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Abstract

Geometric analysis of shapes plays an important role in the way the visual world is per-

ceived by modern computers. To this end, low-level geometric features provide most obvious

and important cues towards understanding the visual scene. A novel intrinsic geometric sur-

face descriptor, termed as the Geodesic Field Estimate (GFE) is proposed. Also proposed

is a parallel algorithm, well suited for implementation on Graphics Processing Units, for

efficient computation of the shortest geodesic paths. Another low level geometric descriptor,

termed as the Biharmonic Density Estimate, is proposed to provide an intrinsic geometric

scale space signature for multiscale surface feature-based representation of deformable 3D

shapes.

The computer vision and graphics communities rely on mid-level geometric understanding

as well to analyze a scene. Symmetry detection and partial shape matching play an important

role as mid-level cues. A comprehensive framework for detection and characterization of

partial intrinsic symmetry over 3D shapes is proposed. To identify prominent overlapping

symmetric regions, the proposed framework is decoupled into Correspondence Space Voting

followed by Transformation Space Mapping procedure. Moreover, a novel multi-criteria



optimization framework for matching of partially visible shapes in multiple images using

joint geometric embedding is also proposed.

The ultimate goal of geometric shape analysis is to resolve high level applications of

modern world. This dissertation has focused on three different application scenarios. In

the first scenario, a novel approach for the analysis of the non-rigid Left Ventricular (LV)

endocardial surface from Multi-Detector CT images, using a generalized isometry-invariant

Bag-of-Features (BoF) descriptor, is proposed and implemented. In the second scenario, the

geometric regularity and variability of the cortical surface fold patterns at the 358 Dense

Individualized and Common Connectivity-based Cortical Landmarks (DICCCOL) sites are

quantitatively analyzed using Geodesic Context Histogram, a histogram constructed using

GFE values in the spatial neighborhood of a surface point. In the third and final applica-

tion scenario, we formulate a partial shape matching based technique, that can analyze the

structure of the geometric shapes of the images and match them in a concise and meaningful

manner directly, rather than relying on metadata to solve the problem of Content Based

Image Retrieval.

Index words: Shape Analysis, Geometric Features, Partial Shape Matching, Joint
Geometric Embedding, Geodesic Field Estimate, Biharmonic Density
Estimate, Cardiac Morphology, Cortical Folding Patterns
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Chapter 1

Introduction

In the book it said: “Boa constrictors swallow their prey whole, without chewing

it. After that they are not able to move, and they sleep through the six months

that they need for digestion.”

I pondered deeply, then, over the adventures of the jungle. And after some

work with a colored pencil I succeeded in making my first drawing. My Drawing

Number One . . .

I showed my masterpiece to the grown-ups, and asked them whether the drawing

frightened them.

But they answered: “Frighten? Why should any one be frightened by a hat?”

My drawing was not a picture of a hat. It was a picture of a boa constrictor

digesting an elephant. But since the grown-ups were not able to understand it, I

made another drawing: I drew the inside of a boa constrictor, so that the grown-

ups could see it clearly. They always need to have things explained.

— Antoine de Saint-Exupry, The Little Prince
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1.1 Motivation

This famous story is suggestive of the fact that even from early childhood, understanding

and analyzing shapes play an important role towards perceiving and reconstructing the vi-

sual world. Our subconscious analyzes shapes with such ease in daily life, that most of

the time we forget about the intricacies of the process. In the area of computer vision and

graphics, however, imitating the human visual system to understand shape has proven to

be a challenging task. In particular, the difficulty increases as soon as complex deforma-

tions are introduced. As a result, one key problem of computer vision and graphics is to

develop techniques for analyzing the properties of shape and describing the deformations in

a structured manner.

Shapes in 2D are often represented by contours or RGB images and in 3D by their

bounding surfaces which are subsequently discretized as meshes or point clouds in various

computer vision and graphics applications. Although these representations are suitable for

visualization, they lack the descriptive qualities needed for computer vision and graphics

applications such as shape comparison, shape matching, symmetry detection, fine grained

recognition, medical image analysis to name a few. As a result, it is particularly important to

derive low-level robust geometric features to uniquely describe points of a shape in order to

enable these applications. In this thesis, we have developed two low-level geometric feature

description techniques i.e. Goedesic Field Estimate (GFE) and Biharmonic Density Estimate

(BDE) for description.

Mid-level understanding of shapes is also very important for several computer vision

and graphics applications such as partial shape matching, symmetry detection. Matching of

partially visible shapes across multiple images that exhibit extreme variations in scale, orien-

tation, viewpoint and illumination and also instances of occlusion is a core unsolved problem

in computer vision. Solving the partial shape matching problem can potentially unlock many
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more high-level computer vision problems. We approach partial shape matching as a multi-

criteria optimization problem where the distance between two shapes is represented by a joint

geometric embedding distance measure. Mid-level understanding of Symmetry is important

because of its ubiquity in nature and also in artificial man-made objects. The detection and

characterization of shape symmetry has attracted much attention in recent times, especially

within the computer graphics community because of its wide applicability in higher-level

problems ranging from medical imaging to architectural representation. Although most of

the existing literature has focused on the detection of extrinsic symmetries, there has been

a steadily growing interest in detection and characterization of intrinsic symmetries. We

have approached the detection and characterization of overlapping intrinsic symmetry in

two phases, Correspondence Space Voting (CSV) for symmetry initialization, followed by

Transformation Space Mapping (TSM) for symmetry generalization and characterization.

The ultimate goal of computer vision is to analyze at a high-level, compelling applica-

tions relevant to modern society. To that end, low-level and mid-level image and shape

understanding provides a solid foundation. In particular, we concentrated on three different

high-level applications of geometric shape analysis.

The first application deals with the geometric description of the complex endocardial

surface morphology. The limitations of conventional imaging techniques have hitherto pre-

cluded a thorough and formal investigation of the complex morphology of the left ventricular

(LV) endocardial surface and its relation to the severity of Coronary Artery Disease (CAD).

However, recent developments in high-resolution Multirow-Detector Computed Tomography

(MDCT) scanner technology have enabled the imaging of the complex LV endocardial sur-

face morphology in a single heart beat. Analysis of high-resolution Computed Tomography

(CT) images from a 320-MDCT scanner allows for the non-invasive study of the relation-

ship between the percent diameter stenosis (DS) values of the major coronary arteries and

localization of the cardiac segments affected by coronary arterial stenosis. In the proposed
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technique, the endocardial surface morphology is formally quantified using a 3D Bag-of-

Features model.

