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Abstract

The recognition of a hexagonal substrate pattern by a coarse-grained flexible homopoly-

mer during the surface adsorption process is investigated using parallel tempering (replica-

exchange) Monte Carlo simulations. The strength of the interaction between a grafted

homopolymer chain and a honeycomb surface, which is based on a standard Lennard-Jones

potential, is changed systematically to study different hexagonally patterned substrate mate-

rials and miscellaneous implicit solvents. Introducing specific order parameters, 16 structural

phases are identified at different surface adsorption strengths and temperatures and are clas-

sified into expanded, globular, droplet, semi-spherical and compact phases. Properties of

structural phase transitions and representative polymer conformations are discussed to con-

struct a complete structural hyperphase diagram for a polymer with 55 monomers. Finally,

a detailed analysis of structural properties in the regime of solid-like conformations leads

to the identification of different pattern recognition strategies due to conflicting ordering

effects, induced by intramolecular and monomer-substrate interactions.
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Chapter 1

Introduction

Multidisciplinary research has intensified in recent years to investigate fundamental folding

mechanisms of polymers. The biological function of biopolymers and large proteins in partic-

ular, is dominated by the geometrical structure. Folding and unfolding are natural processes

under biological conditions. However, misfolding can cause illnesses or severe diseases. A

proper understanding of folding pathways from a functional to a dysfunctional state in a

complex biological environment is vital for the development of proper treatment, drug de-

sign and drug delivery. Recently, graphene sheets were suggested as a potential substrate for

medical substances [1]. Also, the fabrication of bioelectrocatalysts on carbon nanotubes [2]

and the construction of light switches on graphene based transistors [3] are further examples

where adhesion enhancement of polymers [4, 5] on graphene sheets plays an important role.

Apart from biological systems, adsorbed polymers are commonly utilized in the assem-

bly of novel two dimensional nanomaterials [6]. A key element in the development and

enhancement of electronic applications like photovoltaics or field-effect transistors (FETs) is

the manipulation of the electronic band structure. Transition metal dichalcogenides (TMX2)

and metal monochalcogenides (MX) were identified as suitable classes of materials. Recently,

research interests were focused on MoS2 or GaSe, which show hexagonal symmetry. These
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materials allow for band gap engineering, but are in general not chemically inert. Thus, poly-

mer films are explored to serve as protective coatings and to mechanically stabilize these thin

materials on solid substrates [7, 8] and in liquid solutions [6]. The given examples illustrate

the wide range where polymer-surface interactions are relevant. Although different polymers

and substrate materials are already used for specific purposes, general adsorption mecha-

nisms and thermodynamics are not yet understood. Therefore, a systematic but general

investigation of polymer adsorption effects on substrates is necessary.

The goal of this study is to understand the cooperative behavior of structure forma-

tion processes in a complex system. A physical system is considered to be complex if its

constituents interact and exhibit multiple degrees of freedom. This work examines the co-

operativity of a semi-classical polymer system, which means that mutual, simultaneous and

hierarchical many-body interactions can impose a higher order and hence reduce entropy.

Further, structural phases of the system and transitions between them are analyzed. A con-

formational phase characterizes the system subject to environmental constraints, where the

majority of configurations share similar physical properties. Generally, phase transitions are

the discernible result of competing, internal energetic and entropic effects which are influ-

enced by external environmental parameters like temperature, pressure, chemical potential

etc.

For macromolecular systems, one important parameter is the temperature. At high tem-

peratures molecules show generally gas-like, extended random-coil phases which collapse

towards lower temperatures into liquid-like globular phases. If the temperature is decreased

further, the system’s constituents arrange ultimately in crystalline or amorphous structures.

Although this coarse scheme of structural phase transitions applies to macromolecular sys-

tems in general, subphases of different geometrical shape and changes in the location of

phase transitions arise from the specifics of the system under consideration. Such irregular

thermodynamic behavior can be induced, for example, by surface effects and discrete sym-
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metries due to the finite size of the polymer [9]. In this context the adsorption of polymers

to nanowires and nanocylinders has been investigated [10, 11]. Further simulations were

performed to study the adsorption to flexible membranes [12] and the effect of attractive

stripe-like surface patterns [13].

In this thesis discrete attraction sites on a hexagonal substrate are considered. A surface

adsorption strength parameter is used to determine how the structural response and cooper-

ativity of the polymer system depends on intramolecular or monomer-substrate interactions.

To provide the reader with a complete overview of the computational approach to address

these questions, the thermodynamics and statistical mechanics, which form the basis for the

simulation of polymer systems, are summarized in Chapter 2. With the theoretical back-

ground at hand, the coarse-grained model for an elastic, flexible homopolymer is developed in

Chapter 3. In this chapter one specific parametrization is selected for the bonded FENE and

Lennard-Jones interaction, following the publication [14]. Next, the computational method-

ology is presented in Chapter 4, where the parallel tempering method is discussed and details

of the implementation are described, as published in [15]. Thermodynamic results, together

with a discussion of the 16 observed structural phases are provided in Chapter 5. Observed

phases are compared between different system sizes and substrates, following the publica-

tion [16]. Additionally, a complete structural hyperphase diagram is presented for a 55mer

and details of the pattern recognition process are discussed. The conclusion of this study

is provided in Chapter 6 together with an outlook on novel questions which arise from the

results of this research.
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Chapter 2

Thermodynamics and statistical

mechanics

Thermodynamics describes the behavior of many particles in a thermodynamic environment,

for example a heat bath. As an empirical theory it introduces macroscopic quantities for

large system sizes where microscopic fluctuations are averaged out. Resulting macrostates are

governed by the thermodynamic laws. Phase transitions can be found for interacting systems.

Different types of phase transitions are typically distinguished by means of discontinuities in

the derivatives of suitable thermodynamic potentials as functions of their natural variables,

for example the Helmholtz free energy F (T, V,N) or the Gibbs free energy G(T, P,N), which

is denoted as Ehrenfest’s classification.

Important to the results presented in this work are first and second order phase tran-

sitions. Transitions of second order show continuous behavior in the first derivative and a

discontinuity in the second derivative of the free energy with respect to a thermodynamic

variable. For instance, the specific heat CV /N ∝ (∂2F (T, V,N)/∂T 2)V,N exhibits a discon-

tinuity at the critical temperature. At a second order phase transition universal critical

properties can be found such as the divergence of the correlation length, allowing for scale
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freedom. For studies of various finite systems this scaling hypothesis is exploited by the ap-

plication of finite size scaling. In the study at hand the scale freedom close to second order

phase transitions is one argument to motivate our coarse-grained approach, introduced in

Chapter 3, and explains the general nature of the obtained results.

2.1 The free energy

A canonical analysis is typically the starting point for the investigation of polymer systems,

where the number of particles N , volume V and temperature T are easily accessible control

parameters. Associated with these variables is the free energy,

F (T, V,N) = U(S, V,N)− T S(T, V,N), (2.1)

which incorporates the internal energy U and the entropy S. It is important to note that for

a system embedded into a heat bath the free energy is minimal at equilibrium. Therefore,

the equilibrium state of a physical system can be examined by analyzing this thermodynamic

potential with respect to order parameters, which is typically denoted as a free-energy land-

scape. Crucial in this context is the development of phase specific order parameters as

discussed in Chapter 5.

2.2 Statistical ensembles

Although thermodynamics can describe the cooperative behavior of systems in the thermo-

dynamic limit, an understanding of the cooperativity, especially in systems of finite size,

can only be based on the fundamental processes which involve thermal fluctuations of micro-

scopic degrees of freedom. The computational methodology to simulate these fluctuations on
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computers will be explained in chapter 4. The occurrence of microstates subject to environ-

mental constraints is governed by the concept of statistical ensembles.

2.2.1 The microcanonical NVE ensemble

The simplest ensemble is the closed system where the number of particles N , the volume V

and the energy E are kept constant. Since every measurement will be of finite accuracy, a

very sharp interval δE � E is typically considered. The number of accessible microstates

with energy Ei is therefore defined as

Ω(E) =
∑

E−δE/2<Ei<E+δE/2

1. (2.2)

Since no state is distinguished by a certain macroscopic property it is postulated that each

microstate i occurs with the same probability

pmic(Ei) =

⎧⎪⎨
⎪⎩

1
Ω(E)

, E − δE/2 < Ei < E + δE/2,

0, otherwise
(2.3)

Finally, the thermodynamic quantities entropy and temperature are defined as system prop-

erties which depend on the parameter E,

S = kB lnΩ(E), (2.4)

1

T
=

∂S(E)

∂E
. (2.5)

The significance of expression (2.4) lies in the connection of microscopic statistics with macro-

scopic thermodynamics.
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2.2.2 The canonical NVT ensemble and the Boltzmann factor

Experimentally more easily accessible is the canonical ensemble where the temperature is

considered as an external parameter. For macroscopic systems the temperature can be

controlled by a large heat bath. The probability distribution of microstates is typically mo-

tivated by considering both, the system of interest and the heat bath to be a microcanonical

ensemble with energy E = Ei +Ebath. It is considered that the system and the much larger

heat bath (Ei � Ebath) are in thermal equilibrium and weakly interacting.

The accessible microstates of the combined system Ω(E) are equally probable. If in a

discrete system the microstate i of the system is fixed, the remaining Ωbath(E − Ei) states

of the heat bath are still equally distributed. The probability to find the system in the ith

state is expressed by the ratio of states of the heat bath and the total number of states,

pcan(Ei;T ) =
ΩBath(E − Ei)

Ω(E)
. (2.6)

Now the entropy of the bath is expanded in a Taylor series, where terms of order O(E2
i ) and

higher are truncated and the definition of the microcanonical temperature (2.5) is inserted,

kB lnΩBath(E − Ei) = kB lnΩBath(E)− kB
∂ lnΩBath(E)

∂E
Ei + ...

= kB lnΩBath(E)− Ei

T
+ .... (2.7)

Neglecting higher order terms, the last expression is substituted into (2.6) and yields the

canonical microstate probability,

pcan(Ei;T ) =
ΩBath(E)

Ω(E)︸ ︷︷ ︸
1/Z

e
− Ei

kBT . (2.8)
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The partition function Z was introduced as the normalization factor of the canonical prob-

ability and is therefore calculated by the summation over all microstates,

Z(T ) =
∑
i

e
− Ei

kBT . (2.9)

However, this physically motivated derivation does not directly provide a connection to

thermodynamic quantities. Mathematically more compact but without consideration of the

physical limitations, the canonical microstate probability pcan(Ei;T ) = pi can be obtained

by the maximization of information entropy SI = −∑i pi ln pi [17,18], using Lagrange mul-

tipliers which incorporate the constraints normalization and average energy,

0 = δ

{∑
i

pi ln pi + α

(∑
i

pi − 1

)
+ β

(∑
i

piEi − 〈E〉
)}

=
∑
i

δpi (ln pi + 1 + α + βEi) ⇒ pi = e−1−α︸ ︷︷ ︸
1/Z

e−βEi . (2.10)

This result yields an expression for the information entropy which describes the disorder in

the system,

SI = − 1

Z

∑
i

e−βEi ln
e−βEi

Z
= lnZ + βU. (2.11)

Inserting the Boltzmann constant in this expression, kB SI = S is identified with the ther-

modynamic entropy. By comparison with (2.1) the relation between free energy and the

partition function follows as

F = −kBT lnZ, (2.12)

where the inverse thermal energy is associated with the Lagrange multiplier β = 1/(kBT ).

Traditionally, the partition function is described as a generating function, as it governs all

8



physical behavior. Once the functional form of the partition function is obtained, thermo-

dynamic quantities of interest can be calculated from its temperature derivatives. Using

computer simulations, however, the partition function is difficult to obtain directly, since it

requires the summation over all microstates.

The number of microstates is unknown, so that a cutoff energy for states that need to

be sampled for a given temperature can hardly be determined. However, the number of

microstates in the infinitesimal interval dE defines the density of states g(E) where the

energy is a continuous parameter. In computer simulations a relative estimate for g(E)

is determined for a finite energy bin δE. In Chapter 4.3 the estimation technique for the

density of states by means of multiple histogram reweighting is discussed, starting from the

canonical energy distribution

Pcan(E;T ) =
1

Z
g(E)e

− E
kBT . (2.13)

The exponential term to the right is referred to as the Boltzmann factor and describes

the exponential decay of the probability density to find a populated state at energy E.a

The Boltzmann factor in (2.13) is multiplied by the density of states which is increasing for

typical polymer systems in the regime of interest, leading to a Gaussian shape of the canonical

distribution. In the case of a first-order transition, phases of different energy coexist, while

in a finite system states with an intermediate energy are entropically suppressed. This leads

to a convex intruder in the density of states and in the entropy. As a result, the canonical

distribution energy becomes bimodal.

aGenerally, if the given extensive quantities of the microcanonical ensemble are replaced by constraints on
intensive quantities, then exponential terms in the probability distribution, similar to the Boltzmann factor
are created by the average value of the replaced extensive quantities, cf. (2.10)
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Integration of the density of states over the very small energy interval, Ω(E) = g(E)δE,

provides the connection to the microcanonical entropy (2.4) as the thermodynamic function

of choice,

S(E) = kB ln g(E) + kB ln δE ⇒ S(E) ∝ kB ln g(E). (2.14)

Since microcanonical analysis only requires derivatives of the entropy, the constant term as

well as the unit inside the logarithm is dropped. For convenience, the Boltzmann constant

is set to unity in the following.

