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Abstract

Reversing mobile application has become a complicated and time-consuming task since

various anti-reverse engineering techniques (e.g., packing, anti-debugging, anti-emulator,

obfuscation, etc.) employed by latest mobile applications make current reverse engineering

techniques ineffective. Many approaches have been used, such as machine learning, dynamic

instrumentation, etc. However, little has been done from a systems perspective to provide

effective, robust and efficient solutions. The arms race between reverse engineering and anti-

reverse engineering has brought new challenges to the design of modern mobile security

analysis.

This dissertation focuses on the systems aspect of the challenges that reverse engineering

researchers face in designing various reversing approaches. Designing a system that collecting,

organizing, and evaluating facts about a mobile application and the environment in which

it operates is an effective way for automating reverse engineering analysis and fight against

anti-reverse engineering techniques on mobile platforms.

We designed a virtual machine instrumentation system, an automatic analysis platform

that provides a comprehensive view of packed Android applications behavior by conducting

multi-level monitoring and information flow tracking. This system is capable of identifying



packed Android applications, extracting hidden code during the execution and performing

unpacking process for packed Android Applications.

We designed MobileFindr, an on-device trace-based function similarity identification

system for iOS platform. MobileFindr runs on real mobile devices and mitigates many

prevalent anti-reversing techniques by extracting function execution behaviors via dynamic

instrumentation, then characterizing functions with collected behaviors and performing

function matching via distance calculation. We have evaluated MobileFindr using real-

world top-ranked mobile frameworks and applications. The experimental results showed

that MobileFindr outperforms existing state-of-the-art tools in terms of better obfuscation

resilience and accuracy.

Index words: Reverse engineering, Instrumentation systems, Dynamic analysis,
Trace-based, Function similarity, Mobile applications



System Techniques for Reverse Engineering

Mobile Applications

by

Yibin Liao

B.E., Nanchang Hangkong University, China, 2008

M.S., University of Louisiana at Lafayette, USA, 2011

A Dissertation Submitted to the Graduate Faculty

of The University of Georgia in Partial Fulfillment

of the

Requirements for the Degree

Doctor of Philosophy

Athens, Georgia

2018



c© 2018

Yibin Liao

All Rights Reserved



System Techniques for Reverse Engineering

Mobile Applications

by

Yibin Liao

Approved:

Major Professor: Kang Li

Committee: Maria Hybinette

Kyu Hyung Lee

Electronic Version Approved:

Suzanne Barbour

Dean of the Graduate School

The University of Georgia

December 2018



Acknowledgments

I would like to thank Dr. Hybinette and Dr. Lee for all their help and guidance. I would

also like to thank my beloved wife, Sisi Ye and my family for their continual support and

encouragement through my PhD program.

To my advisor, Dr. Kang Li, I insist that this is the best work that i can accomplish.

Addition time and effort in graduate school can neither improve my dissertation presentation

nor enhance my research contributions.

iv



Table of Contents

Page

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Chapter

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Problems . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Dissertation Contributions and Roadmaps . . . . . . . . . . 3

2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Reverse Engineering . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Anti-reverse Engineering Techniques . . . . . . . . . . . . . 7

2.3 Software Instrumentation . . . . . . . . . . . . . . . . . . . . 13

3 System Instrumentation for Analyzing Packed Android Applica-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 System Design and Implementation . . . . . . . . . . . . . . 28

3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 Discussion and Future Work . . . . . . . . . . . . . . . . . . 34

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

v



4 MobileFindr: Function Similarity Identification for Reversing

Mobile Binaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Design and Implementation . . . . . . . . . . . . . . . . . . . 52

4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Appendix

A Android System Instrumentation Configuration . . . . . . . . . . 82

B MobileFindr Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

vi



List of Figures

2.1 Process Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Self-attached Anti-debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Decompiled Code Tree Comparison between Unpacked and Packed Version . 10

2.4 Original Control Flow Graph . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Control Flow Graph After Flattening . . . . . . . . . . . . . . . . . . . . . . 18

2.6 Bogus Control Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 How Android Applications are Built and Run . . . . . . . . . . . . . . . . . 39

3.2 JNI General Work Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Decompiled Code for Unpacked Android Applications . . . . . . . . . . . . . 41

3.4 Decompiled Code for Packed Android Applications . . . . . . . . . . . . . . 41

3.5 Comparison of Unpacked and Packed Application for Dumping DEX Code

Content from Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6 Code Obfuscation for Native Methods . . . . . . . . . . . . . . . . . . . . . . 42

3.7 An Overview of Automatic Detecting and Unpacking for Packed Android

Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.8 Android Runtime Class Loading . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1 A Motivating Example: Code . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 A Motivating Example: CFG . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Schematic Overview of Trace-based Function Similarity Mapping System . . 52

4.4 Partial vs Full ASLR in iOS . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.5 Function Mapping between Obfuscated Version and Non-obfuscated Version 61

4.6 Function Mapping Evaluation for Popular Third-party Frameworks . . . . . 66

4.7 Function Mapping Evaluation in Real-world Applications . . . . . . . . . . . 67

vii



List of Tables

2.1 Instruction Replacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Complete Instrumented Functions in DVM and ART . . . . . . . . . . . . . 32

3.2 Building Packed Android Applications . . . . . . . . . . . . . . . . . . . . . 33

3.3 Detecting Packed Android Applications in Real World . . . . . . . . . . . . 34

4.1 Different Obfuscation Types and Flag Settings . . . . . . . . . . . . . . . . . 63

viii



Chapter 1

Introduction

1.1 Background

Reverse engineering is the process of taking a software program’s binary and recreating it so

as to trace it back to its original source code. Reverse engineering has been widely used in

computer hardware and software for many purposes: to enhance product features without

knowing the source; for testing code compatibility; for finding security flaws; as a way to

understand the design of malicious code.

However, reverse engineering mobile applications is a complicated and time consuming

task since different mobile platforms and frameworks require specific domain knowledge and a

significant amount of manual effort. In addition, mobile application frequent updates lead to

a lot of repeated work in reverse engineering. What’s worse, various anti-reverse engineering

techniques (e.g., packing, anti-debugging, obfuscation, etc.) employed by latest mobile appli-

cations further make current reverse engineering techniques ineffective. For instance, Android

packers usually adopt complex code hiding techniques to hide original executable files in

Android applications. This packing service has been widely used by a huge number of

Android malware. In addition, code obfuscation as well as anti-debugging and anti-emulator

techniques employed by mobile applications make reverse engineering ineffective when iden-

tifying binary code at function level.

There is a number of approaches have been proposed. However, little has been done

from a systems perspective to provide effective, robust and efficient solutions. The arms race

between reverse engineering and anti-reverse engineering has brought new challenges to the
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design of modern mobile security analysis. Therefore, an automated, systematic method is

necessary to meet the demand of reverse engineering mobile applications.

1.2 Research Problems

Android and iOS dominated smart-phone market with a share of 96.79% until 2018 [1]. In this

dissertation, we focus on the problems and challenges on both Android and iOS platforms.

1. Android packing service become more and more popular recently. There is a number

of unpacking approaches have been proposed. Our questions here are:

(a) Do current unpacking approaches work effectively for recent Android packers?

(b) How can we achieve a more comprehensive understanding of current packers?

2. Unlike Android, which is an open source operating system, iOS is a close-source plat-

form. Nowadays iOS developers heavily rely on code obfuscation to evade code detec-

tion. However, identifying binary code at function level has been applied to a broad

range of software security applications and reverse engineering tasks. The questions

here are:

(a) Do current function identification approaches work for iOS platforms?

(b) What features are useful for function identification?

(c) How these features are captured on iOS platforms?

(d) How to characterize a function with such features?
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1.3 Dissertation Contributions and Road-maps

In this dissertation, we tackle the problem above by introducing advanced and novel system

techniques. We propose various state-of-the-art system techniques to fight against the anti-

reverse engineering, deploy our systems in real-world environments, and show the effective-

ness and advantages of our approach. Particularly, we make the following contributions as

answers for the questions above.

• We conducted analyses of known Android packers as well as unpacking approaches

appeared in recent years and summarize the techniques used by them and the limita-

tions of current unpacking approaches in this dissertation.

• We proposed a multi-level virtual machine instrumentation system with the capability

to automatically identify packed Android applications from unpacked one, reassemble

the hidden executable files and provide a comprehensive view of packing behaviors.

• We addressed the limitations of current function identifying approaches, and proposed a

novel approach, trace-based function similarity mapping, to perform function similarity

measurement on iOS platforms. Our approach exhibits stronger resilience to various

anti-reverse engineering techniques for iOS applications. To best of our knowledge, this

is the first work having such ability on iOS platforms.

• We have proposed a variety of dynamic features to record during the function execution,

which allow us to approximate the semantics of a function without relying on the source

code access.

• We have demonstrated the viability of our approach for top-ranked real-world mobile

frameworks and applications.

The remainder of this dissertation is organized as follows. After Literature Review in

Chapter 2, we introduce our Android multi-level instrumentation system in Chapter 3. We
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first discuss background of Android packer, and then present detailed design and implemen-

tation of this instrumentation system, followed by evaluation with open source and real world

Android applications. In Chapter 4, we present the work of MobileFindr. We introduce the

background of function similarity mapping as well as challenges first. Then we presented

details of our system design and implementation. After that we present our evaluation and

results, discuss the limitations and related work. Chapter 5 summarize the dissertation.

Appendix A shows configuration settings that trigger the unpacking process of our virtual

machine instrumentation system. Appendix B shows how to deploy and use MobileFindr to

perform function similarity mapping.
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Chapter 2

Literature Review

This section presents the state-of-the-art in reverse engineering. The first part introduces the

background of reverse engineering, presents popular techniques and tools that help for reverse

engineering mobile applications, including various debuggers, disassemblers, decompilers,

etc. The second part of the literature describes various anti-reverse engineering techniques

deployed by mobile applications. The third part introduces software instrumentation, which

has been used in this thesis work.

2.1 Reverse Engineering

Reverse engineering is taking apart an object to see how it works in order to duplicate or

enhance the object. This practice is now frequently used on computer hardware and software.

Software reverse engineering involves reversing a program’s machine code (the string of 0s

and 1s that are sent to the logic processor) back into the source code that it was written in,

using program language statements.

2.1.1 Static vs Dynamic

To understand a software program, both static and dynamic information are useful for reverse

engineering. Static information describes the structure of the software as it is written in

the source code, while dynamic information describes the runtime behavior. Static analysis

involves analyzing a programs source code or machine code without running it. In reverse

engineering, many tools perform static analysis, in particular decompilers and disassembler.

Dynamic analysis involves analyzing a client program as it executes. Many tools perform
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dynamic analysis, for example, profilers, checkers and execution visualizers. Tools performing

dynamic analysis must instrument the client program with analysis code.

Both static and dynamic analysis result in information about the software artifacts and

their relations. The dynamic analysis also produces sequential event trace information, infor-

mation about concurrent behavior, code coverage, memory management, etc. Although there

are benefits for conducting static and dynamic analysis as separate tasks, an analyst can

realize the value provided by conducting both techniques when reverse engineering complex

mobile applications.

