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ABSTRACT 

 The object-based image matching algorithms have been widely used in the image 

processing and computer vision fields. A variety of applications based on image matching 

algorithms have been recently developed for object recognition, 3D modeling, video tracking, 

and biomedical informatics. One prominent example of image matching features is the Scale 

Invariant Feature Transform (SIFT) scheme. In this thesis work, we initially investigated using 

SIFT algorithms to identify and match objects in biomedical images based on the recently 

released iPad 2 platform. The major methodological contribution of this work is leveraging the 

convenient user interface and ubiquitous Internet connection on iPad 2 for interactive 

delineation, segmentation, representation, matching and retrieval of biomedical images. With 

these technologies, this thesis showcased examples of performing reliable image matching from 

different views of an object in the applications of semantic image search for biomedical 

informatics. 
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CHAPTER 1 

INTRODUCTION 

Many image matching algorithms have been developed in the computer vision and image 

processing fields recently. As a result, there are a variety of applications based on image 

matching algorithms that have played important roles in computer vision and other domains. 

These applications include image stitching, object recognition, image fusion, image registration, 

motion tracking and gesture recognition [12, 13]. For instance, image comparison and matching 

have been widely used in methods such as geometrical image transformations, point-based 

method, matching and feature detection methods [2, 14, 15].  

 Geometrical image transformations: It performs various geometrical 

transformations of images. This transformation deforms the pixel grid, and maps 

it to the destination image in which the image content is not changed. These 

methods can be used to align images that were taken at different times, to correct 

images for distortions, and to correct effects of orientations. 

 Point-based method: This identifies point pairs for a given view, and then image 

registration aligns the points.  

 Feature matching: It detects specific attributes between the features detected in 

the query image and those detected in the reference image. There are many 

feature descriptors and similarity measures for the features. 
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 Feature detection method: It detects a specific feature of image information such 

as lines, angle, edges, and corners, and makes local decision at every image point. 

These features are typically represented by their image point representatives. 

Among many image matching methods and features [3, 4], the scale invariant feature 

transform (SIFT) scheme has been effective and widely used in the field [5]. The scale invariant 

feature transform is a well-known invariant local feature method. The SIFT algorithm aims to 

detect distinctive, invariant image feature points, which can be easily matched between images. 

These methods combine invariance to rotation, scale, and affine transformation that could be 

reliably matched.  

Notably, Rob Hess implemented in a C version of the SIFT algorithm based on the 

Lowe’s paper [5]. This version used the popular open-source computer vision library OpenCV 

[6], which is the first open-source version of the SIFT algorithm and has been rapidly used in the 

computer vision and image processing fields. The open-source SIFT library is available at 

http://robwhess.github.com/opensift/ and includes several functions for computing SIFT features 

in images, matching SIFT features by using KD-tree, and computing geometrical image 

transformations from feature matching by using RANSAC [16].  

This library also includes functionalities to import and work with image features from 

both SIFT detectors and Oxford VGG’s affine covariant feature detectors. The open-source 

library [17] currently provides two versions based on both Linux and Windows (VC++). 

Therefore, this thesis describes an implementation and design of software components using the 

open-source library to compare key-points between a query image and a reference image on the 

iPad 2.  

http://robwhess.github.com/opensift/


 

3 

Recently, digital image acquisition devices have been developed and distributed rapidly, 

driving the growing needs for automatic image matching and recognition. For example, we can 

assume that patients with diabetes need to control food intake, which is very important to their 

health. They also need to know the food nutrition components and calories before eating them. 

Obese people also need to check food nutrients and calories before consumption. In the 

biomedical field [18], biologists need to analyze bioimage dataset and image matching software 

can help them to compare biomedical image dataset in solving biomedical problems such as cell 

segmentation and annotation of biological objects. This software should be easy to use for these 

average biologists and the GUIs should be simple and user-friendly. 

Recently, the Apple’s iPad [25] designed for small tablet and high resolution screen has 

powerful graphic capability, e.g., a quad-core graphics processor. This device will be perfectly 

matched with human interaction for image matching algorithms. One of major advantages on 

iPad is the multi-touch graphical user interface which provides the recognition of the presence of 

two or more points of contact with the surface when a finger or object touches the surface. The 

iPad also supports Wi-Fi and 3G wireless connection that can be used to access local networks 

and the Internet in anytime, anywhere.  

With the iPad, image matching applications are emerging, which is increasingly an 

attractive research direction. In addition, iPad has many remarkable features for image matching 

application. Firstly, the iPad has camera: 5-mega-pixel unit with 1080 HD video recording up to 

30 frames per second with audio. It has autofocus, face detection and image stabilization. It can 

zoom in and zoom out, turn on the grid, set the exposure, lock the exposure, and take a 

screenshot. The iPad camera is typically good enough for photography and videography. Using 

this image, users can match input image with reference image. Second, iPad is designed for users 
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with user-friendly interface. The touch screen display uses state-of-the-art multi-touch 

technology, which is made simple to use. The finger trajectory can be recorded when a finger 

touches and moves on the display surface. This technology can help users to perform image 

segmentation and delineation. Finally, the iPad supports the Wi-Fi network and 3G wireless that 

is able to connect the Internet. Therefore, the iPad’s connectivity contributes to the image 

matching application with the ability of sending the computing-interactive tasks to the back-end 

servers or cloud services. 

In the biomedical image informatics fields, many applications perform a specific 

processing about anatomical organs or cell types, among others. Thus, an interactive bioimage 

segmentation and matching application will contribute substantially for biological scientists to 

analyze and visualize the cells, molecules, micro-structures, and organisms. Also, the bioimage 

matching algorithms will provide new opportunity in clinical diagnosis and treatment plans for 

medical healthcare. With these ideas, this thesis mainly investigated bioimage matching 

applications including biomedical image segmentation. 

This thesis focuses on interactive bioimage segmentation and matching using iPad. At the 

current stage, this application is able to compare between two images in only 2D, and 3D image 

matching is beyond the scope of this thesis. Also, the iPad is used as a front-end module as a 

client for user interaction, and the back-end module are used as a server which perform the 

computing-intensive image matching algorithm with a database of images. We also showcased 

two applications for food images and biomedical images.  

The rest of this thesis is organized as follows. Chapter 2 presents the background 

information, and briefly reviews the advancements of bioimage informatics, image matching 

methods, and iPad attributes. Chapter 3 describes the design and implementation of the front-end 
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and the back-end modules. Chapter 4 demonstrates two application scenarios for image matching 

algorithms. 
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CHAPTER 2 

BACKGROUND AND RELATED WORK 

In this chapter, we describe the background information. Chapter 2.1 states the bioimage 

segmentations and bioimage matching methods for biomedical informatics. Chapter 2.2 

describes the OpenCV library including APIs, basic attributes for images, and image algorithms.  

Chapter 2.3 discusses the SIFT algorithm which can detect key-points in multiple images of the 

same location. Chapter 2.4 demonstrates the CFNetwork technology. This technology is based 

on the iOS system that can transfer biomedical image data sets from the client to the server via 

the Internet. Chapter 2.5 gives a brief explanation of the touch technology on the iPad. We can 

segment an image into semantic regions by using this technology. 

