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Abstract

This thesis discusses three topics related to the distributions of arithmetic functions. The first 

topic is the distribution function of a polynomial of additive functions. Roughly speaking, 

the distribution function of an arithmetic function f records how often f lies below a given 

value. We show that certain polynomials of additive functions with continuous distribution 

functions also have continuous distribution functions.

The second topic is the range of Euler’s totient function. For an irreducible quadratic 

polynomial P , we prove that for almost all n, the equation ϕ(m) = P (n) has no solutions.

The final topic is additively unique sets of primes. A set S is additively unique if the 

only multiplicative functions possessing a certain invariant on S are f(n) = 0 and f(n) = n. 

We classify the additively unique sets of primes.
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Chapter 1

Introduction

This thesis focuses on three distinct topics:

1. Distribution functions of arithmetic functions,

2. Polynomials and the range of the totient function,

3. Additively unique sets of integers.

We provide background for each of these topics.

1.1 Distribution functions of arithmetic functions

In a broad sense, a distribution function records how often a set of real numbers lies below

a given value.

Definition. Let X be a random variable in a probability space. The distribution function

of X is the function

FX : R→ [0, 1]

where FX(x) is the probability that X ≤ x.
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Note that FX is non-decreasing and right-continuous. In addition,

lim
x→−∞

FX(x) = 0 and lim
x→∞

FX(x) = 1. (1)

A theorem from probability [8, Theorem 14.1] states that any non-decreasing, right-continuous

function satisfying (1) is the distribution function of some random variable. We restrict our

attention to the distribution function of an arithmetic function f : Z+ → R.

Definition. Let f be a real-valued arithmetic function. For each positive integer N , define

the function FN : R→ [0, 1] by

FN(x) =
#{n ≤ N : f(n) ≤ x}

N
.

Suppose that there exists a function F such that

lim
N→∞

FN(x) = F (x), (2)

whenever F is continuous at x. If F is a distribution function, then F is the distribution

function of f .

Assuming an F satisfying (2) exists, it must be non-decreasing by definition. However,

it need not be a distribution function. For example, let f be an unbounded non-decreasing

function. Then,

lim
N→∞

FN(x) = 0

for all x, which implies that F is identically 0. Therefore, F is not a distribution function.

For a given arithmetic function f , we may ask two questions:

1. Does f have a distribution function?

2. If f does have a distribution function, is this function continuous?
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For certain well-understood arithmetic functions, we may answer these questions. Before

we do so, we write a definition.

Definition. A real-valued function f is additive (resp. multiplicative) if f(mn) = f(m) +

f(n) (resp. f(mn) = f(m)f(n)) for all coprime m, n.

Throughout this thesis, we extensively use the ϕ and σ functions, which we define below.

Definition. Euler’s totient function ϕ(n) is the number of m ≤ n which are coprime to n.

The sum-of-divisors function σ(n) adds up all of the divisors of n. For n = pe11 · · · p
ek
k we

have

ϕ(n) =
k∏
i=1

pei−1
i (pi − 1), σ(n) =

k∏
i=1

pei+1
i − 1

pi − 1
.

One of the first results on distribution functions of arithmetic functions is the following

theorem of Schoenberg [54]:

Theorem 1.1.1. The function ϕ(n)/n possesses a continuous distribution function.

A few years later, Davenport proved a related result [14] (which Behrend and Chowla

obtained independently [6], [12]), answering a question Bessel-Hagen had recently posed [7].

Theorem 1.1.2. The function n/σ(n) possesses a continuous distribution function.

Let s(n) be the sum of the proper divisors of n (the divisors other than n). We say

a number is abundant if s(n) > n, deficient if s(n) < n, and perfect if s(n) = n (these

definitions go back to the ancient Greek mathematician Nicomachus [47, Book I, Chapter

XIV], circa 100 AD). A notable corollary of Theorem 1.1.2 is that the abundant and deficient

numbers have well-defined densities and that the perfect numbers have density 0 (see [17]

for an alternate, elementary proof of this result). Before Theorem 1.1.2 was known, Behrend

found bounds on the upper and lower densities of the abundant numbers [5]. The current
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bounds on the density ∆ of abundant numbers are 0.24761 < ∆ < 0.24766 [39]. Moreover,

A(x) = ∆x+O

(
x

exp((log x)1/3)

)
,

where A(x) is the number of abundant numbers ≤ x [40].

In the 1930’s, Erdős proved three results on the distribution of additive functions ([18],

[20], [21], the last of these discusses Schoenberg’s related work in [55]). Note that 1.1.5

superseded 1.1.4, which in turn superseded 1.1.3. In each of the following theorems f is an

additive function.

Theorem 1.1.3. Suppose f satisfies the following conditions:

1. f(n) ≥ 0 for all n.

2. For all distinct primes p and q, f(p) 6= f(q).

3. The sums ∑
|f(p)|>1

1

p
,

∑
|f(p)|≤1

f(p)

p

converge.

Then, f possesses a distribution function.

Theorem 1.1.4. Even if f only satisfies Conditions (1) and (3), it still possesses a distri-

bution function.

Theorem 1.1.5. If f satisfies Condition (3) and the sum

∑
|f(p)|≤1

f(p)2

p

converges, then f possesses a distribution function. This distribution function is continuous
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if and only if the following sum diverges:

∑
f(p)6=0

1

p
.

In 1939, Erdős and Wintner proved the converse of the first part of Theorem 1.1.5. The

Erdős-Wintner Theorem [26], one of the founding results of probabilistic number theory,

determines when an additive function has a distribution function and when that distribution

function is continuous.

Theorem 1.1.6. The additive function f has a distribution function if and only if the

following sums converge:

∑
|f(p)|>1

1

p
,

∑
|f(p)|≤1

f(p)

p
,

∑
|f(p)|≤1

f(p)2

p
.

Note that for a positive-valued multiplicative function f , the function log f is additive.

Therefore, the Erdős-Winter Theorem is also a statement about multiplicative functions. (It

is straightforward to show that log(ϕ(n)/n) and log(n/σ(n)) satisfy the conditions of the

Erdős-Wintner Theorem, giving us Theorems 1.1.1 and 1.1.2.)

Unfortunately, these results tell us nothing about distribution functions of polynomials

of additive and multiplicative functions. There have been multiple results discussing this

problem in specific cases.

Proposition 1.1.7. If f1, . . . , fk are additive functions with distribution functions, then

every polynomial in f1, . . . , fk has a distribution function as well ([56, p.63] covers sums of

additive functions, but similar techniques work for products).

Theorem 1.1.8 ([28, Theorem 4.1]). Let f be an additive function and g a positive-valued

multiplicative function. If f and g have distribution functions and at least one of the distri-
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bution functions is continuous, then f + g has a continuous distribution function. (See [31]

for a generalization).

In order to state the results of Chapter 2, we first write the following definition.

Definition. We say that an arithmetic function f clusters around the real number u if there

exists some ε > 0 such that, for every δ > 0, the set

{n : |f(n)− u| < δ}

has upper density at least ε. If f does not cluster around any u, we say that f is nonclustering.

If a nonclustering function f has a distribution function F , then F is continuous. How-

ever, not all nonclustering functions have distribution functions. One such example is the

identity function f(n) = n. This function does not have a distribution function because it

is unbounded and non-decreasing. However, f is still nonclustering. The author recently

proved the following results with Pollack [42] (the second of which was initially a conjecture

of Luca and Pomerance [43].) In Section 2.1, we discuss these theorems in more detail.

Theorem 1.1.9. Let f1, . . . , fk be multiplicative functions taking values in the non-zero real

numbers and satisfying the following conditions:

1. f1 is nonclustering,

2. none of f1, . . . , fk cluster around 0,

3. for all i, j with 1 ≤ i < j ≤ k, the function fi/fj is nonclustering.

Then, every nontrivial linear combination of f1, . . . , fk is nonclustering.

Corollary 1.1.10. The function (σ(n)−n)/(n−ϕ(n)) has a continuous distribution function

strictly increasing on [1,∞).
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In Section 2.2, we prove the following two results. (Whether we may replace “polynomial”

with “analytic function” in the first theorem is still open.)

Theorem 1.1.11. If f1, . . . , fk are additive functions for which every nontrivial linear

combination has a continuous distribution function, then every nonconstant polynomial in

f1, . . . , fk has a continuous distribution function.

Theorem 1.1.12. The product of additive functions with continuous distribution functions

also has a continuous distribution function.

1.2 Polynomials and the range of the totient function

Let V (x) be the number of n ≤ x that lie in the range of Euler’s totient function. In

1929, Pillai showed that almost all numbers lie outside the range of the totient function [48],

namely that

V (x) = O

(
x

(log x)(log 2)/e

)
.

Note that (log 2)/e ≈ 0.25. This result was improved multiple times ([19], [23], [24], [53],

[44]). We list these results here. (For notational convenience, we let logk x be the result of

taking the logarithm of x k times.)

V (x) =
x

(log x)1+o(1)
(Erdős, 1935)

V (x)� x

log x
exp(C1(log log x)1/2) (Erdős, Hall, 1973)

V (x)� x

log x
exp(C2(log3 x)2) (Erdős, Hall, 1976)

V (x)� x

log x
exp(C3(log3 x)2) (Pomerance, 1986)

V (x) =
x

log x
exp((C4 + o(1))(log3 x)2) (Maier, Pomerance, 1988).
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Here, C1 ≈ 3.40, C2 ≈ 0.36, C3 ≈ 1.18, C4 ≈ 0.82. In 1998, Ford [29] derived a formula for

V (x), up to a constant multiple:

V (x) =
x

log x
exp(C4(log3 x− log4 x)2 + C5 log3 x− (C5 + (1/2)− 2C4) log2 x+O(1)),

with C5 ≈ 2.18.

For a given function f , we may consider how often f(n) lies in the range of the totient

function. We write a few notable results on this question in the case where f is a polynomial.

Theorem 1.2.1 ([37, Theorem 1]). Let f and g be integer-valued polynomials. Suppose

deg f ≤ deg g and that f factors completely over Q with only simple roots. Then,

#{n ≤ x : ∃m s.t. ϕ(f(n)) = g(m)} � x

(log x)1/10
.

Theorem 1.2.2 ([49, Theorems 1, 2]). Fix an integer k > 1. Conditional on a conjecture

of Pomerance [52], the number of n ≤ x for which ϕ(n) is a kth power is

x

L(x)1+o(1)
,

where

L(x) = exp

(
log x log3 x

log2 x

)
.

Unconditionally, the number of n ≤ x for which ϕ(n) is squarefull (every prime factor is

repeated) is at most

x

L(x)1+o(1)
.

We define

Vf (x) = #{n ≤ x : ∃m s.t. ϕ(m) = f(n)}.
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Pollack and Pomerance [51] (improving on [2], [3], [30, Theorem 1.2]) recently showed that

for the function f(x) = x2,

x

(log x)2(log log x)2
� Vf (x)� x

(log x)0.0063
.

Rather than just considering squares, we may broaden our scope to integer-valued poly-

nomials. The main focus of Chapter 3 is the following result. (Though this result only

applies to irreducible quadratic polynomials, it is entirely possible that one can generalize it

to all nonconstant polynomials.)

Theorem 1.2.3. For an irreducible quadratic polynomial P with integer coefficients,

VP (x) = O

(
x

(log x)0.0312

)
.

In general, we do not have a method for obtaining unconditional lower bounds for VP (x).

However, it is possible to obtain lower bounds if we assume the Bateman-Horn Conjecture

[4], which we write below in a simplified form.

