
On the Performance of Density Cumulant Functional Theory for

Capturing Static Correlation Effects and Ab Initio Computational

Studies of C2F4 and Ge4H4

by

Jimmy Wayne Mullinax

(Under the direction of Henry F. Schaefer III)

Abstract

The performance of density cumulant functional theory (DCT) for capturing static correla-

tion effects is reported and discussed. In this respect, DCT is competitive with the popular

coupled-cluster methods CCSD and CCSD(T), and the DCT natural orbital occupation num-

bers provide a convenient diagnostic for the appearance of multireference effects. In addition,

ab initio computational studies of tetrafluoroethylene (C2F4) and tetragermacyclobutadiene

(Ge4H4) are reported. First, a theoretical investigation of the low-lying electronic states

and conical intersections of C2F4 provides a complementary description of nonadiabatic pro-

cesses that were recently probed by femtosecond photoionization spectroscopy. Second, a

coupled-cluster study of the ground-state potential energy surface of Ge4H4 demonstrates

its preference for unusual bonding arrangements in contrast to the planar ring structure of

cyclobutadiene (C4H4).
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Chapter 1

Introduction and Literature Review

A central tenet of modern chemistry is that the properties of matter are determined by

the properties of atoms and molecules.1 Electronic structure theory provides the quantum

mechanical framework for modeling the properties of atoms and molecules from first prin-

ciples by explicitly considering the role of electrons in driving chemical phenomena.2–4 Ab

initio electronic structure computations have been crucial for linking qualitative chemical

concepts to a quantum mechanical foundation, interpreting experimental results, and quan-

titatively predicting molecular properties, at times for which experimental determination is

impracticable.5,6

In this introductory chapter, key aspects of electronic structure theory are reviewed that

are relevant to the original research presented in Chapters 2–4. These topics include ab

initio wave function methods, density cumulant functional theory, static correlation, excited

electronic states, and conical intersections. This chapter ends with an overview of the original

research presented herein.
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1.1 Electronic Structure Theory

The distribution of electrons in atoms and molecules is determined by the electronic Schrödinger

equation2

ĤelΨel (xel; Rnuc) = Eel (Rnuc) Ψel (xel; Rnuc) (1.1)

under the Born–Oppenheimer approximation.7 For a given nuclear configuration (Rnuc), the

electronic wave function (Ψel) is a function of the spatial and spin coordinates of the electrons

(xel) and the electronic energy (Eel) is a real number. The electronic Hamiltonian (Ĥel) is

the sum of one-electron operators

ĥ =

Nel∑
i=1

(
−1

2
∇2
i −

Nnuc∑
A=1

ZA
|ri −RA|

)
(1.2)

and two-electron operators

ĝ =

Nel∑
i<j

1

|ri − rj|
, (1.3)

where Nel is the number of electrons and Nnuc is the number of nuclei. (Atomic units are

assumed.)

If Ĥel = ĥ, then the electronic Hamiltonian would be a sum of Nel independent one-

electron Hamiltonians. For such a fictitious system, the electronic wave function is a product

of Nel molecular orbitals (MOs), i.e., one-electron wave functions, and the electronic energy

is a sum of the corresponding orbital energies.4 In fact for such a system, an antisymmetrized

product of orthonormal MOs (i.e., a Slater determinant) satisfies the antisymmetry postulate

of quantum mechanics for a system of indistinguishable fermions.8 However, the presence

of the interelectronic repulsion operator ĝ complicates solution of Eq. 1.1 by introducing

correlation between electrons and necessitates the application of approximate methods to

make progress.
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In principle, Eq. 1.1 can be solved for all possible nuclear configurations Rnuc. Collecting

the sum of the electronic energy and the internuclear repulsion energy at each Rnuc maps out

a potential energy surface (PES) for nuclear motion. Computing a complete PES is impracti-

cal for most molecules, but focusing on the minimum energy and transition state structures,

including a localized description of the PES around these stationary points, is often suffi-

cient for accurate predictions of chemical interest such as reaction enthalpies, reaction rates,

reaction pathways, and spectroscopic constants.9 The PES concept is a consequence of the

Born–Oppenheimer approximation. However, the Born–Oppenheimer approximation breaks

down as PESs become degenerate leading to a coupling of electronic and nuclear motions

(i.e., vibronic coupling). Section 1.6 discusses intersecting PESs, which are important for

nonadiabatic processes.10–12

1.2 Ab Initio Wave Function Methods

The electronic Schrödinger equation (Eq. 1.1) is a formidable many-body problem due to the

interelectronic repulsive interactions ĝ. A wealth of experience shows that an independent

particle model (e.g., Hartree–Fock theory) with strategically added corrections from sophis-

ticated treatments of electron correlation (i.e., accounting for the instantaneous interactions

between electrons) can systematically approach the exact solution of Eq. 1.1 for many sys-

tems of chemical interest.3,13 This section reviews the standard wave function models that

have found wide-spread use in electronic structure computations and that are applied in

Chapters 2–4. The underlying assumption of these methods is that Hartree–Fock theory

provides a good starting approximation to the electronic wave function. Section 1.4 will

cover methods appropriate for cases where Hartree–Fock theory fails. A full exposition of

the theoretical details is avoided here in favor of emphasizing the important features of each

method and their key differences.
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Hartree–Fock Theory

The Hartree–Fock wave function ΦHF is a single configuration state function (CSF), which

for closed-shell and high-spin open-shell molecules can be expressed as a single Slater de-

terminant.3 In this section, a single determinant Hartree–Fock wave function is assumed.

The Hartree–Fock energy is the expectation value of the electronic Hamiltonian EHF =

〈ΦHF|Ĥel|ΦHF〉. Hartree–Fock theory employs the variational principle by minimizing EHF

with respect to the MOs in ΦHF under the constraint that the MOs remain orthonormal.2

This procedure leads to a pseudo-eigenvalue equation for the MOs (φi)

f̂φi = εiφi (1.4)

where f̂ is the one-electron Fock operator given by

f̂ = ĥ+ Ĵ − K̂ . (1.5)

(A spin-orbital basis is assumed.) The action of the Coulomb operator (Ĵ) is defined as

Ĵ(x1)φi(x1) =

Nel∑
j=1

{∫
φj(x2)φj(x2)

r12
dx2

}
φi(x1) , (1.6)

and the action of the exchange operator (K̂) is defined as

K̂(x1)φi(x1) =

Nel∑
j=1

{∫
φj(x2)φi(x2)

r12
dx2

}
φj(x1) . (1.7)

Eq. 1.4 requires an iterative solution due to the MO dependence of f̂ .
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The MOs are typically expressed as a linear combination of atomic orbital (AO) basis

functions centered on the nuclei

φi(r) =

NAO∑
µ

Cµiχµ(r) (1.8)

so that the integro-differential equations of Hartree–Fock theory (Eq. 1.4) are converted to

a matrix representation for the chosen basis functions14

FC = SCε , (1.9)

where F is the matrix representation of f̂ , S is the overlap of the AO basis functions, C is the

matrix of MO expansion coefficients in Eq. 1.8, and ε is the diagonal matrix of MO energies.

The Roothaan equations (Eq. 1.9) are amenable to computer implementation for molecular

systems, and two different approaches are usually applied. In restricted Hartree–Fock theory

(RHF), restricted spin-orbitals are used (i.e., for each spin-orbital involving an alpha spin-

function, there is a corresponding spin-orbital with the same spatial orbital multiplied by a

beta spin-function).14,15 In contrast, the above spin-restriction is removed for unrestricted

Hartree–Fock theory (UHF).16

The Hartree–Fock equations have an important physical interpretation. The Fock op-

erator f̂ can be viewed as an effective one-electron Hamiltonian where the interelectronic

repulsive interactions ĝ are replaced by an effective one-electron potential or a mean field

v̂(x) =

Nel∑
i=1

{
Ĵi(x)− K̂i(x)

}
. (1.10)

In this picture, each electron is described by its own wave function (MO) and interacts

with the mean field created by the other electrons. Conceptually, Hartree–Fock theory is

important because it retains some resemblance of a system of independent particles which
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is useful for qualitative chemical concepts that are otherwise obscured by the complexity of

the Nel-electron wave function.17,18 Quantitatively, Hartree–Fock theory provides adequate

predictions of molecular geometries and ionization potentials, but the crude approximation to

the interelectronic repulsive interactions often leads to unacceptable error when high accuracy

is required.3 More sophisticated treatments of the interelectronic repulsive interactions are

required to recover electron correlation effects.

Configuration Interaction

The most straightforward approach for incorporating electron correlation starting from ΦHF

is the method of configuration interaction (CI).19 The full CI (FCI) wave function is a linear

combination of all possible CSFs (Slater determinants) for a set of Hartree–Fock MOs.

ΨCI =
∑
i=0

aiφi = c0ΦHF +
∑
S

cSΦS +
∑
D

cDΦD +
∑
T

cTΦT + · · ·+
∑
Nel

cNel
ΦNel

(1.11)

Eq. 1.11 is a convenient way of expressing the FCI wave function where ΦS refers to the

singly excited determinants (i.e., the determinants that differ from ΦHF by only one MO),

ΦD refers to the doubly excited determinants, . . . , and ΦNel
refers the Slater determinants

that differ from ΦHF in all orbitals . The CI coefficients {ci} of Eq. 1.11 are determined by

employing the variational principle, which leads to the matrix eigenvalue equation

Hc = Ec . (1.12)

H is the matrix representation of the electronic Hamiltonian in the basis of the CSFs (de-

terminants) in the FCI wave function, c is an eigenvector of H whose elements are the CI

coefficients of Eq. 1.11, and E is the CI energy. The FCI wave function is the best wave

function possible for a given choice of the AO basis functions. The FCI method is impractical
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for all but the smallest systems with small basis sets. However, FCI results provide useful

benchmarks for evaluating more practical electron correlation methods.

A hierarchy of truncated CI methods are well-defined by truncating the expansion for

ΨCI (Eq. 1.11). The most common is the CISD method which includes the singly and

doubly excited determinants. Improved CI wave functions may be obtained at greater com-

putational cost by including higher excited determinants in the trial wave function (e.g.,

CISDT, CISDTQ), but this approach has largely lost favor in the computational chem-

istry community due to its lack of size-consistency and extensivity, a well-known problem

of truncated CI methods. A common approximate remedy of this problem is the Davidson

correction that accounts for the “disconnected” quadruple excitation (i.e., the correlation

of two non-interacting electron pairs), which are the most important contributions to the

correlation energy after the singles and doubles. The CISD method with the Davidson cor-

rection (CISD+Q) offers an improvement over CISD, but Møller–Plesset perturbation theory

(MPPT) and coupled-cluster (CC) theory are rigorously size extensive alternatives even in

their truncated forms.

Møller–Plessett Perturbation Theory

Møller–Plessett perturbation theory (MPPT)13,20,21 employs Rayleigh-Schrödinger pertur-

bation theory based on a Hartree–Fock reference wave function and a decomposition of the

electronic Hamiltonian

Ĥel = Ĥ0 + V̂ =

Nel∑
i

f̂i +

{
1

r12
−

Nel∑
i=1

(
Ĵi − K̂i

)}
. (1.13)

In Eq. 1.13 the fluctuation potential V̂ is treated as the perturbation to the zeroth-order

Hamiltonian, which is a sum of one-electron Fock operators. Although the Hartree–Fock

determinant is the zeroth-order wave function in MPPT, the Hartree–Fock energy is correct
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to first-order so that the second-order energy is required to recover part of the correlation

energy.

The advantage of MPPT is that the energy and wave function can be systematically

improved order-by-order. However, there are two main disadvantages: (1) MPPT is not

variational and (2) there is no guaranttee that the MPPT expansion of the energy and

wave function will converge.22 Therefore, MPPT to fourth-order (MP4)23–25 is typically the

highest order MPPT method employed, with most applications only employing MPPT to

second-order (MP2).26–28 MP2 often provides a good balance between computational cost

and recovery of electron correlation effects, particularly for large systems.

Coupled Cluster Theory

Coupled-cluster (CC) theory29–32 employs an exponential wave function ansatz:

ΨCC = exp(T̂ )ΦHF , (1.14)

where the excitation operator T̂ is conveniently decomposed as

T̂ = T̂1 + T̂2 + T̂3 + · · ·+ T̂Nel
. (1.15)

The action of the ith excitation operator on ΦHF generates a linear combination of all ith

excited Slater determinants weighted by the unknown amplitudes (ti).

T̂1ΦHF =
∑
S

tSΦS (1.16)

T̂2ΦHF =
∑
D

tDΦD (1.17)

T̂3ΦHF =
∑
T

tTΦT (1.18)

· · · = · · · (1.19)
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If the full excitation operator T̂ is used, then the CC wave function is equivalent to the

FCI wave function, and there is no advantage of using the exponential parameterization of

CC theory over the linear parameterization of FCI. A hierarchy of truncated CC methods are

defined based on the truncation of the excitation operator T̂ , e.g., CCD (CC with doubles),

CCSD (CC with singles and doubles), CCSDT (CC with singles, doubles, and triples). The

exponential ansatz ensures a size-extensive method, even for a truncated CC method. In

contrast to CISD, CCSD includes contribution form the disconnected quadruple excitations

due to the presence of T̂2T̂2 in the expansion of exponential operator exp(T̂ ). In fact, CC

methods that include at least the single excitation operator in the definition of T̂ will include

contributions from all Slater determinants that appear in the FCI wave function, but only

partial contributions from the disconnected excitations are included.

Conventional CC theory is not variational. The t-amplitudes and CC correlation energy

is found by projecting the Schrödinger equation of the similarity transformed Hamiltonian

exp(−T̂ )Ĥel exp(T̂ ) onto the manifold of Slater determinants corresponding to the unknown

t-amplitudes. Experience shows that the nonvariational nature of conventional CC methods

does not adversely affect the results. In fact, CCSD with an approximate treatment of the

triples contribution based on perturbation theory [CCSD(T)], is often referred to as the “gold

standard” due to its remarkable ability to produce accurate geometries, energies, and other

molecular properties at reasonable computational cost for small systems. Another drawback

of CC theory is that the resulting equations for the t-amplitudes and the electronic energy

are rather complicated because they are nonlinear in the unknown amplitudes. The coupled

electron pair approximation or CEPA methods may be viewed as a linear approximation to

the CC equations.33,34
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1.3 Density Cumulant Functional Theory

The electronic Hamiltonian Ĥel contains only one- and two-electron operators, so its expec-

tation value only requires knowledge of the one- and two-electron reduced density matrices

(1-RDM and 2-RDM)

E = 〈Ψ|Ĥel|Ψ〉 = hqpγ
p
q +

1

4
ḡrspqγ

pq
rs , (1.20)

where the quantities of interest in the MO basis (p, q, r, s) include the conventional one-

electron integrals (hqp), the antisymmetrized two-electron integrals (ḡrspq), the 1-RDM (γpq ),

and the 2-RDM γpqrs .
3 (The Einstein summation convention is assumed in this section.) If

higher order density matrices are not required to compute properties of interest, then finding

the electronic wave function is not necessary as the 1-RDM and 2-RDM will be sufficient.

An alternative to finding approximate solutions to the electronic Schrödinger equation

for a parameterized wave function (Section 1.2) is to parameterize the 1-RDM and 2-RDM

and minimize the electronic energy with respect to these parameters.35,36 Although this is

an attractive approach, there are two major obstacles. First, the elements of the 1-RDM

and 2-RDM are not independent and therefore cannot be freely varied when building a

method based on Eq. 1.20. Second, the 1-RDM and 2-RDM must be derivable from a valid

N -electron wave function, which places conditions on the 1-RDM and the 2-RDM known

as the N -representability conditions.37 A number of methods have been developed based

on parameterization of the 1-RDM and 2-RDM;38–40 however, density cumulant functional

theory (DCT) is the focus of the section.41–43

DCT addresses the two problems mentioned above by employing the 2-RDM cumulants

(λrspq) as parameters. The λrspq are expressed in terms of the 1-RDM and 2-RDM as

γrspq = γrpγ
s
q − γspγrq + λrspq . (1.21)
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The λrspq vanish identically for a Hartree–Fock wave function, but are nonzero for a correlated

wave function. In other words, the 2-RDM cumulants are the irreducible part of the 2-RDM

that cannot be expressed through the 1-RDM, and they contain information about electron

correlation absent in a mean field approach like Hartree–Fock theory. In DCT, the 1-RDM

is decomposed into an idempotent component due to the mean-field solution (κpq) and an

electron correlation component (τ pq ).

γpq = κpq + τ pq (1.22)

Although τ pq is dependent on λrspq, κ
p
q and λrspq are independent and fully parameterize the

1-RDM and 2-RDM.