2.3 Temperature derivatives and fluctuations

Temperature derivatives of structural and energetic quantities describe the response of the

system to a change in temperature and can signal structural phase transitions. The mean

value of any energetic quantity O(E) follows from (2.13) as

〈O〉(T ) =
∫
dE O(E) g(E) e−βE∫

dE g(E) e−βE
, (2.15)

The temperature derivative leads to the covariance between the quantity and the energy,

d〈O〉(T )
dT

=

∫
dE O(E) E g(E) e−βE

kBT 2
∫
dE g(E) e−βE

−
∫
dE O(E) g(E)e−βE × ∫ dE E g(E) e−βE

kBT 2
(∫

dE g(E) e−βE
)2

=
〈O E〉 − 〈O〉 〈E〉

kBT 2
. (2.16)

Microscopic fluctuations in the canonical ensemble, which are measured in the simulation,

are with (2.16) directly related to the corresponding response quantity.
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2.4 Configurational thermodynamic quantities

For an ergodic system of N interacting particles with Hamiltonian H({qν , pν}) = H(γ) the

mean kinetic energy is proportional to the temperature. To show this, the flowing general

expression

〈
γi

∂H

∂γj

〉
=

∫
γi

∂H
∂γj

e−βH d6Nγ∫
e−βH d6Nγ

, (2.17)

is evaluated, where γ ∈ Γ denotes a point in the 6N dimensional phase space Γ, spanned by

the components of generalized coordinates qν and canonical momenta pν . Noticing a simple

integration rule for the γj component of the phase space variable

∂

∂γj
e−βH = −β

∂H

∂γj
e−βH ⇒

∫
∂H

∂γj
e−βHdγj =

−1

β
e−βH , (2.18)

integration by parts is applied to the jth component of the first integral in (2.17) which yields

〈
γi

∂H

∂γj

〉
=

∫
γi

(
−1
β
e−βH

)
d6N−1γ

∣∣∣γj=γ+

γj=γ−
− ∫ ∂γi

∂γj

(
−1
β
e−βH

)
d6Nγ∫

e−βH d6Nγ
=

δij
β

= δij kBT.

(2.19)

The first term in the nominator vanishes due to the character of the extremal values γ±.

If γj represents a component of a momentum these are γ± = pν,± = ±∞; otherwise if γj

stands for the spatial coordinate the boundary value coincides with the location of the walls

of the container γ± = qν,± = qwall,±, since the volume is considered finite. In both cases the
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Hamiltonian diverges so that the integrand becomes zero. Eq. (2.19) is used to evaluate the

average kinetic energy of a particle system in a canonical ensemble

〈Ekin〉 = 1

2

3N∑
ν=1

〈
pν

∂H

∂pν

〉
=

3

2
NkBT

b. (2.20)

If the potential depends on the location of all interacting particles in the configuration X =

(�r1, ..., �rN) the mean value of the total energy is written as,

〈H〉 = 3

2
NkBT + 〈U(X)〉. (2.22)

The total heat capacity of the system C̃V follows as temperature derivative of the heat Q,

C̃V =

(
δQ

δT

)
V

=

(
∂〈H〉
∂T

)
V

=
3

2
NkB +

1

kBT 2

(〈U2(X)〉(T )− 〈U(X)〉2(T ))︸ ︷︷ ︸
configurational heat capacity CV

. (2.23)

Since the first term in the specific heat, which arises from the kinetic energy of the particles,

is constant, all signals associated with phase transitions are encoded in the fluctuation of the

potential energy U , which is for simplicity typically denoted as the energy of the configuration

E(X). In the following discussion, only the configurational heat capacity CV is considered.

Analogously, all system properties are governed by the configurational density of states, and

we redefine g(E) as,

g(E) =

∫
DX δ (U(X)− E) . (2.24)

bThe same result as in (2.20) is found for the average potential energy if particles are non-interacting and
in an external harmonic potential, known as the equipartition theorem

〈V 〉 = 1

2

3N∑
ν=1

〈
qν

∂H

∂qν

〉
=

1

2

N∑
i=1

〈�ri ∇�riU〉 = 3

2
NkBT. (2.21)
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Chapter 3

Model for an elastic, flexible

homopolymer grafted on a hexagonal

surface

3.1 Motivation of the coarse-grained approach

Polymers are macromolecules which incorporate a vast amount of atoms in a chain-like

structure of repeated chemical groups or side chains. Proteins are complex, biologically

functional examples which involve on the order of 105 atoms. These objects were found by

nature during an evolutionary process but it is not yet understood how specific sequences

in a biological environment close to room temperature can fold into a functional structure.

However, it is known that the geometric structure of a protein is the key element to a specific

function.

The structure formation process of polymer chains is a cooperative process of many

interacting parts of the system. However, the overall behavior does not necessarily depend
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on atomistic details which motivates the concept that single chemical groups act like a coarse-

grained entity and can be represented by one interacting particle denoted as a polymer bead

or monomer.

Especially the physical properties of second-order phase transitions justify the coarse-

grained approach to the analysis of structure formation and structural phases. The critical

behavior at second-order phase transitions is associated with the divergence of the correlation

length. Microscopic details become negligible and the system is maximally cooperative.

Therefore, different systems exhibit the same universal behavior. Finally, a coarse-grained

model captures the physical essence of phase and structure formation processes.

3.2 The non-bonded, intramolecular interaction

Essential to any cooperativity is the many-body interaction between non-bonded polymer

beads. In this study the structure formation of an uncharged chain of the same repeating

unit denoted as a flexible homopolymer [19–21] is investigated where one end of the chain is

grafted to an infinitely large hexagonal substrate.

The attractive interaction between non-bonded beads separated by the distance r is

described by the London dispersion force [22–24]. It is part of the Van-der-Waals force

and originates from the Coulomb interaction between residual dipoles of the two monomers

interacting with each other. Spontaneous charge fluctuations are treated in a multipole

expansion where the leading dipole term creates a 1/r3 dependence in the attractive poten-

tial. Quantum-mechanical calculations in second-order perturbation theory show that the

electronic fluctuations reduce the range of the interaction to a 1/r6 potential.
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Coulomb repulsion and Pauli exclusion become apparent if beads come close to each

other. For mathematical simplicity a repulsive term with 1/r12 dependence was introduced

by Lennard-Jones [25] leading to the famous potential of the form

ULJ(r) = 4ε

[(σ
r

)12
−
(σ
r

)6]
, (3.1)

which accurately describes the interaction of noble gases [26] and approximates well po-

tentials between other atoms and molecules. The material dependent parameter is with

σ = 2 rVdW related to the Van-der-Waals radius of the particles which is the minimum dis-

tance between particles that approach each other from an infinitely large distance without

any initial energy.

In the simulation the energy scale ε ≡ 1 as well as the minimum location of the potential

r0 = 21/6σ ≡ 1. Based on this definition we present all results on energetic scales of ε and

length scales of r0. Accordingly, temperatures are stated in units of ε/kB. In order to avoid

the computationally expensive calculation of weak long-range interactions, the Lennard-

Jones potential is truncated at the cutoff distance rc = 5σ/2 and shifted by Ushift = ULJ(rc),

resulting in the potential for the non-bonded interaction,

UNB(r) =

⎧⎪⎨
⎪⎩

ULJ(r)− Ushift, r < rc,

0, otherwise.
(3.2)
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3.3 The interaction of bonded monomers

Covalent bonds show for small deviations from their equilibrium length harmonic behavior.

For larger extension these bonds become rather stiff. Therefore, the interaction of bonded

monomers is modeled by the finitely extensible nonlinear elastic (FENE) potential [27–29],

given in the first term,

UB(r) = −1

2
KR2 ln

[
1−

(
r − r0
R

)2
]
+ η(ULJ(r) + ε)− ε− Ushift, (3.3)

where a Lennard-Jones potential is added to account for volume exclusion due to polarization

effects. The stiffness of the FENE bond, controlled by the parameter R ≡ 3/7, and the spring

constant K ≡ 98/5 are set to standard values. The logarithmic form of the FENE potential

restricts the bond length to the interval r ∈ [r0 − R, r0 + R], where the equilibrium bond

length r0 is chosen to coincide with the location of the potential minimum of the non-bonded

interaction (3.2).

Different polymer models have been investigated, where the bond between adjacent

monomers is only based on the FENE potential [30–32] and where an additional Lennard-

Jones interaction was considered [33–35]. Here, the additional Lennard-Jones term in (3.3)

is controlled by the parameter η which introduces asymmetry to the potential of the polymer

bond. In Ref. [14] we have shown that this parameter influences the strength of the freezing

transition and the geometrical shape of the ground-state structure. For typical values such

as η = 1 the frozen phase of a polymer with N = 55 monomers reveals an icosahedral shape,

as it is discussed in detail in section 5.2.1. The solid-like phase is for η ≥ 0.04 separated

by a first-order-like transition from the liquid-like phase. For smaller values the order of the

transition is reduced gradually to a fourth-order transition [14] in the case of η = 0, where

a bihexagonal ground state conformation is found.
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Besides the interesting change in the structural behavior due to altered values of the

η parameter, the change in the order of the freezing transition has also a crucial technical

consequence: The efficiency of the parallel tempering method, described in section 4.2, drops

rapidly near strong first-order transitions. Therefore, reduced values of η can make the model

computationally less challenging. However, in order to retain the overall behavior of standard

models the asymmetry parameter was set to η = 0.1 in this study, see Fig. 3.1.

Deviations from the optimal bond length cause an energy penalty. In order to prepare the

discussion of bond length distributions it is useful to introduce a modified bonded potential

which discriminates compressed and stretched bonds,

U
(mod)
B (r) = sign(r − r0) (UB(r) + ε+ Ushift) . (3.4)

Figure 3.1: The potentials of the non-bonded and bonded interactions UNB(r) and UB(r),
respectively, are shown as functions of the monomer-monomer distance r, on different scales
in a) and b). For the bonded potential the asymmetry parameter, introduced in (3.3), is set
to η = 0.1. To illustrate its effect on the repulsive flank the bonded potential is also shown
for η = 0.0 (dotted) and η = 1.0 (dot-dashed). The modified bonded potential U

(mod)
B (r),

given in (3.4), is depicted in panel a) by a gray solid line.
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3.4 The monomer-surface interaction

The interaction between polymer beads and surface vertices is governed by the same effects as

the intramolecular non-bonded potential. In order to allow for implicit solvents surrounding

the polymer and different hexagonal surface materials, the adsorption strength parameter

εS is introduced in the potential of the interaction between a single lattice vertex and a

monomer at distance r,

US(r) = εS UNB(r), (3.5)

where the same cutoff value is chosen as in the non-bonded case. The key question in this

study is how the polymer behavior depends on adsorption strength and which structural

phases can be observed. Hence, the adsorption strength parameter is changed for indepen-

dent simulations in the interval εS ∈ [0.0, 5.0]. In Fig. 3.2 the interactions introduced here

are illustrated. Parameter values of the potentials are summarized in Tab. 3.1. The total

energy of a conformation X = (�r1, . . . , �rN) is given by

E(X) =
N−2∑
i=1

N∑
j=i+2

UNB(rij) +
N−1∑
i=1

UB(rii+1) +
N∑
i=2

∞∑
a=1

US(ria), (3.6)

where the monomer-monomer distance is rij = |�ri − �rj| and ria = |�ri − �sa| is the distance

between a monomer i and a surface vertex a. Although surface and non-bonded interactions

are both described by a Lennard-Jones potential, which is well studied for different polymer

systems, novel structure formation processes and undiscovered structural phases are expected

to arise from the hexagonal pattern of the substrate. In order to understand the driving

forces behind the polymer adsorption process the three-dimensional potential landscape of

the substrate is investigated next.
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Table 3.1: Potential parameters

potential parameter value
UB(r) K = 98/5 19.600

R = 3/7 0.4296
r0 = 1 1.0000
η = 1/10 0.1000

UNB(r) ε = 1 1.0000
σ = r0/2

1/6 0.8911
rc = 5σ/2 2.2275

US(r) εS ∈ [0, 5] variable

Figure 3.2: The different interaction types of monomers are depicted for a typical conforma-
tion of a 13mer. The chain of polymer beads (black) is grafted with the first monomer (red)
on a infinitely large, fixed, hexagonal surface. Selected surface vertices (green) in proximity
to the first monomer are depicted. The potential UB(r) defined in (3.3), describes the inter-
action of two subsequent monomers which are connected by a modified FENE bond (gray).
The interaction of non-bonded polymer beads is governed by a modified Lennard-Jones po-
tential (3.2). Monomer and surface vertices interact via the surface potential US given in
(3.5). Parameter definitions and values for the different potentials are summarized in the
Table 3.1.

