T2[6][6],
          this_f[6],
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          next_f[6],
          half, scale, lrat, diff, denom, blogit,
          l1, l2, l3, l4, g1, g2, g3, g4;

  /** HALF is the half-way increment **/
  half = (steps+1.)/2.;
  /** Logit value for smallest non-zero proportion value  (constant in
        denominator is number of components-1)                **/
  blogit = log(base_p/(1.-4*base_p));
  /** SCALE is the scale parameter for the polynomial curve (paired negation
        operators allow exponentiation to fractional power) **/
  scale = -pow(-(1.-half),power)/blogit;

  /** Read current state variables and convert them to logits
       (Paired negation operators allow exponentiation to fractional power) **/
  diff = cur_state[P1-1]-half;
  if (diff < 0) l1 = -pow(-diff,power)/scale;
           else l1 = pow(diff,power)/scale;
  diff = cur_state[P2-1]-half;
  if (diff < 0) l2 = -pow(-diff,power)/scale;
           else l2 = pow(diff,power)/scale;
  diff = cur_state[P3-1]-half;
  if (diff < 0) l3 = -pow(-diff,power)/scale;
           else l3 = pow(diff,power)/scale;
  diff = cur_state[P4-1]-half;
  if (diff < 0) l4 = -pow(-diff,power)/scale;
           else l4 = pow(diff,power)/scale;
  denom = 1.+exp(l1)+exp(l2)+exp(l3)+exp(l4);

  /** Calculate current forest composition states **/
  this_f[RG] = 0;
  this_f[P1] = exp(l1)/denom;
  this_f[P2] = exp(l2)/denom;
  this_f[P3] = exp(l3)/denom;
  this_f[P4] = exp(l4)/denom;
  this_f[UH] = 1./denom;

  /** Set hardwood encroachment rates in proportion to rate for P1 **/
  e1 = outcome[0] * e_P1/e_base;
  e2 = outcome[0] * e_P2/e_base;
  e3 = outcome[0] * e_P3/e_base;
  e4 = outcome[0] * e_P4/e_base;

  /** Set catastrophic loss rate **/
  c = outcome[1];

  /** Matrix C (catastrophic loss) **/
  C[0][0] = 1.; C[0][1] = 0.; C[0][2] = 0.;   C[0][3] = 0.;   C[0][4] = 0.;   C[0][5]
= 0.;
  C[1][0] = 0.; C[1][1] = 1.; C[1][2] = c;    C[1][3] = c;    C[1][4] = c;    C[1][5]
= c*q;
  C[2][0] = 0.; C[2][1] = 0.; C[2][2] = 1.-c; C[2][3] = 0.;   C[2][4] = 0.;   C[2][5]
= 0.;
  C[3][0] = 0.; C[3][1] = 0.; C[3][2] = 0.;   C[3][3] = 1.-c; C[3][4] = 0.;   C[3][5]
= 0.;
  C[4][0] = 0.; C[4][1] = 0.; C[4][2] = 0.;   C[4][3] = 0.;   C[4][4] = 1.-c; C[4][5]
= 0.;
  C[5][0] = 0.; C[5][1] = 0.; C[5][2] = 0.;   C[5][3] = 0.;   C[5][4] = 0.;   C[5][5]
= 1.-c*q;

  /** Matrix G (age class transitions) **/
  g1 = 1./t21;
  g2 = 1./t32;
  g3 = 1./t43;
  g4 = 1./t14;

  G[0][0] = 0.; G[0][1] = 0.;     G[0][2] = 0.;     G[0][3] = 0.;         G[0][4] =
0.;     G[0][5] = 0.;
  G[1][0] = 1.; G[1][1] = 1.-g1;  G[1][2] = 0.;     G[1][3] = (1.-p)*g3;  G[1][4] =
g4;     G[1][5] = 0.;
  G[2][0] = 0.; G[2][1] = g1;     G[2][2] = 1.-g2;  G[2][3] = 0.;         G[2][4] =
0.;     G[2][5] = 0.;
  G[3][0] = 0.; G[3][1] = 0.;     G[3][2] = g2;     G[3][3] = 1.-g3;      G[3][4] =
0.;     G[3][5] = 0.;
  G[4][0] = 0.; G[4][1] = 0.;     G[4][2] = 0.;     G[4][3] = p*g3;       G[4][4] =
1.-g4;  G[4][5] = 0.;
  G[5][0] = 0.; G[5][1] = 0.;     G[5][2] = 0.;     G[5][3] = 0.;         G[5][4] =
0.;     G[5][5] = 1.;

  /** Matrix H (hardwood encroachment transitions) **/
  d2 = dec[H_P2];
  d3 = dec[H_P3];
  d4 = dec[H_P4];

  f1 = e1;
  f2 = max( 0, e2-d2);
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  f3 = max( 0, e3-d3);
  f4 = max( 0, e4-d4);

  H[0][0] = 1.; H[0][1] = 0.;    H[0][2] = 0.;    H[0][3] = 0.;    H[0][4] = 0.;   
H[0][5] = 0.;
  H[1][0] = 0.; H[1][1] = 1.-f1; H[1][2] = 0.;    H[1][3] = 0.;    H[1][4] = 0.;   
H[1][5] = 0.;
  H[2][0] = 0.; H[2][1] = 0.;    H[2][2] = 1.-f2; H[2][3] = 0.;    H[2][4] = 0.;   
H[2][5] = 0.;
  H[3][0] = 0.; H[3][1] = 0.;    H[3][2] = 0.;    H[3][3] = 1.-f3; H[3][4] = 0.;   
H[3][5] = 0.;
  H[4][0] = 0.; H[4][1] = 0.;    H[4][2] = 0.;    H[4][3] = 0.;    H[4][4] = 1.-f4;
H[4][5] = 0.;
  H[5][0] = 0.; H[5][1] = f1;    H[5][2] = f2;    H[5][3] = f3;    H[5][4] = f4;   
H[5][5] = 1.;

  /** Matrix D (harvest decisions) **/
  D[0][0] = 1.; D[0][1] = 0.; D[0][2] = d2;    D[0][3] = d3;    D[0][4] = d4;   
D[0][5] = 0.;
  D[1][0] = 0.; D[1][1] = 1.; D[1][2] = 0.;    D[1][3] = 0.;    D[1][4] = 0.;   
D[1][5] = 0.;
  D[2][0] = 0.; D[2][1] = 0.; D[2][2] = 1.-d2; D[2][3] = 0.;    D[2][4] = 0.;   
D[2][5] = 0.;
  D[3][0] = 0.; D[3][1] = 0.; D[3][2] = 0.;    D[3][3] = 1.-d3; D[3][4] = 0.;   
D[3][5] = 0.;
  D[4][0] = 0.; D[4][1] = 0.; D[4][2] = 0.;    D[4][3] = 0.;    D[4][4] = 1.-d4;
D[4][5] = 0.;
  D[5][0] = 0.; D[5][1] = 0.; D[5][2] = 0.;    D[5][3] = 0.;    D[5][4] = 0.;   
D[5][5] = 1.;

  /** initialize NEXT_F and temporary matrices **/
  for (i=0; i<6; i=i+1)
  {
    next_f[i] = 0.;
    for (j=0; j<6; j=j+1)
    {
      T1[i][j] = 0.;
      T2[i][j] = 0.;
      P[i][j] = 0.;
    }
  }

  /** Compute (C*G) **/

  for (i=0; i<6; i=i+1)
    for (j=0; j<6; j=j+1)
      for (k=0; k<6; k=k+1)
        T1[i][j] = T1[i][j] + C[i][k]*G[k][j];

  /** Compute ((C*G) * H) **/
  for (i=0; i<6; i=i+1)
    for (j=0; j<6; j=j+1)
      for (k=0; k<6; k=k+1)
        T2[i][j] = T2[i][j] + T1[i][k]*H[k][j];

  /** Compute ( ((C*G) * H) ) * D) **/
  for (i=0; i<6; i=i+1)
    for (j=0; j<6; j=j+1)
      for (k=0; k<6; k=k+1)
        P[i][j] = P[i][j] + T2[i][k]*D[k][j];

  /** Advance to next forest composition state **/
  for (i=0; i<6; i=i+1)
    for (k=0; k<6; k=k+1)
      next_f[i] = next_f[i] + P[i][k]*this_f[k];

/*
printf("\nthis %f %f %f %f %f
%f",this_f[0],this_f[1],this_f[2],this_f[3],this_f[4],this_f[5]);
printf("\nnext %f %f %f %f %f
%f",next_f[0],next_f[1],next_f[2],next_f[3],next_f[4],next_f[5]);
printf("\ndecisions %f %f %f",d2,d3,d4);

printf("\n%f %f %f %f %f %f",G[0][0],G[0][1],G[0][2],G[0][3],G[0][4],G[0][5]);
printf("\n%f %f %f %f %f %f",G[1][0],G[1][1],G[1][2],G[1][3],G[1][4],G[1][5]);
printf("\n%f %f %f %f %f %f",G[2][0],G[2][1],G[2][2],G[2][3],G[2][4],G[2][5]);
printf("\n%f %f %f %f %f %f",G[3][0],G[3][1],G[3][2],G[3][3],G[3][4],G[3][5]);
printf("\n%f %f %f %f %f %f",G[4][0],G[4][1],G[4][2],G[4][3],G[4][4],G[4][5]);
printf("\n%f %f %f %f %f %f",G[5][0],G[5][1],G[5][2],G[5][3],G[5][4],G[5][5]);
*/

  /** Convert logit values to state values **/
/*printf("\ngot here P1 %f %f",next_f[P1],next_f[UH]);*/
  lrat = log(next_f[P1]/next_f[UH]);
  if (lrat<0) nxt_state[P1-1] = -pow((-lrat*scale),(1./power)) + half;
         else nxt_state[P1-1] = pow((lrat*scale),(1./power)) + half;
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/*printf("\ngot here P2 %f %f",next_f[P2],next_f[UH]);*/
  lrat = log(next_f[P2]/next_f[UH]);
  if (lrat<0) nxt_state[P2-1] = -pow((-lrat*scale),(1./power)) + half;
         else nxt_state[P2-1] = pow((lrat*scale),(1./power)) + half;
/*printf("\ngot here P3 %f %f",next_f[P3],next_f[UH]);*/
  lrat = log(next_f[P3]/next_f[UH]);
  if (lrat<0) nxt_state[P3-1] = -pow((-lrat*scale),(1./power)) + half;
         else nxt_state[P3-1] = pow((lrat*scale),(1./power)) + half;
/*printf("\ngot here P4 %f %f",next_f[P4],next_f[UH]);*/
  lrat = log(next_f[P4]/next_f[UH]);
  if (lrat<0) nxt_state[P4-1] = -pow((-lrat*scale),(1./power)) + half;
         else nxt_state[P4-1] = pow((lrat*scale),(1./power)) + half;

  return;
}

Stage Return File

#include "obj.h"
/*********************************************************************
 PNWR forest succession model
 Stage return calculation
 version HWD1 -- includes hardwood component (UH) w/encroachment rates,
                 logit expression of state space
   STATE has 4 elements:  P1, P2, P3, P3RCW
     --> 5th state is UH which is obtained by subtraction <--
*********************************************************************/
{
  INT
            /** Indices of state vector **/
          P1 = 0,
          P2 = 1,
          P3 = 2,
          P4 = 3,
          UH = 4,
            /** Number of steps corresponds to number of state variable
                increments in scenario file **/
          steps = 11;

  DECIMAL
            /** Smallest non-zero proportion value **/
          base_p = 0.001,
            /** Exponent to linearize relationship between logit and
                proportion **/
          power = 2.5,
          P3R_threshold = 0.030961749,
            /** Other temporary quantities **/
          f[5],
          half, scale, diff, l1, l2, l3, l4, denom, blogit;

  /** HALF is the half-way increment **/
  half = (steps+1.)/2.;
  /** Logit value for smallest non-zero proportion value  (constant in
        denominator is number of components-1)                **/
  blogit = log(base_p/(1.-4*base_p));
  /** SCALE is the scale parameter for the polynomial curve (paired negation
        operators allow exponentiation to fractional power) **/
  scale = -pow(-(1.-half),power)/blogit;

  /** Read current state variables and convert them to logits
       (Paired negation operators allow exponentiation to fractional power) **/
  diff = cur_state[P1]-half;
  if (diff < 0) l1 = -pow(-diff,power)/scale;
           else l1 = pow(diff,power)/scale;
  diff = cur_state[P2]-half;
  if (diff < 0) l2 = -pow(-diff,power)/scale;
           else l2 = pow(diff,power)/scale;
  diff = cur_state[P3]-half;
  if (diff < 0) l3 = -pow(-diff,power)/scale;
           else l3 = pow(diff,power)/scale;
  diff = cur_state[P4]-half;
  if (diff < 0) l4 = -pow(-diff,power)/scale;
           else l4 = pow(diff,power)/scale;
  denom = 1.+exp(l1)+exp(l2)+exp(l3)+exp(l4);

  /** Calculate current forest composition states **/
  f[P1] = exp(l1)/denom;
  f[P2] = exp(l2)/denom;
  f[P3] = exp(l3)/denom;
  f[P4] = exp(l4)/denom;
  f[UH] = 1./denom;
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  /** Amount of P3_RCW (P4) habitat must exceed threshold value.  If it does,
        return is 1000+(habitat-threshold).  If it does not, return is 0. **/
  if (f[P4]<P3R_threshold) result = 0.;
  else result = 1000. + (f[P4]-threshold);

 return  (result);
}

Scenario File

!--------------------------------------------------------------------
! PNWR forest succession model -- version HWD1, ALT2
!--------------------------------------------------------------------
MAX;
TITLE   ">>> PNWR forest succession model (HWD1) <<<"   ;
!REPORT_ALL      ;
!TRACE ;
ITERATIONS   20|500;
!ITERATIONS 1;
NO_CHANGE 3;

! Simulation settings
! Initial forest state is (P1=0.1227 P2=0.0741 P3=0.6173 P3R=0.001 UH=0.1849)
INIT_STATE  4.3838546  3.7726398  8.4877613  1.5290676;
SIM_TRIALS 1000;
SIM_REPORT 1 1 1 1 1 1 1;
NO_INTERP;

STATE   "P1 index";
STATE   "P2 index";
STATE   "P3 index";
STATE   "P3R index";

DECISION "P2 harvest";
DECISION "P3 harvest";
DECISION "P3R harvest";

DISTRIB "Hdwd P1";
RV "Hdwd P1";

!EVENT 1.0 0.0006;

EVENT      0.1    0.00040810778;
EVENT      0.2    0.00049569219;
EVENT      0.4    0.00059272935;
EVENT      0.2    0.00070092313;
EVENT      0.1    0.00082774418;

DISTRIB "Cat rate";
RV "Cat rate";
!EVENT 1.0 0.003394;

EVENT   0.500   0.000000025733770;
EVENT   0.400   0.0015218462;
EVENT   0.050   0.023279722;
EVENT   0.045   0.081601660;
EVENT   0.005   0.25323891;

STAGE 1 1 1 1;
COMBINE 1|11 1|11 1|11 1|11,
        0|0.14|0.02 0|0.14|0.02 0|0.14|0.02,
        "Hdwd P1" "Cat rate";
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Appendix C.12.  Spatially-explicit Refuge simulation model.  PNWR_SIM.G is the main GAUSS program file for simulating
management on the Piedmont National Wildlife Refuge.  All subroutine and data files are called by this program, and all user-
controlled variables are specified in this file.  Simulation results are saved in the GAUSS matrix file OUTCOMES. 
PROCS1.G contains mostly general-use mathematical and transformation procedures, and PROCS2.G contains procedures
specific to the simulation model.

PNWR_SIM.G

@ Simulates burning and cutting management on the PNWR.  Inputs are (1) files
    of hexagon map attributes, (2) file of optimal regeneration decisions for
    lookup, (3) list of compartments to burn through time, and (4) list of
    compartments to cut through time.  Outputs are (1) distribution and
    number of hexagons occupied by RCWs and (2) densities of WOTH.  @

new;
library pgraph;

#include "d:\\pnwr\\procs1.g";

begtime = date;

rndseed 492407754;

@ Input path for hexagon attribute data @
pathname = "d:\\pnwr";

@ Input path for forest regeneration decision matrix @
dec_path = "d:\\pnwr\\";

@ File name of forest regeneration decision matrix @
dec_file = "hwd1_opt";

@ Parameters @
  start_yr = 2000;                     @ Start year @
  timemax = 100;                       @ Number of iterations @
  allcomp = 34;                        @ Total number of compartments @
  maxcomp = {5, 4, 4, 4, 4, 4, 4, 5};  @ Sizes of management groups @
  startgrp = 5;              @ Management group to start in year START_YR+1 @

  reps = 20;                 @ Number of decision replicates @
  strings = 9;               @ Number of decision strings @

  burn_max = {7, 17};        @ Max number of compartments to burn per year @
    @ BURN_MAX = 17 ==> 2-yr avg frequency @
    @            11 ==> 3-yr               @
    @             9 ==> 4-yr               @
    @             7 ==> 5-yr               @

  prodmod = 1;                 @ RCW productivity model selection @
  wothmod = 1;                 @ WOTH model selection @
  outpath = "d:\\pnwr";

@ Forest growth model parameters @
  thinindx = 0.6;     @ Values <1.0 represent degree of thinning from below @
  b1 = 2.81706;       @                                @
  b2 = -11935.2;      @ Bailey-Ware model coefficients @
  b3 = 0.043493;      @                                @
  age0 = 8;           @ Age at which BA follows Bailey-Ware model @
  ba0 = 0.46;         @ Constant BA (2.00 ft^2/ac) value up through age AGE0 @
  ba_max = 35;        @ Maximum BA (152 ft^2/ac) allowed.  BA model is        @
                      @ sensitive to errors introduced by discretization of   @
                      @ stands and treatment years into hexagons, especially  @
                      @ for P2 stands.                                        @
  @  m_rates = {0, 0.0125, 0.025}; @
  m_rates = {0, 0, 0};    @ Stand mortality rates for P2, P3, P4 @

@ Parameter for canopy closure model @
  ccrate = 0.79;

@ Recruitment cluster establishment parameters @
  clusgrow = 0.10;    @ Cluster growth rate @
  strmdist = 125;     @ Minimum stream distance @
  @ Nesting habitat requirements @
  rc_age1 = 40;
  rc_amt1 = 0.85;     @ Min quantity of RC_AGE1 or older @
  rc_age2 = 60;
  rc_amt2 = 0.50;     @ Min quantity of RC_AGE2 or older @
  @ 800-m (48-ring) foraging habitat requirements @
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  fh1_age = 40;        @ min age @
  fh1_ba1 = 9.1827;    @ min BA (9.1827 m^2/ha=40 ft^2/ac) @
  fh1_ba2 = 18.3655;   @ max BA (18.3655 m^2/ha=80 ft^2/ac) @
  fh1_area = 505857;   @ min area of this habitat (505857 m^2=125 ac) @
  out800 = {0.5,0.2,0.2};    @ Estimated habitat provisions
                                 for ONF, Priv-in, Priv-out @
  @ 400-m (12-ring) foraging habitat requirements @
  fh2_age = 40;        @ min age @
  fh2_ba1 = 9.1827;    @ min BA (9.1827 m^2/ha=40 ft^2/ac) @
  fh2_ba2 = 18.3655;   @ max BA (18.3655 m^2/ha=80 ft^2/ac) @
  fh2_area = 252929;   @ min area of this habitat (252929 m^2=62.5 ac) @
  out400 = {0.5,0.2,0.2};    @ Estimated habitat provisions
                                 for ONF, Priv-in, Priv-out @
  @ Min nearest-neighbor distance to any cluster @
  clus_d1 = 402.336;     @ (402.336 m = 1/4 mile) @
  @ Max desired distance from any active cluster @
  clus_d2a = 1609.344;   @ (1609.344 m = 1 mile) @
  @ Max permissible distance from any active cluster @
  clus_d2b = 3218.688;   @ (3218.688 m = 2 miles) @
  @ Active cluster distance increment @
  clus_inc = 402.336;    @ (402.336 m = 1/4 mile) @

@ Parameters for transformations used in regeneration decision look-up @
  dec_parm = {11, 0.001, 2.5};    @ Parameters STEPS, BASE_P, and POWER @

@ Weights for geometric avg of area and distance for regeneration site choice @
  wt_area = 1;
  wt_dist = 1;

@ Regeneration patch size limit @
  cutlimit = 101171;     @ (101171 m^2 = 25 ac) @

@ Understory vegetation model parameters @
  v1 = -1461.4;
  v2 = 36554.6;
  v3 = 21.4;
  v4 = 100;
  v5 = -14.8;
  v6 = 13.8;

@ Vegetation reductions following burns @
  burnparm = {0.76, 0.87, 0.97};    @ Years 1, 2, 3, post-burn, respectively @

@ Thinning parameters @
  ba_thin = 13.7741;   @ residual BA (13.7741 m^2/ha=60 ft^2/ac) @
  ba_ceil = 18.3655;   @ ceiling BA (18.3655 m^2/ha=80 ft^2/ac) @
  thin_age = 16;       @ min age eligible for thinning @

@ Hardwood encroachment parameters @
  burnlim = 5;    @ Years since burning required before encroachment occurs @
  thinlim = 5;    @ Years since thinning required before encroachment occurs @
  hwd_p1 = 0.0006;  @ Annual average rate of P1 pine loss to hardwood @
  hwd_p2 = 0.015;   @ Annual average rate of P2 pine loss to hardwood @
  hwd_p3 = 0.015;   @ Annual average rate of P3 pine loss to hardwood @
  hwd_p4 = 0.03;    @ Annual average rate of P4 pine loss to hardwood @
  hwd_cv = 40;      @ CV (percent) for random encroachment rate @

  hwd_parm = hwd_p1 | hwd_p2 | hwd_p3 | hwd_p4;
  if hwd_cv<=0;
    hwd_beta = 0;
  else;
    hwd_parm = hwd_parm ~ (hwd_parm*hwd_cv/100)^2;
    hwd_beta = betaparm(hwd_parm[1,.],1);
  endif;

@ Forest disturbance parameters @

  dstrb_mn = 0.003394;    @ Mean rate (proportion) of disturbance @
  dstrb_vr = 0.0003572;   @ Variance of disturbance proportion @
  dstrb_hw = 0.25;     @ Proportion of disturbed UH area that regens as pine @

  if dstrb_vr<=0;
    dstrb_b = 0;
  else;
    dstrb_b = betaparm(dstrb_mn~dstrb_vr,1);
  endif;

@ Logistic regression parameters from Loeb et al study @
  loebparm = {5.134, -0.45738};
  ba_adj = 1 ~ (0/4.356);  @ Scale and shift parameters for alt Loeb model @
  ba_adj = 1.05 ~ (10/4.356);  @ Scale and shift parameters for alt Loeb model @
  ba_adj = 1.02 ~ (5/4.356);  @ Scale and shift parameters for alt Loeb model @
  ba_adj = 1.2 ~ (30/4.356);  @ Scale and shift parameters for alt Loeb model @

@ Understory density-midstory BA conversion parameters @
  tba = 2/3;             @ Exponentiation applied to veg density @
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  avg_tvd = 85.132063;   @ Mean transformed veg dens (kg/ha) in >80 yr stands@
  avg_mba = 39.962264;   @ Weighted mean of midstory BA (ft^2/ac) from Loeb @
  midba = tba | avg_tvd | avg_mba;

@ RCW productivity parameters @
  @  Distribution of nestling group sizes @
  nestling = {0 0.405356954550248,
              1 0.114837076874407,
              2 0.263699954304194,
              3 0.191641182466871,
              4 0.0244648318042813};
  mn_nestl = nestling[.,1]'*nestling[.,2];  @ Mean nestling group size @
  fa_0 =  75;          @ 'Intercept' value for psi function @
  surv_fl = 0.380;     @ Fledgling survival value from Maguire et al @
  model1 = {0, 0};     @ Model 1 values for theta, tau @
  model2 = {0.8, 2};   @ Model 2 values for theta, tau @
  prodparm = model1 ~ model2;
  logit_fl = log(surv_fl/(1-surv_fl));
  expon = (nestling[.,2]/mn_nestl - 1)';