2.1 Bioimage informatics 

 The bioimage informatics is most related to using computational methods to analyze and 

visualize bioimage such as cellular and molecular images. Especially, this thesis focuses on 

biomedical images from image acquisition systems like microscopy or MRI. The need and use of 

the bioimage informatics in the computer vision will cause an increase in the development of 

algorithms leading to open and new technologies. It focuses on improving novel image 

processing, databases, data mining and visualization techniques.  

 The bioimage segmentation plays an important role in the biological fields. Hence, it will 

help biologists work in biological image segmentation and tracking. For instance, it can help 

with localization of pathology, study of anatomical structure, quantification of tissue volumes, 

diagnosis, treatment planning, and computer integrated surgery. Many researchers have made an 
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effort to improve its algorithm. Unfortunately, there is no fully optimal method for general 

images. There are well-established algorithms for biomedical segmentation such as GrabCut, 

Bayes matting [71], graph cuts [73], and intelligent scissors [72].  

 Bioimage matching is widely used in biological computer vision, including point 

matching, shape-specific point matching, template matching, mutually-best matching, principal 

axis matching, dynamic programming, feature-based matching, and graph matching. These 

algorithms are applied to cortical structures and actively in human brain MRI data. There are 

several phases to perform image matching for biomedical images.  

First, we need to segment the brain image. The image registration software removes non-

brain matter from the subject image. It is used to co-register subject and atlas images. 

Consequently, labeling the subject images can be divided into segmenting tissue classes. Second, 

we have to construct 3D pieces using the K-means algorithm. It extracts 3D pieces by 

constructing 2D skeletons from extracted sulci. The next step is to match pieces from the atlas 

and subject. It computes differences between each pair of subject and atlas matching pieces by 

taking the minimum differences. Finally, there exists a label subject image. Atlas label 

boundaries are locally translated, depending on the difference in their local information between 

atlas and matching subject pieces. The atlas label volume is warped and transformed to new 

boundaries. After warping, the segmented gray matter can be assigned as the major label. 

2.2 OpenCV library 

The OpenCV (Open-Source Computer Vision) [26] is a library of programming functions 

for general computer vision that includes several hundreds of computer vision algorithms. The 

OpenCV has a modular structure, which means that the package includes several shared or static 

libraries as follows. 
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 Core: A compact module defining basic data structures, including the dense 

multi-dimensional array Mat and basic functions that are used by all other 

modules. 

 Imgproc: An image processing module that includes  linear and non-linear image 

filtering, geometrical image transformations (resize, affine and perspective 

warping, generic table-based remapping), color space conversion, and 

histograms. 

 Video: A video analysis module that includes motion estimation, background 

subtraction, and object tracking algorithms. 

 Calib3d:  It refers to basic multiple-view geometry algorithms, single and stereo 

camera calibration, object pose estimation, stereo correspondence algorithms, and 

elements of 3D reconstruction. 

 Features2d: Salient feature detectors, descriptors, and descriptor matchers. 

 Objectect: Detection of objects and instances of the predefined classes. For 

example, faces, eyes, mugs, people, and cars. 

 Highgui: An easy-to-use interface for video capturing, image and video codecs, 

as well as simple UI capabilities. 

 Gpu: GPU-accelerated algorithms from different OpenCV modules such as 

FLANN and Google test wrappers, Python bindings, and others. 

The OpenCV library [27] also provides numerous algorithms such as loading images and 

output, optical flow, and gesture recognition as follows in detail. 
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Table 2.1: Categories of video and image processing algorithms 

Image functions Data Structures Contour Processing Geometry 

Features Image Statistics Image Pyramids Morphology 

Background 

Differencing 

Distance Transform Thresholding Flood Fill 

Camera Calibration View Morphing Motion Templates CAMSHIFT 

Active Contours Optical Flow Estimators POSIT 

Histogram Gesture Recognition Matrix Eigen Objects 

Embedded HMMs Drawing Primitives System Functions Utility 

 

The scale invariant feature transform (SIFT) library performs by using the popular open-

source computer vision library OpenCV.  The SIFT library also can use the low-level and high-

level algorithms as shown in Table 2.1. Here is one example in the OpenCV library.  

The Fourier Transform (TFT) will decompose an image into its sinus and cosines 

components. This processing will transform an image from its spatial domain to its frequency 

domain. Any function may be approximated exactly with the sum of infinite sinus and cosines 

functions. Here are two dimensional images Fourier mathematically transforms: 

                 
                

  

 
 

  

 
 

   

   
                

The f is the image value in its spatial domain and F function in its frequency domain. The 

results of the transformation are complex numbers. 
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Fig. 2.1: Input image       Fig. 2.2: Fourier transform image  

As we can see the most influential components of the frequency domain follow the 

geometric rotation of objects on the image. After that, we may calculate the offset and perform 

an image rotation to correct miss-alignments. The OpenCV library provides many API functions 

[28]. Some of them that will be used in this thesis are as follows in detail.    

 cvLoadImage(): loads an image from the specified file and returns the image 

pointer to the loaded image. 

 cvCreateImage(): specifies where the image header will be created and allocated. 

 cvShowImage(): displays the image in the specified window. 

 cvWaitKey(): indicates that the program should wait for a pressed key. 

 cvReleaseImage(): means that the image data and header will be deallocated. 

 cvSetZero(): describes a set specific array element. 

 cvSetImageROI(): sets an image Region Of Interest (ROI). 

Table 2.2 illustrates a basic structure called IPL image header. The IplImage structure 

was inherited from the Intel image processing library. The image information of IplImage 

attributes is significantly important for handling image data. 
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Table 2.2: The basic attributes of the IplImage header 

Type Attributes name Comment 

Int nSize Sizeof(IplImage) 

Int ID Version, always equals 0 

Int nChannels Number of channels 

Int alphaChannel Ignored by OpenCV 

Int depth Pixel depth in bits 

Char colorModel[4] Ignored by OpenCV 

Char channelSeq[4] Ignored by OpenCV 

Int dataOrder 0 = IL_DATAORDER_PIXEL: Interleaved color 

channels, 1: Separate color channels  

Int origin 0: Top-left origin, 1: Bottom-left origin 

Int align Alignment of image rows (4 or 8) 

Int width Image width in pixels 

Int height Image height in pixels 

struct _IplROI *roi Region Of Interest (ROI) 

struct _IplImage *maskROI Must be NULL in OpenCV 

Void *imageId Must be NULL in OpenCV 

struct _IplTileInfo *tileInfo Must be NULL in OpenCV 

Int imageSize Image data size in bytes 

Char *imageData A pointer to the aligned image data 

Int widthStep The size of an aligned image row, in bytes 

Int BorderMode[4] Border completion mode, ignored by OpenCV 

Int BorderConst[4] Border completion mode, ignored by OpenCV 

Char *imageDataOrigin A pointer to the origin of the image data 

 

 2.3 Scale Invariant Feature Transform (SIFT) 

The Scale Invariant Feature Transform (SIFT) algorithm is a popular approach to detect 

distinctive and invariant image feature points which can be matched between a query image and 

a reference image. The SIFT has been one of the most successful and popular methods and has 
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been applied to a variety of computer vision research problems [29] including object recognition 

[31, 32], robotic matching [30], image retrieval, gesture recognition and video tracking.  

