
Computing Generators and Relations for Matrix Algebras

by

Graham Y. Matthews

(Under the direction of Jon Carlson)

Abstract

We describe algorithms for computing a presentation for a matrix algebra over a
finite field, and for computing the basic algebra associated to such a matrix algebra.
We give correctness proofs of our algorithms, and implementations of them in the
Magma computer algebra system. We use these implementations to compute several
basic algebras.

Index words: Matrix Algebras, Finite Dimensional Algebras, Basic Algebras,
Generators and Relations, Morita Theory, Modular
Representation Theory.

Computing Generators and Relations for Matrix Algebras

by

Graham Y. Matthews

BSc Hons (First Class), The University of Auckland, 1989

MSc (With Distinction), The University of Auckland, 1991

Graduate Diploma, The Australian National University, 1997

A Dissertation Submitted to the Graduate Faculty

of The University of Georgia in Partial Fulfillment

of the

Requirements for the Degree

Doctor of Philosophy

Athens, Georgia

2004

c© 2004

Graham Y. Matthews

All Rights Reserved

Computing Generators and Relations for Matrix Algebras

by

Graham Y. Matthews

Approved:

Major Professor: Jon Carlson

Committee: Brian Boe

Leonard Chastkofsky

Elham Izadi

Robert Varley

Electronic Version Approved:

Maureen Grasso

Dean of the Graduate School

The University of Georgia

August 2004

Preface

Modular representation theory is the study of the realizations of an algebra A over a

field K of characteristic p, as a subalgebra of the endomorphisms of some K-vector

space V . In computational modular representation theory we usually take K to be

finite, and both V and A to be finite dimensional overK, so that endomorphisms of V

can be represented as n×n matrices over K, where n is the K-dimension of V . In the

computational setting A is usually implicitly defined via a sequence Λ = {λ1, . . . , λt}

of n× n matrices over K, so A is the subalgebra of Mn(K) generated by Λ.

Two natural questions arise. First, can we compute a presentation for A in terms

of generators and relations, and if so, can this be done in a somewhat canonical

way? The more canonical the presentation, the more useful it becomes in answering

related questions, such as whether two algebras are isomorphic. Second, can we

compute the basic algebra associated to A? The basic algebra, B, is a usually much

smaller dimensional algebra, with the property that A and B are Morita equivalent,

i.e., the module category for A and the module category for B are categorically

equivalent, and hence representations of A and of B are ‘essentially the same’.

Previous approaches to these questions have mainly focussed on the second

problem, and have assumed that A is the group algebra of some finite group G.

The techniques employed center on finding idempotents e ∈ KG, usually via special

subgroups of G, such that the condensed algebra eKGe is Morita equivalent to the

group algebra KG. There is a large body of work [16] on how to both construct and

recognize such idempotents. The essential problem with this approach is that there is

no guarantee that if g1, . . . , gn generate KG, then eg1e, . . . , egne will generate eKGe.

iv

v

This dissertation attempts to answer both problems via a somewhat different

approach. We still attempt to find idempotents in A, and then condense A with

respect to these idempotents, but we do not assume that A is the group algebra

of some finite group. Rather we work directly with A as a subalgebra of a matrix

algebra. We also treat the two problems as being intimately related – our solution

to the second problem yields a natural solution to the first.

We start by proving that A can be ‘split’ as the direct sum of a subalgebra A′

isomorphic (as an algebra) to A modulo its Jacobson radical J(A), and the two-

sided ideal J(A). Next we show how to find generators and relations for A′. These

generators are constructed in a canonical way, with two generators and a family of

four relations per simple A-module. One of the two generators is actually in the

basic algebra B for A, and the other becomes zero when we condense to form B. We

then show how to construct a generating set for J(A) as a two-sided ideal. While this

generating set is not quite canonical, it has the interesting property that it is wholly

contained in B. Hence the set not only generates J(A), but also J(B). Our careful

construction of generators for A′ and J(A) via elements of A that are either in B,

or condense to zero within B, allows us to both construct B as a matrix algebra,

and to compute a presentation for B via generators and relations. We conclude

by computing the basic algebra associated to several algebras, including the group

algebra of the Mathieu group M11 in characteristic 2.

We provide algorithms for all our constructions, along with proofs of their cor-

rectness. Appendix A contains implementations of our algorithms in the Magma

computer algebra system

Acknowledgments

I would like to thank the Department of Mathematics at the University of Georgia

at Athens for the financial and professional support given to me during my studies.

I would also like to thank the members of the Magma computational algebra

project at the University of Sydney, both for providing me with Magma itself, and for

answering my many questions about how to make Magma perform the calculations

necessary for the algorithmic content of this dissertation. A special mention goes to

Allan Steel for his many helpful hints in this respect.

Thanks to Janet and India for their support and patience in the face of my

continual claim that ‘the dissertation is almost finished’.

To Dave Benson go my sincerest thanks. His insight and his ability to explain

complicated mathematics in terms that I understand has helped me enormously

during my time in Athens. I have benefited greatly from knowing Dave as a mathe-

matician, a mentor and a friend.

Finally I would like to thank my supervisor Jon Carlson. Thanks for suggesting

such a great topic! Thanks also for your financial support, your mathematical and

computational insight, your guidance, and your willingness to help me whenever your

door was open. Most of all Jon, huge huge thanks for your patience, your friendship,

and your understanding during some difficult times.

I dedicate this dissertation to my mother, June Matthews, without whose con-

tinued emotional and financial support I would never have completed my studies.

vi

Table of Contents

Page

Preface . iv

Acknowledgments . vi

Chapter

1 Background . 1

1.1 Basic Conventions and Notations 1

1.2 Composition Series . 2

1.3 The Radical of A Module 2

1.4 The Jacobson Radical 3

1.5 The Krull-Schmidt Theorem 5

1.6 Idempotents . 5

1.7 Wedderburn’s Theorems 9

1.8 Finite Fields . 14

1.9 Vector Spaces . 14

1.10 Splitting Fields . 16

1.11 Morita Equivalence and Basic Algebras 19

1.12 Faithful Representations 24

1.13 Computational Background 25

2 Theory . 28

2.1 A Presentation for a Full Matrix Algebra 28

2.2 Splitting the Radical: Part One 35

vii

viii

2.3 Splitting the Radical: Part Two 40

2.4 Generating the Radical of A 44

2.5 The Basic Algebra Associated to A 47

3 Core Algorithms . 51

3.1 Basic Definitions and Notation 51

3.2 Computing Generators for The Semisimple Part of A 54

3.3 Computing Generators for the Radical of A 79

3.4 Pruning The Generators for the Radical of A . . . 81

3.5 Computing Generators for A 82

4 Derivative Algorithms . 84

4.1 Computing The Basic and Split Basic Algebra for A 84

4.2 Computing a Presentation for A 86

5 Examples . 95

5.1 The Structure of Each Example 95

5.2 Background . 97

5.3 M11 in Characteristic 2 99

5.4 A Split Extension of A5 105

5.5 SL(2,F8) . 107

5.6 A Split Extension of Q8 111

5.7 A Very Large Example 114

Bibliography . 116

Appendix

A Magma Programs . 118

A.1 Computing The Big Idempotents 118

A.2 Computing The Little Idempotents 119

ix

A.3 Computing The SemiSimple Generators 121

A.4 Computing Generators for the Radical 125

A.5 Pruning The Generators for the Radical 129

A.6 Computing Generators for an Algebra 129

A.7 Computing The Basic and The Split Basic Algebra 131

A.8 Computing Generators for Ω 132

A.9 Computing A Presentation 139

A.10 Condensing . 139

A.11 Randomizing Functions 140

A.12 Functions to Verify Computation Results 141

A.13 Top Level Parameters 145

A.14 Record Formats . 146

A.15 Functions for the Cylic Group of Units of a Field 146

A.16 Matrix Functions . 147

A.17 Checking Functions . 149

B Presentation for a Split Extension of A5 151

Chapter 1

Background

Abstract. We establish the conventions and notation used throughout

this dissertation, and give the background results necessary to understand

the subsequent chapters. We also discuss the computational tools used in the

development of our later algorithms.

1.1 Basic Conventions and Notations

Throughout this chapter all definitions and theorems are given in the context of finite

dimensional algebras and finitely generated modules over them. While many of our

definitions and theorems are valid over more general rings, restricting to this context

both matches the computational setting in which we use this material, and allows

many of the main background results to be stated more concisely. For example we do

not have to consider finiteness conditions on our algebras and modules, since finite

dimensional algebras and finitely generated modules over them are finite dimensional

vector spaces, and hence satisfy both the ascending and descending chain conditions

on ideals and submodules. The proofs cited for theorems are usually proofs over

more general rings, so the reader may consult these proofs to see the general setting.

Henceforth A denotes a finite dimensional algebra with identity element over a

field K, and AA denotes the left regular representation of A – i.e., A thought of as

a left A-module via the multiplication in A.

1

2

1.2 Composition Series

Definition 1.2.1. A composition series for an A-moduleM is a series of submodules,

0 = M0 < M1 < · · · < Mr = M

where each factor, Mi/Mi−1, is a simple A-module

All finitely generated A-modules admit at least one composition series.

Theorem 1.2.2 (Jordan-Hölder). Suppose M is an A-module. Given any two

series of submodules of M

0 = M0 < M1 < · · · < Mr = M

0 = M ′
0 < M ′

1 < · · · < M ′
s = M

we may refine them to series of equal length

0 = L0 < L1 < · · · < Ln = M

0 = L′
0 < L′

1 < · · · < Ln = M

and find a permutation ρ of {1, . . . , n} such that Li/Li−1 ' L′
ρ(i)/L

′
ρ(i−1). In partic-

ular then any two composition series for M have the same length and have the same

factors up to permutation and isomorphism.

Proof. Theorem 1.1.4 of [4].

For finitely generated A-modules the length of a composition series is therefore

an invariant of the module, and the factors appearing in a composition series are

unique up to isomorphism.

1.3 The Radical of A Module

Definition 1.3.1. Let M be an A-module. The radical of M , denoted Rad(M), is

the intersection of all the maximal submodules of M .

3

Definition 1.3.2. A finitely generated A-module M is called semisimple if M is a

finite direct sum of simple modules.

The relevant properties of the radical of a module are summarized in the following

theorem.

Theorem 1.3.3. Let M be a finitely generated A-module. Then:

(i) Rad(M/Rad(M)) = 0.

(ii) Rad(M) is the smallest submodule M ′ of M such that Rad(M/M ′) = 0.

(iii) M is semisimple if and only if Rad(M) = 0.

Proof. Corollary 5.2 of [11], and the discussion in section 1.2 of [4].

1.4 The Jacobson Radical

Definition 1.4.1. The Jacabson radical of A, denoted J(A), is the radical of the

left regular module AA i.e., J(A) = Rad(AA). We denote the factor ring A/ J(A) by

A.

Definition 1.4.2. An algebra A is called semisimple if J(A) = 0.

The basic properties of the Jacobson radical are summarized in the following

theorem.

Theorem 1.4.3. For an algebra A:

(i) J(A) =
⋂
I

I =
⋂
J

J =
⋂
K

K, where I, J , and K range over all maximal left,

right, and two sided ideals of A respectively.

(ii) J(A) =
⋂
X

AnnA(X) =
⋂
Y

AnnA(Y), where X and Y range over all simple left

and right A-modules respectively.

4

(iii) J(A) is a two sided ideal of A.

(iv) J(A) = 0, so A is a semisimple algebra.

(v) if M is a finitely generated A-module, then Rad(M) = J(A) ·M .

(vi) suppose A′ is a subring of A such that A′ + J(A)2 = A, then A′ = A.

Proof. Propositions 5.5, 5.6, and 5.29, and Corollary 5.11 of [11], and Proposition

1.2.8 of [4].

We can relate semisimplicity of finitely generated A-modules to the Jacobson

radical of A as follows.

Lemma 1.4.4. If A is semisimple (so J(A) = 0) then every finitely generated A-

module is semisimple. Conversely if AA is a finitely generated semisimple A-module,

then A is a semisimple algebra.

Proof. Lemma 1.2.4 of [4].

We can also relate nilpotence in A to the Jacobson radical of A.

Definition 1.4.5. An element x ∈ A is called nilpotent if there exists a positive

integer k such that xk = 0. A left ideal I ⊆ A is called nilpotent if there exists a

positive integer k such that Nk = 0 (i.e., all k-fold products in N are zero). A left

ideal I ⊆ A is called nil if all its elements are nilpotent. Clearly nilpotent ideals are

nil.

Theorem 1.4.6. J(A) is the largest nilpotent ideal in A and as such contains all

nilpotent one-sided ideals (left or right), and all one-sided nil ideals.

Proof. Proposition 5.15 of [11].

5

1.5 The Krull-Schmidt Theorem

Theorem 1.5.1 (Krull-Schmidt). A finitely generated A-module M has the prop-

erty that both

(i) M is a finite direct sum of indecomposable A-modules.

(ii) whenever M =
m⊕
i=1

Mi =
n⊕
i=1

M ′
i , with each Mi and M ′

i a non-zero indecompos-

able A-module, then m = n, and (after reordering if necessary), Mi 'M ′
i .

Proof. Theorem 1.4.6 of [4].

1.6 Idempotents

Definition 1.6.1. An element e ∈ A is called idempotent if e 6= 0 and e2 = e. Two

idempotents e1 and e2 are said to be orthogonal if e1e2 = e2e1 = 0. An idempotent

e is said to be primitive if we cannot express e in the form e = e1 + e2 with e1 and

e2 orthogonal idempotents.

The idempotent stucture of an algebra A is intimately related to decompositions

of AA into finite direct sums of modules.

Definition 1.6.2. Let M be a non-zero indecomposable A-module. M is called a

projective indecomposable module if M is isomorphic to a direct summand of the

(free) A-module AA.

Lemma 1.6.3. If A =
n⊕
i=1

Ji, with the Ji non-zero left ideals of A, and 1 = e1 +

· · ·+ en, with ei ∈ Ji, then the ei are pairwise orthogonal idempotents with Ji = Aei.

Conversely, if e1, . . . , en are pairwise orthogonal idempotents then e1 + · · ·+ en is an

idempotent, and A(e1 + · · ·+ en) =
n⊕
i=1

Aei.

Proof. Lemma 41.1 of [12].

6

Corollary 1.6.4. Let e ∈ A be an idempotent. Then the following are equivalent:

(i) e is primitive.

(ii) Ae is an indecomposable left A-module.

(iii) eA is an indecomposable right A-module.

Moreover if e is primitive then Ae is a projective indecomposable A-module.

Proof. The three main points are proved in Corollary 41.3 of [12]. The fact that Ae

is a projective indecomposable module when e is primitive follows from the fact that

AA = Ae⊕ A(1− e).

The point here is that in a finite dimensional algebra, the identity of A can be

expressed as a finite sum of pairwise orthogonal primitive idempotents, and every

such expression then gives a decomposition of A into a direct sum of projective

indecomposable A-modules. Moreover, since AA satisfies the Krull-Schmidt theorem,

every projective indecomposable A-module is isomorphic to Ae for some primitive

idempotent e ∈ A.

The correspondence between expressions for the identity in terms of primitive

idempotents, and decompositions of AA into projective indecomposables, can be

taken further via the idea of conjugacy of idempotents.

Definition 1.6.5. Two idempotents e1 and e2 are called conjugate in A, if there

exists an invertible element r ∈ A such that r−1e1r = e2.

Lemma 1.6.6. Two idempotents e1 and e2 are conjugate in A if and only if (as

A-modules) Ae1 ' Ae2 and A(1− e1) ' A(1− e2).

Proof. Proposition 1.7.2 of [4].

Summarizing we have the following theorem.

7

Theorem 1.6.7. In a finite dimensional algebra A the identity of A can be expressed

as a finite sum of primitive idempotents, 1A =
∑
ek. Such an expression then gives a

decomposition, AA =
⊕

Aek, of AA into projective indecomposables. Moreover every

projective indecomposable A-module is isomorphic to Aek for some choice of k, and

Aek ' Aej if and only if ek and ej are conjugate,

Thus the primitive idempotents characterize the projective indecomposable mod-

ules for a finite dimensional algebra. They can also be used to characterize the simple

modules for a finite dimensional algebra.

Theorem 1.6.8. Let e1 and e2 be primitive idempotents in A. Then:

(i) J(A)e1 is the unique maximal submodule in Ae1.

(ii) Ae1/ J(A)e1 is a simple A-module.

(iii) Ae1 ' Ae2 if and only if Ae1/ J(A)e1 ' Ae2/ J(A)e2.

Proof. Theorem 45.7 of [12].

Theorem 1.6.9. There is a 1-1 correspondence between isomorphism classes of

projective indecomposable A-modules, and isomorphism classes of simple A-modules

given by P ↔ P/Rad(P). Specifically this correspondence works as follows: if P is

a projective indecomposable A-module, then P ' Ae for some primitive idempotent

e ∈ A. By the previous lemma S = Ae/J(A)e is simple, and

P/Rad(P) ' P/ J(A)P ' Ae/J(A)Ae = Ae/J(A)e = S

Conversely if S is a simple A-module then S ' Ae/J(A)e for some primitive idem-

potent e ∈ A. Taking P = Ae then gives a projective indecomposable A-module such

that P/Rad(P) ' S.

Proof. Corollary 45.8 of [12].

8

Until now we have used expressions for the identity of A in terms of primitive

idempotents to produce decompositions of AA into finite direct sums of projective

indecomposables. We can in fact say more, specifically for suitable choices of ideals

I ⊆ A, expressing the identity of A/I as a finite sum of idempotents, is sufficient to

decompose AA into finite sums of A-modules.

Theorem 1.6.10 (Idempotent Lifting Theorem). Suppose I is a two sided

nilpotent ideal of A. Then:

(i) if e is an idempotent in A/I, then there exists an idempotent e ∈ A (called a

lift of e), such that e = e+ I.

(ii) if e is primitive in A/I, then any lift e is primitive in A.

(iii) if e1 and e2 are orthogonal in A/I, then any lifts e1 and e2 are orthogonal in

A.

(iv) if e1 and e2 are conjugate in A/I, then any lifts e1 and e2 are conjugate in A.

(v) if e1, . . . , en are pairwise orthogonal (primitive) idempotents in A, then e1 +

I, . . . , en + I, are pairwise orthogonal (primitive) idempotents in A/I.

(vi) if e1, . . . , en are pairwise orthogonal idempotents in A/I such that 1A/I =
∑
ei,

then there exist pairwise orthogonal idempotents e1, . . . , en in A, with ei =

ei + I, such that 1A =
∑
ei. Moreover if ei is primitive, then so is ei, and if ei

is conjugate to ej, then ei is conjugate to ej.

Proof. Theorem 1.7.3 and Corollary 1.7.4 of [4].

This theorem will form the cornerstone of several later algorithms. It will be most

often used in the special case where I is actually equal to J(A), rather than simply

contained in it.

We finish this section with a technical result.

9

Lemma 1.6.11. If e is an idempotent in A, then eAe is a subalgebra of A with

identity e. Moreover J(eAe) = eAe∩J(A) = e J(A)e, and eAe/ J(eAe) ' eAe, where

e = e+ J(A).

Proof. The first claim is obvious. The second claim is proved in Proposition 5.13 of

[11].

1.7 Wedderburn’s Theorems

Idempotents in a finite dimensional algebra A are closely connected to endomorphism

rings over A, and hence to matrix rings. The connection is via the opposite algebra

to A.

Definition 1.7.1. Aop denotes the opposite algebra to A, i.e., the algebra whose

underlying set is A but whose multiplication is reversed. So if ‘·’ denotes the product

operator in Aop, then by definition a · b = ba.

The basic properties of opposite algebras are as follows.

Lemma 1.7.2. For an algebra A:

(i) Aop ' EndA(AA).

(ii) (Aop)op ' A.

(iii) Mn(A)op 'Mn(A
op).

For a family Ai of algebras, (
⊕
i

Ai)
op '

⊕
i

(Aop
i).

Proof. Lemmas 11 and 15 of [2].

The connection between opposite algebras and endomorphism rings is given in

the following lemmas.

10

Lemma 1.7.3. If M is an A-module, and e is an idempotent in A, then as abelian

groups

eM ' HomA(Ae,M)

Moreover we have an isomorphism of algebras eAe ' EndA(Ae)op.

Proof. Lemma 1.3.3 of [4].

Lemma 1.7.4. Suppose e is a primitive idempotent in A. Then EndA(Ae/ J(A)e) '

EndA(Ae)/ J
(
EndA(Ae)

)
.

Proof. Lemma 45.9 of [12].

Corollary 1.7.5. Suppose that P is a projective indecomposable A-module with cor-

responding simple S. Then EndA(S) ' EndA(P/Rad(P)) ' EndA(P)/ J(EndA(P)).

Proof. Since P is a projective indecomposable, P ' Ae for some primitive idempo-

tent e ∈ A, and S ' P/Rad(P). Hence

EndA(S) ' EndA(P/Rad(P))

' EndA(Ae/ J(A)Ae)

' EndA(Ae/ J(A)e)

' EndA(Ae)/ J(EndA(Ae))

' EndA(P)/ J(EndA(P))

We now come to a theorem which will form the backbone of much of theoretical

material developed later. This theorem provides a complete description of finite

dimensional semisimple algebras over a field.

Definition 1.7.6. An algebra A is called simple if A contains no non-trivial two

sided ideals.

11

Theorem 1.7.7 (Wedderburn’s Structure Theorem). If A is a finite dimen-

sional semisimple algebra over a field K then

A '
r⊕
i=1

Ai

where Ai = Mni
(Di), with Di a division ring containing K in its center, and the

Ai uniquely determined. Moreover A has exactly r isomorphism classes of simple

modules Si, 1 ≤ i ≤ r, Di ' EndA(Si)
op, and dimDi

op (Si) = ni. If A is simple then

A 'Mn(D) (i.e., r = 1 in the direct sum decomposition).

Proof. Theorem 1.3.5 of [4]

The converse of this theorem is also true – i.e., every matrix algebra over a

division ring containing a field K in its center is a simple finite dimensional K-

algebra, and any finite direct sum of matrix algebras over division rings containing

a field K in their centers is a semisimple finite dimensional K-algebra. Here we are

of course assuming that the matrix algebras have finite degree.

Our main use of the Wedderburn Structure theorem is in the special case when

K is a finite field. In this case the following two theorems are critical.

Theorem 1.7.8. Every finite division ring is a field.

Proof. Theorem 68.9 of [10].

Corollary 1.7.9. Let A be a semisimple algebra over a finite field K. Then

A '
r⊕
i=1

Mni
(Ki)

where Ki is a finite extension of K.

Proof. By the Wedderburn Structure theorem

A '
r⊕
i=1

Mni
(Di)

12

where Di ' EndA(Si)
op, and contains K in its center. Each Si is a finite dimensional

K-vector space, and since K is finite, each Si, and hence Di, is also finite. The result

now follows from the previous theorem.

The Idempotent Lifting theorem, the Wedderburn Structure theorem, together

with 1.6.9 and some knowledge of idempotents in a full matrix algebra, provide a

methodology for understanding an algebra A by examining its semisimple quotient

A. As we shall make heavy use of this methodology in later chapters, we detail how

this approach works here.

By the Wedderburn Structure theorem

A '
r⊕
i=1

Ai

where Ai = Mni
(Di), and Di = EndA(Si)

op (Si is the i-th simple A-module, and has

dimension ni over Di
op).

Take eij ∈ Ai to be the matrix with a 1 in the j-th diagonal entry, and zero

elsewhere. Then

1A/J(A) =
r∑
i=1

ni∑
j=1

eij

is an expression for the identity of A in terms of pairwise orthogonal primitive

idempotents in A (here we are identifying A and
r⊕
i=1

Ai via the isomorphism between

them). By the Idempotent Lifting theorem there is a corresponding expression,

1A =
r∑
i=1

ni∑
j=1

eij

with the eij pairwise orthogonal primitive idempotents in A.

Since eij and eik are conjugate in Ai, eij and eik are conjugate in A, and so by

1.6.7, Aeij and Aeik are isomorphic projective indecomposable A-modules. Hence if

we define Pi = Aei1, we have a decomposition

AA '
r⊕
i=1

P ni
i

13

of AA into projective indecomposable A-modules. By 1.6.9 each Pi corresponds to a

simple module Si, namely

Si ' Pi/Rad(Pi) ' Aei/J(A)Aei ' Aei/J(A)ei

Finally observe that by 1.7.3 and 1.7.5

Dop
i = (EndA(Si)

op)op

' EndA(Aei/ J(A)ei)

' EndA(Aei)/ J(EndA(Aei))

' eiAei/ J(eiAei)

These observations lead to the final theorem in this section.

Theorem 1.7.10. Using the notation above, suppose that fi =
ni∑
k=1

eik. Then

fiAfi/ J(fiAfi) ' Ai

Proof. Since Aeik ' Aeij we have that

EndA(Afi) = EndA
(
A
(ni∑
k=1

eik
))
'Mni

(
EndA(Aei1))

By 1.7.3 and 1.7.2 it then follows that

fiAfi/ J(fiAfi) ' EndA(Afi)
op/ J

(
EndA(Afi)

op
)

' EndA
(
A
(ni∑
k=1

eik
))op

/ J
(
EndA

(
A
(ni∑
k=1

eik
))op)

'Mni

(
EndA(Aei1)

)op
/ J
(
Mni

(
EndA(Aei1)

)op)
'Mni

(
EndA(Aei1)

op
)
/ J
(
Mni

(
EndA(Aei1)

op
))

'Mni

(
EndA(Si)

op
)
/ J
(
Mni

(
EndA(Si)

op
))

'Mni
(Di)/ J(Mni

(Di)
)

'Mni
(Di)

The last step here follows from the fact that full matrix algebras are simple, and so

have no non-trivial two sided ideals.

14

1.8 Finite Fields

We remind the reader of three results from finite field theory which we shall make

essential use of.

Definition 1.8.1. Suppose L is an extension field of K, such that L = K(α) for

some α ∈ L. Then α is called a primitive element of L over K.

Theorem 1.8.2 (Primitive Element Theorem). Suppose L is a finite extension

of K. Then there exists a primitive element α of L over K, so that L = K(α).

Proof. Theorem 4.6 of [15].

Theorem 1.8.3. Let K be a finite field of size q = pd, and let K∗ = K \ 0 be the

multiplicative group of units of K. Then:

(i) K∗ is cyclic of order q − 1.

(ii) the map that sends every element to its p-th power in K (the Frobenius map)

is an automorphism of K leaving the ground field Fp fixed.

(iii) the map that sends every element to its q-th power in K is the identity map

on K.

Proof. Theorem 5.3 of [15].

Theorem 1.8.4. Let m and n be positive integers. Then Fpn is contained in Fpm if

and only if n divides m.

Proof. Theorem 5.5 of [15].

1.9 Vector Spaces

We give some standard results on vector spaces which we shall use in our later

algorithms.

15

Lemma 1.9.1 (Fitting’s Lemma). Let M be a finitely generated A-module, and

f ∈ EndA(M). Then M = im(fn)⊕ ker(fn) for some n.