The DCT electronic energy is expressed as

E =
1

2

(
hqp + f qp

)
(κpq + τ pq ) +

1

4
ḡrspqλ

pq
rs (1.23)

where the generalized Fock matrix is defined as

f qp = hqp + ḡqspr(κ
s
r + τ sr ) . (1.24)

The energy expression in Eq. 1.23 is made stationary with respect to variations of κpq and λpqrs

while enforcing the appropriate N -representability conditions on λpqrs. The N -representability

conditions for κpq are trivially satisfied by construction and do not require further comment.

However, the N -representability conditions for λpqrs are not trivial, and approximate condi-

tions based on perturbation theory are employed. If the electronic state of interest is well-

described by a single Slater determinant, it is expected that the error in the approximate

N -representability conditions will be small since the elements of λpqrs will not be expected

to be large. The relationship between τ pq and λpqrs have been computed approximately based
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on perturbative analysis in the DC-06 method41,42 and exactly in the DC-12 method.44 Full

orbital relaxation for DC-12 (ODC-12) has been shown to be a stable method competitive

with CCSD and CCSD(T) for a wide variety of molecular properties.45

1.4 Static Correlation and Multireference Methods

The single reference methods described in Section 1.2 assume that a single CSF dominates

the FCI solution, and those methods are biased towards that CSF. This assumption breaks

down as two or more CSFs are degenerate or nearly degenerate. Static correlation refers

to such cases where multiple configurations are important to obtain a valid zeroth-order

approximation to the wave function. Multiconfigurational SCF (MCSCF) methods provide

a starting point where static correlation is important by treating these CSFs on an equal

footing.3 An MCSCF wave function

ΨMCSCF =
∑
i

ciΦ
CSF
i (1.25)

is a linear combination of a small number of CSFs, and the MCSCF energy is found by

minimizing the expectation value of Ĥel with respect to the CI coefficients ({ci}) and the

MOs used in the CSFs. The simultaneous optimization of the CI coefficients and the MOs is

a challenging variational problem, but popular electronic structure software packages provide

efficient and robust MCSCF methods.

A major drawback of MCSCF methods is that they can hardly be considered black-box

since trial and error along with chemical intuition is required to determine the CSFs that

should be included in the MCSCF trial wave function. A popular MCSCF method is the

complete active space SCF (CASSCF) method.46,47 In CASSCF, an active space is defined

as a subset of the valence electrons and a subset of the MOs, and all possible CFSs obtained
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by varying the orbital occupations in the active space are included in the CASSCF wave

function. Therefore, choosing an appropriate active space is key in a CASSCF calculation.

Post-MCSCF methods are required for achieving accurate results. Multireference config-

uration interaction (MRCI) applies the CI approach to a MCSCF wave function.48,49 The

most widely used method is MRCISD which includes all single and double excitations from

the configurations in the MCSCF wave function. The CASPT2 method applies perturbation

theory through second-order to a CASSCF wave function.50,51 CASPT2 is a computation-

ally cheaper method than MRCISD, but it is less accurate. Multireference coupled cluster

theory (MRCC) applies the ideas of coupled cluster theory to a MCSCF wave function, but

there are multiple formulations of MRCC theories.52,53 One such approach is Mukherjee’s

state-specific MRCC (Mk-MRCC),54,55 and results from Mk-MRCC computations will be

reviewed in Chapter 2.

1.5 Excited Electronic States

The single reference methods (Section 1.2) and multireference methods (Section 1.4) reviewed

above are sometimes used to describe excited electronic states. However, methods designed

for excited states have been developed, and two such methods employed in Chapter 3 are

reviewed here.

State average CASSCF (SA-CASSCF) minimizes the average energy for a select set of

electronic states based on a common active space.56,57 Two advantages of SA-CASSCF is

that it avoids the root-flipping problems during the optimization and yields a single set of

MOs for all states considered. This results in a robust method and a balanced description of

multiple states in a single computation. The resulting SA-CASSCF wave functions can be

used as a starting point for MRCI, CASPT2, and MRCC computations for more accurate

results.
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Equation of motion coupled cluster (EOM-CC) theory, provides a single-reference for-

malism for treating excited states.58–60 EOM-CC with singles and doubles for excited states

(EOM-EE-CCSD) starts with a CCSD solution for the ground electronic state well-described

by a single determinant. The target EOM states are obtained by diagonalizing the sim-

ilarity transformed Hamiltonian H̄ = exp−T̂ Ĥ expT , where T̂ is defined from the CCSD

t-amplitudes for the reference state. In this sense, EOM-CC resembles configuration inter-

action. A drawback to EOM-EE-CCSD is that the results degrade when the reference state

becomes multireference. For example, modeling a reaction path for a bond-breaking reaction

will fail if the reference state becomes a multiconfigurational problem. An alternate EOM-

CC approach is spin-flip EOM-CC (EOM-SF-CCSD), where the reference state is taken to

be a high spin state that is well described by a single determinant, and spin-flip operators

are applied in the EOM-CC formalism to reach the target spin state, which presumably is a

multireference problem.

1.6 Conical Intersections

The methods described above all rely on the validity of the Born–Oppenheimer approxima-

tion. Although these methods are successful in addressing a variety of chemical problems,

they fail for nonadiabatic processes where vibronic coupling between electronic states must

be considered. Conical intersections occur when two or more PESs become degenerate, and

their importance is widely accepted in photochemical mechanisms.61,62 In this section, the

basics of conical intersections are reviewed.

Two intersecting PESs create a N − 2 degenerate conical intersection seam space, where

N is the number of nuclear degrees of freedom (Natom− 6). At each point in the seam space,

there exists a two-dimensional orthogonal space known as the branching plane where the

degeneracy of the two PESs are lifted. Any two linearly independent vectors in this plane
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can be chosen as the base vectors, but the usual choice is the energy difference gradient

gIJ =
∂EI
∂R
− ∂EJ

∂R
(1.26)

and the interstate coupling vector

hIJ ' (EI − EJ) 〈ΨI |
∂

∂R
|ΨJ〉 . (1.27)

If the PESs are plotted in the branching plane for a given point of conical intersection,

the two PESs take the form of a double cone that intersects only at that point of conical

intersection.

A convenient way of characterizing a conical intersection seam is to find the minimum

energy conical intersections (MECIs), which are minimum energy structures in the seam

space but not necessarily a stationary point on either PES. Finding the MECI is a nontrivial

problem because it requires the simultaneous computation of at least two PESs. One way to

proceed is SA-CASSCF where the active space is chosen to provide an adequate description

of the two electronic states of interest. However, inclusion of dynamic correlation through

methods of CASPT2, MRCI, and EOM-CCSD have been studied for characterizing MECIs.

Although the MECIs may provide a simple and qualitatively useful picture of nonadia-

batic processes, a complete description requires the dynamics of the nuclei to be considered.

The approach to the conical intersection is dictated by the features on the excited state PES,

so the MECI may be inaccessible on the upper PES. Many dynamics schemes to model the

nuclear dynamics for nonadiabatic processes have been proposed.63 However, these methods

are still not in wide-spread use due to the computational demands and the fact that they are

not black-box methods. A recently proposed compromise to the simple MECI and the full

dynamics pictures is to find the minimum energy paths in the conical intersection seam using
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chain-of-states methods (e.g., the nudged elastic band method) often used to find minimum

energy pathways on a single PES.64

1.7 Prospectus

Chapter 2 reports the performance of DCT for capturing static correlation effects. Molecular

properties computed with the ODC-12 and DC-12 variants of DCT are compared to CCSD,

CCSD(T), MRCISD, and Mk-MRCCSD results for molecular systems with significant multi-

determinant character of the electronic wave function. These systems include the beryllium

dimer, diatomic carbon, m-benzyne, 2,6-pyridyne, twisted ethylene, and square-planar cy-

clobutadiene. The DCT natural orbital occupations are evaluated as a potential diagnostic

for the presence of multireference effects.

The low-lying electronic states of tetrafluoroethylene (C2F4) are characterized in Chapter

3. We report vertical excitation energies, equilibrium geometries, minimum energy conical

intersections, and potential energy curves along relevant coordinates. Two relaxation path-

ways are reported from the Rydberg-3s excited state to the ground state, and the theoretical

results are discussed in conjunction with recent femtosecond photoionization experiments.

This work represents the first theoretical characterization of important conical intersections

of C2F4 and their role in nonadiabatic relaxation.

In Chapter 4, the ground state potential energy surface of Ge4H4 is characterized with

coupled-cluster theory. This study focuses on the cyclic isomers related to the all Ge cy-

clobutadiene analog and the lowest energy isomers, which exhibit a variety of bonding motifs.

The results are discussed in the context of qualitative MO bonding models, related compu-

tational studies, and recent synthetic research. This research reports three new isomers of

Ge4H4 and represents the highest-level theoretical study to date for this system.
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Chapter 2

Can Density Cumulant Functional Theory Describe

Static Correlation Effects?∗

∗J. W. Mullinax, A. Yu. Sokolov, H. F. Schaefer III, J. Chem. Theory Comput. 2015, 11, 2487–2495.
Reprinted here with the permission of the publisher.
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2.1 Abstract

We evaluate the performance of density cumulant functional theory (DCT) for capturing

static correlation effects. In particular, we examine systems with significant multidetermi-

nant character of the electronic wave function, such as the beryllium dimer, diatomic carbon,

m-benzyne, 2,6-pyridyne, twisted ethylene, as well as the barrier for double-bond migration

in cyclobutadiene. We compute molecular properties of these systems using the ODC-12 and

DC-12 variants of DCT and compare these results to multireference configuration interaction

and multireference coupled-cluster theories, as well as single-reference coupled-cluster theory

with single, double (CCSD) and perturbative triple excitations [CCSD(T)]. For all systems

the DCT methods show intermediate performance between that of CCSD and CCSD(T),

with significant improvement over the former method. In particular, for the beryllium dimer,

m-benzyne, and 2,6-pyridyne, the ODC-12 method along with CCSD(T) correctly predict

the global minimum structures, while CCSD predictions fail qualitatively, underestimating

the multireference effects. Our results suggest that the DC-12 and ODC-12 methods are

capable of describing emerging static correlation effects but should be used cautiously when

highly accurate results are required. Conveniently, the appearance of multireference effects

in DCT can be diagnosed by analyzing the DCT natural orbital occupations, which are

readily available at the end of the energy computation.

2.2 Introduction

The electron correlation problem is central in quantum chemistry.65,66 Out of a variety of

ab initio methods for electron correlation, the most commonly used are single-reference

methods, which rely on the validity of Hartree–Fock theory as the underlying approxima-

tion. Single-reference (SR) methods efficiently capture dynamic electron correlation, which

arises due to instantaneous electron repulsions, and are sufficiently accurate when the fron-

18



tier molecular orbitals of a system are well-separated in energy. Conventional SR theories,

such as Møller–Plesset perturbation theory,2,3 configuration interaction,2,3 and coupled clus-

ter13,31,32 theories, have been shown to provide highly accurate solutions to the Shrödinger

equation for systems of modest size near geometric equilibrium. In particular, coupled clus-

ter theory in combination with basis set extrapolation techniques67,68 or explicitly correlated

approaches69–71 is often capable of achieving chemical accuracy, provided that a high enough

excitation level is used in the expansion of the molecular wavefunction.72

Conventional wave function-based SR methods for electron correlation suffer from two

major drawbacks. First, their performance degrades with increasing static correlation effects,

which usually require more sophisticated and costly multireference treatments.52,53,73,74 Sec-

ond, the high computational cost of SR methods limits their applicability to rather small

molecules. As a result, the development of new SR theories is still an active area of research,

ranging from linear-scaling local correlation methods75–78 to novel approaches that are more

efficient and accurate compared to conventional SR theories.79–86 Many of these alternative

approaches are formulated by simplifying the equations of SR coupled cluster theory79–84

or directly obtaining the reduced density matrices and cumulants thereof,87 circumventing

the computation of the N -electron wavefunction. In particular, density cumulants88–91 have

recently found a widespread use in electronic structure theory in many areas, for example,

as a tool for reconstruction of the high-order density matrices in the contracted Schrödinger

equation theory,90,92–97 canonical transformation theory,98–101 multireference methods based

on generalized normal-ordering,88 and as a central variable in parametric reduced density

matrix methods.38–40

We have recently developed and implemented density cumulant functional theory (DCT),42–45,102

first proposed by Kutzelnigg in 2006.41 In its simplest formulation,42,44,45 DCT resembles

linearized coupled cluster theory with double excitations (LCCD, also known as CEPA-

0),33,34,103,104 and contains fewer terms in the equations compared to coupled cluster with
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singles and doubles (CCSD), while including high-order correlation effects in the description

of the one-particle density matrix and orbital relaxation.44,45 An additional advantage over

CCSD is that in DCT, the computation of molecular equilibrium properties and geometries is

very efficient due to the stationarity of the energy functional with respect to all of its param-

eters and orbital rotations.43,45 Our recent benchmark study demonstrated that the DC-12

and ODC-12 variants of DCT show intermediate performance between that of CCSD and

CCSD with perturbative triples [CCSD(T)] in the description of noncovalent interactions,

barrier heights for hydrogen-transfer reactions, radical stabilization energies, and adiabatic

ionization energies.105 These DCT methods have also shown encouraging performance for

the covalent bond stretching of diatomic molecules. However, the performance of DCT for

recovering static correlation effects beyond bond stretching of diatomic molecules has not

been explored.

An intrinsic assumption of the current formulation of DCT is that the one-particle density

matrix can be well approximated by a density matrix of a single determinant, making the

theory inherently single-reference. It is therefore natural to ask the question: how accurate

is DCT in systems with significant multireference character? For example, it is known that

SR coupled cluster theory with high-order connected excitations (triple, quadruple, etc.)

can recover a substantial degree of multireference correlation.106–108 On the other hand,

linearized theories, such as CEPA-0, which bear resemblance to DCT, have been shown

to provide inadequate results for systems with even minor multireference effects.82,105 To

answer the question above, in this paper we test the performance of the DC-12 and ODC-

12 methods for a set of systems with significant static correlation effects in the electronic

wave function. We begin by considering four molecules with a two-determinant character in

the ground state: the beryllium dimer, diatomic carbon, m-benzyne, and 2,6-pyridine. We

then evaluate the performance of DCT for the description of the potential energy barriers

for twisting of ethylene and the double-bond migration in cyclobutadiene. We focus on

20



equilibrium properties such as the optimized geometry, harmonic vibrational frequencies,

dissociation energies, and adiabatic singlet-triplet excitation energies. The results of the

DC-12 and ODC-12 methods are compared to available experimental data, as well as high-

level multireference computations. To assess the relative performance, we compare the DCT

results to those of the conventional SR methods such as CCSD, CCSD(T), and CEPA-0.

2.3 Density Cumulant Functional Theory Overview

In this section, we present a brief overview of DCT. A more detailed discussion of DCT

can be found in our previous research.41–45,102 The starting point of DCT is the molecular

electronic energy expression (summation over repeated indices is implied):

E = hqpγ
p
q +

1

2
grspqγ

pq
rs , (2.1)

where γpq and γpqrs are elements of the one- and two-particle reduced density matrices (1-RDM

and 2-RDM), respectively, and the one- and two-electron integrals are denoted as hqp and

grspq. In DCT, the 2-RDM is expressed using its cumulant expansion as

γpqrs = γprγ
q
s − γqrγps + λpqrs , (2.2)

where λpqrs are the elements of the two-particle density cumulant (λ2). The 1-RDM (γ1) is

decomposed into an idempotent (mean-field) component κ and a correlation correction τ :

γ1 = κ + τ . (2.3)
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In Eq. (2.3) only τ depends on the density cumulant. The entire energy functional (2.1) can

thus be written in terms of the independent parameters κ and λ2:

E [κ,λ2] =
1

2

(
hqp + f qp

) (
κpq + τ pq

)
+

1

4
ḡrspqλ

pq
rs

f qp ≡ hqp + ḡqspr (κrs + τ rs ) , ḡpqrs ≡ gpqrs − gqprs . (2.4)

In DCT, the energy functional (2.4) is minimized with respect to κ and λ2, provided that the

resulting density matrices (2.2) and (2.3) are N -representable, that is, can be derived from

an N -electron wavefunction. In the DC-12 and ODC-12 methods, approximate constraints

are used to maintain N -representability of the one- and two-particle density matrix in a

balanced way by parametrizing the density cumulant to second order in perturbation theory.

The two methods differ in the description of the orbital relaxation: DC-12 introduces partial

orbital relaxation by diagonalizing an effective Fock operator, while ODC-12 fully optimizes

the orbitals by satisfying the generalized Brillouin condition.

2.4 Computational Details

The DC-12, ODC-12, and CEPA-0 computations were performed using the Psi4 software

package.109 For coupled cluster theory with singles and doubles (CCSD)31,32 and CCSD

with perturbative triples [CCSD(T)]110,111 we used the Cfour software package.112,113 The

complete active space self-consistent field (CASSCF)56,57 and multireference configuration

interaction with singles and doubles (MRCI)48,49 computations were performed using the

Molpro program.114 The MRCI energies were supplied with the Davidson correction to

account for size-consistency; the resulting method is denoted as MRCI+Q.115,116 All electrons

were correlated in all computations. For C2H4 and C4H4, the two electrons in two orbitals

active space was used. The all-electron quintuple zeta (cc-pCV5Z) basis set was employed for

C2,
117,118 and the augmented version of this basis set (aug-cc-pCV5Z) was used for Be2.

