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ABSTRACT 

 Coordinate systems are used as representational tools in the learning and doing of 

mathematics. However, in many mathematics curricula, coordinate systems are taken for 

granted and coordinate systems are often unnecessarily restricted to the two-dimensional 

case. Additionally, researchers rarely address how students might construct coordinate 

systems or the meanings students impute to coordinate systems.  

In this study, I investigated how students construct and use coordinate systems in 

spatial contexts to quantitatively organize perceptual/sensorimotor space into 

representational space. Specifically, I conducted a constructivist teaching experiment to 

explore the mental operations and schemes involved in four ninth-grade students’ 

construction of spatial coordinate systems. As the teacher-researcher of the teaching 

experiment, I designed tasks by means of which I asked students to locate objects in two- 

or three-dimensional perceptual/sensorimotor space and to coordinate units along 

multiple spatial dimensions. I also constructed second-order models that accounted for 

the students’ mathematical activity and shifts in their reasoning through both on-going 

and retrospective analyses.  



This dissertation reports results from the teaching experiment. In my analysis, I 

model the operations and schemes—frame of reference coordinating scheme and 

reversible decomposing scheme—that were involved in the students’ construction and 

use of spatial coordinate systems. I also identify ways of reasoning that served as 

productive cognitive resources in the students’ constructive activities: coordination of 

multiple images, logical multiplication, and levels of units coordination. The findings 

have important implications for teaching, curriculum development, and research in 

regards to students’ learning and application of coordinate systems.  
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CHAPTER 1 

INTRODUCTION 

In this study, I investigated four ninth-grade students’ constructions of coordinate 

systems and their use in organizing space. In this introductory chapter, I present the 

background of study, state the research goal and research questions that guided the study, 

and explain why this inquiry is significant. Finally, I provide an overview of each of the 

subsequent chapters in this dissertation.  

Background of Study 

Starting in the spring of 2013, I participated in Pathways to Algebra, a research 

project led by Dr. Leslie Steffe in which we investigated students’ algebraic reasoning. 

More specifically, we conducted a constructivist teaching experiment (Steffe & 

Thompson, 2000) to investigate the mental operations and schemes involved in high 

school students’ proportional reasoning and their constructions of intensive quantities 

(e.g., Steffe, Liss, & Lee, 2014). It is during my participation in Pathways to Algebra in 

which I formulated my dissertation study. Being involved in this project influenced me to 

further think about students’ constructions of representations and symbols and their use in 

quantitative and algebraic thinking.  

Among the various types of graphical items that are conventionally used, I 

became interested in coordinate systems because they are commonly used in various 

domains of mathematics and can serve many purposes in doing mathematics. In the 

seventeenth century, Fermat and Descartes (separately) devised coordinate systems to 
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solve problems of geometry using algebra (hence the development of analytic geometry) 

and opened ways to solve problems in various mathematical domains as well. The 

creation of coordinate systems was not a simple, one-time discovery, but built upon 

continuous work of mathematicians along the long line of ancient techniques of analysis 

(Katz, 2004). Now coordinate systems are used not only in mathematics but in various 

fields to represent objects (e.g., geometrical objects or relationships between quantities) 

in a systematic way.  

Finding it important to attend to how students construct coordinate systems, I 

formed a research agenda to investigate high school students’ constructions of coordinate 

systems, which I discuss next. 

Research Goal and Research Questions 

In this study, I conducted a constructivist teaching experiment (Steffe & 

Thompson, 2000) with four ninth-grade students to investigate their constructions of 

coordinate systems in two- or three-dimensional spatial contexts as organizations of 

perceptual/sensorimotor space into representational space. Here I use Piaget & Inhelder’s 

(1967) distinction of perceptual/sensorimotor and representational space: Perceptual 

space refers to the space one constructs through perceptual activity on elements of raw 

material; sensorimotor space refers to the space abstracted from perceptual activity at the 

operational level, which is “perfectly organized and balanced at the level of action or 

behavior” but “still leaves the subject unable to imagine it or mentally to reconstruct it” 

(Laurendeau & Pinard, 1970, p. 11); representational space refers to the space one 

abstracts from perceptual space at the operational level and entails a symbolic function in 

which the individual could regulate spatial behavior in a systematic way.  
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I use coordinate system to refer to a system through which the individual 

quantitatively organizes (Piaget, Inhelder, and Szeminska, 1960) or coordinatizes points 

in the space being re-presented. By frame of reference, I refer to mental structures (e.g., 

axes) an individual constructs and superimposes onto perceptual/sensorimotor space 

through which the relative position of elements in that space can be gauged and re-

presented qualitatively (Piaget and Inhelder, 1967). A quantitative organization of space 

presupposes a qualitative organization of space (Piaget et al., 1960). As such, a frame of 

reference is necessary to identify a coordinate system with respect to which the location 

of elements of perceptual space can be re-presented (Rock, 1992).  

With these notions of coordinate system and frame of reference, the overarching 

research goal of this study was to investigate how the four ninth-grade students construct 

and use coordinate systems in spatial contexts to organize perceptual/sensorimotor space 

into representational space.  

The first research question that guided the study is as follows. 

a) How do the students construct and use coordinate systems when representing 

objects in two- or three-dimensional perceptual/sensorimotor space? More specifically, 

how do students construct frames of reference and coordinate measurements within those 

frames of reference to represent points in perceptual/sensorimotor space? 

In relation to the first research question, I hypothesized that students’ levels of 

units coordination and the relevant operations and schemes are involved in students’ 

coordination of multiple frames of reference and measurements when constructing 

coordinate systems. Levels of units coordination refers to the different complexities of 

structures of units that students are able to coordinate and hold together mentally (Steffe 
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& Olive, 2010). To further explore students’ coordination of multiple frames of reference, 

which I considered crucial in the investigation of the first research question, I formulated 

the second research question as follows.  

b) How do the students count units within two- or three-dimensional spatial 

objects. Specifically, how do the students coordinate their frames of reference when 

asked to reason about spatial objects that entail arrays of units along two or three 

dimensions? 

As the main teacher-researcher in the teaching experiment, through interactions 

with four ninth-grade students in their engagement in mathematical tasks over several 

months, I formulated and tested hypotheses of their ways of thinking and modeled the 

progress in their mathematical activity (Steffe & Thompson, 2000). Because I am aware 

that I do not have direct access to the students’ ways of thinking, my ultimate goal in this 

study was to build viable second-order models of students’ mathematical activity and 

document shifts in their ways of thinking. These models are never to be interpreted as 

one-to-one representations of students’ thinking (Steffe & Thompson, 2000).  

Rationale and Significance of Study 

This study has significance and related implications in mathematics education in 

that it considers students’ constructions of representations, contributes to research on the 

learning of Geometry and Algebra, and bridges gaps in extant literature investigating 

students’ constructions of coordinate systems. In this section, I elaborate on each of these 

components to explain the rationale and significance of study. 
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Coordinate Systems as Representational Tools 

Mathematical representations are considered important in the learning and doing 

of mathematics (Maher & Davis, 1990; Davis & Maher, 1990). According to Kaput 

(1987), “the root of phenomena of mathematics learning and application are concerned 

with representation and symbolization because these are at the heart of the content of 

mathematics and are simultaneously at the heart of cognitions associated with 

mathematical activity” (p. 22). In the Representation Standard in Principles and 

Standards for School Mathematics, the National Council of Teaching of Mathematics 

(2000) emphasized the importance of representations in school mathematics: 

Instructional programs for prekindergarten through grade 12 should enable all 

students to—Create and use representations to organize, record, and communicate 

mathematical ideas; Select, apply, and translate among mathematical 

representations to solve problems; Use representations to model and interpret 

physical, social, and mathematical phenomena. (p. 360) 

Although important in the learning and doing mathematics, as von Glasersfeld 

(1987) argued, “[A] representation does not represent by itself—it needs interpreting and, 

to be interpreted, it needs an interpreter” (p. 216). In other words, mathematical 

representations do not contain any meaning and do not represent things in themselves 

until someone perceives them as a representation of something (Moore, 2014a; Moore, 

Paoletti, & Musgrave, 2013; Thompson, 1994b).  

Coordinate systems are often used as representational tools in the learning and 

doing of mathematics. For example, in the Common Core State Standards for 

Mathematics, students are expected to use the Cartesian plane to investigate mathematical 

ideas in various grade levels in multiple domains of mathematics, such as in algebra, 

geometry, and statistics (National Governors Association Center for Best Practices, & 

Council of Chief State School Officers, 2010).  
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Because of their prevalence in the presentation, learning, and teaching of 

mathematics, often coordinate systems are taken for granted (Lee & Hardison, 2017). 

Specifically, in curriculum, coordinate systems are restricted to the two-dimensional case 

and curricula documents rarely address how students might construct and use coordinate 

systems or the meanings students impute to coordinate systems and graphical items. For 

example, in the Common Core States Standards for Mathematics, the conventional 

Cartesian coordinate plane is “introduced” for the first time in 5th grade geometry as 

follows. 

Use a pair of perpendicular number lines, called axes, to define a coordinate 

system, with the intersection of the lines (the origin) arranged to coincide with the 

0 on each line and a given point in the plane located by using an ordered pair of 

numbers, called its coordinates. (National Governors Association Center for Best 

Practices, & Council of Chief State School Officers, 2010, p. 38) 

After this “introduction” to a coordinate system, students are expected to make 

use of the coordinate plane as a tool to investigate other mathematical ideas in several 

domains throughout various grade levels, such as number systems, geometric figures, 

ratios and proportional relationships, and equations and functions (National Governors 

Association Center for Best Practices, & Council of Chief State School Officers, 2010). 

However, as NCTM (2000) stated,  

The fact that representations are such effective tools may obscure how difficult it 

was to develop them and, more important, how much work it takes to understand 

them. But as students move through the curriculum, the focus tends to be 

increasingly on presenting the mathematics itself, perhaps under the assumption 

that students who are old enough to think in formal terms do not, like their 

younger counterparts, need to negotiate between their naïve conceptions and the 

mathematical formalisms. (p. 68) 

This study is important in that it addresses how students might construct and use 

coordinate systems and takes the students’ roles in constructing coordinate systems 

seriously. This study also informs and supports considerations of the opportunities that 
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mathematics educators can provide for students “to construct, refine, and use their own 

representations as tools to support learning and doing mathematics” (NCTM, 2000, p. 68).  

More specifically, this study models the way students at different cognitive 

sophistications constructed coordinate systems and the mental operations and schemes 

involved in the students’ constructive activities. These models can inform teachers, 

teacher educators, and curriculum developers to better attend to students’ mathematical 

learning involving the use of coordinate systems. Second, the tasks and relevant findings 

of this study can provide insight for mathematics researchers and educators to allow more 

meaningful opportunities for secondary students to construct, refine, and use their own 

coordinate systems.   

Coordinate Systems as a Means of Connecting Geometry and Algebra 

Both geometry and algebra constitute a substantial part of high school 

mathematics and are often required for high school graduation (Stillman & Blank, 2009). 

Especially, Algebra has been described as a “demonstrable gateway to later achievement” 

(NMAP, 2008, p. 3) and a subject that all students should learn (NCTM, 2000). Although 

separated as two domains of mathematics, geometry and algebra are not mutually 

exclusive and are connected. Geometrical thinking and spatial reasoning can support 

algebraic reasoning by providing ways to interpret and describe physical environments, 

which serve as the source of abstractions of arithmetical or quantitative relationships. On 

the other hand, algebraic reasoning can enhance geometrical thinking and spatial 

reasoning by providing ways to abstract and formalize geometrical and spatial 

relationships.  
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The Geometry standpoint. 

Kinach (2012) criticized that “tensions within the school curriculum have resulted 

in downplaying geometry and elevating either numeracy (primary level) or algebra 

(secondary level)” (p. 536). Furthermore, according to the National Mathematics 

Advisory Panel (2008), students’ transitions from concrete or visual representations to 

internalized abstract representations in Geometry and Measurement are not clearly 

understood and needs to be addressed in research.  

This study attends to this call for research in that it investigates how students 

construct coordinate systems to organize space from situations and problems that rely on 

perceptual/sensorimotor activity but allow for abstractions and coordination of 

measurements. Moreover, drawing from theoretical constructs from spatial cognition 

literature and focusing on students’ constructions of coordinate systems to organize space, 

this study provides a stepping stone to connect research outside of mathematics education 

to better understand students’ spatial reasoning and organization of space. 

The Algebra standpoint. 

According to Smith & Thompson (2008), content of algebra should depend on 

“ideas of coherence, representation, generalization, and abstraction” (p. 95). However, 

Smith and Thompson criticized the current way algebra is taught in schools: 

For too many students and teachers, mathematics bears little useful relationship to 

their world. It is first a world of numbers and numerical procedures (arithmetic), 

and later a world of symbols and symbolic procedures (algebra). What is missing 

is the linkage between numbers and symbols and the situations, problems, and 

ideas that they help us think about. (p. 95)  

Moreover, NMAP (2008) explained, “There are many gaps in the current 

understanding of how students learn algebra and the preparation that is needed before 

they enter Algebra” (p. 32). As such, not only is there a gap between concrete, 
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arithmetical mathematics in the early grades to abstract, symbolic mathematics in the 

secondary curriculum but there is also a gap in research documenting the ways students 

transition from the former to the latter. 

This study provides ways to think about linking the situations and problems that 

coordinate systems help us think about. Put differently, the findings of this study can 

inform how coordinate systems might be used as meaningful representational tools to 

express, manipulate, and formalize arithmetical or quantitative relationships. Moreover, 

considering how students organize space, this study provides models of ways students 

abstract, generalize, and structure objects, which are key components of algebraic 

reasoning (Kaput, 2008; Smith & Thompson, 2008; Hackenberg, 2014).  

Finally, by distinguishing the ways in which coordinate systems are used in 

mathematics (c.f., spatial organization vs. quantitative coordination), this study provides 

a tool for examining students' difficulties in understanding representations of quantitative 

relationships or geometrical objects in coordinate systems and encourages mathematics 

educators to attend to these different uses of coordinate systems to support students' 

balanced understanding of both uses. 

Bridging Gaps in Extant Literature 

In extant literature, researchers have given more attention to students’ 

understandings of graphs of functions than coordinate systems (e.g., Herscovics, 1989; 

Leinhardt, Zaslavsky, & Stein, 1990; Schwarz & Hershkowitz, 1999; Oertman, Carlson, 

& Thompson, 2008; Lloyd, Beckmann, & Cooney, 2010). In these studies, the 

coordinatized plane is assumed as an already given structure to be used in constructing 
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graphs of functions. This study is important in that it adds to the limited body of research 

investigating how students construct and use coordinate systems. 

Another significance of this study lies in the gap it bridges in extant literature on 

students’ constructions of coordinate systems. There are earlier works exploring students’ 

construction and use of coordinate systems to organize space like that of Piaget and 

colleagues (e.g., Piaget, Inhelder, & Szeminska, 1960; 1960; Piaget & Inhelder, 1967). 

There are also more recent works investigating how children or middle grades students 

construct coordinate planes and graphical representations of given situations (e.g., 

DiSessa, Hammer, Sherin, & Kolpakowski, 1991; Maverech & Kramarsky, 1997; 

Nemirovsky & Tierney, 2001; Moritz, 2003; Sarama, Clements, Swaminathan, & 

McMillen, 2003). Others have studied how college students understand covariation of 

two or more quantities with the use of coordinate systems (e.g., Oertman, Carlson, & 

Thompson, 2008; Moore, Paoletti, & Musgrave, 2013). However, I find three important 

elements missing in these studies.  

First, there is little research on high school students’ understandings of coordinate 

systems. The aforementioned studies investigated the constructions of coordinate systems 

of either younger students who have no to little formal instruction on coordinate systems 

or of college students whom were assumed to have already had ample experience 

working with coordinate systems in their past school experience. The lack of research on 

high school students’ constructions of and reasoning about coordinate systems is 

problematic because these students are expected to use coordinate systems when 

exploring various mathematical concepts throughout school mathematics. Therefore, this 

study contributes to the literature by investigating high school students’ constructions of 
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coordinate systems and bridges current understandings of students’ constructions of 

coordinate systems at various grade/age levels. 

The second element that is often absent in the literature on students’ constructions 

of coordinate systems is the emphasis on the students’ active role in constructing 

coordinate systems. Even within research focusing on coordinate systems, some 

researchers provided students with pre-constructed, conventional coordinate systems. For 

example, Levenberg (2015) developed and experimented activities in which elementary, 

junior high school students and pre-service teachers engaged in “reading information 

presented by axes” (p. 48). Levenberg (2015) assumed axes and the graphs presented on 

the coordinate system as representing information, which the participants were expected 

to discover. Denying the existence of pre-made, ontological coordinate systems, this 

study provides insight for the kinds of coordinate systems students actively construct 

independently in various situations. 

The third element I find lacking in extant literature on students’ constructions of 

coordinate systems is modeling the processes in which students produce coordinate 

systems and graphical representations using those coordinate systems. Most 

investigations focused on documenting what students did but not necessarily on 

explaining how and why they may have done what they did. Except for the work of Piaget 

and colleagues, it is difficult to find research on the mental operations and schemes that 

are related in constructing coordinate systems in various situations.  

The National Mathematics Advisory Panel (2008) identified research explaining 

mechanisms of learning as one of the areas of research needed. This study addresses this 
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call by modeling the mental operations and schemes involved in students’ constructions 

of coordinate systems. 

Joshua, Musgrave, Hatfield, and Thompson (2015) proposed a framework of 

conceptualizing a frame of reference in terms of quantitative reasoning (Thompson, 

2011). Within this framework, Joshua et al. discussed the mental actions that are involved 

in coordinating or combining multiple frames of reference and suggested that students’ 

ability to think about measures within a frame of reference supports students in algebraic 

thinking. In contrast to Joshua et al.’s study, this study models students’ reasoning within 

frames of reference and constructions of coordinate systems in spatial contexts. By 

considering mental operations that are involved in the construction and use of coordinate 

systems, identifying common mental operations invariantly involved in the construction 

of coordinate systems for both uses, i.e., spatial organization and quantitative 

coordination could inform us on how these different uses may relate to each other. The 

findings of this study may provide explanations for why students have difficulty 

constructing and understanding graphs of functions (e.g., shape thinking; Moore & 

Thompson, 2015). 

Overview of Dissertation 

In this chapter, I presented the background of this study; research goal and 

research questions; the theoretical constructs and hypotheses of the study; and the 

significance of this study. In Chapter 2, I will provide a more detailed review of the 

theoretical orientation and frameworks that guide this study and review related literature. 

In Chapter 3, I will discuss the methodology I used in this study, the constructivist 

teaching experiment, and present details about the teaching experiment I conducted. In 
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Chapter 4, I will present my findings from the initial interviews of the four participants. 

In Chapter 5, I analyze Morgan and Kaylee’s activities in constructing coordinate 

systems when representing points in space in the North Pole Task and Fish Tank Task. In 

Chapter 6, I present findings from the Cubic Block Task with Kaylee and Morgan and 

discuss their different ways of coordinating units within three-dimensional objects. In 

Chapter 7, I present findings from the Floor Tile Task, Cubic Block Task, and 

Rectangular Prism Task with Craig and Dan to discuss their different ways of 

coordinating units within two- or three-dimensional objects. In Chapter 8, I analyze Craig 

and Dan’s activities in constructing coordinate systems when representing points in space 

in the School Map Task, North Pole Task, and Fish Tank Task. Finally, in Chapter 9, I 

will summarize the findings and compare and contrast the activities across all four 

students. I will also discuss educational implications, and future research directions.  
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CHAPTER 2 

THEORETICAL ORIENTATION, CONCEPTUAL FRAMEWORKS, AND 

LITERATURE REVIEW 

Theoretical Orientation 

In this section, I will discuss the principles of radical constructivism, address 

some of the criticism towards radical constructivism, explain the theoretical constructs 

that are used to model conceptual structures, and present how the theory of knowing 

orients this study.  

Radical Constructivism as a Theory of Knowing 

Basic principles of radical constructivism.  

Radical constructivism emerged as a theory of knowing in the nineteen seventies. 

Von Glasersfeld problematized the fundamental assumptions taken in the traditional 

theories of knowledge of realist, traditional views and adopted from various sources the 

ideas that formed the backbone of radical constructivism. Like von Glasersfeld (1990) 

reflected in his exposition of radical constructivism, he “picked up relevant ideas 

(somewhat abbreviated and idealized)” (p. 20) way back from the doubts of the skeptics 

to the Italian Operational School and Piaget’s genetic epistemology. I will explain these 

relevant ideas as they come up in the overview. 

The fundamental assumption grounded in the traditional epistemology von 

Glasersfeld (1990) found problematic was that there exists an objective, ontological 

reality, i.e., “a fully structured and knowable world” (p. 21). From this point of view, 
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knowledge is considered a projection of the already existing world, to represent a world 

of “things-in-themselves” (p. 21) and it is the human subject’s job to discover what this 

already-made reality is. Further, knowledge is true only when it matches to that already 

existing world.  

Troubled by these traditional beliefs that lacked any consideration of the 

cognizing subject and the relationship between knowledge and reality in terms of the 

experience of the cognizing subject, von Glasersfeld developed a radical theory of 

knowing. Von Glasersfeld (1990) outlined the two basic principles of radical 

constructivism as the following: 

1. Knowledge is not passively received either through the senses or by way of 

communication. Knowledge is actively built up by the cognizing subject. 

2. a. The function of cognition is adaptive, in the biological sense of the term, 

tending towards fit or viability. 

   b. Cognition serves the subject’s organization of the experiential world, not the 

discovery of an objective ontological reality. (pp. 22–23) 

Principle 1 emphasizes the active role of the individual in the construction of 

knowledge. Contrast to the traditional view of knowledge, Principle 1 puts the 

responsibility of knowledge building to the individual. As von Glasersfeld (1990) said, “it 

is we who are responsible for the world we are experiencing” and therefore the knower is 

responsible for what the knower constructs (p. 28). 

The mobility of attention exemplified by the so-called psychological Cocktail 

Party Effect is what von Glasersfeld (1995) considered an indication that the cognizing 

subject indeed engages in active participation in the construction of knowledge. To 

illustrate, imagine you have stepped into a room full of people at a cocktail party. Despite 

a superfluous flow of raw, sensory material you receive through your senses, you still 
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manage to pick up a conversation happening in the room. That is, you actively select and 

perceive of the sensory material that is necessary for you to understand a conversation 

occurring at the party. The Cocktail Party Effect describes the phenomenon in which we 

can willingly switch our attention from one sensory field to another. Von Glasersfeld 

(1995) reflected, “[T]he realization of this capability was an enormous encouragement to 

pursue the search for the active element in the perceiver and, ultimately, the builder of 

knowledge.” (p. 11) 

When we consider knowledge as something actively built up by the individual 

(Principle 1), then knowledge requires experience of the cognizing subject from which 

knowledge can be built. Reflexively, through the construction of knowledge, the 

cognizing subject actively organizes his or her experiential reality (von Glasersfeld, 

1995).  

From the skeptics and other philosophers, von Glasersfeld (1990) adopted the 

view that “whatever ideas or knowledge we have must have been derived in some way 

from our experience, which includes sensing, acting, and thinking” (p. 20). Reflecting on 

his ability to speak in multiple languages and his activities in translating one language to 

another, von Glasersfeld (1995) explained that language not only contained different 

vocabulary or grammar but also “required another way of seeing, feeling, and ultimately 

another way of conceptualizing experience” (p. 3). Language entailed a conceptually 

different world and this served an indication for von Glasersfeld (1995) that human 

beings indeed have different experiential worlds.  

Borrowing Vico’s (1710) slogan, “The human mind can know only what the 

human mind has made,” von Glasersfeld (1995) claimed, “What we make of experience 
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constitutes the only world we consciously live in.” (p. 1). Because we can only know 

what we experience, there is no way of checking an absolute truth of knowledge because 

it requires “access to such a world that does not involve our experiencing it” (von 

Glasersfeld, 1990, p. 20). Therefore, “cognition serves the subject’s organization of the 

experiential world, not the discovery of an objective ontological reality” (Principle 2b). 

The second principle of radical constructivism is what makes this theory of 

knowing radical in that the view of the relationship between truth and knowledge is 

challenged. As von Glasersfeld (1989) stated:  

The revolutionary aspect of Constructivism lies in the assertion that knowledge 

cannot and need not be ‘true’ in the sense that it matches ontological reality, it 

only has to be ‘viable’ in the sense that it fits within the experiential constraints 

that limit the cognizing organism’s possibilities of acting and thinking. (p. 2)  

From the radical constructivist viewpoint, truth of knowledge is not something we 

can obtain; the only reality that an individual can perceive is his or her experiential reality. 

To know something is not a search for a picture-like iconic representation of ontological 

reality, but a way of organizing our experiential world. At best, knowledge is functional 

in the realm of being viable and fit within our experiential reality. The theory does not 

object the existence of ontological reality, but the point is that we have no way of 

knowing what that reality is. We can only know the boundaries of such reality through 

the limitations and constraints that we confront through our experiences.  

Addressing criticism towards radical constructivism. 

Due to the emphasis on the active construction of knowledge by the cognizing 

subject, radical constructivism can be misunderstood as solipsism. However, in the 

radical constructivist’s view, the active construction of knowledge does not mean that the 

individual can build anything as he or she likes. The construction of experiential reality 
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does not refer to the construction of any reality of her or his liking. Individuals construct 

conceptual structures to organize their experiences and these structures meet their limits 

within reality through experiences. When the conceptual structures meet constraints the 

individual’s prior conceptual structure and domain of experiences are modified and 

adapted to fit within the boundaries of reality. In this sense, “the function of cognition is 

adaptive” (von Glasersfeld, 1990, p. 23). 

Often, radical constructivism is criticized for its lack of consideration of social 

interaction in the process of knowledge construction (e.g., Lerman, 1996). However, von 

Glasersfeld emphasized that knowledge is not only constructed in a way such that the 

conceptual structures are viable within our self-organized world but also within the social 

setting in which individuals interact. Emphasizing intersubjectivity, von Glasersfeld 

(1990) noted that “every individual’s abstraction of experiential items is constrained (and 

thus guided) by social interaction and the need of collaboration and communication with 

other members of the group in which he or she grows up” (p. 26). Through collaboration 

and communication with others, the individuals learn if his or her concept is viable with 

others.  

Finally, von Glasersfeld (1990) cautioned that “one cannot adopt the 

constructivist principles as an absolute truth, but only as a working hypothesis that may 

or may not turn out to be viable” (p. 23). 

Modeling Conceptual Structures of the Cognizing Subject 

To discuss how the cognizing subject constructs knowledge and how human 

subjects construct their experiential worlds, von Glasersfeld (1990; 1995) adopted ideas 

from the Italian Operational School and Piaget’s genetic epistemology. Being part of The 
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Italian Operationist School led by Ceccato, von Glasersfeld engaged in operational 

analyses of concepts, in which concepts are defined in terms of operations that have to be 

carried out to build them (von Glasersfeld, 1995). From Piaget, von Glasersfeld (1990) 

adopted the adaptive function of cognition, the notion of fit, and the constructs of 

assimilation, accommodation, and equilibrium that explain the genesis of knowledge. In 

this section, I define scheme, operation, and concept, constructs that describe and model 

conceptual structures; and assimilation, accommodation, and abstraction, which describe 

the process through which one organizes conceptual structures.  

Schemes and operations. 

A scheme is a goal-directed basic sequence of events consisting of three parts: the 

subject’s recognition of an experiential situation, a specific activity or operation that the 

subject associates with the situation, and the result or sequel of the activity in the 

situation (von Glasersfeld, 1980). Operations are the mental actions that are used in the 

activity of the scheme. More specifically, they are conceptual or internalized activities, 

“which can return to its starting point, and which can be integrated with other actions also 

possessing this feature of reversibility” (Piaget & Inhelder, 1967, p. 36).  

Assimilation, accommodation, and abstractions. 

Von Glasersfeld (1980) adopted Piaget’s assimilation-accommodation-

equilibrium model to explain the genesis of knowledge. Experiential elements are 

assimilated into existing schemes when the individual recognizes an experiential situation 

associated with the scheme. When the current schemes one has constructed do not meet 

constraints in his or her organization of experiences, then the individual’s conceptual 

structures are at a state of equilibrium. A scheme is accommodated when an individual 
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modifies or rearranges a current scheme. Such accommodations of schemes occur when 

experiential elements provide a perturbation because the current scheme does not solve 

the problem the experiential elements present.  

A functional accommodation is a modification of a scheme that occurs within the 

context of the scheme being used. When a modification occurs outside the context of the 

scheme being used, and there is a general reorganization of a scheme, a metamorphic 

accommodation has occurred. It involves an interiorization and reorganization of specific 

operations and experiences (Steffe, 1991b) through which learning occurs.  

Concepts are interiorized schemes in that they can be re-presented without having 

to carry out the activity that was involved through the process of abstraction of the 

operations involved in the construction of the scheme. Hackenberg (2010) explains a 

concept as the results of the schemes that people have abstracted or interiorized. 

Therefore, “when people have abstracted a concept from their schemes they can use the 

results of the schemes – and all the operations that went into producing those results – in 

assimilation.” (p. 387).  

There are two types of abstractions involved in the construction of concepts that 

Von Glasersfeld (1991) adopts from Piaget: empirical and reflective abstractions. 

Empirical abstraction refers to the abstraction of figural patterns from sensory material. 

It is a simple abstraction of extracting several common perceptual or sensory properties 

from a set of objects. On the other hand, reflective abstraction refers to the abstraction of 

a higher level that uses the results of empirical abstraction. It takes the simple abstraction 

as units and compares, separates, and recombines them, which results in a “projection and 

adjusted organization on another operational level” (von Glasersfeld, 1991, p.58). 
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Therefore, reflective abstraction “takes place when the experiencing subject attends only 

the mental operations and abstracts them from whatever sensorimotor context that may 

have given rise to them” (von Glasersfeld, 1982, p.195).  

Radical Constructivism as an Orienting Perspective 

Ideas of radical constructivism has been used in areas such as literary studies, 

psychotherapy, and interpersonal management (von Glasersfeld, 1989). Von Glasersfeld 

(1989) outlined a few implications that the radical constructivist perspective has in 

educational practice and research. In this section I will summarize these implications in 

education in general, then discuss how these implications can be applied to mathematics 

education. Finally, I explain how radical constructivism guided this study.  

Implications in education. 

According to von Glasersfeld (1989), from the radical constructivist perspective, 

the researcher and educator’s interest “will be focused on what can be inferred to be 

going on inside the students’ head, rather than on overt ‘responses’” (p. 3). Here, there 

are two things to emphasize. First, that the researcher or educator is at best making 

inferences and second, that the focus is in the process through which one thinks, not 

solely in the responses students produce as a result of such thinking. Further, a radical 

constructivist’s teacher will take the stance that students are attempting to make sense of 

their experiential world; consequently, the teacher’s interest will be in “every instance 

where students deviate from the teacher’s expected path because it is these deviations that 

throw light on how the students, at that point in their development, are organizing their 

experiential world.” (von Glasersfeld, 1980, p. 3) 
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The knowing and learning of mathematics.  

According to von Glasersfeld (1980), from the radical constructivist perspective, 

thinking about how human beings come to know mathematics requires investigating 

“their genesis as abstract entities in an experiential domain” (p. 16). Often the 

“theoretical infallibility of mathematical operations (von Glasersfeld, 1990, p. 25)” is 

used to show that mathematical reality is an objective ontological reality. However, such 

infallibility is due to the rules and system by which it was built; mathematics is still a 

human construction. It is important to note that the construction of experiential 

mathematical reality is not built simply or arbitrarily. As Steffe (1991b) explained, 

“mathematics learning is viewed as reflective abstraction in the context of scheme theory. 

In this view, mathematical knowledge is understood as coordinated schemes of action 

and operation” (p. 177).  

From a radical constructivism viewpoint, mathematical knowledge concerns what 

students construct from their experiences. Thus, the goal in mathematics education is not 

to have the students correctly reproduce what the teacher is doing or find the “correct” 

answer. It is to help the students continuously construct an experiential mathematical 

reality. However, we do not want our students to construct anything they wish to or as in 

a solipsist’s mind, out of his or her own imagination. It is important to provide 

opportunities for student so that the individual can construct their knowledge in a viable 

way so that their constructions and organization of mathematical experiences are 

successful ones. To be successful means that there is a connection with the prior 

mathematical knowledge the student has and that there is continuous reflection.  
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One purpose of the teaching experiment methodology is to “create situations that 

would allow the investigator to observe children at work and make inferences as to how 

they build up specific mathematical concepts” (Steffe, 1991 b, p. 17). Another goal is for 

the researcher to build mathematics of children, second-order models of children’s 

mathematics; children’s mathematics refers to the children’s first-order models of 

mathematics, which remain inaccessible to the researcher (Steffe, 1991b). The teaching 

experiment is a conjecture building process, to model children’s mathematics, which I 

elaborate further in Chapter 3.  

Mathematical symbols and representations. 

Following the radical constructivist orientation, symbols are constructed and 

given meaning to by the cognizing subject. As von Glasersfeld (1987) said, “A 

representation does not represent by itself—it needs interpreting and, to be interpreted, it 

needs an interpreter” (p. 216). Further, symbols are created through reflective abstraction 

and conceptualization (von Glasersfeld, 1991). Put differently, we formulate a symbol by 

associating a word—including other forms of notation—with a constructed conceptual 

structure, which when used, serves as an activation of bringing forth the abstracted 

experience but not necessarily having to re-present the whole conceptual structure. 

However, this association is not simply a stimulus-response relationship where the word 

calls up a direct response. Von Glasersfeld (1991) explained that “a word is used as a 

symbol, only when it brings forth in the user an abstracted generalized re-presentation, 

not merely a response to a particular situation” (p.51). First, the sound or the graphic 

marks should be recognized by the user; then they should be associated with an 

abstracted experience, the conceptual structure that it was derived from, so it brings forth 
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an associated meaning as “re-presentation chunks of experience that have been isolated 

(abstracted)” (von Glasersfeld, 1991, p.52). Further, as the user becomes more proficient 

with the use of the word or symbol, they can “simply register the occurrence of the word 

as a kind of ‘pointer’ to be followed if needed at a later moment” (von Glasersfeld, 1991, 

p. 51) without carrying out the whole associated conceptual structure.  

Coordinate systems as mathematical conventions are highly abstracted symbols 

that were developed throughout the history of mathematics to represent space and to 

study functions, relationships between quantities, and change. In 1637, Fermat and 

Descartes each devised a way of connecting geometry with algebra through constructing 

coordinate systems (Katz, 2004). The conventional Cartesian coordinate system was 

named after Descartes, from his system of finding constructible points by compass and 

straight-edge, using two lines to represent each dimension of the plane and assigning 

numbers to points in the plane in relation to these lines (Aczel, 2009). The creation of the 

Cartesian coordinate system shows us that coordinate systems were created, not 

discovered.  

Graphical items—a coordinate system (structure) and the graph that is constructed 

within that coordinate system—can be viewed as symbolizations of mathematical ideas 

as well. Consistent with the radical constructivist perspective, for graphical items to be 

representations as symbols, they have to be constructed by the cognizing subject. That is, 

someone must perceive them as a representation of something and they do not contain 

meaning nor do they represent anything in and of themselves (Thompson, 1994b; Moore, 

2014a; Moore, Paoletti, & Musgrave, 2013).  
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 The radical constructivist theory of knowing orients this study in various ways. 

First, the theory influenced the formulation of my research questions: the research 

questions were formulated through the work with students as I engaged in experiencing 

their mathematical activities. Second, the theory influenced my stance on mathematical 

representations in general (as discussed above) and coordinate systems and frames of 

reference in particular (which I discuss in the next section). This perspective influenced 

the tasks I constructed and theoretical constructs I adopted in data analysis (which I 

discuss in the next section). Finally, the theory informed the methodology used in this 

study and the perspective I took in the teaching experiments as the teaching agent.  

Theoretical Constructs and Literature Review 

In the second part of Chapter 2, first, I discuss the notion of frames of reference 

and coordinate systems from three bodies of research—spatial cognition, Piagetian work, 

and quantitative reasoning—and review relevant literature. Second, I present my 

distinction between two uses of coordinate systems and review studies investigating 

students’ constructions of coordinate systems. Third, drawing from existing studies and 

making distinctions of my own, I explain what I mean by spatial frames of reference and 

spatial coordinate systems. Finally, I discuss the theoretical construct of students’ levels 

of units coordination and relevant operations and schemes.  

Frames of Reference and Coordinate Systems in Literature 

The notion of frames of reference has been used in multiple areas including 

spatial cognition, linguistics, physics, and mathematics. As Levinson (2003) explained, 

the notion of frames of reference is essential in the study of spatial cognition in various 

modalities such as vision, touch, and gesture. According to Levinson (2003), frame of 
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reference is studied in multiple disciplines, such as philosophy, brain sciences, linguistics, 

developmental and behavioral psychology, vision theory, visual perception, and 

psycholinguistics. In this section, I provide an overview of the notion of frames of 

reference from three bodies of research—spatial cognition, Piagetian work, and 

quantitative reasoning—and review relevant literature. I also define what I mean by 

spatial frames of reference and spatial coordinate systems. 

Frames of reference and spatial coordinate systems in spatial cognition 

literature. 

Mental representations of space. In her exposition on how people think about 

space, Tversky (2003) explained that we think about space by constructing mental 

representations of space using frames of reference: 

Mental representations of space are constructions based on elements, the things in 

space, and the spatial relations among them relative to a reference frame…In 

human conceptions of space, the things in space are fundamental, and the 

qualitative spatial relations among them with respect to a reference frame form a 

scaffolding for mental spaces. Which elements or things are selected and which 

spatial relations are chosen as relevant depend on the space and the functions it 

serves us…Each of these spaces is represented schematically in terms of the 

things and spatial relations that are important for functioning within it. (pp. 66–67) 

Tversky (2003) distinguished four types of mental representations of space; the 

space of the body, the space around the body, space of navigation, and space of graphics. 

According to Tversky, depending on the functions they serve, the activities that are 

invoked within them, and the elements involved, these spaces are conceptualized 

differently.  The space of the body refers to the various parts constituting the body, which 

have different functions and sizes. Based on an empirical study about body stimuli 

response, Tversky (2003) claimed that “the mental representations of bodies are 

organized around significant body parts” (p. 69).  
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The space around the body refers to “the space of things that can be seen and 

often reached from the current position” (Tversky, 2003, p. 69). From a multitude of 

experiments with people naming directions of objects placed in various locations near the 

body, Tversky concluded that “the space around the body is conceived of three-

dimensionally from a reference frame based on extensions of the three major body axes, 

head/feet, front/back, and left/right” (p. 71).  

The space of navigation refers to “the space we explore, the space we inhabit as 

we move from place to place, typically a space too large to be seen at once” (Tversky, 

2003, p. 72). Elements such as landmarks, paths, links, and nodes constitute the space of 

navigation and are organized relative to a reference frame, based on three different 

perspectives: the viewer, object, or environment.  

Finally, the space of graphics refers to the external spaces created by humans “as 

tools to augment cognition” such as maps, drawings, and graphs; some used to represent 

space and others to “represent visually things that are not inherently visual” (Tversky, 

2003, p. 76). The elements of this space can range from literal icons to abstract points and 

spatial relations such as distance and direction could represent literal relations or 

metaphoric relations. According the Tversky, “graphics take advantage of human 

capacity to reason about space, to estimate distances and direction, to mentally transform 

spatial arrays, and to infer function from structure” (p. 77).  

Frame of reference. Levinson (2003) suggested that the idea of frame of reference 

has a long history. He used the puzzle Aristotle posed about a boat anchored to the bank 

of a river as an example:  
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If we think about the location of objects as places that they occupy, and places as 

containing the objects, then the puzzle is that if we adopt the river as frame of 

reference the boat is moving, but if we adopt the bank as frame, then it is 

stationary. (p. 24)  

However, Levinson (2003) attributed the modern phrase and interpretation of 

frame of reference to the Gestalt theories of perception in the 1920s, and borrowed the 

Gestalt definition of frame of reference from Rock (1992): “A unit or organization of 

units that collectively serve to identify a coordinate system with respect to which certain 

properties of objects, including the phenomenal self, are gauged” (p. 404). Then what 

does a frame of reference entail?   

Reference points. Sadalla, Burroughs, and Staplin (1980) defined spatial reference 

points as places within a region whose locations serve to define the location of adjacent 

places when building cognitive representations of large scale space. Drawing from their 

experiments with undergraduate students in identifying locations on a university campus, 

Sadalla et al. suggested that “spatial information is organized into conceptual units, with 

a number of locations cognitively located in relation to reference points.” (p. 527). 

Further, they claimed that spatial reference points “provide an organizational structure 

that facilitates the location of adjacent points in space” (p. 526).  

Indeed, reference points are crucial bases for locating other objects in space. But 

they are not sufficient for that purpose. I agree with Levinson (2003) that solely focusing 

on reference points does not account for different frames of reference that one might take 

in locating objects and, “severely underplays the importance of coordinate systems in 

distinguishing frames of reference” (p. 25). Put differently, a frame of reference should 

entail more than a reference point. In order to locate a point in relation to a reference 
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point, one will need a direction from the reference point to move towards the point and a 

description of the amount of movement needed from the reference point to the point.  

Directionality. In one-dimensional space, any point in the space could be located 

in relation to a reference point in a rather simple manner. See Figure 2.1 (a) as an 

example. With a fixed point (A), in order to locate arbitrary points B or C in the one-

dimensional space, one will need to know the direction in which to move—either on one 

side or the other of point A along the line—and a measurement of distance from the fixed 

point, A. In the one-dimensional case, direction is bidirectional: you can only move in 

one direction or in the opposite direction along the line.  

 

 

 

 

 

                            (a)                                                            (b)  

Figure 2.1. Locating a point in one- or two-dimensional space. 

However, directionality in two-dimensional space is not as simple as in one-

dimensional space. See Figure 2.1 (b) as an example in which arbitrary points B’ and C’ 

are located in relation to reference point A’. Different from one-dimensional space, there 

are infinitely many directions in which one could move. Depending on the direction one 

moves, the distance one will need to travel will differ. A similar analogy could be made 

about three-dimensional space. So, there could be multiple ways people can think about 

the location of one point in reference to another depending on the frame of reference they 

construct and the perspective they take when perceiving the space.  
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Types of Frames of Reference. Different types of frames of reference have been 

studied  in spatial cognition literature.  Drawing from various experimental data, 

Soechting and Flanders (1992) discussed how humans move in three-dimensional space. 

More specifically, they identified the frames of reference in which they claim sensory 

information is encoded and processed through the neural systems, to control and 

coordinate eye, head, and body movements. Although Soechting and Flanders do not 

explicitly define their notion of frame of reference, they distinguish different frames of 

reference by where they are fixed. Frames of reference could be fixed at various locations, 

such as the earth, a moving train (object), or the observer’s eye. According to Soechting 

and Flanders, the processing of sensory information in various motor tasks of the body 

follows earth-fixed frames of reference with “one of the coordinate axes defined by the 

gravitational vertical …[and the other] defined by the sagittal horizontal axis” (p. 186).  

Soechting and Flanders (1992) explained that there are two ways to represent a 

location of a point within a frame of reference: vectorially or through coordinate systems. 

Representing a location of a point within a frame of reference vectorially refers to 

defining an origin and assigning a direction and amplitude from the origin to each point. 

Another way to locate a point is to “define a coordinate system within the frame of 

reference by choosing a set of base vectors. Any point in the reference frame is now 

defined in terms of an amplitude along each of the base vectors (coordinate axes)” (p. 

169). I interpret these two methods to be essentially the same, as both methods require 

assigning a notion of directionality and some amplitude from the origin to each point. 

However, the difference seems to lie in the way directionality is defined. In the first case, 

a single vector connecting the origin and point is used (e.g., polar coordinate system) 
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whereas in the latter case, the single vector is now broken down into two or more base 

vectors that span the space (e.g., Cartesian coordinate system).  

Other researchers distinguished three types of frame of reference used “for 

representing the spatial relationships among objects in the world” (Carlson-Radvansky & 

Irwin, 1993, p. 224). The three types are viewer-centered, environment-centered, and 

object-centered frames of reference. In a viewer-centered frame of reference, objects are 

represented relative to the viewer’s perspective. This frame of reference could be 

centered at the perceiver’s retina, or head, or body. Farah, Brunn, Wong, Wallace, and 

Carpenter (1990) explained that viewer-centered representations need to be adjusted if 

either the viewer or the object moves. In an environment-centered frame of reference, 

objects are represented relative to salient features of the environment, “such as gravity or 

prominent visual landmarks” (Carlson-Radvansky & Irwin, p. 224). Due to the stability 

of the environment, according the Farah et al., the representations induced from an 

environment-centered frame of reference do not change whenever the viewer moves. For 

example, “‘left’ is defined as to the left of the environmental midline, regardless of the 

position and orientation of the viewer and the objects in the environment” (Farah et al., p. 

336). In an object-centered frame of reference, objects are represented with respect to an 

object and the axes intrinsic to the object. Farah et al. explained, “Because the object-

centered frame of reference moves with the object, spatial representations in object-

centered coordinates are stable over changes of the object’s position and orientation with 

respect to the viewer and the environment” (p. 336). As such, the environment-centered 

and object-centered frames of reference are defined in an “absolute” sense in that there is 

no account for the observer of the environment or object. The environment or object that 
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serve for the center of the frame of reference are taken as objective, stable entities 

independent of an observer.  

Carlson-Radvansky and Irwin provided an example of the different frames of 

reference that could be used in describing objects in space, as illustrated in Figure 2.2.  

 

Figure 2.2. Figure 1 from Carlson-Radvansky & Irwin (1993, p. 225). 

In their description of the drawing, Carlson-Radvansky and Irwin (1993) stated: 

Which object is “above” the trash can? From the perspective of the person lying 

on the couch, object 1 is above the trash can with respect to a viewer-centered 

frame, object 2 is above with respect to an object-centered reference frame, and 

object 3 is above with respect to an environment-centered reference frame. (p. 225) 

Although subtle, one thing that is unclear in their description is whether Carlson-

Radvansky and Irwin (1993) consider these frames of reference from an observer’s 

perspective or impute these frames of reference to the person lying on the couch. There is 

a difference between claiming that “object 1 is above the trash can with respect to a 
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viewer-centered frame” and claiming that if the person lying on the couch says that object 

1 is above the trash can, then he is describing the location of the object with respect to a 

viewer-centered frame of reference, since he chose the object that was above from his 

viewer’s perspective. A similar analogy could be made for objects 2 and 3 in the situation. 

The difference lies in whether the observer of the objects is the “outside” observers of the 

context (such as the authors or readers) or the person lying on the couch. The uncertainty 

of the observer’s role suggest again that in this framework, the environment or object that 

serve for the center of the frame of reference are taken as objective, stable entities 

independent of an observer. 

Using this distinction between three different types of frame of reference, Farah et 

al. (1990) investigated the frames of reference (or what they also called spatial coordinate 

systems) used to code location when allocating attention to representations of space. 

From their study with neglect syndrome patients, Farah et al. suggested that attention is 

allocated to locations in space with respect to environment-centered and viewer-centered 

frames of reference. Carlson-Radvansky and Irwin (1993) investigated the frames of 

reference with respect to which spatial positions can be defined in perception and 

language. Specifically, they investigated how the spatial term “above” is interpreted 

when adults were asked to locate objects when perceptual cues for verticality were varied. 

From their experiments, Carlson-Radvansky and Irwin concluded that their subjects 

usually used an environment-centered frame of reference when describing the spatial 

relationship between objects. They explained, “on earth, the powerful influence of an 

environment-centered reference frame based on gravity most likely dominates, unless the 

reference object is made salient in some way” (p. 242).  
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Although this distinction that Farah et al. (1990) and Carlson-Radvansky and 

Irwin (1993) used of frames of reference seemed plausible for many, it also brought 

confusion and controversy due to the lack of clear, definitive distinctions in certain cases 

(Tversky, 2003). For example, when a location of an object is addressed in relation to a 

person in space (e.g., the person lying on the couch in Figure 2.2 above), this person can 

be both a viewer or an object in the space depending on who the observer is. Therefore, 

Levinson (2003) adjusted the distinctions between reference frames to address the 

confusion and controversy and distinguished three types of frames of reference: the 

relative, intrinsic, and extrinsic (or absolute) reference frames.  

In the relative frame of reference, the location of an object is described in relation 

to one of the participants, either the person describing the location or the person being 

addressed in the description. In the traditional distinction, it is similar to the viewer-

centered frame of reference with the range of viewer extended to include the addressee. 

The intrinsic frame of reference is used to locate an object (which can also include a 

person) in relation to a specific object and requires participants to agree on the intrinsic 

sides (front/back, top/bottom, right/left) of the reference object. Finally, in the extrinsic 

frame of reference the location of an object is described in relation to something external 

to the space or a salient feature of the space (e.g., cardinal directions).  

Three perspectives in generating descriptions of space. Drawing from multiple 

experiments of participants describing spatial environments they learned from maps, 

Taylor and Tversky (1996) distinguished different perspectives people take in generating 

descriptions of space: gaze, route, and survey. Further, they distinguished which of 

Levinson’s (1996) three types of frames of reference each perspective corresponds to.  In 
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a gaze perspective, speakers adopt locations of objects taking an “outside viewpoint, as if 

their eyes were moving around the scene” (Taylor & Tversky, 1996, p. 375). According 

to Taylor and Tversky, because this type of description does not account for the listener’s 

perspective nor the listener’s motion within the environment but only for the speaker 

from a fixed outside viewpoint, the perspective is also termed “ego-oriented” (p. 375). 

This perspective is based on a relative frame of reference in that the origin of the frame 

of reference is at the person describing the location.  

In a route perspective, the speaker describes the objects within the environment in 

relation to the listener and accounts for the changing viewpoint the listener might take 

from within the environment, as if the listener is following a route in the space. Since the 

location of objects are described in reference to a specific object (the listener) within the 

environment, this perspective uses an intrinsic frame of reference. Finally, the survey 

perspective refers to the viewpoint the speaker takes from viewing the environment from 

above the space using cardinal directions, like a map. Taylor and Tversky noted that this 

perspective would use an extrinsic frame of reference. They also explained that speakers 

can change perspectives, “for example, to take an addressee on a mental tour but describe 

locations of landmarks using the cardinal direction terms” (p. 377) and that “the choice of 

description perspective depends on characteristics of the environment themselves” (p. 

384). 

Taylor and Tversky (1996) differ from the aforementioned studies in that they 

accounted for different perspectives an observer can take. However, their distinction 

between gaze and survey perspectives lack clarity. The only main difference between 

gaze and survey descriptions in Taylor and Tversky’s (1996) framework seems to be in 
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whether the speaker is outside or above the space and whether the spatial terms are 

described in relation to the objects within the space or in terms of cardinal directions. 

However, I view the survey perspective as a specific type of gaze perspective. Firstly, 

because both perspectives are taken from “outside” of the environment and secondly, 

because in an extrinsic frame of reference locations can also be described in terms of 

salient spatial features.  

Although informed by their framework, different from Taylor and Tversky, I 

distinguish two perspectives, one embedded within the space (corresponding to Taylor 

and Tversky’s route perspective) and one taken from outside the space (corresponding to 

Taylor and Tversky’s gaze or survey perspective). Additionally, instead of attributing an 

intrinsic frame of reference centered from the outset to another person or object in space 

in the case of route perspective, I consider all types of spatial descriptions to be centered 

at the speaker/perceiver but entail different levels of translation of viewpoint to others, 

i.e., different levels of decentration involved. Here, I use Piaget and Inhelder’s (1967) use 

of decentration, “The passage from one centration to another” (p. 24). For example, in the 

route perspective, although the speaker describes the objects in relation to the changing 

viewpoint of the listener in the environment, this perspective still requires the speaker to 

imagine the listener’s viewpoint (through decentering) as if the speaker is the listener. 

Relevance to my study and critique.  The spatial cognition literature affords useful 

frameworks for defining frame of reference, distinguishing different types of frames of 

reference, and the relevant perspectives individuals take when representing space. 

However, in the aforementioned studies, researchers tended to assume an ontological 

space, which participants were expected to discover through embodied senses (e.g., 
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through vision, sound, touch, and gestures). For example, in their experiments, Taylor 

and Tversky (1996) used pre-constructed maps and assumed “that subjects regarded the 

maps as representing environments rather than as marks on paper” (p. 387) and that 

“spatial environments have an objective reality” (p. 388). The maps they used were of 

places the participants have not been to, so they did not experience the environments 

personally but only through looking at maps constructed by the researchers.  

Although I share the same goal of investigating individuals’ mental 

representations of space, I view my dissertation study different from these studies 

because I take a different theoretical perspective. Oriented by the radical constructivist 

viewpoint, I do not assume an ontological space independent of an observer. Neither do I 

assume environments to have an objective reality which people are supposed to discover. 

Instead, I focus on investigating the processes by which individuals abstract and represent 

space.  

Piaget and colleagues found sensory input as an important source for 

constructions of space but also emphasized the importance of investigating the process by 

which the human mind abstracts and operationalizes space: “the spatial organization of 

sensori-motor behavior results in new mental constructs, complete with their own laws” 

(Piaget & Inhelder, 1967, p. 3). Next, I will present an overview of Piaget’s study of the 

child’s conception of space and geometry. 

Piaget’s study of the child’s conception of space and geometry. 

Piaget and colleagues investigated children’s conception of space and geometry 

through clinical interviews with children of various ages (approximately 2–12 years old) 

(Piaget, Inhelder, & Szeminska, 1960; Piaget & Inhelder, 1967). Piaget and Inhelder 
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(1967) emphasized, “the perception of space involves a gradual construction and 

certainly does not exist ready made at the outset of mental development” (p. 6).  

Perceptual, sensorimotor, and representational space. Piaget & Inhelder (1967) 

distinguished between perceptual space and representational space and explored how 

children at various developmental stages organized perceptual space and constructed 

space in a representational sense. Laurendeau and Pinard (1970) provided a summary of 

Piaget’s distinction between perceptual space and conceptual space, and within 

conceptual space, between sensorimotor and representational space.  Perceptual space is 

the space perceived through perceptual activity on elements of raw material, whereas 

conceptual space is the space abstracted from perceptual space at the operational level. 

Perceptual space and conceptual space are not separate, as Laurendeau and Pinard 

explained: 

Between these two types of structures a reciprocal influence or functional 

interaction must operate; at all levels of development, the information provided by 

perception (or the mental image) serves as raw material for the intellectual action 

or operation, and, reciprocally, these intellectual activities exert an influence 

(direct or indirect) on perception, enriching and increasing the flexibility of its 

functioning with development. (p. 10) 

At the conceptual level, space can be distinguished as sensorimotor or 

representational.  Sensorimotor space is “a space which is practical and experienced, 

perfectly organized and balanced at the level of action or behavior, even though the 

absence of the symbolic function still leaves the subject unable to imagine it or mentally 

to reconstruct it” (Laurendeau & Pinard, 1970, p. 11). On the other hand, representational 

space entails a symbolic function, which leads one “to regulate his spatial behavior 

through a system of total representation of his displacements rather than according to 

simple motor expectations” (Laurendeau & Pinard, 1970, p. 12).  
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Qualitative and quantitative organization of space. Piaget, Inhelder, and 

Szeminska (1960) also distinguished between qualitative and quantitative organization of 

space. To organize space in a qualitative sense means to think about objects within the 

space topologically (e.g., proximity, separation, enclosure, or order) without a 

consideration of the scale or measurement of the intervals between the objects. When one 

accounts for the measurements of intervals between objects in the metric sense, then the 

space is organized in a quantitative sense.  Here, Piaget et al. (1960) explained that the 

perception of space develops from qualitative to quantitative space and quantitative space 

presupposes a qualitative organization of space.  

To illustrate, consider one of the tasks from Piaget et al.’s (1960) clinical 

interviews with children. Given two congruent sheets of rectangular paper (S and S’ in 

Figure 2.3), children were asked to mark a point on the blank sheet of paper exactly 

where a mark (point P in Figure 2.3) was made on the other sheet of paper so when the 

two sheets of paper were superimposed on top of each other, the marks would line up. 

The children were given a ruler, stick, strips of paper, and length of thread as tools they 

could use.  

 
                                      Rectangle S                           Rectangle S’ 

Figure 2.3. A model of rectangles S and S’ and point P in Piaget et al.’s (1960) task. 

Piaget et al. identified three stages in which children engaged in the task. The 

children in the first stage made a simple estimate, by looking at the point on the first sheet 
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of paper. Without making use of any of the tools that they were given, the children in this 

stage made visual judgements about the location of the point based on topological 

features of the space. The children in the second stage started to make use of the ruler but 

attended to only one measurement. Among them, some children attempted to preserve the 

inclination of the ruler but this preservation was a visual one, and was not based on 

specific measurements carried out. As Piaget et al. explained, “This form of measurement 

is still one-dimensional but it shows a beginning of awareness that two dimensions are 

involved" (p. 155). The most sophisticated group of children attended to the measurement 

of this inclination. They become to understand that if a single measurement is to be used, 

then the slope of inclination must be maintained. “Gradually, they decompose its 

inclination and express it in terms of two separate measurements along different axes." 

(Piaget et al., 1960, p. 155). In the end, the children were able to take “both vertical and 

lateral dimensions into account…dissociate them and coordinate them operationally” (p. 

159). 

The purpose of asking children to copy the point on one paper to the other was to 

explore how children came to make use of measurements and coordinate them in two 

dimensions. As Piaget et al. (1960) stated, locating a point in two-dimensional space 

“involves logical multiplication of measurements as given by rectangular coordinates” (p. 

154) with measurements oriented by the sides of the rectangular paper as axes. Here, I 

interpret logical multiplication to entail a recognition of a location of a point along one 

spatial dimension with the realization that the point has a specific location along the other 

spatial dimension. As a result of logical multiplication, the location of a point becomes a 

multiplicative location in that it is a product of a simultaneous coordination of its location 
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along two separate dimensions. Logical multiplication does not necessarily involve the 

enactment of measuring activities. When it does involve a coordination of measurements 

then emerges a logical multiplication of measurements.  

Relating their findings of children’s measurements of length, Piaget et al. (1960) 

proposed that for children to coordinate two measurements and form a coordinate system, 

the child needs to coordinate between subdivision and change of position: 

Subdivision enters into the need to select which partial lengths should be 

measured out of all the possible straight lines which might be drawn from point P 

to any other point in the rectangle S. A system regulating the order and changes of 

position is implied by the necessity to realize the order of points given by the 

stationary lines of rectangles and successive positions of the ruler. A coordinate 

system, even though a qualitative one, requires the imposition of spatial order in 

two or more dimensions between the several elements, and also demands a 

systematic nesting of partial intervals between such elements. (p. 160) 

Coordinate systems. From the above task, Piaget et al. (1960) explained that the 

changes of position needed for measurement of lengths from the sides of the rectangular 

paper need to emerge from the spatial context in which they occur. Then emerges a 

“general system embracing moving objects and stationary sites, as determined by 

reference points” (p. 164). This general system is what Piaget and Inhelder (1967) termed 

the “co-ordinates of Euclidean space” (p. 375) but also emphasized: 

However, a reference frame is not simply a network composed of relations of 

order between the various objects themselves. It applies equally to positions 

within the network as to objects occupying any of these positions and enables the 

relations between them to be maintained invariant, independent of potential 

displacement of the objects. Thus the frame of reference constitutes a Euclidean 

space after the fashion of a container, relatively independent of the mobile objects 

contained within it… (p. 376) 

Therefore, Piaget and colleagues did not distinguish between reference frames, 

reference systems, and co-ordinates but used them interchangeably. In sum, for Piaget 

and colleagues, a reference frame or co-ordinate system is like a container, which entails 
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the relations of order (qualitative relations) and distance (quantitative relations) between 

objects within the space and a simultaneous organization of all possible positions of any 

but no particular point within the space.  

According to Piaget and Inhelder (1967), because of our posture and environment 

surrounding us, a natural coordination in space is that of horizontality and verticality. 

This claim seems consistent with the spatial cognition studies that claimed earth-fixed 

frames of reference were dominant in participants’ mental representations of space (e.g., 

Seochting & Flanders, 1992; Carlson-Radvansky & Irwin, 1993). Further, Piaget and 

Inhelder (1967) explained that perceptual horizontality and verticality constitute the 

horizontal and vertical axes of the Cartesian coordinate system. However, starting to 

coordinate these two axes of verticality and horizontality does not necessarily mean that 

the child is aware of the Cartesian coordinate system. Moreover, as they stated, 

“Knowing nothing of the stages which led up to this transformation, the adult assumes 

that perception involves co-ordinate systems or vertical-horizontal relations right from 

the outset, when in fact such systems are extremely complicated and are only fully 

developed by the age of 8 or 9” (p. 4). This awareness comes only after through reflective 

abstractions of experience such that the space the coordinate system explains becomes 

representational (Piaget & Inhelder, 1967).  

Relevance to my study and critique. Piaget and colleagues’ work influenced this 

study in many ways. First, I adopted Piaget and colleagues’ notion of representational 

space and extended their study of students’ construction of representational space. 

Second, their locating tasks (point on rectangular paper and point in wired box) inspired 

the task design of the Locating Tasks used in this study. Third, the notion of logical 
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multiplication served as an important construct in data analysis. Finally, Piaget et al.’s 

(1960) hypothesis that subdivision and change of position compose two important 

operations involved in coordinating measurements to form a coordinate system led me to 

consider students’ progressive integration operations and levels of units coordination 

(which I elaborate on later in this chapter) and attend to students’ various perspectives (as 

discussed alongside Taylor and Tversky’s (1996) study in the spatial cognition literature) 

when engaging in tasks.  

Although Piaget and colleagues contributed to the field by emphasizing the 

complexity of children’s development of coordinate systems and investigating the mental 

actions involved in the development, they limited the possible coordination of 

measurements to that of vertical and horizontal distances. That is, Piaget et al. only 

considered orthogonal axes and these were implicitly cued by the sides of the paper in 

their task of copying a point on a rectangular sheet of paper to another. As they wrote, 

“[w]e make it easier by having the axes suggested by straight lines which form the 

outline of the area or space” (p. 153). Hence, a perpendicular coordination of two 

measurements was what they described as “[t]he final solution of the problem” (p. 155). 

In a similar experiment in which Piaget et al. (1960) extended their study with the 

rectangular sheets of paper to a three-dimensional case, Piaget et al. showed children two 

identical open boxes with a wire nailed in vertically to the wooden base of one of the 

boxes. A small bead was fixed to the top of the wire and the students were asked to make 

a copy of the location of the bead in the box to the second identical yet empty box. Again, 

in this task, I found it limiting in that the verticality of the visible wire could have acted 

as cues towards the coordination of horizontal and vertical distances.  
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Frames of reference and coordinate systems in quantitative reasoning 

literature.  

Quantity and quantitative reasoning. Thompson (1993, 1994c, 2011) developed 

central constructs of a framework that drove and guided research on quantitative 

reasoning. Thompson (1994c) defined quantity as a conceptual entity an individual 

constructs as a measurable attribute of an object in conceptions of situations (Thompson, 

2011). Thompson (2011) emphasized that a quantity is a mental construction; in other 

words, quantities do not exist outside of the mind of the perceiver. As Thompson, 

Carlson, Byerley, and Hatfield (2014) articulated, “Anyone’s understanding of a 

quantity’s size will be colored by his or her conception of the quantity being considered 

and by his or her understanding of how it might be measured” (p. 1). A quantity could be 

schematic in that the person recognizes an experiential situation, an object and a quality 

of the object which entails the quality’s measurability; associates a specific activity or 

operation—a process by which to assign a numerical value to the quantity by use of an 

appropriate unit or dimension; and the result of the activity in the situation is a 

measurement of the quality of the object, either numerical or non-numerical (Thompson, 

1994c).  Quantitative reasoning refers to conceiving of and reasoning about quantities 

and relationships between quantities that arise from quantitative operations (Smith & 

Thompson, 2008). 

Covariational reasoning and tight coupling. Attending to change in quantities, 

researchers have investigated students’ covariational reasoning involved in conceptions 

of functions (Moore, Paoletti, Musgrave, 2013), intensity and rate of change (Saldanha & 

Thompson, 1998; Johnson, 2012), and trigonometry (Moore, 2010). Carlson, M., Jacobs, 
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S., Coe, E., Larsen, S., & Hsu, E. (2002) defined covariational reasoning as “the 

cognitive activities involved in coordinating two varying quantities while attending to the 

ways in which they change in relation to each other” (p. 354). Saldanha and Thompson 

(1998) described thinking covariationally as “holding in mind a sustained image of two 

quantities’ values (magnitudes) simultaneously” (p. 1). Saldanha and Thompson 

explained that covariation is to form a “multiplicative object” by a “tight coupling” (p. 7) 

of the two quantities which enables one to track “either quantity’s value with the 

immediate, explicit, and persistent realization that, at every moment, the other quantity 

also has a value” (p. 2)   

In order to investigate what conceptual operations are involved in reasoning about 

continuous covariation of quantities, Saldanha and Thompson conducted a teaching 

experiment with one eighth grade student. They hypothesized that having students engage 

in tasks requiring them to track two quantities simultaneously as beneficial for their 

“envisioning graphs as composed of points, each of which records the simultaneous state 

of two quantities that covary continuously” (p. 2).  From the teaching experiment and the 

way the student engaged in the sequence of tasks, Saldahna and Thompson explained that 

although the student was able to operatively coordinate images of two individually 

varying quantities, there was not a “tight coupling” of the two quantities “so that one 

variation is not imagined without the other” and suggested that conceiving of graphs as 

“representing a continuum of states of covarying quantities” (p. 7) is not something to be 

taken as granted.  

Related to these findings, Thompson (2011) summarized two aspects of students’ 

construction of quantitative covariation as the following: 
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The first is conceiving the quantities themselves and images of them that entail 

their values varying. The second is to conceptualize the multiplicative object 

made by uniting those quantities in thought and maintaining that unit while also 

maintaining a dynamic image of the situation in which it is embedded. This act, of 

uniting two quantities conceptually within an image of a situation that changes 

while staying the same, is nontrivial. Yet it is at the heart of using mathematics to 

model dynamic situations. (p. 48) 

Thompson (2011) explained that this way of thinking is foundational for concepts 

of variable and function in calculus.   

Framed quantity and frame of reference. Within this quantitative reasoning 

framework, Joshua, Musgrave, Hatfield, and Thompson (2015) defined a framed quantity, 

“which refers to when a person thinks of a quantity with commitments to unit, reference 

point, and directionality of comparison” (p. 37). Joshua et al. (2015) proposed that a 

framed quantity is well-defined, meaning that there are no extra qualifiers one needs to 

make sense of the quantity’s measure value. Further, Joshua et al. (2015) explained, 

“conceptualizing frames of reference and quantitative reasoning are interrelated, with 

frames of reference providing an additional lens with which to look at quantitative 

reasoning.” (Joshua et al., 2015, p. 32) and that thinking about measures within a frame 

of reference is a disposition that could aid students’ algebraic thinking. 

Joshua et al. (2015) defined frame of reference “to refer to a set of mental actions 

through which an individual might organize processes and products of quantitative 

reasoning” (p. 2). They distinguished a frame of reference from a coordinate system, 

which is the product of the mental activity involved in conceptualizing a frame of 

reference. Further, Joshua et al. (2015) offered a theoretical model of mental actions 

involved in conceptualizing measurable attributes within a frame of reference: 

An individual conceives of measures as existing within a frame of reference if the 

act of measuring entails: 1) committing to a unit so that all measures are 

multiplicative comparisons to it, 2) committing to a reference point that gives 
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meaning to a zero measure and all non-zero measures, and 3) committing to a 

directionality of measure comparison additively, multiplicatively, or both. (p. 32) 

According to Joshua et al. (2015), when an individual works within one frame of 

reference, she works consistently with the same reference point, unit of measure, and 

directionality of comparison. Joshua et al. described coordinate systems as a tool for 

combining multiple frames of reference: 

As a further example [of combining multiple frames of reference], coordinate systems 

allows us (mathematicians, teachers, and students) to represent the measures of 

different quantities simultaneously when those measures stem from potentially 

different frames of reference. … Students’ acts of joining two or more number lines 

that represent measures of (one or more) quantities in different frames of reference, and 

anticipating that ordered pairs (or n-tuples) give information about the measures in 

relation to each other, is the heart of combining multiple frames of reference. (p. 35) 

In their manuscript, Joshua et al. (2015) criticized that in the few extant literature 

about reasoning within frames of reference, mostly found in physics education, frames of 

reference are discussed as “objects external to a person reasoning with it” (p. 31) or 

“defined by the existence of a concrete object” (p. 36). Making the distinction between 

mental activity and the product of such activity, Joshua et al. emphasized the importance 

of focusing on the mental activity and the cognitive process of frames of reference. Put 

differently, a frame of reference is the cognitive process in which one constructs a framed 

quantity. However, Joshua et al.’s framework of frames of reference is restricted to the 

quantitative reasoning framework. Therefore, their emphasis on a frame of reference as a 

“set of mental actions through which an individual might organize processes and products 

of quantitative reasoning” (p. 2) seems inevitable when the object that is being framed is 

a quantity, a conceptual entity an individual mentally constructs as a measurable attribute 

of an object. Therefore, I categorize their notion of frame of reference and coordinate 

system as quantitative and compare that with a spatial frame of reference and coordinate 
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system. In the following, I will discuss two uses of coordinate systems, spatial and 

quantitative and then define the notions of frame of reference and spatial coordinate 

system I use in this study. 

Spatial Coordinate Systems and Quantitative Coordinate Systems 

A conceptual analysis. 

Based on my conceptual analysis (Thompson, 2008), I distinguish between two 

related but different uses of coordinate systems in spatial organization and quantitative 

coordination (Lee, 2016; Lee & Hardison, 2016). The use of coordinate systems in 

spatial organization refers to their use to re-present space by establishing frames of 

reference and coordinating measurements to locate points within the space (e.g., a map). 

The use of coordinate systems in quantitative coordination refers to their use to 

coordinate sets of quantities in a representational space.  

Spatial Organization. Following Piaget et al.’s (1960) distinction of qualitative 

and quantitative organization of space, I view spatial organization as an activity that may 

or may not involve the use of quantities. However, when I refer to a coordinate system 

used in spatial organization, it entails a coordinatization of space in a quantitative sense. 

When associating quantities to points in the space, I claim that it must satisfy two 

conditions: a) the associated quantities express a unique point or unique set of points (c.f., 

bipolar coordinate system), and b) any point in that space can be accounted for in this 

system of associating quantities. This relates to what Sayre and Wittman (2008) 

described as the properties of coordinate systems: orthogonality, span, equivalency, and 

value. Orthogonality refers to the property that the bases that span the system should be 

independent; span refers to the property that all coordinates expresses all possible points 
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in the space; equivalency refers to the property that different coordinate systems can be 

used for the same situation; and value refers to the property that quantities can be labeled 

to the system (Sayre & Wittman, 2008).   

Quantitative Organization. Coordinate systems can be used as a geometrical 

representation of the product of measure spaces and can thus provide a representational 

space that allows us to coordinate quantities in each space and construct graphs 

representing relationships between these quantities. These graphs are not necessarily 

projections of physical objects onto the space. For example, in the conventional Cartesian 

coordinate plane, when the horizontal axis represents time (time space) and the vertical 

axis represents the volume of water (volume space), the two-dimensional space that is 

made by the product of the two axes form a third space ({time×volume} plane) that is 

different but inherently connected to the two spaces that were coordinated to produce it. 

The collection of points (time, volume)—in each of the one-dimensional or the two-

dimensional spaces do not represent the actual physical movement of the water or time 

but represents each quantity or the relationship between the two quantities of time and 

volume and how the volume changes as time changes, respectively. 

I consider Tversky’s (2003) discussion about the space of graphics relevant to my 

distinction of the two uses of coordinate systems. More specifically, I find Tversky’s 

distinction of literal relations from representations of visual things versus metaphoric 

relations from representations that are not inherently visual to correspond to my 

distinction of the two uses of coordinate systems. Inferring that her notion of “visual” 

implies a perceptual, spatial element, the literal relations from representations of visual 

elements is compatible with my description of coordinate systems as representational 
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spaces used for spatial organization. Analogously, metaphoric relations from 

representations that do not entail a spatial/visual element is compatible with my 

description of coordinate systems as representational spaces used for quantitative 

coordination. 

Consider the two tasks in Figure 2.4. Task A is from a Pre-calculus textbook 

(Holliday, Cuevas, McClure, Carter, & Marks, 2006, p. 95) and Task B is from a 

Calculus textbook (Foerster, 2005, p. 112) both using a Ferris Wheel context.   

 

(a) Task A (Holliday, Cuevas, McClure, Carter, & Marks, 2006, p. 95. 

 

(b) Task B (Foerster, 2005, p. 112) 

Figure 2.4. Examples of two uses of coordinate systems. 
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In Task A, the problem asks students to find the coordinates of the car located at 

the loading platform and then in various positions, when the axle is located at the origin. 

In this case, problem solvers are asked to coordinate the location of each car within the 

single space in which the Ferris Wheel is situated. The coordinate system in this task is 

used for spatially organizing (imposed by the problem developer) the location of each car 

in reference to the position of the axle of the wheel; hence, an example of when 

coordinate systems are used for spatial organization. In Task B, the problem asks students 

to graph the relationship between the time passed since the wheel started rotating and the 

distance from the ground. So, problem solvers are expected to extract two quantities 

(time and distance) from the Ferris Wheel space and coordinate them by creating a new 

space wherein a graph is produced (Lee & Hardison, 2017). This new space does not 

entail the spatial situation from which the quantities were extracted. Therefore, I consider 

Task B as an example of when coordinate systems are used for quantitative coordination. 

Literature on students’ constructions of coordinate systems. 

In this section I review literature on students’ constructions of coordinate systems 

in order to present some notable findings and to discuss how my study is different from 

these studies.  

Research on coordinate systems used in quantitative coordination. Most studies 

in the literature on students’ constructions of coordinate systems focused on coordinate 

systems used in quantitative coordination. Among studies that investigated students’ 

difficulties related to graphs of functions, a few identified the difficulties students had 

with elements of coordinate systems such as axes, scale, and coordination. For example, 

Herscovics (1989) studied cognitive obstacles students encounter while learning algebra. 
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In graphing, Herscovics (1989) identified that students struggle with constructing axes 

and scales, transitioning to continuous graphs, reading graphs from a global perspective, 

and interpreting meaning from graphs. According to Herscovics (1989):  

For dots on a line to represent both the relative order and the actual measure, the 

added notion of an ‘interval scale’ is essential. It is only when a line has been 

‘graduated’ by the iteration of a given interval that it can become an axis and, 

hence, a scale on which data can be represented both as points and segments. (p. 

70) 

There are more recent works investigating how children construct graphical 

representations of given situations. Maverech and Kramarsky (1997) defined alternative 

conception as the knowledge that is different from what is to be learned and studied 

students’ alternative conceptions of graphic representations. They asked 92 eighth-grade 

students to construct graphs representing four different situations regarding the 

relationship between success on tests and the amount of preparation time. After analyzing 

students’ graphs, they identified three major students’ alternative conceptions. Among 

these three they observed that some students constructed a series of graphs, each 

representing one factor from the given data. According to Mevarach and Kramarsky, 

some students were not able to coordinate the variables into one graph: 

Graphs by their very nature represent interrelations between variables. Some 

students could not conceive simultaneously more than one factor. … Since these students 

understood that focusing on one factor is not sufficient for representing a varying 

situation, they constructed a series of graphs, each representing one factor from the 

relevant data. (p. 237) 

Moritz (2003) conducted a task survey asking 133 students in grades 3, 5, 7, and 9 

to construct a graph to represent temperature change over time for a given data set. 

Moritz (2003) categorized the students’ responses of how they transformed the data given 
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in table form into a coordinate graph into four levels—Nonstatistical, Single Aspect, 

Inadequate Coordinate, and Appropriate Coordinate graphs. The first three levels showed 

the difficulties students had when constructing graphs. For example, the Nonstatistical 

responses showed either only the context or the graph form without display of the data. 

Plotting points in two-dimensional space outside of the axes seemed to be challenging for 

some students. Single Aspect responses showed the given data along one dimension. This 

tendency in students’ responses was similar to Mevarach and Kramarsky’s (1997) 

observation of students difficulty in coordinating both variables into one graph. 

Inadequate Coordinate responses “showed bivariate data in two-dimensional space but 

inadequately showed either spatial variation or correspondence of values” (p. 226).  

Nemirovsky and Tierney (2004) conducted a similar study as Moritz (2003). They 

conducted teaching experiments with individual students, small groups, or in a full 

classroom of third or fourth grade students. They investigated how children created 

representations for situations changing over time. In this work with students, after 

observing students’ difficulty in expressing the start and end of the situation in time, 

Nemirovsky and Tierney wanted to know how they could encourage the students “to see 

conventional graphs as connected to their inventions and helpful to express their own 

ideas” (p. 39). They found that it was helpful to ask the students to explore organizing 

their lines from left to right which engendered their thinking of being on the right to mean 

a later moment in time. From their findings, Nemerovsky and Tierney suggested learning 

how to graph changing situations on paper “entails developing the capacity to ‘direct 

seeing’ (i.e., without intermediate inferences and calculations) events and qualities 

dwelling in symbolic expressions; a development that involves intricate experiences of 
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seeing-as, recognizing-in, interpreting emptiness, and animating homogeneous spaces” (p. 

46).  

Maverech and Kramarsky (1997) and Nemirovsky and Tierney (2004) 

distinguished what was to be learned conventionally (i.e., how to graph in the Cartesian 

plane) with students’ “alternative conceptions” (Maverech & Kramarsky) or “inventions” 

(Nemirovsky & Tierney). Moreover, Nemerovsky and Tierney assumed that there are 

certain “events and qualities dwelling in symbolic expressions” (p. 46) and expected 

students to “direct-seeing” these from graphs. I find this assumption to be problematic 

because, from my theoretical perspective, borrowing von Glasersfeld’s (1987) words, “[A] 

representation does not represent by itself—it needs interpreting and, to be interpreted, it 

needs an interpreter” (p. 216). Taking this perspective, events and qualities do not dwell 

in symbolic expressions (or graphs in that manner) but are interpreted from or 

superimposed onto symbolic expressions by an active thinking agent.  

Taking the perspective that mathematical representations do not contain any 

meaning and do not represent things in themselves until someone perceives them as a 

representation of something, Moore, Paoletti, and Musgrave (2013), conducted a teaching 

experiment with two secondary mathematics pre-service teachers, to investigate their 

ways of thinking when graphing relationships in the polar coordinate system. Moore et al. 

explained that the students engaged in covariational reasoning, which enabled them to 

make sense of graphing relationships of two varying quantities in the polar coordinate 

system, and to understand that although the pictorial shape of the graphs was different in 

the polar coordinate system and Cartesian coordinate system, the underlying 

covariational relationship remains invariant.  
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Research on coordinate systems used in spatial organization. In comparison to 

the body of research on coordinate systems used in quantitative coordination, there is a 

limited body of research on coordinate systems used in spatial organization. One study 

that I was able to identify was that of Sarama, Clements, Swaminathan, and McMillen 

(2003) whom also adopted theoretical constructs from Piaget and colleagues’ work on 

children’s conception of space and geometry. 

Sarama et al. (2003) investigated the development of fourth-grade students’ 

“concepts of rectilinear two-dimensional space, including grid structures, coordinates, 

and rectangles” (p. 287) as they are foundational to analytic geometry. From a case study 

with fourth-grade students, Sarama et al. observed difficulties or shifts in students’ 

development of spatial structuring using two-dimensional grids. Sarama et al. defined 

spatial structuring as “the mental operation of constructing an organization or form for 

an object or set of objects in space” (p. 287). Sarama et al. conjectured that “related but 

different spatial structuring precedes meaningful use of grids and coordinate systems” (p. 

288). Interpreting Piaget and Inhelder’s (1967) notion of a coordinate reference system as 

a “container made up of a network of sites or positions” (p. 286), they explained, “From 

the simultaneous organization of all possible positions in three dimensions emerges the 

coordinate system” (p. 286). 

From their study with the fourth-graders, Sarama et al. (2003) found that students’ 

knowledge of grids and coordinate systems were related to students’ “number sense, 

spatial-geometric relationship, and the ability to discriminate and integrate the two 

numbers constituting a coordinate pair and the two axes constituting a coordinate plane” 
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(pp. 285 – 286). Based on these findings, Sarama et al. (2003) proposed a theory of 

development of grid and coordinate systems: 

Successful students mentally internalize the structure of grids as two-dimensional 

spaces, demarcated and measured with conceptual rulers (or number lines). They 

must integrate their numerical and spatial schemes to form a conceptual ruler 

(Clements et al., 1997; Steffe, 1991). They must then integrate conceptual rulers 

into two orthogonal number lines that define locations in that space…This 

integration is a distributive coordination; that is, one conceptual ruler must be 

taken as a mental object for input to another, orthogonal, conceptual ruler. We 

hypothesize that this is possible due to the recursive characteristic of the human 

cognition; we operate on an experience, in this case a conceptual ruler (or set of 

conceptual rulers), with the same scheme that generated each of the elements of 

this experience, or mental object. This cognitive activity is, then, analogous to a 

simultaneous unfolding of rows and columns in a matrix, in which both rows and 

columns are integrated with numeric schemes (Steffe, personal communication, 

October, 1995). (p. 313) 

In addition to the integration of numerical and spatial schemes, Sarama et al. 

(2003) also conjectured that students’ integration of intrinsic and extrinsic perspectives 

on geometry are crucial in the development of concepts of two-dimensional space in grid 

environments. The intrinsic perspective considers local properties of figures from a 

viewpoint of the logo turtle moving along figures, relative to its present location whereas 

the extrinsic perspective is when one looks down onto the figure in the plane, which they 

compare to a coordinate system. Although they do not explicitly account for whose 

perspective they are referring to, I interpreted their distinction of intrinsic and extrinsic 

perspectives as similar to my distinction of perspectives embedded within the space and 

taken from outside of the space, respectively.   

I find Sarama et al.’s (2003) work important to the field in that it is one of the 

very few studies that investigate students’ conceptions of grids and coordinate systems in 

spatial contexts after the work of Piaget colleagues. However, there are a few limitations 

of their study. First, similar to Piaget and Inhelder’s (1967) experiments, Sarama et al. 
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limited their investigation to Cartesian-like coordinate systems. Second, in the 

instructional sessions they carried out with the fourth-grade students, the students were 

provided with pre-constructed grids superimposed onto real-world contexts such as 

streets and addresses and taxicab geometry. Rather than investigating what students 

independently construct in various situations, they designed activities so the students can 

learn how to “write coordinates like mathematicians do” (p. 291), similar to the approach 

Maverech and Kramarsky (1997) and Nemirovsky and Tierney (2004) took in their 

studies. Finally, the grids that students worked with were limited to those of integer 

coordinates. 

In this study, I focus my investigation on students’ constructions of coordinate 

systems in spatial contexts, similar to Piaget and colleagues’ work on children’s 

conception of space and geometry and Sarama et al. (2003)’s study of fourth-grade 

students’ conceptions of two-dimensional grids. However, I consider my study different 

from theirs in that I investigate a different student population and do not limit students’ 

constructions of coordinate systems to the Cartesian coordinate system. In the following 

section I explain how I use the term frame of reference and coordinate system.   

My Notion of Spatial Frame of Reference and Spatial Coordinate System 

Frame of reference.  

I use spatial frame of reference (frame of reference hereafter) to refer to mental 

structures (e.g., axes) an individual constructs and superimposes onto perceptual or 

sensorimotor space through which the relative position of elements in that space can be 

gauged and re-presented (Piaget and Inhelder, 1967). As Tversky (2003) explained, 

“Mental representations of space are constructions based on elements, the things in space, 
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and the spatial relations among them relative to a reference frame” (p. 66). So, a frame of 

reference is used to define qualitative spatial relations that “form a scaffolding for mental 

spaces” (Tverseky, 2003, p. 66). As such, a frame of reference can serve as a basis for a 

qualitative organization of space (Piaget et al., 1960).  

I am in line with Piaget and Inhelder’s (1967) and Joshua et al.’s (2015) emphasis 

that a frame of reference is something one constructs mentally, not objects inherent in 

space. Therefore, a frame of reference, or the mental structure that one constructs, is not 

inherent in perceptual or sensorimotor space but is abstracted from elements of the space 

the individual is re-presenting. Constructing a frame of reference is what I view 

compatible with Sarama et al.’s (2003) notion of spatial structuring: “the mental 

operation of constructing an organization or form for an object or set of objects in space” 

(p. 287).  

Coordinate system.  

Using a frame of reference, an individual can coordinatize points in the space 

he/she wants to re-present in a systematic way. By systematic I mean that each point in 

the perceptual/sensorimotor space is mapped onto (in a functional sense) the 

representational space induced by the coordinate system in a consistent manner. I use 

Piaget and Inhelder’s (1967) notion of representational space, compatible with Tversky’s 

(2003) notion of mental representations of space.  

I refer to a spatial coordinate system (coordinate system hereafter) as a system 

through which the individual quantitatively organizes (Piaget et al., 1960) or 

coordinatizes points in the space being re-presented. This is done through defining a unit 

of measure and directionality and coordinating measurements using a frame of reference 
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or multiple frames of reference. As Piaget et al. (1960) suggested, quantitative 

organization of space presupposes a qualitative organization of space. As such, a frame of 

reference is a necessary organization of references that collectively serve to identify a 

coordinate system with respect to which the location of elements of 

perceptual/sensorimotor space can be re-presented (Rock, 1992).  

Students’ Levels of Units Construct 

Relating their findings of children’s measurements of length, Piaget et al. (1960) 

explained, “A coordinate system, even though a qualitative one, requires the imposition 

of spatial order in two or more dimensions between the several elements, and also 

demands a systematic nesting of partial intervals between such elements” (p. 160). Here, 

the “imposition of spatial order” and systematic nesting of partial intervals between such 

elements” (p. 160) is consistent with Sarama et al’s (2003) notion of conceptual ruler, 

which contains both the position and relative distance from zero. Sarama et al. (2003) 

suggested that for students to successfully internalize grid structures of two-dimensional 

spaces, they must integrate their numerical and spatial schemes to form number lines as 

conceptual rulers. Further, taking a conceptual ruler as input, the student needs to 

recursively operate on the conceptual ruler and distributively coordinate one conceptual 

ruler into another.  

Drawing from these studies, I hypothesized that students’ partitioning schemes 

and operations and their systematic nesting of partitioned intervals would be essential in 

their organization of space. Therefore, I use theoretical constructs such as levels of units, 

units-coordinating schemes and operations, and the distinction between a simultaneous 

coordination and a sequential coordination of units. Although my study is not focused on 
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students’ construction of fraction schemes, because the way students construct fractions 

can also provide insight for the ways they form nesting systems of parts, and because I 

considered the partitioning of segments (or any kind of geometrical object) to be 

informing in understanding students’ ways of organizing space, these theoretical 

frameworks were used in the design of the initial interviews (Chapter 4) and in the 

analysis of results (Chapters 5, 6, 7, and 8). In this section, I unpack these theoretical 

constructs. 

Based on a perspective of quantity as “emerging from the child’s interactions with 

elements in his or her environment” (p. 62) and not existing external to the child, Steffe 

(1991a) specified the basic operation children use to generate quantity as the unitizing 

operation. He distinguished discrete and continuous quantity by the sensory material 

upon which the unitizing operation is used: for discrete quantity, the sensory material is 

numerical lots and for continuous quantity, the sensory material is continuous but 

segmented units. While Thompson (1993, 1994c) highlighted the difference between 

quantitative reasoning and numerical reasoning, Steffe viewed counting as a basic 

quantitative scheme. Steffe (2012) explained that counting schemes can be considered as 

measuring schemes because one is admitting a measurement process to the numerosity of 

composite wholes of some kind. Emphasizing that the units and their number systems 

that students construct are essential in students’ measuring schemes, Steffe (2012) 

proposed the reorganization hypothesis that “children’s continuous quantitative 

measuring schemes can be realized as accommodations of their discrete quantitative 

measuring schemes” (p. 35).  
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Whereas the unitizing operation was identified to be the basic operation children 

use to generate quantity, Steffe (2012) identified partitioning operations to be 

foundational in continuous quantitative measuring schemes. Coordinating discrete 

quantitative measuring schemes with Piaget, Inhelder, & Szeminska’s (1960) analysis of 

length measuring schemes, Steffe explained that partitioning operations constitute a 

length measuring scheme, and the discrete quantitative measuring schemes are used as 

partitioning templates for partitioning the continuous object.  