The SIFT algorithm was first published by David G. Lowe in 2004. The features are 

invariant to image scale and rotation, and identify key-points in scale space. These features can 

be used to detect distinctive objects in different images and transform image data into scale 

invariant coordinates [1, 33]. Image features can be extracted from a set of reference images for 

local geometric deformations by representing blurred image gradients. Lowe’s approach is used 

to detect the features that transform image data into scale invariant coordinates relative to local 

features. This approach consists of four major computational stages: 

1. Scale-space extrema detection: The first stage is to identify candidate key-points by using 

a Difference-of-Gaussian (DOG) function. The image is iteratively convoluted with 

Gaussian functions. 

2. Key-point localization: The next phase is to find the key-point in the DOG pyramid. The 

key-points in scale space are added to the local location.  

3. Orientation assignment: This step is to assign to each orientation its key-point. The key-

points are assigned one or more orientations based on local image gradients. 

4. Key-point descriptor: A local image descriptor is computed for each key-point in the 

local image region.  

The SIFT has been increasingly improved in the computer vision fields [7, 8, 9]. With 

this improvement, Rob Hess released the SIFT implementation in 2006 as an open-source library 

that implemented in a C version of the SIFT algorithm [34]. Thus, our work aims to implement 

the image matching application by using the open-source library on the iPad. 
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2.4 CFNetwork Framework 

 The iPad strongly supports the ability to deliver advanced functionality over an always-

on Internet connection or Wi-Fi. Apple has also provided a framework, named CFNetwork [35], 

to support basic socket protocol and socket connectivity. The CFNetwork is a low-level, high-

performance framework with the ability to communicate across network sockets. The 

CFNetwork framework is an extension of BSD sockets which provides well-defined standard 

socket abstraction API functions that can perform tasks supporting FTP and HTTP servers or a 

resolving DNS host.  It can provide a variety of Cocoa classes [36] and networking APIs.  

The Cocoa classes include a Web-kit class that displays web content in the browser 

window. The Web-kit and Cocoa classes are very high level implementation of networking 

protocols. Here is the structure of the software layers in Fig. 2.3.  

 

Fig. 2.3: The CFNetwork and software layers 

The CFNetwork consists of two API functionalities, CFSocket and CFStream, which are 

part of the Core Foundation framework and are fundamental to using CFNetwork. These API 

functions are listed as follows [37]. 

 CFSocket API: Sockets are the basic object of network communications. The CFSocket 

is an abstraction for BSD sockets and provides all the functionality of BSD sockets. 

CFSocket provides a number of functions that are specific to the CFNetwork framework. 

The following relevant functions are available on CFSocket objects. 

 CFSocketCreate: creates a CFSocket object of a specified protocol and type. 
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 CFSocketCreateWithNative: creates a CFSocket object for a pre-existing native 

socket. 

 CFSocketCreateRunLoopSource: creates a CFRunLoopSource object for a 

CFSocket object. 

 CFRunLoopAddSource: adds a CFRunLoopSource object to a run loop mode. 

 CFSocketConnectToAddress: opens a connection to a remote socket. 

 CFStream API: Socket streams provide an easy way to exchange data for reading and 

writing in a device-independent way. Each socket stream can be located in memory, in a 

file, or on network, allowing for synchronous or asynchronous communication. A stream 

is operating on a networking path that can be transferred to a sequence of bytes. The 

CFStream is located on top of the CFNetwork which is the foundation for CFHTTP and 

CFFTP. The following Fig. 2.4 shows the CFStream API structure. 

 

Fig. 2.4: The CFStream API structures 

The CFStream supports two CFType objects with sockets: CFReadStream and 

CFWriteStream. The functions included are as follows. 

 CFReadStream: Its functions allows for simple read operations with network sockets. 

 CFReadStreamOpen: opens a stream for reading. 
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 CFReadStreamRead:  reads bytes of data from a readable stream. 

 CFReadStreamGetBuffer: returns a pointer to a stream’s internal buffer of 

unread data. 

 CFReadStreamGetStatus: returns to the current state of a stream. 

 CFWriteStream: This stream writes a byte stream either synchronously or 

asynchronously and manages the sending data through a CFSocket.  

 CFWriteStreamOpen: opens a stream for writing. 

 CFWriteStreamWrite: writes data to a writable stream. 

 CFWriteStreamCanAcceptBytes: indicates whether a writable stream can 

accept new data without blocking. 

 CFWriteStreamGetStatus: gets the current state of a stream. 

 CFWriteStreamScheduleWithRunLoop: schedules a stream into a run loop. 

2.5 Touch Technology 

Since Apple computer’s iPad was released in 2010, one of the most important 

components has been its touch technology, which is a convenient way to input and access 

information on the iPad.  There are several well-established touch screen technologies. However, 

the most important touch technologies are resistive and capacitive touch screen.  

 The resistive touch screen panel is composed of several layers. The most important 

features are thin, metallic and electrically conductive layers which also can be built with two 

flexible sheets coated with resistive material separated by a narrow gap. When users touch the 

screen, two metallic layers become connected at the point and register the contact location. 

Afterwards, the located information can be sent to the controller for processing. The resistive 

technology works with fingers or any object.   
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 The capacitive touch screen uses a glass surface coated with transparent conductor. When 

the screen is touched with a finger it creates an electrostatic field, which can be measured as a 

change in capacitance. This can register more than one touch event simultaneously. Most 

portable devices are equipped with capacitive touch screens which use finger contact and support 

multi-touch technology. 

 One of the high-level technologies is multi-touch technology. If users need to zoom-in 

and zoom-out from an image, it is possible to control the image using two fingers with this 

technology. Therefore, Apple’s multi-touch technology allows users to manipulate objects on the 

iPad in a convenient way. The multi-touch technology is also a basic technique component for 

numerous applications in recent days. With this technology, this thesis tries to implement and 

design the user interface software used by finger manipulation.  

 Apple’s iOS library also provides a method for touch functions that is the UITouch class, 

which can store finger’s position and generate some specific events when touching the screen.  

The UITouch object represents movement of a finger on the screen for a particular event. For 

instance, when the user touches the screen, UITouchPhaseBegan event occurs. If the finger is 

moving, UITouchPhaseMoved event occurs. All touch events correspond to objects whether it 

began, moved, or ended the gesture. There are five phases of a finger touch as follows [21].  

 UITouchPhaseBegan: a finger starts to touch the screen. 

 UITouchPhaseMoved:  a finger moved on the screen. 

 UITouchPhaseStationary: a finger is touching the surface but does not move on the 

surface. 