119
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For m-benzyne, 2,6-pyridine, ethylene, and cyclobutadiene, we employed the cc-pCVTZ basis

set. Equilibrium geometries were computed using analytic differentiation of the energy for all

methods except DC-12, where gradients were evaluated numerically with a five-point formula.

To compute harmonic vibrational frequencies, numerical differentiation of analytic energy

gradients was performed. For closed-shell molecules, the results were obtained using the

restricted orbitals, which preserve the spin and spatial symmetry of the exact wavefunction.

For triplet states, spin-unrestricted orbitals were used. To aid convergence in computing the

ODC-12 potential energy curves for the twisting of ethylene and the double-bond migration

in cyclobutadiene, we employed a 0.09 and 0.1 a.u. level shifts, respectively, as implemented

in Psi4. New to this research is the determination of natural orbitals from the ODC-12

method, which are obtained by diagonalizing the one-particle reduced density matrix.

2.5 Results

2.5.1 Beryllium Dimer

We begin by considering the beryllium dimer (Be2), a weakly bound molecule that presents

a challenge for single-reference ab initio methods due to the near-degeneracy of the 2s and 2p

orbitals of the Be atom.120,121 Previous computational studies using coupled cluster theory

suggested that the connected triple excitations need to be included at least at the perturba-

tive level to qualitatively describe the potential energy curve of the Be2 molecule.107,122–124

For more accurate results, full iterative inclusion of triples and perturbative quadruples have

been shown to be important.107,122–124 Recent high-level computational and experimental

work has tackled this difficult molecule with remarkable success.125–128 In this section, we in-

vestigate the equilibrium properties of Be2 using the DC-12 and ODC-12 methods combined

with the augmented core-valence aug-cc-pCV5Z basis set.
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Table 2.1: Equilibrium bond distances (re), harmonic vibrational frequencies (ωe), and dis-
sociation energies (De) of the Be2 molecule computed using the DC-12, ODC-12, CCSD,
CCSD(T), and CEPA-0 methods with the aug-cc-pCV5Z basis set.

Theory re (Å) ωe (cm-1) De (cm-1)
CEPA-0 2.301 318 1589
CCSD 4.414 30 58
CCSD(T) 2.467 242 671
DC-12 2.570 195 597
ODC-12 2.499 226 596
c-CCSDT(Q)/CBSa 2.439 227.6e 955
DMRGb 931
Expt.c 2.454 222.6e 930±2
Expt.d 2.438 222.6e 935

a Reference 126. Composite method.
b Reference 125. Density matrix renormaliza-

tion group with canonical transcorrelation ap-
proach.

c Reference 127.
d Reference 128.
e Fundamental frequencies.

Table 2.1 provides the Be2 equilibrium bond lengths (re), harmonic vibrational frequen-

cies (ωe), and dissociation energies (De) computed using five methods, as well as available

high-level theoretical and experimental results. The CCSD method fails to qualitatively re-

produce the experimental results predicting a very long bond distance (re = 4.414 Å) and a

dissociation energy of only 58 cm-1. In contrast, CEPA-0 overestimates the dissociation en-

ergy by ∼ 600 cm-1 and predicts a very short Be−Be distance (re = 2.301 Å). Out of the five

single-reference methods, the best results are obtained using the CCSD(T) method, which

gives absolute errors ∆re, ∆ωe, and ∆De relative to experiment of ∼ 0.03 Å, ∼ 20 cm-1, and

∼ 250 cm-1, respectively. Both DC-12 and ODC-12 qualitatively reproduce the experimental

results. The performance of ODC-12 is only slightly worse than that of CCSD(T), with ∆re,

∆ωe, and ∆De values of ∼ 0.06 Å, ∼ 3 cm-1, and ∼ 330 cm-1, relative to experiment. These

results are particularly encouraging, since both DC-12 and ODC-12 do not explicitly contain

24



connected three-particle excitations and are, therefore, much cheaper. Figure 2.1 shows the

plots of the Be2 frontier natural orbitals (2σu and 3σg) computed using the ODC-12 method.

The ODC-12 natural occupation numbers (2σu)1.71 (3σg)
0.16 show significant deviation from

two and zero, indicating the multireference nature of Be2.

(a) (2σu)1.71 (b) (3σg)
0.16

Figure 2.1: (a) 2σu and (b) 3σg natural orbitals and occupations for the singlet ground state
of beryllium dimer computed using the ODC-12 method with the aug-cc-pCV5Z basis set.

2.5.2 Carbon Dimer

The C2 molecule is another challenging system for electronic structure methods, largely due

to the multireference character of the X̃ 1Σ+
g ground state.47,129–132 Table 2.2 shows the

equilibrium bond distances (re), harmonic frequencies (ωe), dissociation energies (De), and

adiabatic excitation energies (Te) computed using the DCT and coupled cluster methods for

the ground (X̃ 1Σ+
g ) and lowest-lying triplet (ã 3Πu) states of C2. Table 2.2 also contains ref-

erence data computed using multireference configuration interaction theory with single and

double excitations (MRCI+Q). CCSD and CCSD(T) perform very well for the ground state

equilibrium properties (re and ωe) with deviations of ≤ 0.005 Å in re and ≤ 55 cm-1 in ωe, rel-

ative to experiment133 and MRCI+Q. However, for the dissociation and adiabatic excitation

energies (De and Te = E(ã3Πu) − E(X̃1Σ+
g )), only CCSD(T) exhibits reliable performance

with ∆De = 1.3 and ∆Te = 0.4 kcal mol-1. The CCSD method underestimates De by 20.5 kcal

mol-1, relative to experiment, and incorrectly predicts the ã 3Πu state to be the ground state,
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with a large absolute error ∆Te = 10.4 kcal mol-1. CEPA-0 overestimates the binding in C2,

which results in much larger De and Te values compared to experiment (by 5.4 and 11.7 kcal

mol-1, respectively) and a short C−C bond distance with ∆re = 0.05 Å. Of the two DCT lev-

els of theory, the best agreement with experiment was demonstrated by ODC-12 that shows

intermediate performance between CCSD and CCSD(T) with ∆De = 9.3 and ∆Te = 4.1 kcal

mol-1. Both DCT methods, however, fail at predicting the correct ground state of C2, favor-

ing the ã 3Πu state to lie lower in energy than X̃ 1Σ+
g . The ODC-12 natural occupations for

the C2 ground state valence orbitals are (2σg)
1.96 (1πu)3.76 (2σu)1.54 (3σg)

0.45 (1πg)
0.19 (3σu)0.01,

indicating substantial multireference character.

Table 2.2: Equilibrium geometries (re), harmonic vibrational frequencies (ωe), dissociation
energies (De), and adiabatic excitation energies [Te = E(ã3Πu)−E(X̃1Σ+

g )] of the C2 molecule
computed using the ODC-12, DC-12, CCSD, CCSD(T), MRCI+Q, and CEPA-0 methods
with the cc-pCV5Z basis set. For MRCI+Q, the complete active space self-consistent field
reference with eight electrons in eight active orbitals was used.

Theory re (Å) ωe (cm-1) De (kcal mol-1) Te (kcal mol-1)

X̃1Σ+
g

CEPA-0 1.193 2421 151.1 13.8
CCSD 1.238 1907 125.2 -8.3
CCSD(T) 1.241 1870 145.3 2.5
DC-12 1.225 1973 128.7 -7.1
ODC-12 1.225 1954 136.0 -2.0
MRCI+Q 1.243 1862 150.0 1.7
Expt.a 1.243 1855 2.05
Expt.b 146.6
Expt.c 147.8

ã3Πu

CEPA-0 1.305 1684
CCSD 1.302 1697
CCSD(T) 1.311 1653
DC-12 1.302 1770
ODC-12 1.305 1679
MRCI+Q 1.313 1640
Expt.a 1.312 1641

a Reference 133.
b Reference 134.
d Reference 135
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2.5.3 m-Benzyne

The m-benzyne molecule (C6H4, Figure 2.2b) is a prototypical example of a singlet diradical

with a multireference ground state.136–138 Its wavefunction has two major configurations:

(1) the Hartree–Fock solution |Φ1〉 = |. . . (11a1)
2 (7b2)

0〉 and (2) a doubly excited determi-

nant |Φ2〉 = |. . . (11a1)
0 (7b2)

2〉. The molecular orbitals (11a1) and (7b2) correspond to the

bonding and antibonding combinations of the carbon p-orbitals in the meta position (Figure

2.3). As a result, the two electronic configurations |Φ1〉 and |Φ2〉 favor two chemically dis-

tinct geometries, the bicyclic and monocyclic, respectively (Figure 2.2), and the equilibrium

structure is determined by the relative contributions of these configurations in the molecular

wave function. Recently, equilibrium structures of m-benzyne computed using the state-

specific multireference coupled cluster Mk-MRCCSD method have been reported.55,139,140

At the Mk-MRCCSD/cc-pCVTZ level of theory m-benzyne has a monocyclic ground state

structure with significant contribution of the |Φ2〉 determinant in the wave function. In this

section, we present the ground-state optimized geometries and the singlet–triplet adiabatic

excitation energies (∆EST) computed using the ODC-12 method with the cc-pCVTZ basis

set and discuss its performance against the high-level Mk-MRCCSD method.

Table 2.3 reports the equilibrium properties of m-benzyne computed using the CCSD,

CCSD(T), ODC-12 and Mk-MRCCSD methods. ODC-12 and CCSD(T) predict the mono-

cyclic ground state structures, in a qualitative agreement with Mk-MRCCSD (Figure 2.2b).

For CCSD the bicyclic structure was obtained, with a very short distance between the carbon

atoms in the meta position (re (C2−C6) = 1.556 Å, Table 2.3 and Figure 2.2a). The failure

of CCSD at predicting the correct ground state structure for m-benzyne has been demon-

strated by Smith, Crawford, and Cremer.141 For ODC-12 and CCSD(T), the re (C2−C6)

values are 2.101 and 2.043 Å, respectively, with deviations of ∼ 0.09 and 0.03 Å compared

to Mk-MRCCSD (re (C2−C6) = 2.014 Å).
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(a) (b)

Figure 2.2: Optimized structures of m-benzyne computed using the ODC-12, CCSD,
CCSD(T), and Mk-MRCCSD methods with the cc-pCVTZ basis set. Only the distance
between two carbon atoms in the meta position is shown (re(C2−C6), in angstroms).

An important characteristic of the thermodynamic stability of singlet carbenes, such

as m-benzyne, is the singlet–triplet adiabatic excitation energy (∆EST). For m-benzyne,

the experimental ∆EST has been reported.143 Subtracting the zero-point vibrational con-

tribution,55 the experimental ∆EST = 20.3 ± 0.3 kcal mol-1. CCSD(T) and Mk-MRCCSD

predict ∆EST values of 20.7 and 21.0 kcal mol-1, respectively, while CCSD underestimates the

singlet–triplet energy by a factor of 2 (∆EST = 9.7 kcal mol-1). The ODC-12 method shows

better performance compared to CCSD, with ∆EST = 16.7 kcal mol-1. The ODC-12 natural

orbitals provide information about the extent of the m-benzyne diradical character. Figure

2.3 shows the plots of the (11a1) and (7b2) natural orbitals of m-benzyne computed at the

ODC-12/cc-pCVTZ optimized geometry. The corresponding natural occupation numbers

are (11a1)
1.70 (7b2)

0.28, indicating the significant diradical character of m-benzyne.
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Table 2.3: Equilibrium structural parameters for the singlet ground state of m-benzyne
computed using the ODC-12, CCSD, CCSD(T), and Mk-MRCCSD methods with the cc-
pCVTZ basis set. The bond lengths (re) are in angstroms, and the bond angles (θe) are in
degrees. The adiabatic singlet-triplet excitation energy ∆EST is reported in kcal mol-1. The
numbering of atoms is shown in Figure 2.2.

Coordinate CCSD CCSD(T) ODC-12 Mk-MRCCSDa

re (C2−C6) 1.556 2.043 2.101 2.014
re (C1−C2) 1.345 1.368 1.370 1.359
re (C2−C3) 1.379 1.375 1.373 1.370
re (C3−C4) 1.406 1.400 1.398 1.395
re (C1−H) 1.079 1.077 1.075 1.075
re (C3−H) 1.076 1.081 1.080 1.079
re (C4−H) 1.083 1.085 1.083 1.083
θe(C2−C1−C6) 70.7 96.7 100.2 95.6
θe(C1−C2−C3) 160.9 138.0 135.2 138.9
θe(C2−C3−C4) 107.8 116.9 117.4 116.5
θe(C3−C4−C5) 111.8 113.7 114.7 113.6
θe(C2−C3−H) 126.2 120.7 120.6 120.9

∆EST 9.7b 20.7b 16.7 21.0b

a Reference 139.
b Reference 142. Geometries were optimized at the

RHF-CCSD(T)/cc-pVTZ and ROHF-UCCSD(T)/cc-
pVTZ levels of theory for the singlet and triplet state,
respectively.

(a) (11a1)
1.70 (b) (7b2)

0.28

Figure 2.3: (a) 11a1 and (b) 7b2 natural orbitals and occupations for the singlet ground state
of m-benzyne computed using the ODC-12 method with the cc-pCVTZ basis set.
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2.5.4 2,6-pyridyne

In this section we consider 2,6-pyridyne (C5H3N), a N-substituted parent compound of m-

benzyne (Figure 2.4). Similarly to m-benzyne, the 2,6-pyridyne wave function is dominated

by two determinants |Φ1〉 = |. . . (11a1)
2(7b2)

0〉 and |Φ2〉 = |. . . (11a1)
0(7b2)

2〉, which favor

the bicyclic and monocyclic ground state geometries, respectively. At the Mk-MRCCSD

level of theory, mono- and bicyclic minima on the 2,6-pyridyne potential energy surface have

been reported.140,144 However, geometry optimization using CCSD(T) only results in the

monocyclic structure.144 It has been suggested that the Mk-MRCCSD bicyclic geometry is

an artifact of theory, due to the lack of triple excitations.145

(a) (b)

Figure 2.4: Optimized structures of (a) bicyclic 2,6-pyridyne and (b) monocyclic 2,6-pyridyne
computed using the ODC-12, CCSD, CCSD(T), and Mk-MRCCSD methods with the cc-
pCVTZ basis set. For the CCSD(T) method, there is no bicyclic stationary point. Only the
distance between two carbon atoms in the meta position is shown (re (C2−C6), in angstroms).

Table 2.4 and Figure 2.4 show the CCSD and ODC-12 optimized geometries for 2,6-

pyridyne, along with CCSD(T) and Mk-MRCCSD results from Ref. 144. Both CCSD and

ODC-12 locate two minima on the C5H3N potential energy surface, corresponding to the

bicyclic and monocyclic structures. For the bicyclic structure, the distance between the

carbon atoms in the meta position optimized using the two levels of theory are similar (re

(C2−C6) = 1.478 and 1.518 Å, respectively) and are close to that of Mk-MRCCSD (1.483
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Å, Figure 2.4a). For the monocyclic structure, the CCSD method predicts a much smaller

re (C2−C6) distance compared to Mk-MRCCSD (1.818 versus 2.017 Å, respectively), while

the ODC-12 optimization results in a larger re (C2−C6) = 2.094 Å (Figure 2.4b). The

relative energies of the two geometries (∆E = Emono−Ebi) computed at four levels of theory

are shown in Table 2.4. The ODC-12 and Mk-MRCCSD methods energetically favor the

monocyclic structure with ∆E values of −3.6 and −7.2 kcal mol-1, while CCSD favors the

bicyclic structure with a positive ∆E of 1.8 kcal mol-1.

Table 2.4: Equilibrium structural parameters for the monocylic and bicyclic structures of
2,6-pyridyne computed using the ODC-12, CCSD, CCSD(T), and Mk-MRCCSD methods
with the cc-pCVTZ basis set. The bond lengths (re) are in angstroms, and the bond angles
(θe) are in degrees. The energy difference between the two structures ∆E = Emono − Ebi is
also reported (in kcal mol-1). The numbering of atoms is shown in Figure 2.4.