The combined effective surface potential of all lattice sites in the plane z = 0

US,c(x, y, z) =
∞∑
a=1

US(|�r − �ra|) (3.7)

is presented along different Cartesian coordinates. The hexagonal pattern is apparent in

Fig. 3.3 a) where the surface is viewed from the top. Values of the surface potential at

a height z = 0.81 are indicated by color. Orange dots mark high potential values due to

repulsion from the underlying substrate vertices. Black color indicates locations where the

potential is minimal, and monomers are expected to reside. The two perpendicular black

lines mark vertical cuts of the potential. These vertical cuts are depicted in Fig. 3.3 c)

and d). The brown semi-spherical shapes mark the areas which are forbidden for a monomer
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Figure 3.3: The combined surface potential US,c(x, y, z) of vertices in a hexagonal lattice,
defined in (3.7), is shown from the top in the density plot a) at z = 0.81. The locations of
hexagonal centers are labeled from A-D. In graph b) the potential is shown as function of
the distance measured from the center of a hexagonal ring, in vertical direction q1 = z (solid
line) and parallel to the y axis, as function of q2 = y + 1.00 (dashed line). For the latter
parameter the potential is also given at the height z = 0.81 above the surface (dotted line).
A side-view of the potential is displayed along two cuts y = 1.00 c) and x =

√
3 d), where

the potential minima A and B are indicated by black color. In panel d) field lines (black)
tangential to the gradient of the potential (red, blue and black arrows, length normalized)
are superimposed.
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due to volume exclusion. This area is confined by a white line where the potential US,c(x, y, z) =

0. Monomers of the polymer typically reside above this equipotential surface which is plotted

three-dimensionally in Fig. 3.4.

Recall that a monomer is represented as a point in this effective representation of the

potential. Returning to Fig. 3.3 a), the cut in the x-direction intersects two hexagonal

centers, labeled by A and B. Therefore, the attractive centers inside a hexagonal ring are

found in panel c) for z = 0 at x = 0,
√
3. Similarly, minimum B is shown from a different

perspective in d) at y = 1.

In order to indicate the path which a slow particle would follow at T = 0, field lines

are superimposed. These field lines are tangential to the negative gradient of the combined

potential, marked by arrows. For heights z > 1.3 trajectories point almost perpendicularly

towards the surface. Below this value monomers are primarily attracted by the closest lattice

vertex, before the field lines bend at distances sightly larger than the Van-der-Waals radius

towards a potential minimum. One representative field line ends at y = 1 in a hexagonal

center. Note, that field lines which seem to end in a local valley at y = 2.5 continue above or

below the paper plane towards a hexagonal center (at x =
√
3/2 and x = 3

√
3/2), apparent

in the three-dimensional plot in Fig. 3.4.

In panel c) and d) we observe that the minima inside hexagonal rings are confined in the

lateral directions but extends up to about z < 0.2 into the vertical direction. Fig. 3.3 b)

provides one-dimensional graphs to quantify this statement. The solid line shows the surface

potential as a function of height, where the dashed line is the potential in y direction, starting

in each case from the minimum location given in Fig. 3.3 d). Analogously, the third dotted

line indicates the potential along the y-direction, but at the height z = 0.81 above the surface

plane. The two peaks in the potential arise from the cut through the semi-spherical area of

repulsion in Fig. 3.3. Note, that the radius of the semi-spheres in panel c) is larger than in

d), since for the latter case the depicted plane cuts through substrate vertices.
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Figure 3.4: The equipotential surface US,c(x, y, z) = 0 is shown where the surface cut along
the x and y direction can be identified with the white line in Fig. 3.3 c) and d), respectively.
Monomers of the homopolymer reside above this surface. The height is indicated by color.
Green hemispheres indicate the vertices of the hexagonal substrate, as shown in Fig. 3.2.
The potential minima, located in the center of the hexagonal substrates are labeled by A
and B along the x axis, c.f Fig. 3.3 c).

This detailed discussion of the surface potential provides insight into the behavior of the

polymer at low temperatures, where entropic effects in the free-energy landscape play a neg-

ligible role. A polymer bead favorably resides in the centers of hexagonal rings. However, the

finite character of the bond does not allow placing two adjacent monomers into neighboring

hexagonal centers. Instead, depending on the adsorption strength, one or more additional

linking monomers are required in between. These linking monomers reside above the surface

depicted in Fig. 3.4. At higher temperatures entropic contributions become important. In

order to understand the adsorption process at nonzero temperatures it is therefore necessary

to sample and investigate the state space of the homopolymer.
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Chapter 4

Computational methodology and

implementation

The computational approach towards polymer adsorption on substrate surfaces can be clas-

sified in terms of the two distinct, but well-known methodologies, molecular dynamics (MD)

and Monte Carlo simulation (MC). In this study a Monte Carlo method was applied that

aims directly at the sampling of independent, uncorrelated states of the system subject to

thermodynamic constraints without sampling an environment such as a surrounding solvent.

Instead, mechanisms to obtain proper statistical ensembles form the foundation of sampling

algorithms. The Metropolis algorithm [45] is the most prominent example. In combination

with proper Monte Carlo updates, which obey detailed balance, the Metropolis algorithm

is designed to obtain configurations in the canonical ensemble. In the context of a system

in a thermodynamic environment this corresponds to an NVT ensemble, however, this al-

gorithm can also be used in other contexts like population dynamics. In general, Monte

Carlo simulations provide a means to perform integration numerically. Although there are

various methods like the trapezoidal rule which converge much more rapidly in one dimen-

sion, Monte Carlo simulations are a robust tool that can treat integrals in many dimensions.
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Hence, Monte Carlo simulations are suitable to investigate the highly dimensional space of

the different degrees of freedom of a homopolymer in order to calculate important quantities

like the density of states (2.24).

4.1 Detailed Balance and the Metropolis rule

In Metropolis sampling a new state is proposed based on the previous state, leading to a

random walk in state space. Hence, Metropolis sampling is an instance of a Markov chain

Monte Carlo method where the probability Pi to sample a state i at the discrete time step t

is governed by the Master equation,

ΔPi(t)

Δt
=
∑
j

(Pj(t)Wj→i − Pi(t)Wi→j) . (4.1)

Wi→j denotes the transition probability from state i to j. Goal of the simulation is to sample

the state space such that the energies of visited states obey the canonical distribution (2.8),

Pj

Pi

=
Pcan(Ej;T )

Pcan(Ei;T )
= e−β(Ej−Ei), (4.2)

with β = 1/(kBT ). Hence, it is required that probabilities measured in the simulation lose

their time dependence and become stationary, i.e., the right-hand side in (4.1) must vanish.

Often it is practical to demand the stronger condition of detailed balance,

Pj Wj→i = Pi Wi→j. (4.3)

In this case, the transition probabilities have to be adjusted accordingly. The probability

Wi→j can be understood as a product of the probability to algorithmically propose a Monte

Carlo update (Mi→j) and to accept (Ai→j) the new state. Since in this thesis only simple
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displacement updates and rotational pivot updates are considered, Mi→j = const. Therefore,

the acceptance ratio is given by the canonical distribution,

Ai→j

Aj→i

=
Wi→j

Wj→i

=
Pj

Pi

=
Pcan(Ej;T )

Pcan(Ei;T )
= e−β(Ej−Ei), (4.4)

where the detailed balance condition (4.3) and (4.2) was used. The larger value of both

acceptance ratios is set to one, which leads to the Metropolis acceptance probability [45],

Ai→j = min
(
e−β(Ej−Ei), 1

)
. (4.5)

4.2 Parallel tempering (replica-exchange) Monte Carlo

The canonical distribution of states describes the system at one temperature. In order

to obtain thermodynamic quantities as functions of temperature multiple simulations are

necessary.

At the same time it is usually found that unfavorable large correlations in, for example,

the coordinates of the polymer occur at low temperatures where the system is in a frozen,

solid-like state. Thus, the state space at low temperatures is investigated comparably slowly.

In terms of a polymer system one can visualize a dense, droplet-like conformation where large

fluctuations can only occur at the surface of the polymer and global changes are unlikely to

happen. One solution to this problem is to introduce changes of temperature in order to

melt compact conformations. In the parallel tempering method [36–39] multiple computer

threads are utilized for this purpose where many identical systems, denoted as replicas, are

simulated at the same time but at different temperatures. After sufficiently many Monte

Carlo sweeps and measurements, these replicas are exchanged between threads of different
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Figure 4.1: Parallel tempering (replica-exchange) scheme, independent simulations of repli-
cas at different temperatures are depicted by colored boxes. Arrows indicate exchanges of
replicas between neighboring temperature threads, where exchange partners are alternated.

temperature, see Fig. 4.1. The appropriate number of Monte Carlo steps per monomer

(MC sweeps) between exchanges depends on the autocorrleation time of the quantity of in-

terest and on the size of the studied system. In order to fulfill the detailed balance condition,

an exchange between replicas at different inverse temperature β has to be accepted according

to the Metropolis rule. As in the previous derivation, the goal is to obtain the canonical

energy distribution in each thread. They are stochastically independent so that the joint

probability to find state i at Tl and state k at Th reads according to (2.8) as,

P (2)
can

(
(Ei;Tl), (Ek;Th)

)
=

1

Zl

e
− Ei

kBTl × 1

Zh

e
− Ek

kBTh (4.6)

The acceptance probability for a replica exchange follows analogously to (4.4) and (4.5),

Aik→ki

Aki→ik

=
e−βlEi−βhEk

e−βlEk−βhEi
= e−(βl−βh)(Ei−Ek) (4.7)

⇒ Aik→ki = min
(
e−Δβ ΔE, 1

)
. (4.8)
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From the previous expression it is found that the acceptance probability for a replica ex-

change depends on the difference in inverse temperature Δβ = βl −βh. In order to facilitate

successive exchanges, it is desirable that the exchange rate is fairly constant over a large

temperature interval.

Especially at low temperatures, where large correlation times are expected, a high ex-

change rate is desired. Energy distributions in this region are typically very sharp which

prevents large fluctuations of the energy difference, i.e. ΔE in (4.8) is almost constant.

Hence Δβ is chosen to be constant as well by distributing simulation threads equally in

inverse temperature.

This study was carried out using 35 temperature threads in the interval T ∈ [0.18, 1.00]

and 40 threads linearly distributed in T ∈ [1.00, 5.00] to allow for a more precise localization

of transition signals at high temperatures, which is discussed in Chapter 5. For specific pa-

rameter values of the surface adsorption strength, where solid-solid transitions were expected,

additional simulations with up to 128 threads were used to sample lower temperatures.

The exchange of replicas was performed using Message Passing Interface (MPI) [46, 47].

The MPI framework offers a large library of routines. In this study it was sufficient to utilize

the function MPI Sendrecv to exchange the Cartesian coordinates of each replica and the

function MPI Gather to collect output data, where the command MPI Type create struct

aided to communicate more complex data structures.
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4.3 Multiple histogram reweighting

Although simulations were performed at discrete temperatures it is possible to calculate

thermodynamic quantities as continuous functions as stated in (2.15). This approach re-

quires the density of states ĝE, here estimated at discrete energy values. Since the canonical

histogram hT,E is proportional to the canonical energy distribution (2.13) a relative estimate

is calculated by dividing out the Boltzmann factor

hT,E =

E+ΔE/2∫
E−ΔE/2

dẼ P̂can(Ẽ) M ⇒ hT,E ∼ ĝEe
−βE ΔE M, (4.9)

⇒ ĝE ∼ hT,E eβT , (4.10)

where M denotes the total number of measurements. Note that the density of states is only

estimated up to a constant. Therefore, estimates from histograms measured at different

temperatures show a parallel shift. Secondly, the statistical error of the histogram depends

on the height, such that the variance in height is σh ∼ 1/
√
h. Hence, the estimate for the

density of state is most accurate in the energy interval where the histogram is peaked.