Proof. Lemma 1.4.4 of [4].

Lemma 1.9.2. Suppose U is a vector space over K with basis {u1, . . . , un}, and L

is an extension field of K of degree d with K-basis {b1, . . . , bd}. Then V = L⊗KU

is a vector space over K of dimension dn, with K-basis (called the standard basis)

{bi⊗uj}. Moreover the action of L on V is given by l(bi⊗uj) = (lbi)⊗uj, for all

l ∈ L.

Proof. Corollary 2.4 of [15].

Lemma 1.9.3. Suppose V is a vector space of dimension n over L, where L is an

extension field of K of degree d with K-basis {b1, . . . , bd}. Let {v1, . . . , vn} be a basis

for V over L. Let W be the K-span of {v1, . . . , vn} . Then L⊗KW ' V via the

isomorphism that maps bi⊗vj 7→ bivj.

Proof. The map bi⊗vj 7→ bivj is onto. The result now follows by the previous lemma,

since dimK(L⊗KW) = dn = dimK(V).

Lemma 1.9.4. Suppose L is an extension field of K of degree d. Then every element

of Mn(L) can be written in the form



α11 · · · α1n

α21 · · · α2n

...
...

...

αn1 · · · αnn


m×m

where m = nd, and each αij is a d× d matrix over K representing an element l ∈ L

with respect to some basis {b1, . . . , bd} of L over K.

16

Proof. Let α ∈ Mn(L). Then α acts on the natural vector space V of dimension n

over L. Let {v1, . . . , vn} be a basis for V over L. By the previous lemma V ' L⊗KW .

Order the standard basis for L⊗KW as follows

{b1⊗v1, b2⊗v1, . . . , bd⊗v1, b1⊗v2, b2⊗v2, . . . , bd⊗v2, . . .}

With respect to this basis α has the required form.

Remark. As dimK(Mn(L)) = n2d, it is clear that not every d × d matrix over K

can appear as an αij.

1.10 Splitting Fields

Given a K-algebra, A, and an extension field L of K, the vector space AL = L⊗KA

becomes an L-algebra by defining the scalar action of L on AL to be

l1 · (l2⊗a1) = (l1 · l2)⊗a1

and the algebra multiplication to be

(l1⊗a1) · (l2⊗a2) = (l1 · l2)⊗(a1 · a2)

for all l1, l2 ∈ L, and a1, a2 ∈ A. The unit in AL is 1L⊗1A. Note that A can be

embedded in AL as a K-subalgebra via the K-embedding a 7→ 1⊗a, and then AL

is simply the set of L-linear combinations of elements of the image of A under this

embedding. It follows then that if A is generated as a K-algebra by a1, . . . , at, then

AL is generated as an L-algebra by 1⊗a1, . . . , 1⊗at.

Given an A-module M the vector space ML = L⊗KM becomes an AL-module

under the action

(l1⊗a)(l2⊗m) = (l1 · l2)⊗(a ·m)

17

for all l1, l2 ∈ L, and a ∈ A, and m ∈ M . We can embed M into ML as a K-

subspace via the K-embedding m 7→ 1⊗m, and then ML is simply the set of L-

linear combinations of elements of the image of M under this embedding. Note

that dimL(ML) = dimK(M). Indeed if B = {v1, . . . , vn} is a K-basis for M , then B

(under the embedding) is also an L-basis for ML. Moreover if ρ : A→ EndK(M) is a

matrix representation of A with respect to the K-basis B, and ρL : AL → EndL(ML)

is a matrix representation of AL with respect to the L-basis B, then ρL agrees with

ρ on A, and

ρL(
∑
i

liai) =
∑
i

liρ(ai)

for all li ∈ L and ai ∈ A.

Definition 1.10.1. A simple A-module M is called absolutely irreducible if ML is

a simple AL-module for every extension L of K. If M is an A-module such that

the composition factors of ML are absolutely irreducible, then L is called a splitting

field for M . If L is a splitting field for every simple A-module, then A is called an

L-split algebra. L is called a splitting field for A if AL is an L-split algebra.

The following two theorems characterize absolutely irreducible modules, establish

the existence of splitting fields, and tell us how splitting fields behave under field

extensions.

Theorem 1.10.2. A simple A-module M is absolutely irreducible if and only if

EndA(M) ' K.

Proof. Theorem 29.13 of [10].

Corollary 1.10.3. Every simple module over an algebraically closed field is abso-

lutely irreducible, and every algebra over an algebraically closed field, L, is L-split.

Hence the algebraic closure of K is always a splitting field for any A-module and for

any K-algebra.

18

Corollary 1.10.4. If L is a splitting field for a simple A-module S, then every

extension L′ of L is also a splitting field for S.

Theorem 1.10.5. If L is a splitting field for A, then every extension L′ of L is also

a splitting field for A.

Proof. Theorem 29.21 of [10].

We will also need to know how changing scalars from K to a splitting field L

interacts with the Jacobson radical of A. We have the following two facts.

Theorem 1.10.6. L is a splitting field for an algebra A if and only if L is a splitting

field for A.

Proof. Proposition 7.9 of [14].

Theorem 1.10.7. Suppose L is a splitting field for A. Then J(AL) = J(A)L.

Proof. Proposition 29.22 of [10].

We can give very concrete descriptions of splitting fields for modules and algebras

over finite fields. Specifically we have the following theorem.

Theorem 1.10.8. Let K be a finite field, A be a K-algebra, and S be a simple

A-module. Then EndA(S)op is the minimal splitting field for S. In particular, in the

notation of 1.7.9, if Si is the i-th simple A-module, then Ki is the minimal splitting

field for Si.

Proof. Theorem 1.3.3 of [19].

Corollary 1.10.9. Let A be an algebra over a finite field K = Fpc. Suppose that

A '
r⊕
i=1

Mni
(Ki)

where Ki is a degree di extension field of K. Let l = c · LCM(d1, . . . , dr). Then

L = Fpl is the minimal splitting field for A.

19

Proof. By 1.10.6 a minimal splitting field for A will be a minimal splitting field for

A. By 1.10.8, Ki is a splitting field for the i-th simple module Si. By 1.8.4, L is the

smallest field containing all the Ki. Finally by 1.10.5, L is a splitting field for each

Si, and hence for A.

We close this section with an important point, namely that there may be more

simple AL modules than there are simple A-modules. A single simple A-module may

split into several simple AL modules when we extend scalars to L.

1.11 Morita Equivalence and Basic Algebras

Definition 1.11.1. Two categories C and D are called equivalent if there are

covariant functors F : C → D, and G : D → C such that GF (i.e., G ◦ F) is

naturally isomorphic to the identity functor on C, and FG is naturally isomorphic

to the identity functor on D. Specifically for each object M of C, and N of D there

are isomorphisms αM : M → GF (M) and βN : N → FG(N), such that the following

diagrams,

GF (M)

αM

��

GF (f)// GF (M ′)

αM′

��
M

f // M ′

FG(N)

βN

��

FG(g)// FG(N ′)

βN′

��
N

g // N ′

commute for all morphisms f : M →M ′ in C, and g : N → N ′ in D.

Properties of objects or maps in a category are considered to be ‘categorical’ if

these properties are preserved by arbitrary equivalences of categories.

Definition 1.11.2. The category of finitely generated left A-modules is denoted

A-mod. The category of all left A-modules is denoted A-Mod.

Definition 1.11.3. Two algebras A and B are called Morita equivalent if A-Mod

and B-Mod are equivalent.

20

The following theorem gives a list of categorical properties for module categories

over algebras.

Theorem 1.11.4. Let A and B be Morita equivalent algebras, with the equivalence

realized by the functors F : A-Mod → B-Mod, and G : A-Mod → B-Mod. Then:

(i) A-modules M and N are isomorphic if and only if F (M) and F (N) are iso-

morphic B-modules.

(ii) S is a simple A-module if and only if F (S) is a simple B-module.

(iii) P is a projective A-module if and only if F (P) is a projective B-module.

(iv) M is an indecomposable A-module if and only if F (M) is a indecomposable

B-module.

(v) M is a finitely generated A-module if and only if F (M) is a finitely generated

B-module.

(vi) if the finitely generated A-module M has composition factors S1, . . . , St, with

multiplicities n1, . . . , nt, then F (M) has composition factors F (S1), . . . , F (St),

with the same multiplicities.

(vii) the submodule lattices of M and F (M) are isomorphic for all A-modules M .

(viii) HomA(M,N) and HomB(F (M), F (N)) are isomorphic for all A-modules M .

In addition EndA(M) and EndB(F (M)) are isomorphic as rings for all A-

modules M .

Proof. Section 3D of [11].

Observe here that if A and B are Morita equivalent then by (v), A-mod is

equvialent to B-mod. Observe also that by (iii) and (v), F (AA) is a finitely generated

21

projective B-module. Moreover combining 1.7.2 and (viii) gives us that

A ' EndA(AA)op ' EndB(F (AA))op

Hence we can consider F (AA) as a B-A bimodule by letting A ' EndB(F (AA))op

act on the right of F (AA). Similarly we can consider G(BB) as an A-B bimodule.

Definition 1.11.5. An A-module P is called a progenerator of A-Mod if:

(i) P is projective.

(ii) P is finitely generated.

(iii) every A-module is a homomorphic image of a direct sum of copies of P .

The obvious example of a progenerator for A-Mod is AA. The connection between

progenerators and Morita equivalences is given by the following theorem.

Theorem 1.11.6 (Morita’s Theorem). Let A and B be Morita equivalent alge-

bras, with the equivalence realized by the functors F : A-Mod → B-Mod, and

G : A-Mod → B-Mod. Let P = F (AA) considered as a B-A bimodule, and let

Q = G(BB) considered as an A-B bimodule. Then for any A-module M

F (M) ' BP⊗AM

and for any B-module N

G(N) ' AQ⊗BN

Moreover P⊗AQ ' B as B-B bimodules, and Q⊗BP ' A as A-A bimodules.

Conversely algebras A and B are Morita equivalent if there exist bimodules BPA

and AQB, which are projective as both left and right modules, such that as a B-B

bimodule

BP⊗AQB ' B

22

and as an A-A bimodule

AQ⊗BPA ' A

In this case the Morita equivalence is realized by the functors F = P⊗A− : A-Mod →

B-Mod and G = Q⊗B− : B-Mod → A-Mod, and P and Q are progenerators for

B-Mod and A-Mod respectively.

Proof. Theorem 3.54 of [11].

Given two algebras A and B it is usually extremely difficult to tell if A and B

are Morita equivalent. However, starting with an algebra A we can easily construct

algebras B which are Morita equivalent to A as follows.

Theorem 1.11.7. Let P be a progenerator of A-Mod, and B = EndA(P)op. Then A

and B are Morita equivalent, with the equivalence given by the bimodules APB and

Q = HomA(P,AA) (as a B-A bimodule).

Proof. Theorem 2.2.3 of [4].

Corollary 1.11.8. A is Morita equivalent to Mn(A) for every value of n.

Proof. For any n take P = AA
n (i.e., P is the free left A-module with finite basis

{x1, . . . , xn}. Then P is a progenerator of A-Mod, so by 1.11.7, A is Morita equivalent

to B = EndA(P)op. But B 'Mn(A) via the map

b 7→ (aij)

where xib =
∑
j

aijxj.

We can also use 1.11.7, together with the Wedderburn Structure theorem, to con-

struct algebras Morita equivalent to a given finite dimensional algebra A. Suppose

23

A '
r⊕
i=1

Mni
(Di). Corresponding to this decomposition are projective indecompos-

ables Pi such that AA =
r⊕
i=1

P ni
i . Let

P =
r⊕
i=1

Pmi
i

for some choice of mi 6= 0. Then P is a progenerator of A-Mod, so A is Morita

equivalent to B = EndA(P)op. Note that by the Wedderburn Structure theorem

B/ J(B) '
r⊕
i=1

Mmi
(Di)

If we take each mi = 1 (i.e., P is equal to a direct sum of precisely one copy of each

projective indecomposable A-module), then P is still a progenerator of A-Mod, so

A is still Morita equivalent to B, and

B/ J(B) '
r⊕
i=1

M1(Di) '
r⊕
i=1

Di

So B/ J(B) is isomorphic to a direct sum of division algebras, and every simple

B-module Si is then 1-dimensional over the corresponding division ring Di. Clearly

simple modules cannot be any smaller than 1 dimensional over the corresponding

division ring, so B is the ‘smallest’ K-algebra Morita equivalent to A.

This discussion motivates the following definition, and provides a proof of the

following theorem.

Definition 1.11.9. A finite dimensional algebra B is called a basic algebra if

B/ J(B) is isomorphic to a direct sum of division algebras – i.e., in a decompo-

sition of B/ J(B) via the Wedderburn Structure theorem, all the matrix components

are 1× 1 matrix rings over division algebras. Equivalently B is called basic if every

simple B-module, S, is one dimensional over EndB(S)op.

Theorem 1.11.10. Every finite dimensional algebra A is Morita equivalent to some

basic algebra B.

24

1.12 Faithful Representations

We finish our theoretical background with a discussion of a special kind of represen-

tation which will prove useful in the development of our algorithms.

Definition 1.12.1. Let M be an A-module. A representation φ : A→ EndA(M) is

called a faithful representation of A if φ is injective, or equivalently if AnnA(M) = 0

(i.e., the only element of A that annihilates all elements of M is 0).

The canonical example of a faithful representation is when A is a matrix algebra,

since a matrix a ∈ A annihilates a vector space M if and only if a = 0.

Lemma 1.12.2. Suppose P is a projective indecomposable A-module with corre-

sponding simple module S and division algebra D. Then for any finitely generated

A-module M , dimD HomA(P,M) is the multiplicity of S as a composition factor of

M .

Proof. Lemma 1.7.6 of [4]

Theorem 1.12.3. Suppose M is a finitely generated A-module, and φ : A →

EndA(M) is a faithful representation. Then every simple A-module appears as a

composition factor of M .

Proof. Let e be a primitive idempotent in A. Since φ is faithful eM = φ(e)M 6= 0.

Hence by 1.7.3, HomA(Ae,M) ' eM 6= 0. Now Ae is a projective indecomposable

A-module by 1.6.7, so by the previous lemma, the simple A-module, Ae/ J(Ae),

corresponding to Ae, appears at least once as a composition factor of M . The result

now follows by 1.6.9 since all projective indecomposable A-modules, and hence all

simple A-modules arise from primitive idempotents.

The following lemma provides a simple but very useful method for creating

faithful representations.

25

Lemma 1.12.4. Suppose a ∈ A is such that a annihilates all the projective inde-

composable A-modules. Then a = 0.

Proof. By 1.6.7, the identity of A can be decomposed as 1A =
∑
i

ei, where each ei

is a primitive idempotent corresponding to a projective indecomposable Aei. If a

annihilates all the projective indecomposables, then a annihilates each ei, and hence

a = a · 1 = a ·
∑
i

ei =
∑
i

aei = 0

Corollary 1.12.5. Suppose M is a finitely generated projective A-module – so M =⊕
i

Pi, with each Pi a projective indecomposable module. If every isomorphism class

of projective indecomposable A-modules occurs at least once in this decomposition,

then the representation ρ : A→ EndK(M) is faithful.

Proof. Suppose a ∈ ker ρ. Then a annihilates M , and hence a annihilates every

projective indecomposable. By the previous lemma, a = 0.

Corollary 1.12.6. The regular representation is always faithful.

Proof. By 1.6.7, A is a direct sum of at least one copy of every isomorphism class of

projective indecomposable A-modules.

1.13 Computational Background

We conclude this chapter with some background on the algorithms and computa-

tional tools we use in later chapters.

1.13.1 The MeatAxe

Suppose that A is a finite dimensional algebra over a finite field K, and that M is

an A-module of K-dimension n. In computatonal problems the A-module structure

of M is usually specified by a finite set of n× n matrices over K, giving the action

of A with respect to some chosen basis for M .

26

The first question we might ask is how to determine algorithmically whether or

not M is simple, and if M is not simple, how to construct a submodule of M . In

1984, Richard Parker developed a program called the Meat-Axe, which answered this

question by implementing an algorithmic criterion for simplicity originally proposed

by S. Norton.

Since 1984, the Meat-Axe has been expanded into a large collection of related

algorithms for computing properties of A-modules specified via finite sets of matrices.

For example the Meat-Axe can:

(i) compute a composition series for M .

(ii) identify isomorphic composition factors of M .

(iii) determine socle and radical series for M .

(iv) compute a splitting field for M .

Details of these algorithms, as implemented in a more modern version of the Meat-

Axe called the C-Meat-Axe, can be found in [16].

1.13.2 Gröbner Bases

Suppose R is a multivariate polynomial ring over a field K, and I is an ideal in

R. Theoretically speaking we have a criterion for membership of I, namely that

f ∈ I if and only f ≡ 0 mod I. Buchberger showed that this criterion can be made

effective. He devised an algorithm called multivariate reduction (with respect to a

set of generators for I), and showed that if f reduces under this algorithm to zero,

then f ∈ I. He then defined a Gröbner basis [17] for I (with respect to some variable

ordering) to be a finite subset G ⊆ I such that:

(i) G generates I as an ideal.

27

(ii) if f ∈ I then, under the reduction algorithm with respect to G, f reduces to

zero.

Buchberger proved that every ideal contains a Gröbner basis, and that, given a finite

set of generators for an ideal I, there is a terminating algorithm, called Buchberger’s

algorithm, to compute a Gröbner basis for I. Having a Gröbner basis for I ensures

that computation in the quotient ring R/I is decidable, and that the word problem

for R is solvable. In theory Buchberger’s algorithm for computing a Gröbner basis

can be terribly inefficient (doubly exponential in the number of variables in the worst

case). In practice, however, it usually performs well.

The theory behind Gröbner bases has since been extended to many different

contexts, one of which is when R is a free non-commutative algebra over a field K,

and I is an ideal in R. In this case a non-commutative extension of Buchberger’s

algorithm can be used to compute a Gröbner basis for I. There is a caveat however,

namely that the basis may not be finite, and thus the algorithm may not terminate.

1.13.3 Magma

In later chapters we develop a number of programs. These programs are all written

using the Magma programming language. Magma [8, 7] is a computer algebra system

designed to provide a software environment for computing with the structures which

arise in algebra, geometry, number theory and (algebraic) combinatorics. Magma

contains high performance implementations of many of the algorithms used in com-

putational representation theory. Specifically we make essential use of Magma’s

implementation of the basic operations for linear algebra over finite fields, the non-

commutative Gröbner Basis algorithms, and the Meat-Axe algorithms for computing

composition series for finite dimensional modules over finite dimensional algebras

over finite fields.

Chapter 2

Theory

Abstract. We present the main theoretical developments of this disser-

tation. We prove that there is a presentation for a full matrix algebra over a

finite field given by two generators, and four families of relations. Using this

presentation we show that a finite dimensional algebra over a finite field can

be ‘split’ into the direct sum of the Jacobson radical and the algebra modulo

the radical. We then prove the existence of an ‘algorithmically constructible’

generating set for the Jacobson radical as a two sided ideal.

2.1 A Presentation for a Full Matrix Algebra

Let K be a finite field, and L be a finite extension of K of degree d. Let A denote a

full n× n matrix algebra over L.

For 1 ≤ j, k ≤ n, let ejk denote the jk-th elementary matrix in A. For 1 ≤

j ≤ n, define ej = ejj and zj = ej(j+1) (all such indices should be taken modulo n,

with the representatives of the n equivalence classes being 1 to n – in particular,

zn = en(n+1) = en1). Let ε be any primitive element of L (so L = K(ε)) and let

h = xd + cd−1x
d−1 + · · · + c1x + c0 ∈ K[x] be the minimal polynomial for ε over K

(so h(ε) = 0 and c0 6= 0). Let α = ε1A. Let q denote the size of L.

Observe that A has a basis over L consisting of the ejk, and a basis over K con-

sisting of products biejk, where b1, . . . , bd is a basis for L over K. Hence dimK(A) =

dn2. Recall that L∗ is a cyclic group of order q− 1, so taking q-th powers in L is the

identity map.

28

29

Lemma 2.1.1. We have the following obvious facts concerning the ejk, the ej, the

zj and α:

(i) ejkelm = δklejm and hence ejek = δjkej.

(ii) 1A =
n∑
j=1

ejj =
n∑
j=1

ej = αq−1.

(iii) α commutes with the ejk, the ej, and the zj.

(iv) h(α) = 0.

(v) zj ∈ ejAej+1, and hence ekzj = δkjzj and zjek = δj(k+1)zj.

(vi) zjzk = δ(j+1)kej(j+2), and hence zjzj+1 · · · znz1 · · · zk−1 = ejk. In particular

z1z2 · · · zn = e1, z2z3 · · · znz1 = e2, etc.

The next lemma states a fairly obvious fact for A, but in a quite general context.

We will need this generality later.

Lemma 2.1.2. Let B be a K-algebra. Suppose d1, . . . , ds are mutually orthogonal

idempotents in B. Suppose also that b1, . . . , bs are elements of B such that for all

1 ≤ j ≤ s we have bj ∈ djBdj+1 (as above indices should be taken modulo s, with the

representatives of the s equivalence classes being 1 to s, so ds+1 = d1, and bs+1 = b1).

Then for k ≤ s

(
s∑
j=1

bj)
k =

s∑
m=1

bmbm+1 · · · bm+(k−1)

Moreover if
s∑
j=1

dj = 1B, and bjbj+1 · · · bnb1 · · · bj−1 = dj for all 1 ≤ j ≤ s, then

(
s∑
j=1

bj)
s = 1B

Proof. An arbitrary term t in the expansion of (
s∑
j=1

bj)
k has the form

t = bm1bm2 · · · bmk

30

where each bml
is equal to one of the bj. Now suppose that the ml indices are not

consecutive – i.e., for some l we have m(l+1) 6= ml + 1. Then, since bj = djbjdj+1, we

have

bml
bml+1

= dml
bml

d(ml+1)dm(l+1)
bm(l+1)

d(m(l+1)+1)

= dml
bml

δ((ml+1))(m(l+1))d(ml+1)bm(l+1)
d(m(l+1)+1)

= dml
bml

· 0 · d(ml+1)bm(l+1)
d(m(l+1)+1)

= 0

and so t = 0. Hence the only non-zero terms in the expansion of (
s∑
j=1

bj)
k are those

with consecutive indices, and every such term occurs exactly once. Taking k = s

then gives

(
s∑
j=1

bj)
s =

s∑
m=1

bmbm+1 · · · bm+(s−1)

= b1b2 · · · bs + b2b3 · · · bsb1 + · · ·+ bsb1b2 · · · bs−1

= d1 + d2 + · · ·+ ds

= 1B

Corollary 2.1.3. For 1 ≤ k ≤ n we have

(
n∑
j=1

zj)
k =

n∑
m=1

zmzm+1 · · · zm+(k−1)

In particular then (
n∑
j=1

zj)
n = 1A.

Proof. Take s = n, dj = ej, and bj = zj, 1 ≤ j ≤ n in the previous lemma.

Define the following two elements of A

β =



ε 0 · · · 0

0 0 · · · 0

...
...

...
...

0 · · · · · · 0



31

and

τ =



0 1 0 · · · · · · 0

0 0 1 0 · · · 0

0 · · · 0 1 · · · 0

...
...

...
...

. . . 0

0 · · · · · · · · · 0 1

1 0 · · · · · · · · · 0



Observe that τ is a permutation matrix. Multiplying a ∈ A on the left by τ

cyclically permutes the rows of a, while multiplying a on the right by τ cyclically

permutes the columns of a.

Lemma 2.1.4. We have the following basic facts concerning β and τ :

(i) τ =
n∑
j=1

zj, and hence τn = 1A.

(ii) e1 = βq−1.

(iii) ejk = τn−(j−1)e1τ
k−1 = τn−(j−1)βq−1τ k−1. In particular ej = τn−(j−1)βq−1τ j−1.

(iv) 1A =
n∑
j=1

τn−(j−1)βq−1τ j−1 =
n∑
j=1

τn−jβq−1τ j.

(v) β = e1αe1 = e1α = αe1.

(vi) βk = (e1αe1)
k = e1α

ke1. In particular βq = β.

(vii) βh(β) = 0.

(viii) βτ kβ = 0 for 1 ≤ k ≤ n− 1.

(ix) (βq−1)
2

= βq−1.

(x) αk =
n∑
j=1

τn−(j−1)βkτ j−1.

32

Proof. Statement (i) follows from 2.1.1. Statements (ii) and (iii) are obvious, and

(iv) follows from (iii) since

1A =
n∑
j=1

ej =
n∑
j=1

τn−(j−1)βq−1τ j−1

(v) and (vi) are obvious. (vii) follows from (vi) since

h(β) = cnβ
m + · · ·+ c1β + c0 · I

= cn(e1αe1)
m + · · ·+ c1(e1αe1) + c0 · I

= cn(e1α
me1) + · · ·+ c1(e1αe1) + c0 · I

= e1(cnα
m + · · ·+ c1α+ c0)e1 − e1c0e1 + c0 · I

= e1h(α)e1 − e1c0e1 + c0 · I

= −c0e1 + c0 · I

and hence

βh(β) = (e1αe1)(−c0e1 + c0 · I) = −c0(e1αe1) + c0(e1αe1) = 0

(viii) follows from 2.1.1 and 2.1.3, since for 1 ≤ k ≤ n− 1 we have

βτ kβ = (e1αe1)τ
k(e1αe1)

= (e1αe1)(
n∑
j=1

zj)
k(e1αe1)

= (e1αe1)(z1z2 · · · zk + z2z3 · · · zkz1 + · · ·+ zkz1z2 · · · zk−1)(e1αe1)

= (e1αe1)(z1z2 · · · zk)(e1αe1) + (e1αe1)(z2z3 · · · zkz1)(e1αe1) +

· · ·+ (e1αe1)(zkz1z2 · · · zk−1)(e1αe1)

= (e1αe1)(z1z2 · · · (zke1))(αe1) + (e1α)(e1z2)(z3 · · · zkz1)(e1αe1) +

· · ·+ (e1αe1)(zkz1z2 · · · zk−2)(zk−1e1)(αe1)

= 0

Finally, (ix) follows from (ii), and (x) from (vi).

33

Motivated by (i), (iv), (vii), and (viii) we have the following theorem.

Theorem 2.1.5. A has a presentation as a K-algebra as F/I, where F = K〈B, T 〉

is the free K-algebra in non-commuting variables B and T , and I is the ideal in F

generated by the elements:

(i) T n − 1F .

(ii)
n∑
j=1

T n−jBq−1T j − 1F .

(iii) Bh(B)

(iv) BT kB for all 1 ≤ k ≤ n− 1.

Proof. Define a map ϑ : F → A as follows:

B 7→ β

T 7→ τ

It follows from 2.1.4 that I ⊆ kerϑ, so ϑ induces a well defined algebra homo-

morphism ϑ∗ from F/I → A. It also follows from 2.1.4 that ϑ, and hence ϑ∗, is onto,

since

ϑ(T n−(j−1)Bq−1T k−1) = τn−(j−1)βq−1τ k−1 = ejk

and

ϑ(
n∑
j=1

T n−(j−1)BlT j−1) =
n∑
j=1

τn−(j−1)βlτ j−1 = αl

and products of the ejk and the αl span A as a K-vector space.