Conjecture 1.2.4. Let f1, . . . , fk be a set of distinct, primitive, irreducible polynomials. If

there does not exist a prime p which divides f1(n) · · · fk(n) for all n, then the number of

n ≤ x for which f1(n), . . . , fk(n) are simultaneously prime is on the order of

x

(log x)k
.

Using this result, we can prove the following.

Corollary 1.2.5. Assume the Bateman-Horn Conjecture. If P is a polynomial for which
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P (x) + 1 is primitive and irreducible, then

VP (x)� x

log x
.

Proof. Let P be a polynomial satisfying these properties. If P (n)+1 is prime, then ϕ(P (n)+

1) = P (n). Assuming the conjecture, the number of n ≤ x for which P (n) + 1 is prime is on

the order of x/ log x. Therefore,

VP (x)� x

log x
.

1.3 Additively unique sets of integers

The final chapter of this thesis focuses on a number-theoretic result that does not relate to

the previous chapters.

Definition. Let S be a set and F a family of functions. If there is exactly one element

f ∈ F satisfying f(m + n) = f(m) + f(n) for all m,n ∈ S, then S is an additively unique

set (AU set) for F .

Let F be the set of multiplicative functions that do not vanish on some prime. Spiro

proved that the primes are additively unique [58]. (Here, f is the identity function.)

There have been multiple recent results showing that certain sets are AU or are close to

being AU, some of which we write here.

Theorem 1.3.1 ([15]). Let f be a multiplicative function for which f(1) = 1. If

f(p+ n2) = f(p) + f(n2)

for all primes p and positive integers n, then f is the identity function.
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Theorem 1.3.2 ([13]). The triangular and tetrahedral numbers are both AU. (Whether the

k-tetrahedral numbers are AU for all k > 3 is still open.)

Theorem 1.3.3 ([11]). Let f be a multiplicative function that does not vanish on some odd

prime. If f(p) + f(q) = f(p+ q) for all odd primes p and q, then f is the identity function

or

f(n) =

 1, if n is odd.

2, if n is even.

In Chapter 4, we strengthen Spiro’s result as follows by classifying the additively unique

sets of primes.

Theorem 1.3.4. A set of primes is AU if and only if it contains every prime that is not

the larger element of a twin prime pair, and at least one element of {5, 7}.
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Chapter 2

Distribution functions of arithmetic

functions

In Section 2.1, we discuss Theorem 1.1.9 and Corollary 1.1.10. In Section 2.2, we prove

Theorems 1.1.11 and 1.1.12.

2.1 Clustering of linear combinations of multiplicative

functions

We restate Theorem 1.1.9 [42], which gives us a criterion for a linear combination of multi-

plicative functions to be nonclustering.

Theorem 2.1.1. Let f1, . . . , fk be multiplicative arithmetic functions taking values in the

nonzero real numbers and satisfying the following conditions:

1. f1 is nonclustering,

2. none of f1, . . . , fk cluster around 0,

3. for all i < j with i, j ∈ {1, 2, . . . , k}, the function fi/fj is nonclustering,
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Then for all nonzero c1, . . . , ck ∈ R, the arithmetic function c1f1 + · · ·+ckfk is nonclustering.

Recall that if an arithmetic function f possesses a distribution function F , then F is

continuous precisely when f is nonclustering. It is often the case that one can prove that

F is well-defined by some general principle, but doing so does not offer any insight into

whether F is continuous. Theorem 1.1.9 sometimes provides a convenient way of establishing

continuity.

Let s(n) be the sum-of-proper-divisors function, so that s(n) = σ(n)−n. Let sϕ(n) = n−

ϕ(n) denote the cototient function. In [43], Luca and Pomerance noted that s(n)/sϕ(n) ≥ 1

for all n ≥ 2 and showed that the sequence {s(n)/sϕ(n)}∞n=2 is dense in [1,∞).

Corollary 2.1.2. The arithmetic function s(n)/sϕ(n) possesses a continuous distribution

function Ds/sϕ . Moreover, Ds/sϕ(u) is strictly increasing for u ≥ 1.

Corollary 1.1.10 was conjectured at the end of [43, §1]. Using Theorem 1.1.9, the author and

Pollack proved this result [42].

2.2 The distribution function of a polynomial in addi-

tive functions

2.2.1 Introduction

Section 2.2 is mainly devoted to proving Theorems 1.1.11 and 1.1.12, which we restate here.

Theorem 2.2.1. If f1, . . . , fk are additive functions for which every nontrivial linear combi-

nation has a continuous distribution function, then every nonconstant polynomial in f1, . . . , fk

has a continuous distribution function.

Theorem 2.2.2. The product of additive functions with continuous distribution functions

also has a continuous distribution function.

13



Before we do so, we restate a result related to Theorem 1.1.11, namely Proposition 1.1.7.

Proposition 2.2.3. If f1, . . . , fk are additive functions with distribution functions, then

every polynomial in f1, . . . , fk has a distribution function as well.

Though the principle behind the proof of Proposition 1.1.7 is not new, it is useful to state

the result explicitly. Our proof of Proposition 1.1.7 is arithmetic, but the theorem could also

be established by analytic means, specifically by first using the method of characteristic

functions to show that the vector of arithmetic functions f1, . . . , fk possesses a distribution

function.

Theorem 1.1.11 is a continuous analogue of Proposition 1.1.7. It is clear that such a

result will require extra hypotheses. For instance, if F is a constant polynomial, then the

distribution function of F (f1, . . . , fk) is never continuous. There are also less trivial examples

where the distribution function is discontinuous. For instance, let F (x1, x2) = x1 − x2, and

let f1 and f2 be the same additive function with a continuous distribution function. Then,

F (f1, f2) = 0 has a discontinuous distribution function, even though F is nonconstant. In

order to obtain a continuous analogue of Proposition 1.1.7, we need to impose conditions on

f1, . . . , fk.

Theorem 1.1.9 states that under certain conditions, the sum of multiplicative functions

with continuous distribution functions also has a continuous distribution function. Theorem

1.1.12, proved using Theorem 1.1.11, is dual to this.

Proposition 1.1.7 already tells us that polynomials in f1, . . . , fk have distribution func-

tions. In order to prove Theorem 1.1.11, we just need to show these distribution functions

are continuous. We rewrite the definition of a clustering function to pinpoint what remains

to be shown.

Definition. The arithmetic function f clusters around the real number r if there exists an

14



ε > 0 such that for any δ > 0, the upper density of positive integers n for which

r − δ < f(n) < r + δ

is greater than ε. In addition, f is nonclustering if it does not cluster around any real

number.

Let f be an arithmetic function with a distribution function. Note that f is nonclustering

if and only if the distribution function of f is continuous. After proving Proposition 1.1.7,

we prove Theorem 1.1.11 by showing that if f1, . . . , fk are additive functions for which

every nontrivial linear combination is nonclustering, then every nonconstant polynomial in

f1, . . . , fk is nonclustering as well. We then use Theorem 1.1.11 and a few supplementary

results to prove Theorem 1.1.12. Our approach throughout is heavily influenced by work of

Erdős (Theorems 1.1.3-1.1.5).

Throughout Sections 2.2.3.4 and 2.2.4, we use the following results related to the Erdős-

Wintner Theorem (the second of which is due to Halász [32]).

Lemma 2.2.4. An additive function f is clustering if and only if

∑
f(p)6=0

1

p

converges.

Theorem 2.2.5. Let f be an additive function. For all a ∈ R, the number of solutions to

the equation f(n) = a with n ≤ x is

� x

 ∑
p≤x
f(p)6=0

1

p


−1/2

.
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Proving one direction is straightforward. If the sum converges, then the density of the

set of squarefree numbers n for which f(p) = 0 for all p dividing n is

∏
f(p)=0

(
1− 1

p2

) ∏
f(p)6=0

(
1− 1

p

)
> 0.

If n is squarefree and f(p) = 0 for all p|n, then f(n) = 0. If the sum converges, then f

clusters around 0. Elliott and Ryavec’s [16, Theorem 7.3] is a stronger statement than the

converse.

2.2.2 Existence of the distribution function for a polynomial in

additive functions

In this section, we discuss distribution functions, but not clustering. In the remaining sec-

tions, we only consider whether or not a function is nonclustering. We explicitly write three

definitions that we mentioned in passing in Section 2.1.3.

Definition. The y-smooth part sy(n) of a number n is the largest divisor of n for which

every prime factor is at most y and that the y-rough part of n is n/sy(n).

Definition. Let S be a set of positive integers. The upper and lower densities of S are

dS = lim sup
x→∞

#{n ≤ x : n ∈ S}
x

, dS = lim inf
x→∞

#{n ≤ x : n ∈ S}
x

.

In addition, the density of S is

dS = lim
x→∞

#{n ≤ x : n ∈ S}
x

,

when this quantity is well-defined.
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Definition. The arithmetic function F is essentially determined by small primes if for all

ε > 0,

lim
y→∞

d{n : |F (n)− F (sy(n))| > ε} = 0.

Lemma 2.2.6. The sum and product of any two functions that are essentially determined

by small primes is essentially determined by small primes as well. In addition, any constant

multiple of a function that is essentially determined by small primes is essentially determined

by small primes.

Proof. Let f and g be two functions that are essentially determined by small primes. We

first show that f + g is essentially determined by small primes as well. For all δ, ε > 0,

there exists some Y > 0 such that if y > Y , then the set of numbers n for which either

|f(n)− f(sy(n))| or |g(n)− g(sy(n))| is greater than ε/2 has upper density at most δ. Thus,

the set of numbers n for which |(f + g)(n)− (f + g)(sy(n))| > ε has upper density at most

δ. Hence, f + g is essentially determined by small primes.

We now show that fg is essentially determined by small primes. Fix δ, ε > 0. Because f

and g are essentially determined by small primes, there exists a y1 > 0 such that the upper

density of numbers n for which

max(|f(n)− f(sy1(n))|, |g(n)− g(sy1(n))|) > ε

is less than δ/3. For any integer z > 1, the set of numbers with a y1-smooth part that is not

a multiple of any zth power greater than 1 is

∏
p≤y1

(
1− 1

pz

)
,

which tends to 1 as z goes to infinity. Therefore, there exists a number z for which the set of

numbers with a y1-smooth part that is a multiple of some zth power greater than 1 has an
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upper density that is less than < δ/3. Letting y2 be the product of pz over all prime p ≤ y1,

we see that the upper density of numbers with y1-smooth part ≥ y2 is < δ/3.

If the y1-smooth part of n is less than y2, then there exists a constant C such that

|f(sy1(n))|, |g(sy1(n))| < C because sy1(n) only has a finite number of possible values. Ap-

plying our definition of y1 gives us

d{n : max(|f(n)|, |g(n)|) ≥ C + ε} < 2δ/3.

Let η > 0. If y is sufficiently large in terms of δ and η, then the upper density of n

for which |f(n) − f(sy(n))| or |g(n) − g(sy(n))| is greater than η is less than δ/3. We may

assume that

|f(n)− f(sy(n))|, |g(n)− g(sy(n))| < η

and

|f(n)|, |g(n)| < C + ε

because the upper density of inputs n not satisfying both of these properties is less than δ.

We now have

|f(n)g(n)− f(sy(n))g(sy(n))| = |f(n)(g(n)− g(sy(n))) + g(sy(n))(f(n)− f(sy(n)))|

≤ |f(n)||g(n)− g(sy(n))|+ |g(sy(n))||f(n)− f(sy(n)))|

< η(|f(n)|+ |g(sy(n))|)

< η(|f(n)|+ |g(n)|+ ε)

< η(2C + 3ε).

Choosing η to satisfy η(2C + 3ε) ≤ ε, we see that for all large enough y, depending on δ

and ε, the density of n for which |f(n)g(n)− f(sy(n))g(sy(n))| is greater than ε is less than
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δ. Thus, fg is essentially determined by small primes.