@ RCW recruitment probability parameters @
  recrparm = {0.080979, -0.69077};  @ I_0 and B2, respectively @

  @ "Average" X-Y location and productivity in HEF @
  hef_x = 250500;
  hef_y = 3661000;
  hef_prod = 6;

@ WOTH model parameters @
  @  Intercept, time since burning parameters for low veg model @
  woth_p1 = {0.34823 0.02332};
  @  Intercept, time since burning, veg density parms for veg logit model @
  woth_p2 = {-0.59658 0.03339 0.00015544};

  @ Veg input limits for WOTH models @
  ba_lims = {47.1429, 80};
  cc_lims = {0.739865, 0.954545};
  low_lims = {0.310667, 0.753401};
  log_lims = {-0.681402, 0.343801};

  @  Intercept, BA, CC, low veg, BA*CC parameters for hardwood WOTH model @
  woth_p3 = { 18.89173 -0.45437 -26.77392 -1.82827 0.55391 };
  @  Variance-covariance matrix for WOTH_P3 @

  woth_p3v = { 501.33068175    -7.423478 -556.9614474  -4.89917432 8.2981171871,
                  -7.423478 0.1116236093 8.2514513481 0.0862719842 -0.124978159,
               -556.9614474 8.2514513481 620.60796105  5.045491335 -9.247523585,
                -4.89917432 0.0862719842  5.045491335 1.7273684569 -0.105250231,
               8.2981171871 -0.124978159 -9.247523585 -0.105250231 0.1403682674};

  @ Intercept, BA, low veg, veg logit, BA*logit, low*logit for pine WOTH model@
  woth_p4 = { -7.80291 0.09640 -4.65806 -14.80672 0.25183 -5.99684 };
  @  Variance-covariance matrix for WOTH_P4 @
  woth_p4v =
  {2.6595292625 -0.043487868 0.5536141562  7.002288716 -0.117015531 1.7837461772,
   -0.043487868 0.0007602069 -0.015342165  -0.11705057 0.0020299843 -0.039635776,
   0.5536141562 -0.015342165 0.9650422103 1.7847983221 -0.039930765 1.8845440159,
    7.002288716  -0.11705057 1.7847983221 22.135985069 -0.359324972 3.9725262098,
   -0.117015531 0.0020299843 -0.039930765 -0.359324972 0.0062131852 -0.116866731,
   1.7837461772 -0.039635776 1.8845440159 3.9725262098 -0.116866731 8.2933866172 };

@ Columns of HEX_FOR input matrix:
  1     2   3  4 5    6    7    8        9       10       11     12    13
hex_id row col x y inside c1 trtyear prevyear lastburn lastthin d_hwb d_hwu
 14  15   16   17   18  19   20   21   22  23    24      25
d_o d_w area1 age1 ba1 cc1 area2 age2 ba2 cc2 rcw2000 clustype
@

@ HEX_FOR is the data matrix of hexagon indices, treatment variables, and
    forest cover attributes.  HDR_FOR is a matrix of field names and width
    and precision information @
load path=^pathname hex_for, hdr_for;

@ Columns of HEX_ATTR input matrix:
   1      2      3      4       5       6     7     8      9
hex_id i_medn p_medn s_dens d_stream d_pnwr d_onf d_p_in d_p_out
   10     11     12      13     14      15     16     17
b4_pnwr b4_onf b4_pin b4_pout b8_pnwr b8_onf b8_pin b8_pout
   18       19      20      21       22       23      24      25
b16_pnwr b16_onf b16_pin b16_pout b32_pnwr b32_onf b32_pin b32_pout
@

@ HEX_ATTR is the data matrix of hexagon physical attributes, such as
   site index, slope position, distances, and ownership proportions.
   HDR_ATTR is a maxtrix of attribute names and precision information @
load path=^pathname hex_attr, hdr_attr;
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@ Load data from forest regeneration decision matrix @
infile = dec_path $+ dec_file;
open fh = ^infile for read;
dectable = readr(fh,15000);
fh = close(fh);

@ Values for rectangular grid dimensions from SAS grid creation program @
gridsize = ( 1 ~ 1 ) | ( 101 ~ 98 );

@ Full hexagon size @;
fullsize = maxc(hex_for[.,6]);

@ Rows in F_STATE matrix @;
hexes = rows(hex_for);

@ Compute and save inter-cell distances
    After computing the first time, comment out following 2 lines and
    use LOAD statement to reload distance matrix                      @
hexdist = sqrt( (hex_for[.,4]-hex_for[.,4]')^2 +
                (hex_for[.,5]-hex_for[.,5]')^2 );
save path=^pathname hexdist;
load path=^pathname hexdist;

@ Load matrix of compartment treatment schedules @
load path=^pathname bestcode;

@ Load these procs here because they use global variables specified above @
#include "d:\\pnwr\\procs2.g";

@ Distances matrix:  HEX_ID, Distances to stream and property boundaries @
dist = hex_attr[.,1 5:9];

@ If pine components are missing in a hexagon (area=0) convert age, BA,
    and canopy closure values to zero @
hex_for[.,17:19 21:23] = missrv(hex_for[.,17:19 21:23],0);

@ Make a list of candidate cells for recruitment clusters.  Remove all  @
@   cells occurring on refuge edge or too close to streams.             @
cand0 = hex_for[.,1] ~ ones(hexes,1);

@   Eliminate portions of hexagons found on refuge edge @

cand0[.,2] = cand0[.,2].*(hex_for[.,6]/fullsize.>=0.9999);

@   Eliminate hexagons too close to streams @
cand0[.,2] = cand0[.,2].*(dist[.,2].>=strmdist);

@   Append indicators in CAND0 to HEX_FOR;  @
hex_for = hex_for ~ cand0[.,2];

@ Times of last burning and thinning will be tracked separately in
    each pine stand.  Move TRTYEAR variable (col 8) to end of HEX_FOR
    (new col 27), put copies of LASTBURN (col 10) into cols 8-9, and
    put copies of LASTTHIN (col 11) into cols 10-11.                   @
hex_for = hex_for ~ hex_for[.,8];
hex_for[.,8] = hex_for[.,10];
hex_for[.,9] = hex_for[.,10];
hex_for[.,10] = hex_for[.,11];

@ Replace year of last thinning with age at last thinning.  For stands that
    were P1 at time of last treatment, age at last thinning = 0.            @
lastthin = zeros(hexes,2);
ageattrt = hex_for[.,17 21] - (start_yr - hex_for[.,10 11]);
not_p1 = (ageattrt.>=16);
lastthin = substute(lastthin,not_p1,ageattrt);
hex_for[.,10 11] = lastthin;

@ Replace year of last burning with age at last burning.  Maximum time
    since burn = 10 years.                                                  @
  @ If year of last burn = 0, then last burn occurred more than 10 years ago.
      Replace non-zero year values with age at last burn.                   @
ageattrt = substute(hex_for[.,8 9],(hex_for[.,8 9].>0),
                    hex_for[.,17 21] - (start_yr - hex_for[.,8 9]));
ageattrt = substute(ageattrt,(ageattrt.<16),0);
hex_for[.,8 9] = ageattrt;

@ Hardwood encroachment into initial time period @
hex_for = hwdcreep(hex_for);

@ Project forest state into the initial time period @
hex_for = for_grow(hex_for,hex_attr);

@ Forest disturbance at initial time period @
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hex_for = disturb(hex_for);

@ Project understory state given projected overstory state @
veg = undstory(hex_for,hex_attr);

@print "Initial RCW state " (sumc(hex_for[.,24]));@

@ Project RCW state into initial time period @
hex_for = rcw_grow(hex_for,hex_attr,veg,prodmod);

@ Project WOTH state into initial time period @
woth = wothdens(hex_for,veg);

proc (1) = time_sim(decis,burn);
  local forest,t,len,vegdens,top_n,rcwactiv,rcwquota,comps,timevec,
    thistime,looptime,pine1,pine2,uh,p1,p2,p3,p4,p1_tot,p2_tot,p3_tot,p4_tot,
    uh_tot,for_tot,statevec,result,compsel;

  format 10,6;

  @ Initialize FOREST to HEX_FOR at beginning of each time projection @
  forest = hex_for;

  len = rows(decis);
  compsel = (forest[.,7].==seqa(1,1,34)');

  t = 0;
  vegdens = undstory(forest,hex_attr);
  woth = wothdens(forest,vegdens);
  result = t~sumc(forest[.,24])~sumc(woth);
  timevec = zeros(10,1);
  thistime = timevec;
  looptime = date;
  do while (t<len);
    t = t+1;

    @ Select groups of compartments for this year @
    comps = kgrpselr(allcomp,decis[t,2],decis[t,1])';

    @ Select patches in COMPS for regeneration @
    forest = regencut(forest,comps);

    thistime[1] = ethsec(looptime,date);
    looptime = date;

    @ Compute vegetation state prior to thinning @
    vegdens = undstory(forest,hex_attr);
    thistime[2] = ethsec(looptime,date);
    looptime = date;

    @ Carry out thinning in compartments @
    forest = thinning(forest,hex_attr,comps);
    thistime[3] = ethsec(looptime,date);
    looptime = date;

    @ Carry out burning in compartments selected from refuge at large @
    {forest,top_n} = burning(forest,vegdens,burn);
    thistime[4] = ethsec(looptime,date);
    looptime = date;

    rcwactiv = sumc(forest[.,24]);
    @ Update the RCW recruitment quota every 5 years @
    if t==1 or t%5==0;
      rcwquota = clusgrow*rcwactiv;
    endif;

    @ Place RCW recruitment clusters @
    forest = recrclus(forest,hex_attr,rcwquota);
    thistime[5] = ethsec(looptime,date);
    looptime = date;

    @ Hardwood encroachment @
    forest = hwdcreep(forest);
    thistime[6] = ethsec(looptime,date);
    looptime = date;

    @ Project forest state into the next time period @
    forest = for_grow(forest,hex_attr);
    thistime[7] = ethsec(looptime,date);
    looptime = date;

    @ Forest disturbance @
    forest = disturb(forest);
    thistime[8] = ethsec(looptime,date);
    looptime = date;
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    @ Project understory state given future overstory state @
    vegdens = undstory(forest,hex_attr);
    thistime[9] = ethsec(looptime,date);
    looptime = date;

    @ Project RCW state into next time period @
    forest = rcw_grow(forest,hex_attr,vegdens,prodmod);
    thistime[10] = ethsec(looptime,date);
    looptime = date;

    @ Project WOTH state into next time period @
    woth = wothdens(forest,vegdens);

    result = result | (t~sumc(sumc(compsel.*forest[.,24])~woth)');

    timevec = timevec + thistime;

  endo;

  timevec = timevec/len/100;

  retp(result);

endp;

now1 = date;
now2 = now1;
outcomes = {};
i = 0;
do while i<reps;
  i = i+1;
  j = 0;
  do while j<strings;
    j = j+1;

    @ Construct decision vector @
    decis = bestcode[j,.];
    n_reps = ones(1,ceil(timemax/cols(decis))+1);
    decis = n_reps*~decis;
    decis = decis[startgrp:startgrp+timemax-1]';
    groups = n_reps*~maxcomp';
    groups = groups[startgrp:startgrp+timemax-1]';

    times = seqa(start_yr+1,1,timemax);
    decis = decis~groups;

    k = 0;
    do while k<rows(burn_max);
      k = k+1;
      burn = burn_max[k];
      format /rdn 4,0;
      print "Rep " i ", Decis " j ", Burn " burn;;
      result = time_sim(decis,burn);
      format /rdn 6,0;
      print ", Active RCW & WOTH = " (sumc(result)');;
      timer1 = ethsec(now1,date)/100/60;
      timer2 = ethsec(now2,date)/100/60;
      now2 = date;
      format /rdn 6,1;
      print ", Sim time " timer2 " Elap time " timer1;
      outcomes = outcomes | (i~j~burn~vec(result)');
      save path=^pathname outcomes;
    endo;
  endo;
endo;

etstr(ethsec(begtime,date));

PROCS1.G

@  PROCS1.G  @

proc i_to_p(ivector,steps,base_p,power);
  @
    Given a K-vector (IVECTOR) of index values drawn from a rectangular
      grid of dimension K, each dimension indexed by i=(1, 2, ..., STEPS),
      I_TO_P converts the set of indices to a set of power-transformed
      proportions P.  The BASE_P parameter specifies the smallest value
      of the proportion when the index value is at its smallest value
      (i.e., i=1).  The POWER parameter specifies the degree of
      exponentiation to be applied to the component ratios in computing
      the logits.  This procedure is the inverse of P_TO_I.
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  @
  local numcomps,half,blogit,scale,diff,signs,denom,p,logits;

  numcomps = rows(ivector)+1;
  half = (steps+1)/2;
  blogit = ln(base_p/(1-(numcomps-1)*base_p));
  scale = -((-(1.-half))^power)/blogit;

  @ Read current state variables and convert them to logits @
  diff = ivector-half;
  signs = -(diff.<0) + (diff.>=0);
  logits = signs.*(signs.*diff)^power/scale;
  denom = 1+sumc(exp(logits));

  @ Calculate proportions @
  p = ( exp(logits) | 1 ) / denom;
  retp(p);

endp;

proc p_to_i(pvector,steps,base_p,power);
  @
    Inverse of procedure I_TO_P.  See I_TO_P for explanation of
      parameters.
  @
  local numcomps,half,blogit,scale,logits,signs,i;

  numcomps = rows(pvector);
  half = (steps+1)/2;
  blogit = ln(base_p/(1-(numcomps-1)*base_p));
  scale = -((-(1.-half))^power)/blogit;

  logits = ln(pvector[1:(numcomps-1)]/pvector[numcomps]);
  signs = -(logits.<0) + (logits.>=0);

  @ Calculate indices @
  i = (abs(logits)*scale)^(1/power).*signs + half;
  retp(i);

endp;

proc dlookup(x,dmatrix,transfrm);
  @
    Looks up decision value vector from decision table given current
        system state.  System state is first transformed to index state, then
        look-up is performed on index state.
  @
  local base_p,power,steps,c,y,dec,x_i,q,dec1;

  steps = transfrm[1];
  base_p = transfrm[2];
  power = transfrm[3];

  @ Calculate index state from system state @
  x_i = p_to_i(x,steps,base_p,power);
  c = rows(x_i);

  @ Round up values less than 1 @
  x_i = x_i + (x_i.<=1);

  @ Round down values greater than STEPS @
  x_i = x_i + steps*(x_i.>=steps);

  @ Round off other values to nearest integer @
  x_i = (round(x_i))';

  q = seqa(c-1,-1,c);
  q = steps^q;
  q = (x_i-1)*q+1;

  dec = dmatrix[q,(c+1):cols(dmatrix)];

  retp(dec');

endp;

proc (1) = combin(n,k);
  /***************************************************************************
  Computes combinatorial function for integers N and K, returns integer COMBIN.
  ***************************************************************************/
  local combin,diff,x,i;

  if k==0 or k==n;
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    combin = 1;
  else;
    diff = n-k;
    if k<diff;
      x = k;
    else;
      x = diff;
    endif;
    combin = 1;
    i = 0;
    do while i<x;
      i = i+1;
      combin = combin*((n-i+1)/i);
    endo;
  endif;
  combin = round(combin);
  retp(combin);

endp;

proc (1) = kgrpselr(n,k,r);
  /*************************************************************************
  Provides the R-th ordered combination of N objects chosen K at a time.
    Valid values of R are 0, 1,..., COMBIN(N,K)-1.
    (ref: Algorithm 2.8 (p. 45) of Kreher & Stinson 1999)
  *************************************************************************/
  local krow,x,i,z;

  if k==0;
    krow = {};
  else;
    krow = zeros(1,k);
    x = 1;
    i = 0;
    do while i<k;
      i = i+1;
      z = combin(n-x,k-i);
      do while z<=r;
        r = r-z;
        x = x+1;
        z = combin(n-x,k-i);
      endo;

      krow[1,i] = x;
      x = x+1;
    endo;
  endif;
  retp(krow);

endp;

proc (1) = rnk_kgrp(n,x,sorted);
  /*************************************************************************
  Compute the rank order R of a vector of objects chosen K at a time from N
    total objects.  X is a row vector of size K.  If X is already sorted,
    set SORTED = 1; otherwise, SORTED = 0.  RNK_KGRP is the inverse
    procedure of KGRPSELR, i.e., R = RNK_KGRP(N,KGRPSELR(N,K,R),SORTED).
  *************************************************************************/
  local y,k,r,i,npart,kpart,j,m;

  y = x';
  if not sorted;
    y = sortc(x',1);
  endif;
  k = rows(y);
  r = 0;
  i = 0;
  do until i==k;
    i = i+1;
    npart = n-i;
    kpart = k-i;
    j = y[i];
    m = i;
    do until m==j;
      npart = npart-1;
      m = m+1;
      r = r + combin(npart,kpart);
    endo;
  endo;

  retp(r);

endp;
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proc (1) = ksuccess(t,n,k);
  /**************************************************************************
  For vector T representing a single draw of K of N objects, N>K, this
    procedure provides vector U, representing the next rank-ordered draw--
    i.e., T = KGRPSELR(N,K,R) and U = KGRPSELR(N,K,R+1)
    (ref. Algorithm 2.6 (p. 43) of Kreher & Stinson 1999)
  **************************************************************************/
  local u,i,j;

  u = t;
  i = k;
  j = (i==0) + i*(i>0);       @ So that T vector is not given a zero index @
  do while i>=1 and t[j]==n-k+i;
    i = i-1;
    j = (i==0) + i*(i>0);
  endo;
  if i==0;
    u = {};
  else;
    j = i-1;
    do while j<k;
      j = j+1;
      u[j] = t[i]+1+j-i;
    endo;
  endif;
  retp(u);
endp;

proc (1) = uniqmat(x,columns,solitary,tol);

  /***  Procedure UNIQMAT  ****************************************************
    Inputs:  X        = N x K matrix
             COLUMNS  = P x 1 vector
             SOLITARY = 0/1 scalar
             TOL      = scalar
    Output:  M x (K+1) matrix, M<=N

    Removes duplicates of records in X.  Duplicated records are those which
    have the same values (within tolerance level TOL) in columns indicated by
    COLUMNS variable.  If SOLITARY=0, one record of a set of duplicates is
    retained.  If SOLITARY=1, all records in a duplicated set are removed

    (i.e., only unique records in X are retained).  Matrix returned has M rows,
    M <= N.  Return matrix is sorted by the target columns, but an extra column
    (column P+1) stores the original row index of X.  From this column, one can
    determine the sort order of X and which rows were removed from X.
  ****************************************************************************/

  local y,ycount,i,count,target,uniq,j,xcol,xindex,colindx;

  xindex = seqa(1,1,rows(x));
  xcol = cols(x);

  y = x[.,columns];            /** Round sorting columns to tolerance level **/
  y = round(y/tol)*tol;
  x = x~xindex~y;     /** Append row index column XINDEX and rounded values **/

  colindx = seqa(1,1,cols(x));
  colindx = selif(colindx,colindx.>xcol+1);
  x = sortmc(x,colindx);                     /**  Sort X by rounded values  **/

  y = {};
  ycount = {};
  i = 0;
  count = 0;
  do while i<rows(x);   /**  Travel down rows of X looking for dups **/
    i = i+1;
    count = count+1;
    target = x[i,columns];    /**  Pull out target row,  **/
    y = y|x[i,.];             /**  augment output matrix Y **/
    uniq = 0;                 /**  Assume target has duplicates below **/
    j = i;
    do until uniq==1;              /** Scan rows below for 1st nonduplicate **/
      if j==rows(x);                    /** Condition for end of file **/
        ycount = ycount|count;
        i = rows(x);
        uniq = 1;
      else;                             /** Not end of file **/
        j = j+1;
        if sumc((abs(target-x[j,columns]).>tol)');
                                           /** Found first nonduplicate **/
          uniq = 1;
          i = j-1;
          ycount = ycount|count;
        else;                              /** Found duplicate **/
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          count = count+1;                    /** Increment counter on target*/
        endif;
      endif;
    endo;                          /** Found nonduplicate, or end of file **/
    if uniq==1;
      count = 0;
    endif;
  endo;                 /**  Next target row in X **/
  if solitary==1;              /** If SOLITARY=1, **/
    y = selif(y,ycount.==1);     /** remove all in duplicated set **/
  endif;
  retp(y);              /**  Return output matrix **/
endp;

proc (1) = gridindx(xy,minmax);

  /***  Procedure GRIDINDX  ***************************************************
    Inputs:  XY     = N x 2 matrix
             MINMAX = 2 x 2 matrix
    Output:  N x 1 vector

    Converts I,J addresses for N cells on a 2-dimensional grid into a
    sequential (1-dimensional) address.  Addresses are contained in matrix XY.
    MINMAX contains grid dimensions:  [1,1]=column (I) min, [1,2]=row (J) min,
    [2,1] = column (I) max, [2,2] = row (J) max.  Inverse of INDXGRID
    procedure.
  ****************************************************************************/

  local g;

  g = round((minmax[2,1]-minmax[1,1]+1)*(xy[.,2]-1) + xy[.,1]);

  retp(g);

endp;

proc (1) = indxgrid(i,minmax);

  /***  Procedure INDXGRID  ***************************************************
    Inputs:  I      = N x 1 vector
             MINMAX = 2 x 2 matrix

    Output:  N x 2 vector

    Converts N 1-dimensional sequential addresses to I,J addresses on a
    2-dimensional spatial grid.  MINMAX contains grid dimensions:
    [1,1]=column (I) min, [1,2]=row (J) min, [2,1] = column (I) max,
    [2,2] = row (J) max.  Inverse of GRIDINDX procedure.
  ****************************************************************************/

  local x,y;

  x = i%(minmax[2,1]-minmax[1,1]+1);
  x = recode(x,(x.==0),minmax[2,1]);
  y = round((i-x)/(minmax[2,1]-minmax[1,1]+1) + 1);

  retp(x~y);

endp;

@  Function GRIDXY -- Creates a matrix of (X,Y) coordinate pairs for a grid  @
@   of row size R (Y values) and column size C (X values).                   @
fn gridxy(r,c) = seqa(1,1,c).*.ones(r,1) ~ ones(c,1).*.seqa(1,1,r);

proc (1) = ring(x,y,minmax,n);

  /***  Procedure RING ********************************************************
    Inputs:  X,Y    = scalar
             MINMAX = 2 x 2 matrix
             N      = scalar, value = {6, 12, 48}
    Output:  K x 2 matrix, K<=SIZE

    Given a cell address (X,Y), RING returns I,J addresses of the N nearest-
    neighboring cells of (X,Y).  MINMAX contains values that defines the extent
    of the spatial grid:  [1,1]=column (I) min, [1,2]=row (J) min,
    [2,1] = column (I) max, [2,2] = row (J) max.  RING returns N addresses
    if the neighborhood ring does not cross a grid boundary, otherwise, RING
    returns some number smaller than N.
  ****************************************************************************/

  local x_vec,x_odd,x_even,r,e1,e2,e3,e4,z;

  @ X_VEC vectors are offsets in the X direction, X_ODD are offsets   @
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  @  in the Y direction when X is odd, and X_EVEN are offsets in the  @
  @  Y direction when X is even.                                      @

  if (n==6);
    x_vec  = {-1  0  1  1  0 -1};
    x_odd  = { 0  1  0 -1 -1 -1};
    x_even = { 0 -1  0  1  1  1};

  elseif (n==12);
    x_vec  = {-1 -1  0  1  1  2  1  1  0 -1 -1 -2};
    x_odd  = { 0  1  1  1  0  0 -1 -2 -1 -2 -1  0};
    x_even = { 1  2  1  2  1  0  0 -1 -1 -1  0  0};

  elseif (n==48);
    x_vec  = {-1 -1  0  1  1  2  1  1  0 -1 -1 -2
              -2 -3 -3 -2 -1 -1  0  0  1  1  2  3  2  3  4  3  3  4
               2  3  3  2  1  1  0  0 -1 -1 -2 -3 -2 -3 -4 -3 -3 -4};
    x_odd  = { 0  1  1  1  0  0 -1 -2 -1 -2 -1  0
               1  1  2  2  2  3  2  3  3  2  2  2  1  1  1  0 -1 -1
              -1 -2 -3 -2 -3 -4 -2 -3 -4 -3 -2 -3 -1 -2 -1 -1  0  1};
    x_even = { 1  2  1  2  1  0  0 -1 -1 -1  0  0
               1  2  3  2  3  4  2  3  4  3  2  3  1  2  1  1  0 -1
              -1 -1 -2 -2 -2 -3 -2 -3 -3 -2 -2 -2 -1 -1 -1  0  1  1};

  endif;

  x_odd = (x_vec | x_odd)';
  x_even = (x_vec | x_even)';

  @ Calculate coordinates of cells in ring @
  if (x%2<0.001);      @ X even @
    r = (x~y) + x_even;
  else;                @ X odd @
    r = (x~y) + x_odd;
  endif;

  @ Test for cells outside of grid boundaries @
  e1 = (minmax[1,1].>r[.,1]);
  e2 = (minmax[1,2].>r[.,2]);
  e3 = (minmax[2,1].<r[.,1]);
  e4 = (minmax[2,2].<r[.,2]);

  @ Replace coordinate values for out-of-bounds cells with grid limit values @

  r = substute(r,e1~e2,minmax[1,.]);
  r = substute(r,e3~e4,minmax[2,.]);

  z = gridindx(r,minmax);

  @ Remove duplicate (out-of-bound) cells @
  r = r[uniqindx(z,1),.];

  @ Remove focal cell from set of addresses @
  r = delif(r,r[.,1].==x .and r[.,2].==y);

  retp(r);

endp;

/*
** BETADIST.SRC
**   Beta distribution procedures:
**     BETAPARM -- converts between (mean, variance) and (alpha, beta)
**                     parameterizations
**     BETA_INV -- calculates inverse of beta CDF
**     BETA_EXP -- calculates expected value of beta PDF over selected domain
**
**  Clint Moore
**  8 March 2001
*/

/*
**  Proc BETAPARM
**
**  Converts between alpha/beta and mean/variance parameterizations of the
**    beta distribution.  Alpha and beta inputs must both be >0.  Mean (mu)
**    inputs must be 0<mu<1, and variance (var) inputs must be >0.  Also,
**    (1-mu)*mu > var.
**
**  Inputs:  matrix PARMS (Nx2), column 1 -- alpha, or mean parameter
**                               column 2 -- beta, or variance parameter
**           scalar SWITCH,      SWITCH=0 -- convert alpha/beta to mean/var
**                               SWITCH=1 -- convert mean/var to alpha/beta
**
**  Output:  matrix (Nx4), converted parameter values
**                            columns 1-4 -- alpha, beta, mean, variance



Appendix C.12.  Spatially-explicit Refuge simulation model.  Continued.