2.1.2 Reverse Engineering Tools for Mobile Applications

There are numerous reversing tools available for mobile applications such as Apktool, baks-

mali, dex2jar, jd-gui and IDA Pro. Apktool [2] and baksmali [3] are free tools for reverse engi-

neering Android applications. It can convert Android executable (DEX) to human-readable

Dalvik byte-code. Android developer can use Dex2jar [4] to convert DEX file to Java class

file, and then open it in JD-GUI [5] to display Java source code. The most powerful com-

mercial disassembler is IDA Pro [6], published by Hex-Rays. It can handle binary code for

a huge number of processors and has open architecture that allows developers to write add-

on analytic modules. Hex-Rays Decompiler [7] is a IDA Pro extension that converts native

processor code into human readable C-like pseudo-code text.

Debugger helps developer to understand how the program behaves at runtime without

modifying the code, and allows the user to view and change the running state of a program.

With the release of Xcode 5, the LLDB debugger [8], which is part of the LLVM compiler

development suite, becomes the foundation for the debugging experience on Apple plat-

forms. LLDB is fully integrated with Xcode and provides deep capabilities in a user-friendly

environment. For Android platform, both LLDB and JDB (Java debugger) are integrated

in the Android Studio debugger [9]. By default, Android Studio automatically choose the

best option for the code you are debugging. For example, if you have any C or C++ code in
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the project, Android studio debugger select LLDB to debug your code. Otherwise, Android

Studio uses the Java debug type.

2.2 Anti-reverse Engineering Techniques

The software security community relies on such reverse engineering tools to analyze and

validate programs. However, various anti-reverse engineering techniques employed by the

latest mobile applications further make current reverse engineering tools ineffective. We

summarize the common anti-reverse engineering techniques as the following:

2.2.1 Anti-debugging

Android is based on Linux kernel. In Linux, one process can attach to another process for

debugging. Developers can insert anti-debugging code stubs (e.g., attach to themselves using

ptrace) to interfere dynamic analysis based tools (e.g., gdb). In other words, if an application

(target process) attaches to itself at runtime, gdb cannot attach to it, thus further debugging

operations are prohibited.

For instance, Figure 2.1 shows the running process status of an Android Application

called com.csair.mbp. The process ID for this application is 26883. The highlighted TracerPid

indicates that there is another process (ID: 26968) attached to this process. Figure 2.2 lists

all running processes. The first column is the USER ID. The second is the PID, and the third

is the PPID, which is the parent PID. Therefore, both process 26883 and 26968 are from

same application. Process 26883 launches child process 26968, which then attached itself to

avoid any other processes to attach for debugging. Some of the mobile applications will also

check whether special threads, such as JDWP (Java Debug Wire Protocol) thread, have been

attached.
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Figure 2.1: Process Status

2.2.2 Anti-emulator

Mobile applications can check the running environment, such that an application can crash

or exist if it’s running in the emulator or rooted system. Android applications can check

several Android APIs to get the system properties or build information (e.g., device brand,

hardware, model, device ID, IMEI number, Phone Number etc.) For example, the get phone

number API will return null if your application is running inside an emulator.

Anti-emulator techniques employed by malware [10] limits the usage of many dynamic

analysis systems. For example, in [11], 98.6% malware samples were successfully analyzed
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Figure 2.2: Self-attached Anti-debugging

on the real smart-phone, whereas only 76.84% malware samples were successfully inspected

using he emulator.

2.2.3 Code Packing

An application is packed means its original executable files (i.e., DEX files) are hidden or

transformed to an encrypted or obscured form so that we cannot easily reverse, modify, and

repackage.

For Android applications, Java source code is finally compiled to Dalvik byte-code and

stored in DEX file. Android allows applications to load codes from external sources at run-

time. To leverage this feature, packers usually encrypt original DEX file as an external file,

and insert its owner DEX file as a shell or guard. During the execution, packer’s decryption

stubs, which implemented in native code, will decrypt the original Dalvik byte-code and then

load it into memory.
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Figure 2.3: Decompiled Code Tree Comparison between Unpacked and Packed Version

Moreover, packer’s native components can modify the meta-data of original DEX file

through JNI during the execution. This kind of modification doesn’t affect the normal exe-

cution of the application. However, it significantly affects certain analysis tools.

We investigated several commercial packers that provide on-line packing services (Ali,

Bangcle, ijiami, Tencent, etc.), and summarize the common anti-analysis defenses used by

them in next chapter. Figure 2.3 shows an example for packed Android applications and

unpacked Applications. The left side of the decompiled code tree is for the original applica-

tion. We can use common DEX decompiler as mentioned previously to extract all the classes.

However, after packing, the original classes are hidden, which cannot be extracted by the

decompiler, as shown in the rest three decompiled code tree.

2.2.4 Code Obfuscation

Obfuscation aims at creating obfuscated code that is difficult for humans to understand.

Obfuscation techniques include modifying names of classes, fields, and methods, reordering
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control flow graphs, encrypting constant strings, inserting junk code, etc. Many developers

would obfuscated their applications before released. Those techniques mainly include:

• Identifier Mangling: renaming class names, method names and variable names as

meaningless strings or even non-alphabet Unicode.

• String Obfuscation: replacing static-stored strings with dynamic generated ones.

• Control Flow Flattening: flatten the control flow graph of a program. Here is an

example. Consider this very simple C program in Listing 2.1. The flattening pass will

transform this code into Listing 2.2. As one can see, all basic blocks are split and put

into an infinite loop and the program flow is controlled by a switch and the variable b.

Figure 2.4 shows the original control flow graph for the C program. After the flattening,

we get the instruction flow in Figure 2.5. As one can see, the main difference between

the example in pure C, the IR (Intermediate Representation) version is completely

flattened.

Listing 2.1: Original C Program

#include <stdlib.h>

int main(int argc , char** argv) {

int a = atoi(argv [1]);

if(a == 0)

return 1;

else

return 10;

return 0;

}
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Listing 2.2: C Program After Control Flow Flattening

#include <stdlib.h>

int main(int argc , char** argv) {

int a = atoi(argv [1]);

int b = 0;

while (1) {

switch(b) {

case 0:

if(a == 0)

b = 1;

else

b = 2;

break;

case 1:

return 1;

case 2:

return 10;

default:

break;

}

}

return 0;

}

• Instruction Replacing: using a set of instructions to replace one instruction while

keeping the semantic of the replaced instruction. For example, we can replace stan-

dard binary operators (like addition, subtraction or boolean operators) by functionally
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equivalent, but more complicated sequences of instructions. Table 2.1 shows a list of

instruction substitution examples.

Table 2.1: Instruction Replacing

Operation Original Expression Instruction Replaced Expression

Addition a = b + c a = b - (-c)
Subtraction a = b - c a = b + (-c)
AND a = b ∧ c a = (b ⊕ ¬c) ∧ b

OR a = b ∨ c a = (b ∧ c) ∨ (b ⊕ c)
XOR a = a ⊕ b a = (¬a ∧ b) ∨ (a ∧ ¬b)

• Junk Code Injection: injecting useless code to change original control flow. For

example, we can modify a function call graph by adding a basic block before the

current basic block. This new basic block contains an opaque predicate and then makes

a conditional jump to the original basic block. The original basic block is also cloned

and filled up with junk instructions chosen at random. For example, after the bogus

control flow pass, we can change the original C program’s Control Flow Graph in Figure

?? to a new flow graph in Figure 2.6.

2.3 Software Instrumentation

As a prerequisite for various performance-analysis and debugging techniques, it is often

necessary to insert additional code fragments into the application that is currently under

investigation, e.g., to validate parameters given to a function call, read hardware counter

values such as the number of cache misses, or query the system clock to calculate the time

spent in a certain code region [12]. Software instrumentation is the technique that is widely

used in software profiling, performance analysis, optimization, testing, error detection, virtu-

alization, and to write trace information. In programming, instrumentation means the ability

of an application to incorporate the following.
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• Code tracing: receiving informative messages about the execution of an application

at run time.

• Debugging and (structured) exception handling: tracking down and fixing pro-

gramming errors in an application under development.

• Profiling: a means by which dynamic program behaviors can be measured during a

training run with a representative input. This is useful for properties of a program that

cannot be analyzed statically with sufficient precision, such as alias analysis.

• Performance counters: components that allow the tracking of the performance of

the application.

• Computer data logging: components that allow the logging and tracking of major

events in the execution of the application.

Instrumentation, which involves adding extra code to an application for monitoring some

program behavior, can be performed either statically (i.e., at compile time) or dynamically

(i.e., at runtime). Static instrumentation techniques range from simple manual techniques

to compiler/assemblerbased instrumentation and linktime or postlink executable editing.

Dynamic instrumentation techniques are often more complex to implement than the static

ones, but they can track dynamically linked libraries and indirect branches that are difficult

to handle through static instrumentation [13].

Developers implement instrumentation in the form of code instructions that monitor spe-

cific components in a system (for example, instructions may output logging information to

appear on the screen). When an application contains instrumentation code, it can be man-

aged by using a management tool. Instrumentation is necessary to review the performance

of the application. Instrumentation approaches can be of two types: source code instrumen-

tation and binary instrumentation.

14



2.3.1 Source Code Instrumentation

A well-accepted technique of instrumenting an application is the so-called source code instru-

mentation method, which is the subject matter of this paper. With this approach, additional

code fragments such as function calls are directly inserted into the applications source code at

appropriate places before compilation [12]. Our Android packer analysis system makes exten-

sive use of source code instrumentation to transparently monitor the execution behavior and

extract class and method information on both byte-code level and native level. We insert

extract code into functions that perform classes loading, class resolve and method resolve,

etc. to capture information that can be used for DEX file reassemble.

2.3.2 Binary Instrumentation

Section 2.1 explained that dynamic analysis requires programs to be instrumented with anal-

ysis code. There are two main instrumentation techniques used for dynamic binary analysis,

which are distinguished by when they occur [14].

• Static binary instrumentation occurs before the program is run, in a phase that

rewrites object code or executable code.

• Dynamic binary instrumentation: occurs at run-time. The analysis code can be

injected by a program grafted onto the client process, or by an external process. If the

client uses dynamically-linked code the analysis code must be added after the dynamic

linker has done its job.

Dynamic binary instrumentation has two distinct advantages. First, it usually does not

require the client program to be prepared in any way, which makes it very convenient for

users. Second, it naturally covers all client code; instrumenting all code statically can be dif-

ficult if code and data are mixed or different modules are used, and is impossible if the client

uses dynamically generated code. This ability to instrument all code is crucial for correct and

complete handling of libraries. These advantages of dynamic binary instrumentation make it
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the best technique for many dynamic analysis tools. However, dynamic binary instrumenta-

tion has two main disadvantages. First, the cost of instrumentation is incurred at run-time.

Second, it can be difficult to implement rewriting executable code at run-time is not easy.