Let c be a constant. For any function f that is essentially determined by small primes,

we may apply the result for products with one of the functions being the constant function

g(n) = c.

In order to show that polynomials in f1, . . . , fk have distribution functions, we use a

theorem of Tenenbaum [59, Theorem III.2.2] and a result of Erdős and Wintner [26, p.

719-720].

Theorem 2.2.7. Let f be an arithmetic function. Suppose that for all ε > 0, there exists a

function aε : Z+ → Z+ with the following properties:

(i) limε→0 lim supT→∞ d{n : aε(n) > T} = 0,

(ii) limε→0 d{n : |f(n)− f(aε(n))| > ε} = 0,

(iii) for each a ≥ 1, d{n : aε(n) = a} exists.

Then, f has a distribution function.

Theorem 2.2.8. An additive function f possesses a distribution function if and only if f is

essentially determined by small primes.

Proposition 2.2.9. Let f1, . . . , fk be additive functions each possessing a distribution func-

tion. Then, every polynomial in f1, . . . , fk has a distribution function as well.

Proof. By Theorem 2.2.8, f1, . . . , fk are all essentially determined by small primes. Now

Lemma 2.2.6 implies that any polynomial F (f1, . . . , fk) is also essentially determined by

small primes.

We now argue, using Theorem 2.2.7, that any arithmetic function essentially determined

by small primes has a distribution function. Let g be such a function. For each ε > 0, we can

choose y = yε such that the set of n with |g(n)− sy(n)| > ε form a set of upper density < ε.
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Take aε = sy. Condition (i) follows from an argument seen already in the proof of Lemma

2.2.6 (in fact, the inner lim sup is always 0), (ii) holds by our choose of aε, and (iii) is easy:

the density of n with y-smooth part s is

s
∏
p≤y

(1− (1/p)).

2.2.3 Nonclustering polynomials of additive functions

2.2.3.1.0 Forward shift operators

Definition. Let F be a function in the variables x1, . . . , xk. For any α1, . . . , αk ∈ R, we

define the forward shift operator Ψ by

Ψα1,...,αkF (x1, . . . , xk) = F (x1 + α1, . . . , xk + αk).

Definition. Let F ∈ R[x1, . . . , xn]. F is a polynomial of essentially r variables if there

exists some polynomial G ∈ R[`1, . . . , `r] with

F (x1, . . . , xn) = G(`1, . . . , `r)

where each `i is a linear form in x1, . . . , xn and there does not exist such a polynomial in

fewer than r variables.

Proposition 2.2.10. Let F ∈ R[x1, . . . , xn]. If there exist distinct n-tuples α1, . . . , αn and

β1, . . . , βn with

Ψα1,...,αnF = Ψβ1,...,βnF,

then F has fewer than n essential variables.

Proof. Let v = (α1, . . . , αn) and w = (β1, . . . , βn). Let x = (x1, . . . , xn) be an arbitrary
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vector in Rn. By assumption,

F (x + v) = F (x + w).

We replace x with x−w to obtain

F (x) = F (x + (v −w)).

We may take this equation and replace x with x + (v−w) as many times as we like so that

F (x) = F (x + (v −w)) = F (x + 2(v −w)) = · · · = F (x + n(v −w)) = · · · .

Define the polynomial

Px(t) = F (x)− F (x + t(v −w)) ∈ R[t].

We have that Px(t) = 0 identically as a polynomial in t because it is a one variable polynomial

that vanishes at all of the integers. So letting u = v −w we have that for all λ ∈ R,

F (x) = F (x + λu). (2.1)

Because u 6= 0, u has a nonzero component. We may assume without loss of generality that

the last component is not zero. We scale u so that its last component is 1 and express u as

u = (u1, . . . , un−1, 1).
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We plug λ = −xn into (1) to rewrite F (x1, . . . , xn) as

F (x1, . . . , xn) = F ((x1, . . . , xn)− xnu)

= F (x1 − xnu1, . . . , xn−1 − xnun−1, 0)

= G(x1 − xnu1, . . . , xn−1 − xnun−1),

(2.2)

where

G(t1, . . . , tn−1) = F (t1, . . . , tn−1, 0)

is a polynomial in R[t1, . . . , tn−1]. Note that (2) is a polynomial identity because it holds for

all x1, . . . , xn ∈ Rn. It follows that F has fewer than n essential variables.

Lemma 2.2.11. Let F (x1, . . . , xk) be a polynomial with r essential variables. Then, any

polynomial G ∈ R[`1, . . . , `r] satisfying F (x1, . . . , xn) = G(`1, . . . , `r) has the same degree as

F .

Proof. There exist linear forms `r+1, . . . , `k such that {`1, . . . , `k} is an R-basis for ⊕ki=1 Rxi.

For each xi, there exist constants ci,1, . . . , ci,k such that

xi = ci,1`1 + · · ·+ ci,k`k.

We can replace each xi in F (x1, . . . , xk) with the corresponding linear combination of

`j’s. Consider an arbitrary monomial term

xe11 · · ·x
ek
k = (c1,1`1 + · · ·+ c1,k`k)

e1 · · · (ck,1`1 + · · ·+ ck,k`k)
ek

Both sides have the same degree, namely e1 + · · ·+ek. When we go from F to G, each term’s

degree stays the same. Therefore, the degree of the entire polynomial cannot increase. In

other words, degF ≥ degG. We may apply a similar argument by switching `i back to xi.
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We obtain degF ≤ degG. Hence, degG = d.

Throughout the rest of Section 2.2.3, we focus on additive functions f1, . . . , fk with the

property that any linear combination of f1, . . . , fk is nonclustering. In order to manipulate

the linear combinations of f1, . . . , fk, we need the following lemma.

Lemma 2.2.12. Let f1, . . . , fk be additive functions with the property that any nontrivial

linear combination of f1, . . . , fk is nonclustering. Let `1, . . . , `r be linearly independent ele-

ments of⊕ki=1 Rxi. Then, every nontrivial linear combination of `1(f1, . . . , fk), . . . , `r(f1, . . . , fk)

is nonclustering as well.

Proof. For notational convenience, we let ˜̀
i = `i(f1, . . . , fk). Suppose that some nontrivial

linear combination of ˜̀
1, . . . , ˜̀

r is clustering. Since `1, . . . , `r are R-linearly independent, any

nontrivial linear combination of ˜̀
1, . . . , ˜̀

r is a nontrivial linear combination of f1, . . . , fk.

The only clustering linear combination of f1, . . . , fk is 0. So, there exist constants c1, . . . , cr

not all zero such that

c1
˜̀
1 + · · ·+ cr ˜̀r = 0.

The ˜̀
i are linearly independent functions of f1, . . . , fk. Therefore, any nontrivial linear

combination of them is still a nontrivial linear combination of f1, . . . , fk. Hence, every

nontrivial linear combination of ˜̀
1, . . . , ˜̀

r is nonclustering.

2.2.3.2.0 The main result

Theorem 2.2.13. Let f1, . . . , fk be additive functions. If every nontrivial linear combination

of f1, . . . , fk is nonclustering, then every nonconstant polynomial in f1, . . . , fk is noncluster-

ing as well.

Suppose the theorem is false. Then, there exist additive functions f1, . . . , fk for which

every nontrivial linear combination is nonclustering and a nonconstant polynomial F ∈
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R[x1, . . . , xk] such that F (f1, . . . , fk) is clustering. Pick F, f1, . . . , fk so that d := degF is

minimal.

Suppose F does not depend essentially on k variables. Then we can rewrite F (x1, . . . , xk)

as a polynomial G(`1, . . . , `r), where `1, . . . , `r are linear forms in x1, . . . , xk and r < k. We

assume that r is minimal, so that G depends essentially on r variables. Thus, `1, . . . , `r are

linearly independent. By Lemma 2.2.11, F and G have the same degree. By Lemma 2.2.12,

every nontrivial linear combination of `1(f1, . . . , fk), . . . , `r(f1, . . . , fk) is nonclustering. If

F (f1, . . . , fk) is clustering, then G(`1(f1, . . . , fk), . . . , `r(f1, . . . , fk)) is clustering. Because we

can replace F with G and f1, . . . , fk with `1(f1, . . . , fk), . . . , `r(f1, . . . , fk), we may assume

without loss of generality that F depends essentially on k variables.

Note that d > 1 because nontrivial linear combinations of f1, . . . , fk are nonclustering by

assumption. For any u ∈ R and ε ∈ R+, we show that there exists some δ ∈ R+ such that

the upper density of n satisfying

u− δ < F (f1(n), . . . , fk(n)) < u+ δ (2.3)

is less than 3ε.

Let Y ≥ 2 be a large real number, which we will specify more precisely later. Let n = st,

where s is the Y -smooth part of n. There exists a Z0 := Z0(ε) such that if Y ≥ 2 and

Z > Z0, then the upper density of numbers with Y -smooth part larger than Y Z is less than

ε [34, Theorem 07]. Let Z > Z0 be another large real number, which we will also specify

more precisely later. We assume that s ≤ Y Z at the cost of discarding a set of upper density

< ε.

Let S be the set of n satisfying |F (f1(n), . . . , fk(n)) − u| < δ with s ≤ Y Z . In the

definitions below, n and n′ have Y -smooth parts s and s′, respectively. We split S into two
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pieces S1 and S2, where

S1 = {n ∈ S : ∃ n′ ∈ S with n/s = n′/s′ and fi(s) 6= fi(s
′) for some i},

S2 = S\S1.

2.2.3.3.0 The upper density of S1

Theorem 2.2.14. Let F, f1, . . . , fk, u, δ, ε, Y, Z, and S1 = S1(F, f1, . . . , fk, u, δ, ε, Y, Z) be

defined as above. Then, there exists some δ > 0 such that dS1 < ε.

Proof. For notational convenience, we define F ∗(n) as F (f1(n), . . . , fk(n)). Recall that S is

the set of n satisfying |F ∗(n)− u| < δ with s ≤ Y Z . We show that dS1 < ε for δ sufficiently

small.

Let n ∈ S1, and write n = st, where s is the Y -smooth part of n. By assumption, there

is an n′ ∈ S with n′ = s′t, n′ 6= n, where s′ is the Y -smooth part of n′. By fixing s and s′,

we may rewrite F ∗(n) − F ∗(n′) as a function of t. For all i ≤ k, let xi = fi(t), αi = fi(s),

and βi = fi(s
′). We view αi and βi as constants with respect to t. Note that

F ∗(n)− F ∗(n′) = F (f1(s) + f1(t), . . . , fk(s) + fk(t))− F (f1(s′) + f1(t), . . . , fk(s
′) + fk(t))

= (Ψα1,...,αkF )(f1(t), . . . , fk(t))− (Ψβ1,...,βkF )(f1(t), . . . , fk(t)).

By Proposition 2.2.10, P := Ψα1,...,αkF − Ψβ1,...,βkF is not identically zero. Recall that

|F ∗(n)− u| and |F ∗(n′)− u| are both less than δ because n and n′ are both elements of S.

By the Triangle Inequality,

|P (f1(t), . . . , fk(t))| = |F ∗(n)− F ∗(n′)| < 2δ.

If P is a nonzero constant, then this is impossible for δ sufficiently small. Suppose P
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has positive degree. Since degP < d, the minimality of d implies that P (f1, . . . , fk) is

nonclustering. The solutions n to

|P (f1(t), . . . , fk(t))| < δ

form a set of upper density < ε, for sufficiently small δ. For each pair s, s′, there exists a

constant δs,s′ such that if δ < δs,s′ , then the upper density of n ∈ S1 with Y -smooth part s

for which there exists some n′ ∈ S1 with the same Y -rough part as n and Y -smooth part s′ is

less than ε/Y 2Z . Let δ < mins,s′ δs,s′ . Every n ∈ S1 corresponds to some pair s, s′. Because

there are at most Y 2Z such pairs, S1 has upper density less than ε.