Let m be a monomial in B and T . By (i) we can assume that if T j is a factor of

m, then 0 ≤ j ≤ n− 1. By (iii) we have Bd+1 = −(cd−1B
d + · · ·+ c0B), and hence

we can assume that if Bk is a factor of m, then 1 ≤ k ≤ d.

Suppose that m starts with Bk. Then the possibilities for m are as follows (all

congruences are modulo I):

34

• m = Bk ≡ T 0BkT 0

• m = BkT j ≡ T 0BkT j

These are the only possiblities for m, since if m starts with BkT jBk′ , then m ≡ 0

by (i) and (iv).

Suppose that m starts with T j. Then the possibilities for m are as follows:

• m = T j, in which case

m ≡ 1F ·m

≡ (
n∑
i=1

T n−iBq−1T i)T j

≡
n∑
i=1

T n−iBq−1T ki where ki = (i+ j) mod n

• m = T jBk ≡ T jBkT 0

• m = T jBkT j
′

Again these are the only possiblities for m, since if m starts with T jBkT j
′
Bk′ , then

m ≡ 0 by (iv).

Hence any non-zero element of F/I can be written as a K-linear combination of

products of the form T jBkT l with 0 ≤ j, l ≤ n − 1 and 1 ≤ k ≤ d. Hence F/I has

K-dimension at most dn2. Since ϑ∗ is onto a space of K-dimension exactly dn2, we

conclude that ϑ∗ is an algebra isomorphism.

Corollary 2.1.6. A is generated as a K-algebra by the elements β and τ .

Proof. By 2.1.4, β and τ satisfy the relations of 2.1.5 (identifying β with B and τ

with T).

35

2.2 Splitting the Radical: Part One

Let K be a finite field of characteristic p, and L be a finite extension of K of degree

d. Let A = A/ J(A), and suppose that A 'Mn(L).

For 1 ≤ j, k ≤ n, let ejk denote the jk-th elementary matrix in A. For 1 ≤

j ≤ n, define ej = ejj and zj = ej(j+1) (all such indices should be taken modulo

n, with the representatives of the n equivalence classes being 1 to n – in particular

zn = en(n+1) = en1). Taking I and F = K〈B, T 〉 as they are in 2.1.5, we know that

F/I
ϑ∗' A. Let B and T denote the images in F/I of B and T respectively, and let

Ej = ϑ∗−1(ej), and Zj = ϑ∗−1(zj).

By 2.1.5, A is generated by elements β = ϑ(B) and τ = ϑ(T), with associated

polynomial h = xd + cd−1x
d−1 + · · ·+ c1x+ c0 ∈ K[x] (so βh(β) = 0). Note that B,

T , the Ej and the Zj, satisfy the same relations in F/I that β, τ , and the ej and zj

do in A.

We can express the identity of F/I as a sum of mutually orthogonal primitive

idempotents as

1F/I =
n∑
i=1

Ej

By the idempotent lifting theory, there exists a lift of this sum to an expression for

the identity of A as

1A =
n∑
i=1

ej

where the ej are mutually orthogonal primitive idempotents in A.

Theorem 2.2.1. Let K be a finite field of characteristic p, and A be a finite dimen-

sional K-algebra. Suppose that A = A/ J(A) is isomorphic to Mn(L), where L is a

finite extension of K. Then the exact sequence

0 → J(A) → A
µ→ A→ 0

36

is right split by an algebra homomorphism. That is, there is an algebra homorphism

ψ : A→ A such that µ ◦ ψ = 1A, and as vector spaces

A = A′ ⊕ J(A)

where A′ = imψ is a subalgebra of A isomorphic to A.

Proof. By 2.1.5 we have the exact sequence

0 → J(A) → A
µ′→ F/I → 0

where µ′ is the composition

A
µ→ A

ϑ∗−1

→ F/I

We will define ω : F → A by giving images for B and T , and show that it induces

a well defined algebra homomorphism ω∗ : F/I → A that splits µ′. Taking ψ =

ω∗ ◦ ϑ∗−1 : A→ A will then give us the required splitting for µ.

Let γ ∈ A be any inverse image under µ′ of B. Then

µ′(γh(γ)) = µ′(γ)h(µ′(γ)) = Bh(B) = 0

Hence γh(γ) ∈ J(A), and thus for some j we have (γh(γ))j = 0. Define

β = γq
k

where k is any integer such that qk ≥ j.

Let zj ∈ A, 1 ≤ j ≤ n − 1, be any inverse image under µ′ of Zj. Let z′n ∈ A be

any inverse image under µ′ of Zn. We can take zj to be in ejAej+1, so ejzj = zj and

zjej+1 = zj. Similarly we can take z′n to be in enAe1, so enz
′
n = z′n and z′ne1 = z′n.

Let x = z1z2 · · · zn−1. Observe that

µ′(xz′n − e1) = Z1Z2 · · ·Zn−1Zn − E1 = E1 − E1 = 0

37

Hence xz′n − e1 ∈ J(A), and so for some l we have that (xz′n − e1)
pl

= 0. Define

zn = z′n(xz
′
n)
pl−1

and

τ =
n∑
j=1

zj

Observe that zn ∈ enAe1, and zn is an inverse image under µ′ of Zn, since

µ′(zn) = µ′(z′n(xz
′
n)
pl−1) = µ′(z′n)µ

′(xz′n)
pl−1 = ZnE1

pl−1
= ZnE1 = Zn

Define the algebra homomorphism ω : F → A by

B 7→ β

T 7→ τ

To prove that ω induces a well defined algebra homomorphism ω∗ : F/I → A, we

must show that I ⊆ kerω, or equivalently that β and τ satisfy the relations implied

by 2.1.5.

To prove that β and τ satisfy (iii) of 2.1.5, we first observe that since h divides

xq−1−1, and x divides xq−1, we have that xh divides (xq−1−1)xq−1 = (xq−1)2−xq−1.

Since βh(β) = 0 by construction, it then follows that (βq−1)2 − βq−1 = 0, and thus

that βq−1 is idempotent. Thus for any j

(τn−jβq−1τ j)2 = τn−jβq−1τ jτn−jβq−1τ j = τn−j(βq−1)
2
τ j = τn−jβq−1τ j

and so τn−jβq−1τ j is idempotent. Since

τn−jβq−1τ jej+1 = ej+1τ
n−jβq−1τ j = ej+1

it follows that τn−jβq−1τ j − ej+1 is also idempotent, since,

(τn−jβq−1τ j − ej+1)
2 = (τn−jβq−1τ j)2 − τn−jβq−1τ jej+1

38

− ej+1τ
n−jβq−1τ j + ej+1

2

= (τn−jβq−1τ j)− ej+1 − ej+1 + ej+1

= τn−jβq−1τ j − ej+1

Finally observe that

µ′(τn−jβq−1τ j − ej+1) = T
n−j

B
q−1

T
j − Ej+1 = Ej+1 − Ej+1 = 0

Thus τn−jβq−1τ j − ej+1 is both idempotent and in J(A), which is only possible if

τn−jβq−1τ j − ej+1 = 0, and thus τn−jβq−1τ j = ej+1. Consequently we have that

n∑
j=1

τn−jβq−1τ j =
n∑
j=1

ej+1 = 1A

To prove that β satisfies (iii) of 2.1.5, observe that taking q-th powers is the

identity map in L, so by the usual characteristic p binomial expansion we have

(h(γ))q
k

= (γq
k

)d + (cd−1)
qk

(γq
k

)d−1 + · · ·+ c1
qk

(γq
k

) + c0
qk

= (γq
k

)d + cd−1(γ
qk

)
d−1

+ · · ·+ c1(γ
qk

) + c0

= h(γq
k

)

Hence

βh(β) = γq
k

h(γq
k

) = γq
k

h(γ)q
k

= (γh(γ))q
k

= 0

To prove that β satisfies (iv) of 2.1.5, note that since β ∈ e1Ae1 and zk ∈ ekAek+1,

βzk = 0 if k 6= 1 and zkβ = 0 if k 6= n. Thus for 1 ≤ k ≤ n− 1

βτ kβ = β(
n∑
j=1

zj)
kβ

= β

(
n∑

m=1

zmzm+1 · · · zm+(k−1)

)
β

=
n∑

m=1

βzmzm+1 · · · zm+(k−1)β

39

= 0

The second step follows from 2.1.2. The last step follows from that fact that if m 6= 1

then βzm = 0, and if m = 1, then m+ (k − 1) < n, and hence zm+(k−1)β = 0.

To prove that τ satisfies (i) of 2.1.5, first observe that xz′n ∈ e1Ae1, so xz′n and

e1 commute. Hence

0 = (xz′n − e1)
pl

= (xz′n)
pl − ep

l

1 = (xz′n)
pl − e1

and thus (xz′n)
pl

= e1. It then follows that

z1z2 · · · zn−1zn = xzn = xz′n(xz
′
n)
pl−1 = (xz′n)

pl

= e1

and therefore

zn(z1z2 · · · zn−1zn) = zne1 = zn

For 1 ≤ i ≤ n − 1 define ui = zi · · · znz1 · · · zi−1. Observe that ui 6= 0 since ui

is an inverse image under µ′ of Zi · · ·ZnZ1 · · ·Zi−1 = Ei. Observe also that ui is

idempotent, since

ui = zi · · · znz1 · · · zi−1

= zi · · · zn(z1 · · · zn)z1 · · · zi−1

= (zi · · · znz1 · · · zi−1)(zi · · · znz1 · · · zi−1)

= ui
2

Since eiui = ui and uiei = ui, it then follows that ei − ui is also idempotent, since,

(ei − ui)
2 = ei

2 − eiui − uiei + ui
2 = ei − ui − ui + ui = ei − ui

Now ei = (ei − ui) + ui, and

(ei − ui)ui = eiui − ui
2 = ui − ui = 0

40

If ei 6= ui then we have a decomposition of ei into mutually orthogonal idempotents

ei − ui and ui, contradicting the primitivity of ei. Hence ei = ui, and thus for

1 ≤ i ≤ n− 1

zi · · · znz1 · · · zi−1 = ui = ei

Since we have previously established that z1z2 · · · zn−1zn = e1, we therefore have

that τn = 1 by 2.1.2.

Since β and τ satisfy the relations implied by 2.1.5, ω induces a well defined

homomorphism ω∗ : F/I → A. Finally

µ′(ω∗(B)) = µ′(β) = µ′(γq
k

) = µ′(γ)q
k

= B
qk

= B

and

µ′(ω∗(T)) = µ′(τ) = µ′(
n∑
j=1

zj) =
n∑
j=1

µ′(zj) =
n∑
j=1

Zj = T

Hence µ′ ◦ ω∗ = 1F/I , from which it immediately follows that µ ◦ ψ = 1A.

To put the previous theorem in perspective, note that if A is a K-algebra, then

we can always split A as a vector space direct sum A = A′ ⊕ J(A) – so A′ ' A as

vector spaces. As long as K is perfect, such a vector space splitting in fact gives

us an algebra isomorphism between A′ and A, which then allows us to realize A as

a subalgebra of A (see Corollary 4.1.11 of [4] for details). The point of the above

theorem is that when K is a finite field we can realize this splitting constructively

(modulo finding inverse images for B and the Zj under µ′).

Remark. Henceforth we will identify a matrix algebra Mn(L) with its presentation

F/I as given in 2.1.5.

2.3 Splitting the Radical: Part Two

Let A be a finite dimensional algebra over a field K of characteristic p. Let

S1, . . . , Sr denote representatives for the isomorphism classes of simple A-modules.

41

Let A = A/ J(A), and let µ denote the canonical map from A to A/ J(A). Since A

is semisimple, by Wedderburn’s theorems we know that

A '
r⊕
i=1

Ai

where Ai = Mni
(Ki) and Ki is a finite extension of K of degree di. Let qi denote the

size of Ki, and πi : A→ Ai denote the projection map.

We can express 1 ∈ A as a sum of mutually orthogonal idempotents as

1A =
r∑
i=1

f i

(under the identification of A with
r⊕
i=1

Ai, f i corresponds to (0, 0, . . . , 1Ai
, 0, . . . , 0) ∈

Ai – i.e., the identity matrix of Ai in the i-th component, and zero elsewhere). By

the idempotent lifting theory, there exists a lift of this sum to an expression

1A =
r∑
i=1

fi

with the fi are mutually orthogonal idempotents in A.

Lemma 2.3.1. We have the following basic facts concerning the fi:

(i) fiAfi is a subalgebra of A with identity fi.

(ii) for i 6= j, fiAfj ⊆ J(A).

(iii) J(fiAfi) = fiAfi ∩ J(A) = fi J(A)fi.

(iv) µ(fiAfi) = (fiAfi)/ J(fiAfi) ' Ai.

Proof. See 1.6.11, and 1.7.10.

Lemma 2.3.2. Let K be a finite field of characteristic p, and A be a finite dimen-

sional K-algebra. Then

J(A) =
⊕
i

J(fiAfi)⊕
⊕
i,j,i 6=j

(fiAfj)

42

Proof. Clearly⊕
i

J(fiAfi)⊕
⊕
i,j,i 6=j

(fiAfj) =
⊕
i

(fiAfi ∩ J(A))⊕
⊕
i,j,i 6=j

(fiAfj)

⊆ J(A)

Observe that

A = 1 · A · 1

= (
r∑
i=1

fi)A(
r∑
j=1

fj)

=
⊕
i,j

(fiAfj)

=
⊕
i

(fiAfi)⊕
⊕
i,j,i 6=j

(fiAfj)

Hence if x ∈ J(A), then x =
∑
i,j

xij, with xij ∈ fiAfj. Now

fixfj = fi(
∑
i,j

xij)fj = xij

Since J(A) is a two sided ideal, fixfj ∈ J(A). Hence xij ∈ J(A) ∩ fiAfj, and thus

J(A) ⊆
⊕
i,j

(J(A) ∩ fiAfj)

=
⊕
i

(J(A) ∩ fiAfi)⊕
⊕
i,j,i 6=j

(J(A) ∩ fiAfj)

=
⊕
i

J(fiAfi)⊕
⊕
i,j,i 6=j

fiAfj

Theorem 2.3.3. Let K be a finite field of characteristic p, and A be a finite dimen-

sional K-algebra. Then the exact sequence

0 → J(A) → A
µ→ A→ 0

is right split by an algebra homomorphism. That is, there is an algebra homorphism

ψ : A→ A such that µ ◦ ψ = 1A, and

A = A′ ⊕ J(A)

43

where A′ = imψ is a subalgebra of A isomorphic to A.

Proof. For each 1 ≤ i ≤ r we have the exact sequence

0 → J(fiAfi) → fiAfi
µi→ Ai → 0

where µi is the composition

fiAfi
ι
↪→ A

µ→ A
πi→ Ai

By 2.2.1 each µi is right split by an algebra homomorphism ψi : Ai → fiAfi, so that

fiAfi = A′
i ⊕ J(fiAfi), where A′

i

ψi' (fiAfi)/ J(fiAfi) ' Ai as a K-algebra. Define

A′ =
r⊕
i=1

A′
i and ψ : A → A by ψ =

r⊕
i=1

ψi. The orthogonality of the fi ensures that

ψ splits µ, and hence that A′ ψ' A, and as vector spaces

A =
r⊕
i=1

(fiAfi)⊕
r⊕

i,j=1

i6=j

(fiAfj)

=
r⊕
i=1

(A′
i ⊕ J(fiAfi))⊕

r⊕
i,j=1

i6=j

(fiAfj)

=
r⊕
i=1

A′
i ⊕

r⊕
i=1

J(fiAfi)⊕
r⊕

i,j=1

i6=j

(fiAfj)

= A′ ⊕ J(A)

As before the point of this theorem is that when K is a finite field, a vector space

splitting of A as A = A′⊕ J(A) allows us to constructively realize A as a subalgebra

of A.

The algebra A′ will henceforth be referred to as the semisimple part of A. We

summarize its key properties in the following corollary.

Corollary 2.3.4. A′ =
r⊕
i=1

A′
i is a subalgebra of A which is isomorphic to A. Each

component A′
i is a subalgebra of A′ isomorphic to the corresponding Wedderburn com-

ponent Ai = Mni
(Ki). A

′ is generated as a K-algebra by elements {β1, τ1, . . . , βr, τr},

44

where each pair (βi, τi) generates A′
i and satisfies the relations implied by 2.1.5 (iden-

tifying βi with B, τi with T , and 1A′
i
with 1F in the theorem).

2.4 Generating the Radical of A

Let A be a finite dimensional algebra over a field K of characteristic p. We previously

established that A = A′ ⊕ J(A), and gave a generating set for A′ as a K-algebra.

We now turn to the problem of generating the radical of A as a two-sided ideal.

Throughout this section we identify Ai and A′
i = fiAfi/ J(fiAfi). For 1 ≤ i ≤ r, let

ψi : Ai → fiAfi be defined as in 2.3.3.

Lemma 2.4.1. For any i and any λ ∈ A, fi(λ− ψi(µ(λ)))fi ∈ J(A). Specifically

fi(λ− ψi(µ(λ)))fi = fi(λ− ψ(µ(λ)))fi

Proof. By 2.3.3, λ − ψ(µ(λ)) ∈ J(A) for any k. Since J(A) is a two sided ideal it

follows that fi(λ−ψ(µ(λ)))fi ∈ J(A) for any i and k. Now for i 6= j, fi and ψj(µ(λ))

are in different components of A, and so fiψj(µ(λ))fi = 0. Thus

fi(λ− ψ(µ(λ)))fi = fi

(
λ−

r∑
j=1

ψj(µ(λ))

)
fi

= fiλfi − fi

(
r∑
j=1

ψj(µ(λ))

)
fi

= fiλfi −
r∑
j=1

fiψj(µ(λ))fi

= fiλfi − fiψi(µ(λ))fi

= fi(λ− ψi(µ(λ)))fi

Theorem 2.4.2. Suppose that A is a finite dimensional K-algebra generated by

elements λ1, . . . , λt. Then J(A) is generated as a two sided ideal by elements of A of

the form:

45

(i) fiλkfj, i 6= j.

(ii) fi(λk − ψi(µ(λk)))fi.

where 1 ≤ k ≤ t.

Proof. Let I be the ideal in A generated by elements of the given form. Observe

that fiλkfj ∈ fiAfj, and if i 6= j, then fiAfj ⊆ J(A) by 2.3.1. Hence elements of

form (i) are in J(A). Elements of form (ii) are in J(A) by the previous lemma. Thus

I ⊆ J(A).

Now suppose a ∈ J(A). Since a ∈ A, we can write a as a K-linear combination

of products of the generators

λk =

(
r∑
j=1

fi

)
λk

(
r∑
j=1

fi

)

Subtracting from a elements of the two-sided ideal generated by elements of form

(i) leaves us with a linear combination of products of the form

fiλk1fiλk2fi · · · fiλksfi

Writing λkj
as λkj

− ψ(µ(λkj
)) + ψ(µ(λkj

)), and using the previous lemma, we can

subtract from a elements of the two-sided ideal generated by elements of form (ii),

and be left with a linear combination of products of the form

fiψ(µ(λk1))fiψ(µ(λk2))fi · · · fiψ(µ(λks))fi

= ψ(µ(fiλk1fiλk2fi · · · fiλksfi))

Hence we have

a = x+ y

with x ∈ I, and y ∈ imψ. Now y = a − x ∈ J(A), so y ∈ J(A) ∩ imψ. By 2.3.3 we

have J(A) ∩ imψ = 0, so y = 0, and thus a ∈ I. Hence J(A) = I.

46

The arguments used in the previous lemma and theorem in fact establish a more

interesting generating set for J(A) as a two-sided ideal.

For 1 ≤ j ≤ ni let gij ∈ Ai denote the jj-th elementary matrix in Ai – that is the

matrix with 1 in the j-th row and column, and zero elsewhere. The gij are mutually

orthogonal primitive idempotents in Ai with 1Ai
=

ni∑
j=1

gij. By the idempotent lifting

theorem we can lift these idempotents to mutually orthogonal primitive idempotents

gij ∈ fiAfi, 1 ≤ j ≤ ni, such that 1fiAfi
= fi =

ni∑
j=1

gij. Define gi = gi1.

Theorem 2.4.3. Suppose that A is a finite dimensional K-algebra generated by

elements λ1, . . . , λt. Then J(A) is generated as a two sided ideal by elements of A of

the form:

(i) giτ
a
i λkτ

c
j gj, i 6= j.

(ii) giτ
a
i (λk − ψi(µ(λk)))τ

b
i gi.

where 1 ≤ k ≤ t, 1 ≤ a, b ≤ ni, and 1 ≤ c ≤ nj.

Proof. Let I ′ be the ideal in A generated by elements of the given form. Let I be as

in 2.4.2. Since

fi =

ni∑
j=1

gij =

ni∑
j=1

τni−j
i giτ

j
i

it follows that I ⊆ I ′. The argument used in 2.4.2 to show that fiλkfj ∈ J(A), for

j 6= i, also shows that elements of form (i) are in J(A). The argument used in 2.4.1

to show that fi(λk−ψi(µ(λk)))fi ∈ J(A) also shows that elements of form (ii) are in

J(A) (replace fi on the left with giτ
a
i , and fi on the right with τ bi gi). Since I = J(A),

we have that I ′ = I.

Corollary 2.4.4. A is generated as a K-algebra by elements, β1, τ1, . . . , βr, τr gen-

erating the semisimple part of A as a K-algebra, and elements

(i) giτ
a
i λkτ

c
j gj, i 6= j

47

(ii) giτ
a
i (λk − ψi(µ(λk)))τ

b
i gi

1 ≤ k ≤ t, 1 ≤ a, b ≤ ni, 1 ≤ c ≤ nj, which generate J(A) as a two-sided ideal.

Proof. The result follows from 2.3.4, 2.4.3, and 2.3.3.

2.5 The Basic Algebra Associated to A

We are now in a position to describe the basic algebra associated to A. Let g =
r∑
i=1

gi

and B = gAg.

Theorem 2.5.1. The basic algebra associated to A is the K-algebra B.

Proof. By 1.6.9 the isomorphism classes of projective indecomposables have rep-

resentatives Agi, 1 ≤ i ≤ r. Hence by 1.11.10 the basic algebra associated to A

is

EndA(
r⊕
i=1

Agi)
op = EndA(A(

r∑
i=1

gi))
op

' (
r∑
i=1

gi)A(
r∑
i=1

gi)

= gAg

= B

By the Wedderburn Structure theorem

B '
r⊕
i=1

Bi

where Bi = Mni
(Ki), where Ki is a finite extension of K of degree di. Since B is

basic, ni = 1, so in fact Bi ' Ki. Let qi denote the size of Ki.

Lemma 2.5.2. Each Bi is generated as a K-algebra by an element βi satisfying the

relations:

48

(i) βi
qi−1 = 1Bi

.

(ii) βihi(βi) = 0.

where βi corresponds to a primitive element εi ∈ Ki, and hi is the minimal polyno-

mial of εi over K.

Proof. Observe that

gβig = giβigi = βi

and

gτig = giτigi = 0

The result now follows from 2.1.5.

As before we can split each giAgi, and hence split gAg. Specifically we have the

following results.

Lemma 2.5.3. giAgi = B′
i ⊕ J(giAgi), where B′

i is isomorphic as a K-algebra to

giAgi/ J(giAgi), and B′
i ' Bi.

Proof. The first claim follows from 2.2.1, and the second from 2.3.1.

Theorem 2.5.4. The exact sequence

0 → J(B) → B
µ→ B → 0

is right split by an algebra homomorphism. That is, there is an algebra homorphism

ψ : B → B such that µ ◦ ψ = 1B, and

B = B′ ⊕ J(B)

where B′ = imψ =
r∑
i=1

B′
i is a subalgebra of B isomorphic to B.

Proof. Apply 2.3.3 with fi = gi.

49

Corollary 2.5.5. B′ =
r⊕
i=1

B′
i is a subalgebra of B which is isomorphic to B. Each

component B′
i is a subalgebra of B′ isomorphic to the corresponding Wedderburn

component Bi = Ki. B
′ is generated as a K-algebra by elements {β1, . . . , βr}, where

each βi generates B′
i and satisfies the relations of 2.5.2.

Just as we can describe generators for B′ we can also easily describe generators

for J(B).

Lemma 2.5.6. J(B) is generated as a two sided ideal by elements of the form:

(i) giτ
a
i λkτ

c
j gj, i 6= j

(ii) giτ
a
i (λk − ψi(µ(λk)))τ

b
i gi

where 1 ≤ k ≤ t, 1 ≤ a, b ≤ ni, 1 ≤ c ≤ nj.

Proof. By 1.6.11

J(B) = J(gAg) = gAg ∩ J(A) = B ∩ J(A)

The result now follows from the fact that the generators for J(A) given in 2.4.3 are

all elements of B.

Corollary 2.5.7. B is generated as a K-algebra by elements, β1, . . . , βr, generating

the semisimple part of B as a K-algebra, and elements of the form:

(i) giτ
a
i λkτ

c
j gj, i 6= j

(ii) giτ
a
i (λk − ψi(µ(λk)))τ

b
i gi

1 ≤ k ≤ t, 1 ≤ a, b ≤ ni, 1 ≤ c ≤ nj, which generate J(A) as a two-sided ideal.

Finally we can describe the split basic algebra associated to A.

50

Lemma 2.5.8. Suppose K = Fpc, and that each Ki in the Wedderburn decompo-

sition of B is a degree di extension field of K. Let l = c · LCM(d1, . . . , dr). Then

L = Fpl is the minimal splitting field for B, and BL = L⊗KB is the split basic

algebra associated to A. Moreover BL is generated as an L-algebra by elements,

1L⊗β1, . . . , 1L⊗βr, together with elements of the form:

(i) 1L⊗giτ
a
i λkτ

c
j gj, i 6= j.

(ii) 1L⊗giτ
a
i (λk − ψi(µ(λk)))τ

b
i gi.

1 ≤ k ≤ t, 1 ≤ a, b ≤ ni, 1 ≤ c ≤ nj, which generate J(BL) as a two-sided ideal.

Proof. The result follows from the previous result, from 1.10.9, and from 1.10.7.

Chapter 3

Core Algorithms

Abstract. We present the main algorithms developed for this disserta-

tion, and prove their correctness. We make no attempt to present the most

efficient algorithms possible, nor to present every detail of every algorithm.

Rather, we concentrate on giving algorithms which exhibit the underlying the-

oretical idea. Efficient implementations can be derived from the given algo-

rithms by using standard tricks from computational linear algebra, and by

applying standard correctness preserving transformations from computer sci-

ence. The programs given in the appendix were produced from these algo-

rithms in this fashion.

3.1 Basic Definitions and Notation

Definition 3.1.1. An algorithm is a well-ordered collection of unambiguous and

effectively computable operations that when executed produces a result and halts in

a finite amount of time [18].