Coordinate CCSD CCSD(T)aODC-12 Mk-MRCCSDa

Monocyclic
re (C2−C6) 1.818 2.014 2.094 2.017
re (N1−C2) 1.331 1.347 1.337 1.336
re (C2−C3) 1.373 1.380 1.378 1.374
re (C3−C4) 1.394 1.396 1.394 1.391
re (C3−H) 1.077 1.080 1.079 1.078
re (C4−H) 1.084 1.086 1.083 1.083
θe(C2−N1−C6) 86.2 96.8 103.2 98.0
θe(N1−C2−C3) 146.9 138.1 133.8 137.5
θe(C2−C3−C4) 114.5 117.0 117.1 116.8
θe(C3−C4−C5) 110.9 112.9 115.1 113.5
θe(C2−C3−H) 120.7 119.5 120.1 119.8

Bicyclic
re (C2−C6) 1.478 1.518 1.483
re (N1−C2) 1.337 1.340 1.337
re (C2−C3) 1.380 1.380 1.380
re (C3−C4) 1.411 1.412 1.411
re (C3−H) 1.075 1.077 1.075
re (C4−H) 1.084 1.084 1.084
θe(C2−N1−C6) 67.1 69.0 67.4
θe(N1−C2−C3) 164.6 162.6 164.3
θe(C2−C3−C4) 105.9 107.2 106.1
θe(C3−C4−C5) 111.9 111.3 111.8
θe(C2−C3−H) 127.2 126.2 127.0

∆E +1.8 -7.2 -3.6

a Reference 144.
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Figure 2.5 shows the plots of the ODC-12 natural orbitals for the mono- and bicyclic

2,6-pyridyne structures. For the bicyclic geometry, the ODC-12 natural occupations are

(11a1)
1.90 (7b2)

0.08, indicating nearly single-reference character of the wavefunction. The op-

timized monocyclic geometry exhibits a significant two-determinant character of the wave-

function with natural orbital configuration of (11a1)
1.50 (7b2)

0.49. These results suggest that

the monocyclic 2,6-pyridyne exhibits noticeably larger diradical character than m-benzyne.

(a) (11a1)
1.90 (b) (7b2)

0.08

(c) (11a1)
1.50 (d) (7b2)

0.49

Figure 2.5: 11a1 and 7b2 natural orbitals and occupations for the singlet ground state of
(a,b) bicyclic 2,6-pyridyne and (c,d) monocyclic 2,6-pyridyne computed using the ODC-12
method with the cc-pCVTZ basis set.

2.5.5 Twisted Ethylene

Twisted ethylene (C2H4) is one of the most well-known multireference problems in quantum

chemistry.146–148 At the D2d-symmetry geometry with 90◦ torsional angle, the C2H4 singlet

ground state electronic wave function has contributions from two equally important determi-
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nants originating from the degeneracy of its frontier π-molecular orbitals. As a consequence,

accurate description of the C2H4 torsional potential energy curve (PEC) requires multirefer-

ence treatment,149 although it has been shown that single-reference spin-flip approaches can

be similarly effective.150

Figure 2.6 shows the C2H4 torsional PEC computed using the CCSD, CCSD(T), and

ODC-12 levels of theory (cc-pCVTZ basis set). The results of these single-reference methods

are compared to MRCI+Q computed using a CASSCF reference. The CASSCF active space

comprised two electrons in two frontier π-orbitals. The C−H and C−C bond lengths, as

well as the H−C−C bond angle, were optimized while constraining the molecular geometry

to D2 symmetry. The PEC computed using the CCSD method exhibits a sharp unphysical

cusp at 90◦, with a large error (∼ 20 kcal mol-1) in the potential energy barrier compared

to MRCI+Q. At the CCSD(T) level of theory, the C2H4 torsional PEC still exhibits the

cusp but shows much better agreement with MRCI+Q and a 6 kcal mol-1 error at 90◦.

The performance of ODC-12 is similar to CCSD(T) for values of the dihedral angle from

0◦ to 85◦. In the range between 85◦ and 90◦ the ODC-12 energy decreases, which results

in the unphysical dip on the PEC at 90◦. While the overall performance of ODC-12 in

describing the C2H4 torsional PEC is superior to CCSD, the unphysical shape of the ODC-

12 PEC demonstrates the inability of this method to produce reliable results in systems with

degenerate frontier molecular orbitals.
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Figure 2.6: Potential energy of ethylene (C2H4) as a function of the H−C−C−H torsional
angle computed using the CCSD, CCSD(T), MRCI+Q, and ODC-12 methods (cc-pCVTZ
basis set). The C−H and C−C bond lengths, as well as the H−C−C bond angle were
optimized while constraining the molecular geometry to D2 symmetry. For each method,
energies were computed relative to the energy of the D2h global minimum structure. For the
MRCI+Q, the CASSCF reference wave function with two electrons in two orbitals was used.
A level shift of 0.09 au was used for the ODC-12 computations.
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2.5.6 Double-Bond Migration in Cyclobutadiene

Finally, we analyze the performance of DCT in describing the potential energy barrier for

the double-bond migration in cyclobutadiene (C4H4). The ground state of C4H4 has a rect-

angular structure with two single C−C bonds (Rs = 1.56 Å, CCSD(T)/cc-pCVTZ) and two

double C−C bonds (Rd = 1.34 Å). Symmetric deformation of the molecule by simultane-

ously stretching the double bonds and shortening the single bonds results in a square-planar

transition state, which has multireference character.151–154 To compute the PEC for the

double-bond migration in C4H4, we follow the procedure outlined in Ref. 153. In short, the

potential energy is computed along the coordinate R, which represents one of the two unique

C−C bond lengths. The other C−C bond length is set to R′ = (2R0−R), where R0 = 1.4668

Å. The C−H bond length and the H−C−C bond angle were kept fixed at 1.079 Å and 135◦,

respectively.

Figure 2.7 shows the PEC for the C4H4 double-bond migration computed using the

CCSD, CCSD(T), ODC-12, and MRCI+Q methods with the cc-pCVTZ basis set. The

MRCI+Q PEC exhibits two minima at R = 1.36 Å and 1.59 Å, as well as a smooth barrier

at R = 1.467 Å. All three single-reference methods produce a characteristic cusp at R =

1.467 Å, which corresponds to the point of the exact degeneracy of the frontier molecular

orbitals, according to CASSCF with two electrons in two active orbitals. The ODC-12 and

CCSD(T) show similar performance in describing the PEC, overestimating the height of the

barrier by ∼ 5-7 kcal mol-1. The CCSD method exhibits much worse stability with respect

to increasing multireference effects, giving rise to ∼ 12 kcal mol-1 error relative to MRCI+Q.

35



1.3 1.4 1.5 1.6
R / Angstrom

0

5

10

15

20

25

En
er

gy
 / 

kc
al

 m
ol

-1

CCSD
CCSD(T)
MRCI+Q
ODC-12

Figure 2.7: Potential energy of cyclobutadiene (C4H4) for the double-bond migration reac-
tion coordinate computed using the CCSD, CCSD(T), MRCI+Q/CAS(2,2), and ODC-12
methods (cc-pCVTZ basis set). For each method, energies were computed relative to the
energy of the D2h global minimum structure. The reaction coordinate R is defined as one of
the two unique C−C bond lengths. The other C−C bond length R′ is set to R′ = 2R0 - R,
where R0 = 1.4668 Å. The C−H bond length and the H−C−C bond angle were fixed at 1.079
Å and 135◦, respectively. A level shift of 0.1 au was used for the ODC-12 computations.
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2.6 Discussion and Conclusions

Density cumulant functional theory41–45,102 (DCT) has recently emerged as a promising

method for describing dynamic correlation in molecules. Among its attractive features are (i)

size-consistency and size-extensivity; (ii) direct access to relaxed density matrices and molec-

ular properties; (iii) efficient analytic gradients; and (iv) high-order correlation effects in the

description of the one-particle density matrix. While the DCT equations are non-linear, as

in coupled cluster theory, the non-linearities are hidden in the efficient tensor contractions,

which simplifies the computer implementation and parallelization. Our recent benchmark

study105 has demonstrated that the DC-12 and ODC-12 variants of DCT exhibit intermedi-

ate performance between that of CCSD and CCSD(T). In particular, for the thermodynamic

properties of open-shell systems, the results of ODC-12 have been shown competitive with

CCSD(T).105

In this study, we investigated performance of the DC-12 and ODC-12 methods for sys-

tems with significant multireference character of the electronic wave function. An important

assumption in DCT is that the one-particle density matrix can be decomposed into a mean-

field contribution and a correlation component. Such mean-field contribution corresponds

to a density matrix of a single Slater determinant. Thus, the DCT methods are intrinsi-

cally single-reference. Despite this, in the present study we have demonstrated that the

DC-12 and ODC-12 methods can tolerate a significant two-configurational character of the

wave function. In particular, we have shown that for the multireference Be2, m-benzyne,

and 2,6-pyridyne molecules the DCT methods make qualitatively correct predictions about

the ground-state energetics and equilibrium structures, while the CCSD method fails, un-

derestimating multireference effects. This is particularly encouraging, since the inadequate

performance of CCSD in these systems has often been attributed to the lack of triple excita-
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tions,126,130,141 while the DC-12 and ODC-12 methods do not explicitly describe connected

three-electron correlation effects and are much more efficient than CCSD(T).

Nevertheless, as with other single-reference methods, DCT has limitations. When the

frontier molecular orbitals of a system become near-degenerate, the results of the ODC-12

method may become unreliable. We have demonstrated that ODC-12 is unable to provide

reasonable descriptions of the potential energy barriers for twisting of ethylene and double-

bond migration in cyclobutadiene. Thus, we emphasize that the ODC-12 method is not

suitable for heavily multireference problems with large contributions of more than one Slater

determinant, especially if highly accurate results are desired. In such cases, the appropri-

ate multireference methods should be used. Conveniently, the appearance of multireference

effects in DCT can be diagnosed by analyzing the natural orbital occupations, which are

readily available at the end of the energy computation. We are planning a multireference

generalization of DCT that allows for a balanced description of static and dynamic correla-

tion.
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3.1 Abstract

The low-lying electronic states of tetrafluoroethylene (C2F4) are characterized theoretically

for the first time using equation-of-motion coupled cluster theory (EOM-CCSD), complete

active space self-consistent field (CASSCF) theory, and second-order perturbation theory

(CASPT2). Computations are performed for vertical excitation energies, equilibrium ge-

ometries, minimum-energy conical intersections, and potential energy curves along three ge-

ometric coordinates: (1) twisting of the F−C−C−F dihedral angle, (2) pyramidalization of

the CF2 group, and (3) migration of a fluorine atom resulting in an ethylidene-like (CF3CF)

structure. The results suggeset two relaxation pathways from the Rydberg-3s excited elec-

tronic state to the ground state. These relaxation pathways are discussed in conjunction

with the femtosecond photoionization spectroscopy results of Trushin et al. [ChemPhysChem

2004, 5, 1389].

3.2 Introduction

Tetrafluoroethylene (C2F4) is used primarily in the production of fluoropolymers155,156 and

is involved in plasma etching of silicon dioxide.157,158 Due to its small size, C2F4 is also

a good model system for studying photophysical processes (e.g., photodissociation) that

involve alkenes with electronegative substituents. Unlike C2H4, C2F4 has a relatively weak

C−C bond and undergoes thermal dissociation to form singlet CF2.
159–162 In addition, C2F4

undergoes photodissociation upon exposure to ultraviolet (UV) radiation, which produces

both singlet and triplet CF2.
163–165 A key feature of C2F4 that affects its chemistry is the

π-bond dissociation energy (≈52 kcal mol-1),166,167 which is smaller than that of C2H4 (64–65

kcal mol-1).167 Based on ab initio computations, Wang and Borden167 concluded that the

weakness of the π bond is due to the preference of fluorinated organic radicals for pyramidal
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geometries about the C nuclei.168,169 In fact, the geometry optimization of the triplet state

of C2F4 results in a pyramidal distortion of each CF2 group.170

The excited states of C2F4 have been much less studied than those of C2H4
64,146,147,149,171,172

and C2H2F2.
173 The electronic spectrum of C2F4 has been investigated using UV spec-

troscopy174,175 and electron-impact spectroscopy.175,176 Arulmozhiraja and co-workers pre-

dicted the vertical excitation energies for several singlet and triplet excited states of C2F4

by using symmetry-adapted cluster configuration interaction theory (SAC-CI).177 Winstead

and McKoy computed the cross sections for elastic and inelastic collisions of low-energy elec-

trons with C2F4.
178 Although the geometry of the lowest-energy triplet state of C2F4 has

been optimized,167,170 we are not aware of any computational study of the singlet excited

states of C2F4 away from the ground-state equilibrium geometry.

Trushin and co-workers studied the excited-state dynamics of C2F4 by using femtosec-

ond pump-probe photoionization spectroscopy.179 They suggested that the excitation to the

Rydberg-3s (R) electronic state at 197 nm is followed by relaxation to the ground state (N)

in two consecutive steps. In the first step, the excitation relaxes to an intermediate valence

π-π* (V) state accompanied by significant C−C bond stretching and twisting about the C−C

bond within 29 fs. This process is then followed by the slower (118 fs) relaxation from the V

state to the vibrationally hot ground state together with further twisting, pyramidalization

of the CF2 group, and, possibly, migration of an F atom. Trushin et al. suggested that the

C2F4 molecule in the hot ground state has enough excess energy to dissociate or undergo

intersystem crossing to the lowest triplet state, from which dissociation is also possible.

Herein, we apply equation-of-motion coupled-cluster theory (EOM-CCSD), and complete

active space self-consistent field (CASSCF) and second-order perturbation theory (CASPT2)

to characterize the low-lying electronic states of C2F4. We present the vertical excitation

energies and explore potential energy surfaces for the key electronic states along the three

important geometric coordinates: torsion, pyramidalization, and F migration. We conclude
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by discussing possible relaxation pathways of C2F4 from the excited R state to the ground

state in the light of our computational results and the experimental results of Trushin and

co-workers.179

(a) (b) (c)

Figure 3.1: C2F4 geometric coordinates employed in the present study: (a) torsion coordinate
τ defined as the F3−C1−C2−F6 dihedral angle; (b) pyramidalization coordinate β defined
as the angle between the C1−C2 bond and the F5−C2−F6 group; (c) F-migration coordinate
θ defined as the C2−C1−F3 bond angle.

3.3 Methods

To compute the ground state C2F4 equilibrium geometry, we employed coupled-cluster theory

with single and double excitations (CCSD).180,181 For the geometry optimization of the

Rydberg-3s (R) excited state, equation-of-motion CCSD for electronic excitations method

(EOM-EE-CCSD)59,60,182 implemented in the CFOUR software package112 was used. For the

structures along the torsional coordinate, however, the EOM-EE-CCSD method predicted

an unphysical shape of the potential energy curves (PECs) due to a poor description of the

multideterminant nature of the wavefunction. It has been shown that the spin-flip EOM-

CCSD method (EOM-SF-CCSD)183 adequately describes the C−C π-bond breaking along

the torsional coordinate in C2H4.
60,184 We therefore employed the EOM-SF-CCSD method

implemented in the Q-CHEM software package185,186 to compute the PECs of the low-lying

excited states away from the ground-state equilibrium geometry. For each PEC, the EOM-

SF-CCSD energy points were computed at the optimized geometries that were obtained
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by fixing the coordinate of interest (e.g., torsion, pyramidalization, or F-migration) while

minimizing the energy with respect to all other symmetry-adapted coordinates, by using the

complete active space self-consistent field theory (CASSCF) with second-order perturbative

corrections for the dynamic correlation (CASPT2).

The CASSCF and CASPT2 computations47,50,51,187,188 were performed using the MOL-

PRO software package.114 For CASPT2 various active spaces were used denoted as CASPT2-

CAS(n,m) in which n is the number of electrons and m is the number of orbitals in the

active space. To find the minimum-energy conical intersections (MECIs), we employed the

state-averaged CASSCF labeled as SA(N)-CAS(n,m), in which N is the number of states

averaged in the CASSCF calculation. All SA(N)-CAS(n,m) calculations were performed in

C1 symmetry.

In all computations the 6-311(2+)G* basis set189 was used, which can be represented as

the conventional 6-311G* basis set with two additional sets of diffuse s and p functions on

each C (ζ1 = 0.043800, ζ2 = 0.0131927711) and F (ζ1 = 0.107600, ζ2 = 0.0324096386) atom.

The six core molecular orbitals were frozen in all correlated computations.