The second application deals with the analysis of regularity of cortical surface folding

patterns. Owing to the increasing availability of Diffusion Tensor Imaging (DTI) data, there

is a growing interest in assessing the structural differences in neural connectivity within

cortical networks in diseased brains and healthy controls. The quantitative assessment of

the geometric regularity and variability of the cortical surface has been hindered thus far

due to the difficulty in formalizing a representation of the cortical surface folding patterns

and establishing their correspondence across individual brains. We proposed a GFE-based

scheme to formalize the regularity and variability across cortical surface folding patterns.

For the third and final application, we focus on the field of content based image retrieval

(CBIR). CBIR is facing new challenges due to the rapid growth of available image data,

thanks to photo sharing sites such as Flickr and Picasa. Whereas traditional audiovisual

archives come with carefully curated metadata, allowing easy access based on a predefined

thesaurus, user-generated images are hardly ever annotated apart from a few, and often with

not very informative tags. The same holds for many older image archives that only recently

have been digitized. This calls for methods that can analyze the images directly rather than

relying on the attached metadata. In particular, we show how the proposed CBIR technique

equipped with the proposed mid-level partial shape matching technique can effectively tackle

the problem of widely varying imaging and viewing conditions.

1.2 Contributions of the Dissertation

1.2.1 Low-level Shape Analysis

1. An intrinsic geometric surface signature based on the GFE, termed as the GFE con-

textual histogram (GCH), is proposed.
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2. A parallel version of the all pairs geodesic path determination algorithm, a key element

in the GFE computation, is designed and implemented using GPUs to ensure that the

GFE computation is indeed scalable for large datasets

3. To the best of our knowledge, the proposed BDE is one of few works that formulates a

multiscale 3D shape signature as a distance density function, that can effectively cap-

ture both, the global shape and local surface detail, depending on the scale parameter

value.

4. The BDE is one of the first surface descriptors where the intrinsic geometric scale space

parameter can be directly related to the neighborhood size r. This makes the BDE

both, intuitive and easy to relate to the perceivable 3D surface geometry.

1.2.2 Mid-level Shape Analysis

1. The proposed symmetry detection technique employs the functional map representa-

tion in conjunction with the correspondence space voting technique.

2. Robust and meaningful characterization of the symmetry transformation via formu-

lation of a symmetry space which allows one to quantitatively distinguish between

instances of simple and complex intrinsic symmetry. To the best of our knowledge,

this quantitative distinction has not been attempted in the published literature.

3. Enabling recovery of the symmetry groups via clustering on the functional maps.

4. The formulation of a novel multicriteria optimization framework to address the hitherto

unsolved problem of partial shape matching across images where the variations in

imaging and viewing parameters are truly challenging.

5. The introduction of a new benchmark dataset wherein the variability ranges over sev-

eral imaging and viewing parameter such as illumination (day versus night), viewpoint,
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age of structures (historic versus new), presence of occlusion, presence of partially con-

structed structures, and inclusion of sketches and/or paintings of objects along with

their captured images.

1.2.3 High-Level Shape Analysis

1. The Bag-of-Features (BoF) framework for non-rigid shape analysis is adapted for the

purpose of cardiac shape analysis which is an important problem in cardiac imaging

in particular and medical imaging in general.

2. A geometric and machine learning-based model of the relationship between localized

changes in the LV endocardial surface morphology and the incidence and extent of

stenosis in specific coronary arteries is proposed. To the best of our knowledge, this is

one of the first attempts to model this complex clinical relationship in a mathematically

structured manner.

3. The formulation of the partial shape matching framework for solving the challenging

computer vision problem of content-based image retrieval.

4. The characterization of geometric regularity and variability of the highly irregular

cortical surface folding patterns at the DICCCOL sites using GCH.

1.3 Organization

Rest of the dissertation is divided into six different chapters:

Chapter 2: Geodesic Field Estimate and Analysis of Cortical Surface Folding Patterns

Chapter 3: Biharmonic Density Estimate

Chapter 4: Intrinsic Symmetry Detection and Characterization
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Chapter 5: A 3D BoF Descriptor for Analysis of the Left Ventricular Endocardial

Surface Morphology

Chapter 6: Partial Shape Matching Using Graph Embedding and Its Application to

Content-based Image Retrieval

Chapter 7: Discussion and Conclusions
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Chapter 2

Geodesic Field Estimate and Analysis

of Cortical Surface Folding patterns

2.1 Introduction

Owing to the increasing availability of Diffusion Tensor Imaging (DTI) data, there is growing

interest in assessing the structural differences in neural connectivity within cortical networks

in diseased brains and healthy controls [5]. However, the fundamental issue underlying struc-

tural connectivity assessment from DTI data is the localization of network nodes with geo-

metrically meaningful cortical regions of interest (ROIs). In particular, the complex surface

geometry of the brain, manifest in the cortical surface folding patterns, provides important

cues for the prediction of cortical cytostructure and function [3] thereby suggesting the reg-

ularity of cortical surface folding patterns. On the other hand, many studies demonstrate

the remarkable variability of the cortical surface folding patterns and their inherent complex

geometry [14].

The quantitative assessment of the geometric regularity and variability of the cortical

surface has been hindered thus far due to the difficulty in formalizing a representation of
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the cortical surface folding patterns and establishing their correspondence across individual

brains. Despite their paucity, such formal assessment studies are critical for several core

unsolved problems in human brain mapping such as, brain image registration, brain image

segmentation, and cortical shape analysis. For instance, formulation of effective morpholog-

ical or connectional features for brain image registration and segmentation would be very

challenging without prior knowledge of the geometric regularity and variability of cortical

surface folding patterns. Moreover, such prior knowledge has been shown to be very useful

for brain image registration [11] and could potentially benefit functional brain mapping via

functional Magnetic Resonance Imaging (fMRI) signal extraction and activation detection.

More recently, a dense map of 358 cortical landmarks, termed as Dense Individualized

Common Connectivity-based Cortical Landmarks (DICCCOLs) [26], has been identified and

validated. Each DICCCOL site possesses white matter fiber connection patterns which are

both consistent and predictive of the cortical functions of the corresponding site [26]. The

high reproducibility and predictability of DICCCOL sites in individual brains have been

demonstrated in recent studies using DTI data [26]. However, the regularity and variability

of the 358 DICCCOL sites with respect to the cortical surface geometry is yet to be fully

explored. This chapter focuses on the assessment of geometric regularity and variability of

the cortical surface folding patterns at the 358 DICCCOL sites where the cortical surface is

reconstructed as a triangular mesh from DTI data. A novel feature vector based on intrinsic

surface geometry is employed to quantify the regularity and variability of the cortical surface

geometry in the vicinity of each of the DICCCOL sites.