 UITouchPhaseEnded: a finger has been released from the screen surface.  
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As we mentioned above, these five steps are to communicate with objects and occur with 

touch events.  As a result, these events call to the callback function to respond. This response is 

the UIResponder class which can communicate to handle events for particular objects. The touch 

event is generated when a finger starts to touch the screen surface, move on the screen, or leave 

from the screen. There are touch events as follows [22]. 

 touchesBegan:withEvent: the user starts to touch down on the screen during the first 

stage of the event. 

 touchesMoved:withEvent: keeps track of the movement when the user’s finger is still 

moving on the screen surface. 

 touchesEnded:withEvent: indicates that all objects or fingers has been released from the 

screen. 

 touchesCancelled:withEvent: sends a particular event to the framework from the system 

event to cancel a touch event.  
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CHAPTER 3 

SOFTWARE ARCHITECTURE AND METHODS 

This chapter discusses the software architecture and methods for biomedical images. 

Chapter 3.1 explains the overall structures and processing procedure of the architecture. Chapter 

3.2 describes how the front-end module can perform an interactive communication with the 

back-end module. Also, it demonstrates the GUI prototypes on the iPad and several components 

for biomedical images including segmentation. Chapter 3.3 discusses the SIFT algorithm which 

discovers image features between two images. Moreover, we will explain multiple threads. 

Chapter 3.4 demonstrates the segmentation methods. There are two types of segmentation: 

GrabCut and rectangle-cut. Chapter 3.5 gives a brief explanation of the image matching methods. 

3.1 Architecture 

In this section, we describe the overall architecture of the iPad 2 system that performs 

interactive operations between the front-end and the back-end modules. In Fig. 3.1, this 

prototype architecture consists of two modules based on the network: Back-end module and 

Front-end module. They are used in different networking technologies. The back-end module is 

based on the Winsock technology and the front-end module is based on the CFNetwork 

technology. One advantage of the iPad is that it can be connected to the Internet using 3G 

wireless network technologies or a Wi-Fi connection channel. This technology can allow users to 

communicate between the server and the client.  
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Users can send a particular image to the server. This means that user interaction should 

be operated on the potable iPad. The iPad has a great ability to connect to other devices anytime 

and anywhere.  Multiple users can send a specific biomedical image to the back-end module.  

This bioimage should be segmented on the front-end module side before sending an 

image to the back-end module. On the back-end module side, it should perform the image 

matching algorithm with an interacting database. Also, it begins to create multithreaded sockets 

and distributes the task into multiple threads for image matching algorithm. 

 

Fig. 3.1: The architecture of the mobile image matching application 

There are no limitations in sending specific images to different devices of which devices 

are available to connect to the Internet. With this concept, we begin to construct and design an 
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image matching application that can freely communicate between the front-end and the back-end 

module since the iPad provides the fast network connection with friendly user interface. 

 

Fig. 3.2: The overall flowchart of the front-end and back-end modules 

Fig. 3.2 illustrates the overall processing procedures of image matching prototypes of 

both the front-end and the back-end module. This flowchart demonstrates how a specific image 

performs both in the front-end module and in the back-end module. 

We will discuss in detail how these modules process information over a network 

connection. The sender-side procedure in the front-end module begins to acquire a query image 
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from any kind of input image, and then displays it on the iPad screen. The next step is 

performing the image segmentation which will cut the real image.  

There are two types of cutting methods using touch technologies:  GrabCut[11, 41] and 

rectangle-cut [38, 39, 40]. We will briefly explain two types of image segmentation algorithms. 

The GrabCut is an image segmentation method based on a graph cut algorithm. This method is 

an effective and interactive tool for foreground and background segmentation. It segments a 

specific image over the original image using the GrabCut algorithm [23]. The rectangle-cut is an 

easy way to crop an image. Users can touch the screen surface and move their finger to select 

particular points which are located in the top left and bottom right corners of the rectangle.  

We will discuss these cutting methods in detail in the image segmentation section. The 

user can cut a real image using their finger on the iPad screen surface. The cutting image will be 

displayed on the iPad’s screen. Finally, the front-end module sends a segmented image to the 

remote back-end module over the network connection. The network connection in the front-end 

module uses the CFNetwork of the Apple’s network technology based on the iOS platform. The 

CFNetwork supports very well-defined classes and it is easy to use them.  

On the back-end module side, this server-side module supports multiple threads between 

the server and multiple clients. The server uses the multithreaded method which allows many 

users to connect to the server [42]. The server can receive a segmented image from the front-end 

module via Internet connection. Before the server begins image matching, the server can request 

images for the database which has several image paths in the database. All of the actual images 

are located in the local storage. As a result, the server can acquire two images: a query image 

from the front-end module and a reference image from the local storage. Now, the server can 

detect the best image matching object between two images.  
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At this time, the image matching phase is also running with multi-threads which can 

support matching images from a query image to many reference images. Also, this operation can 

match 1:1 matching methods. As a result, the server finds the best matching image, and then the 

back-end module sends a result image to the receiver-side flow in the front-end module via 

network. The network in the back-end module is used for the windows socket called Winsock. 

The Winsock technology is developed by Microsoft Windows Corporation. Windows sockets 

enable programmers to create advanced Internet, Intranet, and other network-capable 

applications for transmitting data across wireless networks. 

The receiver-side flow in the front-end module should receive the result image from the 

back-end module. The result image will be displayed with the query image together on the iPad’s 

screen. This means that we can do the next action with image information since this image 

received from the back-end module via Internet contains image information including the index 

number, company name, food image name, bioimage name, calories, and other information.  

Therefore the detail information of the image will be displayed on the iPad. With this 

detailed information, we can calculate the calories of food. Finally the receiver-side flow will 

turn the authority over the sender-side flow in the front-end module. 

3.2 Front-end Module 

 The front-end module is applied on the iPad because it is a portable device, provides 

great GUI components, and maintains strong connection to the Internet network anytime and 

anywhere.  
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Fig. 3.3: The GUI prototype on the iPad 
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We designed the GUI prototype and implemented an application that allows users to 

easily control specific image processing on the iPad.  We also programmed the prototype by 

using Objective-c based on Xcode IDE [19, 20]. As we can see, Fig. 3.3 shows the overall 

designed GUI prototype on iPad.  

 

Fig. 3.4: The flowchart of the front-end module 
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There are several components and functionalities. We designed for the GUI prototype 

such as input query image, matching, show detail, show result matching, segmentation, and 

display image on the screen. In this section, we will discuss and analyze the GUI prototype, 

components, and functionalities in detail. 

Fig. 3.4 describes the overall functionality flowchart of the front-end module. This 

flowchart will be divided into two components, sender-side and receiver-side components. These 

components are operated with different functionalities. The sender-side part performs image 

manipulation before sending images to the back-end module via Internet. The receiver-side part 

runs images displayed on the iPad after receiving images from the back-end module via the 

network. Also, the flowchart will be slightly different depending on the image.  

For instance, the food image data set will provide more functionalities than the bioimage 

data set. The sender-side component will be followed as detailed. First, we can look over the 

input query image components. The following figure illustrates input methods as a GUI 

prototype. There are two methods to input image queries. 