Nonetheless, in recent years these problems have been largely overcome by the advent of

several generic dynamic binary instrumentation frameworks, which are carefully optimized

to minimize run-time overheads, and with which new dynamic binary analysis tools can be

built with relative ease. Our function similarity mapping framework, MobileFindr, focuses

on dynamic binary instrumentation, and does not consider static binary instrumentation any

further. MobileFindr instruments system level libraries and frameworks to capture various

dynamic behavior features during the execution of a function along a runtime trace. Then

we calculate the similarity distance based on such features to perform function similarity

mapping.
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Figure 2.4: Original Control Flow Graph
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Figure 2.5: Control Flow Graph After Flattening
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Figure 2.6: Bogus Control Flow
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Chapter 3

System Instrumentation for Analyzing Packed Android Applications

3.1 Introduction

Being the most popular mobile operating system, Android dominated smart-phone market

with a share of 82.8% until 2015 [15]. The rapid growth of Android application economy

brings a great profits for developers [16], meanwhile, it causes a series of malicious tampering,

code injection, and plagiarism issues [17, 18, 19]. Legitimate application developers adopt

various code protection techniques to guarantee their labor and profits. Packing is one of

the effective and efficient code protection techniques, and is getting an increasingly use

nowadays [20].

Although packing techniques are initially designed to protect applications from being

reversed, modified, and repackage, malware writers are making use of these benefits to hide

their malicious code in order to evade malware detection. A huge growing percentage of

packed Android malware has been reported by the AVL anti-virus team [21]. Since packers

usually adopt complex anti-analysis defenses, recent anti-virus could not perform effective

analysis task on packed code, and thus are not able to detect those packed malware automati-

cally. Therefore, a number of unpacking approaches have been proposed recently [22, 23, 24].

All of the unpacking approaches are focusing on byte-code level analysis that recover orig-

inal Dalvik byte-code from memory. For example, [24] mainly focus on dumping the loaded

DEX file in memory directly to recover the original DEX file. DexHunter [23] exploits the

class loading process of Android’s virtual machine to recover the DEX files from packed appli-

cations. AppSpear [22] also focus on reassemble the DEX file by collecting the Dalvik Data

Structure in memory. However, packers are evolving frequently, most unpacking approaches
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only work for a limited time or for a particular type of packers. Advanced packers employ

multi-layer packing techniques, which make the current unpacking techniques ineffective.

In this work, we designed an automatic analysis platform that provides a comprehen-

sive view of packed Android applications behavior by conducing multi-level monitoring and

information flow tracking.

• Byte-code level analysis: instruments both Android Runtime (ART) and Dalvik

Virtual Machine (DVM) to extract the hidden class information during the appli-

cationss execution. it leverages both class loading and method resolving process at

runtime to capture the Dalvik byte-code. this analysis part is capable of identifying

packed applications automatically, and then reassemble the original DEX files that was

hiding by the packer.

• Native code level analysis: monitors the execution of native components in packed

Android applications. This monitoring analysis can be used to reveal the behavior of

a packer. These frameworks include system call monitoring, Native-to-Java commu-

nication monitoring through JNI trace, library calls monitoring (libc trace), and IPC

transaction monitoring through binder.

We have evaluated our system with a set of open source Android examples packed by

different major on-line packers. Our experimental results show that our system can success-

fully detect and extract the hidden Dalvik byte-code, and reassembly to their original DEX

files. Our evaluation with real-world mobile applications also demonstrated the effectiveness

of our native code monitoring process.

Correspondingly, our contributions in this work are:

• We proposed a novel unpacking method that can detect packed application from

unpacked one automatically, and extracting the hidden Dalvik byte-code from recent

multi-layer packing technique.
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• We proposed a JNI instrumentation approach to trace the Java-to-Native and Native-

to-Java invocation. This monitoring process can be used to analyze the behavior of

packers since the packer’s decryption process is mainly done by native code.

• we have implemented a framework for this work and source code is publicly available

at GitHub: https://github.com/tigerlyb/android packing analysis.

• We have demonstrated the viability of our approach for real-world mobile applications.

3.2 Background

This section introduces the background of how Android Applications are built and run.

We also introduce Android Dalvik Virtual Machine (DVM) and the new Android Runtime

(ART) as well as the Java Native Interface (JNI). In addition, we present the basic idea of

Android packing as well as the state of the art techniques employed by packer. Then we

demonstrate motivating examples and describe the unpacking challenges that can affect the

state of the art Android application analysis methods.

3.2.1 How Android Applications are Built and Run

Figure 3.1 shows the process of building an Android application.

• The Android Asset Packaging Tool (aapt) takes your application resource files, such

as the AndroidManifest.xml file and the XML files for your Activities, and compiles

them. An R.java is also produced so you can reference your resources from your Java

code.

• The aidl tool converts any .aidl interfaces that you have into Java interfaces.

• All of your Java code, including the R.java and .aidl files, are compiled by the Java

compiler and .class files are output.
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• The dex tool converts the .class files to Dalvik byte-code. Any 3rd party libraries and

.class files that you have included in your module build are also converted into .dex

files so that they can be packaged into the final .apk file.

• All non-compiled resources (such as images), compiled resources, and the .dex files are

sent to the apkbuilder tool to be packaged into an .apk file.

• Once the .apk is built, it must be signed with either a debug or release key before it

can be installed to a device.

• Finally, if the application is being signed in release mode, you must align the .apk with

the zipalign tool. Aligning the final .apk decreases memory usage when the application

is -running on a device.

3.2.2 Dalvik Virtual Machine

The Dalvik Virtual Machine (DVM) is an Android virtual machine optimized for mobile

devices. Android version 4.0 and lower use the Dalvik virtual machine (DVM) with just-

in-time compilation to run Dalvik byte-code, which is usually translated from Java byte-

code. With the Dalvik JIT compiler, each time when the application is run, it dynamically

translates a part of the Dalvik byte-code into machine code. As the execution progresses,

more byte-code is compiled and cached. Since JIT compiles only a part of the code, it has a

smaller memory footprint and uses less physical space on the device.

Every Android application runs in its own process, with its own instance of the Dalvik

virtual machine. Dalvik has been written so that a device can run multiple VMs efficiently.

The Dalvik VM executes files in the Dalvik Executable (.dex) format which is optimized for

minimal memory footprint. The VM is register-based, and runs classes compiled by a Java

language compiler that have been transformed into the .dex format by the included ”dx”

tool.
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Basically, the Dalvik virtual machine performs transformation of the applications Dalvik

byte-code into native instructions, so there would be platform-specific Dalvik virtual

machines for each hardware platform running Android, be it from Intel, ARM, or TI.

A developer’s compiler creates Dalvik byte-code, and a Dalvik virtual machine deciphers

that byte-code.

3.2.3 Android Runtime

Android Runtime (ART) is a new application runtime environment being introduced exper-

imentally in the Android version 4.4 release, and becomes the default runtime from version

5.0. Unlike Dalvik, ART introduces the use of ahead-of-time (AOT) compilation by com-

piling entire applications into native machine code upon their installation. By eliminating

Dalvik’s interpretation and trace-based just-in-time (JIT) compilation, ART improves the

overall execution efficiency and reduces power consumption, which results in improved bat-

tery autonomy on mobile devices. At the same time, ART brings faster execution of appli-

cations, improved memory allocation and garbage collection (GC) mechanisms, new appli-

cations debugging features, and more accurate high-level profiling of applications.

ART comprises a compiler (the dex2oat tool) and a runtime (libart.so) that is loaded

for starting the Zygote. Zygote is a special process in Android which handles the forking

of each new application process. The dex2oat tool takes an APK file and generates one or

more compilation artifact files that the runtime loads. The number of files, their extensions,

and names are subject to change across releases, but as of the Android O release, the files

being generated are:

• .vdex: contains the uncompressed DEX code of the APK, with some additional meta-

data to speed up verification.

• .odex: contains AOT compiled code for methods in the APK.
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• .art (optional): contains ART internal representations of some strings and classes

listed in the APK, used to speed application startup.

The .odex file has an oatdata section, which contains the information of each class that

has been compiled into native code. The native code resides in a special section with the

offset indicated by the oatexec symbol. Hence, we can find the information of a Java class in

the oatdata section and its compiled native code through the oatexec symbol.

When an application is launched, the ART runtime parses the .odex file and loads the

file into memory. For each Java class object, the ART runtime has a corresponding instance

of the C++ class Object to represent it. The first member of this instance points to an

instance of the C++ class Class, which contains the detailed information of the Java class,

including the fields, methods, etc. Each Java method is represented by an instance of the

C++ class ArtMethod, which contains the methods address, access permissions, the class to

which this method belongs, etc. The C++ class ArtField is used to represent a class field,

including the class to which this field belongs, the index of this field in its class, access rights,

etc. We can leverage the C++ Object, Class, ArtMethod and ArtField to find the detailed

information of the Java class, methods and fields of the Java class [25].

3.2.4 Java Native Interface

The Java Native Interface (JNI) is a programming framework that enables Java code running

in a Java Virtual Machine (JVM) to call and be called by native components and libraries

written in other languages such as C, C++ and assembly.

JNI enables programmers to write native methods to handle situations when an applica-

tion cannot be written entirely in the Java programming language, e.g. when the standard

Java class library does not support the platform-specific features or program library. It is

also used to modify an existing application (written in another programming language) to

be accessible to Java applications. Many of the standard library classes depend on JNI to

provide functionality to the developer and the user, e.g. file I/O and sound capabilities.
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Including performance- and platform-sensitive API implementations in the standard library

allows all Java applications to access this functionality in a safe and platform-independent

manner.

The JNI framework lets a native method use Java objects in the same way that Java

code uses these objects. A native method can create Java objects and then inspect and use

these objects to perform its tasks. A native method can also inspect and use objects created

by Java application code.

JNI defines two key data structures, ”JavaVM” and ”JNIEnv”. Both of these are essen-

tially pointers to pointers to function tables. (In the C++ version, they’re classes with a

pointer to a function table and a member function for each JNI function that indirects

through the table.) The JavaVM provides the ”invocation interface” functions, which allow

you to create and destroy a JavaVM. In theory you can have multiple JavaVMs per process,

but Android only allows one.

The JNIEnv provides most of the JNI functions. The native functions receive a JNIEnv

as the first argument. JNIEnv is used for thread-local storage. For this reason, we cannot

share a JNIEnv between threads. If a piece of code has no other way to get its JNIEnv, you

should share the JavaVM, and use GetEnv to discover the thread’s JNIEnv.

The C declarations of JNIEnv and JavaVM are different from the C++ declarations. The

”jni.h” include file provides different typedefs depending on whether it’s included into C or

C++. For this reason it’s a bad idea to include JNIEnv arguments in header files included

by both languages.

JNI general work-flow is as follows [26]: Java initiates calls so that the local function’s

side code (such as a function written in C/C++) runs. This time the object is passed over

from the Java side, and run at a local function completion. After finishing running a local

function, the value of the result is returned to the Java code. Here JNI is an adapter,

completing mapping between the variables and functions (Java methods) between the Java

language and native compiled languages (such as C/C++). We know that Java and C/C++
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are very different in function prototype definitions and variable types. In order to make the

two match, JNI provides a jni.h file to complete the mapping between the two. This process

is shown in Figure 3.2.