264

**
**  Usage:   X = BETAPARM(VALS,0);
*/
proc betaparm(parms,switch);
  local y,p1,p2,sum;

  p1 = parms[.,1];
  p2 = parms[.,2];
  y = parms;

  if switch==0;        @ alpha/beta to mean/var @
    sum = p1+p2;
    y[.,1] = p1 ./ sum;
    y[.,2] = (p1.*p2) ./ ( sum.*sum.*(sum+1) );
    y = parms~y;

  elseif switch==1;    @ mean/var to alpha/beta @
    y[.,1] = ( (1-p1).*(p1./p2) - 1 ) .* p1;
    y[.,2] = ( p1.*p1.*(p1-2) + p1.*(1+p2) - p2 ) ./ p2;
    y = y~parms;

  else;                @ null matrix returned if SWITCH not correct @
    y = {};
  endif;

  retp(y);
endp;

/*
**  Proc BETA_INV
**
**  Calculates inverse of beta CDF by simple grid search.  Adjust TOL and
**     IMAX values to change solution precision.
**
**  Inputs:  matrix P (RxC),    probability values
**           scalar ALPHA
**           scalar BETA
**                            -1
**  Output:  matrix (RxC), CDF  (P,APHA,BETA)
**
**  Usage:   X = BETA_INV(P,ALPHA,BETA);
*/

proc (1) = beta_inv(p,alpha,beta);
  local flag,i,imax,step,val,tol,test,diff,pvec,j,valmat,q;

    @ Execution control parameters @
  imax = 150;    @ maximum number of search iterations @
  tol = 1e-12;   @ tolerance value @
    @ @

  pvec = vecr(p);
  valmat = -1*ones(rows(pvec),1);
  j = 0;
  do while j<rows(pvec);

    j = j+1;
    q = pvec[j];

    if q==0 or q==1;   @ skip iterations if solution is known @
      val = q;

    else;
      step = 0.5;    @ initial step size @
      val = 0.5;     @ initial guess @
      flag = 0;
      i = 0;
      test = cdfbeta(val,alpha,beta);
      diff = q-test;

      do while (abs(diff)>tol and i<imax);
        i = i+1;
        if i==imax;         @ iteration limit reached @
          flag = 1;
        endif;
        step = step/2;      @ cut step size in half @
        if diff>0;          @ guess was too low, increase value @
          val = val+step;
        else;               @ guess was too high, decrease value @
          val = val-step;
        endif;
        test = cdfbeta(val,alpha,beta);
        diff = q-test;
      endo;

      if flag==1;           @ procedure didn't converge @
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        if val>0.9999;           @ set value=1 if close to 1 @
          val = 1;
        elseif val<0.0001;       @ set value=0 if close to 0 @
          val = 0;
        endif;                   @ otherwise leave value as is @
      endif;

    endif;

    valmat[j] = val;

  endo;

  valmat = reshape(valmat,rows(p),cols(p));

  retp(valmat);
endp;

/*
**  Proc BETA_EXP
**
**  Calculates expected value of beta random variable within a user-specified
**     domain (0<= domain limits <=1).
**
**  Inputs:  scalar ALPHA,
**           scalar BETA,
**           matrix LIMS (2xN),  upper (top row) and lower (bottom row) limits
**                                   of integration, N limit pairs
**
**  Output:  vector (N), expected value of beta r.v. for each limit pair
**
**  Usage:   X = BETA_EXP(ALPHA,BETA,LIMS);
*/

  @ temporary values of __PARM1 and __PARM2 @
__parm1 = 1;
__parm2 = 1;

  @ expectation function @
proc __xbeta(x);
  retp( x .* x^(__parm1-1) .* (1-x)^(__parm2-1) );
endp;

proc beta_exp(alpha,beta,lims);
  local coeff,gam_a,gam_b,gam_ab,scale,y;

  __parm1 = alpha;
  __parm2 = beta;
  _intord = 40;

    @ Use gamma function for small values and lnfact for large values @
  if alpha<=1;
    gam_a = ln(gamma(alpha));
  else;
    gam_a = lnfact(alpha-1);
  endif;
  if beta<=1;
    gam_b = ln(gamma(beta));
  else;
    gam_b = lnfact(beta-1);
  endif;
  if alpha+beta<=1;
    gam_ab = ln(gamma(alpha+beta));
  else;
    gam_ab = lnfact(alpha+beta-1);
  endif;
  coeff = exp(gam_ab-gam_a-gam_b);

    @ Calculate scaling factors @
  scale = ( cdfbeta(lims[1,.],alpha,beta) - cdfbeta(lims[2,.],alpha,beta) )';

  y = intquad1(&__xbeta,lims) * coeff ./ scale;

  retp(y);
endp;

PROCS2.G

proc (1) = wothdens(f_state,veg);
  /***************************************************************************
    Estimates wood thrush population given forest overstory and understory
      attributes.  Procedure takes as input F_STATE, the current state of the
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      forest hexagon grid, and VEG, the vector of hexagon understory
      vegetation densities.  Program returns WOTH, a vector of compartment-
      specific estimated values of wood thrush population size.
  Globals:
    WOTH_P1, WOTH_P2, WOTH_P3, WOTH_P4
    WOTH_P3V, WOTH_P4V
  ***************************************************************************/
  local pineonly,avg_ba,avg_cc,avg_tb,avg_veg,comps,sumarea,hardarea,
        pinearea,lowveg,veglogit,woth_h,woth_p,woth,weights,x,v,est;

  @ Total hardwood areas within compartments @
  comps = dummybr(f_state[.,7],seqa(1,1,34));
  hardarea = comps'*(f_state[.,12]+f_state[.,13]);  @ Total hardwood area @

  @ Calculate avg BA and canopy closure in all non-P1 stands by compartment @
  @   Cols in PINEONLY are HEX_ID, COMP, ages of last burn, stands info, VEG @
  pineonly = selif(f_state[.,1 7 8:9 16:23]~veg,
                          (f_state[.,16].>0 .and f_state[.,17].>=16) .or
                          (f_state[.,20].>0 .and f_state[.,21].>=16) );

  @ Don't count P1 stands in area calculation @
  pineonly[.,5 9] = substute(pineonly[.,5 9],pineonly[.,6 10].<16,0);

  @ Total pine area in cells @
  sumarea = pineonly[.,5]+pineonly[.,9];

  @   Area-weighted average of pine basal area @
  avg_ba = (pineonly[.,5].*pineonly[.,7] + pineonly[.,9].*pineonly[.,11]) ./
              sumarea;

  @   Area-weighted average of canopy closure @
  avg_cc = (pineonly[.,5].*pineonly[.,8] + pineonly[.,9].*pineonly[.,12]) ./
              sumarea;
  @   Area-weighted average of time since last burn @
  avg_tb = pineonly[.,6 10]-pineonly[.,3 4];
  avg_tb = substute(avg_tb,avg_tb.>10,10);  @ Max time since burn = 10 yrs @
  avg_tb = (pineonly[.,5].*avg_tb[.,1] + pineonly[.,9].*avg_tb[.,2]) ./
              sumarea;

  @ Design matrix for compartment averages @
  comps = dummybr(pineonly[.,2],seqa(1,1,34));
  weights = comps.*sumarea;
  pinearea = sumc(weights);               @ Total pine area in compartments @

  sumarea = substute(pinearea,pinearea.==0,1);    @ Avoid zero denominators @

  @ Compartment weighted means of BA, converted to ft^2/ac @
  avg_ba = (weights'*avg_ba)./sumarea*4.356;

  @ Compartment weighted means of canopy closure, convert to proportion @
  avg_cc = (weights'*avg_cc)./sumarea/100;

  @ Compartment weighted means of time since burning @
  avg_tb = (weights'*avg_tb)./sumarea;

  @ Compartment weighted means of vegetation density @
  avg_veg = (weights'*pineonly[.,13])./sumarea;

  @ Estimate compartment averages of low veg density @
  lowveg = woth_p1[1] + woth_p1[2]*avg_tb;
  @   Estimates must fall between 0, 1 @
  lowveg = substute(lowveg,lowveg.>1,1);
  lowveg = substute(lowveg,lowveg.<0,0);

  @ Estimate compartment averages of veg density logits @
  veglogit = woth_p2[1] + woth_p2[2]*avg_tb + woth_p2[3]*avg_veg;

  if wothmod==2;
    @ Apply limits to model inputs @
    avg_ba = substute(avg_ba,avg_ba.<ba_lims[1],ba_lims[1]);
    avg_ba = substute(avg_ba,avg_ba.>ba_lims[2],ba_lims[2]);
    avg_cc = substute(avg_cc,avg_cc.<cc_lims[1],cc_lims[1]);
    avg_cc = substute(avg_cc,avg_cc.>cc_lims[2],cc_lims[2]);
    lowveg = substute(lowveg,lowveg.<low_lims[1],low_lims[1]);
    lowveg = substute(lowveg,lowveg.>low_lims[2],low_lims[2]);
    veglogit = substute(veglogit,veglogit.<log_lims[1],log_lims[1]);
    veglogit = substute(veglogit,veglogit.>log_lims[2],log_lims[2]);
  endif;

  @ Estimate density of WOTH in hardwood habitat @
  x = ones(rows(pinearea),1) ~ avg_ba ~ avg_cc ~ lowveg ~ avg_ba.*avg_cc;
  est = x*woth_p3';
  v = diag(x*woth_p3v*x');
  est = est+rndn(rows(est),1).*v;
  woth_h = exp(est+v/2);

  @ Estimate density of WOTH in pine habitat @
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  x = x[.,1]~avg_ba ~ lowveg ~ veglogit ~ avg_ba.*veglogit ~ lowveg.*veglogit;
  est = x*woth_p4';
  v = diag(x*woth_p4v*x');
  est = est+rndn(rows(est),1).*v;
  woth_p = exp(est+v/2);

  @ Calculate total WOTH population @
  woth = (woth_h.*hardarea + woth_p.*pinearea)/10000;

  retp(woth);

endp;

proc (1) = vegtoba(veg,parms);
  /***************************************************************************
    Given a vector of vegetation density values and a vector of tranformation
      parameters, procedure converts veg values into estimated values of
      total midstory BA.  Procedure uses values reported by Loeb et al. to
      normalize a transformation (x^r) of veg density.  Parameters in PARMS are
      (1) an exponent r, (2) a veg density mean, and (3) a BA mean.  The SD
      for veg density is enforced by assuming equal CV between veg density and
      BA.  Midstory BA is returned in units of m^2/ha.
  ***************************************************************************/
  local r,ba;

  r = parms[1];
  veg = veg^r;
  ba = (veg-parms[2])/(parms[2]/parms[3]) + parms[3];
  ba = ba/4.356;

  retp(ba);

endp;

proc (1) = rcw_grow(f_state,f_attr,veg,prodmod);
  /***************************************************************************
    Projects RCW cluster activity from one time period to the next, given
      forest state information.  Program accepts as input F_STATE, the
      current state of the forest hexagon grid, F_ATTR, the matrix of
      permanent forest attributes, VEG, the vector of hexagon understory

      vegetation densities, and PRODMOD, an integer indicator of production
      model alternative 1 (PRODMOD=1) or 2 (PRODMOD=2).  Program returns F_OUT,
      a copy of F_STATE with the RCW cluster activity column (24) indicated
      as either active or inactive.
    Globals:
      OUT800
      MIDBA
      LOEBPARM
      MODEL1, MODEL2
      GRIDSIZE
      FH1_AGE, FH1_BA1, FH1_BA2
      RECRPARM
  ***************************************************************************/
  local f_out,owner,amt800,pine1,pine2,fullsize,rcw,area1,age1,area2,age2,
        gone,mba,logit,prob,new_occ,row,col,clutch,hab,cats,probs,cand800,
        pullamt,amt,i,habsum,ring_xy,pullmat,sel1,sel2,ringarea,
        habitat,tothab,habcat,prodprob,randraw,prodidx,prod,inactiv,activ,
        dist,isol,new_recr,rans,h,w,v,tol,idx,
        theta,tau,psi,f_i,sum_f_i,p,q,p2,p3,p4,q2,q3,q4,hef,mba2;

  f_out = f_state;

  @ RCW matrix:  HEX_ID, row/col, X/Y, cluster occurrence, cluster activity @
  rcw = f_state[.,1:5] ~ (f_state[.,25].>0) ~ f_state[.,24];

  @ If no active clusters, leave procedure @
  if sumc(rcw[.,7]).==0;
    goto nomore;
  endif;

  @ Ownership matrix:  HEX_ID, 4 ownership proportions in each of 4 buffers @
  owner = f_attr[.,1 10:25];

  @ Estimated proportion (based on ownership and estimated provision)
      of foraging habitat on non-refuge land in circular buffers @
  amt800 = owner[.,7:9]*out800;

  @ PINE matrices for stands 1 and 2:  HEX_ID, AREA, AGE, BA, and CC @
  pine1 = f_state[.,1 16:19];
  pine2 = f_state[.,1 20:23];

  @ Full hexagon size @;
  fullsize = maxc(f_state[.,6]);



Appendix C.12.  Spatially-explicit Refuge simulation model.  Continued.

268

  @ Cell dimensions @
  h = sqrt(fullsize/(2*sqrt(3)));
  w = h*sqrt(3)/3;
  v = 2*w;
  tol = 0.01;

  area1 = pine1[.,2];
  age1 = pine1[.,3];
  area2 = pine2[.,2];
  age2 = pine2[.,3];

  @ First check whether each present cluster site has been recently destroyed @
  gone = (area1.>0).*(age1.==0).*(rcw[.,6].==1);
  @   Change cluster status for such cells to "missing" and "inactive" @
  rcw[.,6 7] = (1-gone).*rcw[.,6 7] + gone.*(0~0);

  @ Convert veg density values at cluster site to midstory basal areas @
  mba = vegtoba(veg,midba);

  mba2 = ba_adj[1]*(mba-ba_adj[2]);

  @ Apply Loeb et al. logit model to last year's active clusters to determine
      this year's activity @
    @ (1) Calculate probability of occupancy @
  logit = loebparm[1] + loebparm[2]*mba2;
  prob = exp(logit);
  prob = prob./(1+prob);
    @ (2) This year's occupancy indicator is bernoulli with probability PROB @
  new_occ = (rndu(rows(rcw),1).<prob);

  rcw[.,7] = new_occ.*rcw[.,7];
    @ (3) Append logit value to RCW matrix (becomes 8th col of RCW) @
  logit = loebparm[1] + loebparm[2]*mba;
  rcw = rcw ~ logit;

  theta = prodparm[1,prodmod];
  tau = prodparm[2,prodmod];
  clutch = nestling[.,1];

  @ Calculate or estimate amount of foraging habitat in 800-m radius (HABSUM) @
  @   CAND800 is subset of RCW (only hexes containing a cluster) @
  cand800 = selif(rcw,rcw[.,6].==1);

  if cand800/=miss(0,0);
    @ CAND800 is not empty @

    @   Pull corresponding values from AMT800 @
    pullamt = sumc(cand800[.,1].==(f_out[.,1]'));
    amt = selif(amt800,pullamt);

    @   Search over all the hexagons in CAND800 @
    i = 0;
    habsum = {};
    do while (i<rows(cand800));
      i = i+1;

      @ Find row index of this cell in F_STATE @
      idx = maxindc(cand800[i,1].==f_state[.,1]);

      @ Distance vector for this cluster @
      dist = hexdist[idx,.];

      @ Identify cells in 48-cell neighborhood, include focal cell @
      ring_xy = (dist.<(6*h)*(1+tol)) +
                (dist.>4*(v+w)*(1+tol)).*(dist.<(8*h)*(1-tol));
      ring_xy = ring_xy';

      @ Pull out both pine components for this ring @
      sel1 = selif(pine1,ring_xy);
      sel2 = selif(pine2,ring_xy);

      @ Calculate area of habitat ring @
      ringarea = sumc(selif(f_out[.,6],ring_xy));

      @ Calculate suitable habitat in ring @
      habitat = (sel1[.,3].>=fh1_age).*(sel1[.,4].>=fh1_ba1).*
                      (sel1[.,4].<=fh1_ba2).*sel1[.,2] +
                (sel2[.,3].>=fh1_age).*(sel2[.,4].>=fh1_ba1).*
                      (sel2[.,4].<=fh1_ba2).*sel2[.,2];
      tothab = sumc(habitat);

      @ Check for habitat extending beyond PNWR @
      if rows(sel1)<49 or ringarea/(49*fullsize)<0.9999;
        @ Estimate of total habitat found on and off-refuge @
        tothab = tothab + 49*fullsize*amt[i];
      endif;
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      @ Convert foraging habitat area to hectares and append to HABSUM @
      habsum = habsum | tothab/10000;

    endo;     @ Finished looping over all hexagons @

    @ Project recruitment into inactive clusters based on productivity
        and distances between active and inactive clusters               @

    if sumc(cand800[.,7])>0 and sumc(cand800[.,6])>sumc(cand800[.,7]);
      @ At least one active cluster and one inactive cluster on refuge @

      @ Productivity computation for active clusters @

      habsum = (habsum-fa_0)/fa_0;
      psi = theta*habsum + 1;
      f_i = nestling[.,2]'.*(psi^expon);
      sum_f_i = sumc(f_i');
      f_i = f_i./sum_f_i;
      q = 1./( 1+exp( logit_fl + tau*(psi-1) ) );
      p = 1-q;
      p2 = p.*p;
      p3 = p2.*p;
      p4 = p3.*p;
      q2 = q.*q;
      q3 = q2.*q;
      q4 = q3.*q;
      f_i[.,1] = f_i[.,1] + f_i[.,2].*q + f_i[.,3].*q2 + f_i[.,4].*q3
                                                       + f_i[.,5].*q4;
      f_i[.,2] = f_i[.,2].*p  + 2*f_i[.,3].*p.*q  + 3*f_i[.,4].*q2.*p
                                                       + 4*f_i[.,5].*q3.*p;
      f_i[.,3] = f_i[.,3].*p2 + 3*f_i[.,4].*p2.*q + 6*f_i[.,5].*q2.*p2;
      f_i[.,4] = f_i[.,4].*p3 + 4*f_i[.,5].*p3.*q;
      f_i[.,5] = f_i[.,5].*p4;
      prodprob = cumsumc(f_i')';

        @ (3) Draw random productivity values based on probabilities @
      randraw = rndu(rows(cand800),1);
      prodidx = (randraw.>prodprob)';
      prodidx = sumc(prodidx)+1;
      prod = clutch[prodidx];

        @ (4) Make sure that PROD=0 for inactive clusters @
      prod = 0*(cand800[.,7].==0) + prod.*(cand800[.,7].>0);

        @ (5) Append PROD to CAND800 (becomes 9th col of CAND800) @
      cand800 = cand800 ~ prod;

      @ Calculate recruitment probabilities for inactive clusters @

        @ (1) Segregate inactive from active clusters @
      inactiv = selif(cand800,cand800[.,7].==0);
      activ = selif(cand800,cand800[.,7].>0);

      hef = activ[.,4 5 9] | (hef_x ~ hef_y ~ hef_prod);

        @ (2) Squared distances between active and inactive clusters (km^2) @
      dist = ((inactiv[.,4]-hef[.,1]')^2 + (inactiv[.,5]-hef[.,2]')^2) /
             1000000;

        @ (3) Invert squared distances and multiply by productivity values @
      isol = 1./dist;
      isol = (hef[.,3]').*isol;

        @ (4) Sum over all active clusters for productivity isolation value @
      isol = sumc(isol');
      isol = 1./isol;

        @ (5) Combine with recruitment function parameters and add to logit
            (Add to logit only if ISOL exceeds threshold value)             @
      logit = inactiv[.,8] +
                   recrparm[2]*(isol-recrparm[1]).*(isol.>recrparm[1]);

        @ (6) Calculate probability of recruitment @
      prob = exp(logit);
      prob = prob./(1+prob);

        @ (7) Recruitment indicator is bernoulli with probability PROB @
      rans = rndu(rows(prob),1);
      new_recr = (rans.<prob);

      if sumc(new_recr)>0;

        @ Identify inactive clusters in RCW that became active @
        inactiv = selif(inactiv[.,1],new_recr);
        pullmat = sumc(inactiv.==(rcw[.,1]'));

        @ Place vector of recruited clusters into RCW vector @
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        rcw[.,7] = rcw[.,7] + pullmat;

      endif;

    endif;

  endif;

  @ Place revisions to cluster occurrence (RCW col 6) and cluster activity
      (RCW col 7) in appropriate columns in F_OUT forest status matrix @
  f_out[.,25] = rcw[.,6];  @ Cluster occurrence @
  f_out[.,24] = rcw[.,7];  @ Cluster activity @

  nomore:

  retp(f_out);

endp;

proc (1) = disturb(f_state);
  /***************************************************************************
    Pine areas and upland hardwood areas are altered by persistent rates of
      stochastic disturbance.  Parts of regenerated stands convert to
      hardwood.  Also, mature pine stands (P2-P4) are subject to random
      mortality events, and these are converted to regeneration.  Program
      accepts as input F_STATE, the matrix of forest cover attributes.
      Program creates F_OUT, which is copied from F_STATE but contains revised
      forest cover areas for UH and pine classes.
    Globals:
      M_RATES
      DSTRB_MN, DSTRB_B, DSTRB_HW
      BA0
  ***************************************************************************/
  local f_out,tot_area,rans,permute,index,disturb,sel,notsel,chg1,chg2,
        age1,age2;

  f_out = f_state;

  @ STAND MORTALITY @
  @ Draw random numbers for both pine stands @
  rans = rndu(rows(f_state),2);