The Geodesic Field Estimate (GFE), a probability distribution of geodesic paths over

a surface, has been shown to generate rich intrinsic geometric features of points on surface

meshes [17], [17], as depicted in Figure 2.1. These intrinsic geometric features are used to

construct contextual surface descriptors around each of the 358 DICCCOL sites. Extensive

experiments are performed to validate the accuracy and robustness of the GFE on synthetic
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Figure 2.1: Visualization of the GFE on cortical surfaces of two different subjects.

data with folding patterns of incrementally increasing complexity and increasing levels of

additive Gaussian noise. The value of the cumulative mean absolute deviation (MAD) for

the contextual surface descriptor is computed at each DICCCOL site across different subjects

and is considered as the measure of variability of the cortical surface folding pattern at that

specific DICCCOL site. A major bottleneck for performing large-scale experiments with

geodesic path-based surface descriptors is the computational complexity of geodesic path

determination between all pairs of surface points. To address this computational bottleneck,

a parallel version of the all-pairs geodesic path determination algorithm using Graphics

Processing Units (GPUs) is proposed and shown to be broadly applicable to other medical

imaging domains as well.

The results of experiments performed using DTI data from 31 healthy young adult brains

demonstrate that some DICCCOL sites have significantly more regular cortical surface fold-

ing patterns than others. Overall, this study demonstrates the importance of geometric and

morphological analysis of the complex cortical surface folding patterns which could be re-

garded as complementary to the analysis of white matter fiber connection patterns in the case

of the more consistent DICCCOL sites. We envision that this study will offer novel insights
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into MRI-based versus DTI-based brain mapping methodologies, where multimodal regis-

tration, mapping and analysis is performed using both, shape-based and connectivity-based

features.

The primary contributions of this chapter are twofold. First, an intrinsic geometric

surface signature based on the GFE, termed as the GFE contextual histogram (GCH),

is proposed for the characterization of geometric regularity and variability of the highly

irregular cortical surface folding patterns at the DICCCOL sites. Second, a parallel version of

the all-pairs geodesic path determination algorithm, a key element in the GFE computation,

is designed and implemented using GPUs to ensure that the GFE computation is indeed

scalable for large datasets. The GPU code is made publicly available at https://sites.

google.com/site/geometricanirban/.

The remainder of the chapter is organized as follows: Section 4.2 discusses the related

work. Section 2.3 presents the theoretical framework underlying the GFE-based surface

descriptor. Issues pertaining to the parallelization and GPU implementation of the GFE

computation are described in Section 2.4. Section 2.5 describes the data preparation pro-

cedure whereas Section 3.5 presents the results of experimental validation. Finally, Section

6.6 concludes the chapter while outlining directions for future work.

2.2 Related Work

The complexity of the surface folding patterns of the human cerebral cortex demands study

at various scales, from a local neighborhood of a cortical landmark to the entire cortical

surface. Traditionally, the local analysis of cortical surface folding patterns is based on

computation of the local surface curvature whereas analysis of the folding pattern of the entire

cortical surface or lobe of the human brain is based on computation of the Gyrification Index

(GI) [27] or spherical wavelets [24]. Techniques for analysis of cortical surface folding patterns
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using surface descriptors have experienced a recent surge of interest. Toro et al. [22] have

proposed using the surface ratio thereby extending the description from a global scale, such

as one obtained using the GI, to a local scale. Zhang et al. [25] have proposed a parametric

representation of cortical surface folding patterns with strong local shape representation

capability.

It is important to note that all the works mentioned above either do not exploit the

intrinsic surface geometry and at best use very simple extrinsic geometric surface descrip-

tors (such as ones based on local surface curvature). Rich, comprehensive descriptors based

on intrinsic surface geometry, such as the Wave Kernel Signature [AUBRY11], Heat Kernel

Signature [25] and Discrete Surface Ricci Flow [30] have been widely used for shape repre-

sentation and shape analysis in the computer graphics and computer vision communities but

mostly for simple surfaces. In this chapter, we propose an intrinsic geometry-based surface

descriptor, i.e., the GFE, to bridge the gap between the fields of geometric shape analysis

and biomedical image understanding via analysis of complex and possibly noisy brain cortical

surface data. The goal of the study is to enable formal quantitative assessment of the regu-

larity and variability of the brain cortical surface folding patterns with respect to structural

neural connectivity.

2.3 Theoretical Derivation of the GFE

The shortest distance between two points on a complete connected Riemannian manifold

is defined by the length of the shortest geodesic path, i.e., the geodesic distance, between

them. The geodesic distance is known to encode useful information about the underlying

surface. However, determination of the geodesic distance is notoriously sensitive to small

surface perturbations, making it difficult to use for robust shape analysis. In particular,

for a complex and possibly noisy surface such as the cortical surface of the human brain,
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Figure 2.2: Robustness of the GFE in the face of challenging variations of the 3D Human
shape model: (a) base case, (b) addition of shot noise, (c) changes in topology, (d) addition
of Gaussian noise, (e) isometry and sampling and (f) changes in scale.

it is extremely challenging to extract meaningful information from the geodesic distance

alone. The shortest geodesic path, on the other hand, conveys rich information about the

underlying manifold. Since it is based on intrinsic surface geometry, the shortest geodesic

path is invariant to the coordinate space in which the manifold is embedded. Moreover, we

have observed that the overall structure of the geodesic paths is much more robust under

different challenging real world conditions including surface perturbations [17]. To exploit

the robustness property of geodesic paths, we have proposed a novel surface descriptor,

termed as the Geodesic Field Estimate (GFE) [17].

The GFE for any point x on surface S can be defined as the probability of the shortest

geodesic path between any two surface points p and q passing through x, i.e.,

GFE (x) = prob(x ∈ GP(p, q)) (2.1)
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where, for points x, p, q ∈ S, GP(p, q) is the shortest geodesic path between points p and

q. The GFE value at each surface point is computed using the all-pairs shortest geodesic

path determination algorithm [8]. The GFE has been shown to be a rich and stable surface

descriptor that is well suited for robust shape analysis [17]. As depicted in Figure 2.2, the

GFE values are observed to be fairly robust to various challenging variations of the 3D Human

shape model including addition of noise, changes in topology and isometric deformations.

Intuitively, the GFE can be visualized as ropes threading the valleys of the shape as

depicted in Figures 2.1 and 2.2. Theoretically, the GFE can be shown to be a special case of

the more general fuzzy geodesics [21]. As a result, the GFE inherits the property of robustness

to noise and surface perturbations from the fuzzy geodesics while being more concise and

informative than the latter.