3.4 Results

3.4.1 Vertical Excitation Energies

Table 3.1 shows the vertical excitation energies (∆E) for 11 singlet electronic excited states

computed at the EOM-EE-CCSD level of theory with the 6-311(2+)G* and d-aug-cc-pVTZ

basis sets using the CCSD/6-311(2+)G* optimized ground-state geometry (Figure 3.2a). For

the EOM-EE-CCSD/6-311(2+)G* method, the excitation energies corrected by the N-state

zero-point vibrational energy (ZPVE) are also presented, denoted as ∆Ev. In addition, Table

3.1 includes previously reported results from UV spectroscopy174,175 and SAC-CI computa-

tions.177 We characterize each state with the appropriate D2h term symbol and a short label
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describing the nature of the electronic transition (e.g., π-σ∗). We also use N and R labels

to denote the ground state and the Rydberg-3s excited state, respectively, similarly to the

Mulliken notation used for C2H4.
146

Table 3.1: Vertical excitation energies ∆E (eV) for 11 low-lying singlet electronic excited
states of C2F4 computed using the EOM-EE-CCSD method with the 6-311(2+)G* and
d-aug-cc-pVTZ basis sets. For the EOM-EE-CCSD/6-311(2+)G* method, the excitation
energies corrected by the N-state zero-point vibrational energy ∆Ev (eV) are also reported,
as well as the corresponding oscillator strengths [f × 103] in brackets. Previously reported
SAC-CI/aug-cc-pVTZ** and experimental results are also shown. The lowest triplet state
(T, 1 3B1u) has ∆E = 5.04 eV at the EOM-SF-CCSD/6-311(2+)G* level of theory.

State Assignment SAC-CI/ EOM-EE-CCSD/ EOM-EE-CCSD/ Experiment
aug-cc-pVTZ**a d-aug-cc-pVTZb 6-311(2+)G*b

∆E ∆E ∆E ∆Ev

1 1Ag (N)
1 1B3u (R) π-3s/σ∗ 7.09 6.90 6.91 6.31 [19.8] 6.37c, 6.40d

1 1B1g π-σ∗ 7.01 7.21 7.27 6.67 [0.0]
1 1B2g π-3pσz 8.24 8.04 8.04 7.44 [0.0] 8.01c,d

2 1Ag π-3pπ 8.24 8.17 8.12 7.52 [0.0]
2 1B1g π-3pσy 8.76 8.71 8.70 8.10 [0.0]
2 1B3u π-3dσ 9.03 8.94 8.94 8.34 [21.5] 8.64c,d

1 1B1u π-3dπ/π
∗ 9.19 9.02 9.09 8.49 [138.9] 8.39d

1 1Au π-3dσ 9.30 9.21 9.19 8.59 [0.0]
2 1B1u π-π∗ 9.41 9.18 9.20 8.60 [365.9] 8.89c, 9.02d

3 1B3u π-3dσ 9.29 9.23 9.29 8.69 [2.8]
1 1B2u π-3dπ 9.22 9.26 9.57 8.97 [1.8]

a Reference 177. Excitation energies were computed using the experimental geometry.
Two additional sets of diffuse s, p, and d functions (**) on each atom were added to the
aug-cc-pVTZ basis set.

b Present work. Excitation energies were computed using the CCSD/6-311(2+)G* opti-
mized ground-state geometry (Figure 3.2a).

c Reference 173. UV spectroscopy.
d Reference 175. UV spectroscopy.

The best agreement with the available experiments is demonstrated by the EOM-EE-

CCSD/6-311(2+)G* and EOM-EE-CCSD/d-aug-cc-pVTZ results (Table 3.1). Both levels

of theory yield similar ∆E excitation energies, differing by less than 0.1 eV from each other

for 10 out of 11 computed electronic transitions. Previously reported SAC-CI computa-

tions177 perform significantly worse relative to UV experiment, with ∆E errors larger than
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(a) N (1Ag, D2h symmetry) (b) T (3B, C2 symmetry) (c) R (1B3u, D2h symmetry)

Figure 3.2: Optimized C2F4 geometries for the (a) ground state N (D2h symmetry) computed
at the CCSD level of theory, (b) lowest-energy triplet state T (C2) computed using CCSD,
and (c) Rydberg-3s singlet state R (D2h) computed using EOM-EE-CCSD. The 6-311(2+)G*
basis set was used. All bond lengths are in Å, angles are in degrees. The β coordinate is the
out-of-plane angle between the C−C bond and the CF2 plane. The τijkl coordinate is the
dihedral angle between the i-j-k and j-k-l planes.

those of EOM-EE-CCSD by approximately 0.2 eV. Correcting for the zero-point vibrational

effects at the EOM-EE-CCSD/6-311(2+)G* level of theory reduces the errors relative to

UV spectroscopy experiments for most of the electronic transitions. Particularly, the ∆Ev

excitation energies for the R (6.31 eV) and V (8.60 eV) states deviate by only about 0.1 eV

and 0.3 eV relative to those obtained from UV spectroscopy (6.40 and 8.39 eV)174,175. For

the R state, the excitation energy from electron-impact spectroscopy176 (6.62 eV) is closer

to the computed ∆E value (6.91 eV) without the ZPVE correction.

To assess the performance of the spin-flip EOM-CCSD (EOM-SF-CCSD) method, we

compared the EOM-EE-CCSD/6-311(2+)G* ∆E excitation energies with those obtained at

the EOM-SF-CCSD level of theory for the ground state optimized geometry. Both methods

agree closely for the four lowest-energy excited states with the corresponding EOM-SF-CCSD

(EOM-EE-CCSD) ∆E excitation energies of 6.91 eV (6.91 eV) for the 1 1B3u state, 7.16 eV

(7.27 eV) for the 1 1B1g state, 8.05 eV (8.04 eV) for the 1 1B2g state, and 8.22 eV (8.12 eV)

for the 2 1Ag state. For the lowest triplet state T (1 3B1u), the EOM-SF-CCSD/6-311(2+)G*
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∆E value (5.04 eV) is in a good agreement with that obtained using the SAC-CI method

(5.12 eV)177 and electron-impact spectroscopy (4.68 and 4.79 eV).175,176

Overall, our results suggest that the EOM-EE-CCSD and EOM-SF-CCSD methods in

combination with the 6-311(2+)G* or d-aug-cc-pVTZ basis sets are appropriate levels of

theory for the description of the low-lying excited electronic states of C2F4 at the ground-state

equilibrium geometry. As the excitation energies computed with the compact 6-311(2+)G*

basis set are similar to those computed using the larger d-aug-cc-pVTZ basis set, we employ

the former basis set to study the low-lying excited states away from the equilibrium geometry.

3.4.2 Optimized Geometries

Figure 3.2a shows the equilibrium geometry of the C2F4 ground state N optimized at the

CCSD level of theory. The D2h symmetry structure has a C−C bond length re (C−C) =

1.325 Å, C−F bond lengths re (C−F) = 1.316 Å, and F−C−C bond angles 6 (F−C−C) =

123.3◦, which are in good agreement with the recently reported semiexperimental re struc-

tural parameters of 1.3236± 0.0037 Å, 1.3111± 0.0023 Å, and 123.3± 0.3◦, respectively.190

The equilibrium geometry of the lowest-energy triplet state T optimized using the CCSD

method is shown in Figure 3.2b. The geometry optimization results in a twisted C2-symmetry

structure with each CF2 group pyramidalized around a carbon atom. The C−C bond is much

longer (1.495 Å) than that of the N state (1.325 Å), whereas the lengths of the C−F bonds

are just slightly increased (1.328 and 1.320 Å) relative to the ground state distance (1.316 Å).

The C−C bond makes an out-of-plane angle (β, Figure 3.2b) of 42.1◦ with each CF2 group.

There are two unique F−C−C angles of 115.5◦ and 114.2◦ with the C−F bonds. These

structural parameters are in a good agreement with the MP2/6-31G* optimized triplet C2F4

geometry reported by Borisov.170

The Rydberg-3s (R)-state equilibrium geometry computed at the EOM-EE-CCSD level

of theory is presented in Figure 3.2c. The optimized structure has D2h symmetry with re
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(C−C) = 1.395 Å, re (C−F) = 1.267 Å, and 6 (F−C−C) = 120.1◦. On comparison with the

N-state geometry (Figure 3.2a), the R state has a longer C−C bond (by 0.070 Å), shorter

C−F bonds (by 0.049 Å), and smaller F−C−C bond angles (by 3.2◦). The equilibrium

structure of the R state is in close agreement with the CCSD/6-311(2+)G* optimized D2h

geometry of the C2F4 cation, which has re (C−C) = 1.417 Å, re (C−F) = 1.260 Å, and

6 (F−C−C) = 120.7◦, with a noticeable difference only for the C−C bond length (0.022 Å).

3.4.3 Potential Energy Curves and Minimum Energy Conical Intersections

Torsion

Figure 3.3a shows the energy as a function of the F−C−C−F dihedral angle τ (Figure 3.1a)

for five low-lying electronic states of C2F4 computed at the EOM-SF-CCSD level of theory.

For each value of τ , the rest of the C2F4 geometry was optimized for the R state at the

CASPT2-CAS(2,2) level of theory constrained to D2 symmetry. The active space included

the C−C π-bond orbital (6b3) and the 3s orbital of C (8a). The optimal values of the C−C

and C−F bond lengths as well as the F−C−C bond angles as functions of τ are shown in

Figure 3.4. At τ = 0◦, the optimized values of re (C−C) = 1.403 Å, re (C−F) = 1.268 Å, and

6 (F−C−C) = 120.1◦ are in close agreement with the R-state equilibrium geometry (3.2c).

In addition to the Mulliken labels (N, T, and R), each electronic state in Figure 3.3a is

denoted with the appropriate D2 symmetry term symbol. The EOM-SF-CCSD energies are

relative to the EOM-SF-CCSD/6-311(2+)G* energy of the N state computed at the N-state

CCSD/6-311(2+)G* optimized geometry.

Upon twisting of the dihedral angle τ from 0◦ to 90◦ (Figure 3.3a), the energy of the N

state increases by approximately 3 eV and the energy of the R state increase by about 2

eV, whereas the energies of the T and 1 1B1 states decrease by about 1.5 eV. Both N and

R states have minima at τ = 0◦ on their potential energy curves (PECs), in agreement with

their equilibrium structures (Figures 3.2a and 3.2c). For the T and 1 1B1 states, the PECs
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Figure 3.3: Energy (in eV) of several low-lying electronic states of C2F4 as a function of the
F−C−C−F dihedral angle τ computed at the EOM-SF-CCSD/6-311(2+)G* level of theory.
Potential energy curves for only five lowest-energy states are shown out of the 16 electronic
states investigated here. Energies are relative to the EOM-SF-CCSD/6-311(2+)G* energy of
the N-state computed at the N-state CCSD/6-311(2+)G* optimized geometry. (a) For each
value of τ , constrained geometry optimization under the D2 symmetry was performed for
the R state at the CASPT2-CAS(2,2)/6-311(2+)G* level of theory. (b) Other coordinates
are fixed at those for the N-state CCSD/6-311(2+)G* optimized geometry (Figure 3.2a).

exhibit minima at τ = 90◦ for the constrained D2 geometry optimization. For τ between 0

and 15◦, the 1 1B1 state PEC is nearly flat due to an avoided crossing of this state with the

higher-lying 2 1B1 state originating from the 2 1B1u state of the planar C2F4 (Table 3.1).

The avoided crossing changes the character of the 1 1B1 state wavefunction, which becomes

dominated by the π–π* excitation in the 25 ≤ 90◦ range. We will refer to 1 1B1 as the V state

in the rest of our discussion due to its similarities with the V state of C2H4 for highly distorted

geometries. The 2 1A state PEC exhibits a maximum at τ ≈ 50◦, which corresponds to an

avoided crossing with the higher-energy 1A state. In the range of 0◦ ≤ τ ≤ 50◦ the 2 1A

state has predominantly Rydberg-3p character. However, for 55◦ ≤ τ ≤ 90◦ its wavefunction

is dominated by the (π)2 → (π∗)2 double excitation, similarly to the Z state of C2H4. We

will therefore denote 2 1A as the Z state. Near τ = 90◦, the PECs of the N and T states as
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well as the V and Z states become nearly degenerate (Figure 3.3a), a feature also exhibited

for C2H4.
147

Figure 3.4 demonstrates that the twisting of the dihedral angle τ does not significantly

affect the R-state geometry. The major effect is observed for the C−C bond length, which

increases by approximately 0.05 Å from 0◦ to 90◦. For the constrained R-state optimized

geometry (Figure 3.3a), the R and V PECs intersect at τCI ≈ 45◦ (CI=conical intersection)

with the energy of 6.9 eV, relative to the N-state equilibrium. If computed using the frozen N-

state equilibrium structural parameters (Figure 3.3b), this intersection is found at τCI ≈ 22◦,

which indicates a strong dependence of τCI on the C2F4 structure. We computed the geometry

of the R–V MECI at the SA(4)-CAS(2,4) level of theory (Figure 3.5a) without any constraints

on the molecular symmetry. The MECI has D2 symmetry with re (C−C) = 1.381 Å, re

(C−F) = 1.270 Å, and 6 (F−C−C) = 124.0◦. The optimized dihedral angle τCI is 34.6◦,

which is bounded by the τCI values predicted for the frozen equilibrium N and optimized

R-state geometries (22◦ and 45◦, respectively, Figures 3.3a and 3.3b). The MECI relative

energy computed using the EOM-SF-CCSD method is 6.9 eV, the same as that of the R–V

CI energy in Figure 3.3a.
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Figure 3.4: Optimized parameters of the C2F4 geometry for the singlet Rydberg-3s (R) state
(Figure 3.2c) as a function of the F−C−C−F dihedral angle τ computed at the CASPT2-
CAS(2,2)/6-311(2+)G* level of theory. The geometry optimization was constrained to dis-
play D2 symmetry.

(a) R-V MECI (D2) (b) V-N MECI (Cs) (c) V-N MECI (C3v)

Figure 3.5: Minimum-energy C2F4 structures on the conical intersection seam between the
(a) R and V states (D2 symmetry) computed at the SA(4)-CAS(2,4) level of theory; (b) V
and N states (Cs) computed using SA(2)-CAS(2,2); and (c) V and N states (nearly C3v)
computed using the SA(2)-CAS(2,2) level of theory. The 6-311(2+)G* basis set was used.
All bond lengths are in Å, angles are in degrees. The β coordinate is the out-of-plane angle
between the C−C bond and the CF2 plane (Figure 3.1b). The τijkl coordinate is the dihedral
angle between the i-j-k plane and the j-k-l plane.
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Pyramidalization

Figure 3.6 depicts the energy as a function of the pyramidalization coordinate β for the

four lowest-lying electronic states computed at the EOM-SF-CCSD level of theory. The β

coordinate is defined as the out-of-plane angle between the C−C bond and a CF2 group

(Figure 3.1b). For each value of β, the constrained geometry optimization for the V state

was performed under Cs symmetry using the CASPT2-CAS(2,2) method. The active space

consisted of the 17a′ and 8a′′ orbitals. Increasing the angle β from 0◦ to 90◦ raises the energy

of the Z state by approximately 3.5 eV leading to an avoided crossing at β ≈ 55◦. For the

V state, the pyramidalization lowers the energy by about 1 eV leading to a CI with the

N state at βCI ≈ 72◦ (3.8 eV). The geometry of the N–V MECI computed at the SA(2)-

CAS(2,2) level of theory is shown in Figure 3.5b. The MECI structure has Cs symmetry

with βCI of 71.5◦, a C−C bond length of 1.514 Å, and an EOM-SF-CCSD relative energy

of 3.8 eV, in agreement with that of the N–V conical intersection in Figure 3.6. Figure 3.7

shows the optimized C2F4 structural parameters of the V state as a function of β. Upon

pyramidalization from 0◦ to 90◦, the C−C bond length is increased from 1.35 Å to 1.55

Å. Another noticeable change is observed for the F−C−F angle of the pyramidalized CF2

group, which is decreased from 118◦ to a nearly tetrahedral value of 103◦.
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Figure 3.6: Energy (in eV) of the several low-lying electronic states of C2F4 as a function
of the out-of-plane angle β formed by the C−C bond and the CF2 group (Figure 3.1b)
computed at the EOM-SF-CCSD/6-311(2+)G* level of theory. Potential energy curves for
only the four lowest-energy states are shown, among the six electronic states employed in
the computations. For each value of β, a constrained geometry optimization under the Cs
symmetry was performed for the V state at the CASPT2-CAS(2,2)/6-311(2+)G* level of
theory. Energies are relative to the EOM-SF-CCSD/6-311(2+)G* energy of the N state
computed at the N-state CCSD/6-311(2+)G* optimized geometry.
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Figure 3.7: Optimized parameters of the C2F4 geometry for the singlet V state as a function of
the out-of-plane angle β formed by the C−C bond and the CF2 group (Figure 3.1b) computed
at the CASPT2-CAS(2,2)/6-311(2+)G* level of theory. The geometry optimization was
constrained under the Cs symmetry.
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F-Migration

To study the effect of the F-atom migration on the low-lying electronic states of C2F4, we

define the F-migration coordinate θ as the C2−C1−F3 bond angle (Figure 3.1c). Figure 3.8

shows the energy as a function of θ for the N, T, V, and Z states computed at the EOM-

SF-CCSD level of theory. For each value of θ, the C2F4 geometry was optimized for the V

state constrained to Cs symmetry at the CASPT2-CAS(6,6) level of theory. The active space

included the 15a′–19a′ and 8a′′, orbitals. In Figure 3.8, the θ value of 125◦ corresponds to the

nearly D2d-symmetric (twisted) structure. Decreasing the value of θ models the F-migration

pathway under the Cs symmetry constraint.