3.2.5 Android Packing Services

An application is packed means its original executable files (i.e., DEX files) are hidden or

transformed to an encrypted or obscured form so that we cannot easily reverse, modify, and

repackage. Figure 3.3 shows the decompiled code from an unpacked Android application.

Comparing to the unpacked one, the method content of packed version is empty.

Figure 3.5 shows the DEX code content dumped directly from memory. The left side is

for unpacked version. The right side is for packed version. All DEX code content has been

set to 0.

Code Obfuscation

Obfuscation aims at creating obfuscated code that is difficult for humans to understand.

Obfuscation techniques include modifying names of classes, fields, and methods, reordering

control flow graphs, encrypting constant strings, inserting junk code, etc.

Packers usually implement obfuscation for major functions in native code, and then invoke

native code method through Java native interface (JNI). In addition, Android packers hide

method invoking using Java reflection mechanism and use goto to make control flow hard to

understand [22]. Figure 3.6 shows the code obfuscation in native side. All method names are

set to meaningless and are implemented in native code.

Dynamic Code Modification

Android applications are mostly written in Java and then turned into Dalvik byte-code. Note

that it is not easy for applications in Dalvik byte-code to arbitrarily modify itself in Dalvik

Virtual Machine (DVM) in a dynamic manner. Instead, they can invoke native code through
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JNI to modify byte-code in DVM because the native code is running in the same context

as the applications DVM so that the native code can access and manipulate the memory

storing the byte-codes.

As an example, malware can employ native code to generate malicious byte-codes dynam-

ically and then execute them in DVM. Before executing the DEX file in the new Android

runtime (i.e., ART), ART will compile the DEX file into oat file in the ELF format. The

native codes in .so files can not only change instructions in DEX and OAT files, but also

modify key data structures in the memory, such as DexHeader, ClassDef, ArtMethod, etc.,

in order to assure that the contents are correct only when they are used, and the contents

will be wiped out after they have been used [23].

Dynamic Loading

Android allows applications to load codes from external sources (in DEX or JAR format) at

runtime. Leveraging this feature, packers usually encrypt the original DEX file, decrypt and

load it before running the application.

3.3 System Design and Implementation

While inspecting the implementation of Android VM environments, we found that we

can observe obscured application behaviors through Android VM instrumentation. These

obscured application behaviors, such as hidden code, are commonly used by malicious

applications. Detecting these behaviors at the OS level is often difficult due to anti-

debugging, anti-emulator, etc. which measure intentionally adopted by attackers. Through

our multi-level system instrumentation, we can compare the class declarations with the

class implementation used by the application at run-time. To recover the hidden code, we

automatic trigger the DEX loading process of the VM and extract all class information from

memory, and reassembled based on the DEX format by our system.
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3.3.1 Byte-code Level Analysis

Most of detection approaches for packed applications are based on manual analysis such as

identifying unique file names and native .so libraries inserted by packer. Manual analysis is

slow and tedious, which only works for known packers. We propose to design a detection

method that automatically identify packed applications. A prototype of the hidden code

detection and extraction through VM instrumentation is presented in this section.

One of the major challenges of this work is to evade the complex anti-defenses adopted

by packers. To thwart this challenge, we perform both static and dynamic analysis on each

application, and compare the difference between the two analysis to determine whether this

application is packed. Figure 3.7 shows the overview of detection framework.

Static Analysis

In the static analysis phase, We first extract package name and launchable-activity name

from the application. The package name is used as a filter in dynamic analysis and will be sent

to the device. The launchable-activity name is used to start the application automatically.

Then we use the de-compiler tool Baksmali to parse the application and convert its DEX

files to a series of smali files, which contain human readable assembly language representing

Dalvik byte-code. Finally we extract the class name of each class from the smali files.

Dynamic Analysis

In the dynamic analysis phase, we instrument Dalvik Virtual Machine (DVM) to monitor

the execution of this application. This monitoring is a compilation time code injection instru-

mentation. We didn’t modify any of the APIs, only insert our own code to capture the class

loading information. Thus, it’s very difficult to be aware of by packers’ anti-analysis mea-

sures. We also deployed the framework on a standard Android device, which can evade typical

emulator detection of packers. This guarantees a very trustworthy analyzing environment.
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Since each class should be loaded into memory before it can be used, we explore the class

loading process to collect class information at runtime. Figure 3.8 shows the general class

loading process at runtime. Android VM first will unzip the apk file and look for DEX files,

then it opens and parses this DEX file. After that Android VM will initialize all the classes

defined in this DEX file and load all classes into memory. In order to automatically capture

the class at runtime, we instrument the class loading functions defined in both DVM and

ART.

We select DexFile defineClassNative in DVM and ClassLinker::DefineClass in ART as

the key functions for injecting instrumentation code. DEX file is parsed into a data structure

called DvmDex, and then initialized to DexFile in memory. Since all class loadings will call

this function, including applications running background, we first implement a filter based

on the package name captured in static analysis and search the p id of the application to be

analyzed. After locating the correct DexFile object with the p id, we obtain the class index

object DexClassDef by passing DexFile as an parameter of the dexGetClassDef function,

and then invoke the method dexGetClassDescriptor to extract the class name of each class.

Comparison

Since the class name is unique, we only extract full class name as a string for each class in the

static and dynamic analysis. We sort the class name strings in order and then compare their

difference from the two analysis. If we find class names that only exist in dynamic analysis,

this means the application contains packed code. Otherwise, the application is unpacked.

DEX recovery

As mention previously, advanced packer has multi-layer packing. First, the original DEX file

will be hidden and will be release at runtime. However, the content of the method is empty

even if the DEX file has been loaded in the memory. The content will only be loaded when

the method has been invoked. After the instrumentation of JNI (Java Native Interface),
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we detected frequent native-to-Java calls with dvmResolveClass() and dvmResolveMethod()

when execution the packed applications but no such calls or a little bit invocation in unpack

version. dvmResolveMethod() is used for reload the method if this method is not initialized

properly. Packer invoke this Android API to reloaded method and then erase the content

of that method after use in order to prevent the direct memory dump based unpacking

method.Therefore, we instrument both dvmResolveClass() and dvmResolveMethod() to cap-

ture the class information and dump method content. The first row of Table 3.1 shows all

instrumented functions in DVM and ART.

3.3.2 Native Code Level Analysis

Native code in Android applications is deployed in the application as ELF files, either exe-

cutable files or shared libraries. Android Packers usually exploit native code to perform

dynamic code loading and dynamic code modification. During the dynamic analysis phase

we monitor the execution of native components as well as the communications between the

Java code and the native code via JNI instrumentation. This monitoring analysis can be used

to reveal the behavior of a packer. As mentioned in previous section, our JNI instrumen-

tation framework capture frequent native-to-Java calls with dvmResolveClass() and dvm-

ResolveMethod() when execution the packed applications but no such calls or a little bit

invocation in unpack version. Table 3.1 shows all instrumented functions that used for mon-

itoring the behavior of packer. From the second row of Table 3.1, native code loading means

that the code that enable hidden byte-code release could be implemented in native code

and loaded into memory. Note that Android packers usually exploit these APIs to directly

load the decrypted byte-code from memory. JNI invocation refers to all the function calls

from Java methods to native methods. This includes the JNI calls in the application and the

Android framework. JNI reflection, on the other hand, refers to calling Java methods from

native. For instance, packer’s decrypting code stub implemented in native code could invoke

framework APIs using JNI reflection.
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Table 3.1: Complete Instrumented Functions in DVM and ART

Behavior Functions in DVM Functions in ART

Java class loading DvmDefineClassNative() DexFile::DexFile()
DvmResolveClass() DexFile::OpenMemory()
DvmResolveMethod() ClassLinker::DefineClass()

Native code loading dvmLoadNativeCode() JavaVMExt::LoadNativeLibrary()
JNI invocation RegisterNatives() artFindNativeMethod()

dvmCallJNIMethod() ArtMethod::invoke()
JNI reflection dvmCallMethodA() InvokeWithVarArgs()

dvmCallMethodV InvokeWithJValues()
InvokeVirtualOrInterfaceWithJValues()
InvokeVirtualOrInterfaceWithVarArgs()

3.4 Evaluation

In this section, we evaluate our system to answer the following questions.

• Q1: Can our framework detect and recover the DEX file from packed Android appli-

cations?

• Q2: Can our framework analyze the packed Android applications in real world?

3.4.1 Experiment Setup

As shown in Figure 3.7, detection module takes a set of Android applications as input, and

output a set of packed applications. The static analysis is performed in a desktop computer

running Ubuntu Desktop 14.04. We use Baksmali 2.1.0 as a basis for the static analysis.

The instrumented DVM is deployed in a Nexus 7 tablet running Android 4.4.3. In the

dynamic analysis, applications will be automatically installed and launched by triggering

the launchable-active defined in the manifest file. To save the storage space, applications will

be automatically deleted after class names have been extracted.
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3.4.2 Datasets

Dataset 1

First we collect 20 open source Android applications with different functionalities from F-

Droid [27] and uploaded them to 5 major online packers: Ali, Bangcle, Tencent, ijiami, and

qihoo360. Since the source code is available, we use this dataset as ground truth dataset.

Table 3.2 shows that not all applications can be packed by those packers and some of the

packed applications cannot be run in our devices. Therefore, we built 81 packed application

in total.

Table 3.2: Building Packed Android Applications

Packers Number of Apps Number of Packed Apps Number of Packed Apps Can Run

Bangcle 20 20 20
ijiami 20 19 19
Ali 20 18 16
Tencent 20 16 10
qihoo360 20 17 16

Dataset 2

Second, we collect 822 Android applications from anzhi (http://www.anzhi.com/), one of the

most popular Android market in China. We use a web crawler to automatically download

top-ranked apk files from the market.

3.4.3 Results

The first evaluation method is to answer Q1. Dataset 1 is used for this evaluation. We

apply our framework to all packed applications that can run in our device. After the DEX

recovery, we use baksmali tools to decompiled the DEX file and compare the byte-code with

the original unpacked version. We have successfully recovered all 81 packed applications.

The second round of evaluation method worked on the Dataset 2, which is to answer

Q2. We define an application is packed if we can capture more class in the dynamic analysis
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than static analysis. Table 3.3 shows the detection results. There are 38 applications failed

to run automatically since there is no launchable activities defined in the manifest file. There

are 646 applications are unpacked since we extracted exactly same number of classes from

dynamic and static analysis. All class names are same as well. After manual verification, we

have 32 false positives because of the disassembling error by baksmali tools. E.g., we extract

1605 classes in the static analysis and extract 1638 classes in the dynamic analysis. There

are 35 classes that cannot be decompiled by baksmali, but the main body of this application

can be decompiled. [28] shows a complete analysis result of class extraction for Dataset 2.