2.3.1 Stability of the GFE

Theoretically, it has been shown that the stability of fuzzy geodesics can be quantified in

terms of the Gromov-Hausdorff (GH) distance between two Riemannian manifolds as the

shape deforms [21]. The GH distance has been used to measure the extent of shape defor-

mation [16]. It has been shown that two shapes with a small GH distance have a provably

small difference in their respective fuzzy geodesics which ensures that their corresponding

GFE values are similar [21]. In particular, a tight bound for the fuzzy geodesics in terms of

noise has been provided which also holds true for the special case of the GFE [21]. Moreover,

to make the GFE robust to noise, we normalize the GFE with respect to the area of the

triangular element when using a triangulated mesh-based representation of the underlying

brain cortical surface in our implementation. The performance of the GFE in presence of

noise is experimentally validated in Section 3.5 of this chapter.
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2.3.2 Construction of the GFE-based feature vector

A GFE-based feature vector in the form of a GFE contextual histogram (GCH) is constructed

for each DICCCOL site for each subject. A local neighborhood (i.e., ROI) for each DICCCOL

site, comprising of the geodesically closest n surface points, is constructed. A k-bin histogram

of GFE values (i.e, the GCH) is generated for the n-point ROI and represented as a k-tuple

feature vector. The GCH feature vector at DICCCOL site x is formally denoted byGCHk
n(x).

Figure 2.3 shows similar GCH feature values across 5 subjects for a relatively regular

DICCCOL site ROI #234 and very dissimilar GCH feature values across the same 5 subjects

for a relatively irregular DICCCOL site ROI #80 where k = 10 and n = 50. The terms

GCH and GFE signature are used interchangeably in the remainder of the chapter. The

main reason behind using the contextual description of GFE is to describe the the coarse

distribution of the GFE across the rest of the shape with respect to the given ROI.

2.4 Algorithm Description and Implementation

The high computational complexity of the all-pairs shortest geodesic path determination

algorithm renders the use of the GFE highly impractical for most medical image analysis

problems. A typical graph generated from the brain cortical surface mesh has a large number

of nodes or vertices (in the range 40,000 - 50,000) but a relatively small number of edges (in

the range 240,000 - 300,000). Also, the corresponding shortest-path search trees (where the

root is the source node) are very deep and narrow since each node’s connections are limited to

its local neighbors with no shortcuts are available to reach farther nodes. It should be noted

that the all-pairs shortest geodesic path determination procedure is the most computationally

intensive aspect of the serial GFE algorithm. Figure 2.4(a) provides an outline of the serial

GFE algorithm which employs Johnson’s algorithm [8] for determining the shortest geodesic

path between all surface point pairs.
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Figure 2.3: Visualization of the GFE context histogram at two DICCCOL sites for 5 different
subjects.

We have proposed and implemented a novel instant update-propagate algorithm for par-

allelizing the all-pairs shortest geodesic path computation that is optimized for deep and

narrow search trees. Figure 2.4(b) provides an outline of the GPU-optimized parallel imple-

mentation of the all-pairs shortest geodesic path algorithm along with a description of the

CUDA kernel and the kernel calling procedure. Figure 2.5 depicts an execution instance of

the instant update-propagate procedure on four streaming multiprocessors, each executing

one block at a time. As can be noted, the updated distance cost is instantly reused by the

subsequent block computations.

The proposed parallel algorithm is designed to utilize the GPUs more efficiently by let-

ting the search procedure propagate to multiple levels in the search tree before global syn-

chronization. A task parallel scheme [19] is adopted for computing multiple search trees

originating from N different source points simultaneously, thus allowing for more efficient
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Figure 2.4: (a) Serial implementation of the GFE algorithm. Determining the shortest
geodesic path between all pairs of surface points [8] is the most computationally intensive
procedure within the serial GFE algorithm. (b) The GPU-optimized parallel implementation
of the all-pairs shortest geodesic path algorithm. The CUDA kernel and the kernel calling
procedure are described. Here C[·, ·] represents the cost of moving from one vertex to another,
and vid, tid and nid respectively represent the source vetex, target vertex and the vertex
through which the shortest path is traversing.
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Figure 2.5: Execution example of the instant update/propagate strategy for computing the
all-pairs shortest path problem on a GPU. The updated distance cost is instantly reused
by the subsequent block computations. This example assumes there are four streaming
multiprocessors, each executing one block at a time.

memory access patterns that exploit the high data throughput capacity of the GPU memory

architecture. As depicted in Figure 2.6, the graph edge data are stored in the on-chip shared

memory whereas the shortest distance label data is stored in global memory enabling greater

memory access throughput. The GPU-optimized parallel code is made publicly available at

https://sites.google.com/site/geometricanirban/.

2.5 Data Preparation

DTI data from 31 young adults from a publicly available database [23] are used in this

study. The DICCCOL sites and connectomes identified and constructed from these DTI

data [26] are regarded as the ground truth. The DTI data preprocessing is performed using

the FSL software suite [6] which includes eddy current correction, skull removal, computing

the Fractional Anisotropy (FA) image, and tissue segmentation. The cortical surface is
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Figure 2.6: Memory access patterns for exploiting the high data throughput capacity of
the GPU memory architecture. Instances of the shortest geodesic path computation with
different starting points (highlighted in yellow) are processed in groups to leverage the GPU
memory architecture. The graph edge data are stored in the on-chip shared memory whereas
the shortest distance label data is stored in global memory.

reconstructed using the segmented FA image followed by fiber tracking performed using the

MedINRIA software [LIU07]. The DICCCOL sites and connectomes are obtained from the

preprocessed data using publicly available programs at http://dicccol.cs.uga.edu/.

In the DICCCOL framework, all the cortical landmarks are defined and predicted using

DTI data. Therefore, the mapping of DTI-derived DICCCOL sites onto the MNI/Talairach

atlas image has to rely on MR image registration techniques. Given the 358 DICCCOL

sites from ten template brains with the corresponding structural MR images, the DICCCOL

sites in each DT image of the template brains are registered with the corresponding MR

images and warped onto the MNI template using the FSL FLIRT software tool [7] since it

was observed to perform better than the alternatives [10]. Since there is no ground truth

data for evaluating the correspondence of the DICCCOL sites with the MNI atlas image, the

performance of the image registration algorithm is assessed entirely in terms of consistency

resulting in a slightly higher accuracy for FSL FLIRT (6.29 mm) when compared to the
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alternatives [10].