2.2.3.4.0 The upper density of S2

Let S2 = S2(f1, . . . , fk, F, δ, u, Y, Z). We now estimate the upper density of S2.

Let x be a large real number. For each pair of nonnegative integers U, V , define

S2(U, V ) = {n ∈ S2 : n ∈ (x/2U+1, x/2U ], t ∈ (x/2(U+1)+V , x/2U+V ]}.

We have the following equality in which the right-hand union is disjoint:

S2 ∩ [1, x] =
⋃

U,V≥0

S2(U, V ).

If n ∈ S2(U, V ), then

2V−1 < s = n/t < 2V+1.

Every n ∈ S2 satisfies s ≤ Y Z . If Y Z ≤ 2V−1, then S2(U, V ) is empty. Suppose Y Z >

2V−1. We may bound #S2(U, V ). Fix the Y -rough component t and count the number of

corresponding n. Call these ni = sit for all i ≤ J , where J is the number of distinct elements
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of S2 with Y -rough part t. Since n /∈ S1, then for all 1 ≤ i ≤ k,

fi(s1) = fi(s2) = · · · = fi(sJ).

In particular, every n ∈ S2(U, V ) corresponding to this particular t has f1(s) = d for a

fixed d. In order to bound the number of possible n, we use Theorem 2.2.5. The number of

positive integers S < 2V+1 for which f1(S) = d is � 2V+1/
√
E(2V+1) where

E(T ) =
∑
p≤T

f1(p) 6=0

1

p
.

Note that E(T ) diverges as T →∞ by Lemma 2.2.4.

Hence, for every ρ > 0, there exists a positive integer V0 = V0(ρ) such that whenever

V ≥ V0, the number of S < 2V+1 satisfying f1(S) = d is at most 2V+1ρ, uniformly in d. Let

ρ be a real number less than 1. Later on, we will fix ρ more precisely. For a fixed t, the

number of corresponding n ∈ S2(U, V ) is ≤ 2V+1ρ when V ≥ V0. Otherwise, it is still at

most 2V+1.

In addition, t ≤ x/2U+V is Y -rough. The number of possible values of t is

≤ x

2U+V

∏
p≤Y

(
1− 1

p

)
+O(2Y ) ≤ x

2U+V log Y
+O(2Y ).

We can combine these upper bounds into

#S2(U, V ) ≤


2x

2U log Y
+O(2V+Y ), if V < V0

2ρx
2U log Y

+O(2V+Y ), if V ≥ V0.

We sum over U and V . Let S2(U) =
⋃
V S2(U, V ). As explained above, we only need to
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consider V satisfying 2V−1 < Y Z . Thus,

#S2(U) ≤
∑

0≤V <V0
V <

log(Y Z )
log 2

+1

(
2x

2U log Y
+O(2V+Y )

)
+

∑
V≥V0

V <
log(Y Z )

log 2
+1

(
2ρx

2U log Y
+O(2V+Y )

)

≤
(

2V0

log Y

)
x

2U
+ (4ρZ)

x

2U
+O(2Y Y Z).

We sum this over U ≤ log x/ log 2 to complete the proof, obtaining

#S2 ∩ [1, x] ≤
(

4V0

log Y
+ 8ρZ

)
x+O(2Y Y Z log x).

The upper density of S2 is at most the coefficient of x, giving us

dS2 ≤
4V0

log Y
+ 8ρZ.

Fix Z > Z0 and ρ = ε/(16Z). This allows us to fix V0 = V0(ρ). Having done so, we choose

Y so that 4V0/ log Y < ε/8. Selecting these parameters ensures that the upper density of S2

is less than ε. Given Y and Z, we may choose δ sufficiently small so that the upper density

of S1 and the upper density of solutions of (3) that do not belong to S are both less than ε.

Therefore, the upper density of n satisfying (3) is less than 3ε.

2.2.4 Products of additive functions

We deduce the following result from Theorem 1.1.11.

Theorem 2.2.15. Every product of nonclustering additive functions is nonclustering.

Proof. Let f1, . . . , fk be nonclustering additive functions. If every nontrivial linear com-

bination of f1, . . . , fk is nonclustering, then we are done by Theorem 1.1.11. Let F (n) =
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f1(n) · · · fk(n) and u ∈ R. We show that for all ε > 0, there exists a δ > 0 such that

d{n : |F (n)− u| < δ} < ε.

We assume that some nontrivial linear combination of f1, . . . , fk is clustering. Let m be

the largest integer for which there exists a set of m distinct numbers i1, . . . , im such that

every linear combination of fi1 , . . . , fim is nonclustering. Without loss of generality, let these

functions be f1, . . . , fm. Then, for all r > m, there exist constants cr,1, . . . , cr,m such that

fr − (cr,1f1 + . . .+ cr,mfm)

is clustering. Let Pr be the set of all primes p with fr(p) 6= cr,1f1(p) + · · ·+ cr,mfm(p).

Lemma 2.2.4 states that if f is a clustering additive function, then the sum of 1/p for

all p for which f(p) 6= 0 converges. For any r > m, the sum of 1/p over all p ∈ Pr is finite.

Because P is the union of the Pr’s, the sum of 1/p over all p ∈ P is finite. Therefore, there

exists a number N1 such that ∑
p>N1
p∈P

1

p
<
ε

4
.

Except on a set of upper density < ε/4, the N1-rough part of any integer is not a multiple

of any element of P .

There exists a number N2 such that

∑
p>N2

1

p2
<
ε

4

because the sums of the reciprocals of the squares converges. The set of numbers with an

N2-rough part that is not squarefree has upper density less than ε/4. Let N = max(N1, N2)

and n = st, where s is the N -smooth part of n. Except on a set of upper density less than

29



ε/2, t is squarefree and no prime dividing t belongs to P . If p|t, then

fr(p) = cr,1f1(p) + · · ·+ cr,mfm(p).

Because t is squarefree and each fi is additive,

fr(t) = cr,1f1(t) + · · ·+ cr,mfm(t).

Therefore,

f1(n) · · · fk(n) = f1(n) · · · fm(n)fm+1(n) · · · fk(n)

= (f1(s) + f1(t)) · · · (fm(s) + fm(t))(fm+1(s) + fm+1(t)) · · · (fk(s) + fk(t))

= (f1(s) + f1(t)) · · · (fm(s) + fm(t))

(fm+1(s) + cm+1,1f1(t) + · · ·+ cm+1,mfm(t)) · · ·

(fk(s) + ck,1f1(t) + · · ·+ ck,mfm(t)).

We can write

f1(n) · · · fk(n) = Fs(f1(t), . . . , fm(t)),

where

Fs(x1, . . . , xm) =
m∏
r=1

(fr(s) + xr)
k∏

r=m+1

(fr(s) + cr,1x1 + · · ·+ cr,mxm).

For each r ∈ [m + 1, k], there is some index i with cr,i 6= 0, and so Fs is a nonconstant

polynomial in x1, . . . , xm. By assumption, every nontrivial linear combination of f1, . . . , fm

is nonclustering. Therefore, Fs(f1, . . . , fm) is nonclustering by Theorem 1.1.11.

By repeating an argument from the proof of Lemma 2.2.6, we see that there exists a

positive integer z such that the upper density of numbers with N -smooth part ≥ M :=
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∏
p≤N p

z is < ε/4. We assume that s < M . Because Fs(f1, . . . , fm) is nonclustering, for any

s < M , there exists a δs such that the upper density of numbers n with N -smooth part s

and |F (n)− u| < δs is less than ε/(4M) for all s ≤ M . Letting δ = mins<M δs, we see that

the upper density of solutions to |F (n)−u| < δ for which the N -smooth part is less than M

and the N -rough part is squarefree and not a multiple of any element of P is less than ε/4.

Therefore, the upper density of solutions to |F (n) − u| < δ is less than ε for δ sufficiently

small, which implies that F is nonclustering.
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Chapter 3

Polynomials and the range of the

totient function

The central goal of this chapter is to prove Theorem 1.2.3, which we restate here.

Theorem 3.0.1. For an irreducible quadratic polynomial P with integer coefficients,

VP (x) = O

(
x

(log x)0.0312

)
.

For the rest of this chapter, we let P (x) = ax2 + bx+ c.

3.1 Background results

3.1.1 Outline

Suppose P (n) lies in the range of the ϕ-function. Let p be the largest prime number for

which there exists a number m such that p|m and ϕ(m) = P (n). By definition, p− 1|P (n).

We write P (n) = (p − 1)v. We choose a number T = o(x), which we will optimize later.

There are three cases:
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1. p > 4ax,

2. T < p ≤ 4ax,

3. p ≤ T.

For a given number k, let ρ(k) be the number of solutions to the congruence P (n) ≡

0 mod k. Note that ρ is a multiplicative function. Let D be the discriminant of P (x). If a

prime q does not divide 2a, then the solutions to P (x) ≡ 0 mod q are

x ≡ −b±
√
D

2a
mod q,

assuming D is a quadratic residue mod q. If D is a non-residue, then there are no solutions.

Hence, for a given q - 2aD,

ρ(q) =

 2, if
(
D
q

)
= 1,

0, if
(
D
q

)
= −1.

For all but finitely many q, q - 2aD. In order to determine the density of primes which

split, ramify, or are inert in Q[
√
D], we must write a special case of the Chebotarev Density

Theorem [10]. In order to write this result, we need a definition.

Definition. Let L be a finite abelian extension of the number field K with Galois group G.

Let OK be the ring of algebraic integers of K. For a prime p ⊆ OK which is unramified in

L, let the Artin symbol A(p) be the unique element of Gal(L/K) with

A(p)(α) ≡ α#OK/p mod pOL

for all α ∈ OL.
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Theorem 3.1.1 (Chebotarev Density Theorem for abelian extensions, with error term).

Let K, L, and G satisfy the properties of the previous definition and let C be an element of

Gal(L/K). Then,

#{p ∈ OK : N(p) ≤ x,A(p) ∈ C} =
#C

#G

(
x

log x

)
+O

(
x

(log x)2

)
,

where N(p) is the norm of p in OK.

Chebotarev showed that the lefthand side is asymptotic to the main term of the righthand

side and Artin later found the error term [1, Satz 4]. For a set of primes S ⊆ OK , we define

the density of S as

d(S) = lim
x→∞

#{p ∈ S : (OK/p) ≤ x}
#{p ∈ OK : (OK/p) ≤ x}

,

assuming this limit exists. One corollary of the Chebotarev Density Theorem is that

d({p ∈ OK : N(p) ≤ x,A(p) ∈ C}) = #C/#G.

If L/Q is a quadratic extension of discriminant D, then

A(p) =

(
D

p

)

for all p - D, if we identify Gal(L/Q) with {±1}. We only need to the Chebotarev Density

Theorem to make the following observations. The sets

{
q :

(
D

q

)
= 1

}
,

{
q :

(
D

q

)
= −1

}

both have density 1/2 in the set of primes. More specifically, the sets

{
q ≤ x :

(
D

q

)
= 1

}
,

{
q ≤ x :

(
D

q

)
= −1

}
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have size

1

2
π(x) +O

(
x

(log x)2

)
.

Using partial summation, we can show that

∑
N(p)≤x
A(p)∈C

1

N(p)
=

#C

#G
log log x+O(1).

We repeatedly use this estimate to bound products such as

∏
p≤x

(Dp )=1

(
1− 2

p

)
,

where D is a constant.