  @ Initialize mortality indicator vectors (0 = no mortality) @
  chg1 = 0*rans[.,1];
  chg2 = chg1;

  @ Assign age-specific mortality rate thresholds to stand 1 @
  age1 = (f_state[.,17].>=16 .and f_state[.,17].<40)~
         (f_state[.,17].>=40 .and f_state[.,17].<80)~
         (f_state[.,17].>=80);
  chg1 = recode(chg1,age1,m_rates);
  @ Randomly select stands to regenerate @
  chg1 = (rans[.,1].<chg1);

  @ Assign age-specific mortality rate thresholds to stand 2 @
  age2 = (f_state[.,21].>=16 .and f_state[.,21].<40)~
         (f_state[.,21].>=40 .and f_state[.,21].<80)~
         (f_state[.,21].>=80);
  chg2 = recode(chg2,age2,m_rates);
  @ Randomly select stands to regenerate @
  chg2 = (rans[.,2].<chg2);

  @ Append vectors to form indicator matrices @
  sel = chg1 ~ chg2;
  notsel = 1-sel;

  @ Change characteristics in forest state matrix for regenerated stands @
  f_out[.,17 21] = notsel.*f_state[.,17 21] + sel*0;    @ Set ages to 0 @
  f_out[.,18 22] = notsel.*f_state[.,18 22] + sel*ba0;  @ Set BAs to BA0 @
  f_out[.,19 23] = notsel.*f_state[.,19 23] + sel*0;    @ Set CCs to 0 @
  f_out[.,8 9]  = notsel.*f_state[.,8 9]  + sel*0;      @ Age/last burn = 0 @
  f_out[.,10 11] = notsel.*f_state[.,10 11] + sel*0;    @ Age/last thin = 0 @

  @ STAND DISTURBANCE @
  @ Total area of refuge @
  tot_area = sumc(f_state[.,6]);

  @ Draw random disturbance area @
  if dstrb_b==0;
    rans = dstrb_mn*tot_area;
  else;
    rans = rndbeta(1,1,dstrb_b[1],dstrb_b[2])*tot_area;
  endif;

  @ Randomly permute rows of F_STATE @
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  permute = rndu(rows(f_state),1);
  permute = permute~f_state[.,1 6];
  permute = sortc(permute,1);

  @ Cumulative sum of hexagon areas in permuted matrix @
  permute = permute ~ cumsumc(permute[.,3]);

  @ Difference between cumulative sum column and target total disturbance @
  permute = permute ~ (permute[.,4]-rans);

  @ Find row index of 1st positive difference (cumulative area > target) @
  permute = permute ~ (permute[.,5].>=0);
  permute = permute ~ cumsumc(permute[.,6]);
  index = indexcat(permute[.,7],1);

  @ Extract rows from 1 to INDEX @
  disturb = permute[1:index,2];

  @ Locate DISTURB hexagons in F_STATE @
  sel = sumc(disturb.==f_state[.,1]');
  notsel = 1-sel;

  @ Remove DSTRB_HW proportion from upland hardwood @
  f_out[.,13] = notsel.*f_state[.,13] +
                   sel.*(f_state[.,13] - dstrb_hw*f_state[.,13]);

  @ Change pine stand characteristics @
  @    Part of upland hardwood converts to pine regeneration in stand 1 @
  f_out[.,16] = notsel.*f_state[.,16] +
                   sel.*(f_state[.,16] + dstrb_hw*f_state[.,13]);
  @    Keep area for stand 2 as is @
  f_out[.,20] = f_state[.,20];

  @ Change characteristics in forest state matrix for regenerated stands @
  @  (Use F_OUT because these columns were affected in mortality step)   @
  f_out[.,17 21] = notsel.*f_out[.,17 21] + sel*0;    @ Set ages to 0 @
  f_out[.,18 22] = notsel.*f_out[.,18 22] + sel*ba0;  @ Set BAs to BA0 @
  f_out[.,19 23] = notsel.*f_out[.,19 23] + sel*0;    @ Set CCs to 0 @
  f_out[.,8 9]  = notsel.*f_out[.,8 9]  + sel*0;      @ Age/last burn = 0 @
  f_out[.,10 11] = notsel.*f_out[.,10 11] + sel*0;    @ Age/last thin = 0 @

  retp(f_out);

endp;

proc (1) = hwdcreep(f_state);
  /***************************************************************************
    Pine areas and upland hardwood areas are altered by persistent (stochastic)
      rates of hardwood encroachment.  Program accepts as input F_STATE, the
      matrix of forest cover attributes.  Program creates F_OUT, which is
      copied from F_STATE but contains revised forest cover areas for UH and
      pine classes.
    Globals:
      BURNLIM, THINLIM
      HWD_P1, HWD_P2, HWD_P3, HWD_P4, HWD_BETA
  ***************************************************************************/
  local f_out,p1,p2,p3,p4,tsb,tst,burn,thin,convert,rans,i,k,c,age,area,
        a_burn,a_thin;

  f_out = f_state;

  @ Create fixed or random vectors of encroachment rates @
  @   8 columns--> 4 pine types for each of 2 stands in hexagon @
  if hwd_beta==0;
    rans = ones(rows(f_state),8) .* (hwd_p1~hwd_p2~hwd_p3~hwd_p4 ~
                                     hwd_p1~hwd_p2~hwd_p3~hwd_p4);
  else;
    rans = rndbeta(rows(f_state),1,hwd_beta[1],hwd_beta[2]) ~
           rndbeta(rows(f_state),1,hwd_beta[1],hwd_beta[2]);
    rans = rans[.,1] ~ (rans[.,1] .* ( (hwd_p2~hwd_p3~hwd_p4)/hwd_p1 ) ) ~
           rans[.,2] ~ (rans[.,2] .* ( (hwd_p2~hwd_p3~hwd_p4)/hwd_p1 ) );
  endif;

  @ Column indices for area, age, age/last burn, age/last thin for pine types @
  c = {16 17 8 10,
       20 21 9 11};

  @ Calculate amount of hardwood encroachment for both pine stands @
  i = 0;
  do while i<2;
    i = i+1;
    k = (i-1)*4;   @ Index for pine stand random variate group @

    @ Prepare age, area, age/last burn, age/last thin columns @
    area = f_state[.,c[i,1]];
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    age = f_state[.,c[i,2]];
    a_burn = f_state[.,c[i,3]];
    a_thin = f_state[.,c[i,4]];

    @ Indicators of pine type in stand I @
    p1 = (area.>0 .and age.>0   .and age.<16);
    p2 = (area.>0 .and age.>=16 .and age.<40);
    p3 = (area.>0 .and age.>=40 .and age.<80);
    p4 = (area.>0 .and age.>=80);

    @ Calculate time since burning and time since thinning for non-P1 stands @
    tsb = age-a_burn;
    tsb = -1*(age.<16) + tsb.*(age.>=16);
    tst = age-a_thin;
    tst = -1*(age.<16) + tst.*(age.>=16);

    @ Indicates if stands have been burned and/or thinned in time window @
    burn = (area.>0 .and tsb.>=0 .and tsb.<=burnlim);
    thin = (area.>0 .and tst.>=0 .and tst.<=thinlim);

    @ Apply (random) rates of hardwood conversion @
    @   Prevent P2-P4 areas from converting if recently thinned or burned @
    convert = area.*( (1-burn).*(1-thin).*( (rans[.,2+k].*p2) +
                                            (rans[.,3+k].*p3) +
                                            (rans[.,4+k].*p4) ) +
                      rans[.,1+k].*p1 );

    @ Subtract converted amount from pine stand I, add to hardwood stand @
    f_out[.,c[i,1]] = area - convert;
    f_out[.,13] = f_out[.,13] + convert;

  endo;

  retp(f_out);

endp;

proc (2) = burning(f_state,veg,n);
  /***************************************************************************
    Selects compartments for burning given a maximum number of compartments
      that may be burned.  Program accepts for input F_STATE, the current

      state of the forest hexagon grid, VEG, the vector of hexagon understory
      vegetation densities, and N, the maximum number of compartments burned.
      Program returns F_OUT, a copy of F_STATE with age at last burning updated
      appropriately for burned stands, and COMPS, the compartments selected
      for burning.
    Globals:
      GRIDSIZE, FULLSIZE
  ***************************************************************************/
  local f_out,comp_all,rcw,clus,non_clus,nest,forage,rcw_list,clusmat,
        compclus,vegdist,minveg,veges,pullmat,other,mostpine,combine,sorted,
        top_n,veg_comp,comps,h,w,v,tol,dist,ring,forveg,compdum,formeans;

  f_out = f_state;
  top_n = {};

  @ If no burning is to be conducted, leave procedure @
  if n==0;
    goto getout;
  endif;

  comp_all = seqa(1,1,34);

  @ RCW matrix:  HEX_ID, X, Y, Occurrence of cluster, Activity of cluster @
  rcw = f_state[.,1 4 5] ~ (f_state[.,25].>0) ~ f_state[.,24];

  @ Find all cells containing an RCW cluster, attach vegetation measures @
  clus = selif(f_state[.,1 4 5 7]~veg,rcw[.,4].==1);

  @ Initialize matrix of cells that are not RCW clusters or in foraging areas @
  mostpine = ((f_state[.,16]+f_state[.,20])./f_state[.,6].> 0.5);
  non_clus = f_state[.,1 7]~veg~mostpine;

  @ If no clusters are found, zero out vectors that contribute to compartment
       rankings @
  if clus==miss(0,0);
    nest = 0*comp_all;
    forage = 0*comp_all;
    goto meandens;
  endif;

  @ NESTING HABITAT @
  rcw_list = clus[.,1];
  clusmat = (clus[.,4].==comp_all');
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  @ COMPCLUS indicates whether each compartment contains cluster(s) @
  compclus = (sumc(clusmat).>0);

  @ Distributes vegetation density to cluster-compartment combinations @
  vegdist = clusmat.*clus[.,5];

  @ Find the smallest >0 veg density in clusters among all compartments @
  minveg = substute(vegdist,vegdist.==0,1000000);  @ Make 0 values big @
  minveg = selif(vegdist',compclus);
  minveg = minc(minveg');             @ Min veg density by compartment @
  minveg = substute(minveg,minveg.==1000000,0);    @ Restore 0 values @
  minveg = minc(minveg);                       @ Min overall veg value @

  @ Find the maximum veg density in clusters by compartment.  Compartments
      lacking clusters are assigned the MINVEG value. @
  nest = maxc(vegdist);
  nest = substute(nest,1-compclus,minveg);

  @ FORAGING HABITAT @
  @ Cell dimensions @
  h = sqrt(fullsize/(2*sqrt(3)));
  w = h*sqrt(3)/3;
  v = 2*w;
  tol = 0.01;
  @ Distance matrix for RCW clusters @
  dist = selif(hexdist,rcw[.,4].==1);
  @ Identify cells in 48-cell neighborhood, exclude focal cell @
  ring = (dist.>0).*(dist.<(6*h)*(1+tol)) +
         (dist.>4*(v+w)*(1+tol)).*(dist.<(8*h)*(1-tol));
  @ Indicator vector of membership in one or more foraging neighborhoods @
  veges = (sumc(ring).>0);
  forveg = selif(f_state[.,7]~veg,veges);
  comps = unique(forveg[.,1],1);
  compdum = dummy(forveg[.,1],comps);
  compdum = compdum[.,1:cols(compdum)-1];
  formeans = (compdum'*forveg[.,2])./sumc(compdum);
  minveg = minc(formeans);

  @ Assign mean foraging vegetation values to all refuge compartments @
  @   Use MINVEG value if compartment contains no foraging area @
  compclus = (comps.==comp_all');
  comps = sumc(compclus);
  forage = sumc(compclus.*formeans);

  forage = substute(forage,1-comps,minveg);

  @ RCW_LIST now contains all RCW nesting and foraging cells @
  rcw_list = rcw_list | selif(f_state[.,1],veges);
  rcw_list = unique(rcw_list,1);

  @ NON-CLUSTER HABITAT @
  @ Remove cluster and foraging hexagons from forest-wide list @
  rcw_list = unique(rcw_list,1);
  pullmat = sumc(rcw_list.==f_state[.,1]');
  non_clus = delif(non_clus,pullmat);

  if non_clus==miss(0,0);
    other = 0*comp_all;
    goto mndens2;
  endif;

  meandens:
  @ Find mean vegetation density in all other pine-containing hexagons @
  other = selif(non_clus,non_clus[.,4]);
  other = meanc((other[.,2].==comp_all').*other[.,3]);

  mndens2:
  @ Find average density over cell types @
  combine = comp_all ~ (nest+forage+other)/3;

  @ Sort the results, then extract top N rows @
  sorted = rev(sortc(combine,2));
  top_n = sorted[1:n,.];

  @ Update age-at-last-burn variable for all non-P1 stands in these comps @
  pullmat = sumc(top_n[.,1].==f_state[.,7]');
  f_out[.,8] = substute(f_state[.,8],
                           pullmat.*(f_state[.,17].>=16),f_state[.,17]);
  f_out[.,9] = substute(f_state[.,9],
                           pullmat.*(f_state[.,21].>=16),f_state[.,21]);

  getout:
  retp(f_out,top_n);

endp;
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proc (1) = thinning(f_state,f_attr,comps);
  /***************************************************************************
    Selects stands for thinning for a chosen set of compartments.  Procedure
      accepts as input F_STATE, the current state of the forest hexagon grid,
      F_ATTR, the matrix of permanent hexagon attributes, and COMPS, a vector
      of compartment selections.  Procedure returns F_OUT, a copy of F_STATE
      but with basal area, age of last thinning, and canopy closure values
      updated appropriately for certain pine stands.
    Globals:
      BA_THIN, BA_CEIL, THIN_AGE
      OUT800, GRIDSIZE
      FH1_AGE, FH1_BA1, FH1_BA2, FH1_AREA
  ***************************************************************************/
  local f_out,owner,amt800,fullsize,pull,cand,qual1,qual2,rcw,clus,distclus,
        mindist,pullamt,amt,i,ring_xy,thinpull,
        sel1,sel2,ringarea,hab,tothab,enuf800,testhab,cand1,ratio,
        h,w,v,tol,idx;

  f_out = f_state;

  @ If no compartments are specified, leave procedure @
  if comps==0;
    goto nocand;
  endif;

  @ Ownership matrix:  HEX_ID, 4 ownership proportions in each of 4 buffers @
  owner = f_attr[.,1 10:25];

  @ Estimated proportion (based on ownership and estimated provision)
      of foraging habitat on non-refuge land in circular buffers @
  amt800 = owner[.,7:9]*out800;

  @ Full hexagon size @;
  fullsize = maxc(f_state[.,6]);

  @ Cell dimensions @
  h = sqrt(fullsize/(2*sqrt(3)));
  w = h*sqrt(3)/3;
  v = 2*w;
  tol = 0.01;

  @ Create candidate list of stands from selected compartments @
    @ columns in CAND:  1-6   HEX_ID, ROW, COL, X, Y, INSIDE

                        7-11  AGE_THIN, AREA, AGE, BA, CC for stand 1
                       12-16  AGE_THIN, AREA, AGE, BA, CC for stand 2  @
  pull = sumc(comps.==(f_state[.,7]'));
  cand = selif((f_state[.,1:6 10 16:19 11 20:23]),pull);

  @ Eliminate from list those cells for which neither stand qualifies for
      possible thinning                                                   @
  qual1 = (cand[.,8].>0).*(cand[.,9].>=thin_age).*(cand[.,10].>=ba_ceil);
  qual2 = (cand[.,13].>0).*(cand[.,14].>=thin_age).*(cand[.,15].>=ba_ceil);
  cand = cand ~ qual1 ~ qual2;
  cand = selif(cand,(qual1 .or qual2));

  @ No thinning candidates left --> exit procedure @
  if cand==miss(0,0);
    goto nocand;
  endif;

  @ Attach a column indicator for the RCW cluster evaluation step @
  cand = cand ~ ones(rows(cand),1);

  @ RCW matrix:  HEX_ID, X, Y, Occurrence of cluster, Activity of cluster @
  rcw = f_state[.,1 4 5] ~ (f_state[.,25].>0) ~ f_state[.,24];

  @ Find all cells containing an RCW cluster @
  clus = selif(f_state[.,1:5],rcw[.,4].==1);

  @ Of candidate cells left, locate all RCW clusters within 1000m of cells @
  @   (to narrow the number of RCW foraging habitats that have to be searched)@
  if clus/=miss(0,0);
    @ At least one cluster is present on refuge @

    @ Calculate distances between clusters in CLUS and cells in CAND @
    @   Distance matrix @
    distclus = sqrt( (cand[.,4]-clus[.,4]')^2 +
                     (cand[.,5]-clus[.,5]')^2 );

    @ Distance of each RCW cluster to nearest candidate cell @
    mindist = minc(distclus);

    @ Remove clusters with >1000m minimum distance @
    clus = delif(clus,mindist.>1000);

    @ Check hexagons for sufficient foraging habitat in 800-m radius @
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    if clus/=miss(0,0);
      @ At least one cluster falls within 1000m of a candidate cell @

      @   Pull corresponding values from AMT800 @
      pullamt = sumc(clus[.,1].==(f_state[.,1]'));
      amt = selif(amt800,pullamt);

      @   Search over all the hexagons @
      i = 0;
      do while (i<rows(clus));
        i = i+1;

        @ Find row index of this cell in F_STATE @
        idx = maxindc(clus[i,1].==f_state[.,1]);

        @ Distance vector for this cluster @
        distclus = hexdist[idx,.];

        @ Identify cells in 48-cell neighborhood, include focal cell @
        ring_xy = (distclus.<(6*h)*(1+tol)) +
                  (distclus.>4*(v+w)*(1+tol)).*(distclus.<(8*h)*(1-tol));
        ring_xy = ring_xy';

        @ Pull out both pine components for this ring @
        sel1 = selif(f_state[.,1 16 17 18],ring_xy);
        sel2 = selif(f_state[.,1 20 21 22],ring_xy);

        @ Does this foraging area contain any of the candidate thinning cells?@
        thinpull = sumc(sel1[.,1].==(cand[.,1]'));
        if sumc(thinpull)==0;
          @ If not, go to next cluster @
          continue;
        endif;

        @ Calculate area of habitat ring @
        ringarea = sumc(selif(f_state[.,6],ring_xy));

        @ Calculate suitable habitat in ring @
        hab = (sel1[.,3].>=fh1_age).*(sel1[.,4].>=fh1_ba1).*sel1[.,2] +
              (sel2[.,3].>=fh1_age).*(sel2[.,4].>=fh1_ba1).*sel2[.,2];
        tothab = sumc(hab);

        @ Test for sufficiency of habitat w.r.t. location of hexagon @

        enuf800 = 1;
        if rows(sel1)==49 and ringarea/(49*fullsize)>=0.9999;
          @ All habitat in ring entirely on refuge @

          if tothab<fh1_area;  @ Not enough habitat of this type @
            enuf800 = 0;
          endif;

        else;
          @ Some habitat located off-site @

          if tothab<fh1_area;  @ Not enough habitat, check off-refuge @
            @ Estimate of total habitat found on and off-refuge @
            testhab = tothab + 49*fullsize*amt[i];
            if testhab<fh1_area;  @ Still not enough habitat @
              enuf800 = 0;
            endif;
          endif;

        endif;      @ 800-m habitat sufficiency test completed @

        @ If insufficient 800-m foraging habitat, set thinning indicator to 0 @
        if enuf800==0;
          cand[.,19] = recode(cand[.,19],thinpull,0);
        endif;

      endo;     @ Finished looping over all hexagons @

    endif;

  endif;

  @ At least some hexagons may be thinned @
  if sumc(cand[.,19])/=0;

    cand = selif(cand,cand[.,19].==1);

    @ Identify cells in F_STATE with eligible thinnings in each stand @
    if sumc(cand[.,17])>0;
      @ Stand 1 is eligible for thinning in at least 1 hexagon @

      cand1 = selif(cand,cand[.,17]);
      pull = sumc((cand1[.,1].==(f_state[.,1]')));
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      @ Set age at last thin=current age @
      f_out[.,10] = substute(f_state[.,10],pull,f_state[.,17]);

      @ Set basal area to BA_THIN value @
      f_out[.,18] = substute(f_state[.,18],pull,ba_thin);

      @ Open canopy in proportion to amount thinned @
      ratio = ba_thin./f_state[.,18];
      f_out[.,19] = substute(f_state[.,19],pull,ratio.*f_state[.,19]);

    elseif sumc(cand[.,18])>0;
      @ Stand 2 is eligible for thinning in at least 1 hexagon @

      cand1 = selif(cand,cand[.,18]);
      pull = sumc((cand1[.,1].==(f_state[.,1]')));

      @ Set age at last thin=current age @
      f_out[.,11] = substute(f_state[.,11],pull,f_state[.,21]);

      @ Set basal area to BA_THIN value @
      f_out[.,22] = substute(f_state[.,22],pull,ba_thin);

      @ Open canopy in proportion to amount thinned @
      ratio = ba_thin./f_state[.,22];
      f_out[.,23] = substute(f_state[.,23],pull,ratio.*f_state[.,23]);

    endif;

  endif;

  nocand:

  retp(f_out);

endp;

proc (1) = undstory(f_state,f_attr);
  /***************************************************************************
    Calculate understory vegetation density in pine stands given current pine
      overstory state and fire history.  Use Conroy et al. model to estimate
      vegetation density using basal area and canopy closure values from

      F_STATE, and using slope position values from F_ATTR.  Use Masters et al.
      data to reduce vegetation amounts by number of years since burning.
      Procedure accepts as input F_STATE, the current state of the forest
      hexagon grid, and F_ATTR, the matrix of permanent attributes for F_STATE.
      The program creates VEG_OUT, a vector of estimated understory vegetation
      densities.
    Globals:
      BURNPARM, V1...V6
  ***************************************************************************/
  local veg_out,in_codes,out_code,slopepos,match,areas,ages,bas,ccs,burnages,
        ba_part,burnrate,tslb;

  @ Re-assign slope position codes to match Conroy's @
     @ 1 = bottom   ==> floodplain-terrace = 6              @
     @ 2 = foot     ==> footslope/toeslope = (4+5)/2 = 4.5  @
     @ 3 = mid      ==> backslope          = 2              @
     @ 4 = shoulder ==> shoulder           = 1              @
     @ 5 = top      ==> summit             = 3              @
  in_codes = {1,2,3,4,5};
  out_code = {6,4.5,2,1,3};
  match = (f_attr[.,3].==in_codes');
  slopepos = recode(f_attr[.,3],match,out_code);

  @ Extract stand information from F_STATE @
  areas = f_state[.,16 20];
  ages = f_state[.,17 21];
  bas = f_state[.,18 22];
  ccs = f_state[.,19 23];
  burnages = f_state[.,8 9];

  @ Compute veg density @
  ba_part = (areas.>0).*v2./bas;
  veg_out = v1 + ba_part + v3*ccs + v4*(slopepos^2) + v5*ccs.*slopepos
               + v6*bas.*slopepos;
    @ Convert missing values to 0 @
  veg_out = missrv(veg_out,0);
    @ Change negative values to 0 @
  veg_out = substute(veg_out,(veg_out.<0),0);

  @ Compute time since last burn @
  burnrate = 0 | burnparm | 1;     @ Veg rates for 0, 1, 2, 3, 4+ years TSB @
  in_codes = in_codes[1:4]-1;      @ Categories for years since burn @
  tslb = ages-burnages;            @ Time since last burn @
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    @ Replace times since burn with veg reduction rates for stand 1 @
  match = (tslb[.,1].==in_codes');
  tslb[.,1] = code(match,burnrate);
    @ Replace times since burn with veg reduction rates for stand 2 @
  match = (tslb[.,2].==in_codes');
  tslb[.,2] = code(match,burnrate);

  @ Multiply veg density values by burn reduction values @
  veg_out = veg_out.*tslb;