The weighted histogram analysis method (WHAM) [40, 41], also known as multiple his-

togram reweighting, combines the information of histograms obtained at different tempera-

tures T . At each histogram bin, centered around the energy E, ĝE is estimated, using an

initial value for the partition function

ĝE =

∑
T hT,E∑

T MT ẐT e−E/kBT
, (4.11)

ẐT =
∑
E

ĝE e−E/kBT . (4.12)

This intermediate result is used to calculate a new estimate for the partition function. For

simulations with 128 temperature threads up to 105 successive iterations of (4.11) and (4.12)
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were used to refine both estimates and reach convergence. Since both quantities assume

typically very large values their logarithms are implemented instead to avoid floating point

overflow. Recall that the logarithm of the density of states provides an estimate for the

entropy (2.14). To obtain the density of states and the entropy as a continuous function

of energy, Bezier smoothing [50] was used. Finally, advanced analysis techniques such as

microcanonical inflection-point analysis [42] can be applied to the entropy curve and its

higher derivatives, which provides additional indicators to locate structural phase transitions.

4.4 Implementation

In order to develop a fast C++ program it was most effective to begin the implementation

in a straightforward manner while “bottlenecks” were identified by measuring the cpu-time

in a second step.

Computationally most demanding is the evaluation of the system energy E(X). The

expression for the acceptance rate (4.5) exemplifies that even for simple displacement updates

the change in energy is required to determine whether the update is accepted. Therefore, an

efficient evaluation of the energy (3.6) is vital.

The expression on the right hand-side of (3.6) was separated to avoid the recalculation of

parts which are unaffected by a given Monte Carlo update. For instance, after a displacement

update, only interactions that involve the moved monomer will change. The energy due to

the contact of the ith monomer with the substrate ES,i = US,c(�ri), c.f. (3.7), was stored in

an array. Since energies of different monomers i are independent, the sum of all surface

contacts was stored in a separate variable ES(t). Once a surface energy changed only in the

ith monomer the previous contribution was subtracted and the new contribution was added,

ES(t+ 1) = ES(t)− ES,i +
∞∑
a=1

US(ria). (4.13)
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Recall that index a labels vertices of the substrate, c.f. (3.6). A similar approach was

chosen for the bonded and non-bonded potentials. However, since these potentials are pair

potentials, all pairs must be stored. To avoid the comparison of monomer indices and the

calculation of memory positions, a constant two-dimensional array of pointers was used to

store the memory address of a pair interaction for all possible combinations of monomer

indices. Besides this efficient utilization of memory, another performance gain was achieved

by exploiting symmetries of the system under consideration.

The calculation of the interaction of a monomer �ri with the surface requires the distance

to all surface sites within Lennard-Jones cutoff distance rc. In order to avoid high memory

demand only 10 substrate vertices were stored. In Fig. 4.2 the substrate is shown with

its triangular Wigner-Seitz cells. The idea behind this algorithmic approach utilizes that

symmetry transformations applied to the lattice do not change the set of distances between

vertices and the monomer located at �ri. In turn, these operations can be applied to a copy of

the monomer �ri
′ leaving distances to lattice vertices invariant. Here, �ri

′ is shifted by lattice

vectors towards the origin. Two further copies �ri
′′ and �ri

′′′ are generated by rotation of 2π/3

about the origin, see Fig 4.2. In this way only vertices between the lattice vectors �v1 and �v2

and within Lennard-Jones cutoff distance need to be considered. The cutoff is shown as a

dashed curve in Fig. 4.2 b).

For each copy of the monomer the surface interaction is evaluated in groups of increasing

monomer-vertex distance, see Fig 4.2, starting with {�s1, �s2} (gray) and followed by {�s3, ..., �s5}
(orange) and {�s6, ..., �s10} (brown). Once all distances between a monomer copy (which is

generally located above the surface plane) and the vertices in one set is larger than the

Lennard-Jones cutoff radius, the evaluation of subsequent sets can be omitted for this copy.
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Figure 4.2: a) Vertices of the hexagonal substrate are illustrated by circles, Wigner-Seitz cells
are indicated by dotted lines. In order to determine all distances between monomers and
surface vertices, the monomer �ri is translated by integer multiples of the lattice vectors �v1, �v2
towards the fundamental cell. b) The new monomer position �ri

′ is located in the Wigner
Seitz cells close to the origin, marked in gray. The dashed curve indicates the area which is
within Lennard-Jones cutoff distance rc to the gray shaded rectangle. Two additional copies
of the monomer, �ri

′′ and �ri
′′′, are created by applying 2π/3 lattice rotations about the z-axis,

so that only lattice vertices �s1, ..., �s10, located in the sector between the two lattice vectors,
are required. After Liewehr and Bachmann [15].

4.5 Pseudo-random number generation

The random numbers in this simulation were generated with the pseudo-random number

generator developed by Marsaglia and Zaman [48]. This is a lagged-Fibonacci generator

combined with a generator based on an arithmetic sequence for a prime modulus. The

quality is checked by examining the autocorrelation time and applying with a uniformity

and parking lot test [49]. Finally, the random number generator in combination with the

used algorithm was tested for small system sizes against existing results.
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Chapter 5

Adsorption behavior of homopolymers

on hexagonal surfaces

In this chapter the adsorption behavior of a homopolymer on a hexagonal substrate is exam-

ined. As in previous studies [13, 43, 44] the polymer is grafted onto a fixed surface. Here, a

hexagonally patterned substrate i.e. a honeycomb lattice is chosen, mimicking the structure

of a graphene sheet. The results presented in the following reveal the response behavior of

the polymer at different temperatures and adsorption strengths of the surface. Results of

a small system with N = 13 monomers are presented first in order to outline the general

arrangement of typical structural phases which are known from previous polymer adsorption

studies. First effects of the substrate pattern are found by comparison with the flat continu-

ous surface. Since the complexity of encountered structural phases increases with the system

size, a detailed discussion of subphases, in the low temperature regime is provided subse-

quently for the 55mer. Subphases show qualitative, structural similarities and are separated

by phase specific order parameters. The system sizes were chosen to allow for a comparison

of ground state structures, discussed in Section 5.2.1. Finally, with the description of low

temperature phases at hand, the physics of the pattern recognition process is investigated.
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5.1 Adsorption of short polymer chains N = 13

The smallest system that was studied is the homopolymer chain consisting of N = 13

monomers. In order to outline the particular effects of pattern recognition upon the surface

adsorption the results are compared to the case of a continuous surface [16].

5.1.1 Transition signals in the specific-heat curves

The starting point for the discussion of the adsorption behavior on a hexagonal surface is

the specific-heat curve for the 13mer, which is obtained as a continuous function from the

reweighted density of states. In Fig. 5.1 the specific heat is shown for increasing values of

the surface adsorption strength 0.0 < εS < 4.0.

For εS = 0.0 specific-heat curves are shown for different values of the asymmetry parame-

ter η in the bonded potential, which was defined in eq. (3.3). The differences of specific-heat

curves in a) are larger then the statistical error. In panel a) the error bars, omitted for

clarity, are of the same size as shown in b). A pronounced peak of finite width at about

T = 0.3 indicates the location of the freezing transition which is due to the finite size not re-

stricted to a single point. At higher temperatures the Θ-transition, where globule liquid-like

conformations expand into random coil gas-like conformations, is signaled by a “shoulder”

in the specific heat. All subsequent simulations were curried out with η = 0.1.

Increasing the adsorption strength to εS = 0.2 reduces the height of the peak, see

Fig. 5.1 b). The unimodal shape of the canonical histograms of the different temperature

threads, shown in Fig. 5.2, classifies both signals as second- or higher-order transitions. In

order to determine the effect of the substrate on the structural transition, the shape of the

specific-heat curve is examined by plotting canonical averages for the intramolecular and

monomer-substrate interactions separately. Due to the small value of the surface adsorption

strength the overall behavior is governed by interactions within the polymer and is thus
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Figure 5.1: The specific heat CV (T )/N of a 13mer is presented for different surface adsorp-
tions strengths 0.0 < εS < 4.0. In panel a) the specific-heat curves obtained from multiple
histogram reweighting is shown for different values of the control parameter η (c.f. Fig. 3.2),
where the interaction with the surface is turned off, εS = 0.00. Error bars are of the size
as shown in b). Panel b)-i) shows reweighted specific-heat curves for increasing adsorp-
tion strengths where η = 0.1 (black, solid curve). Canonical averages of the total specific
heat (gray), contributions from interactions within the polymer chain CV,c (green) and from
monomer-surface interactions CV,s (red) obtained from 40 temperature threads are depicted
as data points with error bars.
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similar to the case of a free polymer. This behavior is retained if the adsorption strength

is increased to a value of εS = 0.5, however, it can be noted that the stronger attraction

to the surface leads to an increase in temperature of the signal in the surface contribution.

Examining the geometrical structure of conformations at this temperature reveals that this

signal can be associated with the wetting of the polymer on the surface.

Figure 5.2: The canonical histograms of a 13mer with εS = 0.20 is shown for 40 temperatures
T = 0.06, ..., 6.15 which are proportional to the canonical energy distribution, eq. (2.13).
Temperatures of blue curves are given on the figure. All histograms show a unimodal shape,
so that structural transitions are classified as higher-order transitions. Large overlap of the
histograms allows for high acceptance rates of parallel-tempering replica-exchanges.

This first insight into the type of the physical process is used to determine additional

order-parameters that can signal the transition of interest. The generic choice for the Θ-

transition, where gas-like expanded random-coil conformations collapse into liquid-like glob-

ule conformations, is the fluctuation of the squared radius of gyration

r2gyr =
1

N

N∑
i=1

(�rcom − �ri)
2 with �rcom =

1

N

N∑
i=1

�ri. (5.1)
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Applying the fluctuation dissipation theorem (2.16) to the measured mean value of squared

radius of gyration yields

d〈r2gyr〉
dT

=
〈r2gyr E〉 − 〈r2gyr〉 〈E〉

kBT 2
. (5.2)

However, since this quantity describes the compactness, it is expected to show only a

weak signal for a wetting transition from a desorbed globule into a adsorbed globule phase.

It is thus beneficial to consider only the z-component of the radius of gyration perpendicular

to the surface rgyr,z, the z-component of the center of mass zcom or the number of monomers

nS,zlim below a threshold zlim. The threshold value is chosen according to the expected

geometrical differences of the structure.

These three additional structural order parameters facilitate the discrimination of differ-

ent subphases. However, the comparably small number of the degrees of freedom of a 13mer

limit the number of expected subphases. A direct classification by visual inspection was

found to be most efficient for this small system. A detailed discussion of additional order

parameters will be provided for larger system sizes which allow for more subtle arrangements

of subphases.

Returning to the specific heat in Fig. 5.1 d)-i) as the major quantity, a further increase of

the surface adsorption strength leads to a dominant influence of the monomer surface inter-

action on the structure formation process. As a result of the additional surface interactions

the collapse transition becomes more pronounced for εS ≥ 1.0 than the freezing transition.

5.1.2 Structural hyperphase diagram

With the fluctuations of the different energetic contributions at hand, transitions between

phases can be located. Graphing the transition signals with respect to temperature and the

generic surface adsorption strength parameter εS leads to a structural hyperphase diagram.
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At high temperatures typical polymer conformations are stretched out at a large distance

from the surface which defines the desorbed expanded phase (DE), see top row in Fig 5.3.

If the attraction towards the surface is increased, adsorption sets in at higher temperatures,

which explains the positive slope of the transition band. The thickness of the transition

band is a finite-size effect and accounts for the fact that different order parameters indicate

different transition temperatures. The phase of adsorbed expanded conformations (AE) is

located below the adsorption transition band, which crosses at εS = 1.2 the collapse transition

separating expanded from globule phases. The mean value of the energy changes gradually

between the desorbed expanded (DE) and desorbed globule (DG) so that instead of the

weak “shoulder” in the specific heat, Fig. 5.1, the radius of gyration was used to extend the

collapse transition band towards low surface adsorption strengths. Curves of the radius of

gyration are discussed in more detail for the 55mer in Section 5.2.

For temperatures T < 1.0 the structure formation of the polymer is affected by the

hexagonal surface pattern. Energetically favorable positions for monomers are located in

the centers of hexagonal rings. Intramolecular interactions prevent monomers from reaching

these attractive sites in the surface plane for adsorption strengths εS < 1.5 so that the des-

orbed globule phases (DG) is found. This phase is separated from the adsorbed globule phase

by the wetting transition which extends the adsorption transition into the low temperature

regime and finally merges with the freezing transition at εS = 0.2, T = 0.3. Note that col-

lapse and freezing transition are only weakly dependent on the surface adsorption strength.

Below the freezing transition, in the adsorbed compact phase of conformations with 3 and 2

layers, the location of monomers is more ordered than in the liquid like globule phases. Since

surface interactions dominate for εS > 0.8, the pattern recognition is enhanced.