3.1.2 A lower bound for ϕ(n)

We write a lower bound for ϕ(n).

Theorem 3.1.2 ([36, Theorem 328]). We have

lim inf
n→∞

ϕ(n) log log n

n
= e−γ,

where γ ≈ 0.577 is the Euler-Mascheroni constant.

The specific value on the righthand side of the equation is irrelevant for our purposes.

We only need the fact that it is a positive constant. Throughout this chapter, we use the

following corollary.

Corollary 3.1.3. We have

ϕ(n)� n

log log n
.
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3.1.3 The normal orders of ω(n) and Ω(n)

This subsection deals with the “typical” sizes of arithmetic functions. Even though certain

arithmetic functions vary wildly, they are almost always close to simple functions.

Recall that for a set of integers S, we define the density of S as

d(S) = lim
x→∞

#{n ≤ x : n ∈ S}
x

,

when this quantity exists.

Definition. Let f be an arithmetic function. The function g is a normal order of f if for

every ε > 0,

(1− ε)g(n) < f(n) < (1 + ε)g(n)

holds for almost all n (a set of density 1 in the integers).

The normal order theorems in this chapter all pertain to the following functions.

Definition. Let ω(n) be the number of distinct prime of factors of n and Ω(n) be the number

of (not necessarily distinct) prime factors of n. In addition, for a given y, we let ωy(n) and

Ωy(n) be the numbers of such prime factors which are ≤ y.

For a number n,

ωy(n) =
∑
p|n
p≤y

1, Ωy(n) =
∑
pep‖n
p≤y

ep.

The first major result on normal orders of arithmetic functions was the Hardy-Ramanujan

Theorem ([35], see [61] for an elementary proof.)

Theorem 3.1.4 (Hardy-Ramanujan Theorem). The function log log n is a normal order of

both ω(n) and Ω(n).
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A similar argument shows that if P is an irreducible polynomial, then log log n is also a

normal order of ω(P (n)) and Ω(P (n)). The Erdős-Kac Theorem [25] is a generalization of

the Hardy-Ramanujan Theorem. These results tell us how often ω and Ω are close to the

mean. We close this section with two results about how often they are far from the mean.

Theorem 3.1.5 ([34, Chapter 0]). Fix ε > 0 and α ∈ [1, 2− ε]. The number of n ≤ x with

Ω(n) > α log log n is Oε(x(log x)−Q(α)) with Q(α) = α(logα)− α + 1.

For the next theorem, we let M be the class of non-negative multiplicative functions

satisfying the following conditions:

1. there exists a positive constant A such that f(pn) ≤ An for all prime p and n ∈ Z+,

2. for all ε > 0, there exists a positive constant B = B(ε) such that f(n) ≤ Bnε for all

n ∈ Z+.

Theorem 3.1.6 ([46]). Let f ∈ M , let P be an irreducible polynomial with no fixed prime

divisors, and α, δ ∈ (0, 1). For all x, y ≥ 2 with xα ≤ y ≤ x,

∑
x−y<n≤x

f(|P (n)|)� y
∏
p≤x

(
1− ρ(p)

p

)
exp

(∑
p≤x

f(p)ρ(p)

p

)
,

provided that x ≥ c||P ||δ, where c is a constant depending only on degP , α, δ, and B, and

||P || is the largest absolute value of a coefficient of P .

Fix z > 1. We show that f(n) = zω(n) ∈ M . Note that f(n) = zω(n) is a non-negative

multiplicative function. In addition, f(p`) is 1 or z for all p and `. We observe that f(n)� nε

for all ε > 0:

f(n) = zω(n) � zlogn/ log logn = nlog z/ log logn � nε.

Hence, the previous theorem provides a bound on the sum of zω(n) over all n ≤ x. To give

the reader an idea of why such an estimate is useful to us, note that we could use this result
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to bound how often ω(n) is large. For any C, we have

#{n ≤ x : ω(n) ≥ C} ≤ 1

zC

∑
n≤x

zω(n).

We use an argument of this kind in the proof of Lemma 3.3.3, with ω(n) replaced with

ωT (P (n)).

3.1.4 Brun’s Sieve

Brun created his sieve in 1915 as a way of approaching the Goldbach and Twin Prime

Conjectures [9]. Rather than write Brun’s Sieve in full generality [35, Theorem 2.1], we

instead write a simplified version.

Theorem 3.1.7 (Brun’s Sieve). Fix A > 0 and k ∈ Z+. To each prime p ≤ xA, associate

kp ≤ k residue classes mod p. The number of positive integers n ≤ x that do not lie in any

of these residue classes is

�k,A x
∏
p≤xA

(
1− kp

p

)
.

We highlight an application of Brun’s Sieve that will be useful later in this chapter.

Let P be a fixed primitive irreducible polynomial (“primitive” means that the gcd of the

coefficients is 1). For each prime q, P (n) takes ρ(q) possible values mod q as n ranges over

the integers. A notable corollary of Brun’s Sieve [35, Theorem 2.6] states that

#{n ≤ x : P (n) is prime} � x
∏
q<x
ρ(q)6=q

(
1− ρ(q)

q

)
.

In our case, P is quadratic, which allows us to use the formula for ρ(q) in Section 1. We
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deduce that

#{n ≤ x : P (n) is prime} � x
∏
q<x

(Dq )=1

(
1− 2

q

)
.

3.2 A large factor of the form p− 1

Let V1 be the number of n ≤ x for which p > 4ax.

Theorem 3.2.1. We have

V1 = O

(
x(log log x)5

(log x)1−(e(log 2)/2)

)
.

Proof. We write ϕ(m) = P (n) with p|m for some p > 4ax. We first bound m. Note

that P (n) = an2 + bn + c ≤ 2an2 ≤ 2ax2 for x sufficiently large. By Corollary 3.1.3,

m� x2 log log x.

Using dyadic intervals, we can show that the number of m � x2 log log x with a divisor

of the form p2 with p > 4ax is O(x log log x/ log x). Hence, we may assume that p2 does not

divide m. We write m = pr with p - r. So, ϕ(m) = P (n) = (p− 1)v with ϕ(r) = v. Because

p > 4ax and P (n) ≤ 2ax2, v < x/2 as well.

We write

n ≡ t1, . . . , tρ(v) mod v,
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with 0 ≤ ti < v for all i ≤ ρ(v). Fix i and let t = ti. Let n = uv + t. We have

p =
P (n)

v
+ 1

=
P (uv + t)

v
+ 1

=
a(uv + t)2 + b(uv + t) + c

v
+ 1

= avu2 + (2at+ b)u+

(
at2 + bt+ c

v
+ 1

)
.

So, we can recast the problem in terms of u. Given v and a, we look for the number of values

of u for which the quadratic expression above is prime, then sum over all v and a. In other

words, we want to bound the size of

M = Mv,t = {u ≤ x/v : R(u) is prime},

where

R(u) = avu2 + (2at+ b)u+

(
at2 + bt+ c

v
+ 1

)
.

The discriminant of R is D − 4av. If R is reducible, then D − 4av is a square. The

number of v for which D− 4av is non-negative is OP (1). For each value of v, the number of

corresponding n is also OP (1). Because there are O(1) values of n for which R is reducible,

we assume that R is irreducible. Brun’s Sieve gives us

#M � x

v

∏
q<x/v
ρR(q)6=q

(
1− ρR(q)

q

)
,

where ρR(q) the number of solutions to R(u) ≡ 0 mod q for a given prime q.

The number of possible n is the sum of #M over all possible v and t. In addition, v lies

in the range of Euler’s function. For notational convenience, we let
∑′ have the condition
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that D − 4av is not a square. We have

V1 �
∑′

v<x/2
v∈ϕ(Z+)

∑
0≤t<v

P (t)≡0(v)

x

v

∏
2<q<x/v
ρR(q)6=q

(
1− ρR(q)

q

)
.

We now bound

∑′

v<x/2
v∈ϕ(Z+)

∑
0≤t<v

P (t)≡0(v)

x

v

∏
q<x/v
ρR(q)6=q

(
1− ρR(q)

q

)
� x

∑′

v<x/2
v∈ϕ(Z+)

ρ(v)

v

∏
2<q<x/v

q-av(D−4av)

(D−4av
q )=1

(
1− 2

q

)
.

For the product, we multiply by a similar product over the q dividing 2av(D− 4av) in order

to make it easier to manipulate:

x
∑′

v<x/2
v∈ϕ(Z+)

ρ(v)

v

∏
q<x/v

(D−4av
q )=1

(
1− 2

q

) ∏
2<q<x/v

q|av(D−4av)

(D−4av
q )=1

(
1− 2

q

)−1

.

We simplify the second product as follows:

∏
q<x/v

q|av(D−4av)

(D−4av
q )=1

(
1− 2

q

)−1

�
∏

q|v(D−4av)

(
1− 1

q

)−2

=

(
v(D − 4av)

ϕ(v|D − 4av|)

)2

� (log log(v|D − 4av|))2

� (log log v)2.

We now have

V1 � x
∑′

v<x/2
v∈ϕ(Z+)

ρ(v)(log log v)2

v

∏
q<x/v

(D−4av
q )=1

(
1− 2

q

)
.

41



For small v it is not difficult to show that D−4av is a quadratic residue mod q for about

half of all q < x/v. Unfortunately, v may be large enough relative to x that this is not always

true. We bound the product from above:

∏
q<x/v

(D−4av
q )=1

(
1− 2

q

)
=

∏
2<q<x/v

(
1− 1

q

(
1 +

(
D − 4av

q

))) ∏
2<q<x/v
q|D−4av

(
1− 1

q

)−1

� |D − 4av|
ϕ(|D − 4av|)

∏
2<q<x/v

(
1− 1

q

) ∏
2<q<x/v

(
1− 1

q

(
D − 4av

q

))

� log log v

log(x/v)

∏
2<q<x/v

(
1− 1

q

(
D − 4av

q

))
.

Therefore,

V1 � x
∑′

v<x/2
v∈ϕ(Z+)

ρ(v)(log log v)3

v log(x/v)

∏
2<q<x/v

(
1− 1

q

(
D − 4av

q

))

� x(log log x)3
∑′

v<x/2
v∈ϕ(Z+)

ρ(v)

v log(x/v)

∏
2<q<x/v

(
1− 1

q

(
D − 4av

q

))
.

We combine Lemmas 6 and 8 of [51] into one result, which we apply to the Kronecker

symbol.

Lemma 3.2.2. For every ε > 0, every squarefree integer d, and every real number y,

∏
2<q≤y

(
1− 1

q

(
d

q

))
= O(dε).

In addition, the number of (not necessarily squarefree) d ≤ x for which

∏
2<q≤y

(
1− 1

q

(
d

q

))
≤ (log log |3d|)2

42



does not hold for some y is O(xε).

If q - D− 4av and d is the squarefree part of D− 4av (the result of dividing D− 4av by

its largest square divisor), then

(
D − 4av

q

)
=

(
d

q

)
.

When d is the squarefree part of D − 4av,

∏
2<q≤y

(
1− 1

q

(
D − 4av

q

))
=

∏
2<q≤y
q-D−4av

(
1− 1

q

(
d

q

))

=
∏

2<q≤y
q|D−4av

(
1− 1

q

(
d

q

))−1 ∏
2<q≤y

(
1− 1

q

(
d

q

))

≤
∏

2<q≤y
q|D−4av

(
1− 1

q

)−1 ∏
2<q≤y

(
1− 1

q

(
d

q

))

=
D − 4av

ϕ(|D − 4av|)
∏

2<q≤y

(
1− 1

q

(
d

q

))
� (log log |3(D − 4av)|)

∏
2<q≤y

(
1− 1

q

(
d

q

))
.