Figure 3.8 demonstrates that the N and T states remain nearly degenerate for the range

of values 75 ≤ θ ≤ 125◦. The near-degeneracy between these two states is lifted significantly

for the C2F4 structures with the migrated F atom (40 ≤ θ ≤ 75◦), at which the T state is

lower in energy. For all of the geometries considered in this context, the Z state is noticeably

higher in energy than the N, T, and V states. Interestingly, the V-state PEC is rather

insensitive to the change of θ and has a barrier of approximately 0.8 eV at θ ≈ 65◦. The

PECs of the N and V states intersect at two rather different θCI values of about 79◦ and

39◦. For θCI ≈ 39◦, the CI point could not be reached due to convergence problems. We

attempted to find the N–V MECIs starting from the geometries with θCI of 79◦ and 40◦ using

the SA(2)-CAS(2,2) method. For θ = 79◦, the optimization results in the N–V MECI found

along the pyramidalization pathway (Figure 3.5b). For θ = 40◦, the computation leads to

a distinct MECI structure with the migrated F atom (Figure 3.5c). Although no symmetry

constraints were employed in the optimization, the N–V MECI in Figure 3.5c has nearly C3v

symmetry with an optimized value of θCI = 32.2◦, C−C bond distance of 1.448 Å, and C−F

bond lengths of 1.320 Å (CF3 group) and 1.271 Å. The structure has an energy of 5.0 eV

(at the EOM-SF-CCSD level of theory) above the ground state global minimum.
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Figure 3.8: Energy (in eV) of the four low-lying electronic states of C2F4 as a function of
the F-migration coordinate θ computed at the EOM-SF-CCSD/6-311(2+)G* level of theory.
The θ coordinate is defined as the C2−C1−F3 bond angle in Figure 3.1c. Potential energy
curves for only four lowest-energy states are shown among the six electronic states employed
in the computation. For each value of θ, constrained geometry optimization under the Cs
symmetry was performed for the V state at the CASPT2-CAS(6,6)/6-311(2+)G* level of
theory. Energies are relative to the EOM-SF-CCSD/6-311(2+)G* energy of the N state
computed at the N-state CCSD/6-311(2+)G* optimized geometry.

Figure 3.9 shows the optimized C2F4 structural parameters as a function of θ. Decreasing

the θ value from 125◦ to 40◦ results in the lengthening of a C−C bond by approximately

0.05Å, increase of the C2−C1−F4 angle (Figure 3.1c) from 120◦ to about 180◦, and pyrami-

dalization around the C atom of the CF3 group (β ≈ 40◦).
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Figure 3.9: Optimized parameters of the C2F4 geometry in the singlet V state as a function
of the F-migration coordinate θ computed at the CASPT2-CAS(6,6)/6-311(2+)G* level of
theory. The θ coordinate is defined as the C2−C1−F3 bond angle in Figure 3.1c. The β
coordinate is the out-of-plane angle formed by the C1−C2 bond and the F3−C2−F5 group
(Figure 3.1c). The geometry optimization was constrained under the Cs symmetry.

3.5 Discussion and Conclusions

In this work, we have characterized theoretically the low-lying electronic states of C2F4 using

the EOM-CCSD, CASSCF, and CASPT2 methods. Our computational results demonstrate

that the radiationless decay of C2F4 from the singlet Rydberg-3s (R) electronic state to the

ground state (N) can proceed through two distinct routes summarized in Figure 3.10. Upon

6.3 eV vertical excitation to the R state (∆Ev, Table 3.1), a C2F4 molecule can relax to the

π-π∗ valence state (V) primarily by twisting of the F−C−C−F dihedral angle (τ , Figure
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3.1a) and C−C bond stretching. Although the R state has a D2h equilibrium geometry,

its potential surface along the torsional coordinate is rather flat for τ from 0◦ to 25◦, for

which the conical intersection (CI) between the R and V states was predicted (τCI ≈ 22◦,

Figure 3.3b). The R–V MECI (Figure 3.5a) has energy of 6.3 eV at the EOM-SF-CCSD

level of theory including the N-state ZPVE correction, which indicates that the R–V CI is

energetically accessible.

Figure 3.10: Schematic diagram summarizing the computed C2F4 relaxation pathway after
the excitation to the singlet Rydberg-3s (R) state. The computed EOM-SF-CCSD energies
are relative to the EOM-SF-CCSD energy of the N state computed at the N-state CCSD
optimized geometry corrected by the N-state zero-point vibrational energy. The 6-311(2+)G*
basis set was used. The geometries of the minimum-energy conical intersections (MECIs)
are shown in Figure 3.5.

Our results suggest that the C2F4 energy in the V state can be lowered by further

motion along the torsional coordinate τ . From a twisted D2d structure, CIs between the V

and N states have been found along two other coordinates: pyramidalization of a CF2 group

and F-migration to a CF3−CF structure (β and θ, Figures 3.1b and 3.1c, respectively).

Although the pyramidalization is accompanied by an additional energy lowering of about 1

eV, the migration of a F atom does not lower the V-state energy and needs to overcome an
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approximately 0.8 eV barrier, according to our EOM-SF-CCSD computed potential energy

curve for θ (Figure 3.8). In fact, the computed relative energies for the N–V MECIs along

these two coordinates are 3.2 eV and 4.4 eV, respectively, including the N-state ZPVE

correction. Although both MECIs are energetically accessible from a vertical excitation

to the R state, the relaxation along the pyramidalization pathway is energetically more

favorable. Interestingly, at both of the N–V MECI geometries the lowest-energy triplet state

(T) is lower in energy than the singlet N state, which makes the intersystem crossing to the

T state favorable energetically.

The results of our theoretical research are in broad agreement with the relaxation path-

way proposed by Trushin et al.179 based on their femtosecond pump-probe photoionization

spectroscopy study of the C2F4 excitation to the R state. In particular, our computations

support the experimental evidence that the relaxation to the ground state proceeds via an

intermediate valence π-π∗ state and is accompanied by twisting and pyramidalization. Our

research is also consistent with earlier theoretical studies of the low-lying excited states of

the related C2H4 and C2H2F2 molecules,149,173 for which similar relaxation pathways have

been predicted. For C2H4, the relative energies of the V–N MECIs along pyramidaliza-

tion and H-migration pathways were computed by Lischka and coworkers to be 4.7 and 4.9

eV, respectively,149 which demonstrates that the V–N conical intersection along the C2F4

pyramidalization pathway is much more accessible energetically than that for C2H4. This is

consistent with the well-known preference of the fluorinated compounds for pyramidalization

upon electronic excitation. To definitely judge the importance of each relaxation pathway

for C2F4, however, dynamics simulations need to be performed, perhaps similar to those

reported recently for C2H4.
64,171,172
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Chapter 4

Tetragermacyclobutadiene: Energetically

Disfavored with Respect to Its Structural Isomers∗

∗J. W. Mullinax, D. S. Hollman, H. F. Schaefer III, Chem. Eur. J. 2013, 19, 7487–7494. Reprinted here
with the permission of the publisher.
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4.1 Abstract

Germanium has been a central feature in the renaissance of main-group inorganic chem-

istry. Herein, we present the stationary-point geometries of tetragermacyclobutadiene and

its related isomers on the singlet potential energy surface at the CCSD(T)/cc-pVTZ level

of theory. Three of these 12 structures are reported for the first time and one of them is

predicted to lie only 0.4 kcal mol-1 above the previously reported global minimum. Focal-

point analyses has provided electronic energies at the CCSD(T) level of theory, which are

extrapolated to the complete basis-set limit and demonstrate the convergence behavior of

the electronic energies with improving levels of theory and increasing basis-set size. The

lowest-energy structure is the bicyclic structure, which lies 35 kcal mol-1 below the “all-Ge”

cyclobutadiene structure. The reaction energies for the association of known Ge hydrides

(e.g, digermene) to form Ge4H4 indicate that Ge4H4 could be observed experimentally. We

investigate the bonding patterns by examining the frontier molecular orbitals. Our results

demonstrate that (1) the cyclic isomers of (GeH)4 distort to maximize the mixing of the p

orbitals that are involved in the π system of tetragermacyclobutadiene and (2) the lowest-

energy isomers exhibit unusual bonding arrangements (e.g., bridging H bonds) that maximize

the nonbonding electron density at the Ge centers.

4.2 Introduction

Cyclobutadiene is an elusive molecule with a long and storied history191–195 that continues

to inspire research today.196–204 Recent synthetic work has led to the preparation of cyclobu-

tadiene derivatives that contain Si and Ge atoms.205–210 In particular, in 2011, Suzuki et

al. reported the first Si analogue of cyclobutadiene that was not part of a transition metal-

coordination compound.211
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This tetrasilacyclobutadiene derivative exhibits a planar, rhombic, charge-separated struc-

ture that contrasts to the rectangular-planar structure of cyclobutadiene. Also, in 2011,

Sekiguchi and co-workers reported the first two coordination compounds that contained a

tetragermacyclobutadiene ligand, which showed an almost-rectangular geometry and mini-

mal distortion from planarity.212

Molecules that contain heavy-atom elements often display unusual structure, bonding, and

reactivity when compared to their first-row analogues.213–216 Therefore, motivated by this

recent synthetic activity, further computational work may provide new direction and insight

into the structure and bonding of molecules that contain Ge4 motifs.

These examples employed bulky protecting groups to stabilize the Si and Ge rings. How-

ever, recent advances in the study of Ge hydrides that contain more than two Ge centers have

suggested new possibilities for the development of Ge chemistry.217–220 In particular, Kouve-

takis and co-workers demonstrated the utility of trigermane (all-Ge analogue of propane) and
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tetragermane (all-Ge analogue of n-butane and isobutane) as precursors for semiconducting

materials.218 Ge4H4 not only serves as a computationally tractable model system for large

molecules that contain Ge4 motifs, but also deserves attention as a potential intermediate in

synthetic procedures that employ larger Ge hydrides.

Previous computational research on model compounds E4H4 (E = Si, Ge, Sn, and Pb)

provides insight into how heavy-atom bonding and structural patterns relate to the analogous

carbon paradigms.221–232 A number of thorough theoretical studies exist for Si4H4 and its

dianion, but little has been reported for Ge4H4. As far as more-general studies are concerned,

Haunschild and Frenking explored the singlet potential energy surfaces (PES) for E4H4 (E

= B-Tl and C-Pb) by using B3LYP with the def2-TZVPP basis set.223 The broad scope of

the Frenking study highlights similarities and differences between Group 13 and Group 14

E4H4 isomers. Also, Nazari and Dorrodi examined substitution effects for E4R4 (E = C-Ge)

by using B3LYP with the 6-311++G* basis set.222 Whereas these reports have included

computations on the Ge4H4 system, among many others, no high-level theoretical study has

been devoted entirely to tetragermacyclobutadiene and its related structural isomers.

Thus, given the immense utility of Ge compounds in electronic and optics,233–235 we

believe that a thorough, quantitative study of Ge4H4 is in order. Herein, we present high-

level ab initio computations of important Ge4H4 structural isomers on the singlet PES. This

study is not an attempt to systematically identify all of the minima and transition states of

Ge4H4. Rather, our focus is on providing highly accurate results for (1) the cyclic isomers

that are related to the synthetic work noted above and (2) the lowest-energy structural

isomers that would be most readily detected in experiments that involve Ge hydrides. In

the next section, we provide the details of our computations and focal-point analyses (FPA).

Then, we provide the optimized geometries, FPA, and energies for possible reactions that

involve Ge4H4 to assess the stability of such structures. We conclude this report with a

comparison of our results to recent synthetic work and related computational studies, as well
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as a discussion of our results in the context of the growing literature concerning multiple-

bonding interactions in Group 14 compounds.

4.3 Computational Methods

Hartree-Fock (HF), Møller-Plesset second-order perturbation theory (MP2),181 coupled-cluster

singles and doubles (CCSD),181 CCSD with perturbative triples [CCSD(T)],236 and com-

plete active space self-consistent field theory (CASSCF)56,57 with a (12,12) active space were

used as implemented in the Molpro computational package.114,237 A restricted HF (RHF)

wavefunction was used as a reference for the MP2, CCSD, and CCSD(T) methods. The

correlation-consistent valence-polarized basis sets (cc-pVXZ for X=D, T, Q, 5) as developed

by Dunning and co-workers were used in all of the electronic-structure computations.118,238

The geometries of all of the structural isomers were optimized at the CCSD(T)/cc-pVTZ

level of theory. The harmonic frequencies were computed numerically by finite differences

of single-point energies. Zero-point vibrational energy (ZPVE) corrections were calculated

as half the sum of all real harmonic frequencies. FPA239–243 of the CCSD(T)/cc-pVTZ op-

timized geometries were performed at the HF, MP2, CCSD, and CCSD(T) levels of theory

with the cc-pVXZ basis sets. The HF energy was extrapolated by using Equation (4.1),67

where ECBS
HF , B, and C are parameters, with ECBS

HF as the HF energy that is extrapolated

to the complete basis set (CBS) limit, and X is the cardinal number that indicates the

particular basis set (cc-pVXZ).

EHF(X) = ECBS
HF +B exp−CX (4.1)

The MP2, CCSD, and CCSD(T) energies were extrapolated by using Equation (4.2),68 where

ECBS
Corr and G are parameters, with ECBS

Corr as the correlation energy that is extrapolated to the
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CBS limit.

ECorr(X) = ECBS
Corr +GX−3 (4.2)

4.4 Results

4.4.1 Structures

In this section, we present the optimized geometries of 12 structural isomers of Ge4H4 and,

for ease of presentation, group them into two categories: (1) tetragermacyclobutadiene and

its related cyclic isomers; and (2) the six lowest-energy isomers. These isomers are numbered

in order of decreasing energy. The six cyclic isomers shown in Figure 4.1 (1–6) form a natural

group, because they exhibit related bonding patterns that include a four-membered Ge ring,

in which each Ge atom is bonded to a H atom. These isomers are most closely related to

the experimental structures discussed previously.212 The six lowest-energy isomers shown in

Figure 4.2 (7–12) exhibit structural features (e.g., bridging H bonds) that are not present

in the cyclic isomers. We also present the Ge−Ge and Ge−H bond lengths in digermane

(13), trans-pyramidal digermene (14), and trans-bent digermyne (15) in Figure 4.3 for

comparison. Structures 13, 14, and 15 are Ge analogues of the prototypical C compounds

that exhibit a single bond, a double bond, and a triple bond, respectively. In addition, we

include bond lengths for the C2v “butterfly” isomer of Ge2H2 (16), the global minimum, for

comparison to the structures that exhibit bridging H bonds.
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Figure 4.1: The CCSD(T)/cc-pVTZ optimized geometries of the six cyclic (GeH)4 structural
isomers of Ge4H4. Bond lengths are reported in angstroms and angles are reported in degrees.
The folding angle τijkl is defined as the torsion angle about the shortest transannular Ge-Ge
distance. The out-of-plane angle γHi is the angle between the Ge-H and the plane that is
defined by the three adjacent Ge nuclei.
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Figure 4.2: The CCSD(T)/cc-pVTZ optimized geometries of the six lowest energy isomers
of Ge4H4. Bond lengths are reported in angstroms and angles are reported in degrees. The
folding angle τijkl is defined as the torsion angle about the shortest transannular Ge-Ge
distance.
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Figure 4.3: The CCSD(T)/cc-pVTZ optimized geometries for the reference molecules. Bond
lengths are reported in angstroms.

The Cyclic Isomers

The Ge−Ge bond lengths around the Ge ring fall into four categories: (1) bonds that are

shorter than a double bond (2.273 Å); (2) bonds of length between single and double bonds

(2.350–2.389 Å); (3) bonds of roughly single-bond length (2.446–2.465 Å); and (4) bonds that

are longer than a conventional single bond (2.495–2.559 Å). Our assessment of these bonding

categories is based on the Ge−Ge bond lengths in structures 13, 14, and 15. The Ge−Ge

bonding pattern in structures 1 and 2 consists of alternating long (category 4) and short

Ge−Ge bonds (categories 1 and 2), similar to the C−C bonding pattern in cyclobutadiene.

The short bond lengths in structures 1 and 2 are two of the shortest among these cyclic

isomers. Structures 4 and 5 exhibit two consecutive long Ge−Ge bonds (category 4) and

two consecutive short Ge−Ge bonds (category 2). The long bond lengths in structures 4

and 5 are two of the longest among these cyclic isomers. All four Ge−Ge bond lengths

are equal in structures 3 and 6 (category 3) and are of similar length to the Ge−Ge bonds
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in tetragermatetrahedrane (2.485 Å at the CCSD(T)/cc-pVTZ level of theory). In fact,

Nagase and Nakano argued that the Si analogue of structure 6 could be viewed as a “two-

bond stretch” isomer of tetrasilatetrahedrane, with a similar C2v structure to structure 3 as

an intermediate.230 They argue that this isomerization occurs “almost without a barrier”,

owing to the relatively weak Si−Si bonds compared to C−C bonds. Following this reasoning,

we suspect that the same result is true for tetragermatetrahedrane, structure 3, and structure

6, but further investigation of this phenomenon takes us too far afield from the main point

of our study.