  @ Weighted average of vegetation density @
  veg_out = sumc((veg_out.*areas)') ./ sumc(areas');
    @ Change missing values to 0 @
  veg_out = missrv(veg_out,0);

  retp(veg_out);

endp;

proc (1) = for_grow(f_state,f_attr);
  /***************************************************************************
    Grow forest cover to next time period.  Use Bailey-Ware model to project
      basal area in response to current age, current basal area, site index,
      and age at last thinning.  Use the Valverde-Silvertown model to project
      degree of canopy closure.  Procedure accepts as input F_STATE, the
      current state of the forest hexagon grid, and F_ATTR, the matrix of
      permanent attributes for F_STATE.  The program creates F_OUT, a copy
      of F_STATE, but reflecting projected basal area and canopy cover for
      pine stands in the next year.
    Globals:
      THININDX, B1, B2, B3, AGE0, BA0, BA_MAX, CCRATE
  ***************************************************************************/
  local x0,si_medn,areas,ages,bas,ccs,agethins,nxtages,tooyoung,unthinned,
        thinned,arat,ba1,part2,prod,ba2,nxtbas,nxtccs,f_out;

  f_out = f_state;
  x0 = (thinindx/=0)*(1-thinindx);       @ thinning index @
  si_medn = f_attr[.,2]/3.280839895;     @ Median of site index (m) for cell @

  areas = f_state[.,16 20];
  ages = f_state[.,17 21];

  bas = f_state[.,18 22];
  ccs = f_state[.,19 23];
  agethins = f_state[.,10 11];

  nxtages = (areas.>0).*(ages+1);

  @ Indicator matrices for different BA computation @
  tooyoung = (nxtages.<=age0 .and nxtages.>0);  @ Below age threshold @
  unthinned = (1-tooyoung).*(agethins.==0);     @ Not previously thinned @
  thinned = (agethins.>0);                      @ Previously thinned @

  @ Computation for previously unthinned stands @
  arat = (nxtages.>0).*age0./nxtages;
  ba1 = ba0^arat .* exp( b1*(1-arat) + b3*si_medn.*(1-arat) );
  ba1 = missrv(ba1,0);

  @ Computation for previously thinned stands @
  arat = (nxtages.>0).*ages./nxtages;
  part2 = (agethins.>0).*(nxtages.>0)*(b2*x0)./(agethins.*nxtages);
  prod = exp(b1*(1-arat) + (1./nxtages-1./ages).*part2 + b3*si_medn.*(1-arat));
  ba2 = (bas^(arat)).*prod;
  ba2 = missrv(ba2,0);

  @ Combine BA computations @
  nxtbas = tooyoung*ba0 + unthinned.*ba1 + thinned.*ba2;

  @ Enforce maximum BA value @
  nxtbas = substute(nxtbas,nxtbas.>=ba_max,ba_max);

  @ Replace BA in F_STATE matrix, non-pine stands get BA=0 @
  f_out[.,18 22] = (areas.>0).*nxtbas;

  @ Calculate closure in canopy cover @
  nxtccs = 100 - (100-ccs)*ccrate;

  @ Replace CC in F_STATE matrix, non-pine stands get CC=0 @
  f_out[.,19 23] = (areas.>0).*nxtccs;

  @ Replace ages in F_STATE matrix, non-pine stands get age=0 @
  f_out[.,17 21] = (areas.>0).*nxtages;

  retp(f_out);
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endp;

proc (1) = recrclus(f_state,f_attr,rcwquota);
  /***************************************************************************
    Establish a target number of RCW recruitment clusters.  Procedure accepts
      as input F_STATE, the current state of the of the forest hexagon grid,
      F_ATTR, the matrix of permanent attributes for F_STATE, and RCWQUOTA,
      the current quota for recruitment clusters.  The program creates F_OUT,
      a copy of F_STATE but reflecting the new RCW clusters established,
      if any.  Global variables used by the procedure are:
        CLUSGROW, GRIDSIZE,
        OUT400, OUT800,
        RC_AGE1, RC_AGE2, RC_AMT1, RC_AMT2,
        FH2_AGE, FH2_BA1, FH2_BA2, FH2_AREA,
        FH1_AGE, FH1_BA1, FH1_BA2, FH1_AREA,
        CLUS_D1, CLUS_D2A, CLUS_D2B, CLUS_INC
  ***************************************************************************/

  local rcw,rcwtotal,rcwactiv,pine1,pine2,fullsize,hexes,owner,
        amt400,amt800,rcw_need,rcw_left,cand,cand_n,age1hab,age2hab,
        cand1,enf_400,i,col,row,ring_xy,index_xy,pullmat,sel1,sel2,
        ringarea,hab,tothab,testhab,recr,calcdist,rcw_act,rcw_any,
        candonly,nearclus,dist_act,dist_any,dist_max,nearsel,
        cand800,pullamt,amt,winners,winner,win_xy,f_out,idx,
        h,w,v,tol,distclus,timer;

  timer=date;

  f_out = f_state;

  @ RCW matrix:  HEX_ID, Occurrence of cluster, Activity of cluster @
  rcw = f_state[.,1] ~ (f_state[.,25].>0) ~ f_state[.,24];
  rcwtotal = sumc(rcw[.,2]);
  rcwactiv = sumc(rcw[.,3]);

  @ PINE matrices for stands 1 and 2:  HEX_ID, AREA, AGE, BA, and CC @
  pine1 = f_state[.,1 16:19];
  pine2 = f_state[.,1 20:23];

  @ Full hexagon size @;
  fullsize = maxc(f_state[.,6]);

  @ Rows in F_STATE matrix @;
  hexes = rows(f_state);

  @ Cell dimensions @
  h = sqrt(fullsize/(2*sqrt(3)));
  w = h*sqrt(3)/3;
  v = 2*w;
  tol = 0.01;

  @ Ownership matrix:  HEX_ID, 4 ownership proportions in each of 4 buffers @
  owner = f_attr[.,1 10:25];

  @ Estimated proportion (based on ownership and estimated provision)
      of foraging habitat on non-refuge land in circular buffers @
  amt400 = owner[.,3:5]*out400;
  amt800 = owner[.,7:9]*out800;

  @ Calculate number of clusters needed and initialize number left to fill @
  rcw_need = rcwquota - (rcwtotal-rcwactiv);
  rcw_left = round(rcw_need);

  @ Accumulator of selected recruitment clusters @
  recr = {};

  if rcw_left>0;

    @ From initial list (F_STATE[26]), eliminate hexagons already as clusters @
    cand = f_state[.,1 26];
    cand[.,2] = cand[.,2].*(rcw[.,2].==0);
    cand_n = sumc(cand[.,2]);

    @ Exit if no candidate cells left @
    if cand_n==0;
      goto empty;
    endif;

    @ Eliminate hexagons with insufficient nesting habitat @
    @   Calculate amount of habitat at age RC_AGE1 or older @
    age1hab = pine1[.,1] ~ ( (pine1[.,3].>=rc_age1).*pine1[.,2] +
                             (pine2[.,3].>=rc_age1).*pine2[.,2] );

    @   Calculate amount of habitat at age RC_AGE2 or older @
    age2hab = pine1[.,1] ~ ( (pine1[.,3].>=rc_age2).*pine1[.,2] +
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                             (pine2[.,3].>=rc_age2).*pine2[.,2] );

    @   Do these amounts exceed threshold sizes for hexagon? @
    cand[.,2] = cand[.,2].*(age1hab[.,2]/fullsize .>= rc_amt1);
    cand[.,2] = cand[.,2].*(age2hab[.,2]/fullsize .>= rc_amt2);
    cand_n = sumc(cand[.,2]);

    @ Exit if no candidate cells left @
    if cand_n==0;
      goto empty;
    endif;

    @ Eliminate hexagons with insufficient foraging habitat in 400-m radius @
    cand1 = cand;   @ Preserve original candidate list @
    enf_400 = 1;    @ Indicator of stringent (1) or relaxed foraging standard @

/**************************  Test removal of 400-m loop *********************

    @   Search over all the hexagons @
    i = 0;
    do while (i<hexes);
      i = i+1;

      if (cand[i,2]==1);     @ Find those that are still candidates @

        @ Distance vector for this cluster @
        distclus = hexdist[i,.];

        @ Identify cells in 12-cell neighborhood, include focal cell @
        ring_xy = (distclus.<2*(v+w)*(1+tol));
        pullmat = ring_xy';

/*****
        @ Get row and column indices of focal hexagon @
        col = f_out[i,3];
        row = f_out[i,2];

        @ Pull out the ring of 12-nearest neighbor hexagons for this cell @
        ring_xy = ring(col,row,gridsize,12);

        @ Convert cell addresses to indices @
        index_xy = gridindx((ring_xy|(col~row)),gridsize);

        @ Match ring indices to indices in full data matrix @
        pullmat = sumc(index_xy.==(f_out[.,1]'));
*****/

        @ Pull out both pine components for this ring @
        sel1 = selif(pine1,pullmat);
        sel2 = selif(pine2,pullmat);

        @ Calculate area of habitat ring @
        ringarea = sumc(selif(f_out[.,6],pullmat));

        @ Calculate suitable habitat in ring @
        hab = (sel1[.,3].>=fh2_age).*(sel1[.,4].>=fh2_ba1).*
                    (sel1[.,4].<=fh2_ba2).*sel1[.,2] +
              (sel2[.,3].>=fh2_age).*(sel2[.,4].>=fh2_ba1).*
                    (sel2[.,4].<=fh2_ba2).*sel2[.,2];
        tothab = sumc(hab);

        @ Test for sufficiency of habitat w.r.t. location of hex @
        if rows(sel1)==13 and ringarea/(13*fullsize)>=0.9999;
          @ All habitat in ring entirely on refuge @

          if tothab<fh2_area;  @ Not enough habitat of this type @
            cand[i,2] = 0;
          endif;

        else;
          @ Some habitat located off-site @

          if tothab<fh2_area;  @ Not enough habitat, check off-refuge @
            @ Estimate of total habitat found on and off-refuge @
            testhab = tothab + 13*fullsize*amt400[i];
            if testhab<fh2_area;  @ Still not enough habitat @
              cand[i,2] = 0;
            endif;
          endif;

        endif;      @ Habitat sufficiency test completed @

      endif;     @ End processing of this candidate hexagon @
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    endo;     @ Finished looping over all hexagons @

**************************  Test removal of 400-m loop *********************/

    if sumc(cand[.,2])==0;
      @ No hexagons met this foraging standard--relax standard & proceed @
      enf_400 = 0;     @ Stringent standard not enforced @
      cand = cand1;    @ Bring back original list of candidate hexagons @
    endif;

    @ Switch for controlling calculation of distances @
    calcdist = 1;

    @ Matrices of X-Y locations for active and all clusters @
    rcw_act = selif(f_out[.,1 4 5],rcw[.,3].==1);
    rcw_any = selif(f_out[.,1 4 5],rcw[.,2].==1);

    @ Repeat hexagon selection below until quota is met @
    do while rcw_left>0;

      @ First, calculate distances between candidate cells and both active
              and all clusters @
      if calcdist==1;

        calcdist = 0;   @ Don't calculate this again unless switch is reset @

        @ Extract cells still in the candidate list @
        candonly = selif(f_out[.,1 4 5],cand[.,2].==1);
        if candonly==miss(0,0);
          goto empty;
        endif;

        @ X-Y locations of cells still in the candidate list @
        nearclus = candonly[.,1] ~ ones(rows(candonly),1);

        @ Distances from candidate cells to active clusters @
        dist_act = sqrt( (rcw_act[.,2]-candonly[.,2]')^2 +
                         (rcw_act[.,3]-candonly[.,3]')^2 );

        nearclus = nearclus ~ minc(dist_act);   @ Append nearest neighbors @

        @ Distances from candidate cells to all clusters @
        dist_any = sqrt( (rcw_any[.,2]-candonly[.,2]')^2 +
                         (rcw_any[.,3]-candonly[.,3]')^2 );
        nearclus = nearclus ~ minc(dist_any);   @ Append nearest neighbors @

      endif;

      @ Eliminate hexagons too close to any other cluster @
      nearclus[.,2] = nearclus[.,2].*(nearclus[.,4].>=clus_d1);

      @ Are remaining hexagons sufficiently far from other clusters? @
      if sumc(nearclus[.,2])==0;
        @ No hexagons met criterion (all were too close to clusters) @

        if enf_400==0;
          @ Already using lenient 400-m foraging criterion--exit loop @
          break;

        else;
          @ Use lenient 400-m foraging criterion and try again @
          enf_400 = 0;
          cand = cand1;
          calcdist = 1;
          continue;

        endif;

      endif;

      @ Check hexagons for proximity to active clusters,
          DIST_MAX is current distance threshold, initialized at CLUS_D2A    @
      dist_max = clus_d2a;

      @ Return here if DIST_MAX is too small @
      dist:

      @ NEARSEL is selection of viable hexagons at current distance threshold @
      nearsel = nearclus;
      nearsel[.,2] = nearsel[.,2].*(nearsel[.,3].<dist_max);

      if sumc(nearsel[.,2])==0;
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        @ No hexagons met criterion (all were too far from active clusters) @

        if dist_max>clus_d2b or abs(dist_max-clus_d2b)<0.0001;
          @ At limit of distance test @

          if enf_400==0;
            @ Already using lenient 400-m foraging criterion--exit loop @
            break;

          else;
            @ Use lenient 400-m foraging criterion and try again @
            enf_400 = 0;
            cand = cand1;
            calcdist = 1;
            continue;

          endif;

        else;
          @ Not at distance limit, bump up to next increment @
          dist_max = dist_max + clus_inc;
          goto dist;   @ Try next distance increment @
        endif;

      endif;

      @ Check hexagons for sufficient foraging habitat in 800-m radius @
      @   CAND800 holds IDs of cells passing current maximum distance crit @
      cand800 = selif(nearsel[.,1 2],nearsel[.,2].==1);

/******************  Test removal of 800-m loop ********************

      @   Append row & column addresses to CAND800 @
      cand800 = cand800 ~ indxgrid(cand800[.,1],gridsize);

      @   Pull corresponding values from AMT800 @
      pullamt = sumc(cand800[.,1].==(f_out[.,1]'));
      amt = selif(amt800,pullamt);

      @   Search over all the hexagons @
      i = 0;

      do while (i<rows(cand800));
        i = i+1;

        @ Find row index of this cell in F_STATE @
        idx = maxindc(cand800[i,1].==f_state[.,1]);

        @ Distance vector for this cluster @
        distclus = hexdist[idx,.];

        @ Identify cells in 48-cell neighborhood, include focal cell @
        ring_xy = (distclus.<(6*h)*(1+tol)) +
                  (distclus.>4*(v+w)*(1+tol)).*(distclus.<(8*h)*(1-tol));
        pullmat = ring_xy';

/*****
        @ Get row and column indices of focal hexagon @
        col = cand800[i,3];
        row = cand800[i,4];

        @ Pull out the ring of 48-nearest neighbor hexagons for this cell @
        ring_xy = ring(col,row,gridsize,48);

        @ Convert cell addresses to indices @
        index_xy = gridindx((ring_xy|(col~row)),gridsize);

        @ Match ring indices to indices in full data matrix @
        pullmat = sumc(index_xy.==(f_out[.,1]'));
*****/

        @ Pull out both pine components for this ring @
        sel1 = selif(pine1,pullmat);
        sel2 = selif(pine2,pullmat);

        @ Calculate area of habitat ring @
        ringarea = sumc(selif(f_out[.,6],pullmat));

        @ Calculate suitable habitat in ring @
        hab = (sel1[.,3].>=fh1_age).*(sel1[.,4].>=fh1_ba1).*
                    (sel1[.,4].<=fh1_ba2).*sel1[.,2] +
              (sel2[.,3].>=fh1_age).*(sel2[.,4].>=fh1_ba1).*
                    (sel2[.,4].<=fh1_ba2).*sel2[.,2];
        tothab = sumc(hab);
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        @ Test for sufficiency of habitat w.r.t. location of hexagon @
        if rows(sel1)==49 and ringarea/(49*fullsize)>=0.9999;
          @ All habitat in ring entirely on refuge @

          if tothab<fh1_area;  @ Not enough habitat of this type @
            cand800[i,2] = 0;
          endif;

        else;
          @ Some habitat located off-site @

          if tothab<fh1_area;  @ Not enough habitat, check off-refuge @
            @ Estimate of total habitat found on and off-refuge @
            testhab = tothab + 49*fullsize*amt[i];
            if testhab<fh1_area;  @ Still not enough habitat @
              cand800[i,2] = 0;
            endif;
          endif;

        endif;      @ 800-m habitat sufficiency test completed @

      endo;     @ Finished looping over all hexagons @

******************  Test removal of 800-m loop ********************/

      if sumc(cand800[.,2])==0;
        @ No hexagons met 800-m foraging criterion @

        if dist_max>clus_d2b or abs(dist_max-clus_d2b)<0.0001;
          @ At limit of distance test @

          if enf_400==0;
            @ Already using lenient 400-m foraging criterion--exit loop @
            break;

          else;
            @ Use lenient 400-m foraging criterion and try again @
            enf_400 = 0;
            cand = cand1;

            calcdist = 1;
            continue;

          endif;

        else;

          @ Not at distance limit, bump up to next increment @
          dist_max = dist_max + clus_inc;
          goto dist;   @ Try next distance increment @

        endif;

      endif;

      @ Extract indices of cells in CAND800 passing all criteria @
      winners = selif(cand800[.,1],cand800[.,2].==1);

      @ Find these hexagons in PINE1 and PINE2 matrices @
      pullmat = sumc(winners.==(pine1[.,1]'));
      sel1 = selif(pine1,pullmat);
      sel2 = selif(pine2,pullmat);

      @ Calculate area-weighted average of age of pine stands @
      winners = winners ~
         (sel1[.,2].*sel1[.,3]+sel2[.,2].*sel2[.,3]) ./ (sel1[.,2]+sel2[.,2]);

      @ Find hexagon index of oldest stand meeting all criteria @
      winner = winners[maxindc(winners[.,2]),1];

      @ Extract row, column indices of WINNER cell, add to RECR @
      win_xy = selif(f_out[.,1 4 5],f_out[.,1].==winner);
      recr = recr | win_xy;

      @ Change cluster status of RCW from absent (0) to present (1) @
      rcw[.,2] = rcw[.,2] + (rcw[.,1].==winner);

      @ Change cluster status in F_STATE from absent (0) to present (1) @
      f_out[.,25] = f_out[.,25] + (rcw[.,1].==winner);

      @ Reduce quota by 1 @
      rcw_left = rcw_left-1;
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      @ More clusters to establish? @
      if rcw_left>0;
        @ Remove WINNER hexagon from CAND1 (lenient) and CAND (stringent) @

        cand1[.,2] = cand1[.,2].*(cand1[.,1]./=winner);
        cand[.,2] = cand[.,2].*(cand[.,1]./=winner);

        @ Add WINNER hexagon to RCW_ANY list @
        rcw_any = rcw_any | win_xy;

        @ Force a recalculation of distances @
        calcdist = 1;

      endif;

    endo;    @ Find next cluster @

  endif;   @ No more clusters needed @

  empty:

  retp(f_out);

endp;

proc (1) = regencut(f_state,comps);
  /***************************************************************************
    Determines location and quantity of regeneration cuts.  Procedure accepts
      as input F_STATE, the current state of the forest hexagon grid, and
      COMPS, the column vector of compartments to be treated at this time
      period.  The program creates F_OUT, a copy of F_STATE that reflects
      the size and locations of regeneration cuts.  Global variables used by
      the procedure are:
        DECTABLE, DEC_PARM,
        GRIDSIZE,
        WT_AREA, WT_DIST,
        CUTLIMIT, BA0
  ***************************************************************************/

  local rcw,pine1,pine2,uh,uh_tot,p1,p2,p3,p4,p1_tot,p2_tot,p3_tot,p4_tot,
        for_tot,statevec,dec,quota,quota1,unfilled,pull,cand,pullmat,

        p1c,p2c,p3c,p4c,clus,row_clus,clus_all,i,col,row,ring_xy,index_xy,
        p1cell,p1_all,row_p1,distclus,dcols,mean_nn,distvec,sorted,
        pc1,pc2,maxes,mins,range,areastd,areastd0,nndstd,avg_ad,wt_d,
        regen,cutpatch,toptype,avgcol,topcell,j,seedgrp,tt,quo,stand,
        agecol,areacol,typecol,ptype,cutleft,s1lim,s2lim,seed_all,
        pullage,totalcut,f_out,h,w,v,tol,dist;

  f_out = f_state;

  @ RCW matrix:  HEX_ID, Occurrence of cluster, Activity of cluster @
  rcw = f_state[.,1] ~ (f_state[.,25].>0) ~ f_state[.,24];

  @ PINE matrices for stands 1 and 2:  HEX_ID, AREA, AGE, BA, and CC @
  pine1 = f_state[.,1 16:19];
  pine2 = f_state[.,1 20:23];

  @ Upland hardwood area @
  uh = f_state[.,1 13];

  @ Compute proportions of forest in pine age classes and in upland hardwood @
  uh_tot = sumc(uh[.,2]);
  p1 = pine1[.,2].*(pine1[.,3].<16) + pine2[.,2].*(pine2[.,3].<16);
  p2 = pine1[.,2].*(pine1[.,3].>=16).*(pine1[.,3].<40) +
       pine2[.,2].*(pine2[.,3].>=16).*(pine2[.,3].<40);
  p3 = pine1[.,2].*(pine1[.,3].>=40).*(pine1[.,3].<80) +
       pine2[.,2].*(pine2[.,3].>=40).*(pine2[.,3].<80);
  p4 = pine1[.,2].*(pine1[.,3].>=80) + pine2[.,2].*(pine2[.,3].>=80);
  p1_tot = sumc(p1);
  p2_tot = sumc(p2);
  p3_tot = sumc(p3);
  p4_tot = sumc(p4);
  for_tot = p1_tot+p2_tot+p3_tot+p4_tot+uh_tot;

  @ State vector input to optimal regen decision look-up table @
  statevec = (p1_tot | p2_tot | p3_tot | p4_tot | uh_tot) / for_tot;

  @ Look up optimal decision values for this system state @
  dec = dlookup(statevec,dectable,dec_parm);

  @ Calculate quota to regenerate @
  quota = dec.*(p2_tot | p3_tot | p4_tot);

  @ QUOTA1 is iteratively reduced toward 0 as patches are found and cut @
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  quota1 = quota ~ (2|3|4);

  @ UNFILLED holds unmet quota after a pine type is exhausted @
  unfilled = 0*quota1;

  @ Initialize matrix of cells containing regeneration patches @
  regen = {};

  @ Look for regeneration patches if QUOTA is non-zero @
  if sumc(quota)>0 and sumc(comps)>0;

    @ Select hexagons belonging to treated compartments @
    pull = sumc(comps.==(f_state[.,7]'));
    cand = selif((f_state[.,1:6 16 17 20 21]),pull);

    @ Calculate total area of each pine type in each candidate cell @
    p1c = cand[.,7].*(cand[.,8].<16) + cand[.,9].*(cand[.,10].<16);
    p2c = cand[.,7].*(cand[.,8].>=16).*(cand[.,8].<40) +
          cand[.,9].*(cand[.,10].>=16).*(cand[.,10].<40);
    p3c = cand[.,7].*(cand[.,8].>=40).*(cand[.,8].<80) +
          cand[.,9].*(cand[.,10].>=40).*(cand[.,10].<80);
    p4c = cand[.,7].*(cand[.,8].>=80) + cand[.,9].*(cand[.,10].>=80);
    cand = cand~p1c~p2c~p3c~p4c;

    @ Find all cells containing an RCW cluster @
    clus = selif(f_state[.,1:5],rcw[.,2].==1);
    row_clus = rows(clus);

    @ Find all cells adjacent to RCW clusters @
    if clus/=miss(0,0);
      @ At least one cluster is present on refuge @

      @ Cell dimensions @
      h = sqrt(fullsize/(2*sqrt(3)));
      w = h*sqrt(3)/3;
      v = 2*w;
      tol = 0.01;

      @ Distance matrix for RCW clusters @
      dist = selif(hexdist,rcw[.,2].==1);
      @ Identify cells in 6-cell neighborhood, including focal cell @
      ring_xy = (dist.<(2*h)*(1+tol));

      @ Indicator vector of cluster or cluster ring @
      clus_all = (sumc(ring_xy).>0);

      @ Cell ID of cluster or cluster ring @
      clus_all = selif(f_state[.,1],clus_all);