As Ulrich (2015) describes, the levels of units is the hierarchy of “the number of 

layers of embeddedness in the composite structures that a student is working with.” (p. 3) 

For example, “three levels of units implies that a student is embedding units of 1 (the first 

level) in composite units (the second level), which are in turn embedded in units of units 

of units (the third level)” (p. 3). A student who is assimilating with three levels of units 

can use this embedded structure of three levels of units prior to operating, or in other 

words, as given (Steffe & Olive, 2010). When a student requires carrying out the 

operations to produce the three levels of units structure, but could reflect on the structure 

after carrying out the actions to produce it, then the three levels of units are coordinated 

in activity (Steffe & Olive, 2010). Steffe & Olive’s (2010) distinction of “an experiential 

sequence of composite units rather than a unit containing that sequence that could be 

taken as input for further operating” (p. 92) captures the difference between a student 

who can produce the embedded layers of units in activity [experiential sequence of 

composite units] and a student who could operate with the embedded layers of units as 

given [take as input for further operating]. 
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Taking the quantitative approach and construct of levels of units articulated in 

Steffe’s (1991a, 2012) work, Hackenberg (2010) investigated middle school students’ 

reasoning with reversible multiplicative relationships. Tillema (2012) conducted a 

teaching experiment with middle school students and investigated students’ 

multiplicative reasoning related to combinatorial and spatial problems. Building off from 

Thompson’s (1993) study on additive structures and Steffe’s (Steffe, 1991a, 2012; Steffe 

& Olive, 2010) work on levels of units and students’ construction of numbers, Ulrich 

(2012a, 2012b) investigated students’ construction of quantities with positive or negative 

values and explored how students construct sums and differences as directed change 

quantities’ values. In the following, I explain the partitioning schemes and operations and 

relevant fraction schemes and levels of units coordination that Steffe modeled through his 

work with children (Steffe & Olive, 2010). 

Partitioning Schemes and Operations. 

Equipartitioning Scheme. Sharing situations are often used to engender 

partitioning activities due to the social negotiation—making fair shares—that the 

situation entails (Steffe & Olive, 2010). The equipartitioning scheme is generally 

constructed when a student forms a goal to make fair shares of a continuous unit 

[segment]. The operations of the equipartitioning scheme include partitioning, 

disembedding, and iterating. More specifically, in equipartitioning a segment, a student 

can find one of the equal shares of the segment by partitioning the segment into equal 

parts using his number concept as a template (Steffe & Olive, 2010). After marking off 

one of the parts, the student disembeds the part from the whole without destroying the 

whole, which allows the student to take the one part as a unit by itself but also be aware 
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that it is part of the whole at the same time. Further, to test if the one part is an equal 

share of the segment, the student can iterate the part to produce a segmented segment, 

which he can use to compare with the original segment. Here, disembedding and iterating 

are sequentially enacted and the parts are progressively integrated, producing two levels 

of units (Steffe, Liss, Lee, 2015). The sequentiality in the operations of disembedding and 

iterating emphasizes that iterating involves explicitly pulling a part from a stick and then 

iterating it. Further, “the units that are established by iterating are projected into the 

original stick,” producing a unit of units structure (two levels of units).   

Partitive Unit Fraction Scheme. In discussing the subdivision of areas and the 

concept of fractions, Piaget et al. (1960) set forth seven criteria for subdivision to be 

operational, which is a crucial element for the construction of fractions. Only when the 

child can subdivide a whole at the level of representation can the child construct the 

notion of fraction (Piaget et al., 1960). The equipartitioning scheme satisfies six of these 

seven criteria, which are that the student is aware of the continuous unit as a divisible 

whole, can partition the whole into a determinate number of parts, exhausts the whole, 

coordinates the number of partitions and the number of parts made by those partitions, is 

aware of making the parts in equal size, and finally, is aware that the whole remains 

invariant after the partitioning (Piaget, Inhelder, & Szeminska, 1960, pp. 309-311).  

When the goal of the student who engaged in equipartitioning becomes to further 

establish a fractional relation between the part and the partitioned whole, a modification 

in the equipartitioning scheme can lead to the construction of a partitive unit fraction 

scheme (Steffe & Olive, 2010). The purpose of the partitive unit fraction scheme is “to 

partition a connected number, one, into so many equal parts, take one out of those parts, 
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and establish a one-to-many relation between the part and the partitioned whole” (Steffe 

& Olive, 2010, pp. 101–102). Because the process of producing the parts through the 

enactment of the equipartitioning scheme involved disembedding and iterating, the 

segmented segment consists of identical parts, which can be constructed as iterating 

fraction units. So, a student who has constructed a partitive fraction scheme would 

establish that one of the parts of a stick shared equally among five people would amount 

to one out of five parts and that the one-fifth part could be used in iterating the part five 

times to produce the stick. 

Equipartitioning Scheme vs. Equisegmenting Scheme. To illustrate the 

equipartitioning scheme in context, consider the problem in which the student is asked to 

imagine sharing a string equally among five people and to mark off the piece of string 

that one person would get (cf. Appendix A, Part II, item 1). If the student can project his 

number concept of five as a template into the segment, mark off one of the five parts, 

disembed the one part from the whole and iterate it to make a segmented segment of five 

of those parts to compare with the original segment, the student would be inferred to have 

constructed an equipartitioning scheme. Given the same context, Steffe & Olive (2010) 

explained that a child, Laura, “segmented her stick by transposing a unit from one site to 

another on a given stick when the unit that was being transposed was part of the stick 

being segmented” (p. 93).  

In contrast to a child, Jason, who was inferred to have constructed an 

equipartitioning scheme, Laura did not disembed her estimate and iterate it. Although 

both students Jason and Laura used their number concepts as templates in finding one 

person’s share, Jason activity was referred to as partitioning, which entails the breaking 
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of the segment as one composite act whereas Laura’s activity was described as 

segmenting, which entails the sequential breaking of the segment. The parts [units] that 

are produced from partitioning are identical in that they are results of a simultaneous 

partitioning, hence, they are maintained “as elements of the abstract composite unit 

(numerical concept) used in the partitioning” (Steffe & Olive, 2010, p. 121). On the other 

hand, the parts [units] that are produced from segmenting are considered equivalent in 

that they have the same length but because they are produced sequentially, they are 

experientially different and do not entail the abstract structure of an identical part. 

Splitting Scheme. The difference between the equipartitioning scheme and the 

splitting scheme can be emphasized through the activation of the partitioning and 

iterating operations. Whereas the operations of partitioning and iterating are sequentially 

enacted in the equipartitioning scheme, the students’ enactment of partitioning and 

iterating co-occur in the splitting scheme. The composition of partitioning and iterating is 

what Steffe & Olive (2010) refered to as the splitting operation. As such, the results of 

the equipartitioning scheme are considered the situation of the splitting operation (Steffe 

& Olive, 2010).  

To illustrate the splitting scheme in context, consider a problem where a student is 

asked to make a string so that a given string is five times as long as the string to be made 

(cf. Appendix A, Part I, item 3). In the equipartitioning context, although the number 

concept of five is used as a template to partition the segment and make one mark, the 

partitioning and iterating of the marked off piece is carried out in succession. On the 

other hand, in the splitting context, in order to achieve the goal of making the requested 

string, the student needs to mentally construct a hypothetical string that could be iterated 
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five times to produce a string the same length as the given string (Steffe & Olive, 2010). 

Steffe & Olive (2010) emphasized the importance of the hypothetical string because “a 

splitter produces an image of some stick (a hypothetical stick) and mentally sets it in 

relation to the unit stick in such a way that iterating the hypothetical stick produces the 

unit stick, prior to any observable action” (p. 102)  

This situation requires the partitioning of the given string and the iteration of the 

hypothetical string to be enacted simultaneously. More specifically, the student needs to 

posit a hypothetical string as one of five equal parts of the given string [partitioning] but 

also as a part that had already been iterated to constitute the given string [iterating] 

(Steffe & Olive, 2010). As a result of these operations, a student who has constructed a 

splitting scheme can establish a multiplicative relation between the given string and one 

of its hypothetical parts prior to actually partitioning the given string. More specifically, 

the student knows that the given string is five times as long as the other string and that 

her string is one-fifth the length of the teacher’s string. Further, this student is “aware of 

the whole [string] as a unit [string] and of a hypothetical part of the unit [string] such that 

the unit [string] consisted of [five] iterations of the hypothetical part,” (Steffe & Olive, 

2010, p. 102) producing a three levels of units structure. 

Iterative Fractional Scheme. Upon the emergence of the splitting operations, the 

student can construct an iterative fractional scheme because now the student can consider 

the whole as a unit consisting of hypothetical parts each of which can be iterated so many 

times to produce the whole (Steffe & Olive, 2010). Steffe & Olive (2010) explains that 

“[i]n this way of thinking, a unit fraction (a hypothetical unit part of the [segment]) 

becomes a fractional number freed from its containing whole” (p. 116) and available for 
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use in the construction of improper fractions. The improper fraction, say, 6/5, can be 

comprehended as a composite unit containing the original string [unit] and another 1/5-

part of the string [unit], forming a three levels of units structure. 

Recursive Partitioning Scheme. The recursive partitioning scheme is generally 

constructed when a student, given partial results of a composition of two partitionings, 

forms a goal to produce all the parts—the numerosity of the full result—of the 

composition of two partitionings. The operations of the recursive partitioning scheme 

involve distributing partitioning across the continuous unit [segment] and holding the 

parts produced by the partitionings in one nesting structure in order to coordinate the 

number of units produced by each partitioning.   

 

Figure 2.5. Sharing a long strip of candy among three people and then five people. 

To illustrate recursive partitioning in context, imagine a long strip of candy is 

shared among three people and then one of those shares is shared again by five people (cf. 

Appendix A, item 2). Figure 2.5 illustrates a model of the candy and the sharing of it in 

this situation. The first rectangular length represents the original segment of candy being 

shared, which I refer to as the whole. The one below the whole represents one of the 

shares among three people sharing the original candy, a partial result of partitioning the 

whole into three equal parts. I will refer to this piece as the first-level share in that it is a 
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part from the first sharing of the candy. The final piece in Figure 2.5 represents one of the 

shares among five people sharing the first-share, a partial result of partitioning the first-

level share into five equal parts. I will refer to this piece as the second-level share in that 

it is a part from the second sharing of a part of the candy.  

Given the partial results of the partitioning as shown in Figure 2.5, consider when 

asked the fractional amount of the second-level shares in comparison to the whole, the 

recursive partitioning scheme involves the student forming a goal to find how many of 

the second-level shares will make up the whole. The scheme involves the student’s 

distribution of the partitioning that produced the first-share part and second-share part 

across each part (Figure 2.6).  

 

Figure 2.6. Distributing the partitioning that produced the parts across each part. 

Further, the student needs to take the partition of three units as input to further 

partition each part into five parts. Using her unit-coordinating scheme and uniting each of 

the five units into a composite unit, as the result of recursive partitioning, the student can 

create a nested structure using the results of distributing the partitionings, which entails a 

composite unit [whole candy] containing three units of five units each—a three levels of 

units structure (Figure 2.7). Uniting refers to combining unitized units into composite 
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units; hence, the uniting operation could be considered as a recursive implementation of 

the unitizing operation. Here, the uniting of the five units into a composite unit is crucial 

as Steffe & Olive (2010) explained, it is “an act of abstraction that distances the child 

from the [three] units and permits the child to regard the [three] units of [five] as if they 

were [three] singleton units while maintaining their composite quality” (p. 91). 

 

Figure 2.7. A unit of three units of five units structure. 

Units-Coordinating Scheme. According to Steffe & Olive (2010), the units-

coordinating scheme “is a multiplicative scheme that gets its name from the coordination 

of, to the observer, two composite units of units where one composite unit is inserted into 

each unit item of the other composite unit” (p. 91). In the context of the above example, 

the units-coordinating scheme is involved in finding the product of three and five, if a 

student inserts the unit of five units into each unit of three to produce three fives.  

Here, I find it important to emphasize Steffe & Olive’s (2010) explanation that the 

insertion of units are carried out mentally, prior to the actual activity of inserting units. 

When the insertion of units need to be carried out in activity, the coordination of the units 

becomes additive in that the composite units of five are sequentially added and 

progressively integrated to the preceding units. In this additive coordination of units, the 

student can disregard the composite unit of five after it is progressively integrated to the 

other units it was added to (Ulrich, 2016). On the other hand, in making a multiplicative 

coordination, there “involves an extra layer of complexity, in that the student must keep 

track of iterations of a composite unit,” (p. 38) which involves the uniting of the five 
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units into a composite unit. This distinction highlights the difference between a student 

who can reason with two levels of units as given and a student who can reason with three 

levels of units as given. A student with two levels of units would have difficulty in 

keeping track of the extra layer of complexity and in using the composite unit of units as 

material in operating. Two levels of units students typically lose track of either the three 

units within the original unit or the five units within each of the three units which limits 

them when solving the problem at hand.  

Unit Fraction Composition Scheme. As Piaget et al. (1960) explained, 

[W]hen subdivision is operational and gives rise to true fractions, by which we 

imply a nesting system and not just a lot of juxtaposed pieces, the fractions 

themselves take on a dual character. They are parts of the original whole and they 

are also wholes in their own right, and as such they too can be subdivided further. 

(p. 310)  

This sixth criterion for subdivision to be operational captures the recursive 

partitioning operations in that it includes the partition of partitioning (parts being 

subdivided further) and the embedding of parts in relation to the whole into a nested 

structure (parts of the original whole and wholes in their own right).  

When this type of subdivision (recursive partitioning) gives rise to functions, we 

can focus our attention on the fractional amount of one of the second-level shares in 

relation to the original whole. In other words, we can consider the composition of unit 

fractions. In describing the unit fraction composition scheme Steffe & Olive (2010) 

explain: 

The goal of this scheme is to find how much a fraction of a unit fraction is of a 

fractional whole, and the situation is the result of taking a fractional part out of a 

fractional part of the fractional whole, hence the name “composition.” The 

activity of the scheme is the reverse of the operations that produced the fraction of 

a fraction, with the important addition of the subscheme, recursive partitioning. 

The result of the scheme is the fractional part of the whole constituted by the 

fraction of a fraction. (p. 61) 
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Returning to the aforementioned problem of sharing a share of a strip of candy, 

when asked what fraction of the entire candy is one of the five person’s share [second-

level share] out of the entire candy, the unit fraction composition scheme involves the 

student recognizing the goal to find one-fifth of one-third of the whole. Further, it 

involves the student using her recursive partitioning scheme to mentally construct a 

nested structure of three levels of units (cf. Figure 2.7) and using that unit structure as 

material in further operating (Steffe & Olive, 2010). The ability to hold this structure in 

mind allows the student to understand the multiplicative relationship between the number 

of pieces (the reverse of the operations that produced the parts) and, as a result, find that 

one share would be one-fifteenth of the entire candy.   

Distributive Partitioning Scheme. The distributive partitioning scheme is 

generally constructed when the student forms a goal of sharing n items equally among m 

people. The activity of the scheme involves distributing partitioning operations on the n 

items into m parts and sharing one part from each of the n items to the m people, which is 

also referred to as distributive sharing. Here, the sharing goal evokes the students’ 

reversible units-coordinating scheme in that there involves a coordination between the n 

units and m units in partitioning. As a result of the distributive sharing, the result of the 

scheme involves an establishment of the relation between one person’s share and all of 

the items put together. More specifically, the student understands that the share of one 

person can be replicated m times to produce the whole of all n items (i.e., one person’s 

share is one-mth of all n items). Further, if the n items were considered identical, then the 

student also understands that n-mths of one item is equal to one-mth of all the n items 

together (Steffe & Olive, 2010); hence the distributive property. In a distributive 
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partitioning scheme, the student can operate hypothetically and carry out the operations 

of the scheme mentally (Steffe, Liss, & Lee, 2014). 

For example, given a task to share two cakes of different size equally among three 

people (cf. Appendix A, Part I, Item 6), if a student partitions each cake into three parts, 

shares one part from each of the two cakes to each of the three people, this indicates an 

enactment of the distributive sharing activity. Further, if she understands that one 

person’s share can be replicated three times to produce the whole of the two cakes (or in 

other words, understands that one person’s share is one-third of all of the cake), this 

would indicate an enactment of the distributive partitioning scheme. Further, if the two 

cakes are considered identical (cf. Appendix A, Part I, Item 5), then she would also know 

that one person’s share amounts to two-thirds of one cake.  

Distributive Partitioning and Commensurate Fractions. After producing six 

pieces in total, by distributing the partitioning across each cake, understanding that one 

person’s share (two pieces from the six pieces) can be replicated three times to produce 

the whole of the two cakes requires a reorganization of the six pieces into a three 

composite units each containing two pieces, one piece each from each cake. Then, 

disembedding one of the three composite units each containing two units each, the 

student can further operate on the two levels of units to make a one-to-three comparison. 

These operations entail operating on a unit of units of units (Steffe & Olive, 2010). As 

such, the result of the distributive partitioning scheme entails the construction of two-

sixths (two out of the six pieces) as commensurable to one-third.  

This result derives from the identity of each of the three pieces that originated 

from the same cake. That is, each of the parts from the same cake are indistinguishable in 
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that they are abstracted unit items such that any one of them could be iterated three times 

to make a cake equal in size to the cake it originated from. Hence, iterating three of one 

person’s share would produce the equivalent amount of cake as the entirety of the two 

cakes. A student who lacks the uniting of pieces in one person’s share, the iterability of 

one person’s share, and the awareness of the identity of the parts from each cake usually 

focuses on the number of the pieces and not the sizes of each piece. Although such 

student establishes one person’s share as two-sixths of all the cake because the person 

gets two out of six pieces, and can simplify the two-sixths to one-third using arithmetical 

calculations learned in school (“cancelling out”), the student’s explanation does not entail 

the reverse relation between the size of the share and the whole (cf. see Brandon’s case in 

Steffe, Liss, & Lee, 2014).   

The case of sharing two identical cakes presents an additional complexity in that 

all of the pieces that are produced from partitioning each cake are all identical although 

half of the pieces are abstracted from a different cake material than the other half. If the 

student has constructed the parts from each cake as identical abstracted units, then she 

could posit two of any of the pieces within one of the cakes and establish that one 

person’s share [two pieces] is two-thirds of one cake.   

Levels of Units. As I discussed so far in this section, various sharing situations of 

continuous segments can engender partitioning operations. The result of partitioning 

produces parts of the continuous segments and the various ways that students structure 

the parts [units] and the ways that students evaluate the relation between the parts and the 

whole or other parts of the whole led to the discussion of different fraction schemes. The 

levels of units construct was used to model the different complexities of structures of 
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units, such as the parts that were produced from partitioning, either mentally or in 

sensory-motor activities, and the ways that the students could hold these structures 

mentally and use for further operating, such as in constructing fraction schemes. The 

equipartitioning scheme requires the student to reason with two levels of units as given; 

whereas the recursive and distributive partitioning schemes requires three levels of units 

as given. When the student forms a goal to find the fractional amount of parts produced 

in the situations, the results of the equipartitioning scheme can be modified to the 

construction of a partitive fraction scheme and the recursive partitioning scheme can be 

used to construct a unit fraction composition scheme. Evaluating the results of 

distributive partitioning can involve the construction of commensurate fractions. 

Summary of Chapter 2 

In the first part of Chapter 2, I presented the theoretical perspective that orients 

my work in this dissertation study. Specifically, I provided an overview of radical 

constructivism and the central constructs used in this theory of knowing. In the second 

part of Chapter 2, first, I discussed the notion of frames of reference and coordinate 

systems from three bodies of research—spatial cognition, Piagetian work, and 

quantitative reasoning—and reviewed relevant literature. Second, I presented my 

distinction of two uses of coordinate systems and reviewed studies investigating students’ 

constructions of coordinate systems. Third, drawing from existing studies and making 

distinctions with my own, I explained what I mean by spatial frames of reference and 

spatial coordinate systems. Finally, I discussed the theoretical notion of students’ levels 

of units coordination and relevant constructs. 
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CHAPTER 3 

METHODOLOGY AND METHODS 

In order to explore the coordinate systems students construct when representing 

objects in two- or three-dimensional perceptual spaces and to model the mental 

operations and schemes students use in this process, I conducted a constructivist teaching 

experiment. In this chapter I first explain the constructivist teaching experiment 

methodology. Second, I provide an overview of methods specific to the teaching 

experiment I conducted for this study. Finally, I will outline the data analysis chapters. 

The Constructivist Teaching Experiment Methodology 

In a constructivist teaching experiment, the teacher-researcher engages in 

exploratory teaching to investigate students’ ways of operating in constructing and 

understanding mathematical concepts. An ongoing process of forming and testing 

hypotheses of students’ conceptual schemes and operations is carried out over an 

extended time period. Through this process, the teacher-researcher builds models of 

students’ ways of thinking in the teaching in the moment of teaching and after. Each 

teaching episode includes a small group of students, selected through initial interviews, a 

teacher-researcher, witness/cameraperson, and mathematical tasks. In this section, I will 

discuss the historical and theoretical background, the goals and components, and analysis 

methods of the methodology. 
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The Development of a Constructivist Research Methodology 

According to Steffe and Thompson (2000), the teaching experiment methodology 

emerged in a time when many of the research methods available for mathematics 

educators were borrowed from other fields such as psychology, with a strong reliance on 

classical experiment designs and psychometrics. There was a need for a model adequate 

for mathematics education. Moreover, these classical experiment designs and 

psychometrics aligned with the traditional realist perspective. Therefore, the teaching 

experiment methodology was developed to provide a means through which researchers 

could investigate student’s construction of mathematical concepts and model how these 

constructions are used in further constructive activities (Steffe, & Thompson, 2000).  

A multitude of studies adopted the constructivist teaching experiment 

methodology to investigate students’ ways of thinking in constructing and understanding 

mathematical concepts. For example, Hackenberg (2010) conducted a teaching 

experiment with four sixth-grade students to investigate how they reasoned with 

reversible multiplicative relationships. Moore (2013) conducted a teaching experiment 

with two undergraduate pre-calculus students to investigate their angle measure concepts. 

Tillema (2013) conducted a teaching experiment with three eighth grade students to 

investigate their multiplication concepts.  

The teaching experiment branched out into various forms. Although named as 

teaching experiment, some researchers used the teaching experiment in different ways. 

For example, Simon (1995) referred to his work with teachers a “whole-class, 

constructivist teaching experiment” (p. 114). Simon’s (1995) teaching experiment is 

different from the teaching experiment articulated in Steffe and Thompson (2000) in that 
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the goal of the methodology is to “develop a model of teacher decision making with 

respect to mathematical tasks” (p. 114).  

Cobb, Confrey, DiSessa, Lehrer, and Schauble (2003) categorized the teaching 

experiment (Steffe & Thompson, 2000) methodology as one type of a design experiment. 

According to Cobb et al. (2003), a design experiment is conducted to develop theories to 

better understand complex learning ecologies “by designing its elements and by 

anticipating how these elements function together to support learning” (p. 9). The 

different types of design experiments include one-on-one design experiments with a 

small group of students; classroom experiments in collaboration with a teacher; pre-

service and in-service teacher development experiments; school and school district 

restructuring experiments (Cobb, Confrey, DiSessa, Lehrer, & Schauble, 2003). The 

methodology I use in this study is the one aforementioned in Steffe and Thompson (2000), 

which I elaborate on next. 

Goals of the Constructivist Teaching Experiment Methodology 

According to Steffe and Ulrich (2013), there are two primary purposes of the 

constructivist teaching experiment. One goal of the teaching experiment is for the 

researcher to experience the way students learn and reason mathematically through 

teaching and interacting with students. Another goal is to construct                                                                                                                                                                                                                                                                                                                                                    

second-order models (from the researcher’s perspective) of first-order models of the 

mathematics of students (which are the students’ mathematical concepts and operations). 

The two words that constitute the methodology, teaching and experiment align with these 

two goals: Teaching refers to the exploratory process through which the teacher-

researcher experiences the students’ thinking and modifications in their ways of thinking. 
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Experiment refers to the continuous hypothesizing cycle of modeling students’ ways of 

thinking in the moment of teaching and after (Steffe & Thompson, 2000).  

Steffe and Thompson (2000) emphasized that the teaching experiment is not to 

simply explore current understandings of students as in Piagetian clinical interviews, but 

to explore the students’ progress in their mathematical activity over an extended time 

period. Over this time period, an ongoing process of forming and testing hypotheses in 

the close work with students is carried out. Through this process the goal of the teacher-

researcher in building second-order models of the students’ mathematical thinking. 

Moore (2013) emphasized that the model is of the observer, not an objective model of the 

students’ way of thinking: 

During a teaching experiment, a researcher aims to build viable models of 

students’ mathematical understandings and document shifts in these 

understandings. These models may become more precise over time, but the 

models are never to be interpreted as one-to-one representations of the students’ 

thinking. The researcher’s mathematical understandings, the perspective that the 

researcher uses during the study (e.g., quantitative reasoning), and the 

researcher’s learning goals for the students shape his models (Steffe & Thompson, 

2000). (p. 233) 

Components of a Teaching Experiment 

The teaching experiment consists of a sequence of teaching episodes conducted 

over an extended time period, and each teaching episode “includes a teaching agent, one 

or more students, a witness of the teaching episodes, and a method of recording what 

transpires during the episode” (Steffe & Ulrich, 2013, p.2). In this section, I discuss each 

of these components in detail. The teacher-researcher works with a research group of 

which the members are the witnesses of the teaching experiment and provide input in the 

retrospective analyses of the teaching sessions (Steffe & Thompson, 2000).  
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Teacher-Researcher. 

Steffe (2002) discussed the three main roles of the researcher in the constructivist 

teaching experiment. First, the researcher has the role of the teacher, to create situations 

for students to engage in, ask critical questions to encourage students’ thinking, and to 

encourage learning. Second, the researcher is a model builder whom through interactions 

with children in their engagement in mathematical tasks over an extended period of time, 

formulate and test hypotheses of children’s way of thinking. Third, the researcher is to 

acknowledge the social considerations in the teaching experiment environment. Because 

the social interaction involved in cognitive construction is important, Steffe (2002) 

emphasized the researcher to build a playful attitude and confidence with the student (p. 

178).  

In the teaching episodes, the teacher-researcher who acts as the teaching agent has 

preplanned tasks and certain hypotheses of how students might engage in these tasks. The 

teacher-researcher has a certain goal when posing questions and providing tasks in a 

certain sequence. When actively interacting with the students, the teacher-researcher 

makes intuitive and analytical analyses based on the ways students engage in the tasks 

(Steffe & Thompson, 2000; Steffe & Ulrich, 2013). Thus, the course of the task and 

teaching episode may change in response to students’ reactions and the hypotheses are 

revised and reformed. Together with the students’ engagement in the tasks, the 

impromptu decision making the teacher-researcher carries out are critical, since they 

structure the constant forming and testing of hypotheses of the ways of students’ thinking.  
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Witness-researcher. 

Because the teacher-researcher is immersed in the teaching and learning process 

and because this process requires highly cognitive activity for the teacher-researcher, 

there is a possibility that the teacher-researcher can miss essential mistakes the students 

made or follow-up questions important to ask. He or she can also oversee small details of 

body movements or language of students which can be significant in understanding the 

students’ way of thinking. Thus the witness, who is usually the cameraperson, can make 

comments or suggestions to the teaching agent when needed during the teaching episodes 

(Steffe & Thompson, 2000; Steffe & Ulrich, 2013). If the witness feels the need to 

interject, he or she asks the teacher-researcher beforehand and after confirming with the 

teacher-researcher, poses additional questions or helps clarifying the situation.  

Students. 

Students are selected through initial interviews carried out to understand the 

current mental operations and schemes the students can use in their ways of reasoning. 

The students are usually paired with another student or work individually with the 

teacher-researcher. 

Analysis Methods. 

The investigation of mental constructions, which the researcher does not have 

direct access to, is only possible by me making inferences from observing the physical, 

observable activities the students carry out. Therefore, the teacher-researcher focuses on 

the students’ visual illustrations/inscriptions, verbal descriptions, and physical gestures. 

Data is collected from the video recordings of the teaching episodes, student work, and 

the feedback and field notes taken by the research group members.  
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The data is analyzed through an on-going analysis of the teaching episodes during 

the teaching experiment and a retrospective analysis after the conclusion of the teaching 

episodes (Steffe & Thompson, 2000). On-going analyses involves testing and formulating 

new hypotheses throughout the teaching episodes based on the ways students engaged in 

the tasks. When actively interacting with the students, the researchers make on-going 

intuitive and analytical analyses based on the ways students engage in the tasks (Steffe & 

Thompson, 2000; Steffe & Ulrich, 2013). Also, after each teaching episode, the teacher-

researcher uses existing theoretical constructs or findings from previous teaching 

episodes to formulate new hypotheses or modify existing ones. 

Once the teaching experiment is concluded, the teaching episodes are revisited in 

retrospective analyses through careful analysis of the videotapes and collected student 

work from the teaching episodes. Together with the mental records the researchers make 

through teaching and witnessing the interaction with students, the researcher interprets 

the interaction with the student and modifies or stabilizes the original interpretations from 

a prospective view in the retrospective analysis (Steffe & Thompson, 2000). 

Retrospective analyses of data involves identifying instances that would offer insights in 

building working models of students’ ways of thinking. For such instances, the researcher 

performs a conceptual analysis (Thompson, 2008) in order to refine his or her models of 

the students’ constructive activities.  

Conceptual analysis is a way of analyzing and describing what students might 

understand when they know particular mathematical ideas in various ways (Thompson, 

2008). Conceptual analysis can be done through building models of what particular 

mathematical ideas students know and what they can comprehend in specific situations; 
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describing ways of knowing that might be propitious or problematic to students’ 

understanding of the mathematical ideas; or “analyzing the coherence, or fit, of various 

ways of understanding a body of ideas” (Thompson, 2008, p. 60). 

Often, regular research meetings are held to obtain insight from other research 

members, to come to a consensus on the interpretations and analyses of the students’ 

engagement in tasks, to plan subsequent teaching episodes and tasks, and to tests and 

reformulate hypotheses. 

My Teaching Experiment 

My goal in this study was to explore the coordinate systems students construct 

when locating objects in two- or three-dimensional spaces and to model the mental 

operations and schemes students use in this process. To achieve this research goal, I 

conducted a constructivist teaching experiment. As the main teacher-researcher in the 

teaching experiment, I interacted with four ninth-grade students in their engagement in 

mathematical tasks over an extended time. Through the interactions, I formulated and 

tested hypotheses of their ways of thinking and modeled the progress in their 

mathematical activity (Steffe & Thompson, 2000).  

Overview: Timeline and Procedures 

I conducted the teaching experiment over a two-year time span from mid-October 

2013 through the end of April 2015. Table 1 outlines the timeline of research I followed 

in this study. In the summer of 2013, I obtained approval from the University of Georgia 

Institutional Review Board. After I selected two participants through initial interviews, I 

collected consent forms from the school district, school, participating students and their 
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parents to participate in this study. I will provide a detailed description of the participant 

selection process in the next section.  

Table 1. Timeline of Study 

Month/Year Activity 

August, 2013 IRB approval 

September, 2013 Preparation of initial interviews 

October, 2013 Selection of participants through initial interviews 

October, 2013 – February, 

2014 
19 teaching episodes with Kaylee and Morgan 

March, 2014 – September, 

2014 

Retrospective analysis of work with first pair and 

planning of initial interviews and teaching episodes 

with second pair 

October, 2014 Selection of participants through initial interviews 

October, 2014 – April, 2015 31 teaching episodes with Craig and Dan 

May, 2015 – December, 2015 Retrospective analysis of work with second pair 

With the first pair of students, Morgan and Kaylee, I worked over five months, 

starting from October, 2013 through February, 2014 for a total of 19 teaching episodes. 

After completing the teaching episodes with Kaylee and Morgan, from March, 2014 

through September, 2014 I engaged in retrospective analysis of the teaching episodes 

with Kaylee and Morgan. I also planned initial interviews and teaching episodes for a 

second pair of students. In late October, 2014, I selected the second pair of students, 

Craig and Dan. With Craig and Dan I worked over a 7-month time period, starting from 

October, 2014 through April 2015 for a total of 31 teaching episodes. After completing 

the teaching episodes with Craig and Dan, I engaged in retrospective analysis. I provide a 

description of the analysis process later in this chapter.   

Different from comparative studies, in which participants are given the identical 

learning tasks, the nature of my study required learning trajectories unique to each 

student and pair of students. Naturally, my work with the first pair of students informed 

my work with the second pair of students. Also, as the sole teaching agent in this study I 
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decided it was more important to focus on one pair at a time to allow a more natural 

continuation of the teaching episodes, rather than working with two pairs simultaneously. 

Site of Research 

The site of this study was a rural high school in the southeastern United States. 

The research group selected the school as the research site for several reasons. First, 

because the school is a public high school, different from a more selective private school 

setting, we assumed that it was more likely to represent a typical body of students in the 

area. Second, the school was interested in the research project and the Principal was 

willing to have allow students to participate in a long-term research project with us. 

Finally, the proximity of the school was considered, as we needed to visit the school on a 

regular basis for an extended time.  

At the time of the research project, the high school served grades 9–12 and had an 

enrollment of approximately 1500 students and employed approximately 90 teachers, 

with the math teacher population consisting approximately 17% of the teachers (High 

School Website, name omitted). The students who participated in the teaching 

experiment were enrolled in either one of the algebra classes or algebra/support classes. 

15 out of 22 algebra classes were algebra/support classes, which were co-taught by a pair 

of a math teachers or a math teacher and another educational assistant. The 

algebra/support classes were year-long classes following a block schedule, while the 

other unsupported algebra classes ran for only one semester. Because they were not the 

main focus of the study, we did not collect or consider other information such as students’ 

school grades, teachers’ graduate degrees, years of teaching experience, or free or 

reduced lunch statistics.  
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Initial Interviews and Selection of Participants 

Members of the research project conducted initial interviews with ninth-grade 

students who were recommended by the school’s mathematics teachers as students to be 

at various mathematical levels and articulate in expressing their thinking. The research 

group developed the initial interview guide (Appendix A) in advance and used the same 

set of tasks for all potential participants of the study. Depending on the students’ 

responses to the tasks, the order or number of tasks the interviewer asked the students to 

engage in differed.  

The initial interviews served two main purposes. The first purpose of the initial 

interview was to understand the students’ levels of units and the current schemes and 

operations the students could enact in partitioning and sharing situations. In investigating 

how students might superimpose frames of reference onto space and coordinate 

measurements in relation to their frames of reference, I hypothesized that the mental 

operations and schemes involved in coordinating units would be crucial for spatial 

organization. Here units to entail both the units constituting the frames of reference and 

the units of measurement that are induced from the frames of reference that are 

constructed in order to define qualitative spatial relations of elements of the space. 

Therefore, I used the construct of levels of units coordination (Steffe & Olive, 2000) for 

student selection.  

This sampling type corresponds to Patton’s (2002) construct of theoretical 

sampling in which participants are selected through theoretical constructs. 

Specifically, I decided to select two pairs of students to attend to differences in the 

sophistication level across the groups but with similar students within each pair. This 
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sampling can be classified as what Patton (2002) describes as maximum variation 

sampling in which participants are selected so that the observations “cut across some 

range of variation” (cited in Glesne, 2010, p. 45). Therefore, after immediate analyses of 

the initial interviews conducted by the research group, for the first pair of students, I 

selected Kaylee and Morgan who both operated as if they could reason with three levels 

of units; Kaylee as given and Morgan in activity. For the second pair of students, I 

selected two students, Craig, whom operated as if he could reason with three levels of 

units in activity, and Dan, whom operated as if he could reason with two levels of units in 

activity. I present a detailed analysis of the initial interview with each student in Chapter 

4.  

The second purpose of the initial interview was to simply observe personalities or 

characteristics of students that could inform the pairing process. Although the main 

criterion of participant selection was based on a theoretical construct, among the group of 

students that were inferred to be compatible in terms of levels of units coordination, I 

considered two additional elements when pairing the students. First, I accounted for the 

students’ ability to articulate their thinking openly and clearly. Because the teaching 

experiment is based on the active interaction between the teacher-researcher and students 

and also between the students working together, it was important that they felt 

comfortable articulating their thinking to others. Second, I looked for students that would 

work well with each other, without having one student out-shadow the other at a level of 

confidence and articulation of thinking.  

Kaylee and Morgan were both confident and articulate in sharing their thoughts 

and I learned that they were very close friends. On the other hand, Craig and Dan were 
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both relatively shy but when I asked them to, they articulated their thinking well; based 

on my observations of their initial interviews, I decided that neither of them would take 

over the teaching episodes. Other criteria such as race, gender, mathematics achievement 

grades, and socioeconomic status were not considered as criteria for selecting participants.  

Participant Description 

Four ninth-grade students Kaylee, Morgan, Craig, and Dan participated in this 

study. From the initial interviews, I inferred Kaylee to have interiorized three levels of 

units, meaning that she could reason mentally with three levels of units as given; Morgan 

reasoned with three levels of units in activity, meaning that she had not yet interiorized 

three levels of units and had to carry out the activity in order to reason with three levels 

of units. At least, Craig operated as if he could reason with three levels of units in activity, 

and Dan reasoned with two levels of units in activity. I present a detailed description and 

analysis of the initial interviews for each student in Chapter 4.  

Although criteria such as race, gender, mathematics achievement levels, and 

socioeconomic status were not of interest in this study, in this chapter, I will describe the 

participants in terms of some of these aspects, to the extent that I have knowledge of. 

These are things I learned mostly through my observations of students, casual 

conversations with the students before and after each teaching episode, and reflections 

recorded in my research journal. The purpose of these descriptions are to help the readers 

construct an image of each student that might help them distinguish each student from 

each other.  
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Morgan and Kaylee.  

Morgan and Kaylee were both enrolled in ninth grade nonsupport mathematics 

classes together and were close friends. They said that they went to the beach together 

with family over the summer prior to starting the teaching experiment. Morgan and 

Kaylee were in similar classes and both participated in some of the same extracurricular 

activities such as choir and cheerleading club. Due to their familiarity with each other and 

their personal dispositions, both Morgan and Kaylee worked well with each other. There 

were some instances when the two were competitive in coming up with a quicker answer 

to a question I posed. However, most of the time Morgan and Kaylee did a good job in 

sharing their thoughts and listening to each other, even when I did not prompt them to do 

so. There were some instances when their strong collaboration in solving problems made 

it difficult for me to make a distinction between Morgan and Kaylee’s original thinking.   

I first met Morgan on October 22, 2013 in her initial interview. Morgan is a 

Caucasian female student and her mother was a math teacher at the same school. She 

seemed to be quite comfortable working with me and was articulate in expressing her 

thoughts out loud. She sometimes expressed her being tired due to having to come to 

school earlier than others to get a ride to school with her mother. Morgan was also 

involved in several extracurricular activities such as choir, cheerleading, and soccer and 

several times she explained that she was tired from practice. However, this did not seem 

to affect her engagement in the teaching episodes. She was eager to engage in the tasks 

and seemed to enjoy her time in our sessions.  

I first met Kaylee on October 24, 2013. Because another researcher in the 

research group conducted Kaylee’s initial interview, I saw her in our first teaching 
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episode. Kaylee is a Caucasian female student and was tall for her age. Later from the 

video recording of her initial interview and my experience working with her, I learned 

that her speaking and physical actions were of quick tempo. Kaylee was not as talkative 

as Morgan was but she was articulate in expressing her thoughts when she felt necessary. 

Kaylee usually finished the tasks faster than Morgan did but also did a good job waiting 

for Morgan to finish her thinking. Similar to Morgan, Kaylee was eager to engage in the 

tasks and seemed to enjoy the time she spent in the sessions.  

Craig and Dan.  

Craig and Dan were both enrolled in ninth grade algebra/support classes but did 

not appear to be close friends like Morgan and Kaylee were. It did not seem as they knew 

each other before participating in the teaching experiment. They both liked to talk with 

me about school life before or after the teaching episodes but they did not talk to each 

other unless they were asked to do so. Both Craig and Dan had one thing in common: 

they both agreed that math was difficult and did not enjoy doing mathematics. 

Throughout the teaching episodes, I made extra effort to encourage both students to give 

them more confidence in their mathematical activities. 

I first met Craig on September 5, 2014 in his initial interview. Craig is a 

Caucasian male student and wore glasses. Craig was an interesting student in that his 

verbal expressions and descriptions of situations were artistic. He tried to use fancy 

words but sometimes chose vocabulary that did not quite fit within the context. Craig 

appeared as a creative thinker but required ample time to think by himself. Usually, he 

needed me to repeat the description of a situation of the task or my questions until he 

fully grasped the context or question. He also was very articulate in expressing what he 
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understood and what he did not understand. In the latter case, he asked questions until he 

fully grasped the problem context or question. Craig was quite competitive when working 

with Dan in that he wanted to share his thoughts as soon as he came up with a solution; 

when Dan came up with an answer before he did, he tried to come up with a solution that 

was different from Dan’s. Craig preferred to work on his own; thus, sometimes it was 

challenging to get Craig and Dan to work together contrary to Morgan and Kaylee. Craig 

was deeply engaged in the tasks in most of the teaching episodes; usually when he was 

not in a good mood, he explained why he was out of focus that day.  

I first met Dan on September 8, 2014 in his initial interview. Dan is a Caucasian 

male student on the football team and had a girlfriend who walked him to the room in 

which we met. Dan appeared to be very nervous and shy in our first meeting but soon 

warmed up in the following meetings. In some instances, Dan seemed unconfident and 

had a difficult time verbalizing his thoughts. However, he was more social than Craig 

was and was willing to work with Craig when I asked him to do so. Sometimes, when 

Craig shared his thoughts and Dan thought Craig obtained the “answer,” Dan gave in 

saying things such as “he’s right; I’m wrong.” Although Dan seemed less confident in 

solving the tasks, Dan appeared to be willing to engage in the teaching episodes.  

Structure of Teaching Episodes 

The teaching episodes were held twice a week for both pairs of students. In 

between teaching episodes, I took a week off approximately every other three weeks to 

allow time for analyzing data, planning subsequent episodes, and developing tasks. The 

teaching episodes with Morgan and Kaylee lasted for approximately 20–25 minutes held 

in faculty meeting rooms. The teaching episodes with Craig and Dan lasted for 



 

91 

approximately 15–20 minutes held in a faculty break room. The reason why I worked 

with the second pair of students for a longer period was mainly due to the change in their 

bell schedule; I was given less time for each meeting. 

In the work with the first pair of students, I acted as the teacher-researcher in the 

teaching episodes and there were one or more witnesses from my research group. In the 

work with the second pair of students, I was the sole teaching agent involved in the 

teaching episodes. The research group members met approximately once a week and 

participated in post-session analyses based on the video recordings and student work. The 

research meetings also served as a platform for brainstorming new tasks and discussing 

plans for upcoming teaching episodes. The research group members consisted of graduate 

students and Dr. Steffe, all of whom were familiar with the theoretical constructs that 

guided the study and the teaching experiment methodology. 

 For each initial interview and teaching episode, I constructed a general plan based 

on hypotheses and potential trajectories. The plan included a description of the situation 

of the task, the goal of the task, several questions to start off the session and some 

questions I could ask depending on various responses. However, I was also open to 

changing the course of the teaching episode, depending on the students’ responses and 

reactions to the task. Therefore, the plan of episodes was semi-structured.  

Physical Environment of Teaching Episodes 

Figure 3.1 depicts the configuration of the room for each pair of students. As 

shown in Figure 3.1, the students sat on each side of me, the teacher-researcher (TR). In 

Morgan and Kaylee’s case, there were two cameras setup in the room.  
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TR: Teacher-Researcher 

WR: Witness-Researcher 

S1/S2: Student 1/Student 2 

C1: Stationary video camera for wide angle 

C2: Handheld video camera operated by 

WR 

TR: Teacher-Researcher 

S1/S2: Student 1/Student 2 

C1/C2: Video camera stationed on table for 

S1/S2 

C3: Stationary video camera for wide angle 

       (a) Kaylee and Morgan’s room                 (b) Craig and Dan’s room 

Figure 3.1. Room configuration for teaching episodes. 

As depicted in Figure 3.1 (a), I placed one camera (C1) on a tripod in front of the 

worktable to record a full view of the students and activities in a broader scope. The 

witness researcher (WR) handled another video camera (C2) while walking around the 

room to capture close-up activities of the students. The WR focused on students’ hand 

motions or activities on paper to capture the process of their work.  

In Craig and Dan’s case, there were three cameras setup in the room. As depicted 

in Figure 3.1 (b), I placed one camera (C3) on a tripod in front of the worktable to record 

a full view of the students and activities at a broader scope. I placed two other video 

cameras (C1 and C2) on mini-tripods set on the table to capture Student 1 and Student 2’s 

activities up-close, respectively. This configuration allowed more stable close-up 

recordings of both students’ activities without relying on another researcher going back 

and forth from one student to another. 

TR 

S1 S2 

C3 

C2 C1 
S1 S2 

C1 

C2 

WR 
TR 
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In most of the teaching episodes, I asked the students to work individually on the 

task until both students were finished organizing their thoughts and then asked each 

student to share their solutions. This was to observe each students’ original activities that 

were carried out independently. In many cases, I also asked each student to compare, 

contrast, or critique their partner’s solutions. This was to observe instances where one 

student might assimilate the solution or strategy the other student used in solving the task. 

Because an important aspect of the teaching experiment methodology is to engender and 

model shifts in students’ schemes and operations, it was important to open opportunities 

for the students to learn from each other through interactions. 

Data Sources 

In addition to my in-the-moment observations of students’ mathematical activities, 

the data sources I collected and compiled for analysis included video recordings and 

annotated transcripts; written excerpts, task artifacts, and written student work; and, my 

research journal.  

Video recordings and annotated transcripts.  

There were at least two video cameras recording each session, including both 

initial interviews and teaching episodes (see Figure 3.1 for configuration of rooms). For 

each session, I compiled all relevant video recordings into one video file, using a video 

editing software. When editing videos, in Kaylee and Morgan’s case, I arranged the video 

from the wide-angle camera on the left and the video from the close-up camera on the 

right side of the frame. In Craig and Dan’s case, I placed the video from the wide-angle 

camera at the top middle of the frame and the two videos from the close-up cameras 

below that, so the close-up views corresponded to the student sitting on that side in the 
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wide view. These configurations allowed a simultaneous monitoring of the students’ 

actions and verbalizations that were not necessarily captured in one camera but the other.    

For the purpose of this study, I selected a total of 10 compiled videos for Morgan 

and Kaylee and a total of 20 compiled videos for Craig and Dan to analyze. The teaching 

episodes I did not select were exploratory sessions in which I asked students to engage in 

quantitative coordination, which I do not discuss in this dissertation. For the 30 teaching 

episodes I selected, I constructed annotated transcripts. Along with transcription of the 

dialogue, I also added screen captures or scanned student work when necessary, to 

illustrate the students’ actions or the task artifacts that the students manipulated. 

Constructing these transcripts were helpful in that I was forced to re-live the interactions 

with my students and describe their actions at a micro-level. Through this activity I was 

able to observe things I did not notice before.  

In the transcript documents, as I noticed patterns or irregularities in the data, I left 

notes of analyses. I also color-coded parts of the transcripts by highlighting 

events/themes that I found common across both students or the change/shifts in one 

students’ thinking. In the earlier versions of the transcripts, I transcribed the students’ and 

TR’s dialogue verbatim but in the later versions of my transcripts, I was more selective in 

the transcribing process. Instead of transcribing the entire video and then identifying 

instances that provided insights into students’ thinking, I first identified those instances 

after watching the video multiple times and constructing a map of major events in the 

teaching episode. Then, I transcribed the relevant parts to those instances, which served 

as Excerpts in this dissertation. I found the latter approach to be more productive in that it 

allowed me to see the bigger picture of the patterns/irregularities and changes in events in 
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the teaching episode and saved me from having to transcribe portions of the teaching 

episodes that did not serve much purpose.  

Written excerpts, task artifacts, and students’ written work.  

After each session with students, I collected all relevant material. These included 

the copy of the written excerpts I prepared for the teaching episode, task artifacts that 

were used in the teaching episode, and written student work. For task artifacts were not 

manipulated or difficult to preserve (e.g., fish tanks), I took pictures to store digital 

images of them. I scanned all written student work and filed both the digitalized and 

original work by date and pair for data analysis. These materials were used in describing 

the tasks, transcribing the teaching sessions, and analyzing students’ mathematical 

activities.   

Research journal.  

I use the term journal loosely to mean record-keeping of various things in various 

formats. Sometimes I wrote in notepads by hand and sometimes I wrote in running 

documents saved as digital files on my computer. The things I kept record of changed as I 

transitioned from one stage to another in the teaching experiment.  

After the teaching episodes, I wrote reflections in which I described the 

interactions between the students or with the students, explained the instructional 

decisions I made or questions I asked, and/or documented the various feelings and 

emotions I had in teaching episodes. One of the reasons I found it important to record 

these things was to attend to reflexivity, as cited by Glesne (2010), “an awareness of the 

self in the situation of action and of the role of the self in constructing that situation. 

(Bloor and Wood 2006, 145)” (p. 150). Indeed, the teaching episodes were co-
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constructed by all participants, including myself. In addition, because I constantly formed 

and tested hypotheses and at times made impromptu decisions during the teaching 

episodes, it was important to keep record of these processes. Often, I added retrospective 

notes to the semi-structured written excerpts to denote the actual implementation of the 

teaching episode. 

During the planning and analyzing processes, I kept notes from the research 

meetings to document the discussions we had in developing tasks, writing excerpts, and 

analyzing data. These notes were helpful in developing subsequent teaching episodes and 

in analyzing data.   

Task Development and Overview of Tasks 

Ongoing Task Development and Overview of Tasks.  

The tasks that I developed during the teaching episodes and the trajectory of the 

teaching experiment emerged as I worked with the students. Although the tasks differed 

for each pair of students, there were two overarching task design principles that guided 

the task design. One was to provide tasks that I considered to be in the students’ zones of 

potential construction (Steffe & D’Ambrosio, 1995), providing opportunities for the 

students to move forward towards constructing representational space (Piaget & Inhelder, 

1967) by use of coordinate systems. The second was to embed tasks into situations that 

could be experientially real to the students (Gravemeijer & Doorman, 1999) and to 

provoke active engagement in the task. Because my focus was on students’ constructive 

activities, I wanted to create situations that students could potentially engage in actively 

and enact or construct operations and schemes (von Glasersfeld, 1995). 
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Throughout the teaching experiment, I emphasized to the students that I was more 

interested in learning about how they thought when solving the problems and not whether 

they achieved a “correct” answer. When I asked students to explain their solutions, I 

asked the students to express their thoughts out loud to help me understand their ways of 

thinking. For each initial interview and teaching episode, I constructed excerpts to guide 

the session. These excerpts were general plans including a description of the situation of 

the task, the goal of the task, several questions to start off the session and some questions 

I could ask depending on various responses. However, I was also open to changing the 

course of the teaching episode, depending on the students’ responses and reactions to the 

task. Therefore, the plan of episodes was semi-structured.  

Table 2 provides an overview of the tasks and dates the students worked on the 

tasks. In this table, M, K, C, D each refer to Morgan, Kaylee, Craig, Dan, respectively. In 

the table I specify which student was present at the teaching episode in parentheses only 

when one student of the pair was present.  

There were two types of tasks; Locating Tasks and Counting Spatial Objects 

Tasks. In the Locating Tasks, I asked students to describe the location of a point or the 

motion of a point in two or three-dimensional spaces in various situations. These tasks 

corresponded to the first research questions outlined in Chapter 1. To elaborate, through 

these tasks, I investigated how the students constructed and used coordinate systems 

when representing points or motion of points in two- or three-dimensional perceptual 

space. More specifically, I explored how students constructed frames of reference and 

coordinated measurements within those frames of reference to represent points in 

perceptual space.  
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Table 2. Overview of tasks and timeline for each pair of students. 

Task 

Category 
Task Name 

Date 

Morgan and Kaylee Craig and Dan 

Initial 

Interview 

Initial 

Interview 

Tasks 

10/22/13 (M), 10/24/13 

(M), 10/24/13 (K) 

9/5/14 (C), 9/8/14 (D), 

9/12/14 (D), 9/15/ 14 (C) 

Locating 

Tasks 

 

North Pole 

Task 
11/7/13 1/23/15 (D), 1/26/15 

Fish Tank 

Task (cubic 

tank) 

11/12/13, 11/14/13 
1/30/15 (D), 2/2/15, 2/6/15, 

2/9/15 (C) 

Fish Tank 

Task 

(cylindrical 

tank) 

11/14/13, 11/19/13 2/20/15, 2/23/15 

School Map 

Task 
n/a 12/8/14 

Counting 

Spatial 

Objects 

Tasks 

Cubic Block 

Task 
11/21/13, 12/6/13 11/10/14, 11/14/14 (D) 

Floor Tile 

Task 
n/a 11/17/14, 11/21/14, 12/1/14 

Brick Wall 

Task 
n/a 12/12/14, 12/15/14 

In the Counting Spatial Objects Tasks, I asked students to count arrays of units in 

two- or three-dimensional objects such as rectangular floors or cubic blocks. These tasks 

corresponded to the second research question: How do students coordinate units within 

two- or three-dimensional spatial objects? More specifically, I investigated how students 

coordinate their frames of reference when asked to reason about spatial objects that entail 

arrays of units along two or three dimensions.  

As shown in Table 2, Morgan and Kaylee started with the Locating Tasks and 

ended with a Counting Spatial Objects Task (North Pole Task → Fish Tank Task → 

Cubic Block Task). On the other hand, Craig and Dan started with the Counting Spatial 

Objects Tasks and ended with the Locating Tasks (Cubic Block Task → Floor Tile Task 
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→ School Map Task → Brick Wall Task → North Pole Task→ Fish Tank Task). I 

elaborate on why each pair worked in a different sequence of tasks in the analyses 

chapters (Chapters 4–8) because the sequence of tasks emerged as the teaching episodes 

occurred and as I analyzed the data.  

Data Analysis Techniques 

In analyzing data, my goal was to build working models of ways students 

mentally construct frames of reference, coordinate measurements within those frames of 

reference (thus produce coordinate systems), and count arrays of units constituting two- 

or three-dimensional objects. Because I am aware that I do not have direct access to the 

students’ ways of thinking, my goal in this study was to build viable second-order models 

of students’ mathematical activity and to document shifts in their ways of thinking. These 

models are never to be interpreted as one-to-one representations of students’ thinking 

(Steffe & Thompson, 2000). 

The investigation of mental constructions, which I do not have direct access to, 

was only possible by me making inferences from observing the physical, observable 

activities the students carried out. Therefore, I concentrated on the students’ visual 

illustrations, verbal descriptions, and physical gestures. These elements of our 

interactions were analyzed based on on-going and retrospective analyses, which I 

described in the teaching experiment methodology.  

In terms of interpreting drawings that students produced, I took Piaget and 

Inhelder’s (1996) account for drawings: 

A drawing is a representation, which means that it implies the construction of an 

image, which is something altogether different from perception itself, and there is 

no evidence that the spatial relationships of which this image is composed are on 

the same plane as those revealed by the corresponding perception. A child may 
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see the nose above the mouth, but when he tries to conjure up these elements and 

is no longer really perceiving them, he is liable to reverse their order, not simply 

from want of skill in drawing or lack of attention but also and more precisely, 

from the inadequacy of the instruments of spatial representation which are 

required to reconstruct the order along the vertical axis. (p. 47) 

On-going analysis. 

On-going analyses involved testing and formulating new hypotheses during and 

throughout the teaching episodes based on the ways students engaged in the tasks. I 

inferred from students’ engagement in the teaching episodes instances that corroborated 

the hypotheses or disproved and these inferences formulated new hypotheses on the 

students’ ways of thinking.  

Together with the way students engage in the tasks these hypotheses tested and 

reformulated throughout the teaching experiment guided the trajectory of the teaching 

episodes. For example, in case of Morgan and Kaylee, the students were very enthusiastic 

in sharing their thoughts and building on from each other’s ideas. After finding difficulty 

in understanding how the two students were independently engaging in the tasks, in the 

research meeting, my research group members and I decided to have the two students 

work separately on two different computers or separately on paper first and then share 

their thinking. The analyses not only guided the way I worked with the students and how 

we had them work with each other but also guided our formulation of tasks. Based on the 

way the two students engaged in earlier tasks, I designed tasks that would help me further 

test what we hypothesized from their earlier activities.  
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Retrospective analysis.  

Retrospective analyses of data involved identifying instances that would offer 

insights in building working models of students’ spatial organization. For such instances, 

I transcribed the video and performed a conceptual analysis (Thompson, 2008) in order to 

refine my models of the students’ constructions of coordinate systems. Weekly research 

meetings were used to come to a consensus on the interpretations and analyses of the 

students’ engagement in tasks and in testing and reformulating hypotheses. 

Overview of Data Analysis Chapters 

 In Chapter 4, I will present my findings from the initial interviews of the four 

participants. In Chapter 5, I analyze Morgan and Kaylee’s activities in constructing 

coordinate systems in locating points in space in the North Pole Task and Fish Tank Task. 

In Chapter 6, I present findings from the Cubic Block Task with Kaylee and Morgan and 

discuss their different ways of coordinating units within three dimensional objects. In 

Chapter 7, I analyze Craig and Dan’s activities in constructing coordinate systems in 

locating points in space in the School Map Task, North Pole Task, and Fish Tank Task. 

In Chapter 8, I present findings from the Floor Tile Task, Cubic Block Task, and 

Rectangular Prism Task with Craig and Dan to discuss their different ways of 

coordinating units within three dimensional objects. Finally, in Chapter 9, I will 

summarize the findings and compare and contrast the activities across all four students. I 

will also discuss educational implications, limitations of study, and future research 

directions. 
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CHAPTER 4 

INITIAL INTERVIEWS 

In this chapter, I present the initial interviews that were conducted with the four 

participants. First, I discuss the background of the initial interviews, including the goal 

and the tasks of the initial interview. Second, I present an analysis and findings from the 

initial interviews with each student. Finally, I explain how the results of the initial 

interview guided my teaching experiment.  

Background of Initial Interviews 

Before entering the teaching experiment, I conducted an initial interview with 

each participant. In constructing the initial interviews, I adopted partitioning and units-

coordinating tasks that were developed and used in investigating students’ constructions 

of number sequences and fractional schemes (Steffe & Olive, 2010). Because I was 

interested in studying how students might produce coordinated systems of measurements 

in organizing space and how they might structure multiple spatial dimensions in 

reasoning, the initial interview was designed to investigate the students’ current 

partitioning schemes and levels of units coordination. Although my study is not focused 

on students’ construction of fraction schemes, because the way students construct 

fractions can also provide insight for the ways they form nesting systems of parts, the 

initial interviews also included questions involving finding the fractional amount of parts 

in relation to the whole.  
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In the analysis of the initial interviews, I focused on students’ partitioning 

schemes and operations, the levels of units of coordination, units-coordinating schemes 

and operations, and the distinction between a simultaneous coordination and a sequential 

coordination of units. An account of said theoretical constructs are elaborated in Chapter 

Two. 

Although the overarching goal of the initial interview was the same for all four 

students, as I specified above, the tasks that were used in the initial interviews were 

slightly different for each pair of students (cf. Appendix A). Craig’s and Dan’s initial 

interviews were similar to Kaylee’s and Morgan’s with an exception of starting with the 

equi-partitioning task and adding a units coordination task series. These tasks were added 

because I was looking for participants reasoning with two levels of units as given but not 

three. Each student independently participated in the initial interviews. Each session 

lasted for approximately 20–30 minutes. The number of sessions and the time admitted 

for each session differed for each student, depending on various situations that I explain 

for each student.  

Kaylee’s Initial Interview 

Kaylee’s initial interview, held on October 24, 2013, was conducted by another 

interviewer from my research group at the same time that I interviewed Morgan. Kaylee’s 

initial interview was relatively short compared to the other participants because her 

actions and verbal expressions, when observable, were very quick and she did not require 

as many follow-up questions as did the other students. Also, for most of the time, Kaylee 

was able to solve the tasks mentally, which means that, in these cases, she did not engage 

in observable sensory-motor activity. In the following sections, I discuss Kaylee’s 
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engagement in each task and present my analysis of her partitioning schemes and levels 

of units coordination .  

Distributive Partitioning 

Sharing two cakes of same size and flavor.  

 After the interviewer presented two equal sized cake models of the same color (cf. 

Figure A.2 in Appendix A), he explained that the two cakes were of the same flavor and 

size and covered the cakes with a handkerchief. When the interviewer asked her how she 

would share the two cakes equally among three people, Kaylee said that she would split 

both cakes into three sections and give each person two sections. When asked what 

fraction of one cake one person would get, Kaylee answered two-thirds. In explaining 

how she knew it was two-thirds, Kaylee said, “Because each one is split into three 

sections and if one person gets two, then they’d have two.” Her explanation showed that 

Kaylee considered the two cakes as interchangeable, so one of the three parts of one of 

the two cakes could be used as if it were one of three equal sized parts of the other cake. 

Moreover, the parts were indistinguishable in that any one of the three parts of a cake 

could be used in iteration to reconstitute the whole cake.  Therefore, Kaylee was aware 

that each part from the partitioned cakes could be substituted for any other part. In other 

words, she treated the parts as being of identical size relative to the cakes although the 

parts were physically distinct as were the cakes they originated from. In that sense, one 

could say that the parts of the cake were identical as abstracted unit items; they were 

intentionally made to be of equal size using abstract numerical units comprised by her 

concept, three (Steffe & Olive, 2010). 
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Further, when the interviewer asked what fraction of all the cake one person 

would get, Kaylee said it would be one-third. When asked how she knew it was one-third, 

Kaylee first explained that one person would get two out of six pieces, which simplifies 

to one-third. As such, Kaylee’s explanation suggested that she has reconstituted the cake 

pieces into a unit of three units [number of people] each of which contained two units 

[two parts of the cake].  The interviewer asked Kaylee if there was another way she could 

explain why one person’s share was one-third. Kaylee explained “because there’s three 

people. And so if you’re one person, then you would have one-third of what’s split up.” 

This explanation corroborated that Kaylee has constructed a composite unit containing 

three composite units each of which contained two composite units; in other words, a 

three levels of units structure.  

As demonstrated in her engagement in the task, Kaylee was able to carry out the 

operations mentally, with the two cakes hidden under the handkerchief. As such, the three 

levels of units structure seemed to be available for her as given. After describing the 

distributive sharing activity, Kaylee understood that one person’s share amounted to two-

thirds of one cake and one-third of both cakes. Therefore, I inferred that Kaylee used an 

assimilatory distributive partitioning scheme in solving the two identical cakes situation, 

indicative of reasoning with three levels of units as given.   

Sharing two cakes of different size and flavor. 

This time the interview presented Kaylee with two different sized cake models of 

different color (cf. Figure A.3 in Appendix A). The interviewer explained that the two 

cakes were of the different flavor and size and covered the cakes with a handkerchief. 

Then, the interviewer asked Kaylee how she might find one-third of all of the cake. In 
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solving this task, Kaylee went through four different phases. In the first phase, Kaylee 

suggested a strategy that assumed the big cake was twice as big as the small cake. The 

strategy entailed splitting the big cake into half, producing three pieces of the same size. 

This indicated that Kaylee was aware that one-third of the cake meant producing three 

equal pieces; therefore, an indication of a coordination between the number of pieces and 

the size of each piece. Her assumption of the big cake being twice as big as the small 

cake also indicated her awareness of the size of the pieces in her coordination of number 

of pieces to produce. However, Kaylee pointed out that she did not know if the big one 

was actually twice as big as the other one.  

The interviewer explained that they did not know the relationship between the 

sizes of the two cakes, which led to Kaylee’s second attempt. Kaylee clarified with the 

interviewer “How we can split equally among three people?” which corroborated that 

Kaylee understood finding one-third of the cake was equivalent to sharing the cake 

equally among three people. Again, this indicated that Kaylee was aware that finding 

one-third of the cake meant producing three equal pieces. However, Kaylee said she did 

not know how to do so. It seemed as though she was not able to assimilate the new 

situation using her distributive partitioning scheme.  

To see if having physical models of the cakes in her visual field might evoke her 

enactment of her distributive partitioning scheme, the interviewer uncovered the cakes, to 

which reached  Kaylee’s third phase in solving the task. Looking at the cake models, 

Kaylee explained “We can split this [pointing to the big cake] into four and that [pointing 

to the small cake] in two, but I don’t know if those would be equal and then each person 

get two.” Again, Kaylee attempted to partition the cakes so that the result of partitioning 
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would result in a number of pieces that were a multiple of three, this time looking at the 

cake models. However, again, Kaylee acknowledged that she didn’t know if the pieces 

would be equal.  

The interviewer repeated Kaylee’s explanation that each person would get two 

pieces and was about to redirect her attention to equal shares when Kaylee demonstrated 

an assimilation of the situation using her distributive partitioning scheme and further 

enactments using the scheme. Excerpt 4.1 illustrates this fourth phase in Kaylee’s 

reasoning about finding one-third of two cakes of different size and flavor. I, K, and W 

each refer to the interviewer, Kaylee, and the witness, respectively. 

Excerpt 4.1. Kaylee finds one-third of two cakes of different size and flavor. 

I: And each person gets two. Okay, what if we also want…[interrupted by 

K]. 

K:  Oh! 

I:  Oh? 

K:  I can split this [points to the big cake] into three and this [points to the 

small cake] into three and each person gets a smaller piece [again pointing 

to the small cake] and a big piece [pointing to the big cake], if they’re split 

equally. 

I:  Oh, okay, that’s nice, that’s nice. 

W:  Can you cut the cakes using the knife? 

K:  [Holding the butter knife to cut the cake] I don’t know if this will be equal 

but I’ll try. [Lays butter knife onto the big cake as to gauge and mark 

where to make the first cut]. 

I:  What are you thinking when you’re trying to make sure that they’re equal? 

K:  That I don’t want someone to get a smaller piece and not be equal. [Cuts 

the big cake into three pieces and takes them apart. Then, cuts the small 

cake in a similar manner by making marks with the knife first and then 

making the cuts. Next, after taking the small cake apart, she puts one piece 

of the small cake along with one piece of the big cake as shown in Figure 

4.1.] 
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Figure 4.1a. Kaylee cut the two cake models each into three pieces and puts them 

together into three piles. 

[Continued.] 

I:  Okay, can you hand us one of each of our shares?  

K:  [Passes out each person’s share consisting of one small (yellow) piece and 

one big (brown) piece.] 

I:  Okay, so what fraction of all of the cake does one person get? What 

fraction of all of the cake do you have? 

K:  Of both cakes? 

I:  Yeah. 

K:  Two-thirds, or, one-third. 

I: Okay, and how do you know it’s one-third? 

K:  Cuz if we put these [pointing to each person’s share] back together that 

would be three thirds, so I have one.  

 At the beginning of Excerpt 4.1., Kaylee exclaimed “Oh!” very excitedly as if she 

realized a way to solve the problem at hand. Then, Kaylee enacted the distributive 

sharing actions she used in the first case of sharing two cakes of same size and flavor, 

indicated by her comment that she would split each cake into three and that each person 

would get one piece from each cake. Although the witness and interviewer asked Kaylee 

to carry out the distributive sharing actions, because she was able to articulate her plan of 

actions before carrying out the activity, I believe that the enactment of the actual activity 

was unnecessary. Further, as demonstrated in the end of Excerpt 4.1, Kaylee understood 

that one person’s share would consist of one-third of all the cake because “if we put these 

back together, that would be three thirds, so I have one.” Therefore, although it took her 
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some time to assimilate the situation using her distributive partitioning scheme, I inferred 

that Kaylee used her distributive partitioning scheme in solving the task of sharing two 

cakes of different size and flavor equally among three people. This was another 

indication that Kaylee had interiorized three levels of units in operating. Yet another 

indication came in her solving the next task. 

Recursive Partitioning 

 After Kaylee opened a candy strip (cf. Figure A.1 in Appendix A), the interviewer 

asked Kaylee to imagine the strip of candy with her eyes closed. With her eyes closed, 

the interviewer asked Kaylee to imagine cutting off one person’s share when trying to 

share this candy equally among three people. After confirming with Kaylee that she had a 

picture of the cut in her mind, the interviewer asked Kaylee to open her eyes and to show 

where she might cut off one person’s share. In response, Kaylee made a trifold of the 

candy to assure that she was making an equal share of three pieces in the candy strip. 

This was demonstrated in her explanation of her actions “I can fold it in to make sure that 

they are equal.” After making several adjustments in her folding, Kaylee cut off one of 

the three parts as one person’s share. Her folding of the candy into three equal parts 

indicated her projection of a number three template into the entire candy. This activity 

was similar to the way Kaylee gauged the size of the cake parts with the knife prior to 

cutting. Therefore, such mental equipartitioning of the continuous units (cake or candy 

strip) produced identical parts. 

 Then the interviewer asked Kaylee to imagine the one person’s share [first-level 

share] she just cut off from the candy, with her eyes closed. Further, he asked Kaylee to 

imagine cutting off one piece when she wanted to share the one person’s share among a 
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total of five people [second-level share]. Note I referred to the sharing results as first-

level and second-level share to distinguish the steps of sharing in Chapter 2. Kaylee then 

opened her eyes and was ready to make the cut she imagined. The interviewer asked 

Kaylee to first explain what she was thinking about before doing anything to the candy. 

Kaylee explained that she wanted to fold the candy a different way and carried out the 

folding of the candy to produce five equal parts. After adjusting her five-fold to make it 

more accurate, Kaylee ripped off one section.  

When the interviewer asked her what amount of all the candy is the little piece 

she just ripped off, Kaylee looked at the pieces on the table for approximately two 

seconds and answered “one-fifteenth.” The interviewer asked her how she knew that it 

was one-fifteenth, and Kaylee explained “Because it’s one-fifth [points to the second-

level share] of one-third [points to the first-level share] so if you were to multiply that, it 

would be one-fifteenth. Since there are three sections.” In her explanation of why one 

person’s share was one-fifteenth of the entire candy, Kaylee demonstrated an awareness 

of the fractional amount of each part produced by each partitioning and also composed 

the unit fractions. It also seemed as if Kaylee enacted her recursive partitioning scheme 

and units-coordinating scheme, which are hinted by her quick response, mentioning of 

multiplying, and pointing to the “three sections” referring to the original candy. Being 

able to enact these schemes mentally served in the construction of a unit fraction 

composition scheme. These observations served as another indication that Kaylee has 

interiorized three levels of units in operating. 

  



 

111 

Splitting 

 When Kaylee was asked to make her string, given the interviewer’s wax string 

was five times as long as her string, she initially folded the interviewer’s string in order to 

make an equal fold of five parts into the string. Kaylee tried to make an accurate five-fold 

over several attempts. Because our focus was not on the conciseness of the folds but more 

on the way she wanted to make her string, the witness in the room asked if she could 

make an estimate. In response to the witness’s prompt, Kaylee laid the string straight on 

the table and placed her fingers along the string while making an estimation and moving 

that estimation along the string several times. Once she came to an estimate that she felt 

confident with, Kaylee picked up a new string, laid it next to the interviewer’s string, and 

cut off a string the length of her estimation. When the interviewer asked how she would 

check whether or not her estimate was a good estimate, Kaylee explained “I can make 

four others this length then put them next to it to see if it’s the same length.” When the 

witness asked her how much the piece of string was out of all of the string, Kaylee 

answered “one-fifth.”  

 Although Kaylee carried out folding of the original candy, it was apparent that 

Kaylee had split the teacher’s string into five parts prior to carrying out the activity of 

folding, by the way her folding was intended to produce five parts. Moreover, when 

asked to make an estimate, Kaylee simultaneously partitioned and iterated a hypothetical 

string (represented by the gap between her fingers) in order to make the estimate of her 

string. Then, without prompting, she picked up another string and cut off a string the 

same length of her estimate, indicating that she was aware of the hypothetical string she 

was using in operating. Further, Kaylee established the multiplicative relation between 
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her string and the original string, indicated by her response one-fifth as the amount of the 

string in relation to all of the string. Therefore, I inferred that Kaylee operated as if she 

had constructed an assimilatory splitting scheme. 

Summary of Kaylee’s Initial Interview 

As discussed in the analysis of Kaylee’s initial interview, Kaylee operated as if 

she had constructed a splitting scheme, a recursive partitioning scheme, and a distributive 

partitioning scheme that she used in assimilation. Therefore, I inferred that Kaylee 

operated as if she had interiorized three levels of units, meaning that she could coordinate 

three levels of units as given.  

Morgan’s Initial Interview 

I conducted Morgan’s initial interview over two sessions, one on October 22 and 

the second on October 24, 2013. In contrast to Kaylee’s initial interview, Morgan’s initial 

interview often consisted of her carrying out observable sensory-motor activities in 

solving the tasks. In the following sections, I will discuss Morgan’s engagement in each 

task and present my analysis of her partitioning schemes and levels of units coordination.  

Distributive Partitioning 

Sharing two cakes of same size and flavor. 

When asked to share two equal sized cakes of the same flavor (cf. Figure A.2 in 

Appendix A) hidden under a handkerchief equally among three people—her two friends 

and herself—Morgan initially said that she would let her two friends have all the cake. 

When I asked her again to equally share the cakes among three people, Morgan 

mentioned “this is kind of like a pie chart, you can put it into three parts equally” making 

a peace sign in the air to demonstrate the pie chart. This indicated a projection of her 
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concept, three, into the cake. However, next, Morgan asked if she could combine the 

cakes by putting them together and “just make a peace sign.” Her comment indicated that 

her partitioning of the cake using her concept, three, was not distributed to each cake. 

Rather, she intended to partition both cakes combined together.  

Because I wanted to know if she could distribute, or had already implicitly 

distributed, the partitioning across each cake, I told Morgan that she could not put the 

cakes together because the frosting and decorations will get mixed up. As a response, 

Morgan said, “somebody wouldn’t get an equal amount.” I then asked Morgan if it was 

difficult to share the cakes equally keeping them separate, which she replied to that it was. 

This comment indicated that she was yet to distribute the partitioning operations to each 

of the cakes. So, I uncovered the cake models and gave her a butter knife to carry out the 

cutting activity, to find if seeing the material and carrying out the sensory-motor activity 

might evoke distributing the partitioning into three parts across both cakes.  

Morgan sat in silence looking at the cake models as they were positioned side by 

side on the plate. Then, she made one mark with the butter knife on each cake as shown 

in Figure 4.2 (a) and (b) as if she was gauging where to cut the cakes. Following her 

marking the cakes, she cut along the marks she made and distributed the cake pieces into 

three piles, each representing what one person would get, as shown in Figure 4.1 (c). As 

shown in Figure 4.1 (c), each piece she cut off from each cake constituted one person’s 

share and the remaining of each cake each constituted one person’s share, making three 

shares in total. 
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                            (a)                                                    (b) 

 
(c) 

 

Figure 4.1b. Morgan first sharing of two cakes among three people. 

When I asked Morgan how she would know this sharing was fair, she said that 

she could compare the sizes but was not confident how to do so. Her not being able to 

explain how the sharing was fair suggested that Morgan was not aware of the relative 

sizes of the pieces in relation to each cake when she was making the cuts. This 

corroborated that Morgan’s cutting of the cake did not entail a projection of three into 

each cake, although her cutting off one piece from each cake suggested that Morgan used 

her concept of three when making the shares, more likely projected on the two cakes 

imagined put together.  

 

Figure 4.2. A model of Morgan’s partitioning of the two cakes. 
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Figure 4.2 shows how I understood Morgan’s cutting and sharing activity she 

demonstrated in Figure 4.1. The pink figures represent the two cakes and the black 

dashed line segments represent the cut she made with the butter knife. As modeled in 

Figure 4.2, although the cakes were not attached, the way Morgan made the cuts in the 

cake resembled her earlier strategy of putting the cakes together and making a peace sign.  

 

Figure 4.3. Morgan demonstrates what she means by combining the cake and making a 

peace sign. 

Because I interpreted her sharing activity as such, I further prompted Morgan to 

see if my questions would perturb and activate a reorganization of her partitioning of all 

the cake into distributing the partitioning to each cake. For instance, I pointed out that 

each person got a different number of pieces and asked her if there was a way to share the 

cakes so that everybody received the same number of pieces. I also asked her to imagine 

each cake being at two different corners in the room. These questions seemed to confuse 

her more, so I asked her to show what she meant by combining the cakes and making the 

peace sign. Morgan combined the two playdoh cake models together to demonstrate 

making a circle and putting a peace sign in the circle as shown in Figure 4.3, which 

corroborated my model of Morgan’s earlier partitioning activity as demonstrated in 

Figure 4.2. However, Morgan acknowledged that it did not work when she couldn’t put 

the cakes together. 
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The witness then intervened and asked how much of the smaller pieces that she 

took off from each cake was of one cake. To clarify the question, the witness took the 

pieces apart in Figure 4.3 and pointed to the smaller piece and asked what fraction that 

was in reference to one cake. The following excerpt starts with Morgan’s response to the 

witness’s question. In the following and subsequent excerpts from Morgan’s initial 

interview, I, M, and W each refer to the interviewer, Morgan, and the witness, 

respectively. 

Excerpt 4.2. Morgan finds the fractional amount of the smaller piece in reference 

to one cake. 

M:  That’s a sixth of the cake.  

I:  This is a sixth of…? 

M:  [Points to all the pieces on her plate, taps on the cake 6 times as 

demonstrated by the red arrows in Figure 4.4]. Yeah. 

 

 
 

Figure 4.4. Morgan’s tapping on the cake pieces six times. 

 
Figure 4.5. The three piles of equal sharings Morgan produced. 

[Continuation] 

I:  Okay. 

M:  So… If I put that in half and put that in half, they’ll each have two pieces, 

right? [cuts the two bigger pieces into half with her butter knife.] Then, 
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that can get two, that can get two, and that gets two. [Separates her pieces 

into three piles as shown in Figure 4.5 and smiles.] 

I:  That was really good. Okay, so you’re saying that this is one person’s 

share, right? [Points to one of the piles.] 

M:  Mm-hmm. 

I:  So, what fraction is one person’s share out of all of the cake? 

M:  A third. 

I:  One-third?  

M:  Yes.  

I:  Okay, then do you remember how we had two separate cakes at the 

beginning? What amount would this cake [referring to one pile of pieces] 

be out of one of those cakes?  

M:  Half? Or… [Pauses for approximately 5 seconds looking into the air, then 

touches the pieces with her hand for another 9 seconds.] Well, a little bit 

more than a half of the cake, I guess. But I don’t know how that would 

work if I combined them. 

Because Morgan explained that one small piece of the cake was one-sixth of all 

the cake and the way she tapped on the cake pieces as shown in Figure 4.4, again, it was 

possible that Morgan had already mentally partitioned each cake into three pieces when 

producing the pieces as she did in Figure 4.1. However, based on several indicators other 

than the ones I already noted before, I inferred that the witness’s question in asking 

Morgan the fractional amount of one small piece triggered a distribution of the 

partitioning into each cake after she has made the cuts of the cake as shown in Figure 4.1. 

The first thing that led to such hypothesis was that, although the witness asked the 

fractional amount of the small piece in comparison to one cake, Morgan replied that it 

was one-sixth of all the cake. As such, after making the cuts, which produced six equal 

pieces, Morgan noticed that one small piece was one out of six pieces in total. Further, 

even though she partitioned each remaining pieces into halves, it did not seem like she 

reflected on the result of that partitioning. Therefore, it was likely that Morgan was not 

aware that her second set of partitioning [halving the two bigger pieces] resulted in 

partitioning each cake into three pieces each. Rather than the partitioning being 
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anticipatory, the pieces were produced after carrying out cutting the cakes multiple times, 

likely using a halving strategy.  

According to Piaget et al. (1960), the halving strategy is an intuitive partitioning 

strategy children use when asked to divide continuous units without necessarily 

anticipating the result of the halving. Secondly, Morgan said that one person’s share in 

comparison to one cake would be a little more than a half of the cake. This corroborates 

my hypothesis that Morgan was not aware that the result of her partitioning resulted in 

partitioning each cake into three pieces. This also indicated that now Morgan considered 

that the pieces she produced were equal amounts, but the pieces were not identical 

numerical parts in that one of them could be iterated thrice to constitute a cake partitioned 

into three equal parts. If the pieces were identical numerical parts as was Kaylee’s, there 

has to be a unitizing of the pieces into abstract units which would have allowed Morgan 

to operate mentally on the cakes. Further, the pieces would have been treated as 

indistinguishable in that any one of the three parts of a cake could be used in iteration to 

reconstitute the whole cake. However, these elements in Morgan’s reasoning were not 

observable. Therefore, although prompted by the witness’s question, in the moment, 

Morgan carried out distribution of the partitioning, it is difficult to attribute this activity 

as an independent and anticipatory distribution of partitioning.  

Sharing three cakes of same size and flavor. 

The witness suggested a new situation in which we asked Morgan to share three 

cakes equally among four people. After I showed her three cake models that we assumed 

were the same size and flavor, the witness asked Morgan to give one cake to each of the 

three researchers in the room. After Morgan passed out one cake to each of us, the 
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witness asked her to share the three cakes equally among the four people (the three 

researchers and Morgan) in the room.  

Morgan put the cakes back onto the plate in front of her and stared at the cakes for 

approximately 17 seconds. Then, she picked up the butter knife and cut each cake into 

four pieces as I modeled in Figure 4.6. The pink figures represent the three cakes and the 

black dashed line segments represent the cut she made with the butter knife.  

 

 

 

 

 

Figure 4.6. Diagram modeling Morgan’s partitioning of each of the three cakes. 

Starting with one of the cakes cut into four pieces, Morgan placed one piece from 

the cake in front of each person, saying “if I give you one, then I give you one, him one, 

and I get one.” She repeated the distribution of the pieces for the remaining two cakes, 

one cake at a time and grinned as if she realized how to share the three cakes equally 

among four people successfully. Curious to know how she would explain her sharing 

process, I asked Morgan to explain how she cut the cake. The following excerpt starts 

with Morgan’s response to that question.  

Excerpt 4.3. Morgan explains how she shared the three cakes equally among four 

people. 

M:  I cut them into one fourths to where we can each get a fourth of each cake. 

I:  Cool. Okay, so this is your share, right? [Points to M’s share in front of 

her.] So, what fraction of all of the cake we started would this share be?  

M:  Umm.. [looks up in the air, looks back down at the cake for about five 

seconds], One fourth, right? Yeah… [Moves finger in the air as if pointing 

to each person.] 
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I:  One fourth? Why do you think it’s one fourth?  

M:  Because I have three out of the 12 and then I simplified that, so I got one 

fourth. 

W:  How much fraction is that out of one cake? How much of one cake is that? 

M:  Three fourths. 

I:  That was really fast. How did you know? 

M:  Well, there were four sections in one cake, and so I had three, so I just put 

three-fourths. 

The relatively long pause of 17 seconds and Morgan’s intent staring at the cake 

models suggest that Morgan could have been partitioning the cakes figuratively in a trial 

and error manner. It is likely that this trial and error was carried out using her halving 

strategy repeatedly. Her execution of the physical distribution of each piece one at a time 

and her satisfactory smile at the end of her activity also suggest that the partitioning of 

the three cakes was a novel task to Morgan. Further, the distribution of the pieces was in 

contrast to that of Kaylee.  

In Kaylee’s case, when sharing two cakes equally among three people, after 

(mentally) partitioning each cake into three pieces each, Kaylee said she would give each 

person two pieces each, which indicated that she regarded the pieces as identical. On the 

other hand, Morgan went through each cake one at a time, instead of distributing three 

pieces from one cake to one person as Kaylee explained she would with the two cakes. 

This corroborated my earlier hypothesis that Morgan’s pieces of the partitioned cake 

were equal in size but not yet constructed as identical abstracted numerical units. 

However, different from the earlier case of sharing two cakes, in reflecting on her activity, 

Morgan was aware that she had cut each cake into fourths and that each person would get 

a fourth of each cake. Further, Morgan knew that her share was one-fourth of all the cake 

and three-fourths of one cake. Morgan’s ability to reflect on her partitioning activity, 
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switch her focus from the composite unit of all the cake to a unit of one cake, and to 

coordinate those units demonstrated progress from the previous problem.  

Based on the way Morgan was able to successfully engage in a distributive 

sharing activity of three cakes to four people, as she carried them out in activity, one 

could say that her distributive partitioning operations were latent. In other words, it is 

possible that she had constructed such operations but did not have the opportunity to 

organize it in a way that the result of the partitioning would allow her to share the cakes 

equally among a certain number of people that was different from the number of cakes. 

However, it seems important to note that this particular context of sharing three cakes 

among four people was more suited to her halving strategy. That is, halving each cake 

repeatedly was conducive to her goal of sharing it among four people. Therefore, it is 

likely that in this particular context, using her halving strategy, Morgan enacted a 

distributive sharing activity on the model cakes and, as a result, a distributive partitioning 

scheme emerged. Although she was now aware that her partitioning produced a fourth of 

one cake and the fractional amount of one person’s share in relation to all the cake and 

one cake respectively, I did not have enough evidence to claim that she had constructed a 

distributive partitioning scheme that could be used across various distributive situations.  

Sharing two cakes of different size and flavor. 

Next, I placed two cake models of different size and color that represented 

different flavors. After covering the two cakes with the handkerchief, I asked Morgan to 

share the two cakes equally among three people. Morgan sat looking at the handkerchief 

for approximately five seconds and said “I would cut them up into six pieces then y’all 
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can get two pieces of each cake.” The witness asked Morgan if there was a way to make a 

smaller number of cuts. Morgan responded, 

“I could just cut them into three, instead of putting the slice in the half. If I was 

going vertically instead of like the peace sign and so instead of doing that I could 

just do it vertically and hope that they’re all the same amount.”  

By the way Morgan referred to the peace sign and “putting the slice in half,” it 

seemed as though her first response of cutting each cake into six pieces rooted from her 

recalling the way she shared the two cakes of equal size among three people. That is, she 

remembered producing six pieces in total from halving the cuts she had made based on 

her peace sign strategy. Nonetheless, partitioning each cake into an equal number of 

pieces that would allow her to achieve her goal of sharing the cakes equally among three 

people was enacted. When redirected to make a smaller number of cuts, without much 

hesitation, Morgan said that she could cut each cake vertically into three pieces, which 

suggested that Morgan used her distributive partitioning operations in assimilation. I 

asked Morgan to demonstrate her new idea of cutting each cake into three pieces and 

Morgan produced a partition of each cake as shown in Figure 4.7.  

 

Figure 4.7. Morgan’s cuts of each of two cakes of different size and flavor into three 

equal pieces. 

Next, I asked Morgan what the witness’s share would be, to which she responded 

by distributing one piece from each of the cake in front of the three researchers in the 
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room. Instead of showing what just the witness’s share would be, Morgan distributed all 

of the pieces exhausting all of the cake. After Morgan distributed all the cake, I asked her 

what amount of all the cake my share would be. Morgan first counted the number of 

pieces and simplified two out of six pieces to one-third. When asked to explain 

differently, Morgan said that one person’s share would consist of one-third of all the cake 

because “if there’s three people and you want to split it evenly and so you each want to 

get one of the third.” Although Morgan was aware that each person had the same amount 

of cake from each cake, she did not consider the unequal sizes of the pieces that each 

person had, by the way she simplified two out of six to one-third. Moreover, different 

from Kaylee, Morgan’s justification of one person’s share being one-third of all the cake 

did not entail iterating one person’s share to make all of the cake. Therefore, although she 

could produce a three levels of units structure, it did not seem as if she could use it as 

input for further reasoning.   

Based on her engagement in the cake sharing tasks, I inferred that Morgan had 

constructed distributive partitioning operations as she engaged in the activity of sharing 

the cakes and pseudo-empirical abstractions (von Glasersfeld, 1991) of the activity led to 

an emergence of a distributive partitioning scheme in the particular context of sharing 

three cakes equally among four people. In the cake sharing tasks, the involvement of the 

witness and interviewer seemed to have triggered reorganizations of her reasoning. 

Further, I did not observe other indicative activities to impute a generalized scheme that 

involved a sequence of situations where she made an independent use of the distributive 

partitioning scheme. Therefore, I could not infer that she constructed a distributive 

partitioning scheme that she could use in assimilation across various situations.  
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Recursive Partitioning 

The task in Appendix A, Part I, Item 2 was presented to Morgan in a similar 

fashion as how it was presented to Kaylee in her initial interview. After Morgan closed 

her eyes and was asked to make the first cut of the candy when sharing equally among 

three people, I prompted her to show me the first cut on the candy model. Morgan sat for 

approximately 14 seconds and said she would just cut in the middle but then changed her 

mind after confirming that she had to share the strip of candy among three people. 

Morgan placed her finger on the candy strip as shown in Figure 4.8. Morgan’s placement 

of her finger did not quite amount up to one-third of the strip of candy from my 

perspective.  

 

Figure 4.8. Morgan marks one person’s share when sharing the candy equally among 

three people. 