For a given squarefree number d, the number of numbers ≤ x with squarefree part d is

O(x1/2). For all but O(x(1/2)+ε) numbers v ≤ x/2,

∏
2<q≤y

(
1− 1

q

(
D − 4av

q

))
≤ (log log |3(D − 4av)|)3.

Let S(k) be the squarefree part of k. We split our sum into two parts.
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Suppose S(D − 4av) /∈ D:

∑′

v<x/2
v∈ϕ(Z+)

ρ(v)

v log(x/v)

∏
2<q<x/v

(
1− 1

q

(
D − 4av

q

))
� (log log x)3

∑
v<x/2
v∈ϕ(Z+)

ρ(v)

v log(x/v)
.

We bound this sum using dyadic intervals:

∑
v<x/2
v∈ϕ(Z+)

ρ(v)

v log(x/v)
=

∑
i<log x/ log 2

∑
2i<x/v≤2i+1

v∈ϕ(Z+)

ρ(v)

v log(x/v)

�
∑

i<log x/ log 2

2i

x log(2i)

∑
2i<x/v≤2i+1

v∈ϕ(Z+)

ρ(v)

�
∑

i<log x/ log 2

1

i

(
1

x/2i

) ∑
v<x/2i

v∈ϕ(Z+)

ρ(v).

We bound the sum of the ρ(v) terms using Hölder’s Inequality. Let A,B > 1 satisfy

(1/A) + (1/B) = 1. Recall that V (x) is the number of n ≤ x in the range of ϕ. For the

following equation, we use the fact that V (x)� x/(log x)1−ε for all ε > 0. We have

∑
v<x/2i

v∈ϕ(Z+)

ρ(v) �

 ∑
v<x/2i

ρ(v)A

1/A
 ∑

v<x/2i

v∈ϕ(Z+)

1B


1/B

�

 ∑
v<x/2i

ρ(v)A

1/A

(V (x/2i))1/B

�

 ∑
v<x/2i

ρ(v)A

1/A(
x/2i

(log(x/2i))1−ε

)1/B

.

In order to bound the sum of ρ(v)A, we use the first of the following two upper bounds on

partial sums of nonnegative multiplicative functions (the k = 1, y = x cases of [57], [50]).
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We use the second bound in Section 3.3.1.

Theorem 3.2.3. Let f ∈M , as used in Theorem 3.1.6.

(a) We have ∑
n≤x

f(n)� x

log x
exp

(∑
p≤x

f(p)

p

)
.

(b) In addition, ∑
p≤x

f(p− 1)� x

(log x)2
exp

(∑
p≤x

f(p)

p

)
.

We show that ρ ∈M . For a given prime p, let pσ1‖D. It is well-known (see [46, Theorem

53]) that if some coefficient of P (x) is not a multiple of p, then ρ(pr) ≤ ρ(p2σ1+1). Suppose

P (x) = pσ2Q(x) where σ2 is maximal, i.e. some coefficient of Q(x) is not a multiple of p. For

all r ≥ σ2, ρ(pr) = ρQ(pr−σ2) because each solution to the congruence Q(x) ≡ 0 mod pr−σ2

lifts to a solution of P (x) ≡ 0 mod pr. (If r ≤ σ2, then ρ(pr) = pr ≤ pσ2). So,

ρ(pr) = ρQ(pr−σ2) ≤ ρQ(p2(σ1−2σ2)+1)

because the discriminant of Q(x) is D/p2σ2 . For all r,

ρ(pr) ≤ max(ρQ(p2(σ1−2σ2+1), pσ2).

For all but finitely many p, σ1 ≤ 2. Thus, ρ(pr) is bounded by a constant C, giving us (1).

We have

ρ(n) ≤ Cω(n) � C logn/ log logn = o(nε)

for all ε > 0, implying (2).
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Therefore,

∑
v<x/2i

ρ(v)A � x/2i

log(x/2i)
exp

 ∑
q<x/2i

ρ(q)A

q



� x/2i

log(x/2i)
exp


∑
q|2aD

qA

q
+
∑
q<x/2i

q-2aD
(Dq )=1

2A

q



� x/2i

log(x/2i)
exp


∑
q<x/2i

(Dq )=1

2A

q


� x/2i

log(x/2i)
exp(2A−1 log log(x/2i))

� (x/2i)(log(x/2i))2A−1−1.

Plugging this into our earlier inequality gives us

∑
v<x/2i

v∈ϕ(Z+)

ρ(v)�
( x

2i

)(
log
( x

2i

)) 2A−1−1
A

− 1
B

+ ε
B

=
( x

2i

)(
log
( x

2i

)) 2A

2A
−1+(1− 1

A)ε
.

The minimum value of (2A/(2A))− 1 is ((e log 2)/2)− 1 < 0, which occurs at A = 1/ log 2.

Hence, ∑
v<x/2i

v∈ϕ(Z+)

ρ(v)� x/2i

(log(x/2i))1−((e log 2)/2)−(1−log 2)ε
,
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giving us

∑
v<x/2
v∈ϕ(Z+)

ρ(v)

v log(x/v)
�

∑
i<log x/ log 2

1

i

(
1

x/2i

) ∑
v<x/2i

v∈ϕ(Z+)

ρ(v)

�
∑

i<log x/ log 2

1

i(log(x/2i))1−((e log 2)/2)−(1−log 2)ε
.

For notational convenience, we replace ε with (1 − log 2)ε. We may now finish off our

dyadic interval. In order to bound this sum, we split it into two cases: i > K and i < K,

with K = (log x)O(1):

∑
i<K

1

i(log(x/2i))1−(e(log 2)/2)−ε �
∑
i<K

1

i(log(x/2K))1−(e(log 2)/2)−ε �
logK

(log(x/2K))1−(e(log 2)/2)−ε ,

∑
K<i<log x/ log 2

1

i(log(x/2i))1−(e(log 2)/2)−ε �
∑

i<log x/ log 2

1

K
� log x

K
.

Setting the two sums equal to each other suggests choosing K = (log x)e(log 2)/2. This yields

∑
v<x/2

S(D−4av)/∈D

∑
t

#Mv,t �
x

(log x)1−e(log 2)/2−ε .

Suppose S(D − 4av) ∈ D. Let U be a function of x chosen with U = O(xε) for all ε.

Suppose v ≤ U . We want to bound

(log log x)3
∑′

v≤U

ρ(v)

v log(x/v)

∏
q<x/v

(
1− 1

q

(
D − 4av

q

))
.

By Lemma 3.2.2, the product above is O(vε) for any ε > 0. In addition, log(x/v) � log x
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because v ≤ U . We already established that ρ(v)� vε. Putting this together, we have

∑′

v≤U

ρ(v)

v log(x/v)

∏
q<x/v

(
1− 1

q

(
D − 4av

q

))
�
∑
v<U

1

v1−2ε log x
� U2ε

log x
.

Now, we consider the case where S(D − 4av) ∈ D and U < v < x/2. We have

∑′

U<v<x/2
S(D−4av)∈D

ρ(v)

v log(x/v)

∏
q<x/v

(
1− 1

q

(
D − 4av

q

))
�

∑
U<v<x/2

S(D−4av)∈D

1

v1−2ε log(x/v)
.

Because v < x/2, log(x/v)� 1. At this point, we use dyadic intervals:

∑
U<v<x/2

S(D−4av)∈D

1

v1−2ε
�

∑
i

∑
2iU<v<2i+1U
S(D−4av)∈D

1

v1−2ε

� 1

U1−2ε

∑
i

∑
v<2i+1U

S(D−4av)∈D

1

2(1−2ε)i

� 1

U1−2ε

∑
i

(2i+1U)(1/2)+2ε

2(1−2ε)i

� 1

U (1/2)−4ε

∑
i

1

2((1/2)−2ε)i

� 1

U (1/2)−4ε
.

We add our sums for v < U and v ≥ U together:

∑′

v<x/2
S(D−4av)∈D

ρ(v)

v log(x/v)

∏
q<x/v

(
1− 1

q

(
D − 4av

q

))
� U2ε

log x
+

1

U (1/2)−4ε
.

We choose U so that

1

log x
=

1

U1/2
.
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Thus,

U = (log x)2

and

∑′

v<x/2
S(D−4av)∈D

ρ(v)(log log v)3

v log(x/v)

∏
q<x/v

(
1− 1

q

(
D − 4av

q

))
� 1

(log x)1−4ε
+

1

(log x)1−8ε

∼ 1

(log x)1−8ε
.

We have obtained the following bound:

V1 = O

(
x

(log x)1−e(log 2)/2−ε +
x(log log x)3

(log x)1−8ε

)
= O

(
x

(log x)1−e(log 2)/2−ε

)
.

3.3 A factor of the form p− 1 in the interval (T, 4ax)

In this section, we assume that T < p ≤ 4ax. In addition, fix a number A ∈ (1/2, 1). We

define V2 and V3 as the number of n ≤ x for which T < p < 4ax and ΩT (p− 1) < A log log T

and the number of n ≤ x for which T < p < 4ax and ΩT (p− 1) > A log log T , respectively.

3.3.1 A bound for V2

Theorem 3.3.1. For all A ∈ (1/2, 1), we have

V2 = O

(
x

(log T )A logA−A+1

)
.

Proof. Given p, we can bound the number of n ≤ x for which p − 1 divides P (n). The
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number of n ≤ x for which p− 1|P (n) is

xρ(p− 1)

p− 1
+O(ρ(p− 1)).

In order to bound the number of possible n for any given p satisfying the conditions above,

we sum over all possible p. We obtain

V2 ≤
∑

T<p<4ax
ΩT (p−1)<A log log T

(
xρ(p− 1)

p− 1
+O(ρ(p− 1))

)
.

We have ρ(p−1) < (1/(4a))xρ(p−1)/(p−1). So, we only need to consider the first term

of the sum in order to bound the order of magnitude:

V2 � x
∑

T<p<4ax
ΩT (p−1)<A log log T

ρ(p− 1)

p− 1
.

Fix a constant B < 1. Because ΩT (p− 1) < A log log T ,

BΩT (p−1) > BA log log T = (log T )A logB.

For each prime p in our sum,

BΩT (p−1)

(log T )A logB
> 1.

Multiplying every term in our sum by this quantity will increase the sum. Hence,

∑
T<p<4ax

ΩT (p−1)<A log log T

ρ(p− 1)

p− 1
≤

∑
T<p<4ax

ΩT (p−1)<A log log T

ρ(p− 1)

p− 1

(
BΩT (p−1)

(log T )A logB

)

≤ 1

(log T )A logB

∑
T<p<4ax

BΩT (p−1)ρ(p− 1)

p− 1
.
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Let k = log 2. In order to evaluate this sum, we break it into dyadic intervals:

∑
T<p<4ax

BΩT (p−1)ρ(p− 1)

p− 1
≤

∑
0≤i<k log(4ax/T )+1

∑
2iT≤p<2i+1T

BΩT (p−1)ρ(p− 1)

p− 1

�
∑

0≤i<k log(4ax/T )+1

1

2iT

∑
2iT≤p<2i+1T

BΩT (p−1)ρ(p− 1).

By Theorem 3.2.3,

∑
2iT≤p<2i+1T

BΩT (p−1)ρ(p− 1) � 2i+1T

log(2i+1T )
exp

 ∑
p<2i+1T

BΩT (p)ρ(p)

p
−
∑
p<2iT

1

p



� 2iT

log(2iT )
exp

∑
p|2aD

B

p
+
∑
p≤T

(Dp )=1

2B

p
+

∑
T<p<2i+1T

(Dp )=1

2

p
−
∑
p<2iT

1

p


� 2iT

log(2i)
exp(log log(2i+1T )− log log(2iT )− (1−B) log log T )

� 2iT

i
exp(−(1−B) log log T )

∼ 2iT

i(log T )1−B .