 

Fig. 3.5: The input query image from the text form 

As we see in Fig. 3.5, the first method is using direct input from the iPad. We can type 

the image name on the iPad’s screen surface. It will be possible to transmit an actual image from 

the internal local storage to the iPad’s screen. These images are already stored and will be named 

“query image” meaning that it is an original image. 
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Fig. 3.6: The input query image from the photo library on the iPad 

 The second method uses the photo library as shown in Fig. 3.6. The iOS 5 provides 

access to the photo library through the UIImagePickerController class. The 

UIImagePickerController class [43] aims to provide applications with either a photo or video. It 

will be achieved by the user accessing the photo library. This class may also be used to provide 

applications with access to existing photos. The image picker view will be displayed in a 

popover when using the image picker in the context on the iPad. The setting source type property 

defines the source of the media of the UIImagePickerController object to one of the three 

supported types. 

 UIImagePickerControllerSourceTypeCamera 

 UIImagePickerControllerSourceTypeSavedPhotosAlbum 
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 UIImagePickerControllerSourceTypePhotoLibrary 

These source type properties can be used when picking a photo. The Apple also supports 

multiple techniques for accessing photos from the local photo library within iOS. It is an 

alternative way to select multiple photos in the iPad photo library. Selecting a photo in any 

album in the photo library shows photos from the top left of the screen to the bottom right of the 

screen, and a specific photo we want can be selected by tapping it. The image will display on the 

iPad when users select a specific image either by using the direct input query image method or 

using the iPad photo library. 

The next process is the segmentation of an image from either the direct input method or 

the photo library. This image segmentation can be used by two algorithms: GrabCut or rectangle-

cut. The GrabCut can be used to solve graphical problems in computer vision [44]. It is an 

effective way to perform 2D image segmentation that can also provide easy control to 

manipulate an image with the iPad. The user can select the image location on the screen. These 

points in the location should be segmented between foreground and background with iOS touch 

technology [45].  

The rectangle-cut is a method that segments an image by using the user’s finger. A 

smaller rectangle should be located at the top left on the screen. This small rectangle can move 

the position and expand the area on the screen which will be selected by the user. Afterwards, the 

image should be segmented successfully and the image segmentation will be displayed on the 

screen.  
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Fig. 3.7: The snapshot of a biomedical image using the GrabCut 

Fig. 3.7 shows the segmentation by using the GrabCut algorithm [46, 47]. The right side 

image will be segmented by a red line and will be displayed on the left side. 

 

Fig. 3.8: The snapshot of a biomedical image using the rectangle-cut 

 In the resulting image segmentation Fig. 3.8 [24, 48], it shows an image on the right side 

that will be segmented by the rectangle-cut method and will be displayed on the left side. On the 

sender-side component, the front-end module transmits the segmented image to the back-end 

module by using the CFNetwork technology. At this time, the client sends the binary biomedical 
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image data with image information such as image size, width step, width, height, depth, and 

channels. This image information is used in the OpenCV library. The OpenCV library uses 

IplImage structures for processing. The IplImage is one of the basic data structures to store 

information about the images. 

 On the receiver-side component in the front-end module, the resulting image sends from 

the back-end module. This biomedical image data includes binary data, image attributes, and 

image information which have information such as company name, biomedical/food image 

name, calories, and other detailed information. The image information is transferred from the 

back-end module to the front-end module. The resulting image will use in the receiver-side part. 

Therefore the image data and information will be displayed on the screen. In this part, this 

module can detect the image property which distinguishes images such as food image or 

bioimage. The calorie calculator performs when the image is received from the back-end 

module. This calculator computes calories using add or subtract operations. Finally, the resulting 

image will be stored in the iPad which can reuse the next operations. 

3.3 Back-end Module 

 The back-end module plays important roles in the entire application. This module can 

communicate with both the front-end module and the database. The image matching algorithm 

runs in this module for biomedical images. There are three primary components of the back-end 

module. The database-side component fetches the image information from the database and 

sends them to the receiver/sender-side component. The receiver/sender-side component is a 

primary part in the back-end module. It can create multiple threads for the image matching and 

performs the image matching algorithms.    
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 Fig. 3.9: The flowchart of the back-end module 

 Fig. 3.9 illustrates the overall processing procedures of the back-end module. The back-

end module uses many other frameworks, API classes, libraries and methods which include the 

OpenCV library, Mysql Connector/C++ [49], windows socket [50], and multi threads. This 

module runs with the Mysql 5.1 database [51] which can connect to the Mysql Connector/C++. 

The Mysql Connector/C++ is a Mysql database connector for the C++, which is developed by 

Sun Microsystems. It provides an object-oriented programming interface and a database driver 

for connecting C++ applications to the Mysql server. The following classes were implemented 

by the Mysql Connector/C++.  
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 Driver: creates a pointer to the Mysql driver object. 

 Connection: creates a pointer to the database connection object. 

 Statement: creates a pointer to the Statement object to hold SQL commands. 

 PreparedStatement: creates a pointer to the PreparedStatement object to SQL query by 

using sql::Connection::prepareStatement(). 

 ResultSet: creates a pointer to the ResultSet object to hold the results of any query we 

run. 

 DatabaseMetaData: creates a pointer to the DatabaseMetaData object to handle rows and 

columns. 

 ResultSetMetaData: creates a pointer to obtain metadata associated with result set and 

accessing result set metadata for number of columns and rows.  

 ParameterMetaData: creates a pointer to handle metadata. 

These classes are very powerful methods for connecting to the database. Using these classes, 

the back-end module can connect and communicate to the Mysql database. This module uses the 

windows socket library called Winsock based on Windows 7 while the front-end module uses the 

CFNetwork based on iOS platform.  

 The Winsock is a technical specification which defines a standard interface on the 

windows TCP/IP protocol. The windows socket enables programmers to create advanced 

Internet, Intranet, and other Internet-capable applications. The Windows sockets 2 [52] runs 

based on the Windows Open System Architecture (WOSA), as illustrated below.  
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Fig. 3.10: The Windows Open System Architecture (WOSA) 

 The Winsock also supports APIs allow windows-based applications to access the 

transport protocols. The following lists provide concise descriptions of each Winsock function. 

 Accept: permits an incoming connection attempt on a socket. 

 Connect: establishes a connection to a specified socket. 

 Bind: associates a local address with a socket. 

 WSAStartup: initiates use of WS2_32.DLL by a process. 

 WSACleanup: indicates to finish use of the WS2_32.DLL. 

 WSACreateEvent: creates a new event object. 

  The back-end module can provide multiple threads. There are two types of threads used 

in this thesis: image matching and socket connection. Hence, the image matching involves heavy 

computing and is very time consuming. The multiple threads provide an effective way to save 

image matching time based on image contour structure. This module accepts multiple users with 
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a specified socket which can communicate with more than one client at the same time in the 

same network. The following figure shows the multithreaded socket architecture. 

 

Fig. 3.11: The multithreaded socket architecture 

 The server creates a separate client thread in the server side for communicating with 

clients. For each client socket, there is an individual client thread for independent 

communication. The back-end module performs image matching algorithms with multiple 

threads. As shown in Fig. 3.12, this server module can create both main thread and worker 

threads. In this module, there are 5 threads based on the dual-core Intel processor.  

In the same multithreaded process on shared-memory multiprocessor, each thread in the 

process can run on a separate processor at the same time, resulting in parallel execution. In this 

module each worker thread can performs 20 image matching comparisons between a query 
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image and a reference image. There are 100 sample reference images in the databases.  