Then, Morgan asked if she had to make only one cut. When referring to “cut” I 

intended to mean to make one person’s share. However, in retrospect, my use of the word 

“cut” led her to think of having to make all three pieces with only one cut. This issue was 

later caught and cleared by one of the witnesses in the room. Before this was clarified, 

Morgan tried to fold the candy and find a way to make one cut to produce three pieces of 

the candy at the same time. It is likely that Morgan got distracted from trying to produce 

the pieces with only one physical cut of the candy at the beginning of the task, which may 

have led to the long pauses in her cutting activity.  
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Assuming she had one person’s share in her mind, I proceeded to ask her to 

imagine sharing that one person’s piece equally among five people and asked Morgan 

what fraction the mini-piece [second-level share] would be out of the entire candy. 

Morgan responded that it would be “just one-fifth.” After I asked her to explain why it 

was one-fifth and asked her to make the cuts, one of the witnesses in the room finally 

realized that Morgan and I were talking past each other and that the situation was not 

made clear for Morgan. The following excerpt starts with the witness clarifying the 

question of making one “cut” and how Morgan found the fractional amount of the mini-

piece in relation to the entire strip of candy. In the following excerpt, CP refers to the 

witness who also acted as the cameraperson to distinguish him from the other witness.  

Excerpt 4.4. Morgan finds the fractional amount of the mini-piece of candy in 

relation to the entire strip of candy. 

CP:  So, you don’t necessarily need to make everybody’s pieces. Just one 

person’s piece. 

M:  Oh, just one person’s piece! Okay. [Cuts off one person’s share.]  

I:  Alright, so... Okay, and then from this piece, I asked you to share this 

equally among five people, right? 

M:  This right here? Okay. [Folds the candy into half, again into half, and 

again into half…and pinches the folds, while looking carefully at the 

candy, as if she’s trying to count the pieces made out of the folds.] 

W:  Why don’t you just make a cut without folding? Just make an estimate. 

Just make a cut. 

M:  [Opens the candy up and makes one cut as shown in Figure 4.9, 

comparable to what I viewed to be one-fifth of the candy.] 

 
Figure 4.9. Morgan cuts off a piece and then a mini-piece from the candy strip. 
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[Continued.] 

W:  So, that’s going to be one out of five, right?  

I:  So, this is going to be one out of the… 

M:  The five, yeah. 

I:  So, my question was, what fraction would this be [pointing to the smallest 

piece]? 

M:  Out of the entire thing? [points to each piece on the table referring to the 

entire candy.] 

I:  Yes, out of the entire thing. 

M:  Okay, [after approximately four seconds looking at the candy] one-

fifteenth. 

I:  How did you get that? 

M:  Because, [puts the left-over from the one-third (the four-fifths of the one-

third) piece next to the leftover candy] so, if I made these all into three, 

then I have one out of the three, and then I cut up to five [uses hand as if 

she’s cutting the one-third piece into five pieces], so five times three 

equals fifteen, and this is only one out of that 15.   

I:  What did you mean by 5 times 3? 

M:  Well, there are five sections in each thing. So, I would just add up all fives 

together to get fifteen. 

In the end of Excerpt 4.4, Morgan demonstrated distributing the partitioning that 

produced one of the three pieces into the entire strip of candy and then the partitioning 

that produced one of the five pieces into each three pieces. Finally, she coordinated the 

units in activity in order to find fifteen pieces in total. However, Morgan’s explanation 

seemed different from Kaylee’s in some notable ways.  

When solving the same task, Kaylee abstracted the fractional amounts from each 

of the pieces she produced based on her understanding of the inverse relation between the 

size of a share in comparison to the number of people sharing (e.g., one-third of the cake 

is equivalent to sharing the cake equally among three people). Then, Kaylee also 

established that the mini-piece was one-fifth of one-third, enacting her unit fraction 

composition scheme. As such, Kaylee’s one-fifteenth was mentally constructed using her 

recursive partitioning and multiplicative units coordinating schemes in assimilation.  
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On the other hand, in Morgan’s case, even after the witness and interviewer 

directed her attention to the mini-piece being one out of five of the middle-sized piece 

[the one cut off as one-third of the entire candy], Morgan mentally produced all pieces by 

distributing the partitioning that engendered each piece to the remaining of the strip, one 

at a time. First, she distributed the partition that produced the middle-sized piece to the 

remaining of the entire candy, resulting in three units. Then, Morgan distributed the 

partition that produced the one out of five pieces to each middle-sized piece. Each of 

these three units containing the five units were progressively integrated, demonstrated by 

her comment “I would just add up all fives together to get fifteen.” her referring to the 

mini-piece as one out of five and the one-third piece as one out of three suggests a 

partitive fractional scheme,  

Although subtle, the difference between Kaylee’s and Morgan’s reasoning about 

the one-fifteenth seems to be in the ability to hold the three levels of units structure as 

given. Kaylee’s one-fifteenth was embedded in a structure of a unit containing three units, 

each of which contained five units. The activities that Morgan demonstrated to carry out 

sequentially seemed to be enacted in one fell swoop by Kaylee. Morgan’s one-fifteenth 

was obtained as one out of fifteen equal sized pieces produced through partitioning the 

candy pieces recursively one at a time. Therefore, based on her observable activities, at 

best I could only infer that Morgan was able to recursively partition the candy in activity. 

Further, Morgan’s reflection of the result of the partitioning did not seem to entail an 

interiorized three levels of units structure.  
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Splitting 

Placing a wax string in front of her, I first asked Morgan to make her string when 

the given string—my string—was five times as long as her string. At first, Morgan asked 

if she could add more string to my string. I told Morgan that she could use any of the 

material, placing a pile of wax strings in front of her. Morgan then wanted to clarify the 

question again. Touching my string, she asked “so this is yours, right?” I confirmed that 

the string she was given was my string and repeated that my string was five times as long 

as her string. Morgan then asked if she could make my string smaller, to which I 

responded that she could use mine to find hers. As such, it seemed as if Morgan first 

thought about making my string longer but after I repeated the question, she became 

aware that her string had to be shorter than mine. After moving her right index finger 

along my string, Morgan placed her finger as shown in Figure 4.10. Then, pointing to the 

part with her other hand, she said “mine’s that long.”   

 

Figure 4.10. Morgan marks on interviewer’s string how long her string is. 

When asked to explain why she made her estimation of the length of her string 

where she did, at first, Morgan made a general comparison that her string had to be 

shorter than mine. When further questioned how she would check if my string was really 

five times longer than hers, Morgan explained how she would “measure [her string] out.” 
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Morgan moved her finger as if she was making a mark where the first mark was (Figure 

4.10) and moved her hand to her left along the string once as if she was copying the part 

she marked. However, she did not mention pulling the piece out or specify how many 

times she would copy it to check if it was a good estimation. It seemed as though Morgan 

was focused on copying the length of her estimation rather than focused on the number of 

units in relation to the size of the parts and the whole.  

When the witness asked her how much of my given string was of her string, 

Morgan replied, “Five. Like, there would be five of mine” as she moved the tip of a 

marker along the string as if she was iterating her piece five times. Further, when the 

witness asked Morgan what fraction her string was of mine, she replied it was one-fifth. 

As such, after the witness asked Morgan questions that required her to specifically 

account the inverse relation between the partitioning and iterating, Morgan acknowledged 

that there were five of her strings in my string and that her string was one-fifth of my 

string. Therefore, it is difficult to impute an independent construction of a splitting 

scheme to Morgan. At best, I could infer that Morgan has engaged in splitting after she 

partitioned the string into five equal pieces and after she was specifically asked to think 

about the relation between the partitioning and iterating.  

Summary of Morgan’s Initial Interview 

As discussed in the analysis of Morgan’s initial interview, in many events of the 

initial interview, Morgan seemed to reflect on the result of her activities after carrying 

them out and being redirected or prompted by the interviewer or witness. For instance, 

when sharing two same sized and flavored cakes equally among three people, not until 

the witness asked the fraction of one small piece out of one cake did she further partition 
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each remaining pieces into halves. Morgan then acknowledged that she produced six 

pieces in total but she did not seem to be aware that the further halving activity resulted 

in partitioning each cake into three pieces. In other words, Morgan did not demonstrate 

observable activities to impute an independent and anticipatory distribution of 

partitioning to each cake. Then, when redirected by the witness to a context more 

appropriate for using her halving strategy, Morgan reflected on her partitioning activity 

and reasoned about the amount of one person’s share in relation to one cake and all the 

cake, respectively. Similarly, in the splitting task, not until after the witness asked 

Morgan questions that required her to specifically account for the inverse relation 

between the partitioning did she acknowledge that there were five of her strings in my 

string and that her string was one-fifth of my string.  

As demonstrated in the report of Morgan’s activities and my analysis, Morgan’s 

interactions with the interviewer or witness were implicated in her continuation of her 

activities in her initial interview. Therefore, it is difficult to claim that Morgan solved the 

tasks independently. Nonetheless, Morgan demonstrated enactments of several operations 

when her attention was redirected by the interviewer or witness. More specifically, in the 

cake sharing tasks, when given the context of sharing three cakes equally among four 

people, Morgan demonstrated using distributive partitioning operations and successfully 

partitioned each cake into fourths, likely using her halving strategy. Also, in the recursive 

partitioning task, she seemed to enact recursive partitioning operations to find how many 

mini-pieces in total would fit into the entire candy. In that process, Morgan used her 

whole number multiplication, although the result of the units coordination seemed more 

additive than multiplicative in that the composite units of five were sequentially added 
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through progressive integration. Finally, in the splitting task, she seemed to enact the 

splitting operation. However, although these operations were carried out in activity, the 

reflection of the results of the operations was not strong enough to impute an independent 

construction of schemes to Morgan.  

In addition, Morgan’s observable activities suggested that the pieces produced 

from partitioning were of equal size but not necessarily identical unit items that were 

abstracted from the objects representing the pieces. For instance, when sharing cakes of 

same size and flavor, Morgan consistently carried out the physical activity of distributing 

one piece from each cake, one at a time. This contrasted with Kaylee’s distribution in that 

Kaylee said she would distribute two pieces each to each person. As such, for Kaylee, the 

cakes were indistinguishable and the pieces were abstracted unit items that could be 

replaced by any one of them and iterated so many times to produce one whole cake; it did 

not matter which cake the piece originated from. On the other hand, for Morgan, the cake 

pieces were equal in size but the material of the pieces were different—they originated 

from different cakes. This is why it may have been difficult for Morgan to posit two 

pieces into one cake when finding the fractional amount of one person’s share in relation 

to one cake when sharing two cakes equally among three people; Morgan thought it 

would be a little more than a half.  

Another example is in her recursive partitioning. Although she was aware of the 

one-third pieces being of the same size, the way she explained inserting five units into 

each third piece, one at a time, suggested that each of the five units that were projected 

into the one-third units were progressively integrated, likely because each one-third piece 

was not identical—they were different pieces of paper strips. Therefore, although her 
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activity of putting these three strips each of which contained five strips together produced 

a three levels of units structure, the result of her recursive partitioning did not entail an 

interiorized structure of three levels of units constituted by abstract unit items. Therefore, 

from the analysis of the initial interview sessions with Morgan, I inferred that Morgan 

operated as if she could utilize the operations that produce three levels of units in activity 

but not coordinate three levels of units as given.  

Craig’s Initial Interview 

I conducted Craig’s initial interview over two sessions, one on September 5 and 

the second on September 15, 2014. Similar to Morgan’s initial interview, Craig’s initial 

interview often consisted of him carrying out sensory-motor activities in solving the tasks. 

In the following sections, I will discuss Craig’s engagement in each task and present my 

analysis of his partitioning schemes and levels of units coordination.  

Equi-partitioning Task 

When I asked Craig to mark off one person’s share when sharing the piece of wax 

string placed in front of him equally among five people, Craig placed his hand on the wax 

string as shown in Figure 4.11 (a). He explained that he wanted to use his fingers “to 

measure it out” and marked with a pen where his little finger ended, indicated by the red 

dashed arrow in Figure 4.11(a). But after making the mark and taking his hand off of the 

string, he said that his mark was too small and that the share was probably for more 

people. In other words, he evaluated that the share was not a fair share because it was too 

small. So, Craig tried again, using his fingers as a template, as shown in Figure 4.11 (b), 

saying that he wanted to “make it like five rulers.” This indicated that Craig was using his 

number concept, five, as a partitioning template. As shown in Figure 4.11, it seemed as 
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though Craig’s four fingers indicated the places to mark and the space in between his four 

fingers and outside of his index finger and little finger were the segments. However, the 

amount he would need to spread out his fingers to make fair shares did not seem to be 

well coordinated yet.   

    
                                 (a)                                                              (b) 

Figure 4.11. Craig marking off one person’s share on the wax string using his fingers as a 

template for partitioning. 

Because the mark he made earlier was still on the string, I rolled the wax string 

over so that he could start with the side of the string with no marks on it. He looked at the 

string and without placing his hand over the string again, Craig made a new mark as 

shown in Figure 4.12.  

 

Figure 4.12. Craig’s second mark of one person’s share on the wax string. 

The red arrow in Figure 4.12 points to where Craig made the mark on the string 

and the dashed segments are copies of the length of the part along the wax string. As 
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shown in Figure 4.12, his estimation marked a little less than one-fourth the length of the 

entire string.  

When I asked Craig how he would check if the marked piece was a fair share, 

Craig used his thumb and index finger as if he were to hold the length of the part and 

moved it along the string four times. There was a little bit of wax string left in the end. 

Next, Craig said that the mark “would probably be in between the first mark and the most 

recent mark I made.” As such, Craig iterated the part he marked off and evaluated how to 

adjust his mark to make it a fair share. Although he did not explicitly say he would pull 

out the part and iterate the part four more times to check if it fit in the original string five 

times, by the way he marked a hypothetical piece with his fingers, and the way he said 

that the mark should be in the middle of his first mark and the second mark after he 

counted four times and a little bit left, I inferred that Craig intended to find whether his 

mark would fit five times into the original string.  

Moreover, by the way Craig used his fingers as a template of five to project onto 

the string, it was apparent that his goal was to partition the string into five equal parts. 

Therefore, from his observable activities, I inferred Craig to have enacted an equi-

partitioning scheme. This suggested that the unit [entire wax string] contained five units 

[five iterations of the marked part] and that Craig has interiorized two levels of units in 

operating.  

Additive Units Coordination Task 

After laying two pieces of pipe cleaner strings on the table as shown in Figure 

4.13, I explained that the yellow string and the purple string were each 14 cm and 29 cm 
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long, respectively. Then, I asked Craig how much more string was needed to make the 

yellow string as long as the purple string. 

 

Figure 4.13. Two pipe cleaner strings on the table. 

After clarifying what the measures were, Craig said that 14 and a half centimeters 

was needed. Craig explained,  

“I was thinking fourteen, I saw two lines and I assumed that you wanted to equal 

them. So I thought okay, fourteen, we double the amount, twenty-eight. And you 

said twenty-nine, so I realized I’ll have to add another half of a number. So 

fourteen and a half times two would be twenty-nine.”  

Craig’s reasoning of doubling the length of fourteen units of 1 cm [the shorter 

string] suggested that Craig has constructed iterable composite units. Because it seemed 

as though Craig did not understand the question I asked him, I presented the question 

again and asked him to explain what he envisioned when looking at the string. Craig 

explained that he envisioned two railroad tracks and wanted to make them even. After 

repeating the question and telling him that the purple “track” could not be adjusted and 

that we wanted to know how much more yellow “track” we needed, Craig sat looking 

down onto the table for approximately 25 seconds. He then replied “fifteen centimeters 

long string.” I asked Craig how he found 15 centimeters and he explained, “Because 

fourteen plus fifteen is twenty-nine, so that’s how much more centimeters of string you 

would need.”  
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I wanted to further explore how he found the additional amount of string needed 

especially because of the relatively long duration of thinking that seemed to be involved 

in coming to his answer. However, because we have been talking about the two strings 

for a while, and Craig seemed to have become a little impatient with talking about this 

question for a while, I moved on to the next question first. I was aware from the planning 

of the interview that I would be able to visit a similar situation with smaller numbers 

involved.   

So, I cut off some amount of string off of each string as shown in Figure 4.14 and 

told Craig that we no longer knew the lengths of each string. Then, I asked Craig how 

many times the yellow string was needed to measure the purple string. Looking at the 

pipe cleaners, Craig estimated that the purple string was two and a half or three times as 

long as the yellow string. When I asked him to explain why, Craig said that he pictured 

moving the yellow string along the purple string and demonstrated his activity, which 

indicated that he has iterated the yellow string along the purple string mentally, which 

turned out to be close to be three times. 

 

Figure 4.14. The two pipe cleaner string after I cut some amount of each of them. 

Then I suggested that we assume the yellow string is 7cm long and the purple 

string is 24 cm long, and asked Craig how much more string I would need in order to 

make the yellow string as long as the purple one. Craig recognized this situation to be 
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similar to the previous question with the 29 cm and 14 cm long strings and replied “seven 

plus seventeen…No, seventeen. I subtracted twenty-four with seven.” When I asked him 

why he subtracted four from twenty-four, Craig said that he guessed seventeen first and 

then he subtracted seventeen from twenty-four to check. This indicated that the 7 and 17 

were each unitized units within the 24 and indicated his enactment of disembedding 

operations. The seventeen and seven units were each posited within the twenty-four, 

producing two levels of units. From this task, I observed Craig’s activities that indicated 

the construction of the disembedding and iterating operations and iterable composite 

units. These constructions suggested that Craig could reason with two levels of units as 

given, at the least. 

Recursive Partitioning Task 

Based on the way Craig engaged in the equipartitoining and units coordinating 

tasks, I was confident that Craig has constructed two levels of units as given. The next 

step was to test whether Craig could reason with three levels of units as given. So, I next 

presented the recursive partitioning task (Appendix A, Part II, Item 5). With the paper 

strip representing the candy covered, I asked Craig to imagine making the first cut for one 

person’s share. Without any prompting, Craig said “cut it into a third and then a third, 

and you’ll have three pieces” as if he was thinking out loud. Keeping the paper strip 

covered, I asked Craig to imagine making the share for one of the five people, to which 

he replied “I still have a third, I’m thinking. So, it’s a fifth of a third.” When I asked 

Craig what amount the mini-piece would be out of all the candy, he looked straight into 

space for approximately four seconds, and replied “one-fifteenth?” His verbalization of 

what he was envisioning and his composition of the sharing as “a fifth of a third” and 
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evaluation of the size “one-fifteenth” suggested that Craig was aware of the fractional 

amount of each part produced by each partitioning and enacted his unit fraction 

composition scheme. Craig’s engagement in the task so far seemed very similar to 

Kaylee’s especially in that he could engage in the task mentally, as the candy was 

covered the entire time.  

To further explore how Craig obtained one-fifteenth, I asked Craig to explain 

what he was thinking when he was staring straight ahead. Craig said he was picturing the 

third and then the third into fifths and then said “Its’ a third and a fifth so I tried to do one 

over three and then times one over five and getting the even denominators, I got fifteen, 

and one times one is one, so I got [one-fifteenth].” Although Craig evaluated the 

fractional amount of each part produced by each partitioning and said he pictured the 

third into fifths, Craig’s explanation only revealed the calculations he used to find one-

fifteenth. Therefore, I wanted to see if his one-fifteenth was constructed as a reversible 

multiplicative relationship between the length of the mini-part and the entire strip of 

paper. More specifically, I wanted to know if Craig was aware of how many of the mini-

pieces would fit in the entire strip of candy as a result of distributing his partitioning. So, 

I uncovered the strip of candy and asked Craig to demonstrate his understanding of the 

situation.  

First, Craig placed two of his index fingers on the paper strip as shown in Figure 

4.15 (a), saying “cut into thirds.” Then moving his index fingers further into the middle 

of the paper strip as shown in Figure 4.15 (b), he said “and then fifths” suggesting that he 

has partitioned the middle one-third part into fifths.  
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                              (a)                                                                   (b) 

Figure 4.15. Craig cutting the paper strip into thirds. 

Then he asked me to clarify what I wanted him to show. So, I repeated his 

explanation of how he calculated one third of one fifth earlier and asked him how he 

knew that the mini-part was actually one-fifteenth out of the entire strip. In rewording my 

question, I asked “Do you think you can explain why you think this piece would be one-

fifteenth out of the whole thing without using those calculations?” My intention in asking 

this question was to see if Craig could justify why the mini-part had to be one-fifteenth of 

the entire strip by coordinating the units multiplicatively. Craig replied that it was one-

fifteenth because it was a “very small piece.” So, I questioned him what if I said the piece 

was one-twentieth. This was to push Craig further to be more specific in explaining why 

the piece had to be one-fifteenth rather than relying on its “very small” size. Craig said 

that because he divided it into fifths from the thirds and a fifth of a third was very small, 

but that he did not know if he could explain it “without the math.” In retrospect, asking 

Craig not to use calculations may have confused him and prevented him from explicitly 

demonstrating his units-coordinating operations.  

So far, I inferred that Craig has established the goal of finding the size of the 

mini-part in relation to the size of the whole strip through positing the partial results of 

the two partitions. Also, Craig demonstrated the ability to take one of the thirds and 

partition it further into a fifth of a third mentally; thus, partitioning the partitions. 
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However, in explaining how he found one-fifteenth as his answer, Craig seemed to rely 

on the numerical calculations of one-fifth of one-third as he learned in school, conflating 

some of the language such as common denominator. Craig also demonstrated gauging the 

size of the pieces spatially in relation to the entire strip (e.g., “very small”) rather than 

coordinating the units multiplicatively. It was apparent from his earlier thinking out loud 

that Craig was aware of “three pieces” in total when making the first-level share, as he 

said “cut it into a third and then a third, and you’ll have three pieces.” However, Craig 

did not explicitly demonstrate the distribution of the partitioning that produced the one-

fifth across each one-third part. Craig’s answer of one-fifteenth was more likely derived 

from taking the fifth of a third relationship and applying an arithmetic procedure he 

learned in school. As such, I took it to be that Craig did not take the partitions of three 

units as input to further partition each piece into five parts to produce fifteen pieces in 

total. Further, his one-fifteenth was not established as a multiplicative relationship (i.e., if 

the mini-piece is one-fifteenth of the entire candy, then fifteen copies of the piece should 

make a strip equal in length to the original candy), indicating that his units-coordinating 

scheme did not serve as an assimilating scheme for constructing a recursive partitioning 

scheme.  

Because the time given for the interview on the first day ended, we re-visited the 

recursive partitioning task on the second day of his initial interview, after the splitting 

task. I will discuss the second part of the recursive partitioning task after the splitting task 

to maintain the chronological order of Craig’s engagement in the initial interview.  
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Splitting Task 

I started the second session of Craig’s initial interview with the splitting task. 

After placing a piece of wax string (his string) on the table and explaining that his string 

was five times as long as my string, I asked Craig to tell me how long my string was. 

Approximately seven seconds later, Craig said that my string was “a fifth as long as mine” 

indicating that he established the inverse multiplicative relationship of the length of my 

string with the length of his string prior to enacting partitioning activities. Then I asked 

Craig to make my candy, placing a pile of wax string on the table. Craig picked up a new 

piece of wax string, bent it into half, put it against his wax string (Figure 4.16 (a)), and 

made it a little shorter (Figure 4.16 (b)). 

    
                                           (a)                                                     (b) 

Figure 4.16. Craig making my string. 

Then, Craig placed the piece next to his string and said that my string “would be 

this long.” As demonstrated by the dashed line segments, which are iterations of the 

length of his estimate in Figure 4.16 (b), his estimation was pretty close to a fifth of his 

string. These observations suggested that the partitioning of his string was likely carried 

out mentally prior to the sensory-motor activity in conjunction with the iteration of the 

hypothetical segment (Steffe & Olive, 2010). When I asked Craig how he would check if 

that was really my string, he marked the end of my string with his right index finger 
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(Figure 4.17 (a)), then keeping his index finger fixed, Craig moved my assumed string on 

the other side of his index finger (Figure 4.17 (b)). He repeated this iteration once more 

(demonstrated by the white dashed line segments in Figure 4.17 (b)), which brought him 

to the end of his string, at which point, he said “Three. So, it should be a bit smaller then.” 

   
                                   (a)                                                            (b) 

Figure 4.17. Craig checking his estimate. 

Craig adjusted the length of my string to make it shorter and repeated what he did 

earlier, which resulted in four iterations. Then, Craig said “maybe a bit more smaller,” 

readjusted the string to be shorter, and repeated the same activity. After iterating the new 

estimated hypothetical piece five times, he said “just matching up that way, this is how 

long I would say your chocolate licorice [interviewer’s wax string] is.” Although Craig 

did not explicitly count five, the way he immediately knew when to adjust or to conclude 

his estimation led me to infer that he was finding the length of the hypothetical piece of 

my string that would fit five times in his string. As demonstrated by the white dashed line 

segments in Figure 4.17 (b), Craig’s estimation was a little off in that the width of his 

index finger made a gap in between the iterations in contrast to placing the iterations with 

the ends adjoined. As such, the physical execution of the activity was misleading but it 

was clear that Craig intended to make the iterations to find if the hypothetical string 
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would fit five times into his string. Further, he established that my string was a fifth as 

long as his string as a result of his splitting operation. For this reason, along with his very 

close estimation of my string on his first attempt, I inferred that Craig operated as if he 

had constructed a splitting scheme available in reasoning. 

Recursive Partitioning Task Revisited 

With the candy covered the entire time, Craig and I walked through the sharing 

situation again until Craig had the mini-part [second-level share] from the candy in his 

mind. When I asked Craig what fraction that mini-part was from the entire candy, Craig 

verbally expressed his thought process: “the strip, and then three pieces, two cuts into the 

first strip so there’s three equal pieces, then three cuts into the second strip, which creates 

five pieces, I take one of those pieces.” His explanation of his image of the sharing was 

consistent with that on the first day working on this task, with the exception of conflating 

the number of cuts—three—to produce the five pieces.  

After looking down at the cover for approximately 10 seconds, he asked if I was 

asking for a fraction and again looked down at the cover for approximately 10 seconds. 

Because I thought his staring at the cover indicated that he might need the material to 

further his operating, I uncovered the strip of paper and asked Craig if the situation was 

clear to him. He explained that “I come back to this impasse of a fifth of a third. Because 

that seems to be the correct answer to me.” I asked Craig how much a fifth of a third was 

and Craig said “a very small amount. Maybe this big,” making a mark on the strip using 

his two index fingers, as shown in Figure 4.18.  
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Figure 4.18. Craig marks one mini-part in the paper strip. 

I repeated again, asking Craig what fraction the part he marked off was of all the 

candy. After staring at the strip with his index fingers still fixed for approximately seven 

seconds, Craig murmured “I can try this again definitely.” Next, after staring at his index 

fingers still fixed for approximately ten seconds, Craig swiftly moved them to his left 

along the strip as shown in Figure 4.19. By the way he mentioned that he could use the 

same strategy, and from his behavior in staring at his fingers for a relatively long time, I 

inferred that Craig was mentally copying the length between his index fingers and moved 

it along the strip. This behavior of copying and iterating the part was consistent with his 

observable activities in the equipartitioning and splitting tasks. Craig repeated the activity 

of iterating the part while counting the number of times he iterated it, to which he reached 

eleven and a little bit of the whole strip left. After counting, Craig said “Maybe a twelfth” 

suggesting that the mini-part was a twelfth of the entire strip. 

 

Figure 4.19. Craig iterating one mini-part along the paper strip using his index fingers. 
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Inferring that Craig has made copies of the mini-part along the strip but not 

necessarily disembedded a part, inserted five units across the three units, I asked him if 

he was suggesting that a fifth of a third was equal to a twelfth. Craig replied that it was 

“close to a twelfth.” Expecting the physical activity of cutting the strip might engender a 

more explicit distribution of partitioning and units coordinating operations, I asked Craig 

to show one person’s share out of three people. Craig placed his finger and the scissor on 

the strip as to gauge the three shares (Figure 4.20) and cut off one piece. 

 

Figure 4.20. Craig marks one-third of the paper strip. 

Then without my prompting, Craig placed the cut-off piece below the left-over 

piece (Figure 4.21 (a)) and slid it along the left-over piece as if to count how many times 

it fit into the other (Figure 4.21 (b)). After doing so, he said “three” as if he was 

confirming that he made a fair share. As such, Craig used his equi-partitioning scheme to 

partition the candy into three equal parts.  

     
                                         (a)                                                      (b) 

Figure 4.21. Craig checks if the cut-off piece is one-third of the entire strip. 
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Next, I asked Craig to make one out of the five people’s shares. Craig placed his 

two index fingers on the cut-off piece as if to gauge where to make the cut. After Craig 

made the cut, I rearranged the pieces as shown in Figure 4.22 and asked him how many 

of the mini-pieces would fit into the whole candy.  

 

Figure 4.22. Me rearranging the pieces Craig produced from the paper strip. 

Craig picked up the mini-part and moved it along the remaining pieces, in a total 

of 13 iterations (not including the mini-part). However, he did not count out loud so it 

was not clear whether he kept track of his counting or not. After that, he said he was 

going to do it one more time and was about to repeat his activity. I intervened and asked 

Craig if he could use the numbers that he knew to find out how many times the mini-part 

would fit in the entire strip without repeating his activity. He recalled that he found the 

common denominator of a third and a fifth, and got one over fifteen. I asked him if one 

over fifteen made sense to him, with the mini-part he cut off. The following excerpt is 

Craig explaining the mini-part as one-twelfth of the entire paper strip.  

Excerpt 4.5. Craig explains why the mini-part is one-twelfth of the entire paper 

strip. 

I:  How many of the mini-parts would there be in the one out of three 

people’s share? 

C:  [Iterated the mini-part along the cut-off piece three times.] Three, not 

including this one. 

I:  So, when I first asked you to make this cut, what were you intending to 

make? 
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C:  A fifth. 

I:  A fifth, right? So, if this is a fifth, how many of this pieces would fit into 

this whole thing [pointing to both the mini-part and left-over from the one-

third part]? 

C:  Four. 

I:  Including this, in the whole thing? 

C:  [Repeats the iterating motion to check and once again.] A fourth. 

I:  Okay, now, let’s say this is a fourth. This is a fourth of this thing. And we 

knew that this piece was…How many of this piece would fit into the 

whole thing? 

C:  Three. 

I:  Okay, then how many of these pieces would fit into the whole thing? 

C:  [Sits staring at the table for approximately 40 seconds.] Since this is a 

fourth of this and there are three of this, that is four plus four plus four is 

twelve.  

I:  Ah, so the fraction of this would be? So what do you mean by twelve? 

C:  You can fit twelve of these pieces in the whole thing. 

I:  So, if I ask you what fraction this is out of all the candy, you would say? 

C:  A twelfth. 

As demonstrated in Excerpt 4.5, I asked Craig explicitly how many of the mini-

parts would fit in the one-third share and then how many of the one-third shares would fit 

into the entire strip. After the distribution of the partitioning was evoked by my explicit 

prompting, Craig sat in deep thought for a relatively long time and finally concluded that 

there had to be a total of four plus four plus four pieces in total.  

There were two things that seemed important to note. First of all, Craig conflated 

the number of parts when discussing the second-level share. Craig seemed to be aware of 

the size—one-fifth—of the second-level share but conflated the number of cuts to 

make—four—with the number of pieces that would result from those cuts—five. This 

seemingly loose coordination of the number of cuts and number of pieces suggests that 

Craig’s structuration of a unit of units was difficult for him to keep track of mentally. 

Perhaps, once he unitized a unit of units, the individual units and the cuts that produced 

them became blurry. Second, the way he described the way he found twelve was similar 

to the way Morgan described her answer of one-fifteenth in that both students added the 
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composite unit of four [or five] one at a time, suggesting that the composite units were 

progressively integrated and inserted into each unit of three sequentially.  

The discussion in Excerpt 4.5 went beyond the scope of an initial interview in that 

the interviewer was heavily involved in Craig’s engagement in the task by providing 

specific prompts and questions. It seemed as though the demonstration of carrying out the 

sharing one by one guided by my questions evoked recursive partitioning operations. 

Although Craig showed a local advancement in utilizing recursive partitioning, it was 

difficult to impute an independent enactment of the operations. This corroborated my 

hypothesis that Craig was yet to construct a recursive partitioning scheme.  

Although the revisit of the recursive partitioning task did not provide any 

significant observations of a change in Craig’s reasoning, it convinced me that me asking 

him to find the fractional amount of one mini-part without using calculations was not the 

reason why he did not explicitly coordinate units multiplicatively. To the contrary, it 

provided more evidence that he was yet to independently distribute the partitions across 

all pieces recursively and coordinate the units produced by those partitions 

multiplicatively. However, to my surprise, the interaction with the interviewer in Excerpt 

4.5 influenced the way Craig engaged in the subsequent task, which I discuss next.  

Splitting/Units-Coordinating Hybrid Task 

I placed the three pre-cut strips of paper on the table as shown in Figure 4.23. 

Then, I explained that my candy (middle length paper strip) is four times as long as 

Hamilton’s candy (shortest paper strip), and that Craig’s candy (longest paper strip) was 

seven times as long as mine.  
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Figure 4.23. The three strips of paper representing candy of different lengths. 

When I asked Craig how many times longer his candy was compared to 

Hamilton’s1 candy, Craig said “four…Would a fourth be correct, and then a seventh? 

And…I’ve lost the number.” As such, it seemed as though Craig enacted his splitting 

scheme to establish the relative sizes of the pieces, in relation to the number of iterations 

needed to make the other piece, but lost track of the numbers. So, I repeated the prompt I 

presented to him earlier. Once the relationship between my candy and his, and my candy 

and Hamilton’s was clarified, Craig solved for how long his candy was in comparison to 

Hamilton’s candy as shown in the following excerpt.  

Excerpt 4.6. Craig finds how many times longer his candy is than Hamilton’s 

candy. 

C:  [Sits silently for approximately 18 seconds while looking at the table.] I’m 

thinking that you can put seven of these [pointing to my candy] into this 

[pointing to his candy]. [Then, sat for another 13 seconds, then looked 

straight ahead.] Four..Times seven, or… twenty-eight? Twenty… What 

was the question? 

                                                 

 

 

 

1 Hamilton was the witness/cameraperson of this interview session. 

Interviewer’s 

candy strip 

Hamilton’s 

candy strip 

Craig’s  

candy strip 
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I:  So, how many times longer is yours than his? 

C:  Twenty-eight times longer. 

I:  Can you explain how?  

C:  I found a thing that works from figuring out that four of these fit into this 

third. [Swept Hamilton’s candy along my candy.] So, four times four times 

four or four plus four plus four, which is four times three. Got me twelve. 

So, I did the same method, I fit all of those into there, and then since I 

know this is a fourth, since seven of those can fit into this, and then I got 

seven times four. Which is twenty-eight. 

Craig’s establishment of the one-fourth and one-seventh inverse multiplicative 

relations to the originating segments were immediate, likely enacting his splitting scheme. 

However, how to relate the two numbers did not come as immediately, suggested by the 

relatively long pauses at the beginning of Excerpt 4.6. Craig’s comment at the beginning 

of Excerpt 4.6 of putting seven of my candy into his candy resembled the way I asked 

him to think about how many of the mini-pieces would fit into the middle-sized piece in 

the recursive partitioning task. The assimilation of the “method” I guided Craig into using 

in the recursive partitioning task became more apparent in his comment towards the end 

of Excerpt 4.6 when he said he “found a thing that works” and recalled what he did 

previously to find one-twelfth of the entire candy in the recursive partitioning task. 

Moreover, he explained, “I did the same method, I fit all of those into there.” The 

particular context of the new task became one where Craig could use the same “method” 

using his splitting scheme to enact the partitioning and iterating of each strip.  

Although Craig inserted the four units into each of the seven units, the 

multiplicative coordination of units seemed to have originated from a reflection on the 

previous activity, which was implicated by the interviewer’s explicit prompts. Therefore, 

although Craig had produced three levels of units in activity, it was difficult to impute an 

independent construction of a multiplicative units coordinating scheme to Craig.  
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Summary of Craig’s Initial Interview 

In the equipartitioning task, from Craig’s observable activities, I inferred that he 

had constructed an equipartitioning scheme. Craig later demonstrated an enactment of 

this scheme in finding one of three people’s share in the recursive partitioning task. In the 

units coordinating task, Craig demonstrated the ability to iterate composite units and 

disembed composite units within another composite unit. Therefore, Craig’s engagement 

in the equi-partitioning and units coordination tasks suggested that he has interiorized at 

least two levels of units. Craig’s engagement in the splitting task indicated that he had a 

splitting scheme available in reasoning, suggesting that Craig could at least produce three 

levels of units in activity (Steffe & Olive, 2010).  

In solving the recursive partitioning task, Craig established the fractional amount 

of the sizes of each piece in relation to the whole segment and demonstrated the ability to 

take one of the thirds and partition it further into a fifth of a third mentally. However, 

Craig did not distribute the partitioning that produced the one-third and one-fifth parts 

across the whole strip. His answer of one-fifteenth was more likely derived from taking 

the fifth of a third relationship and applying an arithmetic procedure he learned in school. 

Further, his one-fifteenth was not established as a multiplicative relationship between the 

size of the piece and the number of iterations needed to reconstruct the whole, indicating 

that his splitting scheme did not serve as an assimilating scheme for constructing a 

recursive partitioning scheme. In the second time solving the recursive partitioning task, 

once the partitioning was distributed to each parts, engendered by the interviewer’s 

explicit prompts, Craig seemingly progressively integrated the composite units of four. 

Therefore, it was difficult to impute an independent enactment of the operations. 
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Although Craig could produce a three levels of units structure as demonstrated in his 

splitting task, he could not take that structure as given in further operating. In the hybrid 

splitting and units-coordinating task, Craig demonstrated an assimilation of the units-

coordinating activity that he carried out in the revisit of the recursive partitioning task; 

however, it was difficult to impute an independent units-coordinating scheme to Craig.  

In the recursive partitioning, and hybrid splitting-units coordinating tasks, Craig 

immediately abstracted the fractional amounts of the partitions of various segments as an 

inverse relation to how many times the parts could be iterated to obtain the whole, using 

his splitting scheme. However, the operations that would allow him to relate those results 

were not immediately enacted. That is, the distribution of partitioning or recursive 

partitioning of the segments had to be carried out explicitly to further his reasoning. Once 

the partitions were held across all parts, Craig could produce three levels of units. 

Therefore, I inferred Craig a student who operated as if he could produce three levels of 

units in activity. 

Dan’s Initial Interview 

I conducted Dan’s initial interview over two sessions, one on September 8 and the 

second on September 12, 2014. Similar to Morgan and Craig’s initial interviews, Dan’s 

initial interview often involved him carrying out sensory-motor activities in solving the 

tasks. Due to a miscommunication with the front office of the school, Dan’s initial 

interview on the first day was limited in time so I did not have enough time to present the 

hybrid splitting-units coordinating task. In the following sections, I will discuss Dan’s 

engagement in each task and present my analysis of his partitioning schemes and levels 

of units coordination.  
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Equi-partitioning Task 

When I asked Dan to mark one person’s share when sharing a given wax string 

equally among five people, Dan stared at the wax string and made an estimate by making 

a mark on the string as shown in Figure 4.24. When I asked Dan what he was thinking 

when he was staring at the string, he explained “I was trying to figure out how big the 

pieces will it take” making chopping hand motions above the wax string. Although it is 

possible that Dan projected his concept, five, into the wax string, he did not explicitly 

mention how many pieces he wanted to make. Moreover, in the case that he was aware of 

the number of pieces he wanted to produce, Dan’s demonstration of sequential chopping 

motions could suggest that this projection was not simultaneous as it was for the other 

students. That is, he could have been making sequential cuts in the wax string, until he 

made five pieces. 

 

Figure 4.24. Dan’s mark of one person’s share of the wax string. 

 Next, pointing to the part he marked off, I asked Dan how he would check if it 

was an equal share. In retrospective analysis of the video, I realized that Dan had replied 

“I don’t know,” which in the interview, I interpreted as “cut it out.” Because Dan 

murmured his utterance, I asked him what he said, but he looked stumped. In response, I 

asked “I think you said ‘cut it out’?” to which Dan immediately agreed and smiled. In 
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retrospect, my involvement in trying to better understand what Dan said unintentionally 

provided a way of operating that may not have been available to Dan.  

After Dan agreed that he would cut it out, I asked him what he would do with the 

cut out piece. Dan said he would see how much it was. Because his reply was somewhat 

ambiguous, I asked Dan to show me what he meant. Dan cut the part that he marked off 

and used the ruler to measure the piece (4cm), and explained “I would start cutting the 

pieces [points to the leftover piece] into pieces of four centimeters and see if fits and 

makes an equal share.” As such, Dan did not explicitly state how many times the piece 

had to fit in the entire string, but focused on making copies of the cut off piece. Dan made 

two marks on the leftover piece in 4cm intervals as shown in Figure 4.25 (a). Next, Dan 

marked off the last 4 cm, which was close to the end of the wax string as shown in Figure 

4.25 (b). 

   
                               (a)                                                                     (b) 

Figure 4.25. Dan marked the leftover string in 4cm intervals. 

When I asked Dan what he had, he placed all the wax string in front of him, and 

counted the number of pieces he produced with his marks one by one, including the cut 

off piece. The way he checked that he counted the cut off piece indicated that he was 

aware of the cut off piece being a part of the whole. But he may not have had a strong 

counting pattern for four he could use mentally in recognition of the four pieces. This 
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also suggested that his partitioning of the wax string was sequential and that he 

progressively integrated the pieces together one by one, as I hypothesized earlier.  

When I asked Dan if the piece was a fair share Dan said it was not, so I asked him 

to try again. This time I asked him to try it again without using the ruler and gave him a 

new piece of wax string from a bundle of wax string of the same length and color. I 

assumed that Dan was considering the new wax string to be the same length as the first 

one because they were from the same bundle, but Dan and I did not explicitly talk about 

the length of the new string. When I asked if he would make the piece shorter or longer, 

Dan immediately chose to make it shorter. Then after looking at the string for 

approximately five seconds, he said “It was four, so it’s probably going to be three,” 

meaning that since the first mark he made was 4cm long, the new mark should probably 

be 3cm long.  

When using the ruler, Dan did not measure the length of the whole string and 

divide the length into five equal sections. Neither did Dan use the 4 cm he measured out 

and reason that if the wax string contained four 4 cm parts, then the entire string would be 

16 cm long and use that to find out the length of one out of the five shares. Instead, Dan 

estimated the length of one part using whole numbers of centimeters and chose one 

smaller than four, that is, 3cm, since he knew it had to be shorter than the last piece. 

Dan’s attention seemed to be more focused on making precise copies of the length of the 

estimate rather than the number of units and the relation between the size of the part and 

the number of units comprising the whole. Therefore, I hypothesized that Dan’s 

reasoning using the unit lengths relied heavily on his whole number reasoning and were 

progressively integrated additively rather than instantiated simultaneously.  
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As I explained earlier, the idea of cutting off the part he marked did not seem to 

be initiated by Dan. Further, even after Dan cut off his estimate, the cutting-off activity 

seemed unnecessary in that it seemed to be used merely as a piece to measure its length 

within the whole. Based on these observable activities, Dan seemed to reason as if he 

engaged in equi-segmenting the string. 

Instead of marking off 3cm using the ruler, I asked Dan to make an estimate 

without using the ruler. Dan sat and stared at the wax string for approximately seven 

seconds and then made a mark on the string. At this point, his earlier estimate of 4cm and 

the remaining string after he cut off the 4cm was also lying on the table. Dan made a 

smaller mark and was about to mark another one by using his fingers as if to carry the 

same length along the string but I stopped him. Using the one mark, I asked Dan how he 

would check if his new mark marked off a fair share. Dan again sat looking at the string 

for approximately seven seconds and said that he would “make all the rest of that thing.” 

Again, he did not explicitly indicate the number of times he needed to make in order to 

make the whole to check if the share was a fair share. When I asked Dan how he would 

“make the rest of that thing” without using the ruler, Dan sat in thought for a total of 

approximately 14 seconds and said “using this,” pointing to the part he marked. Then, he 

cut off the piece he marked and slid it along the string (Figure 4.26 (a)) and marked the 

end of each copy, making three more copies and some remaining in the leftover string as 

shown in Figure 4.26 (b). The relatively long pause of 14 seconds before deciding to cut 

off the piece corroborated my hypothesis that his activity of cutting out the marked piece 

was not necessarily spontaneous. 
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                                       (a)                                                       (b) 

 

Figure 4.26. Dan iterates and marks the cut off piece along the remaining string. 

After making three marks, Dan then looked up and said, “that’s five.” Dan did not 

align the cut-off piece along the last remaining part of the string. However, because the 

remaining part of the string looked almost equivalent in length with the cut-off piece, I 

took it for granted that Dan assumed that the last part was equivalent in length to the cut-

off piece when he said that that made five pieces. I did not ask him if his cut-off piece 

was a fair share, but in the interview, I interpreted his comment “that’s five” to imply that 

he thought it was a fair share.  

In any event, Dan saying that there were five pieces in total and stopping his 

sensory-motor activity after three iterations of the cut-off piece could have indicated that 

he was aware of using all of the candy up and partitioning it into five equal parts and that 

he disembedded and iterated the part. Moreoever, when Dan made the last estimate 

without the ruler, his estimate of one share was very close to a fifth of the wax string. It is 

possible that Dan’s reflection on his equi-segmenting operation along with my gesture of 

cutting out the string and limiting him to make an estimate without using the ruler 

altogether engendered a construction of a simultaneous partitioning scheme. However, 

my unintentional suggestion of cutting out the part that he marked in the beginning of the 

task, and his lack of utterance of how many times the part should fit in the whole string 
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when checking if his share is indeed a fair share provide arguments against imputing an 

equipartitioning scheme to Dan. At best, I could only infer that Dan has constructed a 

simultaneous partitioning scheme in activity. 

Units Coordinating Task 

After giving Dan a pipe cleaner string [candy model] and holding one myself as 

shown in Figure 4.27, I explained that his candy was 15cm long and mine was 24 cm 

long. 

 

Figure 4.27. My candy and Dan’s candy each represented by pipe cleaner strings. 

Next, I asked Dan how much more candy he would need to make his candy as 

long as mine. Dan sat staring at his candy model for approximately ten seconds. During 

the last three seconds, he picked his hand up and stared at his fingers holding his pipe 

cleaner candy model. It seemed as though Dan was counting using his fingers. Then he 

replied “It’s nine” which I interpreted to mean that my candy was 9 cm longer. When I 

asked Dan to explain how he got that, Dan said that he “took fifteen and added up to 

[tapping finger on the desk five times,] twenty-four.” This time when he was tapping the 

desk with his finger, I didn’t think he was keeping track of the number of taps, but that he 

was demonstrating what he did. His tapping on the desk corroborated my hypothesis that 

Dan was using his fingers in counting up to 24, one by one. I asked Dan to further 

Dan’s string 

Interviewer’s 

string 
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elaborate and demonstrate how he found nine. Starting with his left hand, Dan tapped on 

the desk with each finger as he counted, as shown in Figure 4.28. While tapping his 

finger one by one, Dan first counted from one to nine, saying “One, two, three, four, five, 

six, seven, eight, nine, well, if I count up to twenty-four, that would equal up to twenty-

four. [So] it’s fifteen, sixteen, seventeen, eighteen, nineteen, twenty, twenty-one, twenty-

two, twenty-three, twenty-four.” He tapped on the table again in the same order as he 

counted on from sixteen. The numbers in red in Figure 4.28 demonstrate the order of his 

counting from one to nine and the numbers in blue in Figure 4.28 demonstrate the order 

of his counting from 16 to 24.  

 
Figure 4.28. Dan counting from one to nine and then using the same fingers to count from 

16 to 24. 

Although Dan went back to counting starting from 15 after he counted from one 

to nine, by the way he said he took 15 and counted up to 24 it seemed like his 

demonstration was not exactly the way he initially solved the problem, but rather a 

demonstration to explain to me why 24 was nine more than 15. From an overall analysis 

of his behaviors in solving for nine, Dan seemed capable of keeping track of counting up 

to 24 starting from 15, which suggested that Dan was at least a tacitly nested number 

sequence (TNS) counter, which indicated the ability to coordinate two levels of units in 

activity (Ulrich, 2015). I did not gain any observations of certain behavior indicating that 
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he could use 15 or some other composite unit and iterate that to compare with the 29, 

which would be an indication of an explicitly nested number sequence (ENS) counter and 

an ability to coordinate two levels of units as given. This observation corroborates my 

analysis of Dan’s equi-segmenting scheme in that it requires an ENS for a student to 

construct an equipartitioning scheme.  

     
                                        (a)                                                       (b) 

     
                                    (c)                                                           (d) 

Figure 4.29. Dan moving the shorter string along the longer string to find out how many 

times longer my string is than his. 

In continuing the task, I cut off some amount of candy from each of our pipe 

cleaner strings (Figure 4.29 (a)), and asked how many times my candy (longer string) was 

longer than his (shorter string). Dan said he didn’t know how long the strings were after 

my cutting. When I asked him how he might figure it out using what he had in front of 

him, Dan stared at the strings laid on the table for approximately three seconds and then 

put his candy next to mine as shown in Figure 4.29 (b). Then, after sitting and staring at 
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the strings laid together for approximately three seconds, Dan slid his string along my 

string (Figure 4.29 (c)) and then after a second, moved his string so the end of his string 

met with the end of my string as shown in Figure 4.29 (d).  

As demonstrated by the pauses in between his actions, Dan’s sliding activity was 

carried out with much concentration and attention given to the string materials in front of 

him. Dan did not use his finger or any other marks to mark where the end of his string 

ended. It seemed as if Dan was using his eyes to mentally mark where the shorter string 

ended before sliding it to the next place. As shown in between Figures 4.29 (b) and (c), 

the second iteration of his string did not leave enough space for his string to fit one more 

time into my string, so he moved his string to make the end of his string align with the 

end of my string as shown in Figure 4.29 (d). This behavior of sliding the shorter string 

along the longer string but adjusting the sliding so the end of the shorter string aligned 

with the end of the longer string suggested that Dan’s iteration of the shorter string was 

constrained to being within the longer string. Further, after sliding his string as such, Dan 

said “three times bigger,” which suggested that Dan was also looking for a whole number 

of iterations of the shorter string.  

To get a better grasp of his sliding activity between Figures 4.29 (a) and (c), I 

asked Dan where he decided to stop when sliding the string. Dan explained that he tried 

to memorize where the string stopped. It was pretty clear that Dan has iterated his string 

by making mental marks on my string. However, in keeping track of the marks he may 

have lost track along the way and decided to align the ends of our strings, looking for a 

whole number of iterations of the shorter string that would fit within the longer string. 

This behavior indicated that he was aware of fitting the shorter string into the longer 
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string but the execution of the iteration was not as coordinated as he may have wanted it 

to be. Therefore, I suggested using a marker to make the marks to see if that would help 

with keeping track of the iterations. After marking off his string along mine twice, he 

looked at the string (Figure 4.30 (a)) and said “two and a half.” When I asked Dan how 

he could tell the last part was a half, Dan replied “Just kind of looking at it, it’s almost…” 

at which point he slid the shorter string to align with the last mark he made in Figure 4.30 

(a) (Figure 4.30 (b)).  

        
                                       (a)                                                        (b) 

Figure 4.30. Dan measuring off the last segment of the longer string using the shorter 

string. 

Once I suggested that Dan explicitly keep track of his iteration of the shorter 

string using a marker, he slid and copied the shorter string to find how many times it 

would fit into my string and concluded that the longer string was two and a half times 

longer than the shorter string. Because the time was up for the first interview session, I 

did not ask Dan the third part of the units-coordinating task I did to Craig. However, from 

the first two parts of the task, I inferred that Dan’s observable activities did not imply a 

spontaneous use of disembedding operations.  

In the first part of the task, instead of disembedding composite units of the 

number sequence to configure 24 into 15 and 9, like Craig did, Dan counted up from 15 
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to 24, one by one. Neither did he demonstrate any other type of strategic reasoning of 

embedded composite units (Ulrich, 2016). In the second part of the task, Dan attempted 

to make visual estimations of the shorter string within the longer string and not until after 

I suggested he used a pen to keep track of his iterations did he explicitly become aware of 

the number of times the shorter string would need to be iterated to obtain the longer string. 

The lack of disembedding operations corroborated my hypothesis that Dan was yet to 

construct an ENS. Therefore, based on his engagement in the equipartitioning task and 

units coordinating tasks on the first day of the initial interview, Dan seemed to operate as 

if he could reason with two levels of units in activity.  

On the first day of the initial interview I had the impression that Dan found the 

tasks unusual and was also aware of the cameras and other researchers in the room. 

Perhaps because of those reasons there was a hesitance in his engagement in the tasks. 

Occasionally, Dan’s explanation of his thinking was short and sometimes he had a 

difficult time verbalizing his thinking. Therefore, at the beginning of the second day of 

his initial interview, I had a short discussion with Dan to assure that he felt comfortable 

working in the particular setting. The second day of Dan’s initial interview started with 

the splitting task, which I discuss next. 

Splitting Task 

Laying a piece of wax string on the table I told Dan that the string was his licorice, 

which we knew was five times as long as my licorice. When I asked him to make my 

licorice, Dan sat staring at his licorice for approximately three seconds. Dan sat in 

thought looking up from the desk for another three seconds and then looked back down 

on the wax string for approximately five seconds. Finally, Dan picked up the ruler, placed 
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it along his wax string again as shown in Figure 4.31, and stared at the ruler while 

picking up a marker, at which point I intervened again.  

 

Figure 4.31. Dan placing the ruler against his wax string. 

The reason I intervened was to test whether he could explain his activities before 

carrying them out. So I asked Dan to explain what he was planning on doing. Dan 

explained “I’m trying...The same thing I did last time, by finding the measurement and go 

with that one to see if it’ll work. If it doesn’t, then try to [adjust].” As such, Dan wanted 

to use the same steps as he did as the equipartitioning task. The splitting task I presented 

to him seemed to have provoked his equi-segmenting operation in that the partitioning 

and iterating were not carried out in conjunction. Like before, Dan did not plan to use the 

measurement of the entire string to find the length of one share by reasoning about the 

inverse multiplicative relation between the size and number of pieces.  

After looking at the wax string and the ruler as shown in Figure 4.31, Dan made a 

mark on the wax string at the 6cm mark, saying “six”. In the following excerpt, Dan 

explains why he picked six and finds out if his estimate works. I, D, W each refers to 

interviewer, Dan, and witness, respectively, in the following and subsequent excerpts in 

this chapter. 
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Excerpt 4.7. Dan explains why he guessed 6cm and checks if it works. 

T:  So why did you decide to pick six out of all these numbers on the ruler 

[swipes finger along the ruler]? 

D:  [Pointing to the ruler] Seven seemed too big, and five seemed too little 

[moving ruler away]. 

T:  Okay. Alright, okay. 

D: [Cuts off the part he marked with marker.] Four, I guess.   

T:  Okay.  

W:  How were you telling if it was too big or too little?  

D:  [Inaudible.] Compared to the size [puts hands above the longer wax string 

to show the length of it,] cuz the...ah... 

 

 
 

Figure 4.32. Dan with his hands above the two wax strings to compare their sizes. 

[Continued.] 

T:  Okay, so? 

D:  This looks more than five.  

T:  Alright. 

D:  [Lays cut-off piece along the leftover string, makes a mark with the marker, 

then slides the piece to that mark and marks off the end of the piece. Then 

he looks down onto the wax strings in front of him and counts the number 

of parts in front of him including the cut-off piece.] Four. 

 
Figure 4.33. Dan laying the cut-off string along the remaining of his string. 

[Continued.] 

T: Hmm? 

D: I got four. Yeah, so it’ll probably work with five [picks up ruler again]. 

T: What do you mean by probably five. 

D: Cuz the six is a little bit too big. 
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There were several of Dan’s activities that I observed that seem worth noting in 

Excerpt 4.7. The first was Dan’s tendency on focusing on whole numbers again. Similar 

to how he engaged in the equipartitioning task, Dan adjusted his estimations in 1cm units, 

which suggested that he heavily relied on his whole number reasoning. Second, as in the 

other tasks, Dan demonstrated a tendency in going through the mark-and-slide activity 

after he made an estimation and then decided how to adjust it. Therefore, I hypothesized 

that Dan’s activities were not anticipatory and required the physical execution of them, 

again corroborating that he has yet to construct an equipartitioning scheme. As such, 

Dan’s partitioning of my wax string did not seem to entail a simultaneous partitioning 

into five in an anticipatory way. Rather, his partitioning was sequential, partitioning one 

part at a time and progressively integrating them to find if the result gave him the same 

length as the given string. Therefore, I inferred that Dan was yet to construct a splitting 

scheme.  

Moving forward, I wanted to give him a chance to carry on with his new 

estimation of 5cm. Because he had already cut off part of his string, I suggested using 

some other string to make my string as I put the two pieces of his string back together. 

Although I intended for him to use other strings as material to use when making my 

hypothetical string, Dan picked up a new piece of string and took the new piece of string 

as his new string of licorice. The new string of licorice was shorter than his original 

licorice. I clarified the question several times but Dan stared at the ruler he placed along 

the new string for approximately 15 seconds and marked off 5cm from the left end of the 

new string and two more 5cm intervals on the new string. In Figure 4.34, the green string 

placed next to the ruler was his new string and the purple string to the right of the green 
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string was his original string. Then, looking at the leftover on the new string after 

marking two iterations of the 5cm part (a total of three 5cm parts were made and there 

was some remaining string), Dan smiled saying “four again.” Realizing that Dan was 

now working with the new string as his candy, I emphasized that the first string was his 

original candy. After I explained why I suggested using a new piece of string, Dan 

replied, “Oh, alright.” 

 

Figure 4.34. Dan marks off 5cm intervals on the new string. 

In the moment, I thought the conflation between his original string and the new 

string was due to miscommunication of the situation and that his “Oh, alright” was a 

comment on finally having a clarification of the situation. However, in retrospect, it is 

likely that I was imposing a way of operating that was not available to Dan in solving the 

task. In other words, Dan may have not been able to posit a hypothetical string that was 

different from his string yet having a length of a specific relationship with that of his 

string. Therefore, his “Oh, alright” could have been him realizing that he could use 

another string to solve the problem.  

Dan’s next actions corroborated the hypothesis because he was yet to use the new 

wax string as material for making my potential string. Dan took the remaining piece of 

his original wax string and put it along the ruler as if he was to work with the piece that 
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was left from cutting off the 5 cm piece. I repeated multiple times pointing at what his 

original string was and emphasizing what his goal was in the task. After such redirecting 

from me, Dan finally moved the new wax string next to his original wax string and stared 

at them for approximately five seconds. Then, he picked up the new wax string and cut 

off one of the 5cm marks he made earlier. Next, Dan moved the 5cm piece cut-off from 

the new wax string along his original wax string, marking the end of the 5cm intervals, to 

see how many times the 5cm piece went into it (see Figure 4.35).  

 

Figure 4.35. Dan slide-marks the 5cm cut-off piece along his original wax string. 

After counting as he iterated and marked the 5cm piece four times along his 

original string, Dan concluded it fit five times and said my string would be the cut off 

piece of 5cm. When I asked Dan what amount of his licorice was mine, he stared at the 

wax string for approximately four seconds and asked me to repeat the question. I repeated 

the question this time using more explicit fraction language, asking him what fraction of 

all his licorice was my licorice. Dan said it would be “one out of five.”  

As such, although in the end Dan iterated and marked off the 5cm piece along his 

original wax string and concluded that my string was one out of five of his string, the 

process of getting to that point required repeated emphasis on what each string 

represented, what his goal was (to find my string when his string was five times as long 
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as mine) and several pauses to stare and look at the strings. Therefore, consistent with my 

earlier hypothesis, it was difficult to impute a splitting scheme to Dan that was available 

in reasoning. Further, his reply that my piece was one out of five suggested that Dan may 

have established a part to whole relationship between the piece and the entire string after 

cutting a 5cm piece off and sliding and marking one at a time. Again, the reversible 

multiplicative relationship between the length of the piece and the length of the entire 

string did not seem to be established in anticipation. The inability to successfully 

complete the splitting task indicated that Dan operated as if he could not coordinate three 

levels of units in reasoning. 

Recursive Partitioning Task 

Dan seemed to be in very deep thought and concentrated on each step of the task 

as I presented him with the sharing task (cf. Appendix A, Part B, Item 5). After 

presenting the task and while the candy model was covered, I asked Dan what fraction his 

share [second-level share] would be of the entire candy. Dan looked down at the cover 

and sat in silence for approximately 27 seconds, then looked at me smiling. Although he 

did not explicitly say anything, the relatively long pause and his shy smile implied to me 

that Dan had a difficult time operating on the paper strip in re-presentation.  

To make sure the difficulty in proceeding with the task was not due to uncertainty 

of what the task was asking for, I decided to ask Dan to explain the context and question 

of the task. Dan explained “one person will cut it into basically half… Take that person’s 

share and make six. Cut six.” It seemed like Dan understood that we were sharing the 

candy in two steps but conflated the number of people we were sharing it with. So, I 

further asked Dan how many people we were sharing the entire candy with, to which he 
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replied “one”. When talking about sharing with other people, this could mean that the 

sharing includes the sharer and it also could be interpreted as not including the person 

doing the sharing. Noticing that Dan conflated the number of people in total with the 

number of people in addition to share the candy with in the context of the task, I decided 

to explain the task once more, trying to make it more relatable to Dan. Because I thought 

the language I used could have confused him in this sense, I worded the situation 

differently.  

The following excerpt starts with Dan and I talking about the context of sharing 

the long strip of candy.  

Excerpt 4.8. Dan solves for the fractional amount of one mini-part of the entire 

strip of candy.  

I:  So, we’re sharing among us three [points to herself, Dan, and the Witness]. 

The big candy, right? Now after sharing that, think about your share. 

[Waits for approximately 3 seconds.] Okay? 

D:  Yeah.  

I:  Okay, now take your share, we’re going to share your share with five 

people.  

D:  [Sits thinking silently for approximately 10 seconds.] 

I:  And you give the rest of the four pieces to other friends and you keep that 

one share.  

D:  [Sits silently while the interviewer continues.] 

I:  What fraction is your share out of this whole candy?  

D:  [After approximately four seconds,] One out of nine. 

I:  One out of nine? 

D:  Yeah.  

I:  Okay, can you tell me how you got that? 

D:  You got six and the original...I have one and there’s three, so plus six.  

As shown in Excerpt 4.8, Dan added the number of pieces from the first level 

share (three) and the number of pieces he perceived there to be produced from the second 

level share (six) to obtain nine and said that the mini-part was one out of nine of the 

entire strip of candy. As such, Dan did not seem to distribute the partitioning that 
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produced each part across the entire strip of candy mentally and coordinate the units 

produced by the partitioning multiplicatively.   

To test if carrying out parts of the partitioning activity might evoke a distribution 

of the partitioning across the entire string recursively, I asked Dan to make the shares, 

uncovering the paper strip representing the candy. First, I asked Dan to make his share 

when sharing the entire candy equally among Dan, myself, and the witness. Dan cut off 

his share as shown in Figure 4.36 (a). I then asked Dan to make one person’s share when 

sharing his share equally among five people. Dan made a cut after staring at his piece for 

approximately nine seconds as shown in Figure 4.36 (b). 

   
                                    (a)                                                         (b) 

 
                                                                     (c) 

Figure 4.36. The pieces Dan produced in sharing the long strip of candy model. 

After I rearranged the strips of paper that were produced by Dan’s cuts as shown 

in Figure 4.36 (c), I asked Dan if he could explain why the smallest share was one-ninth. 

Dan looked at the pieces in front of him and said “I think one eight because this one’s 

mine and I already counted mine. Yeah, one-eighth.” As such, even after re-evaluating 

the second-level as five, Dan still maintained adding the number of pieces together when 
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finding the fractional amount of one mini-piece in comparison to the entire strip of candy. 

In Dan’s case, he was able to equipartition the long strip of candy into three units and he 

was able to equipartition the one-third unit into five units, using his equipartitioning 

scheme. However, when partitioning the first-level share, the unit was no longer a one-

third unit but a new unit that he partitioned into five equal parts. In other words, it is 

likely that Dan lost track of the relation between the new unit he was partitioning into 

five and the entire candy. In other words, using his composite unit of units (two levels of 

units) as input for further operating and further coordinating the units multiplicatively 

seemed yet to be available in Dan’s reasoning. Instead, Dan added the number of pieces 

that were produced from the partitions, which were the three and five.  

Next, the witness asked Dan how many of the smallest pieces would fit into the 

whole. Dan asked if he could use the shortest piece, picked up the mini-piece, and moved 

it along the longest strip up to three times and then looked at the strip. Then, Dan said 

“ten,” explaining that he estimated it. As such, when asked how many of the small pieces 

would fit within the original candy, instead of reasoning reversibly, using his reply of 

one-eighth, Dan moved the small strip of paper along the remaining paper to count how 

many times it would fit in the entire candy. This again exemplified Dan’s lack of 

establishing a reversible multiplicative relationship between the number of parts 

[partitioning] and the whole in relation to the length of one of the parts [iterating]. 

Therefore, I inferred that Dan was yet to construct a recursive partitioning scheme and 

produce three levels of units, including in activity.  
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Summary of Dan’s Initial Interview 

As demonstrated in the equi-partitioning, units coordinating, and splitting tasks, 

Dan relied heavily on his whole number reasoning. In the units coordinating and 

recursive partitioning tasks, Dan operated as if he coordinated units additively. Using 

such ways of operating, Dan successfully equi-partitioned a given wax string and counted 

up from 15 to 24 to find how longer a 24cm long string was than a 15cm long string. Also, 

although the physical enactment was not as coordinated, Dan seemed to have engaged in 

iterating. The way Dan cut off a part and iterated it along the given string in his second 

attempt in the equipartitioning task indicated so. However, the operations of partitioning 

and iterating were not enacted simultaneously as demonstrated by the lack of awareness 

of the inverse relation of the size of the part and the number of times it could be iterated 

to produce the whole. Not having constructed an assimilatory splitting scheme suggested 

that Dan was yet to construct splitting and recursive partitioning schemes. From the 

observations I made, I inferred that Dan could operate with two levels of units in activity. 

Initial Interview and the Teaching Experiment 

The initial interviews guided my pairing of the students in conducting the 

teaching experiment. Not only was I interested in pairing students who seemed 

comparable in terms of levels of units coordination, I also wanted to pair students that 

were socially compatible. This meant that I did not want to pair a student who would 

likely overtake the majority of the activities or conversations in the teaching episodes.  

From the pool of potential participants in the fall of 2013, Kaylee and Morgan 

seemed like a reasonable pair. First of all, from their initial interviews, both were able to 

produce three levels of units and reason with a three-levels of units structure, either as 
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given or in activity. Second, the two students were both articulate in sharing their 

thinking. Finally, Kaylee and Morgan seemed to be close friends. I thought that their 

friendship would make the teaching experiment an enjoyable experience for them and 

perhaps enhance the level of communication they would have in the teaching episodes.  

After working with Kaylee and Morgan, I wanted to select a pair of students who 

reasoned with less than three levels of units as given. From the pool of potential 

participants in the fall of 2014, Craig and Dan were two of the few who the research 

group thought to meet this criterion. From the initial interviews, Dan was the only one 

who reasoned with at most two levels of units. In finding a reasonable partner for Dan 

from the other students in the pool, I selected Craig. Although Craig was inferred to 

reason with three levels of units in activity, he seemed to be the most comparable in 

reasoning to Dan in terms of units coordination. Also, Craig and Dan both seemed to be 

laid back but Craig was more talkative, so I thought he would compensate for Dan’s shy 

and quiet personality and hopefully add more enthusiasm to the teaching episodes.  

Second, the initial interviews guided me in developing more specific hypotheses 

for the teaching experiment. The tasks in the initial interviews required some form of 

spatial material to be partitioned (e.g., the area of a rectangular candy model, the length 

of a linear string). Whether the students engaged in the partitioning operations in sensory-

motor activity or mentally and whether the students used the actual physical material or 

on re-presentations of the material as abstracted items, some form of structuration of 

space (either perceptual or representational) seemed to be involved in their partitioning 

activities.  
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For example, Kaylee and Morgan both folded the candy strips in certain ways to 

make equal shares, which would have required some sort of spatial coordination along 

with the execution of partitioning operations. In cutting the cakes, Kaylee consistently 

made cuts in the same orientation (perpendicular to the longer edge) as she did with the 

candy sharing tasks. On the other hand, Morgan shifted from making a piece sign to 

making a cross sign and then later to cutting like Kaylee did. Shifting the orientation of 

cutting the cake to the latter two seemed to allow Morgan to reorganize her partitioning 

operations that would allow her to share the cakes equally and also keep track of the size 

of the parts produced by the partitioning.  

Craig’s iterating activity was not as coordinated spatially, compared to Kaylee 

and Morgan, when he overlooked the width of his finger he used when marking the ends 

of the copies. However, he seemed to have planned out the activities before carrying 

them out, so I inferred that he has constructed an equipartitioning scheme. Also, Craig 

seemed to conflate the number of cuts and the number of pieces produced from the cuts. 

However, once he had a certain number of partitions in mind, he could take that as a unit 

and reason with it as an abstracted quantity. Finally, many of the activities that Dan 

carried out required him carrying out sensory-motor activities on the spatial objects but 

they seemed to be restricted by his tendency to rely on his whole number reasoning.  

As such, investigation of students’ partitioning schemes and levels of units 

coordination in the initial interviews led me to hypothesize a linkage between these 

mental operations and schemes and structuration of space. It was unclear whether 

partitioning schemes and levels of units coordination was necessary for structuration of 

space or vice versa, or if they were mutually dependent on each other. In any event, I 
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hypothesized that Kaylee’s organization of space would be more intricate and systematic 

than Dan’s organization of space. Further, I hypothesized that Morgan and Craig might 

demonstrate similar ways of operating as Kaylee will, but often rely on having to work 

with physical spatial models in order to do so. Therefore, the results from the initial 

interviews also guided my analysis of the teaching experiment. That is, I looked for 

similar or different behavioral indicators of their operations and/or schemes that I inferred 

them to have constructed in the initial interviews to test my hypothesis.  

Summary of Chapter Four 

In this chapter, I discussed the background of the initial interviews and presented 

the findings from the initial interviews with each student. From the initial interviews, I 

hypothesized Kaylee to have interiorized three levels of units, meaning that she could 

reason mentally with three levels of units as given. Morgan and Craig seemed to be able 

to produce three levels of units in activity. Finally, Dan showed behavioral indicators that 

he could reason with two levels of units in activity. In closing the chapter, I explained 

how the initial interview guided my teaching experiment. 
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CHAPTER 5 

KAYLEE AND MORGAN CONSTRUCT COORDINATE SYSTEMS 

In this chapter, I present my analysis of Kaylee’s and Morgan’s constructive 

activities in the Locating Tasks (North Pole Task and Fish Tank Task) in which I asked 

both students to locate a point or describe the motion of one point in two- or three-

dimensional perceptual space. I designed these tasks to investigate how students 

organized perceptual space into representational space. More specifically, through these 

tasks, I explored how the students construct and use coordinate systems when 

representing points or the motion of a point in two- or three-dimensional perceptual space.  

In discussing the North Pole Task, I will describe the ways Kaylee and Morgan 

each located a point in an irregular shaped and a circular shaped two-dimensional map. In 

the Fish Tank Task, I will present Kaylee’s and Morgan’s activities in locating points or 

describing motion of one point to another in three-dimensional cubic or cylindrical fish 

tanks. In these tasks, Kaylee and Morgan each constructed frames of reference and 

coordinated systems of measurements to organize these two- or three-dimensional spaces, 

which I discuss and model the mechanisms of in this chapter. 

North Pole Task: Kaylee and Morgan Locate a Point in Two-Dimensional Space 

On November 7 of 2013, Morgan and Kaylee worked on the North Pole Task. In 

this task, I asked Kaylee and Morgan to provide instructions to a rescuer, Hamilton, on 

the ground so that he can find a missing person, Ebru, in the North Pole region. Morgan 

and Kaylee were asked to imagine hovering over the region in a helicopter holding a map 
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that showed the only road of access to the North Pole, as shown in Figure 5.1. The North 

Pole and the location of the missing person are labeled as points P and A, respectively. 

Hamilton had another map, a rectangular shaped wax paper with the same point P and 

one road of access to the North Pole pre-constructed on it. There was a divider on the 

table so the two parties could not see each other’s map. 

 

Figure 5.1. Example of North Pole Task map.  

Irregular Shaped Map 

Understanding the situation. 

At the beginning, Morgan looked over the divider on the table to see Hamilton’s 

map and tried to orient her map so that the two line segments representing the sole road 

to the North Pole were pointing the same direction. Morgan also wanted to know if they 

could see Hamilton walking in the snow. Morgan’s actions in looking at the rescuer’s 

map or asking if she could see the rescuer in the snow in the moment suggested that 

Morgan wanted to take a more temporal approach by giving in-the-moment instructions 

to the rescuer from the helicopter.  

On the other hand, Kaylee asked if they were supposed to come up with the 

instructions and then give it to him at once. Kaylee’s consideration of developing a 

P 

A 
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complete set of instructions suggested that she was intending to take a less temporal 

approach by anticipating results of movements of the rescuer without having to see the 

rescuer in the moment. I clarified that they could not see Hamilton’s map nor Hamilton 

and that their task was to develop the full instructions and then give them to Hamilton. 

Kaylee’s coordination of angle measure and distance. 

Kaylee first connected the two points P and A but soon noticed that telling the 

rescue team to go straight from P to A was not going to help and that some sense of 

direction was needed for the rescuer. In order to discuss the direction, Kaylee first 

thought of using cardinal directions—going northeast. However, she rejected this idea 

because she was not sure how much northeast of a direction the rescuer would have to go. 

The two students sat in thought and after a twelve second pause, Kaylee suggested using 

the angle formed by the line segment representing the road to the North Pole and line 

segment connecting P and A (Figure 5.2).  

 

Figure 5.2. Kaylee tracing an imaginary angle formed by two lines. 

After estimating the measure of the angle, Kaylee then thought about how to use 

that angle measure. In Excerpt 5.1 Kaylee and Morgan discuss this angle measure. In the 

following excerpts in Chapters 5 and 6, K, M, and T each refer to Kaylee, Morgan, and 

the teacher-researcher, respectively.  

  

A 

P 

A 
P 
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Excerpt 5.1: Kaylee and Morgan discuss how to give directions to the rescuer to 

find A. 

K:  So, it’s like a hundred and five degrees…to the right, I guess? I don’t 

know how you would say this, instead of this [making an alternative line 

segment coming out of the North Pole to the opposite direction of what 

she drew to connect P and A (Figure 5.3)]. 

 

Figure 5.3. Kaylee extends the line segment and constructs a new angle2. 

[Continued] 

M:  Well, he will, he can use his protractor and draw his line and he’ll know 

exactly where to go. 

K:  But what if we just told him one hundred and five degrees, what if he drew 

this way and started to go this way [moving her finger along the 

alternative path]? How would you tell him to go this way [pointing to the 

path AP]?  

T:  Ah, that’s a good question. 

M:  To the… 

K:  The right, but I mean, that still doesn’t make sense.  

M:  Well, you’re turning to the right, not to the left.  

                                                 

 

 

 

2 Kaylee’s estimation of 45 degrees was inaccurate considering my interpretation of it being the 

supplement of the angle she drew earlier, which she estimated to be 105 degrees. However, 

because Kaylee’s attention was more focused on how to construct a viable angle and to make a 

visual estimation of that angle measure, I did not question her estimation of 45 degrees.  
 

P 

A 
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K:  [Excitedly] Or you can tell him… Hmmm. Tell him this [extends the line 

segment representing the road to the North Pole]. More makes sense, like, 

forty-five degrees [writes 45˚ in her sketch; see Figure 5.3]. So, it could 

be like, okay, when you get to the North Pole, turn forty-five degrees to 

the right and then go straight and you’ll run into her. 

As demonstrated so far, seemingly taking her imaginary perspective from in the 

helicopter looking down onto the ground, Kaylee first recognized that the rescuer could 

walk in a straight line from P to A. However, she realized that walking straight was not 

enough information for the rescuer to find A; Kaylee needed to define in which direction 

to walk straight from the rescuer’s perspective. As a solution, Kaylee constructed a frame 

of reference through which she could gauge the amount of rotation the rescuer would 

have to carry out. Hence, she constructed a frame of reference consisting of an initial ray, 

terminal ray, and vertex where the two rays intersected, which I call an angular frame of 

reference.  

Then, she anchored that frame of reference onto the map situation. However, her 

initial attempt in anchoring this frame of reference onto the map was unsatisfactory 

because the initial ray was located at the road segment to the North Pole and this did not 

account for Hamilton’s position in the North Pole region. Therefore, Kaylee adjusted her 

angular frame of reference such that the initial ray was anchored onto Hamilton’s 

imaginary line of sight, which was the extension of the road into the North Pole; the 

vertex was anchored at the point P, and the terminal ray, which was a result of a 

clockwise rotation of the initial ray would pass through the desired destination point A.  

This adjustment was possible through Kaylee’s decentering and positioning 

herself as if she were in the rescuer’s position on the ground. Aware of both her 

perspective above the ground and the rescuer’s perspective embedded within the space, I 

hypothesized that Kaylee unitized each perspective as two independent perspectives but 
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also coordinated the two perspectives simultaneously in order to generate instructions for 

the rescuer.  

Using this angular frame of reference, Kaylee measured the amount of rotation 

(angle measure) to define the direction in which the rescuer would have to move from 

point P to point A. Although Kaylee did not explicitly measure the distance between P 

and A, her explanation to “go straight until you find her” implied an awareness of a 

certain amount of distance that the rescuer would have to travel. This to me indicated that 

Kaylee has formulated ideas that are the basis of what I consider a polar coordinate 

system in which one coordinates radial distance and angle measure to locate points in 

space.  

Morgan’s reaction to Kaylee’s coordination of angle measure and distance. 

As demonstrated in Excerpt 5.1, Morgan did not find the 105 degrees right turn to 

be problematic for the rescuer; all the rescuer had to do was to draw the line forming 105 

degrees with the line segment representing the road to the North Pole with his protractor 

and walk along that line. It was likely that Morgan imagined Hamilton looking down 

onto his map and drawing the line segment just like she was looking down onto her map. 

However, Morgan did not discuss how the rescuer should draw the line segment from his 

perspective. Furthermore, given the 105 degrees on the map as shown in Figure 5.3, 

Morgan found it sufficient to tell the rescuer to go 105 degrees to the right. Because this 

explanation did not account for the perspective of the rescuer, I interpreted this to mean 

that Morgan’s descriptions were more “ego-oriented” (Taylor & Tversky, 1996, p. 375) 

because it did not consider the orientation of the map the rescuer was holding, where the 
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rescuer was on the map, which direction the rescuer was facing, or the orientation of the 

angle.  

Prior to the discussion in Excerpt 5.1, Morgan wanted to know if they could 

contact the missing person and tell her how to walk to the North Pole. As such, Morgan 

showed a preference in developing instructions in-activity and was more focused on 

taking her perspective of one inside the helicopter, looking down onto the North Pole 

region in a figurative sense. 

So far Kaylee and Morgan demonstrated differences in coordinating perspectives 

embedded within the space and taken from outside of the space. Kaylee first took her 

perspective above the ground and constructed an angular frame of reference she could 

anchor onto salient landmarks on the map (e.g., the road and the North Pole) to locate 

point A. Then, she coordinated that perspective along with the rescuer’s imagined 

perspective in order to refine her frame of reference. On the other hand, Morgan mainly 

focused on her above-the-ground perspective and did not necessarily account for the 

rescuer’s perspective.  

Morgan and Kaylee coordinate horizontal and vertical distances. 

Kaylee mentioned earlier in the teaching episode that they did not have a way to 

measure distance and devised a method that would work using a protractor. Because I 

wanted to explore Kaylee’s consideration of distance, and because I wanted to investigate 

whether the measuring tools they had in hand would change their approach, I asked the 

students if they could come up with instructions for the rescuer when they only had rulers 

and not a protractor. 
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Morgan started first, putting her ruler on their map to measure the distance 

between the P and A on the map (see Figure 5.4). I took this to mean that Morgan wanted 

to tell the rescuer how far he needed to walk straight from point P to A. It is possible that 

she was still thinking in terms of Kaylee’s previous approach and was trying to find the 

distance between the two points that would supplement Kaylee’s angle measurement. 

However, before I could ask Morgan how she would use the distance between P and A, 

Kaylee disagreed with Morgan’s strategy saying that they would not know the angle for 

how much the rescuer should turn because they now did not have a protractor. 

 

Figure 5.4. Morgan lays ruler along PA.  

Instead, Kaylee aligned the ruler with the road to the North Pole as if she were to 

extend it (Figure 5.5 (a)), moved her pen along the ruler (see red dashed arrow in Figure 

5.5 (b)), stopped at a certain point saying that he will “make an exact right angle” and 

turned to arrive at point A (see red dashed arrow in Figure 5.5 (c)).  

 
                (a)                                               (b)                                             (c) 

Figure 5.5. Kaylee follows along the ruler and makes a right turn. 

 

A 

P 

P A P A 



 

185 

When Kaylee denied her approach in laying the ruler as shown in Figure 5.5, 

Morgan did not rebuke Kaylee’s claim that they did not know the angle measure anymore. 

Instead, she listened to Kaylee’s demonstration and seemed to agree with Kaylee’s new 

strategy. Together, they put two rulers together (see Figure 5.6) and Kaylee traced along 

the rulers to draw the line segments of the trip from point P to point A as she 

demonstrated in Figure 5.5. Kaylee explained that they were trying to make an exact 

ninety degrees with the rulers so that the rescuer would be able to follow the instructions 

and find the missing person. 

 

Figure 5.6. Kaylee and Morgan put two rulers together on the irregular shaped map. 

From Kaylee’s repeated demonstration of coordinating a horizontal and vertical 

distance as shown in Figures 5.5 and 5.6, I infer that Kaylee has constructed a 

rectangular frame of reference or a grid structure, consisting of horizontal and vertical 

lines with the intersection of one set of perpendicular lines anchored at point P. Using 

that rectangular frame of reference, Kaylee coordinated the horizontal distance and 

vertical distance from the point of intersection to define the rescuer’s movement from 

point P to point A.  

To elaborate, using the line through the road into the North Pole as a reference, 

Kaylee anchored a frame of horizontal and vertical lines onto the map such that one set of 

P 

A 
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perpendicular lines was anchored at the North Pole and align with the road to the North 

Pole (see middle in Figure 5.7).  

 

Figure 5.7. A model of Kaylee’s representation of the rescuer’s movement. 

Then, she decomposed the movement of P to A into two spatial dimensions, 

which allowed her to find the horizontal and vertical distances that comprise the 

movement from point P to point A (as demonstrated in the right in Figure 5.7). Finally, 

Kaylee measured the length of each line segment that she drew in the map in inches. I 

recognize Kaylee’s system of coordinated measurements similar to what I consider a 

Cartesian-like coordinate system in which one coordinates vertical and horizontal 

distances from the origin. 

I hypothesize that Kaylee took an ego-oriented perspective from the helicopter 

when superimposing a rectangular grid onto the map. However, in her explanation, 

Kaylee also demonstrated awareness of the rescuer’s on-the-ground perspective. For 

example, Kaylee said that Hamilton would need to “make an exact right angle” and that 
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they were trying to make an exact ninety degrees with the two rulers so that he would be 

able to follow the instructions. As such, consistent with her previous approach, Kaylee 

seemed to have coordinated the rescuer’s on-the-ground perspective with her helicopter 

above-the-ground perspective.  

At the very beginning of the teaching episode, Kaylee swiftly moved her finger 

along the paper in a motion similar to the way she moved the pen in Figure 5.5. Further, 

Kaylee’s reaction to Morgan’s use of the ruler as shown in Figure 5.4 was immediate. I 

took Kaylee’s behavior to indicate that her actions were operational and anticipatory in 

that the measurements were coordinated from the beginning without a trial-and-error 

process and in that she was aware that the measurements would ensure that the rescue 

team would find the missing person. Similar to the children in the last stage of Piaget et 

al.’s (1960) rectangular paper task study, Kaylee seemed to have “realized the logical 

necessity to take both dimensions into account and their measurements are straightaway 

coordinated so as to be at right angles to one another” (p. 169). By the way Kaylee laid 

the rulers simultaneously as shown in Figure 5.6, I hypothesized that Kaylee’s vertical 

and horizontal distances entailed a logical multiplication of measurements (Piaget et al., 

1960) in which the measurements were oriented by the rectangular frame of reference. In 

other words, Kaylee located point A multiplicatively as a product of a coordination of its 

location along one spatial dimension with the realization that the point had a specific 

location along the other spatial dimension.  

Morgan and Kaylee discuss unit of measure. 

When Kaylee finished measuring, Morgan posed a problem, which led to the 

following discussion between Morgan and Kaylee.  
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Excerpt 5.2: Morgan and Kaylee discuss using measurements in the irregular 

shaped map. 

M:  But we don’t know how long that [pointing to one of the two line 

segments Kaylee just measured (the one that Kaylee measured to be 3 

inches)] is.  

K:  Yes. 

M:  Well you can’t just tell him to go three. 

K:  He can mark it on his map. 

M:  Three… 

K:  Oh yeah…  

M:  But he doesn’t have… [Looking at T] Does he have a ruler? 

K:  Well, even if he does have a ruler… 

T:  Let’s say he does. Let’s give him a ruler [M passes a ruler to Hamilton]. 

K:  Unless he has like a scale on his map, without it… [Inaudible]. 

Although brief, as shown in Excerpt 5.2, Morgan demonstrated an awareness of a 

unit of measure and Kaylee an awareness of the scale of measurements. At first when 

Morgan pointed out that they could not simply tell Hamilton to go three; her concern was 

of Hamilton not having a tool for measuring the three inches. On the other hand, Kaylee 

took Morgan’s question in a different direction. Kaylee was attending to the possibility 

that the two maps could have different scales. Once we settled on using the same scale 

for both maps, Kaylee relayed the instructions to Hamilton and when the instructions 

were completed, they superimposed Hamilton’s wax paper map onto their map and were 

satisfied with the result.  

The irregular shaped map contained the line segment representing the road to the 

North Pole. The students used this line segment to orient the map or to anchor their 

frames of reference onto the map. To investigate the students’ constructive activities 

when a salient spatial reference is absent from the map, I posed another map to the 

students, which I discuss next. 
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Circular Shaped Map 

Kaylee folds the circular map.  

Given a blank circular shaped paper as their new map, I asked the students how 

they would explain Ebru’s location to the rescue team. Kaylee marked a point for Ebru 

(point Aˊ) on the new circular shaped paper. Then, she folded the circular paper in half 

(Figure 5.8 (a)) and then in half again (Figure 5.8 (b)) and marked a point (point Pˊ) on 

the intersection of the two diameters she made by folding the paper (Figure 5.8 (c)). 

Although Kaylee did not explicitly state so as she folded the paper, in the subsequent 

conversations between Morgan and Kaylee, both students considered point P’ as the 

center of the circle and used it as a reference point. 

 
                      (a)                                          (b)                                          (c) 

Figure 5.8. Kaylee folds the circular paper in half twice and marks the center of the circle. 

In folding the paper, Kaylee simply picked up the paper and folded it, without 

necessarily orienting the paper in any particular way. Although I was interested in 

understanding why she chose to fold the paper this way, I did not want to pose any 

further questions and risk interfering with her initial approach.  

Morgan coordinates horizontal and vertical distances. 

Because Kaylee had been taking over most of the episode so far and because I 

noticed Morgan becoming disengaged and quiet, I asked Morgan what she thought. 
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Morgan picked up the map. The following excerpt starts with Morgan suggesting an idea 

for locating Ebru in the circular map case. 

Excerpt 5.3: Morgan explains how to locate Ebru on the circular map. 

M:  What we can do is, so we can tell him, you can fold your thing and fold it 

again pull it out, mark the center [she repeats the activities Kaylee just 

carried out as she says them out loud] and then…[Pauses to think for 

approximately two seconds] Okay, so, we can, make, this can act as like, 

um, you know how you have your graphs…[Starts making a sketch of 

what she referred to as a “graph” as shown in Figure 5.9 (a)]. 

K:  Quadrants? 

M:  Your quadrants. What is this, like four, three, this is two, this is one 

[marks 4, 3, 2, and 1 on each quadrant in her graph not in the 

conventional order as shown in Figure 5.9 (a)].  

T:  Mm-hmm. 

M:  You can tell him to mark them… So this would be four, three, two, one 

[writes 4, 3, 2, 1 in each corresponding quadrant in the circular paper] 

and we could say she’s in quadrant four [pointing to the 4 on the circular 

paper (see Figure 5.12 (b))]. And basically what you’re going to have to 

do is… [Picks up the ruler and looks at T] We still have the ruler, right? 