      @ Locate all RCW and RCW-neighbor cells in CAND and remove them @
      pull = sumc(clus_all.==(cand[.,1]'));
      cand = delif(cand,pull);

    endif;

    @ Exit if no candidate cells left @
    if cand==miss(0,0);
      goto nocand;
    endif;

    @ Find all cells containing P1 stands @
    p1cell = selif(f_state[.,1:3],p1.>0);
    row_p1 = rows(p1cell);

    @ Find all cells adjacent to P1 stands @
    if p1cell/=miss(0,0);
      @ At least one P1 stand is present on refuge @

      @ Distance matrix for P1-containing cells @
      dist = selif(hexdist,p1.>0);

      @ Identify cells in 6-cell neighborhood, including focal cell @
      ring_xy = (dist.<(2*h)*(1+tol));

      @ Indicator vector of P1 cell or cell ring @
      p1_all = (sumc(ring_xy).>0);

      @ Cell ID of cluster or cluster ring @
      p1_all = selif(f_state[.,1],p1_all);

      @ Locate all P1 and P1-neighbor cells in CAND and remove them @
      pull = sumc(p1_all.==(cand[.,1]'));
      cand = delif(cand,pull);

    endif;
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    @ Exit if no candidate cells left @
    if cand==miss(0,0);
      goto nocand;
    endif;

    @ Remove cells not providing any harvestable pine stands @
    cand = delif(cand,(cand[.,12].==0).*(cand[.,13].==0).*(cand[.,14].==0));

    @ Exit if no candidate cells left @
    if cand==miss(0,0);
      goto nocand;
    endif;

    @ Calculate distances between clusters in CLUS and cells in CAND @
    if clus/=miss(0,0);
      @ At least one cluster is present on refuge @

      @ Distance matrix @
      distclus = sqrt( (clus[.,4]-cand[.,4]')^2 +
                       (clus[.,5]-cand[.,5]')^2 );
      dcols = cols(distclus);         @ Number of cells in CAND @

      @ Find distance of 3 nearest RCW clusters to each cell in CAND @
      mean_nn = {};
      i = 0;
      do while i<dcols;  @ Search over all columns of DISTCLUS @
        i = i+1;

        @ Sorted vector of distances for candidate cell I @
        distvec = distclus[.,i];
        sorted = sortc(distvec,1);

        @ Extract up to 3 elements, calculate mean distance @
        if row_clus<3;
          mean_nn = mean_nn | meanc(sorted);
        else;
          mean_nn = mean_nn | meanc(sorted[1:3]);
        endif;

      endo;

    else;

      @ No clusters are present--set mean distance to -1 @
      mean_nn = -1*ones(rows(cand),1);

    endif;

    @ Append the mean nearest-neighbor distances to CAND @
    cand = cand ~ mean_nn;

    @ Identify age class of each of the 2 pine stands in each cell @
    pc1 = 2*(cand[.,8].>=16).*(cand[.,8].<40) +
          3*(cand[.,8].>=40).*(cand[.,8].<80) +
          4*(cand[.,8].>=80);
    pc2 = 2*(cand[.,10].>=16).*(cand[.,10].<40) +
          3*(cand[.,10].>=40).*(cand[.,10].<80) +
          4*(cand[.,10].>=80);

    @ Append age class indicators to CAND @
    cand = cand~pc1~pc2;

    @ Find range of area in each pine type and range of NN distance @
    maxes = maxc(cand[.,12:15]);
    mins = minc(cand[.,12:15]);
    range = maxes - mins;

    @ Standardize areas for each pine type @
    areastd = {};
    i = 0;
    @ Iterate over each pine type @
    do while i<3;
      i = i+1;

      @ Selects appropriate column for pine type @
      col = i+11;

      @ Is range element non-zero? @
      if range[i]>0;

        @ Yes, standardization can proceed for this pine type @
        areastd0 = cand[.,col]/range[i];

      else;

        @ No, this area cannot be standardized because range = 0 @
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        @ Does any of this type exist in CAND? @
        if maxes[i]==0;

          @ No!  Set UNFILLED for this type and zero out QUOTA1 @
          areastd0 = cand[.,col];
          unfilled[i,1] = quota1[i,1];
          quota1[i,1] = 0;

        else;

          @ Yes, but all values are the same-->do not standardize area @
          areastd0 = cand[.,col];

        endif;

      endif;

      @ Append standardized column to AREASTD @
      areastd = areastd ~ areastd0;

    endo;      @ Go to the next pine type @

    @ Standardize nearest-neighbor distances @
    wt_d = wt_dist;
    if range[4]>0;

      @ Range is nonzero, standardization is OK @
      nndstd = cand[.,15]/range[4];

    else;

      @ NN distance cannot be standardized because range = 0 @
      nndstd = cand[.,15];

      if nndstd[1]==-1;

        @ No clusters exist, change distance values to 1 and set weight to 0 @
        nndstd = -1*nndstd;
        wt_d = 0;

      endif;

    endif;

    @ Obtain weighted geometric means of scaled areas and scaled distance @
    avg_ad = ((areastd^wt_area).*(nndstd^wt_d))^(1/(wt_area+wt_d));

    cand = cand~avg_ad;   @ CAND now has 20 columns @

    @ Search for patch seed cells until candidate list exhausted or all @
    @   quotas filled                                                   @
    do until cand==miss(0,0) or quota1[.,1]<=0;

      @ Initialize patch size variable @
      cutpatch = 0;

      @ Find the pine type with highest regeneration quota @
      toptype = sortc(quota1,1);
      toptype = toptype[3,2];

      @ Column indicator of weighted average corresponding to TOPTYPE @
      avgcol = 16+toptype;

      @ Sort candidate list on this column, then pull out row with maximum   @
      @   average (top row)--> This becomes the seed cell                    @
      topcell = rev(sortc(cand,avgcol));
      topcell = topcell[1,.];

      @ Does any of this pine type remain? @
      if topcell[avgcol]==0;

        @ If not, update UNFILLED matrix, zero out QUOTA1,  @
        @    and continue to next seed cell                 @
        unfilled[toptype-1,1] = quota1[toptype-1,1];
        quota1[toptype-1,1] = 0;
        continue;

      endif;

      @ Pull out regeneration acreage from each pine stand of seed cell @
      i = 0;
      @   Interrogate each pine age class @
      do while i<3;
        i = i+1;

        @ Age class indicator @
        j = i+1;
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        @ Does quota for this class exceed 0? @
        if quota1[i,1]>0;
          @ Yes, proceed with harvest @

          @ Does this age class occur in stand 1? @
          if topcell[16]==j;

            @ Yes, regenerate stand 1 @
            quota1[i,1] = quota1[i,1]-topcell[7];     @ Reduce this quota @
            cutpatch = cutpatch + topcell[7];       @ Augment patch total @
            topcell[8] = 0;            @ Reset age for this stand to zero @

          endif;

          @ Does this age class occur in stand 2? @
          if topcell[17]==j;

            @ Yes, regenerate stand 2 @
            quota1[i,1] = quota1[i,1]-topcell[9];     @ Reduce this quota @
            cutpatch = cutpatch + topcell[9];       @ Augment patch total @
            topcell[10] = 0;           @ Reset age for this stand to zero @

          endif;

        endif;

      endo;         @ Get next age class @

      @ Remove seed cell from candidate list and begin a regen list @
      cand = delif(cand,cand[.,1].==topcell[1]);
      seedgrp = topcell;

      @ Leave loop if no candidates left or quotas satisfied @
      if cand==miss(0,0) or quota1[.,1]<=0;
        break;
      endif;

      @ Find 6 adjacent cells to seed cell @
      ring_xy = ring(topcell[3],topcell[2],gridsize,6);
      index_xy = gridindx(ring_xy,gridsize);

      @ Remove those adjacent cells not in the candidate list @
      pull = sumc(index_xy.==(cand[.,1]'));

      index_xy = selif(cand,pull);

      @ If no adjacent cells meet criteria, restart loop with a new seed cell @
      if index_xy==miss(0,0);
        continue;
      endif;

      @ Search all cells in the neighborhood of the seed cell @
      i = rows(index_xy);
      do while i>0;
        i = i-1;

        @ Select ring cell with highest area in TOPTYPE @
        col = toptype+10;            @ Column of INDEX_XY for TOPTYPE @
        tt = toptype-1;            @ TOPTYPE row indicator for QUOTA1 @
        quo = 1;            @ Indicator of non-zero quota for TOPTYPE @
        index_xy = rev(sortc(index_xy,col));

        @ TOPCELL is cell with highest area in TOPTYPE @
        topcell = index_xy[1,.];

        @ Is this type in both pine stands? @
        if topcell[16]==toptype and topcell[17]==toptype;

          @ Yes, find stand with greatest area @
          stand = 1*(topcell[7]>topcell[9]) + 2*(topcell[7]<=topcell[9]);

        elseif topcell[16]==toptype or topcell[17]==toptype;

          @ No, but this type occurs in one of the stands @
          stand = 1*(topcell[16]==toptype) + 2*(topcell[17]==toptype);

        else;

          @ Type is in neither stand--check the other types instead @
          stand = 1;               @ Arbitrarily choose stand 1 to cut first @
          tt = topcell[16]-1;    @ Set row indicator for this type in QUOTA1 @
          @ QUO now holds quota value for this type @
          quo = selif(quota1[.,1],quota1[.,2].==topcell[16]);

        endif;

        @ Has quota for this type been filled? @
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        if quo>0;

          @ No--investigate this stand for cutting @
          @ Age and area columns corresponding to STAND @
          agecol = 8*(stand==1) + 10*(stand==2);
          areacol = agecol-1;

          @ Would cutting this stand send patch size beyond its limit? @
          if cutpatch+topcell[areacol]<cutlimit;

            @ No--cut the stand, and reduce quota for this type @
            quota1[tt,1] = quota1[tt,1] - topcell[areacol];
            cutpatch = cutpatch + topcell[areacol];   @ Augment patch total @
            topcell[agecol] = 0;            @ Reset age for this stand to 0 @

          endif;

        endif;

        @ Should/can the other stand be cut?:          @
        @   Identify pine type in other stand, if any @
        stand = 3 - stand;
        typecol = 16*(stand==1) + 17*(stand==2);
        ptype = topcell[typecol];

        @   QUO holds quota value for this type @
        quo = selif(quota1[.,1],quota1[.,2].==ptype);

        @ Has quota for this type been filled? @
        if quo>0;

          @ No--investigate this stand for cutting @
          @ Age and area columns corresponding to STAND @
          agecol = 8*(stand==1) + 10*(stand==2);
          areacol = agecol-1;

          @ Would cutting this stand send patch size beyond its limit? @
          if cutpatch+topcell[areacol]<cutlimit;

            @ No--cut the stand, and reduce quota for this type @
            quota1[ptype-1,1] = quota1[ptype-1,1] - topcell[areacol];
            cutpatch = cutpatch + topcell[areacol];   @ Augment patch total @
            topcell[agecol] = 0;            @ Reset age for this stand to 0 @

          endif;

        endif;

        @ Remove this cell from candidate groups and add to regen list @
        cand = delif(cand,cand[.,1].==topcell[1]);
        index_xy = delif(index_xy,index_xy[.,1].==topcell[1]);
        seedgrp = seedgrp | topcell;

        @ Leave loop if no candidates left or all quotas satisfied @
        if i==0 or cand==miss(0,0) or quota1[.,1]<=0;
          break;
        endif;

        @ Check whether any cell exists that contains a pine stand that  @
        @    would not exceed the patch size limit when cut              @
        @    If there are none (i.e., all stands too big), leave loop    @

        @ Determine the allowable amount left to cut @
        cutleft = cutlimit-cutpatch;

        @ Vectors to indicate existence of stands exceeding CUTLEFT @
        s1lim = (index_xy[.,7].>cutleft) .or (index_xy[.,7].==0);
        s2lim = (index_xy[.,9].>cutleft) .or (index_xy[.,9].==0);

        @ Are all stands in remaining ring cells larger than CUTLEFT? @
        if s1lim.*s2lim==1;
          @ Yes--exit the ring cell loop and search for another seed cell @
          break;
        endif;

      endo;       @ Go to next cell in ring @

      @ Add regenerated seed cell and neighbor cells to REGEN @
      regen = regen | seedgrp;

      @ Remove cells from CAND that are adjacent to those just regenerated @
      seed_all = {};
      i = 0;

      @ Consider the seed cell and neighboring regenerated cells @
      do while i<rows(seedgrp);
        i = i+1;
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        @ Extract row and column indices of the focal cell @
        col = seedgrp[i,3];
        row = seedgrp[i,2];

        @ Pull out the ring of 6 adjacent hexagons for this cell @
        ring_xy = ring(col,row,gridsize,6);

        @ Convert cell addresses to indices @
        index_xy = gridindx((ring_xy|(col~row)),gridsize);

        @ Append these cell addresses to SEED_ALL @
        seed_all = seed_all | index_xy;

      endo;    @ Get next cell @

      @ Remove duplicate addresses from SEED_ALL @
      seed_all = unique(seed_all,1);

      @ Locate all neighbor cells in CAND and remove them @
      pull = sumc(seed_all.==(cand[.,1]'));
      cand = delif(cand,pull);

      @ Exit if no candidate cells left @
      if cand==miss(0,0);
        goto nocand;
      endif;

    endo;     @ Search for next seed cell @

  endif;

  nocand:
    totalcut = quota-quota1[.,1]-unfilled[.,1];
    unfilled = quota1[.,1].*(quota1[.,1].>0) + unfilled[.,1];

  @ Update F_STATE matrix with age data in REGEN @
  if regen/=miss(0,0);

    @ Identify cells in F_STATE that were regenerated @
    pullmat = (regen[.,1].==(f_state[.,1]'));
    pull = sumc(pullmat);

    @ Set age=0 for regeneration conducted in stand 1 @

    pullage = sumc(pullmat.*regen[.,8]);
    f_out[.,17] = (pull.==0).*f_state[.,17] + (pull.==1).*pullage;

    @ Set age=0 for regeneration conducted in stand 2 @
    pullage = sumc(pullmat.*regen[.,10]);
    f_out[.,21] = (pull.==0).*f_state[.,21] + (pull.==1).*pullage;

  endif;

  @ Age at last thinning variable is also set to 0 @
  f_out[.,10 11] = f_state[.,10 11].*(f_out[.,17 21]./=0);

  @ Basal area is set to BA0 @
  f_out[.,18 22] = f_state[.,18 22].*(f_out[.,17 21]./=0) +
                                 ba0*(f_out[.,17 21].==0);

  @ Canopy cover variable is set to 0 @
  f_out[.,19 23] = f_state[.,19 23].*(f_out[.,17 21]./=0);

  retp(f_out);

endp;
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Appendix C.13.  Compartment permutations.G.  GAUSS program file randomly searches for 10,000 permutations of the Piedmont
National Wildlife Refuge compartment list that meet the criterion for compartment non-adjacency within a management
group.  Program writes the output file GOODONES, a GAUSS matrix file containing valid permutations.

new;

proc (1) = combin(n,k);
  /***************************************************************************
  Computes combinatorial function for integers N and K, returns integer COMBIN.
  ***************************************************************************/
  local combin,diff,x,i;

  if k==0 or k==n;
    combin = 1;
  else;
    diff = n-k;
    if k<diff;
      x = k;
    else;
      x = diff;
    endif;
    combin = 1;
    i = 0;
    do while i<x;
      i = i+1;
      combin = combin*((n-i+1)/i);
    endo;
  endif;
  combin = round(combin);
  retp(combin);

endp;

proc (1) = rnk_kgrp(n,x,sorted);
  /*************************************************************************
  Compute the rank order R of a vector of objects chosen K at a time from N
    total objects.  X is a row vector of size K.  If X is already sorted,
    set SORTED = 1; otherwise, SORTED = 0.  RNK_KGRP is the inverse
    procedure of KGRPSELR, i.e., R = RNK_KGRP(N,KGRPSELR(N,K,R),SORTED).
  *************************************************************************/
  local y,k,r,i,npart,kpart,j,m;

  y = x';

  if not sorted;
    y = sortc(x',1);
  endif;
  k = rows(y);
  r = 0;
  i = 0;
  do until i==k;
    i = i+1;
    npart = n-i;
    kpart = k-i;
    j = y[i];
    m = i;
    do until m==j;
      npart = npart-1;
      m = m+1;
      r = r + combin(npart,kpart);
    endo;
  endo;

  retp(r);

endp;

outfile = "d:\\pnwr\\mgmt groups.dat";
pathname = "d:\\pnwr";

output file=^outfile reset;

screen on;
output off;
rndseed 047663086;
combomax = 10000;

prec1 = 2;
prec2 = 6;

@ Current management grouping of PNWR compartments @
pnwr_x = { 1  8 13 24 32
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           9 12 21 25
          10 27 30 33
           6 14 23 29
           4  7 18 22
           3  5 15 20
          11 17 26 34
           2 16 19 28 31 };

@ Compartment center points and adjacency info @
compdat = {1     238575.49613    3670940.60053     4  0  0  0  0  0,
           2     243571.61074    3670438.71926     3  4  6 17  0  0,
           3     242793.37100    3669413.40653     2  4 17  0  0  0,
           4     240605.41302    3670163.81781     1  2  3  0  0  0,
           5     252722.88192    3671343.39818    12 18  0  0  0  0,
           6     244573.26256    3670541.32023     2  7  8 16  0  0,
           7     245612.08738    3672012.54875     6  8  9  0  0  0,
           8     245812.70934    3669841.56405     6  7  9 10 16  0,
           9     247436.21326    3671291.68271     7  8 10 11  0  0,
           10    247984.26868    3669721.95402     8  9 11 13 14  0,
           11    249398.92255    3671601.01051     9 10 12 13  0  0,
           12    251019.09796    3670936.44666     5 11 13 18  0  0,
           13    249733.02444    3669211.44842    10 11 12 14 18 25,
           14    248109.47172    3667570.82865    10 13 15 16 25  0,
           15    247985.92075    3666122.62906    14 16 17 21 22 25,
           16    245508.82922    3667411.36923     6  8 14 15 17  0,
           17    244209.79233    3666622.69556     2  3 15 16 19  0,
           18    252749.65596    3668357.00208     5 12 13 25 27  0,
           19    244877.69627    3664086.85276    17 20 21  0  0  0,
           20    245714.7637     3661802.93       19 21 24  0  0  0,
           21    247056.47912    3663822.86893    15 19 20 22 24  0,
           22    249231.78398    3664660.51488    15 21 23 26  0  0,
           23    250398.05615    3663165.48375    22 24 26 34  0  0,
           24    247919.02743    3662384.20719    20 21 23 34  0  0,
           25    250960.14736    3667292.16841    13 14 15 18 26 27,
           26    251667.61915    3665204.16653    22 23 25 27 28  0,
           27    253663.1848     3666170.544      18 25 26 28  0  0,
           28    254092.41764    3664997.76320    26 27  0  0  0  0,
           29    250118.87738    3658200.61016    30 32 33  0  0  0,
           30    252020.22758    3657656.41924    29 31  0  0  0  0,
           31    252101.17989    3659785.56478    30  0  0  0  0  0,
           32    250353.06475    3654845.33755    29 33  0  0  0  0,
           33    249168.12189    3656121.08301    29 32  0  0  0  0,
           34    248803.71808    3661859.22726    23 24  0  0  0  0};

d = compdat[.,1 4:9];
xy = compdat[.,1:3];

@ Size of treatment groups @
grpsizes = {1 5,
            2 4,
            3 4,
            4 4,
            5 4,
            6 4,
            7 4,
            8 5};

tymstart = date;
tyminit = tymstart;

allcomp = rows(d);         @ Total number of compartments @
dcols = cols(d);           @ Maximum adjacencies for any compartment @
grpmax = rows(grpsizes);   @ Number of treatment groups @

indices = cumsumc(grpsizes[.,2]);
indices = (indices-grpsizes[.,2]+1) ~ indices;

@ Translate PNWR management group vector into permutation codes @
pnwr_y = {};
i = 0;
do while i<grpmax;
  i = i+1;
  ind = indices[i,.];
  comps = pnwr_x[ind[1]:ind[2]];
  pnwr_y = pnwr_y ~ rnk_kgrp(allcomp,comps,1);
endo;

format /rd 4,0;
goodones = pnwr_x;       @ Matrix of suitable compartment permutations @
goodcode = pnwr_y;       @ Matrix of permutation codes @

k = 0;         @ Counter of suitable compartment lists @
tried = 0;     @ Counter of search trials @

do while k<combomax;
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  tried = tried+1;

  @ Draw a candidate permutation of compartments @
  x = rndu(allcomp,1);
  x = rankindx(x,1)';

  @ Search for adjacency conflicts in each treatment grouping @
  groups = 0;
  ok = 1;
  do while groups<grpmax;

    groups = groups+1;

    @ Extract set of compartments for this management group @
    ind = indices[groups,.];
    comps = x[ind[1]:ind[2]];

    @ Create a listing of adjacent compartments for this group @
    adjacent = d[comps,2:dcols];
    adjacent = vecr(adjacent);

    @ MATCH matrix should be = 0 if no adjacent compartments are in group @
    match = (adjacent.==comps);

    if not match==0;
      @ Some compartments in group adjacent to each other -- leave loop @
      ok = 0;
      break;
    endif;

  endo;

  if ok==1;
    @ This permutation vector passes adjacency tests @

    @ Sort group lists and translate vector into vector of permutation codes @
    y = {};
    i = 0;
    do while i<grpmax;
      i = i+1;
      ind = indices[i,.];
      comps = x[ind[1]:ind[2]];
      comps = sortc(comps',1)';

      x[ind[1]:ind[2]] = comps;
      y = y ~ rnk_kgrp(allcomp,comps,1);
    endo;

    @ Has this permutation been previously selected? @
    chosen = 1;
    i = 0;
    do while i<grpmax;
      i = i+1;
      @ Is Y(i) different from every element in i_th column of GOODCODE? @
      if not sumc(goodcode[.,i].==y[i]);
        @ Yes:  Y cannot be equal to any row in GOODCODE -- leave loop @
        chosen = 0;
        break;
      endif;
    endo;     @ Y could still be redundant, evaluate next element of Y @

    if chosen;
      @ A match was found in every column of GOODCODE, but no proof yet @
      @  that duplicate exists -- check more carefully                  @

      really = 0;
      i = 0;
      do while i<rows(goodcode);
        i = i+1;
        if y==goodcode[i,.];
          @ Perfect match -- duplicate really exists, exit loop @
          really = 1;
          break;
        endif;
      endo;    @ No duplicate so far, read next row of GOODCODE @

      if not really;
        @ Duplicate does not exist, permutation OK to add to GOODCODE @
        chosen = 0;
      endif;

    endif;

    if not chosen;
      @ This vector has not been previously evaluated @

      k = k+1;     @ Increment number of valid permutations @
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      @ Update time monitors @
      tymnow = date;
      elapse1 = ethsec(tymstart,tymnow)/100;
      elapse2 = ethsec(tyminit,tymnow)/100;
      tymstart = tymnow;

      if 1 /*k%100==0*/ ;
        @ Print progress @
        format /rdn 4,0;
        print "Trial " tried ", found " k;;
        format /rdn 10,8;
        print ", fraction " (k/tried);;
        format /rdn 8,2;
        print ", Elapsed = " elapse1 " sec, Total elapsed = " elapse2 " sec";
      endif;

      @ Append permutation vector to GOODONES @
      goodones = goodones | x;
      goodcode = goodcode | y;

    endif;

  endif;

endo;

@ Output GOODONES to file @
outform1 = "0*.*lf "~prec1~0;
outform2 = "0*.*lf "~prec2~0;
outformt = ones(rows(allcomp,1)).*outform1 | ones(rows(grpmax,1)).*outform2;
output on;
screen off;
outwidth 160;
call printfm(goodones~goodcode,1,outformt);
output off;
screen on;

@ Are any of the sequences permutations of management groups? @
dups = {};
i = 0;
do while i<rows(goodcode);
  i = i+1;
  vec_i = goodcode[i,.]';

  j = i;
  do while j<rows(goodcode);
    j = j+1;
    vec_j = goodcode[j,.]';
    x = setdif(vec_i,vec_j,1);
    if x==miss(0,0);
      dups = dups | (i~j);
    endif;
  endo;
endo;
print "\nGroup permutations in GOODCODE";
print dups;

save path=^pathname goodones, goodcode;



294

Appendix C.14.  Comp_centers.G.  GAUSS program computes the average inter-compartmental distances within management groups
and between management groups separated by one year in time for each permutation.  Permutations are ranked according to
average values of within-year average distances and successive-year average distances.  Highest and lowest-scoring
permutations according to these criteria are saved in the GAUSS matrix file BESTCODE.