 

Fig. 3.12: The multithreaded image matching architecture 

 

Fig. 3.13: The back-end module execution with multithreaded socket and image matching 

 Fig. 3.13 demonstrates the sample screen with multithreaded socket and image matching.  

As we see in Fig. 3.13, there are two accepted clients on the top of the figure; one is 
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192.168.1.112, another is 192.168.1.111.  The multiple threads can communicate one or more 

than two between the front-end and the back-end module simultaneously. This module runs with 

5 threads. Each thread performs image matching with 20 images. Each image matching 

algorithm should return key-points which allow a single feature to detect candidates with great 

probabilities in a large database of features [53, 54, 55].   

The back-end module can perform with a large database. This module is used in Mysql 

database and is included 7 columns as following table. 

Table 3.1: The table descriptions of the database 

Columns Contents 

Id A primary key to find its information 

Image_path A reference image path name which stored in local disk 

Company A company name of the image 

Food A food name of the image 

Calories A calories of the image 

Nutrition A nutrition information for image 

Detail A detailed information for image 

 

The back-end module requests the image path name to the database when image matching 

algorithm is running. Through the image path name, the back-end module will get an actual 

biomedical image in the local storage because actual bioimage datasets will not have been saved 

to the databases.  

 The back-end module is implemented base on windows programming by using the 

Microsoft Foundation Class library (MFC) [56] with windows socket. The MFC is a library 

which provides the windows API functions in C++ classes, including functionalities that enable 

them to use an application framework. 
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In this section, the receiver/sender-side component performs several processing for 

biomedical image when the image receives from the front-end module. First, this component 

creates multiple sockets, binds it to a communication port, and waits for connection request from 

a client. Once the server accepts the client’s connection request, it will create another socket and 

bind it to another port. This component requests the image path name to the database and it will 

get an actual image data in the local disk. Afterwards, the image matching runs. It detects 

keypoints between two images. As a result, we should get the same image in many candidate 

images. At this time, this module fetches detailed information for biomedical images from the 

database. This resulting image sends to the front-end module with both bioimage data and 

information. 

The database-side part initially adds to image path name and image information by using 

the receiver/sender-side component. They are connected through communication. This 

component sends the image path name and information to the receiver/sender component. The 

local disk-side component has a set of data collection in the local storage. 

3.4 Image segmentation Methods 

 The image segmentation utilizes two methods: rectangle-cult and GrabCut. Both methods 

will remove unnecessary foreground and background part in the image in consideration. They 

will help to detect accurate keypoints. Both perform a graph cut to separate an object from the 

background.  

 The rectangle-cut dissects a rectangle into an image. This method uses vertical and 

horizontal straight-line cuts. The rectangle-cut can be segmented by a straight-line which 

expands area toward either vertical or horizontal simultaneously. There is an initial rectangle 
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shape which is located in the top left of the screen. The following Fig. 3.14 shows the 

performance of the rectangle-cut for food and biomedical image. 

 

 

 

Fig. 3.14: The rectangle-cut snapshot in food images and bioimage 
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As we illustrate in Fig. 3.14, the right side shows an original image before the 

segmentation. After segmentation, the cropped image shows on the left side. The red rectangle 

line indicates the position which will be dissected.  

The user touches the rectangle line which controls the rectangle size by using the user’s 

finger. This algorithm initially measures the information of the line and points. This line will be 

expanded by using the touch technology which involves the UIResponder class. This class calls 

the touchesBegan:withEvent method when the user touches the screen. This method can record 

the initial starting point. When the user’s finger is moving on the screen, the UIResponder class 

calls the touchesMoved:withEvent method. At this time, the coordinates of a pointed position 

will expand by the finger’s moving. The line of the rectangle is not larger than the bottom line 

and is not smaller than 0. This means that this line should move in the coordinate geometry. All 

points can be recorded in the system when the user’s finger leaves the screen. 

The GrabCut [61, 62] is a very powerful algorithm for interactive segmentation of 

monochrome image. It has been detailed in the paper [10] that detected optimal segmentation of 

the 2D images. First, they described the image segmentation all of images that are indicated to an 

array Z 1( ,... ,... )n Nz z z  of grey scale values. This segmented image represented as an array of 

“opacity” values 1( ,... )N    at each pixel. The value of n  can be between 0 and 1, but for 

hard segmentation {0, 1} belongs to n , with 0 for background and 1 for foreground.  

Foreground and background grey-level distributions are described by   parameter.   

              , one for foreground and another for background.  

The segmentation of grey scale task indicates the opacity variables α from the given 

image data z and the model . There exists energy minimization of the segmentation. An energy 

function can correspond to segmentation, E ( , ,  Z) = ( , ,U   Z) + ( ,V  Z). The data term U 
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evaluates the fit of opacity distribution α to the data Z, given the histogram model   and data 

term V refers to smoothness term. This energy helps to improve coherence in particular spot of 

similar grey-level. It encourages obtaining better image segmentation results which are acquired 

by defining pixels to be neighbors. As a result, the energy function is defined; the segmentation 

will use a standard minimum cut algorithm ˆ arg min


  E ( , )   for hard segmentation.  

There are three types of improvements which are open to new hard segmentation 

algorithms. Firstly, the Gaussian Mixture Model (GMM) helps to expend to color space image 

for segmentation in place of histogram. Secondly, a more powerful, typically iterative, method 

can be generated by using the one-shot minimum cut estimation algorithm between estimation 

and parameter learning. Lastly, the interactive user activities can be reduced by incomplete 

labeling. 

We can take image pixel    for soft segmentation in RGB color space. The GrabCut uses 

the GMM to construct appropriate color space histogram. There is a supplementary vector K

1( ,... ,... )n Nk k k   to each pixel by using the GMM component. Each GMM is either for 

background or for foreground models. After applying vector K to the original equation, new 

energy function will become E ( , , ,k  Z) = ( , , ,U k  Z) + ( ,V  Z), where the term U is taking 

account of the color GMM models.  

With the GrabCut algorithm [57, 58], we have applied to image segmentation on iPad 

with touch technology.  When the user can touch the screen, the system remembers its position 

by using the touchesBegan event. When the finger is moving on the screen, the line will draw by 

following the finger, and calls the touchesMoved event.  When the user’s finger is released on 

the screen, the touchesEnded event occurs. At same time, the line points or positions are stored 
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in the system. The result in Fig. 3.15 shows that images can be segmented by using the GrabCut 

algorithms. 

 

 

 

Fig. 3.15: Snapshots of segmentations by using GrabCut 



 

41 

As illustrated in Fig. 3.15, it shows the performance of GrabCut on the food images and 

biomedical images. The image of the right side displays an original image before using the 

GrabCut algorithm [59, 60]. After applying the GrabCut methods, the segmented image shows 

on the left side.  

3.5 Image matching Methods 

 The Scale Invariant Feature Transform (SIFT) algorithm was introduced by the Lowe’s 

paper. This approach can perform extracting distinctive invariant features from images. The 

image features have many properties which are invariant to image translation, rotation, and 

scaling for matching images. It can be easily matched between two images performing particular 

tasks: image detection, recognition, and geometrical transformations.    