Table 3.3: Detecting Packed Android Applications in Real World

Number of Apps Comments

Total Apps 822
Unpacked 646 static = dynamic
Packed 138 static < dynamic
Failure 38 Auto-run failed

3.5 Discussion and Future Work

With different types of packers, and the vast range of packed applications within each type,

it’s important that every packed application can be easily distinguished and unambiguously

classified. Therefore, we can design an automatic classification framework to identify and

classify packed applications as future work. Since we have identified which Android applica-

tions are packed, we can categorize them into groups that reflect similar types of behaviors.

We propose a two-layer classification, coarse-grained classification and fine-grained classifi-

cation as following:

• Coarse-grained Classification: In coarse-grained classification, we can look at which

part of code is packed. Based on our observation, many applications contain third-

party libraries and only the libraries are packed. We consider this type of packed

applications is partially packed or framework packed. The application which its entire
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code is packed will be considered fully packed. For the fully packed applications, we

can extract much more classes in the dynamic analysis than static analysis. Such that

we extract 4806 classes in dynamic analysis but only 6 classes in static analysis. We

evaluated 200 fully packed applications, more than 99% of them has the ratio (number

of classes in static / number of classes in dynamic) less than 20%. Thus, we can set

a threshold as 20% to classify framework packed and fully packed applications. If the

packed application is framework packed and the framework libraries are from well-

known legitimate publishers, we may ignore the analysis for that application.

• Fine-grained Classification: As mentioned previously, packers usually encrypt orig-

inal DEX file to external data format, insert decryption stubs and customized loader

into the application. The original byte-code of the application will be released during

the execution by the decryption stub and loaded into memory by packer’s customized

loader. Different packers may implement different code releasing and loading strategies.

For instance, some packers reload the DEX data into in-consecutive memory regions

and modify relevant pointers that point to the data to prevent direct memory dump

based unpacking; a type of packers deploy a two-layer decryption stub. It first releases

a decrypted DEX, which doesn’t contain the original byte-code. However, it contains a

second decryption stub responsible for decrypting original byte-code of a method once

it’s invoked [22].

All behaviors performed above can be eventually represented as a sequence invocation

of native activities, system calls, JNI calls, etc. Packers implement similar code release or

loading strategy may result similar behavioral pattern. Such as a similar pattern of system

calls, or a similar pattern of JNI calls, which make these packers belong to one type of packer.

Native code in Android applications is deployed as ELF files, either executable files or shared

libraries (.so files). Java code can invoke native code in the following ways [29].

Exec methods. Executable file can be called from Java by Runtime.exec and process-

Builder.start. These methods are refer to Exec methods.
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Native methods. Methods are declared in Java code but implemented in native shared

libraries. Java Native Interface (JNI) defines a way for Java to interact with native methods.

Native activity. Native code is invoked in native activities using activities’ callback func-

tions, (e.g., onCreate and onResume), if defined in a native library.

To address the diversity of packers’ behavior and detect the typical behavioral patterns for

specific type of packer, we propose to design a native code level instrumentation framework

that records all events and operations executed from within native code, such as invoked

system calls, native-to-Java communications and Binder transactions as following:

• To monitor system calls, we proposed to implement a Linux kernel module to capture

the invoked system calls. Other tools such as strace cannot perform effective analysis

because of the packer’s anti-debugging.

• To monitor native-to-Java communications including calls to Exec methods, calls

to Native methods, native activity callbacks, we proposed to instrument libjavacore,

libdvm, libandroid runtime respectively.

• To monitor Binder transactions, we propose to instrument libbinder to capture the

class of the remote functions being called and the number that identifies the function.

To classify the packed applications, we can use similar idea we proposed in [30]. First,

for each application instance i, we can convert the behavior patterns into sequential strings

according to the execution time, say sequence for system call monitoring sc{i}, sequence

for Native-to-Java monitoring nj{i}, and sequence for binder transaction monitoring bt{i}.

Such as Ssc{i} , Snj{i} , and Sbt{i} . Take system call monitoring for example, if the system call

sequence of ith instance sc{i} is read→read→wirte, then Ssc{i} can be written as “RRW”.

The normalized Levenshtein distance can be then used to compute the distance between

behavior patterns of application instance i and k. We define the normalized Levenshtein

distance as following. If we have two strings S1 and S2, the normalized Levenshtein dis-

tance D(S1, S2) equals to the minimal operations taken to transform S1 to S2, divided
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by max(length(S1), length(S2)). For example, if Ssc{i} =“RRW” and Ssc{k} =“RRWW”,

one operation will be taken to transform Ssc{i} to Ssc{k} , i.e. adding an extra “W”. Then

we have the normalized Levenshtein distance between Ssc{i} and Ssc{k} , D(Ssc{i} , Ssc{k}) =

1
max(3,4)

= 1
4
. Finally, the overall distance between application instance i and k will be

Dtotal{i,k} = wsc · D(Ssc{i} , Ssc{k}) + wnj · D(Snj{i} , Snj{k}) + wbt · D(Sbt{i} , Sbt{k}), where wsc,

wnj, and wbt is the corresponding weights applied to distances of behavior patterns of system

call, Native-to-Java and binder transaction. Given n application instances, a n× n distance

matrix between each application instance is built in this way and single-linkage hierarchical

clustering algorithm can be applied to split application instances into clusters (sets of packed

applications).

For the coarse-grained classification, we can maintain a white-list database for existing

known packed frameworks as a filter. The unknown framework packed applications and

fully packed applications will be further classified in the following fine-grained classification.

All three monitor components will be deployed in another Android device. Each monitor

component will log the corresponding behavior pattern of the packed application and feed

the pattern to the classifier. Packed applications will be classified into groups reflecting

similar type of behavior eventually.

3.6 Conclusion

In this work, we investigated a series of Android packing services appeared recently, studied

the packing techniques adopted by packers and the difference between packed applications

and unpacked applications. Our study showed that the complexity of packing techniques

and packers’ evolvement makes many of the packed applications hard to be detected and

analyzed efficiently with existing tools.

Based on our findings, we implemented a detection and DEX recovery module for packed

Android applications by combining static and dynamic analysis to evade the anti-defenses

of packer, and proposed class load and method resolving instrumentation to capture the
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Dalvik byte-code at runtime. In addition, we perform native code level instrumentation to

extract information for analyzing native code behavior. Currently more and more Android

applications are written in native code in order to speed up execution. Packers are more

likely to employ native code packing techniques to protect mobile binary being reversed.

We proposed coarse-grained and fine-grained Android packer classifications as future

work. This classification framework aims to extract the discriminative behavior pattern and

categorizes packed Android applications into groups.
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Figure 3.1: How Android Applications are Built and Run

39



Figure 3.2: JNI General Work Flow
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Figure 3.3: Decompiled Code for Unpacked Android Applications

Figure 3.4: Decompiled Code for Packed Android Applications
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Figure 3.5: Comparison of Unpacked and Packed Application for Dumping DEX Code Con-
tent from Memory

Figure 3.6: Code Obfuscation for Native Methods
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Figure 3.7: An Overview of Automatic Detecting and Unpacking for Packed Android Appli-
cations
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Figure 3.8: Android Runtime Class Loading
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Chapter 4

MobileFindr: Function Similarity Identification for Reversing Mobile

Binaries

4.1 Introduction

With the general availability of closed-source applications, there is a need to identify func-

tion similarity among binary executables. For instance, in the automatic patch-based exploit

generation, detecting the function similarity/difference between a pre-patch binary and

post-patch binary reveals the patched vulnerability [31, 32, 33, 34], and such informa-

tion can be explored automatically within a few minutes [35], and generate 1-day exploits

[36]. Performing function similarity measurement between intellectual property protected

software binaries and suspicious binaries indicate potential cases of software plagiarism

[37, 38, 39, 18, 40]. Detecting similar malicious functionality between different binary malware

samples is another appealing application emerged in malware analysis, since the majority of

malware samples are not brand new program but rather repacks or evolutions of previous

known malicious function code [41, 42].

An inherent challenge shared by the above applications is the absence of source code.

Binary executable becomes the only available resource to be analyzed. A number of

semantics-aware binary differencing or function similarity detecting methods have been

proposed. One category is to use static analysis, which is usually based on control-flow

graph (CFG) comparison [31, 33, 34, 43]. At a high level, the CFG based approach extracts

various robust features for a node in the control flow graph [31, 33], or learns higher-level

numeric feature representations from the control flow graph [34], or converts the control

flow graph into embeddings [43], then perform similarity searching for the target functions.
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Although these studies have demonstrated that CFG based methods can be effective and

scalable, all of these methods exclude obfuscated binaries, which appeared in a large number

of mobile applications. Basic block semantics modeling is another approach for similarity

measurement [44, 40, 32]. At a high level, it represents the input-output relations of a

basic block as a set of symbolic formulas, which are later proved by a constraint solver

for equivalence. However, the SAT/SMT solvers which are often used to measure semantic

similarity are computationally expensive and impractical for large code bases of many real

world mobile applications [33].

Another category relies on dynamic analysis, which is usually based on runtime exe-

cution behavior comparison. For example, previous work by Ming et al. achieves this by

collecting system or API calls to slice out corresponding code segments and then check their

equivalence with symbolic execution and constraint solving [42]. However, their trace log-

ging component is an emulator based system, which cannot handle the environment-sensitive

mobile applications that can detect sandbox environment. Egele et al. built a system called

BLEX to capture the side effects of functions during execution [45]. Xu et al. built a tool

called CryptoHunt to capture the specific features of cryptography functions with boolean

formula [46]. All of their implementation are based on Intel’s Pin framework [47], which is

not work on mobile platforms generally with ARM instruction set architecture.

In this chapter, we aim at improving the state of the art by proposing trace-based function

similarity mapping, a hybrid method to efficiently search for similar functions in mobile

binaries. Regardless of the optimization and obfuscation difference, similar code must still

have semantically similar execution behavior, whereas different code must behave differently

[45]. Our key idea is to capture the dynamic behavior features during the execution of a

function along a runtime trace. More precisely, we propose to record a variety of dynamic

runtime information as dynamic behavior features via dynamic instrumentation, and use

stack backtrace information to locate corresponding functions that can be represented with
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these features. Then we calculate the similarity distance based on such features and return

a list of similar functions ranked by the score of distance.

We have designed and implemented a system called MobileFindr, and evaluated it with

a set of mobile examples under different obfuscation scheme combinations. Our experi-

mental results show that our system can successfully identify fine-grained function similari-

ties between mobile binaries, and outperform existing state-of-the-art approaches in terms of

better obfuscation resilience and accuracy. Our evaluation with top-ranked real-world mobile

applications also demonstrated the effectiveness of our system.

Correspondingly, our contributions in this work are:

• We have proposed a novel approach, trace-based function similarity mapping, to per-

form function similarity measurement on mobile platforms. Our key solution is to cap-

ture observable dynamic behaviors along an execution trace via dynamic instrumenta-

tion, and characterize functions with such behaviors. Our approach exhibits stronger

resilience to various anti-reverse engineering techniques for mobile applications. To best

of our knowledge, this is the first work having such ability on mobile platforms.

• We have proposed a variety of dynamic features to record during the function execution,

which allow us to approximate the semantics of a function without relying on the source

code access.