In this study, the lattice constant and the equilibrium bond length r0 were chosen to be

equal. Due to the finite character of the FENE bond, two adjacent monomers cannot occupy

neighboring attractive centers of the honeycomb structure. At least one more monomer in
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Figure 5.3: The structural hyperphase diagrams of the grafted 13mer on a hexagonal surface
and a flat continuous surface [16] parametrized by adsorption strength εS and temperature
T are presented aside with representative conformations of the discovered phases. For the
adsorption on a hexagonal surface the structural phases are classified into desorbed expanded
(DE), desorbed globule (DG), adsorbed expanded (AE), adsorbed globule (AG), adsorbed
compact with double layer (AC2), and adsorbed compact with triple layer (AC3). For
comparison the phases of the flat continuous case are indicated analogously. An important
difference is the missing desorbed globule (DG) phase and therefore the missing wetting
transition. In addition, an adsorbed compact mono layer (AC1) is found for low temperatures
and high adsorption strengths.
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between is required, and it resides above the surface and can form a bridge between monomers

at these most favorable lattice sites. Therefore, a adsorbed compact monolayer (AC1) which

is observed for the flat continuous surface does not occur on a hexagonal lattice.

The comparison of the hyperphase diagrams of the hexagonal substrate and the contin-

uous flat surface (see Fig. 5.3, lower row) reveals a second effect of the patterned surface:

the existence of the desorbed globule phase. For the flat surface even very small εS values

cause adsorption of globular conformations. Monomers can adsorb to any location on the

surface without creating a competition with intramolecular interactions. In the patterned

case the number of accessible adsorption centers is limited, leading to a much stronger en-

tropic suppression of adsorbed conformations. Moreover, adsorption to the pattern imposes

constraints on the remaining monomers inside the globule structure. Therefore, the mini-

mal adsorption strength required for adsorption to the patterned substrate increases with

temperature, resulting in a similar slope for the wetting transition as it was observed for the

adsorption transition of expanded structures.

5.2 Outline of the adsorption behavior of a 55mer

As in the case of a 13mer, starting point of the canonical analysis of the homopolymer with

N = 55 constituents is the specific heat as function of temperature. Shifts and separations

of transition signals are discernible in Fig. 5.4 where the specific heat is plotted for 50 values

of the surface adsorption strength εS ∈ [0.0, 5.0]. In panel a) transition signals are found

for T < 0.6. Comparably large heights in the peaks of the specific heat are observed for

small values 0.0 < εS < 0.2 and intermediate adsorption strengths 1.05 < εS < 1.50. Strong

transition signals are typically associated with phase transitions from disordered to ordered

phases, exhibiting internal symmetry, which are discussed in section 5.3 in the context of a

structural analysis.
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Figure 5.4: The specific heat is presented as a function of temperature CV (T ) of a 55mer for
50 different surface adsorptions strengths εS ∈ [0.0, 5.0]. Panel a) shows the low temperature
behavior, curves for subsequent εS are shifted vertical by ΔCV = 50. For high temperatures
the same curves are shown with a vertical shift of ΔCV = 5 in b).

The same specific-heat curves are presented on a different scale in Fig. 5.4 b) where the

“shoulder” caused by the Θ-transition becomes apparent. For low adsorption strengths the

Θ-transition is found at T = 1.6 and shifts towards higher temperatures for εS > 0.8. Note,

that the spacing of simulated adsorption strength is not uniform but adjusted to the location

of phases.

In Fig. 5.5 the structural hyperphase diagram of a 55mer is presented for the physically

relevant parameter space in temperature T and surface adsorption strength εS. Starting

point for the discussion of the adsorption behavior is the well studied limiting case of very

small monomer-substrate interactions.
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Figure 5.5: The structural hyperphase diagram of a 55mer grafted on a hexagonal surface is
parametrized by the temperature T and surface adsorption strength εS. The limiting phases
at low and high temperatures are the adsorbed icosahedral droplet (AID) phase and the
desorbed expanded (DE) phase at small surface adsorption. The adsorbed zig-zag (AZ) and
adsorbed expanded phase (AE) are found for high εS values.

5.2.1 Adsorbed icosahedral droplet phase (AID)

For low temperatures and vanishing adsorption strength the system is in a frozen phase.

Typical for a flexible, elastic homopolymer with 55 constituents is a crystal structure with

icosahedral shape. The core of the structure can be identified with the icosahedron observed

for the 13mer while the remaining 42 monomers form a complete overlayer, embracing the

core of the structure.
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Figure 5.6: An icosahedron is well known as the ground state conformation of a 13mer and
observed for εS = 0 (left). For vanishing surface interaction the 55mer forms the same core
structure with 13 monomers indicated by purple while the remaining 42 monomers form
a complete overlayer on the core structure (right). The grafted and the open end of the
polymer chain is colored in red and blue, respectively.

Since monomer-monomer distances within spherical layers differ from the distance be-

tween layers, this structure requires a flexible character of the bonds and is, for example,

not observed for a bead stick model [13]. In Fig. 5.6 icosahedral structures for system sizes

N = {13, 55} at εS = 0 are depicted, where the monomers are constrained to reside in

the positive half space above the surface. Monomers in the outer shells are observed very

close to vertices of the surface. This is especially the case for the 55mer since the surface

curvature, compared to the 13mer, is reduced while the grafted monomer imposes the con-

tact of polymer with the substrate surface. Once the interaction with the surface is turned

on, the repulsive character of the Lennard-Jones interaction between lattice vertices and

monomers in the shell breaks the icosahedral symmetry. Due to the divergent behavior of

the Lennard-Jones potential for small distances, this effect can be observed for non-zero

adsorption strengths and becomes dominant for εS > 0.18. For smaller adsorption strengths

the adsorbed icosahedral droplet phase (AID) is found. The next larger system size that

allows for a complete overlayer on the icosahedral conformation is N = 147.
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5.2.2 Polymer behavior for small adsorption strengths

Increasing the temperature at εS < 0.18, the crystal starts to desorb and to melt. Although

globular shapes initially persist, structural symmetries inside the molecule break up, which

is indicated by a peak in the specific heat. Dewetting from adsorbed globule into desorbed

globule phase is associated with the number of monomers that are in energetic contact with

the surface. Recall that the Lennard-Jones cutoff, which formally limits the height of the

surface interaction, was introduced to simplify the calculation. It was chosen at a distance

where the potential has sufficiently decayed (3.1). Hence, the cutoff height rc = 5σ/2 should

not be of any physical significance but serves as an upper bound for the distance of essential

surface interaction.

The attractive force to the surface becomes maximal at rF,max = 6

√
13
7
r0 ≈ 1.11. A

lower bound for the distance where surface attraction becomes negligible can therefore be

given by the location of the inflection point of the force magnitude rF,infl = 6

√
13·14
7·8 r0 ≈

1.22. Consequently the numbers of surface contacts ns,1.5 and ns,2.2 provide clear signals for

the adsorption transition. The separation of the liquid-like (DG) and gas-like phase (DE)

is prominently signaled by the fluctuations in the z-component of the radius of gyration.

Finally, the polymer enters the gas phase where the structure is unfolded into desorbed

expanded (DE) conformations.

5.2.3 Effect of increasing adsorption strength on low-temperature

behavior of the polymer

Starting from the origin of the phase diagram Fig. 5.5 more interesting and model parameter

specific features are found when the surface interaction is turned on. Already for small surface

interactions the symmetry of the icosahedral ground state is broken. Increasing the surface

parameter εS, a landscape of transition lines is found separating structural phases which

43



recognize the pattern of the substrate, see Fig. 5.5. The spherical structure starts to flatten

out, leading to a variety of structures where the lowest layer of monomers recognizes the

pattern of the hexagonal surface. One order parameter that allows one to distinguish phases

with pattern recognition from disordered phases, is the number of surface contacts, defined

by the number of monomers below a certain threshold value of the Cartesian z-component,

perpendicular to the surface. For the chosen surface potential, the particular threshold value

of z = 0.3 counts the number of monomers occupying favorable lattice sites, located in

the center of the hexagons of the substrate. At temperatures above the pattern-recognition

transition, the polymer still remains absorbed. However, polymers closest to the surface float

in a perpendicular distance between 1.0 < z < 2.2 allowing the structure to move (mostly

unconstrained) parallel to the surface. Details and subphases in this regime will be presented

in a more detailed scope in Section 5.3.

At εS = 1.0 the properties of polymer beads and surface beads coincide, leading for low

temperatures to compact film-like structures. Increasing the absorption strength further

conformations expand on the surface in order to maximize the number of polymer beads

in the centers of the hexagons. The interactions between non-bonded monomers become

less important. For very high surface adsorption strengths low temperature conformations

are structurally more similar to those dominating the adsorbed expanded phase, which is

typically associated with random structures.

5.2.4 Collapse of adsorbed phases: expansion on the surface

Increasing the temperature at high adsorption strengths leads initially to an expansion of the

conformations parallel to the xy-surface plane. This two-dimensional expansion is signaled

by the radius of gyration in the xy-direction, see Fig. 5.7. Starting from low temperatures

the surface parallel radius of gyration 〈rgyr,xy〉 increases and for high epsilon values exhibits

a peak in the temperature interval T ∈ [1.6, 3.6]. Inflection points mark the maximum of
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Figure 5.7: The surface parallel, squared radius of gyration 〈r2gyr,xy〉 illustrates the expan-
sion of the polymer on the substrate, here shown as a function of temperature for various
adsorption strengths 0.0 < εS < 4.5 a) and as function of adsorption strength b). Structural
phase transitions are associated with points of highest absolute slope.

thermal fluctuations, indicating a phase transition, see Fig. 5.7 a). At higher temperatures

it seems at first glance counter-intuitive that the xy-component of the radius of gyration

decreases. However, the radius of gyration in the z-direction shows that the still adsorbed

conformations start to extend into the third dimension. This effect is denoted as a topological

transition.

5.2.5 Desorption: surface perpendicular expansion

For dominant surface adsorption strengths εS ≥ 2.0 the radius of gyration in the surface

perpendicular direction is negligibly small for temperatures T < 2, see Fig. 5.8 a), indicating

that the polymer is fully adsorbed. The comparison with the component of the radius of

gyration parallel to the surface, Fig. 5.8 b), reveals that both quantities are anticorrelated:

Once the desorption from the surface sets in, the two-dimensional expansion is reduced.

At εS = 2.0 this anticorrelated behavior starts at T = 2.0, for stronger surface at-

traction the desorption process shifts to higher temperatures. To quantify this observation
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Figure 5.8: Surface perpendicular and surface parallel, squared radius of gyration are com-
pared as functions of temperature for 2.0 < εS < 5.0.

the derivative of thermodynamic and structural quantities with respect to the adsorption

strength parameter is necessary. In Fig. 5.7 b) the radius of gyration in xy-direction is

shown for constant temperatures as a function of εS. Inflection points in these plots confirm

the location of the adsorption transition band in Fig. 5.5.

5.3 Phases, subphases and pattern recognition

of a 55mer

Focusing on the region of temperatures T < 2.0 and εS < 1.5 a landscape of subphases can be

found in the regime of the adsorbed compact phases where pattern recognition has set in, see

Fig. 5.9. The specific heat was used primarily to identify transitions for low temperatures

T < 0.5. Note, that merging signals and steep transition bands require a detailed scan of

the parameter space with independent parallel tempering simulations. In this study it was

necessary to vary the control parameter by about Δεs ≈ 0.025 where transition lines were

expected. Next, structural quantities were used to make more quantitative distinctions. Due

to technical constraints of the parallel tempering method, the lowest temperature was
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Figure 5.9: The detailed T − εS hyperphase diagram displays the structure of a vast land-
scape of subphases on the regime of frozen-like structures below T < 0.5 and adsorbed
globule structures (AG) below T < 1.5. Transitions between frozen-like structures obtained
from signals in the specific heat. For the extrapolation of vertical transition lines (orange)
characteristics in the form of the number of monomers ns,1.0 where used as described in sec-
tion 5.3.1. The freezing transition (turquois) is accompanied by a transition, associated with
a large fluctuation in the number of occupied hexagonal centers nS,0.3 (brown). At tempera-
tures T > 0.5 the wetting transition and transitions between adsorbed globule subphases are
signaled by the number of surface contacts nS,2.2 and nS,1.0 respectively. The collapse transi-
tion for adsorbed structures shows pronounced signals in the surface parallel component of
the radius of gyration and in the end-to-end distance of the polymer (light blue, dark blue).
The collapse transition between desorbed phases is signaled by “shoulders” in the specific
heat and located by peaks in the surface perpendicular component of the radius of gyration
(green). Error bars on transition bands indicate the width of peaks in response quantities,
resulting from finite-size effects.
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generally chosen as T = 0.18. Sufficient sampling at lower temperatures was only possible

with the use of increased computational effort and was, therefore, only performed for a few

temperatures.