The SIFT algorithm [63, 64] is performed in four optimization phases. The first stage of 

the SIFT algorithm detects keypoints using a cascade filtering approach. These keypoints 

identify the features of candidate keypoints by using local maxima and minima of a Difference-

Of-Gaussian pyramid (DOG). The Gaussian pyramid represents a function         , where term 

of L describes for the scale space of an object. Two images are computed by DOG pyramid  

         with an input image       .          =         *       .  The DOG function can 

be performed from the difference of two adjacent scales using constant factor k which can be 

efficiently detected key-point locations.          =                   . 

The Gaussians perform iteratively to generate the set of scale space images. The DOG of 

images will be subtracted from nearby Gaussian images. The local extrema of DOG algorithm is 

detected by comparing a pixel to its 26 neighbor in the scale space. The DOG function can be 

divided each octave of scale space into an integer number. After all of octaves are processed, it 

begins to resample the Gaussian object which has twice the initial value of    
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The second step finds the keypoint localization. It detects maxima and minima which are 

great candidates for key-points. This approach is for fitting a 3D quadratic function to local 

sample point to choose the interpolated location of the maximum. This quadratic function used a 

second order Taylor expansion of scale-space function. Local extrema of edges with low contrast 

are discarded since they are defected.  

The next step assigns a consistent orientation to each keypoint. After finding good 

keypoint localization, an orientation can be assigned to each feature based on local object. Each 

pixel around feature location and orientation are computed as: 

                                                  

                                                    

The Gaussian function weighted the gradient magnitudes that rely on the feature octave with σ 

that is 1.5 times that of the scale. This weighted gradient magnitudes used to an orientation 

histogram that has 36 bins covering the 360 degree range of orientations. The highest orientation 

histogram peak and other local peak are greater than 80% of the highest peak is used to create a 

key-point with this orientation. Consequently there are multiple key-points at the same location 

and scale. 

 Lastly, after assigning an orientation, local image descriptor is computed for the local 

image region. A key-point descriptor in a region around the key-point location is divided into 4 

by 4 boxes. The key-point orientation and gradient magnitudes will be weighted by Gaussian 

window. Each arrow and its gradient orientation are rotated relative to the key-points orientation. 

Therefore an 8 orientation bins are established with 4 by 4 array of histograms in each box.  

 The open-source SIFT library is implemented in C by using the OpenCV library. This 

library provides useful functions for computing SIFT features in biomedical images. The open-
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source SIFT library is used both KD-tree key-point formation and RANSAC transform 

computation. The KD-tree [66, 67] performs to match efficiently key-points with nearest 

neighbor search. The RANSAC algorithm [65] is widely used to compute image transforms from 

feature matches.     

 

Fig 3.16: Biomedical image matching between SIFT key-points using KD-tree functions 
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Fig.3.16 depicts SIFT key-point matches between two images using the open SIFT 

library’s KD-tree functions. 

 

Fig. 3.17: A transform between two images using RANSAC functions 

Fig. 3.17 shows the transformations based on the matched key-points using the SIFT 

library’s RANSAC functions. 
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CHAPTER 4 

APPLICATIONS 

4.1 Food application 

In this thesis, we proposed an image matching application for food images on the iPad. 

Food images are stored in the database. Each image has 500 by 500 pixels. A fast food dataset 

was obtained from the PFID (Pittsburgh Fast-food Image Dataset).  They introduced the first 

visual dataset of fast food with total of 4,545 still images. The dataset is public available at 

http://pfid.intel-research.net/. They researched many restaurants on fast food recognition for 

dietary assessment. This dataset was collected by 11 popular fast food chains such as Arbys, 

Dunkin Donuts, KFC, and McDonalds. Using a set of image collection, this thesis investigated 

image matching programs for food images.  

 

Fig. 4.1: The flowchart of food object tracing 

http://pfid.intel-research.net/
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Fig. 4.1 describes the flowchart of image information processing. This application will 

help people know how many calories they are going to consume from one food. This application 

is a smarter way to count its calories. An iPad application takes a picture of the meal and sends 

image to the server. The server performs the SIFT algorithm and finds the same image.  

Afterwards the server sends the image data with image information to the iPad. On the 

iPad, the image information will be displayed such as calories, nutrition, and detailed 

information. This application makes it easier to track the calories in a customized food diary. 

Additionally, it should help people meet their health and fitness goals. The detailed information 

includes company name, food name, calories, and nutrition.  

 

Fig. 4.2: Snapshot for food image after the SIFT algorithm 
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Fig. 4.2 shows an overall screenshot for food images. A user sends a food image 

(Original Image, left) to the server and gives the resulting food image (right) after finishing the 

image matching algorithm.  

 

Fig. 4.3: Displays detailed information of the resulting image 



 

48 

 The snapshot shows the detailed information for the resulting image which contains 

company name, food name, calories, and nutrition. Furthermore, this application can calculate 

the calories based on the resulting image. For instance, a calorie counter is a way to count our 

daily calorie intake. This model provides nutritional food information for calorie counter.  

 

 

 

Fig. 4.4: Detecting key-points by using the SIFT algorithm for food images 
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 As we can see in Fig. 4.4, it performs the SIFT algorithm to find key-points in different 

food images. The SIFT algorithm runs on the server side. This module provides a multiple image 

matching. This algorithm detects key-points by comparing shapes, scales, and locations in two 

images. In this example, the first image size is 500 by 500 pixels and finds the 403 key-points 

out of 430 candidates in their images. We quantified their accuracy as 93.7% at identifying the 

correct matches. The average area of the images tested was 250000 sq. pixels. If the image is 

larger than 500 by 500, the matching rate will be increased. Hence the number of key-points rises 

with increased sampling of scales. However, the speed of the image matching will be decreased 

when using the large size image. 

The cost of computation rises when using the large image. In this thesis, we utilize the 

multithreaded methods in order to avoid heavy computation on the back-end module.  

 

Fig. 4.5: Execution time between using threads and not using threads 

Fig. 4.5 illustrates the estimation of the runtime of the multiple threads between a query 

image and a reference image. The performance of the image matching depends on the hardware 

environment. If it runs on the high-level equipments, the performance will be increasingly 

improved. However, we tested on the laptop computer which has Intel core 2 Duo processor 2.13 
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GHz, 4GB memory, and Windows 7 64-bit OS. Unfortunately, the running time of a single 

thread could be faster than multiple threads. 

Table 4.1: Overall runtime comparison for food images 

 Not using multiple threads Using multiple threads 

Overall Runtime 104.937 sec 53.857 sec 

 The table 4.1 compares the overall runtime for image matching either using a single 

thread or using multiple-threads. It is evident that a multi-threaded runtime is two times faster 

than a single processor. 

 

Fig. 4.6: A comparison of key-point matching between a query and a reference image 

Fig. 4.6 shows the comparison of the key-point matching to compute a perspective 

transform based on these matches. This result is acquired by detecting key-points to each of 100 

images from the databases. The result of the key-point will be different depending on the images. 