 
                   (a)                                                            (b) 

Figure 5.9. Morgan’s sketch of a “graph” and her four quadrants on the circular paper. 

[Continued.] 

T:  Mm-hmm. 

M:  Okay, so you can [places ruler on the paper so that the edge of the ruler 

passes point A’ parallel to the fold of the paper as shown in Figure 5.10 

(a)]. What is that, three and ten sixteenths? So… [Draws a line segment 

along the fold of the paper and writes 3 10/16 as shown in Figure 5.10 

(b)]. And then… From the center… 

K:  To the left.  
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M:  Yeah. And then once you reach that point, then you can step up [starts 

measuring distance between the end of the line segment she drew in 

Figure 5.10 (b) and the point A (see Figure 5.10 (c))]. 

K:  Not up. If you would be walking this way [moves her finger along the first 

segment of the trip] so you’ll be turning right.  

M:  Yeah, and you would turn… [Finishes measuring the second segment of 

the trip as shown in Figure 5.10 (d)]. 

 
          Paper fold is shown in red 

                          (a)                                                         (b) 

 
                    (c)                                                                   (d) 

Figure 5.10. Morgan coordinating measurements on the circular map. 

At the beginning of Excerpt 5.3, instead of taking Kaylee’s folds as given, 

Morgan started out by repeating Kaylee’s activities and paused to think. This to me 

indicated that Morgan was assimilating Kaylee’s folding activities and thinking about 

how she could use those folds in locating point Aˊ. Although her actions were 

reenactments of Kaylee’s folding actions, Morgan made further progress. Instead of 

laying her ruler along P’A’ as she did earlier in the irregular shaped map case (see Figure 
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5.5), Morgan decomposed the movement from P’ to A’ along two spatial dimensions. To 

elaborate, first, Morgan laid the ruler parallel to the fold of the paper through point A’, as 

shown in Figure 5.13 (b). The place where she lined up the beginning of her ruler was the 

other fold of the paper, which I inferred to imply that she anchored a rectangular frame of 

reference onto the map using the two paper folds and the intersection of the two paper 

folds. Morgan then measured the distances of each line segment of the movement from Pˊ 

to Aˊ using this frame of reference in order to locate point Aˊ in reference to point Pˊ. 

There are two possible contributors to Morgan’s shift in coordinating 

measurements. First, it is possible that the two paper folds led Morgan to enact graphing 

activities she learned in school. Although neither of the students mentioned the Cartesian 

plane or other graphical terms such as “axes” or “origin,” Morgan’s use of quadrants to 

distinguish the four sections of the circle could indicate that the paper folds of the circular 

map revoked her images of horizontal and vertical axes and the origin she learned in 

school. The second possible explanation is that Morgan assimilated Kaylee’s 

coordination of measurements obtained through using a rectangular frame of reference, 

demonstrated in the irregular shaped map case. It is likely that this assimilation was 

enacted by Kaylee’s paper folding demonstration.  

In either case, whether the assimilation was one of her earlier graphing 

experiences in school or of Kaylee’s locating activities, I claim that Morgan’s 

construction of a rectangular frame of reference was made in activity. This is because 

Morgan repeated Kaylee’s folding activities and paused to think how to proceed with the 

paper folds. Instead of having constructed the rectangular frame of reference a priori to 

her measuring activities and then anchoring it onto the map, the pre-made paper folds 
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triggered her use of a rectangular frame of reference. Although made in activity, I 

hypothesize that Morgan’s vertical and horizontal distances entailed a logical 

multiplication of measurements (Piaget et al., 1960) in which the measurements were 

oriented by the rectangular frame of reference. In other words, Morgan located point A 

multiplicatively as a product of a coordination of its location along one spatial dimension 

with the realization that the point had a specific location along the other spatial dimension. 

The way Morgan and Kaylee had a different approach in putting the instructions 

into words in Excerpt 5.3 accentuated the different perspectives Kaylee and Morgan 

coordinated in the task. After drawing the first segment of Hamilton’s trip to explain the 

second segment of the trip, Morgan said “you can step up” whereas Kaylee pointed out 

that it was not going up but that “you’ll be turning right.” This difference was similar to 

the one I observed earlier in the irregular shaped map. That is, Kaylee operated as if she 

combined her helicopter above-the-ground perspective and Hamilton’s on-the-ground 

perspective in order to generate instructions for the rescuer. On the other hand, Morgan’s 

explanation was based on her helicopter above-the-ground perspective. Consistent with 

her earlier way of thinking, Kaylee continuously shifted from one perspective to another 

and coordinated the two together while Morgan focused on one in producing instructions 

for Hamilton.  

Morgan and Kaylee discuss the orientation of the map. 

So far, neither of the students seemed to question the way they folded the paper 

and I anticipated an opportunity for this to occur when they relayed their instructions to 

Hamilton. When I asked them to give Hamilton the instructions, Morgan and Kaylee first 

told Hamilton to fold his circle in half and then half again to make a “pie looking shape.” 



 

194 

After Hamilton folded his circular paper in half twice, the students told Hamilton to 

unfold the paper and mark the center of the circle. The following excerpt illustrates the 

interaction between the two students and Hamilton after Hamilton marked the center of 

the circle. H refers to Hamilton in the following and subsequent excerpts. 

Excerpt 5.4: Morgan and Kaylee give instructions to Hamilton in the circular case. 

M:  Okay, mark the, like the quadrants on the graph [looks at Kaylee]. 

K:  We can say go… [Moves finger along the first segment of the trip Morgan 

drew in Figure 5.10 (b).]  

M:  But he doesn’t know because he can go… 

K:  Well, it doesn’t matter which way he spins it [rotates the circular paper 

around clockwise approximately 90 degrees.] Oh, I guess it does. 

M:  Yeah. 

K:  [Rotates the circular paper back to where it originally was.] Okay, well… 

[Frowns.] 

T:  What’s our problem? 

M:  That’s why we tell him four, three, two, one [pointing to each quadrant 

they marked on the circle.] 

K:  No, but what if he has it different [rotating the circle slightly in the 

clockwise direction]. Okay, okay. 

M:  It doesn’t matter because he still got four, three, two, and one.  

K:  Okay, okay. [To Hamilton] So, mark the top half…top two halves… 

M:  [Chimes in] the top left… 

K:  Or top left half… 

H:  Okay, how do I know which one’s top left? 

K:  [To Morgan] That’s what I’m saying, man! [Laughs.] 

M:  The one… Okay. You hold the circle in front of you with the line that’s 

straight [moves her hand along the paper fold perpendicular to her]. 

Like… [Scratches face.]  

K:  See, it doesn’t matter. 

T:  He has two lines that are straight. 

M:  Well, you can choose one. And… 

K:  Because, our map, it’s like, if we hold it upside down [rotates the circle 

counterclockwise 180 degrees] she’s going to be in a different place. She 

was up here [pointing to where the point used to be in the circle according 

to the new orientation (see Figure 5.11)] last time, so it does matter which 

direction it’s facing and like what to tell him. So…Oh gosh. 
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Figure 5.11. Morgan and Kaylee tell Hamilton how to find Ebru. 

As shown in Excerpt 5.4, the students did not realize that there are infinitely many 

ways one can fold a given circle into four equal sectors. However, once they folded the 

paper and marked the center of the circle, the orientation of the circle with respect to the 

viewer of the map did have significance to Kaylee. Both Kaylee and Morgan found it 

important to clarify the four quadrants for Hamilton at the beginning but why it was 

important was different for each student.  

For Morgan, the way Hamilton oriented the circular map did not matter; the 

quadrants were for a communicational purpose so they could tell Hamilton which 

quadrant Ebru is on his map. However, after rethinking her original conjecture that the 

orientation of the circle would not matter and after rotating the circle around a little, 

Kaylee seemed perturbed by the situation.  

Once Hamilton asked which half of the circle was the top, Kaylee articulated why 

the orientation of the circular map mattered. When she rotated the circular paper 180 

degrees, although the circle still had the same paper folds, she was aware that the location 

of Ebru in reference to those folds would be different. In other words, Kaylee anticipated 

what would happen if Hamilton were to pick another half of the circle to be “on top.” 

Figure 5.12 models how their map could be rotated 90 degrees clockwise while 
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maintaining the same frame of reference, but admitting to different coordinate system 

because the direction of points induced from it differs. The different orientations of the 

circular map would entail different orientations of the frames of reference, which in turn 

would result in different definitions of directionality. 

 

Figure 5.12. Images of various orientations of the circular map. 

Different from the line segment (road) in the irregular shaped map, in the circular 

map, there were no spatial landmarks the students could use to define Hamilton’s initial 

orientation of the map. In the following excerpt, Kaylee and Morgan discuss the features 

of the circular map that made it difficult to locate the missing person. W refers to another 

witness in the room that was not Hamilton. 

Excerpt 5.5: Kaylee and Morgan discuss their problem with the circular map. 

T:  Okay. So, let’s go back to what you guys were discussing about how there 

might be a problem. 

K:  Yeah. Where… Okay, let’s say that our map, we’re looking at it so that 

there’s like a little forest here [drawing a small squiggly shape on the 

quadrant they marked 3] and like there’s large characteristics of the place 

but his map could just totally be blank and we don’t know where we could 

put, like, if his is like the same direction, I guess? I don’t know… 

T:  Mm… 

K:  Like, we could be telling him to go… If he holds his map or whatever, we 

could tell him to go towards the forest and she’s actually this way because 

the line was off…I don’t know how… 

H:  Oh, there’s a forest on the map? 

K: I don’t know [laughing]. I was just kind of making that up. 

T:  So, it seems like you need some sort of… 

M:  Like, characteristic of the map. 

K:  Feature… 

90°

clockwise

rotation

Þ

90°

clockwise

rotation

ÞÞ

90°

clockwise

rotation

paper fold

A
A

A
A



 

197 

T:  Like the road that we had? 

K&M: [Simultaneously] Yeah! 

T:  Right? 

M:  Yes! 

T:  You need to have something there to set the direction… 

K&M: [Simultaneously nodding] Mm-hmm. 

K:  Because if it’s like all snow it would be kind of… [Inaudible.] 

W:  You’re in the helicopter, right? 

K:  Mm-hmm. 

W:  Do you know your directions?  

K:  Like north, south, east, west? 

W:  Yeah. I think there’s one chance out of four he’s going to miss it. 

K:  Yeah… 

W:  He may go in the wrong quadrant. 

K:  If we had a compass we could probably… 

T:  Would having a compass work? 

M:  It would for us but not for him. 

K:  Yeah, it would work but not for him. 

T:  Why not? 

K:  Because it’ll still be the same like… 

M:  Actually, so, we’re in a helicopter and we’re looking down on this 

[pointing to the circular map in front of them]. You could tell him, on his 

paper, okay, to the top right, we have forest, to the left of that, there’s 

going to be a river over here and then on the bottom there’s like another 

forest or something like that. And so, he can know whenever he goes 

[pointing to the center of the circle] there’s a forest, there’s a river, so I 

know where my quadrants are going to be. 

T:  Oh, I see. 

K:  But what if it was just snow? What if there was no characteristics? 

M:  There’s a hill right there… 

K:  This is all flat land and it’s like just come look for her. 

M:  There’s no… 

K:  That snow [inaudible.] 

[Both sit thinking for approximately three seconds.] 

K:  That dumb circle! 

As shown in Excerpt 5.5, the students identified two things to be problematic in 

locating point Aˊ in the circular shaped map. The first thing was problematic to both 

students: there were no spatial landmarks to use as reference in the circular paper map 

case. As the students pointed out, they needed some characteristic or feature of the land 

that they could use to communicate the directions to the rescuer.  
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The second problem was the circular shape of the paper, which seemed to be 

more problematic for Kaylee. As Kaylee exclaimed at the end of Excerpt 5.6, the map 

was a “dumb circle”, which was one of the reasons that made it difficult to locate Aˊ. As 

Kaylee pointed out, if they were to assume that the North Pole region was flat and all 

covered in snow, the physical characteristic of the circle limited their ability to fix the 

orientation of the circle—which half of the circle should go on the top from the viewer’s 

perspective. Without the orientation of the map specified, Kaylee found it impossible to 

communicate the direction in which Hamilton should walk. As such, anchoring the 

rectangular frame of reference onto the spatial context and defining directionality induced 

from the frame of reference was challenging in the circular map case.  

Summary of the North Pole Task 

In the North Pole Task, I observed ways in which Kaylee and Morgan constructed 

frames of reference and coordinated measurements using those frames of reference to 

describe the location of point A in reference to point P.  

In order to define the location of point A in reference to point P, the students had 

to conceptualize directionality in two-dimensional space. In the irregular shaped map, 

from her activities, I inferred that Kaylee had constructed two types of frames of 

reference which she used to define the direction the rescuer should walk in two different 

ways. First, Kaylee constructed an angular frame of reference consisting of an initial ray 

anchored onto the rescuer’s line of sight, a vertex at point P, and a terminal ray through 

point A (Figure 5.3). This frame of reference allowed Kaylee to describe the amount of 

rotation the rescuer would need to turn. Second, Kaylee constructed a rectangular frame 

of reference consisting of horizontal and vertical lines with the intersection of the lines 
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anchored at point P. This frame of reference allowed Kaylee to break down the 

movement along two spatial dimensions finding horizontal and vertical distances. Using 

these frames of reference, Kaylee coordinated angle measure and radial distance or 

horizontal/vertical distances, respectively, to locate point A in reference to point P on the 

maps. As a result, I claimed that Kaylee had constructed what I would consider a polar-

like coordinate system and a Cartesian-like coordinate system. 

Morgan initially took a more temporal approach in that she wanted to give in-the-

moment instructions to the rescuer or the missing person from the helicopter. Later in the 

teaching episode, Morgan considered connecting the two points P and A and measuring 

the distance between the two points in the irregular shaped map. In the circular map case, 

Morgan used two perpendicular paper folds Kaylee previously made through the center 

of the circle and their intersection (circle center P’) as a references. Using the paper folds 

as a rectangular frame of reference, Morgan coordinated vertical and horizontal distances 

to locate point A’ in reference to point P’. I conjectured that the paper folds of the 

circular map may have led to Morgan enacting graphing activities she learned in school 

and that Morgan has assimilated Kaylee’s coordination of horizontal and vertical 

distances in the irregular shaped map case. In any event, I considered Morgan’s 

construction of a rectangular frame of reference to be made in activity in that Morgan 

carried out the folding activities Kaylee carried out and paused to think as she engaged in 

the task.  

Although Kaylee as given and Morgan in activity, I conjectured that both students 

demonstrated their coordination of vertical and horizontal distances entailed a logical 

multiplication of measurements (Piaget et al., 1960) in which the measurements were 
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oriented by the rectangular frame of reference. In other words, both students eventually 

located point A multiplicatively as a product of a coordination of its location along one 

spatial dimension with the realization that the point had a specific location along the other 

spatial dimension. 

Kaylee and Morgan demonstrated differences in their notions of directionality 

when developing instructions for the rescuer. I conjectured that the salient difference was 

in their perspective-taking. Kaylee consistently coordinated two perspectives, her above-

the-ground perspective and an imaginary on-the-ground rescuer’s perspective. 

Coordinating these two perspectives, Kaylee developed instructions using route 

descriptions (Taylor & Tversky, 1996) in which the descriptions are oriented from the 

rescuer’s perspective. In this process, I inferred Kaylee transferred her ego-oriented 

perspective to the imaginary rescuer’s perspective embedded within the perceptual space 

through decentering. On the other hand, in developing instructions for the rescuer, 

Morgan’s language was based on her perspective and did not account the rescuer’s line of 

sight. These tendencies highlighted Morgan’s focus on her ego-oriented above-the-

ground perspective. This perspective was not necessarily coordinated with the 

perspective of the rescuer. Hence, I hypothesized that Kaylee had a stronger ability to 

bring forth images of one perspective alongside another and coordinate them 

simultaneously.  

In solving the task for two different shapes of the map, students thought the unit 

of measure and scale of measure for both maps were crucial elements to consider 

(Excerpt 5.2). Both students also identified it important to use salient spatial references 

when defining directionality (Excerpt 5.5). In the irregular shaped map, a line segment 
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through the North Pole point P was given and it provided a reference for orienting the 

map. Therefore, the frames of reference the students constructed in the irregular shaped 

map were anchored to the space. However, in the circular map, there were no roads or 

other spatial landmarks the students could use to define Hamilton’s initial orientation in 

the map. In their discussion in Excerpt 5.5, Kaylee showed an awareness of the notion of 

directionality depending on the orientation of the frame of reference. Although the 

students identified the center of the circle and a system by which they could form a set of 

references by using two perpendicular diameters of the circle, they did not have a way to 

decide where to anchor the frame of reference onto the circle nor communicate the 

orientation of the circle, making it difficult to locate Ebru for the rescue team.  

Fish Tank Task: Kaylee and Morgan Locate a Point in Three-Dimensional Space 

To explore whether the students’ coordinate systems, differences in coordinating 

perspectives, and notions of directionality transferred to three-dimensional space, I 

presented the students with the Fish Tank Task. Starting on November 12, Morgan and 

Kaylee started working on the Fish Tank Task, which lasted for a total of three teaching 

episodes. In the Fish Tank Task, I asked Morgan and Kaylee to locate four fish 

submerged in a three-dimensional cubic or cylindrical fish tank (Figure 5.13).  

 

Figure 5.13. Fish Tank Task Materials. 
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Different from the North Pole Task, the Fish Tank Task did not specifically 

require the students to develop instructions for a third person; they were simply asked to 

locate the four fish in the tank. Specifically, I asked the students to explain the location of 

all four fish and to give instructions for Fish 1 to swim to Fish 2, for each tank. In 

explaining the location of all four fish, the students produced drawings representing the 

fish tanks. In terms of interpreting drawings that students produced, I take Piaget and 

Inhelder’s (1967) account for drawings: 

A drawing is a representation, which means that it implies the construction of an 

image, which is something altogether different from perception itself, and there is no 

evidence that the spatial relationships of which this image is composed are on the same 

plane as those revealed by the corresponding perception. A child may see the nose above 

the mouth, but when he tries to conjure up these elements and is no longer really 

perceiving them, he is liable to reverse their order, not simply from want of skill in 

drawing or lack of attention but also and more precisely, from the inadequacy of the 

instruments of spatial representation which are required to reconstruct the order along the 

vertical axis. (p. 47) 

As such, I considered the students’ sketches and the process they produced it as 

their representations of the perceptual fish tank space and not a trivial copying of it.  

The different shapes of the tanks were selected to test if the physical shape of the 

tank might suggest perceptual guidance in the students’ constructive activities, similar to 

the two different shapes of maps in the North Pole Task. Based on my findings from the 

North Pole Task, I anticipated the students to use the faces or edges of the cubic fish tank 

as spatial landmarks to anchor their rectangular or angular frames of reference onto. Also, 
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I anticipated the circular shape of the cylindrical tank to emulate similar perturbations as 

did the circular map.  

In the North Pole Task, there were instances in which one student took the lead of 

solving the task over the other. That made it difficult for me to observe activities that 

each student carried out independently. Therefore, in the subsequent teaching episodes, I 

asked the students to work individually until both were finished organizing their thoughts 

and then asked each student to share their solutions. In many cases, I also asked each 

student to compare, contrast, or critique their partner’s solutions. In the following 

sections, I will present each student’s individual activities in solving the task and the 

discussions they had thereafter.  

For each cubic and cylindrical tank, I present on how Kaylee and Morgan each 

located the four fish and how they developed instructions for Fish 1 to swim to Fish 2.  

Cubic tank: Locating the four fish 

Kaylee locates the four fish in the cubic tank. 

While looking at the tank, Kaylee first sketched a frame to represent the container 

of the tank and the surface of the water in the tank. To be more specific, Kaylee sketched 

a square that had sides with a length equal to that of the edge of the tank container and 

drew parallelograms to represent the top and side face of the tank. Next, she measured the 

distance between the surface of the water (gelatin) and the top of the tank and used that 

measurement to draw the surface of the water in her sketch (see Figure 5.14). After 

drawing the frame of the tank, she briefly sat looking at the tank. She looked from one 

side of the tank and then another. It seemed as though she was making a plan of action in 

carrying out a measurement process. 
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Figure 5.14. Kaylee sketching the container of the cubic tank. 

            
                               (a)                                                         (b) 

                           
                            (c)                                                                   (d) 

Figure 5.15. Kaylee measures the distance from the edges of the tank to the first fish. 

Next, Kaylee located two fish on the face of the tank she just sketched by first 

measuring horizontal and vertical distances along the face. More specifically, she first 

measured the distance from the edge I labeled OA to the first fish, laying her ruler 
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horizontal to the edge I labeled OB (see Figure 5.15 (a)). Then, in her sketch, she marked 

the same length along the bottom of the tank frame sketch (Figure 5.15 (b)).  

Next, Kaylee placed the ruler along edge OA starting from OB to the position of 

the fish in the tank (Figure 5.15 (c)). She then copied the measure along the 

corresponding edge in her frame sketch and moved her pen horizontally to the right until 

she arrived above the mark she made earlier in Figure 5.18 (b). Finally, Kaylee marked 

the location of the fish (Figure 5.15 (d)).  

Once finished marking the location of the first fish, Kaylee moved on to the next 

one that she could see from the same side of the tank she was working with. This time, 

instead of making subsequent measurements, Kaylee picked up two rulers and placed 

them together perpendicularly so that one lined up along edge OA and one parallel to OB 

through the second fish (see Figure 5.16 (a)). Then, she moved the rulers to her sketch 

and placed them in the same position as they were against the tank and marked the 

location of the second fish (see Figure 5.16 (b)).  

    
                   (a)                                                                    (b) 

Figure 5.16. Kaylee measures the distance from the edges of the tank to the second fish. 

The way Kaylee laid the two rulers together as shown in Figure 5.16 (b) 

suggested she may have abstracted the measuring activities she just carried out 
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sequentially in locating the first fish and carried them out in one sweep. In other words, it 

is possible that Kaylee empirically abstracted the measuring activities she carried out 

from one situation to another. However, the way Kaylee laid two rulers together as shown 

in Figure 5.16 (b) resembled her measuring process in the North Pole Task (see Figure 

5.7). Therefore, I hypothesized that Kaylee had already reflectively abstracted a more 

general scheme for coordinating horizontal and vertical distances and enacted this general 

scheme across different situations. I first present more observations and then describe the 

general scheme. 

       
                               (a)                                                  (b) 

Figure 5.17. Kaylee finds more measurements in the cubic tank. 

Once Kaylee located the two fish on one face of the tank in her sketch, Kaylee 

rotated the tank to measure one additional distance. To elaborate, she rotated the tank 

counterclockwise with respect to a vertical axis through the center of the tank such that 

vertex O was now on her bottom right. She then picked up her ruler and measured the 

distance from edge OA to the first fish with her ruler horizontal to edge OC (see Figure 

5.17 (a)). Then in her sketch, she drew an arrow sign and wrote the length she just 

measured (1.25 in) next to the first fish (see Figure 5.17 (b)). Kaylee repeated the same 

activity for the second fish: She measured the distance from edge OA to the second fish 
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with her ruler parallel to edge OC and marked the measurement (3.75 in) next to the fish 

in her sketch (see Figure 5.17 (b)).  

I inferred that Kaylee’s new goal in finding these measurements (1.25in, 3.75in) 

was to consider how far into the tank the fish were from the face including {O, OA, OB}. 

To do so, she superimposed a rectangular frame of reference onto the new face including 

{O, OA, OC}. Using this frame of reference, Kaylee coordinated the horizontal distance 

from edge OA parallel to OC to each fish. Here, there are two things to note. First, 

Kaylee only measured the horizontal distance and did not measure the vertical distance 

from edge OC parallel to OA to the fish. Second, she wrote the measurements she 

obtained (1.25in, 3.75in) in her original sketch (as shown in Figure 5.17 (b)), instead of 

making a new sketch for this new face she used to locate the same two fish.  

For these two reasons, I hypothesized that there was more than a sequential 

enactment of her rectangular frames of reference. Through disembedding, Kaylee held 

her frame of reference of the first face (the face including {O, OA, OB}) as a unit 

structure, inserted her second frame of reference (the face including {O, OA, OC}) into 

the first frame of reference, and translated it along the third dimension resulting in a 

three-dimensional frame of reference (See Figure 5.18).  

 

Figure 5.18. Model of Kaylee’s insertion of her {O, OA, OC} frame of reference into her 

{O, OA, OB} frame of reference. 
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Simultaneously coordinating the two two-dimensional frames of reference, 

Kaylee gauged the location of a given point along one spatial dimension with the 

realization that the point had a specific location along the other two spatial dimensions. 

Therefore, Kaylee’s locating the fish in three-dimensional space involved logical 

multiplication of the measurements (Piaget et al., 1960) of distances that Kaylee 

measured using her rectangular frames of reference. As a result, Kaylee coordinated the 

location of the fish along all three spatial dimensions of the space and the relevant 

measurements of horizontal and vertical distances, producing a three-dimensional 

coordinate system. Because Kaylee combined the two structures, she was aware that she 

did not have to measure both the horizontal and vertical distances in her second frame of 

reference. Her goal-directed activity in only measuring the horizontal distances of the two 

fish from edge OA and her adding only those distances to her first sketch corroborated 

this hypothesis.  

After Kaylee was done locating the first two fish, she looked at the tank and 

rotated it counterclockwise so that the face opposite to the face she previously sketched 

was now facing her. Later in the teaching episode, Kaylee explained that she chose the 

two faces based on the visibility of the fish. That is, she selected two faces where she 

could best see the fish. Kaylee marked her earlier sketch as “side w/purple” and started a 

new sketch titled “side w/pink.” The two colors referred to the color of the fish that were 

visible from each of the respective faces. This face that she titled “side w/pink” happened 

to have the label sticker attached on it, which she drew in her sketch at the end.  

Similar to the first sketch, Kaylee started with a sketch of the frame of the tank 

and the surface of the water. Then, this time, she measured all three measurements for 
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each fish. For the first fish, which she named “pink,” she measured the distance from the 

top edge PE of the tank to the pink fish, with her ruler horizontal to edge PD; measured 

the distance from edge PD to the pink fish, with her ruler horizontal to edge PE (see 

Figure 5.19 (a) and (b)); and marked the pink fish in her sketch of the cubic tank (see 

Figure 5.19 (d); the red dashed line segments indicate Kaylee’s placement of the ruler).  

                
                     (a)                                                             (b) 

                
                        (c)                                                              (d) 

Figure 5.19. Kaylee measuring three measurements in locating the pink fish.  

Next, she rotated the cubic tank counterclockwise with respect to a vertical axis 

through the center of the tank as she had done before and measured the distance from PD 

to the pink fish with her ruler horizontal to PF; in other words, she measured how much 

farther into the tank the fish was from the face containing P, PD, and PF (see Figure 5.19 
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(c)). Like she did before, she marked the measurement in her sketch next to the fish with 

an arrow, this time the measure being .5 inches (see Figure 5.19 (d)). 

Kaylee repeated this activity of finding horizontal and vertical distances using {P, 

PD, PE} and {P, PE, PF} as references for the last fish and marked it on her sketch as 

shown in Figure 5.20.  

 

Figure 5.20. Kaylee’s sketch of the two fish from the face with the sticker. 

Similar to her previous activities in locating the first two fish, I infer that Kaylee 

inserted her second frame of reference that she superimposed onto the second face (the 

face including {P, PD, PF}) into her frame of reference of the first face (the one with the 

sticker label including {P, PD, PE}). Kaylee disembedded and held her frame of 

reference of the first face as a unit structure, inserted her second frame of reference into 

the first frame of reference, and translated it along the third dimension resulting in a 

three-dimensional frame of reference (see Figure 5.21). Taking each two-dimensional 

frame of reference as a given structure, Kaylee combined and united these two structures, 

which allowed her to track the location of a given point along one spatial dimension with 

the realization that the point had a specific location along the other two spatial 

dimensions. This allowed Kaylee to coordinate the location of the fish along all three 
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spatial dimensions that span the three-dimensional space and produce a three-dimensional 

coordinated system of measurements.  

 

Figure 5.21. Model of Kaylee’s insertion of her {O’, OD, OF} frame of reference into her 

{O’, OD, OE} frame of reference.  

When I asked Kaylee to explain, in general, how she located the four fish in the 

tank, she explained how she located the four fish using the pink fish as an example.  

Excerpt 5.6: Kaylee explains how she located the four fish in the cubic tank. 

K:  So, you would go to this side [rotates the tank so that the face with the 

sticker label, i.e., the face she titled “w/pink” is facing her] and you 

measure how far in [moves finger horizontally from edge to fish as 

demonstrated in Figure 5.22 (a)] and down [moves finger vertically from 

top of tank to fish as demonstrated in Figure 5.22 (a)] it was, according, if 

this [placing hands on the face facing her] was flat, and after I plotted that 

[points to the pink fish she was referring to in her sketch], like I drew it 

and I got right here [moves finger horizontally along where she measured 

the “in” on her sketch (Figure 5.22 (b))]. 

T: So, how did you decide to draw that pink thing right there? Like, what did 

you measure? Did you measure anything? 

K: I measured [picks up ruler], like, because this [points to her sketch] is the 

same scale as this [points to the cubic tank]… 

T: Oh, okay. 

K: So I measured from here to here and from here to here [repeating her 

finger motion in Figure 5.22 (a)] and I plotted that [pointing to the 

corresponding pink fish in her sketch (Figure 5.22 (b))] and then I turned 

it this way [rotates the tank counterclockwise 90 degrees so that the 

adjacent face is now facing her] and measured how far in it was [moves 

finger horizontally from edge of tank to the pink fish (see Figure 5.22 (c))] 

and then that’s what that number is [pointing to the “.5in” she wrote in 

her sketch next to the pink fish]. Point five into [makes a hand motion 

referring to what she means by “in” similar to her finger motion in Figure 

5.22 (c)]… I don’t know how to explain this but…  
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T: Mm-hmm.  

K: And that’s how I did it for every single one. 

      
                           (a)                                                            (b) 

 
                                                        (c) 

Figure 5.22. Kaylee explains her sketch. 

Based on Kaylee’s comment, “that’s how I did it for every single one,” Kaylee 

viewed her locating activity as consistent for all four fish even though she chose different 

vertices (points) and edges (line segments) of the tank in locating each pair of fish. 

From her consistent activities across the North Pole Task and cubic Fish Tank 

Task, I conjectured that Kaylee has constructed a rectangular frame of reference scheme 

to which she assimilated the different situations across the tasks. First, Kaylee recognized 

a situation in which she could coordinate horizontal and vertical distances to locate a 

point in two-dimensional perceptual space. In the North Pole Task this was a point on the 

“in” 
“down” 
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map; in the Fish Tank Task this was a point projected onto the two-dimensional face of 

the tank. After recognizing the situation, Kaylee constructed a mental grid-like structure 

consisting of horizontal and vertical lines which she anchored onto spatial objects such as 

the North Pole point or the edges of the tank. Using this frame of reference, she gauged 

and represented the relative position of points in the perceptual space by coordinating the 

horizontal and vertical distances from the references. In the North Pole Task it was the 

location of point A in relation to point P and in the Fish Tank Task it was the location of 

one fish in relation to the tank frame that she gauged. As a result, she produced a 

Cartesian-like coordination of measurements along two perpendicular axes through 

which she represented the location of objects in the two-dimensional plane. 

 

Figure 5.23. A model of Kaylee’s representation of the face of the tank.  

In particular to the cubic fish tank, Kaylee used a set of perpendicular lines and 

point of intersection (Figure 5.23 (a)) and anchored it onto {O, OA, OB} of the fish tank 

(Figures 5.23 (b) and (c)). Then, using this frame of reference, Kaylee constructed two 
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sets of horizontal and vertical lines that would each pass the two fish in the tank (Figure 

5.23 (d)). As a result of using this frame of reference, Kaylee was able to coordinate the 

respective horizontal and vertical distances consisting the spatial dimensions of the 

location of each fish (Figure 5.24).  

 

Figure 5.24. Kaylee’s representation of the first face. 

I inferred this to mean that Kaylee has enacted her rectangular frame of reference 

scheme in both faces and superimposed it onto different physical locations of the tank but 

was aware that she had used the same system in which coordinated three distance 

measures to locate each fish.  

From Kaylee’s consistent manner in which she coordinated two sets of 

rectangular frames of reference in the three-dimensional cubic fish tank case, I 

conjectured that Kaylee had constructed a frames of reference coordinating scheme (FR 

coordinating scheme). That is, she recognized of a situation in which she could posit a 

frame of reference as a unit and insert it into another frame of reference resulting in 

combined frames of reference. In the cubic fish tank, the insertion of a two-dimensional 

frame of reference into another and multiplicatively coordinating them allowed her to 

locate the fish’ location along all three spatial dimensions that spanned the three-

dimensional space of the tank.  

O B

O 

A 
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In order to construct and enact a FR-coordinating scheme, I conjectured that 

Kaylee enacted mental actions of decentering, rotating, and brought forth images of one 

perspective alongside another. Then, Kaylee disembedded the frame of reference 

constructed for one side of the tank, taken from one perspective and inserted it into 

another frame of reference constructed for another side of the tank, taken from a different 

perspective. Uniting and multiplicatively coordinating the two sets of frames of reference 

resulted in a representation of the four fish along all three spatial dimensions. By 

multiplicative coordination I mean that the locations of a fish were gauged with the 

simultaneous realization that the fish had a specific location along all three dimensions. 

Therefore, I hypothesized that Kaylee’s three levels of units coordination supported such 

mental actions and that the FR-coordinating scheme required mental operations that are 

essential for coordinating three levels of units.  

In our conversation that followed Excerpt 5.6, Kaylee explained that she chose the 

sides where the fish were most visible. From the design of the task, the gelatin used in the 

tanks was semi-transparent. Therefore, the visibility of the fish from the sides of the tank 

was limited. For instance, some of the fish were visible from one side of the tank but 

barely visible from another. I attributed Kaylee’s choice of two different sets of faces to 

the lack of transparency and visibility of the fish. Although Kaylee used different sets of 

spatial references for two sets of faces and the corresponding adjacent faces, Kaylee 

identified her method as the same and summarized her approach as finding “How far 

down and in [the fish] was” and “see how far into, towards the middle it was.” From this, 

I conjectured that Kaylee has constructed a coordinated a single three-dimensional 

system of measurements in locating the four fish in the cubic tank.  
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Morgan locates the four fish in the cubic tank. 

Morgan located all four fish taking the perspective of looking down onto the tank. 

After measuring two adjacent edges on the top of the tank, Morgan sketched a square and 

wrote “TOP” on top of her square figure (Figure 5.25). 

 

Figure 5.25. Morgan’s sketch of the top of the cubic tank. 

      
                       (a)                                                           (b) 

 
                                                         (c) 

Figure 5.26. Morgan using a ruler to locate one fish from another. 



 

217 

Once Morgan sketched the frame of the top of the tank, she located the fish in the 

square. She looked at the tank from the top and plotted one fish in the square without 

carrying out any observable measuring activities. Next, she laid the ruler on the top of the 

tank so that it passed above the first fish and the second fish she was going to sketch 

(Figure 5.26 (a)). Then, she moved the ruler to her sketch (Figure 5.26 (b)) and marked 

the second fish (Figure 5.26 (c)). As such, it seemed as though Morgan gauged the 

location of the second fish using the first fish as a reference. 

In transporting the ruler, it was unclear whether the inclination of the ruler was 

preserved.  However, because I did not want to interfere her thought process, I did not 

ask Morgan how she transported the ruler in that moment. Later when I asked, Morgan 

did not remember how she transported the ruler. As such, I do not have confirmation of 

whether or not Morgan was aware of maintaining the inclination of the ruler. Even if she 

was aware, the inclination of the ruler was preserved based on the perceptual imagery of 

the ruler, not based on any specific measurements.  

After sketching the first two fish, Morgan again looked down onto the tank, 

moved her finger vertically from top to bottom of her square (Figure 5.27 (a)) and 

marked the third fish in her sketch (marked in green in Figure 5.27 (b)). It seemed like 

Morgan guaged the location of her third fish based on the second one, continuing to use 

visual estimations. Finally, she looked down onto the tank and sketched the last fish. It is 

likely that she used the edges of the top of the tank or other fish as references in making 

estimations of the locations of the fish; however, because there were no measuring 

activities, I could not make any further inferences.  
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               (a)                                                                (b) 

Figure 5.27. Morgan locating the other two remaining fish in her sketch. 

Here I note that Morgan’s visual estimations were not mindless since the fish 

were not randomly marked on the paper. I acknowledge that there must have been some 

consideration of topological features such as order and proximity of the fish in the tank 

and perhaps some considerations of gross quantities (e.g., the distance between one fish 

and another is greater than the distance between a third fish and the fourth). However, 

when I claim that there was no observable measuring activity, I mean that I was not able 

to observe a physical measuring activity or verbal explanation involving commitment to a 

unit of measure (e.g., using a ruler or using fingers to mark a certain distance and 

iterating it along other line segments).  

Once she plotted all four fish in her square as shown in Figure 5.27 (b), Morgan 

added details to her sketch resulting in an illustration as shown in Figure 5.28, which I 

describe next. First, starting with her sketch in Figure 5.27 (b), Morgan added a cardinal 

direction sign on the bottom of her square. Second, she measured the dimensions of the 

top of the tank, again, and wrote “7in” on the left edge and top edge of her square. Then 

using her ruler, she made 1 inch marks along the left edge and used those marks to draw 

horizontal lines one inch apart; she repeated the same activity in the other direction 

resulting in vertical lines one inch apart and formed a grid of horizontal and vertical lines.  
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Figure 5.28. Morgan’s diagram to explain the location of the four fish in the cubic tank. 

Third, she labeled each one-inch interval, 1, 2, 3, 4, 5, 6, 7 along the top and side 

of her square. Fourth, she coordinated those numbers into pairs and next to each fish she 

wrote pairs of numbers in parentheses. For example, she swept her finger horizontally 

and then vertically and wrote (3, 2) and (3, 3) next to the brown fish in her sketch in 

Figure 5.28. The 3 in both coordinates referred to the unit square along the horizontal 

direction the fish was located in; the 2 and 3 each referred to the unit squares along the 

vertical direction the fish was located in. She used the same notational system for the 

remaining fish, accounting for the unit squares that the fish was located in. Because the 

fish had some amount of volume, most of them were positioned in more than one unit 

square and thus required two sets of coordinates pairs (with the exception of the first fish). 

In other words, the fish were located in terms of the section in which they were located in 

and not by the grid lines, similar to what Sarama et al. (2003) observed from fourth-

graders using grid structures. 
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As such, given her initial sketch as shown in Figure 5.27 (b), the cardinal 

directions and the grid were added after she located the fish in the tank and not used to 

draw the fish in the first place. Instead of using the grids to gauge the locations of the fish, 

I conjectured that Morgan used the grids for communicational purposes so she could tell 

another person where each fish was located.  

The following excerpt illustrates Morgan’s explanation of her sketch. Note that 

Kaylee had already explained her sketch (cf., Excerpt 5.6).  

Excerpt 5.7: Morgan explains how she located the four fish in the cubic tank. 

M: Okay, so I wasn’t thinking from the side, I went from the top. And um, this is 

basically looking at it when it’s like that [rotates tank again to obtain 

orientation of tank in Figure 5.29 (a)]. And um, so, this [pointing to her 

sketch; Figure 5.28] is the same scale as this [points to the top of the tank] 

right here.  

T: Okay. 

M: And um, from here to here [moves finger along QG to the pink fish 

(Figure 5.29 (a))] this is five inches. And then down a unit [moves finger 

vertically down one inch from QH to pink fish (Figure 5.29 (a))] would be 

one inch and so practically, it’s in that location. I don’t know how to… 

Apparently, I just created like a graph where I can locate them and… 

T: So, I was looking at how you were doing this because I was sitting right 

next to you. And it seemed like you plotted this one first [pointing to the 

first (pink) fish in her sketch; Figure 5.28].  

M: Mm-hmm. 

T: And somehow you did something with the ruler, like, you put it like there 

[hand motions laying a ruler on the top of the tank] and you drew this one 

[pointing to the brown fish she drew second in her sketch; Figure 5.28]. 

Can you remember how you got this one [pointing to the brown fish]?  

M: Oh, I mean, all I was doing… I was…[Sits in thought and looks at top of 

tank again for approximately seven seconds] Okay, so what I did was I 

eye-graphed it [lays a ruler along QG] and I found the location [moves 

finger horizontally from ruler to the pink fish (see Figure 5.29 (b)] and 

then I went down [moves finger down along the ruler] to find that one and 

I saw [moves finger horizontally from ruler to the second fish (see Figure 

5.29 (c))]. 

T: I see. Where it was? 

M:  Yeah. Because that one was the closest to it [pointing to the two fish she 

sketched first]. If I were going down from top to bottom then just [moves 

fingers vertically across her sketch and then horizontally across her sketch 

as if tracing the grid she constructed]… 
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        (a)                                          (b)                                           (c) 

Figure 5.29. Morgan demonstrates how she located the second fish from the first. 

I considered Morgan’s explanation in Excerpt 5.7 to be different from her earlier 

activity in generating her sketch in Figure 5.28. Recall that when sketching the second 

fish, Morgan laid the ruler slant on the tank and moved the ruler onto the paper as shown 

in Figure 5.26. For the first and two last fish, she visually estimated the locations without 

laying the ruler on the tank. When I asked her to explain her earlier activity with the ruler, 

Morgan recalled that she had “eye-graphed” the fish by moving from one fish to another, 

using the fish as reference to locate other fish. In contrast, in Excerpt 5.7, as shown in 

Figure 5.29, Morgan used the edges of the tank as reference. Morgan’s explanation in 

Excerpt 5.7 entailed a more explicit reference to a measurement process: she 

demonstrated an attendance to unit of measure (inches), scale of measure, and used her 

ruler.  

Considering that Kaylee has first explained and demonstrated her sketch, it is 

likely that Morgan has assimilated Kaylee’s strategy of measuring horizontal and vertical 

distances from the edges of the tank to the fish. Based on her behavioral indications, it is 

difficult to infer that Morgan has constructed a coordinated system of measurements 

induced from a frame of reference independently. At most, I claim that Morgan 

constructed a frame of reference in the activity of explaining her sketch as demonstrated 
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in Excerpt 5.7 and Figure 5.29. However, they were not apparent enough for me to regard 

them as strong indications of operationalizing frames of reference in locating the fish. 

Therefore, I infer that Morgan’s actions for locating the fish were yet in-the-moment and 

heavily relied on perceptual imagery.  

After producing the grid and coordinates, Morgan seemed hesitant, so I asked her 

to explain what she was thinking about. In the following excerpt, Morgan explains the 

various orientations of the tank.  

Excerpt 5.8: Morgan explains the different possible orientations of the tank. 

T: Morgan, what are you thinking? 

M: Well, I’m thinking about doing… Cuz, I didn’t want to do it from like, the 

sides [points to the side of the tank using her ruler].   

T: Mm-hmm. 

M: So, if I’m doing it from the top, I’m going to have to like, um… So this 

[pointing to her sketch shown in Figure 5.28], is looking down on it seeing 

from like here [rotates the tank to the orientation that corresponds to her 

sketch (Figure 5.30 (a))]. This side, so I’m going to label that like, this 

will be one [writes 1 on top of her sketch in Figure 5.28] and I’m going to 

just say… 

T: Oh, okay. 

M: And so if I turn it to the right once [rotates tank 90 degrees clockwise 

(Figure 5.30 (b))] then that will be two. [Rotating another 90 degrees] 

And that will be three, [rotating another 90 degrees] and that could be 

four. 

     
                                        (a)                                                 (b) 

Figure 5.30. Morgan rotates tank 90 degrees. 
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Like Morgan explained in Excerpt 5.8, because her diagram did not involve any 

consideration of the “sides” of the tank, she wanted to account for the positioning of the 

tank. After explaining her thoughts in Excerpt 5.8, Morgan made an arrow sign next to 

the “1” she had written on top of her sketch and wrote “R” next to the arrow indicating 

starting at orientation 1 and then rotating to the right. Morgan rotated her gridded square 

clockwise 90 degrees and wrote 1, 2, 3, 4, 5, 6, 7 on each vertical and horizontal edge as 

shown in Figure 5.31 (a).  

                                

 

 

                    

 

 

 

 

 

 

 

 

 

 

                          

    (a)                                                       (b) 

Figure 5.31. Morgan’s gridded square rotated 90 degrees clockwise and her new set of 

coordinates. 

Next, Morgan located each fish under the two orientations using coordinates, as 

shown in Figure 5.31 (b). In sum, Morgan was aware of different orienting perspectives 

one can take when viewing the tank and wanted to consider these in her sketch. However, 

she did not seem confident about the coordinates she found for the second orientation and 

did not complete the list. 

Later in the teaching episode, I asked Morgan about the cardinal direction sign 

and the two sets of {1, 2, 3, 4, 5, 6, 7} she wrote along the sides of her gridded square:  
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Excerpt 5.9: Morgan explains the cardinal directions and two sets of numbers. 

M: Um, I noticed how, it kind of made, because I kind of demonstrated it as 

the north, east, south, west [sweeping her fingers counterclockwise 

starting from the fish on top through all fish that seemingly lined up with 

the north, east, south, west direction in her sketch in Figure 5.28].  

T: Oh, okay. 

M: So if I turn it this way [turns her sketch clockwise 90 degrees as shown in 

Figure 5.31 (a)] that’s going to be the north [points to the brown fish as 

the north (Figure 5.31 (a))], east, south, west [again moves her finger 

counterclockwise through all four fish]… So… 

T: Okay. And I noticed you changed, you turned the paper like this and you 

wrote one, two, three, four, five, six, seven again. Why were you doing 

that?  

M: Just in case. Like, if you turned it a specific, another way [pointing to the 

tank] so, kind of like how we used the…Like when we’re in the snow or 

whatever, if he was facing a different way, he would still know how to get 

to [pointing to each fish]. 

T: Ah, I see.  

As shown in her comment, “when we’re in the snow or whatever, if he was facing 

a different way, he would still know how to get to [the fish],” Morgan seemed to have 

recognized the situation of locating the four fish in the cubic tank similar to what she has 

done in the North Pole Task. She seemed to have recalled that the orientation of their 

map was important in communicating with the rescuer in the North Pole Task and wanted 

to make sure that this was accounted for in the fish tank case. As a solution, Morgan 

considered the cardinal directions and two different sets of numbers for each orientation 

of the tank sketches. As such, Morgan had an awareness of having to account for more 

than the top view of the tank.  

Kaylee and Morgan discuss their different approaches. 

Once each student had a chance to explain their way of locating the four fish, I 

asked the students to talk about each other’s sketches. When I asked Kaylee to comment 

on Morgan’s method, Kaylee offered a critique explaining that Morgan’s sketch only 

accounted for the top view of the tank. Kaylee argued that all the fish could be “floating 
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on the top,” and that Morgan’s sketch did not account for “how far down” the fish were 

in the tank.  

As such, Kaylee operated as if she projected the fish into a two-dimensional plane 

and took that projection as an object in further operating. Consistent with her earlier 

behaviors, Kaylee was able to disembed the projection of the fish into the top layer of the 

water in the tank as a unit and insert that into any point along the third dimension. Kaylee 

also seemed aware that Morgan’s sketch could be of any instance of those insertions of 

the top layer of the water in the tank into any depth of the tank. Although the top layer of 

the water was a different face from what Kaylee had used earlier in her sketch, she was 

able to flexibly transfer her frames of reference and coordinate them to the face that 

Morgan used in organizing the locations of the fish. Hence, corroborated my hypothesis 

that Kaylee constructed a rectangular FR coordinating scheme.  

As a response to Kaylee’s critique, Morgan replied that she “was going to do top 

and sides but didn’t have enough time.” Earlier in the teaching episode, Morgan did not 

account for the sides of the tank in her sketch and specifically stated that she “didn’t want 

to do it from like, the sides” (Excerpt 5.8). It is possible that the social interaction 

between the two students led to Morgan’s somewhat contradictory statements. Because 

Kaylee often carried out activities first and often explained her thinking before Morgan 

had a chance to, it is possible that Morgan wanted to find a solution different from 

Kaylee’s. Their playful manner of competing with each other adds support to this 

interpretation. However, whether this was the case or not, Morgan seemed to have 

assimilated Kaylee’s approach, which became more apparent in the next problem of the 

task.  
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Kaylee and Morgan Describe Fish 1 moving to Fish 2 in the Cubic Fish Tank 

To further explore the students’ coordinated systems of measurements, I asked 

them to work together in giving instructions to one fish (“Fish 1”) to another fish (“Fish 

2”) in the cubic fish tank. Morgan started to coordinate her sketch with Kaylee’s sketch. 

More specifically, Morgan suggested that they use her sketch (Figure 5.34) to tell the fish 

how far to travel horizontally (she moved her finger horizontally in front of the tank) and 

Kaylee’s sketch to determine how high the fish would need to go. Her sketch has 

transitioned into a working frame of reference and it was being coordinated with 

Kaylee’s sketch of one side of the tank. It seemed like Kaylee’s critique of her sketch led 

Morgan to account for the height of each fish in the tank. Kaylee agreed with Morgan’s 

suggestion and the two students went to work. In the following excerpt, Morgan and 

Kaylee formulate instructions for Fish 1 to swim to Fish 2. 

Excerpt 5.10: Kaylee and Morgan discuss how Fish 1 swims to Fish 2. 

M: So, this way [rotates her sketch of the gridded square so that the locations 

of the fish correspond to the one in the tank]…Okay, so, one, two, three, 

four [counts the number of squares starting from Fish 1 to Fish 2 (Figure 

5.32 (a)), then writes “4 units to the left,” looks back at her sketch and 

adds “1 unit down,” scratches out “down” and writes “back.” (Figure 

5.32 (b))].  

 
             (a)                                              (b)                                      (c) 

Figure 5.32. Morgan’s measurement activities in Fish 1 swimming to Fish 2. 
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[Continued.] 

K: [Sketched the frame of the tank (this time only a square representing the 

face in front of her) and measures the horizontal and vertical distances 

from the fish tank and located the two fish in her square (see Figure 5.33; 

the red dashed arrows represent the order she measured and marked the 

distances using her ruler)].  

M: [While Kaylee locates the two Fish in her sketch, Morgan used the ruler to 

measure the distance between the two fish from the top view and changes 

her earlier “4 units to the left” to “4.5 units to the left” (Figure 5.32 (c))]. 

K: [Once she has completed plotting the two fish] So, I’m going to measure…  

M: Just the length between them or the height.  

K: [Lays the ruler vertically starting from Fish 1.] 

K: [Inaudible]. [Draws two line segments connecting the two fish, then 

measured the length of the first line segment and writes 2.75 next to it, as 

shown in Figure 5.33 (a). Then she moved the ruler to measure the length 

of the second line segment when Morgan interrupted her]. 

M: You don’t have to worry about the top one.  

K: I mean [inaudible]… [Moves finger along the two line segments as if 

following the arrows from Fish 1 to Fish 2]. 

M: No, I already have it [taps on her sketch].  

K: What? Oh, like from… [Moves finger along first line segment in deep 

thought] So, you know this [moves finger along the second line segment]. 

M: So, he’ll just have to do four units to the left then he’ll have to go one back, 

then he just go straight up something. 

K: [Smiles and nods] Yep.  

       
                  (a)                                                                   (b) 

Figure 5.33. Kaylee’s measurement activities in Fish 1 swimming to Fish 2. 

As shown in Excerpt 5.10, there was a noticeable change in Morgan’s 

engagement in the task. In contrast to the majority of the teaching episodes so far, 

① 

② 

① 
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Morgan was leading the discussion and suggested what Kaylee should do in solving the 

task. For example, Morgan told Kaylee to draw a line through Fish 1, a line through Fish 

2 and to find the intersection of the two lines. From her referring to the lines as “straight” 

and her hand motions in showing those lines, I inferred that Morgan envisioned two 

perpendicular lines through the two fish. As such, Morgan now seemed to use her grid to 

decompose the movement of Fish 1 to Fish 2 in two spatial dimensions along the top 

view of the fish tank. In other words, Morgan used her grid as a frame of reference 

defining the direction in which Fish 1 would swim to Fish 2. Interestingly, after using her 

sketch to count the number of inches Fish 1 would need to move to the left, Morgan 

measured the same distance using her ruler and changed the measure from 4 to 4.5 units. 

It is be possible that she wanted to double check her counting of the number of squares or 

that she wanted to provide more accurate measurements. I view this behavior as an 

indication that Morgan was transitioning from using the grids to communicate the squares 

in which the fish were located to using the grids as a frame of reference to guide her 

measurement activities.  

Excerpt 5.10 also shows Morgan’s change in accounting for all three dimensions 

in the fish’s movement. Different from her earlier activities in locating the four fish in the 

cubic tank considering only two dimensions along the top view of the tank, Morgan now 

coordinated the third dimension with her representation of the two-dimensional grid. 

There are two elements in the teaching episode that I attribute to such progress. First, the 

task requirement to account for the motion of points may have pushed her to account for 

all three spatial dimensions. The task requirement to attend to the movements of the fish 

may have engendered accounts for change of position (Piaget et al., 1960) of the fish. 
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Second, Morgan may have assimilated Kaylee’s approach in her measuring activities. 

Morgan’s illustrations, actions, and explanations gradually shifted from making visual 

estimations of the location of the fish to using frames of reference to coordinate 

measurements of distances between the two fish. This change became apparent after 

Morgan listened to Kaylee’s explanation of her sketch and how she located the four fish. 

It is possible that listening to Kaylee’s critique provided Morgan an opportunity for 

reflection as well.  

Extending the Cubic Fish Tank Task 

Morgan locates the fish in the cubic tank again. 

At the beginning of the next teaching episode, on November 14, I asked the two 

students to find a way they could combine their ideas for locating the fish. The main 

purpose of asking them to do so was to test whether Morgan ’s aforementioned 

modifications were temporary or not. The following excerpt starts with Kaylee making a 

suggestion about how to combine their sketches in locating the four fish. 

Excerpt 5.11: Kaylee and Morgan combine their ideas to locate the four fish. 

K: Morgan, you can find the… With the grid, you can find how deep it is 

[moves finger from the front of the tank towards the back of the tank 

(Figure 5.34 (a))], in here and with mine you can find how far down it is 

[moves finger from top of the tank towards the bottom of the tank (Figure 

5.34 (b))]. 

       
                               (a)                                                (b) 

Figure 5.34. Kaylee explaining her sketch and Morgan’s sketch. 
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[Continued] 

M: Yours is finding how deep it is mine is finding where they are [points 

finger in various points on the top of the tank]. Like, the location. 

K: Yeah, the location and mines like the dimension, I guess. 

M: What we need to do, okay, we can draw it. So, that’s like the top, right? 

We can draw our grid again [illustrates a rectangle and a grid inside of it] 

and then draw wherever they are, whatever… [Randomly draws four small 

circles in her grid]. And then, like, this would be mine [writes M on top of 

her sketch (Figure 5.35 (a))] and then Kaylee can draw hers from the side 

[writes K and then a rectangle beneath her sketch] and showing where she 

sees them [again, randomly draws four small circles in the new 

rectangle]… 

K: Mm-hmm. And so you can see, like, this one [pointing to the top right 

circle in the M rectangle (Figure 5.35 (a))] is like…  

M: [As Kaylee is speaking jumps in] And so like, this is how far in [draws an 

arrow from the circle on the top right to the circle underneath it (Figure 

5.35 (b))] deep you go down. 

 
                              (a)                                                (b) 

Figure 5.35. Morgan’s re-generation of their two sketches. 

In Excerpt 5.11, although Kaylee first initiated the conversation, Morgan took a 

more active role in the discussion. Morgan initiated her drawing (Figure 5.35) and 

explanation without Kaylee’s help. Different from her earlier actions in the first teaching 

episode of the cubic fish tank, Morgan started her sketch of the top layer with the grids 

and then added in the fish. From such observations, I hypothesized that Morgan’s 

construction of a rectangular frame of reference was not temporary. By the way Morgan 

randomly added the four fish to her sketch without looking at the fish tank, I inferred that 
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Morgan no longer depended on the perceptual imagery of the cubic fish tank; now the 

coordination became operative and she seemed to be aware that her coordination would 

work for any location of the fish in the tank. Finally, by the way that Morgan was able to 

point to one fish on the top of the tank and relate the location of that fish in the side face 

of the tank, and discuss what each sketch of the tank allowed her to find in terms of the 

location of the fish, I inferred that she has coordinated the two perspectives 

multiplicatively (one taken from the side view and one taken from the top view) to locate 

the fish.  

Fixing one origin. 

Noticing that both students agreed on using the grids, I then asked them to sketch 

the grids onto the tank; Kaylee used a dry-erase marker to add the grids to one side face 

of the tank and Morgan started to sketch a gridded square. After the grids were placed on 

the cubic tank as shown in Figure 5.36, I asked the two students if the two grids would 

provide enough information to locate the fish.  

 

Figure 5.36. Two grids on the cubic tank. 

Kaylee explained that it should, because “mine shows the height [moving finger 

vertically along the face in front of her, on which she drew a grid using a board marker] 

and the length [moving finger horizontally along the face in front of her, on which she 
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drew a grid using a board marker] and Morgan’s shows the width [moving finger 

vertically along the grid on top of the tank].” Kaylee generalized the three measurements 

that consisted of the location of each fish in relation to the frames of reference to height, 

length, and width. I then asked the two students to explain specifically how they would 

use the grids in locating the fish. The following is Kaylee describing how she would use 

the grids to locate one fish. 

Excerpt 5.12: Kaylee explains how she would use the two grids to locate one fish. 

K: So, let’s say this is where the fish is [Marks fish’s location on the front 

face of the tank (circled in red in Figure 5.37 (a))]. So, you could tell 

whoever’s trying to find these fish, okay, going on the side, it’s…It’s at 

the point what’s that, six one? [Writes (6, 1) next to the point on the face.] 

Or no… 

M: It’s close. 

K: I want to look at it like a graph, so [erases (6, 1)] so it should be six, six 

[writes (6, 6) next to the point on the face]. And so that would tell them 

that’s one inch down and one inch to the right [making arrows from the 

top of the tank and the right edge of the tank to the point (red arrows in 

Figure 5.37 (b))] or left, I mean. And then this, on this one [pointing to the 

grid on top of the tank]… 

    
                      (a)                                                                 (b) 

Figure 5.37. Kaylee and Morgan explain the location of one fish using two grids. 
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[Continued.] 

M: Why would we do it like this though? Why wouldn’t we do six and then 

one [moves finger across the top of tank and then down along the right 

edge of the tank (yellow arrows in Figure 5.37 (b))]? 

K: Well, I’m reading this like a graph. This would be the origin [pointing to 

the bottom left corner of the face in front of her; circled in white in Figure 

5.37 (a)]. 

M: Oh. 

T: Oh, so this [pointing to the same place Kaylee pointed to] is your origin? 

K: Yeah. 

M: And that’s going to be your [moves finger along the left edge and bottom 

edge of the face of the tank (labeled with red arrows in Figure 5.37 (a))]. 

K: Yeah. 

M: Okay. So, pretty much, it just matters where you put your origin. 

T: What about this grid, then? [Pointing to the grid on top of the tank.] 

K: Then, you would do the same thing like… 

M: So, you could do the same thing right here [pulls the grid off the tank and 

places it in front of the tank and then puts it back on the top].  

K: Now, it will be like right here [points to a random point on the grid] so 

you say it would be at six [moves pen along grid horizontally] three 

[moves pen along grid vertically and arrives at the assumed location of 

the fish] or four. And so that will tell them it’s four inches in [points 

towards the back of the tank] to the water, so you would know four inches 

in and one inch deep. 

As shown in Excerpt 5.12, looking at the grids on the cubic tank, Kaylee enacted 

her previous learning experience of what she referred to as a “graph.” She assigned the 

bottom left corner of the fish tank the origin and used coordinate pairs to specify the 

location of one fish. Morgan soon caught on to the idea as well; although Morgan did not 

explicitly use the word axes, from her hand motions shown in Figure 5.37, both students 

superimposed horizontal and vertical axes onto the two edges of the tank and agreed on 

the bottom left corner as the origin. Because it seemed as though Kaylee was 

superimposing two two-dimensional “graphs” onto each of the two faces of the tank and 

coordinated them, I wanted to know if they could develop a three-dimensional “graph” 

that would share one origin. The following excerpt starts with Kaylee answering my 

question whether there would be a way to use one origin and not one for each face.  
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Excerpt 5.13: Kaylee explains how she would use one origin to locate one fish. 

K: Yeah, like here [points to the top left corner of the tank (Figure 5.38 (a))], 

I guess. So that, it would be like this [Picks up the grid on the top of the 

tank and puts it vertically on top of the tank and points to her origin as 

shown in Figure 5.38(b)] is the origin [points to the top left corner of the 

tank]… 

         
                         (a)                                                       (b) 

Figure 5.38. Kaylee fixing one origin. 

[Continued] 

M: [Interrupts.] So, it’s a graph… 

K: [Continues.] So this would be negative [pointing to the front face of the 

tank] and this would be positive [pointing to the grid above the tank]. 

Negative y’s [pointing to the front face of the tank] or no, negative y’s and 

the positive y’s [pointing to the grid above the tank]. So this would be 

like… 

M: So, this is what you’re doing… 

K: Six, negative one [Erases the (6, 6) inscription next to the fish on the front 

face and changes it to (6, -1)]. 

M: This is our origin, okay? [Starts a sketch with two perpendicular line 

segments.] This is the top and this is the side that we’re talking about right 

now. So, this would be the other side and these are like negatives and 

positives [writes +, - signs in the right “side” face in her sketch]. 

K: Yeah, positive, negative. 

M: Yeah. And so, this would be positive, positive [writes +, + signs in the 

right “top” face in her sketch].  

K: So this corner right here is your origin [points to the top left corner of the 

front face of the tank], so this would be plotted at six, negative one 

[pointing to the point shown in Figure 5.37 (a)] cuz you’re going six and 

down one [moves pen from origin to the six’s line segment and then down 

one unit in the grid]. 

T: Ah, I see. 
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M: So, it would be like negative one below sea level or whatever. [Writes -1 

next to her sketch as shown in Figure 5.39]. 

K: Yeah, because you’re going down. 

M: [Simultaneously,] down. 

 

Figure 5.39. Morgan’s sketch of Kaylee’s explanation. 

Asking Kaylee and Morgan if they could use one origin rather than two for each 

face provoked their consideration of direction (below sea level). However, the third axis 

seemed to be an extension of the second axis and not a separate one. They were aware 

that the first coordinate of the fish, 6, was consistent for both the side grid and the top 

grid. However, the second coordinate, which Kaylee referred to as the “y’s” which were 

the -1 and 4 in each grid, respectively, were not differentiated. That is, they would need 

to use both (6, -1) and (6, 4) and to know which grid they are referring to when using 

these coordinates. The coordination of the two two-dimensional coordinate systems 

allowed them to locate the fish and accounted for all three dimensions in which the fish 

were situated; yet, the coordinates did not entail the distinction of the two measurements 

of -1 and 4, which would have been made if they considered (6, 4, -1) as a coordinated 

triple. Had I asked them to identify which measurements referred to the length, width, 

and height, I could have provoked the awareness of -1 and 4 as measurements of different 
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elements (-1 the height and 4 the width). However, whether that would have led to a 

construction of a third axis was not further investigated.  

Although Kaylee did not use the conventional coordinate triple, because of the 

way she was aware of the third measurement in relation to the other two measurements, 

i.e., she engaged in a logical multiplication of measurements, I believe that Kaylee has 

constructed a system of measurements for three-dimensional space. Because Kaylee 

predominantly took over the discussion, I do not have enough confirming evidence to 

claim that Morgan would have been able to develop a similar explanation independently. 

However, because Morgan was able to re-present Kaylee’s fixation of one origin in her 

own picture as shown in Figure 5.39, I claim that Morgan reasoned compatibly with 

Kaylee’s reasoning to the extent that she could coordinate the three measurements in 

activity.  

Curious to know if their coordination of frames of reference was limited to the 

interior of the tank, I asked both students how they would locate a fish that was outside of 

the tank, as shown in Figure 5.40.   

     
                                (a)                                                     (b) 

Figure 5.40. The fish outside of the tank. 

Both students agreed that all they needed to do was to extend their “graph” or add 

another “graph” and connect it. From such claims, I infer that both students were not 
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restricted to the interior of the tank but were able to enact their FR coordinating scheme 

to any point in three-dimensional space either in activity (Morgan) or as given (Kaylee).  

Summary of Cubic Fish Tank 

Rectangular frame of reference scheme. 

From her consistent activities across the North Pole Task and cubic Fish Tank 

Task, I conjectured that Kaylee has constructed a rectangular frame of reference scheme 

to which she assimilated the different situations across the tasks. That is, she has 

constructed a recognition template for a situation in which she could associate the use of 

a rectangular frame of reference, activated the activity of superimposing a rectangular 

frame of reference onto the spatial object, and resulted in a Cartesian-like coordination of 

measurements along two perpendicular axes through which she represented the location 

of objects in a two-dimensional perceptual space. 

Morgan’s illustrations, actions, and explanations gradually shifted from making 

visual estimations of the location of the fish to using spatial references to coordinate 

measurements. When representing the fish tank from visual estimations, Morgan added a 

grid onto her sketch after she located the fish to specify which section on the grid the fish 

were located in. After listening to Kaylee’s way of locating the four fish in the tank and 

Kaylee’s critique about her sketch, Morgan seemed to assimilate Kaylee’s approach and 

make modifications in her spatial organizing activities. Morgan transitioned from using 

the grids to communicate the squares in which the fish were located to using the grids as 

a frame of reference to guide her measurement activities.  
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Frame of reference coordinating scheme. 

From Kaylee’s consistent manner in which she coordinated two sets of 

rectangular frames of reference in the three-dimensional cubic fish tank case, I 

conjectured that Kaylee had constructed a frames of reference coordinating scheme (FR 

coordinating scheme). That is, she recognized of a situation in which she could posit a 

frame of reference as a unit and insert it into another frame of reference resulting in 

combined frames of reference. In the cubic fish tank, the insertion of a two-dimensional 

frame of reference into another and multiplicatively coordinating them allowed her to 

locate the fish’ location along all three spatial dimensions that spanned the three-

dimensional space of the tank. Because the length, width, and height measurements for 

each fish were multiplicatively coordinated, when demonstrating the movement from one 

fish to another, she considered the change in each measurement between the two fish. 

To construct and enact a FR coordinating scheme, I conjectured that Kaylee 

enacted operations of decentering, rotating, and bringing forth images of one perspective 

alongside another. Then, Kaylee disembedded the frame of reference constructed for one 

side of the tank, taken from one perspective and inserted it into another frame of 

reference constructed for another side of the tank, taken from a different perspective. 

Uniting and multiplicatively coordinating the two sets of frames of reference resulted in a 

representation of the four fish along all three spatial dimensions. By multiplicative 

coordination I mean that the locations of a fish were gauged with the simultaneous 

realization that the fish had a specific location along all three dimensions. Therefore, I 

hypothesized that Kaylee’s three levels of units coordination supported such mental 



 

239 

actions and that the FR coordinating scheme required mental operations that are essential 

for coordinating three levels of units. 

Although she started off with accounting for only two spatial dimensions in her 

fish tank representation, Morgan showed progress in accounting for all three dimensions 

in the fish’s locations. There were two elements in the teaching episode that I attributed 

to such progress—the task requirement to account for the motion of points and her 

assimilation of Kaylee’s measuring activities. I claimed that through attending to the 

movement of one object to another within the three-dimensional space and through 

assimilating Kaylee’s measuring activities, Morgan constructed a rectangular frame of 

reference at least in activity and coordinated measurements that allowed her to explain 

the movement of one fish to another or to re-organize her locating of the four fish.  

By the way Morgan randomly added the four fish to her sketch without looking at 

the fish tank, I inferred that Morgan no longer depended on the perceptual imagery of the 

cubic fish tank; now the coordination became operative and she seemed to be aware that 

her coordination would work for any location of the fish in the tank. Finally, by the way 

that Morgan was able to point to one fish on the top of the tank and relate the location of 

that fish in the side face of the tank, and discuss what each sketch of the tank allowed her 

to find in terms of the location of the fish, I inferred that she has coordinated the two 

perspectives multiplicatively (one taken from the side view and one taken from the top 

view) to locate the fish. 
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Cylindrical Tank: Locating the Four Fish 

Exploratory phase. 

Towards the end of our teaching episode on November 12, I asked the students to 

explore the cylindrical tank and think about how they might locate the fish in the tank. 

The round shape of the tank provided a new challenge to the students. Their initial 

approach to the task is illustrated in the following excerpt.  

Excerpt 5.14: Kaylee and Morgan share initial thoughts about the cylindrical tank. 

M: I don’t know how you would find them. 

T:  So, it seems like you’re thinking differently from what you just did a while 

ago [pointing to Morgan’s gridded square sketch; Figure 5.34].  

M: Yeah, because it’s not a … 

K: You can’t do a… 

M: You can’t do a grid because it’s not… 

T: Ah… 

K: Unless you make a square kind of edges in there… 

T: What do you mean by that? 

K: Like… 

M: You can draw a circle out of this [drawing a circle in her gridded square 

sketch with her finger]. Like you could draw…  

K: [Lays ruler on top of the cylindrical tank (Figure 5.41 (a) and looks at the 

tank. Then she looks at Morgan’s sketch in Figure 5.41 (b)]. 

M: Here’s your little grid thingy and then you can draw the circle out of it 

[Starts sketching the square grid and circle inside of it as shown in Figure 

5.41 (b)] and then you can still have your grid in it. So, it’s like you pretty 

much draw your thing, grid, and then you draw your circle [remakes a 

sketch as shown in Figure 5.41 (c)]. And then you have your grid. 

    
        (a)                                    (b)                                              (c) 

Figure 5.41. Kaylee and Morgan share initial thoughts about the cylindrical tank. 
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[Continued.] 

T: Okay, that’s cool. What were you [referring to Kaylee] talking about? 

K: Kind of like the same thing but just opposite. Put the square inside the 

circle but this would be kind of like outside of it [points to the side of the 

cylindrical tank]. 

At first, both students seemed troubled by the new shape of the tank case; 

different from the cubic tank, the cylindrical tank was curved and did not have any faces. 

Although I pointed to the grid to refer to their activity in the cubic fish tank case, which 

may have induced some association of the new situation with the grid they used earlier, 

both students decided how to use the grid independently. Morgan and Kaylee continued 

working on the cylindrical tank task on November 14 and November 19. 

On November 14, I asked the students to work on locating the four fish in the 

cylindrical tank. Earlier in the teaching episode, Morgan had made a square-shaped grid. 

Kaylee suggested that Morgan trace the top of the tank onto the grid (see Figure 5.42).  

 

Figure 5.42. Morgan’s trace of the top of the cylindrical tank. 

After Morgan traced the circled onto the grid, Morgan said she was going to cut it 

out. However, Kaylee suggested that “you need this point to know exactly where it would 

be” as she was pointing to the bottom left corner of the square, perhaps referring to the 

origin they discussed earlier in the cubic fish tank case. Morgan agreed with Kaylee’s 

observation and then wrote 0, 1, 2, 3, 4, 5, 6 next to each one-inch mark along the vertical 
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axis as shown in Figure 5.42. Now her labels were next to the lines and not next to the 

segments between them; Morgan no longer looked for the sections after plotting the fish 

but used the grid lines as a guide for locating the fish.  

Both students sat in thought until Morgan changed the course of the discussion by 

introducing another idea for locating the fish in the cylindrical tank. Morgan asked 

Kaylee if she measured the height of the tank. Using a ruler, Kaylee determined the 

height to be 10 inches. Excerpt 5.15 starts with Morgan sharing her new idea using the 

height of the tank. 

Excerpt 5.15: Morgan partitions the height of the cylindrical tank. 

M: So, here’s our little cylinder [Draws the outline of a cylinder on her paper]. 

We can, um, so you said it was ten, right? [Places ruler vertically against 

cylindrical tank.]  

K: Mm-hmm. 

M: What we can do is, um, we can plot out like ten points [moves ruler to her 

piece of paper and starts marking 1 inch intervals along the ruler up to 10 

inches (Figure 5.43 (a))]. 

                   
       (a)                                             (b)                                             (c) 

Figure 5.43. Morgan and Kaylee constructing circles 1 inch apart on the side of the tank. 

[Continued.] 

T: Mm-hmm. 

M: And from that point, pretty much just round it around the thing [draws an 

ellipse starting from the 1-inch mark on the top (Figure 5.43 (b))]. So you 

can draw cir…Things around it [waves hand in circular motion around the 

cylindrical tank]. You know what I’m saying? 
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K: Oh, yeah, yeah, yeah. 

M: And then, you can go from there. 

K: Let me do that [picks up ruler and places it against the cylindrical tank 

and makes 1-inch marks along the side of the cylindrical tank using a dry-

erase marker (Figure 5.43 (c))]. 

As shown in Excerpt 5.15, Morgan first initiated the idea of marking 1 inch 

intervals horizontally along the side of the tank. Morgan partitioned the ten inches of 

length consisting the height of the tank into ten one inch units, similar to her earlier 

activity in partitioning the edges of the cubic tank. From Morgan’s sketches shown in 

Figure 5.43 (a) and (b) and her circular hand motion, I inferred that she was thinking of 

circular cross sections horizontal to the top and bottom of the tank, 1 inch apart. 

Combining this idea with her partitioning of the height of the tank, I inferred that Morgan 

partitioned the three-dimensional tank into circular disk layers that were each 1 inch high. 

Superimposing these layers into the cylindrical tank in order to locate the fish was 

different from her earlier activities in the cubic tank where she superimposed the grids 

after she located the fish.  

 

Figure 5.44. Kaylee and Morgan wrapped wax string around the tank 1 inch apart. 
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Because the dry-erase marker was not visible enough and since Morgan made a 

circular motion around the tank as if she was wrapping a string around the tank, I asked 

them if they could use the wax string on the table. Immediately, the two girls starting 

wrapping the wax string around the tank using the 1 inch marks Kaylee made earlier, as 

shown in Figure 5.44.  

Because we were running out of time, I suggested that I would prepare the tank 

with 1 inch marks for the next teaching episode. From the students’ actions I observed so 

far, I inferred that they imagined the grid on top of the tank. So, putting the gridded 

square on top of the tank, I asked them to imagine they had all the wax strings along the 

1-inch marks wrapped around the tank and talk about how they would locate the fish. 

Although I initiated the activity of laying the grid on top of the tank, my action did not 

seem out of reach of the students. In the following excerpt, Morgan continues sharing her 

idea. 

Excerpt 5.16: Morgan talks about how she would use the grid and the circles. 

M: Okay, so, say there is one right there [makes a random point in the circle 

on the grid].  

T:  Uh-huh. 

M: You would say, oh, that’s in the middle…That’s at two point five… 

[moving her pen vertically along the left side edge of the square (where 

she inscribed the 0, 1, 2, 3, 4, 5, 6).] One, two, three, two…Three point 

five [moving her pen horizontally along the bottom edge of the square]. 

And then, it’s like one, two, three, four [moves her pen along the side of 

the tank vertically, counting for each wax string] units down. It’s four 

units deep. So, you go here [pointing to the point in the circle on the paper 

laid on the top of the tank] and then you go four units deep [pointing her 

pen downwards]. 

K: Yeah. Because this one [pointing to the side of the tank] won’t help you 

with how far in or… This [sweeps her finger along the wax string that is 

tied onto the side of the tank] just shows you how deep it is because you 

can’t tell how far in it is because it’s not straight. 

M: Yeah. 
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Consistent with her organization of the cubic tank, Morgan first located the fish 

on the top of the tank and then coordinated the location of the fish in her drawing of the 

top of the tank along with the depth of the fish. Morgan did not refer to any specific fish 

in the cylindrical tank but used an imaginary fish to explain how she would use the 

gridded square and the one-inch marks on the side of the tank. In inferred this to indicate 

that her coordinated system of measurements has become operational and no longer 

relied on perceptual imagery of the fish within the tank. Thus, her system of 

measurements obtained through a coordination of horizontal and vertical distances in the 

top view of the tank along with the depth of each fish from the side view of the tank now 

also worked for another case—the cylindrical tank.  

In the next teaching episode on November 19, five days after the previous 

teaching episode, I asked Kaylee and Morgan to work separately on locating the four fish 

in the cylindrical tank and then to share their ideas. One of my goals was to explore if 

Morgan would initiate the activity of laying the grid on the top of the cylindrical tank and 

coordinating it with her organization of the side of the tank to locate the fish in a 

consistent manner. Second, by asking the two students to work separately, my goal was 

to explore Kaylee’s way of thinking, because Morgan led the majority of the discussions 

in the exploratory phase of the cylindrical tank. Additionally, I prepared the 1 inch marks 

as shown in Figure 5.45, because I promised to do so in the previous episode. I also 

brought the circular map they used in the North Pole Task and the gridded square Morgan 

constructed in the previous episode (Figure 5.42) and told the students that they could use 

any of the artifacts that were on the table. In the following sections I elaborate on how 

Kaylee and Morgan each located the fish in the cylindrical tank. 
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Figure 5.45. Cylindrical tank with strips of tape attached one inch apart. 

Morgan locates the four fish in the cylindrical tank. 

At the beginning, Morgan recalled that she had found a strategy in the last 

teaching episode. After a few seconds trying to remember what the strategy was, Morgan 

started with a sketch of the frame of the cylinder, which was not to scale with the actual 

length of the side of the cylindrical tank. Next, she counted the number of tape strips 

along the side of the tank and drew the tape strips into her cylindrical frame sketch (see 

pink curved lines in Figure 5.46). Next, Morgan looked at the side of the tank and 

counted the number of tape strips starting from the top rim of the tank down to where 

each fish was, resulting in a list of each fish and the layer number they were contained in 

(see list of layers written on top of the cylindrical figure in Figure 5.46). Then, without 

looking at the tank, she added “x” marks to the corresponding layers she identified in her 

list above the tank, as shown in Figure 5.46.  
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Figure 5.46. Morgan’s representation of the cylindrical tank. 

After she completed her drawing of the tank from the side view, Morgan stood up 

and looked down onto the tank. After thinking for a few seconds, she laid her ruler on the 

top of the tank while looking down onto her sketch of the side of the tank (Figure 5.47).  

 

Figure 5.47. Morgan thinking about the two views (top and side) of the cylindrical tank. 

The way she intently looked at her sketch of the side of the tank as she laid the 

ruler on the top of the tank suggested that Morgan was coordinating the two perspectives 

(side view and top view of the tank) in activity. Switching back and forth from both 

perspectives, Morgan seemed to think about what she would need to find from the top 
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view. After exclaiming how difficult it was to see through the tank from the top, Morgan 

looked at her sketch and then at Kaylee’s, then she whispered that she had an idea. She 

rotated the tank so that the sticker label was in front of her, and laid her ruler on top of 

the tank so that the ruler was in line with the sticker label, as shown in Figure 5.48. At 

this point, Kaylee had sketched the sticker label onto her drawing of the cylindrical tank. 

It seemed like seeing Kaylee’s idea of using the sticker label to fix the orientation of the 

tank triggered in her a new idea.  

     

Figure 5.48. Morgan laying the ruler on the top of the cylindrical tank. 

After laying the ruler on the top of the cylindrical tank as if measuring the 

diameter of the circle as shown in Figure 5.48, Morgan pointed out how her circle on the 

grid was not the same size as the top of the tank. Morgan looked intently at the ruler for a 

longer time than one would expect someone to simply measure the diameter of a circle. 

After looking at the ruler, Morgan moved the ruler to her gridded square as shown in 

Figure 5.49 (a) and marked a point on her sketch, presumably where she measured off 

one of the fish visually. Therefore, I inferred that Morgan also measured the distance 

along the ruler from one end of the rim of the tank to where she saw one of the fish from 

the top view. The way she placed her ruler in the middle of the sticker, I hypothesized 

that Morgan intended to measure the distance in line with her vertical lines of her grid. 
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Therefore, I conjectured that Morgan used her grid structure to guide her measuring 

activities.  

After Morgan marked her first fish onto her sketch of the top view (Figure 5.49 (a) 

and (b)), Kaylee rotated the tank and wanted to work on it from that specific orientation, 

which required not moving the tank around; therefore, Morgan improvised. Looking from 

the side of the tank, Morgan added three more points to her sketch (Figure 5.49 (c)). I 

interpreted this action to indicate that Morgan made estimations of where the remaining 

fish might be, not wanting to wait until Kaylee was finished. 

     
                   (a)                                           (b)                                             (c) 

Figure 5.49. Morgan locates the four fish on her representation of the top view of the 

cylindrical tank. 

In the following excerpt, Morgan explains her way of locating the four fish in the 

cylindrical tank.  

Excerpt 5.17: Morgan talks about how she located the fish in the cylindrical tank. 

M: Okay, so, mine was, I was looking from, I guess the side point of view 

[lowers her eye level as if she’s leveling her line of sight with the side of 

the tank]. It doesn’t matter which side, way, you’re looking at. Because 

you can see what layer, I guess, [pointing to the tape strips], they’re in. 

K: Oh… 

M: And so, I went from layers [pointing to the layers in her sketch (Figure 

5.46)]. And then, so, you know what layer they’re in [Moves her sketch 

(Figure 5.46) to the side and pulls her other sketch (Figure 5.49 (c)) in 

front of her]. And then from, like, one point of view [pointing to the top of 

the tank], I said, well, if you have that fish closest to you [rotates the tank 

so that the orange fish closest to the top of the tank is in front of her 
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(Figure 5.50)] and you look over [again, points to the top of the tank], and 

you can see where they all are. And then you look at them [pointing to a 

point she sketched in the circle on the grid (Figure 5.49 (c))] and like, oh, 

it’s down in the sixth layer you go down six layers.  

K: [Nods vigorously, as if she understands and agrees with Morgan’s 

explanation]. 

T: So, you’re using both of these [pointing to her two sketches (Figures 5.46 

& 5.49 (c)) at the same time]… 

M: Yes. 

 

Figure 5.50. Morgan explaining her way of locating the fish in the cylindrical tank. 

In Excerpt 5.17, Morgan’s explanation was more focused on how she coordinated 

the two views of the fish tank. She indeed coordinated the top view induced sketch with 

the side view induced layers of the fish tank. However, from the way she intently looked 

at her sketch of the side of the tank as she laid the ruler on the top of the tank I inferred 

that Morgan was coordinating the two perspectives (side view and top view of the tank) 

in activity. Switching back and forth from both perspectives, I conjectured that Morgan’s 

coordination of the two perspectives (top view and side view) was sequential. That is, 

first taking the side view of the tank, Morgan identified the layer in which the fish was 

located in. Then, putting that aside, Morgan identified where on the top view of the tank 

the fish was in. Finally, she put together the two locations she found from the two views. 

Whether her coordination of the two perspectives were brought forth in co-presence with 

each other or sequentially was to be further tested. 



 

251 

Although she previously coordinated measurements along her grid to represent 

the top view (Figures 5.48 and 5.49), Morgan did not mention the grid, the sticker, nor 

how she anchored the grid onto the top view of the tank. Instead, she relied on perceptual 

imagery commenting “if you have that fish closest to you” and “you look over and you 

can see where they all are.” Therefore, related to my conjecture that her coordination of 

the two perspectives was sequential, I conjectured the logical multiplication of 

measurements along the two dimensions in the first representation (top view grid) was 

not preserved and inserted into the third dimension. Therefore, different from Kaylee, I 

hypothesized that Morgan was yet to construct a FR coordinating scheme but could enact 

the action of coordinating frames of reference sequentially in activity. This hypothesis 

was consistent with my previous conjecture that the FR coordinating scheme required 

mental operations essential for coordinating three levels of units and Morgan’s initial 

interview (reasoning as if she could operate with three levels of units in activity).  

Kaylee locates the four fish in the cylindrical tank. 

Different from the cubic tank case, the cylindrical tank required time to think and 

some trial and error for Kaylee. First, after looking at the tank for a few seconds, Kaylee 

produced a drawing as shown in Figure 5.51 (a). More specifically, Kaylee sketched the 

frame of the tank, added curved line segments as to depict the strips of tape marking the 

one inch intervals along the side of the tank. After sitting in thought again, looking at her 

sketch and then the tank several times for approximately 10 seconds, Kaylee added a 

circle below her sketch of the cylindrical tank. Then, she rotated the tank so that the 

sticker label on the tank was in front of her and depicted the sticker label in her drawing 

of the cylindrical tank (Figure 5.51 (a)).  
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                                 (a)                                            (b) 

Figure 5.51. Kaylee’s first and second drawings of the cylindrical tank. 

However, Kaylee did not seem to be satisfied with this first approach. After 

looking at the tank for approximately five seconds, she turned to a new piece of paper. 

She started sketching a new cylindrical frame; this time she used her ruler to measure the 

height of the tank, which was 10 inches and made the height of her second drawing of the 

cylinder 10 inches long. Then, she drew in the sticker label on her cylinder sketch, 

marked off 1-inch marks along the left edge3 I labeled OA in Figure 5.51 (b) and drew in 

the strips of tape onto her cylinder representation as shown in Figure 5.51 (b).  

Finally, Kaylee started to copy the fish onto the frame of the cylinder. Moving her 

body away from the tank and lowering her torso, she looked straight as if she was trying 

                                                 

 

 

 

3 Cylinders do not have edges. By left edge I refer to the left edge of the rectangular cross 

section passing the center of the cylinder, perpendicular to its base; it corresponds to OA 

in Figure 5.55 (b) in Kaylee’s sketch of the cylindrical tank.  

1 

2 

4 

3 

O 

A 
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to align her line of sight with the side of the tank. Then, she tapped on each strip of tape 

from the top of the tank, moving downwards to where her first fish was, copied that 

tapping action along the curved lines she drew in her sketch and fixed her finger on the 

place corresponding to the place on the tank, in reference to the number of strips she 

needed to count starting from the top of the tank. Staring back and forth at the tank and 

her sketch for approximately ten seconds, she marked her first fish (the one I labeled “1” 

in Figure 5.51 (b)). It seemed like once she identified the layer, Kaylee visually estimated 

the location of the fish within that layer. 

Next, Kaylee laid a ruler horizontally along the tank with the starting point of the 

ruler at the left edge of the tank going pass the next fish. She used the ruler to measure 

how far to the right the next fish was from the left edge of the tank. Then she moved her 

ruler to her sketch of the cylinder, tapped on the curved lines and marked the horizontal 

distance she just measured onto the corresponding layer, with reference to the tape strip. 

Coordinating these two measurements, Kaylee marked the point and drew a fish shape 

onto her sketch (the one I labeled “2” in Figure 5.51 (b)). After staring at the fish tank for 

a few seconds, Kaylee added fish 3 in her sketch in Figure 5.51 (b). Finally, she repeated 

a similar activity as the second fish by lowering her torso to align her line of sight with 

the location of the fish, laid the ruler horizontally starting from the left edge of the tank 

(Figure 5.52(a)), measured the distance of how far to the right into the tank the fish was 

from the left edge of the tank, counted along the tape strips starting from the top, and 

coordinated those measurements in her sketch to complete locating her fish 4 shown in 

Figure 5.51 (b).        
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                                             (a)                                       (b) 

Figure 5.52. Kaylee locating the second and fourth fish in the cylindrical tank. 

I identified the way Kaylee located fish 1 and 3 to be similar to the locating 

activities that Morgan initially demonstrated in the cubic tank case. Kaylee stared at the 

tank and the fish for relatively long amounts of time and made visual copies of the 

location of the fish, especially along the horizontal axis. Kaylee did not carry out any 

explicit measuring activities other than making visual estimations using the tape strips on 

the side of the tank. Kaylee’s way of locating fish 2 and 4 seemed very similar to the 

locating activities that she demonstrated in the two-dimensional faces of the cubic tank. 

From the way Kaylee laid the ruler on the tank and lowered her torso to align her line of 

sight with the side of the tank, I hypothesized that Kaylee had simplified the side view of 

the cylindrical tank as a rectangle and has superimposed a rectangular frame of reference. 

This hypothesis was corroborated by Kaylee’s explanations of her locating activity. In the 

following excerpt, Kaylee explains how she located the fish in the cylindrical tank. 

Excerpt 5.18: Kaylee explains how she located the fish in the cylindrical tank. 

K: So, I kind of like, looked at it like, from this view, with the sticker right in 

the middle [tapping on the sticker label on the tank that was facing 

towards her]. I looked at kind of like a rectangle [makes a rectangle along 

the edges of the tank with both index fingers] instead of a… Like if this 

were to be a, I don’t know. So, I just plot how far from where I can see to 

the thing is [puts two index fingers together; the left index to show the left 

edge of the cylindrical tank as her reference and the right index moving 
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horizontally, parallel to the tape, from the fish towards her left index 

(Figure 5.52 (b))], and then how far down, so… Exactly like the cube, I 

guess. Way less exact [laughing nervously].  