• we have implemented a system called MobileFindr and source code is publicly available

at GitHub: https://github.com/tigerlyb/MobileFindr.

• We have demonstrated the viability of our approach for top-ranked real-world mobile

frameworks and applications.

The rest of this chapter is organized as following. Section 4.2 introduces background and

challenges. Section 4.3 presents the details of our system design and implementation. Section

4.4 presents our evaluation and results. Discussion and limitations are presented in Section

4.5. Then we present related work in Section 4.6, and conclude this chapter in Section 4.7.
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4.2 Background

This section introduces the background of reverse engineering, presents the popular tools that

help for reverse engineering mobile applications, including various debuggers, disassemblers,

decompilers, etc. Then we demonstrate motivating examples and describe possible reverse

engineering challenges that can affect the state of the art function identification methods.

4.2.1 Reverse Engineering Mobile Applications

Reverse engineering is the process of taking a program’s binary code and recreating it so

as to trace it back to the original source code. It is being widely used in computer software

security to enhance product features without knowing the source: find security flaws, test

code compatibility, add new features or redesign the product, understand the design of

malicious code, etc. In this section, we present popular reverse engineering tools for mobile

applications as follows:

• Debugger: helps developer to understand how the program behaves at runtime

without modifying the code, and allows the user to view and change the running state

of a program. With the release of Xcode 5, the LLDB debugger [8], which is part

of the LLVM compiler development suite, becomes the foundation for the debugging

experience on Apple platforms. LLDB is fully integrated with Xcode and provides deep

capabilities in a user-friendly environment. For Android platform, both LLDB and

JDB (Java debugger) are integrated in the Android Studio debugger [9]. By default,

Android Studio automatically choose the best option for the code you are debugging.

For example, if you have any C or C++ code in the project, Android studio debugger

select LLDB to debug your code. Otherwise, Android Studio uses the Java debug type.

• Disassembler: a software tool which transforms binary code into a human readable

mnemonic representation called assembly language. Many disassemblers are available

on the market, both free and commercial. Apktool [2] and Baksmali [3] are free tools
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that can disassemble the DEX format used by Dalvik, Android’s Java VM implementa-

tion. They can decode resources to nearly original form and rebuild them after making

some modifications. They also makes working with an application easier because of the

project like file structure and automation of some repetitive tasks like building Android

APK files, etc. The most powerful commercial disassembler is IDA Pro [6], published

by Hex-Rays. It can handle binary code for a huge number of processors and has open

architecture that allows developers to write add-on analytic modules.

• Decompiler: a software tool used to revert the process of compilation. Decompilers are

different from disassemblers in one very important aspect. While both generate human

readable text, decompilers generate much higher level text, which is more concise and

much easier to read. For example, Android developer can use Dex2jar [4] to convert

DEX file to Java class file, and then open it in JD-GUI [5] to display Java source code.

Hex-Rays Decompiler [7] is a IDA Pro extension that converts native processor code

into human readable C-like pseudo-code text.

4.2.2 Challenges

The software security community relies on such reverse engineering tools to analyze and

validate programs. However, various anti-reverse engineering techniques employed by the

latest mobile applications make existing reverse engineering tools ineffective. For instance,

the anti-debugging and anti-emulator techniques employed by mobile applications limit the

usage of many dynamic analysis tools [48, 49, 50]. Code obfuscation scheme provide strong

protection against automated static reverse engineering tools. Moreover, different mobile

applications tend to use different obfuscation techniques and even same application changes

obfuscation options when updating its version. In this chapter, we focus on analyzing iOS

applications. Nowadays iOS developers heavily rely on code obfuscation to evade detection

since iOS is a close-source platform. Therefore, in this section, we introduce different code

obfuscation features as well as motivating examples for understanding each features.
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Code Obfuscation

Obfuscation aims at creating obfuscated code that is difficult for humans to understand.

Obfuscation techniques include modifying names of classes, fields, and methods, reordering

control flow graphs, encrypting constant strings, inserting junk code, etc. To obfuscate mobile

applications, we rely on a state-of-the-art open-source obfuscation tool, Obfuscator-LLVM

4.0 [51], which supports popular obfuscation transformations as follows.

• Control Flow Flattening: The purpose of this pass is to completely flatten the

control flow graph of a program. The flag option -split activates basic block splitting,

which improve the flattening when applied together.

• Instructions Substitution: The goal of this obfuscation technique simply consists in

replacing standard binary operators (like addition, subtraction or boolean operators)

by functionally equivalent, but more complicated sequences of instructions.

• Bogus Control Flow: This method modifies a function call graph by adding a basic

block before the current basic block. This new basic block contains an opaque predicate

and then makes a conditional jump to the original basic block. The original basic block

is also cloned and filled up with junk instructions chosen at random.

Obfuscation Example

We use the example in Figure 4.2 to illustrate code obfuscation on iOS platform. Figure 4.1

shows the Objective-C source code of a function called encrypt1. It takes a string message

as input and xor the message with a key, then return the encrypted message. Figure 4.2a

shows the original control flow graph without any obfuscation, which only contains 4 basic

blocks. While Figure 4.2b is the obfuscated version (combined all three obfuscation options

above) of that function. As mentioned in Section 4.1, existing static approaches that rely

on control flow graph similarity and basic block level comparison will likely not be able to

make a meaningful distinction in this scenario. Alternative approaches, such as dynamic
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Figure 4.1: A Motivating Example: Code

(a) (b)

Figure 4.2: A Motivating Example: CFG
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Figure 4.3: Schematic Overview of Trace-based Function Similarity Mapping System

approaches, either rely on Pin tool or emulator-based system to capture execution behavior.

Pin tool is not able to work on analyzing most mobile applications, since ARM processors

dominate mobile platforms. The anti-emulator techniques employed by mobile applications

also limit the usage of such emulator-based analysis system. To address the above mentioned

challenges in the scope of matching function for mobile binaries, we design a novel on-device

dynamic instrumentation system.

4.3 Design and Implementation

In this section, we first illustrate the design of our approach, and then detail the implemen-

tation of our system.

4.3.1 Overview

We present trace-based function similarity mapping, a hybrid method to efficiently search

for similar functions in mobile binaries. More precisely, we propose to record a variety of

dynamic behavior features during the execution of a function along an execution trace.

We define the concept of ”dynamic behavior features” broadly to include any information

that can be derived from observations made during execution. Our approach works as the
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following: given two mobile applications A, B and a function of interest F from A. Both F and

any executed functions from B are characterized with dynamic behavior features. Then we

compute similarity scores between F and each function f from B, to identify which functions

in B are similar to F. The novelty of our approach lies in the follows.

• What features are useful for semantic similarity comparisons?

• How these features are captured on mobile platforms?

• How to characterize a function with such features?

Figure 4.3 illustrates the architecture of our system, which comprises four stages: prepro-

cessing, on-device dynamic analysis, feature extraction and similarity searching. The prepro-

cessing stage, as shown in the left side of Figure 4.3, involves two parts: binary extraction and

address extraction. It dumps the mobiles binaries from the application and extract addresses

for all functions and imported libraries and frameworks. All the extracted addresses are

passed to the on-device dynamic analysis stage for instrumentation and trace logging usage.

The recorded traces will be analyzed by the feature extraction stage. Then we perform the

similarity searching based on the function features obtained from feature extraction stage.

Next, we will present each step of our system in the following sections.

4.3.2 Preprocessing

Binary Extraction

When you download an iOS application from the iOS App Store, Apple injects a special

4196 byte long header into the signed binary encrypted with the public key associated with

your iTunes account. For this step we choose Clutch [52], to decrypt and dump application

binary. Then we need to disable the ASLR (Address Space Layout Randomization) to get

the correct function addresses.
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Figure 4.4: Partial vs Full ASLR in iOS

Address Space Layout Randomization is an important exploit mitigation technique intro-

duced in iOS 4.3 [53]. ASLR makes the remote exploitation of memory corruption vulner-

abilities significantly more difficult by randomizing the application objects location in the

memory. By default iOS applications uses limited ASLR and only randomizes part of the

objects in the memory.

In order to take full advantage of the ASLR, the application has to compiled with -pie

flag (Generate Position-Dependent Code). This flag is automatically checked by default in

the latest version of Xcode (from iOS 6). So, all the applications that are compiled in the

latest SDK will automatically use full ASLR. Figure 4.4 compares the different memory

sections for partial and full ASLR applications.

During our instrumentation process, we first need to extract the imported library

addresses via IDA pro statically since our dynamic instrumentation tools doesn’t provide

the API to extract the library. ASLR will randomize the objects’ addresses in the memory
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during the execution that affect our instrumentation. We leverage the tool removePIE [54]

to disable the ASLR by flipping the PIE flag. After that, we put the binary back to the

application and re-sign it with ldid [55].

Address Extraction

We utilize IDA Pro [6] to disassemble the binary obtained from previous step, extract

function addresses as well as imported library addresses and framework addresses through

IDAPython API. This component is implemented with 155 lines of Python code. Listing 4.1

shows an example of a function address table extracted from the iOS application binary.

Each line consists of starting address (e.g., 0x11834), ending address (e.g., 0x11980) and

function name (e.g, prepareToRecord from the class MovieRecorder). Listing 4.2 shows an

example of library addresses, which only consist the starting addresses and library names.
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Listing 4.1: Function Addresses

...

0xb7ea ,0xb964 ,-[ VideoSnakeViewController toggleRecording :]

0xe2cc ,0xe51c ,-[ VideoSnakeSessionManager startRecording]

0x111d8 ,0x1128c ,-[ MovieRecorder initWithURL :]

0x1161c ,0x116a8 ,-[ MovieRecorder delegate]

0x11834 ,0x11980 ,-[ MovieRecorder prepareToRecord]

0x11d48 ,0x11ebc ,-[ MovieRecorder finishRecording]

...

Listing 4.2: Library Addresses

...

0x1606c ,__Block_copy

0x1607c ,__Block_object_assign

0x1608c ,__Block_object_dispose

0x1609c ,__Unwind_SjLj_Register

0x160ac ,__Unwind_SjLj_Resume

0x160bc ,__Unwind_SjLj_Unregister

...

4.3.3 On-device Dynamic Analysis

The on-device dynamic analysis stage performs dynamic instrumentation and trace logging

in order to record the needed information.

Dynamic Instrumentation

We utilize Frida [56], a dynamic instrumentation toolkit, to inject JavaScripts in application

process that monitor the dynamic behavior during execution. Frida lets you inject snippets

of JavaScript or your own library into native applications. Frida’s core is written in C and
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injects Googles V8 engine into the target processes, where the JavaScript gets executed with

full access to memory, hooking functions and even calling native functions inside the process.

Trace Logging

In our implementation we chose features that capture a variety of system level information

(e.g., libc calls), as well as higher level attributes, such as objc calls, framework API invo-

cations etc. Generally, systems provide a library or API that sits between normal programs

and the operating system. On Unix-like systems, that API is usually part of an implemen-

tation of the C library (libc), that provides wrapper functions for the system calls. iOS is

based on Unix. All the system calls are defined in libsystem kernel.dylib. Tracing all system

calls will result significant performance issue which makes the application stuck. Therefore,

instrumenting all imported library calls as well as framework API calls meet our needs for

trace logging.