2.6 Experimental Results

2.6.1 Experimental validation using synthetic deformation

To the best of our knowledge, this is one of the first attempts to study the problem of surface

regularity and variability at cortical surface ROI sites. Due to the paucity of benchmark

brain datasets with manual ground-truth labeling, it is not possible to experimentally val-

idate the performance of the proposed GFE signature on real data. To resolve this issue,

the GFE is evaluated on simple model surfaces where synthetic deformations of increasing

complexity are added to pre-selected surface points to validate the uniqueness property of

the GFE and its ability to capture deformations at specific surface points. The conformal

(i.e., angle preserving) deformations are added using the spin transformation technique de-

veloped by Crane et al. [2]. In their spin transformation technique, Crane et al. [2] propose

a quaternionic Dirac operator along with an integrability condition on the conformal defor-

mations. Discretization of the integrability condition results in a sparse linear system that

is easy to solve and can be used to efficiently edit surfaces by manipulating their curvature.

In particular, in the case of a simple model cylindrical surface, we successfully generate com-

plex deformations by systematically increasing the surface curvature values at select surface

regions in six discrete levels. The corresponding changes in GFE are noted and depicted

in Figure 2.7. It can be observed that the GFE values remain fairly stable in the unper-

turbed regions of the model cylindrical surface. Thus, the GFE is observed to successfully

differentiate between the regularity and variability of the object surface.
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Figure 2.7: Visualization of regularity and uniqueness of the GFE on a simple model cylin-
drical surface with incremental deformations.

2.6.2 Parameter tuning

In this section, we describe the experimental tuning of the GFE signature parameters, i.e.,

the neighborhood size n and the number of bins k of the GCH, for optimal evaluation of the

geometry of the human brain cortical surface. We rely on the synthetic deformations of the

model cylindrical surface in order to tune the parameters n and k. The evaluation metric

used in the tuning procedure is the difference in change in the GFE signature, denoted by

∆ε where the change in GFE signature ε is computed for two different already known sets of

points on the model surface, namely the set of points with maximal deformation and the set of

points with minimal deformation computed using the methods described in [2]. The change

in GFE signature ε is essentially the Euclidean distance, i.e., the L2 norm, between the GFE

signature of the original surface and that of the deformed surface normalized with respect

to the GFE signature of the original surface. The value of ∆ε is further normalized over the

range of surface deformations. The parameters n and k that maximize ∆ε are considered

optimal. The ∆ε evaluation metric is thus chosen to ensure that the resulting GFE signature

exhibits low variability within the same class of deformations but high variability between

different classes of deformations of the model surface.

We computed the value of ∆ε for varying levels of deformations for different combinations

of n and k as tabulated in Table 6.1. Since the combination of parameter values k = 10
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Table 2.1: Tuning of parameters n and k for maximization of ∆ε for the model cylindrical
surface data.

k n ∆ε

10 30 0.33
10 50 0.43
10 100 0.32
20 30 0.32
20 50 0.42
20 100 0.38
30 30 0.35
30 50 0.42
30 100 0.37

and n = 50 was observed to maximize ∆ε, we used this set of parameter values for all the

experiments reported in the remainder of the chapter.

2.6.3 Comparison with other descriptors

Since this is one of the first works to study the geometric regularity and variability of

DICCCOL landmarks, we do not have any other existing methods against which to compare

the accuracy of the proposed GFE signature. Instead, we have chosen to compare the

performance of the proposed GFE signature with two state-of-the-art surface signatures most

commonly encountered in the shape analysis literature for characterizing smooth triangular

meshes in the context of our specific problem, i.e., the Heat Kernel Signature (HKS) [25]

and the Wave Kernel Signature (WKS) [AUBRY11]. Specifically, we have employed the

same synthetic data and performance metric described in Section 2.6.2 for this comparison.

We have computed the value of ∆ε for each of the surface signatures, i.e., HKS, WKS and

GCH, for each incremental level of synthetic deformation of the model surface as shown

in Table 2.2. It is interesting to note that the proposed GCH (with k = 10 and n = 50)
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consistently outperforms both, the HKS and WKS for all levels of synthetic deformation of

the model surface where the synthetic deformations are modeled to be similar in complexity

to the variations of the brain cortical surface.

Table 2.2: Performance comparison of HKS, WKS and GCH (with k = 10 and n = 50)
on the model cylindrical surface data for increasing levels of synthetic deformation. Higher
values of ∆ε indicate better performance.

Level HKS WKS GCH

1 0.00 0.00 0.00
2 0.03 0.01 0.16
3 0.04 0.02 0.29
4 0.07 0.05 0.49
5 0.07 0.23 0.74
6 0.36 0.34 0.89

Mean 0.09 0.11 0.43

2.6.4 Robustness to noise

Extending the application of the GFE signature from the simple surfaces described in [17]

to the less studied and less understood brain cortical surfaces, which could be potentially

contaminated by noise, presents a significant challenge since it could dramatically alter the

conclusions regarding the performance of the GFE signature. The immediate question here

is whether the measured variability in the GFE and, in particular, whether the spatial

separation of regular and irregular ROIs represents a characteristic of the brain or whether

it is entirely a consequence of noise. In particular, there are three potential sources of noise

that are present in the current brain cortical surface dataset:

1. Noise in surface geometry arising from noise in the MRI/DTI images or in the surface

generation algorithm.

2. Noise in spatial localization of the DICCCOL sites.
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Figure 2.8: Robustness of GFE for different levels of synthetic white Gaussian noise added
to the synthetic sphere model.

3. Spatial variation in any of the two noise sources mentioned above.

As shown previously [17], none of the aforementioned noise sources have been observed

to hinder the successful computation of the GFE values. However, the aforementioned noise

sources could potentially affect the successful clinical interpretation of the GFE results.

Although we have presented a qualitative argument for the robustness of the GFE signa-

ture to noise earlier in Section 2.3.1, we have designed an experimental validation procedure

to demonstrate quantitatively the robustness of GCH with respect to noise. In particular,

we assume that all the aforementioned sources of noise can be modeled as additive Gaus-

sian noise. To simulate additive Gaussian noise, each vertex on the input model surface is

randomly displaced along the local surface normal where the displacement is modeled by

an independent and identically distributed (i.i.d.) random variable drawn from a zero-mean

Gaussian distribution with a given value of σ (standard deviation). In particular, Figure 4.7

depicts the robustness of the GFE to different levels of synthetic Gaussian noise (character-

ized by the standard deviation σ) added to a synthetic spherical shape model. Note that

the GFE values, as depicted in Figure 4.7, remain fairly consistent with increasing levels of

additive Gaussian noise.

For each point on the synthetic shape, the L2 norm between the values of the original

GCH and the noisy GCH is computed and normalized with respect to the original GCH

value to evaluate quantitatively the robustness of GCH to additive Gaussian noise. The
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Figure 2.9: Robustness of the GCH for different levels of synthetic white Gaussian noise
added to the synthetic sphere model.

mean normalized error in the GCH values is computed over all surface points for varying

σ values (in the range [0, 0.9]) of the white Gaussian noise as depicted in Figure 2.9. It is

interesting to note that the mean normalized error initially increases with increasing values

of σ before settling upon a value of ≈ 0.035 for values of σ > 0.4, thus showing the robustness

of proposed technique to additive white Gaussian noise.