To prove an algorithm correct we must prove that:

(i) it terminates in a finite number of steps.

(ii) the result it produces is correct (according to some specification of what the

algorithm is supposed to produce).

51

52

Definition 3.1.2. A randomized algorithm is a well-ordered collection of unam-

biguous operations, each operation being either effectively computable or a truly

random choice, that when executed may or may not produce a result in any finite

amount of time. Note that being a randomized algorithm is a transitive property,

in the sense that if algorithm A calls algorithm B, and B is randomized, then A is

also randomized. If a randomized algorithm has the property that any result pro-

duced is always correct, then the algorithm is called a Las Vegas algorithm. If it has

the property that any result produced may be incorrect, but with bounded error

probability, then the algorithm is called a Monte Carlo algorithm.

All our randomized algorithms are of the Las Vegas type. To prove a Las Vegas

randomized algorithm correct we need only prove the correctness of any result pro-

duced by the algorithm. We give correctness proofs of all algorithms, randomized or

otherwise, except those for which there is no obvious correctness specification, and

those for which the proof is trivial.

All our algorithms are written in single assignment pseudo-code in which the

symbol $ denotes binding of a value to a variable, and in which all ‘for’ loops

compute lists (sequences) of values. For readers unfamiliar with single assignment

pseudo-code we provide the following example of an algorithm which computes a

list of the first n Fibonacci numbers (we start numbering Fibonacci numbers at 0,

so the 0-th Fibonacci number is 1, the first Fibonacci number is 1, etc).

53

Fibonacci(n ≥ 0)

if n = 0 then

return 1

else

F0 $ 1

F1 $ 1

for i in [2 . . . n] do

Fi $ Fi−2 + Fi−1

return F

The key to understanding the notation used to describe this algorithm is to realize

that the ‘for’ loop does not execute by continually reassigning a single variable

Fi, rather the ‘for’ loop, and the two lines preceding it, implicitly define a list,

F = [F0, F1, F2, . . . , Fn], containing the values bound to Fi, for 0 ≤ i ≤ n. Observe

that for any 0 ≤ i ≤ n, we define Fi exactly once, and we never redefine it – hence

the moniker ‘single assignment’. Fi therefore has an unambiguous meaning, namely

the i-th entry of the list F .

We adopt one other pseudo-code convention, namely that if x is a function argu-

ment which represents a list, or x is a variable being assigned the result of a function

which returns a list, then we write x inside square parenthesis. For example a call

to the Fibonacci algorithm, for say n = 5, has the form

[F] $ Fibonacci(5)

The square parenthesis have no meaning, but do serve to remind the reader that the

result of the function is a list of values, and not a single value.

54

3.2 Computing Generators for The Semisimple Part of A

Let Λ = {λ1, . . . , λt}, where each λi is an m × m matrix over a finite field K of

characteristic p. Let A ⊆ Mm(K) be the algebra generated by Λ. We can express

1 ∈ A as a direct sum of mutually orthogonal idempotents as

1A =
r∑
i=1

f i

By the idempotent lifting theory, there exists a lift of this sum to an expression

1A =
r∑
i=1

fi

with the fi are mutually orthogonal idempotents in A. By the Wedderburn Structure

theorem and by 2.3.3
r⊕
i=1

Ai ' A =
r⊕
i=1

A′
i

where r is the number of simple A-modules, and

Mni
(Ki) = Ai ' fiAfi/ J(fiAfi) = A′

i ⊆ fiAfi

with Ki a finite extension of Ki of degree di and size qi.

Computationally speaking it is relatively easy to find the Ai. The algebra Ai is

the image of A in the endomorphism ring of the i-th simple A-module Si. Since

A is a matrix algebra, the representation ρ : A → EndA(M), where M is the

natural module for A (i.e., M is an m dimensional vector space over K), is a faithful

representation, and hence by 1.12.3 every simple A-module occurs as a composition

factor of M . We can therefore use the composition series programs in the MeatAxe

to compute the Ai (and hence also r, and the ni, di, and qi). Specifically the MeatAxe

programs compute, for each i, a finite set Λi = {λi1, . . . , λit}, where λij is an ni×ni

matrix over Ki giving the action of λj on Si with respect to some basis for Si.

Note that the MeatAxe programs give us the Ai as standalone-algebras. The

programs do not tell us how the Ai are embedded in A – i.e., they do not tell us the

55

isomorphism between Ai and A′
i. Our first main algorithm partially computes this

isomorphism. It takes as input the finite sets Λ and Λi, the Ai, ni, di, qi, and r. For

each i it computes a βi and τ i in Ai which, by 2.1.5, generate Ai, and then ‘lifts’

these elements to βi and τi in fiAfi which generate A′
i ⊆ fiAfi ⊆ A. The algorithm

therefore ‘reconstructs’ each Ai as a subalgebra of fiAfi. Taking all the βi and τi

then allows us to reconstruct A as a subalgebra of A.

3.2.1 Two Fundamental Constructions

Before describing the remaining steps in the algorithm we describe two fundamental

constructions which we make heavy use of.

Random Elements

Let µ denote the canonical map from A to A, and µi denote the composition

A
µ→ A

πi→ Ai

where πi is the obvious projection map.

Some of our algorithms require us to generate a random element a ∈ A (or

more generally in eAe for some idempotent e) and then find the image of a in Ai,

that is to compute µi(a). Computationally speaking we can compute µi(λj), since

µi(λj) = λij. However, we have no way computing µi(a) for an arbitrary element

a ∈ A, since computing µi(a) would require us to write a in terms of the λj generators

(i.e., to solve the word problem for A). We resolve this problem by only generating

random elements of A whose expression in terms of the λj generators we know a

priori. The details of this approach are given below.

Let X be the free non-commutative algebra over K generated by x1, . . . , xt.

Define two set-theoretic maps,

φ : {x1, . . . , xt} → {λ1, . . . , λt}

56

xj 7→ λj

and

φi : {x1, . . . , xt} → {λi1, . . . , λit}

xj 7→ λij

Note that φ and the φi extend to algebra homomorphisms φ∗ : X → A, and φi
∗ :

X → Ai, such that, for each 1 ≤ i ≤ r, the following diagram commutes

X
φ∗

xxqqqqqqqqqqqqq
φi

∗

&&MMMMMMMMMMMMM

A
µ // A

πi // Ai

The point here is that computationally speaking the maps φ∗ and φi
∗ are computable.

A word w ∈ X is stored as an expression, w =
∑
j

κj(xj1xj2 · · ·xjmj
), with κj ∈ K.

Hence

φ∗(w) = φ∗
(∑

j

κj · (xj1xj2 · · ·xjmj
)
)

=
∑
j

κj · φ∗(xj1)φ∗(xj2) · · ·φ∗(xjmj
)

=
∑
j

κj · φ(xj1)φ(xj2) · · ·φ(xjmj
)

and likewise

φi
∗(w) = φi

∗
(∑

j

κj · (xj1xj2 · · ·xjmj
)
)

=
∑
j

κj · φi∗(xj1)φi∗(xj2) · · ·φi∗(xjmj
)

=
∑
j

κj · φi(xj1)φi(xj2) · · ·φi(xjmj
)

We can therefore use φ∗ and φi
∗ to create a random a ∈ A, and its image µi(a) ∈ Ai,

by generating a random word w ∈ X, and then taking a = φ∗(w), and µi(a) = φ∗i (w).

57

Henceforth we use φ to denote both φ and φ∗, and φi to denote both φi and φi
∗ – it

will always be clear from the context which of the two is meant.

To create a random non-zero word in X we employ the following randomized

algorithm.

RandomWord(X = K〈x1, . . . , xt〉)

repeat

for j in [1 . . .Random(Z+)] do

for k in [1 . . .Random(Z+)] do

ujk $ Random({x1, . . . , xt})
wj $

∏
k

ujk

w $
∑
wj

until w 6= 0

return w

The inner loop of the algorithm computes products of the generators, while the

outer loop computes K-linear combinations of such products. Observe that while

this algorithm involves randomized computation, it is a terminating algorithm. We

use this algorithm to define another ‘random element’ algorithm.

Lemma 3.2.1. Let e1 and e2 be idempotents in an algebra B, and let f : X → B

be an algebra homomorphism. Then the following randomized algorithm computes a

word w ∈ X such that e1f(w)e2 6= 0 ∈ e1Be2.

58

RandomElement(f : X → B, e1 ∈ B, e2 ∈ B)

repeat

w $ RandomWord(X)

until e1 · f(w) · e2 6= 0

return w

Idempotent Lifting

Our algorithms will require that we lift idempotents in A to idempotents in A. The

following technical lemma, and algorithm, provide a constructive method for doing

this.

Lemma 3.2.2. Suppose a ∈ A such that, for some 1 ≤ i ≤ r, µi(a) is idempotent

in Ai. Then there is a non negative integer j such that ap
j

is idempotent in A, and

µi(a
pj

) = µi(a). Moreover if µi(a) is primitive in Ai, then ap
j

is primitive in A.

Proof. If µi(a) is idempotent in Ai, then

µi(a
2 − a) = µi(a)

2 − µi(a) = 0

Thus a2−a ∈ J(A), and so (a2−a)pj
= 0 for some j. Hence by the usual characteristic

p binomial expansion

0 = (a2 − a)p
j

= (a2)p
j − ap

j

= (ap
j

)2 − ap
j

Therefore ap
j

is idempotent in A, and

µi(a
pj

) = µi(a)
pj

= µi(a)

The primitivity of ap
j

follows from the Idempotent Lifting theorem.

59

Theorem 3.2.3. Suppose a ∈ A such that, for some 1 ≤ i ≤ r, µi(a) is idempotent

in Ai. Let x = p or x = qi. Then the following algorithm computes a non negative

integer j, such that ax
j

is idempotent in A, and µi(a
xj

) = µi(a). Moreover if µi(a)

is primitive in Ai, then ax
j

is primitive in A. In other words ax
j ∈ A is a lift over

J(A) of µi(a) ∈ Ai.

Lift(a ∈ A, x ∈ {p, qi})

j $ 0

while (ax
j
)2 6= ax

j

j $ j + 1

return j

Proof. Correctness follows from the previous lemma, and from the observation that

if ap
j

is idempotent, then so is aqi
j
.

3.2.2 Step 1: Computing The Big Idempotents

The first step in the algorithm is to compute the idempotents fi ∈ A. We call these

idempotents the big idempotents.

Lemma 3.2.4. Let w ∈ X be such that φi(w) 6= 0 for some 1 ≤ i ≤ r. Let

u =
r∏
j 6=i

gj(w), where gj is the minimal polynomial of φj(w). Then u is an element

of X such that φk(u) = 0 for all k 6= i (φi(u) may also be zero).

Proof. For k 6= i

φk(u) = φk(
∏
j 6=i

gj(w))

=
∏
j 6=i

gj(φk(w))

60

=
(∏
j 6=i,k

gj(φk(w))
)
· gk(φk(w))

=
(∏
j 6=i,k

gj(φk(w))
)
· 0

= 0

Theorem 3.2.5. The following randomized algorithm computes a word u ∈ X such

that φi(u) 6= 0 and φk(u) = 0 for k 6= i.

Projection(i, [φk : X → Ak])

repeat

w $ RandomElement(φi, 1Ai
, 1Ai

)

u $
∏
j 6=i

MinimalPolynomial(φj(w))

until φi(u) 6= 0

return u

Proof. We exit the loop with u a word in X such that φi(u) 6= 0, and w a word

in X such that φi(w) = 1Ai
φi(w)1Ai

6= 0 by 3.2.1. Hence by the previous lemma,

φk(u) = 0 for k 6= i.

Definition 3.2.6. Let a ∈ Mn(K) be an invertible matrix and h ∈ K[x] be the

minimal polynomial of a. Let g = (c − h)/(c · x), where c is the constant term of

h. Then the inverse of a is given by g(a). We call g the inverting polynomial for a.

Clearly inverting polynomials are computable.

Lemma 3.2.7. Suppose w is an element in X such that, for some 1 ≤ i ≤ r, φi(w)

is invertible and φk(w) = 0 for k 6= i. Suppose also that e ∈ A is an idempotent such

that µi(e) = 1Ai
. Let a = e · φ(w) · g(φ(w)) · e, where g is the inverting polynomial

for φi(w). Then there is a positive integer j such that f = ap
j

has the following

properties:

61

(i) f 6= 0 ∈ eAe is idempotent.

(ii) µi(f) = 1Ai
.

(iii) µk(f) = 0 for k 6= i.

In particular, f ∈ eAe is a lift over J(A) of f i ∈ A.

Proof. Observe that

µi(a) = µi(e · φ(w) · g(φ(w)) · e)

= µi(e) · µi(φ(w)) · µi(g(φ(w))) · µi(e)

= 1Ai
· µi(φ(w)) · g(µi(φ(w))) · 1Ai

= φi(w) · g(φi(w))

= 1Ai

and for k 6= i

µk(a) = µk(e · φ(w) · g(φ(w)) · e)

= µk(e) · µk(φ(w)) · µk(g(φ(w))) · µk(e)

= µk(e) · µk(φ(w)) · µk(g(φ(w))) · µk(e)

= µk(e) · φk(w) · µk(g(φ(w))) · µk(e)

= 0

Hence by 3.2.2 there is some value of j such that f = ap
j

is idempotent, µi(f) = 1Ai

(so f 6= 0), and µk(f) = 0 for k 6= i.

Theorem 3.2.8. Let e be an idempotent in A such that µi(e) = 1Ai
. The following

randomized algorithm computes f ∈ eAe such that

(i) f is idempotent.

62

(ii) µi(f) = 1Ai
.

(iii) µk(f) = 0 for k 6= i.

In particular, the algorithm computes a lift f ∈ eAe over J(A) of f i ∈ A.

Big(φ : X → A, i, [φk : X → Ak], e ∈ A)

repeat

u $ Projection(i, [φk])

until IsInvertible(φi(u))

a $ e · φ(u) · g(φ(u)) · e where g $ InvertingPolynomial(φi(u))

f $ ap
j
where j $ Lift(a, p)

return f

Proof. We exit the loop with u ∈ X such that φi(u) ∈ Ai is invertible, and, by 3.2.5,

φk(u) = 0 ∈ Aj for k 6= i. The result now follows by the previous lemma.

Theorem 3.2.9. The following randomized algorithm computes a list f1, . . . , fr of

mutually orthogonal idempotents in A such that 1A =
r∑
i=1

fi, and each fi ∈ A is a lift

over J(A) of f i ∈ A, 1 ≤ i ≤ r.

AllBig(φ : X → A, [φk : X → Ak], r)

for i in [1 . . . r − 1] do

ei $ 1A −
i−1∑
j=1

fj

fi $ Big(φ, i, [φk], ei)

fr $ 1A −
r−1∑
j=1

fj

return f

63

Proof. We proceed by induction on i. Our induction hypothesis is that for j < i:

(i) fj ∈ ejAej is a lift of f j ∈ A (so µi(fj) = 1Aj
and µj(fj) = 0 for k 6= j).

(ii) f1, . . . , fj is a sequence of mutually orthogonal idempotents in A.

The base case for the induction is j = 1. Since e1 = 1A, we have that e1Ae1 = A,

and µ1(e1) = µ1(1A) = 1A1 . Thus, by 3.2.8, f1 ∈ A is a lift of f 1 ∈ A, and so (i)

holds. (ii) holds trivially.

Assume the induction hypothesis holds for j = l− 1, and consider j = l (i.e., we

are assuming that our induction hypothesis holds at the end of the (l − 1)-th loop

iteration, and we are considering whether it still holds at the end of the l-th loop

iteration). By the induction hypothesis we know that for j < l:

(i) µl(fj) = 0 (since j < l implies j 6= l).

(ii) f1, . . . , fj is a sequence of mutually orthogonal idempotents in A.

Now

µl(el) = µk(1A −
l−1∑
k=1

fk)

= µk(1A)−
l−1∑
k=1

µl(fk)

= µl(1A)− 0

= 1Al

Thus, by 3.2.8, fl ∈ elAel is a lift of f l ∈ A, and so (i) holds. For any j < l

el · fj = (1−
l−1∑
k=1

fk)fj

= fj −
l−1∑
k=1

(fkfj)

= fj − fj
2

64

= 0

Similarly fj · el = 0. Since fl ∈ elAel, it follows that fl is orthogonal to any fj, j < l.

Hence f1, . . . , fl is a sequence of mutually orthogonal idempotents, and so (ii) holds.

We excute the loop exactly r − 1 times. Arguing as above we then have that

µr(fr) = 1Ar , and f1, . . . , fr is a sequence of mutually orthogonal idempotents.

Finally note that

r∑
i=1

fi =
r−1∑
i=1

fi + fr =
r−1∑
i=1

fi + (1A −
r−1∑
i=1

fi) = 1A

3.2.3 Step 2: Computing The Little Idempotents

Recall that

Mni
(Ki) = Ai ' (fiAfi)/ J(fiAfi) ' A′

i ⊆ A

We can express 1Ai
as

1Ai
=

ni∑
j=1

gij

where the gij are mutually orthogonal primitive idempotents in Ai. By the idempo-

tent lifting theorem we can lift the gij to mutually orthogonal primitve idempotents

gij ∈ fiAfi, 1 ≤ j ≤ ni, such that

1fiAfi
= fi =

ni∑
j=1

gij

and µi(gij) = gij. The second step in the algorithm is therefore to compute, for each

i, the gij idempotents in fiAfi. We call these idempotents the little idempotents. Our

strategy in constructing the little idempotents will be to construct each gij ∈ Ai,

and then lift it to gij ∈ fiAfi.

65

At this point it becomes necessary to understand the connection between decom-

positions of the identity of 1Ai
into sums of mutually orthogonal primitive idempo-

tents, and choices of basis for Si. Given a decomposition

1Ai
=

ni∑
j=1

gij

we then have that

Si = 1Ai
· Si =

(ni∑
j=1

gij

)
Si =

ni⊕
j=1

gijSi

where each gijSi is one dimensional over Ki. For 1 ≤ j ≤ ni, pick any non-zero

wij ∈ gijSi. Then B = {wi1, . . . , wini
} is a basis for Si. Hence decompositions of 1Ai

into sums of mutually orthogonal primitive idempotents correspond, up to choices

of scalars (we can freely scale the wij), to choices of basis for Si.

Lemma 3.2.10. Suppose 1Ai
=

ni∑
j=1

gij, and 1Ai
=

ni∑
j=1

hij, are two decompositions

of 1Ai
into sums of mutually orthogonal primitive idempotents in Ai. Then there is

some invertible ω ∈ Ai, such that ωgijω
−1 = hij for all 1 ≤ j ≤ ni.

The point here is that any two decompositions of the identity in 1Ai
into sums

of mutually orthogonal primitive idempotents, are conjugate by some element of Ai.

Now let eijk denote the jk-th elementary matrix in Ai. Define eij = eijj. Note

that the eij are primitive mutually orthogonal idempotents, and

1Ai
=

ni∑
j=1

eij

Recall that by 2.1.6 each Ai is generated by matrices βi and τ i, where

βi =



εi 0 · · · 0

0 0 · · · 0

...
...

...
...

0 · · · · · · 0



66

where εi is any primitive element of Ki. Note that βi = ε · ei1. Now we will not

be able to construct our gij so that gij = eij. However as we shall see later this

won’t matter – with respect to some basis Bi for Si, the gij that we construct will

be equal to the eij, and that will be sufficient. Note that we must be careful when

constructing the first little idempotent gi1, since we must ensure that with respect to

Bi, gi1 is equal to a primitive element of Ki times ei1. The other little idempotents

will be constructed via a generic process similar to that used to construct the big

idempotents.

Lemma 3.2.11. Suppose A is an L-algebra for some extension L of K, and M

is an A-module with dimL(M) = s. Suppose f ∈ EndA(M) is not nilpotent, and

dimL(im(f)) = 1. Then M = im(f) ⊕ ker(f), and with respect to any basis for M

the matrix α representing f is a scalar, ε 6= 0 ∈ L, times a primitive idempotent of

A.

Proof. We know by 1.9.1 that M = im(fn) ⊕ ker(fn) for some n. Now im(f 2) ⊆

im(f), but im(f 2) 6= 0, since f is not nilpotent. Since im(f) is one dimensional we

must then have that im(f 2) = im(f). Similarly ker(f 2) = ker(f). It follows then

that n = 1, i.e., M = im(f)⊕ ker(f).

Now take v1 6= 0 ∈ im(f), and v2, . . . , vs a basis for ker(f). Then B =

{v1, v2, . . . , vs} is a basis for M such that f(v1) = εv1, for some ε ∈ L, and

f(vj) = 0, for j 6= i. With respect to B

α =



ε 0 · · · 0

0 0 · · · 0

...
...

...
...

0 · · · · · · 0


= ε ·



1 0 · · · 0

0 0 · · · 0

...
...

...
...

0 · · · · · · 0


Hence α is ε times a primitive idempotent of A.

67

It is very important to understand a computational nuance at this point. While

each Ai is theoretically a full ni×ni matrix algebra over Ki, the MeatAxe programs

give each Ai as an nidi × nidi matrix algebra over the ground field K – specifically

each λij is given as an nidi×nidi matrix over K. Until now this distinction between

Ai as a K-algebra and as a Ki-algebra has not been relevant – it now becomes

important.

Lemma 3.2.12. Every matrix in Ai has K-rank a multiple of di.

Proof. For a ∈ Ai let ψa : Si → Si be the linear transformation defined by a. Then

rankK(a) = dimK(imψa) = dimKi
(imψa)[Ki : K] = dimKi

(imψa) · di

Corollary 3.2.13. If a ∈ Ai is idempotent with rank di, then a is a primitive

idempotent in Ai.

Theorem 3.2.14. Let e be an idempotent in Ai. Then the following randomized

algorithm returns a word u ∈ X such that e · φi(u) · e is a scalar ε ∈ Ki times a

primitive idempotent in eAe.

AlmostLittle(φi : X → Ai, ni, di, e ∈ Ai)

if ni = 1 then

u $ RandomElement(φi, e, e)

return u

else

repeat

u $ RandomElement(φi, e, e)

a $ e · φi(u) · e
until rankK(a) = di and not Nilpotent(a)

return u

68

Proof. If ni = 1 the theorem is trivial. If ni 6= 1, we return from the algorithm when

have found u ∈ X such that a = e · φi(u) · e has rank di over K, and hence rank 1

over Ki, and a is not nilpotent. The result now follows by the previous lemma.

We can now show how the first little idempotent is constructed.

Theorem 3.2.15. The following randomized algorithm computes g ∈ Ai and g ∈

fiAfi such that:

(i) g is a primitive idempotent in Ai.

(ii) g is a primitive idempotent in fiAfi.

(iii) µi(g) = g.

In other words gi is a lift over J(fiAfi) of g. The algorithm also computes β ∈ Ai

and β ∈ fiAfi such that

(i) µi(β) = β.

(ii) g = β
qi−1

(iii) g = βqi−1.

So β projects to β under quotienting of fiAfi by its radical. Finally, there is a basis

B for Si over Ki such that with respect to B:

(i) g = ei1.

(ii) β = βi.

The algorithm also returns the polynomial hi(x), where hi(x) is the minimal polyno-

mial of εi.

69

FirstLittle(φ : X → A, φi : X → Ai, fi ∈ A, ni, di, qi)

repeat

u $ AlmostLittle(φi, ni, di, 1Ai
)

β $ φi(u)

until β corresponds to a primitive element ε ∈ L

g $ β
qi−1

γ′ $ fi · φ(u) · fi
g′ $ γ′qi−1

g $ g′qi
j

γ $ γ′qi
j

where j $ Lift(g′, qi)

h $

{
f if ni = 1

f/x otherwise

where f $ MinimalPolynomial(β) ∈ K[x]

β $ γ′l

where k $ smallest positive integer such that (γh(γ′))k = 0

l $ smallest positive integer such that qi
l ≥ k

return (g, g, β, h)

Proof. By 3.2.14, and by the loop condition, we exit the loop with u a word in X

such that β = φi(u) ∈ Ai, and with respect to the basis B (for Si) defined in 3.2.14,

we have that

β =



ε 0 · · · 0

0 0 · · · 0

...
...

...
...

0 · · · · · · 0



70

for some primitive element ε ∈ Ki. Hence with respect to B we have that β = βi,

and g = β
qi−1

= ei1.

Now observe that

µi(γ
′) = µi(fi · φ(u) · fi) = µi(fi) · µi(φ(u)) · µi(fi) = 1Ai

· φi(u) · 1Ai
= β

and therefore

µi(g
′) = µi(γ

′qi−1) = µi(γ)
′qi−1 = β

qi−1
= g

Since g is a primitive idempotent in Ai, it then follows by 3.2.3 that g = (g′)qi
j

is a

primitive idempotent in fiAfi and µi(g) = g.

Since taking qi-th powers in Ki is the identity map

µi(γ) = µi((γ
′)qi

j

) = β
qi

j

= β

So γ is an inverse image of β under µ. Now let hi ∈ K[x] be the minimal polynomial

for ε over K, and f be the minimal polynomial for β. If degAi = 1, then f = hi, so

we set h = hi. If degAi 6= 1, then f = x · hi, and we set h = f/x = hi.

Finally we note that the definition of β in the above algorithm agrees with the

definition of β in 2.2.1.

Theorem 3.2.16. Suppose e is an idempotent in Ai, and e is an idempotent in fiAfi

such that µi(e) = e. Then the following algorithm computes a primitive idempotent

g ∈ eAie, and a primitive idempotent g ∈ eAe, such that µi(g) = g.

NextLittle(φ : X → A, φi : X → Ai, ni, di, qi, e ∈ fiAfi, e ∈ Ai)

u $ AlmostLittle(φi, e, ni, di)

g $ (e · φi(u) · e)qi−1

g $ ((e · φ(u) · e)qi−1)j where j $ Lift((e · φ(u) · e)qi−1, p)

return (g, g)

71

Proof. By 3.2.14, u is a word in X such that e ·φi(u) ·e = ε ·a, where a is a primitive

idempotent in eAe. Thus

g = (e · φi(u) · e)qi−1 = (ε · a)qi−1 = εqi−1 · aqi−1 = a

Now

µi((e · φ(u) · e)qi−1) = (µi(e) · µi(φ(u)) · µi(e))qi−1 = (e · φi(u) · e)qi−1 = a

Hence by 3.2.3 g is a primitive idempotent in eAe projecting onto g under µi.

The algorithm to compute all of the little idempotents for Ai is now straightfor-

ward.

Theorem 3.2.17. The following randomized algorithm computes a list g1, . . . , gni

of mutually orthogonal primitive idempotents in Ai, and a list g1, . . . , gni
of mutually

orthogonal primitive idempotents in fiAfi, such that:

(i) µi(gj) = gj, 1 ≤ j ≤ ni.

(ii) 1Ai
=

ni∑
j=1

gj.

(iii) fi =
ni∑
j=1

gj,

So each gj ∈ fiAfi is a lift over J(fiAfi) of gj ∈ Ai. The algorithm also computes

β ∈ Ai and β ∈ fiAfi such that:

(i) µi(β) = β.