Hence, ∑
T<p<4ax

BΩT (p−1)ρ(p− 1)

p− 1
�

∑
i<k log(4ax/T )+1

1

i(log T )1−B �
log log x

(log T )1−B .

Putting all this together shows us that

V2 �
x

(log T )A logB−B+1
.
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We fix A and let B = A to make A logB −B + 1 as large as possible. Hence,

V2 = O

(
x

(log T )A logA−A+1

)
.

Note that A logA− A+ 1 is positive for all A ∈ (1/2, 1).

3.3.2 A bound for V3

Theorem 3.3.2. We have

V3 = O

(
x

(log T )(A+(1/2)) log(A+(1/2))−A+(1/2)

)
.

To prove this theorem, we must show two preliminary results. Suppose P (n) = (p−1)(q−

1)v with p, q > T and ΩT (p − 1),ΩT (q − 1) > A log log T . Then, ΩT (P (n)) > 2A log log T .

We bound the number of such n with the following results.

Lemma 3.3.3. For all ε > 0, the number of n ≤ x for which ωT (P (n)) > (1 + ε) log log T is

O

(
x

(log T )(1+ε) log(1+ε)−ε

)
.

Proof. Fix z > 1. We bound the sum of zωT (P (n)).

By Theorem 3.1.6,

∑
n≤x

zωT (P (n)) � x
∏
q≤x

(
1− ρ(q)

q

)
exp

(∑
q≤x

zωT (q)ρ(q)

q

)
.
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We have

∑
n≤x

zωT (P (n)) � x
∏
q≤x

(Dq )=1

(
1− 2

q

)
exp

∑
q|2aD

z

q
+
∑
q<T

(Dq )=1

2z

q
+
∑
T<q≤x
(Dq )=1

2

q


� x

(
1

log x

)
exp(log log x+ (z − 1) log log T ))

= x(log T )z−1.

Let M be the number of n ≤ x for which ωT (P (n)) > (1 + ε) log log T . Then,

∑
n≤x

zωT (P (n)) ≥ z(1+ε) log log TM = (log T )(1+ε) log zM.

Combining our two bounds gives us

M � x(log T )z−(1+ε)(log z)−1

We can choose z to minimize the exponent. At the minimum, z = 1 + ε, giving us

M � x

(log T )(1+ε) log(1+ε)−ε .

Theorem 3.3.4. For all C, δ > 0, the number of n ≤ x for which P (n) has a square divisor

greater than (log T )C is

O

(
x

(log T )(1−δ)C/2

)
.

Proof. Suppose r2|P (n) with r2 > (log T )C . Assume r2 ≤ x2−ε for a fixed ε > 0. The number

of possible n ≤ x is ∑
r:(log T )C<r2≤x2−ε

(
xρ(r2)

r2
+O(ρ(r2))

)
.
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For all ε > 0, ρ(r2)� rδ. Therefore,

∑
(log T )C<r2≤x2−ε

xρ(r2)

r2
�

∑
r>(log T )C/2

x

r2−δ ∼
x

(log T )(1−δ)C/2

and ∑
(log T )C<r2≤x2−ε

ρ(r2)�
∑

r≤x1−(ε/2)

rδ � x1+δ−(ε/2).

If ε > 2δ, then the second sum is smaller than a constant multiple of the first one.

We may assume that r2 > x2−ε. If r has a divisor d ∈ ((log T )C/2, x1−(ε/2)], then P (n)

has a square divisor in the range ((log T )C , x2−ε], which we have already discussed. Sup-

pose otherwise. Let p be a prime factor of r. If p ∈ (xε/2, x1−(ε/2)/(log T )C/2], then r/p ∈

((log T )C/2, x1−(ε/2)]. We may assume that if p|r, then p ≤ xε/2 or p > x1−(ε/2)/(log T )C/2. If

every prime factor is ≤ xε/2, then r has a divisor in the range ((log T )C/2, x1−(ε/2)]. There-

fore, the largest prime factor of r is greater than x1−(ε/2)/(log T )C/2. There exists some prime

p > x1−(ε/2)/(log T )C/2 such that p2|P (n). The number of n with this property is

∑
x2−ε/(log T )C<p2�x2

(
xρ(p2)

p2
+O(ρ(p2))

)
.

We have already established that the first sum is sufficiently small. In addition,

∑
x2−ε/(log T )C<p2�x2

ρ(p2)� x

log x
.

Corollary 3.3.5. For all ε < 1.75, the number of n ≤ x for which ΩT (P (n)) > (1+ε) log log T

is

O

(
x

(log T )(1+(ε/2)) log(1+(ε/2))−(ε/2)

)
.

Proof. Let n ≤ x. If ΩT (P (n)) > (1 + ε) log log T , then there are two possibilities:
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1. ωT (P (n)) > (1 + (ε/2)) log log T ,

2. ΩT (P (n))− ωT (P (n)) > (ε/2) log log T .

By Lemma 3.3.3, the number of n satisfying the first condition is

O

(
x

(log T )(1+(ε/2)) log(1+(ε/2))−(ε/2)

)
.

Suppose ΩT (P (n)) − ωT (P (n)) > (ε/2) log log T . Then, P (n) has a square factor greater

than 2(ε/2) log log T = (log T )ε(log 2)/2. By the previous theorem, the number of n satisfying the

second condition is

O

(
x

(log T )ε(log 2)/4

)
.

For all ε < 1.75,

(1 + (ε/2)) log(1 + (ε/2))− (ε/2) < ε(log 2)/4.

Therefore, the number of n ≤ x for which ΩT (P (n)) > (1 + ε) log log T is

O

(
x

(log T )(1+(ε/2)) log(1+(ε/2))−(ε/2)

)
.

For the rest of this section, we will let ε < 1.75. Suppose there exist p, q ∈ (T, 4ax) with

ΩT (p−1),ΩT (q−1) > A log log T and (p−1)(q−1)|P (n). Then ΩT (P (n)) > 2A log log T >

(1 + ε) log log T for ε < 2A− 1, which we have handled with the previous theorem.

The other possibility is that m = pr, where r is T -smooth and ΩT (ϕ(r)) < A log log T .

If r is T -smooth, then v = ϕ(r) is T -smooth as well. Therefore, P (n) = (p − 1)v with v

T -smooth. Hence,

P (n) = (p− 1)v < 4axTA log log T .

If TA log log T � x1−δ for some δ > 0, then P (n) = O(x2−δ), which would imply that n =

55



O(x1−(δ/2)). We find a value of T for which TA log log T is very close to x1−δ. We have

A log T log log T = (1− δ) log x.

An approximate solution is

T = exp

(
1− δ
A

(
log x

log log x

))
.

For such T (for all δ > 0),

V3 = O

(
x

(log T )(1+(ε/2)) log(1+(ε/2))−(ε/2)

)
= O

(
x

(log T )(A+(1/2)) log(A+(1/2))−A+(1/2)−δ

)
.

Note that V1 is independent of T , whereas V1 and V2 decrease as T increases. In order to let

T be as large as possible, we use the formula for T above for the rest of the chapter.

3.4 The number p is small

Suppose that if ϕ(m) = P (n), then m is T -smooth. We use an argument similar to the

one at the end of the previous section to show that the number of such n is negligible. By

Theorem 3.3.4, we may assume that ΩT (P (n)) < A log log T . In addition, P (n) is T -smooth

because m is T -smooth. Hence,

P (n) < TA log log T = o(x).

So, we may assume that n = o(x1/2). We may ignore such n.
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3.5 Optimizing parameters

Here are the bounds we obtained (for all δ > 0):

V1 = O

(
x

(log x)1−e(log 2)/2−δ

)
,

V2 = O

(
x

(log T )A logA−A+1

)
,

V3 = O

(
x

(log T )(A+(1/2)) log(A+(1/2))−A+(1/2)−δ

)
.

The previous section states that if ϕ(m) = P (n), then we may assume that m is not T -

smooth. Therefore, VP (x) is at most the sum of our upper bounds for V1, V2, and V3.

We now optimize our bounds for V2 and V3. As A increases, V2 increases and V3 decreases.

We set V2 and V3 approximately equal:

x

(log T )A logA−A+1
=

x

(log T )(A+(1/2)) log(A+(1/2))−A+(1/2)
,

which implies that

A logA− A+ 1 = (A+ (1/2)) log(A+ (1/2))− A+ (1/2).

The solution is A ≈ 0.76. Plugging in this value shows that

V2 + V3 �
x

(log T )0.0312−δ .

Recall that T = exp(((1− δ)/A)(log x/ log log x)). Therefore,

VP (x) = O

(
x

(log x)0.0312−δ

)
.
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Chapter 4

Additively unique sets of prime

numbers

Recall from the introduction that a set S is additively unique (AU) if the only multiplicative

function f for which f(m+n) = f(m) + f(n) for all m,n ∈ S is the identity function. Spiro

proved the following notable result [58].

Theorem 4.0.1. The primes are AU.

In this chapter, we refine the previous theorem to prove Theorem 1.3.4, which we restate

here.

Theorem 4.0.2. A set of primes is AU if and only if it contains every prime that is not

the larger element of a twin prime pair, and at least one element of {5, 7}.

Our proof of this result is very similar to Spiro’s proof of Theorem 4.0.1.

4.1 Preliminary results

To start the proof, we show that the primes listed in Theorem 1.3.4 are necessary. From

here on, S will refer to a set of primes.
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Lemma 4.1.1. If S is AU, then S contains every prime that is not the larger element of a

twin prime pair.

Proof. Let p0 be a prime that is not the larger element of a twin prime pair. Suppose p0 /∈ S.

Consider the function

f(n) =

 1, if n ∈ {1, p0},

0, otherwise.

It is clear that f is multiplicative. Let p, q ∈ S. Then, p and q are primes that are not

equal to p0. If p0 = 2, then p + q > p0. Otherwise, p0 is odd. If p + q = p0, then p or q

must be 2. But, this is impossible because p0 is not the larger element of a twin prime pair.

Hence, p + q 6= p0. So, f(p + q) = f(p) + f(q) = 0. Thus, f ∈ F even though f is not the

identity function. If p0 /∈ S, then S is not AU.

The next lemma would still hold if we replaced 5 and 7 with any twin prime pair p, p+ 2,

but this would not give us any new information.

Lemma 4.1.2. If S is AU, then S contains 5 or 7.

Proof. Suppose 5, 7 /∈ S. Consider the function

f(n) =

 1, if n ∈ {1, 7},

0, otherwise.

Once again, f is multiplicative. Let p, q ∈ S. Then, p, q, p+ q 6= 7 because the only way

to express 7 as the sum of two primes is 2 + 5. So, f ∈ F . Because f is not the identity

function, S is not AU.

Now that we have the necessity of the primes in Theorem 1.3.4, we may spend the rest

of this chapter establishing their sufficiency. Over the next few lemmas, we show that if
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f(m + n) = f(m) + f(n) for all m,n in an additively unique set S, then f(n) = n for all

n ≤ 23.

Lemma 4.1.3. If f(p) + f(q) = f(p+ q) for all p, q ∈ S, then f(2) = 2 and f(3) = 3.

Proof. Suppose f(2) 6= 2. Let p0 be a prime that is not the larger element of a twin prime

pair. We see that

f(2)f(p0) = f(2p0) = f(p0) + f(p0) = 2f(p0).

Hence, (f(2)− 2)f(p0) = 0. However, f(2) 6= 2. Thus, f(p0) = 0.