2.6.5 Speedup results

The parallel GFE computation on a GPU was observed to achieve a speedup of 14 over

its optimized CPU implementation (Johnson’s algorithm [8] in the Boost C++ library

http://www.boost.org/), taking less than a minute for each subject. The GFE compu-

tation was performed on a PC workstation with an NVIDIA GTX 480 GPU and an Intel

Core i5-2400 CPU clocked at 3.4 GHz. Figure 2.10 demonstrates the speedup resulting

from the GPU-optimized GFE computation on surface mesh graphs for the model shapes

horse, dog and human from the SHREC 2010 dataset [15]. It can be observed that the pro-

posed parallel algorithm for GFE computation yields speedup figures in the range [24, 31]

for the aforementioned model shapes. It should also be noted that these speedup figures

are substantially higher than those obtained using the parallel algorithms described in [4]
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Figure 2.10: Visualization of the speedup resulting from GPU-based optimization. The
proposed algorithm typically shows a 25-30 times speedup on the SHREC 2010 [15] dataset
meshes with approximately 30000 - 50000 vertices. Here, H&N: [4], T&F: [19]

and [19].

2.6.6 Cumulative mean absolute deviation for measuring variabil-

ity

The similarities of the GCH feature values for 358 DICCCOL ROI sites across 31 subjects

are quantified by the cumulative mean absolute deviation (MAD) and shown as blue curves

in Figure 2.11. It is evident that there is substantial variability across the ROIs in terms of

the regularity/variability of their corresponding cortical folding patterns across the subject

cohort. For instance, some ROIs, such as ROI #234 and ROI #94, show greater similarity

in terms of surface geometry across the 31 subjects, whereas other ROIs, such as ROI #80

and ROI #252, exhibit greater variability across the same subject cohort. Based on the cu-

mulative MAD values computed across 31 subjects, the top 5 percentile ROIs are considered
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Figure 2.11: Plot of cumulative MAD values for the 358 DICCCOL ROI sites where lower
MAD values denote higher regularity. Two DICCCOL ROI sites with higher regularity
(green) and one DICCCOL ROI site with higher variability (red) are shown.
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as the most variable and irregular across the subject cohort whereas bottom 5 percentile

ROIs are considered the most regular. These ROIs are plotted in Figure 2.12 which reveal

an interesting observation. The more geometrically stable ROIs are found towards the outer

surface of the cerebral cortex whereas the least stable ones are found around the center. This

phenomena can be justified by the fact that the DICCCOLs along the outer surface of the

cerebral cortex are associated with various motor skills that are relatively uniform across

the human subject cohort resulting in a more regular cortical folding patterns across sub-

jects. Whereas, the DICCCOLs located near the center of the cerebral cortex are associated

with more specialized skills such as linguistic skills which exhibit greater variation across the

subject cohort, resulting in a more variable cortical folding patterns.

This phenomena calls for further and more thorough investigation.

2.7 Conclusions and Future Directions

A novel surface feature based on intrinsic geometry is proposed for analysis of cortical surface

folding patterns at the DICCCOL sites in the human brain. Our study sheds new light on

the relationship between the geometric regularity and structural regularity at DICCCOL

sites within the cerebral cortex. Our study indicates that further research in morphological

analysis of cortical surface folding patterns is needed. Specifically, the relative positions

of the geometrically regular and geometrically variable DICCCOL sites within the cerebral

cortex deserve more extensive and rigorous investigation. We plan to examine the possibility

of using both, the cortical surface folding patterns and DTI-derived connectivity patterns to

predict the locations of DICCCOL sites within individual brains, which could then be used

for brain registration and mapping.
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Figure 2.12: ROIs with cumulative MAD values in the bottom 5 percentile (regular) are
plotted in green whereas ROIs with cumulative MAD values in the top 5 percentile (variable
and irregular) are plotted in pink.
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Chapter 3

Biharmonic Density Estimate

3.1 Introduction

Geometric shapes in 3D are often represented by their bounding surfaces which are sub-

sequently discretized as meshes or point clouds in various computer graphics applications.

Although mesh-based or point cloud-based representations are suitable for visualization,

they lack the descriptive qualities needed for computer vision applications such as shape

comparison, shape matching and shape symmetry detection. It is particularly important to

derive robust features to uniquely describe 3D surface points in order to enable these com-

puter vision applications. Scale space-based 3D surface and shape representations are often

employed in computer vision applications because of their wide applicability and ability to

describe the underlying structure at multiple scales of representation. The basic idea is to

parameterize the surface or shape representation using a single family of scale parameters so

that important spatial details are captured and characterized at multiple levels in the scale

space hierarchy.

The specific goal of this chapter is to formulate a multiscale descriptor that allows for

characterization of non-rigid 3D shapes in a manner such that point comparison, registra-
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tion and description of the structural properties of the 3D shape can all be achieved in a

concise and meaningful manner. In this chapter, we focus on non-rigid 3D shapes that are

subject to isometric deformation. Under isometric deformation, the intrinsic geometry of

the 3D shape remains invariant even though the extrinsic geometry may change. Hence,

formal characterization of the intrinsic surface geometry is critical for understanding the

underlying deformable 3D shape. Formulating an isometric deformation-invariant descriptor

that captures the intrinsic geometry of the non-rigid 3D shape is, therefore, of particular

importance.

Lipman et al. [14] introduced the Biharmonic Distance Measure (BDM) that possesses

most of the desired properties for representation of 3D deformable shapes, i.e., the BDM is

a metric, gradually varying, locally isotropic, globally shape-aware, isometric deformation-

invariant, insensitive to noise and topology, practical to compute and parameter-free. The

BDM has been shown to achieve a balance between the local and global properties of the

underlying geometry via eigenvalue normalization [14]. oreover, the BDM is shown to bridge

the gap between the Geodesic Distance Measure (GDM) [17] and the Diffusion Distance

Measure (DDM) [25] (which models the heat diffusion process over a surface) for small values

of the time parameter t, both of which capture local geometric information, and the DDM

for large values for time parameter t, which effectively encapsulates the global properties

of the underlying surface geometry. Although the DDM, with varying values for the time

parameter t, has been shown to be useful for geometry processing problems [25], the time

parameter t has no intuitive or obvious geometric interpretation.