T: So, you were making kind of like the side view of the tank. 

K: Yeah. 

As demonstrated in her comment, “I looked at kind of like a rectangle,” I inferred 

that Kaylee superimposed a rectangular frame of reference onto the vertical cross section 

of the cylindrical tank, as modeled in Figure 5.53.  

 

Figure 5.53. A model of Kaylee’s rectangular frame of reference superimposed onto the 

side of the cylindrical tank. 

Different from the cubic tank case, Kaylee did not explicitly address the third 

dimension in her explanation or in her sketch in Figure 5.51 (b). Her hesitance in carrying 

out her measuring activities, indicated by several pauses and frequent glances at the fish 

tank, along with her not considering the third dimension was different from her earlier 

activities in the cubic fish tank case. Although Kaylee’s approach seemed similar to 

Morgan’s first approach in the cubic fish tank case, in Kaylee’s case, she appeared to be 

aware that her description was “[w]ay less exact” than the perceptual space she was 

representing. 

Kaylee’s line of 

sight 
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I attributed this difference to the physical characteristic of the cylindrical tank. 

Earlier in the previous teaching episode on November 12, when I mentioned the origin 

they have identified in the cubic tank case, Kaylee was skeptical about identifying an 

origin in the cylindrical tank case. Kaylee pointed out how there was no “side” to the tank. 

Because there was no specific “side” she could anchor her system of measurements onto, 

this may have provided a perturbation for Kaylee. To resolve part of this perturbation, 

Kaylee seemed to latch onto the sticker on the fish tank to fix the orientation of the tank 

and instead produced a cross section of the tank and a representation of the tank using 

that cross section, as depicted in Figures 5.51 (b). After both Kaylee and Morgan 

discussed their approaches, Kaylee reflected on her way of thinking.   

Kaylee’s critique of her locating activity in the cylindrical tank. 

Once both students had a chance to explain their re-presentations of the 

cylindrical tank and the four fish, I asked the two students to talk about each other’s 

approach. The following excerpt starts with Kaylee’s explanation of her way of locating 

the fish in the cylindrical tank, in comparison to Morgan’s approach. 

Excerpt 5.17: Kaylee’s reflection on her locating the fish in the cylindrical tank. 

K: Yours [referring to Morgan] is more like what we did earlier, like that, on 

the top and the side [moves hand from top of the tank to side of the tank as 

she said top and side]. 

M: Yeah. 

K: Where mine doesn’t show like, how far in [moves her pen in front of her 

to demonstrate the direction], it’s just how, like, if it were to be flat, where 

they would be, I guess. Like, mine doesn’t show the width, no, yeah, I 

guess width. Like, how far in [again, moves her pen in front of her 

towards the tank].  

M: Yeah.  

K: Like, I guess, mine just shows if this were to be flat and bring all this up 

[moves hands along the sides of the tank as if she’s pulling the volume 

towards the front of the tank] where it would be like, length and height 

[moves finger along the left side of the tank and then along the bottom of 

the tank].  
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T: Mm-hmm. Mm-hmm. 

K: Yeah, so yours just kind of with the layers and the, this thing [pointing to 

Morgan’s sketch (Figure 5.49 (c))] shows like, everything. 

Her earlier comment that her description was “way less exact,” her reaction to 

Morgan’s explanation in Excerpt 5.17 (“Oh…” while nodding vigorously), and her 

remarks in Excerpt 5.19 (admitting that she omitted it) suggested Kaylee was aware of 

the third dimension but it seemed like she did not know how to account for it in her 

representation. Once she listened to and saw Morgan’s demonstration, she was quick to 

reflect on the limitations of her approach and articulated what Morgan had considered, 

mentioning length, width, and height.  

After Kaylee expressed her critique, I wanted to test whether Kaylee would adjust 

her representation of the cylindrical tank to eliminate the perturbations she met in the new 

situation and assimilate the new situation to her existing conceptual structure of three-

dimensional perceptual space, which she demonstrated in the cubic fish tank case. 

Therefore, I asked the students to give directions for Fish 1 to swim to Fish 2 in the 

cylindrical fish tank. Another reason I posed this question was to test my hypothesis that 

Morgan sequentially coordinated the two perspectives (top view and side view), and that 

her the logical multiplication of measurements along the two dimensions in the first 

representation (top view grid ) was not preserved and inserted into the third dimension. 

Kaylee and Morgan Describe Fish 1 moving to Fish 2 in the Cylindrical tank 

Using her two sketches, Morgan located Fish 1 in the eighth layer and Fish 2 in 

the sixth layer. Therefore, she concluded that “he [Fish 1] will go up two [making 

inscriptions as outlined in red in Figure 5.54 (a)] and then he’ll have to go over however 

many this is [drawing the green arrow outlined in a red rectangle in Figure 5.54 (b)].”  
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                     (a)                        (b)  

Figure 5.54. Morgan’s diagram explaining the movement of Fish 1 to Fish 2 in the fish 

tank. 

I interpreted Morgan’s inscription along with her explanation of “and then he’ll 

have to go over however many this is” to indicate that she viewed the motion on the top 

of the tank in a straight line connecting the two points representing Fish 1 and Fish 2. 

Kaylee also interpreted Morgan’s explanation in a similar manner and disagreed with 

Morgan saying that “he [Fish 1] has to move three times.” The following excerpt is the 

discussion that unfolded after they met that disagreement. The excerpt starts with Morgan 

explaining how Kaylee’s approach is different from hers. 

Excerpt 5.18: Morgan and Kaylee talk about Fish 1 swimming to Fish 2 in the 

cylindrical tank. 

M: So, she’s basing it off of length, width, and height. Mine is based off of 

well, units. If you go up two then you go over like four. So that’s going to 

be two turns, or lines you’re going to take, instead of like three.  

K: Yeah, I get what you’re saying. Okay, let’s say here’s one and here’s two 

and then here’s one and here’s two [draws diagrams shown in Figure 5.55 

(a)]. That’s actually pretty good. So, you have to go up the layers. So he 

goes, let’s say it’s, that’s two layers. So, he goes up two layers, or two 

inches, or whatever. So, now he’s in line. But he’s over here [pointing to 

the point on the right in the circle in Figure 5.66 (a)] but they’re still in 

line. So, let’s say they’re on the top now. So, he has to go this way and 

Fish 2 

Fish 1 

Fish 1 

Fish 2 
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then this way, that’s three units [draws the horizontal and vertical path 

with an arrow at the end shown in the diagram as shown Figure 5.55 (b)], 

three different measurements you’d have to go. 

  

                (a)                        (b) 

Figure 5.55. Kaylee’s diagram explaining the movement of Fish 1 to Fish 2 in the 

cylindrical tank. 

[Continued.] 

T: Ah, so it’s kind of like the… 

M: But it’s in the, why would you have to if it’s a circle, though. 

K: I mean, we’re still using a square grid [shows the grid (Figure 5.54 (b) to 

Morgan]. 

M: You only need two straight lines though, you know what I’m trying to say? 

Like, they’re already in line [moves her pen along the straight arrow from 

Fish 1 to Fish 2 in the left of Figure 5.55 (b)]. Then he could just go 

straight to him, instead of moving two times.  

K: Yeah, but how would you know if you’re plotting a point, it’s easier to do 

[points to the grid], I guess. 

M: Okay, so, that’s how they are. So you want to go up the two, and they’re 

going to be even. So why wouldn’t he just go...[draws a diagram as 

shown in Figure 5.56 demonstrating Fish 1 moving to Fish 2 in a 

somewhat circular motion]. 

 

Figure 5.56. Morgan’s diagram explaining the movement of Fish 1 to Fish 2 in the 

cylindrical tank. 
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[Continued.] 

K: No, they’re not even. They’re on the same layer but they’re in different 

spots [placing two fingers one at each fish in the circle in Figure 5.55 (b).] 

M: Yeah, so he can just swim to him [uses her pen and makes a circular 

motion on the top of the tank as if the fish is swimming along the side of 

the tank]. 

K: Well, how would you tell him to find this length [adds the arrow 

connecting Fish 1 and Fish 2 in the circle in Figure 5.55 (b)]? On the plot 

[pointing to the grid]? 

M: You wouldn’t be going straight, because this is, you’d be going around the 

circle to find him [repeats the sweeping of her pen in a circular motion on 

the top of the tank]. 

K: Well then how would you measure that? 

Morgan’s explanation at the beginning of Excerpt 5.18, “If you go up two then 

you go over like four. So that’s going to be two turns, or lines you’re going to take, 

instead of like three” corroborated my hypothesis that her green arrow inscription in 

Figure 5.54 (b) indicated a straight movement. Morgan was aware of Kaylee’s length, 

width, height approach but disagreed with it. As such, when asked to describe the motion 

of Fish 1 to Fish 2, Morgan said that Fish 1 would need to take two motions; one going 

up and then another movement as she demonstrated with an arrow in Figure 5.54 (b). 

Morgan described these motions as two straight lines, arguing with Kaylee that it was not 

necessary to take a trip of three lines and only needed two movements.  

I took Morgan’s claim, “You only need two straight lines though … Like, they’re 

already in line. Then he could just go straight to him, instead of moving two times” as a 

corroboration of my conjecture that the logical multiplication of measurements along the 

two dimensions in the first representation (top view grid) was not preserved and inserted 

into the third dimension. Although she used the grid to locate the two fish on the top view 

representation of the tank by coordinating horizontal and vertical distances, when 

describing the movement of the fish once they were on the same layer, the movement no 

longer entailed a coordination of horizontal/vertical distances. Therefore, it is more likely 
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that Morgan coordinated the top view and side view of the tank in succession without 

carrying over her measurements along the two dimensions in the top view representation 

to the side view representation.  

Later in Excerpt 5.18, Morgan changed to using a circular motion of Fish 1 to 

Fish 2 once Fish 1 came to the same layer as Fish 2, as illustrated in her claim at the end 

of Excerpt 5.18, “You wouldn’t be going straight, because this is, you’d be going around 

the circle to find him.” Here, Morgan seemed to attend to the shape of the tank was 

circular. From her sketch in Figure 5.56 and her last comments in Excerpt 5.18, “You 

wouldn’t be going straight, because this is, you’d be going around the circle,” I infer that 

she was thinking of a circular motion of the fish. In either case, her description of “going 

straight” or “going around” in the tank of Fish 1 moving to Fish 2 would end in different 

results based on the perspective that Fish 1 is taking in the moment. Morgan would have 

had to make in-the-moment adjustments to her explanation based on her perceptual 

imagery of Fish 1 swimming to Fish 2.  

On the other hand, although Kaylee did not initiate the coordination of the two 

drawings of the cylindrical tank from different perspectives (top and side view of the 

tank), she has assimilated this way of operating in describing the motion of Fish 1 to Fish 

2. Similar to her actions in the North Pole Task and the cubic tank case, Kaylee engaged 

in decentering from her physical perspective and mentally positioned herself in two 

different positions—one looking down from the top of the tank and the other looking 

from the side of the tank. Then she brought forth images from those perspectives 

alongside each other, simultaneously coordinating the two representations from each 

perspective. This allowed Kaylee to re-enact her organizational scheme for the two-
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dimensional space in the top view perspective and coordinate that with the side view 

perspective. As a result, Kaylee decomposed the spatial movement of Fish 1 to Fish 2 

into three spatial dimensional movements, which she referred to as length, width, and 

height.  

Summary of Cylindrical Fish Tank  

Summary of Morgan’s and Kaylee’s coordinate systems. 

In locating the fish in the cylindrical tank, Morgan first initiated the idea of 

partitioning the cylindrical tank into circular cross sections to find the depth of each fish. 

Then, Morgan coordinated the location of the fish in her drawing of the top of the tank, 

using a gridded square, along with the depth of the fish. Based on her physical actions 

upon the tank (illustrated in Figures 5.47–50), sketches of the fish tank (in Figures 5.46, 

5.49, 5.54, & 5.56), and explanations of her locating activities (in Excerpts 5.17 & 5.18), 

I conjectured that Morgan coordinated the two perspectives (side view and top view of 

the tank) in activity. Switching back and forth from both perspectives, I conjectured that 

Morgan’s coordination of the two perspectives (top view and side view) was sequential.  

Related to my conjecture that her coordination of the two perspectives was 

sequential, I conjectured the logical multiplication of measurements along the two 

dimensions in the first representation (top view grid) was not preserved and inserted into 

the third dimension. Therefore, I hypothesized that Morgan was yet to construct a FR 

coordinating scheme but could enact the action of coordinating frames of reference 

sequentially in activity. This hypothesis was consistent with my previous conjecture that 

the FR coordinating scheme required mental operations essential for coordinating three 
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levels of units and Morgan’s initial interview (reasoning as if she could operate with three 

levels of units in activity).   

On the other hand, Kaylee initially enacted her rectangular frame of reference 

scheme to locate each fish in a rectangular cross section of the tank. Kaylee explained 

that she simplified the tank into a flat rectangle. As a result, her initial approach lacked a 

coordination of measurements along the third dimension, which I attributed to the 

roundness of the tank, similar to a perturbation she met in the circular map in the North 

Pole Task. Although Kaylee did not initiate the coordination of the two drawings of the 

cylindrical tank from different perspectives (top and side view of the tank), she has 

assimilated this way of operating in describing the motion of Fish 1 to Fish 2.  

Similar to her actions in the North Pole Task and the cubic tank case, Kaylee 

engaged in decentering from her physical perspective and mentally positioned herself in 

two different positions—one looking down from the top of the tank and the other looking 

from the side of the tank. Then she brought forth images from those perspectives 

alongside each other, simultaneously coordinating the two representations from each 

perspective. This allowed Kaylee to re-enact her organizational scheme for the two-

dimensional space in the top view perspective and coordinate that with the side view 

perspective. Enacting her FR coordinating scheme, Kaylee constructed a three-

dimensional Cartesian-like coordinate system and decomposed the spatial movement of 

Fish 1 to Fish 2 into three spatial dimensional movements, which she referred to as length, 

width, and height.  
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Extending the cylindrical fish tank. 

Towards the end of teaching episode on November 19, I asked the two students to 

discuss the differences in the cylindrical tank and the cubic tank that impacted their way 

of thinking. Both students contrasted the physical characteristics of the two tanks. As 

Kaylee said, “there aren’t straight lines” in the cylinder. Morgan pointed out that the cube 

has multiple sides whereas the cylinder has only one side. And both students seemed to 

agree that the fact that that feature of the cylinder made it difficult to use elements of the 

tank as a spatial reference in locating the fish.  

To investigate whether the students could generalize their coordinated systems of 

measurements to spatial situations which did not involve any “faces” or “sides,” I asked 

both students to imagine they were in the ocean and how they would locate somebody in 

the ocean. The following excerpts shows Morgan and Kaylee discussing how they would 

locate a person in the ocean including Morgan’s approach to the task. 

Excerpt 5.19: Morgan locates a person in the ocean. 

M: The features around it, I guess. 

K: You can still do, I guess… 

M: Because that’s kind of like here [tapping on the cylindrical tank]… 

K: If I were like in the ocean…[Starts to pick up paper and pen to write 

something]. 

M: Alright, here’s the ocean or whatever [starts sketch of Figure 5.57] and 

like, oh, there’s an island thingy right there, there’s a shore right there. So, 

if we’re standing from the shore, you’ll go blah, blah, blah over there 

[draws a line segment starting from the shore to the left towards the ocean] 

and then you go blah, blah, blah down [draws a line segment starting from 

the surface of the ocean water down into the ocean, ending with an arrow 

(Figure 5.57)] and then you should find that thing.  
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Figure 5.57. Morgan’s diagram of locating a point in the ocean. 

Consistent with her explanation of Fish 1 swimming to Fish 2 in the cylindrical 

tank, Morgan considered two movements, one going straight across from the shore to the 

surface of the ocean and then going down into the water. I find these two movements to 

be analogous to Fish 1 moving up two layers and then swimming in a straight line (or in a 

circular motion) to Fish 2, once Fish 1 is on the same layer as Fish 2. Morgan pointed to 

the cylindrical tank and said “that’s kind of like here,” which is an indication that she 

recognized the ocean situation to one like the cylindrical tank.  

Morgan constructed her own “side” of the ocean, which she called the shore and 

used that as a spatial reference to superimpose a rectangular frame of reference. Based on 

her description, I inferred that Morgan has embedded her perspective within the implicit 

plane through the person at the shore and the person in the water when superimposing her 

rectangular frame of reference. Because her perspective was embedded within the plane, 

she did not consider a movement along the third spatial dimension.  

In the following excerpt starts with Kaylee discussing how she would locate a 

person in the ocean and Kaylee and Morgan’s conversation thereafter.  

  

island 

shore 

ocean 



 

266 

Excerpt 5.20: Kaylee locates a person in the ocean 

K: It’s like, I would do it like I’m in the ocean, this is me right now and this is 

the ocean, I’m under water [starts diagram shown in Figure 5.58 with the 

surface of the ocean and the back of her head]. And so, I would still do it 

like I would have to go this far [draws a line segment starting from the 

diagram of her head vertically, upwards, ending with an arrow (Figure 

5.58)] and then like this far [draws a second line segment starting from 

where the previous arrow ended, horizontally, to the right, ending with 

another arrow (Figure 5.58)] and then like this far down [draws a third 

line segment starting from where the previous arrow ended, vertically, 

downwards, ending with an arrow(Figure 5.58)]. Like deep, I don’t know. 

 

Figure 5.58. Kaylee’s diagram of locating a point in the ocean. 

[Continued] 

M: Why would you go back down? [Points to the third line segment and 

arrow Kaylee drew in her diagram (Figure 5.58).] 

K: Well I mean like, okay, let’s say that this [pointing to her first line 

segment and arrow,] is just straight ahead. Not going up.  

T&M: Oh… 

K: Because I can’t really draw that. And this [pointing to her third line 

segment and arrow (Figure 5.58)] is deep. 

 M: Okay, that makes sense. Now I understand why you’re moving by those 

[pointing to an earlier diagram (Figure 5.55) made to demonstrate the two 

movements (horizontal and vertical) of Fish 1 to Fish 2 in the same layer].  

K: Yeah. 

M: Because that [pointing to Kaylee’s three line segments with arrows in 

Figure 5.58] was confusing me.  

me 

ocean 
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K: Yeah. It’s hard to do on flat paper… So, I’d be like, oh, go like three miles 

straight [writes 3m next to her first line segment with arrow (Figure 5.70)] 

and then like one and a half miles on to the left [writes 1.5 above her 

second line segment with arrow (Figure 5.58)] and then go deep, like… 

M: Point five… 

K: Point five miles and you’ll get him. 

At the beginning of Excerpt 5.20, Kaylee also seemed to have assimilated this 

situation to the cylindrical tank case as she said “you can still do, I guess.” I infer that in 

assimilation, Kaylee enacted her FR coordinating scheme, which resulted in a 

coordination of the top view and side view of the cylindrical tank (and perhaps a similar 

coordination of the two side views of the cubic tank), which in turn enacted her 

decomposition of the person’s movement as length, width, and height. Therefore, 

consistent with her explanation of Fish 1 swimming to Fish 2 in the cubic tank and 

cylindrical tank, Kaylee considered three movements, a movement along each spatial 

dimension.  

Based on Kaylee’s description, I hypothesized that she embedded her perspective 

within the ocean and related the three movements in respect to herself in the ocean, 

resulting in three movements of front/back, right/left, up/down along three spatial 

dimensions. Inferring from the order she gave instructions (go straight, move to the side, 

and then go down) in Excerpt 5.20, Kaylee first coordinated the horizontal right/left and 

front/back movements within a plane, which was the plane in line with her line of sight. 

Then, disembedding this plane as a unit structure, Kaylee inserted it along the third 

dimension which entailed the vertical up/down movement.  

The discussion in Excerpts 5.19 and 5.20 and Figures 5.57 and 5.58 highlighted 

the different ways of operating Morgan and Kaylee demonstrated in the North Pole Task 

and Fish Tank Task, which leads to a summary of Chapter Five.   
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Summary of Chapter Five 

In this chapter, I presented my analysis of Kaylee’s and Morgan’s constructive 

activities in the Locating Tasks (North Pole Task and Fish Tank Task) in which I asked 

both students to locate a point or describe the motion of one point in two- or three-

dimensional perceptual space. Through my observations of the students’ locating 

activities, I analyzed how Kaylee and Morgan constructed frames of reference and 

coordinated measurements using those frames of reference to represent perceptual space. 

Kaylee’s Coordinate Systems 

North Pole Task. 

In the North Pole Task, Kaylee constructed two types of coordinate systems 

which she used to locate point A in relation to point P on the irregular shaped map. First, 

Kaylee constructed an angular frame of reference consisting of an initial ray anchored 

onto the rescuer’s line of sight, a vertex at point P, and a terminal ray through point A 

(Figure 5.3). This frame of reference allowed Kaylee to gauge the amount of rotation the 

rescuer would need to turn to find the missing person. Second, Kaylee constructed a 

rectangular frame of reference consisting of horizontal and vertical lines with the 

intersection of the lines anchored at point P of the map. This frame of reference allowed 

Kaylee to break down the movement along two spatial dimensions finding horizontal and 

vertical distances. Using these frames of reference, Kaylee coordinated angle measure 

and distance or horizontal/vertical distances, respectively, to locate point A in reference 

to point A on the maps. As a result, I claimed that Kaylee had constructed what I would 

consider a polar-like coordinate system and a Cartesian-like coordinate system. 
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Fish Tank Task. 

Kaylee’s use of a rectangular frame of reference and coordination of 

horizontal/vertical distances continued in the Fish Tank Task. From her consistent 

activities across the North Pole Task and Fish Tank Task, I conjectured that Kaylee has 

constructed a rectangular frame of reference scheme to which she assimilated the 

different situations across the tasks. That is, she has constructed a recognition template 

for a situation in which she could associate the use of a rectangular frame of reference, 

activated the activity of superimposing a rectangular frame of reference onto the spatial 

object, and resulted in a Cartesian-like coordination of measurements along two 

perpendicular axes through which she represented the location of objects in a two-

dimensional perceptual space. 

From Kaylee’s consistent manner in which she coordinated two sets of 

rectangular frames of reference in the three-dimensional cubic fish tank case, I 

conjectured that Kaylee had constructed a FR coordinating scheme. That is, she 

recognized of a situation in which she could posit a frame of reference as a unit and insert 

it into another frame of reference resulting in combined frames of reference. In the cubic 

fish tank, she inserted the rectangular frame of reference of the first face along the third 

dimension across the second face she coordinated. In the cylindrical fish tank, she 

inserted the rectangular frame of reference superimposed onto the top view of the tank 

along the third dimension across the side of the tank.  

The insertion of a two-dimensional frame of reference into another and 

multiplicatively coordinating them allowed her to locate the fish’ location along all three 

spatial dimensions that spanned the three-dimensional space of the tank. Because the 
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length, width, and height measurements for each fish were multiplicatively coordinated, 

when demonstrating the movement from one fish to another, she considered the change in 

each measurement between the two fish. As a result, Kaylee coordinated all three spatial 

dimensions that build up the three-dimensional space and the relevant measurements of 

horizontal and vertical distances, producing a three-dimensional Cartesian-like coordinate 

system. Kaylee identified her method as the same across both tanks and summarized her 

approach as finding the length, width, and height of each fish. From this, I conjectured 

that Kaylee has constructed a coordinated a single system of measurements in locating 

the four fish in the fish tanks.  

To construct and enact a FR coordinating scheme, I conjectured that Kaylee 

enacted operations of decentering, rotating, and bringing forth images of one perspective 

alongside another. Then, Kaylee disembedded the frame of reference constructed for one 

side of the tank, taken from one perspective and inserted it into another frame of 

reference constructed for another side of the tank, taken from a different perspective. 

Uniting and multiplicatively coordinating the two sets of frames of reference resulted in a 

representation of the four fish along all three spatial dimensions. By multiplicative 

coordination I mean that the locations of a fish were gauged with the simultaneous 

realization that the fish had a specific location along all three dimensions. Therefore, I 

hypothesized that Kaylee’s three levels of units coordination supported such mental 

actions and that the FR coordinating scheme required mental operations that are essential 

for coordinating three levels of units. 
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Perspective-taking. 

When developing instructions for the rescuer (North Pole Task) or for Fish 1 to 

swim to Fish 2 (Fish Tank Task), Kaylee consistently coordinated two perspectives. In 

the North Pole Task, she coordinated her above-the-ground perspective and an imaginary 

on-the-ground rescuer’s perspective. Coordinating these two perspectives obtained 

through decentration, Kaylee developed instructions using route descriptions (Taylor & 

Tversky, 1996) in which the descriptions are oriented from the rescuer’s perspective. 

Similarly, in the Fish Tank Task, Kaylee coordinated her outside-of-the fish tank ego-

oriented perspective and an imaginary in-the-water fish’s perspective. Coordinating these 

two perspectives, Kaylee developed instructions for the fish, breaking down its 

movement along all three spatial dimensions. In these instances, I hypothesize that 

Kaylee transferred her ego-oriented perspective to the imaginary rescuer’s or fish’s 

perspective embedded within the perceptual space through decentering. In addition to 

decentering, I conjecture that Kaylee unitized each perspective as two independent 

perspectives but also coordinated the two perspectives simultaneously. This allowed her 

to coordinate multiple frames of reference superimposed onto the perceptual space from 

different perspectives. 

Morgan’s Coordinate Systems 

North Pole Task. 

In the North Pole Task, Morgan initially took a more temporal approach in that 

she wanted to give in-the-moment instructions to the rescuer or the missing person from 

the helicopter. Later in the teaching episode, Morgan considered connecting the two 

points P and A and measuring the distance between the two points in the irregular shaped 
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map. In the circular map case, Morgan used two perpendicular paper folds Kaylee 

previously made through the center of the circle and their intersection (circle center P’) as 

a references. Using the paper folds as a rectangular frame of reference, Morgan 

coordinated vertical and horizontal distances to locate point A’ in reference to point P’. I 

conjectured that the paper folds of the circular map may have led to Morgan enacting 

graphing activities she learned in school and that Morgan has assimilated Kaylee’s 

coordination of horizontal and vertical distances in the irregular shaped map case.  

In any event, I considered Morgan’s construction of a rectangular frame of 

reference to be made in activity in that Morgan carried out the folding activities Kaylee 

carried out and paused to think as she engaged in the task. Although in activity, I 

conjectured that Morgan demonstrated their coordination of vertical and horizontal 

distances entailed a logical multiplication of measurements (Piaget et al., 1960) in which 

the measurements were oriented by the rectangular frame of reference. In other words, 

Morgan eventually located point A multiplicatively as a product of a coordination of its 

location along one spatial dimension with the realization that the point had a specific 

location along the other spatial dimension. 

Fish Tank Task. 

Morgan’s illustrations, actions, and explanations gradually shifted from making 

visual estimations of the location of the fish to using spatial references to coordinate 

measurements. When representing the fish tank from visual estimations, Morgan added a 

grid onto her sketch after she located the fish to specify which section on the grid the fish 

were located in. After listening to Kaylee’s way of locating the four fish in the tank and 

Kaylee’s critique about her sketch, Morgan seemed to assimilate Kaylee’s approach and 
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make modifications in her spatial organizing activities. Morgan transitioned from using 

the grids to communicate the squares in which the fish were located to using the grids as 

a frame of reference to guide her measurement activities.  

Although she started off with accounting for only two spatial dimensions in her 

fish tank representation, Morgan showed progress in accounting for all three dimensions 

in the fish’s locations. There were two elements in the teaching episode that I attributed 

to such progress—the task requirement to account for the motion of points and her 

assimilation of Kaylee’s measuring activities. I claimed that through attending to the 

movement of one object to another within the three-dimensional space and through 

assimilating Kaylee’s measuring activities, Morgan constructed a rectangular frame of 

reference in activity and coordinated measurements that allowed her to explain the 

movement of one fish to another or to re-organize her locating of the four fish.  

By the way Morgan was able to point to one fish on the top of the tank and relate 

the location of that fish in the side face of the tank, and discuss what each sketch of the 

tank allowed her to find in terms of the location of the fish, I inferred that she has 

coordinated the two perspectives multiplicatively (one taken from the side view and one 

taken from the top view) to locate the fish. However, I conjectured that Morgan 

coordinated the two perspectives (side view and top view of the tank) in activity. 

Switching back and forth from both perspectives, I conjectured that Morgan’s 

coordination of the two perspectives (top view and side view) was sequential.  

Related to my conjecture that her coordination of the two perspectives was 

sequential, I conjectured the logical multiplication of measurements along the two 

dimensions in the first representation (top view grid) was not preserved and inserted into 
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the third dimension. Therefore, I hypothesized that Morgan was yet to construct a FR 

coordinating scheme but could enact the action of coordinating frames of reference 

sequentially in activity. This hypothesis was consistent with my previous conjecture that 

the FR coordinating scheme required mental operations essential for coordinating three 

levels of units and Morgan’s initial interview (reasoning as if she could operate with three 

levels of units in activity).   

Perspective-taking. 

When developing instructions for the rescuer (North Pole Task) or for Fish 1 to 

swim to Fish 2 (Fish Tank Task), Morgan’s descriptions were based on her perspective 

looking down onto the perceptual space. This perspective was not necessarily coordinated 

with the rescuer’s or fish’s line of sight. Hence, I hypothesized that Kaylee had a stronger 

ability to bring forth images of one perspective alongside another and coordinate them 

simultaneously. It is worth noting that different from the North Pole Task, in the Fish 

Tank Task and task of locating another person in the ocean, Morgan started to coordinate 

more than one perspective. In the fish tanks, she coordinated the top view and side views 

of the tanks. In the open ocean task, Morgan coordinated the view looking at the situation 

as shown in Figure 5.57 and the imaginary view of the person at the shore. However, I 

conjectured that Morgan’s coordination of the two perspectives was sequential.  

Based on the results discussed in this chapter, I propose that the FR coordinating 

scheme requires mental operations essential for coordinating three levels of units. Hence, 

there is a parallel between the students’ levels of units coordination and coordination of 

measurements within frames of reference in three-dimensional space. To further explore 

the students’ coordination of perspectives and construction and enactment of the FR 
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coordinating scheme in relation to their levels of units coordination, I investigated how 

they coordinated units along three spatial dimensions. This question was explored 

through the Cubic Block Task, which I discuss in the following chapter.  
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CHAPTER 6  

KAYLEE AND MORGAN COORDINATE UNITS WITHIN THREE SPATIAL 

DIMENSIONS 

In the previous chapter, I presented my analysis of Kaylee’s and Morgan’s 

constructive activities in the Locating Tasks (North Pole Task and Fish Tank Task). 

Through these tasks, I explored how Kaylee and Morgan constructed frames of reference 

and coordinate systems to organize and represent two- or there-dimensional perceptual 

space.  

The analysis in Chapter Five emphasized the difference in perspectives the two 

students coordinated when engaging in these tasks and the mental operations and 

schemes involved in their construction of coordinate systems. Although in the end, both 

students demonstrated a coordination of frames of reference induced by multiple 

perspectives, from the analysis, I claimed that Kaylee’s and Morgan’s coordinations were 

different. Kaylee was able to bring forth her previous frame of reference as she was 

operating with another, so the frames of reference co-occurred in her coordination of 

measurements. On the other hand, Morgan’s frames of reference seemed to be activated 

sequentially, which led to different ways of locating objects and coordinating 

measurements in organizing space.  

Based on the results in Chapter Five, I proposed that the FR coordinating scheme 

requires mental operations essential for coordinating three levels of units; hence, a 

parallel between the students’ levels of units coordination and coordination of 



 

277 

measurements within frames of reference in three-dimensional space. To further explore 

the students’ coordination of multiple perspectives and construction and enactment of the 

FR coordinating scheme in relation to their levels of units coordination, I investigated 

how Kaylee and Morgan coordinated units along three spatial dimensions. This question 

was explored through the Cubic Block Task, which I discuss in this chapter.  

In the Cubic Block Task, I asked Kaylee and Morgan to reason with three cubic 

blocks of various sizes (see Figure 6.1). I asked them questions such as finding the total 

number of unit-cubes contained in each cubic block or the number of unit-cubes that are 

painted. In the teaching episodes, we referred to each block by the number of unit-cubes 

constituting one edge of the cubic block. For example, the 2×2×2 cubic block was called 

“the block with two cubes on each edge.” I refer to the blocks by the dimensions such as 

the 2×2×2 cubic block for the efficiency of writing.  

 

Figure 6.1. The unit-cube and cubic blocks of various dimensions painted on the exterior. 

In the Locating Tasks, the students were required to locate a point or describe the 

motion of one point in two- or three-dimensional perceptual space. The missing person 

point A or the fish in these spatial contexts were visible to the students. On the other hand, 

in the Cubic Block Task, other than the unit-cubes on the faces of the cubic blocks, the 

unit-cube  
2×2×2 cubic 

block 
 3×3×3 cubic 

block 
4×4×4 cubic 

block 
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task required students to anticipate and represent the unit-cubes that they did not have 

immediate perceptual access to. 

Entering the teaching episodes for the Cubic Block Task (November 21 and 

December 6), I hypothesized that the frames of reference that each student constructed, 

reported in Chapter 5, will guide their units-coordinating activities in three-dimensional 

contexts. Based on the findings from the initial interviews (Chapter 4) and the two 

locating tasks (Chapter 5), I hypothesized that Kaylee’s units-coordinating activities 

(inserting composite units into other units) in three-dimensional contexts would entail a 

coordination of multiple three levels of units structures, accounting for all three spatial 

dimensions simultaneously. On the other hand, I conjectured that, Morgan’s units 

coordinating activities in three-dimensional contexts would entail a sequential 

coordination of two three levels of units structures in activity, along two spatial 

dimensions recursively. In this chapter, I will discuss how Kaylee and Morgan each 

reasoned with the three-dimensional cubic blocks in relation to these hypotheses.  

Cubic Block Task Part One: Kaylee and Morgan Count the Blocks of Various Sizes 

  After showing the cubic blocks and explaining the context of the task to Kaylee 

and Morgan, I covered the blocks and asked the students to find how many unit-cubes in 

total were contained in the cubic block, how many unit-cubes had paint on them, and how 

many unit-cubes did not have paint on them. We went through these questions for each 

cubic block, one at a time. After both students completed their work for one cubic block, 

they discussed their solutions and we moved on to the next cubic block. These questions 

composed the first part of the Cubic Block Task.  
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Kaylee’s Cubic Block Activities 

The 2×2×2 cubic block.  

Figure 6.2 shows Kaylee’s written responses for the questions regarding the 

2×2×2 cubic block. As shown in Figure 6.2, Kaylee wrote there were a total of eight unit-

cubes in the first cubic block. Kaylee explained that she obtained eight from “two by two 

by two, like, width times length times height. Just like how you would find the area.” 

Although she mentioned area, from her explanation, I inferred that Kaylee recalled the 

formula for finding the volume of the cube (width times length times height). Therefore, 

her inscription of ‘4×2=8’ seemed to showcase how she calculated 2×2×2; that is, she 

first calculated 2×2 to obtain 4 and then multiplied that by the remaining 2 resulting in 8 

as her answer.  

 

Figure 6.2. Kaylee’s written responses for the 2×2×2 cubic block. 

In explaining the eight painted unit-cubes, Kaylee talked about the layers of the 

cubic block: “it’s basically like, two sections of four, like a flat… And they’re next to 

each other [putting her two hands together as if each hand represented each side of the 

cubic block]. So, like, there’s not anything in the middle.” Her sketch at the bottom of 
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Figure 6.2 depicted the two sections of four she was referring to. Therefore, in finding the 

number of painted unit-cubes, Kaylee decomposed the cubic block into two sections of 

four. Although Kaylee did not explicitly make the connection, her inscription of ‘4×2=8’ 

seemed consistent with her explanation of the two layers of 2×2, 4-squares4.   

The 3×3×3 cubic block.  

 Figure 6.3 shows Kaylee’s written responses for the prompts regarding the 3×3×3 

cubic block. As demonstrated in Figure 6.3, Kaylee labeled her cubic block 3×3×3. When 

asked to find the total number of unit-cubes contained in the cubic block, Kaylee 

immediately wrote 9×3=27 below her label of the cubic block. Her labeling and the way 

she found the total number of unit-cubes were consistent with those in the 2×2×2 cubic 

block case. 

 

Figure 6.3. Kaylee’s written responses for the 3×3×3 cubic block. 

                                                 

 

 

 

4 By layers of squares, I refer to the layer of the n×n×n cubic block shaped as a square 

that consists of n×n unit-cubes.  
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When I asked the students to think about the number of painted or unpainted unit-

cubes, Kaylee sketched three 3×3, 9-squares in a row as shown in Figure 6.3. Originally, 

she colored the squares as shown in Figure 6.4 (a) and concluded that three unit-cubes 

were not painted. The following excerpt shows Kaylee explaining how she found three 

unpainted unit-cubes and then Kaylee revising her answer to one unpainted unit-cube as 

demonstrated in Figure 6.4 (b).   

 
(a) 

 
(b) 

Figure 6.4. A re-generation of Kaylee’s coloring of the 3×3 square layers. 

Excerpt 6.1: Kaylee explains the number of unit-cubes unpainted in the 3×3×3 

cubic block. 

K:  Uh, I did basically what I did [pointing to her three sketches of the 2× 2 

squares she sketched earlier (see Figure 6.2)] and I split them so there 

was, like, nine squares, there would be three layers and nine squares, that’s 

how it’s set up.  

T:  Okay. 

K:  And so one face, [pointing to the first 3× 3 square on the far left in her 

sketch (see Figure 6.3)], like the two ends [puts two hands facing each 

other slightly apart] are obviously colored. 

T:  Mm-hmm. 

K:  [Pauses for a few seconds and then smiles.] Oh.  

M:  There’s only one in the middle. 

K:  [Nods as Morgan is talking and starts talking at the same time.] Yeah, 

there’s only one in the middle. 

T:  Wait, what was the “oh” moment. What was the “oh.” 
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K:  Alright, like, okay, so what I was thinking… is, alright, if these faces 

[points to the 3× 3 squares on the right and on the left] are colored, and 

those take like, the front and back faces [demonstrates the two faces on 

each side with her hands]… 

T:  Mm-hmm. 

K:  So, there’s that one nine by nine square [points to the 3× 3 square she 

sketched in the middle] in the middle. So, I knew that the top and bottom 

were going to be painted [points to where she colored in earlier] but then I 

forgot about the two sides over on the side. 

T:  Side… Okay. 

K:  So, I forgot to color these [Fills in two additional unit squares as shown in 

Figure 6.4 (b)] 

 

Consistent with her explanation about the 2×2×2 cubic block, Kaylee explained 

that “there would be three layers and nine squares, that’s how it’s set up.” This 

corroborated my hypothesis that Kaylee decomposed the cubic blocks into square-shaped 

layers of unit-cubes. Although Kaylee first thought there were three unit-cubes unpainted 

in the 3×3×3 cubic block, as she explained her sketch in Figure 6.3, Kaylee realized she 

forgot to color two additional unit-squares. Using the decomposition of the cubic block 

into 3×3 square-shaped layers, Kaylee demonstrated which unit squares in each 9-square 

layer corresponded to the top, bottom, or side faces of the cubic block, even though the 

cubic block was not in her visual field. From her consistent way of decomposing the 

cubic blocks, I hypothesized that Kaylee has constructed a reversible decomposing 

scheme, a systematic way of producing each unit-cube while maintaining their relative 

position within the cubic block in re-presentation. As a result of enacting this scheme, 

Kaylee was able to find the total number of unit-cubes and the unpainted unit-cubes in 

each cubic block.  

To explain what I mean by a reversible decomposing scheme, consider the 3×3×3 

cubic block as an example. When Kaylee formed the goal of re-presenting each unit-cube 

within the cubic block, she needed to take the cubic block apart to identify each unit-cube 
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but then put it back together to maintain the position of each unit-cube within the cubic 

block. Therefore, she first chose one face of the cubic block and partitioned it vertically 

into three equal sections, as demonstrated in Figure 6.5 (a). This partition of one face of 

the cubic block resembled Kaylee’s enactment of her splitting scheme of the imaginary 

candy strip in her initial interview. Then, holding that partition in mind, Kaylee separated 

the sections along those partitions, unitizing each section as a unit, as demonstrated in 

Figure 6.5 (b).  

                                                                                       
                            (a)                                                    (b) 

Figure 6.5. Models of Kaylee’s partitioning and segmenting of a face of the 3×3×3 cubic 

block. 

 

Figure 6.6. Model of Kaylee’s other perspective of her segmented pieces of the 3×3×3 

cubic block. 

Then, shifting her perspective to the other side of the cubic block (Figure 6.6), she 

re-presented each square-shaped layer corresponding to each of the three sections she had 
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just unitized. This was made possible by her ability to bring forth her images from one 

perspective in co-presence with her images from another perspective. 

Taking the new perspective also allowed Kaylee to further partition each of the 

unitized square-shaped layers. From the new perspective, Kaylee enacted her recursive 

partitioning scheme to partition the two-dimensional square into three units (Figure 6.7 

(a)) and again into three units, each distributed to the previous three units (Figure 6.7 (b)). 

Using the operations of her units-coordinating scheme, Kaylee inserted the composite 

unit of three units along one spatial dimension into the other three units along the second 

spatial dimension (Figure 6.7 (c)). In doing so, Kaylee not only produced each unit-cube 

in each square-shaped layer, but Kaylee also produced multiple three levels of units 

structures. As demonstrated in her explanations, this process seemed almost unnecessary, 

as finding the number of unit-cubes in each square-shaped layers was immediate for 

Kaylee, most likely induced from her units-coordinating scheme. 

            
                                  (a)                                      (b)                                    (c) 

Figure 6.7. Model of Kaylee’s recursive partitioning of a square layer of the 3×3×3 cubic 

block. 

Bringing forth the results of her splitting of the cubic block into three square-

shaped layers (in Figure 6.6), Kaylee inserted the nine unit-cubes in the square layer 

(Figure 6.7 (c)) into each of the three units along the third dimension. This insertion of 

two-dimensional layers into the third dimension was consistent with her insertion of unit-
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cubes along each spatial dimension (Figures 6.7 (a) and (b)). Further, Kaylee was aware 

that this insertion of each square-shaped layer into the three sections of the unit cube 

would re-constitute the cubic block, indicated by her comment “that’s how it’s set up.” In 

other words, not only did Kaylee decompose the cubic block, but she was also able to 

reverse the operations she carried out to re-compose the cubic block in checking that she 

has indeed accounted for all the unit-cubes contained in the cubic block.  

Finally, Kaylee reversibly re-composed the vertical square-shaped layers of the 

cubic block into a whole while holding each layer as a part of that whole, using her 

disembedding operation. This is why I consider the scheme to be reversible. This way of 

operating allowed Kaylee to individualize each unit-cube by maintaining their relative 

positions within the cubic block. Her awareness of which unit-squares in each square-

shaped layer corresponded to which face corroborated that her decomposition of the 

cubic block also involved the constant re-building of the cubic block. This co-occurrence 

of partitioning and reversing the partitioning seemed analogous to the splitting scheme 

Kaylee has enacted in her initial interview. That is, these schemes both involved the co-

occurrence of one activity and the reverse of the activity.  

Using her reversible decomposing scheme, I claim that Kaylee re-presented the 

interior of the cubic block and anticipate the unpainted unit-cubes without having to 

physically take the cubic block apart. In conjunction with her units-coordinating scheme, 

Kaylee was also able to find the total number of unit-cubes in the cubic block. Although 

Kaylee re-enacted her previously learned volume formula to find the total number of 

unit-cubes for each cubic block, I claim that Kaylee’s re-presentation of the cubic block 

entailed a recursive coordination of three levels of units (see Figure 6.8). To elaborate, 
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each three levels of units structures constituted each square-shaped layer and they were 

inserted into each three units along the third dimension, which constituted another three 

levels of units structure.  

 

Figure 6.8. Model of Kaylee’s recursive coordination of three levels of units in the 3×3×3 

cubic block. 

I conjecture that Kaylee’s FR coordinating scheme was used as a subscheme of 

her reversible decomposing scheme when decomposing and inserting unit-cubes along 

each spatial dimension of the cubic block. The FR-coordinating scheme involved 

recognizing a situation in which she could posit a frame of reference as a unit and 

inserted it into another frame of reference. The immediate past operating of two-

dimensional frames of reference are brought into the present resulting in a co-presence of 

multiple two-dimensional frames of reference constituting the three-dimensional space. 

Uniting and multiplicatively coordinating the two sets of frames of reference constructed 

from different perspectives, Kaylee re-presented the location of points in three-

dimensional perceptual spaces in terms of their locations along all three dimensions. 
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Figure 6.9. A model of Kaylee’s FR coordinating scheme enacted in her reversible 

decomposing scheme. 

Figure 6.9 is a model of Kaylee’s FR-coordinating scheme enacted in her 

reversible decomposing scheme. To elaborate, first consider her decomposition of the 

cubic block into square-shaped layers. Here, I hypothesize that Kaylee superimposed a 

rectangular frame of reference onto one face when splitting and segmenting the cubic 

block into square-shaped layers (see the purple face in Figure 6.9). Shifting her 

perspective to the adjacent face, Kaylee superimposed another rectangular frame of 

reference that guided her recursive partitioning of the square-shaped layer into unit-cubes 

(see pink face in Figure 6.9). Finally, when Kaylee inserted the two-dimensional layers 

into the third dimension, this involved her insertion of her second frame of reference into 

the first (see the 3×3 unit-cubes underneath each layer of the cubic block in Figure 6.9). 

Uniting and multiplicatively coordinating the two sets of frames of reference constructed 

from different perspectives, Kaylee re-presented the individual unit-cubes with a 
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realization of their relative positions along all three dimensions. That is, still aware of 

each square-shaped layer as unitized structures, Kaylee was able to track the location of a 

given point along the layer (two dimensions) with the realization that the point had a 

specific location along the third dimension. Therefore, the position of each unit-cube was 

embedded within all three dimensions multiplicatively. This awareness of the position of 

each unit-cube along all three dimensions is what allowed her to determine which unit-

cubes in each square layer corresponded to the top, bottom, or side faces of the cubic 

blocks.  

The 4×4×4 cubic block.  

When prompted to solve for the 4×4×4 cubic block, Kaylee immediately started 

writing in the same format as she did for the previous cubic blocks, as shown in Figure 

6.10. 

 

Figure 6.10. Kaylee’s written responses for the 4×4×4 cubic block. 

Because both students repeated a similar pattern for finding the total number of 

unit-cubes in this case but found a different number of unpainted unit-cubes, I focused on 

asking them to explain the number of unpainted unit-cubes. In the following excerpt, 

Kaylee explains how she found eight unpainted unit-cubes in total. 
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Excerpt 6.2: Kaylee explains the number of unpainted unit-cubes in the 4×4×4 

cubic block. 

K:  So, I did the same thing. I did these two [pointing to the far left and far 

right 4× 4 squares that she colored in in her sketch] are painted because 

they’re faces [demonstrating the faces with her hands (Figure 6.11 (a))]. 

And then…  

T:  So, can you first explain what these [points to the four squares] are? 

K:  Yeah, like, the four... 

M:  The four sides. 

K:  [Continuing,] by four, just squares [making a vertical chopping motion 

with hand to demonstrate the four vertical layers as modeled in Figure 

6.12.] and there’s four in each little thing. 

T:  Okay. 

K:  So, these two are painted [again, points to the two squares on the far left 

and far right in her illustration in Figure 6.10] cuz the whole thing is 

painted as they’re faces.  

T:  Mm-hmm. 

K:  And so, I took the top. From the middle [sets hands like parentheses 

around the two squares in the middle], the top four are painted [runs pen 

across the top rows of the two squares in the middle] because they’re, 

that’s like for the top [hand motions the top layer (Figure 6.11 (b))] face 

and the bottoms are painted [points to the bottom rows across the two 

squares in the middle], or, yeah, because it’s the bottom face and I took 

the sides [again puts hands vertically as to demonstrate the two side 

faces], and so four are painted on one side and four on the other and for 

both of them, so there’s eight. So, I subtracted eight from sixty-four. 

  T:  Mm-hmm. 

M:  You got eight cubes in there? 

K:  Yeah, there’s one, two, three, four, five, six, seven, eight [tapping on each 

white (uncolored) unit square in her sketch in Figure 6.10].  

M:  In the middle? 

K:  Yeah. 

 

           
                                        (a)                                                        (b) 

Figure 6.11. Kaylee explaining her illustration and the painted unit-cubes in the 4×4×4 

cubic block. 
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Figure 6.12. A model of Kaylee’s four layers made of four-by-four unit-cubes. 

 

As Kaylee explained at the beginning of Excerpt 6.2, she illustrated “the four by 

four squares” and was aware that there were four of those in the cubic block. From her 

actions, I hypothesized that Kaylee coordinated multiple perspectives, decomposed the 

cubic block into 4×4 square layers. Doing so, she constructed a re-presentation of the 

cubic block to determine which unit-cubes in each square layer corresponded to the top, 

bottom, and side faces of that re-presentation of the cubic block. So, Kaylee established 

an image of the interior of the cubic block (unpainted unit-cubes) without having to 

physically take the cubic block apart. From the way that Kaylee consistently, 

independently, and confidently drew sketches of the square-shaped layers (Figures 6.2, 

6.3, and 6.10) for all three cubic blocks, I impute the aforementioned reversible 

decomposition scheme to Kaylee.  

Morgan’s Cubic Block Activities 

The 2× 2× 2 cubic block 

Figure 6.13 shows Morgan’s written responses to the 2×2×2 cubic block case. 

When making sketches to solve the problems, Morgan said “I’m not good at drawing 

three-D stuff.”  
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Figure 6.13. Morgan’s written responses for the 2×2×2 cubic block. 

When asked how she found eight unit-cubes in total, Morgan explained, “in my 

head, you just, there’s four on this side [pointing to the 2× 2 square pattern she drew on 

the far left (see Figure 6.13)] and then there’s four on the other side. So like, I’d do four 

times two or like four plus four…” As Morgan later summarized, “I was just counting 

from one side and then the other side.” Although her sketches only showed two-

dimensional figures, from her comments, I inferred that Morgan also decomposed the 

cubic block in her head into two vertical layers, which she referred to as one side and the 

other of the cubic block. Then partitioning each side into four unit-cubes, she added the 

two fours to obtain eight unit-cubes in total. As such, it was possible that Morgan has also 

constructed a reversible decomposing scheme. In explaining the eight painted and zero 

unpainted unit-cubes, Kaylee explained her solution first and Morgan said that Kaylee’s 

approach was the same as how she thought about the problem. 

The 3× 3× 3 cubic block  

Morgan’s written responses regarding the 3×3×3 cubic block are shown in Figure 

6.14. Morgan started with a sketch of a 3×3 square as shown on the left of Figure 6.14, 

consistent with her way of sketching the 2×2×2 cubic block.  
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Figure 6.14. Morgan’s written responses for the 3×3×3 cubic block. 

Although Morgan has written 9×3=27 as the total number of unit-cubes contained 

in the cubic block in Figure 6.14, her original response was different. At first, Morgan ran 

her index finger through the small unit squares she drew in the 3×3 square in Figure 6.14 

to count one by one the total number of unit-cubes in the square. Then, Morgan wrote 

9×2=18 below the square as shown in Figure 6.14. This suggested that Morgan used the 

same counting scheme as she did in the previous cubic block and decomposed the 3×3×3 

cubic block into two sides of 3×3 squares put together instead of three. This indicated that 

Morgan’s counting scheme for the cubic blocks entailed decomposing but not necessarily 

re-composing the cubic block to check that the parts of the block constituted the whole.  

When I asked her to find the number of painted/unpainted unit-cubes, Morgan 

sketched the cubic block as shown at the center of Figure 6.14 and seemed to be confused. 

She claimed “I hope I do this right” and expressed that this was “hard.” She sat in thought 

for approximately five seconds and then changed her answer to 9×3=27. Thinking about 

the number of painted or unpainted unit-cubes and having sketched a figurative model of 

the cubic block together may have pushed her to re-organize her counting scheme in 
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activity for the total number of unit-cubes in the cubic block, realizing that there were 

more than two sides constituting the 3×3×3 cubic block.  

Morgan’s comment that this task was difficult could have meant one of two things 

or both. First, it is possible that she meant re-presenting the 3×3×3 cubic block mentally 

was more complicated than the 2×2×2 cubic block. Second, it is possible that Morgan 

was referring to the difficulty of drawing a three-dimensional figure on a two-

dimensional paper, as she mentioned earlier that she had a difficulty in drawing three-

dimensional figures. In either case, once she sketched the cubic block as in the center of 

Figure 6.14, it helped her keep track of how many 3×3 square-shaped layers consisted the 

cubic block.  

Because I wanted to wait until all prompts were completed by both students 

before we discussed any of their responses, I did not ask Morgan why she changed her 

answer from 18 to 27 right after she did so. However, later in the teaching episode, I 

asked Morgan how she obtained a total of 27 unit-cubes and the following excerpt shows 

Morgan’s explanation. 

Excerpt 6.3: Morgan explains how she found 27 unit-cubes in the 3×3×3 cubic 

block. 

M:  Okay, so I had these [pointing to her 3× 3 square in Figure 6.14], three 

rows on this side [tracing each column on the front face of the 3× 3× 3 

cubic block she sketched when solving for the number of unit-cubes 

painted, demonstrated by the red dashed arrows in Figure 6.15] and so I 

had my three [writes “3” down above the 3× 3 square] and then I have 

times [writes “×”] my other side right here, three [points to the right side 

face of the 3× 3× 3 cubic block she sketched and traced each column on 

that face, demonstrated by the blue dashed arrows in Figure 6.15], which 

equals nine [writes “9” above the 3× 3 square] times my other three and 

that equals twenty-seven [completes writing 3× 3× 3=27 as shown in 

Figure 6.14].  
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Figure 6.15. Morgan’s counting activity of the three rows in each face. 

As demonstrated in Excerpt 6.3, when explaining why she multiplied 3 by two, 

Morgan referred to the three “rows” on two adjacent faces of the cubic block that was 

visible in her sketch of it (see arrows in Figure 6.15). Although she did not carry out the 

tracing activity in the third face based on her explanation, “my other three” referred to the 

three columns on the top face of the cubic block in Figure 6.15. As such, I inferred that 

Morgan multiplied the number of columns (which she called rows) in each face. It is 

possible that Morgan recalled the volume formula that Kaylee mentioned earlier (length 

times width times height) in the 2×2×2 cubic block case and applied it to the 3×3×3 cubic 

block. However, the units that Morgan multiplied did not span the entire cube. That is, 

multiplying those units as she described in Excerpt 6.3 was insufficient to produce all the 

unit-cubes comprising the cubic block.  

Her explanation of how she found 27 unit-cubes in total did not support the 

inference I made earlier of her counting the nine unit-cubes in one layer and then 

multiplying that by the total number of layers consisting the cubic block. These rather 

contradicting actions could have rooted from a discrepancy between knowing and seeing 

(Parzysz, 1988). That is, what she said she has done using her drawing (seeing) could 

have been different from what she knew about the objects. In any event, I did not have 
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enough evidence to impute to Morgan the operations that Kaylee’s reversible 

decomposing scheme entailed. Although Morgan consistently started with a sketch of a 

3×3 square, her counting of the nine unit squares one by one and her counting of the rows 

in each face of her sketch of the cubic block seemed to contra-indicate the hypothesis that 

Morgan has decomposed the cubic block into layers of squares using recursive 

partitioning and units-coordinating. That is, her recursive partitioning and units-

coordinating schemes were not assimilatory in this situation of counting the total number 

of unit-cubes in the cubic blocks.  

When I asked the students to think about the number of painted/unpainted unit-

cubes, Morgan added two more faces to her sketch of the 3×3 square, transforming it into 

a 3×3×3 cubic block in the center of Figure 6.14. Then, after running her pen above the 

unit-cubes around one of the corners, she wrote ‘1,’ referring to the number of unit-cubes 

that would be unpainted. Morgan was certain that there should be one unpainted unit-

cube as shown in her response to Kaylee in Excerpt 6.1. Although she was certain about 

the one unpainted unit-cube, as shown in the following excerpt, Morgan had difficulty in 

decomposing and re-presenting the cubic block mentally to explain why there is only one 

unpainted unit-cube. 

Excerpt 6.4: Morgan explains the number of unit-cubes unpainted in the 3×3×3 

cubic block. 

M:  Well, I kind of did what Kaylee did. But I pictured it in my head because I 

was looking at this [pointing to the 3× 3× 3 cubic block she sketched (see 

center of Figure 6.14)] and well, on each of these sides [points to the front 

face of the cubic block], obviously all of these [points to the top face of the 

cubic block], but there’s one in the middle that’s not painted at all if you 

look at the rows [runs pen along the vertical layers in the 3× 3× 3 cubic 

block (along the red arrows in Figure 6.15)]. I’m not sure how to explain 

that.  

T:  That makes sense... [Encouraging her to keep talking.] 

M:  So, I mean, kind of like Katie was saying, [starts sketching a 3× 3 square] 
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you have your rows and everything [sketches another 3× 3 square]… 

That’s… [Pauses to check if she drew a 3× 3 square] Yeah… [Sketches a 

third 3× 3 square; the three 3× 3 squares are illustrated in Figure 6.14]. 

So, this right here is that face [first points to the first 3× 3 square and then 

circles around the front face of the cubic block (Figure 6.16 (a))] that one 

right there [points to the second 3× 3 square] is that face [points to the face 

on the side of the cubic block (Figure 6.16 (b))] and that one right there is 

that face [points to the top face of the cubic block (Figure 6.16 (c))]. And 

so, if this one right here [pointing to the first 3× 3 square] all of these are 

going to be painted [colors the 3× 3 square] and like, all of these will be 

painted except for that one that’s in the middle [points to the unit square in 

the middle of the 3× 3 square in the middle], basically, I guess. 

   
                    (a)                                                (b)                                             (c) 

Figure 6.16. The three layers Morgan was referring to in her sketch. 

As shown in Figure 6.16, Morgan associated each 3×3 square with one of each of 

the three adjacent faces that were visible in her sketch, which corroborates that her 

counting actions shown in Figure 6.15 were based on the faces of the cubic block in her 

sketch. In Excerpt 6.4, it appeared Morgan somehow identified the one unit-cube in the 

middle of the cubic block from looking at her sketch. Perhaps, Morgan could somehow 

imagine one unit-cube in the middle wrapped around by each face. However, she had a 

difficult time explaining why there was only one unit-cube there. I observed similar 

counting activities in the 4×4×4 cubic block, which I discuss next. 

The 4×4×4 cubic block.  

Morgan’s written responses for the 4×4×4 cubic block are shown in Figure 6.17. 

Although in the center of Figure 6.17 her illustration shows a 4×4×4 cubic block, Morgan 

started with a sketch of a 4×4 square. Above the square she wrote “4∙4∙4” and then “16∙4” 

and calculated the total number of unit-cubes in the cubic block.  
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Figure 6.17. Morgan’s written responses for the 4×4×4 cubic block. 

Regarding the number of unpainted unit-cubes, Morgan questioned Kaylee’s 

response of eight unit-cubes (see Excerpt 6.2), so I asked Morgan to explain how she was 

thinking about the problem. The following excerpt shows Morgan’s explanation of the 

unpainted unit-cubes in the 4×4×4 cubic block. 

Excerpt 6.5. Morgan explains the number of unpainted unit-cubes in the 4×4×4 

cubic block. 

M:  Well I was thinking of four or two cubes because… Like, okay, so. I 

[don’t] know. I kind of had to look at it just as if this was [starts drawing a 

small unit-cube (see Figure 6.18 (a))]… I remember that that was one 

cube, not just a little square. 

T:  Mm-hmm. 

M:  And so, if there was… I kind of pictured it like how Kaylee was doing it 

earlier. [Starts sketching four 4× 4 squares as shown in Figure 6.18 (b).] 

T:  Mm-hmm. 

M:  So, like, there is, the three of the four sides, then you would um… Wait, so 

this one side [points to the 4×4 square on the top left in her sketch] is all 

painted, this one side [points to the 4×4 square on the top right in her 

sketch] is all painted because you’re looking at those two [points to two 

adjacent faces of the 4× 4× 4 cubic block she had sketched earlier (Figure 

6.18 (c))]… But, ah [puts her hands on her head as if she’s having a 

headache], I don’t know how to say it… 

T:  It’s okay. Maybe, would this [uncovers the red 4× 4× 4 cubic block model] 

help us to…. 

M:  I don’t think there’s eight that aren’t painted. 

 



 

298 

                       

                       (a)                            (b)                                           (c) 

Figure 6.18. Morgan explaining her illustration and the painted unit-cubes in the 4×4×4 

cubic block. 

In excerpts 6.2 and 6.5, Morgan consistently refers to the four 4×4 square-shaped 

layers as the four “sides.” This tendency was also demonstrated in the 2×2×2 cubic block 

case when she explained “there’s four on this side and then there’s four on the other side.” 

In the 2×2×2 cubic block case, from her illustration in Figure 6.13 and her explanation, it 

seemed as though Morgan referred to the face in the front as “this side” and the congruent 

one “on the other side.” Here, her sides corresponded to what Kaylee referred to as layers. 

However, once the cubic blocks no longer had only two sides, this way of organizing the 

block did not seem to work for her , as demonstrated in her solving the 3×3×3 cubic 

block case. Thereafter, her “sides” shifted from layers to the visible exterior layers 

(consisting of each adjacent face) in her sketch of the cubic blocks. The way she 

demonstrated how the squares related to the cubic block in her sketch in Figures 6.15 and 

6.16 corroborates such an inference.  

From this consistent association of the 𝑛×𝑛 squares with the visible exterior 

layers (consisting of each adjacent face) of the 𝑛×𝑛×𝑛 cubic block and her continuous 

struggle to explain how she found the unpainted unit-cubes, I consider Morgan’s use of 

her illustrations to be limited to the perceptual elements of the cubic blocks—the unit-
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cubes or faces that she could see on each two-dimensional face. Often this meant that she 

could re-generate faces of the cubic block in her sketch but had difficulty coordinating 

that with the third dimension in re-presentation.  

From her comment “I remember that that was one cube, not just a little square,” I 

inferred that Morgan had an awareness of the third dimension; positing the third 

dimension in conjunction with the two-dimensional faces was difficult for her. In other 

words, Morgan sequentially coordinated two dimensions instead of bringing forth the 

immediate past operating of a two-dimensional face in co-presence with another two-

dimensional face. As a result, she was limited in being able to coordinate all three 

dimensions multiplicatively and in re-presenting the interior of the cubic block. So, 

Morgan guessed that there would be two or four unit-cubes that were unpainted, not 

being sure what was inside of the cubic block.  

Despite her ability to partition the block along each visible face, guided by her 

rectangular frames of reference, her constraint in coordinating the third dimension along 

with the two-dimensional layers was analogous to that in her activities discussed in 

Chapter Five. That is, when locating the four fish in the fish tanks for describing the 

motion of one fish to another, Morgan sequentially coordinated the location of one fish in 

two-dimensional frames of reference. From her locating activities, I hypothesized that 

Morgan constructed a FR coordinating scheme in activity. In contrast to Kaylee—who I 

inferred to have used the results of her FR-coordinating scheme as input to use in 

structuring the spatial object and construct a reversible decomposing scheme—because 

Morgan was yet to construct a FR coordinating scheme for those two-dimensional frames 

of reference, I hypothesize that Morgan was yet to construct a reversible decomposing 
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scheme. In other words, Morgan did not recursively coordinate the results of her FR-

coordinating scheme in such a way that would allow her to decompose and re-compose 

the cubic block mentally as Kaylee did. Therefore, taking the cubic block apart and 

anticipating the interior of the cubic block in re-presentation was challenging for Morgan. 

Kaylee and Morgan discuss the cubic blocks.  

Because Morgan seemed to struggle with demonstrating her number of unpainted 

unit-cubes in re-presentation, I suggested that they demonstrate their thinking using the 

actual cubic block. So, I uncovered the 4×4×4 cubic block and Kaylee first demonstrated 

her way of thinking using the cubic block, as shown in the following excerpt. 

Excerpt 6.6. Kaylee demonstrates her four layers and the painted unit-cubes. 

K:  Here’s, you see where my four things [are]. One, two, three, four [places 

hand on the cubic block as if she is chopping it into vertical layers (Figure 

6.19 (a))] and they all look like this [points to one of the faces of the cubic 

block]. Like, you see that? [Runs her finger along the four layers once 

more.] If I were to split them apart [makes a hand motion as if she’s 

tearing one layer out of the block at a time indicated by the yellow arrow 

(Figure 6.19 (b))]… 

 

               
                                     (a)                                                (b)                             

Figure 6.19. Kaylee demonstrates taking apart the four layers in the 4×4×4 cubic block. 

[Continued.] 

M:  [Interrupts K,] that’s four that aren’t painted.  

K:  No, there’s eight [laughs].  

M:  One, two… 

T:  Okay, this is a fun debate. Let’s go. [Encouraging the students to continue 

their discussion.] 

K: Okay, we take these two sides off [puts one hand each on the outer faces 

of her four layers (Figure 6.20 (a))] and then there’s only these two 
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middle ones [points to the two vertical layers in the middle]. And so, 

obviously these [pointing to the outer two layers] are all painted, because 

they’re painted all over. So we have these two middle ones [again, points 

to the two vertical layers in the middle]. The four on the top [runs index 

finger along the four unit-cubes on the top of the left middle vertical layer 

(Figure 6.20 (b))] that are painted, right here [again, runs index finger 

along the four unit-cubes on the top of the left middle vertical layer 

(Figure 6.19 (b))] and…   

 

              
                                      (a)                                                       (b) 

Figure 6.20. Kaylee demonstrates taking the cubic block apart in four layers. 

M:  [After listening carefully to K’s explanation, she interrupts K as if she 

realized something.] Oh, I forget that there’s [points to the four unit-cubes 

in the middle of one face] four levels and there’s going to be four… 

K:  Yeah, there’s going to be four in the middle [runs her fingers along those 

four unit-cubes M was pointing at] that are not painted, like [points her 

index finger on the cubic blocks on the adjacent face and coordinates 

which ones are the ones that would not be painted (Figure 6.21))] right? 

Can you imagine it? [Laughs as she is having trouble explain it through 

words.] These four are painted [runs finger along the second vertical layer 

on the face facing her] in the middle two, and this top painted [runs her 

finger along the second vertical layer on the top face] and there’s no other 

space for paint for these four in the middle [again, touches the four unit-

cubes in the middle of the face as if she’s talking about the four in the 

second layer, then points at the top of the two vertical layers in the middle 

(similar to what she was doing in Figure 6.21).] 

 

 
 

Figure 6.21. Kaylee demonstrates her four layers and the painted unit-cubes. 
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In Excerpt 6.6, Kaylee physically enacted the operations that she had used in 

making her sketch 6.5, in finding the painted or unpainted unit-cubes. First, she 

demonstrated how she decomposed the cubic block by partitioning and segmenting of the 

cubic block into vertical layers. From the way she showed the four layers to Morgan, it is 

likely that Kaylee noticed that Morgan was referring to different layers than she was—to 

Morgan they were the faces; to Kaylee they were the vertical square-shaped layers.  

Second, as shown in Figure 6.20 (b), Kaylee pointed to the faces of the block that 

corresponded to each layer to determine which unit-cubes of the vertical layers should be 

painted. In other words, Kaylee demonstrated how she reversibly recomposed the vertical 

layers of the cubic block into a whole while holding each vertical as a part of that whole. 

Doing so, Kaylee determined which of the 16 unit-cubes in her vertical layer would be 

painted or unpainted and re-present the four unit-cubes in the middle, even though they 

were not in her direct perceptual field.  

Lastly, as shown in Figure 6.21, Kaylee demonstrated her operating on the cubic 

block by mentally rotating her perspective and projecting her unit of four unit-cubes into 

the cubic block from each perspective. Figure 6.22 illustrates how I unpack her action 

demonstrated in Figure 6.21. As shown in Figure 6.22 (a), taking the perspective of 

viewing the cubic block from the side, Kaylee projected the four unit-cubes in the middle 

of the side face into the cubic block and inserted it into all four vertical layers. Similarly, 

as shown in Figure 6.22 (b), taking the perspective of viewing the cubic block from the 

top, Kaylee projected the four unit-cubes in the middle of the top face into the cubic 

block and inserted it into all four horizontal layers. Then, coordinating her two 

perspectives together, she mentally held the eight unit-cubes in the middle together, 
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which is the intersection of the two projections from the two different perspectives 

(Figure 6.22 (c)). I conjecture that Kaylee enacted her FR coordinating scheme when 

inserting the four unit-cubes across the four layers from different perspectives. 

 
                           (a)                                          (b)                                            (c) 

Figure 6.22. Kaylee’s projection of the four unit-cubes in the middle from both 

perspectives. 

In Excerpt 6.6, after Kaylee explained her process of taking apart the cubic block 

into four layers, Morgan said “Oh, I forget that there’s four levels and there’s going to be 

four…” This indicated that using the cubic block model, Morgan was able to keep track 

of the four units along the third dimension that she had a difficult time coordinating in re-

presentation. This corroborated my hypothesis that Morgan’s coordination of her 

perspectives and organization of each face of the cubic block were sequential.  

After carefully listening to Kaylee’s explanation in Excerpt 6.6, Morgan sat in 

thought. I asked Kaylee to demonstrate her four layers again, and she asked us to 

“imagine these [layers] were like Velcro or something, so you can just pull them apart.” 

To help Kaylee demonstrate her four layers for Morgan more visually, this time I showed 

them how the cubic blocks were made so we could take the layers apart, as shown in 

Figures 6.23 (a) and (b). As soon as the block was stripped off of the outer two vertical 

layers and left with the figure in Figure 6.23 (c), Morgan agreed that there were eight 

unit-cubes that were unpainted.  
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                            (a)                                              (b)                                        (c) 

Figure 6.23. The teacher-researcher tearing off the vertical layers Kaylee was referring to. 

When I asked Morgan what made her think that it could be four unit-cubes 

unpainted, she replied, “I don’t know. I guess I didn’t think it was as big as it was.” As 

such, Morgan demonstrated having difficulty projecting the two-dimensional 2×2 square 

into the cubic block and coordinating the third dimension with the middle of one of the 

two-dimensional faces. However, Morgan confirmed the eight unpainted unit-cubes after 

she heard Kaylee’s explanation and once again when she saw the cubic block taken apart. 

Different from Kaylee, Morgan’s operating on the cubic block seemed to rely on the 

perceptual material in order to find the number of unpainted unit-cubes. Therefore, I 

claim that Morgan’s operating on the cubic block was in activity, relying on carrying out 

sensori-motor activity on the perceptual material in order to find the number of unpainted 

unit-cubes. 

Summary of Cubic Block Task Part One 

To summarize, in reasoning about the cubic blocks of various sizes, I conclude 

that Kaylee constructed a reversible decomposing scheme to re-present further operate on 

each cubic block. When I asked her to find the total number of unit-cubes and the number 

of painted/unpainted unit-cubes that were, this evoked the goal of re-presenting each unit-

cube within the cubic block, meaning that Kaylee needed to break the cubic block apart to 
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produce each unit-cube as abstracted units but also put them back together to 

individualize each unit-cube by maintaining their relative positions within the cubic block. 

In order to achieve this goal, Kaylee partitioned each block into vertical square-shaped 

layers and again into unit-cubes along each spatial dimension, using her splitting and 

recursive partitioning schemes, guided by her FR-coordinating scheme. I conjectured that 

Kaylee’s FR-coordinating scheme was used as a subscheme of her reversible 

decomposing scheme when decomposing and inserting unit-cubes along each spatial 

dimension of the cubic block. Uniting and multiplicatively coordinating the two sets of 

frames of reference constructed from different perspectives, Kaylee re-presented the 

individual unit-cubes with a realization of their relative positions along all three 

dimensions.  

As a result, Kaylee was able to find the total number of unit cubes using her units-

coordinating scheme and identify the position of each unit-cube embedded within all 

three dimensions multiplicatively. That is, still aware of each layer as unitized structures, 

Kaylee was able to track the location of a given unit-cube along the layer (two 

dimensions) with the realization that the unit-cube had a specific location along the third 

dimension. This awareness of the position of each unit-cube along all three dimensions 

was demonstrated in her ability to determine which unit-cubes in each square layer 

corresponded to the top, bottom, or side faces of the cubic blocks. Kaylee established an 

image of the interior of the cubic block (unpainted unit-cubes) without having to 

physically take the cubic block apart. Further, I argued that Kaylee’s re-presentation of 

the cubic block entailed a recursive coordination of three levels of units.  
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On the other hand, Morgan seemed to have difficulties in coordinating the third 

dimension in the cubic blocks with the two-dimensional faces (or exterior layers) of the 

cubic blocks in re-presentation. Most of the time, Morgan’s reasoning seemed limited to 

the unit-cubes or faces that she could see or visualize in her diagrams. This limitation in 

coordinating the third dimension along with the two-dimensional layers was analogous to 

that in her activities in constructing frames of reference to locate points or describe one 

point to another in three-dimensional space. Although Morgan had a two-dimensional FR 

scheme that was operational, as discussed in Chapter 5, the two-dimensional frames of 

reference were not recursively coordinated together to account for the third dimension. 

However, once she had the physical model of the cubic block in her visual field, using the 

cubic block model, Morgan was able to keep track of the four units along the third 

dimension that she had a difficult time coordinating in re-presentation. Therefore, I 

claimed that Morgan’s operating on the cubic block was in activity, relying on carrying 

out sensori-motor activity on the perceptual material in order to find the number of 

unpainted unit-cubes. 

Cubic Block Task Part Two: Kaylee and Morgan Extend or Reduce the Cubic 

Blocks 

Part One of the Cubic Block Task consisted of questions regarding the subsets of 

each cubic block. In order to further explore the students’ reasoning about the cubic 

blocks, I asked them to reason about extensions of the cubic blocks, towards the end of 

the teaching episode on November 21 and in the teaching episode conducted on 

December 6. The extension questions were analogous to the questions I asked in the Fish 

Tank Task, to locate a fish outside of the fish tank. The first question entailed what I 
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considered to be extensions of the cubic blocks in units of blocks. That is, I asked the 

students to find how many unit-cubes would be contained in a cubic block that has eight 

unit-cubes on each edge and how many of the 4×4×4 cubic blocks would fit into it. The 

second type of questions were intended for the students to extend the cubic blocks in 

units of unit-cubes. In this case, I asked the students to find how many unit-cubes they 

would need to add to make a 4×4×4 cubic block into a 5×5×5 cubic block or a 4×4×4 

cubic block into a 3×3×3 cubic block. I expected these situations in which students will 

need to extend their organization of the spatial objects (in this case the cubic blocks) 

would allow more opportunities for me to test the hypotheses I generated based on their 

activities in Part One of the Cubic Block Task.  

The 8×8×8 Cubic Block 

When I asked the students to find how many unit-cubes there would be in a cubic 

block with eight unit-cubes along each edge, Morgan drew an 8×8 square and counted the 

unit squares to check if her sketch was accurate. Morgan then pulled out the paper with 

her work from previous problems in Part One of the task. Then, Morgan wrote “8×8×8” 

and calculated the total number of unit-cubes. Meanwhile, Kaylee wrote “8×8×8” and 

calculated the total number of unit-cubes. Next, I asked them to find how many of the 

four-edged cubic blocks would fit into the eight-edged cubic block. Morgan wrote “4 

blocks” on her paper while Kaylee wrote “8, 4 edges” implying that there are eight four-

edged cubic blocks that would fit into the eight-edged cubic block.  

When both students were finished writing on the paper, I asked them how they 

found the total number of unit-cubes. Simultaneously, Kaylee and Morgan replied that 

they multiplied eight by eight by eight. Noticing that they have come to a different 
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conclusion for the number of 4×4×4 cubic block contained in the 8×8×8 cubic block, I 

asked the students to explain their different responses. The following excerpt starts with 

Morgan explaining how she found four four-edged cubic blocks contained in the eight-

edged cubic block. 

Excerpt 6.7. Morgan explains how she found four four-edged cubic blocks 

contained in the eight-edged cubic block. 

M:  Um, well, basically there’s one, two, three, four, right? So, here’s the four 

right there [makes a bracket inscription to group the four unit-cubes she 

just counted in her sketch of the 8× 8 square (see Figure 6.24)]. So, that’s 

your four-edge. Here’s another four-edge [marks another bracket of four]. 

Here’s another one [marks the third group], and then there’s your last one. 

So, the total will be four [writes “1” beside each bracket she just drew], 

you know? 

 

      

Figure 6.24. Morgan’s sketch illustrating the 8×8×8 cubic block. 

[Continued] 

T: So, what is [points to the 8× 8 square]? 

M:  So like, if I took this apart, like four blocks [enacts a pinching motion to 

the 8×8 square as if she’s taking four 4×4 squares out of it], like you 

would have four… Wait. Yeah. 

T:  So, my question is, what is this block [referring to the 8× 8 square she 

sketched], what are you representing with this? 

M:  Actually, you’re going to need to, okay, so. You’re going to need to 

double it because this is just one page, so it would be eight [corrects her 

answer to “8”]. So, if I had another page of this [pointing to her 8× 8 

square sketch] then you’d have one for each… Okay, so, if I had the big 

block of the eight, take it apart, [motions her hand as if there’s a cubic 

block in front of her] there would be, you take one apart [motions taking 

one chunk out of the cubic block and setting the chunk aside], there’s your 
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one, then you take the other side [repeats taking chunk out motion] so like, 

this right here, I’ll take this chunk out, take that chunk out, that chunk out, 

and I take that chunk out [sections the 8× 8 square into four sections of 

4× 4 squares] but… 

K:  But it would still be four. 

M:  And then there would be another side of this [sweeping hand over the 8× 8 

square].  

K:  Cuz, there’s, like it only goes four back [sweeps her index finger along as 

indicated by the arrow in the Figure 6.25 on M’s sketch]. And so there’s 

another [slides her finger again continuing from where she left off 

previously]. 

M:  Yeah, and it would be eight back, so that’s what you’ll have to do. 

 

 
 

Figure 6.25. Kaylee demonstrates the eight unit-cubes “going back” in the 8×8×8 cubic 

block. 

 Initially, as shown in the beginning of Excerpt 6.7, Morgan focused on her sketch 

of the face of the 8×8×8 cubic block and segmented it into four sections, each of which 

corresponded to a face of the 4×4×4 cubic block. This attention to the face was consistent 

with her earlier actions in focusing on the two-dimensional faces of the three-dimensional 

spatial objects. Lacking was the coordination of those faces with the third dimension to 

find how many of the 4×4×4 cubic blocks would fit along the third dimension. However, 

in the moment of explaining her counting and when questioned what her sketch 

represented, Morgan realized that “you’re going to need to double it because this is just 

one page, so it would be eight.” Her way of referring to the additional part of the block as 
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a “page” was similar to her explanations in the 2×2×2 cubic block case, which she said, 

“there’s four on this side and then there’s four on the other side.”  

It is possible that in the course of her explanation, Morgan has assimilated the 

situation similar to the 2×2×2 cubic block, unitized each 4 unit-cubes along each edge of 

the 4×4×4 cubic block as a unit, and then partitioning the 8×8×8 cubic block into two 

“sides” each consisting of four unit-cubes put together. This way of thinking was also 

demonstrated in her initial engagement in solving the 3×3×3 cubic block case in that she 

multiplied nine by two because she thought of two “sides” each consisting of nine unit-

cubes put together. From the way Morgan counted the four faces of the 4×4×4 cubic 

block on the first “page” and then doubled that entire “page” I inferred that Morgan was 

again focusing on the faces.  

 In addition to Morgan’s activation of her counting activity, my question about 

what her figure represented, and her reflection on the previous problems in Part One of 

the Cubic Block Task, it is possible that Kaylee’s interjection triggered Morgan’s 

adjustment as well. After Kaylee interjected and pointed out how many unit-cubes they 

needed to “go back,” Morgan was able to visualize and coordinate the third dimension 

consisting of eight unit-cubes with the faces within the plane formed by the other two 

dimensions. Therefore, I considered Morgan to have coordinated the third dimension in 

activity. 

On the other hand, Kaylee used a different approach in solving the problem. 

Kaylee recalled that the 4×4×4 cubic block consisted of sixty-four unit-cubes in total, 

from her previous calculations. When solving for the total number of unit-cubes in the 

8×8×8 cubic block, she explained she noticed eight multiplied by eight was sixty-four, 
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the same number of unit-cubes contained in the 4×4×4 cubic block. So, she concluded 

that there must be eight 4×4×4 cubic blocks contained in the 8×8×8 cubic block. This 

indicated that Kaylee may have substituted the numerosity of 8×8 by the numerosity of 

4×4×4. Although she seemed to operate on the numerosity of the unit-cubes in each cubic 

block, I hypothesize that Kaylee visualized a composite unit of the 4×4×4 cubic block 

symbolized in the substitution that could be iterated. This way of reasoning about 

multiplication was consistent with the way she calculated the total number of unit-cubes 

in each cubic block using her units-coordinating scheme, through which she produced 

multiple three levels of units structures.   

Although Kaylee relied on the aforementioned numerical calculations, she 

immediately noticed what Morgan was trying to explain and pointed out what was not 

taken into consideration; that is, how many unit-cubes were “going back.” Even though 

the four unit-cubes “going back” were not represented in Morgan’s two-dimensional 

sketch, Kaylee was able to re-present the unit-cubes along the third dimension (see Figure 

6.25). This was an indicative behavior that Kaylee has coordinated the third dimension 

with the two-dimensional sketch simultaneously, accounting multiple perspectives.  

Making a 4×4×4 Cubic Block into a 5×5×5 Cubic Block 

Towards the end of the teaching episode on November 21, I asked Kaylee and 

Morgan how many unit-cubes they would need to add to a four-edged cubic block to 

make a five-edged cubic block. After posing the question, I covered the 4×4×4 cubic 

block that was on the table so the students did not have a cubic block model in their 

visual field.  
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Morgan’s solution. 

Morgan made an illustration as shown in Figure 6.26, counted along the array of 

squares, as demonstrated by the dots next to them and concluded 11 to be her answer. 

 

Figure 6.26. Morgan’s demonstration of finding how many unit-cubes will need to be 

added to the 4×4×4 cubic block. 

In the following excerpt, Morgan explains her illustration and how she obtained 

11 unit-cubes as her answer.  

Excerpt 6.8. Morgan explains how she found eleven unit-cubes in total using her 

illustration. 

M:  Yeah, it’s like, pretty much drawing that [points to her previous 4× 4× 4 

cubic block sketch (Figure 6.26)] again, but um, so, to get to the five, you 

should add one to each side [sweeps pen across each row of the front face 

(demonstrated by the red arrows in Figure 6.27 (a))], each little layer, I 

guess. And then, um, so, once you, so this is pretty much what we have 

[draws a square]. So I added it to every other side [adds five small 

squares inside the square (Figure 6.27 (b))]. But I didn’t add it to the 

middle yet [draws a square in the middle of Figure 6.27 (b)]. And so, I 

figured, well [draws in a few line segments connecting the square in the 

middle with an edge of the biggest square (Figure 6.27 (c))], once I 

have… Because I have [taps with pen again along the rows in Figure 6.27 

(a)] one, two, three, four, five, six, seven right here, and I have to fill in 

those on that [draws a square around the middle four (Figure 6.27 (d))] 

side [draws another square looking shape next to her figure (Figure 6.27 

(d))], like, that’s facing right there, so I counted like this and eight, nine, 

ten, eleven [taps on the four unit squares that she put a box around in 

Figure 6.27 (d)]. 
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(a)                                                          (b) 

 

              
                                             (c)                                                   (d) 

 

Figure 6.27. Morgan explaining her eleven unit-cubes using her illustration of the cubic 

block. 

To get a better grasp of Morgan’s counting activity, I asked her to explain again 

using the physical cubic block model. Excerpt 6.9 shows Morgan’s explanation of the 11 

unit-cubes using the cubic block model.  

Excerpt 6.9: Morgan explains how she found eleven unit-cubes in total using the 

cubic block model. 

M:  Yeah. So, I could add the one, two, the five right there [sweeps her finger 

along the vertical edge facing her (see black arrow in Figure 6.28 (a))], 

and then I could add the other ones right there [sweeps her finger along 

the horizontal edge that’s adjacent to the edge she just traced (see black 

arrow in Figure 6.28 (b))].  

K:  Oh, I see what you’re saying. 

M:  But I didn’t add them right there [points to the four middle blocks in the 

face she was referring to (see black circle in Figure 6.28 (c))]. 

K:  So, like, these [pointing to the imaginary piece in the corner that would 

have been added on] would be poking out but a gap [pointing to the circle 

area in the figure above] right here. 

M:  Yeah. Because I didn’t add them yet. 

K:  Because you didn’t fill that in yet [makes hand motion as if she’s filling in 

four cubes in the gap]. 

M:  Yeah, that’s exactly what I did. 
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                (a)                                             (b)                                            (c) 

 

Figure 6.28. Morgan explaining her eleven unit-cubes using the cubic block model. 

Figure 6.29 is a model re-generating what it would have looked like if Morgan 

had actually added unit-cubes as she demonstrated, based on Morgan’s explanations in 

Excerpts 6.8 and 6.9.  

                        

                   (a)                                                         (b)                                       (c) 

Figure 6.29. A model of Morgan’s adding unit-cubes activity to obtain eleven unit-cubes. 

Figure 6.29 (a) demonstrates the three parts she wanted to put together in 

achieving her goal of making a 5×5×5 cubic block from the 4×4×4 cubic block illustrated 

in green. As shown in Figure 6.29 (a) and (b), Morgan added unit-cubes—the seven unit-

cubes in blue—along two adjacent edges in one face. Then, realizing that she missed 

some in the middle, she wanted to add four more unit-cubes depicted in purple. Figure 

6.29 (b) illustrates the parts put together. Figure 6.29 (c) demonstrates the side view when 

Figure 6.29 (b) is rotated clockwise 90° by the vertical axis through the center of the 

Parts put together 

Side view when rotated 

clockwise 90° by the vertical 

axis through the center of the 

cubic block. 
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4×4×4 cubic block. The blue and purple unit squares would be “poking out” while the 

green part remains with a gap of one square short of the purple and blue sections. 

From her counting activities demonstrated in Excerpts 6.8 and 6.9, I inferred that 

Morgan did not coordinate multiple perspectives through mental rotation, which would 

have assisted her to anticipate the results of her actions of adding unit-cubes, as I re-

generated in Figure 6.29. Because she focused on her view of the cubic block from one 

perspective and the two adjacent faces visible from that perspective (Figure 6.26), 

Morgan did not count the total number of unit-cubes along the front face (sixteen unit-

cubes) and transfer it to the other side face. Hence, she first added seven and then four 

more unit-cubes subsequently. Furthermore, she did not anticipate that what she would 

have obtained (assuming that she completed covering the entire side face) was a 5×4×4 

cubic block.  

However, after explaining how she found eleven unit-cubes and looking at the 

cubic block in front of her, Morgan said that they (at this point, Kaylee also found 11 as 

her answer) had “the wrong number.” Then, Morgan started to count the number of unit-

cubes contained in one of the faces of the cubic block. After counting them one by one, 

starting from one up to sixteen, she exclaimed that they had to add sixteen unit-cubes, 

explaining “you have to add five more to each side [pointing to the face facing her in the 

red cubic block], each thing.” From this, I considered her making in-activity 

accommodations to her counting activity by rotating the cubic block and transferring one 

face to another. Adding one cubic block to each “row” along the direction as shown in 

Figure 6.27 (a) now became covering the entire face on the side. Still, Morgan did not 
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anticipate that this addition would lead to a 5×4×4 cubic block and not a 5×5×5 cubic 

block. 

Kaylee’s solution. 

Kaylee calculated the total number of unit-cubes contained in the 5×5×5 cubic 

block and subtracted 64, the total number of unit-cubes contained in the 4×4×4 cubic 

block, as shown in Figure 6.30. She made an error in her calculation and calculated 

5×5×5 to be equal to 75 instead of 125, resulting in 11 as her answer. Even after Morgan 

explained her solution in Excerpts 6.8 and 6.9, pointed out how they had the “wrong 

number,” and suggested 16 as the new answer, Kaylee remained confused. Based on her 

calculations, the answer had to be eleven unit-cubes. 

 

Figure 6.30. Kaylee’s calculation of finding how many unit-cubes will need to be added 

to the 4×4×4 cubic block. 

Because both students were perturbed by the situation and their answer, I 

suggested they make the 5×5×5 cubic block from the 4×4×4 cubic block, providing a pile 

of loose unit-cubes. Morgan started to stack unit-cubes along the 4×4×4 cubic block, 

resulting in a figure shown in Figure 6.31.  
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Figure 6.31. Morgan’s building of the 5×5×5 cubic block starting from the 4×4×4 cubic 

block. 