@ Calculates areal dispersion and temporal interspersion statistics on
   compartment combinations @

proc (1) = combin(n,k);
  /***************************************************************************
  Computes combinatorial function for integers N and K, returns integer COMBIN.
  ***************************************************************************/
  local combin,diff,x,i;

  if k==0 or k==n;
    combin = 1;
  else;
    diff = n-k;
    if k<diff;
      x = k;
    else;
      x = diff;
    endif;
    combin = 1;
    i = 0;
    do while i<x;
      i = i+1;
      combin = combin*((n-i+1)/i);
    endo;
  endif;
  combin = round(combin);
  retp(combin);

endp;

pathname = "d:\\pnwr";
load path=^pathname goodones, goodcode;
combomax = 10000;

@ Compartment center points and adjacency info @
compdat = {1     238575.49613    3670940.60053     4  0  0  0  0  0,

           2     243571.61074    3670438.71926     3  4  6 17  0  0,
           3     242793.37100    3669413.40653     2  4 17  0  0  0,
           4     240605.41302    3670163.81781     1  2  3  0  0  0,
           5     252722.88192    3671343.39818    12 18  0  0  0  0,
           6     244573.26256    3670541.32023     2  7  8 16  0  0,
           7     245612.08738    3672012.54875     6  8  9  0  0  0,
           8     245812.70934    3669841.56405     6  7  9 10 16  0,
           9     247436.21326    3671291.68271     7  8 10 11  0  0,
           10    247984.26868    3669721.95402     8  9 11 13 14  0,
           11    249398.92255    3671601.01051     9 10 12 13  0  0,
           12    251019.09796    3670936.44666     5 11 13 18  0  0,
           13    249733.02444    3669211.44842    10 11 12 14 18 25,
           14    248109.47172    3667570.82865    10 13 15 16 25  0,
           15    247985.92075    3666122.62906    14 16 17 21 22 25,
           16    245508.82922    3667411.36923     6  8 14 15 17  0,
           17    244209.79233    3666622.69556     2  3 15 16 19  0,
           18    252749.65596    3668357.00208     5 12 13 25 27  0,
           19    244877.69627    3664086.85276    17 20 21  0  0  0,
           20    245714.7637     3661802.93       19 21 24  0  0  0,
           21    247056.47912    3663822.86893    15 19 20 22 24  0,
           22    249231.78398    3664660.51488    15 21 23 26  0  0,
           23    250398.05615    3663165.48375    22 24 26 34  0  0,
           24    247919.02743    3662384.20719    20 21 23 34  0  0,
           25    250960.14736    3667292.16841    13 14 15 18 26 27,
           26    251667.61915    3665204.16653    22 23 25 27 28  0,
           27    253663.1848     3666170.544      18 25 26 28  0  0,
           28    254092.41764    3664997.76320    26 27  0  0  0  0,
           29    250118.87738    3658200.61016    30 32 33  0  0  0,
           30    252020.22758    3657656.41924    29 31  0  0  0  0,
           31    252101.17989    3659785.56478    30  0  0  0  0  0,
           32    250353.06475    3654845.33755    29 33  0  0  0  0,
           33    249168.12189    3656121.08301    29 32  0  0  0  0,
           34    248803.71808    3661859.22726    23 24  0  0  0  0};

d = compdat[.,1 4:9];
p = compdat[.,1:3];

@ Size of treatment groups @
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grpsizes = {1 5,
            2 4,
            3 4,
            4 4,
            5 4,
            6 4,
            7 4,
            8 5};
sizes = {1 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 7 7 7 7 8 8 8 8 8};

indices = cumsumc(grpsizes[.,2]);
indices = (indices-grpsizes[.,2]+1) ~ indices;

grpmax = rows(grpsizes);   @ Number of treatment groups @

dist = sqrt((p[.,2]-p[.,2]')^2 + (p[.,3]-p[.,3]')^2);
tdist = abs(sizes'-sizes);
maxes = floor(grpmax/2)*ones(rows(tdist),cols(tdist));
diff = maxes-tdist;
tdist = substute(tdist,diff.<0,maxes+diff);

results = {};
i = 0;
do while i<rows(goodones);
  i = i+1;
  goodrow = goodones[i,.];
  timedist = (tdist.>0);
  timedist = (timedist.>0).*(timedist./tdist);
  timedist = missrv(timedist,0);
  timedist = dist[goodrow,goodrow].*timedist;
  intrsprs = sumc(sumc(timedist.*(tdist.==1)))/sumc(sumc(tdist.==1));
  meandist = 0;
  j = 0;
  do while j<grpmax;
    j = j+1;
    ncomps = grpsizes[j,2];
    ind = indices[j,.];
    group = goodrow[ind[1]:ind[2]];
    grpdist = sumc(sumc(dist[group,group]))/combin(ncomps,2)/2;
    meandist = meandist+grpdist;
  endo;
  meandist = meandist/grpmax;
  results = results | (i~meandist~intrsprs);

endo;
results = results[.,1 2]~rankindx(results[.,2],1)~
          results[.,3]~rankindx(results[.,3],1);
results = results~goodones~goodcode;

bestcode = results[1,40:47];

crit1 = (results[.,3]+results[.,5])/2;
res1 = sortc(crit1~results,1);
format /rdn 7,0;
print "RESULTS matrix sorted by average rank for MEANDIST and INTRSPRS";
print (rankindx(res1[.,1],1)~res1[.,1:48]);

bestcode = bestcode | res1[1:2 combomax:combomax+1,41:48];

crit1 = results[.,3]-results[.,5];
res1 = sortc(crit1~results,1);
format /rdn 7,0;
print "RESULTS matrix sorted by difference in ranks for MEANDIST and INTRSPRS";
print (rankindx(res1[.,1],1)~res1[.,1:48]);

bestcode = bestcode | res1[1:2 combomax:combomax+1,41:48];

save path=^pathname bestcode;

format 7,0;
print bestcode;

results = sortc(results,2);
format 5,0;
print results;

results = sortc(results,4);
print results;

results = sortc(results,6);
print results;
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APPENDIX D

OVERSTORY DECISION TABLE

Optimal regeneration amounts for 14,641 distributions of forest overstory in the

Piedmont National Wildlife Refuge, estimated under three alternative model scenarios,

are displayed in a linked table.  Conversion between overstory indices and proportions

are described earlier (Chapter 4, Overstory Transition Model) and are encoded in ASDP

programs (Appendix A.9-A.11).  Optimal amounts for each type (P2, P3, or P4) are

expressed as proportion of the type available Refuge-wide.  Model alternatives are those

of intermediate (model F0), rapid (model F1), or slow (model F2) hardwood

encroachment.



297

APPENDIX E

MANUSCRIPT:  A GENETIC ALGORITHM FOR DYNAMIC OPTIMAL CONTROL

OF WILDLIFE HARVESTS

This manuscript describes use of the genetic algorithm to estimate optimal control

policies for harvest management of a waterfowl population.  I compared the solution

obtained by the genetic algorithm to that obtained by an exact procedure, stochastic

dynamic programming.  I also compared performances by the two algorithms over a

simulated management time horizon.  The manuscript is in form for submission to the

journal Ecological Modelling.
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Abstract

Dynamic programming (DP) methods are often used to find optimal stationary

decision policies for dynamic systems, such as the harvesting of wildlife populations. 

However, DP quickly becomes computationally expensive as the manager contemplates

large system models, and DP is altogether infeasible if the modeled decision process is

not Markovian.  At some point, the manager must be willing to compromise on the

pursuit of optimality in order to entertain complexity in a system model.  We explored

the use of the genetic algorithm (GA) as an alternative to DP.  The GA is a stochastic

search procedure that easily accommodates large system models, and it has been shown

to efficiently locate near-optimal solutions in a variety of problem settings.  We selected

a problem in waterfowl harvest management to describe the implementation of the GA

and to compare state-specific (duck abundance and habitat conditions) decision policies

provided by both DP and GA.  For two waterfowl models, we found virtually perfect

agreement between DP and GA policies.  For two others, we found persistent differences

in decisions between the two policies at extreme ranges of waterfowl abundance.  We

used one of these latter two models in a simulation experiment to compare the

performance of policies derived by DP, GA, and a random search.  Despite differences

between the DP and GA decision policies, simulation of the two policies provided almost

identical expected values of the objective (cumulative harvest), particularly when the

simulated time horizon extended beyond three years.  We believe that managers will find

the GA to be an attractive alternative to DP when attaining true optima can be

compromised with preserving model realism.
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1.  Introduction

Many natural systems are manipulated for desired sustained outputs, where

managers make recurrent decisions in the face of stochastic system behavior.  One

common example of decision making in natural resource management is that of wildlife

harvesting.  Harvest decisions are based in part on current population demographics, and

decisions generally influence population demographics at the next decision opportunity. 

Thus the harvest decision determines both the immediate harvest return in the current

time period and the nature of all future harvest decisions.  Optimal control methods are

used to find decision policies for dynamic systems that take these long-term effects of

decision making into account.

There are several approaches for deriving optimal control policies for wildlife

harvesting.  Dynamic programming (DP) is probably the most flexible approach in terms

of handling complex systems with some ease (Williams, 1989).  Despite its power, DP

suffers from explosive growth in computational burden (both time and memory) as

problem size increases.  Unfortunately, the level of system detail and management

control required in some management settings can easily overwhelm DP, forcing one

either to concede on problem size or to find alternative approaches.

We explored the use of the genetic algorithm (GA) as an alternative to DP for

finding optimal control policies for wildlife harvesting.  To test our approach, we chose a

problem in waterfowl harvesting to which DP has been successfully applied (Johnson et
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al., 1997).  This system was characterized by two sources of stochasticity:  environmental

stochasticity and partial controllability, i.e., chance disagreement between the harvest

decision and the realized outcome of that decision.  We used a simulation experiment to

compare performance of a decision policy provided by the GA to an optimal policy

provided by DP.

2.  Approaches to dynamic optimal control

Williams (1989) provided a comprehensive review of mathematical and

computational approaches to optimal control of dynamic systems.  He reviewed six

classes of methods:  variational mathematics, linear programming, nonlinear

programming, DP, classical optimization, and simulation.  Of these, he identified DP as

the approach most capable of accurately accommodating system complexity with a

minimum of mathematical difficulty.

2.1.  Dynamic programming

DP employs a clever computational approach that significantly simplifies the

optimization of a Markovian decision process.  Consider a deterministic dynamic system

that is in state Xt at time t (Xt may be multidimensional), and suppose that we are faced

with selecting a decision d*
t from the decision set Dt 0 {dt1, dt2, ÿ, dtK} that maximizes

some return (say, cumulative harvest) from the system defined over the time period t, t+1,

ÿ, T.  We will assume that the decision process is Markovian, that is, future states of and

future returns from the system depend on the past only through the current system state

and the decision made in that state (Puterman, 1994).  Suppose that we happen to know

that the sequence of decisions D* = {d*
t+1, d*

t+2, ÿ, d*
T} applied to the system starting at
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time t+1 when the system is in state Xt+1 maximizes our objective.  Then any decision dt

at t takes us to some future state Xt+1, for which we know the optimal subsequent decision

sequence (by assumption).  Bellman (1957) pointed out that the optimal decision, d*
t, is

that decision which maximizes the return over the time interval (t, t+1) plus the return

over the interval (t+1, T), given that the system is in state Xt.

This insightful “Principle of Optimality” by Bellman (1957) induces a solution

algorithm for a dynamic problem.  Considering the state of the system in discrete units,

one first defines all the possible states of the system and all available decision

alternatives at time T-1.  Next, the optimal decision d*
T-1 that maximizes the system return

(call this maximum value JT-1(XT-1)) over the single time step (T-1, T) is identified for

every possible value of XT-1.  This is a simple enumeration over all combinations of states

and decision alternatives, and the set of optimal decisions thus derived constitutes a state-

specific decision policy for time T-1.  Once the d*
T-1 are identified, the procedure moves

backward one time step to the states XT-2.  Now the optimal decision d*
T-2 at time T-2 for

each state XT-2 is that decision that maximizes the system return over the single time step

(T-2, T-1) plus JT-1(XT-1).  Again, this is a simple enumeration over the combinations of

states and decisions at T-2.  The algorithm may be generalized to accommodate

stochastic systems.  In this case, a single state-decision combination is evaluated over

multiple stochastic outcomes, and an expected system return is calculated.

One may continue stepping backwards through time in this manner for any

number of time steps.  In particular, the state-specific decision policy at a certain time

step (or decision stage) t may be compared against the policy previously derived at stage
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t+1.  The backwards recursion may be stopped when the policies no longer differ over an

arbitrary succession of stages, say, c of them.  The policy thus derived may be considered

to be stationary, unchanging with additional decision stages.  Other DP computational

approaches (bound improvement, policy improvement, linear programming) directly

provide optimal stationary policies for Markovian systems (Williams, 1982; Ross 1983;

Williams, 1988).  Stationary policies are highly desirable in wildlife harvest

management, because they imply that the best harvest decision for a given state of the

system (i.e., the status of the population and the environment) is constant, regardless of

when that state occurs in the overall management time frame.

This backwards-recursion approach prevents one from having to calculate all

possible decision pathways forward through time, thus it greatly simplifies the problem.  

Nevertheless, all DP algorithms are enumerative techniques, thus they are ultimately

limited by computational resources.  State variables, decision variables, and stochastic

inputs are all represented in discrete form in DP.  Backwards-recursion DP evaluates

every possible combination of these variables at each decision stage.  Therefore,

increases in problem size, either in the form of more variables or greater degree of

discretization of some variables, lead to a geometric increase in computation.  Depending

on the application, either time or memory may be the limiting computer resource.

The level of realism that natural resource managers often want in their system

models may prove infeasible for DP.  For example, a few state variables reflecting

population status, habitat conditions, and license sales, in combination with other

variables representing stochastic environmental influences can severely challenge the DP
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algorithm:  Bellman (1957) referred to this as the “curse of dimensionality.”  If any of

these variables are changed in scale, for example, if resources are measured and decisions

are made in two or more management zones, then the problem may easily overwhelm

DP.  Furthermore, the DP algorithm is altogether inapplicable if the modeled system is

not Markovian.  That is, any kind of “memory” property of the system that alters the

transition from state Xt to some future state, such as a lag effect of population size on

future population growth, renders the problem unsuitable for DP.

2.2.  Simulation approaches

If conceding system detail is not a viable option, the decision maker must find a

computing alternative.  Simulation approaches were also described by Williams (1989).

Their main advantage is that they allow one to model a system of substantial complexity

and dimension, but their drawback is that their solutions are not necessarily optimal. One

popular simulation approach is to randomly search the decision space in a trial-and-error

fashion and stop the search after a predetermined number of trials.  This search process is

“uninformed” in the sense that neither poor nor good guesses are of any influence in

determining where to next sample from the decision space.  This characteristic makes

typical random search procedures highly inefficient for many problems (Goldberg, 1989).

The GA (Goldberg, 1989) is a stochastic approach that iteratively samples the

decision space, but unlike uninformed random search, its efforts are concentrated in

regions of the decision space that provided good solutions in previous trials.  The GA

provides no guarantee of optimality, but its searching algorithm provides assurance that
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its solution is nonetheless satisfactory for the finite level of resources one has to expend

toward the solution.

3.  A waterfowl harvesting problem

3.1.  System description

The mallard (Anas platyrhynchos) is an abundant waterfowl species that is widely

distributed throughout North America and much of the rest of the world (Bellrose, 1976). 

On average, 7.4 million ducks (range 5.0-11.2 million; 1955-1999 data; U. S. Fish and

Wildlife Service, 1999b) breed in a 3.6 million-ha region of the mid-continent.  The

breeding habitat includes estuaries, tundra, and boreal forests in Alaska and northwestern

Canada; boreal forests in the western half of Ontario and the northern portions of Alberta,

Saskatchewan, Manitoba; prairie potholes in the southern portions of these provinces;

and grasslands in the northcentral U. S. (Anderson and Henny, 1972).  These habitats are

surveyed by air and by ground annually in May to estimate numbers of breeding ducks

(Smith, 1995).

Annual mallard productivity is partially density-dependent but is also strongly

tied to abundance of wetland breeding areas in the prairie pothole region (Pospahala et

al., 1974).  Ponds in southern Canada are also counted during the waterfowl surveys, and

their abundance averaged 3.5 million (range 1.4-6.4 million) between 1961-1999 (U. S.

Fish and Wildlife Service, 1999b).  Pond abundance is influenced by annual precipitation

in the region (Pospahala et al., 1974), which averaged 418 mm recorded at 5 weather

stations in southern Canada in the period 1942-1991 (range 304-574 mm; Johnson et al.,

1997).
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The mallard is subject to sport hunting in North America and usually comprises

the largest proportion of all waterfowl harvested annually (Anderson and Henny, 1972;

Martin and Carney, 1977).  Consequently, the setting of annual harvest regulations for

this species generates considerable interest among biologists, wildlife agency

administrators, hunters, and the general public.  In the United States, the U.S. Fish and

Wildlife Service, in cooperation with state wildlife management agencies and other

participants, sets annual harvest regulations for mallards and other migratory bird species

(Martin et al., 1978).  Though several studies have addressed the optimal control of

mallard harvests (Anderson, 1975; Williams, 1988; Williams, 1996b; Johnson et al.,

1997), formal optimization methods have only recently (1995) been introduced to the

regulations setting process.  We will briefly review that model, which was presented by

Johnson et al. (1997).

3.2.  Population dynamics model

Johnson et al. (1997) described mallard population size in year t+1, Nt+1, as a

nonlinear function of Nt, a habitat measurement Pt (number of ponds in prairie Canada at

time t), and a harvest rate decision ht:

Nt+1 = Nt + fi(Nt, Pt, ht).

The function f is subscripted to denote structural uncertainty about the behavior of the

system, i.e., that there exist alternative, plausible models that describe the population

dynamics of mallards; this will be elaborated later.  The habitat state variable Pt+1 was

itself assumed to be a linear function of Pt and a stochastic rainfall total, rt+1:

Pt+1 = s(Pt, rt+1).
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Four harvest decision alternatives were available:  either (1) season closure, or bag limit

and season length combinations considered relatively (2) restrictive, (3) moderate, or (4)

liberal.  These alternatives corresponded to mean harvest rates ht of 0, 0.090, 0.120, and

0.156, respectively.  However, the harvest rate outcome of an enacted regulatory decision

was random, occurring with mean ht.  Thus, the harvest process was only partially

controlled.

The objective that Johnson et al. (1997) maximized for each alternative model i

was

J u N Hi i i
t

T
= ∑ +

=
( ), ,τ τ

τ
1

where Hi,J is a model-specific harvest at time J and u(Ni,J+1) is a piecewise linear utility

function of next year’s expected population size.  The utility function is valued between 0

and 1 and weights harvest according to expected population size.  These models and this

objective function define a Markovian decision process, and they imply that the search

for optimal harvest rate decisions must take into account all future harvests and future

environmental conditions.

Johnson et al. (1997) addressed the issue of structural uncertainty by considering

four alternative models of population response to harvest and the environment.  Perhaps

the greatest source of uncertainty concerns the response of the mallard population to

harvest.  The hypothesis of compensatory harvest mortality (SC) states that below some

threshold rate of harvest, increases in other sources of mortality compensate for decreases

in harvest mortality (Nichols et al., 1984).  Stated another way, harvest mortality may

increase up to some threshold point with no corresponding increase in total mortality. 
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Alternatively, the additive harvest mortality (SA) hypothesis states that no such

compensation occurs:  each incremental increase in harvest mortality “adds” to the

background mortality already occurring (Nichols et al., 1984).  Both hypotheses have

been supported in retrospective studies of mallard data (Anderson and Burnham, 1976;

Smith and Reynolds, 1992).  Unfortunately, experiments that can distinguish the veracity

of either hypothesis are lacking because they are not easily designed or executed (Nichols

et al., 1984; Nichols and Johnson, 1989).

A second important source of uncertainty concerns mallard production in the

spring.  Production is believed to be directly correlated to habitat conditions but inversely

related to population abundance (Pospahala et al., 1974).  Johnson et al. (1997)

considered two cases regarding the strength of this latter relationship:  production of

young was either weakly (RW) or strongly (RS) depressed by increasing population

abundance.

Combinations of contrasting hypotheses about additivity (SC, SA) and density

dependence (RW, RS) yielded four alternative models of population response:  SCRW,

SCRS, SARW, SARS.  Each of the models was stochastic, incorporating random processes

for pond dynamics and harvest outcomes.  Johnson et al. (1997) used program SDP

(Lubow, 1995), a backwards-recursion algorithm, to find optimal stationary decision

policies for each of the models separately and for a composite model that weighted each

individual model by a probability or belief weight.  Each decision policy provided a

model-specific optimal regulatory (harvest rate) decision for each discrete combination of

Nt and Pt.
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4.  The genetic algorithm

The GA seeks to solve combinatorial optimization problems through an analogy

to evolutionary biology.  By simulating natural selection in a collection of artificial

organisms, the procedure searches for the “most fit” organism in the set.  The

chromosome of each organism carries a genetic code, or genotype, that represents 1

candidate solution to the decision problem.  As with biological chromosomes, the

chromosomes of different organisms may be recombined in offspring.  Furthermore, any

bits of genetic code, or alleles, in the offspring may be mutated at random. 

Recombination and mutation then result in the appearance of novel genotypes in the

population at each generation.  Various rules govern the stochastic processes of pairing,

recombination, and mutation of genetic material.  In general, the “fitness” of an organism

(the objective value corresponding to the encoded candidate solution) determines the

probability that its genetic material persists, either in complete or in partial form, in the

next generation.  The particular strength of the GA is that these stochastic operators

sometimes produce offspring with greater fitness than either of the parents.  By the end of

this natural selection process, an organism emerges with substantially greater fitness than

the individuals in the initial generation.

The GA is a random search procedure, but its probabilistic forays into the

decision space are guided by real-time search results.  The GA is described as an

efficient, robust procedure that provides solutions achieving a good compromise between

the identification of bona fide optimality and the accommodation of large problems

(Goldberg, 1989).  In control problem applications, the GA offers distinct advantages
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over DP.  First, the GA conducts forward simulations over the entire problem time frame,

which, for most practitioners, may be easier to comprehend than the backwards-

progressing single-step calculations of DP.  Second, because the GA forward-simulates,

the decision process need not be Markovian.  Third, there is no need to discretize the

problem as is done with DP because the GA performs no enumerations.  For this reason,

computational burden for the GA grows linearly with problem size (Michalewicz et al.,

1992) rather than geometrically, as is the case for DP.  However, enumeration allows DP

to provide optimal decisions for a range of initial system states in a single run; in

contrast, a single run of the GA provides a decision only for a single system state.

5.  A genetic algorithm for waterfowl harvest

5.1.  Methods

As described above, the DP algorithm solves a dynamic control problem by

stepping backwards through time, moving away from the end of the decision time frame. 

Eventually, the “end-of-time” effect has a diminishing influence on the identification of

the optimal decision.  When successive time-dependent decision policies no longer differ

from each other, the algorithm considers the current policy as “stationary” and thus stops.

Our approach concerned finding an optimal schedule of decisions starting from a

given initial system state.  By virtue of the fact that long time horizons attenuate the

“end-of-time” effect, we reasoned that if it was possible to find a superior schedule for a

sufficiently long time frame, say T years, then the first (time-1) decision value in that

schedule should be comparable or identical to the value obtained from the stationary

optimal policy.
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Therefore, we used the GA to search for an optimal harvest decision schedule

over a fixed time frame for an initial system state and system model.  We chose T = 15

years subjectively but after observing that time-1 decision values were consistent beyond

T . 7 years in other GA runs.  We applied the GA to the four stochastic models of

Johnson et al. (1997).  However, our decision set comprised 81 levels of harvest rate

rather than four:  ht 0 {0.0, 0.00625, 0.0125, ..., 0.50}.  Additionally, we sought to

maximize a long-term sum of unweighted harvests instead of utility-weighted harvests.