The transannular Ge−Ge distances are one indication of potential Ge−Ge bonding across

the Ge ring. The distance is too long to be significant for structures 1, 2, and 6 (3.256–3.375

Å). In contrast, structures 3, 4, and 5 contain short transannular Ge−Ge distances of 2.556,

2.749, and 2.841 Å, respectively. The short transannular Ge−Ge distance for structure 3

falls into category 4 of the Ge−Ge bond lengths presented above, which suggests that this

structure is best described as bicyclic.

One of the most intriguing features of these cyclic isomers is the variation in the deviation

from planarity among the structures. We measured this deviation by considering a folding

angle that was defined as the torsion angle about the shortest transannular Ge−Ge distance.

The folding angle is 180.0◦ for structure 1, 142.0◦ for structure 2, 104.6◦ for structure 3,

142.7◦ for structure 4, 159.3◦ for structure 5, and 122.1◦ for structure 6. Clearly, there is

no correlation between the degree of distortion from planarity and the energy, but the fact

that all of the minima in this region of the PES show significant distortion from planarity

indicates a primary difference between the bonding in the unsaturated C rings and that in

the Ge analogues.

Another interesting feature of these cyclic isomers is the correlation between the Ge−H

bond length and the out-of-plane bending angle of the Ge−H bond. The in-plane Ge−H

bonds in structure 1 are the shortest Ge−H bonds (1.534 Å). In contrast, the axial Ge−H
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bonds in structures 3–6 are the longest Ge−H bonds (1.568–1.611 Å). The remaining Ge−H

bond lengths (1.542–1.562 Å) in the equatorial positions are intermediate between these two

extremes and are comparable to the Ge−H bond lengths in structures 13–15.

The Lowest-Energy Isomers

The six lowest-energy isomers (7–12) involve two types of Ge4 frameworks: (1) a tetrahedrane-

like framework for structures 7, 9, and 10 and (2) a cyclic framework for structures 8, 11,

and 12. Aside from the previously noted transannular bonding, the Ge atoms in structures

1–6 participate in two Ge−Ge bonds and one Ge−H bond. In contrast, many of the Ge

atoms in structures 7–12 participate in different bonding patterns.

Structures 7, 9, and 10 are most different from structures 1–6 and we consider those

structures first. The Ge−Ge bonds that are connected to the bridging H bonds in these

isomers are considerably longer than the Ge−Ge bonds in structures 1–6. However, these

bond lengths are comparable to the short transannular Ge−Ge distances in structures 4 and

5. The remaining Ge−Ge bond lengths are comparable to the longer bond lengths (category

4) in structures 1–6. The Ge−H bond in structure 9 is the shortest reported in this study

at 1.526 Å. The other Ge−H bond lengths in these three isomers range from 1.655–1.793

Å, comparable to the Ge−H bond length in structure 16. These Ge−H bond lengths are

considerably longer than those in structures 1–6.

The Ge−Ge bond lengths in structures 8, 11, and 12 are comparable to the Ge−Ge bond

lengths in structures 1–6. The Ge−Ge transannular distance is only significant for structure

12 (2.783 Å), which is comparable to those in structures 4 and 5. Interestingly, the folding

angle (137.1◦ for 8, 148.8◦ for 11, and 157.7◦ for 12) increases as the energy decreases for

these three isomers. Also, the Ge−Ge bond length that is connected to the bridging H bond

in structure 11 is only 2.512 Å, which is short compared to the analogous bonds in structures
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7, 9, and 10. However, the associated Ge−H bond lengths in these isomers are comparable

to that in structure 16.

4.4.2 Energetics

Table 4.1 summarizes the energetics data for all 12 isomers and includes the FPA energies,

the vertical singlet–triplet gaps, and the HOMO–LUMO energy gaps. Tables 4.2 and 4.3

present the FPA. We use structure 12 as a reference for calculating the relative energies. The

focal-point table does not explicitly show that we have converged the results within chemical

accuracy (1 kcal mol-1). Based on previous experience, the CCSDT(Q) correction is typically

one order of magnitude less than the CCSD(T) correction. Therefore, we conclude that the

FPA energies reported herein are within chemical accuracy.

Table 4.1: Energetics data for structures 1–12.

Structure FPA Vertical singlet-triplet HOMO-LUMO
(kcal mol-1) gap (kcal mol-1) gap (kcal mol-1)

1 41.5 7.2 129
2 34.6 2.4 125
3 29.0 45.5 170
4 19.4 39.9 175
5 19.1 36.6 170
6 8.0 41.3 166
7 4.6 74.4 205
8 3.5 39.2 172
9 2.0 75.7 211
10 0.6 77.8 210
11 0.4 n.a.b 185
12 0.0 45.3 179

a The FPA results are the CCSD(T) relative energies at the com-
plete basis-set limit with structure 12 as a reference. The FPA
results include ZPVE corrections. The vertical singlet–triplet gap
and the HOMO-LUMO gap are reported at the CCSD(T)/cc-
pVTZ//CCSD(T)/cc-pVTZ level of theory.

b The triplet state did not converge (n.a.=not available).
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Table 4.2: Focal-point analysis (kcal mol-1) for the isomerization of structure 12 into struc-
tures 1–6; δ denotes the change in isomerization energy (∆Ee) with respect to the preceding
level of theory (HF→MP2→CCSD→ CCSD(T)).

Basis ∆Ee ∆Ee
set HF +δMP2 +δCCSD +δCCSD(T) NET
12→1a

cc-pVDZ +51.42 −2.35 −2.59 −1.23 [+45.25]
cc-pVTZ +50.23 −2.63 −2.29 −1.29 [+44.02]
cc-pVQZ +49.81 −2.84 −2.21 −1.26 [+43.50]
cc-pV5Z +49.82 −3.11 −2.10 −1.27 [+43.33]
CBS limit [+49.82] [−3.40] [−1.99] [−1.27] [+43.17]

12→2b

cc-pVDZ +45.32 −2.59 −5.14 −2.25 [+35.33]
cc-pVTZ +45.19 −2.86 −4.64 −2.14 [+35.55]
cc-pVQZ +45.02 −2.81 −4.42 −2.14 [+35.65]
cc-pV5Z +45.00 −2.80 −4.32 −2.14 [+35.73]
CBS limit [+44.99] [−2.79] [−4.22] [−2.14] [+35.83]

12→3c

cc-pVDZ +44.31 −12.70 +4.10 −2.44 [+33.27]
cc-pVTZ +43.68 −14.31 +4.70 −2.73 [+31.33]
cc-pVQZ +43.70 −14.77 +4.81 −2.87 [+30.88]
cc-pV5Z +43.72 −15.04 +4.86 −2.93 [+30.62]
CBS limit [+43.73] [−15.32] [+4.91] [−2.99] [+30.33]

12→4d

cc-pVDZ +23.12 −0.07 −0.94 −0.30 [+21.80]
cc-pVTZ +22.99 −0.91 −0.78 −0.39 [+20.91]
cc-pVQZ +22.98 −1.03 −0.75 −0.44 [+20.76]
cc-pV5Z +22.95 −1.12 −0.74 −0.45 [+20.64]
CBS limit [+22.95] [−1.21] [−0.74] [−0.47] [+20.53]

12→5e

cc-pVDZ +24.79 −2.82 −0.37 −1.09 [+20.52]
cc-pVTZ +24.89 −3.24 −0.15 −1.17 [+20.33]
cc-pVQZ +24.88 −3.27 −0.06 −1.20 [+20.34]
cc-pV5Z +24.86 −3.30 −0.04 −1.22 [+20.30]
CBS limit [+24.85] [−3.32] [−0.01] [−1.24] [+20.28]

12→6f

cc-pVDZ +26.27 −22.00 +7.37 −3.74 [+7.90]
cc-pVTZ +26.62 −22.55 +8.52 −4.08 [+8.50]
cc-pVQZ +26.64 −22.62 +8.88 −4.28 [+8.62]
cc-pV5Z +26.65 −22.61 +8.94 −4.37 [+8.60]
CBS limit [+26.66] [−22.61] [+9.00] [−4.47] [+8.58]
a ∆Ee(final) = ∆Ee(CBS CCSD(T)) + ∆ZPVE = 41.50 kcal mol-1.
b ∆Ee(final) = 34.58 kcal mol-1.
c ∆Ee(final) = 28.97 kcal mol-1.
d ∆Ee(final) = 19.36 kcal mol-1.
e ∆Ee(final) = 19.14 kcal mol-1.
f ∆Ee(final) = 7.96 kcal mol-1.
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Table 4.3: Focal-point analysis (kcal mol-1) for the isomerization of structure 12 into struc-
tures 7–11; δ denotes the change in isomerization energy (∆Ee) with respect to the preceding
level of theory (HF→MP2→CCSD→ CCSD(T)).

Basis ∆Ee ∆Ee
set HF +δMP2 +δCCSD +δCCSD(T) NET
12→7a

cc-pVDZ +28.66 −22.14 +4.12 −2.72 [+7.92]
cc-pVTZ +28.28 −24.48 +6.34 −3.69 [+6.46]
cc-pVQZ +28.34 −24.48 +6.83 −3.98 [+6.72]
cc-pV5Z +28.24 −24.42 +6.83 −4.09 [+6.57]
CBS limit [+28.21] [−24.36] [+6.83] [−4.20] [+6.49]

12→8b

cc-pVDZ +6.95 −3.40 +0.56 −1.01 [+3.12]
cc-pVTZ +7.05 −3.42 +0.74 −1.01 [+3.35]
cc-pVQZ +7.00 −3.42 +0.82 −1.02 [+3.39]
cc-pV5Z +7.00 −3.41 +0.85 −1.02 [+3.42]
CBS limit [+7.01] [−3.41] [+0.88] [−1.03] [+3.45]

12→9c

cc-pVDZ +15.19 −10.80 +0.57 −0.98 [+3.99]
cc-pVTZ +15.17 −12.53 +1.83 −1.65 [+2.83]
cc-pVQZ +15.30 −12.49 +2.06 −1.83 [+3.04]
cc-pV5Z +15.24 −12.46 +2.03 −1.89 [+2.92]
CBS limit [+15.22] [−12.43] [+2.00] [−1.96] [+2.84]

12→10d

cc-pVDZ +20.07 −16.58 +1.45 −1.98 [+2.96]
cc-pVTZ +19.95 −18.64 +3.30 −2.84 [+1.78]
cc-pVQZ +19.99 −18.54 +3.75 −3.08 [+2.11]
cc-pV5Z +19.87 −18.40 +3.73 −3.17 [+2.03]
CBS limit [+19.83] [−18.24] [+3.71] [−3.26] [+2.04]

12→11e

cc-pVDZ +3.91 −3.35 −0.15 −0.15 [+0.27]
cc-pVTZ +4.05 −4.13 +0.62 −0.36 [+0.19]
cc-pVQZ +4.08 −4.03 +0.79 −0.42 [+0.42]
cc-pV5Z +4.06 −3.98 +0.79 −0.44 [+0.43]
CBS limit [+4.05] [−3.92] [+0.79] [−0.47] [+0.45]
a ∆Ee(final) = ∆Ee(CBS CCSD(T)) + ∆ZPVE = 4.55 kcal mol-1.
b ∆Ee(final) = 3.49 kcal mol-1.
c ∆Ee(final) = 1.97 kcal mol-1.
d ∆Ee(final) = 0.62 kcal mol-1.
e ∆Ee(final) = 0.35 kcal mol-1.
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The FPA table demonstrates how the level of theory and basis-set size affect the con-

vergence behavior of the energy. In all cases, the MP2 correction is negative. The MP2

correction is the largest for the most-non-planar isomers (3, 6, 7, 9, and 10), ranging from

-10.8 kcal mol-1 to -22.1 kcal mol-1. In contrast, the MP2 corrections for the other isomers

range from -0.1 kcal mol-1 to -3.4 kcal mol-1.

The magnitude of the energy difference between the cc-pVDZ and cc-pV5Z results ap-

proaches 2 kcal mol-1 at certain levels of theory, but the energy differences between the results

with the cc-pVTZ and cc-pV5Z sets are generally less than 0.5 kcal mol-1, thus suggesting

that the cc-pVTZ basis set is adequate for providing quantitative results. In particular, the

cc-pVTZ to cc-pV5Z correction at the CCSD(T) level of theory is largest for the most-non-

planar isomers (3, 6, 7, 9, and 10), ranging from 0.2–0.4 kcal mol-1. The same correction

for the other isomers is less than 0.1 kcal mol-1. This result is not surprising, given that

the non-planar structures exhibit bonding patterns (e.g., bridging H bonds) that intuitively

suggest the need for a large basis set to obtain an adequate description of the electronic

distribution.

We include the vertical singlet–triplet energy gap (∆Ev) at the CCSD(T)/cc-pVTZ level

of theory to gauge the possible diradical character of these isomers. Structures 1 and 2 have

the smallest ∆Ev values, of less than 10 kcal mol-1. Structures 7, 9, and 10 have the largest

∆Ev values, ranging from 74–78 kcal mol-1. The other isomers have ∆Ev values that range

from 37–46 kcal mol-1. The magnitude of the HOMO-LUMO energy gaps correlates well

with the singlet-triplet separation, which is another indicator of diradical character.

We employed CASSCF (12,12) computations to determine the quality of the single ref-

erence treatment in the correlation methods that were used in this study. All of the leading

configuration interaction (CI) coefficients are at least 0.91, except for structures 1 (0.885)

and 2 (0.845). Therefore, a multireference treatment of compounds 1 and 2 may be appro-
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priate for further study, but we are convinced that our single-reference treatment is suitable

for the conclusions reached herein.

Table 4.4 presents the experimentally known reaction energies for the formation of Ge4H4

from common Ge hydrides. We only report the reaction energy for structure 12, the lowest-

energy isomer, herein, but we comment on the energies of all of the isomers. These results

include the ZPVE correction. The formation of Ge4H4 through the association of germane

or digermane molecules is not energetically favorable. However, for structures 3–12, the

association of two digermene moieties to form Ge4H4 is energetically favorable. Finally, the

formation of Ge4H4 from the association of two molecules of structure 16 for structures 1–12

is energetically favorable. We include these results to gauge the possibility of observing these

isomers experimentally. However, we expect these isomers to be highly reactive, by analogy

to cyclobutadiene.

Table 4.4: Focal-point reaction energies for the formation of structure 12 from common Ge
hydrides; ZPVE corrections are included.

Reaction Reaction energy
(kcal mol-1)

4 GeH4 −−→ Ge4H4 + 6 H2 29.3
2 Ge2H6 −−→ Ge4H4 + 4 H2 38.4
2 Ge2H4 −−→ Ge4H4 + 2 H2 -33.3
2 Ge2H2 −−→ Ge4H4 -59.1

4.4.3 Molecular Orbitals

Figures 4.4 and 4.5 show pictorial representations of the frontier molecular orbitals (MOs)

of structures 1–12. These MOs include the HOMO, the LUMO, the HOMO-1, and the

LUMO+1. The HOMO and LUMO of cyclobutadiene and of the Si and Ge (1) analogues

are qualitatively similar. The HOMO exhibits π-bonding character along the short E−E

(E=C, Si, and Ge) bond and the LUMO exhibits π-bonding character along the long E−E
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bond. At the CCSD(T)/cc-pVTZ level of theory, the ratio of the long E−E bond to the

short E−E bond is 1.167, 1.101, and 1.098 for C4H4, Si4H4, and Ge4H4, respectively. These

ratios suggest that the π-bonding character in the short bond becomes less important in the

heavy-atom analogues. The distortion from planarity on going from structure 1 to structure

2 further corroborates the observed weak π bond in structure 1. The MOs for structure

2 exhibit the “slipped π bond” that has been reported for Ge2H2.
244,245 The preference for

non-planar structure 2 over structure 1 is also found in the Si analogues.228 The HOMOs for

structures 4 and 5 exhibit a bonding π system for the Ge3H3 cyclic subsystem that involves

the short Ge−Ge bonds. The HOMO of structure 6 is analogous to the LUMO+1 of structure

1, but, because of the distortion from planarity, the 4p orbitals exhibit σ bonding in the

center of the ring. This behavior was also previously found in the Si analogue of structure

6.228 Many of the valence MOs for the lower-energy isomers indicate nonbonding electron

density about the Ge centers. The characteristics of these MOs for the lower-energy isomers

are found in the Si analogues, but are absent in the known isomers of C4H4. We explore

these differences in the Discussion section.
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Figure 4.4: Pictorial representations of selected canonical molecular orbitals using the cc-
pVTZ basis set for 1-6. Energies are reported in atomic units. The MOs labeled LUMO
and LUMO+1 for 6 are the doubly degenerate LUMO.
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Figure 4.5: Pictorial representations of selected canonical molecular orbitals using the cc-
pVTZ basis set for 7-12. Energies are reported in atomic units. For 9, the MOs labeled
HOMO-1 and HOMO are the doubly degenerate HOMO, and the MOs labeled LUMO
and LUMO+1 are the double degenerate LUMO. The LUMO+1 for 10 is one of a doubly
degenerate pair.
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4.4.4 Mulliken Population Analyses

In light of the charge-separated arguments proposed for explaining the structure of the

planar, rhombic tetrasilacyclobutadiene derivative,211 we performed Mulliken population

analysis to gauge the significance of charge separation in the structure isomers of Ge4H4.