The accuracy can be measured by using Equation 4.1 is shown in Fig. 4.7. This result could be 

drawn from the Fig. 4.6 as follows. 
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Equation 4.1 Accuracy = [(# of Detected key-points*100) / (# of Candidate features)] 

For instance, if we found the 234 matched key-points among the 240 candidate key-points, the 

accuracy would be 97.5%. 

 

Fig. 4.7: The result of accuracy for 5 food images 

 Fig. 4.7 shows the result of accuracy for searching food image cases. This 

application can match the multiple food images in 100 images. The result of the SIFT algorithm 

describes key-points between images. Eventually, we detected 5 images using the SIFT method. 

In some case, we found 784 key-points out of 810 candidate features and its accuracy will be 

96.7%. The accuracy of the 5 images would be over 92%. 
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Fig. 4.8: The result of accuracy for 10 food images 

Fig. 4.8 shows the result of the accuracy in 10 food image cases. This module performs 

the image matching for multiple food images. This application found 10 matched corresponding 

food images using the SIFT algorithm. 

4.2 Bioimage application 

We are applied an interactive image matching for MRI chest images [69, 70]. The 

biomedical images are provided by National Biomedical Imaging Archive (NBIA). We 

downloaded 100 biomedical MRI images of that are stored in the NBIA database. We can access 

and acquire the sample images at https://imaging.nci.nih.gov/ncia/login.jsf.  
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Fig. 4.9: Snapshot the GUIs on the iPad using the SIFT algorithm for bioimages  

 This snapshot above shows the overall GUI interface for biomedical images. The user can 

transfer the image to the server and perform the image matching by using the KD-tree and 
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RANSAC algorithms. The resulting image (right) is received from the server after finishing 

image matching [68]. At the time, the image will be converted from IplImage to UIImage when 

sending image to the client while image will be converted from UIImage to IplImage when 

receiving image from the server. The picture on the right side displays the information of the 

bioimages.  

 

Fig. 4.10 Displays detailed information of the resulting image 
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Fig. 4.10 shows the detailed information for the resulting image which contains 

information like imaging system company name, modality, and organ name. 

 

 

 

Fig. 4.11: Detecting key-points by using the SIFT algorithm for bioimages 

Key-points of the SIFT algorithm are selected based on the measures of their localization 

for biomedical images, as shown in Fig. 4.11. These images are from the MRI imaging device.  
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The key-points can be detected by comparing image features based on shapes, scales, and 

locations. This image size is 500 by 500 pixels. For example, the first case, we detected the 1079 

key-points in the 1091 candidate features of their images. It means that this accuracy will be 

98.9% by using the Equation 4.1. 

 

Fig. 4.12: Execution time between using threads and not using threads 

Fig. 4.12 shows the runtime when the back-end module performs the SIFT algorithm 

between a query image and a reference image. As we can see the picture, the average runtime of 

multithreaded methods for image matching is higher than that using a single processor. When the 

server performs the image matching, the system needs more time to manage multiple threads.  

Table 4.2: Overall runtime comparison for biomedical images 

 Not using multiple threads Using multiple threads 

Overall Runtime 113.041 sec 57.295 sec 
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 As we can see the Table 4.2, the overall runtime of the SIFT algorithm is increasingly 

improved when using multiple threads.  

 

Fig. 4.13: Overall comparisons of key-points for biomedical images 

Fig. 4.13 states that the SIFT algorithm detects key-points by using KD-tree and 

RANSAC algorithms. In the experiment, we used the MRI images from biomedical resources. 

Each image is very similar to others. As a result, the SIFT algorithm finds more key-points than 

food images. Since food images are not similar to each other. 
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Fig. 4.14: The result of accuracy for 5 biomedical images 

The result of the SIFT algorithm demonstrates key-points in their images as shown in 

Fig. 4.14 above. Fig. 4.14 shows the accuracy of the image matching for 5 biomedical image 

cases. This module performs to match images for multiple biomedical images. Eventually, we 

detected 5 images using the SIFT method. In some case, we found 999 key-points out of 1009 

candidate features and its accuracy will be 99.0%. The accuracy of the 5 images would be over 

90%. 
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Fig. 4.15: The result of accuracy for 10 biomedical images 

Fig. 4.15 shows the result of the accuracy for searching biomedical images. As we can 

see, the key-points of 10 matched images would be higher in 100 biomedical images. This 

application performs the SIFT algorithm for multiple biomedical images. This application found 

10 matched corresponding biomedical images using the SIFT algorithm. For instance, if we 

found the 124 matched key-points among the 135 candidate key-points, the accuracy would be 

91.8%. 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

In this chapter, we describe the conclusion to summarize our work and propose the future 

work. 

5.1 Conclusion 

The open-source SIFT library is widely used in the computer vision field, which is a 

powerful algorithm to match objects in two different images. Based on the SIFT algorithm, Rob 

Hess released the SIFT implementation in 2006 as an open-source library. As it is introduced, 

many papers are published by using the SIFT algorithm and tried to improve its algorithm. Apple 

released a portable device, iPad 2, which provided a solid platform with faster graphics, WI-FI 

networks, high resolution screen, and touch technology. With this idea, we have designed and 

implemented the front-end and the back-end modules by using the SIFT algorithms for food and 

biomedical images. 

The front-end module can perform to take an input image, to manipulate images using 

either GrabCut or rectangle-cut methods. This segmentation image will transfer to the back-end 

module using the CFNetwork based on the iOS platform. On the back-end module, the SIFT 

algorithm performs the image matching using the key-points can be extracted from a typical 

image. The image data and information will transfer to the front-end module using the Winsock 

library. Finally, all the information will display on the iPad.   

We have investigated two applications for image matching: food and biomedical images. 

These applications are mainly based on the SIFT algorithm for comparing and finding between 
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different images. An application for food images will help people to manage their health and 

fitness. Moreover if they have a one photo, they can calculate calories of food how many calories 

they consume in a day. Also, they can control the food nutrient components using detailed 

information on the iPad. The application of the biomedical images provides an efficient and 

convenient way to compare between two images for biologists. 

In conclusion, many applications will appear by using image matching algorithms 

relative to the food and biomedical images. With the iPad, an application will improve using the 

SIFT algorithms.   

5.2 Future Work 

Our approach is not supported by image control methods and manipulations. It only 

performs to mach in two images and displays the resulting image on the iPad. We need to add 

more functionalities and abilities to the manipulation of an object such as zoom-in, zoom-out, 

rotations, and movements. These functionalities will help users to control an image and gives 

detailed information. Moreover, they can help to easily recognize images. Assume that an image 

is damaged, these functionalities can help to identify the image by using zoom-in and rotation 

functions. 

 The application has to provide the image matching for video streaming image. Our 

module only can match pictures. The video can provide to collect a variety of images at one time 

while photo camera needs more time to collect pictures. This application can play a video, stop a 

play, and segment a specific image.  

Finally, we propose the functions of multi-segmentation methods. Assume that four 

images are displayed on the iPad. We can segment numerous images in a short time by using the 

multi-segmentation functions. It will be an efficient and convenient way for users. 
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