5.3.1 Extrapolation of vertical transition lines in the low-temperature

region

At very low temperatures T < 0.2 thermal fluctuations become small and conformations

in the same phase resemble an unique ground state morphology. Consequently, curves of

structural quantities as functions of temperature bend and converge towards a limiting value,

see Fig. 5.10. An order parameter is suitable if it exhibits different values for neighboring

phases. Therefore, the fluctuations in the order parameter become comparably large at a

transition bands. For instance, the z-component of the center of mass as well as the number

Figure 5.10: a) Mean values of the z-component of the center of mass zcom are presented for
εS ∈ [0.0, 5.0] which bend for low temperatures to unique limiting values . For increasing
values of εS the adsorption to the surface is enhanced so that the value of the center of mass
generally decreases. b) Similar grouping is observed for the number of occupied adsorption
centers nS,0.3 . The crossing line in this set of curves indicates insufficient sampling and
results from this simulation are disregarded.
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of occupied adsorption centers in the substrate nS,0.3 allow for a clear discrimination of

phases. The thickness of the transition bands become smaller with decreasing temperature.

In the adsorption strength interval from 0.0 < εS < 1.5 six subphases are found at

the lowest simulated temperatures (Fig. 5.10), which are illustrated in the magnified view

of the complete hyperphase diagram Fig. 5.9. Starting from small adsorption strengths,

these are the adsorbed icosahedral droplet (AID) and adsorbed droplet phase with pattern

recognition (ADP), followed by the dewetted and wetted semispherical subphases (ASDPd)

and (ASDPw), respectively, before highly oriented phases in three and two layers are found

(HOAC3, HOAC2).

5.3.2 Adsorbed droplet phases AID, ADP, AD

The detailed discussion of the adsorbed icosahedral droplet phase in Section 5.2.1 was pro-

vided as the starting point of the general outline of the considered phase diagram. The

perfect icosahedron is formed for εS = 0. However, a less symmetric conformational phase,

with shifts in the minority of polymer beads, persists for εS < 0.18.

Figure 5.11: A typical conformation for the adsorbed icosahedral phase (AID), found for
εS < 0.18, is shown (left) together with two adsorbed droplet conformations (ADP, AD),
where the former structure is a representative of the patterned subphase ADP.
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For higher adsorption strengths, monomers facing the hexagonal surface recognize the

pattern. Increased values for the number of surface contacts nS,0.3 document the occupa-

tion of centers in the hexagonal ring structure of the substrate, see Fig. 5.10 a). Although

an overall spherical shape is still retained, the influence of the pattern reduces the internal

symmetry, forming the ADP phase. Towards higher temperatures, the ADP phase is sepa-

rated by signals in rgyr,xy from the adsorbed droplet (AD) phase where thermal fluctuations

average out the discrete character of the pattern. Occasionally, monomers at the curved

surface deform the spherical shape, but the attractive character of the substrate facilitates

the formation of relatively dense droplets. This interplay of the entropy-driven thermal and

energy-driven adsorption effects can be perceived by the non-zero slope of transition bands

in the phase diagram Fig. 5.9, blue and purple lines. These bands obtained from specific

heat signals show an extension of the AD phase towards higher adsorption strengths if the

temperature is increased.

5.3.3 Adsorbed semispherical phases ASDPd, ASDPw, ASDP,

ASD

Towards higher εS values droplets are attracted more strongly by the surface and exhibit

a semispherical shape. At low temperatures the ADP phase is followed by the dewetted

and wetted semispherical droplet phases (ASDPd) and (ASDPw) which are distinguished by

their height and patterned surface contacts, resembling the properties of adhesive or cohesive

liquid-surface interactions. However, since in this coarse-grained study specific properties of

materials are generalized, the semispherical droplet with highest surface coverage is denoted

more generically as a wetted conformation, see Fig. 5.12 top row. At temperatures T > 0.2

the ASDP and the ASPDw phases are observed.
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Figure 5.12: For low temperatures adsorbed semispherical droplets which recognize the
pattern are classified into dewetted and wetted subphases (ASDPd) and (ASDPw), shown
in the upper row. Fluctuations increase at higher temperatures in the ASDP phase while
all centers in the covered surface are occupied. At T > 0.45 the semispherical droplets are
adsorbed to the surface and occupy hexagonal centers at irregular locations (ASD), shown
in the bottom right.

As a precursor of the freezing transition the specific heat signals form a horizontal transi-

tion band, Fig. 5.9 (blue line at T = 0.45), which separates phases that are dominated by the

pattern and surface effects from amorphous structures that float with an semispherical shape

above the surface (ASD). Although single contacts to the hexagonal centers are established,

monomers in the surface layer of ASD conformations are in the minority. Vacant hexagonal

centers underneath the polymer structure can be observed as a result, see Fig 5.12. Fluctu-

ations in nS,0.3 separate this phase from globule subphases, Fig. 5.9 (golden line at T ≈ 0.6).

For εS < 0.55 bands deduced from CV and nS,0.3 merge into a single freezing transition band.

The latter is well known from the free polymer case.
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5.3.4 Adsorbed compact triple layers HOAC3, AC3

For very specific values of the absorption strength 0.8 < εS < 1.0 a highly oriented adsorbed

compact phase of conformations with three layers (HOAC3) is found, see Fig. 5.13. This

terminology is derived from highly oriented pyrolytic graphite (HOPG). A HOPG crystal is

one instance for a suitable substrate material that exhibits a hexagonal surface.

Due to its morphology, the HOAC3 phase describes a technologically relevant polymer

phase, which is a candidate for surface coatings in various applications and can possibly be

used for mechanical stabilization of two dimensional materials such as graphene.

Figure 5.13: In the highly oriented adsorbed compact triple layer phase (HOAC3) monomers
in the surface layer complete the hexagonal substrate pattern to an triangular lattice. Two
triangular overlayers arrange in a face-centered cubic (fcc) or hexagonally close packed (hcp)
configuration. Heights of the separate layers are identified in the normalized histogram nz

(right) as z = {0.01, 0.81, 1.62}. The average number of monomers in each layer is indicated
on the peaks.

The lowest layer of polymer beads in the HOAC3 phase occupies all vacant centers of

honeycomb substrate in the covered area and completes the hexagonal lattice to a triangular

lattice. The remaining monomers arrange in triangular overlayers. Usually about 15 of the

55 monomers form a small third layer which covers a single part of the larger second layer

in a compact manner without leaving vacancies. All three layers can be found as distinct
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peaks in the histogram of the height in Fig. 5.13 (right). The size of the bins is Δz = 0.02.

Numbers indicate how many monomers are contained in each peak. Note that the number of

monomers in the second layer is approximately three times higher than in the first layer, since

in the first layer 2 vertices per triangular cell are provided by the substrate. This property

becomes important to distinguish phases at higher values of εS and will be discussed in the

subsequent Section 5.3.5. The histogram also confirms that differences in the earlier defined

number of surface contacts nS,0.3, nS,1.0, nS,1.5, nS,2.2 can be used to determine the number

of monomers in each layer and also between layers. The latter case, that monomers reside

between layers is expected for higher temperatures.

In this structural phase three highly oriented layers form either a face-centered cubic (fcc)

or a hexagonally close packed (hcp) lattice type, see Fig. 5.14. A small energetic difference

exists due to different distances between a monomer in the third layer and an interaction

site in the surface layer. Where an ABC stacking of triangular lattices is found in fcc

lattices, hcp lattices are formed by AB stacking. The smallest distances are summarized,

together with resulting potential energies, in Table 5.1. Since the vertices of the hexagonal

substrate provide lattice points in the surface layer, the energetic contribution depends on

the adsorption strength. In the parameter interval 0.9 < εS < 1.0, relevant for HOAC2,

the fcc structure shows the highest energy, see Fig. 5.14. For the hcp lattice the energy per

monomer in the third layer differs for εS �= 1, depending on whether it is located directly

above a substrate vertex (hcp1) or a polymer bead (hcp2). Both cases occur with a ratio of

1:2, leading to an overall energy difference between fcc and hcp of about ΔE ≈ 0.3, where

approximately n3 = nS,2.2−nS,1.0 ≈ 14.6 monomers in the third layer were considered. Since

the Boltzmann constant is set to unity this value is associated with the temperature where

differences in the occurrence of lattice types become significant. However, it should be noted

that this energy margin is directly proportional to the system size.
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Figure 5.14: The first and second triangular layer is represented by filled circles in gray
and violet, respectively. For face centered cubic packing (fcc) monomers in the third layer
are located on top of two holes (red circle), creating ABC stacking. For this lattice type,
lattice points in different layers align when viewed under an angle φ = tan−1(

√
2) ≈ 54.7◦.

Hexagonally closed packing (hcp) is observed when monomers in the third layer are located
on top of monomers in the first layer (black circle), creating AB stacking. At adsorption
strengths εS �= 1 two cases can be distinguished. In one case a monomer is located directly
above a substrate vertex (black hexagons), denoted as hcp1, where in the case of hcp2 it
is placed above a polymer bead (green hexagons). The energy, due to interactions between
monomers in the first layer and a single monomer in the third layer E1,3/n3, is given for each
type of packing as a function of the surface adsorption strength (right).

Table 5.1: Next nearest neighbor distances between monomers in the first and third layer
are given together with energies per monomer for the hcp (left) and the fcc configuration
(right).

i count ri/r0 ULJ(ri)/10
−3

1 1
√
24
3

≈ 1.632 -86.37

2 6
√
33
3

≈ 1.915 -23.84

3 6
√
51
3

≈ 2.381 0

i count ri/r0 ULJ(ri)/10
−3

1 3
√
3 ≈ 1.732 -56.39

2 3
√
4 ≈ 2.000 -14.69

3 6
√
5 ≈ 2.236 0
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A prevalence of hcp structures at low temperatures should therefore become measurable

for larger system sizes. Generally this crystal-like phase is observed where the adsorption

strength is large enough that the substrate pattern can impose long range ordering effects,

but is still small enough that the formation of additional layers is attractive. For adsorption

strengths close to εS = 1, crystal growth in the direction perpendicular to the surface occurs

generally only on overlayers which are larger than the Lennard-Jones radius. The growth

of an overlayer along an existing edge on a large surface where the number of attractive

contacts is maximized is energetically preferred. Finally, it explains why the HOAC3 phase

is found for adsorption strengths less than unity.

The limiting factor for the number of overlayers is the length of the polymer chain. For

longer polymers the formation of 4 layer crystal phase is expected close to the left transition

line of the HOAC3 phase in Fig. 5.9. However, even for this small system size we recognize

that the growth into the surface perpendicular direction leads to a pyramidal shape of the

polymer. Since monomers in the third layer avoid locations close to the edge of the second

layer slanted faces are formed, similar to a truncated polygonal pyramid. This can be seen in

Fig. 5.13 on the left end of the structure. Therefore, we conclude, that long-range ordering

causes significant changes in the overall shape of the polymer compared to the adjacent

semispherical phase ASDPw.

For temperatures T > 0.3 thermal fluctuations smear out the internal symmetry which

defines the AC3 phase. Partitioning of the third layer into a fcc and a hcp regions accompa-

nied by defects and vacancies at the interface can occur. This effect is expected to become

statistically relevant for larger system sizes.

The properties of the HOAC3 and AC3 phase, discussed here, are specific to the lattice

constants of the substrate and locations of potential minima of the bonded and non-bonded

interaction. In this study all three parameters were chosen to be equal, allowing for the

formation of crystal structures without defects. We conjecture, that increasing the differences
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between these parameters creates frustration effects in large conformations and narrows the

adsorption strength interval, where layered polymer phases are observed.

Phases similar to HOAC3 and AC3 are expected for other substrate patterns, e.g. for

a square lattice, however, less energetic contacts than in the studied case of a hexagonal

substrate will reduce the stability of the phase, so that long-range ordering, i.e. ordering on

the length scale of the entire polymer, is already lost at lower temperatures.

5.3.5 Adsorbed compact double layers HOAC2, AC2

Increasing the adsorption strength causes the crystal-like structures to flatten into double

layer conformations. Bonds between the first and second layer are required to connect beads

in the favorable lattice sites in the center of the hexagons as it was observed for the previously

discussed HOAC3 phase. For a large parameter interval 0.9 < εS < 2.0 conformations are

compact and cover a circular area on the surface, which is denoted as the highly oriented

adsorbed compact phase in two layers (HOAC2). Note that for a triangular double layer a

distinction into a fcc or a hcp lattice is obsolete.