• Library Calls: e.g., memset, memcpy, free, etc. defined in libSystem.B.dylib, objc getClass,

objc getProtocol, etc. defined in libobjc.A.dylib. The imported libraries can be extract

statically by use IDA pro. First, we extract all imported library modules with IDA

API get import module qty(), then we extract all imported library call addresses

by enumerate all functions with IDA API enum import name(). After that, we use

Frida’s API called Interceptor.attach(address, callback) to inject JavaScript in the

corresponding addresses and trace all the imported library calls.

• Framework APIs: e.g., OpenGLES, CoreMedia, UIKit, etc. we use Frida’s API Pro-

cess.enumerateModules to extract all framework modules loaded by the application

during runtime, and then use Module.enumerateImports(name, callbacks) to inject

JavaScript so that we can trace all the imported framework APIs by passing their

names to it.
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We leverage the Frida APIs to inject JavaScript at the library addresses and framework

addresses to record the invocations of such features above, and generate a backtrace for the

current thread, returned as an array of native pointer addresses for the subsequent steps.

4.3.4 Feature Extraction

Listing 4.3 illustrates the logged trace data, which consists of arrays of addresses. Each line

indicates an invocation of library call or framework API call, followed by its stack backtrace

information. First, we transform the addresses to function names according to the address

table obtained from the preprocessing stage. For instance, 0x1609c is the starting address

of Unwind SjLj Register, 0x11892 is in the range of 0x11834 and 0x11980, which indicate

the library Unwind SjLj Register is called by function prepareToRecord. The rest can be

done in the same manner. Listing 4.4 illustrates a full translated results from Listing 4.3.

Listing 4.3: Stack Backtrace: Address

...

0x1609c ,0x11892 ,0xe498 ,0xb92e ,0xb15a

0x1621c ,0x118c0 ,0xe498 ,0xb92e ,0xb15a

0x1620c ,0x118fc ,0xe498 ,0xb15a

...
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Listing 4.4: Stack Backtrace: Name

...

__Unwind_SjLj_Register ,-[ MovieRecorder prepareToRecord ],-[

VideoSnakeSessionManager startRecording ],-[

VideoSnakeViewController toggleRecording :],sub_B120

_dispatch_get_global_queue ,-[ MovieRecorder prepareToRecord ],-[

VideoSnakeSessionManager startRecording ],-[

VideoSnakeViewController toggleRecording :],sub_B120

_dispatch_async ,-[ MovieRecorder prepareToRecord ],-[

VideoSnakeSessionManager startRecording ],-[

VideoSnakeViewController toggleRecording :],sub_B120

...

Next, we match these library calls or framework API calls to its corresponding caller functions

as features. Listing 4.5 represents features of function prepareToRecord, in JSON format. The

feature extraction component is implemented with 280 lines of Python code.

4.3.5 Similarity Searching

The function feature representation is a length-N feature list. We chose Jaccard index to

measure the similarity between lists. The Jaccard similarity index (Jaccard similarity coef-

ficient) compares members for two sets to see which members are shared and which are

distinct. Its a measure of similarity for the two sets of data, with a range from 0% to 100%.

The formula to find the index is:

J(X, Y ) = |X ∩ Y |/|X ∪ Y | (4.1)

We define sim(f, g) to be the similarity score between function f and g. We perform

similarity searching as the following: starting with a known reference function in a trace, we
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are searching for mobile binaries containing similar functions by calculating similarity score

and listing top K similar function candidates.

Listing 4.5: Function Features

{

"name" : "-[ MovieRecorder prepareToRecord ]",

"features" : [

[

"__Unwind_SjLj_Register",

"_dispatch_get_global_queue",

"_dispatch_async",

"__Block_object_assign",

"__Unwind_SjLj_Unregister"

]

]

}

4.4 Evaluation

In this section, we evaluate our system to answer the following questions.

• Q1: Can MobileFindr detect similar functions in different versions of same mobile

applications?

• Q2: Can MobileFindr detect similar functions used by different mobile applications?

• Q3: Can MobileFindr be used for analyzing real-world mobile applications?

Particularly, we conduct our experiments to evaluate whether our system outperforms

existing binary similarity detection tools in terms of better obfuscation resilience and accu-

racy. We designed two controlled datasets so that we have a ground truth to assess comparison
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Figure 4.5: Function Mapping between Obfuscated Version and Non-obfuscated Version

results accurately. We also evaluate the effectiveness of our system in analyzing real world

top-ranked iOS applications from Apple App Store.

4.4.1 Experiment Setup

Our on-device dynamic analysis is performed on a 32GB Apple Jailbroken iPad (4th Gener-

ation) running iOS 8.3. The configuration of our testbed machine for feature extraction and

similarity searching is shown as follows.

• CPU: Intel Core i7-6700K Processor (Eight-core with 4.00GHz)

• Memory: 64GB

• OS: Ubuntu Linux 14.04 LTS

• Python Version: 2.7.12
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• IDA Pro Version: 6.6

4.4.2 Ground Truth Dataset

Data 1

First, we collect 8 sample codes with different functionalities from official Apple developer

website. For each sample we build both non-obfuscated version and obfuscated version. The

obfuscated version combines all three settings in Table 4.1.

Data 2

Then we test our system with third-party frameworks or libraries that are commonly used

by popular mobile applications. In practice, programmers usually take advantage of existing

frameworks or libraries to speed up their developments. In our evaluation, we choose AFNet-

working and SDWebImage, top-two ranked open source frameworks [57] as the reference

implementation.

AFNetworking [58] is an Objective-C networking library for iOS, macOS and tvOS. It is

a robust library that has been around for many years. From basic networking to advanced

features such as Network Reachability and SSL Pinning, AFNetworking has it all. It is one

of the most popular iOS libraries of all time with almost 50 million downloads.

SDWebImage [59] is an asynchronous image downloader with caching. It has handy UIKit

categories to do things such as set a UIImageView image to an URL. While networking has

become a little bit easier in Cocoa over the years, the basic task of setting an image view

to an image using an URL hasnt improved much. SDWebImage helps ease a lot of pain, so

thats why its so popular with iOS application developers.

Our purpose is to detect such frameworks or libraries that commonly used in different

mobile applications. To this end, we collect 8 open source projects from GitHub, and reuse the

provided APIs from two libraries above. We built sample applications with non-obfuscated
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version and 7 different combinations of the obfuscation settings, which results in 64 appli-

cations in 8 different types. We kept the debug symbols as they provide a ground truth and

enable us to verify the correctness of matching using the functions symbolic names.

Table 4.1: Different Obfuscation Types and Flag Settings

Type Flag Setting

1 control flow flattening -fla, -split, -split num=3
2 instruction substitution -sub, -sub loop=3
3 bogus control flow -bcf, -bcf loop=3, -bcf prob=40

4.4.3 Obfuscation Options

As mentioned in section 4.2, we use Obfuscator-LLVM to obfuscate our ground truth mobile

samples. Table 4.1 lists specific obfuscation settings that we use to build our ground truth

iOS samples. We integrate Obfuscator-LLVM into Xcode, and enable the three obfuscation

features described in Section 4.2, and apply different settings as follows.

• Control Flow Flattening: The flag -fla activates control flow flattening. The flag -split

activates basic block splitting, which improve the flattening when applied together. If

-split num=3, applies it 3 times on each basic block.

• Instructions Substitution: The flag -sub activates instructions substitution. If -

sub loop=3, applies it 3 times on a function.

• Bogus Control Flow: The flag -bcf activates the bogus control flow pass. If -bcf loop=3,

applies it 3 times on a function. Default number is 1. If The option -bcf prob=40, a

basic block will be obfuscated with a probability of 40%.

4.4.4 Peer Tools

We compare our tools with other state-of-the-art similarity detection or diffing tools that

open to public: BinDiff, BinGrap, Genies. BinDiff [60] is a comparison tool for binary files,
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that assists vulnerability researchers and engineers to quickly find differences and similari-

ties in disassembled code. BinGrap [61] is also a static analysis tool that perform function

similarity searching, but it can output a list of functions in order of similarity. Genius is a

bug search engine that performs function similarity matching based on mapping raw fea-

tures of a function into a higher-level numeric vector where each dimension of the vector

is the similarity distance to a categorization in the codebook. However, only partial code is

available, including raw feature extraction and search. Therefore, we re-implement Genius’

two core steps, codebook generation and feature encoding in python. We utilized Hungarian

algorithm for calculating bipartite graph matching cost and normalized spectral clustering

[62] for ACFGs (Attributed Control Flow Graph) clustering. In evaluation phrase, we adopt

Nearpy [63] for LSH (Locality Sensitive Hashing) [64] and search. We used SQLite to store

function information and encoded vectors.

As mentioned in section 4.1, BLEX [45], BinSim [42] and CryptoHunt [46] don’t work

on mobile platforms. To the best of our knowledge, we are the first to propose a dynamic

strategy for comparing mobile binary code. This is the reason why we did not compare our

evaluation to these dynamic approaches.

4.4.5 Evaluation Results

We use the recall rate (A.K.A true positive rate) mentioned in [34] as the evaluation metrics

to evaluate the accuracy of the following methods. In the code search scenario, the search

results are a ranked list. For each query q, there are m matching functions out of a total of

L functions. If we consider the top-K retrieved instances as positives, the total number of

correctly matched functions, µ, are true positives, and the remaining number of functions

in the top K, that is K - µ, are false positives. Based on the definition, the recall rate is

calculated as recall(q) = µ ÷ m.

The first evaluation method is to answer Q1. Dataset 1 is used for this evaluation. For each

sample, We randomly select functions from non-obfuscated version as reference functions,
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then perform our trace-based function similarity mapping to see if we can locate the same

function in obfuscated version listed as top-K similar function candidates. Figure 4.5. shows

the comparison results between BinGrep, BinDiff, and Genius for different applications. For

example, MobileFindr ranks 82.9% functions at top 1 for PageControl App, whereas Genius

only ranks 8.2%.

The second round of evaluation method worked on the dataset 2, which is to answer

Q2. Both functions in dataset 1 and 2 have known ground truth for metric validation. We

randomly select one application from each type of applications as reference known applica-

tion, and select functions in AFNetworking and SDWebImage from that application as query

functions. Then we perform trace-based function similarity mapping for searching the given

functions in the rest applications, and list top K candidates for each application based on

the similarity score. We only compare with Genius and BinGrep since BinDiff is a one-to-one

mapping tool, which cannot list more than 1 candidate. data 2 is shown in Figure 4.6.

Our evaluation results show that MobileFindr can achieve more than 80% accuracy in

average from top 3 to top 15 similar functions, which outperforms other tools in terms of

much more better accuracy and obfuscation resilience.