(ii) g1 = β
qi−1

(iii) g1 = βqi−1.

Finally, there is a basis B for Ai over Ki such that with respect to B:

72

(i) g1 = ei1.

(ii) β = βi.

The algorithm also returns the polynomial hi(x), where hi(x) is the minimal polyno-

mial of εi.

AllLittle(φ : X → A, φi : X → Ai, fi, ni, di, qi)

(g1, g1, β, h) $ FirstLittle(φ, φi, fi, ni, di, qi)

for j in [2 . . . ni − 2] do

ej $ fi −
j−1∑
k=1

gk

ej $ 1Ai
−

j−1∑
k=1

gk

(gj, gj) $ NextLittle(φ, φi, ni, di, ej, ej)

gr $ 1Ai
−

r−1∑
j=1

gj

gr $ fi −
r−1∑
j=1

gj

return (g, g, β, h)

Proof. The first group of statements follow from 3.2.15, 3.2.16, and the same induc-

tive argument used in 3.2.9. The second group of statements follow from 3.2.15. The

third group of statements follow from 3.2.15, and the fact that g1 is orthogonal to

gj, for j 6= 1.

3.2.4 Step 3: Computing Generators for each A′
i

We previously showed how to construct βi ∈ Ai, and how to lift it to βi ∈ fiAfi. We

now show how to construct τ i ∈ Ai, and how to lift it to τi ∈ fiAfi.

73

As before let eijk denote the jk-th elementary matrix in Ai. Define eij = eijj and

zij = eij(j+1) (all such indices should be taken modulo ni, with the representatives

of the ni equivalence classes being 1 to ni – in particular zini
= eini(ni+1) = eini1).

Recall that

τ i =

ni∑
j=1

zij =



0 1 0 · · · · · · 0

0 0 1 0 · · · 0

0 · · · 0 1 · · · 0

...
...

...
...

. . . 0

0 · · · · · · · · · 0 1

1 0 · · · · · · · · · 0


Our strategy for constructing τi will be to construct the zij ∈ Ai, and then lift

these to zij ∈ fiAfi. Then τi will be the sum of these lifts. As was the case with

the gij, we will not be able to construct the zij per se, rather we will construct

a sequence of aij, such that with respect to some basis Bi for Si, each aij equals

the corresponding zij. As a consequence we will not in fact construct τ i, but will

construct a τ such that, with respect to Bi, τ = τ i.

The point here is that to generate Ai we only need elements β and τ which satisfy

the relations of 2.1.5. Since βi and τ i satisfy these relations, any matrix similar to

them will also satisfy these relations.

Theorem 3.2.18. The following randomized algorithm computes β, τ ∈ Ai, and β,

τ ∈ fiAfi such that:

(i) µi(β) = β.

(ii) µi(τ) = τ .

Moreover there is a basis B for Ai such that with respect to B:

(i) β = βi.

74

(ii) τ = τ i.

Hence β and τ generate Ai, and β and τ generate A′
i ⊆ fiAfi. The algorithm also

returns the polynomial hi(x), where hi(x) is the minimal polynomial of εi.

SemiSimpleGeneratorsi(φ : X → A, φi : X → Ai, fi, ni, di, qi)

([g], [g], β, h) $ AllLittle(φ : X → A, φi : X → Ai, fi, ni, di, qi)

for j in [1 . . . ni − 1] do

wj $ RandomElement(φi, gj, gj+1)

aj $ gj · φi(wj) · gj+1

aj $ gj · φ(wj) · gj+1

wni
$ RandomElement(φi, gni

, g1)

a′ni
$ gni

· φi(wni
) · g1

x $
(ni−1∏

j=1

aj

)
ani

$ a′ni
·
(∑

i

κiβi

)−1

where xa′ni
=
∑
i

κiβi

τ $
ni∑
j=1

aj

a′ni
$ (gni

· φ(wni
) · g1)

(∑
i

κiβi

)−1

x $
(ni−1∏

j=1

aj

)
ani

$ a′ni
(xa′ni

)p
l−1

where l $ Lift(xa′ni
− g1, p)

τ $
ni∑
j=1

aj

return (β, τ, g, h)

Proof. First note that we can assume that we have changed basis for Si so that the

[g] little idempotents computed for Ai are in fact the eij elementary matrices.

75

We finish the loop with each wj, 1 ≤ j ≤ ni − 1, a word in X such that

aj = gj · φi(wj) · gj+1 6= 0 ∈ gjAigj+1

We then set wni
to be a word in X such that

a′ni
= gni

· φi(wni
) · g1 6= 0 ∈ gni

Aig1

Now a1 is a non-zero element of g1Aig2. With respect to the basis C1 we have

that

a1 =



0 γ1 0 · · · · · · 0

0 0 0 0 · · · 0

0 · · · 0 0 · · · 0

...
...

...
...

. . . 0

0 · · · · · · · · · 0 0

0 0 · · · · · · · · · 0


for some γ1 6= 0 ∈ Ki. Define C2 = {w1, γ

−1
1 w2, . . . , wni

}. The change of basis matrix

η1 from C1 to C2 is

η1 =



1 0 0 · · · · · · 0

0 γ1 0 0 · · · 0

0 · · · 1 0 · · · 0

...
...

...
...

. . . 0

0 · · · · · · · · · 1 0

0 0 · · · · · · · · · 1


Hence with respect to C2, we have that

a1 = η1a1η
−1
1 = zi1

and

gj = η1gjη
−1
1 = gj

76

for all 1 ≤ j ≤ ni.

Now a2 is a non-zero element of g2Aig3. With respect to the basis C2

a2 =



0 0 0 · · · · · · 0

0 0 γ2 0 · · · 0

0 · · · 0 0 · · · 0

...
...

...
...

. . . 0

0 · · · · · · · · · 0 0

0 0 · · · · · · · · · 0


for some γ2 6= 0 ∈ Ki. Define C3 = {w1, γ

−1
1 w2, γ

−1
2 w3, . . . , wni

}. Let η2 be the change

of basis matrix from C2 to C3. Arguing as above we have that with respect to C3:

(i) ak = η2akη
−1
2 = zik, for 1 ≤ k ≤ 2.

(ii) gj = η2gjη
−1
2 = gj, for all 1 ≤ j ≤ ni.

Continuing inductively in this fashion define for 2 ≤ k ≤ ni that

Ck = {w1, γ
−1
1 w2, . . . , γ

−1
k−2wk−1, γ

−1
k−1wk, . . . , wni

}

Observe that with respect to Ck:

(i) al = zil, for any l ≤ k.

(ii) gj is unchanged for all 1 ≤ j ≤ ni.

Now a′ni
is a non-zero element of gni

Aig1. With respect to the basis Cni
we have

that

a′ni
=



0 0 0 · · · · · · 0

0 0 0 0 · · · 0

0 · · · 0 0 · · · 0

...
...

...
...

. . . 0

0 · · · · · · · · · 0 0

γ 0 · · · · · · · · · 0



77

for some γ 6= 0 ∈ Ki. At this point we cannot scale w1 in the same fashion that we

scaled w2 through wni
. Instead observe that xa′ni

is an element of g1Aig1, and hence

with respect to the basis Cni
, we have that

xa′ni
=



γ 0 0 · · · · · · 0

0 0 0 0 · · · 0

0 · · · 0 0 · · · 0

...
...

...
...

. . . 0

0 · · · · · · · · · 0 0

0 0 · · · · · · · · · 0


Now γ =

∑
i

κiεi, with κi ∈ K. Hence with respect to Cni
we have that xa′ni

=(∑
i

κiβi

)
, and therefore

ani
=



0 0 0 · · · · · · 0

0 0 0 0 · · · 0

0 · · · 0 0 · · · 0

...
...

...
...

. . . 0

0 · · · · · · · · · 0 0

1 0 · · · · · · · · · 0


Taking B = Cni

, we have that with respect to B, aj = zij, for 1 ≤ j ≤ ni, and

therefore τ = τ i. Moreover by 3.2.17 we also have that µi(β) = β, and since w1 is

the first basis vector in B, that with respect to B, β = βi.

It remains to show that µi(τ) = τ . Observe that by 3.2.17 we know that each

wj, 1 ≤ j ≤ ni − 1, is a word in X such that µi(aj) = aj. In particular, aj 6= 0 for

1 ≤ j ≤ ni− 1. Likewise wni
is a word in X such that µi(a

′
ni

) = a′ni
, Finally we note

that the definition of ani
and τ in the above algorithm, is precisely how zni

and τ

were defined in 2.2.1 (identifying g1 here with e1 in 2.2.1, each gj here with Ej, and

aj here with Zj).

78

Finally since β and τ are similar to βi and τ i, and the latter generate Ai, we

must have that β and τ also generate Ai. Hence β and τ generate A′
i by 2.2.1.

Remark. Since g = βqi it is not necessary to return g from the above algorithm.

We do so for clarity of the presentation of later algorithms.

3.2.5 Computing the Semisimple Generators

We now present the complete algorithm for computing generators for the semisimple

part of A.

Theorem 3.2.19. The following randomized algorithm computes lists β1, . . . , βr and

τ1, . . . , τr, such that:

(i) βi and τi generate A′
i, 1 ≤ i ≤ r, as per 2.1.5.

(ii) the collection of βi and τi generate the semisimple part of A as per 2.3.4.

The algorithm also computes the list g1, . . . , gr of the first little idempotents for each

A′
i, and the list hi, . . . , hr of minimal polynomials associated to each βi.

SemiSimpleGenerators(φ : X → A, [φk : X → Ak], [nk], [dk], [qk], r)

[f] $ AllBig(φ, [φk], r)

for i in [1 . . . r] do

(βi, τi, gi, hi) $ SemiSimpleGeneratorsi(φ, φi, fi, ni, di, qi)

return (β, τ, g, h)

Proof. Correctness follows from 3.2.9, 3.2.18, and 2.3.4.

79

3.3 Computing Generators for the Radical of A

Recall that if A is a finite dimensional K-algebra generated by elements Λ =

{λ1, . . . λt}, then by 2.4.3, J(A) is generated as a two-sided ideal by elements of

A of the form:

(i) giτ
a
i λkτ

c
j gj, i 6= j.

(ii) giτ
a
i (λk − ψi(µ(λk)))τ

b
i gi.

where 1 ≤ k ≤ t, 1 ≤ a, b ≤ di, and 1 ≤ c ≤ dj, and gi to be gi1 Our second main

algorithm takes as inputs the set Λ, and the lists [φi : X → Ai], [βi], [τi], [gi], [βi],

[τ i], [gi]. [di], and [ni], and computes this set of generators for J(A).

Lemma 3.3.1. The following algorithm constructs y ∈ A′
i such that y = ψi(µi(λl)).

Psii(φi, τi, βi, gi, τ i, βi, gi, ni, λl)

for j, k in [1 . . . ni] do

ajk $ gi · τ ij−1 · φi(λl) · τ ini−(k−1) · gi

ajk $

{
0 if ajk = 0

τ
n−(j−1)
i · βixjk · τ k−1

i if ajk = βi
xjk

y $
∑
j,k

ajk

return y

Proof. Termination is immediate since ni is finite. For correctness note that, since

gi = ei1, we have

µi(λl) = φi(λl)

=

ni∑
j,k

eij · φi(λl) · eik

80

=

ni∑
j,k

τ i
ni−(j−1) · ei1 · τ j−1

i · φi(λl) · τ ini−(k−1) · ei1 · τ k−1
i

=

ni∑
j,k

τ i
ni−(j−1) · gi · τ

j−1
i · φi(λl) · τ ini−(k−1) · gi · τ k−1

i

=

ni∑
j,k

τ i
ni−(j−1) · ajk · τ k−1

i

Now observe that ajk ∈ giAigi, and so either ajk = 0, or ajk = β
xjk

i , for some xjk. If

ajk = 0, then

ψi(τ i
ni−(j−1) · ajk · τ k−1

i) = ψi(0) = 0 = ajk

If ajk = β
xjk

i then

ψi(τ i
ni−(j−1) · ajk · τ k−1

i)) = ψi(τ i
ni−(j−1) · βxjk · τ k−1

i)

= ψi(τ i
ni−(j−1)) · ψi(β

xjk
) · ψi(τ ik−1)

= τi
ni−(j−1) · βxjk · τik−1

= ajk

Hence

ψi(µi(λl)) = ψi

(ni∑
j,k

τ i
ni−(j−1) · ajk · τ k−1

i

)
=

ni∑
j,k

ajk = y

We now present the complete algorithm for computing the generators for J(A)

as a two-sided ideal.

Theorem 3.3.2. The following algorithm computes a sequence (of sets), Sij, 1 ≤

i, j ≤ r, such that:

(i)
⋃
i,j

Sij is a generating set for J(A) as a two-sided ideal.

(ii) fiAfj is spanned by Sij as a K-vector space.

81

RadicalGenerators(Λ, [φi], [βi], [τi], [gi], [ni], [di], r)

for (i, j) in {1 . . . r} × {1 . . . r}
if i = j

Sii $ {gi · τia ·
(
λ−Psii(φi, βi, τi, gi, βi, τ i, gi, ni, λ)

)
· τib · gi :

a, b ∈ {1 . . . di}, λ ∈ Λ}
else

Sij $ {gi · τia · λ · τjc · gj : a ∈ {1 . . . di}, c ∈ {1 . . . dj}, λ ∈ Λ}

return S

Proof. Termination is immediate since r, Λ, and the di are finite, and Psii terminates

by the 3.3.1. Correctness follows from 3.3.1 and 2.4.3.

3.4 Pruning The Generators for the Radical of A

Our algorithm to compute generators for J(A) as a two-sided ideal is correct, but

produces a large number of redundant generators. The main (but not only) source of

this redundancy is that generators in Sij are often linear combinations of products

xy, with x a generator in Sik and y a generator in Skj. Such linear combinations in

Sij are not necessary to generate J(A) as a two-sided ideal. The following algorithm

removes (prunes) such redundant generators. Its correctness and termination are

obvious.

Lemma 3.4.1. Given a sequence (of sets), Sij, 1 ≤ i, j ≤ r, such that
⋃
i,j

Sij is

a generating set for J(A) as a two-sided ideal, the following algorithm computes a

sequence (of sets), Tij, such that:

(i)
⋃
i,j

Tij is also a generating set for J(A) as a two-sided ideal.

(ii) if t ∈ Tij then t is not a K-linear combination of products xy, with x ∈ Sik

and y ∈ Skj.

82

Prune([Sij] with each Sij ∈Mm(K), r)

V $ vector space of m×m matrices over K

for (i, j) in {1 . . . r} × {1 . . . r}
Uij $ subspace of V spanned by Sij

Lij $ {x · y : x ∈ Sik, y ∈ Skj, k ∈ {1 . . . r}}
Wij $ subspace of V spanned by Lij

Tij $ a basis of the complement in Uij of Uij ∩Wij

return T

3.5 Computing Generators for A

We have algorithms to compute generators for the semisimple part of A, and for the

radical of A. Composing them gives an algorithm to compute a new generating set

for A.

Theorem 3.5.1. Let Λ = {λ1, . . . , λt}, where each λi is an m ×m matrix over a

finite field K of characteristic p. Let A ⊆ Mm(K) be the algebra generated by Λ.

The following randomized algorithm computes a generating set for A. Specifically

the algorithm computes {β1, τ1, . . . βr, τr} and sets Tij such that:

(i) {β1, τ1, . . . βr, τr} generates the semisimple part of A as a K-algebra.

(ii)
⋃
i,j

Tij generates J(A) as a two-sided ideal.

The algorithm also computes the list g1, . . . , gr of the first little idempotents for each

A′
i, the list n1, . . . , nr giving the dimensions of each Si over Ki, the list d1, . . . , dr

giving the degree of each Ki over K, and the list h1, . . . , hr of minimal polynomials

associated to each βi.

83

Generators(Λ = {λ1, . . . , λt} with each λi ∈Mm(K))

[Ai], [ni], [di], [qi] $ MeatAxe(Km, Λ)

X $ K〈x1, . . . , xt〉
create φ : X → Λ

create [φj : X → Aj]

([βi], [τi], [gi], [hi]) $

SemiSimpleGenerators(φ, [φi], [ni], [di], [qi], r)

[Sij] $ RadicalGenerators(Λ, [φi], [βi], [τi], [gi], [di], [ni], r)

[Tij] $ Prune([Sij], r)

return ([βi], [τi], [gi], [Tij], [ni], [di], [hi])

Proof. Correctness is immediate from 3.2.19, 3.4.1, and 2.4.4.

Chapter 4

Derivative Algorithms

Abstract. We present several useful algorithms derived from the algo-

rithms in the previous chapter. As usual we prove correctness of these algo-

rithms, but make no attempt to present the most efficient algorithms possible,

nor to present every detail of every algorithm. We employ the notation and

conventions of the previous chapter.

4.1 Computing The Basic and Split Basic Algebra for A

In the previous chapter we described the basic algebra associated to A as the sub-

algebra B = gAg of A. Since A ⊆ EndK(M) ' Mm(K), with M the natural m-

dimensional module for A, the elements of B can be represented as m×m matrices

over K. Note, however, that since A acts faithfully on M , gAg must also act faith-

fully on gM . Hence we can embed gAg in EndK(gM), and therefore represent the

elements of B as m̂ × m̂ matrices over K, where m̂ = dimK(gM). The point here

is that m̂ is usually much smaller than m. We can exploit this fact to reduce the

degree of the generators for B.

The function Condense is a standard function which returns m̂, together with

the embedding π : gAg → EndK(gM). Magma source code for the Condense

function can be found in Appendix A. Using the Condense function we can define

an algorithm to compute the basic algebra associated to A as a subalgebra ofMm̂(K).

This algorithm then leads to an obvious algorithm to compute the split basic algebra

84

85

associated to A as a subalgebra of Mm̂(L), where L is the splitting field for A.

Correctness of these algorithms is immediate from 2.5.7 and 2.5.8.

Theorem 4.1.1. Let Λ = {λ1, . . . , λt}, where each λi is an m ×m matrix over a

finite field K of characteristic p. Let A ⊆ Mm(K) be the algebra generated by Λ.

The following randomized algorithm computes the basic algebra B associated to A as

a subalgebra of Mm̂(K), where m̂ = dimK(gM). The algorithm also returns the list

d1, . . . , dr, where di gives the degree of Ki over K.

Basic(Λ = {λ1, . . . , λt} with each λi ∈Mm(K))

([βi], , [gi], [Tij], , [di],) $ Generators(Λ)

(m̂, π) $ Condense(g) where g $
∑
i

gi

Mm̂(K) ⊇ B $ algebra generated by [π(βi)] and [π(Tij)]

return (B, [di])

Theorem 4.1.2. Let Λ = {λ1, . . . , λt}, where each λi is an m × m matrix over

a finite field K of characteristic p. Let A ⊆ Mm(K) be the algebra generated by

Λ. The following randomized algorithm computes the splitting field L for A, and

returns the split basic algebra BL associated to A as a subalgebra of Mm̂(L), where

m̂ = dimK(gM) = dimL((gM)L).

86

SplitBasic(Λ = {λ1, . . . , λt} with each λi ∈Mm(Fpc))

(B ⊆Mm̂(K), [di]) $ Basic(Λ)

l $ c · LCM([di])

L $ Fpl

Mm̂(L) ⊇ BL $ algebra generated by [1L⊗π(βi)]∪ [1L⊗π(Tij)]

where B is generated as a K-algebra by [π(βi)] and [π(Tij)]

return BL

4.2 Computing a Presentation for A

The final algorithm in this chapter is an algorithm to compute a presentation for an

algebra A. The input to our algorithm is a set Λ = {λ1, . . . , λt}, where each λi is

an m ×m matrix over a finite field K of characteristic p. Let A ⊆ Mm(K) be the

algebra generated by Λ.

We can compute generators {β1, . . . , βr, τ1, . . . , τr, ζ1, . . . , ζk} for A, where the βi

and τi generate A′ as a K-algebra, and the ζj generate J(A) as a two-sided ideal.

Let P be the free non-commutative algebra K〈B1, . . . , Br, T1, . . . Tr, Z1, . . . , Zk〉. We

have an onto K-algebra homomorphism, ψ : P → A, defined by Bi 7→ βi, Ti 7→ τi,

and Zj 7→ ζj. Let Ω = kerψ. Then we have a presentation for A as P/Ω. We now

consider how to compute generators for Ω.

Remark. If A is a basic algebra (so all the ni are equal to 1), then we omit the Ti

generators for P .

4.2.1 Computing the Semisimple Generators for Ω

There are generators for Ω coming from relations among the generators of A′. Recall

that βi and τi generate A′
i, and satisfy the relations implied by 2.1.5. Hence for

1 ≤ i ≤ r we have the following generators for Ω:

87

(i) Ti
niBi −Bi.

(ii) BiTi
ni −Bi.

(iii) Ti
niTi − Ti.

(iv) TiTi
ni − Ti.

(v) BiTi
jBi, 1 ≤ j ≤ ni.

(vi)
ni∑
j=1

Ti
ni−jBi

qi−1Ti
j − Ti

ni .

(vii) Bihi(Bi)

We also have orthogonality relations between the A′
i components of A′. Specifi-

cally we have the following generators for Ω: BiBj, TiTj, BiTj, TiBj, for 1 ≤ i, j ≤ r,

i 6= j. We have a function SemisimpleGeneratorsΩ which returns a list of the

above generators. Source for this function can be found in Appendix A.

4.2.2 Computing The Radical Generators for Ω

There are generators for Ω coming from relations among the generators of J(A).

Since A is finite dimensional, J(A)d = 0 for some d. Let V be the K-vector space

with basis the set of monomials in Z1, . . . , Zk of degree greater than or equal to 1

and less than or equal to d. Let θ′ : V → J(A) be the vector space map defined by

∏
j

Zj
αj 7→

∏
j

ζj
αj

One way to compute the relations among the Z1, . . . , Zk is to compute the kernel of

θ′. Unfortunately such a computation could potentially be prohibitively expensive,

as J(A) may have high dimension, and there may be a huge number of monomials

in the basis for V . We can alleviate these problems via two ‘tricks’.

88

First, recall that the ζj generators for J(A) are in fact all elements of the basic

algebra gAg ⊆ A. Now let B be the basic algebra for A computed via the algorithm

Basic. Then gAg
π' B, and we can form the vector space map θ : V → J(B) defined

by ∏
j

Zj
αj 7→

∏
j

π(ζj)
αj

Observe that x ∈ ker θ′ if and only if x ∈ ker θ. In other words a relation among the

ζj ∈ gAg holds if and only if the corresponding relation holds among the π(ζj) ∈

J(B). The point here is that computing in J(B) will usually be much faster than

computing in J(A), since the dimension of J(B) will usually be much smaller than

the dimension of J(A).

Second, we can embed V into K〈Z1, . . . , Zk〉 (as a subspace), and use the ideal

structure of K〈Z1, . . . , Zk〉 to control the number of monomials in Z1, . . . , Zk that

we must consider. Some care is needed in this approach since computing with ideals

in K〈Z1, . . . , Zk〉 will involve non-commutative Gröbner basis constructions, which

may themselves be extremely expensive, or even non-terminating. In light of this

we mainly use ideals in K〈Z1, . . . , Zk〉 generated by monomials (the calculation of

Gröbner basis for such ideals almost always terminates, and almost always completes

very rapidly).

Theorem 4.2.1. Suppose that A is a K-algebra, and B is the basic algebra for A

computed by the algorithm Basic. Suppose B is generated by {β1, . . . , βr, ζ1, . . . , ζk},

where the ζj generate J(B) as a two-sided ideal. Let Q = K〈Z1, . . . , Zk〉, and let V

and θ : V → J(B) be defined as before. Then the following algorithm either fails to

terminate, or computes:

(i) a set ∆r ⊆ V such that ker θ equals the ideal H generated by ∆r, and hence

V/H ' J(B) as vector spaces.

(ii) a basis C for V/H.

89

RadicalGeneratorsΩ(Q, θ : V → J(B))

c $ 1

I1 $ the zero ideal in Q

L1 $ {Z1, . . . , Zk}
∆r $ []

repeat

c $ c+ 1

Mc $ the set of monomials in Z1, . . . , Zk of degree c

Lc $ Lc−1 ∪ (Mc \ Ic−1)

Vc $ the subspace of V with basis Lc

Nc $ NullSpace(θ|Vc
)

Xc $ a basis for Nc

∆r $ ∆r ∪Xc

Ic $ two-sided ideal of Q generated by Ic−1 ∪ (Lc ∩Nc)

until θ(Mc) = {0}

H $ ideal in Q generated by ∆r

S $ Q/H

C $ MonomialBasis(S)\{1}

return (C, ∆r)

Proof. The algorithm may not terminate due to the fact that the construction of

ideals in Q involves Gröbner basis calcuations. If these calculations all terminate,

however, then so does the algorithm, since J(B)d = 0 for some d.

Assume the algorithm terminates. Inductively we have that Lc is a subset of the

set of all monomials in Z1, . . . , Zk of degree greater than or equal to 1 and less than

or equal to c, and hence Vc is a subspace of V and ker(θ|Vc
) ⊆ ker θ. It follows that we

finish the loop with Ld a subset of the set of all monomials in Z1, . . . , Zk of degree

90

greater than or equal to 1 and less than or equal to d, and ∆r ⊆ ker θ|V . Hence

H ⊆ ker θ.

Inductively we also have that Ic−1 ⊆ Ic, and that Ic is contained in the ideal

generated by ∆rc (the value of ∆r on the c-th loop iteration, where the first loop

iteration corresponds to c = 2). It follows that Ic ⊆ ker θ. Now suppose that v ∈ ker θ.

We can write

v =
∑
i

αimi

where the αi ∈ K, and the mi are monomials in Z1, . . . , Zk. Let a = Max{degmi}.

Then we can write v as

v =
∑
i

αimi +
∑
j

αjmj
′

where the mj
′ ∈ Ia−1, and the mi

′ 6∈ Ia−1. Since Ia−1 ⊆ ker θ we then have that

0 = θ(v) = θ(
∑
i

αimi +
∑
j

αjmj
′) = θ(

∑
j

αjmj
′)

Hence
∑
j

αjmj
′ ∈ Na. Thus v is in the ideal generated Xa ∪ Ia−1, and thus in the

ideal generated by ∆ra ∪ Ia−1. It follows that v ∈ H, and hence that H = ker θ.

To finish the proof we require one fact about Gröbner bases, namely that if I is

an ideal in a free non-commutative (or commutative) algebra R over a field K, then

R/I has a computable K-basis consisting of monomials.

4.2.3 Computing the Cross Generators for Ω

There are generators for Ω coming from relations betwen the generators of A′ and

the generators of J(A). Recall that each ζj is an element of fiAfl, for some unique

choice of i and l. Hence we have identity relations between Bi
qi−1 and Ti

ni , and any

Zj such that ψ(Zj) ∈ fiAfl. Specifically for 1 ≤ i, l ≤ r, 1 ≤ j ≤ k, we have the

following generators for Ω:

(i) Bi
qi−1Zj − Zj, if Zj ∈ fiAfl.