Three types of bonds are observed in the HOAC2 phase: Type 1, bonds parallel to the

surface in the triangular overlayer. Type 2, steep bonds that connect monomers in the

centers of the hexagons with the overlayer and type 3, bonds less steep on the fringe of the

film-like structure where two monomers in the surface layer are connected by one monomer

in the second layer. In Fig. 5.15 this zig-zag shaped type 3 is marked in purple. To determine

the relevance of fringe effects, the ratio of monomers in different layers is used.

R =
nS,1.5 − nS,0.3

nS,0.3

(5.3)

Considering the surface layer only, one substrate vertex contributes to the 3 surrounding

hexagons. Thus, the 6 vertices in hexagonal cell contribute with one third each, resulting in
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Figure 5.15: One representative conformation of the highly oriented adsorbed compact
double layer phase (HOAC2) is shown from three different perspectives. The uniform height
of the overlayer is observed from the side view (left). In the centered panel surface parallel
bonds and bonds which connect monomers in the centers of the hexagons (surface layer) with
the second layer become visible. Surface monomers in the center of the conformation are
connected by two or more beads, located in the second layer. On the edge of the structure
surface monomers are connected by one monomer in the second layer forming zig-zag shaped
bonds indicated with purple color. On the right the conformation is viewed under a 54.7◦

angle, displaying the remarkable alignment of both triangular lattices.

2 effective vertices per cell. One polymer bead is now placed in the center of the hexagonal

cell so that a triangular lattice is formed. In the triangular overlayer all 3 effective monomers

in a hexagonal cell are provided by the polymer.

Therefore, we conclude that in systems much larger than the 55mer where the fringe of

the film like structure can be neglected the ratio between polymer beads in the surface layer

and monomers in the upper layer is R = 1/3. In this case three surface parallel bonds (type

1) are, on average, followed by two steep bonds that connect into the centers of hexagons

(type 2).

With fringe effects taken into account the ratio will increase towards the limiting ratio of

about R = 1 if the system size is reduced to very small systems. This maximum ratio is also

observed for the 55mer at very high values the adsorption strength εS > 2, where the polymer
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maximizes the number of monomers inside the hexagons. The associated adsorbed zig-zag

phase (AZ) is discussed in the subsequent section. The analysis of the surface to overlayer

ratio R can also be applied to the two or more layered crystals and even for semi-spherical

patterned droplets, since the surface layer is formed in the same way once the hexagonal

pattern is recognized.

5.3.6 Adsorbed zig-zag phase AZ and quenching

Monomer-surface interactions become dominant if εS > 2. The number of monomers inside

the hexagonal substrate cells is maximized. The restricted length of the FENE bond allows

the occupation of attractive centers by every second monomer in the chosen parametrization.

The third monomer is centered above a substrate bond between the two monomers located

in the surface and forms in perpendicular direction a bridge for both adjacent monomers.

The polymer bonds in this adsorbed phase exhibit a zig-zag shape, defining the AZ phase.

The location of the central monomer is constrained by the repulsive character of the

surface potential. It cannot be so close to the surface that all energetic demands can be

satisfied at once. Instead, the repulsion between the bridging monomer and nearby substrate

vertices requires either that bonds are stretched or that monomers inside the attractive rings

are slightly lifted off from the substrate plane.

The grafted end of the polymer chain can possess an abnormally steep bond to a monomer

in the second layer, since the first monomer is chosen as one surface vertex. Grafting in the

center of a hexagon would cure this minor defect. For the cases shown in Fig. 5.16 the grafted

monomer, depicted in red, exhibits a surface parallel bond, connecting a second monomer

which is located in the center of a hexagon.

On the left-hand side of Fig. 5.16, the complete chain reveals bonds in zig-zag config-

uration. Even at the lowest simulated temperature this structure shows a dilute coverage

of the substrate. On smaller scales a frequent change in the direction of zig-zag bonds is
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Figure 5.16: At high surface adsoption strengths the polymer maximizes the occupation
of hexagonal centers, which leads to a zig-zag arrangement of bonds. Even for the lowest
sampled temperatures, the polymer covers the surface in an irregular manner, leading to
vacancies in the center of the structure (left). This effect of poor sampling due to strong
energetic barriers was attacked with additional rotational pivot updates. With this improved
Monte Carlo update the interplay of local and global ordering effects was observed, leading
to the formation of three straight strands which fold into a compact tertiary structure. Kinks
at the end of each strand are marked by arrows.

observed which establishes additional short-range monomer-monomer interaction. Parallel

tempering with simple displacement updates was not able to reveal more compact, entrop-

ically suppressed structures during the typical simulation time of 109 Monte Carlo updates

per site (Monte Carlo sweeps). The reason are strong energetic barriers between different

pathways of zig-zag conformations on the substrate. As solution to this problem more ad-

vanced algorithms like Wang-Landau simulations [49] or multicanonical sampling [50] could

be employed. In this case the implementation of an additional Monte Carlo update turned

out to be most efficient.
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Inspired by the short-range ordering effects in AZ configurations, we proposed a rota-

tional pivot update about monomers residing at the attractive centers. In order to naturally

increase the acceptance rate, the rotational angle was constrained to the discrete rotational

symmetries of the lattice.

A conformation from this improved simulation is shown in Fig. 5.16 (right). For a low

energy configuration it is now found that the direction of the zig-zag bridge alters in a

regular manner allowing the polymer to occupy centers of hexagons in two parallel rows.

Within this straight secondary structure, denoted as a strand, monomers establish non-

bonded interactions with multiple adjacent zig-zag bridges which leads to local ordering.

An additional global ordering effect breaks the symmetry of the structure on a larger

length scale, allowing zig-zag strands to fold into a tertiary structure of closely packed

strands. In the conformation presented in Fig. 5.16 (left) non-bonded interactions between

different strands are established and overcompensate energetically disadvantageous arrange-

ments of zig-zag bridges in the end of strands, where two connected strands exhibit kinks,

indicated by arrows.

The structural shape and the interplay of local and global ordering effects, observed here,

are closely related to the behavior of semi-flexible polymer with torsion potential. In [30] the

formation of helical structures and their adsorption to a surface was investigated. There, the

torsional potential led to a local ordering effect causing arrangement into helices. However

for specific parameter values these structures folded into helix bundles which were adsorbed

to the surface, allowing for geometrically similar structures as observed here in the AZ phase.

5.3.7 Relevance of ground states behind high energetic barriers

Monte Carlo simulations aim generally at the sampling of the entire configuration space

to satisfy ergodicity in order to describe thermodynamic properties in equilibrium. If the

results of the simulation are compared to an experiment, it is important to verify that the
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experimental setup allows for the same ergodic behavior. Strong barriers in the system that

are circumvented in a simulation by sophisticated updates may cause quenching effects in an

experiment. A fast decrease in temperature, for example, would lead to quenching of disor-

dered structures into the frozen phase as it is observed for glasses. Conditions that allow for

proper thermal equilibrium cannot be deduced directly from Monte Carlo simulations since

under thermal conditions monomers do not follow smooth trajectories but rather perform a

random walk in state space. However, the demand of advanced updates hints at the ques-

tion, under which conditions conformations like the folded zig-zag strand become physically

relevant. Further simulations based on molecular dynamics are suggested to resolve this

interesting problem.

5.3.8 General properties of solid-like phases

From the detailed analysis of separate phases the following general conclusions can be made

for solid-like phases. By increasing the system size from a 13mer to a 55mer a dramatic

increase of distinguishable phases was observed. Especially in the regime of frozen phases T <

0.5 a diversity of subphases was encountered where internal polymer interactions compete

with monomer-substrate interaction, 0.1 < εS < 1.1. We conclude that cooperative effects

and long-range ordering requires a minimum number of system constituents. Since one end

of the homopolymer was grafted to the surface, all configurations at low temperatures reside

closely to the surface. For polymers which are not grafted it is expected that conformations

at low temperatures exhibit a more pronounced desorption transition. These characteristic

properties are summarized in a simplified schematic phase diagram, see Fig 5.17. For different

adsorbed phases, such as the HOAC3 or the ASD phase, it was conjectured that an increase

in system size, or a change in the size and shape of the surface pattern, reveals new interesting

behavior.
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Figure 5.17: This simplified version of the structural hyper phase diagram [15], exemplifies
by means of representative conformations the major differences of solid-, liquid- and gas-
like polymer phases, separated by wetting and freezing, as well as adsorption and collapse
transitions. Gray transition bands indicate the non-zero width of structural phase transitions
due to the finite size of the system. Solid subphases in the low temperature regime, presented
in Fig 5.9 are indicated by gray color.

5.3.9 Liquid-like globule phases DG, AGa, AGb, AGc

The morphology of the desorbed globule phase (DG) is similar to the discussed case of

shorter chains in section 5.1. Globule phases are located between 0.5 < T < 1.6 and

0.0 < εS < 0.5, see Fig. 5.9. Passing the adsorption transition, signaled by fluctuations in the

number of surface contacts nS,2.2, the polymer is affected by the attractive surface. Compared

to solid-like droplet structures the density of conformations in the adsorbed globule phase
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AG is reduced. Monomers inside the globule move freely, while the center of mass is only

constrained by the grafted end of the polymer chain. The majority of monomers resides at

heights z > 1.0 where the pattern of the combined surface potential is already smeared out,

see Fig. 3.3 c) and d).

5.4 Recognition of the hexagonal pattern

The analysis of the structural hyperphase diagram revealed two distinct ways how a ho-

mopolymer can recognize the hexagonal pattern. In this section triangular overlayering is

compared to the formation of zig-zag bonds.

5.4.1 Analysis of the height distribution

From the analysis of the subphase regime we found that the HOAC3 phase exhibits most

prominently ordering effect which are imposed on the polymer by the substrate. The HOAC3

phase shows together with AC3, HOAC2 and AC2 triangular symmetries where surrounding

phases in the phase diagram such as AZ, ASD, ASDPw exhibit a different alignment to

the substrate pattern. In order to investigate the origin of the observed pattern effects, we

examine now the distribution of the monomer height z in the different phases which can

quantify pattern recognition. In Fig. 5.18 a)-f) the histogram of the height of monomers is

presented for increasing adsorption strengths εS = {0.00, 0.50, 0.90, 1.00, 2.50, 4.50} at four

different temperatures in each panel. Every histogram was obtained from 100 uncorrelated

structures where the bin size of each histogram is chosen as Δz = 0.02. Numbers at selected

peaks indicate the number of monomers found at the peak location. Starting point of the

discussion are the signals for the HOAC3 phase in plot Fig. 5.18 c) at T = 0.18, which is

also shown in Fig. 5.13. Histograms collected at higher temperatures reveal properties of

distinguished phases. According to the phase diagram, Fig. 5.9, the parameters
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Figure 5.18: The normalized histogram nz of the monomer height is shown for temperatures
T = {0.18, 0.38, 0.50, 0.75} at six adsorption strengths εS = {0.00, 0.50, 0.90, 1.00, 2.50, 4.50}.
The presented data is obtained from 100 structures for each parameter pair. Numbers at
peaks indicate the average number of monomers found in one layer of the HOAC3 phase c),
the HOAC2 phase d),e) and in the AZ phase f).
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T = {0.38, 0.50, 0.75} at adsorption strength εS = 0.90 correspond to the polymer phases

ASDPw, ASD and AGb, respectively. Although these phases are distinguished by transition

signals in the specific heat they exhibit common structural behavior in terms of the height

distribution: In Fig. 5.18 c) at least three distinct peaks are observed for each temperature.

With increasing temperature, peaks indicating the second and third layer are shifted to

slightly larger heights. For the ASDPw and ASD phase (T = 0.38, 0.50) an additional peak

forms at about z = 0.3. A comparison with histograms at higher εS value, see Fig. 5.18 e),

f), suggests that this peak at about z = 0.3 is caused by monomers which are lifted off from

the hexagonal centers due to the formation of zig-zag bonds. This conjecture is supported

by the representative conformation of the ASDPw shown in Fig. 5.12, monomers close to the

surface of the semi-spherical conformation align to the pattern by forming zig-zag bridges.

Even more interesting, we found that the footprint like signature for zig-zag bonds is

also found for low adsorption strength εS = 0.50, Fig. 5.18 b), where the monomer is in

the semi-spherical droplet like patterned phases. This means that the regime of highly

oriented structures with triangular layering is enclosed by phases that exhibit zig-zag bonds.

We, therefore, conclude that in general this zig-zag type of pattern recognition is more

stable and less parameter sensitive. If the surface interaction is turned off, no signatures

are found for the AID phase, see Fig. 5.18 a), since the icosahedron is free to tilt about

the grafted monomer which is located on surface of the structure. Hence, the formation of

triangular overlayers in comparison to pattern recognition via zig-zag bond is a very specific

phenomenon which distinguishes the adsorbed compact layered structures from all other

phases.