After Morgan added the four unit-cubes along the top of the 4×4×4 cubic block, 

she explained, “then you do the rest of these going up [adding more cubes along the face 

in the front (see Figure 6.31)]. No, then we’ll have to do the entire thing.” While Morgan 

kept stacking the unit-cubes, Kaylee explained what she was thinking about the situation. 

The following excerpt starts with Kaylee’s explanation of how she wanted to add the 

unit-cubes to the 4×4×4 cubic block. 

Excerpt 6.10: Kaylee adds faces to the 4×4×4 cubic block. 

K:  I was thinking, like, you only have to add one on here [puts her hand in 

front of the face M is stacking the blocks on (Figure 6.32 (a))] and one on 

here [moves her hand to the face adjacent to that she was referring to in 

Figure 6.32 (a) (see Figure 6.27 (b))], like, one more face [repeats the 

hand motions Figure 6.32 (a) and (b)], I guess. 

M:  So it’d be thirty-two. 

K:  It’s [going to] be this long and this long [sweeps hand along the black 

arrows depicted in Figure 6.32 (c)] 

T:  So, how tall is this? [Sweeps index finger along the height of the cubic 

block in front of them]. 

M&K:  Four. 

K:  So, you’d have to add a layer on top [puts hand on top of the cubic block 

as shown in Figure 6.32 (d)]. 

 



 

318 

        
                            (a)                                                            (b) 

         
                                    (c)                                                       (d) 

Figure 6.32. Kaylee demonstrates adding faces to the 4×4×4 cubic block. 

[Continued.] 

M:  [Simultaneously,] on top [starts stacking blocks on the top face]. 

K:  Oh my goodness. 

[Bell rings.] 

M:  Well, it’d be thirty-two, I think. 

T:  Thirty-two? 

M:  Well, thirty-three, thirty-four… [Starts counting the additional new layer 

on top]. 

K:  [Still looks confused and looks at her paper] 

M:  Thirty-six. I think it’d be thirty-six. 

As demonstrated in Figures 6.31 (a) and (b), Kaylee thought about adding faces to 

the 4×4×4 cubic block to make it five unit-cubes long along two of the dimensions, as 

shown in Figure 6.32 (a). This would have resulted in a 5×5×4 cubic block. When I asked 

how tall the cubic block would be after adding the two faces, both Kaylee and Morgan 

noticed the cubic block would only be four units high, which led to Kaylee’s decision in 

adding another face on the top, as shown in Figure 6.32 (b). However, even after my 
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directing question, Kaylee still did not seem confident about their answer. Because the 

bell rang and we ran out of time, we decided to re-visit this problem in our next teaching 

episode.  

Making a 3×3×3 Cubic Block out of a 4×4×4 Cubic Block 

After Thanksgiving break, on December 6, I suggested starting with a different 

problem first. Instead of continuing the previous problem, I changed the problem to 

finding how many unit-cubes they would need to take off of the 4×4×4 cubic block in 

order to make a 3×3×3 cubic block. The reason I posed the new question was because I 

hypothesized that the cognitive demand of building up to a bigger cubic block in re-

presentation was heavier than taking off unit-cubes from a cubic block that was already 

constructed. Therefore, I anticipated that the taking off question would still allow me 

opportunities to observe the students’ reasoning with the cubic blocks but also provide a 

cognitive entry point for the students to re-visit the building up problem.  

Kaylee’s solution. 

Figure 6.33 is Kaylee’s written response for finding how many unit-cubes should 

be taken off from the 4×4×4 cubic block to make a 3×3×3 cubic block. Figure 6.33 shows 

Kaylee’s initial answer of 25, obtained from adding 16 and 9 together.  

 

Figure 6.33. Kaylee’s written response for making a 3×3×3 cubic block from a 4×4×4 

cubic block. 
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I asked Kaylee to explain her answer of twenty-five unit-cubes. Kaylee started 

explaining how she found twenty-five unit-cubes but during her explanation, she changed 

her mind to thirty-seven unit-cubes in total, as observed in Excerpt 6.11. 

Excerpt 6.11: Kaylee explains how she found the access number of unit-cubes. 

K:  Okay, so, I just looked at like from like the one side. And so, I did my four 

by four, and I knew that you have to take off the top [points to the top four 

blocks in her sketch that are shaded (Figure 6.33)] to get the length of the 

top, like the top square [covers the top face of the 4× 4× 4 cubic block] like 

the whole four by four square on the top and you just take it off. And so, 

now you’ll have a three by four, and so if you had it like this [covering the 

four squares she just talked about taking off, making it look like a 3× 4 

rectangle] it’d be like a [pauses as if she just realized something in her 

sketch], oh. Be a three by four [starts adding a line segment to the bottom 

right corner of the square (Figure 6.33) that illustrates the third 

dimension]. I just set it to be a three by three, but there’s like a three by 

four thing so it would be twelve [crosses out her “9” and writes “12” next 

to the square] so that would be twenty-eight [writes “28” on her paper].  

T:  So… 

K:  I don’t know. 

T:  What is this sixteen? 

K:  It’s like, if you were to look at the cube, the top four by four square 

[hovers hand over the table as she did before to demonstrate the top face 

of the 4× 4× 4 cubic block] or whatever at the top. 

T:  Oh, okay, the layer. 

K:  So you have to take all that off. 

T: So you take that all off. 

K:  [Covers the first row of her 4× 4 square (the top layer) with her hand in 

Figure 6.33 as to demonstrate it’s gone.] 

T:  And you said because you had this left [points to the leftover squares in 

her sketch (Figure 6.33)]… 

K:  A three and then by four [referring to the line segment she added to the 

bottom right corner of her square that demonstrates the third dimension] 

cuz the length.  

T:  Mm-hmm, you’re going down in your head, okay. 

K: But then [pauses and sighs]. 

T:  So, you take sixteen off, and then twelve off.  

K:  [At the same time as T,] twelve off. But then I don’t know about the width. 

I might have to take one off from the back, I think. 

T:  Which back do you mean? 

K:  Like, the back of the cube [hand motions the face opposite to her] because 

I think it would be like three by four, like, it would be three by three on 

the front [hand motions the front face in front of her] but then by going 

back [slides hand from front to back of the cubic block] like four layers.  
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T:  Four, okay. 

K:  I think I have to take off one more, three by three, which would be nine. 

Which gets me at thirty-seven. Is that what you got [asking M]? 

M:  Mm-hmm. 

K:  Okay. 

Figure 6.34 is a model of Kaylee’s re-presentation of the cubic block as she took 

off the unit-cubes as she explained in Figure 6.33 and Excerpt 6.11.  

 
              (a)                                  (b)                                  (c)                           (d) 

 

Figure 6.34. A model of Kaylee’s taking off unit-cubes from a 4×4×4 cubic block to 

obtain a 3×3×3 cubic block. 

Inferring from her inscription of 16 on top of her 4×4 square in Figure 6.33 and 

from her explanation in Excerpt 6.11, Kaylee considered “the whole four by four square 

on the top and you just take it off.” That is, looking at the 4×4 square in Figure 6.33, she 

coordinated the four unit squares on the top and projected it through all four vertical 

layers of the 4×4×4 cubic block and knew that all 16 unit-cubes will need to be taken off 

(see Figure 6.34 (a)). Next, Kaylee explained, “I just set it to be a three by three, but 

there’s like a three by four thing so it would be twelve.” Here the critical moment is when 

she paused and added a line segment to the bottom right corner of the square going 

towards the back of the unit-cube as demonstrated in Figure 6.33.  

Inferring from her illustration in Figure 6.33 and her explanation, initially Kaylee 

considered taking off 3×3 unit-cubes because there were three remaining unit squares that 
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she shaded. In that process, she originally projected the three unit squares into three 

layers but soon realized there should be four layers in total; hence, resulting in taking off 

a three by four rectangular layer, consisting of 12 unit-cubes (see Figure 6.34 (b)). After 

repeating her explanation, Kaylee independently suggested “I might have to take one off 

from the back” meaning that she would take one of the four vertical layers off to 

complete the 3×3×3 cubic block (see Figure 6.30 (c)). Her explanation “it would be three 

by three on the front but then by going back like four layers” demonstrates her projection 

of the front face along the four vertical layers. So, Kaylee decided to take off nine 

additional unit-cubes, resulting in 37 unit-cubes in total.  

An outstanding aspect of Kaylee’s activities is that she used a two-dimensional 

sketch of a 4×4 square to reason about a 4×4×4 cubic block and reducing it to a 3×3×3 

cubic block. This indicates Kaylee’s coordination of multiple perspectives and insertion 

of units (units-coordinating scheme) along various spatial dimensions, supported by her 

coordination of multiple perspectives and her FR coordinating scheme. To elaborate, 

taking the four unit squares on the top row of her 4×4 square as a unit, she projected that 

unit of four unit squares and inserted them into the subsequent vertical layers of the cubic 

block. In order to anticipate how many units she would need to insert the unit of four 

squares into, Kaylee must have coordinated her perspective looking at the front of the 

cubic block with her perspective looking from the top of the cubic block.  

Again, when taking the four units of three unit squares (illustrated in yellow in 

Figure 6.34 (b)), Kaylee had to re-orient the two perspectives she was taking. That is, it 

required her coordinating her perspective of looking at the cubic block from the front and 

then from the side. Although initially Kaylee anticipated three units of three unit squares, 
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in reflection of her activity, she re-organized the cubic block taking the new perspectives 

and considered four units of three unit squares. This was demonstrated in her action in 

adding the line segment starting at the bottom right corner of the square going towards 

the back of the imaginary cubic block. Then again reflecting on her mental actions so far, 

she anticipated the result of her actions to be a 3×3×4 cubic block; therefore, she took an 

additional layer of 3×3 unit-cubes off of the cubic block. All of these actions were carried 

out using her illustration in Figure 6.33; Kaylee did not have the physical cubic block 

model in her perceptual field. Ultimately, Kaylee has generated a re-presentation of the 

cubic block to reason upon in finding the number of unit-cubes to be taken off of the 

4×4×4 cubic block to reduce it to a 3×3×3 cubic block. 

Although the goal of this activity was not to re-produce each individual unit-cube 

mentally and count the total number of unit-cubes or identify certain unit-cubes in the 

interior of the cubic block, the operations that were involved in her reversible 

decomposing scheme were used in solving this new problem. First, Kaylee was able to 

rotate her perspective and coordinate multiple perspectives by bringing forth the 

immediate past result of one perspective to a new perspective. Second, Kaylee operated 

as if she peeled off layers one at a time but at the same time she kept in mind what the 

whole was in order to check the resulting size of the block after taking each layer off. 

This involved her unitizing and disembedding operations and being able to reverse the 

action of taking off. Finally, her FR-coordinating scheme guided her insertion of units 

(units-coordinating scheme) along various spatial dimensions. 

  



 

324 

Morgan’s solution. 

Figure 6.35 is Morgan’s written response for finding how many unit-cubes should 

be taken off from the 4×4×4 cubic block to make a 3×3×3 cubic block. 

 

Figure 6.35. Morgan’s written response for making a 3×3×3 cubic block from a 4×4×4 

cubic block. 

As shown in Figure 6.35, Morgan calculated the total number of unit-cubes for 

each cubic block and subtracted one from the other. Morgan explained her solution as 

shown in the following excerpt. 

Excerpt 6.12: Morgan explains how she found the additional unit-cubes. 

M:  Okay, so, I did, how many total blocks for the entire four [pointing to the 

4× 4 square she had sketched (Figure 6.31)] so I did, I know there are 

sixteen on each side and there are four sides, well, there’s like four layers 

[makes hand motion illustrating the four layers like Katie did before]. And 

so, I did sixteen times four and that’s sixty-four. Then, I looked at the 

three [points to the 3× 3 square she had sketched (Figure 6.31)], the three 

block, whatever, and there’s nine on each thing, on each side and there’s 

three layers. So, nine times three equals twenty-seven. Then sixty-four 

minus twenty-seven equals thirty-seven. 

T:  I see. So, you were subtracting the number of cubes.  

M:  Yes. 
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Although Morgan subtracted the total number of unit-cubes in the 3×3×3 cubic 

block from the total number of unit-cubes in the 4×4×4 cubic block using numerical 

calculations, there was a significant change in the way Morgan was explaining the 

composition of each cubic block. Previously, in Excerpts 6.3 and 6.4, Morgan referred to 

adjacent exterior layers or faces of each cubic block as “sides”. However, in Excerpt 6.12, 

she demonstrated a re-organization of the cubic blocks in which now the “sides” each 

containing 𝑛×𝑛 unit-cubes consisted the layers 

such that when iterated n times formed the cubic block. Morgan’s explanation “I know 

there are sixteen on each side and there are four sides, well, there’s like four layers” and 

“there’s nine on each thing, on each side and there’s three layers” indicated this re-

organization. It was likely that Morgan assimilated Kaylee’s method of consistently 

decomposing the cubic block into square-shaped layers. Assimilating this decomposition 

of the cubic blocks into square-shaped layers, Morgan explained why she multiplied 

4×4×4 and 3×3×3 to find the total number of unit-cubes contained in each cubic block.  

To further push her to reason about the 37 unit-cubes without using her numerical 

calculation, I asked Morgan to identify the 37 unit-cubes using the 4×4×4 cubic block 

model. I suggested that the two students work together. Excerpts 6.13 and 6.14 show 

Morgan explaining 37 unit-cubes using the cubic block. These discussions occurred after 

Kaylee had explained her sketch in Excerpt 6.11. 

Excerpt 6.13. Morgan explains the 37 unit-cubes using the 4×4×4 cubic block 

model. 

M:  Here’s the four thing. There’s sixteen on this little layer [makes hand 

motion as to slice off one side face of the cubic block (Figure 6.36 (a))]. 

There’s sixteen on this little layer [moves hand to the next vertical layer 

(Figure 6.36 (b))], there’s sixteen on this one, there’s sixteen on this one 

[continues to move her hand to point at each layer]. Then, if you… took 

off twenty-seven, so like sixteen right [here] [puts hand on the top layer of 
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the cubic block (Figure 6.36 (c))]… Sixteen… How many times does 

sixteen go in twenty-seven? Once… I mean thirty-seven. 

K:  [Mumbles as she’s trying to divide 37 by 16.] 

     
                      (a)                                          (b)                                           (c) 

 

Figure 6.36. Morgan demonstrates making the 4×4×4 cubic block into a 3×3×3 cubic 

block. 

The beginning of Excerpt 6.13 suggests corroborating indications of Morgan’s 

reorganization of the cubic block into layers. Moreover, from her hand motions, she has 

decomposed the cubic block into vertical layers, similar to Kaylee’s decomposition of the 

cubic block, as illustrated in Figure 6.7. However, Morgan seemed to be confused by the 

number of unit-cubes she counted and what to do with them. More specifically, Morgan 

thought about dividing 27 (the number of unit-cubes in the 3×3×3 cubic block) by 16 (the 

number of unit-cubes on one of the exterior layers (face) of the 4×4×4 cubic block). Then, 

Morgan wanted to divide 37 by 16. Excerpt 6.14 continues with Morgan making the 

4×4×4 cubic block into a 3×3×3 cubic block. 

Excerpt 6.14: Morgan explains the 37 unit-cubes using the 4×4×4 cubic block 

model (Continued). 

M:  Twenty-seven or thirty-seven? You’ll have to take off twenty-seven. So, 

sixteen, take off this sixteen [she’s pointing to the same top layer as shown 

in Figure 6.36 (c)] so you only have the [holds the cubic block at the top 

as if she’s covering the top face and turns it around to see the leftover 

(Figure 6.37 (a))] the four, like the three four layers.  

T:  Mm-hmm. 

M:  Like, the four by… 

T:  Let’s… [Takes off one layer off of the cubic block.] Okay, so you took one 
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layer off. 

M:  Okay, so then, all you have to do is just take the… [Turns the leftover 

block around to a position to better fit her description (the top layer taken 

off) (Figure 6.37 (b))] this side off. 

T:  What side are you trying to take off? 

M:  Like this side [places hand on the block to demonstrate the cut], this side 

right here [Figure 6.37 (c)].  

 

   
                     (a)                                            (b)                                           (c) 

 

Figure 6.37. Morgan continues to demonstrate her solution in making the 4×4×4 cubic 

block into a 3×3×3 cubic block. 

[Continued.] 

T:  Okay. I think it’s too glued, stuck to it. It might not… [Tries to take off the 

layer for her but fails because the layers are stuck together.] Let’s say we 

took it off.  

M:  So, like, that’s not there anymore [puts hand on the layer she wanted to 

take off to cover it (Figure 6.38 (a))]. Then you have your three squares.  

K:  No, but this is three by four [turns the cubic block around to show her the 

four blocks on one of the edges]. 

M:  I mean, then you would take off this one, too [puts finger on top of the 

block to cover the layer she’s referring to (Figure 6.38 (b))]. 

       
                                     (a)                                                (b) 

Figure 6.38. Morgan continues again to demonstrate her solution in making the 4×4×4 

cubic block into a 3×3×3 cubic block. 

 [Continued.] 

T:  Mmm… 
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K:  Which is nine. 

M:  So, sixteen [taps on the top face that was taken off earlier], seventeen, 

eighteen, nineteen, twenty, twenty-one, twenty-two, twenty-three [counts 

along the arrows shown in Figure 6.39 (a) then turns the cube around to 

the side], umm… Twenty-four, twenty-five, twenty-six, twenty-seven… 

[Counts along the blocks along the arrow shown in Figure 6.39 (b)]. Wait, 

what? 

 

    
                                               (a)                                               (b) 

Figure 6.39. Morgan counting the number of unit-cubes. 

Although Morgan occasionally lost track of the numerical calculations along the 

way and Kaylee interjected once in the process (Kaylee pointed out how the second part 

(Figure 6.38 (a)) was in fact a “three by four,” thus, twelve unit-cubes), using the 

physical cubic block model, Morgan demonstrated similar actions as Kaylee’s. That is, 

Morgan took off parts of the 4×4×4 cubic block to make the 3×3×3 cubic block in a 

similar manner as Kaylee did as modeled in Figure 6.34. Therefore, I concluded that 

Morgan was able to reason about the 37 unit-cubes in activity of handling the physical 

model of the cubic block and enacting parts of the partitioning operations. However, 

Morgan’s counting activity was constrained by the physical material and her actions were 

dependent on the actual blocks. Also, when counting the number of unit-cubes she took 

off, Morgan relied on counting one unit-cube at a time, instead of coordinating units of 

units as Kaylee did. After Excerpt 6.13, Kaylee walked Morgan through the taking off of 
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parts of the cubic block one at a time helping her keep track of the number of unit-cubes 

along the way.  

Making a 4×4×4 Cubic Block into a 5×5×5 Cubic Block (Re-visited) 

Based on my observations from the task that required the students to reduce the 

4×4×4 cubic block into a 3×3×3 cubic block, I had formed hypotheses that I wanted to 

test further by re-visiting the earlier quest of making a 4×4×4 cubic block into a 5×5×5 

cubic block. More specifically, I wanted to test my hypothesis that what Morgan counted 

and what she took off the blocks was restricted to the physical blocks she could 

manipulate in the moment; moreover, Morgan had to carry out the activities using the 

cubic block model to keep track of her counting. In addition, I wanted to explore whether 

Kaylee could generalize her counting activity in re-presentation to a different case of the 

4×4×4 cubic block using the operations she used in reducing the 4×4×4 cubic block..  

Morgan’s solution. 

When I asked the students to re-visit the aforementioned extension question, 

Morgan multiplied 25 by 5 to find 125 and subtracted 64 to obtain 61. In other words, she 

used a similar approach as she did before by subtracting the total number of unit-cubes in 

the 4×4×4 cubic block from the total number of unit-cubes in the 5×5×5 cubic block. I 

asked Morgan if she could explain why 61 might make sense in terms of the situation, by 

producing an illustration of what she was thinking. Morgan generated an illustration as 

shown in Figure 6.40. Although Morgan’s illustration in Figure 6.40 suggested yet 

another corroborating instance of her re-organization of decomposing the cubic blocks 

into layers, her illustration did not entail any of the counting activities she carried out in 

Excerpts 6.13 and 6.14. 
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Figure 6.40. Morgan’s illustration of making a 5×5×5 cubic block from a 4×4×4 cubic 

block. 

Kaylee’s solution. 

Given the same question, Kaylee generated an illustration as shown in Figure 6.41.  

 

Figure 6.41. Kaylee’s illustration of making a 5×5×5 cubic block from a 4×4×4 cubic 

block. 

Before she generated her illustration in Figure 6.41, Kaylee made hand motions of 

layers in the air around an imaginary block. Then, she produced the partial sketch of the 
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block and made the inscriptions of adding onto the block as shown in Figure 6.41. As 

demonstrated in Figure 6.41, Kaylee used her partial illustration of the cubic block to 

keep track of her counting activity as she was building the cubic block in re-presentation. 

That is, without relying on the physical cubic block model, Kaylee was able to mentally 

carry out actions of building onto the block. The way she did not hesitate or stop to think 

in generating her illustration suggested that  Kaylee had already generated the cubic 

block mentally. Therefore, based on her illustration, it seemed as though Kaylee 

assimilated the new case of building up the cubic block to her scheme of systematically 

taking off layers of the existing block and reversed the actions to make a cubic block 

larger than the given one.  

Morgan and Kaylee discuss their solutions using the cubic block model. 

Morgan explained how she subtracted the total unit-cubes from each other to 

obtain the difference in the number of unit-cubes. Although Morgan’s solution was 

reasonable, it did not provide me an opportunity to observe her reasoning about the 

number of unit-cubes in the spatial context. So, I wanted to further investigate Morgan’s 

reasoning about the extension of the cubic block.  Also, I wanted to hear Kaylee’s 

explanation of her generation of Figure 6.41 to test my hypothesis. Therefore, I provided 

the model of the 4×4×4 cubic block and suggested that they demonstrate their answers 

using the actual model. When I asked Morgan to enact the actual adding activity, she 

started to make sense of the problem spatially. Excerpts 6.15 and 6.16 involve Morgan 

and Kaylee explaining the 61 unit-cubes using the cubic block model. 

Excerpt 6.15. Morgan and Kaylee explain the 61 unit-cubes using the 4×4×4 

cubic block model. 

M:  Mmm… You add sixteen onto this side [points to one of the faces on the 

side of the cubic block].  
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T:  Okay, I think that’s what you were saying here [pointing to the part in K’s 

sketch where she adds 4× 4=16]. 

K:  Yeah. 

T:  Okay, so let’s… [Takes out loose unit blocks so that M can make the 4× 4 

added on the block.] Say we added sixteen. 

M:  So, we added sixteen. So it would end right there [Figure 6.42]. Then you 

would need to add sixteen [swipes finger around the top face shown in 

Figure 6.42] and add four [points to the extra four that would be needed 

on the top face due to the newly added face earlier], which equals… 

Twenty. [Looking at K] you know what I’m saying? 

 

 
Figure 6.42. Morgan’s demonstration of adding unit-cubes to the 4×4×4 cubic block 

model. 

[Continued.] 

K:  Make a five by four on the top [pats the top face of the cubic block]? So, it 

would be five [runs index finger along the five-unit-long edge (with the 

newly added blocks)] by four [runs index finger along the four-unit-long 

edge]. But it would also be five up [runs index finger up along the edge 

that shows the height of the cubic block]. So, if you were to have this 

extended [referring to the face that was added first (where M is holding up 

the blocks)]… 

M:  Alright, so look… 

K:  And you just added to the top. 

M:  Okay, so you have these going all the way to the top. So you added your 

sixteen. And you added your sixteen [builds the wall (Figure 6.43) and 

writes “16” on her paper to keep track.] And now you have to do… I 

already have five on this way [pointing to the dimension with five unit 

blocks] so you need five going this way [moving index finger vertically 

along the different “layers”], so you have to add one more layer to the 

top… 
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Figure 6.43. Morgan’s demonstration of adding 16 unit-cubes to the 4×4×4 cubic block 

model. 

 [Continued.] 

T:  And that would be? 

M:  Sixteen plus these four [again, refers to the top face plus the additional 

four blocks] which is twenty.  

T:  Okay. 

M:  So, twenty plus sixteen… [Looks at K] 

K:  Thirty-six. 

M:  Thirty-six. 

Although it seemed like Kaylee and Morgan did not communicate well with each 

other in Excerpt 6.15 at the beginning, it seemed as though their reasoning of adding 16 

unit-cubes along one face and then 20 unit-cubes along the top face of the cubic block 

was compatible. As shown in Excerpt 6.15, Morgan was able to reason that she would 

need to add 20 additional unit-cubes to the top of the cubic block by anticipating the 

result of her first activity—adding 16 unit-cubes to the front face. However, in moving 

forward, it seemed as though physically carrying out the activity of adding the unit-cubes 

to the cubic block was helpful. It supported her keeping track of how and what she had 

added so far. While Kaylee referred to each additional part by the dimensions (e.g., four 

by four, four by five), Morgan kept track of the number of unit-cubes along each part 

differently. More specifically, when finding how many unit-cubes that needed to be 
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added to the top of the cubic block, Morgan first took the 16 unit-cubes that would cover 

the top face and then added four more unit-cubes.  

In Excerpt 6.16, Morgan and Kaylee continue their discussion.  

Excerpt 6.16. Morgan and Kaylee explain the 61 unit-cubes using the 4×4×4 

cubic block model (Continued). 

T:  Okay. Thirty-six. What’s left? 

M:  You need to do… [Continues to place blocks on the top face.] 

K:  Something on this side [places hand on the face on the side completing the 

third dimension.] Yeah, because that takes the bottom… 

M:  [Finally completes stacking the blocks (Figure 6.44)]. 

 

 
Figure 6.44. Morgan’s demonstration of adding more unit-cubes to the 4×4×4 cubic 

block model. 

[Continued.] 

T:  Okay, so is this complete? 

M:  No. [Pauses.] 

K:  You need to have one of these [hand motions to either side of the block as 

shown in Figure 6.45 (a).] 

M:  Yes it is, it’s complete. 

K:  No, it’s not. The bottom is four. [Points to the edge on the bottom with 

four units.] 

M:  But… 

K:  Look at the front, look at the front [moves her index finger to the face 

facing M and counts along the bottom edge], one, two, three, four. You 

have to add one more on this side [again hand motions another layer on 

the side of the block using her right hand (Figure 6.45 (b).] 
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                                          (a)                                                           (b) 

Figure 6.45. Kaylee explaining how to add onto the 4×4×4 cubic block to produce a 

5×5×5 cubic block.  

 [Continued.] 

M:  Oh, one more layer.  

K:  That would be twenty-five, like a five by five [runs finger along the five 

by five blocks on the side face of the block.]  

T:  Okay, so that would be… 

M:  [Starts stacking blocks onto the cubic block,] okay, so we don’t have to 

add all. 

K:  So, we had thirty-six. Plus twenty-five… 

M&K:  [Simultaneously,] sixty-one. 

K:  [Taps on table]. 

M:  Boom! 

Towards the end of Excerpt 6.16, an interesting interaction occurred when 

Morgan thought the model was complete, when she had a 5×5×4 cubic block (Figure 

6.44) in front of her. Although the face facing her only had four unit-cubes along the 

bottom and the total number of unit-cubes they have added so far was 36 and not 61 (the 

answer they produced earlier), it did not seem to occur to Morgan that the cubic block 

model was incomplete. Kaylee then pointed out how the cubic block was incomplete and 

what additional action needed to be made. Once Kaylee redirected Morgan’s attention to 

the number of unit-cubes along the third dimension, Morgan realized “one more layer” 

needed to be added. As such, when asked to reason through her answer of 61 unit-cubes 

using the cubic block model, Morgan was able to build up parts of the cubic block and 

follow Kaylee’s guidance in counting all the necessary unit-cubes needed to extend the 
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given cubic block. However, this activity was not explicit in her illustration and involved 

redirecting from Kaylee. Therefore, it is not possible to impute a scheme to Morgan that 

would have allowed her to independently and consistently use for reducing or extending a 

given cubic block. Moreover, these actions were restricted to the particular occasion of 

extending the 4×4×4 cubic block to the 5×5×5 cubic block.  

On the other hand, Kaylee’s explanations in Excerpts 6.15 and 6.16 corroborated 

my hypothesis that Kaylee assimilated the new case of building up the cubic block using 

her scheme of systematically taking off layers of the existing block and reversed the 

actions to make a cubic block larger than the given one. Figure 6.46 is a model  generated 

to demonstrate what it would have looked like if Kaylee had actually added the unit-

cubes as she illustrated step by step in Figure 6.41 and as she explained in Excerpts 6.15 

and 6.16.  

 

                                             (a)                                (b)                                 (c)                                    

Figure 6.46. A model of Kaylee’s adding unit-cubes from a 4×4×4 cubic block to obtain a 

5×5×5 cubic block. 

As modeled in Figure 6.46, I interpreted her sketch in Figure 6.41 and her 

explanations in Excerpts 6.15 and 6.16 to indicate that Kaylee added a layer of unit-cubes 

onto the top face (Figure 6.46 (a)), then added a layer of unit-cubes onto the side face 

(Figure 6.46 (b)), and finally added a layer of unit-cubes onto the face in the back (Figure 
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6.46 (c)). Her activity of adding onto the cubic block was analogous to her activity of 

taking off of unit-cubes from a 4×4×4 cubic block to obtain a 3×3×3 cubic block, as 

modeled in Figure 6.34.  

This consistent way of adding or taking off layers of unit-cubes in re-presentation 

is why I conclude her counting actions to be systematic. In order to find how many unit-

cubes were in each of the parts (either to be added or taken off), Kaylee anticipated what 

the addition or subtraction along one spatial dimension would result in along the others. 

For example, after adding the layer of 4×4=16 unit-cubes onto the top of the 4×4×4 cubic 

block, Kaylee was able to coordinate the new dimension along the height of the cubic 

block with the existing dimension along the width of the cubic block and reasoned that 

the layer of unit-cubes she would add to the side of the cubic block consisted of 5×4=20 

unit-cubes. This powerful way of reasoning suggested that Kaylee’s reasoning about the 

cubic blocks was guided by her structuration of the cubic blocks using her FR 

coordinating scheme. Moreover, her accounting of the position of each unit-cube along 

all three spatial dimensions reflected the multiplicative positioning of each fish in the 

Fish Tank Task and her construction of a reversible decomposing scheme when reasoning 

with the cubic blocks.  

Summary of Cubic Block Task Part Two 

When engaging in the three extension questions of the 4×4×4 cubic block—how 

many of them are contained in a 8×8×8 cubic block, how many unit-cubes need to be 

taken off to obtain a 3×3×3 cubic block, and how many unit-cubes need to be added to 

obtain a 5×5×5 cubic block—I observed consistent differences in Morgan’s and Kaylee’s 

reasoning.  
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The number of 4×4×4 cubic blocks contained in a 8×8×8 cubic block. 

To find the total number of 4×4×4 cubic blocks contained in an 8×8×8 cubic 

block, Morgan drew a sketch of a face of the an 8×8×8 cubic block. Morgan’s attention 

to the two-dimensional space was consistent with her earlier actions in Part One of the 

Cubic Block Task in that it lacked the coordination of those faces with the third 

dimension. However, when the teacher asked her to explain her sketch, in explaining her 

counting and reflecting on her sketch, Morgan realized that there needed to be two pages 

of her sketch to make the entire 8×8×8 cubic block. After Kaylee interjected and pointed 

out how many unit-cubes they needed to “go back,” Morgan was able to visualize and 

coordinate the third dimension consisting of eight unit-cubes with the faces within the 

plane formed by the other two dimensions. Therefore, I considered Morgan to have 

coordinated the third dimension in activity. 

Kaylee seemed to have operated numerically, by substituting the numerosity of 

4×4×4 into the numerosity of 8×8. However, in that process, I hypothesized that Kaylee 

visualized a composite unit of the 4×4×4 cubic block symbolized in the substitution that 

could be iterated. This way of reasoning about multiplication was consistent with the way 

she calculated the total number of unit-cubes in each cubic block using her units-

coordinating scheme, through which she produced multiple three levels of units structures. 

Although Kaylee relied on the aforementioned numerical calculations, she immediately 

noticed what Morgan was trying to explain and pointed out what was not taken into 

consideration; that is, how many unit-cubes were “going back.” Even though the four 

unit-cubes “going back” were not represented in Morgan’s two-dimensional sketch, 

Kaylee was able to re-present the unit-cubes along the third dimension (see Figure 6.25). 
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This was an indicative behavior that Kaylee has coordinated the third dimension with the 

two-dimensional sketch simultaneously, accounting multiple perspectives.  

Extending or reducing the 4×4×4 cubic block to a 5×5×5 cubic block or a 

3×3×3 cubic block.  

Morgan relied on numerical calculations by subtracting the total number of unit-

cubes contained in one from the other to find the number of lacking or excess unit-cubes. 

Although Morgan used numerical calculations, there was a significant change in the way 

Morgan explained the composition of each cubic block. She demonstrated a re-

organization of the cubic blocks in which the “sides” each containing 𝑛×𝑛 unit-cubes 

consisted the layers such that when iterated n times formed the cubic block. It was likely 

that Morgan assimilated Kaylee’s method of consistently decomposing the cubic block 

into square-shaped layers. Assimilating this decomposition of the cubic blocks into 

square-shaped layers, Morgan explained why she multiplied 4×4×4 and 3×3×3 to find the 

total number of unit-cubes contained in each cubic block.  

When I asked Morgan to justify her answers in a different way, Morgan focused 

mainly on the faces of the cubic blocks from which I inferred that Morgan did not 

coordinate multiple perspectives through mental rotation, which would have assisted her 

to anticipate the results of her actions of adding or subtracting unit-cubes across multiple 

faces of the cubic block. The activity of mentally keeping track of what was taken off (or 

added) and what needed to further be taken off (or added) seemed to require a complexity 

of operations and schemes Morgan was yet to construct or coordinate together.   

On the other hand, Kaylee demonstrated the ability to carry out her counting 

activities in re-presentation, using minimal two-dimensional sketches. This highlighted 
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Kaylee’s operations of coordinating multiple perspectives and FR coordinating scheme, 

which guided her insertion of units (units-coordinating scheme) along various spatial 

dimensions. Kaylee consistently added or took off layers of unit-cubes in re-presentation, 

allowing her to anticipate what the addition or subtraction along one spatial dimension 

would result in along the others. This powerful way of reasoning Kaylee demonstrated 

suggested that her reasoning about the cubic blocks were guided by her structuration of 

the cubic blocks using her frames of reference and FR coordinating scheme. Moreover, 

her accounting of the position of each unit-cube along all three spatial dimensions 

reflected the multiplicative positioning of each fish in the Fish Tank Task and her 

construction of a reversible decomposing scheme when reasoning with the cubic blocks.  

Summary of Chapter Six 

In Chapter Six, I discussed the Cubic Block Task with Kaylee and Morgan, which 

was a task developed to investigate the students’ units-coordinating activities (inserting 

composite units into other units) in a three-dimensional context. In entering the Cubic 

Block Task, I hypothesized that the frames of reference that each student constructed 

would guide their units-coordinating activities on three-dimensional objects. More 

specifically, I hypothesized that Kaylee’s units-coordinating activities would be a 

coordination of multiple three levels of units structures, accounting for all three spatial 

dimensions multiplicatively; whereas, Morgan’s units-coordinating activities would be a 

sequential coordination of three levels of units structures in activity, along two spatial 

dimensions recursively. In the course of the task, I was able to observe more than Kaylee 

and Morgan’s units-coordinating activities.  
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Summary of Kaylee’s Cubic Block Task 

In Part One of the task, Kaylee operated as if she has constructed a scheme to re-

present each unit-cube within the cubic block by breaking the cubic block apart to 

identify each unit-cube as abstracted units but also by putting the parts together to 

individualize each unit-cube by maintaining their relative positions within the cubic block. 

I referred to this scheme as a reversible decomposing scheme to entail the decomposing 

and re-composing operations involved in this scheme. This scheme allowed Kaylee to 

find the total number of unit-cubes contained in each cubic block, in conjunction with her 

units-coordinating scheme. Also, this scheme resulted in Kaylee identifying which unit-

cubes would have paint on them.  

In Part Two of the task, Kaylee systematically counted the total number of unit-

cubes to take off from a given cubic block to make a cubic block smaller than the given 

one. Further, she was able to reverse the operations involved in that systematic counting 

to find the total number of unit-cubes needed to add to make a given cubic block a bigger 

cubic block. An outstanding aspect of Kaylee’s activities in solving this problem was that 

she was able to carry them out in re-presentation, using minimal two-dimensional 

sketches.  

The operations and schemes that Kaylee has constructed in her initial interview 

and the tasks discussed in Chapter Five seemed to have been used as assimilatory 

operations and schemes in her construction of the aforementioned counting schemes 

involving the cubic blocks. First, unitizing and disembedding operations were key 

operations used in decomposing and re-composing the cubic block as well as taking off 

(or adding) layers of unit-cubes to reduce (or extend) cubic blocks. Second, her splitting, 
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and recursive partitioning schemes were all involved in this decomposing process. Third, 

her units-coordinating scheme was also used in counting arrays of unit-cubes, either 

along two spatial dimensions or along three spatial dimensions.  

However, before enacting all of the aforementioned operations and schemes, 

Kaylee must have structured the spatial object in such a way so she could use them in a 

meaningful way. This structuration of space was supported by her FR-coordinating 

scheme and operations of coordinating multiple perspectives. Especially, her ability to 

bring forth immediate past results of her structuration of a two-dimensional space, while 

structuring another two-dimensional space allowed her to account for all three spatial 

dimensions multiplicatively. Finally, Kaylee was able to coordinate multiple three levels 

of units structures recursively. So, the three levels of units that Kaylee was inferred to 

have interiorized in her initial interview were structures that she could take as input to 

coordinate further with another three levels of units structure.  

Summary of Morgan’s Cubic Block Task 

In Part One of the task, Morgan’s reasoning focused on the two-dimensional faces 

of the cubic blocks, especially when the cubic block model was hidden from her 

perceptual field. It seemed as though Morgan was yet to coordinate the third spatial 

dimension along with the two-dimensional faces (or exterior layers) in re-presentation. 

However, when I prompted her to explain her reasoning or when she had the physical 

model of the cubic block available to her, she reflected on her counting activities and 

adjusted them to account the third dimension. Her interaction with Kaylee also seemed 

evoke reorganizations in Morgan’s counting activities as well. For example, after Kaylee 

demonstrated her way of decomposing the cubic blocks into square-shaped layers, 
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Morgan assimilated this strategy and used it in organizing the 4×4×4 cubic block, as she 

demonstrated later in Part Two of the task.  

In Part Two of the task, in extending or reducing the cubic blocks, Morgan relied 

on numerical calculations by subtracting the total number of unit-cubes contained in one 

from the other to find the number of lacking or excess unit-cubes. When I asked Morgan 

to justify her answers in a different way, using the cubic block, the activity of mentally 

keeping track of what was taken off (or added) and what needed to further be taken off 

(or added) seemed to require a complexity of operations and schemes Morgan was yet to 

construct or coordinate together, as Kaylee did.   

In her initial interview, Morgan operated as if she could carry out the operations 

of unitizing, disembedding, equipartitioning, splitting, and recursive partitioning. 

However, it was difficult to impute an independent construction of the splitting and 

recursive partitioning schemes to Morgan. Moreover, in counting, Morgan used her 

whole number multiplication and the result of the units coordination seemed more 

additive than multiplicative in that the composite units were sequentially added through 

progressive integration. Therefore, it is possible that Morgan did not have the 

assimilatory schemes available for her to decompose and recompose the cubic blocks and 

count the number of unit-cubes in various situations. As discussed in her initial interview, 

Morgan operated as if she could produce three levels of units in activity, but the lack of 

interiorization of the structure could have limited her to take that structure as input to 

coordinate further with another three levels of units structure.  

I found Morgan’s constraints in coordinating the third dimension along with the 

two-dimensional layers analogous to that in her activities discussed in Chapter Five. That 
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is, when locating the four fish in the three-dimensional fish tanks, Morgan sequentially 

coordinated the location of one fish in two-dimensional frames of reference. From her 

locating activities, I hypothesized that Morgan constructed a FR coordinating scheme in 

activity. In contrast to Kaylee—who I inferred to have used the results of her FR-

coordinating scheme as input to use in structuring the spatial object and construct a 

reversible decomposing scheme—I hypothesized that Morgan’s constraints in 

coordinating the third dimension along with the two-dimensional layers in the Cubic 

Block Task was because Morgan was yet to construct a FR coordinating scheme for 

three-dimensional space. In other words, Morgan did not recursively coordinate the 

results of her FR-coordinating scheme in such a way that would allow her to decompose 

and re-compose the cubic block mentally as Kaylee did.  

Once she had the physical model of the cubic block in her visual field, using the 

cubic block model, Morgan was able to keep track of the counting activities she had a 

difficult time coordinating in re-presentation. Therefore, I claimed that Morgan’s 

operating on the cubic block was in activity, relying on carrying out sensori-motor 

activity on the perceptual material.  

Based on the results in Chapter Five, I proposed that the FR coordinating scheme 

requires mental operations essential for coordinating three levels of units; hence, a 

parallel between the students’ levels of units coordination and coordination of 

measurements within frames of reference in three-dimensional space. From the findings 

in this chapter, I claim that coordinating multiple perspectives and the FR coordinating 

scheme is essential for coordinating three levels of units structures along three spatial 

dimensions.  
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CHAPTER 7 

CRAIG AND DAN COORDINATE UNITS WITHIN THREE SPATIAL 

DIMENSIONS 

In Chapters 5 and 6 I discussed Kaylee and Morgan’s construction of coordinate 

systems and coordination of units within three spatial dimensions. In Chapter 5, I 

discussed the students’ representations of points in two- or three-dimensional perceptual 

space through the construction of coordinate systems. From the findings, I conjectured 

that the FR coordinating scheme played an important role in representing three-

dimensional perceptual space. Further, I proposed that the FR coordinating scheme 

requires mental operations involved in coordinating three levels of units; hence, a parallel 

between the students’ levels of units coordination and coordination of measurements 

within frames of reference in three-dimensional space.  

In Chapter 6, I discussed the students’ units coordinating activities within a three-

dimensional spatial context. From the findings, I hypothesized that the operations and 

schemes I imputed to students in their initial interview and the Locating Tasks seemed to 

have been used as assimilatory operations and schemes in their counting activities 

involving the cubic blocks. First, unitizing and disembedding operations and splitting and 

recursive partitioning schemes were used in decomposing and re-composing the cubic 

block as well as taking off (or adding) layers of unit-cubes to reduce (or extend) cubic 

blocks. The units-coordinating scheme was used in counting arrays of unit-cubes, either 

along two spatial dimensions or along three spatial dimensions. In terms of levels of units 
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coordination, I hypothesized that a recursive coordination of three levels of units were 

produced using the aforementioned operations and schemes. On the other hand, I also 

hypothesized that the structuration of space was necessary because the results of such 

structuration guided students’ enactment of the aforementioned operations and schemes. 

This structuration of space was constructed through coordinating multiple perspectives, 

the use of students’ FR-coordinating schemes, and a recursive coordination of two-spatial 

dimensions multiplicatively. 

Through the work with the second pair of students, Craig and Dan, I tested and 

refined these hypotheses. With Craig and Dan, I reversed the order of tasks and started 

with the investigation of the students’ counting of units along spatial dimensions (e.g., the 

Cubic Block Task) and then investigated their locating activities (e.g., the North Pole 

Task and Fish Tank Task). The reason I started with the coordinating units tasks first was 

because I wanted to investigate how students might use the operations and schemes from 

their initial interviews as assimilatory operations and schemes in their counting activities 

in spatial objects, such as cubic blocks or rectangular floors. In this process, I expected to 

observe differences in their coordination of multiple perspectives. I also expected having 

Dan engage in building the spatial objects as he coordinates units along two or three 

spatial dimensions to enhance abstractions of the mental operations and schemes that he 

was yet to construct. 

In this chapter, I discuss three tasks that Craig and Dan engaged in, and my 

analysis regarding their units coordinating activities within two- or three-dimensional 

contexts. The three tasks were the Cubic Block Task, the Floor Tile Task, and the Box 

Task. The Cubic Block Task was similar to what Kaylee and Morgan engaged in with 
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minor variations. After the Cubic Block Task, I developed two new tasks for Craig and 

Dan, which I will explain in more detail in the respective sections in this chapter.  

Cubic Block Task: Craig and Dan Count Blocks of Various Sizes 

Craig and Dan engaged in the Cubic Block Task over two days (November 10th 

and 14th, 2014). On the first day, I asked Craig and Dan to build the 2×2×2 and 3×3×3 

cubic blocks using unit-cubes. In this process, we established names (1-Cube, 2-Cube, 

and 3-Cube) for each cubic block so we could easily refer to them in our teaching 

episodes. After Craig and Dan were finished building the 2-Cube and 3-Cube, I covered 

the cubic blocks and asked them to illustrate the cubic blocks and to find the total number 

of unit-cubes (or 1-Cubes) contained in each cubic block. Both students worked 

separately at a different pace but later explained their solution to each other. On the 

second day, Craig was absent so I had a chance to work further with Dan in re-visiting 

the 3-Cube problem and extending the 2-Cube to a 3-Cube and then to a 4-Cube. In the 

following sections, I will present my observations and analyses of Craig’s and Dan’s 

respective activities regarding the Cubic Block Task. 

Craig’s Cubic Block Activities 

Building the 2-Cube and 3-Cube.  

 Once we established that the 2-Cube referred to a cubic block that had two blocks 

on each edge along the length, width, and height, Craig built a 2-Cube as demonstrated in 

Figure 7.1. As shown in the two phases of his building process in Figure 7.1, Craig built 

one horizontal 2×2 square-shaped layer and then added another on top of it to form the 2-

Cube.  
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Figure 7.1. Craig’s building of a 2-Cube. 

Craig built the 3-Cube in successions of horizontal square-shaped layers, consistent with 

his way of building the 2-Cube. Figure 7.2 shows Craig’s building of the 3-Cube (see 

figures outlined in red in Figure 7.2 that highlight the horizontal square-shaped layers). 

 

 

 

 

 
     

 

 

 

 

 

Figure 7.2. Craig’s building of a 3-Cube. 

Drawing and counting the 2-cube and 3-cube.  

When I asked Craig to illustrate the cubic blocks, he said he forgot how to draw a 

cube and sat looking at his paper for a relatively long time compared to Dan. Despite his 

difficulty in producing illustrations of the cubic blocks, when I asked the number of 1-

Cubes contained in each cubic block, Craig immediately determined that there were eight 



 

349 

1-Cubes and 27 1-Cubes contained in each. As such, Craig counted the cubic blocks 

without relying on his sketch of them. After I encouraged him to draw anything that made 

sense to him, Craig finally produced a sketch of the 2-Cube and 3-Cube as shown in 

Figure 7.3. Craig explained that he sketched the cubic blocks as if he was viewing them 

from one side. 

            

                               (a) 2-Cube                              (b) 3-Cube             

Figure 7.3. Craig’s sketch of the cubic blocks. 

As shown in Figure 7.3, Craig made tally marks in each unit-square that 

constituted the face he imagined he was viewing. Craig explained the tally marks in his 

illustration as the following: 

You could take it either as a roman numeral or what do you call it, those tally 

marks. And each one represents a block behind a block you see… It’s like a 

puzzle to indicate how many are behind the block. 

Based on Craig’s building, counting, and illustrating activities, I inferred that 

Craig has structured the cubic blocks into units of unit-cubes. More specifically, Craig 

seemed to have decomposed the cubic blocks into square-shaped layers each consisting 

of four or nine unit-cubes. Inferring from his building activity, Craig placed each square-

shaped layer on the table horizontally and stacked them on top of each other. Inferring 

from his illustration, Craig visualized each square-shaped layer vertically facing him and 
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imagined two behind the one in the front. As such, not only did he decompose the cubic 

blocks into square-shaped layers, each consisting of a unit of unit-cubes, but he also 

flexibly changed the direction in which he decomposed and recomposed the cubic blocks. 

Therefore, I also hypothesized that such structuration was carried out in re-presentation. 

Further, I hypothesized that Craig’s structured re-presentation of the cubic block assisted 

Craig’s relatively quick calculation of the total number of 1-Cubes contained in each 

cubic block by supporting his unit-coordinating operations.  

Finally, Craig seemed to be aware of his perspective in viewing the cubic blocks 

and was able to identify which viewpoint he was taking when re-generating the cubic 

blocks in his illustration. The hypotheses I developed above for Craig’s reasoning with 

the three-dimensional objects were further tested and refined in other tasks, which I 

discuss later in this chapter.  

Dan’s Cubic Block Activities 

Building the 2-Cube and 3-Cube. 

 Figure 7.4 shows the process of Dan building the 2-Cube.  

          

Figure 7.4. Dan’s building of a 2-Cube. 

When Dan completed building his 2-Cube I asked Dan to tell me why he thought 

his configuration worked as a 2-Cube. Dan separated the cubic block in half vertically as 

shown in Figure 7.5, explaining that “there’s two faces touching each other.” This way of 
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Dan referring to each 2×2 square-shaped layer as faces put together resembled Morgan’s 

way of describing the 2×2×2 cubic block as two “sides” put together.  

 

Figure 7.5. Dan explains why his 2-Cube is a 2-Cube. 

 
Figure 7.6. Dan’s building of a 3-Cube. 
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Figure 7.6 shows the process of Dan building a 3-Cube. As shown in Figure 7.6, 

his building of the cubic block was rather haphazard, compared to Craig’s in Figure 7.2. 

Moreover, Dan seemed to focus on building the exterior of the 3-Cube first and then 

filled in the interior.  

Drawing and counting the 2-cube and 3-cube.  

When I asked the students to draw the 2-Cube, Dan drew the outline of a cube and 

then partitioned each visible face into four sections by inserting cross-sign looking 

inscriptions, one face at a time. Eventually, Dan produced an illustration as shown in 

Figure 7.7 (a). When I asked him to write how many of the 1-Cubes were in the 2-Cube, 

Dan looked at his sketch for approximately 13 seconds and wrote “8” on his paper. The 

way he stared at his sketch intently for a relatively long time suggested that Dan may 

have been counting the 1-Cubes using his sketch.  

Later in the teaching episode I asked Dan to explain how he found the eight 1-

Cubes in the 2-Cube. Dan explained “At first, I just times two by four,” which I 

interpreted to mean that he doubled four to obtain eight. When I asked Dan what was the 

four he was thinking of, Dan said “it took two, ah, four squares to make one side [makes 

hand motion as if slicing something vertically] and then it took another four squares on 

the other side.” His earlier explanation that “there’s two faces touching each other” 

(Figure 7.5) was consistent with his description of the 2-Cube as consisting of two sides, 

each consisting of four squares.  
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(a)                                            (b) 

Figure 7.7. Dan’s sketch of the 2-Cube and 3-Cube. 

In drawing and counting the 3-Cube, Dan used a similar approach to the one he 

used for the 2-Cube. In drawing the 3-Cube, after sketching an outline of a cube, Dan 

added a vertical line segment through the middle of the front face. Next, Dan drew two 

horizontal line segments perpendicular to that, partitioning the front face into 2×3 squares. 

Dan completed his sketch by adding the same inscription (looking like a ǂ sign) into each 

visible face, obtaining an illustration as shown in Figure 7.7 (b). Note that the number of 

horizontal partitions (two) on the top face do not correspond to the number of vertical 

partitions (one) on the right face.  

Consistent throughout both cubic blocks, Dan’s sketch started with the outline of 

a cube and then a partitioning of each visible face. This way of illustrating the cubic 

blocks was consistent with how he started with the exterior of the cubic blocks in his 

building activity. Also, inferring from his sketches in Figure 7.7, both cubic blocks 

consisted of two “sides” of some configuration put together. In other words, I inferred 

that Dan’s counting strategy for the cubic blocks entailed decomposing the block into two 

“sides,” focusing on the exterior faces of the cubic blocks.          



 

354 

When I asked Dan to write how many 1-Cubes were in the 3-Cube, Dan moved 

his index finger over his sketch of the 3-Cube as if he was counting the 1-Cubes along the 

right side of the top face (indicated by the blue dots in Figure 7.8) and then along the 

right side of the front face (indicated by the red dots in Figure 7.8). Next, Dan looked up 

as if he was thinking to himself and finally wrote “9” below his 3-Cube. This process of 

counting and presumably thinking intently until he came to his conclusion of nine 1-

Cubes lasted for approximately 50 seconds. Putting his pen down, Dan said “I got nine,” 

but that he was “not sure if it’s right.”  

 

Figure 7.8. Dan’s sketch of the 3-Cube and the number of 1-Cubes he counted in the 3-

Cube. 

The way Dan counted along the unit-cubes indicated by the blue dots and then 

along the unit-cubes indicated by the red dots in Figure 7.8, and then wrote “9” after 

some thought suggested that he had multiplied 3 by 3 to obtain 9 unit-cubes. The 

relatively long hesitance to get to that conclusion and his uncertainty in his answer could 

have been due to the discrepancy between his answer 9 and his illustration, which only 

showed 6 unit-cubes along the right “side” of the cubic block. It is also possible that Dan 

was unsure of his answer because he tried to multiply 3 by 3 in his head. In previous 

sessions, Dan demonstrated difficulty in computing arithmetic in his head.  
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In either case, the way Dan engaged in counting the number of 1-Cubes in his 

drawing of the 3-Cube suggested that Dan’s building of the cubic block was yet to be 

interiorized. That is, Dan relied on his illustration in counting the number of 1-Cubes 

contained in the 3-Cube. Recalling Dan’s building of the 3-Cube, it is possible that Dan 

may have been caught up in the activity of filling in the interior of the 3-Cube and did not 

engage in reflective activities that he could draw upon when re-presenting the 3-Cube in 

his illustration.  

Because Dan seemed unsure of his answer I asked him to think a little more about 

the 3-Cube while I was talking with Craig. After sitting in thought looking at his sketch, 

Dan told me that he was sure he was right. I asked Dan to compare the 2-Cube and the 3-

Cube, pointing out that he said there were eight 1-Cubes in the 2-Cube and nine in the 3-

Cube. I asked Dan if adding one small cube to the 2-Cube would make a 3-Cube. Dan 

paused to think, saying “I know if you …If you add one to all sides it will be equal.” I 

interpreted his explanation to mean that if he added one block to each side of the 2-Cube 

then that will make three blocks on each side, giving him a 3-Cube. Because I was still in 

the middle of talking with Craig, I asked Dan to think some more about the 3-Cube.  

At this point in the teaching episode, Craig had completed his work and was 

explaining to me that his sketch contained tally marks, which expressed how many blocks 

were behind the ones in the front. Dan also listened to this part of Craig’s explanation. 

Then, Dan started to count the number of 1-Cubes in his sketch by marking them off one 

by one, as demonstrated by the check marks on the front face of the cubic block in Figure 

7.9. This time, the way Dan marked off the 1-Cubes with the check marks suggested that 

his counting focused on the front vertical layer of the cubic block. After a while, Dan 
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finished his counting of the front vertical layer and scratched the “9” out and paused to 

think. I did not notice that Dan was yet to finish revising his answer and asked both 

students to share their work. 

 

Figure 7.9. Dan counts the 3-Cube using his illustration. 

After explaining how he counted eight 1-Cubes for the 2-Cube, Dan said, “I was 

trying to do the same thing with that one [3-Cube]. But I couldn’t figure how.” 

Corroborating my previous hypothesis, Dan wanted to use the same counting strategy he 

used in the 2-Cube in counting the 3-Cube but was unsure how to do so. After Craig 

explained his drawings, I asked Dan if Craig’s sketch made sense to him. Dan slowly 

nodded and said, “I was thinking of mine of eighteen, too, because I was thinking six 

times three.” Considering Dan’s counting of each square on the front face in his sketch, I 

interpreted this to mean that Dan has thought of multiplying the number of squares in the 

front, 6, by the number of layers, 3.  

I asked Dan what the six referred to when he said “six times three.” Dan laughed 

shyly and there was a pause for approximately six seconds. I was about to turn to Craig 

when Dan replied “One row…equals six. Top to bottom [running his index finger along 

the unit-cubes in his sketch indicated by the dots in Figure 7.8].” When I observed him 

running his index finger along the unit-cubes in his illustration indicated by the blue and 
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red dots in Figure 7.8, I interpreted this to mean that he was referring to the 6 unit-cubes 

consisting the right “side” of the 3-Cube. To my surprise, Dan pointed to a sequence of 

six consecutive faces of unit-cubes that were along one “side” of the cubic block. 

However, in retrospect, it is possible that he was referring to the row with 6 unit-cubes on 

the top (when sweeping his finger along the blue dots in Figure 7.8) and then the 3 unit-

cubes along the top to bottom (when sweeping his finger along the red dots in Figure 7.8).   

Because the bell rang, I was not able to further probe Dan for explanations. 

However, in the next teaching episode, I had the chance to work with Dan alone, which 

led to more opportunities to test and form hypotheses of Dan’s reasoning about the cubic 

blocks, which I discuss next. 

Revisiting the 3-Cube 

At the start of the next teaching episode on November 14th, 2014, I asked Dan to 

make a 2-Cube and a 3-Cube. The purpose was to help Dan remember the context of the 

task in our previous teaching episode and to engage him in the physical activity which he 

could reflect upon. This time, Dan used the 2-Cube he made to build the 3-Cube. Figure 

7.10 illustrates his new way of building the 3-Cube.  

In the previous teaching episode, Dan claimed, “If you add one to all sides [of the 

2-Cube] it will be equal [to the 3-Cube].” It seemed like Dan carried out this hypothetical 

activity in his building, as shown in Figure 7.10. However, he had to figure out how to 

add “sides” onto the 2-Cube in a rather trial and error manner through the actual building 

activity. To elaborate, after adding unit-cubes onto the side, making the configuration 

shown in Figure 7.10 (b), Dan paused and said “one more.” This suggested that he 

noticed that he needed one more “side.” Next, Dan added two more blocks along the 
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bottom of the configuration, as shown in Figure 7.10 (c). However, he soon realized that 

it resulted in four unit-cubes on the bottom of the block so he moved the fourth block, 

resulting in a configuration shown in Figure 7.10 (d). Through Figures 7.10 (e) and (f), 

Dan completed making a 3×3×2 cubic block. Finally, noticing that the block was 

incomplete, Dan completed the 3-Cube by adding the last horizontal layers of 9 unit-

cubes.  

 

Figure 7.10. Dan’s building of a 3-Cube (revisited). 

I found Dan’s second time of building the 3-Cube (as demonstrated in Figure 7.10) 

to be quite different from his first time building it (see Figure 7.6) because he seemed to 

monitor his building activities. That is, Dan appeared to be more reflective on his 
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building activities. On the first day, he first put together the exterior of the cubic block 

and then filled in the interior seemingly haphazardly. However, this time, Dan added 

“sides” onto the 2-Cube in a relatively systematic manner compared to the first time. 

Although Dan had to make in-the-moment realizations that the configuration was yet 

complete at the steps discussed above (e.g., after Figure 7.10 (b) and 7.10 (f)), I 

considered Dan’s building activity to be more purposeful. For example, instead of adding 

one unit-cube at a time like he did in the first time, Dan added two unit-cubes at a time, 

which I interpreted to mean that elements of the cubic block were being integrated into 

composite units and that his building of the block entailed more anticipation than the first 

time. 

After Dan finished building the 3-Cube, I mentioned that in the previous teaching 

episode, he did not seem confident about his answer for the number of 1-Cubes in the 3-

Cube. Dan explained, “[c]uz I would end up counting the same one. Like, I would go like 

that [pointing to one of the faces of a 1-Cube and then to the adjacent face], end up 

counting the faces, not the cube.” This comment explained the two tally marks he made 

on the same unit-cube in his sketch in Figure 7.9. It also corroborated my hypothesis that 

Dan primarily focused on the faces of the cubic blocks. Dan did not have his previous 

drawing with him when he made this comment, which suggested that Dan has reflected 

on his previous activities while he was building the 3-Cube for the second time. I inferred 

this to mean Dan started to put meaning to the squares in his illustration of the cubic 

block by associating it with the physical unit-cube. 

Breaking the 3-Cube Dan has just built, I asked him to try to imagine the 3-Cube 

and count how many 1-Cubes would be contained in that 3-Cube. Dan looked up into the 
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air as if he was in intense thought for approximately ten seconds. Then, Dan replied 

“eighteen,” which was consistent with his last answer in the previous teaching episode. I 

asked Dan to explain how he was imagining the 18 cubes. The following excerpt shows 

Dan’s explanation of his 18 unit-cubes in the 3-Cube. 

Excerpt 7.1. Dan explains how he counted 18 unit-cubes in the 3-Cube. 

D:  [Sketches the frame of a cube, as he did in the previous session]. Alright, 

so one cube, [sketches a 1-Cube in the corner of the frame (Figure 7.11 

(a)] I would think in my head, like, try to imagine that this is one building 

block so cross that one out [makes a cross mark across the cube he just 

sketched in the corner] and then there’s three of them [sketches another 1-

Cube to the left of the one he just marked off (Figure 7.11 (b))] and I 

would just mark those out and go down the rows [taps twice on his 

illustration of the cubic block as if he is referring to two other “rows” 

underneath the one he sketched].   

 

              
                                                (a)                                            (b) 

            

Figure 7.11. Dan’s sketch explaining how he counted 18 unit-cubes in the 3-Cube. 

[Continued.] 

T:  Okay. 

D:  Like there’s three rows [swipes finger horizontally along his sketch across 

the two 1-Cubes he sketched], and I would count all of them [again taps 

on his picture below the two 1-Cubes he sketched]. 

T:  Mmhmm. So, you’re saying that you would start counting these three 

[runs index finger across the first row with the two unit blocks drawn into 

the cube frame]? 

D:  Yeah. 

T:  And then where do you go? After? 

D:  Go behind them on top. First and then… 

T:  Oh! So you… 

D:  Same on the layers, basically. 
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T:  So are you talking about the first layer [running finger along the first row 

in the frame]? 

D:  Yeah. 

T:  How many layers are there in this [runs index finger perpendicular to the 

first layer along the frame]? 

D:  Three. 

In the previous teaching episode, Dan first said he tried to “do the same thing” as 

he did for counting the 2-Cube (count each “side” and put them together) but that he 

“couldn’t figure it out.” Then, Dan said he thought of six times three because one row 

equals six, top to bottom. In these instances, there seemed to be an idea of decomposing 

the cubic block but the decomposition relied on his sketch of the 3-Cube (Figure 7.7 (b)). 

However, in Excerpt 7.1, Dan described each individual unit-cube and the layers without 

drawing the entire 3-Cube. As such, Dan’s decomposition of the cubic block seemed to 

be carried out in re-presentation. More specifically, starting with one 1-Cube, Dan 

counted three adjacent 1-Cubes across the top of the cubic block. When I asked him what 

he would count after the three in the front of the top row, Dan said he would count the 

cubes behind those three, forming the first layer. Further, going down the cubic block, 

Dan knew there were three rows altogether.  

As such, Dan articulated the order in which he would count in terms of layers and 

rows of unit-cubes. However, the way he described his counting activity as crossing 

individual cubes out suggested that his decomposition of the 3-Cube was a result of a 

sequential re-presentation of one unit-cube at a time, which were progressively integrated. 

Dan’s sketch of the cubic block corroborates this hypothesis in that he sketched the 

individual unit-cubes and not units of several unit-cubes put together. Instead, Dan has 

progressively integrated the three individual unit-cubes horizontally across the cubic 

block into a group of unit-cubes and produced two more of those groups behind the first 



 

362 

one. I distinguish group from composite unit in that the unit-cubes in the group are 

progressively integrated into a “chunk” or “group” of objects that are not necessarily 

unitized abstract units.  

Dan’s reasoning with the cubic block and the unit-cubes constituting the cubic 

block seemed consistent with his reasoning with length of string and unit-lengths 

constituting the strings in his initial interview. In the equi-partitioning task, in which I 

asked him to mark one person’s share when sharing a given wax string equally among 

five people, Dan operated as if he engaged in equi-segmenting and at best has constructed 

a simultaneous partitioning scheme in activity. In other words, Dan’s unit-lengths were 

progressively integrated additively rather than instantiated simultaneously. This tendency 

seemed to transpire in his decomposition of the cubic block as well: the unit-cubes 

constituting the cubic block were re-presented sequentially and progressively integrated 

until it exhausted the whole.  

Further, Dan’s decomposition of the 3-Cube was not a result of a reversible 

scheme of partitioning and re-composing the cubic block into composite units of several 

unit-cubes. Again, his way of reasoning about the 3-Cube resembled his reasoning in the 

initial interview. In the splitting task of the initial interview, I asked him to find my wax 

string if his given wax string was five times as long as my string. To solve the task, Dan 

operated as if he had enacted his equi-segmenting operation but his partitioning and 

iterating were not carried out in conjunction. Moreover, Dan did not use the measurement 

of the entire string to find the length of one share by reasoning about the inverse 

multiplicative relation between the size and number of pieces. Rather, Dan’s partitioning 

was sequential, partitioning one part at a time and progressively integrating them to find 
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if the result of his partitioning gave him the same length as the original string. As such, I 

inferred that Dan was yet to construct a splitting scheme.  

Both in the initial interviews and in the 3-Cube problem, Dan could progressively 

integrate units sequentially and could group the units into chunks. However, these units 

were not unitized to be used as input for further recursive reasoning. Moreover, Dan’s 

decomposition of the cubic block or partitioning of the string were not reversible in that 

they did not entail a simultaneous re-composition of the cubic block or iterating of unit-

strings. Therefore, I claim that Dan’s ability to coordinate two levels of units in activity 

but not three and not yet having constructed a splitting scheme pertained throughout these 

tasks and explains the differences in his activities compared to the other students.  

Excerpt 7.2 is a continuation of Excerpt 7.1 starting with me asking Dan to find 

how many unit-cubes are in the top layer.  

Excerpt 7.2. Dan explains how he counted 18 unit-cubes in the 3-Cube 

(Continuation I). 

T:  Okay. Let’s focus on each layer, then [running index finger again along 

the first row Dan sketched]. So, try to imagine this layer. How many cubes 

do you see in this layer?  

D: [After for approximately three seconds] nine. 

T:  Hmm? 

D:  Nine.  

T:  Nine? Okay. So, can you explain why it should be nine?  

D:  Because there’s three rows and three [pauses] and three times three equals 

nine.   

T:  Oh, okay. And so does it mean that each layer has nine blocks or…does 

each layer differ a little bit? 

D:  [Repeats looking at his sketch and looking up from the table several times 

for approximately 7 seconds.] They’re all the same. 

T:  They’re all the same? 

D:  Yeah. 

T:  Okay. So how many blocks in total do you have?  

D:  [Sits quietly for approximately ten seconds] eighteen, I think. [Smiling 

shyly,] I don’t know. 
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In Excerpt 7.2, after I asked Dan how many unit-cubes he could imagine in the 

first layer, Dan seemed to be in deep thought in the three seconds he paused before 

answering “nine.” When I asked him why there should be nine unit-cubes, Dan explained 

that there were three rows and three, which I interpreted to mean that there were three 

cubes in each of the groups, which he referred to as rows. Considering the relatively long 

pause Dan took to think whether all three layers had the same number of unit-cubes, his 

rearrangement of the unit-cubes in the 3-Cube did not seem immediate nor did it seem to 

entail an abstraction of unit items. That is, each individual unit-cube and the groups were 

distinct objects.  

Dan did not seem confident about his answer of 18 unit-cubes, so I furthered our 

discussion as shown in the following excerpt.   

Excerpt 7.3. Dan explains how he counted 18 unit-cubes in the 3-Cube 

(Continuation II). 

T:  Okay. Can we, um, why don’t you write that down, the number of cubes 

for each layer. Just the numbers. 

D:  [Prepares pen and poses to write.] 

T:  So the first layer we have…? 

D:  [Sketches in two more unit-cubes below the first unit-cube he sketched 

earlier (Figure 7.12) then taps on each one at a time.] Hold on, let me first 

try to do that.  

 
Figure 7.12. Dan adds two more unit-cubes into his sketch. 

[Continued.] 

T:  Okay. 
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D:  Alright. [Then sits for approximately 13 seconds, looking at his sketch and 

then looking up from his sketch, while moving his fingers slightly.] 

Twenty-four. 

T:  [Smiling,] okay, so you changed your mind. 

D:  Yes, because I did, I counted those two rows [pointing to the two unit 

blocks he just added to his sketch.] and got…that was nine [tapping on the 

unit block sketched on the bottom of the cube], that was nine [tapping on 

the unit block sketched above the one he just tapped] nine times two so 

eighteen plus nine more…That would actually be twenty-seven. Twenty-

seven. 

 

This was the first time Dan stopped me from intervening to try something out on 

his own. From analysis of the video, even at the beginning of Excerpt 7.3 he did not seem 

to be paying attention to what I was saying. In other words, Dan seemed deeply 

concentrated in thought. There seemed to be several things happening in this moment. 

The way Dan tapped on each of the two squares he added in Figure 7.12 one at a time 

saying “that was nine” suggested that Dan used the two square figures as place holders 

for layers each consisting of 9 unit-cubes. During the 13-second pause, although the 

movement of his fingers did not seem systematic, I inferred that Dan was counting 

numbers one at a time in his head by the way he occasionally twitched his fingers. So, 

putting these observations together, it is likely that Dan added nine three times 

sequentially, keeping track of each nine by looking at the three square figures that were 

used as place holders to keep track of each group of nine unit-cubes. 

Compared with the first day, Dan seemed to have engaged in some structuration 

of the cubic block and this supported his counting activities. Moreover, Dan’s counting 

seemed to be in line with his new building process—in horizontal layers as opposed to 

moving from the exterior to the interior of the cubic blocks.  

Based on Dan’s activities throughout Excerpts 7.1, 7.2, and 7.3, I inferred that 

Dan coordinated two levels of units sequentially in activity. Dan repeated that grouping 
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activity for the next two rows behind the previous one. Once he produced the three 

groups each consisting of three unit-cubes, Dan counted the total number of unit-cubes in 

the first layer, 9. Then, Dan associated the numeral 9 with the first layer and erased the 

mental markings of each unit-cube in the layer but rather took the result, 9, as his new 

unit. So, when I asked him whether each layer consisted of the same number of unit-

cubes, it took him some time to think whether or not they did. Next, using the square 

diagrams as place holders, he inserted the 9 into the two remaining rows and sequentially 

added 9 three times, again, reasoning with two levels of units in activity.  

Building a 3-Cube with a 2-Cube. 

 Next, I asked Dan how many more 1-Cubes he added when he built the 3-Cube 

starting with the 2-Cube. Dan sat in thought for approximately 30 seconds and said “I’m 

trying to figure out what two times what is equal to twenty-seven.” Then, Dan changed 2 

to 8, since there were eight 1-Cubes in the 2-Cube. Dan seemed perturbed, saying “But 

eight doesn’t go into it [27] cuz the closest I will get to twenty-seven is times it by three 

and that would be twenty-four.”  

The way Dan wanted to divide the 27 by 8 again resembled some of the 

observations I made from Morgan’s activities in the Cubic Block Task. When solving for 

the number of unit-cubes needed to add to the 3-Cube to make the 4-Cube, Morgan 

attempted to find how many times 16 (the number of unit-cubes on one of the exterior 

layers (face) of the 4×4×4 cubic block) would go in 27 (the number of unit-cubes in the 

3×3×3 cubic block) (cf. Excerpt 6.13, Chapter 6). For Morgan and Dan, it is possible that 

thinking about the number of additional unit-cubes needed in extending a cubic block 

entailed an image of fitting the smaller cubic block into the larger one. Perhaps this image 
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rooted from the idea that the smaller cubic block should fit inside the larger one. 

However, in both cases, the number that they attempted to divide was not whole number 

multiples of the other and hence did not work the way they expected.  

 Next, I asked Dan to build the 3-Cube again, giving him a 2-Cube. This time, Dan 

built a 3-Cube from the given 2-Cube as captured in Figure 7.13. This time, Dan added 

unit-cubes onto the 2-Cube in succession of layers. After completing the building activity, 

Dan said “twenty.” I asked Dan to identify the 2-Cube that he started with and explain his 

building process. Although from an observer’s perspective, Dan had added unit-cubes 

onto the 2-Cube to build each horizontal layer from bottom to top, Dan did not mention 

the layers but that “I was just adding one more to be three. And it took twenty of them to 

get all of the sides.”  Dan admitted that he counted the number of 1-Cubes as he added 

them onto the 2-Cube.  

       

Figure 7.13. Dan adds onto the 2-Cube to make a 3-Cube. 

 Noticing that Dan had counted the unit-cubes one by one as he added him to the 

2-Cube, I decided to first establish with Dan how many additional unit-cubes there were. 

My goal in this task was not for Dan to find the correct number of 1-Cubes contained in 

the 3-Cube. My goal was to provide an opportunity for him to engage in counting unit-

cubes in a more systematic way. So, I asked Dan how many 1-Cubes were in each of the 

2-Cube and 3-Cube and to find how many more unit-cubes he would need from 8 to get 
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to 27. Moving his fingers one by one as he moved his mouth, Dan counted numbers to 

himself and after approximately 13 seconds, guessed “Eighteen?” After I requested Dan 

to show me his counting, Dan explained as the following. 

“I said eight, [putting one finger up at a time for each number starting with nine] 

nine, ten, eleven, twelve, thirteen, fourteen, fifteen, sixteen, seventeen, eighteen, 

nineteen, twenty, twenty-one, twenty-two, twenty-three, twenty-four, twenty-five, 

twenty-six, twenty-seven. Eighteen. Or, nineteen. Yeah, nineteen.” 

Dan’s counting activity resembled the counting activity he demonstrated in the 

initial interview when I asked how much more string he needed to add to a string of 15 

cm to make the string as long as a string of 24 cm. Dan kept track of his counting from 

the smaller number up to the larger number, putting up one finger at a time. Consistent 

with his counting activity in the initial interview, Dan relied heavily on the figurative 

marks of his fingers to keep track of his counting.  This way of counting one number at a 

time instead of counting in composite units seemed to be consistent with the way Dan 

counted the individual unit-cubes instead of counting them in composite units. In other 

words, Dan consistently reasoned with his tacitly nested number sequence and within two 

levels of units in activity, which was also consistent with his initial interview activities. 

 Once we established that there were 19 more unit-cubes in the 3-Cube than the 2-

Cube, I asked Dan if there was a systematic way of finding the 19 blocks without 

subtracting the total number of unit-cubes in each cubic block or by counting one unit-

cube at a time. I asked Dan to show me the 19 unit-cubes using the 3-Cube on the table. 

Dan sat in thought for approximately 10 seconds. I tried to intervene, by prompting him 

to peel off the cubes when Dan interrupted me and said, “Well, I was going to do this.” 

He then took off the top 3×3 square-shaped layer in the 3-Cube (circled in red in Figure 

7.14 (a)). Next, he took off the 2×3 rectangular-shaped layer on the side (circled in red in 
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Figure 7.14 (b)). Lastly, he took off the 2×2 square-shaped layer in the front to make the 

2-Cube (Figure 7.14 (c)).] 

         
                      (a)                                             (b)                                           (c) 

Figure 7.14. Dan removing layers of unit-cubes off of the 3-Cube to make a 2-Cube. 

The way Dan peeled off layers of unit-cubes from the 3-Cube to make the 2-Cube 

was different from the reverse of the way he built the 3-Cube from the 2-Cube as shown 

in Figure 7.13. Nevertheless, his activity was independently carried out. Interestingly, the 

way he took off unit-cubes was very similar to the way Kaylee took off unit-cubes from 

the 4×4×4 cubic block to make a 3×3×3 cubic block (cf. see Figure 6.34 in Chapter 6). 

Kaylee’s and Dan’s activities differed in that Kaylee enacted them in re-presentation 

while Dan relied on the physical blocks. 

The crucial point in Dan’s activity is that Dan grouped unit-cubes into chunks 

when taking off the unit-cubes. After Dan demonstrated how he would take off the unit-

cubes, I suggested to him to reverse his actions to re-build the 3-Cube and keep track of 

the number of unit-cubes he added each time. The following excerpt starts with my 

prompt to go backwards. 

Excerpt 7.4. Dan makes a 2-Cube from the 3-Cube. 

T:  Ah! That’s really cool. So, can you explain, now let’s go backwards, 

okay? So, you started with this [pointing to the leftover two-cube] … 

D:  [Nodding] yeah. 

T:  And then…? [Pauses.] 
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D:  [Looks at T.] 

T:  You added this [pointing to the 2× 2 square-shaped layer he took off in the 

last step he described] to here somewhere [pointing to the 2-Cube], right? 

D:  Yeah. 

T:  To make one part three. 

D:  So, I did four to get three.  

T:  Four to get three. And then, so, can you put it back here?  

D:  [Adds the four cubes back to the 2-Cube (Figure 7.15 (a)).] 

T:  So now one side is made of three [runs pen along the dimension with three 

unit-cubes.] 

D:  [Nods.]  

T:  Right? And in order to make that, how many were you adding? 

D:  Four. 

T:  Okay, can you keep track of those numbers for me? 

D:  [Writes ‘4’ on the paper.] 

T:  Okay. And then? 

D:  I added six on this side [puts the 2× 3 rectangular-shaped layer onto the 

side of the existing configuration (Figure 7.14 (b)).]  

T:  Mm-hmm. And what does that do for you? 

D:  It’s three on that side. 

T:  Okay. So, and how many did you add? 

D:  Six. [Writes ‘6’ down on paper next to the 4 he wrote earlier.] 

T:  Okay. And then? 

D:  [Writes another ‘,’ next to 6 as if he is ready to find another number. Picks 

up the remaining 3× 3 unit-cubes and puts it on top of the configuration 

(Figure 7.15 (c)).] Nine. [Writes ‘9’ down in his sequence of numbers.] 

[Once Dan wrote the three numbers on his paper, I asked him to check if 

the numbers gave us our earlier answer. Adding the three numbers 4, 6, 

and 9, one at a time, Dan concluded 19.] 

     
                     (a)                                      (b)                                         (c) 

Figure 7.15. Dan rebuilds the 3-Cube starting with the 2-Cube. 

My explicit guidance at the beginning of Excerpt 7.4 was partly due to Dan 

looking at me after I asked him what came next. Another reason was to engender a 
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reflection of the actions he had just carried out and to engender an awareness of what 

adding each layer resulted in regarding the number of unit-cubes along each spatial 

dimension. This was something Kaylee seemed to be able to do independently and what 

allowed Kaylee to mentally re-present and count the total unit-cubes being added to the 

smaller cubic block to make the larger cubic block. Dan relied on the physical cubic 

blocks to keep track of his actions and the teacher-researcher was heavily involved as 

shown in Excerpt 7.4. However, Dan’s reasoning with the cubic block seemed to have 

advanced from dividing 27 by 8 to counting the unit-cubes in layers, reversing his 

activity of taking off the unit-cubes.  

Building a 4-Cube with a 3-Cube. 

I asked Dan to find how many more 1-Cubes he would need to add to the 3-Cube 

to make a 4-Cube to explore to what extent this new way of operating could be generated 

by Dan independently. The following excerpt shows Dan’s solution to the new task at 

hand. Dan had the 3-Cube he just made on the table in front of him.  

Excerpt 7.5. Dan makes a 4-Cube with a 3-Cube. 

D:  [Sits looking at the 3-Cube for approximately six seconds. He shifts his 

body to look at the face of the cubic block to his right.] So, place nine on 

this side [pointing to the right side face that he was just looking at]. 

T:  Okay. 

D:  Let me just write what I’m thinking [writes ‘9’]. Nine… plus... I would 

need to add nine onto that side. [Dan stares at the three-cube in front of 

him. He does not indicate which side he is referring to but his eyes are set 

on the side farthest from him, i.e., the face of the 3-Cube opposite to him.] 

I believe. [Writes ‘9’ next to the 9 he wrote earlier. Then glances at T and 

asks] can I do it? 

T:  Okay. 

D:  [Adds, one unit-cube at a time, a 3× 3 square-shaped layer on the right 

side face of the cube making a 3× 3× 4 configuration (see part enclosed in 

red in Figure 7.16 (a)). Then he adds a 4× 3 rectangular-shaped layer on 

the face opposite of him and completes a 4× 4× 3 configuration (see part 

enclosed in red in Figure 7.16 (b)).] 
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                                           (a)                                                           (b) 

Figure 7.16. Dan adds unit-cubes onto the 3-Cube to make a 4-Cube. 

After Dan completed building the configuration in Figure 7.16 (b), I asked Dan to 

think about what he had added so far onto the 3-Cube. I pointed out how he added the 

nine 1-Cubes first and then asked him what he did next. Dan explained that he added 

twelve on the other side and changed the second 9 he wrote earlier to 12. Excerpt 7.6 

starts with Dan continuing to add more 1-Cubes onto the block to complete the 4-Cube. 

Excerpt 7.6. Dan makes a 4-Cube with a 3-Cube (Continuation). 

D:  And then I need tw… [Pauses for approximately 15 seconds staring at the 

4× 4× 3 configuration in front of him,] sixteen of them. 

T:  Okay, how did you figure out that sixteen?  

D:  I know that four rows [of] four, four times four. 

T:  Four times four is sixteen? Okay. 

D:  [Adds blocks and runs short of blocks available.] And there’s some more. 

T:  We have some more [places tub of additional cubes on the table.] 

D:  [Completes a 4× 4 layer on top of the 4× 4× 3 configuration to complete the 

4-Cube and looks at T.] 

T:  So how many in total? 

D:  [Writes 16 next to the 12 then connects the 9 and 12 with line segments 

and counts for approximately 12 seconds to get 21. He moves his fingers 

underneath the table to keep track of his counting.] I have to count. [Then 

he adds 16 to the 21 and counts again using his fingers underneath the 

table for approximately 11 seconds.] Thirty-seven would be in total. 

 

As shown in Excerpts 7.5 and 7.6, Dan first added a rectangular-shaped layer to 

one side, then another, and finally added a square-shaped layer onto the top of the cubic 

Dan’s position 
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block, all carried out independently. This to me suggested that Dan has indeed reflected 

on his previous activity of adding layers to the cubic block in succession to obtain the 

larger cubic block in the previous case and abstracted that way of organizing the cubic 

block. However, when re-presenting that activity in counting the additional number of 

unit-cubes, Dan needed the figurative material to keep track of his said activities. Hence, 

although Dan’s systematic way of adding onto the 3-Cube resembled Kaylee’s systematic 

way of adding onto the cubic block, Dan’s was carried out in activity, using the figurative 

material as markers to keep track of the number of 1-Cubes that comprised each layer 

whereas Kaylee’s operations were carried out mentally in re-presentation, using minimal 

sketches of the situation.  

Overall, Dan was able to solve for the 3-Cube extension case, similar to how he 

solved for the 2-Cube extension case, with less guidance from the teacher-researcher. 

Dan maintained the idea of adding layers of unit-cubes onto sides of the existing cubic 

block to expand it into larger dimensions. He also counted the number of unit-cubes 

constituting each layer in re-presentation (e.g., he found the 9 and 16 unit-cubes before 

adding them onto the block). However, Dan seemed to have difficulty representing and 

anticipating the result of adding such layers and asked if he could carry out the activity. 

In other words, coordinating and re-presenting one instantiation of his activity in co-

presence with another instantiation was challenging for Dan and limited his ability to 

anticipate the result of his activities.  

Although Dan had to carry out the activity in order to keep track of the changes in 

the configuration of the block, one noticeable change was in the confidence Dan 

demonstrated in building the 4-Cube starting with the 3-Cube and the resemblance in his 
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building of the 3-Cube starting with the 2-Cube. It seemed as though these extension 

tasks offered opportunities for Dan to reconstruct the cubic blocks into units of unit-cubes 

that helped him count the total number of unit-cubes in a more systematic way. When 

compared with his initial building and counting of the cubic blocks, Dan’s activities 

became more systematic. Through his physical building activities Dan seemed to have 

abstracted a structuration of the cubic blocks into successions of layers. This 

reorganization of the cubic blocks also seemed to support his counting activities as 

evidenced by his increased engagement in counting in groups of unit-cubes. As such, I 

infer that Dan’s structuration of the three-dimensional objects supported his two levels of 

units coordination. 

Summary of Cubic Block Task 

In the Cubic Block Task I have discussed so far, Craig and Dan engaged in 

building, illustrating, and counting cubic blocks of various sizes. Craig’s building of the 

2-Cube and 3-Cube (see Figures 7.1 and 7.2) seemed systematic in that Craig consistently 

built the cubic blocks in successions of horizontal square-shaped layers. In terms of 

illustrating the cubic blocks, Craig had difficulty recalling the conventional way of 

sketching a cube, but developed his own illustration (see Figure 7.3) that allowed him to 

demonstrate his understanding of the configuration of the cubic blocks. The way Craig 

made tally marks on each unit-square representing each unit-cube in the front face of the 

cubic block suggested that Craig had unitized several units of unit-cubes in counting. 

Before even sketching the cubic blocks, Craig first wrote the total number of 1-Cubes 

contained in each cubic block. Craig’s immediate calculations of the total number of 1-
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Cubes contained in each cubic block suggested that he was able to count the number of 

unit-cubes in units of units, in re-presentation, without having to rely on physical material.  

On the other hand, Dan’s initial building of the 3-Cube (see Figure 7.6) seemed 

somewhat haphazard with an overall approach of building the exterior of the cubic block 

and then filling in the interior. Dan seemed to be more reliant on his sketches in counting 

the number of unit-cubes contained in each cubic block. For the 2-Cube, his explanation 

of the configuration entailed a decomposition of the cubic block into two “sides” and he 

attempted to use the same idea for the 3-Cube but said he was not sure how to do so. The 

first sketch he made for the 3-Cube was closer to a 2×3×3 block and given the sketch he 

made, Dan counted nine unit-cubes. After listening to Craig’s explanation of his use of 

tally marks, Dan started to talk about rows consisting the cubic block.  

On the second day of the task, when I asked Dan to build the 3-Cube for the 

second time, Dan’s building seemed to become more systematic in that he added chunks 

of unit-cubes as if he were to add horizontal layers to form the 3-Cube. In counting the 3-

Cube, Dan said there were 18 and sketched an image of the 3-Cube to explain why he 

thought there were 18 1-Cubes in the 3-Cube. This time Dan’s illustration and 

explanation of the 3-Cube occurred before he drew the entire 3-Cube, which is why I 

claimed that he was able to carry out this decomposition in re-presentation. However, 

from the way Dan described his counting activity as crossing individual cubes out, I 

claimed that his decomposition was not a result of re-presenting and counting a 

composite unit of several unit-cubes together. I inferred that Dan actively engaged in the 

putting three unit-cubes together into groups in order to keep track of his counting, as he 

produced one unit-cube at a time in re-presentation. I distinguished group from composite 
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unit in that the unit-cubes in the group are progressively integrated into a “chunk” or 

“group” of objects that are not necessarily unitized abstract units.  

Based on my observations in relation to Dan’s activities in both the initial 

interview tasks and Cubic Block Task, I claimed that Dan’s ability to coordinate two 

levels of units in activity but not three and not yet having constructed a splitting scheme 

pertained throughout these tasks and hypothesized that these constraints explained the 

differences in his activities compared to the other students.  

Further, in extending the 2-Cube into a 3-Cube and a 3-Cube into a 4-Cube, with 

my guidance, Dan maintained the idea of adding layers of unit-cubes onto sides of the 

existing cubic block to expand it into larger dimensions. However, Dan seemed to have 

difficulty anticipating the results of adding each of those layers and asked if he could 

carry out the activity. Therefore, based on Dan’s activities on the second day of the task, I 

claimed that Dan coordinated two levels of units sequentially in activity. Moreover, I 

claimed that Dan’s coordination of a re-presentation of one instantiation of his activity in 

co-presence with another instantiation was challenging for Dan and limited his ability to 

anticipate the result of his activities. 

From these different ways of engaging in the Cubic Block Task, I inferred that 

Craig operated with units of units using his unitizing operation and was able to iterate 

units of units in activity, guided by a systematic decomposition and structuration of the 

cubic blocks into layers. Therefore, I hypothesized that Craig may have the operations for 

constructing the reversible decomposing scheme I imputed to Kaylee. The tally marks 

Craig used to represent the unit-cubes behind the first layer of unit-cubes comprising one 

face suggested that Craig reasoned with the unit-cubes as abstracted units. As a result, the 
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number of unit-cubes that comprised each cubic block was a result of multiplicative 

reasoning. In other words, Craig was able to coordinate three levels of units coordination 

in activity, guided by his systematic structuration of the three-dimensional objects.  

On the other hand, Dan demonstrated what I called a grouping activity in order to 

count the individual unit-cubes efficiently. As a result, the number of unit-cubes that 

comprised each cubic block was a result of repeated addition of the objects within the 

groups. These hypotheses seemed to align with the findings from the initial interviews in 

that I hypothesized that Dan operated as if he could coordinate two levels of units in 

activity and thus coordinated units additively while Craig operated as if he could 

coordinate three levels of units in activity and thus coordinated units multiplicatively.  