91

(ii) ZjBi
qi−1 − Zj, if Zj ∈ flAfi.

(iii) Ti
niZj − Zj, if Zj ∈ fiAfl.

(iv) ZjTi
ni − Zj, if Zj ∈ flAfi.

We also have orthogonality relations between Bi and Ti, and any Zj such that

ψ(Zj) /∈ fiAfl. Specifically for 1 ≤ i, l ≤ r, 1 ≤ j ≤ k, we have the following

generators for Ω:

(i) BiZj, if Zj /∈ fiAfl.

(ii) ZjBi, if Zj /∈ flAfi.

(iii) TiZj, if Zj /∈ fiAfl.

(iv) ZjTi, if Zj /∈ flAfi.

We have scaling relations between each Bi and any Zj such that ψ(Zj) ∈ fiAfl.

Observe that since βi is in the basic algebra B, we can compute these scaling relations

using π(βi) and the π(ζj), rather than βi and the ζj. Suppose {Z̃1, . . . , Z̃t} is the

basis for V/H
ρ
' J(B) computed by the RadicalGeneratorsΩ algorithm. Then for

1 ≤ i, l ≤ r, 1 ≤ j ≤ k we have the following generators for Ω:

(i) BiZj −
t∑

s=1

αsZ̃s, if Zj ∈ fiAfl, and π(βi)π(ζj) =
t∑

s=1

αsρ(Z̃s)

(ii) ZjBi −
t∑

s=1

αsZ̃s, if Zj ∈ flAfi, and ψ(ZjBi) =
t∑

s=1

αsρ(Z̃s)

Finally, recall that g =
r∑
i=1

gi, where gi is the first little idempotent in fiAfi. For

1 ≤ m ≤ ni−1 we have

gτi
mg = giτi

mgi = 0

Moreover for any ζj we have

gζj = ζjg = ζj

92

Hence

(τi
mζjτi

l) · (τim
′
ζj′τi

l′) = τi
mζjgτi

lτi
m′

gζj′τi
l′

=

 τi
mζjζj′τi

l′ if l +m′ = 0 mod ni

0 otherwise

The point here is that we already know how to compute ζjζj′ using the radical

generators for Ω. Hence any obvious scaling relations between Ti and any Zj such

that ψ(Zj) ∈ fiAfl, are implicit in the relations we have already listed. We revisit

the issue of non-obvious scaling relations at the end of the chapter.

We have a function CrossGeneratorsΩ which returns a list of the above gener-

ators. Source for this function can be found in Appendix A.

4.2.4 Computing A Presentation for A

We conclude with the algorithm to compute a presentation for A.

Theorem 4.2.2. Let Λ = {λ1, . . . , λt}, where each λi is an m ×m matrix over a

finite field K of characteristic p. Let A ⊆ Mm(K) be the algebra generated by Λ.

Then the following randomized algorithm either fails, or computes a presentation for

A.

93

Presentation(Λ = {λ1, . . . , λt} with each λi ∈Mm(K))

([β1, . . . , βr], [τ1, . . . , τr], , [ζ1, . . . , ζk], [ni], , [hi]) $ Generators(Λ)

P $ K〈B1, . . . , Br, T1, . . . Tr, Z1, . . . , Zk〉

∆s $ SemisimpleGeneratorsΩ([Bi], [Ti], [ni], [qi], [hi])

B $ Basic(Λ)

Q $ K〈Z1, . . . , Zk〉 ⊆ P

θ $ the map V → B defined by
∏
j

Zj
αj 7→

∏
j

π(ζj)
αj

where [π(βi)] ∪ [π(ζj)] generates B

(C,∆r) $ RadicalGeneratorsΩ(Q, θ)

∆c $ CrossGeneratorsΩ(C, [π(βi)], [Bi], [Ti], [Zi], [ni], [qi])

∆ $ ideal in P generated by ∆s ∪∆r ∪∆c

if dimK(P/∆) 6= dimK(A)

fail

else

return P/∆

Proof. By 4.2.1 and our discussion of the semisimple generators for Ω and the cross

generators for Ω, we know that ∆ ⊆ Ω. The dimension check at the end of the

algorithm ensures that ∆ = Ω, and hence A ' P/Ω = P/∆.

We conclude by noting that the dimension check in the above algorithm can

possibly cause the algorithm to fail. Such a failure happens if we do not have enough

generators for Ω. It’s clear that if A is a basic algebra, we always have enough

generators for Ω. The question is whether such a failure can happen if A is not

basic? Answering this questions amounts to proving that there are no non-obvious

scaling relations between Ti and any Zj such that ψ(Zj) ∈ fiAfl, or more precisely

94

that the elements τi
mζjτi

l, 1 ≤ i ≤ r, 1 ≤ m, l ≤ ni, 1 ≤ j ≤ k, form a K-basis

for J(A). While we strongly suspect that this is the case, we have not yet formally

proven this claim.

Chapter 5

Examples

Abstract. We present several examples of computing presentations for

basic algebras using the programs in the appendix.

5.1 The Structure of Each Example

In each example we define a K-algebra A, and a faithful representation ρ of A. We

then compute the split basic algebra B associated to A. Run times are given for

each of the main steps involved in computing B. These steps are:

(i) MeatAxe – computing the Ai, ni, di, and qi.

(ii) Semisimple Generators – computing generators for the semisimple part of A.

(iii) Radical Generators – computing generators for J(A).

(iv) Pruning – pruning the generators for J(A).

(v) Split Basic – computing the split basic algebra.

We also report the number of generators computed in steps (ii), (iii), and (iv).

For each example we also give information about the simple A-modules. Specif-

ically, if Si is the i-th simple A-module, then we give the K-dimension of Si, and

the degree of Ki = EndA(Si)
op over K in the Wedderburn decomposition of A. Most

of this information is either computed in Magma or read from the tables in [13].

Note that we list the simple modules in decreasing order by dimension. While this is

95

96

somewhat non-standard it remains faithful to our programs, which reverse the usual

order for reasons of efficiency.

We give the splitting field L for A, and report the degree and dimension of B over

L, together with the number of simple B-modules. We then compute a presentation

for B as a free non-commutative algebra P , modulo an ideal Ω. Run times are given

for each of the main steps involved in computing this presentation. These steps are:

(i) Generators – computing generators for B.

(ii) Semisimple Generators for Ω – computing generators for Ω coming from rela-

tions within B′ (recall that B = B′⊕ J(B), where B′ is the semisimple part of

B).

(iii) Radical Generators for Ω – computing generators for Ω coming from relations

within J(B), together with a basis for J(B).

(iv) Cross Generators for Ω – computing generators for Ω coming from relations

between B′ and J(B).

(v) Gröbner Basis – computing a non-commutative Gröbner basis for the ideal

generated by the elements computed in steps (ii), (iii), and (iv).

We also report the number of relations computed in each of the above steps, and

the dimensions over L of B, B′, J(B), and B′ ∩ J(B). Finally we give the computed

presentation for B. Note that the presentations we give contain a large number of

redundant relations.

All reported run times are exact (to within the limits imposed by the operating

system), while all reported memory usage figures are (reasonably accurate) esti-

mates based on the memory usage information available in Magma. All performance

figures were generated on a Sun Blade 1000 with 8 gigabytes of memory and two

UltraSPARC-III 750 Mhz processors, running Solaris 5.9.

97

Note that some of the information we give is redundant, in the sense that we can

trivially calculate it from other information (e.g. the dimension over L of B′ must be

equal to the number of simple B-modules). Reporting the actual calculated values

for such information does, however, give some indication of the correctness of the

implementations of our algorithms.

5.2 Background

To construct our examples we require some background results from the representa-

tion theory of finite groups.

Definition 5.2.1. Let G be a finite group, and ρ : G→ GL(V) be a representation

of G. Then ρ is called a faithful representation of G if ρ(g) = 1 implies g = 1.

Note that being a faithful representation of a group G in the above sense is not

the same as being a faithful representation of an algebra in the sense of 1.12.1. We

use two facts about faithful representations of finite groups.

Lemma 5.2.2. If G is a finite simple group, then every non-trivial representation

of G is faithful.

Theorem 5.2.3 (Burnside). Suppose ρ : G→ GL(M) is a faithful representation

of the finite group G. Let Mn denote the KG-module M⊗M⊗ . . .⊗M (n factors).

Then every simple KG-module is a composition factor of at least one of the modules

Mn, n = 1, 2,

Proof. Theorem 32.9 of [10].

We require several results about duality, projectivity and injectivity of KG-

modules.

98

Lemma 5.2.4. If U , V and W are KG-modules then

HomKG(U⊗V,W) ' HomKG(U, V ∗⊗W)

Proof. Lemma 7.3 of [1].

Lemma 5.2.5. If P is a projective KG-module, and U is any KG-module, then

P⊗U is a projective KG-module.

Proof. Lemma 7.4 of [1].

Theorem 5.2.6. Every finitely generated injective KG-module is projective, and

every finitely generated projective KG-module is injective.

Proof. Corollary 2.7 of [9].

We also require the following fact about the socle and head of projective inde-

composable KG-modules.

Definition 5.2.7. The socle of a moduleM , denoted Soc(M), is the sum of its simple

submodules. The top of a module M , denoted Head(M), is the module M/Rad(M).

Theorem 5.2.8. Let P be a projective indecomposable KG-module. Then Soc(P) '

Head(P) ' P/Rad(P) ' S, where S is the simple module corresponding to P .

Proof. Theorem 3.6 of [9].

We conclude this section with some results from block theory.

Definition 5.2.9. A central idempotent in a finite dimensional algebra A is an

idempotent in the center of A. A primitive central idempotent is a central idempotent

not expressible as the sum of two orthogonal central idempotents.

99

Lemma 5.2.10. In a finite dimensional algebra A we can write 1 = e1+· · ·+en, with

the ei orthogonal central idempotents of A, and A = B1 ⊕ · · · ⊕ Bn, with each Bi a

two-sided indecomposable ideal of A given by Bi = eiA. Moreover, this decompositon

of A is unique up to reordering of summands.

Proof. Definition 1.8.1 and Lemma 1.8.2 of [4].

Definition 5.2.11. The indecomposable two-sided ideals in the above decomposi-

tion are called the blocks of A. Note that each block Bi is a subalgebra of A with

identity ei.

Now suppose that M is an indecomposable A-module. Then

M = 1 ·M = (e1 + · · ·+ en) ·M = e1M ⊕ · · · ⊕ enM

and hence M = eiM for some i. In this case we say that M belongs to the block Bi.

Thus the simple and projective indecomposable modules are classified into blocks.

Note that if an indecomposable module is in a given block, then so are all of its

composition factors.

Definition 5.2.12. The principal block of A, denoted B0(A), is the block containing

the trivial A-module.

5.3 M11 in Characteristic 2

Let G be M11 – the smallest sporadic simple group. The order of G is 7920. G

can be constructed as the subgroup of S11 generated by the two permutations

(1 10)(2 8)(3 11)(5 7) and (1 4 7 6)(2 11 10 9).

Let K be F2, A be the group algebra of G over K, and M be a 7920 dimensional

vector space over K. The regular representation ρ : A → EndK(M) is faithful by

1.12.6, but it has degree 7920, which is quite large. We wish to find a smaller degree

representation for A.

100

The simple A-modules are as follows

Simple dimK Si [Ki : K]

S4 44 1

S3 32 2

S2 10 1

S1 1 1

S3 is a projective A-module which is self dual. For 1 ≤ i ≤ 4, let Pi be the

projective indecomposable which corresponds by 1.6.9 to the simple module Si.

Observe that as G ⊆ S11, there is a natural permutation representation of G

on an 11-dimensional vector space M . The two composition factors of M are the

trivial module (S1) and S2. Let ρ2 : G → EndK(S2) be the representation for G

corresponding to S2. Since G is simple, ρ2 is faithful by 5.2.2. Hence by 5.2.3 we

should be able to find all other simple A-modules by forming tensor powers of S2. Let

T2,2 = S2⊗S2. A composition series for T2,2 has length 5, and one of the composition

factors is S4. We could form higher tensor powers of S2 to find more simple A-

modules, but instead we let T2,4 = S2⊗S4. A composition series for T2,4 has length

20, and one of the composition factors is S3. Let ρ3 : G → EndK(S3) be the group

representation for G corresponding to S3. Since G is simple, ρ3 is faithful by 5.2.2.

Hence by 5.2.3 we should be able to find all simple A-modules by forming tensor

powers of S3. Let T3,3 = S3⊗S3. The K-dimension of T3,3. is 1024.

In Magma we construct T3,3 as follows

load m11; // G = M_11

F := GF(2);

M := PermutationModule(G, F);

C := isomorphism_classes(CompositionFactors(M));

S_1 := degree(C, 1);

S_2 := degree(C, 10);

101

T_2_2 := TensorProduct(S_2, S_2);

S_4 := degree_M(T_2_2, 44);

T_2_4 := TensorProduct(S_2, S_4);

S_3 := degree_M(T_2_4, 32);

T_3_3 := TensorProduct(S_3, S_3);

By 5.2.4 we observe that for any i

HomA(Si⊗S3, S3) ' HomA(Si, S3
∗⊗S3)

= HomA(Si, S3⊗S3)

= HomA(Si, T3,3)

We can verify that HomA(Si⊗S3, S3) 6= 0 for every i, by checking whether Si occurs

as a composition factor of Si⊗S3. In Magma we do this as follows

error if #all_degree_M(TensorProduct(S_2, S_3), 10) eq 0, "";

error if #all_degree_M(TensorProduct(S_3, S_3), 32) eq 0, "";

error if #all_degree_M(TensorProduct(S_4, S_3), 44) eq 0, "";

Now fix a choice of i. Since HomA(Si, T3,3) 6= 0, there is a nonzero map φi : Si →

T3,3. Since Soc(Pi) = Si by 5.2.8, we therefore have the following diagram

0 // Si
ιi //

φi

��

Pi

T3,3

Since S3 is projective, T3,3 is projective by 5.2.5, and hence injective by 5.2.6.

We therefore have a map ψi : Pi → T3,3 such that ψi ◦ ιi = φi. Since Soc(Pi) = Si

is mapped injectively by ψi, we must have that ψi is an injective map. We therefore

have the exact sequence

0 → Pi
ψi→ T3,3

πi→ T3,3/Pi → 0

102

Now Pi is projective, and therefore injective by 5.2.6. Hence the map πi splits and so

Pi is a direct summand of T3,3. We have therefore proved that T3,3 is an A-module

containing every projective indecomposable A-module as a summand, and hence by

1.12.5 T3,3 is a faithful A-module.

We construct the split basic algebra associated to A via the following Magma

code

B := split_basic_M(T_3_3 : params := params_thesis);

Timings and memory usage for this computation are

Step Time

MeatAxe 7.55 sec

Semisimple Generators 1102.11 sec ≈ 18.5 mins

Radical Generators 4531.08 sec ≈ 76 mins

Pruning 235.54 sec ≈ 4 mins

Split Basic 3.89 sec

Total Time 5880.17 sec ≈ 1 hr 38 mins

Total Memory 90.45 MB

The number of generators for A computed in the various phases is

Type Number

Semisimple Generators 8

Radical Generators 34

Radical Generators After Pruning 6

103

The splitting field for A is L = F4. The computed split basic algebra B has degree

58 and dimension 24. There are 5 simple B-modules, all of which are of course 1-

dimensional (over L). We compute a presentation for B via the following Magma

code

Q := presentation_A(B : params := params_thesis);

Timings and memory usage for this computation are

Step Time

Generators 1.3 sec

Semisimple Generators for Ω 0 sec

Radical Generators for Ω 1.92 sec

Cross Generators for Ω 0.06 sec

Gröbner Basis 0.03 sec

Total Time 3.31 sec

Total Memory 2.84 Mb

The number of generators for Ω computed in the various phases is

Type Number

Semisimple Generators for Ω 30

Radical Generators for Ω 115

Cross Generators for Ω 72

Total 217

The dimensions for the various parts of B are as follows

104

Part Dimension over L

B′ 5

J(B) 19

B ∩ J(B) 0

B 24

Theorem 5.3.1. Let A be the group algebra of M11 over F2. Then the split basic

algebra B associated to A has a presentation as the quotient of the free algebra

F4〈B1, B2, B3, B4, B5, Z1, Z2, Z3, Z4, Z5, Z6〉 by the ideal generated by the following

elements:

Z2Z4Z5Z3 + Z2Z3, Z6
4 + Z6

3 + Z5Z4, Z2Z3Z2, Z2Z4Z6, Z3Z2Z3, Z3Z2Z4 + Z4Z6,

Z4Z5Z4, Z4Z6
2, Z5Z3Z2 + Z6Z5, Z5Z4Z5, Z5Z4Z6 + Z6

3 + Z5Z4, Z6Z5Z3,

Z6Z5Z4 + Z6
3 + Z5Z4, Z6

2Z5, B1
2 +B1

2B1B1B2, B1B3, B1B4, B1B5, B1Z1,

B1Z2, B1Z3, B1Z4, B1Z5, B1Z6, B2B1, B2
2 +B1B2, B2B3, B2B4, B2B5, B2Z1,

B2Z2, B2Z3, B2Z4, B2Z5, B2Z6, B3B1, B3B2, B3
2 +B1B3, B3B4, B3B5,

B3Z1 +B1Z1, B3Z2 +B1Z2, B3Z3, B3Z4, B3Z5, B3Z6, B4B1, B4B2, B4B3,

B4
2 +B1

2B4, B4B5, B4Z1, B4Z2, B4Z3 +B1
2Z3, B4Z4 +B1

2Z4, B4Z5, B4Z6,

B5B1, B5B2, B5B3, B5B4, B5
2 +B1

2B5, B5Z1,

B5Z2, B5Z3, B5Z4, B5Z5 +B1
2Z5, B5Z6 +B1

2Z6, Z1B1, Z1B2,

Z1B3 +B1Z1, Z1B4, Z1B5, Z1
2 + Z2Z3, Z1Z2, Z1Z3, Z1Z4, Z1Z5, Z1Z6, Z2B1,

Z2B2, Z2B3, Z2B4 +B1
2Z2, Z2B5, Z2Z1, Z2

2, Z2Z5, Z2Z6, Z3B1, Z3B2,

Z3B3 +B1Z3, Z3B4, Z3B5, Z3Z1, Z3
2, Z3Z4, Z3Z5, Z3Z6, Z4B1,

Z4B2, Z4B3, Z4B4, Z4B5 +B1
2Z4, Z4Z1, Z4Z2, Z4Z3, Z4

2,

Z5B1, Z5B2, Z5B3, Z5B4 +B1
2Z5, Z5B5, Z5Z1, Z5Z2, Z5

2, Z5Z6,

105

Z6B1, Z6B2, Z6B3, Z6B4, Z6B5 +B1
2Z6, Z6Z1, Z6Z2, Z6Z3, Z6Z4

Note that the Bi correspond to the 5 simple B-modules, while the Zj correspond to

the 6 generators for J(B) (and for J(A)) after pruning.

5.4 A Split Extension of A5

Conjecture. Suppose G is a finite group and k is a field of characteristic p. Then

the following are equivalent.

(i)The centraliser of every element of order p in G is p-nilpotent (i.e., has a normal

p-complement).

(ii)For every non-projective module M in the principal block B0(kG), Hn(G,M) 6=

0 for some (and hence for infinitely many) n.

This conjecture, Conjecture 1.2 in [5], is proved by the authors for p odd (the

conjecture was proved for all p in [3]). At the end of Section 9 of [5] the authors

comment that ‘Gorenstein has classified the finite groups in which the centraliser of

every involution is 2-nilpotent. It may be that the best way to prove Conjecture 1.2

in case p = 2 is to go through the cases in this theorem individually. We have already

initiated this process in Section 4 by treating the case where the Sylow 2-subgroups

are dihedral. An example which we have not been able to tackle by the methods

presented here is the split extension (Z/2)2n : SL2(2n), where the normal subgroup

is formed from the natural module by restricting the field of coefficients to F2.’.

We construct a particular example of the split extension (Z/2)2n : SL2(2n), for

the case n = 2, and compute the basic algebra for the associated group algebra in

characteristic 2. Let E be an elementary abelian group of order 24, H = A5, and

G = EnH. The order of G is 960. As A5 ' SL(2,F4) ⊆ SL(3,F4), we can construct

G as a subgroup of SL(3,F4) generated by the following matrices

106

h1 =


1 0 0

0 1 1

0 1 0

 h2 =


1 0 0

0 1 ω

0 0 1

 h3 =


1 1 0

0 1 0

0 0 1


where ω is a primitive element of F4.

Let K = F2, A be the group algebra of G over K, and M be the natural 960

dimensional module for A. The regular representation ρ : A→ EndK(M) has degree

960, and is faithful by 1.12.6.

A composition series for M has length 384. There are 3 isomorphism classes of

composition factors of M , and hence by 1.12.3 there are 3 simple A-modules. The

simple A-modules are as follows

Simple dimK Si [Ki : K]

S1 4 1

S2 4 2

S3 1 1

The Magma code to construct M and to compute the split basic algebra associ-

ated to A is

F := GF(4);

G := SL(3, F);

H := sub< G |

[1,0,0,0,1,1,0,1,0],

[1,0,0,0,1,w,0,0,1],

[1,1,0,0,1,0,0,0,1]>

where w := PrimitiveElement(F);

_, R, _ := CosetAction(H, sub< H | 1 >);

M := PermutationModule(R, GF(2));

B := split_basic_M(M : params := params_thesis);

107

Timings and memory usage for this computation are

Step Time

MeatAxe 2.76 sec

Semisimple Generators 37.72 sec

Radical Generators 68.4 sec

Pruning 1554.05 sec ≈ 26 mins

Split Basic 270.45 sec ≈ 4.5 mins

Total Time 1933.38 sec ≈ 32 mins

Total Memory 346.47 MB

The number of generators for A computed in the various phases is

Type Number

Semisimple Generators 6

Radical Generators 90

Radical Generators After Pruning 12

The splitting field for A is F4. The computed split basic algebra B associated

to A has degree 512 and dimension 275. There are 4 simple B-modules. Due to a

problem with Magma we were unable to compute a presentation for B.

5.5 SL(2,F8)

Let G = SL(2,F8), K = F2, and A be the group algebra of G over K. The simple

A-modules are as follows

108

Simple dimK Si [Ki : K]

S4 12 3

S3 8 1

S2 6 3

S1 1 1

Note that S3 is a projective A-module. Let T = (S1 ⊕ S2 ⊕ S3 ⊕ S4)⊗S3. The

K-dimension of T is 216. An analysis similar to that done in the first example shows

that T is an A-module containing every projective indecomposable A-module as a

summand, and hence by 1.12.5, T is a faithful A-module.

We construct T , and the split basic algebra associated to A via the following

Magma code

F := GF(8);

G := SL(2, F);

H := Sylow(G, 2);

_, R, _ := CosetAction(G, H);

M := PermutationModule(R, GF(2));

C := isomorphism_classes(CompositionFactors(M));

S_1 := degree(C, 12);

S_2 := degree(C, 8);

S_3 := degree(C, 6);

S_4 := degree(C, 1);

T := TensorProduct(DirectSum([S_1, S_2, S_3, S_4]), S_2);

B := split_basic_M(T : params := params_thesis);

Timings and memory usage for this computation are

109

Step Time

MeatAxe 0.17 sec

Semisimple Generators 1.72 sec

Radical Generators 1.79 sec

Pruning 10.05 sec

Split Basic 1.13 sec

Total Time 14.86 sec

Total Memory 16.26 Mb

The number of generators for A computed in the various phases is

Type Number

Semisimple Generators 8

Radical Generators 72

Radical Generators After Pruning 12

The splitting field for A is F8. The computed split basic algebra B has degree 94

and dimension 93. There are 8 simple B-modules. We compute a presentation for B

via the following Magma code

Q := presentation_A(B : params := params_thesis);

Timings and memory usage for this computation are

110

Step Time

Generators 18.36 sec

Semisimple Generators for Ω 0 sec

Radical Generators for Ω 42.95 sec

Cross Generators for Ω 0.9 sec

Gröbner Basis 0.67 sec

Total Time 62.88 sec

Total Memory 37.57 Mb

The number of generators for Ω computed in the various phases is

Type Number

Semisimple Generators for Ω 72

Radical Generators for Ω 628

Cross Generators for Ω 216

Total 916

The dimensions for the various parts of B are as follows

Part Dimension over L

B′ 8

J(B) 85

B ∩ J(B) 0

B 93

The computed presentation for B can be found in Appendix B.

111

5.6 A Split Extension of Q8

The following example is taken from [6], in which the authors study non-principal

blocks with one simple module.

Let G = E oQ8, where E is an elementary abelian subgroup of order 9, and Q8

is the quaternion group of order 8. The order of G is 72. We have a presentation for

G with 4 generators, g, h, i and j, and relations:

(i) g3, h3, gh = hg.

(ii) ij = j3i, ij = ji3.

(iii) igi3 = g−1, jgj3 = g, ihi3 = h, jhj3 = h−1.

Let K be F3, and A be the group algebra of G over K. There are two blocks

for A, the principal block B0(A), and a second block, C. There is a unique simple

C-module S in the non principal block, and it has dimension 2 over K. Hence there

is a single projective indecomposable C-module, P , and it has dimension 18 over K.

In Magma we construct P as follows

F<g,h,i,j> := FreeGroup(4);

G<g,h,i,j> := quo< F |

g^3, h^3, g*h = h*g,

i*j = j^3*i, i*j = j*i^3,

i*g*i^3=g^-1, j*g*j^3 = g, i*h*i^3 = h, j*h*j^3 = h^-1>;

K := GF(3);

_, R, _ := CosetAction(G, sub< G | 1>);

M := PermutationModule(R, K);

S := degree_M(M, 2);

N := PermutationModule(R, Sylow(R, 2), K);

P := TensorProduct(S, N);

Note that we have constructed P as an A-module, where B0(A) annihilates P ,

but C acts faithfully on P . We construct the split basic algebra B associated to the

block C via the following Magma code

112

B := split_basic_M(P : params := params_thesis);

Timings and memory usage for this computation are

Step Time

MeatAxe 0 sec

Semisimple Generators 0.01 sec

Radical Generators 0.01 sec

Pruning 0.04 sec

Split Basic 0 sec

Total Time 0.06 sec

Total Memory 17.64 Mb

The number of generators for A computed in the various phases is

Type Number

Semisimple Generators 2

Radical Generators 16

Radical Generators After Pruning 2

The splitting field for C is L = F3. The computed split basic algebra B has degree

9 and dimension 9. There is one simple B-module. We compute a presentation for

B via the following Magma code

Q := presentation_A(B : params := params_thesis);

Timings and memory usage for this computation are

113

Step Time

Generators 0.01 sec

Semisimple Generators for Ω 0 sec

Radical Generators for Ω 0.04 sec

Cross Generators for Ω 0 sec

Gröbner Basis 0 sec

Total Time 0.05 sec

Total Memory 600 Kb

The number of generators for Ω computed in the various phases is

Type Number

Semisimple Generators for Ω 2

Radical Generators for Ω 25

Cross Generators for Ω 8

Total 35

The dimensions for the various parts of B are as follows

Part Dimension over L

B′ 1

J(B) 8

B ∩ J(B) 0

B 9

114

Theorem 5.6.1. Let C be as above. Then the split basic algebra associated to A has

a presentation as the quotient of the free algebra F3〈B1, Z1, Z2〉 by the ideal generated

by the following elements:

Z2
2Z1Z2, Z1

3 + Z2Z1Z2 + Z1Z2 + Z2Z1 + 2Z2
2,

Z1
2Z2 + 2Z2Z1Z2 + 2Z2

2Z1 + 2Z1Z2 + 2Z2Z1 + Z2
2,

Z1Z2Z1 + 2Z2Z1Z2 + Z2
2Z1 + Z1Z2 + Z2Z1 + 2Z2

2,

Z1Z2
2 + 2Z2

2Z1, Z2Z1
2 + 2Z2Z1Z2 + 2Z2

2Z1 + 2Z1Z2 + 2Z2Z1 + Z2
2,

Z2
3, B1

2 +B1, B1Z1 + Z1, B1Z2 + Z2, Z1B1 + Z1, Z2B1 + Z2

A different presentation for B is given in [6], namely as the quotient of the free

algebra F3〈X,Y 〉 by the ideal generated by X3, Y 3, and XY + Y X.