We represented each annual decision opportunity as one gene on a 15-gene

chromosome.  Each gene took on one of 81 possible integer-valued alleles, representing

harvest decision values.  Thus, a chromosome carrying a specific complement of 15

alleles (the “genotype”) encoded a particular 15-year harvest decision schedule, and the

first allele A1 on the chromosome represented the decision value at time 1 of the schedule.

Because each chromosome encoded a particular harvest schedule, a value of total

harvest was obtained when the schedule and an initial system state were input to one of

the alternative mallard models.  However, because the mallard models were stochastic,

total harvest values were not unique for a given schedule.  Therefore, we replicated each

schedule m times and obtained an expected value of total harvest.  This expectation

served as the fitness value for the chromosome (Fitzpatrick and Grefenstette, 1988).  The

stochastic nature of the chromosome evaluation implied that chromosomes with identical

genotypes may receive different fitness values.

In the simplest implementation of a GA (Goldberg, 1989), a fixed population of C

artificial organisms is followed over a fixed number of generations, G.  The organisms
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pair up, exchange genetic material, then are replaced by two offspring.  To make pairing

assignments, we first replaced fitness values F for each organism by a linear function of

population rank (Davis, 1991, pp. 31-34):

FN = max(k1, k2 - k3(C - rank(F))),

where k1 is a minimum value for the function, k2 is a maximum value, and k3 is the step

size of the function.  Rank-based fitness evaluation prevents a “super” organism from

quickly dominating the population (i.e., rapid convergence to a local optimum) (Davis,

1991).  We summed the FN values over the population, and we created a cumulative

distribution of the proportionate contribution of each FN to the sum.  Based on this

distribution, we randomly drew two individuals at a time to serve as a parental pair

(“roulette wheel” selection; Goldberg, 1989).  All selection was done with replacement,

thus not only could a single individual appear in more than one parental pair, it could also

be paired with itself.  Each pair was placed in a mating pool of size C - E, 0 #E < C,

where E is a fixed number of individuals from the parent population chosen to persist into

the next generation (described below).  Pairs of individuals were selected until the mating

pool was filled.

After pair selection, pair members were chosen for exchange of genetic material. 

For each pair, the outcome of a Bernoulli trial with probability PC determined whether

“crossover” of genetic material occurred.  Following a successful trial, two loci (allele

sites), L1 and L2, 1 # L1 < L2 < 15, were chosen at random.  The set of alleles between the

first locus and the L1 locus and between the (L2+1) locus and the 15th locus in parent 1

were given to child A, and the alleles between the (L1+1) locus and the L2 locus in parent
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2 were given to child B.  The remaining alleles in parent 1 were given to child B and the

remainder in parent 2 were given to child A.  If the trial was not successful, child A was

“cloned” from (inherited the entire genotype of) parent 1, and child B was cloned from

parent 2.  When an organism was paired with itself, two clones were produced regardless

of the Bernoulli trial outcome.

Pairing and crossover produced C - E offspring.  For every gene in the offspring

population, we conducted a Bernoulli trial with probability PM to determine mutation

outcome.  If the trial was unsuccessful, the allele value on the gene was left intact.  If the

trial was successful, the allele value was “mutated”, or replaced by another one chosen at

random.

After the mutation trials, the C - E offspring were combined with the E highest-fit

individuals in the parent population to form a replacement population of C members. 

Such “elite” selection of most-fit parents assured that the best genotypes found so far are

retained in the population to participate in further rounds of genetic recombination

(Davis, 1991, p. 34).  The replacement population then became the new parent population

in the next generation.

We implemented a GA for mallard harvesting in the C programming language. 

The GA performed the following steps:

1.  Receive as input an initial system state X1 = (N1, P1) and system model

2.  Initialize a population of C organisms with 15C randomly chosen alleles

3.  g 7 0

4.  Do until g = G



Moore et al., Genetic algorithm for wildlife harvests

314

1. Evaluate expected fitness of all organisms

2. Construct mating pool

3. Crossover genetic material in paired parents

4. Mutate alleles of offspring

5. Create replacement population from offspring plus elite-selected parents

6. g 7 g +1

11.  Retrieve organism with greatest fitness; interpret allele value A1

The harvest rate h1 corresponding to A1 was an estimate of optimal stationary harvest rate

for the initial state X1 and the given model.  Because the GA and the population models

were stochastic, we repeated the steps above n times for X1.  We calculated the median of

the h1 values, and we took this value as our estimate of the optimal stationary harvest rate

for the initial state X1.  We calculated a 95% confidence interval for the median based on

a large-sample approximation (Hollander and Wolfe, 1973, p. 49).

5.2.  Policy derivation

We used the GA to estimate optimal harvest decisions for a few initial states

under each of the four population models.  Our analyses used C = 100 individuals per

generation followed over G = 50 generations.  We evaluated fitness for each individual

based on m = 30 replications of the harvest schedule.  Fitness scaling parameters k1, k2,

and k3 were fixed at 100, 2, and 2, respectively, and crossover and mutation probabilities

were PC = 0.8 and PM = 0.1, respectively.  At each generation, the E = 3 most fit

organisms were directly placed into the next population.  Each GA run was repeated n =

100 times with a different random seed.
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We conducted GA analyses for 10 combinations of initial mallard abundance (4,

6, 8, 10, and 12 million mallards) and initial pond abundance (2 and 6 million ponds). 

We compared these solutions against optimal decision values provided by program SDP

(Lubow, 1995).

5.3.  Comparison of GA and DP decision policies

Consistency between the DP and GA solutions varied by model and by initial

system state (Fig. 1).  Solutions were mostly consistent for the two models of

compensatory harvest mortality (SCRS and SCRW) for all initial system states.  Most

confidence intervals for the GA solution were relatively small and contained the optimal

harvest rate.  Only in the higher-abundance initial duck states under model SCRS was

there a suggestion that GA solutions consistently underestimated optimal harvest rates.

In contrast, solutions were often inconsistent under the two models of additive

harvest mortality (SARS and SARW), and the direction of differences depended on initial

system state (Fig. 1).  For initial states of high duck abundance, the GA solution

consistently underestimated optimal harvest rate.  For states of very low duck abundance,

the GA often overestimated optimal harvest rate.

6.  Simulation of alternative decision policies

6.1.  Methods

We were concerned by the inability of the GA to find optimal harvest rates for

some initial states under the models of additive harvest mortality.  The differences

persisted despite our tuning of the most fundamental parameters of the GA (T, C, G, m,

PC, PM).
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Despite these differences, we conducted a simulation experiment to compare the

performance of a GA-derived decision policy for the SARS model against that of an

optimal policy computed by program SDP.  We constructed a state-specific decision

policy matrix by running the GA n = 100 times for each combination of 21 initial

population states (2–12 million mallards, by 0.5 million) and 13 initial habitat states (1–7

million ponds, by 0.5 million).  Each GA run was based on C = 200 individuals and G =

100 generations (i.e., 20,000 candidate 15-year decision schedules per run).  We used k2

= k3 = 1 and E = 5; all other GA parameters retained their values as before.

We wished to compare performance by the GA and optimal policies against a

“baseline” policy derived by uninformed random search (RS).  We constructed this

policy for the same 21 × 13 array of initial states.  For each state, we drew 20,000

candidate 15-year decision schedules completely at random.  As in the GA, we calculated

an expected value of accumulated harvest based on m = 30 replications of each schedule. 

The first decision value for the schedule providing the greatest expected return was

retained, and we performed the search n = 100 times per initial state.  The median of the

100 harvest rates served as our RS estimate of optimal harvest rate for the given state. 

The RS and GA approaches performed the same number of harvest schedule evaluations

and thus were computationally comparable.  In fact, the RS approach is practically

identical to the GA described above with PM = 1.0 and E = 1.

With 3 comparable state-specific decision policies in hand (optimal, GA, RS), we

simulated harvest management under each policy over five time frames:  1, 3, 10, 30, and

100-year.  For each time frame T and an initial mallard and habitat state, we conducted
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10,000 trials of the SARS model.  In each trial, we selected a random series (of length T)

of annual rainfall amounts and harvest rate errors.  We kept track of mallard abundance

and cumulative harvest according to the optimal decision policy (Nt
* and Jt

*,

respectively), the GA policy (Nt
GA and Jt

GA), and the RS policy (Nt
RS and Jt

RS).  We

applied decisions from each of the policies at each decision opportunity during the trial. 

For each policy l 0 {*, GA, RS}, current pond abundance and Nt
l indexed a decision

value to be applied to Nt
l.  The harvest obtained from that decision (following application

of the same harvest rate error to all three harvest rates) was accumulated in Jt
l, and the

population state was advanced to Nt+1
l.  We calculated values J)T

l as the median of the JT
l

over the 10,000 trials.  Similarly, we obtained median terminal population sizes N) T+1
l. 

The quantities RT
(1) = J)T

GA / J)T
* measured the relative performance of the GA policy

against that of the optimal policy, and RT
(2) = (J)T

GA - J)T
RS) / (J)T

* - J)T
RS) measured the

improvement offered by the GA policy relative to the RS policy.  We conducted each set

of trials over the five time frames and over 20 combinations of initial mallard population

size (4, 6, 8, 10, 12 million) and pond abundance (2, 4, 6, 8 million).

6.2.  Results

Decisions in the GA-derived policy differed from those in the optimal policy in a

pattern similar to that described earlier.  Relative to the optimal decisions, GA-derived

decisions were consistently greater at low mallard population sizes and consistently

smaller at high population sizes (Fig. 2a).  Differences from the optimal policy for the

RS-derived policy were similar in pattern but more pronounced and more variable than

the GA differences (Fig. 2b).
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Beyond the briefest time horizon (T $ 3), RT
(1) > 0.98 for any initial state; for T $

10, RT
(1) > 0.995 (Fig. 3).  In spite of the harvest rate differences between policies,

simulated performances by the two policies were practically identical.

The RS policy also performed well.  Its average cumulative harvests at 3 years

and 10 years were >97% and >99.3% of J)T
*, respectively.  In nearly all cases, however,

the GA policy outperformed the RS policy (i.e., RT
(2) > 0), and the performance disparity

increased with length of the time frame (Fig. 4).  Both the GA and RS policies were

derived under considerable computational effort (2×106 candidate decision schedules

evaluated per initial state), so the good performance offered by the RS policy could be

explained by a sufficiently thorough sampling of the decision space.  If the sampling rate

were decreased (as might be the case for a larger decision problem), chance encounters of

good decisions become less likely.  Therefore, we would anticipate that the performance

difference between the GA and RS policies would increase in this circumstance, because

the GA uses information from the search to increase its chances of finding good

solutions.  That is, we expect the utility of the GA relative to RS to become more

apparent as computational resources become limiting.

For most of the time horizons (T $ 3), the median terminal population size under

the GA policy was slightly greater than that under the optimal policy (N) T+1
GA / N) T+1

* range

= 1.006-1.018).  Therefore, in terms of the waterfowl resource, the GA policy tended to

be risk-aversive relative to the optimal policy for all but the shortest time horizons.  For T

= 1, N) 2
GA was sometimes smaller than N) 2

*, but differences were not substantial (N) 2
GA / N) 2

*

range = 0.978-1.114).
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7.  Discussion

Our purpose was to illustrate the application of the GA to a type of problem that

through its size often defies analysis by conventional optimization algorithms.  For this

illustration, the models were sufficiently small to enable comparison of this procedure to

one known to provide an optimal solution.  In practice however, system models and

precision requirements may be so demanding that no optimal solution is available.

For example, suppose that one desires the optimal harvest decision given that the

current abundances of breeding mallards and ponds are 7 million and 4 million,

respectively, and that one of the four harvest models can be considered an appropriate

model.  The user also specifies ranges for the mallard (2-10 million) and the pond (1-7

million) state variables.  If ranges for both state variables are divided into increments of 1

million, then derivation of the optimal policy by a backwards-recursion DP procedure (B.

C. Lubow, Colo. State Univ., unpubl. software) is trivial, requiring only 17 seconds on a

200-Mhz desktop computer and using 1.90 Mb in temporary data storage.  However, the

quality of the DP solution is suspect because the state grid is very coarse and

interpolations used by the program could be quite crude.  Therefore, the user instead

discretizes the state variables into increments of 0.1 million.  The solution by DP is still

rather accessible, requiring 3934 seconds of CPU time and 767 Mb in storage space. 

However, resource use has increased by factors of 231 (CPU time) and 404 (storage),

whereas problem size increased only by a factor of 78.4.

Thus, increases in problem size brought about by finer discretization of state

variables generally requires proportionately larger increases in DP computational
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resources.  In contrast, discretization of state variables and stochastic inputs is not

required in a GA, so the GA does not suffer the same explosive growth in computational

resource use as does DP.  A GA using the parameter values provided earlier (section 5.2)

solved the above problem in 7125 seconds.  Though the DP was faster for this problem,

we point out that this advantage will disappear as the problem is further discretized for

DP.  To illustrate, values for the stochastic rainfall and harvest rate variables were drawn

from discretized versions of continuous distributions, each divided into five probability

bins.  By increasing the level of discretization from five to 10 bins, for example, we

would expect to see a substantial increase in computer resources used by DP, but no

increase at all for the GA.  In fact, we could draw values directly from the parent

distributions themselves under the GA and detect no significant increase in use of

computer resources.

Of even greater concern than discretization issues is the desire to extend these

models to accommodate greater specificity in mallard stocks and greater regional control

of the harvest (U. S. Fish and Wildlife Service, 1999a) or to incorporate habitat

management objectives (Johnson et al., 1996).  These extensions will almost certainly

foil attempts at optimization by classical techniques.  In such cases, it is of course

impossible to assess the quality of a GA solution because the “yardstick” of optimality is

lacking.  Therefore, progress on these larger problems will require some assurance that

the favorable performance by the GA extends beyond small problems.  Through this

demonstration, we hope, natural resource managers will develop a sense of comfort with
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the GA and begin to recognize its utility for the optimal control of stochastic dynamic

systems.

One particular extension of the harvesting problem is that of adaptive

optimization under model uncertainty (Williams, 1996a).  In the example above, we

demonstrated the GA for each of four alternative population models.  As earlier

discussed, harvest managers are not certain about which, if any, of these models are

appropriate for management.  Under adaptive optimization, relative measures of current

belief in each model are expressed in a set of additional state variables.  Comparing the

result of a decision against that predicted by each model provides a means to update

model belief measures through time, where greater credibility is supplied to better

performing models and removed from others.  This updating mechanism becomes part of

the system dynamics in adaptive optimization.  Thus, optimal control of such a system

not only takes into account how decisions affect future harvests, but also how decisions

affect future belief in each model.  Consequently, optimal decisions are those that seek to

balance short-term system gains against gains of information used to better manage the

system over the long run.  Adaptive optimization is possible through DP approaches

(Williams, 1996b; B. C. Lubow, Colo. State Univ., unpubl. software), but this expansion

of the problem poses considerable challenges to enumeration techniques.  The GA might

be a feasible approximate alternative for adaptive optimization.

Although reproduction, crossover, and mutation are common elements in any GA,

there is no “standard” way that these operations are carried out.  The operators that we

chose are probably among the most common, but many variations exist.  Choice of
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technique is up to the judgment of the practitioner and may be dictated by the problem

itself.  Furthermore, several parameters often control the operators, and the practitioner

must select parameter values.  For our illustration, we chose parameter values through

informal trial-and-error; successful application of the GA to a control problem may

require more formal experimentation of alternative GA parameter settings than the kind

we performed.

An alternative mutation operator that recognizes the ordinal nature of alleles

might improve convergence of the GA toward superior decisions.  Our mutation operator

selected any allele from the entire allele set without regard to how long the population

had evolved.  For example, consider a decision string {0.10, 0.10, 0.12, ...} that has

persisted toward the end of a GA run by having performed well through the majority of

the generations.  Suppose that its first allele is now targeted for mutation.  It seems

intuitively clear that at this point in the GA, a mutation “nudge” would be far more

beneficial to further progress of the GA than would a “kick”.  However, our mutation

operator would more likely “kick” the solution out of contention with an allele

replacement value of, say, 0.45 than “nudge” the solution into possibly greater fit with a

replacement value of 0.09 or 0.11.  Thus, in the latter generations of the GA, it might

make better sense to constrain the allele set to those in the neighborhood of the target

allele.  Michalewicz et al. (1992) advocated non-uniform probabilistic selection of

replacement alleles, and they provided a routine for dynamic adjustment of these

probabilities.

8.  Conclusion
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We have shown that the GA derives reasonable, approximate solutions to one

kind of stochastic optimal control problem in natural resources management.  The

advantages of the GA are that one can maintain a forward-time perspective in solving the

problem (thus one is not restricted to assuming Markovian state transitions) and that no

enumeration is done (thus state variables and stochastic inputs need not be discretized). 

Consequently, the GA can accommodate models of substantial complexity relative to DP. 

Despite the simplicity of our GA implementation and the subjective nature of our GA

parameter selection, solutions provided by the GA were consistent with optimal solutions

for two of the models we tested.  Solutions were suboptimal in two other cases;

nonetheless simulation of one of these decision policies provided returns that were not

considerably different than those provided by the optimal policy.

The trend in decision making in natural resource management is toward system

models having greater realism and toward the acknowledgment and confrontation of

system uncertainty.  At some point, the cost of these pursuits is the inability to derive

bona fide optimal decision policies.  The GA and other heuristic procedures including

simulated annealing (Kirkpatrick et al., 1983), tabu search (Glover, 1986), and artificial

neural networks (Narendra, 1996) may provide reasonable alternatives to classical

optimization procedures.  For example, in a spatially-explicit silvicultural scheduling

problem where the management objective was the conservation of a bird species, Moore

et al. (2000) used a GA when the problem could not be satisfactorily simplified for

presentation to DP.  We believe that decision makers will often be willing to exchange an
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optimal solution to a simplistic problem for a satisfying, near-optimal solution to a more

realistic problem.
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Figure Legends

Fig. 1.  Estimates (open circles, displayed with 95% confidence intervals) by the genetic

algorithm of optimal harvest rates (filled triangles) for 4 stochastic models of

mallard population dynamics and 10 initial states of duck and pond abundance

(millions).

Fig. 2.  Optimal harvest rate estimation error (hest - hopt) for state-specific (combinations

of duck and pond abundance) harvest policies estimated (a) by the genetic

algorithm (b) and by random search for the SARS model of mallard population

dynamics.

Fig. 3.  Expected value of cumulative harvest for the GA-derived harvest policy,

expressed relative to the optimal expected value (RT
(1)), for 5 simulated time

horizons.  Each box represents simulation results for 20 combinations of initial

mallard population size and pond abundance.  Optimal harvest is indicated by the

solid reference line; broken reference lines indicate 98 and 99.5 percentiles of

optimal harvest.

Fig. 4.  Difference in expected cumulative harvest between the GA harvest policy and

one derived by random search, expressed relative to the difference between the

optimal value and the value provided by random search (RT
(2)), for 4 simulated

time horizons.  Each box represents simulation results for 20 combinations of

initial mallard population size and pond abundance.  The solid reference line

indicates equal proficiency of the GA and random search harvest policies.



Moore et al., Genetic algorithm for wildlife harvests

330

Harvest Rate
0.0 0.1 0.2 0.3 0.4 0.5

In
iti

al
 S

ta
te

 (m
illi

on
s 

of
 d

uc
ks

, m
illi

on
s 

of
 p

on
ds

)
(12, 6)
(12, 2)
(10, 6)
(10, 2)
( 8, 6)
( 8, 2)
( 6, 6)
( 6, 2)
( 4, 6)
( 4, 2)

(12, 6)
(12, 2)
(10, 6)
(10, 2)
( 8, 6)
( 8, 2)
( 6, 6)
( 6, 2)
( 4, 6)
( 4, 2)

(12, 6)
(12, 2)
(10, 6)
(10, 2)
( 8, 6)
( 8, 2)
( 6, 6)
( 6, 2)
( 4, 6)
( 4, 2)

(12, 6)
(12, 2)
(10, 6)
(10, 2)
( 8, 6)
( 8, 2)
( 6, 6)
( 6, 2)
( 4, 6)
( 4, 2)

Model ScRs

Model ScRw

Model SaRs

Model SaRw



331

-0.14
-0.12
-0.10
-0.08
-0.06
-0.04
-0.02
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

2 4 6 8 10 12 1

2

3

4
5

6
7
8D

iff
er

en
ce

Ducks (millions)

Po
nd

s 
(m

illi
on

s)

-0.14
-0.12
-0.10
-0.08
-0.06
-0.04
-0.02
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

2 4 6 8 10 12 1

2

3

4
5

6
7
8

Ducks (millions)

Po
nd

s 
(m

illi
on

s)

A B



332

T im e H orizon  (y r)
1 3 10 30 100

G
A/

D
P 

O
bj

ec
tiv

e 
va

lu
e 

ra
tio

0 .85

0 .90

0 .95

1 .00

1 .05

1 .10

1 .15

1 .20

1 .25

1 .30

1 .35



333

T im e  H orizon  (y r)
3 10 30 100

R
el

at
iv

e 
Im

pr
ov

em
en

t

-4 .0

-1 .0

-0 .5

0 .0

0 .5

1 .0


	Abstract
	Title
	Dedication
	Acknowledgments
	Table of Contents
	Chapter 1 -- Introduction
	Elements of Making an Informed Decision
	Management on the Piedmont National Wildlife Refuge
	Research Objectives

	Chapter 2 -- Literature Review
	Sources of Uncertainty
	Structural Uncertainty, Modes of Decision Making, and Adaptive Management
	Population Biology of the Red-cockaded Woodpecker
	Population Biology of the Wood Thrush
	Modeling Bird Population Responses to Habitat Management Alternatives
	Management Models for the Red-cockaded Woodpecker
	Management Models for the Wood Thrush

	Model-based Decision Making in Conservation Management
	Model-certain Approaches
	Optimal Management under Model Uncertainty

	Research Justification

	Chapter 3 -- Data Collection and Analysis
	Piedmont National Wildlife Refuge
	History
	Description
	Management

	Data Collection
	Wood Thrush Surveys
	Vegetation Surveys

	Collection and Assembly of Spatial Data
	Polygon and Linear Features
	Physiographic Grid Themes
	Cellular Rendering of the GIS
	Forest State Synchronization

	Analysis of Survey Data

	Chapter 4 -- Decision Modeling
	Overstory Transition Model
	Model Development
	Model Parameterization
	Model Optimization
	Sensitivity Analysis

	Spatially-explicit Forest Management Model
	Management Activities
	Forest Regeneration
	Thinning
	Burning
	Recruitment Cluster Placement

	Forest Response
	Hardwood Encroachment
	Basal Area Growth and Canopy Closure
	Forest Disturbance
	Understory Vegetation Density

	Alternative Forest Response Models
	Avian Population Response
	Red-cockaded Woodpecker
	Wood Thrush

	Parameter Selection

	Model Simulation under Decision Alternatives
	Selection of Decision Alternatives
	Simulation and Analysis of Decision Alternatives under Model Uncertainty
	Model Validation and Model Updating


	Chapter 5 -- Results
	Wood Thrush Surveys
	Overstory Transition Model
	Optimization
	Sensitivity Analysis

	Spatially-explicit Forest Management Model
	Selection of Permutation Sequences
	Analysis of Decision Optima
	Red-cockaded Woodpecker Response
	Wood Thrush Response
	Composite Species Response

	Estimation of Value of Information
	Model Validation and Model Updating


	Chapter 6 -- Discussion
	Synthesis of Modeling Results
	Implications for Refuge Management
	Objectives
	Resource Data
	Predictive Models
	Decision Alternatives

	Adaptive Management in Landscape-level Conservation Problems

	Chapter 7 -- Conclusion
	Literature Cited
	Appendix A -- Tables
	Appendix B -- Figures
	Appendix C -- Program Listings
	Appendix D -- Overstory Decision Table
	Appendix E -- Manuscript:  A Genetic Algorithm for Dynamic Optimal Control of Wildlife Harvests