Partial charges are reported for structures 1–6 in Figure 4.6 and for structures 7–12 in

Figure 4.7. The atomic partial charges are, in general, small (less than 0.25 in magnitude).

The Ge atoms usually exhibit a partial positive charge and the H atoms always exhibit a

partial negative charge. For structures 1, 2, and 6, the magnitude of the partial atomic

charges increases as the angle between the Ge−H bond and the Ge ring increases (0.029,

0.065, 0.084 for 1, 2, and 6, respectively). For structures 3, 4, and 5, we add the partial

charges on each Ge−H pair to determine whether the corners of the rings in the rhombic-like

structures exhibit the charge-separated pattern that is found in the tetrasilacyclobutadiene

derivative.211 In doing so, we find that the Ge−H pairs exhibit a positive partial charge

for the corners along the short transannular diagonal and a negative charge along the long

transannular diagonal. The magnitudes of these Ge−H partial charges range from 0.042–

0.085. The axial H atoms in structures 3, 4, and 5 have the largest negative charge (-0.097,

-0.14, and -0.12, respectively).
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Figure 4.6: Partial atomic charges from Mulliken population analysis for 1-6 using the cc-
pVTZ basis set.
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Figure 4.7: Partial atomic charges from Mulliken population analysis for 7-12 using the
cc-pVTZ basis set.
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4.4.5 Vibrational Analyses

We computed the harmonic vibrational frequencies for each optimized geometry to determine

the nature of each stationary point. Structure 1 is not a minimum on the singlet PES at

any level of theory, in contrast to cyclobutadiene. At the CCSD(T)/cc-pVTZ level of theory,

there are three normal modes with imaginary frequencies, one of which involves distortion to

structure 2. Structure 2 is a minimum on the PES at the MP2/cc-pVDZ and CCSD/cc-pVTZ

levels of theory, but is a transition state at the HF/cc-pVDZ and CCSD(T)/cc-pVTZ levels

of theory. Structure 2 collapses into structure 4 along the normal mode that corresponds to

the imaginary frequency. We include this structure in this report because (1) the Si analogue

has been reported to be a stationary point at the HF/DZP level of theory;228 (2) is has a close

relationship to tetragermacyclobutadiene (1); and (3) it was not reported in the previous

studies on Ge4H4. We note that, in unpublished results, the Si analogue of structure 2 has

also been found to be a saddle point at the CCSD(T)/cc-pVTZ level of theory. Structures

3–12 are minima on the singlet PES at the CCSD(T)/cc-pVTZ level of theory.

4.5 Discussion

Exploratory synthetic work to produce compounds with heavy-atom multiple bonds has led

to stark contrasts between the bonding and reactivity of first-row and heavier atoms.213,214

Computational chemistry has been at the forefront in predicting and describing new struc-

tural isomers of heavy-atom analogues of well-known molecules in organic chemistry that

exhibit unconventional bonding patterns. In particular, the synthetic and computational

work performed on E2R2 systems (E = C–P) has utilized “non-classical” bonding concepts

(e.g., “slipped π bonds”) that have provided insight into the structures and energetics of

Group 14 heavy-atom compounds. Theoretical prediction,246,247 followed by experimental

validation,248,249 of the C2v “butterfly” isomer of Si2H2 and Ge2H2 (16) have demonstrated
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the value of high-quality ab initio computational studies in this field of main-group chem-

istry. Herein, we have tackled a slightly more-complex model system, Ge4H4. In this section,

we discuss the results of our study in the context of qualitative MO bonding models that

have been used for similar heavy-atom main-group molecules, related computational studies,

recent synthetic research, and possible future work on this and related systems.

The structural differences between molecules that contain first-row elements and their

heavy-atom analogues are often rationalized by using molecular-orbital arguments. Synthetic

and computational work has shown that C compounds prefer multiple bonds, in contrast to

their Si and Ge analogues. These structural differences can be understood by considering the

radial extent of the valence atomic orbitals of C, Si, and Ge. The s and p orbitals of a C atom

are similar in size and form hybridized orbitals that participate in bonding interactions. In

contrast, the valence s and p orbitals of Si and Ge atoms differ in size, with the s orbital more

compact, lower in energy, and more nonbonding in character.250 As a result, the electrons

that are associated with the valence s orbitals in Si and Ge atoms are better described

as nonbonding electrons and increase the electron density about the heavy-atom centers.

The low-energy isomers in this study indeed exhibit decreased double-bonding character and

increased electron density about the Ge centers, as suggested by their structure and their

MOs.

Molecular-orbital arguments have been successful in explaining the observation that syn-

thesized E2R2 compounds range from linear triply bonded C2R2 structures to singly bonded

Pb2R2 structures, with perpendicular bonds and a lone pair of electrons on the Pb cen-

ters.214 The Si, Ge, and Sn analogues fall within these two extremes. Of relevance to this

work, the common picture of Ge2R2 is a trans-bent structure, with a double bond and di-

radical character on the Ge centers. The common argument supporting this observation

emphasizes the importance of “symmetry allowed, intramolecular mixing of an unoccupied

nonbonding or antibonding orbital with a bonding orbital (generally the HOMO in multiple-
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bonded species)”.214 With this picture in mind, it is not surprising that the lower-energy

structural isomers of the Si and Ge analogues of cyclobutadiene exhibit a substantial degree

of distortion from planarity and nonbonding electron density about the heavy-atom centers,

as reported in this and related research. Thus, we see that the lowest-energy cyclic isomer

that can be described by (GeH)4 (6) shows substantial out-of-plane distortion and a geome-

try that is suggestive of accumulation of nonbonding electron density about the Ge centers.

In addition, the well-known global minimum C2v “butterfly” structure of Si2H2 and Ge2H2,

which exhibits bridging H bonds, is a predictor of the structural features of the lowest-energy

isomers that are found in this work. Grev at al. noted that a common trend in E2H2 systems

is that isomers with more lone-pair electron character on heavier Group 14 atoms have lower

energy, with the “butterfly” isomer being the extreme.247 This trend is certainly found in

our results: The lowest energy isomers of Ge4H4 include bridging H bonds and Ge centers

that are only involved in two bonds.

Early computational research on Si4H4 necessarily employed modest levels of theory (e.g.,

SCF/DZP and CISD/DZP) compared to today’s standards. However, these works predicted

Si analogues of most of the cyclic structures presented in this work and were tremendously

insightful in interpreting the results of our study. Computational work on Ge4H4 in the

literature is scarce, but two recent works deserve notice here. First, Nazari and Doroodi

studied substituent effects on the cyclic isomers of C4R4, Si4R4, and Ge4R4, with R including

H, F, Cl, OH, MgH, BH2, NH2, and Li.222 Whilst this work is important in considering

possible new synthetic strategies, we do not consider it further herein because it is outside

the scope of this study. Second, Haunschild and Frenking performed a search on the singlet

PES of E4H4, where E corresponded to Group 13 and Group 14 elements. They identified

over 40 structures, which included 11 minima for Ge4H4. Whilst their study identified new

structures and far-reaching trends among Group 13 and Group 14 compounds, our results

demonstrate that this study was not definitive in identifying all of the stationary points on
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the singlet PES. In this study, we identified three isomers (2, 3, 11) that were stationary

points at the CCSD(T)/cc-pVTZ level of theory that were not identified in the previous

study. Furthermore, we suggest that a more systematic search on the PES with structures

that involve many of the bonding features present in structures 7–12 may find additional

low-energy isomers on the PES. We did not pursue such a systematic search because our

primary focus in this study was to investigate the cyclic isomers of Ge4H4 and their relation

to current synthetic work.

The recent study by Sekiguchi and co-workers212 reported four new four-membered

cyclic Ge compounds: a 2π-electron tetragermetene, a 6π-electron tetragermacyclobuta-

diene dianion, and two 18-electron tetragermacyclobutadiene transition-metal complexes.

The tetragermacyclobutadiene ligand in the transition-metal complexes exhibited minimal

distortion from planarity, with Ge−Ge bond lengths ranging from 2.354–2.371 Å (by X-ray

crystallography). These bond lengths lay between those in structures 13 and 14 and are

intermediate between the single (2.440–2.563 Å) and double bonds (2.239–2.298 Å) that have

been found experimentally for cyclic compounds that involved Ge−Ge bonds.212

In contrast to our study, the tetragermacyclobutadiene ligand in these transition-metal

complexes is best considered as a 6π-electron system that would favor a square-planar struc-

ture with a stong π system. In fact, Sekiguchi and co-workers report that the (tetrager-

macyclcobutadiene)tricarbonyliron complex exhibits “a remarkable π-donating ability of the

tetragermacyclobutadiene ligand toward the transition metal, surpassing that of tetrasilacy-

clobutadiene and cyclobutadiene ligands.”212 Structures 1 and 2, as the structures that are

most similar to the tetragermacyclobutadiene ligand, demonstrate π-MOs that are similar

to that of cyclobutadiene. The LUMOs in structures 1 and 2 have a negative orbital en-

ergy and, in the absence of any interactions with a transition metal, the natural tendency

of the Ge ring is to distort so that the p orbitals mix better among themselves. Thus, the

LUMO+1 of structure 1, the anti-bonding π orbital, decreases in energy to become the
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HOMO for structure 6, which exhibits bonding in the center of the ring and nonbonding

lobs about the Ge nuclei. In addition, the LUMO of structure 6 is a doubly degenerate

MO, in which the p orbitals exhibit σ-bonding interactions, which corresponds to the doubly

degenerate HOMO of the D4h isomer (not reported here). The LUMO of structure 6 not

only reinforces the σ-bonding interactions, but also exhibits non-bonding lobes about the

Ge nuclei. These interactions, which are not involved in the RHF reference wavefunction,

become important when electron correlation is incorporated. This result is demonstrated

by structure 6 becoming the lowest-energy cyclic isomer among structures 1–6 when adding

electron correlation, as demonstrated in the focal-point table. This trend is also observed

for Si4H4.
228

The recent report by Suzuki et al. demonstrated the first Si analogue of cyclobutadiene

that was not part of a transition-metal complex.211 The unusual planar, rhombic structure of

the Si ring was rationalized based on a polar Jahn-Teller distortion from a square-planar Si

ring. The charge-separated structure exhibited partial positive charge around the Si centers

along the short transannular diagonal and partial negative charge around the Si centers

along the long transannular diagonal. We observed a similar electrostatic picture, based

on Mulliken population analysis, for structures 3, 4, and 5, which have rhombic-like Ge

rings. These observations sharply contrast with the “covalent” Jahn-Teller distortion from

the square-planar D4h isomer of cyclobutadiene to the rectangular-planar D2h isomer.

Recent work by Kouvetakis and co-workers has demonstrated the utility of higher-order

Ge hydrides (e.g., tetragermane) in important practical applications for the electronics and

optics industires.218–220 In addition, research into the mass spectroscopy of Ge compounds

has led to the ability to identify higher-order Ge hydrides.217 Highly accurate computational

work on Ge hydrides will be of further aid in the identification of these molecules and in

the development of bonding models to describe new Ge chemistry. We expect that many

of the isomers discussed herein will be highly reactive, based on the known dimerization of
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cyclobutadiene. However, it is conceivable that some of these isomers may be important

intermediates in the chemistry of Ge hydrides (e.g., the dehydrogenation of tetragermane).

This work has presented three new isomers of Ge4H4, including structure 11, which is

only 0.4 kcal mol-1 higher in energy than the previously reported global minimum.223 The

six lowest-energy isomers reported in this study are the most likely to be observed from

an energetics standpoint and the reaction energies reported in Table 4.4 indicate that such

observation is certainly possible. Furture work related to this study should 1) provide accu-

rate vibrational frequencies and intensitites for the lowest-energy isomers; 2) systematically

search for other low-energy isomers, focusing on the observed structure features in structures

7–12; 3) involve computational work on the Ge4R4 dianion, similar to the recent work on the

Si4R4 dianion by Kim et al.;221 and 4) study how different substituents affect the stabilization

of the planar, rhombic, charge-separated structure for Ge4R4, in an analogous manner to the

recently reported tetrasilacyclobutadiene derivative.211 Further work on molecules that con-

tain unsaturated Ge−Ge bonds should continue to identify new structures and reactivities,

with the goal of providing a deeper understanding of Group 14 chemistry.

4.6 Conclusions

Herein, we have reported the CCSD(T)/cc-pVTZ optimized geometries of Ge4H4 for 12 struc-

tural isomers and we have provided focal-point-extrapolated energies of CCSD(T) quality

at the complete basis-set limit. In particular, we focused on the cyclic isomers that were

related to tetragermacyclobutadiene and the six lowest-energy isomers, which were sepa-

rated by less than 5 kcal mol-1. The three lowest-energy isomers, that is isomers 10, 11

(previously unreported), and 12, are separated by less than 1.0 kcal mol-1. Partial atomic

charges from Mulliken population analysis for the cyclic isomers demonstrate the same elec-

trostatic picture as that found in the recently synthesized planar, rhombic, charge-separated

tetrasilacyclobutadiene derivative.211 Increased mixing of the p orbitals that are involved in
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the π system of tetragermacyclobutadiene appear to be a driving force for the distortion of

planarity with maximal mixing observed in structure 6. The six lowest-energy isomers favor

structures that maximize the nonbonding electornic character around the Ge nuclei. These

structures demonstrate that Ge4 compounds prefer rings and tetrahedrane-like clusters to

open-chain arrangements. We conclude that these isomers could be identified experimentally,

based on the energies of reactions that involve known Ge hydrides.
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Chapter 5

Conclusions

In this dissertation, three computational studies are presented that highlight different as-

pects of electronic structure theory. These include examining the limits of density cumulant

functional theory (DCT) for recovering static correlation effects, characterizing the excited

states and conical intersections of C2F4, and exploring the ground-state potential energy

surface for Ge4H4. In these concluding remarks, the significance of these three studies are

discussed.

The development of new electronic structure methods requires extensive benchmarks to

demonstrate a method’s capabilities and its shortcomings. In Chapter 2, the performance of

DCT is examined for recovering static correlation effects that are best described by multiref-

erence methods. By design, the original formulation of DCT is biased toward systems that

are well-described by a Hartree–Fock reference wave function. However, many molecular

systems (e.g., diradicals) that exhibit static correlation effects (e.g., small HOMO-LUMO

gap) may be effectively treated with single-reference methods if high-rank correlation effects

are included (e.g. CCSDT(Q)). The computational study in Chapter 2 demonstrates that for

the molecular systems studied, the ODC-12 variant of DCT performs intermediate of CCSD

and CCSD(T). The DCT natural orbital occupation numbers provide a convenient diagnos-

tic for the onset of static correlation effects. The results of this study are an encouraging
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step toward understanding the strengths and weaknesses of DCT. A multireference extension

of DCT would be a welcome addition to the development of this new way of treating the

electron correlation problem.

The growing application of ultrafast spectroscopy to investigate chemical processes at

short timescales (fs) is greatly supported by complimentary theoretical studies. The compu-

tational study reported in Chapter 3 demonstrates the utility of electronic structure methods

for describing adiabatic processes. In particular, we characterized two possible relaxation

pathways for C2F4 from the excited Rydberg state back to the ground state. The results

are consistent with the known experimental facts. Computational studies investigating pho-

tophysical processes will be improved in the future with faster implementations of excited

state methods like EOM-CC, improved algorithms for finding conical intersections using

highly accurate methods such as MRCI and EOM-CC, and efficient software for dynamics

simulations for nonadiabatic processes.

In Chapter 4, the computational study of Ge4H4 demonstrates the application of coupled

cluster theory for characterizing the variety of bonding and structure found in germanium

hydride molecules. Ab initio computational methods have been instrumental in determining

the unexpected structures and bonding of heavy atom main group compounds and driving

synthetic efforts in exploratory chemistry research. In this study, three isomers of Ge4H4

are reported for the first time, and high-level coupled cluster computations are reported to

strengthen our predictions. Further, these results are discussed in context of the broader

field of main group chemistry of the heavier elements.

In closing, the computational studies presented in this dissertation demonstrate the power

of ab initio methods for investigating molecular properties and chemical processes.
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