5.7 A Very Large Example

Let G be M11, K be F2, A be the group algebra of G over K, and M be a 7920

dimensional vector space over K. The regular representation ρ : A → EndK(M) is

faithful by 1.12.6, and has degree 7920. We try to compute the split basic algebra

B associated to A using the regular representation.

Mathematically this example is uninteresting, as we have already computed B in

our first example. The point of the example is to show that the programs developed

in this dissertation can handle representations of quite large degree. Given that algo-

rithmic improvements, careful low level coding of algorithms, and detailed profiling

of implementations, often yields performance gains of an order of magnitude, and

memory savings of a factor of 4, this example suggests that with careful implementa-

tion the programs could reasonably cope with representations of degree 10000. This

example also suggests a fundamental fact, namely that as representations become

large, the sheer cost of multiplying two matrices becomes overwhelming.

115

The Magma code for this example is

load "top.m";

SetAssertions(false);

load m11; // G = M_11

F := GF(2);

_, R, _ := CosetAction(G, sub< G | 1 >);

M := PermutationModule(R, F);

B := split_basic_M(M : params := params_thesis);

Timings and memory usage for this computation are

Step Time

MeatAxe 808.11 sec ≈ 13.5 mins

Semisimple Generators 247614.54 sec ≈ 2.87 days

Radical Generators 1695030.18 sec ≈ 19.62 days

Pruning 319267.24 sec ≈ 3.7 days

ran out of memory

computation stopped

Split Basic

Total Time 2262720.07 sec ≈ 26.12 days

Total Memory 4.24 Gb

Remark. The Pruning step had pruned 11 of the 16 Sij when the 4 Gigabyte virtual

memory limit was reached, causing Magma to stop the computation. Despite the fact

that we failed to compute the split basic algebra, these performance figures are quite

encouraging. The 4 Gigabyte limit is an artificial one imposed by the use of 32 bit

pointers, and the Pruning step and Split Basic step represent a very small part of

the overall computation cost. Hence with only a little more time and memory the

computation would have completed.

Bibliography

[1] J.L. Alperin. Local Representation Theory. Cambridge University Press, 1986.

[2] J.L. Alperin and R.B. Bell. Groups and Representations. Springer-Verlag, 1995.

[3] D.J. Benson. Cohomology of modules in the principal block of a finite group.

New York Journal of Mathematics, 1:196–205, 1995.

[4] D.J. Benson. Representations and Cohomology, I: Basic Representation Theory

of Finite Groups and Associative Algebras. Cambridge University Press, 2nd

edition, 1997.

[5] D.J. Benson, J.F. Carlson, and G.R. Robinson. On the vanishing of group

cohomology. Journal of Algebra, 131:40–73, 1990.

[6] D.J. Benson and E.L. Green. Non-principal blocks with one simple module.

Quarterly J. Math. (Oxford), 55:1–11, 2004.

[7] W. Bosma and J. Cannon. Handbook of Magma Functions. Sydney University,

1996.

[8] W. Bosma, J. Cannon, and C. Playoust. The Magma Algebra System I: The

User Language. Journal of Symbolic Computation, 3/4(24):235–265, 1997.

[9] J.F. Carlson. Modules and Group Algebras. Birkhäuser, 1996.

[10] C.W. Curtis and I. Reiner. Representation Theory of Finite Groups and Asso-

ciative Algebras. Wiley, 1962.

116

117

[11] C.W. Curtis and I. Reiner. Methods of Representation Theory With Applications

to Finite Groups and Orders, volume 1. Wiley, 1981.

[12] L. Dornhoff. Group Representation Theory, Part B Modular Representation

Theory. Marcel Dekker, 1972.

[13] C. Jansen, K. Lux, R. Parker, and R. Wilson. An Atlas of Brauer Characters.

Oxford Science Publications, 1995.

[14] T.Y. Lam. A First Course in Non-Commutative Rings. Springer-Verlag, 1991.

[15] S. Lang. Algebra. Addison-Wesley, 1993.

[16] K. Lux. Algorithmic Methods in Modular Representation Theory. Habilita-

tion thesis, Der Mathematisch-Naturwissenschaftlich Fakultät der Rheinisch-

Westfälischen Technischen Hochschule Aachen, 1997.

[17] T. Mora. An introduction to commutative and noncommutative gröbner bases.

Theoretical Computer Science, 134:134–173, 1994.

[18] M. Schneider and J. Gersting. An Invitation to Computer Science. West Pub-

lishing Company, 1995.

[19] M. Szöke. Examining Green Correspondents of Weight Modules. PhD thesis,

Wissenschaftsverlag Mainz in Achen, 1998.

Appendix A

Magma Programs

Abstract. We present the Magma programs developed during the writing

of this dissertation. Variable names in these programs follow as close as pos-

sible the notations and conventions of chapters 2 and 3.

A.1 Computing The Big Idempotents

function projection(Lambda, i, s_phi, randword)

repeat

w, m := random_element1(Lambda, s_phi[i], randword);

F := [MinimalPolynomial(s_phi[j](w)) : j in [i+1..#s_phi]];

a_i_bar := prod_pols(F, m);

until a_i_bar ne 0;

return w, F, a_i_bar;

end function;

function big(Lambda, phi, i, s_phi, e, randword)

A_i := Codomain(s_phi[i]);

rank := Degree(Codomain(s_phi[i]));

sum_a_i_bar := A_i!0;

wlist := [];

plist := [];

while true do

w, F, a_i_bar := projection(Lambda, i, s_phi, randword);

if Rank(a_i_bar) eq rank then

g := inverting_polynomial(a_i_bar);

118

119

m := prod_pols(F, phi(w));

a := e * (m * Evaluate(g, m)) * e;

f := lift_p(a);

return f;

else

Append(~wlist, w);

Append(~plist, F);

sum_a_i_bar +:= a_i_bar;

if Rank(sum_a_i_bar) eq rank then

g := inverting_polynomial(sum_a_i_bar);

sum_m := &+[prod_pols(plist[j], phi(wlist[j])) :

j in [1 .. #wlist]];

a := e * sum_m * Evaluate(g, sum_m) * e;

f := lift_p(a);

return f;

end if;

end if;

end while;

end function;

A.2 Computing The Little Idempotents

function compute_q(q, j)

q_to_the_k := q;

while q_to_the_k lt j do

q_to_the_k *:= q;

end while;

return q_to_the_k;

end function;

function almost_little(Lambda, phi_i, n_i, d_i, e, randword)

P<x> := PolynomialRing(CoefficientRing(Domain(phi_i)));

if n_i eq 1 then

w, a := random_element(Lambda, phi_i, e, e, randword);

return w, x, a;

else

120

while true do

w, m := random_element(Lambda, phi_i, e, e, randword);

g := MinimalPolynomial(m);

for fac in Factorization(g) do

f := fac[1];

if Degree(f) eq d_i then

F := g div f;

a := e * Evaluate(F, m) * e;

if Rank(a) eq d_i and not

IsDivisibleBy(P!MinimalPolynomial(a), x^2) then

return w, F, a;

end if;

end if;

end for;

end while;

end if;

end function;

function get_beta_bar(Lambda, phi, phi_i, n_i, d_i, q_i, randword)

id := Codomain(phi_i)!1;

repeat

w, F, beta_bar :=

almost_little(Lambda, phi_i, n_i, d_i, id, randword);

until #Seqset(pows_of(beta_bar, q_i-1)) eq q_i-1;

return w, F, beta_bar;

end function;

function first_little(Lambda, phi, phi_i, f_i, n_i,

d_i, q_i, randword)

w, F, beta_bar :=

get_beta_bar(Lambda, phi, phi_i, n_i, d_i, q_i, randword);

g_bar := beta_bar^(q_i-1);

gamma := f_i * Evaluate(F, phi(w)) * f_i;

121

g := gamma^(q_i-1);

while not is_non_zero_idempotent(g) do

g ^:= q_i;

gamma ^:= q_i;

end while;

f := MinimalPolynomial(beta_bar);

h_prime := n_i eq 1 select Parent(f).1 * f else f;

k := radical_power(Evaluate(h_prime, gamma));

j := compute_q(q_i, k);

beta := gamma^j;

return g, g_bar, beta, beta_bar, h_prime;

end function;

function next_little(Lambda, phi, phi_i, n_i, d_i,

e_i, e_i_bar, randword)

w, F, g_bar :=

almost_little(Lambda, phi_i, n_i, d_i, e_i_bar, randword);

g_prime := e_i * Evaluate(F, e_i * phi(w) * e_i) * e_i;

g_bar, j := power_to_idempotent(g_bar);

g := power_to_idempotent(g_prime^j);

return g, g_bar;

end function;

A.3 Computing The SemiSimple Generators

function make_result(params, A, L, n_i, d_i, q_i, tau, tau_bar,

beta, beta_bar, g, g_bar, f_i, id, h_prime, s_g, s_g_bar)

res := rec< PerModInfo |

L := L,

tau := A!tau, tau_bar := tau_bar,

beta := A!beta, beta_bar := beta_bar,

g := A!g, g_bar := g_bar,

h_prime := h_prime>;

122

if params‘verify_SS_generators then

verify_SS_generators(f_i, id, n_i, q_i, s_g, s_g_bar, res);

end if;

return res;

end function;

function SS_generators_i(Lambda, phi, phi_i, f_i, n_i,

d_i, q_i, params)

A := Codomain(phi);

A_i := Codomain(phi_i);

p := Characteristic(CoefficientRing(A));

randword := params‘random_elt;

// compute g_1, g_1_bar, beta, beta_bar, and h_prime

if params_printing(params) then

print "Little 1";

end if;

g_1, g_1_bar, beta, beta_bar, h_prime :=

first_little(Lambda, phi, phi_i, f_i, n_i, d_i, q_i, randword);

L := cyclic_K_star(beta, beta_bar, d_i, q_i);

// initialise for the loop ahead

s_g := [g_1];

s_g_bar := [g_1_bar];

// if n_i = 1 we can bail out now

if n_i eq 1 then

return make_result(params, A, L, n_i, d_i, q_i,

g_1, g_1_bar, beta, beta_bar, g_1, g_1_bar, f_i,

A_i!1, h_prime, s_g, s_g_bar);

end if;

e := f_i - g_1;

e_bar := A_i!1 - g_1_bar;

123

prod := f_i;

prod_bar := A_i!1;

tau := A!0;

tau_bar := A_i!0;

pre := g_1;

pre_bar := g_1_bar;

// compute g_2 through g_n, and g_2_bar through g_n_bar

// compute all the z_j and z_j bar except z_n and z_n_bar

for j := 2 to n_i do

if params_printing(params) then

print "Little", j;

end if;

// compute g_j and g_j_bar

if j eq n_i then

g_j := e;

g_j_bar := e_bar;

else

g_j, g_j_bar := next_little(Lambda, phi, phi_i, n_i, d_i,

e, e_bar, randword);

end if;

Append(~s_g, g_j);

Append(~s_g_bar, g_j_bar);

e -:= g_j;

e_bar -:= g_j_bar;

// compute z_j_bar in (g_(j-1)_bar A_i g_j_bar) and lift to

// z_j in g_(j-1) A g_j

w, z_j_bar :=

random_element(Lambda, phi_i, pre_bar, g_j_bar, randword);

z_j := pre * phi(w) * g_j;

tau +:= z_j;

prod *:= z_j;

tau_bar +:= z_j_bar;

prod_bar *:= z_j_bar;

124

// roll pre and pre_bar over to g_j and g_j_bar

pre := g_j;

pre_bar := g_j_bar;

end for;

// construct z_n_bar as a 1 in the (n,1)-th spot

g_n_bar := pre_bar;

w, z_n_bar :=

random_element(Lambda, phi_i, g_n_bar, g_1_bar, randword);

invpow := L‘inverse_bar(prod_bar * z_n_bar);

z_n_bar := z_n_bar * L‘beta_bars[invpow];

// lift z_n_bar to z_n

g_n := pre;

z_n_prime := g_n * phi(w) * g_1;

z_n_prime := z_n_prime * L‘betas[invpow];

prod_z_n_prime := prod * z_n_prime;

l := radical_power(prod_z_n_prime - g_1);

z_n := z_n_prime * (prod_z_n_prime)^(p^l-1);

// update tau and tau_bar

tau +:= z_n;

tau_bar +:= z_n_bar;

return make_result(params, A, L, n_i, d_i, q_i, tau, tau_bar,

beta, beta_bar, g_1, g_1_bar, f_i,

A_i!1, h_prime, s_g, s_g_bar);

end function;

function SS_generators(phi, s_phi, n, d, q, params)

X := Domain(phi);

A := Codomain(phi);

r := #s_phi;

//print "Creating Identity";

125

e := A!1;

//print "Done Creating Identity";

s_f_i := [];

ss_I := [];

Lambda := [X.j : j in [1..Rank(X)]];

for i := 1 to r do

if params_printing(params) then

print "Big", i, "n_i, d_i, q_i =", n[i], d[i], q[i];

end if;

if i eq r then

f_i := e;

else

f_i := big(Lambda, phi, i, s_phi, e, params‘random_elt);

end if;

Append(~s_f_i, f_i);

e -:= f_i;

Append(~ss_I, SS_generators_i(Lambda, phi,

s_phi[i], f_i, n[i], d[i], q[i], params));

end for;

assert is_mut_orth(s_f_i);

assert &+(s_f_i) eq A!1;

return ss_I;

end function;

A.4 Computing Generators for the Radical

function psi(A, ss_I, n_i, taus, g_tau_bars, tau_g_bars, lambda_t)

if IsZero(lambda_t) then

return A!0;

end if;

betas := ss_I‘L‘betas;

pow_bar := ss_I‘L‘pow_bar;

126

res := A!0;

for j := 1 to n_i do

jm1 := j-1;

left := g_tau_bars[jm1 eq 0 select n_i else jm1] * lambda_t;

if IsZero(left) then continue; end if;

for k := 1 to n_i do

nkm1 := n_i-(k-1);

m := left * tau_g_bars[nkm1 eq 0 select n_i else nkm1];

if m ne 0 then

l := pow_bar(m);

njm1 := n_i-(j-1);

km1 := k-1;

res +:= taus[njm1 eq 0 select n_i else njm1] * betas[l] *

taus[km1 eq 0 select n_i else km1];

end if;

end for;

end for;

return res;

end function;

function radical_generators_i(A, ss_I, n_i, taus,

g_taus, tau_gs, s_phi)

X := Domain(s_phi);

g := ss_I‘g;

g_bar := ss_I‘g_bar;

print "radical_generators_i =", n_i^2 * Ngens(A);

// build the powers of tau for each i

tb_i := pows_of(ss_I‘tau_bar, n_i);

g_tau_bars := [g_bar * t : t in tb_i];

tau_g_bars := [t * g_bar : t in tb_i];

res := {};

for t in [1..#Generators(A)] do

lambda_rad := A.t -

psi(A, ss_I, n_i, taus, g_tau_bars, tau_g_bars, s_phi(X.t));

if IsZero(lambda_rad) then continue; end if;

127

for x := 1 to n_i do

left := g_taus[x] * lambda_rad;

if IsZero(left) then continue; end if;

for y := 1 to n_i do

m := left * tau_gs[y];

if not IsZero(m) then

Include(~res, A!m);

end if;

end for;

end for;

end for;

return res;

end function;

function radical_generators_ij(A, n_i, n_j, taus_i, taus_j,

g_taus_i, tau_gs_j)

print "radical_generators_ij =", n_i*n_j * Ngens(A);

res := {};

for lambda in Generators(A) do

for x := 1 to n_i do

left := g_taus_i[x] * lambda;

if IsZero(left) then continue; end if;

for y := 1 to n_j do

m := left * tau_gs_j[y];

if not IsZero(m) then

Include(~res, A!m);

end if;

end for;

end for;

end for;

return res;

end function;

function radical_generators(A, s_phi, ss_I, beta,

tau, g, n, q, params)

r := #n;

128

S := Seqlist([Seqlist([{} : i in [1..r]]) : j in [1..r]]);

// build the powers of tau for each i

taus := [pows_of(tau[i], n[i]) : i in [1..r]];

// build g * taus and taus * g for each i

g_taus := [* *];

tau_gs := [* *];

for i := 1 to r do

Append(~g_taus, [g[i] * t : t in taus[i]]);

Append(~tau_gs, [t * g[i] : t in taus[i]]);

end for;

for i := 1 to r do

for j := 1 to r do

if params_printing(params) then

print "J(e_i A e_j) with (i,j) =", i, j;

end if;

if i eq j then

S[i][j] :=

radical_generators_i(A, ss_I[i], n[i], taus[i],

g_taus[i], tau_gs[i], s_phi[i]);

else

S[i][j] :=

radical_generators_ij(A, n[i], n[j], taus[i],

taus[j], g_taus[i], tau_gs[j]);

end if;

end for;

end for;

if params‘verify_radical_generators then

print "Verifying radical generators";

verify_radical_generators(beta, tau, g, q, S, S);

end if;

return S;

end function;

129

A.5 Pruning The Generators for the Radical

function prune(S, A, beta, tau, g, q, params)

r := #S;

T := Seqlist([Seqlist([[] : i in [1..r]]) : j in [1..r]]);

V := KMatrixSpace(CoefficientRing(A), Degree(A), Degree(A));

for i := 1 to r do

for j := 1 to r do

print "<i,j> =", i, j;

U := sub< V | S[i][j] >;

L := {x*y : x in S[i][k], y in S[k][j],

k in [1..r] | x*y ne 0};

W := sub< V | L >;

T[i][j] := Basis(Complement(U, U meet W));

end for;

end for;

if params‘verify_radical_generators then

print "Verifying radical generators after pruning";

verify_radical_generators(beta, tau, g, q, T, S);

end if;

for i := 1 to r do

for j := 1 to r do

T[i][j] := [A | x : x in T[i][j]];

end for;

end for;

return T;

end function;

A.6 Computing Generators for an Algebra

function generators(M : params := params_defaults)

A, s_A, n, d, q := meataxe(M);

r := #s_A;

SetSeed(0);

t := Cputime();

130

X := FPA(CoefficientRing(A), Ngens(A));

phi := rep(X, A);

s_phi := [rep(X, s_A[i]) : i in [1..r]];

ss_I := SS_generators(phi, s_phi, n, d, q, params);

show_time("Generators", Cputime(t), params);

if params‘print_level eq params_THESIS then

print "Number of generators =", r * 2;

end if;

beta := [x‘beta : x in ss_I];

tau := [x‘tau : x in ss_I];

g := [x‘g : x in ss_I];

h_prime := [x‘h_prime : x in ss_I];

t := Cputime();

J_gens := radical_generators(A, s_phi, ss_I, beta,

tau, g, n, q, params);

show_time("Radical", Cputime(t), params);

if params‘print_level eq params_THESIS then

print "Number of generators for J(A) =",

&+[#J_gens[i][j] : i, j in [1..#J_gens]];

end if;

t := Cputime();

J_gens := prune(J_gens, A, beta, tau, g, q, params);

show_time("Prune", Cputime(t), params);

if params‘print_level eq params_THESIS then

print "Number of generators for J(A)/J(A)^2 =",

&+[#J_gens[i][j] : i, j in [1..#J_gens]];

end if;

return beta, tau, g, J_gens, h_prime, n, d, q, ss_I;

end function;

function generators_M(M : params := params_defaults)

return generators(M : params := params);

end function;

function generators_A(A : params := params_defaults)

131

return generators(RModule(A) : params := params);

end function;

A.7 Computing The Basic and The Split Basic Algebra

function basic(beta, g, J)

K := CoefficientRing(beta[1]);

f, dim_c := condense(beta, g, J);

beta_c := [f(x): x in beta];

J_gens_c := flatten(J, f);

B := MatrixAlgebra<K, dim_c | [x : x in beta_c cat J_gens_c]>;

return B, [B!x : x in beta_c], map(J, func<x | B!f(x)>);

end function;

function split_basic(B, d)

K := CoefficientRing(B);

p := Characteristic(K);

c := Degree(K) * LCM([d[i] : i in [1..#d]]);

X := MatrixAlgebra(GF(p^c), Degree(B));

A := MatrixAlgebra<GF(p^c), Degree(B) |

[X!(B.i) : i in [1..#Generators(B)]]>;

return A, c;

end function;

function basic_M(M : params := params_defaults)

beta, _, g, J_gens, _, _, d, _ := generators(M : params := params);

t := Cputime();

B, beta_c, J_gens_c := basic(beta, g, J_gens);

show_time("Basic", Cputime(t), params);

return B, beta_c, J_gens_c, d;

end function;

function basic_A(A : params := params_defaults)

return basic_M(RModule(A) : params := params);

end function;

132

function split_basic_M(M : params := params_defaults)

B, _, _, d := basic_M(M : params := params);

t := Cputime();

S, c := split_basic(B, d);

show_time("Split Basic", Cputime(t), params);

return S;

end function;

function split_basic_A(A : params := params_defaults)

return split_basic_M(RModule(A) : params := params);

end function;

A.8 Computing Generators for Ω

graph := func< f | [<x, f(x)> : x in Domain(f)]>;

rel_seq := func< rels | [LHS(x) - RHS(x) : x in rels] >;

procedure R(params, ~rels, new)

for r in new do

if LHS(r) ne RHS(r) then

if params‘print_level ge params_VERBOSE then

print "Adding relation", r;

end if;

Append(~rels, r);

end if;

end for;

end procedure;

procedure semisimple_relations(

params, isB, r, h_prime, n, q, B, T, ~rels)

// relations for each matrix component in the semisimple part

if not isB then

133

R(params, ~rels, [T[i]^n[i] * B[i] = B[i] : i in [1..r]]);

R(params, ~rels, [B[i] * T[i]^n[i] = B[i] : i in [1..r]]);

R(params, ~rels, [T[i]^n[i] * T[i] = T[i] : i in [1..r]]);

R(params, ~rels, [T[i] * T[i]^n[i] = T[i] : i in [1..r]]);

R(params, ~rels,

[B[i] * T[i]^k * B[i] = 0 : k in [1..n[i]-1], i in [1..r]]);

end if;

if isB then

R(params, ~rels, [B[i]^(q[i]-1) * B[i] = B[i] : i in [1..r]]);

else

R(params, ~rels,

[

&+[T[i]^(n[i]-j) * B[i]^(q[i]-1) * T[i]^j : j in [1..n[i]]]

= T[i]^n[i] : i in [1..r]

]);

end if;

R(params, ~rels, [Evaluate(h_prime[i], B[i]) = 0 : i in [1..r]]);

// orthogonality relations in the semisimple part

R(params, ~rels, [B[i] * B[j] = 0 : i, j in [1..r] | i ne j]);

if not isB then

R(params, ~rels, [T[i] * T[j] = 0 : i, j in [1..r] | i ne j]);

R(params, ~rels, [B[i] * T[j] = 0 : i, j in [1..r] | i ne j]);

R(params, ~rels, [T[i] * B[j] = 0 : i, j in [1..r] | i ne j]);

end if;

end procedure;

procedure cross_relations(params, isB, r, G, n, q, B, T,

J_gen, CV, CF, backmap, basis, ~rels)

// identity relations between the semisimple part and J(A)

for i := 1 to r do

for j := 1 to r do

R(params, ~rels,

[B[i]^(q[i]-1) * G(y) = G(y) : y in J_gen[i][j]]);

R(params, ~rels,

134

[G(y) * B[j]^(q[j]-1) = G(y) : y in J_gen[i][j]]);

if not isB then

R(params, ~rels,

[T[i]^n[i] * G(y) = G(y) : y in J_gen[i][j]]);

R(params, ~rels,

[G(y) * T[j]^n[j] = G(y) : y in J_gen[i][j]]);

end if;

end for;

end for;

// orthogonality relations between the semisimple part and J(A)

for i := 1 to r do

for j := 1 to r do

R(params, ~rels,

[B[k]*G(y) = 0 : k in [1..r], y in J_gen[i][j] | k ne i]);

R(params, ~rels,

[G(y) * B[k] = 0 : k in [1..r], y in J_gen[i][j] | k ne j]);

if not isB then

R(params, ~rels,

[T[k]*G(y) = 0 : k in [1..r], y in J_gen[i][j] | k ne i]);

R(params, ~rels,

[G(y)*T[k] = 0 : k in [1..r], y in J_gen[i][j] | k ne j]);

end if;

end for;

end for;

// scaling relations from semisimple part on J(A)

P := Domain(CF);

J := KMatrixSpaceWithBasis(basis);

for i := 1 to r do

for j := 1 to r do

for x in J_gen[i][j] do

lhs := P.i * G(x);

C := Coordinates(J, CV!CF(lhs));

135

w := &+[C[i] * backmap(basis[i]) : i in [1..#C]];

R(params, ~rels, [lhs = w]);

lhs := G(x) * P.j;

C := Coordinates(J, CV!CF(lhs));

w := &+[C[i] * backmap(basis[i]) : i in [1..#C]];

R(params, ~rels, [lhs = w]);

end for;

end for;

end for;

end procedure;

procedure radical_relations(params, A, offset, V, FF, gens_J,

~rels, ~backmap, ~basis)

P := Domain(FF);

K := CoefficientRing(V);

dimV := Dimension(V);

rls :=[];

Q := FPA(K, #gens_J);

F := hom< Q -> A | gens_J>;

L := Setseq(MonomialsOfDegree(Q, 1));

I := ideal< Q | >;

d := 2;

dim_N := 0;

P_embed := hom< Q -> P | [P.(i+offset) : i in [1..#gens_J]]>;

repeat

if params_printing(params) then

print "Degree =", d;

print "#L = ", #L;

end if;

new_L := L cat [x : x in MonomialsOfDegree(Q, d) | not x in I];

if params_printing(params) then

print "#new_L =", #new_L;

end if;