4.4.6 Real-world Application Case Study

We conduct third evaluation to answer Q3. This section gives an empirical evaluation to

test MobileFindr using real-world applications to evaluate its efficiency. We evaluated 6

top-ranked iOS applications in different types, such as search engine, social networking,

etc. For instance, Baidu is the world’s largest Chinese search engine. We downloaded two

different versions of Baidu application, version 930 and version 935. We chose version 930

as reference application and performed a simple web searching with key words: security for

trace logging. We collected 430 functions in this trace, and then perform trace-based function

similarity mapping to search similarity functions in the new version 935, and listed top 10

similar function candidates. We manually verified the matched functions by looking at their
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Figure 4.6: Function Mapping Evaluation for Popular Third-party Frameworks
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Figure 4.7: Function Mapping Evaluation in Real-world Applications

assembly code and compare the code logic. MobileFindr achieve 81.13% accuracy with less

than 10 minutes for the matching process. While matching the same 430 functions in Genius,

it only achieved 59.7% accuracy, but spent around 2 hours in training, more than 40 hours

when handling function graph embeddings. Figure 4.7 shows the function mapping results

for the 6 real-world applications.

4.5 Discussion

In this section, we discuss the limitations of our system and potential solutions to be inves-

tigated in future work.

First, a challenge that we already touched upon in Section 4.4 is the fact that our approach

needs manual verification efforts for real world iOS applications, since we don’t have access

to their source code. The candidate similarity ranking produced by our system gives an
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ordered list of matched functions that have to be manually inspected by an analyst to verify

if those functions are actually similar. Some of the existing dynamic approaches [42, 46]

rely on symbolic execution to generate a set of symbolic formula, and then use theorem

prover to perform the equivalence checking. However, the theorem prover is computationally

expensive and impractical for large code bases of many real world mobile applications. Such

an automatic verification would be ideal, but surely is a research topic in itself and is outside

the scope of this work.

Second, the incomplete path coverage is a concern for all dynamic analysis system,

including ours. The possible solutions are to explore more paths by automatic input gener-

ation [65, 66]. To trigger as many dynamic behaviors as possible for trace logging, we can

leverage the idea of Malton [25], which proposed an efficient path exploration technique that

employs in-memory concolic execution with an offloading mechanism and direct execution

engine.

Third, the functions considered by us need to have a certain amount of complexity for

the approach to work effectively. Otherwise, the relatively low combination number of library

calls leads to a high probability for collision. Hence, we only considered functions with at

lease five basic blocks, as noted in Section 4.4. For instance, the potential for bugs in small

functions, however, is significantly lower than in large functions, as shown in [67]. Hence, in

a real-world scenario this should be no factual limitation.

4.6 Related Work

There has been a substantial research on detecting binary code similarity. Existing semantics

aware binary matching techniques can be classified into different categories. One is based

on static information including numeric features and structural features [68, 33, 34]. Many

numeric features (e.g. the number of basic blocks, the number of edges, logic instructions,local

variables, etc) and control flow graph has been demonstrated to be robust across compilers

and different compile options in previous work [31, 44]. Another one executes target code and
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collect runtime behavior [45, 69, 46, 42]. Common execution behaviors includes stack and

heap memory access, system call sequences and library calls, registers values, execution path,

etc. The other one based on the basic block modeling. Cop [40] models the program semantics

an three different levels: basic block, path, and whole program. To model the semantics of a

basic block, they adopt the symbolic execution technique to obtain a set of symbolic formulas

that represent the input-output relations of the basic block in consideration. To compare the

similarity or equivalence of two basic blocks, they check via a theorem prover the pair-

wise equivalence of the symbolic formulas representing the output variables, or registers and

memory cells.

The combination of collected features represent as a signature of target code for matching

step. It is vital to identify robust features and correctly characterize target code with the

features. Bindiff [60] as an efficient binary diffing tool using a graph theoretic approach to

find similarities and differences. The graph isomorphism detection on pairs of function works

well when two semantically equivalent binaries have similar control flow. But CFG changes

across architectures and compilers. In [34], Genius maps raw features of a function into a

higher-level numeric vector where each dimension of the vector is the similarity distance

to a categorization in the codebook. However, one common limitation of static approaches

is incapable of handling obfuscated code. BLEX [45] collects execution side effects during

function execution and uses a multidimensional vector as function signature for similarity

assessment. It relies on Pin framework and can not apply to mobile binaries.

The techniques of binary matching have been driven towards to solve security problems.

One common case in vulnerability assessment is that secure analysts would want to use a

sample of vulnerable binary without source code to search for the similar bug across all

the softwares installed in the company devices [33, 70]. It is challenging for vulnerability

assessment in a large code base for the following reasons: first, most commercial software

projects are closed-source and only available in the binary form without debug information.

Second, different versions of software may be compiled on different optimization levels and

69



different compile tool-chain, which would radically changes both the number of nodes and

structure of edges in both the control flow graph and the call graph. Third, pervasive code

protection schemes, such as class and method rename, encryption of strings, control flow

obfuscation and virtualization of code, render code analysis time consuming. Our evaluation

have considered above situations and demonstrate that our approach can handle it.

One derived case of vulnerability assessment is patch analysis, which focus on identifying

un-patched bug duplicates [32, 35]. Since mobile application developers tend to constantly

review and test their products security, they periodically release patches for new found

security bugs. However, a patch typically introduces few changes and it takes a long period

for users to update a software due to unawareness of security problem. Our work can also

be seen in the light of a version diffing engine to identify functions between updated version

and un-patched mobile binary.

With rapid development of open-source projects, the similarity between an licensed pro-

tected binary and a suspicious binary indicates a potential case of software plagiarism [40, 38].

Existing code similarity measurement methods have been proved to be useful but remain

far from perfect. Some software plagiarism detection approaches based on dynamic system

call sequences have also been proposed [38, 37], but they incur false negatives when the

number of system calls are insufficient or when system call replacement is applied. Most of

the existing methods are not effective in the presence of obfuscation techniques. Another

obfuscation resilient method [40] based on symbolic execution and theorem proving bears

high computational overhead.

4.7 Conclusion

We proposed MobileFindr, an on-device trace-based function similarity mapping system for

reverse engineering mobile applications. It records a variety of dynamic runtime information

as dynamic behavior features via dynamic instrumentation, and use stack backtrace infor-

mation to locate corresponding functions that can be represented with these features. We
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evaluated it with a set of examples under different obfuscation scheme combinations. Our

experimental results show that our system can successfully identify fine-grained function

similarities between mobile binaries, and outperform existing state-of-the-art approaches in

terms of better obfuscation resilience and accuracy. Our evaluation with top-ranked real-

world frameworks and applications also demonstrated the effectiveness of our system. To

the best of our knowledge, we are the first to propose a dynamic strategy for function simi-

larity identification on the mobile platform, which is capable of mitigating many anti-reverse

engineering techniques.
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Chapter 5

Summary

Designing a system that collecting, organizing, and evaluating facts about a mobile appli-

cation and the environment in which it operates is an effective way for automating reverse

engineering analysis and fight against anti-reverse engineering techniques on mobile plat-

forms. In this dissertation, we introduce state-of-the-art reverse engineering techniques as

well as different anti-reverse engineering techniques employed by mobile applications. We

discuss various reverse engineering challenges and limitations of existing research studies,

and present novel system techniques for reversing mobile applications on different mobile

platforms (Android and iOS).

On the Android platform, Android packing services provide significant benefits in code

protection by hiding original executable code, which help application developers to protect

their code against reverse engineering. In Chapter 3, we investigate a series of Android

packing services appeared recently, study the packing techniques adopted by packers and

the difference between packed applications and unpacked applications, and presents an auto-

matic analysis system for packed Android applications. More specifically, we present a novel

system that provides a comprehensive view of packed Android applications behavior by con-

ducing both byte-code level and native code level monitoring and information flow tracking

via Android source code instrumentation. The byte-code level analysis instruments Dalvik

Virtual Machine (DVM) and Android Runtime (ART) to extract hidden class information

during the applications execution, and then reassemble the original DEX files that was hiding

by the packer. The native code level analysis instruments the Java-Native-Interface (JNI)

to monitors the execution of native components. This monitoring analysis can be used to
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reveal the behavior of a packer. We have evaluated this system with open source Android

applications as well as real world applications, and demonstrated the effectiveness of code

detection and DEX reassemble process.

MobileFindr aims to identifying function similarity during the reverse engineering process

on iOS platform. Detecting code similarity at binary level has been applied to a broad range

of software security applications and reverse engineering tasks. In Chapter 4, we present a

trace-based function mapping system that detects function similarity at binary level across

different optimization options and obfuscation levels. Our trace-based approach captures

various runtime behavior features (e.g., library call, framework API call, etc.) through multi-

layer monitoring via enhanced dynamic binary instrumentation, then characterize functions

with collected behaviors and perform function matching via distance calculation. We con-

ducted experiments on real world examples, ranging from popular mobile frameworks to

top-ranked mobile applications. Our experimental results show that our system can success-

fully identify fine-grained function similarities between iOS binaries, and outperform existing

state-of-the-art approaches in terms of better obfuscation resilience and accuracy. Our eval-

uation with top-ranked real-world mobile applications also demonstrated the effectiveness of

our system.
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Appendix A

Android System Instrumentation Configuration

The script analysis.sh will generate a configure file that enables the detection and unpacking

process. The configure file must be pushed into the device with the following content settings.

• Specify the application to be analyzed:

– pkgname=〈package name〉

• Enable class loading detection, set to true by default:

– enable class detection=true

• Enable Java method trace, set to false by default:

– enable java method trace=false

• Enable libc trace, set to false by default:

– enable lib trace=false

• Enable Java-to-Native trace, set to false by default:

– enable jni j2n trace=false

• Enable Java-to-Native trace for specific native method:

– j2n function name=〈native function name〉

• Force change the return value of the native method:
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– j2n function return value=〈a string value〉

• Force change the arg value of the native method:

– j2n function arg index=〈index id〉

– j2n function arg length=〈index length〉

– j2n function arg value=〈a string value〉

• Enable Native-to-Jave trace, set to false by default:

– enable jni n2j trace=false

• Force change the return value of Java method:

– n2j function name=〈Java function name〉

– n2j function return value=〈a string value〉
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Appendix B

MobileFindr Usage

Step by step usage for MobileFindr:

• Download usbmuxd-1.0.8 and create connection via USB:

– $ python usbmuxd-1.08/tcprelay.py -t 4444:4444 -t 22:10022

• Download clutch 2.0.4 and copy it to the iOS device:

– $ scp -P 10022 Clutch-2.0.4 root@localhost:/usr/bin/Clutch

• Copy the script ”clutch binary dump.py” to device:

– $ scp -P 10022 clutch binary dump.py root@localhost: /

• Connect to device vis SSH:

– $ ssh -p 10022 root@localhost

• Decrypt the app binary:

– $ python clutch binary dump.py

• Load the script preprocessing.py” into the IDA Pro to generate the function

addresses file

• Trace logging:

– $ python frida trace.py 〈address file folder〉 〈app process id〉
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• Feature generation:

– $ python generate features.py 〈trace file folder〉

• Similarity Matching:

– $ python similarity search.py 〈reference app feature folder〉 〈target app feature

folder〉 〈Top K number〉
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