Moving forward, I wanted to test if Craig’s structuration of the spatial objects 

were established as schemes that could independently be enacted in various situations. I 

also wanted to test if Dan could engage in unitizing and iterating of units of units and 

engender multiplicative units-coordinating operations. I also wanted to explore what his 

current operations allowed him to do and how to support his thinking within his zone of 

potential construction (Steffe & D’Ambrosio, 1995), given the operations and levels of 

units coordination that were available to him. Further, from Dan’s engagement in the 

extension tasks, I noticed his difficulty in anticipating the dimensions of the additional 

layers prior to adding the unit-cubes in activity. Therefore, I wanted to provide similar 

situations in two-dimensional space to see if a reduced dimensionality would be more 

conducive to his current ways of operating.  
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Floor Tile Task: Craig and Dan Tile Rectangular Floors of Various Dimensions 

Craig and Dan Tile a Floor 

On November 17, 2014, I introduced Craig and Dan to the Floor Tile Task. To 

introduce the task, I gave each student a rectangular sheet of paper representing a floor 

and a small square-shaped cutout paper modeling a tile. Then, I asked Craig and Dan to 

find out how many tiles they would need in covering their given floor (paper) with their 

tiles. The size of the rectangular paper was the same for both students but Craig’s tile was 

smaller than Dan’s to avoid them generating the same answer.  

Dan finds the number of tiles to cover his floor. 

Dan took his tile and started to trace it in each corner, as shown in Figure 7.17 (a). 

Then, he moved his tile along the length and width of the rectangular paper, marking the 

edges of the tile (Figure 20 (b)). As he marked the tiles, Dan counted out loud at the same 

time as if he were keeping track of the number of tiles. Dan’s way of tracing the tiles 

starting from the outer corners and then moving inwards or counting one tile at a time 

seemed consistent with his tendency to move from exterior to interior of spatial objects or 

to count units one at a time, as I observed in his previous activities. Later as the number 

of tiles increased, Dan stopped keeping track and recounted the number of tiles from the 

beginning when his marking was completed. After counting the number of tile lengths 

marked along the length and width of the rectangular paper Dan wrote 11.5 and 7.5 on his 

paper along the edges. 
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                                        (a)                                                           (b) 

Figure 7.17. Dan measures the length and width of the paper using the side of his tile. 

Craig finds the number of tiles to cover his floor. 

Different from Dan who first traced the tile in each corner of the paper, Craig 

started by marking the length of the tiles along the length and width of the paper, as 

shown in Figure 7.18. When Craig remarked that the tiles did not fit exactly into the sides, 

I told him he could make approximations so Craig did not account for the small leftovers. 

After Craig completed making all tick marks, he counted the number of tiles that would 

fit along the width and length of the rectangular paper, respectively. Next, Craig said 

“eleven by sixteen.”  

     

Figure 7.18. Craig measures the length and width of the paper using the side of his tile. 

Craig and Dan discuss finding the number of tiles to cover the floors. 

Because both students found the number of tiles that would fit into two 

orthogonal edges of the rectangular paper but not the number of tiles needed in order to 
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cover the entire floor, I asked both students what they would do with the two numbers 

they each found. At first Dan said “Multiple… So, pre [trying to say perimeter]… Ah, I 

can’t say the word, but you add them together.” As such, Dan first seemed to mention 

multiplication but then suggested to add the two numbers. When I restated what he said, 

asking “so you want to add these two numbers together?” Dan replied “Yeah. Or…” and 

trailed off into thought. I asked Craig what he wanted to do with the numbers and Craig 

said he wanted to multiply his two numbers. The following excerpt starts with me asking 

both students to discuss which operation made more sense to use, addition or 

multiplication.  

Excerpt 7.7. Dan and Craig discuss whether to add or multiply the measurements 

they obtained. 

T:  So, let’s try to think about first what makes sense to do. If we want to 

multiply the two numbers or if we want to add the two numbers? 

D:  I’m not quite sure but I remember learning trying to find the pra… I can’t 

say the word. 

T:  Perimeter?   

D:  Yes, perimeter around squares or somethings and you take this side and 

that side [pointing to each side of the paper he marked with tile unit 

lengths] and you add them together.  

T:  Yeah, exactly, if we wanted to find the perimeter [sweeps fingers along 

the edges of the paper, where D marked off tile-lengths] of this floor, we 

should add, right? But my question is, how much would we need to cover 

this whole floor? 

C:  Area. 

D:  Oh, the area [sweeps the inside of the paper]. Okay. 

T:  All of the tiles, right? 

C:  Yes. 

D:  So, yeah, I think it would be multiply. 

T:  Multiply? So you agree with Craig that we want to multiply?  

D:  Yeah. 

T:  Okay. Then, now my question is, why does multiplying make sense? 

D:  Because it’s there’s eleven rows [runs finger along the long side with 11.5 

marked] and there are seven [runs finger along the width side with 7.5 

marked, then next to that (to correspond with the next “row”)] in each 

row. 

T:  Oh. 

D:  It’s times by seven and a half. 
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T:  Okay. That’s how you make sense of it [referring to D]. What about you, 

Craig? Why did you think of multiplying it in the first place? 

C:  It’s the only way I know how I can do it that way. That’s the only way I 

know how to do it. 

 

As shown in Excerpt 7.7, Dan recalled how to find a perimeter of a quadrilateral 

figure and attempted to find the perimeter of his rectangle. It is possible that the problem 

I posed—to find how many tiles he would need to cover the floor—meant to find the 

perimeter of the floor for Dan. That is, covering the space could have meant to enclose 

the space to Dan. When I asked how many tiles they would need in order to cover the 

entire floor, Craig explained that it would be the area of the floor. Then, Dan swept the 

interior of the paper with his hand acknowledging that covering the floor entailed finding 

the area of the rectangle. Thereafter, Dan agreed to multiply his two measurements.  

I inferred my clarification of the situation (covering in the entire floor) and 

Craig’s mentioning of the area to have redirected Dan’s reasoning to entail both the 

exterior (tiles along the perimeter) and the interior of the two-dimensional spatial object 

(rectangle). The way that Dan first attempted to count the tiles along the peripheral of the 

given space was very similar to the way he originally built the cubic blocks starting with 

the exterior walls/faces. Dan seemed to focus mainly on the exterior of the spatial objects 

first than to the interior. On the other hand, although Craig immediately associated the 

situation with finding the area, when asked to explain why he needed to multiply the two 

measurements he obtained, he seemed to rely on what he learned in school. Therefore, 

probing Craig to articulate why area entails multiplying the two measurements and 

probing Dan to envision the interior of rectangular spaces in partitioning were needed. 

The next part of the Floor Tile Task was adequate for such explorations. 
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Craig and Dan Extend the Flooring  

Craig and Dan familiarize a GSP simulation of the tiling activity. 

For the remaining time of our teaching episode on November 17, I wanted the 

students to become familiar with the tiling simulation I designed on the Geometer’s 

Sketchpad (GSP) platform. First, I showed the students the simulation, which showed a 

corner of a rectangular floor, and the number of tiles placed along two orthogonal edges 

of the floor (Figure 7.19). Note in Figure 7.19, referring to the horizontal and vertical 

axes are used for writing purposes. In the teaching episodes, we did not use these terms. 

Rather, both the students and I referred to them as “sides” or “edges” of the rectangular 

floor.  

The horizontal edge was assigned as “Craig’s side” and the vertical as “Dan’s 

side”. The students could change the number of tiles placed along their side using the +/– 

key. The simulation only showed the students how many tiles were on each side (length 

and width) of the rectangular floor. It was the students’ task to imagine the rectangular 

section that would be made with the number of tiles placed on each edge.  

 

Figure 7.19. GSP sketch of the flooring with 4 tiles along the horizontal axis and 7 tiles 

along the vertical axis. 
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With the sketch set with 4 tiles along the horizontal axis and 7 tiles along the 

vertical axis (Figure 7.19), I asked Craig and Dan to find the number of additional tiles, 

other than the ones already placed on the floor, to cover the rectangular section of the 

floor. 

Although Dan first wrote “28” as his answer, eventually both students agreed that 

there were 18 additional tiles. Dan explained that he multiplied, which gave him the area. 

It seemed like Dan had assimilated Craig’s solution of finding the area entailing 

multiplication. Craig elaborated, “Because you asked how many more you’d need to fill 

up the whole space, so I subtracted one from seven and did six times three which is 

eighteen.” Next, Craig leaned over to the computer screen and explained using his index 

finger saying: 

I did seven along the whole line [runs finger along the vertically arranged tiles 

four times along each four tiles on the horizontal axis] seven, seven, seven, and 

seven. But then I subtract one from each. So, since that already had seven inches, 

it’s six times three [pointing to the six tiles and the three tiles (excluding the one 

shared by both the horizontal and vertical)].  

Although Craig did not explicitly mention subtracting 1 from the 4 tiles, I inferred 

from his explanation and demonstration on the screen to mean that Craig has 

disembedded 1 and 6 from 7, 1 and 3 from 4 and coordinated the 6 with the 3, using his 

units-coordinating operations. It seemed like given the GSP sketch, Craig was able to 

envision the 6 by 3 rectangle and the arrays of tiles comprised of three rows of six tiles. 

This was the first time Craig verbally explained his reasoning of multiplying two unit 

lengths to obtain area, other than saying that it was what he learned to do.  

Craig and Dan extend the flooring of 28×5 to one of 31×7 (Day 1). 

The Floor Tile Task continued on the next teaching episodes on November 21 and 

December 1, 2014. On November 21, the students selected numbers of tiles to place 
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along each edge of the floor. There were 28 and 5 tiles along the horizontal and vertical 

axes, respectively (Figure 7.20). I asked both students to imagine that the floor they set 

up in Figure 7.20 was completed with tiling.  

 

Figure 7.20. Floor configuration with 28 tiles placed on Craig’s side and 5 tiles placed on 

Dan’s side of the floor. 

Both students calculated the total number of tiles to cover the floor, 28×5=140. 

Dan explained the configuration as twenty-eight rows of five. This explanation of the 

number of rows and how many were in each row was consistent with the previous 

teaching episodes. For example, in Excerpt 7.2, Dan said “Three rows of three and three 

times three equals nine.” In Excerpt 7.6, Dan explained “I know four rows [of] four, four 

times four.” Finally, in Excerpt 7.7, when discussing the number of tiles covering the 

floor, Dan said, “there’s eleven rows and there are seven in each row.” As such, Dan 

consistently associated multiplication of units as multiple rows with a number of units 

within each row. It became of significance for me to test whether his multiplication 

entailed a unitization of the rows, in other words, if he had constructed the area as a 

composite unit of units, or if it was a repeated addition of progressively integrated units.  

I asked the students to imagine that we already had the 140 tiles on the floor and 

asked both students to imagine that Craig added 3 tiles next to the 28 tiles and Dan added 
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2 tiles on top of the 5 tiles. Their job was to find how many more tiles they would need in 

order to extend the existing floor of 140 tiles to a floor that had the 3 and 2 additional 

tiles added to each edge. Because the wording of the problem was complicated, I 

demonstrated what I was asking for using the computer screen, moving my finger along 

the shaded region in Figure 7.21. Note in Figure 7.21, although I traced my finger along 

the shaded region, there were no traces left on the screen; Craig and Dan only saw Figure 

7.20 on the computer screen. 

 

Figure 7.21. The area Craig and Dan were asked to find (region shaded in purple). 

Craig’s calculation. Each student worked individually on this task. Craig first 

calculated 31×7=217, the total number of tiles needed to cover the entire floor. After I 

emphasized that they already had the 140 tiles on the floor, Craig then calculated 

31×2=62. This would have accounted for the amount of tiles needed to cover the top part 

of the additional flooring.  

Dan’s calculation. On the other hand, Dan calculated 32×7, supposedly in order 

to find the total number of tiles needed to cover the entire floor. Dan explained, “I just 

added it altogether and multiplied...” suggesting that Dan indeed added the three 

additional tiles to the 28 (which he miscalculated as 32 initially) and the 2 additional tiles 

to the 5 and multiplied the two numbers together. Later, Dan revised his answer after 
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changing his 32 to 31. After solving for 217 tiles in total, Dan used long division to find 

217÷140. Then, finding that 140 went into 217 once, Dan subtracted 140 from 217, 

getting 77 as the remainder. When I asked Dan to explain in words how he found the 77, 

in the middle of his explanation, he smiled and acknowledged that he meant to subtract 

the two numbers.  

To summarize, Dan found the total number of tiles needed in the new extended 

floor and subtracted the number of tiles in the initial floor to find the excess amount of 

tiles. This approach was analogous to Morgan’s approach in finding the excess number of 

unit-cubes needed to add onto the smaller cubic block to made a bigger cubic block. 

Instead of partitioning the tiles into units of units, Dan found a unit of units (28 units of 5 

or 5 units of 28), found another unit of units (31 of 7 or 7 of 31) and took the resulting 

units (217 and 140) and subtracted one from the other.  

Craig’s sketch of the configuration. In order to better understand how each 

student visualized the situation and to support Craig’s understanding of the situation, I 

asked both students to draw a picture to explain the numbers in their calculations. Craig 

produced a sketch as shown in Figure 7.22. To explain his sketch, Craig wrote “starting 

amount” in green referring to the green section in Figure 7.26. Then I asked how the red 

section was made, to which Craig replied “By adding sixty-two! By stacking two 

[pointing to the additional height along the left hand side of the rectangle in red], two by 

twenty-eight [sweeping finger along the top side of the rectangle in green], I think it was. 

Yeah. And then three [pointing to the right bottom side of the rectangle in red] by… 

What number would that be? Wait a minute, three by thirty-one.” I asked Craig where in 

his picture demonstrated the “31” and he sat in silence looking at his sketch. Next, Craig 
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wrote the number of tiles that should be laid along certain parts of his configuration, as 

shown in black ink in Figure 7.22 (“7”, “5”, “28”, “31, “3”).  

 
 

Figure 7.22. Craig’s sketch of the initial flooring (28×5) and the additional tiles to make 

the new flooring (31×7). 

Craig said he still thought his answer 62 was correct, so I asked him where in his 

picture showed 31×2. After pointing to the additional section on the top in the red 

rectangle, he sat in thought looking at his sketch. Craig then wanted to calculate 2×28 and 

pointed to which section in his sketch that would cover. However, he said he could not 

figure out how many more he needed. As such, Craig coordinated the units along the 

horizontal axis with the units along the vertical axis for certain parts of his sketch. From 

this, I hypothesized that Craig engaged in a logical multiplication (Piaget et al., 1960) of 

the units along two perpendicular dimensions in order to guide his units-coordinating 

operations. However, he seemed unsure of how to find the total number of additional tiles 

he would need, using his calculations of the parts.  
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Dan’s sketch of the configuration. When I asked Dan if he could produce a sketch 

to show his answer of 77, Dan first exclaimed that he did not know how to make a sketch. 

Finally, Dan produced a sketch, in a process captured in Figure 7.23. 

      

      

     

      

Figure 7.23. Dan’s sketch of the additional tiles to make the new flooring (31×7). 

As shown in Figure 7.23, analogous to his sketch of the unit-cubes in the 3-Cube, 

Dan’s sketch suggested re-presentations of each individual tile but not necessarily a 

unitizing of the tiles into units of units. Instead of partitioning the long bar into 31 units, 

Dan haphazardly partitioned the long bar, counted the number of parts he had and added 
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more tiles on the bottom because he did not have all 31 tiles he needed. Moreover, Dan 

focused on sketching the additional tiles not necessarily in relation to the initial flooring 

they assumed to have already covered.  

In comparison with Craig, Dan seemed to lack the use of disembedding 

operations in solving the task. In solving the Units Coordinating Task in the initial 

interview, Dan did not demonstrate strategic reasoning of embedded composite units 

(Ulrich, 2016) nor did he demonstrate a spontaneous use of disembedding operations. For 

example, when I asked Dan how much more string he would need to make his string of 

15cm as long as my string of 24cm, Dan counted up from 15 to 24 one by one, instead of 

disembedding composite units of the number sequence to configure 24 into 15 and 8, like 

Craig did. I claim that Dan’s lack of disembedding operations, as shown in his initial 

interview, inhibited his systematic calculation and re-presentation of the additional tiles 

in the flooring situation. 

Craig and Dan extend the flooring of 28×5 to one of 31×7 (Day 2). 

Because we ran out of time, we continued with this task in the following teaching 

episode on December 1.  

Craig’s solution. Craig started with a new sketch showing the skeleton of the 

floor and the number of tiles along the length and width of the rectangular areas, as 

shown in Figure 7.24. Craig’s sketch in Figure 7.24 suggested that he has partitioned the 

31 tiles along the horizontal axis into a unit containing 28 and another unit containing 3 

units. Craig disembeded the 28 units and the 3 units from the whole of 31 units. 
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Figure 7.24. Craig’s second sketch of the initial flooring (28×5) and the additional tiles to 

make the new flooring (31×7). 

This way of operating was similar to his engagement in the second initial 

interview task when I asked Craig how much more string he would need to make a 14 cm 

long string as long as a 29 cm long string. Similarly, Craig partitioned the 7 tiles along 

the vertical axis into a unit containing 5 units and 2 units. He disembedded the 5 units and 

2 units from the whole of 7 units. Then, Craig coordinated those with the units of 28 and 

3 he disembedded from the 31 units along the horizontal axis in order to find the number 

of tiles that would fill in the space formed by the corresponding units. Inferring from his 

sketch, Craig found that he needed 28×2=56, 2×3=6, 3×5=15 tiles each to extend the 

initial flooring to the desired size of 31×7. It was apparent that Craig was able to re-

present the tiles on the floor mentally and use his disembedding and units-coordinating 

operations to find the desired number of tiles. 

Dan’s solution. On the other hand, Dan drew a sketch on my request, with the 

individual tiles all drew in with an omission of some parts in the 28 because that required 

too many tiles to fit into the piece of paper (see Figure 7.25).  
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Figure 7.25. Dan’s second sketch of the additional tiles to make the new flooring (31×7). 

Dan’s generation of Figure 7.25 was not fully independent because I was heavily 

involved in the process. To elaborate, in his drawing process, I asked Dan how many tiles 

were in total across the length of his sketch and how many there were in total along the 

width of his sketch. I also asked Dan how many tiles there were across the length and 

width of the original flooring. Then, I asked Dan to think about how he would count the 

total number of additional tiles using the numbers he knew. As shown in his calculations, 

Dan solved for 31×2+3×5=77 tiles in total. The purpose of my explicit questioning was 

to engender his unitizing of tiles. Although Dan produced the sketch, I could not attribute 

it fully to Dan’s independent reasoning. 

Craig and Dan extend the flooring of 6×4 to one of 8×7.  

To explore whether Craig would use a consistent counting scheme with different 

numbers and to see whether Dan could carry out the unitizing of tiles independently, I 

posed a similar problem with smaller numbers. This time, starting with a floor with 6 tiles 

along the length and 4 tiles along the height, I asked them to imagine extending the 

flooring by 2 tiles and 3 tiles, respectively.  
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Craig looked at his previous sketch to make the sketch of this new problem, 

which suggested that he recognized the new situation as one similar to the previous one. 

Figure 7.26 (a) shows the sketch Craig produced. As shown in the figure, Craig 

consistently partitioned the length and the height of the rectangle into two units and 

disembedded each unit to coordinate with the corresponding one on the other axis.  

 

  

         
                               (a) Craig’s sketch                                              (b) Dan’s sketch 

Figure 7.26. Craig’s and Dan’s sketch of the initial flooring (6×4) and the additional tiles 

to make the new flooring (8×7). 

On the other hand, Dan produced a sketch as shown in Figure 7.26 (b). Although 

the given time for the session ran out and they did not finish their work, Dan 

demonstrated an attempt to make sketches in groups and in relation to the original floor, 

as opposed to individual tiles as he did in Figure 7.23. 

Summary of the Floor Tile Task 

One of the main differences that I observed in the two-dimensional case were in 

Craig and Dan’s structuration and partitioning of the two-dimensional spatial object, i.e., 

the floor to cover with tiles, in their counting process. Craig generated sketches of the 
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situation from which I inferred that he unitized unit-tiles into units of units of units and 

used his units-coordinating operations to count the total number of tiles. On the other 

hand, Dan seemed to produce the unit-tiles one at a time experientially or in re-

presentation. In this process, the producing of the unit-tiles did not seem to entail a 

structuration of the spatial object; only after he produced each unit-tile did he go back to 

chunk them into units containing unit-tiles, often after I prompted him to think about 

different chunks in his sketches.  

In comparison with Craig, I claimed that Dan’s lack of disembedding operations, 

as shown in his initial interview, inhibited his systematic calculation and re-presentation 

of the additional tiles in the flooring situation. On the other hand, I claimed that Craig 

was able to re-present the tiles on the floor mentally and use his disembedding and units-

coordinating operations to find the desired number of tiles. Moreover, I hypothesized that 

Craig engaged in a logical multiplication (Piaget et al., 1960) of the units along two 

perpendicular dimensions in order to guide his units-coordinating operations.  

The tiling activity was helpful in observing different ways Craig and Dan enacted 

or used unitizing, disembedding, and units-coordinating operations. As illustrated in their 

different sketches when solving for the additional number of tiles needed, Craig unitized 

tiles into units of unit-tiles whereas Dan seemed to operate heavily with individual tiles. 

Although Dan demonstrated strength in inserting units into rows in his explanation of 

why he multiplied two numbers, I hypothesize that the rows were yet unitized into a unit 

containing the rows as a unit.  

Based on the aforementioned observations, Craig seemed to operate with at least 

three levels of units in activity when Dan seemed to operate with two levels of units in 
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activity, consistent with the findings from the initial interviews. The different sketches 

they produced of the situation also suggested the differences in their abstractions of the 

situation. Craig’s sketches entailed a structuration of the given spatial situation whereas 

Dan’s sketch entailed the individual tiles produced sequentially. Probing Dan to attend to 

the structure of his sketches, emphasizing the number of units in the initial flooring 

contained in the new unit of the extended flooring seemed to engender some awareness of 

the structure of the two-dimensional tiling situation.  

Box Task: Craig and Dan Fill Rectangular Boxes of Various Dimensions 

Filling in a Shoebox with Unit-cubes 

On December 12, 2014, Craig and Dan engaged in the first part of the Box Task, 

in which they found the number of unit-cubes needed to fill in a shoebox.  Analogous to 

how we first started the two-dimensional tiling task with a concrete example of tiling a 

floor of a fixed size, I asked Craig and Dan to find the total number of unit-cubes needed 

in filling a shoe box of a fixed size. Craig and Dan worked separately with boxes of 

different size. To put the task in context, I asked both students to imagine building brick 

wall posts of various sizes. The goal of this task was to explore the difference in Craig 

and Dan’s insertion and coordination of units in counting the total number of unit-cubes 

comprising the volume of each shoe box.  

Craig finds the number of unit-cubes needed to fill in a shoebox of fixed size. 

Craig first aligned unit-cubes along two edges of the box (what he later referred to 

as the length and height of the box), as shown in Figure 7.27 (a), counted the number of 

unit-cubes, and wrote “33” on his paper. Next, Craig aligned more unit-cubes along two 

edges of the box (which he later referred to as the width and height of the box) on the 
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adjacent face as shown in Figure 7.27 (b) and wrote “18” on his paper. Then, he solved 

for “33 times 6” which he concluded was 198 unit-cubes in total. 

 

 

 

 

                                  

                                (a)                                                               (b) 

Figure 7.27. Craig’s shoeboxes. 

I asked Craig to explain the numbers he had written on his paper and what he did 

with them.  Pointing to the face in Figure 7.27 (a), he explained that he multiplied three 

and eleven, which gave him 33 unit-cubes in total to cover the “wall.” Referring to the 

three unit-cubes aligned along the height of the second face (Figure 7.27 (b)), and picking 

up the top two unit-cubes among the three, Craig said: 

“I have three here and then one, two, three, four, five, six [moves the top two unit-

cubes along each unit-cube on the bottom as he counts] on this wall. And [it’s] 

the same height, so I don’t need those [discards the two top unit-cubes he was 

holding]. So, I have six here and it will take six of these walls [points to the 

adjacent face (Figure 7.27 (a))] to fill up this box.” 

Later when both students were done working on their shoe boxes, I asked Craig to 

explain what he did to Dan. Craig articulated his thought process as shown in Excerpt 7.8.  

Excerpt 7.8. Craig explains to Dan how he counted the number of unit-cubes 

contained in his shoe box. 

C:  Well, I did, I tried to simulate what the computer program did and I did 

this side [sweeping his index finger along the face shown in Figure 7.3 

(a)] and I did the height [points to the 3 unit-cubes stacked on the left-

hand side] and the…[hesitates] is it width or length? 

D & T: [Together] Length. 

C:  The height and the length. But then it took me a little while to figure out 

what to do next and what I had to do next was [moving the 6 unit-cubes he 
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placed along the bottom of the adjacent face (Figure 7.27 (b))] line up 

blocks along this wall [points to face in Figure 7.27 (b)] over here and 

then [puts the 6 unit-cubes back where they were] just insert this wall 

[pointing to the face in Figure 7.31 (a)] into a block. And there are six 

blocks on this side [again, points to the 6 unit-cubes on the bottom of the 

face in Figure 7.27 (b)] and 33 blocks here [points to the face in Figure 

7.27 (a)]. So, thirty-three times six [moves his index finger along the top of 

the box as if he is simulating the wall of 33 blocks being inserted into each 

of the 6 unit-cubes along the third dimension] would fill this whole box 

with the blocks. 

D:  [Claps once and smiles.] 

 

Later in the teaching episode, I learned that both Craig and Dan had used a 3-D 

printer in their technology class to make 3-D objects, which explained what Craig meant 

by “the computer program” in Excerpt 7.8. Based on his explanation and motions he 

made with his hands, I modeled the walls and the unit-cubes Craig associated with the 

walls in Figure 7.28. To elaborate, I interpreted his actions and verbal descriptions to 

mean that Craig constructed the vertical layer, which he called a wall, of 33 unit-cubes 

(Figure 7.28 (a)) and inserted each of those layers into the six unit-cubes along the third 

dimension (Figure 7.28 (b)), using his units-coordinating operations.  

 

                            (a)                                                                  (b) 

Figure 7.28. A model of Craig’s counting of the number of unit-cubes contained in his 

shoebox. 
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Reversing his partitioning operations he used in reasoning with the 2-Cube and 3-

Cube, Craig seemed to build up the box from layers of rectangles as he simultaneously 

partitioned the box and counted the number of “walls” he needed to fill in the entire box. 

So far, in the Cubic Block Task and Shoe Box Task, Craig consistently decomposed the 

rectangular prisms into rectangular-shaped layers. Then, Craig enacted his splitting and 

units-coordinating operations in counting the total number of unit-cubes in the prisms. 

From these observations from the Cubic Block Task and Shoe Box Task, I hypothesized 

that Craig has enacted the mental operations involved in a reversible decomposing 

scheme. Further, I conjectured that Craig had the operations of a FR coordinating scheme 

available to support his reversible decomposing activity. This was further tested through 

the Locating Tasks, which I discuss in Chapter 8. 

Dan finds the number of unit-cubes needed to fill in a shoebox of fixed size. 

Dan aligned unit-cubes along two adjacent faces. Figure 7.29 shows how Dan 

covered one of the two faces with unit-cubes. After placing 10 unit-cubes along the 

bottom of the face visible in Figure 7.29, he added 4 unit-cubes vertically on top of the 

first unit-cube on the bottom far right, resulting in unit-cubes aligned like a sideway L-

shape. Then, he repeatedly added 4 unit-cubes vertically stacked on top of each unit-cube 

on the bottom until he obtained the configuration in Figure 7.29. He repeated making the 

sideway L-shape on the adjacent face but did not add as many unit-cubes as he did in the 

previous face.  

Dan stopped his covering activity and counted the number of unit-cubes along the 

bottom of each face he covered and wrote 35 and 50 on his paper. It seemed as if he was 

aware that the height of each face was 5 so he only needed to count the base of each face. 
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After Dan wrote the two numbers 50 and 35 on his paper, I asked Dan to explain the 

numbers he found and what he was going to do with them. About the 50, Dan explained 

that he multiplied the 10 (sweeping his finger along the 10 unit-cubes on the bottom of 

the face shown in Figure 7.29) and 5 (sweeping his finger along the 5 unit-cubes lined 

along the height of that face), “but then I filled that in for some reason,” referring to the 

blocks he added to that face. His last comment of filling the face “for some reason” 

suggested that he viewed the activity as unnecessary. It is possible that after repeating his 

activity of stacking 4 extra unit-cubes onto each unit-cube on the base, Dan abstracted the 

activity of inserting 5 unit-cubes in total to each unit-cube in the bottom of the face and 

realized he did not need to continue his activity. 

 

Figure 7.29. Dan’s shoebox. 

Next, Dan said that he would double the 50 and 35 and then add them altogether. 

As such, Dan wanted to find the total number of unit-cubes that would cover the four side 

faces of the shoe box. It is possible that the way I put the task into the context of 

“building brick wall posts” influenced Dan’s thinking of the problem because the term 

“wall” could have been interpreted as “face.” However, his focus on the surface area was 

consistent with his previous activities in the Cubic Block Task, such as his building of the 

cubic blocks from the exterior to the interior and his focus on the “sides” of the cubic 

blocks when counting them.  
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After Dan listened to Craig explain how he counted the total number of unit-cubes 

in Excerpt 7.8, Dan clapped as Craig finished his explanation, which suggested that he 

understood Craig’s explanation and potentially assimilated Craig’s counting method. The 

next task that I had prepared served as an opportunity to test whether or not this was the 

case. 

Craig and Dan Build a Brick Wall Post 

For the next task, I prepared a big white piece of paper with two perpendicular 

line segments drawn on it. This paper and line segments were designed to resemble the 

Floor that was sketched in GSP (see Figure 7.19) with one line segment representing 

Craig’s side and the other line segment representing Dan’s side of the base. I explained 

that it was similar to the flooring task but that this time we were also going to build up to 

make a post, like the shoe box. Dan placed 13 unit-cubes and Craig placed 10 unit-cubes 

along the two axes on the white paper (floor). I placed 3 additional unit-cubes onto the 

unit-cube that was placed at the intersection of the two line segments, making the height 

of the configuration 4 unit-cubes long. Together, we built the frame of a rectangular 

prism with dimensions 13×10×4 (see Figure 7.30). Because we did not have enough time 

left in our session, each student worked separately on the task starting in the next 

teaching episode on December 15, 2014.  

 

Figure 7.30. The frame of the rectangular prism (wall post) with dimensions 13×10×4. 
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Craig’s solution.  

Figure 7.31 shows Craig’s written solution to the total number of unit-cubes in the 

configuration. Each component of his solution was written in a particular order. Craig 

first wrote the three numbers, 10, 13, and 4 at the top of his paper. After staring at the 

configuration and then his paper for approximately 30 seconds, Craig wrote the two 

equations 13 ∙ 10 = 𝑥 and 𝑥 ∙ 4 = 𝐷𝑒𝑠𝑖𝑟𝑒𝑑 # underneath the list of three numbers. Then 

murmuring “I’m lazy,” Craig claimed he had an answer but that it was not exact (the 

numbers in parentheses in Figure 7.31 were calculated later). Craig did not execute the 

calculations he expressed in the equations but seemed confident that he could find the 

number of unit-cubes using his answer. As such, Craig seemed to have abstracted the 

structure of the configuration and was certain that his equations would give him the 

desired number of unit-cubes. 

 

Figure 7.31. Craig’s calculation of the total number of unit-cubes contained in a box with 

10, 13, and 4 unit-cubes along each dimension. 

 Although Craig claimed he had an answer, I was turned to Dan talking with Dan 

about his work. So, Craig went back to work independently on his paper and finished the 

calculations by finding the 𝑥 value and the total desired number of unit-cubes, as shown 
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on the right and in the parentheses in Figure 7.31. When I finally turned to Craig and 

asked him to explain what he had on his paper, he said: 

“Okay, I got the numbers down, which is ten, thirteen, and four, were the three 

dimensions. And then I did thirteen times ten which equaled x, and I found out 

that x was one-hundred and thirty. Then I did one-hundred and thirty times four, 

which I knew would equal the desired number. Which is five-hundred-twenty.” 

Dan’s solution.  

Figure 7.32 shows Dan’s written solution to the total number of unit-cubes in the 

configuration. To elaborate, Dan multiplied the 10 and 4 to obtain 40, multiplied the 13 

and 4 to obtain 52, and then added the two numbers 40 and 52, which gave him 92. 

 

Figure 7.32. Dan’s calculation of the total number of unit-cubes contained in a wall post 

with dimensions 13×10×4. 

When I asked Dan why he added the two numbers 40 and 52, he explained that he 

added them because there wasn’t really much he could do because he already multiplied 

the numbers to obtain 40 and 52. Dan said, “So, I guess there’s nothing to do with that.” 

So, I asked Dan to point to where on the configuration (Figure 7.30) the 40 were. Dan 

pointed to Craig’s side where the 10 unit-cubes were placed on the bottom, saying “the 

forty is that side.” Next, I asked Dan to tell me where the 52 were. Dan pointed to his side 

where 13 unit-cubes were placed on the paper. The following excerpt is our conversation 
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following after Dan identified that the 40 and 52 each referred to the number of unit-

cubes each consisting the two sides of the configuration.    

Excerpt 7.9. Dan explains how he solved for 92 unit-cubes in total. 

T: So, what you’re saying is that you want to add this side and this side, 

right? 

D: Yeah. 

T: Right? But what about the thing in between [sweeping hand in the blank 

space enclosed by the frame]?  

D: [Sits in silence, touching his mouth for approximately 5 seconds.] 

T: So, let’s imagine this [picking up the container full of unit-cubes and 

placing it closer to the frame as shown in Figure 7.33] is a box, right? 

What you just found was you found this side [pointing to the side face 

closest to Dan], right? 

D:  This side…Times those two together [pointing subsequently to one side 

then the other]. Yeah...  

 

 
Figure 7.33. Teacher-researcher placed rectangular prism-like container close to the 

frame of 13×10×4 unit-cubes. 

As shown in Excerpt 7.9, it seemed like Dan was aware that he added the number 

of unit-cubes contained in two sides of the configuration. But not until I asked him about 

the unit-cubes that would go inside of the configuration and demonstrated them with the 

container of unit-cubes did he change his mind to multiply the two numbers 40 and 52 to 

find the total number of unit-cubes contained in the post. Because I wanted Dan to have 

some more time to think on his own about the task, I asked Dan to think more about his 
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answer. Dan went back to solving for the number of unit-cubes on his paper, while I 

turned to Craig.  

Before Craig had said anything to me, Dan calculated 10 times 13 and wrote 130 

on his paper. Then, he wrote another 130 on his paper and paused. He looked up from his 

paper towards where the configuration was on the table. At this point, Craig had started 

explaining his solution to the task and just as Craig had finished saying that he took the 

130 and multiplied it by 4, Dan wrote ×4 underneath the second 130 he had just written, 

and solved for 520 unit-cubes in total. 

Because I was focused on listening to Craig in the moment, I did not notice Dan’s 

activity on the other side of the table. It was possible that the timing of the two events 

were coincident. That is, Dan’s writing of ×4 and Craig’s explanation of multiplying 130 

by four may have been two independent activities that happened to occur at the same 

time. However, from the analysis of the video, it appeared Dan stalled after writing the 

second 130 on his paper but wrote ×4 immediately after Craig had just finished saying 

that that was what he did. So, it was also possible that Dan had mimicked Craig’s 

calculation. To my surprise, however, as Dan finished his calculation, he murmured 

“that’s what I was saying,” which suggested that it is possible that all the way along Dan 

was thinking of multiplying the three numbers but his writing/drawing and execution of 

that idea did not portray it.  

Craig and Dan discuss their answers.  

As Craig finished his explanation, Dan also acknowledged that he had gotten the 

same answer as Craig, so I asked both students to explain why it made sense for them to 

multiply the three numbers 10, 13, and 4 together, using the configuration on the table. 
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Dan replied “cuz it does” and shrugged as if it was obvious he did not know how to 

explain it. As such, Dan did not articulate why he multiplied the three numbers 10, 13, 

and 4.  

Craig responded differently. In the next excerpt, Craig talks about how he “built” 

the brick post to explain why he multiplied the three numbers 10, 13, and 4. 

Excerpt 7.10. Craig explains again why he multiplied the three numbers 10, 13, 

and 4. 

C: I did thirteen [points to the 13 unit-cubes along Dan’s side (Figure 7.34 

(a))], for each unit-cube here [sweeps his index finger along the 10 unit-

cubes along his side (Figure 7.34 (b))]. So each unit-cube here [once 

again sweeps his index finger along the 10 unit-cubes along his side 

(Figure 7.34 (b)] represents a hundred, no, represents thirteen. So, thirteen 

[taps on the far right unit-cube (Figure 7.34 (c))], thirteen [taps on the 

next unit-cube], thirteen [taps on the next unit-cube], all the way up 

[sweeps his index finger vertical to the unit-cubes aligned along his side 

as shown in the red arrow in Figure 7.34 (c)]. 

 

 
(a) (b) 

 

         
                                   (c)                                                                        (d) 

 

Figure 7.34. Craig explaining his process of finding the total number of unit-cubes 

contained in a bottom layer with dimensions 13×10. 
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[Continued] 

C:  So, it’s kind of like building it, thirteen, thirteen, thirteen [moves finger 

along the red arrows shown in Figure 7.34 (d)], once it gets to the end 

[pointing to the unit-cube at the end, like in Figure 7.34 (c)], it’s a 

hundred and thirty. So, then a hundred thirty [pointing to the unit-unit-

cubes on the floor], then each one of these [points to the unit-cube as 

shown in Figure 7.35 (a)] are a hundred-thirty. So, a hundred-thirty, a 

hundred-thirty, a hundred-thirty [tapping at each unit-cube as he moves up 

along the three remaining unit-cubes that I placed to represent the height 

(Figure 7.35 (b)], which equals five-hundred-twenty.  

 

      
                                      (a)                                                                        (b) 

Figure 7.35. Craig explaining his process of finding the total number of unit-cubes 

contained in the wall post with dimensions 13×10×4. 

 As demonstrated throughout Excerpts 7.10 and 7.11, Craig consistently counted 

the total unit-cubes in a systematic manner by building the desired brick post, as he 

described. First, he mentally built the rectangular horizontal layer of 130 unit-cubes at the 

bottom of the post. Then, instead of rebuilding the subsequent layers over and over again, 

he took the first layer as given and inserted it into each unit-cube along the third 

dimension one by one, counting 130 four times. As such, Craig constructed a unit 

(rectangular layer) of (10) units of (13) units, unitized it, and took it as new input to insert 

into another unit of (4) units. Using his units-coordinating operations, Craig coordinated 

each 130 units into each of the 4 units along the height and counted the total number of 

unit-cubes contained in the block post. In other words, Craig seemed to have coordinated 

three levels of units in successions to produce the rectangular prism. 
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Craig’s counting activities in the brick post task were consistent with his counting 

of the unit-cubes contained in the shoe box. That is, he found the product of the number 

of unit-cubes along the three dimensions. Although it seemed at first like he relied on a 

computational formula for finding the volume, he was articulate in explaining why he 

multiplied the three dimensions. Craig did this by building up the rectangular prism in 

representation by first constructing a layer and then inserting that layer into each unit 

along the third dimension. Moreover, Craig flexibly changed the layer and the third 

dimension into which he inserted the layer. This observation corroborated that Craig has 

indeed could engage in mentally decomposing and re-composing the rectangular prism 

into a collection of layers, each containing units of units. Hence, leading to the hypothesis 

that Craig has enacted the mental operations involved in a reversible decomposing 

scheme. Further, Craig’s coordination of multiple perspectives and a re-presentation of 

one instantiation of his activity in co-presence with another instantiation of the building 

process seemed to support his ability to anticipate the result of his activities. Therefore, I 

hypothesized that Craig had the operations of a FR coordinating scheme available to 

support his reversible decomposing activity. This was further tested through the Locating 

Tasks, which I discuss in Chapter 8.  

When I asked Dan if Craig’s explanation made sense to him, Dan acknowledged 

that he understood Craig’s explanation. Although Dan seemed to understand Craig’s 

method of counting the unit-cubes, he was yet to execute them independently or explain 

them in his own words. Therefore, although there may have been some assimilation 

involved, it could have been that Dan has assimilated Craig’s solution of multiplying the 

three dimensions but Dan was yet to independently re-generate an explanation of why it 
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made sense to multiply them. The explanation that Dan provided involved the two-

dimensional areas of the rectangular prisms but not its volume.  

Craig and Dan find the number of unit-cubes needed to extend the brick wall 

posts. 

I wanted to find out if Craig could reason recursively and take his structuration of 

the rectangular prism as input and further operate on it. Also, I wanted to test to what 

extent Dan could assimilate Craig’s method of multiplying the number of units 

constituting each dimension. Further, I wanted to investigate what Dan would do in a 

situation where one could not simply multiply the measures of each dimensions. So, I 

posed a problem that involved extending the brick wall posts. First, I added 1, 2, and 1 

unit-cubes to the dimensions of 13, 10, 4 unit-cubes, respectively. This resulted in a new 

configuration with dimensions 14×12×5, as shown in Figure 7.36. With that new 

configuration, I challenged both students to find the total number of additional unit-cubes 

in order to make such extension of the brick post that consisted of 520 unit-cubes.  

 

Figure 7.36. 1, 2, and 1 unit-cubes each added onto the dimensions of 13, 10, and 4, 

respectively. 

Dan’s solution to the extension problem. Dan wrote the three numbers 2, 1, 1 on 

his paper. Then, he multiplied 2 and 1, took the result 2 and multiplied that by 5 to obtain 

10. Finally, he added the 10 to 520, which was 530. Dan enclosed the 530 in a rectangle, 
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indicating that it was his final answer. When I asked Dan what the number of additional 

unit-cubes was, he scratched out the 530 and drew a rectangle around the 10, to indicate 

that he needed 10 additional unit-cubes to make the extension.  

Because Craig was still working on his solution, I turned to Dan to ask him some 

questions. First, I asked Dan where the 5 came from in his calculation, to which he 

replied by pointing to the 5 unit-cubes consisting the height of the configuration in Figure 

7.36. Then, Dan explained that it was the same thing, pointing to his calculations of 

10×13=130 and 130×4=520 unit-cubes he did earlier when solving for the total unit-

cubes contained in the brick post with dimensions 13×10×4. As such, Dan recognized the 

new problem as the “same thing,” and multiplied the numbers 2 and 1, each representing 

the additional unit-cubes from each side of the bottom of the configuration, and 

multiplied that by the new height, 5 unit-cubes.  

After Craig finished working on his solution, I asked each student to take turns in 

explaining their solutions. The following excerpt shows Dan’s explanation of how he 

found the 10 additional unit-cubes to make the extension.  

Excerpt 7.11. Dan explains how he found 10 additional unit-cubes to make the 

extension. 

D:  I timesed [multiplied] these two [pointing to each alignment of 12 and 14 

unit-cubes on the paper].  

T:  So those two mean…? 

D:  This [points to the 14 unit-cubes placed on the paper in front of him] and 

that [points to the 12 unit-cubes placed on the paper in front of Craig]. 

The one [lifted the 1 blue unit-cube at the end of his side] and two [pointed 

to the 2 unit-cubes at the end of Craig’s side].  

T:  Mm-hmm. Okay, so one, and two [repeats Dan’s pointing activity]. 

D:  Which is two.  

T:  Two, okay. 

D:  And then I timesed [multiplied] two by five [pointing to the height of the 

configuration] and I got ten. [Laughs]. 

T:  Okay, two times five and you got ten. Okay. 

D:  Yeah. Actually, I’m not even positive that’s correct. 
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As I inferred from his calculations, based on his explanation in Excerpt 7.11, Dan 

had indeed multiplied the 1 and 2 additional unit-cubes and multiplied the product by the 

new height 5. However, as I claimed earlier, although Dan assimilated Craig’s solution of 

multiplying the number of unit-cubes, this solution was not necessarily connected to the 

situation. In other words, Dan did not represent the 10 unit-cubes in relative position to 

the imaginary original rectangular prism of 520 unit-cubes. The coordination of a re-

presentation of one instantiation of his activity in co-presence with another instantiation 

was challenging for Dan and limited his ability to anticipate the result of his activities. 

Moreover, the lack of an operationalized structuration of the three-dimensional object 

seemed to inhibit his calculations. Because he could not represent the 10 unit-cubes in 

relation to the original rectangular prism of 520 unit-cubes, Dan was unsure whether the 

10 unit-cubes will make the desired extension. As shown towards the end of Excerpt 7.11, 

Dan claimed he was not sure if his answer was correct. 

Craig’s solution to the extension problem. Figure 7.37 shows Craig’s written 

work.  

           

Figure 7.37. Craig’s written work finding the total number of additional unit-cubes for 

the 1, 2, 1 extension. 
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Craig’s written work is better explained in his own words. The following two 

excerpts show Craig’s explanation of how he solved for the additional unit-cubes to make 

the desired extension. 

Excerpt 7.12. Craig explains what he did to find the additional unit-cubes to make 

the extension (Part I). 

C:  I was like, I keep forgetting what’s supposed to be on the end, what you 

added, so I decided to switch out the blocks that you added with blue 

blocks.  

T:  Blue blocks. Mm-hmm. 

C:  And then, two [pointing to the 2 blue unit-cubes added onto his side] times 

fourteen [pointing to the unit-cubes placed along Dan’s side]. So this 

[sweeps his finger above the table as shown with the red dashed arrow in 

Figure 7.38 (a)]. I basically built it out again. So I did this [repeats his 

sweeping motion illustrated in Figure 7.38 (a)], and then I’m like what do 

I do next? And I had figured out I had to do this [sweeps his finger above 

the table as shown with the red dashed arrow in Figure 7.38 (b) starting 

from the blue unit-cube at the end of Dan’s side].  

 

 
                                            (a)                                                                      (b) 

 

Figure 7.38. Craig’s sweeping motion above the table to indicate the 28 and 10 additional 

unit-cubes along the bottom of the configuration. 

[Continued] 

T:  So, you did two times fourteen and… 

C:  Yes, I did two times fourteen [repeated sweeping motion shown in Figure 

7.38 (a)] and then one times ten [repeated sweeping motion shown in 

Figure 7.38 (b)], which is ten, obviously. So, I added ten here [repeated 

sweeping motion shown in Figure 7.38 (b)].  
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Based on his written work shown in Figure 7.37 and his explanation in Excerpt 

7.12, I model Craig’s counting of the additional unit-cubes in the extension, as the 

following.  

 
 

 

Figure 7.39. A model of Craig’s representation of the extension of the brick post (Part I).  
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First, Craig marked the additional unit-cubes by changing their color to blue 

(Figure 7.39 (a)). Next, he coordinated the 2 unit-cubes added to his side of the floor with 

the 14 unit-cubes along Dan’s side of the floor (Figure 7.39 (b)), producing 28 additional 

unit-cubes. Craig then coordinated the 1 unit-cube added to Dan’s side of the floor with 

the 10 unit-cubes along his side of the floor (Figure 7.39 (c)), producing 10 additional 

unit-cubes.  

This process explains the “28→37” he wrote on his paper in Figure 7.37. After 

Craig had written the 28 on his paper, his gaze on the configuration on the table shifted 

slowly from one side to the other, suggesting that Craig had counted up from 28 as many 

unit-cubes there were placed along his side. In this process, it is likely that he counted 1 

unit-cube less, when meaning to add 10 unit-cubes in total. So, Craig ended up with 37 

and not 38 unit-cubes in total. Craig continued his explanation in the following excerpt.  

Excerpt 7.13. Craig explains what he did to find the additional unit-cubes to make 

the extension (Part II). 

C:  So, we’ve got this first layer added [places each hand at each end of the 

two sides on the paper and sweeps both hands simultaneously, as shown in 

the red dashed arrows in Figure 7.40] of how many more we would need. 

 

 
 

Figure 7.40. Craig makes hand motion to describe the additional unit-cubes along the 

bottom of the configuration. 
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[Continued.] 

T:  Mm-hmm… 

C:  And then I did the top [pointing to the blue unit-cube placed on top of the 

4 unit-cubes consisting the height of the configuration] because I forgot 

something, which I’ll explain in a minute. But, I did the top times… 

[pauses and looks back at his paper] It was five… Yeah, I did the bottom 

[pointing to the bottom of the configuration] times this [pointing at the 

blue unit-cube placed on the top of the 4 unit-cubes consisting the height] 

one, which was up to five and somehow I got a hundred-sixty-eight. But I 

had forgotten…[paused and looked back at his paper]. Yeah, I knew I 

wouldn’t remember this. This was very complex. 

 

Based on his written work and his explanation in Excerpt 7.13, I model Craig’s 

continuation of counting of the additional unit-cubes in the extension as the following. 

First, he held the 28 and 10 unit-cubes generated along each dimension of the bottom of 

the configuration and unitized the units into one layer consisting of 38 (or 37) unit-cubes 

(Figure 7.41 (a)). Next, Craig noticed that there was 1 unit-cube added to the top of the 

height, which would make an additional “top” to the configuration, consisting of 14×12 

unit-cubes (Figure 7.41 (b)). His calculation of 14×12 is demonstrated in Figure 7.37. 

Then, realizing that he left something out, Craig took the first layer as a unit (figure 7.41 

(a)) and inserted it into each of the 5 unit-cubes consisting the height of the brick post 

(Figure 7.41 (c)). As Craig explained, he “did the bottom times this one [the height], 

which was up to five.”   

Although Craig seemed to have lost track of his thought process and later sounded 

less confident about his solution, it was clear to me that Craig had engaged again in a 

systematic structuration of the three-dimensional object in re-presentation. He was able to 

represent the 520 unit-cubes that consisted the imaginary brick post that was assumed to 

have already been built. Craig then considered the additional unit-cubes both in spatial 

and quantitative relation to the existing configuration. Because the existing configuration 



 

414 

was not in sight, this required a heavy cognitive load, evidenced by Craig’s engagement 

in deep thought, his relatively long pauses, his grabbing of his head throughout his 

solution of this problem, and his claim that this problem was very complex.  

 

Figure 7.41. A model of Craig’s representation of the extension of the brick post (Part II).  
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Indeed this extension problem was a novel task for Craig. Using the available 

operations he had, although not fully executed, Craig was able to build the extension step 

by step, consistent with the manner he built the existing configuration of 520 unit-cubes. 

That is, he constructed the first layer of the extension and inserted that layer into the total 

number of unit-cubes consisting the height of the new configuration. Although his 

additional 12×14 unit-cubes were repetitive, it demonstrated his awareness of the one 

additional unit-cube along the height and how that related to the extensions in the other 

two dimensions (14×12 unit-cubes).  

Summary of Box Tasks 

Craig’s counting activity. 

In the Box Tasks, Craig consistently found the product of the number of unit-

cubes along the three dimensions to find the total number of unit-cubes needed to fill or 

build various sized boxes or rectangular prisms. Although it seemed at first like he relied 

on a computational formula for finding the volume, Craig was articulate in explaining 

why he multiplied the three dimensions in a consistent and systematic manner. From his 

demonstrations of his counting activity, I inferred that Craig mentally built units of 

rectangular layers consisting of units (along one spatial dimensions) of units (along a 

second spatial dimension) and inserted the layer into each unit-cube along the third 

dimension constituting the box or rectangular prisms. Moreover, Craig flexibly changed 

the layer and the third dimension into which he inserted the layer. As a result, Craig 

produced three levels of units in successions and enacted his units-coordinating 

operations in counting the total number of unit-cubes.  
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Based on the way Craig consistently decomposed and recomposed the box or 

rectangular prisms through enacting his splitting operations led me to hypothesize that 

Craig has enacted the mental operations involved in a reversible decomposing scheme. 

Further, Craig’s coordination of multiple perspectives and a re-presentation of one 

instantiation of his activity in co-presence with another instantiation of the building 

process seemed to support his ability to anticipate the result of his activities. Therefore, I 

hypothesized that Craig had the operations of a FR-coordinating scheme available to 

support his reversible decomposing activity. This was further tested through the Locating 

Tasks, which I discuss in Chapter 8.  

Dan’s counting activity. 

In the Box Tasks, Dan consistently showed a tendency to focus mainly on the 

surface areas of faces of the shoe box or rectangular prisms, consistent with his previous 

activities in the Cubic Block Task. For example, in the Show Box Task, Dan partially 

covered two adjacent faces of his shoebox with unit-cubes, counted the number of unit-

cubes he will need to cover those faces, doubled each number and found the sum of those 

two measures. Later in the Rectangular Prisms Task, Dan seemed to assimilate to some 

extent Craig’s method of counting the unit-cubes by multiplying the three dimensions of 

the prism. However, I inferred that Dan has partially assimilated Craig’s solution of 

multiplying the three dimensions but Dan was yet to independently re-generate an 

explanation of why it made sense to multiply them. The explanation that Dan provided 

involved the two-dimensional areas of the rectangular prisms but not its volume. 

Although Dan seemed to have assimilated Craig’s solution of multiplying the number of 
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unit-cubes in the previous task, this solution was not necessarily connected to the 

situation.  

Based on Dan’s counting activities, I claimed that the coordination of a re-

presentation of one instantiation of his activity in co-presence with another instantiation 

was challenging for Dan and limited his ability to anticipate the result of his activities. 

Moreover, the lack of an operationalized structuration of the three-dimensional object 

seemed to inhibit his calculations.  

Summary of Chapter Seven 

Summary of Craig’s Counting Tasks 

In building, counting, and extending the spatial objects in the three tasks Craig’s 

activities seemed consistent. He counted the number of unit-cubes or unit-tiles along each 

spatial dimension and found the product of the measurements. Craig explained why he 

multiplied the number of units along each dimension by building up the spatial objects as 

successions of rows or layers. Craig did this by building up the spatial objects in 

representation by first constructing a row of unit-tiles or a layer of unit-cubes and 

inserting them into the units along another spatial dimension. From his consistent 

counting activities, I hypothesized the following two things.  

First, I claimed that Craig produced three levels of units in successions and 

enacted his units-coordinating operations to count the spatial objects. In various contexts, 

Craig operated with units of units using his unitizing and disembedding operations and 

iterated units of units in activity, using his unit-coordinating operations. Therefore, Craig 

seemed to use their operations from his initial interviews as assimilatory operations in his 

counting activities of units along spatial dimensions.  
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Second, I conjectured that Craig’s structuration of the two- or three-dimensional 

spatial objects were established as operations that could independently be enacted in 

various situations. Based on the way Craig consistently decomposed and recomposed the 

box or rectangular prisms through enacting his splitting operations led me to hypothesize 

that Craig has enacted the mental operations involved in a reversible decomposing 

scheme. Further, Craig’s coordination of multiple perspectives and a re-presentation of 

one instantiation of his activity in co-presence with another instantiation of the building 

process seemed to support his ability to anticipate the result of his activities. Therefore, I 

hypothesized that Craig had the operations of a FR-coordinating scheme available to 

support his reversible decomposing activity. This was further tested through the Locating 

Tasks, which I discuss in Chapter 8.  

Summary of Dan’s Box Tasks 

In building, counting, and extending the spatial objects in the three tasks Dan’s 

activities seemed to progress throughout the three tasks. At the beginning, Dan’s building 

and counting activities seemed to mainly focus on the exterior of the spatial objects. For 

example, Dan’s initial building of the 3-Cube seemed somewhat haphazard with an 

overall approach of building the exterior of the cubic block and then filling in the interior. 

Another example is how Dan solved for the total number of unit-cubes needed to fill in 

his shoebox. Dan partially covered two adjacent faces of his shoebox with unit-cubes, 

counted the number of unit-cubes he will need to cover those faces, doubled each number 

and found the sum of those two measures.  

Throughout the teaching episodes, I encouraged Dan to engage in building the 

spatial objects from which he could reflect upon. Also, Dan often times paid close 
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attention to Craig’s strategies and seemed to have partially assimilated them. In the later 

teaching episodes, Dan’s building activities seemed to become more systematic in that he 

added chunks of unit-cubes as if he were to add horizontal layers or rows to form the 

three-dimensional objects. Also, Dan’s explanation of the configuration of the spatial 

objects often occurred before he produced sketches of them, which led me to claim that 

he was able to produce some re-presentation of the spatial objects.  

However, Dan still seemed to be reliant on his sketches or the physical models 

when counting and extending the spatial objects. For example, he relied on his sketch of 

the 3-Cube to count the total number of unit-cubes in the 3-Cube and he needed the cubic 

block model in order to carry out the extension of a 3-Cube into a 4-Cube. As such, I 

claimed that coordinating a re-presentation of one instantiation of his activity in co-

presence with another instantiation was challenging for Dan and limited his ability to 

anticipate the result of his activities. 

Furthermore, when counting units within the spatial objects, Dan demonstrated 

what I called a grouping activity in order to count the individual unit-cubes efficiently. 

As a result, the number of unit-cubes that comprised each cubic block was a result of 

repeated addition of the objects within the groups. These hypotheses seemed to align with 

the findings from the initial interviews in that Dan operated as if he could coordinate two 

levels of units in activity and thus coordinated units additively while Craig operated as if 

he could coordinate three levels of units in activity and thus coordinated units 

multiplicatively. Therefore, I claimed that Dan’s decomposition of the spatial objects was 

not a result of re-presenting and counting a composite unit of several unit-cubes together. 

Considering Dan’s activities in both the initial interview tasks and these spatial tasks, 
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Dan’s ability to coordinate two levels of units in activity but not three, not yet having 

constructed a splitting scheme, and not establishing a strong disembedding operation 

pertained throughout these tasks. 

In Chapter 6, I discussed Kaylee’s and Morgan’s units coordinating activities 

within a three-dimensional spatial context. From the findings, I hypothesized that the 

operations and schemes I imputed to students in their initial interview and the Locating 

Tasks seemed to have been used as assimilatory operations and schemes in their counting 

activities involving the cubic blocks. In this chapter, I discussed Craig’s and Dan’s units 

coordinating activities within two- and three-dimensional spatial contexts. Consistent 

with the findings discussed in Chapter 6, Craig and Dan also seemed to use their 

operations from their initial interviews as assimilatory operations in their counting 

activities of units along spatial dimensions.   

In Chapter 6, I also hypothesized that structuration of space was necessary 

because the results of such structuration guided students’ enactment of the 

aforementioned operations and schemes. Further, I conjectured that students’ 

structuration of space was constructed through coordinating multiple perspectives, the 

use of students’ FR-coordinating schemes, and a recursive coordination of two-spatial 

dimensions multiplicatively. In this chapter, I analyzed differences in students’ ability to 

coordinate multiple perspectives and consistent with the findings from Chapter 6, I 

claimed that students’ structuration of spatial objects was necessary because the results of 

such structuration guide the individual’s enactment of the aforementioned operations. 

Finally, I formulated conjectures about Craig’s FR coordinating scheme, which I tested 

through the Locating Tasks and will discuss in Chapter 8.  
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CHAPTER 8 

CRAIG AND DAN CONSTRUCT COORDINATE SYSTEMS 

In Chapter 6, from the work with Kaylee and Morgan, I hypothesized that 

students’ structuration of the spatial objects guided their units-coordinating activities. 

Further, I conjectured that students’ structuration of the objects was formulated through 

coordinating multiple perspectives, the use of students’ FR-coordinating schemes, and a 

recursive coordination of two-spatial dimensions multiplicatively. In Chapter 7, I 

discussed Craig and Dan’s units coordinating activities within two- or three-dimensional 

contexts in the Counting Tasks (Cubic Block Task, the Floor Tile Task, and the Box 

Task). Consistent with the findings discussed in Chapter 6 about Kaylee and Morgan, 

Craig and Dan also seemed to use their operations from their initial interviews as 

assimilatory operations in their counting of units embedded within two or three spatial 

dimensions.  

In this chapter, I present my analysis of Craig’s and Dan’s constructive activities 

in the Locating Tasks (School Map Task, North Pole Task, and Fish Tank Task) in which 

I asked both students to draw a map, locate a point, or describe the motion of one point in 

two- or three-dimensional perceptual space. I designed these tasks to investigate how 

students organized perceptual space into representational space. More specifically, 

through these tasks, I explored how the students construct and use coordinate systems 

when representing points or the motion of a point in two- or three-dimensional perceptual 

space.  
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In discussing the North Pole Task, I will describe the ways Craig and Dan each 

located a point in an irregular shaped two-dimensional map. In the Fish Tank Task, I will 

present Craig’s and Dan’s activities in locating points or describing motion of one point 

to another in three-dimensional cubic or cylindrical fish tanks. In these tasks, Craig and 

Dan each constructed frames of reference and coordinated systems of measurements to 

organize these two- or three-dimensional spaces, which I discuss and model the 

mechanisms of in this chapter.  

In Chapter 5, from the work with Kaylee and Morgan, I proposed that the FR-

coordinating scheme requires mental operations essential for coordinating three levels of 

units; hence, a parallel between the students’ levels of units coordination and 

coordination of measurements within frames of reference in three-dimensional space. To 

elaborate, Morgan reasoned with three levels of units in activity in the initial interview 

and coordinated measurements along three spatial dimensions in activity. On the other 

hand, Kaylee’s engagement in the initial interview tasks suggested her reasoning with 

three levels of units as given and she coordinated measurements within frames of 

reference, maintaining the logical multiplication of all three measurements along three 

dimensions. Therefore, entering the Locating Tasks, I anticipated similar differences in 

Craig and Dan’s locating activities in relation to their different levels of units 

coordination.  Finally, based on his activities in the Counting Tasks, I formulated 

conjectures about Craig’s FR-coordinating scheme, which I tested through the Locating 

Tasks and will discuss in this chapter. 
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School Map Task: Dan and Craig Locate Five Rooms in Their School Building 

In the School Map Task, I asked Dan and Craig to create a map of the first floor 

of their school building. To make the task approachable for the students, I asked them to 

include only five specific rooms in their school building on their map: the gym, teachers’ 

lounge (the room we were in), media center, front office, and cafeteria. Detailed 

descriptions of the task design are in Chapter 3. Through the School Map Task, I 

explored the different perspectives that Craig and Dan took and the frames of reference 

they used when constructing a re-presentation of the first floor of their school building.  

Dan’s School Map 

Dan started drawing his map with the Gym located at the center of his paper. Next, 

he drew rectangules representing the cafeteria and teacher’s lounge (TL) and then the 

hallways connecting the gym and cafeteria. Dan then sketched in the front office, front 

door, and the media center, and completed the sketch with the hallway running the other 

direction as shown in Figure 8.1.  

     

Figure 8.1. Dan’s map of the first floor of school building. 
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I considered Dan’s map to be an appropriate description of the locations of the 

rooms on the first floor of their school building. By appropriate I mean that the relative 

positions of the rooms were accurate but the distance between different rooms were not to 

scale. 

In the following excerpt Dan explains how he made his map. 

Excerpt 8.1. Dan explains how he made his map. 

D:  Well, the way I used to memorize my schedule is the gym is the center of 

the school, basically, for me, and all the hallways, almost all the hallways 

lead up to the gym. 

T:  Ah, to the gym? So, that’s why you started with the gym? 

D:  Yeah. 

T:  And then, where did you go from the gym? Like, how did you [continue]? 

D:  I went down this hallway [sweeps index finger along his map from the 

gym towards the cafeteria on his map and turns around in his chair to 

point towards the door of the teachers’ lounge we were in] to basically, 

the main area, the main hallway [hovers finger over the intersection of the 

two hallways on his map]. 

By the way Dan started his map with the gym at the center of his paper and 

explained that he viewed the gym as the center of the school, connected to most hallways 

in the school building, I inferred that the gym served as a spatial reference point (Sadalla 

et al., 1980) in Dan’s organization of the first floor of his school building. 

After our conversation in Excerpt 8.1, I asked Dan how he knew to put the front 

office on one side of the hallway and not the other. This question led Dan to rethink his 

map. After sitting in thought, Dan said that he drew the front office on the “wrong side.” 

Dan either interpreted my question as a cue hinting his map was incorrect or was 

genuinely perturbed by my question. So, to first ensure Dan that he placed the front office 

on the “correct side,” I asked Craig to explain where the front office was on his map. 

After hearing that Craig had also put the front office on the same side of the hallway as 

he did, Dan said that his map was correct.  
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Next, I asked Dan how he knew to draw the front office on one side and the media 

center on the other side of the hallway, and what he was thinking when he generated the 

map. Dan responded, “I was looking, I didn’t realize it but I was, the way I was looking 

at it as I was standing at the cafeteria looking towards the gym. I didn’t realize that 

though.” As such, Dan seemed to have mentally situated himself at the cafeteria looking 

towards the gym when determining the locations of the front office and media center. 

However, as he said, he “didn’t realize that” until after I asked him to explain what he 

was thinking when he generated his map. I interpreted this to mean that his locating 

activities shifted from unconscious to conscious thought engendered by a reflection on 

his mapping activities.  

To summarize, in the School Map Task, Dan considered the gym as a spatial 

landmark and located other rooms and hallways in relation to the gym’s location. In 

describing how he generated his map and reflecting on his mapping activity, Dan used 

route descriptions (Taylor & Tversky, 1996). I inferred this to mean that he re-

represented the space as he mentally traversed the area, taking an imaginary perspective 

embedded within the space. As I modeled in Figure 8.2, Dan first represented the gym, 

cafeteria, and the hallway connecting them by re-presenting his walking experience from 

the gym to cafeteria. To elaborate, Dan positioned himself at the gym looking straight 

across the hall and re-presented the cafeteria and anchored a line along the gym-hallway-

cafeteria. Then, using that axis, he re-presented the front office/front door and media 

center on the right or left side to the axis, taking the viewpoint standing from the cafeteria 

looking toward the gym. Finally, he connected the front office/front door and media 

center with the hallway, completing a front door-hallway-media center axis. In Dan’s 
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case, a line anchored onto his line of sight and one perpendicular to that constituted his 

frame of reference. This rectangular frame of reference was sequentially anchored to 

different places (e.g., gym and then at the cafeteria) as he mentally traversed the first 

floor.  

  

Figure 8.2. A model of Dan’s mapping activity. 

Craig’s School Map 

Contrast to Dan, Craig was hesitant to produce the map at the beginning, making 

comments like “my brain doesn’t work like a map” or that he memorized the locations of 

the rooms through “muscle memory.” Craig also explained that he had difficulty finding 

rooms in the middle of the first semester, when he had to move from one class to another. 

However, after sitting quietly for a few seconds, Craig started to draw each of the rooms 

on his paper. He sketched the front office, media center, gym, teacher’s lounge, cafeteria 

in that order, as shown in Figure 8.3 (a).  

① 

② 

③ 

⑦ 

⑤ 

⑥ 

④ 

⑧ 
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    (a) Craig’s sketch of the five rooms                       (b) Craig’s map of the first floor 

Figure 8.3. Craig’s drawings of the first floor of the school building. 

Different from Dan who started at the gym and sequentially added the hallways 

and other rooms as he mentally traversed the first floor, Craig swiftly added all the rooms 

without any hesitation in between drawing them. Based on his prompt sketching of the 

rooms, I hypothesized that Craig had an image of the rooms altogether that he re-

presented on his paper in one sweep. After he produced the drawing as shown in Figure 

8.3 (a), Craig looked at me and asked “Is that everything?” which to me meant that Craig 

did not consider the pathways connecting the rooms. I hypothesized that Craig may have 

taken a different perspective than Dan did in the School Map Task. After I suggested 

Craig to add information for a person using the map so he or she could find ways to move 

from one room to another, he added the hallways connecting the rooms, producing a map 

as shown in Figure 8.3 (b).  

When I asked Craig to explain how he produced his map and where he started in 

his map, Craig said “I imagined myself high up in the air, removing the ceiling and 
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centered here,” pointing his index finger above the map. I asked Craig to further explain 

how he used this particular imagination to arrange the rooms the way he did on his map. 

In the following excerpt Craig describes how he made the map of the school building. 

Excerpt 8.2. Craig explains how he made his map. 

C:  Well, I play video games and in video games, you can do things such as 

fly around and if you go under the map you can see, or up to high, you can 

see all the stuff [sweeps index finger over his map of the first floor] in kind 

of this view. So, since I’m looking this way [points index finger 

frontward] I imagined just going up [points index finger towards the 

ceiling] and looking down [points index finger downwards], since there 

would be no ceiling.  

T:  Mm-hmm. 

C:  And then seeing all this [points again to his map].  

T:  [Turning to Dan] Did that make sense? 

D:  Yeah, I can see… That’s why he drew his [map] sideways [turns his map 

90 degrees to make his map correspond to the orientation Craig’s map is 

sketched.] 

T:  [Turning back to Craig] So, you mean you were imagining yourself 

coming out of this room [pointing towards the teachers’ lounge in Craig’s 

map] and kind of looking from above, is that what you’re saying?  

C:  Not necessarily coming out of the room, but if I were to become a winged 

beast and just go up [moves his pen starting from the teachers’ lounge on 

his map then straight upward] and center myself [moves pen towards 

center of his map, still hovering over it]. Because if I were to just go up, 

then everything will be centered around… [Hovers finger over the 

teachers’ lounge.]  

From his explanation in Excerpt 8.2, it was apparent that Craig had taken an 

imaginary perspective from above the perceptual sensorimotor space he was trying to 

organize. From Craig’s explanation I inferred that he imagined going straight up from the 

teacher’s lounge and translated his position to what he considered the center of the first 

floor. From there, he looked down onto the first floor, as I modeled in Figure 8.4. Like 

Dan pointed out in Excerpt 8.2, Craig’s map was “sideways,” demonstrating the different 

position Craig used in re-presenting the first floor in comparison to Dan. As I modeled in 

Figure 8.4, Craig re-presented the rooms in the order of top, bottom, left, then right of his 
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imagined position. In Craig’s case, a single rectangular frame of reference anchored at 

the center of the first floor, taken from his above-the-ground perspective, served for 

gauging the locations of the different rooms on the first floor. 

  

Figure 8.4. A model of Craig’s mapping activity. 

Earlier in the episode, Craig also demonstrated usage of a perspective embedded 

within the space, similar to Dan. This was demonstrated when he mentioned towards the 

beginning of the task that he heavily relied on his walking experience in remembering the 

locations of the rooms. Another instance occurred when I asked Craig to explain the 

locations of the front office and the media center on his map. The following is Craig’s 

description of the location of the front office and media center: 

From how you would be walking down, if you were walking out of this room 

[moves finger from teachers’ lounge on his map along the hallway], gym’s there 

[points to the gym on his map] walk down the hallway, the front office is there 

[pointing to the front office in his map], the media center is there [points to the 

media center on his map] and if you keep walking forward, the cafeteria’s there 

[points to the cafeteria on his map].   

Gym 

TL 

Media 

Center 

Front Office 

Cafeteria 

① 

② 

③ 

④ 

⑤ 

⑥ 
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As such, Craig used route descriptions (Taylor & Tversky, 1996), which I inferred to 

mean that he also took an imaginary perspective of one embedded within the space.  

To summarize, Craig demonstrated the use frames of reference induced from 

taking both a perspective exterior to the space and a perspective embedded within the 

space. When taking his perspective exterior to the space, he used a single rectangular 

frame of reference fixed above the ground at the center of the first floor and re-presented 

the rooms in co-occurrence. When taking his perspective embedded within the space, his 

frames of reference were sequentially anchored to different places as he mentally 

traversed the first floor, similar to Dan.  

Summary of the School Map Task 

In the School Map Task Dan and Craig each produced maps of the first floor (see 

Figures 8.1 and 8.3 (b)). I modeled Dan’s and Craig’s mapping process in Figure 8.2 and 

Figure 8.4, respectively. To summarize, I inferred that Dan considered the gym as a 

spatial reference point and located other rooms and hallways in relation to the gym’s 

location. Based on his descriptions of how he generated his map, I hypothesized that he 

re-represented the space as he mentally traversed the area, taking a perspective embedded 

within the space. In Dan’s case, rectangular frames of reference were sequentially 

anchored to different places (e.g., gym and then at the cafeteria) as he mentally traversed 

the first floor.  

On the other hand, Craig imagined himself hovering above the school building, 

looking down onto the first floor of the school building, located the rooms, and then 

added the hallways connecting the rooms. It seemed as though the locations of the rooms 

emerged all at once, in comparison to Dan’s mapping activities. From his activities in this 
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task, I inferred that Craig had used a single rectangular frame of reference anchored at the 

center of the first floor, taken from his above-the-ground perspective, when re-presenting 

the different rooms on the first floor. Earlier in the episode, Craig also demonstrated 

usage of a perspective embedded within the space, similar to Dan. Therefore, I 

hypothesized that Craig used frames of reference induced from taking both a perspective 

exterior to the space and a perspective embedded within the space. When taking his 

perspective exterior to the space, he used a single frame of reference fixed above the 

ground at the center of the first floor and re-presented the rooms in co-occurrence. When 

taking his perspective embedded within the space, his frames of reference were 

sequentially anchored to different places as he mentally traversed the first floor. 

Considering these findings, in the North Pole Task, I anticipated to see these 

differences in the perspectives they coordinate and in the coordination of frames of 

reference when describing a point in two-dimensional space.  

North Pole Task: Craig and Dan Locate a Point in Two-Dimensional Space 

Dan Coordinates Vertical and Horizontal Distances    

In our first teaching episode of the new semester held on January 23, 2015, Dan 

started working on the North Pole Task on his own. Because Craig was not there, I 

played the role of the rescuer on the ground holding the map and placed the screen on the 

table so I could not see Dan’s map. When I asked Dan to first plot a point on his map that 

represented the missing person, Dan plotted a point as shown in Figure 8.5 (a). Next, 

without any prompting, Dan oriented his map so that the road to the North Pole was 

facing him, as shown in Figure 8.5 (b). After orienting his map as such, Dan moved his 

pen over the map starting from above North Pole (point P) straight to the above the 
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missing person’s location (point A), as demonstrated by the red dashed arrow in Figure 

8.5 (b). 

 

(a) 

 

(b) 

Figure 8.5. Dan marks a point (A) on his map, orients his map, and visualizes a straight 

line from point P to A. 

Without knowing what Dan had done so far, I asked Dan to come up with 

instructions for me so that I can find the missing person on my map. Earlier in the 

teaching episode I showed Dan my map, which was identical in shape and size to the one 

he had, with the road to the North Pole and North Pole point drawn on wax paper. After 

A 

P 

P 

A 
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looking at his map for approximately 14 seconds, Dan said “okay” as if he were ready to 

give me instructions. Later, from the video recording I observed Dan’s placement of the 

ruler and his hand (Figure 8.6) at this particular moment of the teaching episode. The way 

Dan placed his ruler on the map diagonally and the way he placed his right hand open as 

shown in Figure 8.6, along with his action demonstrated in Figure 8.5 (b) suggested that 

Dan initially considered measuring the distance between the two points P and A. Dan’s 

actions reminded me of Morgan’s activities in locating the missing person’s location in 

the irregular shaped map. That is, Morgan also thought of the movement of the rescuer 

from the North Pole to the missing person’s location in one straight movement and 

considered measuring the distance in between the two points (see Figure 5.4).  

 

Figure 8.6. Dan places ruler and hands on his map while looking at the map. 

Dan was about to start giving me instructions by saying, “Alright, at the North 

Pole, you’re going to … You want to go…” However, Dan paused for approximately 

four seconds, as if he were rethinking how to give instructions to the rescuer. Dan then 

moved his ruler so that it aligned with the road to the North Pole as shown in Figure 8.7 

(a) and, soon after, slid his ruler keeping its orientation so that it passed through point A 

as shown in Figure 8.7 (b). It seemed as if Dan was translating the ruler from one point (P) 

P 
A 
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to another (A). From this action, I hypothesized that Dan had visualized a horizontal 

movement from point P to point A.  

  
                     (a)                                                                          (b)   

Figure 8.7. Dan places his ruler through point P and then point A on his map. 

Not knowing what Dan was doing behind the screen, I said “So, I’m at the North 

Pole…” to prompt him to give me the instructions. Dan immediately moved his ruler 

back to like it was in Figure 8.7 (a). Next, holding the ruler with his left hand, he picked 

up a pen with his right hand and moved the pen left and right (from his perspective) as if 

he were connecting point A with some point on the ruler, as demonstrated by the red 

arrow in Figure 8.8. Dan repeated this movement of his pen once more and tapped his 

finger on the table. I inferred this tap on the table to mean that he was finally ready to 

provide instructions to the rescuer.  

 

Figure 8.8. Dan moves pen from point A to a point on his ruler. 

A P 

A 
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From his actions demonstrated in Figure 8.7 and 8.8, I inferred that Dan 

considered the horizontal (from his perspective) distance from point A to the extension of 

the road to the North Pole. These actions that Dan carried out were very similar to the 

ones I observed when Kaylee worked on the North Pole Task (c.f., Figures 5.5 and 5.6). 

However, compared to Kaylee’s swiftness in carrying out these actions, the moment Dan 

moved his ruler back to the position in Figure 8.7 (a) until the moment he tapped his 

finger on the table took approximately 18 seconds, a relatively long time to be considered 

as anticipated actions like Kaylee’s. In Chapter 5, I interpreted Kaylee’s actions to be 

operational and anticipatory in that the measurements were coordinated from the 

beginning without a trial-and-error process and in that she was aware that this 

coordination along with the corresponding measurements would ensure that the rescue 

team would find the missing person. On the other hand, Dan’s activities seemed 

spontaneous in that they occurred as he was verbalizing instructions and carrying out 

activities in the moment.  

Although Dan was yet to verbalize the instructions, and although his actions took 

a longer time than Kaylee’s, I inferred Dan’s actions to indicate that Dan has constructed 

a frame of reference consisting of horizontal and vertical lines anchored onto landmarks 

such as the road to the North Pole and the North Pole point. Using this rectangular frame 

of reference, I hypothesized that Dan had decomposed the movement of P to A along two 

spatial dimensions.  

After tapping his finger on the table, Dan relayed his instructions, as shown in the 

following excerpt. 
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Excerpt 8.3. Dan gives instructions to the rescuer to find the missing person. 

D:  You’re going to want to go… one and a half inches, which is miles for me. 

So, one and a half inches straight from the North Pole, the dot. 

T:  Okay, so which… Straight from the North Pole…[Looks down onto map.] 

D:  Yeah, you just take your ruler and put it [taps on his ruler], use the inches 

side, it’s going to be one and a half. 

T:  [Places ruler on her map] one and a half. 

D:  Yeah. And… [Moves his pen along his map in the reverse direction of the 

red dashed arrow as shown in Figure 8.8.] Go straight first.  

T:  Okay. 

D:  Go one and a half inches straight, and then… [Moves his ruler into a new 

position as shown in Figure 8.9 (a). Next, he moves the ruler back to the 

first position as shown in Figure 8.9 (b), and slowly rotates the ruler back 

to the position in Figure 8.9 (d), as demonstrated by the red dashed arrow 

in Figure 8.9 (c). Dan holds the ruler down with his thumb as he rotates 

it.]  

D:  And from there, you’re going to go [measures distance from his thumb to 

point A on his ruler, as demonstrated in Figure 8.9 (d)] straight down two 

and a half, to the right. To the right you go two and a half inches. 

      
                               (a)                                                                     (b) 

      
                                  (c)                                                                      (d) 

Figure 8.9. Dan uses his ruler to measure distances to provide for the rescuer. 

      A 
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[Continued.] 

T:  To the right… 

D:  Yeah.  

T:  So, you mean… 

D:  So, go straight [points his left arm in front of him as shown in Figure 8.10 

(a)] and then to the right [places right arm next to the left arm and then 

moves it to the right as shown in Figure 8.10 (b)]. And go two and a half 

inches. 

T:  Two and a half inches [follows Dan’s instructions on her map]. Okay. 

D:  And that should be where you are. 

   
                                (a)                                                                        (b) 

Figure 8.10. Dan demonstrates the movement of the rescuer using gestures. 

As demonstrated by his explanation in Excerpt 8.3, Dan measured horizontal and 

vertical distances that constituted the rescuer’s movement from point P to point A with 

respect to his perspective looking at the map. Later in the teaching episode, I asked Dan 

what was he thinking when he used the ruler to measure distances for the rescuer to walk. 

Dan explained that he thought about longitude and latitude lines. His comments along 

with his gestures in Figure 8.10 corroborated my hypothesis that Dan constructed a 

rectangular frame of reference to decompose the movement of the rescuer into vertical 

and horizontal movements. Using this frame of reference, Dan coordinated distances 

along the vertical/horizontal movements, constructing a Cartesian-like coordinate system. 

Based on the way Dan did not explicitly address the rescuer’s initial orientation or 

perspective in Excerpt 8.3, I inferred that Dan mainly focused on his ego-oriented 

perspective (Taylor & Tversky, 1996) taken from above the ground and superimposed his 
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rectangular frame of reference onto the two-dimensional plane, like Morgan did in the 

North Pole Task.  

Craig and Dan Coordinate Angle Measure and Distance  

In the following teaching episode held on January 26, 2015, Craig took the role of 

the rescue team in the helicopter while Dan was the rescuer on the ground. Craig plotted 

a point on his map as shown in Figure 8.11 but was hesitant to proceed. Craig said he did 

not know what he was supposed to do. Craig also had several questions about the 

situation such as whether his road to the North Pole was the same as the one on Dan’s 

map and if the maps were of same size. Once we addressed these questions, Craig placed 

the compass with the sharp point at the North Pole (point P) and the pencil side on point 

A. Using the compass, he constructed an arc with radius length PA on his map, which I 

re-generated in Figure 8.11. Craig then said that he was thinking about an angle but that 

he did not know what to do with it.  

 

Figure 8.11. Craig’s map and inscriptions describing his actions on the map. 

After I asked Craig to think some more about what he could do with his idea, 

Craig picked up his pen, moved it above his map connecting the intersection of the arc 

and the road to the North Pole (point B in Figure 8.11) with point A (demonstrated by the 

red dashed arrow in Figure 8.11) saying, “[F]rom here to here is one-hundred and eighty 

A 

P 

B 
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degrees. From this point on the road [pointing to Point B], he takes a right and then 

something about every mile he should change 10 degrees in order to get to this location 

[pointing to point A].” 

So far, Craig considered a circular movement and angle measure but he said that 

he did not know how to give instructions for the rescuer using what he had drawn on his 

map. Because Craig seemed to be stuck in moving forward, the students switched roles 

and Dan took a turn in leading the activity as the person in the helicopter. Finally, Craig 

seemed to open up again. So, I asked both students to work together to complete Craig’s 

angle idea and placed Craig’s earlier map on the table.  

After I placed Craig’s map (Figure 8.11) back on the table, Dan said he thought 

he knew what Craig was thinking and placed the protractor on the map. With the map 

oriented so that the road was facing him, Dan placed the protractor so that the horizontal 

reference on the protractor (0°) was perpendicular to the road at point P. Next, Dan 

explained, “go however many degrees that is” as he connected point P and A with his 

index finger. He then picked up the protractor and placed it on the map so that the 

horizontal reference of the protractor (0°) was aligned with the road at the North Pole 

saying, “or we can put [the protractor] sideways.” To encourage Craig’s engagement, I 

asked Craig if Dan’s idea was similar to what he was thinking earlier. Craig said it was 

not but that Dan’s idea “might work if you explain to put the protractor directly facing 

north from the North Pole,” which I inferred to mean that the 90° mark aligned with the 

extension of the road segment. 

Once both students agreed to use the protractor like in Figure 8.12, they each read 

off the angle measure where line segment PA passed. Note that the line segment PA in 
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Figure 8.12 was not yet constructed on the map at this point in the teaching episode. 

However, I inferred that the students imagined this line segment based on Dan’s earlier 

movement of his index finger connecting the two points and from the angle measure they 

read (approximately 135°) from the compass.  

 

Figure 8.12. Craig’s map and placement of the protractor. 

I inferred their activity of measuring the angle measure to indicate that both 

students intended to find the inclination of PA. Because I wanted to explore whether the 

students were aware of the references they used in defining the angle they measured, I 

asked them what they meant by saying “go 135 degrees.” Craig replied “I don’t know. 

There wouldn’t be a stopping point so that wouldn’t work.” Dan picked up the ruler 

saying, “Well, that’s when the ruler comes in. Go a hundred and thirty degrees, five 

inches.” In other words, Dan suggested they measure how far the person had to walk in 

addition to telling him the angle measure.  

Although Dan made a contribution by adding another measurement of distance 

along with the angle measure, both students were yet to discuss what going 135 degrees 

meant in the situation. That is, they did not fully develop instructions for the rescuer nor 

A 
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did they relate the angle measure to the rescuer’s orientation, as Kaylee did in the North 

Pole Task.  

Because Craig and Dan were still trying to determine the exact angle measure 

using the protractor, I asked Craig to connect the two points P and A so it will help them 

read the angle measure off of the protractor more accurately. Craig connected the two 

points P and A with the protractor placed on the map as shown in Figure 8.12. Then, he 

explained, “Put the protractor on the North Pole facing North and then … [reads the 

protractor] so from the one hundred and forty mark the line that connects from the one 

forty to the center of the protractor, extend it out all the way and then explain how many 

inches or centimeters on the map it will take to get to the location.”  

As such, Craig and Dan developed instructions for the rescuer to follow in order 

to plot point A on his/her map rather than instructions to relay to the rescuer to carry out 

through physical movements on the ground. Craig has initiated the consideration of an 

angle measure and Dan contributed by adding a distance element to their locating activity. 

Together they developed a system of measurements of angle measure and distance 

similar to a polar coordinate system, with the origin of their angular frame of reference 

anchored at point P. However, they did not explicitly address the initial ray that 

constituted the angular frame of reference like Kaylee did in the North Pole Task. Eager 

to explore their locating activities in the three-dimensional case, I did not provide the 

circular map to Craig and Dan.  

Summary of the North Pole Task 

To summarize, in the North Pole Task, I hypothesized that Dan coordinated 

horizontal and vertical distances using a rectangular frame of reference with its origin 
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anchored at point P and vertical axis aligned with the road to the North Pole. I inferred 

that Dan has constructed a Cartesian-like coordinated system of measurements. Based on 

the way Dan did not explicitly address the rescuer’s initial orientation or perspective in 

his instructions (Excerpt 8.3), I inferred that Dan mainly focused on his ego-oriented 

perspective (Taylor & Tversky, 1996) taken from above the ground and superimposed his 

rectangular frame of reference onto the two-dimensional plane, like Morgan did in the 

North Pole Task.  

I also compared Dan’s locating activity with Kaylee’s in the North Pole Task. 

Although both students constructed a Cartesian-like system of measurements, I 

interpreted Kaylee’s actions to be operational and anticipatory in that the measurements 

were coordinated from the beginning without a trial-and-error process and in that she was 

aware that this coordination along with the corresponding measurements would ensure 

that the rescue team would find the missing person. On the other hand, Dan’s activities 

seemed spontaneous in that they occurred as he was verbalizing instructions and carrying 

out activities in the moment. 

I also hypothesized that Craig and Dan together coordinated angle measure and 

distance using an angular frame of reference with its origin anchored at point P and initial 

ray aligned with the line perpendicular to the road to the North Pole. I inferred that Craig 

and Dan has constructed a system of measurements compatible with a polar coordinate 

system. However, they did not explicitly address the initial ray that constituted the 

angular frame of reference like Kaylee did in the North Pole Task. 

Finally, in the North Pole Task, similar to Kaylee and Morgan, both Craig and 

Dan demonstrated some commitment to a unit of measure and scale of measure. Both 
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students explicitly used inches or miles or degrees as units of measure in their measuring 

activities and descriptions. In Excerpt 8.3, Dan said, “one and a half inches, which is 

miles for me” and Craig asked whether Dan’s map and his map were of the same size. As 

such, when locating points in the two-dimensional plane, both students seemed to be 

aware of the importance of the scale of measurements.  

Fish Tank Task: Craig and Dan Locate a Point in Three-Dimensional Space 

Cubic tank: Locating the four fish 

Starting on January 30, I explored Craig and Dan’s ways of locating points in 

three-dimensional spaces through the Fish Tank Task. In the first teaching episode 

involving the Fish Tank Task on January 30, I asked both students to locate the four fish 

in the cubic fish tank on the table. Dan claimed “it’s impossible” and Craig commented, 

“[T]his blows my mind. I’ve never done this before.” Both students seemed perplexed by 

the three-dimensional situation and the task appeared to be novel to both students. It took 

some encouragement until the students started working on the task. In the following I will 

describe Dan’s and Crag’s respective locating activities in the cubic fish tank.   

Dan locates the four fish in the cubic tank. 

Dan started first, making diagrams of two sides of the fish tank and located the 

four fish in the tank based on where he saw them, as shown in Figure 8.13. I found Dan’s 

locating activity similar to Morgan’s in that he located the fish making visual estimations, 

without an observable measurement process.  
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Figure 8.13. Dan’s initial diagrams of the cubic fish tank and fish. 