B := [V!F(w) : w in new_L];

m := Matrix(K, #new_L, dimV,

136

[Coordinates(V, B[i]) : i in [1..#new_L]]);

D := Domain(m);

N := NullSpace(m);

new_dim_N := Dimension(N);

for x in Basis(N) do

C := Coordinates(D, D!x);

lhs := &+[C[i] * new_L[i] : i in [1..#C]];

Append(~rls, lhs);

R(params, ~rels, [P_embed(lhs) = 0]);

end for;

U := [new_L[i] : i in [1..Dimension(D)] | Basis(D)[i] in N];

done := new_dim_N eq dim_N + #new_L - #L;

L := new_L;

I := ideal< Q | I, U >;

print I;

dim_N := new_dim_N;

d +:= 1;

until done;

S := Q/ideal< Q | rls>;

S_embed := hom< S -> P | [P.(i+offset) : i in [1..#gens_J]]>;

mb := MonomialBasis(S) diff {1};

emb := [S_embed(w) : w in mb];

basis := [V!FF(w) : w in emb];

backmap := map< basis -> P | [<V!FF(w), w> : w in emb]>;

end procedure;

function relations(params, beta, tau, g, J_gen, h_prime, n, d, q)

r := #n;

A := Parent(beta[1]);

K := CoefficientRing(A);

V := KMatrixSpace(K, Degree(A), Degree(A));

gens_J := flatten(J_gen, func<x | V!x>);

isB := &and[n[i] eq 1 : i in [1..r]];

if isB then

137

P := FPA(K, r + #gens_J);

AssignNames(~P,

["b_" cat IntegerToString(i) : i in [1..r]] cat

["z_" cat IntegerToString(i) : i in [1..#gens_J]]);

B := [P.i : i in [1..r]];

T := [];

J := [P.i : i in [r+1..r+#gens_J]];

else

P := FPA(K, 2*r + #gens_J);

AssignNames(~P,

["b_" cat IntegerToString(i) : i in [1..r]] cat

["t_" cat IntegerToString(i) : i in [1..r]] cat

["z_" cat IntegerToString(i) : i in [1..#gens_J]]);

B := [P.i : i in [1..r]];

T := [P.i : i in [r+1..2*r]];

J := [P.i : i in [2*r+1..2*r+#gens_J]];

end if;

F := hom< P -> A | [beta[i] : i in [1..#B]] cat

[tau[i] : i in [1..#T]] cat gens_J>;

G := map< Seqset(gens_J) -> P |

[<gens_J[i], P.(#B+#T+i)> : i in [1..#gens_J]]>;

rels := [];

t := Cputime();

semisimple_relations(params, isB, r, h_prime, n, q, B, T, ~rels);

show_time("SemiSimple", Cputime(t), params);

if params_printing(params) then

print "Number of semisimple relations", #rels;

end if;

l := #rels;

t := Cputime();

CA, cB, x := basic(beta, g, J_gen);

cJg := flatten(x, func<x|x>);

CV := KMatrixSpace(K, Degree(CA), Degree(CA));

CF := hom< P -> CA |

[CA!x : x in cB] cat [0:x in T] cat [CA!x : x in cJg]>;

radical_relations(params, CA, #cB+#T, CV, CF, cJg,

~rels, ~backmap, ~basis);

show_time("K-basis", Cputime(t), params);

138

if params_printing(params) then

print "J(A) has dimension", #basis,

Dimension(ideal< CA | basis>);

print "Number of K-Basis relations", #rels - l;

end if;

if isB then

A_prime := sub< CA | cB >;

I := ideal< CA | cJg >;

if params_printing(params) then

print "Dim A", Dimension(CA);

print "Dim A’", Dimension(A_prime);

print "Dim J(A)", Dimension(I);

print "Dim A’ meet J(A)", Dimension(A_prime meet I);

end if;

error if Dimension(A_prime) + Dimension(I)

ne Dimension(CA), "sum dim";

error if Dimension(A_prime meet I) ne 0, "meet";

end if;

l := #rels;

t := Cputime();

cross_relations(params, isB, r, G, n, q, B, T, J_gen,

CV, CF, backmap, basis, ~rels);

show_time("Cross", Cputime(t), params);

if params_printing(params) then

print "Number of cross relations", #rels-l;

print "Total number of relations", #rels;

end if;

if params‘verify_relations then

verify_relations(r, F, G, J_gen, rels);

end if;

return P, rel_seq(rels);

end function;

139

A.9 Computing A Presentation

function presentation_M(M : params := params_defaults)

t := Cputime();

beta, tau, g, J_gens, h_prime, n, d, q, _ :=

generators(M : params := params);

show_time("Generators", Cputime(t), params);

t := Cputime();

P, rels :=

relations(params, beta, tau, g, J_gens, h_prime, n, d, q);

show_time("Relations", Cputime(t), params);

t := Cputime();

I := ideal< P | rels >;

GB := GroebnerBasis(I);

show_time("GB", Cputime(t), params);

if params‘print_level eq params_THESIS then

print "GB =";

print GB;

print "Number of GB relations =", #GB;

end if;

return quo< P | I >;

end function;

function presentation_A(A : params := params_defaults)

return presentation_M(RModule(A) : params := params);

end function;

A.10 Condensing

function condense(beta, g, j_I)

dim := Nrows(beta[1]);

K := CoefficientRing(beta[1]);

e := &+g;

V := KSpace(K, dim);

W := sub< V | [e[j] : j in [1..dim]]>;

dim_c := Dimension(W);

140

c_l := KMatrixSpace(K, dim_c, dim) ! 0;

for j := 1 to dim_c do

c_l[j] := Basis(W)[j];

end for;

WW := sub< V | [Basis(V)[j] - e[j]: j in [1..dim]]>;

uu := Matrix(Basis(W) cat Basis(WW));

uuu := uu^-1;

c_r := Submatrix(uuu, 1, 1, dim, dim_c);

assert c_l * e eq c_l;

assert e * c_r eq c_r;

return func< m | c_l * m * c_r >, dim_c, c_l, c_r;

end function;

A.11 Randomizing Functions

function random_element(gens, f, e_1, e_2, randword)

repeat

w := randword(gens);

b := e_1 * f(w) * e_2;

until b ne 0;

return w, b;

end function;

function random_element1(gens, f, randword)

repeat

w := randword(gens);

b := f(w);

until b ne 0;

return w, b;

end function;

function random_field_element(K)

if #K eq 2 then

141

return K!1;

else

repeat

k := Random(K);

until k ne 0;

return k;

end if;

end function;

random_MAX_SUM_LEN := 5;

random_MAX_PROD_LEN := 5;

function random_word(S)

X := Parent(S[1]);

K := CoefficientRing(X);

w := X!0;

repeat

for i:= 1 to Random(1, random_MAX_SUM_LEN) do

prod := X ! random_field_element(K);

for j := 1 to Random(1, random_MAX_PROD_LEN) do

prod *:= Random(S);

end for;

w := w + prod;

end for;

until w ne 0;

return w;

end function;

A.12 Functions to Verify Computation Results

procedure verify_SS_generators(f, id, n_i, q_i, s_g, s_g_bar, ss_I)

L := ss_I‘L;

beta := ss_I‘beta;

tau := ss_I‘tau;

g := ss_I‘g;

beta_bar := ss_I‘beta_bar;

tau_bar := ss_I‘tau_bar;

142

g_bar := ss_I‘g_bar;

print "Checking big idempotent";

error if not &and[f*x eq x and x*f eq x : x in s_g], "";

error if not f * beta eq beta, "";

error if not beta * f eq beta, "";

error if not f * tau eq tau, "";

error if not tau * f eq tau, "";

error if not &and[id*x eq x and x*id eq x : x in s_g_bar], "";

error if not id * beta_bar eq beta_bar, "";

error if not beta_bar * id eq beta_bar, "";

error if not id * tau_bar eq tau_bar, "";

error if not tau_bar * id eq tau_bar, "";

print "Checking little idempotents";

error if not s_g[1] eq g, "";

error if not s_g_bar[1] eq g_bar, "";

error if not #s_g eq n_i, "";

error if not is_mut_orth(s_g), "";

error if not &+s_g eq f, "";

error if not #s_g_bar eq #s_g, "";

error if not is_mut_orth(s_g_bar), "";

error if not &+s_g_bar eq id, "";

print "Checking the fields";

error if not #L‘betas eq q_i-1, "";

error if not #L‘beta_bars eq #L‘betas, "";

print "Checking matrix algebra relations";

error if not tau^n_i eq f, "";

error if not tau^n_i * beta eq beta, "";

error if not beta * tau^n_i eq beta, "";

error if not tau^n_i * tau eq tau, "";

error if not tau * tau^n_i eq tau, "";

error if not tau_bar^n_i eq id, "";

143

error if not tau_bar^n_i * beta_bar eq beta_bar, "";

error if not beta_bar * tau_bar^n_i eq beta_bar, "";

error if not tau_bar^n_i * tau_bar eq tau_bar, "";

error if not tau_bar * tau_bar^n_i eq tau_bar, "";

x := &+[tau^(n_i-j) * L‘betas[q_i-1] * tau^j : j in [1..n_i]];

error if not x eq f, "";

error if not x * beta eq beta, "";

error if not beta * x eq beta, "";

error if not x * tau eq tau, "";

error if not tau * x eq tau, "";

x_bar := &+[tau_bar^(n_i-j) *

L‘beta_bars[q_i-1] * tau_bar^j : j in [1..n_i]];

error if not x_bar eq id, "";

error if not x_bar * beta_bar eq beta_bar, "";

error if not beta_bar * x_bar eq beta_bar, "";

error if not x_bar * tau_bar eq tau_bar, "";

error if not tau_bar * x_bar eq tau_bar, "";

error if not Evaluate(ss_I‘h_prime, beta) eq 0, "";

error if not Evaluate(ss_I‘h_prime, beta_bar) eq 0, "";

error if not &and [beta * tau^k * beta eq 0 : k in [1..n_i-1]], "";

error if not &and

[beta_bar * tau_bar^k * beta_bar eq 0 : k in [1..n_i-1]], "";

print "Checking other relations";

error if not g * beta eq beta, "";

error if not beta * g eq beta, "";

error if not g_bar * beta_bar eq beta_bar, "";

error if not beta_bar * g_bar eq beta_bar, "";

error if not beta^q_i eq beta, "";

error if not beta^(q_i-1) eq g, "";

error if not is_non_zero_idempotent(L‘betas[q_i-1]), "";

error if not #{tau^j : j in [1..n_i]} eq n_i, "";

error if not beta_bar^q_i eq beta_bar, "";

error if not beta_bar^(q_i-1) eq g_bar, "";

error if not is_non_zero_idempotent(L‘beta_bars[q_i-1]), "";

error if not #{tau_bar^j : j in [1..n_i]} eq n_i, "";

144

end procedure;

procedure verify_radical_generators(beta, tau, g, q, S, U)

r := #q;

error if not

&and[IsNilpotent(Universe(U[i][j])!x) : x in S[i][j],

i,j in [1..r]], "Nilpotent";

error if not &and[g[i] * x eq x : x in S[i][j],

i,j in [1..r]], "left g";

error if not &and[x * g[j] eq x : x in S[i][j],

i,j in [1..r]], "right g";

error if not

&and[beta[i]^(q[i]-1) * x eq x : x in S[i][j], i, j in [1..r]],

"left beta^q";

error if not

&and[x * beta[j]^(q[j]-1) eq x : x in S[i][j], i, j in [1..r]],

"right beta^q";

error if not

&and[beta[k] * x eq 0 : x in S[i][j],

i, j, k in [1..r] | k ne i], "left beta = 0";

error if not

&and[x * beta[k] eq 0 : x in S[i][j],

i, j, k in [1..r] | k ne j], "right beta = 0";

error if not

&and[tau[k] * x eq 0 : x in S[i][j], i, j, k in [1..r] | k ne i],

"left tau = 0";

error if not

&and[x * tau[k] eq 0 : x in S[i][j], i, j, k in [1..r] | k ne j],

"right tau = 0";

end procedure;

procedure verify_relations(r, F, G, J_gen, rels)

145

print "Checking presentation relations";

error if not

&and[F(LHS(x)) eq F(RHS(x)) : x in rels], "LHS <> RHS";

// check that the orthogonality relations in the radical were

// picked up in the basis phase

for i := 1 to r do

for j := 1 to r do

for y in J_gen[i][j] do

error if not &and [(G(y) * G(x) = 0) in rels :

x in J_gen[k][l], k, l in [1..r] | k ne j], "";

error if not &and [(G(x) * G(y) = 0) in rels :

x in J_gen[k][l], k, l in [1..r] | l ne i], "";

error if not &and[y * x eq 0 :

x in J_gen[k][l], k, l in [1..r] | k ne j], "";

error if not &and[x * y eq 0 :

x in J_gen[k][l], k, l in [1..r] | l ne i], "";

end for;

end for;

end for;

end procedure;

A.13 Top Level Parameters

Params := recformat

<

print_level : Integers(),

verify_SS_generators : Booleans(),

verify_radical_generators : Booleans(),

verify_relations : Booleans(),

random_elt

>;

params_THESIS := -1;

params_SILENT := 0;

params_VERBOSE := 1;

params_SUPER_VERBOSE := 2;

params_defaults := rec< Params |

146

//print_level := params_VERBOSE,

print_level := params_THESIS,

verify_SS_generators := true,

verify_radical_generators := true,

verify_relations := true,

random_elt := random_word>;

params_thesis := rec< Params |

//print_level := params_VERBOSE,

print_level := params_THESIS,

verify_SS_generators := false,

verify_radical_generators := false,

verify_relations := false,

random_elt := random_word>;

function params_printing(params)

return params‘print_level ge params_VERBOSE or

params‘print_level eq params_THESIS;

end function;

A.14 Record Formats

K_star := recformat

<

betas, beta_bars,

pow_bar, inverse_bar

>;

PerModInfo := recformat

<

L,

tau, tau_bar,

beta, beta_bar,

g, g_bar,

h_prime

>;

A.15 Functions for the Cylic Group of Units of a Field

function cyclic_K_star(beta, beta_bar, d, q)

147

beta_bars := pows_of(beta_bar, q-1);

map_bar := {@ beta_bar : beta_bar in beta_bars @};

pow_bar := func< m | Index(map_bar, m) >;

inverse_bar := func< m |

i eq q-1 select i else (q-1)-i where i := pow_bar(m) >;

return rec< K_star |

betas := pows_of(beta, q-1),

beta_bars := beta_bars,

pow_bar := pow_bar,

inverse_bar := inverse_bar>;

end function;

A.16 Matrix Functions

function isomorphism_classes(mods)

isos := [mods[1]];

for i := 2 to #mods do

for j := 1 to #isos do

if IsIsomorphic(mods[i], isos[j]) then

continue i;

end if;

end for;

Append(~isos, mods[i]);

end for;

return isos;

end function;

rep := func< X, A | hom< X -> A | [A.i : i in [1 .. Ngens(A)]] >>;

function inverting_polynomial(m)

P<x> := PolynomialRing(CoefficientRing(m));

h := P ! MinimalPolynomial(m);

c := Coefficient(h, 0);

return (c-h) div (c*x);

end function;

148

prod_pols := func< pols, m | Evaluate(&*pols, m) >;

function power_to_idempotent(m)

j := 1;

res := m;

while not IsIdempotent(res) do

res *:= m;

j +:= 1;

end while;

return res, j;

end function;

function lift_p(m)

p := Characteristic(CoefficientRing(m));

j := 1;

while not IsIdempotent(m) do

m ^:= p;

j +:= 1;

end while;

return m, j;

end function;

function radical_power(m)

isNP, c := IsNilpotent(m);

assert isNP;

return c;

end function;

function pows_of(m, n)

res := [m];

temp := m;

for i := 2 to n do

temp *:= m;

Append(~res, temp);

149

end for;

return res;

end function;

all_degree := func< C, n | [x : x in C | Dimension(x) eq n]>;

degree := func< C, n | all_degree(C, n)[1] >;

function all_degree_M(M, n)

CF := CompositionFactors(M);

C := isomorphism_classes(CF);

return all_degree(C, n);

end function;

function degree_M(M, n)

CF := CompositionFactors(M);

C := isomorphism_classes(CF);

return degree(C, n);

end function;

flatten := func<J, f | [f(x) : x in J[i][j], i, j in [1 ..#J]]>;

function map(J, f)

r := #J;

T := Seqlist([Seqlist([[] : i in [1..r]]) : j in [1..r]]);

for i := 1 to r do

for j := 1 to r do

T[i][j] := [f(x) : x in J[i][j]];

end for;

end for;

return T;

end function;

A.17 Checking Functions

is_non_zero_idempotent := func< x | x ne 0 and IsIdempotent(x) >;

is_mut_orth := func< s |

&and[is_non_zero_idempotent(x) : x in s] and

150

&and[s[i]*s[j] eq 0 and s[j]*s[i] eq 0 :

i, j in [1..#s] | i ne j]>;

Appendix B

Presentation for a Split Extension of A5

Theorem B.0.1. Let G = SL(2,F8), K = F2, and A be the group algebra of G over
K. Then the split basic algebra associated to A has a presentation as the quotient
of the free algebra F4〈B1, . . . , B8, Z1, . . . , Z12〉 by the ideal generated by the following
elements:

Z1Z5Z10Z11Z9 +B1Z1Z5Z9 +B1
6Z2Z8Z1, Z2Z8Z1Z3Z2,

Z2Z8Z1Z4Z6 +B1
2Z1Z5Z9 + Z2Z8Z1, Z3Z1Z5Z10Z11 +B1Z4Z6Z5 + Z5Z10Z11,

Z4Z7Z12Z6Z4, Z4Z7Z12Z6Z5 +B1
4Z4Z6Z5 +B1

3Z5Z10Z11,

Z5Z9Z4Z7Z12 +B1
4Z3Z1Z4 + Z4Z7Z12,

Z5Z10Z11Z9Z3 +B1
6Z3Z2Z8 +B1Z5Z9Z3,

Z5Z10Z11Z9Z5, Z6Z5Z9Z3Z1 + Z6Z3Z1 +B1
3Z7Z12Z6,

Z7Z12Z6Z4Z7, Z7Z12Z6Z5Z9 +B1
4Z6Z3Z1 + Z7Z12Z6,

Z9Z4Z7Z12Z6 +B1
4Z9Z4Z6 +B1

3Z10Z11Z9,

Z10Z11Z9Z3Z1 +B1Z9Z4Z6 + Z10Z11Z9,

Z10Z11Z9Z5Z10, Z12Z6Z5Z9Z3, Z1Z3Z2Z8 + Z2Z8Z1Z3,

Z1Z4Z6Z3 +B1
4Z2Z8Z1Z3 +B1

4Z1Z3,

Z1Z4Z6Z5 +B1
6Z1Z5Z10Z11,

Z1Z5Z9Z3 +B1
3Z2Z8Z1Z3, Z1Z5Z9Z4 +B1

5Z2Z8Z1Z4,

Z3Z1Z4Z6 +B1
3Z4Z7Z12Z6 + Z5Z9Z4Z6 +B1

6Z5Z10Z11Z9,

Z3Z1Z5Z9 + Z5Z9Z3Z1,

Z3Z2Z8Z1 +B1
2Z5Z9Z3Z1 +B1

2Z5Z9Z4Z6 +B1Z5Z10Z11Z9,

Z4Z6Z3Z1 +B1
3Z4Z7Z12Z6 + Z5Z9Z4Z6 +B1

6Z5Z10Z11Z9,

Z4Z6Z5Z9 + Z5Z9Z4Z6, Z6Z3Z1Z4 +B1
6Z7Z12Z6Z4,

Z6Z3Z1Z5 +B1
3Z7Z12Z6Z5, Z6Z3Z2Z8 +B1

2Z6Z5Z9Z3,

Z6Z4Z7Z12 + Z7Z12Z6Z4,

Z6Z5Z9Z4 +B1Z7Z12Z6Z4 +B1Z6Z4,

Z9Z3Z1Z4 +B1
3Z9Z4Z7Z12,

Z9Z3Z1Z5 +B1
2Z10Z11Z9Z5 +B1

2Z9Z5,

Z9Z4Z6Z3 +B1
6Z10Z11Z9Z3, Z9Z4Z6Z5 +B1

5Z10Z11Z9Z5,

Z9Z5Z10Z11 + Z10Z11Z9Z5, Z1Z3Z1, Z1Z4Z7, Z3Z1Z3, Z4Z6Z4,

151

152

Z5Z9Z5, Z6Z4Z6, Z6Z5Z10, Z8Z1Z5, Z9Z3Z2, Z9Z5Z9, Z11Z9Z4, Z12Z6Z3,

B1
2 +B1B1, B1B2, B1B3, B1B4, B1B5, B1B6, B1B7, B1B8,

B1Z1 +B1Z1, B1Z2 +B1Z2, B1Z3, B1Z4, B1Z5, B1Z6, B1Z7, B1Z8,

B1Z9, B1Z10, B1Z11, B1Z12, B2B1, B2
2 +B1

6B2, B2B3, B2B4, B2B5,

B2B6, B2B7, B2B8, B2Z1, B2Z2, B2Z3 +B1
6Z3, B2Z4 +B1

6Z4,

B2Z5 +B1
6Z5, B2Z6, B2Z7, B2Z8, B2Z9, B2Z10, B2Z11, B2Z12, B3B1,

B3B2, B3
2 +B1

4B3, B3B4, B3B5, B3B6, B3B7, B3B8, B3Z1, B3Z2,

B3Z3, B3Z4, B3Z5, B3Z6 +B1
4Z6, B3Z7 +B1

4Z7, B3Z8, B3Z9,

B3Z10, B3Z11, B3Z12, B4B1, B4B2, B4B3, B4
2 +B1B4, B4B5, B4B6,

B4B7, B4B8, B4Z1, B4Z2, B4Z3, B4Z4, B4Z5, B4Z6, B4Z7,

B4Z8 +B1Z8, B4Z9, B4Z10, B4Z11, B4Z12, B5B1, B5B2, B5B3,

B5B4, B5
2 +B1B5, B5B6, B5B7, B5B8, B5Z1, B5Z2, B5Z3,

B5Z4, B5Z5, B5Z6, B5Z7, B5Z8, B5Z9 +B1Z9, B5Z10 +B1Z10,

B5Z11, B5Z12, B6B1, B6B2, B6B3, B6B4, B6B5, B6
2 +B1

5B6,

B6B7, B6B8, B6Z1, B6Z2, B6Z3, B6Z4, B6Z5, B6Z6, B6Z7, B6Z8,

B6Z9, B6Z10, B6Z11 +B1
5Z11, B6Z12, B7B1, B7B2, B7B3,

B7B4, B7B5, B7B6, B7
2 +B1

2B7, B7B8, B7Z1, B7Z2, B7Z3,

B7Z4, B7Z5, B7Z6, B7Z7, B7Z8, B7Z9, B7Z10, B7Z11,

B7Z12 +B1
2Z12, B8B1, B8B2, B8B3, B8B4, B8B5, B8B6, B8B7,

B8
2 +B1

2B8, B8Z1, B8Z2, B8Z3, B8Z4, B8Z5, B8Z6, B8Z7, B8Z8,

B8Z9, B8Z10, B8Z11, B8Z12, Z1B1, Z1B2 +B1
6Z1, Z1B3, Z1B4,

Z1B5, Z1B6, Z1B7, Z1B8, Z1
2, Z1Z2, Z1Z6, Z1Z7, Z1Z8, Z1Z9,

Z1Z10, Z1Z11, Z1Z12, Z2B1, Z2B2, Z2B3, Z2B4 +B1Z2, Z2B5, Z2B6,

Z2B7, Z2B8, Z2Z1, Z2
2, Z2Z3, Z2Z4, Z2Z5, Z2Z6, Z2Z7, Z2Z9,

Z2Z10, Z2Z11, Z2Z12, Z3B1 +B1Z3, Z3B2, Z3B3, Z3B4, Z3B5, Z3B6,

Z3B7, Z3B8, Z3
2, Z3Z4, Z3Z5, Z3Z6, Z3Z7, Z3Z8, Z3Z9, Z3Z10,

Z3Z11, Z3Z12, Z4B1, Z4B2, Z4B3 +B1
4Z4, Z4B4, Z4B5, Z4B6,

Z4B7, Z4B8, Z4Z1, Z4Z2, Z4Z3, Z4
2, Z4Z5, Z4Z8, Z4Z9, Z4Z10,

Z4Z11, Z4Z12, Z5B1, Z5B2, Z5B3, Z5B4, Z5B5 +B1Z5, Z5B6,

Z5B7, Z5B8, Z5Z1, Z5Z2, Z5Z3, Z5Z4, Z5
2, Z5Z6, Z5Z7, Z5Z8,

Z5Z11, Z5Z12, Z6B1, Z6B2 +B1
6Z6, Z6B3, Z6B4, Z6B5, Z6B6,

Z6B7, Z6B8, Z6Z1, Z6Z2, Z6
2, Z6Z7, Z6Z8, Z6Z9, Z6Z10, Z6Z11, Z6Z12,

Z7B1, Z7B2, Z7B3, Z7B4, Z7B5, Z7B6, Z7B7 +B1
2Z7, Z7B8, Z7Z1, Z7Z2,

Z7Z3, Z7Z4, Z7Z5, Z7Z6, Z7
2, Z7Z8, Z7Z9, Z7Z10, Z7Z11,

Z8B1 +B1Z8, Z8B2, Z8B3, Z8B4, Z8B5, Z8B6, Z8B7, Z8B8, Z8Z2,

Z8Z3, Z8Z4, Z8Z5, Z8Z6, Z8Z7, Z8
2, Z8Z9, Z8Z10, Z8Z11, Z8Z12,

153

Z9B1, Z9B2 +B1
6Z9, Z9B3, Z9B4, Z9B5, Z9B6, Z9B7, Z9B8, Z9Z1,

Z9Z2, Z9Z6, Z9Z7, Z9Z8, Z9
2, Z9Z10, Z9Z11, Z9Z12, Z10B1, Z10B2, Z10B3,

Z10B4, Z10B5, Z10B6 +B1
5Z10, Z10B7, Z10B8, Z10Z1, Z10Z2,

Z10Z3, Z10Z4, Z10Z5, Z10Z6, Z10Z7, Z10Z8, Z10Z9, Z10
2, Z10Z12, Z11B1,

Z11B2, Z11B3, Z11B4, Z11B5 +B1Z11, Z11B6, Z11B7, Z11B8,

Z11Z1, Z11Z2, Z11Z3, Z11Z4, Z11Z5, Z11Z6, Z11Z7, Z11Z8, Z11Z10, Z11
2,

Z11Z12, Z12B1, Z12B2, Z12B3 +B1
4Z12, Z12B4, Z12B5, Z12B6, Z12B7,

Z12B8, Z12Z1, Z12Z2, Z12Z3, Z12Z4, Z12Z5, Z12Z7, Z12Z8,

Z12Z9, Z12Z10, Z12Z11, Z12
2