5.4.2 Lateral ordering: Formation of triangular overlayers

In order to examine which effects are prevalent during the formation of triangular overlay-

ers the lateral location of monomers in the first layer of adsorbed compact structures is
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investigated. The driving force of this ordering process is the surface potential. However,

monomers in the first layer, which fill the hexagonal centers, contribute via the non-bonded

potential to the potential landscape which is seen by monomers in the layer above. Similar

to the top view of the potential presented in Fig. 3.3 a) the combined potential landscape,

created by vertices and surface monomers, is presented for εS = 0.90 at the relevant heights

z = 0.81, 0.86, 0.90 in Fig. 5.19. Here both monomers in the surface layer and lattice vertices

were considered to create the potential landscape for the upper layer. As a result the density

plots exhibit a triangular instead of a hexagonal pattern. The locations of monomers in the

first layer were idealized to be at the exact center of the hexagons which can be understood

as an approximation to low-temperature conformations. The locations of monomers in the

surface is given as (0, 1), (
√
3, 1), (

√
3/2, 5/2) and (3

√
3/2, 5/2). Since the Lennard-Jones

interaction of these monomers is not modified by the parameter εS, the diameters of the

repulsive areas (orange) are slightly larger.

In Fig. 5.19 a), b) the potential is depicted at z = 0.81 above the surface. Superim-

posed are the locations of monomers found in the height interval 0.78 ≤ z ≤ 0.83 for two

temperatures. The area which is magnified in a) is marked by a square in b). We found

that for T = 0.18 the monomer locations (blue crosses) scatter closely around the potential

minima (black), whereas at T = 0.50 monomers are found primarily between two minima

(red crosses). The overview in panel b) reveals a three-fold symmetry about the origin in

the clustering of red markers, indicating that monomers in the second layer reside primarily

between two lattice vertices. White colored areas, adjacent to surface layer monomers, are

depopulated whereas white areas between two surface vertices are populated. This effect can

be partly explained by the greater repulsion of surface layer monomers, however, a similar

scattering is observed for εS = 1.0 where non-bonded interactions coincide with the surface

interaction.
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Figure 5.19: Surface parallel cuts of the potential landscape at εS = 0.900 are presented for
three different heights z = {0.81, 0.86, 0.90}. The non-bonded potential of ideally positioned
monomers inside the hexagonal rings contributes together with the surface potential to the
potential landscape. A square in the overview graphs on the right marks the area shown in
the left graph. The location of monomers in different height intervals is marked by crosses
for T = 0.18 (blue) and T = 0.50 (red). The monomer coordinates were collected from 100
independent configurations for each temperature.
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5.4.3 Morphology of zig-zag bonds

Outside of the specific regime for triangular overlayers at low temperatures and εS ≈ 0.90,

the polymer aligns to the substrate by forming zig-zag bond. In phases that are more

disordered, like semispherical droplet phases, this covering type is favored because it requires

less cooperativity. For smaller adsorption strength εS < 0.80 the arrangement of monomers

in an triangular overlayer is entropically suppressed. If the adsorption strength is high we

found that the occupation of hexagonal centers is the dominant effect.

The combined surface potential discussed in Chapter 3 favors monomers in the centers of

the hexagons. Recall that if their connection is established by a zig-zag bonds, two competing

effects arise. Bonds need either to be stretched or monomers in the hexagonal center have

to lift off from the surface plane. The latter is clearly visible in the height distribution for

εS > 2.50 in Fig. 5.18 e) and f). To compare this effect to bond stretching the distribution of

bonds which connect monomers in the surface layer with monomers in the second layer b12

is presented in Fig. 5.20 a)-f) for increasing adsorption strength. Whereas squeezed bonds

are found for triangular overlayers c) and d), the bond-length in the semi-spherical regime

at εS = 0.50, see panel b), is slightly stretched. For the lowest temperature the distribution

of the modified bond potential U
(mod)
B , see eq. (3.4), is shown as a dashed line on the second

axis. Due to the flat minimum of the bond potential the distribution is peaked at zero,

indicating no energetic penalty. The width of the tail of the distribution extends to about

U
(mod)
B < 0.50, see Fig. 5.20 a),b) top axis . According to the equipartion theorem this energy

value defines roughly a margin for the energetic penalty due to a non-optimal location in the

surface potential landscape.
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Figure 5.20: Bond-length distributions between monomers located in the surface layer and
the second layer b12, shown for different adsorption strengths εS and temperatures T . The
distributions of the modified bonded potential U

(mod)
B is shown for the lowest temperature

on the second axes as a dashed line.
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For high adsorption strength the bond-length distribution is much stronger pronounced

towards stretched bonds 1.00 < b12 < 1.30, Fig. 5.20 e), f). This can be understood in

terms of larger variations of the combined surface potential. Adsorption to the surface in

the HOAC2 and AZ phase provides more energy to deform bonds than in the previously

discussed phases. Interestingly, the tail of the modified bond potential distribution falls off

very slowly in comparison to the flank of the peak. This means that the energy in the bond is

not specific. Although the zig-zag arrangement of three monomers is repeated over the entire

homopolymer, no dominant bond-lengths are observed. Instead the linking monomer above

the surface layer is shifted towards one of the hexagonal centers, leading to an asymmetry in

the bridge. This notion is supported by the top view of monomers above the surface layer in

Fig. 5.21. Monomers at different temperatures are shown for three different height intervals

in a)-f). Monomers at heights 0.78 < z < 0.83 are clearly scattered around the potential

minima indicated with black color. At greater heights and larger temperature monomers

remain located along the typical direction of a zig-zag bond, which coincides with the gray

stripes in plot c). Occupation of the interval 0.88 ≥ z ≥ 0.93 is only observed for the

higher temperature. A comparison of Fig. 5.21 e) with Fig. 5.19 e) reveals that much larger

ordering of monomers in the zig-zag configuration. Accordingly, the bond-length distribution

in Fig. 5.20 f) appears to be almost temperature independent. Therefore, the geometry of

this type of surface coverage is not sensitive to a change in temperature. Only a comparably

small widening of the flanks in Fig. 5.20 f) indicates that energetically unfavorable squeezed

or stretched bond-lengths are formed at higher temperatures.
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Figure 5.21: Cuts of the potential landscape together with monomer locations are presented
similarly to Fig. 5.19 for εS = 4.50.
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Chapter 6

Conclusion and outlook

Using Metropolis importance sampling in a parallel tempering scheme, we investigated the

conformational state space of a coarse grained 13mer and a 55mer. Multiple histogram

reweighting was employed to calculate an estimate for the density of states which was used

to obtain thermodynamic quantities such as the specific heat. Fluctuations of structural

quantities as for instance the radius of gyration, the end-to-end distance and the sphericity

parameter were analyzed to identify phase transitions due to cooperative effects within the

polymer chain. In order to identify adsorption effects and the recognition of the substrate

pattern, different measures of surface contacts were developed.

Central to this study was to investigate how adsorption and pattern recognition depends

on the relative strength of polymer-surface interaction, compared to intramolecular interac-

tions. Therefore, a generic adsorption strength parameter was introduced in the Lennard-

Jones based interaction between surface vertices and monomers. Scanning this parameter

εS ∈ [0.0, 5.0] in 50 independent simulations allowed us to collect signals from different quan-

tities in a hyperphase diagram, parametrized by temperature and adsorption strength and

to construct phase transition bands.
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Due to the finite character of the system these bands show finite widths which generally

decrease towards lower temperatures. The analysis of fluctuations was particularly useful

to locate horizontal transition bands, i.e. structural phase transitions which weakly depend

on the control parameter εS. However, we found that for εS > 0.5 surface interactions are

not negligible even for liquid- and gas-like phases. In order to obtain vertical transition

lines, structural quantities were analyzed as a function of the adsorption strength. At low

temperatures, derivatives with respect to T and εS were found to vanish. However, due to

unique ground state morphologies for each structural phase, mean values of suitable order

parameters converge to different characteristic values, which were used to identify locations

of vertical phase-transition bands. Finally, the location of structural phases was confirmed

by analyzing three dimensional visualizations of representative polymer conformations. Iden-

tifying similarities and differences between neighboring phases, refinements in the choice of

order-parameters were made. On the basis of recorded coordinates for a set of representative

conformations for each phase, additional information was deduced from bond length, bond

angle, monomer height, and correlation of the monomer locations, leading to a characteriza-

tion of phases in terms of dominant properties such as adsorbed, desorbed (A/D), expanded,

globule, droplet, semispherical droplet, compact, icosahedral (E/G/D/SD/C/I), patterned,

zig-zag, highly oriented (P/Z/HO), wetted and dewetted (w/d).

This work gives rise to the development of a search heuristic to classify such diverse

structural information automatically which is an interesting challenge in terms of machine

learning. From the comparison of results obtained for the 55mer with results for a 13mer

and a continuous flat surface we found that the complexity of observed phases increases

rapidly with system size and changes with the symmetry of the substrate. Such an algorithm

would aid the analysis of longer or multiple grafted chains and could help to systematically

investigate how different substrate patterns alter the structural behavior. More complex
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order parameters such as winding numbers in semispherical droplet-like conformations may

become tractable and lead to a better understanding of adsorption pathways.

Furthermore, the detailed structural information about various polymer phases is of great

value for future experiments, since the generic choice of the adsorption strength parameter

allows for a reparametrization and can be interpreted in multiple ways. First, it allows for

the classification of different substrate materials in terms of εS using a specific polymer.

Second, polymers with similar length but different side chains may be classified to predict

the effect of chemical reactions on the structure formation. Third, the adsorption strength

may be mapped to a change of properties in the solvent, which was treated implicitly in

this study. Charges in the solution for example, may shield monomer-surface interactions,

leading to an effective decrease in εS. A possible demand for such a property can be seen

in the fabrication of protective coatings. In this study it was shown that highly oriented

multilayer phases are observed for very specific values for the adsorption strength. Hence,

precise control over this parameter may be vital in future fabrication processes.

With the structural information about all polymer phases at hand, special emphasis was

put on the arrangement of solid-like phases. Starting the discussion from the limiting case of

vanishing monomer-substrate interactions where icosahedral symmetries were found, flatting

of droplet conformations into a dewetted and wetted semispherical shape was observed as the

surface adsorption strength was increased. During this process, we saw that the interaction

with the surface first broke the internal symmetry of the polymer, but induced recognition

of the pattern by wetted structures at sufficiently high interaction strengths. Since at low

temperatures energetic ordering effects dominate, the potential landscape created by surface

vertices was analyzed. Considering the polymer approaches adsorbed phases from high tem-

peratures, we found that monomers investigate the surface and are attracted by the centers

of the hexagonal substrate. However, competing effects of bonded and non-bonded inter-

actions lead to a challenging optimization problem. Depending on the adsorption strength,
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different adsorption strategies were identified. Most remarkable is the formation of highly

oriented, triangular crystal-like structures, where the onset of crystal growth into the di-

rection perpendicular to the surface was seen. Formation of hcp and fcc lattices was found

in a narrow adsorption strength regime, where εS < 1.0. In this context the influence of

different side chains is not yet known. Therefore, a comparison between the coarse-grained

model, considered here, and an atomistic simulation at these particular parameter values

promises new insights. At higher adsorption strengths two dimensional triangular film-like

structures were found. However, it was unexpected that these triangular phases are em-

braced by patterned phases where the formation of zig-zag bridges dominates. Form the

analysis of the spatial coordinates at phase specific heights above the surface, it is concluded

that the formation of zig-zag bonds requires less cooperativity, allowing for a local recogni-

tion of the pattern. This property was observed in structural phases with internal disorder

such as semi-spherical droplets and globule conformations, but also as a quenching effect at

high adsorption strengths, where strong barriers between local minimas of the potential are

created by surface vertices.

Moreover, conflicting ordering effects of the FENE potential and the combined surface

potential were discovered, which lead to subtle changes in the location of monomers, de-

pending on the surface parameter but also on temperature. Thus, we concluded that shifts

in the free-energy minimum due to entropic effects are important to the pattern recognition

process. To extend the discussion of ordering effects by the surface potential to finite temper-

atures, measurements of the potential of mean force as a function of spatial coordinates are

desirable. These measurements, however, require that entropically suppressed states close

to surface vertices are sampled efficiently. In this context advanced generalized-ensemble

methods are a suitable tool to overcome this challenging problem.

In order to study the stabilizing effect of patterned polymer films, we suggest repeating

our simulations on flexible sheets, incorporating thermal fluctuations of the substrate. Here,
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surface vertices were fixed and not affected by the finite temperature of the environment.

To mimic the surface of bulk material, monomers were not allowed to penetrate the sur-

face. Realistic simulations of polymer chains grafted on small graphene sheets would require

suitable bending potentials for the substrate and a common length scale if a coarse-grained

approach is used. In this case a proper coarse-graining of the substrate pattern needs to be

developed.
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