Suppose 5 ∈ S. Then, f(4) = f(2) + f(2) = 2f(2) and f(5) = f(2) + f(3) = f(2). In

addition,

2f(2)2 = f(4)f(5) = f(20) = f(3) + f(17) = 0 + 0 = 0.

Hence, f(2) = 0. If p0 is the larger element of a twin prime pair, then

f(p0) = f(2) + f(p0 − 2) = 0,

implying that f vanishes on all primes.

Suppose 7 ∈ S. Then,

f(2)f(7) = f(14) = f(3) + f(11) = 0 + 0 = 0.

At least one of f(2), f(7) is zero. Once again, f(4) = 2f(2) and f(5) = f(2). Note that

f(20) = f(7) + f(13) = f(7)

and

f(20) = f(4)f(5) = 2f(2)2.
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So, f(2) = 0 if and only if f(7) = 0. Hence, f(2) = f(7) = 0. This implies that f vanishes

on the primes, which is impossible. Thus, f(2) = 2.

We split the proof of f(3) = 3 into two cases, depending on whether 5 ∈ S or 7 ∈ S. In

both parts, we write f(n) in terms of f(3) for multiple values of n, then use these values to

solve for f(3). In addition, we note that f(4) = 2f(2) = 4 and f(5) = f(3) + 2.

1. Suppose 5 ∈ S. We have

f(7) = f(2) + f(5) = f(3) + 4,

f(14) = f(2)f(7) = 2f(3) + 8,

f(11) = f(14)− f(3) = f(3) + 8,

f(20) = f(4)f(5) = 4f(3) + 8,

f(17) = f(20)− f(3) = 3f(3) + 8,

f(22) = f(2)f(11) = 2f(3) + 16,

f(22) = f(5) + f(17) = 4f(3) + 10,

4f(3) + 10 = 2f(3) + 16,

f(3) = 3.

2. Suppose 7 ∈ S. We have

f(10) = f(2)f(5) = 2f(3) + 4,

f(7) = f(10)− f(3) = f(3) + 4,
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f(14) = f(2)f(7) = 2f(3) + 8,

f(11) = f(14)− f(3) = f(3) + 8,

f(13) = f(2) + f(11) = f(3) + 10,

f(26) = f(2)f(13) = 2f(3) + 20,

f(23) = f(26)− f(3) = f(3) + 20,

f(20) = f(4)f(5) = 4f(3) + 8,

f(17) = f(20)− f(3) = 3f(3) + 8,

f(34) = f(2)f(17) = 6f(3) + 16,

f(34) = f(11) + f(23) = 2f(3) + 28,

6f(3) + 16 = 2f(3) + 28,

f(3) = 3.

We extend this lemma a little further.

Lemma 4.1.4. Using the same conditions as before, f(n) = n for all n ≤ 23.

Proof. We proceed by induction starting from the fact that f(n) = n for all n < 5. If n is

not a prime power, then n = ab, with gcd(a, b) = 1 and a, b > 1. So, f(n) = f(a)f(b) = n.

We only need to check that f(n) = n when n is a prime power. The only possibilities

are n = 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23. In both cases of the previous proof, f(4) = 2f(2),

f(5) = f(3) + 2, f(7) = f(3) + 4, f(11) = f(3) + 8, and f(17) = 3f(3) + 8. Therefore,

f(n) = n for all n ∈ {5, 7, 11, 17}. Here are the other primes:

f(13) = f(11) + f(2) = 13,
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f(19) = f(17) + f(2) = 19,

f(23) = f(26)− f(3) = f(2)f(13)− f(3) = 23.

The only remaining cases are n = 8, 9, 16. If 5 ∈ S, then

f(8) = f(5) + f(3) = 8,

f(16) = f(11) + f(5) = 16,

f(9) =
f(45)

f(5)
=
f(44) + f(1)

5
=
f(4)f(11) + 1

5
= 9.

If 7 ∈ S, then

f(8) =
f(24)

f(3)
=
f(17) + f(7)

3
= 8,

f(9) = f(7) + f(2) = 9,

f(16) =
f(48)

f(3)
=
f(37) + f(11)

3
=

(f(40)− f(3)) + 11

3
=
f(5)f(8) + 8

3
= 16.

In addition to proving that the primes are AU unconditionally, Spiro also found a shorter

proof conditional on Goldbach’s Conjecture. Similarly, we may prove Theorem 1.3.4 using

a variant of Goldbach’s Conjecture, which we write here.

Conjecture 4.1.5. If n is a composite prime power other than 4, 8, 9, 49, and 64, then 2n

is the sum of two primes that are not the larger elements of a twin prime pair.

Theorem 4.1.6. Assuming the conclusion of Conjecture 4.1.5 for all numbers 2n with n ≤

M , f(n) = n for all n ≤M .

Proof. We already know that f(n) = n for all n ≤ 23. We proceed by induction. Suppose

f(n) = n for all n < m with 23 < m ≤ M . We show that f(m) = m. If m is not a prime
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power, then m = ab for some relatively prime a, b with a, b > 1. Therefore,

f(m) = f(a)f(b) = ab = m.

If m is the larger element of a twin prime pair, then

f(m) = f(2) + f(m− 2) = 2 + (m− 2) = m.

Suppose m is a prime for which m − 2 is not prime. Then, m + q ≡ 2 mod 4 for some

q ∈ {3, 17}. In this case, (m+ q)/2 is an odd number. Because (m+ q)/2 < m, we have

f(m+ q) = f(2)f

(
m+ q

2

)
= 2

(
m+ q

2

)
= m+ q,

which implies that

f(m) = f(m+ q)− f(q) = m.

Suppose m is a prime power other than 49 and 64. If m is a power of 2, then m = p+ q

for some prime p, q with p − 2, q − 2 not prime. By our inductive assumption, f(m) = m.

Suppose m is an odd prime power. Then, 2m = p+ q with p− 2, q− 2 not prime. Let p < q.

Then, p < m < q < 2m. We know that f(p) = p, so it suffices to show that f(q) = q. There

exists an r ∈ {3, 17, 23, 29} such that q + r ≡ 4 mod 8. Thus,

f(q) + f(r) = f(q + r) = f(4)f

(
q + r

4

)
= q + r.

We obtain f(q) = q and f(m) = m.

Finally, we consider n = 49 and n = 64:

f(49) =
f(196)

f(4)
=
f(179) + f(17)

4
=

(f(182)− f(3)) + 17

4
=
f(2)f(7)f(13) + 14

4
= 49,
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f(64) =
f(192)

f(3)
=
f(187) + f(5)

3
=
f(11)f(17) + f(5)

3
= 64.

4.2 An unconditional proof

Computational tests show that Conjecture 4.1.5 holds for all prime powers less than 1016.

Therefore, f(n) = n for all n ≤ 1016. Our goal for the rest of this chapter is to show that

f(n) = n for all n. First, we show that f(n) = n on a specific set H containing the primes.

Then, we show that if n is the smallest number satisfying f(n) 6= n, then there exists a

number m with gcd(m,n) = 1 and mn = p+ q with p, q prime and p− 2, q − 2 prime. This

will imply that f(n) = n by induction.

Theorem 4.2.1. Let

H = {n : vp(n) ≤ 1 if p > 1000; pvp(n)+1 < 109 if p < 1000}.

Then, f(n) = n for all n ∈ H.

The following lemma is a variant of [58, Lemma 5]. Throughout the proof of the lemma,

we use π2(x) to refer to the number of twin prime pairs with smaller element at most x.

Lemma 4.2.2. For every prime p > 1016, there is an odd prime q < p with q − 2 not prime

such that p+ q ∈ H.

Proof. Let p > 1016 be prime and N(p) be the number of primes q < p such that p+ q ∈ H.

In the proof of [58, Lemma 10], Spiro showed that if p > 1010, then

N(p) ≥ 0.3
p− 1

log(p− 1)
.
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We may put upper bounds on π2(x). Using Brun’s Sieve, we have

π2(x)� x

(log x)2
.

A special case of the Bateman-Horn Conjecture [7] states that

lim
x→∞

π2(x)

(
x

(log x)2

)−1

=
∏
p>2

(
1− 1

(p− 1)2

)
≈ 0.66.

(The twin prime constant is the product above.) Even if we could prove the Bateman-Horn

Conjecture, this result would be insufficient as we would not know how quickly the lefthand

side of the equation approaches 0.66. We use an explicit result. Suppose p > 1016. By [38,

Theorem 5.14],

π2(p) ≤ 7.68
p

(log p)2
.

Because p > 1016, log p > 36.8, implying that

π2(p) ≤ 0.21
p

log p
.

For p > 1016,

p− 1

log(p− 1)

(
p

log p

)−1

=

(
1− 1

p

)
log p

log(p− 1)
> 1− 1

p
> 1− 10−16.

Therefore,

N(p) ≥ 0.3
p− 1

log(p− 1)
> 0.3(1− 10−16))

p

log p
> 0.29

p

log p
,

which gives us

N(p)− π2(p) > 0.08
p

log p
≥ 0.08

1016

log(1016)
= 2.17 · 1013.
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Because this difference is greater than 1, there exists an odd prime q < p with q − 2 not

prime such that p+ q ∈ H.

We can now prove Theorem 4.2.1.

Proof of Theorem 4.2.1. We proceed by induction on H. Let m ∈ H with m > 1016. Assume

that f(n) = n for all n ∈ H with n < m. Assume that m is not a prime power. Then,

f(m) = f(a)f(b) with gcd(a, b) = 1 and a, b > 1. Note that a, b ∈ H because the exponents

of their prime factors are at most as large as they are in m.

Suppose m is a prime power. Then, m = pα for some prime p. If p < 1000, then pα < 109,

which is impossible. Thus, p > 1000. In this case, α = 1. Hence, m is prime. If m − 2 is

prime, then f(m− 2) = m− 2 because m− 2 ∈ H. Therefore, f(m) = f(m− 2) + f(2) = m.

Suppose m− 2 is composite. There exists an odd prime q < m with q− 2 not prime such

that m + q ∈ H. Clearly, m + q is even. However, m + q is not a power of 2 because every

power of 2 in H is less than 109. We may write m+ q = 2kr with r odd and r ∈ H. Because

r < m,

f(m) = f(m+ q)− f(q) = f(2k)f(r)− f(q) = 2kr − q = (m+ q)− q = m.

Now that we know that f(n) = n for all n ∈ H, we may show that f(n) = n for all n.

Proof of Theorem 1.3.4. We prove the statement for all n /∈ H. Suppose n is not a multiple

of 3. Then, the set of even elements r ∈ H for which r ≡ 1 mod 3 and gcd(r, n) = 1

has positive density [41, §174] because H contains all squarefree numbers. Almost all even

numbers m can be expressed as a sum of two primes [27]. However, it is also almost always

the case that m − 2, m − 3, and m − 5 are composite. Therefore, almost all even numbers
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can be expressed as the sum of two primes greater than 5. We have

rn = p+ q

with p, q primes greater than 5 for some r. Because rn ≡ 1 mod 3, we have p, q ≡ 2 mod 3.

This implies that p and q are not the larger elements of twin prime pairs. Hence,

f(r)f(n) = f(rn) = f(p+ q) = f(p) + f(q).

Because p, q, r ∈ H, f(p) = p, f(q) = q, and f(r) = r. Therefore, f(n) = n.

Since f is multiplicative, we only need to show that f(n) = n for all powers of 3 to finish

the proof. Let n = 3α. Let p be a prime congruent to 1 mod 3 that is not the larger element

of a twin prime pair (such as 37). By Dirichlet’s Theorem, there exists a prime q satisfying

3α ‖ p+ q. Then, p+ q = 3αr with 3 - r. In addition, p and q are not the larger elements of

twin prime pairs. Hence, f(3α) = 3α. Therefore, f is the identity function.
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