In this chapter, we present the formulation of a novel shape descriptor based on the

BDM, termed the Biharmonic Density Estimate (BDE) that essentially encapsulates the

local density of biharmonic distances in the neighborhood of each 3D surface point. The

degree of localization around each 3D surface point is dictated by a localization or scale

parameter r, represented by a biharmonic distance sphere of radius r over the triangular
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mesh neighborhood centered at that particular point. By varying the parameter r, one can

construct a 1-parameter family of multiscale 3D shape signatures around each 3D surface

point. As a result, the multiscale BDE descriptor is shown to be capable of describing the

3D shape as a whole, i.e., encapsulating the global 3D shape properties, or describing the

local intrinsic surface, depending on the chosen value of the localization or scale parameter

r.

In the proposed BDE signature-based representation, 3D shapes are generalized as points

in a compact, connected 2-manifold that is equipped with a Riemannian metric. This results

in a shape signature that encapsulates the intrinsic geometry of the 3D shape. Consequently,

the intrinsic geometric scale space signature is invariant to how the manifold is actually

perceived in 3D Euclidean space R3. In this chapter, the concept of intrinsic geometric scale

space is proposed and formalized using the intrinsic geometric diffusion framework.

The proposed scale-aware BDE signature is shown to have a representation that is concise,

efficient, informative and capable of encapsulating the intrinsic geometry of the 3D shape

at multiple scales. The integration of the BDE with the proposed scale space framework

is shown to result in a better understanding of the intrinsic geometry of the Riemannian

2-manifold and the underlying 3D shape. There are several applications in computer vi-

sion, such as shape comparison, shape matching, symmetry detection, to cite a few, that

can potentially benefit from the proposed intrinsic geometric scale space framework. Our

experimental results show that the multiscale BDE signature not only provides a rich de-

scription of local and global 3D surface structure, but is also unique, robust to sampling,

invariant under isometric deformation, exhibits well explained scale space behavior and per-

forms better than the state-of-the-art homogeneous feature detection techniques such as the

Heat Kernel Signature (HKS) [25] and the Wave Kernel Signature (WKS) [AUBRY11]. The

applications of the BDE in the detection of key components on a deformable 3D surface and

determination of sparse point correspondences between two deformable 3D shapes are also
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demonstrated.

The major contributions of the work presented in this chapter are two-fold. First, to

the best of our knowledge, this is one of few works that formulates a multiscale 3D shape

signature as a distance density function (which is distinct from its context descriptor coun-

terpart [9]) that can effectively capture both, global shape and local surface detail, depending

on the scale parameter value. Second, this is one of the first works where the intrinsic ge-

ometric scale space parameter is directly related to the neighborhood size r which is both,

intuitive and easy to relate to the perceivable 3D surface geometry. This is in contrast to the

scale parameters associated with the HKS and WKS where the relation between the scale

parameter value and neighborhood size is not intuitive or obvious.

The remainder of the chapter is organized as follows: Section 3.2 discusses the related

work, Section 3.3 presents the theoretical framework for the proposed BDE shape signature

whereas the implementation issues are described in Section 3.4. Section 3.5 presents the

results of our experimental validation whereas Section 3.6 demonstrates practical applications

of the proposed BDE shape signature in the detection of key components on a deformable

3D surface and determination of sparse point correspondences between two deformable 3D

shapes. Finally, Section 6.6 concludes the chapter while outlining directions for future work.

3.2 Related Work

The existing shape descriptors belong to two principal classes based on their degree of in-

variance. Shape Context [9], Shape Distribution [18] and Spin Images [9] are 3D shape

descriptors that have been shown to be invariant under rigid-body transformation or de-

formation in R3. The Integral Invariants [15] and the Multiscale Local Signature [27] also

belong to the class of 3D shape descriptors that are invariant to 3D rigid-body transfor-

mation. More recent research on shape description has focused on the formulation and
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implementation of shape descriptors that are invariant to non-rigid deformation. Amongst

the existing non-rigid deformation-invariant shape descriptors, the ones most related to the

proposed BDE shape signature are based on the spectral properties of the Laplace-Beltrami

operator designed for 3D surface characterization [AUBRY11], [25].

The classical computation of the discrete Laplacian on a mesh was introduced by Pinkall

and Polthier [PINKALL93]. Taubin [26] employed the Laplacian for fair mesh surface design.

Karni and Gotsman [10] used a spectral decomposition approach, based on computation of

the Laplacian eigenvectors, for mesh compression. Levy [11] used the Laplace-Beltrami

operator for geometry processing, followed by Reuter’s influential work on Shape-DNA [22]

and the work of Rustamov [23] who used the Laplace-Beltrami eigenfunctions to define an

embedding of a 3D surface in the space of convergent sequences. The resulting formulation

was shown to possess the desirable property of encapsulating all the intrinsic information for

each point but was seen to be dependent on the choice of the eigenfunction basis. Even in

the case of non-repeated eigenvalues, it was seen to be necessary to choose a sign for each

basis component.

The problem of choice of the eigenfunction basis was resolved by the introduction of

the Heat Kernel Signature (HKS) [25] and Wave Kernel Signature (WKS) [AUBRY11].

Although both, the HKS and WKS, are multiscale signatures, their scale parameters do not

relate directly to the metric geometry of the local neighborhood of points on the 3D surface

mesh. Note that there is no intuitive formulation connecting the time parameter (in the

case of the HKS) or energy parameter (in the case of the WKS) to the parameters of the

intrinsic sphere centered at the surface point of interest. The proposed BDE shape signature

formulation has the advantage that the scale parameter exhibits direct association with the

3D geometry of the local neighborhood. An alternative formulation of intrinsic geometric

scale space has been proposed by Zou et al. [30]. However, their formulation is based on

Ricci flow shape diffusion which, unlike our formulation, is not directly related to the 3D
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geometry of the local neighborhood and is also computationally much more expensive [30].

3.3 Theoretical Derivation

3.3.1 Biharmonic Distance Measure (BDM)

The Biharmonic Distance Measure (BDM) is similar in form to the Diffusion Distance Mea-

sure (DDM) [LING06]. The kernel of the BDM is based on the Green’s function of the

biharmonic differential equation. The Green’s function is the impulse response of an in-

homogeneous differential equation defined on a domain, with specified initial conditions or

boundary conditions. In the continuous case, the (squared) biharmonic distance between

two points x and y can be defined using the eigenvectors (φk) and eigenvalues (λk) of the

Laplace-Beltrami operator [14] as follows:

dB(x, y)2 =
∞∑
k=1

(φk(x)− φk(y))2

λ2k
(3.1)

The above definition of the BDM is slightly different from that of the DDM where the

denominator in the case of the DDM is e2tλk . However, this subtle change ensures that the

BDM formulation exercises greater control over the characterization of the global and local

properties of the underlying manifold. Consequently, the BDM is fundamentally different

from the DDM with significantly different properties.