Here I note that these visual estimations were not mindless estimations in that the 

locations were not randomly marked on the paper. I acknowledge that there must have 

been some consideration of topological features such as order and proximity of the fish in 

the tank and perhaps some considerations of gross quantities (e.g., the distance between 

the orange and pink fish is greater than the distance between the purple and green fish). 

However, when I claim that there was no observable measuring activity, this means that I 

was not able to observe a physical measuring activity or verbal explanation involving 

commitment to a unit of measure (e.g., using a ruler or using fingers to mark a certain 

distance and iterating it along other line segments).  

I also found Dan’s locating activity similar to Kaylee’s in that he chose to make 

his diagram based on the two faces where he could best see the fish. Dan also mentioned, 

“there’s more than one angle you can look at it [the tank],” which suggested that he was 

aware of the multiple perspectives one can take in looking at the tank. However, unlike 

Kaylee who used the multiple perspectives to coordinate measurements in locating the 

fish, Dan seemed to find the multiple perspectives a confining element in solving the task.  
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In the next teaching episode on February 2, Dan worked alone on the cubic fish 

tank. To encourage more explicit measuring activities, I asked Dan to describe the 

locations of each fish to another person in another room, who is trying to make a replica 

of the fish tank. I prepared a model of a frame of the other person’s tank made of wired 

straws. This frame was used for me or the student to enact students’ instructions (see 

Figure 8.14 for an example). 

 

Figure 8.14. Teacher-researcher enacting Dan’s instructions using the cubic straw frame. 

At the beginning, after looking at the tank for a while, Dan said that he did not 

know what to do other than yell across the room and tell the person to “put the purple one 

[fish] in the corner.” As such, Dan seemed to consistently rely on the perceptual imagery 

of the tank. Taking the other person’s role, I placed my finger within the wired frame at a 

random corner of the fish tank hoping to demonstrate that Dan’s instruction was 

insufficient in locating the purple fish. I also asked Dan to demonstrate what the other 

person would do using the wired frame if he was told to place the purple fish in the 

corner. After my push for more precision, Dan decided to measure how deep each fish 

was from the top of the water, as shown in Figure 8.15.  
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Figure 8.15. Dan measured the distance between the fish and the water surface. 

After Dan measured the distance from the water surface to each fish (we called it 

the depth of each fish), I asked him if that was all the information the other person needed 

in order to make the replica of the fish tank. Dan acknowledged that it was not enough 

but did not say much more.  

Recalling that Dan mentioned the idea of longitude/latitude in the North Pole 

Task I asked him whether he could use a similar idea in the cubic tank case. I asked this 

to see if he could assimilate the three-dimensional situation to one where he could use his 

coordination of horizontal and vertical distances. Dan responded, “The only way I know 

to use longitude and latitude is with the map. But this is three-dimensional. Latitude and 

longitude [inaudible]. It’s like bird’s eye view. Or at least in my mind for using latitude 

and longitude.” As such, the idea of longitude/latitude lines seemed to be restricted to 

two-dimensional situations. From his comment, I hypothesized that Dan did not view the 

three-dimensional cube as a collection of infinitely many two-dimensional squares (cross 

sections) stacked vertically on top of each other, with each square cross section consisting 

of infinitely many points that share the same depth. 

To test this hypothesis, I asked him to show me, in the wired straw frame, all the 

possible locations for a fish, given it was 2 inches from the top of the water. Dan showed 
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me two points, one in the center of the tank and one in the corner of the tank that were 

each 2 inches from the imaginary water surface but he did not seem to realize that all 

possible points that are 2 inches below the water surface would form a square-shaped 

cross section plane.  

After we established that the person making the replica would need to know more 

than just the depth of the fish, Dan explained that the person should also know how far 

away the fish were from each other. When I asked him to locate the purple fish using that 

idea, Dan claimed that he would find how far from a corner (a point on one of the side 

edges of the tank that seemed closest to the purple fish) the fish was. For example, Dan 

explained that the purple fish was 1 inch straight from the corner of the tank. As such, 

Dan shifted from using each fish as reference to using elements of the tank container 

(corner) as references to locate the fish.  

Dan’s comment that the purple fish was 1 inch straight from the corner of the tank 

reminded me of Morgan’s notion of “going straight” demonstrated in her North Pole 

Task and cylindrical Fish Tank Task. In the North Pole Task, I hypothesized that Dan had 

also considered a “going straight” motion from point P to point A, as demonstrated in 

Figures 8.5 (b) and 8.6. However, Dan later broke down the motion into horizontal and 

vertical movements along his rectangular frame of reference, as demonstrated in Figures 

8.8 and 8.9. Therefore, I decided to push Dan to further to explain what it means to go 

straight, intending it to potentially bring forth his measuring activities involving 

horizontal and vertical distances in the plane.  

So, I asked Dan how I was supposed to go straight if I were making the replica 

using the wired straw frame. After laying the ruler across the top of the fish tank 
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diagonally, Dan said I should lay my ruler from the corner to the corner diagonal from it 

across the top of the tank and then measure 1 inch out from the reference corner. In order 

to explore whether he would use a similar method for the other fish, I picked two other 

fish further away from the corner he used as a reference and asked how he would locate 

those two fish. This time, he measured how far into the tank the fish were from the face 

they were most visible and told me he would find how far apart the two fish were. As 

such, Dan started to coordinate more measurements in locating the fish but the references 

he used were different for each fish.  

The time allowed for the teaching episode on February 2 ended so we revisited 

the cubic tank again in the following teaching episode on February 6. At the beginning of 

that episode, I asked Dan to explain to Craig what he did to locate the fish. Dan recalled 

his previous locating activities one by one: 

First I just looked at them to see where they were. And I said the first one, you 

can put it anywhere in the corner but facing this way [sweeping his hand 

diagonally across the cubic tank] and it was like two…Let me start over [sits back 

in chair looking up and taps on the table three times]. Okay, first, I measured to 

see how far each one was from the top. And then after I got that, I started to see 

how far they were from the sides of the tank… Now I get when you [looking at 

Craig] were saying. It’s like the latitude and longitude lines, cuz from the top and 

then the sides come to one point. 

In his comment above, Dan walked through his previous locating activities, 

starting from making visual estimations to measuring the distances such as the depth of 

each fish and the distances from the sides of the tank. Dan also addressed the idea of 

longitude/latitude without my prompting. In his explanation of the longitude/latitude lines, 

Dan seemed to have become conscious of the mechanism involved in coordinating 

latitude and longitude lines from his comment “from the top and then the sides come to 

one point.”  
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While Craig thought about how he wanted to locate the fish, I asked Dan to 

develop full instructions for the person making the replica. So, Dan measured the depth 

of each fish as he did in the previous teaching episode and then measured the distance 

from one fish to the closest face (2 inches) and wrote it down next to the depth of that 

fish. After writing those measurements on his paper, he paused and sat looking at the tank 

for a while. Dan looked at me to explain his method: 

I just noticed something. In my way, you will have to measure the thing from all 

four sides. Like, this side, this side, this side, and that side [sequentially pointing 

to all four side faces of the cubic tank]. Because, this has one measurement from 

this face [points to the 2 inches he just measured] doesn’t mean anything. Because 

these faces aren’t labeled so how would he know which face? He would need to 

know all of them. 

To summarize, Dan recognized the location of the fish as consisting of “from the 

top and then the sides come to one point.” So, he measured the distance from the surface 

of the water to each fish and then decided to measure how far it took to come to the point 

from the sides of the tank. At first Dan selected the face that was closest to the fish but 

later claimed that he would have to measure the distances from all four faces surrounding 

the side of the tank. The reason he chose to measure the distance from all four sides was 

because there did not seem to be a way to distinguish the sides from each other.  

Based on his comment about longitude/latitude lines and his measuring activities, 

I hypothesized that Dan used rectangular frames of reference to guide his measuring of 

horizontal and vertical distances along the faces of the tank. However, instead of fixing 

one face and anchoring one set of horizontal/vertical axes onto one adjacent set of edges 

like Kaylee and Morgan did, I conjectured that Dan anchored his rectangular frame of 

reference onto all four sets of adjacent edges as I modeled in Figure 8.16. I conjectured 

that Dan’s measurements were sequentially coordinated but not multiplicatively 
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combined due to the lack of the logical multiplication of measurements (Piaget et al., 

1960). 

 
                (a)                                 (b)                              (c)                                (d) 

Figure 8.16. A model of a top view of the fish tank and distances from each face to a fish 

in the water. 

Nonetheless, Over the course of three teaching episodes, Dan’s locating activities 

changed from making visual estimations and plotting them on two different side-view 

representations of the tank to developing a more systematic way of coordinating 

measurements to locate the fish. Instead of locating the fish in relation to another as he 

initially said he would in the previous episode, Dan located the fish using the faces of the 

tank as spatial references, along with the surface of the water. Also, he shifted from using 

different faces for each fish to using the same set of faces (all four sides of the tank) for 

all four fish.  

Craig locates the four fish in the cubic tank. 

On January 30, the first day of the Fish Tank Task, it took a while for Craig to 

start the task. After he sat watching Dan produce his diagrams, Craig finally drew a 

sketch of one side of the tank and located all four fish on that side, as shown in Figure 

8.17. Similar to Morgan’s approach, Craig located all fish from one perspective of the 

tank, in his case, his side view of the tank. Similar to both Morgan and Dan, Craig also 

located the fish using visual estimations, without any observable measuring activities.  
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Figure 8.17. Craig’s initial sketch of the fish tank. 

 

Figure 8.18. Craig added new illustrations to his Face 4 sketch. 

After locating the fish in the tank like in Figure 8.17, Craig talked about the idea 

of longitude and latitude to describe the locations of the fish. To elaborate, Craig drew a 

circle below his sketch in Figure 8.17, referring to it as “the world” and drew in 

horizontal line segments within the circle, which he referred to as longitude (see Figure 

8.18). Craig said, “there is the world and then there is longitude, which I think are this 
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way, and then latitude, which go up and down.” Although he mentioned both longitude 

and latitude, he did not sketch what he referred to as latitude in his circle. 

     

Figure 8.19. Craig demonstrates how he would use longitude and latitude lines to locate 

an object. 

Using his diagram of the world and longitude lines, Craig explained, “The reason 

why you have longitude and latitude is so you can be very precise and do like this [moves 

two index fingers from outside of the circle into a location within the circle, as 

demonstrated in Figure 8.19] or this [repeats same motion to another point in the circle], 

and find one specific point.” Craig’s explanation seemed compatible with Dan’s 

explanation, “from the top and then the sides come to one point.” From Craig’s 

explanation, I inferred that he also constructed a rectangular frame of reference consisting 

of horizontal and vertical lines to gauge the location of a point along two spatial 

dimensions. However, where these horizontal and vertical lines were anchored onto was 

not yet specified.  

Next, Craig said, “you could be looking for an object that has actual mass” and 

that, “you would need a lot more lines of longitude” in this case. Craig explained “if there 

were enough lines of longitude, everything would be on at least one line of longitude.” 

As such, Craig seemed to have established a goal of locating objects with mass within 
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three-dimensional space and in order to do so, he needed an abundance of longitude lines 

so that the objects would be on at least one of those longitude lines. I inferred this to 

mean that Craig could visualize superimposing vertical and horizontal lines onto the 

circle representing the world, until the lines were dense enough to account for every 

object within that space.  

Craig then took this idea of longitude/latitude to the fish tank diagram in Figure 

8.17 saying, “So, to find the sea creatures, you would need something like this, labeled 

with many lines of longitude or in this case, it will be latitude.” Craig then added tick 

marks at the bottom edge of the fish tank in his sketch (see Figure 8.18), referring to them 

as the latitude lines. Craig explained that the tick marks were twelve latitude lines and 

that even though the fish tank was a three-dimensional space, if you look from a 

particular angle and “go to latitude line two, somewhere in that latitude, there is a thing,” 

with thing referring to a fish.  

From his explanation, I inferred two things. First, I inferred that Craig was aware 

of multiple perspectives resulting in different images of the fish tank from his comment 

that you had to look from a particular angle. At this point in the teaching session, Dan 

pointed out to Craig that there were multiple angles from which one could see the fish 

tank. To address Dan’s comment, Craig labeled his diagram as Face 4 and said that his 

sketch would be made from one particular perspective, looking at Face 4. Second, I 

noticed that Craig only accounted for latitude lines and was aware that “somewhere in 

that latitude, there is a thing,” rather than specifying where in that latitude the fish was in. 

Craig seemed somewhat constrained by the situation being three-dimensional, inferring 

from his comment, “you’re looking at a three-D space, so, I don’t think I completely 
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comprehend how longitude and latitude works so I don’t think longitude will be able to 

calculate one thing.” I interpreted these comments to suggest that Craig did not view the 

latitude lines as intersections of planes perpendicular to Face 4 but rather as lines 

superimposed onto the two-dimensional Face 4. So, his latitude/longitude lines were 

contrived to the two-dimensional case, similar to Dan.  

By the way Craig added latitude lines after visually estimating the locations of the 

fish onto his sketch, I inferred that Craig superimposed horizontal/vertical lines after 

locating the fish as a way to communicate the locations like Morgan did in the cubic fish 

tank. In other words, the locating of the fish was made using visual estimations, not using 

the longitude/latitude lines. Although similar, there were some differences I observed 

between Morgan’s and Craig’s grids. In Morgan’s case, she used the grid to find which 

square section each fish were contained within, whereas Craig described the location of 

each fish in terms of the intersection of some latitude or some longitude line with the fish. 

Another difference between Morgan and Craig was in the way Craig only considered 

either the latitude or longitude lines but not both simultaneously. Despite his explanation 

of using longitude/latitude lines as demonstrated in Figure 8.19, Craig did not mention 

the latitude in describing the location of each fish in the fish tank but only commented 

that somewhere in the latitude line there was going to be a fish.  

On February 6, the next episode in which Craig was present, I asked both students 

to give instructions for another person in a different room who wanted to make a replica 

of the fish tank. Dan had explained how he located the fish in the previous episode but 

Craig wanted to develop his own instructions different from Dan. Craig approached the 

task differently than he did in his first session. To elaborate, Craig first noticed the visible 
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layers of the gelatin in the tank5 and considered each layer (approximately 1 inch apart) 

as a unit for measuring the depth of each fish. Then, Craig noticed the sticker label on 

one of the side faces of the tank6. Using the sticker face as a reference, Craig consistently 

measured the distance from the sticker face into the tank and the distance from the left 

edge towards the right edge of the sticker face.  

For example, in order to locate the purple fish, Craig first identified that the fish 

was in the fourth layer; then, he measured that the purple fish was four inches from the 

sticker face into the tank (Figure 8.20 (a)) and one and one-fourths of an inch from left to 

right of the sticker face (Figure 8.20 (b)). He referred to these measurements as the depth, 

length, and width, respectively. Next, Craig wrote instructions for the other person in the 

other room, as shown in Figure 8.21. 

 

                                                 

 

 

 

5 When making the fish tanks, I poured gelatin into the tank in succession with a 

solidifying process in between layers to submerge the fish at different locations in the 

tank. Although I used the same mixture of food coloring, water, and gelatin for each 

batch, they formed layers visible from the side of the tanks. Because I made the batches 

of same amount, the height of each layer was constant. This was a feature that I did not 

intend for the fish tanks to have but one that the students realized in their activity in the 

task. 
6 After buying the glass tanks from an art supply store, I was not aware of the sticker 

labels on the tanks and did not find them to be problematic. However, this provided an 

interesting variation to the task that I did not anticipate. 
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                                                    (a) width                                                         (b) legth                    

Figure 8.20. Craig’s measuring activities in locating the purple fish. 

 

Figure 8.21. Craig’s written instructions for locating the purple fish in the cubic fish tank. 

I inferred these new measuring activities to indicate that Craig refined his earlier 

locating activity using visual estimations and partial longitude/latitude lines. When 

finding the measurements which he referred to as the length and the width, Craig often 

stood up to look down onto the tank to measure the distances he wanted to measure. As 

such, Craig frequently shifted his perspective back and forth from the top of the tank to 

the side of the tank. Craig repeated this activity of first identifying the gelatin layer of the 

fish and then finding the distance from the sticker face into the tank and the distance from 

left to right along the sticker face consistently for all four fish in the tank. As such, Craig 

used consistent spatial references (bottom of tank and sticker face) for locating all four 

fish.  

Although Craig had already listened to Dan’s explanation of how he located the 

fish, Craig created a system of coordinated measurements different from Dan’s. Craig’s 

Sticker face 
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system was different from Dan’s in that he fixed the sticker face as a reference and 

measured horizontal/vertical distances in relation to that face whereas Dan measured 

distances from all four sides. Craig’s locating activity was similar to Morgan’s in that he 

coordinated the top view with the side view perspective.  

From Craig’s locating activities, I inferred that Craig has partitioned the cubic 

tank horizontally into square cross-sections, cued by the layers in the gelatin, taking his 

side view perspective of the tank (Figure 8.22 (a)). His partitioning activity resembled 

Morgan’s in the cylindrical fish tank. Although he relied on the visible gelatin layers, he 

used these layers as a way of measuring the depth of each fish. Next, Craig took each 

two-dimensional square layer and superimposed a set of horizontal and vertical lines onto 

it re-enacting his longitude and latitude concept, taking his top view perspective (Figure 

8.22 (b)).  

 

                                         (a)              (b) 

Figure 8.22. Craig’s rectangular frame of reference imposed onto the second face of the 

tank. 

Further, Craig superimposed the horizontal and vertical lines such that a set of 

perpendicular lines lined up with the edges of the square which corresponded to that of 

the sticker face and the one adjacent to it on the left (modeled as DE and DG in Figure 
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8.22 (a)). Using the set of perpendicular lines and point of intersection as his frame of 

reference, Craig constructed two sets of horizontal and vertical lines that would each pass 

through the fish in the tank (demonstrated by the blue dashed line segments and arrows in 

Figure 8.22 (b)). As a result of coordinating rectangular frames of reference, Craig was 

able to coordinate the length and the width of the position of each fish within the 

particular depth of the water.  

Curious to know if he would consistently use these frames of reference and the 

resulting system of measurements to describe movements of fish in the tank and whether 

his frames of reference coordinating activity was enacted sequentially or simultaneously, 

I asked Craig to describe the motion of one fish to another. Craig first identified the 

layers each fish was in, thus finding the amount of vertical movement along the “depth” 

dimension that was needed. Then, once the fish were in the same layer, he explained that 

one fish would swim straight, diagonally, to the other. I interpreted his description to 

entail an awareness of the parallel square sections within the tank and translating the 

lower one containing one fish to the higher one containing the other fish, as I modeled in 

Figure 8.23.  

 

Figure 8.23. A model of Craig’s explanation of one fish swimming to another in the cubic 

fish tank. 
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As demonstrated in Figure 8.23, once the fish were on the same depth, all the fish 

had to do was swim straight to the other fish. Craig’s description of one fish swimming to 

another was strikingly similar to Morgan’s description of Fish 1 swimming to Fish 2 in 

the cylindrical fish tank. Similar to Morgan, I inferred Craig’s coordinate system to 

indicate a sequential coordination of two-dimensional rectangular frames of reference and 

measurements. In other words, once the depth was accounted for, it was “set aside” and 

not multiplicatively combined with the remaining length and width measurements.  

Craig’s locating activities in the cubic fish tank were similar to Kaylee’s activities 

in that he consistently accounted for three measurements along each spatial dimension. 

Although similar to Kaylee’s locating activities, I consider Craig’s coordination of 

measurements different from Kaylee’s. In Kaylee’s case, she used her system of 

coordinated measurements and measured the distance between the two fish along the 

length, width, and height dimensions she identified earlier. Although she used different 

sets of faces for the fish due to the lack of visibility through the gelatin, in Kaylee’s case, 

the length and height measurements were inserted along the width measurements. 

Therefore, when demonstrating the movement from one fish to another, she considered 

the change in each measurement between the two fish. Therefore, I consider Kaylee’s 

coordinate system to be a multiplicative structure of three-dimensional rectangular frames 

of reference.  

By the way Craig was able to point to one fish on a particular layer of the water 

and relate the location of that fish in relation to one side face of the tank, I inferred that he 

has coordinated the two perspectives multiplicatively (one taken from the side view and 

one taken from the top view) to locate the fish. However, I conjectured that Craig’s 
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coordination of the two perspectives was sequential, like in Morgan’s case. I conjectured 

the logical multiplication of measurements along the two dimensions in the first 

representation (top view grid) was not preserved and inserted into the third dimension. 

Therefore, I hypothesized that Craig was yet to construct a FR coordinating scheme but 

could enact the action of coordinating frames of reference sequentially in activity. This 

hypothesis was consistent with my previous conjecture that the FR coordinating scheme 

required mental operations essential for coordinating three levels of units and Craig’s 

initial interview (reasoning as if he could operate with three levels of units in activity).   

Summary of the Cubic Fish Tank 

Over time in the cubic fish tank task, I observed shifts in both student’s locating 

activities. Both started with making visual estimations of the locations of the fish in the 

tank but later coordinated measurements of horizontal/vertical distances to locate each 

fish.  

Dan shifted from using fish as reference to the surface of the water and sides of 

the tank as spatial references. In the end, he developed a system of measurements 

consisting of the distance from the top of the water and the distance from all four slides to 

each fish. In my analysis, I conjectured that Dan did not view the three-dimensional cube 

as a collection of infinitely many two-dimensional squares (cross sections). Further, I 

hypothesized that Dan used rectangular frames of reference to guide his measuring of 

horizontal and vertical distances along the faces of the tank. However, instead of fixing 

one face and anchoring one set of horizontal/vertical axes onto one adjacent set of edges 

like Kaylee and Morgan did, I conjectured that Dan anchored his rectangular frame of 

reference onto all four sets of adjacent edges as I modeled in Figure 8.16. I conjectured 
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that Dan’s measurements were sequentially coordinated but not multiplicatively 

combined due to the lack of the logical multiplication of measurements (Piaget et al, 

1960). 

Craig shifted from using his longitude/latitude idea to developing a system of 

measurements consisting of the distance from the sticker face into the tank and the 

distance from the left edge towards the right edge of the sticker face. He referred to these 

measurements as the depth/height, length, and width of each fish, respectively. In finding 

these measurements, Craig frequently shifted his perspective back and forth from the top 

of the tank to the side of the tank. When it came to describing the motion of one fish to 

another, Craig first identified the amount of vertical movement along the “depth” 

dimension that was needed. Then, once the fish were in the same layer, he explained that 

one fish would swim straight to the other (modeled in Figure 8.23). Similar to Morgan, I 

inferred Craig’s coordinate system to involve a sequential coordination of two-

dimensional rectangular frames of reference and measurements.  

By the way Craig was able to point to one fish on a particular layer of the water 

and relate the location of that fish in relation to one side face of the tank, I inferred that he 

has coordinated the two perspectives multiplicatively (one taken from the side view and 

one taken from the top view) to locate the fish. However, I conjectured that Craig’s 

coordination of the two perspectives was sequential, like in Morgan’s case. I conjectured 

the logical multiplication of measurements along the two dimensions in the first 

representation (top view grid) was not preserved and inserted into the third dimension. 

Therefore, I hypothesized that Craig was yet to construct a FR coordinating scheme but 

could enact the action of coordinating frames of reference sequentially in activity. This 
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hypothesis was consistent with my previous conjecture that the FR coordinating scheme 

required mental operations essential for coordinating three levels of units and Craig’s 

initial interview (reasoning as if he could operate with three levels of units in activity).   

Cylindrical tank: Locating the four fish 

On February 20 of 2015 I presented the cylindrical fish tank and asked both 

students to describe the location of the four fish in the tank to another person who is 

making a replica of the tank. The cylindrical feature of the tank seemed to perturb both 

students. Craig mentioned how he noticed two patterns in our teaching sessions. First, he 

commented “the pattern that I noticed with these meeting sessions is that you’re taking a 

most understandable approach and trying to learn how we adapt, or our ability to adapt 

[to other situations].” The second pattern Craig commented on was how they found a way 

to solve the problem with faces and that I have taken away the faces. Dan said that he did 

not know how he would proceed because there was nothing on the tank that he could 

point at. I took this as an indication that Dan found this new situation challenging because 

there was not a salient spatial reference, like the faces of the cubic tank, he could use in 

locating the fish. As such, the shape of the cylindrical tank seemed to bring new 

challenges to the task for both students.  

Craig asked me if I expected them to apply the same idea as in the cubic tank or if 

I wanted them to come up with an entirely different approach. I explained it was up to 

them and what they wanted to do. Dan responded to Craig’s question, saying that they 

could not use the longitude and latitude lines for the cylindrical tank. Dan noted they 

could find the vertical layers and the distance from the glass (exterior sides of the tank) 
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for each fish but that the distance from the glass was not sufficient because the fish could 

be in many different locations within the same distance from the glass.  

In order to encourage both students to proceed in solving the task, I revisited 

Dan’s earlier comment about there being nothing they could use on the tank. In the 

previous cubic fish tank, there was a sticker on one of the faces that the students used as a 

spatial reference but the cylindrical fish tank did not have that sticker. Bringing up the 

sticker on the cubic fish tank, I asked them if adding an imaginary sticker on the 

cylindrical tank might help. Craig replied, “only if they were exactly the same because 

we’re dealing with, probably we’re dealing with coordinates.” So, I asked the students to 

draw a “sticker” on the side of the tank and to imagine that the other person making the 

replica had the same sticker in the same location. I was hoping that this suggestion to use 

something similar to what they did in the past would help them move forward. Using a 

dry-erase marker, Craig drew a rectangle (sticker) on the side of the tank close to the rim 

(see Figure 8.24).  

Craig locates the four fish in the cylindrical tank. 

After drawing the “sticker,” Craig started to formulate and experiment several 

ideas while Dan took a more observant role. First, Craig suggested using the rectangle he 

just drew onto the side of the tank as a viewing window and plotting the fish in that 

rectangle where he could see them. I took this to indicate that Craig thought of projecting 

the fish in the fish tank onto the two-dimensional rectangle. However, soon after, Craig 

explained that this method would not account for how light might bend in gelatin and he 

was not sure how to account for the fish very low in the tank.  
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Figure 8.24. Craig measured the distance from the sticker to the fish along the top of the 

cylindrical fish tank. 

Craig then decided to place the ruler across the top of the tank and measure the 

distance from the top right corner of the “sticker” to the orange fish (see Figure 8.24). He 

measured 2 inches but said that this was just an idea that was incomplete and that he did 

not account for “the angle of the ruler.” To further explore Craig’s reasoning about the 

distance of 2 inches, I asked him to show me all the possible locations of points if he 

gave the other person the 2 inches as instructions. After putting the ruler on the top of the 

tank, Craig said it was “basically an arc,” making an arc with the tip of his finger as he 

rotated the ruler along the top of the tank.   

Craig then put a protractor on the ruler going across the top of the tank so that the 

center of the protractor was at zero of the ruler. I asked him how he placed the protractor 

and Craig explained the protractor was in line with the sticker. I interpreted this to mean 

that the plastic bar going across the middle of the circular protractor was parallel to the 

horizontal side of the rectangular “sticker” (see Figure 8.25 as an example of the 

positioning of the protractor). I viewed the way Craig placed the protractor on the top of 

the cylindrical tank similar to the way he placed the protractor on the map in the North 

“Sticker” 
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Pole Task (see Figure 8.12). Different from the North Pole Task, in this case the endpoint 

of the ruler was not placed at the center of the protractor because he placed the ruler at 

the top right corner of the sticker whereas the center of the protractor was aligned with 

the sticker centered at the midpoint of the sticker. I did not consider this as a necessary 

error but a mindless misuse of the tools because it was apparent Craig wanted to measure 

“the angle of the ruler.” Craig read off the angle measure where the ruler and the 

protractor intersected and said that if he told the other person to go 65 degrees and 2 

inches, then he could locate the orange fish. As such, Craig coordinated angle measure 

and distance to locate the orange fish along the top view of the tank.  

In the next teaching episode on February 23, I asked both students to continue 

their work with the cylindrical fish tank. Craig immediately said he remembered what he 

did in the previous session and repeated his activities. This time, he wrote instructions for 

the other person making the replica referring to one of the fish as the “red creature” as 

shown in Figure 8.25.  

 

Figure 8.25. Craig describes the location of the “red creature” 

As demonstrated in Figure 8.25, looking down onto the tank from the top view, 

Craig fixed the end of his ruler (in the figure he used a compass to demonstrate how he 

used his ruler) at the top right corner of the rectangular sticker so that the ruler passed 

above the fish he was intending to locate. After reading off the distance from the corner 
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of the sticker, 2 inches, Craig measured the angle in which the ruler was placed. In order 

to do so, Craig placed the protractor such that the horizontal diameter of the circular 

protractor was parallel to the horizontal edge of the sticker. Then, Craig read the number 

on the protractor where it intersected with the ruler, 95 degrees. Finally, he identified in 

which vertical layer the fish was in and concluded his instructions.   

 

Figure 8.26. A model of Craig’s frames of reference and system of measurements he 

coordinated in order to locate the four fish in the cylindrical tank. 

As I modeled in Figure 8.26, I hypothesized that Craig located the fish in the tank 

by measuring a radial distance r from the top right corner of the sticker along the rim of 

the tank (point R), angle of rotation ∠𝑅𝑂𝑃, and height (𝑃𝑃′) to each fish (P) using the 

sticker, side of the tank, and bottom of the tank as references. From the way Craig first 

located the fish along his top view (circle) of the tank and then associated that with the 

vertical layer of the fish, I inferred that Craig viewed the cylindrical tank as a collection 

of infinitely many circles and each fish were contained in one of these circle layers, 

similar to the cubic fish tank. First taking the top view of the fish tank, he located the fish 

within a circle using angle measure and distance like he did in the North Pole Task. Then, 

r
R

P'

P

O
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Craig found the layer in which this circle was located along the side view of the tank. 

Once Craig identified which layer the fish was contained in, locating the fish entailed 

locating the fish within the two-dimensional cross section (circle) in which he utilized a 

polar coordinate system.  

Dan locates the four fish in the cylindrical tank. 

Because Dan mainly observed Craig’s activities I asked Dan if he could revisit his 

initial idea of the layer and distance from the exterior of the tank several times. During 

our first session with the cylindrical tank on February 20 Dan mentioned “radius,” which 

could have meant that Dan had imagined a radial distance from the center of the tank. 

However, he was not sure how to proceed with that idea. Towards the beginning of the 

next session on February 23, Dan drew the “sticker” using a board marker (the previous 

“sticker” had gotten erased during transportation) and turned the tank so the sticker was 

facing Craig. Dan recalled that the sticker was used like a “landmark” because there were 

no other features of the tank they could use. Dan also recalled that Craig measured 2 

inches out into the tank from the sticker and that they found the vertical layer in which 

the fish was contained in. Although Dan recalled Craig’s ideas we discussed in the 

previous episode, Dan expressed that he did not understand what Craig did the previous 

day. This to me indicated that Dan did not fully comprehend what Craig did with the 

protractor and why Craig measured an angle measure.  

Craig then took the lead in producing and demonstrating his instructions (as 

shown in Figure 8.25) while Dan observed Craig’s activities. When I asked Craig to 

explain to us why he used the protractor, Craig explained “to get the angle which you 

need to go outward.” While Craig was occupied finding the 2 inches and angle measure, I 
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asked Dan if he could help Craig. Dan measured the vertical distance between the surface 

of the water and the fish, which he concluded 2 inches. After Craig had finished writing 

the instructions as shown in Figure 8.25, I asked Craig to relay his instructions to Dan 

while Dan carried them out on the actual tank. As shown in Figure 8.27, Dan placed the 

center of the protractor at the 2-inch mark on the ruler instead of at the rim of the tank 

like Craig did. Later when I asked Dan how he placed the protractor on the tank, he 

explained that he placed it parallel to the sticker. However, Dan did not adjust the 

orientation of the ruler to account for the 95 degrees.  

 

Figure 8.27. Dan enacts Craig’s instructions using the ruler and protractor. 

From these observations, I inferred that Dan was yet to comprehend Craig’s 

system of measurements to locate each fish in the tank. Dan was aware that finding the 

vertical depth and the horizontal distance from the glass container could work but that 

just one distance measurement from the glass container was insufficient. Therefore, he 

had an awareness of the need for an additional measurement other than the vertical depth 

and horizontal distance in order to locate the fish. It was the third measurement that he 

was yet to establish. 
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Summary of the Cylindrical Fish Tank 

In the cubic fish tank, both Craig and Dan coordinated horizontal and vertical 

distances along the faces and edges of the fish tank in order to locate the four fish. 

However, in the cylindrical tank case, other than the vertical distance, in other words, the 

depth of each fish, none of the students coordinated distances induced from rectangular 

frames of reference. In Kaylee and Morgan’s case, they both used the same rectangular 

frames of reference, which they superimposed onto the cylindrical tank. However, in 

Craig and Dan’s case, the students said that they could not use the same approach due to 

the cylindrical shape of the tank.  

Instead of using exterior faces of the tank as spatial references, Craig and Dan 

used an imaginary “sticker” as a landmark to locate the fish in the tank. Craig devised a 

method of measuring the radial distance from the right top corner of the rectangular 

sticker on the tank, the angle measure with 0 placed at the top of the sticker, and the 

vertical layer in which each fish were embedded in. Craig used his method consistently 

throughout both teaching episodes. First taking the top view of the fish tank, he located 

the fish within a circle using angle measure and distance like he did in the North Pole 

Task. Then, Craig found the layer in which this circle was located along the side view of 

the tank. Once Craig identified which layer the fish was contained in, locating the fish 

entailed locating the fish within the two-dimensional cross section (circle) in which he 

utilized a polar coordinate system.  

On the other hand, Dan explained that he could think of finding the vertical layer 

and the distance from the exterior of the tank but was aware that finding one length 
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measure to express the distance from the exterior of the tank was insufficient in locating 

the fish.  

Summary of Chapter Eight 

In this chapter, I presented my analysis of Craig’s and Dan’s constructive 

activities in the Locating Tasks (School Map Task, North Pole Task, and Fish Tank Task) 

in which I asked both students to locate a point or describe the motion of one point in 

two- or three-dimensional perceptual space. Through my observations of the students’ 

locating activities, I analyzed how Craig and Dan constructed frames of reference and 

coordinated measurements using those frames of reference to represent perceptual space. 

Craig’s Coordinate Systems 

School Map Task. 

In the School Map Task Craig imagined himself hovering above the school 

building, looking down onto the first floor of the school building, located the rooms, and 

then added the hallways connecting the rooms. It seemed as though the locations of the 

rooms emerged all at once, in comparison to Dan’s mapping activities. From his activities 

in this task, I inferred that Craig had used a single frame of reference anchored at the 

center of the first floor, taken from his above-the-ground perspective, when re-presenting 

the different rooms on the first floor. Earlier in the episode, Craig also demonstrated 

usage of a perspective embedded within the space. Therefore, I hypothesized that Craig 

used frames of reference induced from taking both a perspective exterior to the space and 

a perspective embedded within the space. When taking his perspective exterior to the 

space, he used a single frame of reference fixed above the ground at the center of the first 

floor and re-presented the rooms in co-occurrence. When taking his perspective 
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embedded within the space, his frames of reference were sequentially anchored to 

different places as he mentally traversed the first floor. 

North Pole Task. 

Craig initially said that he was thinking about an angle but that he did not know 

what to do with it. With Dan’s help, Craig coordinated angle measure and distance 

together using an angular frame of reference with its origin anchored at point P and initial 

ray aligned with the line perpendicular to the road to the North Pole. From their 

collaborative activities in the North Pole Tasks, I inferred that Craig and Dan has 

constructed a system of measurements compatible to a polar coordinate system.  

Fish Tank Task. 

Over time in the cubic fish tank task, I observed shifts in Craig’s locating 

activities. He started with making visual estimations of the locations of the fish in the 

tank but later coordinated measurements of horizontal/vertical distances to locate each 

fish. Craig shifted from using his longitude/latitude idea to developing a system of 

measurements consisting of the distance from the sticker face into the tank and the 

distance from the left edge towards the right edge of the sticker face. He referred to these 

measurements as the depth/height, length, and width of each fish, respectively. In finding 

these measurements, Craig frequently shifted his perspective back and forth from the top 

of the tank to the side of the tank. When it came to describing the motion of one fish to 

another, Craig first identified the amount of vertical movement along the “depth” 

dimension that was needed. Then, once the fish were in the same layer, he explained that 

one fish would swim straight to the other. In the cylindrical fish tank, Craig used an 

imaginary “sticker” as a landmark to locate the fish in the cylindrical tank, instead of 
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using exterior faces of the tank as spatial references. First taking the top view of the fish 

tank, he located the fish within a circle using angle measure and distance like he did in 

the North Pole Task. Then, Craig found the layer in which this circle was located along 

the side view of the tank.  

By the way Craig consistently identified one fish on a particular layer of the water 

and relate the location of that fish in relation to one side view of the tank, I inferred that 

he has coordinated the two perspectives multiplicatively (one taken from the side view 

and one taken from the top view) to locate the fish. However, I conjectured that Craig’s 

coordination of the two perspectives was sequential, like in Morgan’s case. I conjectured 

the logical multiplication of measurements along the two dimensions in the first 

representation (top view) was not preserved and inserted into the third dimension, 

exemplified by his description of Fish 1 swimming to Fish 2. Therefore, I hypothesized 

that Craig was yet to construct a FR-coordinating scheme but could enact the action of 

coordinating frames of reference sequentially in activity. This hypothesis was consistent 

with my previous conjecture that the FR coordinating scheme required mental operations 

essential for coordinating three levels of units and Craig’s initial interview (reasoning as 

if he could operate with three levels of units in activity).   

Dan’s Coordinate Systems 

School Map Task. 

From his mapping activity, I conjectured that Dan considered the gym as a spatial 

reference point and located other rooms and hallways in relation to the gym’s location. 

Based on his descriptions of how he generated his map, I hypothesized that he re-

represented the space as he mentally traversed the area, taking a perspective embedded 
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within the space. In Dan’s case, frames of reference were sequentially anchored to 

different places (e.g., gym and then at the cafeteria) as he mentally traversed the first 

floor.  

North Pole Task. 

In the North Pole Task, I hypothesized that Dan coordinated horizontal and 

vertical distances using a rectangular frame of reference with its origin anchored at point 

P and vertical axis aligned with the road to the North Pole. I inferred that Dan has 

constructed a Cartesian-like coordinated system of measurements. Based on the way Dan 

did not explicitly address the rescuer’s initial orientation or perspective in his instructions 

(Excerpt 8.3), I inferred that Dan mainly focused on his ego-oriented perspective (Taylor 

& Tversky, 1996) taken from above the ground and superimposed his rectangular frame 

of reference onto the two-dimensional plane, like Morgan did in the North Pole Task.  

I also compared Dan’s locating activity with Kaylee’s in the North Pole Task. 

Although both students constructed a Cartesian-like system of measurements, I 

interpreted Kaylee’s actions to be operational and anticipatory in that the measurements 

were coordinated from the beginning without a trial-and-error process and in that she was 

aware that this coordination along with the corresponding measurements would ensure 

that the rescue team would find the missing person. On the other hand, Dan’s activities 

seemed spontaneous in that they occurred as he was verbalizing instructions and carrying 

out activities in the moment. 

I also hypothesized that Craig and Dan together coordinated angle measure and 

distance using an angular frame of reference with its origin anchored at point P and initial 

ray aligned with the line perpendicular to the road to the North Pole. I inferred that Craig 
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and Dan has constructed a system of measurements compatible to a polar coordinate 

system.  

Fish Tank Task. 

Over time in the cubic fish tank task, I observed shifts in Dan’s locating activities. 

He started with making visual estimations of the locations of the fish in the tank but later 

coordinated measurements of horizontal/vertical distances to locate each fish. Dan shifted 

from using fish as reference to the surface of the water and sides of the tank as spatial 

references. In the end, he developed a system of measurements consisting of the distance 

from the top of the water and the distance from all four slides to each fish. In my analysis, 

I conjectured that Dan did not view the three-dimensional cube as a collection of 

infinitely many two-dimensional squares (cross sections). Further, I hypothesized that 

Dan used rectangular frames of reference to guide his measuring of horizontal and 

vertical distances along the faces of the tank. However, instead of fixing one face and 

anchoring one set of horizontal/vertical axes onto one adjacent set of edges like Kaylee 

and Morgan did, I conjectured that Dan anchored his rectangular frame of reference onto 

all four sets of adjacent edges as I modeled in Figure 8.16. I conjectured that Dan’s 

measurements were sequentially coordinated but not multiplicatively combined due to the 

lack of the logical multiplication of measurements (Piaget et al, 1960). In the cylindrical 

fish tank, Dan explained that he could think of finding the vertical layer and the distance 

from the exterior of the tank but was aware that finding one length measure to express the 

distance from the exterior of the tank was insufficient in locating the fish. The round 

shape of the tank seemed to have constrained Dan’s further operating with his rectangular 

frame of reference.  
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CHAPTER 9 

CONCLUSIONS AND IMPLICATIONS 

In Chapters 5 through 8, I presented findings from my retrospective analysis of 

the four students’ constructive activities throughout the teaching experiment. More 

specifically, in Chapters 5 and 8, I analyzed the students’ activities in constructing 

coordinate systems when representing points in perceptual space in the Locating Tasks 

(e.g., North Pole Task & Fish Tank Task). In Chapters 6 and 7, I analyzed the students’ 

activities in coordinating units along two- or three-dimensional objects in the Counting 

Tasks (e.g., Cubic Block Task). In Table 3, I summarize the findings across all four 

students. These findings are my second-order models that account for the four students’ 

mathematical activity and shifts in their ways of reasoning in various spatial contexts. I 

note here that these models are never to be interpreted as one-to-one representations of 

students’ thinking. 

In this chapter, I step back and take a wider lens to look across all four students 

who participated in the study. First, I revisit the research questions that guided the study 

and address them with a synthesis of the findings. I will zoom in and out of Table 3 as 

necessary, to summarize and synthesize the findings related to each research question. 

Second, I discuss the implications the study has for school curriculum, teaching, and 

research regarding students’ construction and use of coordinate systems. Finally, I pose 

new questions and present future research directions.  
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Table 3. Summary of findings across all four students. 

 Kaylee 

(3 levels of units as given) 

Morgan 

(3 levels of units in activity) 

Craig 

(3 levels of units in activity) 

Dan 

(2 levels of units in activity) 

North 

Pole 

Task 

° Coordinated angle measure 

and radial distance (polar 

coordinate system). 

° Coordination of 

horizontal/vertical distances 

(Cartesian-like coordinate 

system) 

° Rectangular frame of 

reference scheme 

° Initially wanted to give in-

the-moment instructions 

(temporal & visual approach). 

° Gradually constructed 

rectangular frames of reference 

through assimilation of 

Kaylee’s approach; coordinated 

horizontal/vertical distances 

(Cartesian-like coordinate 

system) 

° Together with Dan, 

coordinated angle measure and 

radial distance, but was not 

explicit about the initial ray 

(polar coordinate system). 

° Constructed a Cartesian-like 

coordinate system in activity. 

° Together with Craig, 

coordinated angle measure and 

radial distance, but not explicit 

about the initial ray (polar 

coordinate system).  

Schoo

l Map 

Task 
N/A N/A 

° Used a rectangular frame of 

reference anchored above the 

center of the first floor, taken 

from his above-the-ground 

perspective, representation of 

the rooms in co-occurrence. 

° Used gym as a reference; his 

frames of reference were 

sequentially anchored to 

different locations as he 

mentally traversed the area. 

Fish 

Tank 

Task 

° Coordinated length, width, 

height measurements for static 

and variable locations of fish.  

° Constructed a 3-dimensional 

Cartesian-like coordinate 

system across both tanks. 

° FR-coordinating scheme 

° Initially made visual 

estimations of locations of fish.  

° Coordinated top-view grid 

with depth (layer) for static 

locations of fish  

° Described movement of fish 

in 2 movements (go up and 

straight) 

° FR-coordinating scheme in 

activity 

° Initially made visual 

estimations of locations of fish; 

thought of longitude/latitude 

but didn’t know how to use it 

for 3-dimensions. 

° In cubic tank, coordinated 

top-view and side-view of tank 

to develop a system of 

measurements consisting of the 

distance from the sticker face 

into the tank (width), the 

distance from left to right along 

the sticker face (length), and 

° Initially made visual 

estimations of locations of fish.  

° In cubic tank, shifted from 

using fish as reference to using 

surface of water and four sides 

of the tank as spatial 

references. In the end, he 

developed a system of 

measurements consisting of the 

distance from the surface of the 

water and the distances from all 

four sides to each fish.  

° Dan used rectangular frames 
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Fish 

Tank 

Task 

(Conti

nued) 

the vertical layer in which the 

fish was embedded (depth). 

° Described movement of fish 

in cubic tank in 2 movements 

(go up and straight).  

° In cylindrical tank, used an 

imaginary sticker as reference 

to locate the fish. Taking the 

top view, coordinated angle 

measure and distance (polar 

coordinate system) then taking 

the side view, identified the 

layer in which the fish was 

embedded. 

° FR-coordinating scheme in 

activity 

of reference to guide his 

measuring activity but Dan’s 

measurements were 

sequentially coordinated and 

not multiplicatively combined.  

° In the cylindrical tank, the 

roundness of the tank 

constrained further operating 

with his rectangular frame of 

reference. 

Count

ing 

Tasks 

° Decomposed and re-

composed cubic blocks into 

square-shaped layers. 

° Produced multiple three 

levels of units structures 

recursively. 

° Reversible decomposing 

scheme 

° Initially focused on the 

exterior faces of the objects and 

was yet to coordinate the third 

dimension along with the two-

dimensional faces (or exterior 

layers) in representation.  

°Using the block model, she 

could keep track of her 

counting activities she had a 

difficult time coordinating in 

representation; Morgan’s 

operating on the block was in 

activity, relying on sensori-

motor activity on the perceptual 

material.  

 

° Decomposed the prisms into 

layers of unit-cubes and re-

composed the prisms by 

building a layer of unit-cubes 

and inserting them into the 

third dimension.  

°Produced three levels of units 

in successions. Operated with 

units of units using his 

unitizing and disembedding 

operations and iterated units of 

units in activity, using his unit-

coordinating operations to 

count the spatial objects. 

° Reversible decomposing 

scheme in activity 

° Initially focused on the 

exterior faces of the objects and 

was yet to coordinate the third 

dimension along with the two-

dimensional faces (or exterior 

layers) in representation.  

°After engaging in sensori-

motor activity building the 

blocks and partially 

assimilating Craig’s 

approaches, Dan gradually 

engaged in representing the 

unit-cubes and grouping 

activity. However, Dan still 

relied heavily on his sketches 

or models. 
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Conclusions 

Research Questions Revisited 

The goal of this study was to investigate how four ninth-grade students construct 

and use coordinate systems in spatial contexts to organize perceptual space into 

representational space (Piaget & Inhelder, 1967). In this section, I revisit the research 

questions that guided the study and address them through a synthesis of the findings.  

Research question 1. 

How do the students construct and use coordinate systems when representing 

objects in two- or three-dimensional perceptual/sensorimotor space?  

As shown in Table 3 regarding the Locating Tasks, all four students constructed 

grid-like structures or organized a set of horizontal and vertical axes, which I referred to 

as rectangular frames of reference in both the North Pole and Fish Tank Task. Kaylee and 

Craig also constructed frames of reference consisting of initial and terminal rays joined at 

a vertex, which I referred to as angular frames of reference. The students used their 

frames of reference to gauge and represent the relative position of elements in the 

perceptual space they were representing. Further, they constructed coordinate systems in 

which they quantitatively organized the perceptual space by coordinating distances or 

angle measures to account for the location of objects in the space they were representing. 

The functional interaction between perceptual and representational space. The 

students’ representations of the spatial situations and their perceptual space reciprocally 

influenced the organization of each other and interacted functionally (Laurendeau & 

Pinard, 1970), consistent with what Piaget and Inhelder claimed about the relationship 

between conceptual and perceptual space. Borrowing Laurendeau and Pinard’s (1970) 

words, “the information provided by perception (or the mental image) serves as raw 



 

479 

material for the intellectual action or operation, and reciprocally, these intellectual 

activities exert an influence (direct or indirect) on perception” (p. 10).  

For example, in the North Pole Task, Kaylee considered a structure through which 

she could gauge the amount of rotation the rescuer would need to make from the North 

Pole to find the missing person in the snow. In other words, Kaylee abstracted from the 

spatial context a frame of reference she could use to gauge the relative position of the 

missing person. On the other hand, when applying this frame of reference to specify the 

amount of rotation the rescuer would need to make to find the missing person, Kaylee 

refined her account of the spatial situation by considering the rescuer’s line of sight.  

Different levels of representations. The level to which the students’ 

representations of space were operational differed across the four students. In some cases, 

their representations of space were constructed through trial-and-error or temporal 

approaches and were often dominated by the spatial characteristics of the space they were 

representing. For example, in the North Pole Task, Morgan initially represented the 

location of the missing person taking a temporal approach that relied on the perceptual 

imagery of the North Pole situation. Similarly, Dan moved his ruler on the map in various 

positions through a trial-and-error process until he accounted for horizontal and vertical 

distances constituting the rescuer’s imagined movement. Finally, Craig used a rectangular 

frame of reference in the cubic fish tank whereas he used his angular frame of reference 

in the cylindrical fish tank because he did not find the rectangular frame of reference 

fitting for the latter spatial situation. In other words, his choice of frames of reference 

depended on the spatial characteristics of the perceptual space he was representing. 
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In other cases, students’ representations of space were rather immediate and 

consistent throughout various contexts. For example, the majority of Kaylee’s measuring 

activities were immediate without hesitation to think about how to measure or what to 

measure. I took this to indicate that her structuration of space was operational and 

anticipatory. Further, Kaylee demonstrated consistent activities across the different 

spatial situations. For example, although Kaylee was initially perturbed by the circular 

shape of the cylindrical tank, she used her rectangular frame of reference across both fish 

tank cases. From her consistent way of reasoning across the Locating Tasks, I imputed a 

rectangular frame of reference scheme to Kaylee. This scheme consisted of a recognition 

template for a situation in which she could associate the use of two perpendicular axes, a 

superimposition of the axes onto a spatial situation, and a result of a Cartesian-like 

coordination of measurements through which she represents the location of objects in 

perceptual space. 

Frames of reference coordinating scheme. The different levels to which the 

students’ representations of space were operational stood out the most in the three-

dimensional contexts. In the three-dimensional contexts, the students used frames of 

reference similar to those they constructed in the two-dimensional case. For example, 

Kaylee, Morgan, and Craig used their rectangular frames of reference in the cubic fish 

tank case and Craig used his angular frame of reference in the cylindrical fish tank case. 

However, the way students coordinated these frames of reference to account for all three 

dimensions constituting the space differed.  

As summarized in Table 3, in the Fish Tank Task, Kaylee swiftly and consistently 

coordinated of horizontal/vertical distances along three dimensions, which she referred to 
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as length, width, and height. On the other hand, Morgan, Craig, and Dan initially relied 

on making visual estimations of the location of the fish in the tanks but gradually made 

accommodations to their representations to account for coordinated measurements.  

From her consistent and flexible way of operating across both fish tanks and in 

the ocean context in coordinating multiple rectangular frames of reference, I imputed a 

frame of reference coordinating scheme (FR-coordinating scheme) to Kaylee. This 

scheme involves a recognition of a situation in which she could posit a frame of reference 

as a unit and insert it into another frame of reference resulting in combined frames of 

reference, enacting decentering, rotating, coordinating perspectives, disembedding, 

inserting, and uniting operations, resulting in multiplicatively coordinated set of 

measurements to represent the location of objects in a three-dimensional perceptual space.   

Both Morgan and Craig demonstrated shifts in their spatial organizations, from 

relying on visual imagery to more sophisticated systems of measurements (i.e., 

coordinate systems). Both Morgan and Dan ended up coordinating vertical/horizontal 

distances induced from their rectangular frames of reference very much like Kaylee did 

in the Fish Tank Task. However, I contrasted their activities with Kaylee’s by claiming 

that Morgan and Craig enacted FR-coordinating operations in activity because their 

rectangular frames of reference were sequentially coordinated. In other words, in Morgan 

and Craig’s case, the first frame of reference was not necessarily inserted into the second 

frame of reference. One of the main observations that contributed to such conclusion was 

the way they described the motion of one fish to another in the Fish Tank Task. Instead of 

describing the motion of Fish 1 to Fish 2 along all three spatial dimensions, like Kaylee 
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did, both Morgan and Craig described the fish motion as going up along the layers of the 

water and then going straight, once the two fish were on the same layer. 

Similar to Morgan and Craig, Dan also made shifts from making visual 

estimations to gradually measuring distances in the cubic fish tank; he shifted from using 

fish as reference to using the surface of water and four sides of the tank as stationary 

references. In the end, he developed a system of measurements consisting of the distance 

from the surface of the water and the distances from all four sides to each fish. Although 

Dan used rectangular frames of reference to guide his measuring activity, I considered 

Dan’s system of measurements less sophisticated because he measured distances from all 

four sides of the tank, some of which I considered redundant. Moreover, in the cylindrical 

tank, the roundness of the tank constrained further operating with his rectangular frame of 

reference.  

To summarize, regarding the first research question, I modeled the students’ 

frames of reference and their use of frames of reference to quantitatively represent the 

locations of the objects in perceptual space. I discussed the functional interaction between 

the students’ perceptual and representational space and the different levels of 

sophistication of representational activity I observed across the four students. Finally, I 

discussed the schemes and operations to model the process through which students 

constructed their coordinate systems. 

Research question 2. 

How do the students count units within spatial objects that entail arrays of units 

along two or three dimensions in representation? 

 As shown in Table 3 regarding the Counting Tasks, students demonstrated 

different sophistication levels in representing units (e.g., unit-tiles or unit-cubes) in 
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spatial objects to account for the location or number of units constituting the spatial 

objects.  

Different levels in representations of units. The level to which the students’ 

representations of the units were abstracted from the perceptual and/or sensorimotor 

activity on the spatial objects differed across the four students, which I summarize as 

follows. Kaylee has constructed representations of the spatial objects that she could 

reason upon reflectively; further, using her representations of space, she was able to 

coordinate units within three spatial dimensions and produced multiple three level of 

units structures. Her construction of powerful re-presentations of the space were 

supported by her immediate activities when presented with new situations and abilities to 

anticipate and carry out these activities without readily available perceptual material. 

On the other hand, Craig and Morgan demonstrated the use of many of the 

operations that Kaylee used in activity. There were many instances where they sat in deep 

thought staring at the objects for relatively long periods of time or often needed the 

perceptual material in reasoning. Although, in activity, Craig and Morgan were able to 

sequentially coordinate two dimensions to reason within three spatial dimensions.  

In contrast to the other three students, Dan reasoned primarily in two, but not 

three, dimensions. He did not enact the mental operations that the other three students did 

in decomposing and recomposing the spatial objects. His spatial objects were more 

perceptual than a re-presentation of the space on which he could operate on.  

Reversible decomposing scheme. As summarized in Table 3, in the Cubic Block 

Task, Kaylee consistently decomposed and re-composed the blocks into and from square-

shaped or rectangular-shaped layers. She used a similar strategy for counting in extending 
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or reducing the cubic blocks. From her consistent counting activity, I imputed a 

reversible decomposing scheme to Kaylee, which she used to mentally decompose, re-

present, and anticipate (Piaget & Inhelder, 1967) the interior of the cubic blocks in the 

absence of their perceptual availability.  

This scheme involved a recognition of a situation in which she needed to 

individualize unit-cubes but also maintain their relative positions and an enactment of 

unitizing, disembedding, splitting & recursive partitioning schemes to decompose and re-

compose the object in representation. The scheme also involved coordinating multiple 

perspectives by bringing forth immediate past results of her mental actions while enacting 

mental actions on another. I claimed that Kaylee’s FR-coordinating scheme served as a 

sub-scheme to guide the decomposition/re-composition of the object. I also claimed that 

using her units-coordinating scheme as a sub-scheme, Kaylee produced multiple three 

levels of units recursively in re-composition of the objects. Using this scheme, Kaylee, 

counted the total number of unit-cubes and identified the painted/unpainted unit-cubes in 

representation. 

Craig demonstrated similar counting strategies as Kaylee did in the Counting 

Tasks. Craig repeatedly explained why he multiplied the number of units along each 

spatial dimension to count the total number of units constituting the two- or three-

dimensional figures. He decomposed rectangular prisms into layers of unit-cubes and re-

composed the prisms by building a layer of unit-cubes and inserting them into the third 

dimension. Craig demonstrated a strong ability to coordinate a representation of one 

instantiation of his building activity in co-presence with another instantiation of his 
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building activity. Therefore, I conjectured that Craig had the operations of a FR-

coordinating scheme available to support his reversible decomposing activity.  

However, contrast to Kaylee, Craig demonstrated having difficulty keeping track 

of his counting when extending the three-dimensional rectangular prisms in 

representation. Based on his counting activities, I conjectured that Craig produced three 

levels of units in successions. That is, he operated with units of units using unitizing and 

disembedding operations and iterated units of units in activity, using unit-coordinating 

operations to count the spatial objects. Further, I conjectured that Craig constructed a 

reversible decomposing scheme in activity.  

Morgan and Dan initially focused on the exterior faces of the objects and was yet 

to coordinate the third dimension along with the two-dimensional faces (or exterior layers) 

in representation. Hence, there was no observable decomposing or recomposing of the 

units along the third dimension. Gradually, Morgan assimilated some of Kaylee’s 

strategy in decomposing the cubic blocks into layers of unit-cubes. However, she often 

relied on using the block model to keep track of her counting activities. After engaging in 

sensori-motor activity building the blocks and partially assimilating Craig’s approaches, 

Dan gradually engaged in representing the unit-cubes and grouping activity. However, 

Dan still relied heavily on his sketches or models. Coordinating a representation of one 

instantiation of their activity in co-presence with another instantiation of their activity 

seemed confining elements in their reasoning for both Morgan and Dan. 

To summarize, regarding the second research question, I discussed the different 

levels of representations of units in the spatial objects and modeled the process through 

which the four students coordinated units along two- or three-dimensional objects.   



 

486 

Looking Across Research Questions 

The models I developed in this study showcases the complexities of cognitive 

structures that could be involved in constructing spatial coordinate systems. In this 

section, I discuss three ways of reasoning in the students’ constructive activities across 

both types of tasks I conjecture to have played as cognitive resources for some students 

who had them available but cognitive barriers for those who lacked such ways of 

reasoning.  

Coordination of multiple images.  

From the findings, I conjecture that the ability to coordinate multiple images is a 

cognitive resource for constructing spatial coordinate systems. By coordinating multiple 

images I mean the mental activity of bringing forth images of one instantiation of mental 

activity alongside another instantiation of mental activity. For example, in the Locating 

Tasks, Kaylee and Craig demonstrated the ability to bring forth images of one perspective 

(their ego-oriented perspective looking down onto the spatial situation) alongside another 

(an imaginary perspective embedded within the spatial situation). In the Counting Tasks, 

Kaylee and Craig demonstrated the ability to bring forth images of one instantiation of 

their building of blocks activity in co-presence with another instantiation of their 

imagined building activity. I claim their ability to engage in coordinating multiple mental 

images supported their coordination of multiple frames of reference and counting 

activities.  

On the other hand, I conjecture that often Morgan and Dan’s locating activity or 

counting units was constrained by the lack of coordination of multiple mental images. 

Their tendency to focus mainly on their ego-oriented perspective and to take 
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temporal/trial-and-error approaches in the spatial situations corroborate such conjecture. 

For example, When I asked him to explain the location of two rooms, Dan had to imagine 

relocating himself at a certain room of the first floor to verify that his representation was 

accurate. When reasoning about the cubic blocks, Morgan had to rotate or take apart the 

cubic block models to reason about the number of unit-cubes or painted/unpainted unit-

cubes.  

Logical multiplication.  

In addition to coordinating multiple images, I conjecture that logical 

multiplication is a cognitive resource needed for constructing spatial coordinate systems. 

This conclusion is consistent with Piaget et al.’s finding (1960) that locating a point in 

two-dimensional space “involves logical multiplication of measurements as given by 

rectangular coordinates” (p. 154). A logical multiplication entails a recognition of a 

location of a point along one spatial dimension with the realization that the point has a 

specific location along the other spatial dimension. As a result of logical multiplication, 

the location of a point becomes a multiplicative location in that it is a product of a 

simultaneous coordination of its location along two or more separate dimensions. 

Based on the findings, I conclude that engaging in logical multiplication is 

necessary for coordinating multiple frames of reference multiplicatively so that the 

location of an object along one frame of reference is inserted into and maintained within 

another frame of reference. For example, Kaylee maintained the fish’s location within her 

first rectangular frame of reference (e.g., one side of cubic tank) alongside that within her 

second rectangular frame of reference (e.g., the adjacent side of cubic tank). This allowed 

her to construct a coordinate system consisting of length, width, height measures induced 
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from her rectangular frames of reference. In the Cubic Block Task, Kaylee maintained 

the location of an individual unit-cube in relation to other unit-cubes along all three 

dimensions constituting the cubic blocks.  

Levels of units coordination.  

In entering this hypothesized that students’ levels of units coordination and the 

relevant operations and schemes are involved in constructing spatial coordinate systems. 

Therefore, I selected students who demonstrated different levels of sophistication in 

coordinating two or three levels of units. Kaylee reasoned as if she could operate with 

three levels of units as given, Morgan and Craig with three levels of units in activity, and 

Dan with two levels of units in activity.  

From the findings, I found a parallel between the students’ levels of units 

coordination (initial interviews) and their constructive activities in the spatial contexts 

across all the tasks. That is, consistent with the findings from the initial interviews, 

Kaylee seemed to be able to operate with a multitude of two-dimensional frames of 

reference in representation; Morgan and Craig were often able to enact the operations 

Kaylee did when carrying them out in activity; and Dan was often restricted to a single 

two-dimensional frame of reference.  

Moreover, the students’ operations and schemes involved in the partitioning and 

units-coordinating situations I inferred from the initial interviews were used as 

assimilatory operations and schemes in both the FR-coordinating scheme and reversible 

decomposing scheme. Therefore, I conclude that the mental operations and schemes that 

produce three levels of units are necessary for simultaneously coordinating multiple two-

dimensional frame of reference in organizing space.  
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Implications and Future Research Direction 

All four students reported in this study were ninth-grade students who already had 

experience using the Cartesian coordinate plane in school. Therefore, it seemed natural 

that they superimpose a Cartesian-like structure of grids in these spatial tasks. However, 

this was not the case and even when the students superimposed a Cartesian-like grid 

structure onto the spatial situations, the ways of reasoning within frames of reference and 

consequently the coordination of measurements differed among the students.  

I believe the models I developed to account for the four students’ mathematics in 

constructing spatial coordinate systems can inform teachers, curriculum developers, and 

researchers in regards to students’ learning and application of coordinate systems. In this 

section I discuss implications of this study and future research direction.  

Implications 

Students’ zones of potential construction. 

Through the living models of the four students’ mathematical activity, this study 

gives teachers and researchers opportunities to experience the four students’ constructive 

activities and provides an explanatory framework (Steffe & Thompson, 2000) to describe, 

discuss, and think about their students’ mathematical activity. The models I developed of 

each students’ cognitive activities in this study can also be used to discuss their zones of 

potential construction. Here, zone of potential construction refers to “a teacher’s working 

hypotheses of what the student can learn, given her model of the student’s mathematics” 

(Steffe & D’Ambrosio, 1995, p. 154). In this section, I discuss the implications of my 

findings by discussing the zone of potential construction of each student. 
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Kaylee’s zone of potential construction. Throughout the five months I worked 

with her, Kaylee demonstrated powerful ways of reasoning. Although new situations and 

tasks occasionally seemed to perturb her, she was quick to adjust her current ways of 

operating to accommodate the new situations. For example, in the cylindrical tank, 

Kaylee was perturbed by the circular shape but soon coordinated rectangular frames of 

reference consistent with her cubic tank case.  

Although Kaylee mainly coordinated rectangular frames of reference as input for 

her FR-coordinating scheme, because she had the mental operations available, I 

anticipate that Kaylee’s FR-coordinating scheme was not limited to a coordination of 

rectangular frames of reference. That is, Kaylee could have inserted different types of 

frames of reference like her angular frame of reference into other frames of reference. For 

example, I believe Kaylee would have been able to construct a cylindrical coordinate 

system similar to Craig’s by superimposing polar coordinates along the circular cross 

section and coordinating that with a height axis. Further, I believe Kaylee is capable of 

coordinating non-perpendicular axes, such as in an oblique coordinate system, supported 

by her logical multiplication activity.  

Supported by her FR-coordinating scheme and logical multiplication, I believe 

Kaylee could plot points given their horizontal and vertical coordinates and keep track of 

the location of the point along one axis with a realization that the point had a specific 

location along the other axis. Thus, for Kaylee, a point on the Cartesian plane entails its 

horizontal and vertical positions along each respective axis. Further, I hypothesize that 

Kaylee’s powerful spatial organization can support her use of coordinate systems for 

quantitative coordination and covariational reasoning—“holding in mind a sustained 
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image of two quantities’ values simultaneously” (Saldanha & Thompson, 1998, p. 1). For 

example, I believe Kaylee would be able to find intervals of increase/decrease of one 

quantity as another quantity increases.  

Supported by her FR-coordinating scheme and coordination of multiple 

perspectives, Kaylee conceptualized directionality as an amount of rotation or the amount 

of movement in horizontal/vertical segments along each spatial dimension. Especially, 

throughout the Fish Tank Task, Kaylee consistently described motion of one fish to 

another as moving along length, width, and height dimensions. Having established this 

conceptualization of directionality, I believe Kaylee could conceptualize the inclination 

of a line or distance between two points in two- or three-dimensional Cartesian 

coordinate systems. Further, I believe Kaylee can produce the set of all the points that are 

a constant distance from a combination of points and lines in two- or three-dimensional 

space. For example, I anticipate Kaylee would have been able to represent all the possible 

locations of a fish 2 inches from the surface of the water.  

Finally, using her reversible decomposing scheme, I believe Kaylee could engage 

in other situations which require her to simultaneously decompose and re-compose 

spatial objects into arrays of units. Further, I believe Kaylee had the mental operations 

available to support engagement in differential and integral calculus.    

Morgan’s zone of potential construction. Throughout the five months I worked 

with her, Morgan showed noticeable shifts in her ways of reasoning. Although 

occasionally Morgan was constrained by her difficulty drawing three-dimensional figures 

on paper or represent the spatial situations in representation, Morgan was quick to 
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assimilate Kaylee’s ways of reasoning and showed powerful ways of reasoning when she 

could carry necessary mental actions out in activity.  

In Morgan’s case, I believe the social interaction with Kaylee was crucial in her 

engagement in the tasks. Given more opportunities to make the ways of reasoning she 

assimilated from Kaylee more permanent, I believe Morgan could engage in many of the 

activities I anticipate Kaylee to engage in. In addition, I hypothesize that engendering 

Morgan’s coordination of multiple images would lead to accommodations in her FR-

coordinating activity and units coordination activity along two- or three-dimensional 

objects.  

Craig’s zone of potential construction. Throughout the eight months I worked 

with him, Craig demonstrated powerful ways of reasoning often times similar to Kaylee 

but also seemed to have encountered some constraints similar to Morgan’s in his ways of 

operating. In contrast to Morgan, Craig demonstrated a strong ability to engage in 

coordinating multiple images to support his representations of spatial situations. 

Therefore, I anticipate Craig would have been able to represent the painted/unpainted 

unit-cubes in the cubic blocks in the Cubic Block Task, like Kaylee did. However, 

because he was yet to use the FR-coordinating scheme as input for further operating, I 

hypothesize that Craig would have met constraints in finding the number of unit-cubes 

needed to extend or reduce cubic blocks in representation, especially given bigger sized 

numbers to coordinate. On the other hand, similar to my hypothesis of Morgan’s zone of 

potential construction, I believe Craig could be successful in such activity when given the 

physical models to keep track of his units-coordinating activity.  
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Because Craig’s coordinate systems were more reliant on the spatial 

characteristics of the situation, I anticipate Craig’s constructions of coordinate systems to 

be more case-specific. For example, if given a spherical fish tank, I hypothesize Craig 

will again be perturbed by the different shape and construct a different type of coordinate 

system to account for that shape whereas Kaylee will consistently superimpose a 

Cartesian-like coordinate system onto the spherical tank.   

Dan’s zone of potential construction. Over the eight months I worked with him, 

Dan presented the most constraints to me as the teacher-researcher. Throughout the 

teaching experiment, a lot of features of the tasks seemed to perturb Dan’s ways of 

operating and he often seemed to hit a wall due to the lack of operations and schemes the 

other students had available. At maximum, I inferred that Dan could produce two-

dimensional coordinate systems and coordinate two spatial dimensions in activity but not 

three. Therefore, conceptualizing the volume of spatial objects could be out of reach of 

his zone of potential construction.  

However, Dan made progressions as well. For example, after engaging in sensori-

motor activity building the blocks and partially assimilating Craig’s approaches, Dan 

gradually engaged in representing the unit-cubes in grouping activity. I believe the 

constructive path reasonable for Dan is to allow him more opportunities to immediately 

reflect upon his perceptual and sensori-motor spatial activity. For example, having Dan 

describe a spatial configuration as he looks or touches the configuration from one 

perspective and then another can engender a coordination of multiple perspectives, which 

he seemed to lack the ability to carry out in many of the tasks. Gradually having him 
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draw spatial configurations without having the perceptual/sensorimotor imagery available 

can also be helpful.  

In retrospect, often Dan changed his answer when I asked him to explain his 

thinking or said Craig had the “correct answer” and that he was “wrong.” Sometimes, 

Dan waited for Craig to talk first or when Craig was not present at the teaching episodes, 

Dan wished Craig was there. Other than the cognitive barriers Dan experienced, I believe 

his learned perception of his relationship with teachers or his peers influenced such 

behavior. In this relationship, the teacher (i.e., an authoritative figure) or his peer (i.e., 

someone who he thinks is superior in mathematical ability) validate his mathematical 

activity. Therefore, I hypothesize that Dan’s ways of operating could be better supported 

by addressing such social norms in his learning environment.  

Implications of zones of potential construction on teaching. Although the zones of 

potential construction I discussed above are those of each individual student I worked 

with, I believe these zones of potential construction can inform teachers and curriculum 

developers in constructing hypothetical learning trajectories (Steffe & D’Ambrosio, 1995) 

appropriate for other students at different cognitive sophistications. In other words, 

Kaylee’s zone of potential construction can inform teachers who might have other 

Kaylee’s (students who have the schemes and operations Kaylee had available) in 

understanding their current ways of thinking and the directions they can move forward. 

Alternatively, Dan’s zone of potential construction can inform teachers who might have 

other Dan’s (students who demonstrate similar ways of operating as Dan) why they might 

be struggling in certain situations such as those Dan struggled in and potential activities 

that could be helpful for them.  
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Foregrounding the background, i.e., bringing attention to the coordinate systems 

on which students are required to reason, can be helpful in understanding why students 

have difficulty constructing or interpreting graphs of geometrical or quantitative 

relationships represented on coordinate systems. I believe the findings of this study can 

provide insight for understanding students’ difficulties with graphing in two- or three-

dimensions, such as those identified in Dorko and Lockwood (2016).  

Steffe, Moore, & Hatfield (2014) described the Epistemic Algebraic Student as “a 

conceptual model of what we observe as characteristic mathematical activity of students 

that is taken to define a level of development in the algebraic activity of the students in 

the context of mathematics teaching” (p. ix) and as “models consisting of dynamic 

organizations of schemes of action and operation in our mental life that undergo change 

over longish periods of time” (p. x). They also emphasized that “it is through continued 

interaction with students that we may conceive several epistemic algebraic students 

throughout the ages of schooling, each of which is distinctly different from the others” (p. 

x). Adopting Steffe et al.’s (2014) notion of epistemic student, I believe the models I 

constructed through continued interaction with students over a long time period can 

provide a stepping stone in building several epistemic spatial students. These models can 

characterize their mathematical activity and define levels of development in spatial 

organizational activities and thus can inform teaching, curriculum development, and 

research.  

School curriculum. 

Based on my conceptual analysis of coordinate systems and the findings from this 

study, I propose modifications in the way coordinate systems are taught in school. 
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Revisiting the Common Core States Standards for Mathematics, the conventional 

Cartesian coordinate plane is “introduced” for the first time in 5th grade geometry as 

follows. 

Use a pair of perpendicular number lines, called axes, to define a coordinate 

system, with the intersection of the lines (the origin) arranged to coincide with the 

0 on each line and a given point in the plane located by using an ordered pair of 

numbers, called its coordinates. (National Governors Association Center for Best 

Practices, & Council of Chief State School Officers, 2010, p. 38) 

This rather abstract description of the Cartesian coordinate plane, stripped away 

from any context, only states what a student should know to construct one but does not 

necessarily address the reasoning that is involved in understanding why and how it might 

make sense to construct one. Towards the end of the teaching experiment, I had a 

conversation with Kaylee and Morgan about coordinate planes, as shown in Excerpt 9.1.  

Excerpt 9.1. Morgan and Kaylee talking about coordinate planes. 

I: Is there anything else you learned with coordinating points like this?  

K: I don’t know. Everything was just like (inaudible). 

M: Yeah, We never really went into depth about it. You know, it’s like, this is 

what happens to this, so just know this.  

K: Mmhmm. Just graph things, make shapes.  

M: Yeah, I know. We never really like, it’s like this happens and that happens. 

They never really gave us real world examples like this.  

K: Yeah. 

Like Morgan said, they were told “this is what happens to this, so just know this” 

and like Kaylee said, they were told to “just graph things” and “make shapes.” I believe 

the conversation I had with Kaylee and Morgan reflects and highlights how the Cartesian 

plane is taught in school, parallel to the presentation of it in school curriculum. Therefore, 

first, I propose an alternative approach to the introduction of the Cartesian plane, which 

encourages making sense of how coordinate systems work and what they can do for us:  

Use a pair of perpendicular number lines, called axes, to define a coordinate 

system through which one can quantitatively organize points in the plane, with the 
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intersection of the lines located at a fixed (reference) point in the plane, by using 

an ordered pair of numbers, called its coordinates, which represent the direction 

and distance from the fixed point along each axis.  

Second, I argue that school curriculum should provide students with more 

opportunities to construct coordinate systems of various kinds from spatial contexts. 

These opportunities can enhance their reasoning within multiple frames of reference and 

their construction of coordinate systems, which they can use for further reasoning of 

geometric or quantitative relationships.  

Finally, I was surprised at how novel the tasks of constructing spatial coordinate 

systems was to the four students. I claim that attention to the distinction of the different 

uses of coordinate systems and support for students’ balanced understanding and use of 

coordinate systems is needed by researchers, curriculum developers, and teachers. This 

study can provide insight for opportunities that afford students more cognitive access to 

powerful ways of reasoning of the mathematical concepts that are represented through 

coordinate systems.   

Tasks. 

Different from extant research studies in which students were provided with pre-

constructed, conventional coordinate systems, the tasks in this study provided ways to 

observe the kinds of coordinate systems students actively construct independently in 

various situations. The ninth-grade students did not have any formal instruction on the 

polar coordinate system, but Kaylee, Craig, and Dan all constructed coordinate systems I 

view compatible with the polar coordinate system.  

Based on my interaction with the students as they engaged in the tasks I designed 

for this study, I found the tasks to have provided students opportunities to construct and 

use coordinate systems as a means “to construct, refine, and use their own representations 
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as tools to support learning and doing mathematics” (NCTM, 2000, p. 68). These 

findings can inform task development for teachers and textbook publishers to allow more 

meaningful opportunities for secondary students to construct, refine, and use their own 

coordinate systems, which can support stronger understandings of coordinate systems and 

other mathematical concepts such as functions and their graphs.  

For example, the Locating Tasks afforded students opportunities to engage in 

coordinating frames of reference and constructing coordinate systems. There were four 

features of these tasks that I found particularly important. First, having students actively 

engage in describing the locations or movements of objects as opposed to making a copy 

of a point supported students to go beyond making visual estimations and actively engage 

in measuring activities. I found this requirement to have encouraged students to think 

about what to measure (e.g., distance or angle measure) and how to measure it. This 

resulted in students selecting and coordinating frames of reference in finding various 

measurements. Second, having students develop instructions for another person (or fish) 

afforded opportunities for students to consider directionality in a systematic way and 

coordinate multiple perspectives through decentering. Third, having various shapes and 

removing explicit spatial cues was helpful in investigating the type of measurements 

students attended to. In the North Pole Task, students coordinated what I considered 

horizontal and vertical distances or angle measure and radial distances. The various shape 

of the spaces seemed to influence students’ selections of such measurements but also 

afforded opportunities for students to superimpose a rectangular system onto spaces not 

necessarily explicitly cuing rectangular coordinate systems. Finally, having students 

engage in locating tasks such as the North Pole and Fish Tank Tasks can enhance their 
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constructions and enactments of operations and schemes that I found to be productive for 

constructions of representational space. 

Future Research Direction  

Replicating the study. 

Working closely with a select number of students provided the opportunity for me 

to observe and model the students’ constructions of spatial coordinate systems. These 

second-order models are based on my interpretations and inferences from the four 

students’ mathematical activity. Moving forward, I would like to conduct another 

teaching experiment by selecting “at least three students whose language and actions 

indicate similar spontaneous schemes,” (Steffe & Thompson, p. 299), a) to test the 

viability of my current models and b) to use my current models of the four students as 

input for building superseding models (Steffe & Thompson, 2000) of students’ 

constructive activities in constructing coordinate systems.  

Testing students’ zones of potential construction and graphing activity. 

In addition to replicating the study and refining my models of the students’ 

constructive activities, I would like to test my hypotheses about the students’ zones of 

potential construction and graphing activity. Based on the models I developed of each 

students’ cognitive activity in this study, I discussed their zones of potential construction. 

These are hypotheses of what I infer the students to be capable of learning, given his or 

her current schemes and operations. As an extension of my teaching experiment, I would 

like to test these hypotheses with students whose language and actions I consider to be 

similar to each of the four students. 
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For example, I hypothesized that Kaylee’s powerful spatial organization will 

support her use of coordinate systems for quantitative coordination and covariational 

reasoning. Additional research investigating students’ spatial organization activity in 

situations that involve conceptual change, which require attending to not only static 

instantiations of movement but also the variability of points in space is needed. I believe 

such extensions of this study can inform finding connections between spatial and 

quantitative reasoning and identifying common mental operations invariantly involved in 

the construction of coordinate systems in both uses.  

Levels of units coordination and spatial reasoning. 

In this study, I concluded that the mental operations that produce three levels of 

units are necessary for simultaneously coordinating multiple two-dimensional frames of 

reference in organizing three-dimensional space. I also concluded that the coordination of 

multiple frames of reference supported students’ systematic structuration of three-

dimensional objects and counting activities. Regarding this finding, there are two 

questions that could be further investigated.  

First, although I found it helpful to provide Dan with opportunities to engage in 

building three-dimensional objects and reflecting on his building activities, further 

explorations on how we can support students who are yet to construct the necessary 

schemes and operations for coordinating multiple frames of reference is needed. Second, 

further investigations on whether the development of three levels of units precedes the 

ability to coordinate three spatial dimensions, or the coordination of three spatial 

dimensions precedes the development of three levels of units, or whether the 

development occurs concurrently is needed.  



 

501 

Summary of Chapter Nine and Closing Remarks 

In this chapter, I took a step back to look at the findings across all four students 

who participated in the study. I revisited the research questions that guided the study and 

addressed them with a synthesis of the findings. I also discussed the implications of the 

study for teaching, school curriculum, and research regarding students’ construction and 

use of coordinate systems. Finally, I presented future research directions replicating and 

expanding on the findings of this study.  

Although this dissertation has come to an end, I believe my conceptual models, 

ideas, and thoughts that emerged from this study will continue to grow through continued 

work with students, teachers, and researchers. This study leads me to pursue three long-

term scholarship goals. First, expanding my focus beyond students’ spatial coordination, I 

would like to investigate how students construct coordinate systems for quantitative 

coordination and how spatial and quantitative coordination might relate. Second, 

broadening my population for study beyond high school students, I would like to 

investigate how students at various grade levels might construct coordinate systems as 

powerful tools for spatial, algebraic, quantitative, and covariational reasoning. Finally, 

putting my research into practice, I am interested in designing curricular or professional 

development opportunities with an emphasis on students’ meaningful use of coordinate 

systems in their learning of mathematical ideas in school algebra and geometry.  
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APPENDIX 

Initial Interview Tasks7 

Part I: Kaylee and Morgan’s Initial Interview 

Introduction:  

Thank you for coming to work with us this morning. We are interested in looking at how you think 

about the questions we are about to ask you. They might be unfamiliar questions and it might 

require some thinking. Take your time. We are more interested in your thinking rather than you 

being right or wrong. So, it’s very helpful if you can tell us what you’re thinking as you work on 

the problems we pose to you, even when you’re not really sure what the answer might be. Also, 

we have prepared several things here on the desk for you to use (point to the various tools) and 

you can make use of them if you think they will help you.  

 Materials: Wikki stix, scissors, markers, paper, ruler, thermometer (sliders) 

Part I: Partitioning   

Part II: Directed Measurements 

1. Sharing a piece of string equally among five people (only ask this question if 

needed) 

[Display a piece of wikki stix]  

 Let’s pretend that this string is a piece of licorice and that you want to share this string 

equally to five people, can you mark off the piece of licorice that one person would get? 

 Can you show me how you would check that this share is the right amount?  

 What fraction of the original stick would one person receive? 

 

2. Sharing a piece of a piece of a string   

[Prepare Fruit by the Foot. Have the student roll it out and put it in front of him/her. Then 

ask student to close eyes and think about the following in their head first. ] 

 Cut off one person’s share if we equally share this candy among 3 people. 

                                                 

 

 

 

7 This interview guide was developed in work with my research group the time it was 

developed. I credit contributions to Dr. Les Steffe, Dave Liss, Jackie Gammaro, Eun Jung, 

June Chun, Ebru Ersari, and Hamilton Hardison. 
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 If we share this cut off piece equally among you and 4 more of your friends, cut off your 

share. 

 What amount is your piece of the whole piece of candy? 

 

3. Make your string such that my string is five times as long as your string 

[Prepare medium wikki stix and a pile of other wikki stix and hold up medium wikki stix:  

 Suppose I have a piece of string here. I want you to make your piece of string so that my 

string is five times longer than yours. How would you make your string? Think about it 

and tell me what you’re thinking.] 

If the student is unsure or struggles to answer appropriately, then have a roll of 

string available and ask the following question. Even if they answered the question well 

verbally, still ask them to make it with the piece of string and ask the following questions: 

 Here’s some more string. Use this to make your string. 

 How would you prove that my string (point to the initial piece of string you presented) is 

five times longer than the one you described/made? 

If they describe a string that is longer than the one given them ask: 

 What did I ask you? Whose string would be longer?   

 

4. Share two same-sized, same-flavored cakes 

[Prepare two cake models (homogeneous) of SAME size.] 

Suppose these are two cakes both (use different flavor) cakes of same size. 

 [Cover cakes with a cover] Let’s say we’re sharing these cakes equally among three 

people. Can you tell me how you might share all the cake? 

When student can operate mentally, skip carrying out the cutting activity.  

 How do you know what you’ve an equal share? How would you check? 

 What fraction of one cake would that be if they are identical cakes? 

When student cannot operate mentally, show the two cakes and ask them to carry out the 

sharing. 

When the student puts the cake altogether, after they are finished, give a context where 

they can’t put the two cakes together. Ask them to find a way to find the fair share 

without combining the two cakes.  

 (Point to one plate) Say this is your plate. What amount of all the cake do you have? 

(goes back to case a) 

 What amount of one cake do you have? 

Follow-up as necessary to see if they can understand and explain that they would get 2/3 

of one cake. If they say 2 divided by 3 or 2/3, follow-up with asking them to show you. 

(We need to be sensitive to the differences between “2 divided by 3”, “1/3 of 2”, and “2/3 

of 1”.) 

 

5. Share two different-sized different-flavored cakes 

[Prepare two cake models of DIFFERENT size and flavor.] 

 Suppose these are two cakes both (flavor) cakes of different size. 

 [Cover cakes with a cover] Can you tell me how you might find 1/3 of all the cake? 

When student can operate mentally, skip carrying out the cutting activity.  

 How do you know what you’ve found is 1/3 of the cake? How would you check if it is 1/3 

of the cake? 
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When student cannot operate mentally, show the two cakes and ask them to carry out the 

sharing and use sharing language:  

 What would you do to share these fairly among three people? 

When the student puts the cake altogether, after they are finished, give a context where 

they can’t put the two cakes together. Ask them to find a way to find 1/3 without 

combining the two cakes.  

 (Point to one plate) Say this is your plate. What amount of all the cake do you have? 

When student says “two out of six pieces” (2/6) ask 

 Are the pieces the same size? 

 [Pull out two small pieces and two big pieces] If we think about the amount of the cake, 

would that be a fair share? What amount of all the cake do you have? 

 If this is 2/6, then what would this (Pick one piece up) be? 1/6? 

 How would you check if that is 1/6 of the cake? Can you use it to make all the cake? Do 

you get the cake you had at the beginning? 

 

Part II: Craig and Dan’s Initial Interview 

Introduction:  

Thank you for coming to work with us this morning. We are interested in looking 

at how you think about the questions we are about to ask you. They might be unfamiliar 

questions and it might require some thinking. Take your time. We are more interested in 

your thinking rather than you being right or wrong. So, it’s very helpful if you can tell us 

what you’re thinking as you work on the problems we pose to you, even when you’re not 

really sure what the answer might be. Also, we have prepared several things here on the 

desk for you to use (point to the various tools) and you can make use of them if you think 

they will help you.  

 

1. Equipartitioning task 

Materials: Middle sized wikki stix, scissors, markers 

 Display a piece of wikki stix 

o Let’s pretend that this string is a piece of licorice and that you want to share this string 

equally to five people, can you mark off the piece of licorice that one person would get? 

o Can you show me how you would check that this share is the right amount?  

o What fraction of the original stick would one person receive? 

 

2. Additive Units Coordination task 

Materials: Wikki stix, scissors, markers 

 Display two pieces of wikki stix in front of student. 

o Let’s say this string is 24 centimeters long and this one is 39 centimeters long.  How 

much more string would I need in order to make this shorter one as long as the longer 

one? 

 Cut off each wikki stix into shorter lengths. 

o I cut off some length from both of these strings. We don’t know the actual length of them 

yet. But do you think you can find how many of the shorter ones will fit in the longer one? 

o (Back-up) If I told you that the shorter one is 7 centimeters and the longer is 34 

centimeters, how would you find that out?  
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3. Splitting task   

Materials: Wikki stix, scissors, markers 

 Prepare medium wikki stix and a pile of other wikki stix and hold up medium wikki stix:  

o Suppose I have a piece of string here. I want you to make your piece of string so that my 

string is five times longer than yours. How would you make your string? Think about it 

and tell me what you’re thinking. 

 If the student is unsure or struggles to answer appropriately, then have a roll of string 

available and ask the following question. Even if they answered the question well 

verbally, still ask them to make it with the piece of string and ask the following questions: 

o Here’s some more string. Use this to make your string. 

o How would you prove that my string (point to the initial piece of string you presented) is 

five times longer than the one you described/made? 

 If they describe a string that is longer than the one given them, ask: 

o What did I ask you? Whose string would be longer?   

 (Back-up) If string situation seems insufficient, change context to money: 

o Suppose I have 24 dollars. Let’s say we know that my money is 3 times more than yours. 

How much money would you have?  

 

4. Units Coordinating – Splitting hybrid task (optional) 

Materials: Wikki stix, scissors, markers (if needed) 

 Before displaying wikki stix, explain the situation first. Prepare stix with lengths that 

correspond to each situation. 

o Let’s say you, Cody, and June each have a piece of string. We know that Cody’s string is 

4 times longer than June’s string, and your string is 7 times longer than Cody’s string. 

Can you explain to me how long your string is in terms of June’s string? 

o (If above is easily done) This time, let’s say we know that Cody’s string is 3 times longer 

than your string and June’s string is 6 times longer than Cody’s string. How long is your 

string in terms of Cody’s string?  

 

5. Recursive Partitioning  

Materials: Strip of ribbon, scissors, markers 

 Prepare a strip of ribbon and put it in front of him/her. Then ask student to imagine this is 

a strip of candy and to close eyes and think about the following in their head first.  

o Cut off one person’s share if we equally share this candy among 3 people. 

o If we share this cut off piece equally among 5 people, cut off one share. 

o Let’s say that share is yours. What amount is your piece of the whole strip of candy? 

 

 

 

 