The BDM, as expressed in equation (4.1), captures the rate of decay of the normalized

eigenvalues λk of the Laplace- Beltrami operator; if the decay is too slow, it produces a log-

arithmic singularity along the diagonal of the Green’s function [YEN07]. Alternatively, too

fast a decay would basically ignore eigenvectors associated with higher frequencies, resulting

in the BDM being too global in nature (i.e., the local surface details would be ignored).

Lipman et al. [14], demonstrated that performing quadratic normalization provides a good
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Figure 3.1: Robustness of the normalized Biharmonic Density Kernel under (a), (b) isometry,
(c) micro-holes, (d) shot-noise, (e) holes, (f) noise and (g) local scaling. It is important to note
the consistency of the BDK values across different deformations and surface perturbations.

balance, ensuring that the decay is slow enough to capture the local surface properties around

the source point and yet rapid enough to encapsulate global shape information.

In particular, Lipman et al. [14] have theoretically proven two important properties of

the BDM, i.e., that it is (i) a metric, and (ii) smooth everywhere except at the source point

where it is continuous. The key observation is that for 3D surfaces, the eigenvalues λk,

k = 1, 2, . . ., of the Laplacian are an increasing function of k resulting in the continuity of

the BDM everywhere and also smoothness everywhere except at the source point, where it

has only a derivative discontinuity.

3.3.2 Biharmonic Density Kernel (BDK)

The Biharmonic Density Kernel (BDK) at a point x can be constructed from the eigenvectors

(φk) and eigenvalues (λk) of the Laplace- Beltrami operator [14] as follows:

BDK(x, x) =
∞∑
k=1

(φk(x))2

λ2k
(3.2)

The BDK provides a highly concise and informative representation of the underlying 3D

mesh. The validity of the BDK is supported by the same information theoretic framework
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proposed by Sun et al. [25] in case of the HKS. According to the theorem in [25], the diagonal

elements of the kernel matrix are almost as informative as all the elements of the original

kernel matrix. As a result, the BDK naturally inherits many of the intrinsic properties

of the BDM. In particular, Figure 3.1 provides a qualitative assessment of the robustness

and consistency of the BDK under different deformations and surface perturbations such

as isometry, micro-holes, shot-noise, holes, noise and local scaling. The robustness and

consistency of the BDK are experimentally verified in Section 3.5 of the chapter.

We argue in favor of the conciseness and richness of the information content of the

BDK, by comparing it with the corresponding density functions of both the HKS and the

WKS (3.2). Since the heat kernel is a collection of low-pass filters, the HKS descriptor is

dominated by low frequencies that encapsulate the global structure of the underlying shape.

Although this property enables the HKS descriptor to discriminate between distinct shapes,

which usually differ greatly at coarse scales, it hinders the ability of the HKS descriptor to

precisely localize the surface features.

Unlike the HKS that uses low-pass filters, the response of the WKS, in contrast, is

band-pass. This reduces the influence of the low frequencies and allows better separation of

frequency bands across the WKS descriptor dimensions resulting in superior feature local-

ization. The WKS is well suited for point correspondence algorithms that rely primarily on

local surface information but is unable to adequately represent the global shape information.

The emphasis on precise localization of features allows matching algorithms based on the

WKS to exhibit higher sensitivity (i.e., correct identification of true positives) whereas the

emphasis on global features enables the HKS-based matching algorithms to exhibit higher

specificity (i.e., correct identification of true negatives) [8]. The BDK on the other hand,

has the unique property of being able to encapsulate both, local and global shape informa-

tion [14] making it a very desirable candidate for the density kernel of a 3D shape signature.

As seen in Figure 3.2, the extrema of the Human shape (e.g., the hands and the feet) do not
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Figure 3.2: Comparison of the Biharmonic Density Kernel (BDK) with the Heat Kernel and
the Wave Kernel computed at different diffusion scales (a) small, (b) medium and (c) large.
Red indicates a high function value whereas, blue indicates a low function value and other
colors represent intermediate values.
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exhibit consistently high function values (indicated by the color red) over all values of scale

in the case of the HKS and WKS. The BDK, on the other hand, simultaneously exhibits

high values at the shape extrema and low values (indicated by the color blue) within uniform

surface regions (e.g., the torso) of the Human model.

3.3.3 Biharmonic Density Estimate (BDE)

The Biharmonic Density Estimate (BDE), proposed in this chapter, is a novel 3D shape de-

scriptor based on the BDK, that attempts to capture the local intrinsic geometric properties

of the 3D surface in the neighborhood of a given surface point. In the continuous manifold,

BDE can be formalized as the integral of BDK(x, x) over the surface patch defined as the

intersection of the biharmonic distance sphere of radius r with the surface, normalized by

the surface area of the patch.

In the discrete case however, the BDE at a 3D surface point p computed over an r-

neighborhood can be defined as:

BDE(p; r) =
∑

x∈B(p;r)

Wr(x) ·BDK(x, x) (3.3)

where B(p; r) (i.e., the r-neighborhood) is the set of surface points contained within a bihar-

monic distance sphere of radius r defined over the triangular mesh neighborhood centered

at point p and Wr(x) denotes the weight associated with point x. In particular, we have

experimented with two different averaging or weighting schemes: (i) simple averaging, i.e.,

Wr(x) = 1
NB(p;r)

where NB(p;r) denotes the cardinality of B(p; r) and, (ii) Gaussian averaging

where the weights Wr(x) are derived from a zero-mean Gaussian distribution as follows:

Wr(x) =
1√
2πσ

exp

(
d2(p, x)

2σ2

)
(3.4)

43



where d(p, x) denotes the biharmonic distance between points p and x and σ = r/3. Note

that r = 3σ ensures that over 99% of the weight of the Gaussian distribution is contained

within B(p; r).

Since the BDM has been proven to be a metric that is invariant to isometric deforma-

tion [14], the BDE can also be seen to satisfy the isometric deformation-invariance property.

Additionally, the BDE is also able to capture the intrinsic geometry of the underlying 3D

surface. Moreover, as a density estimate, the BDE is also able to successfully encode the

local geometric properties of the 3D shape. Since the BDE is based on the distribution of

the values of the BDK, it is very stable under surface perturbations.

3.4 Implementation

For a general compact manifold the BDM can be computed using the corresponding Laplace-

Beltrami operator. Many schemes have been proposed to estimate the Laplace-Beltrami

operator from discrete meshes [BELKIN08], [PINKALL93]. The cotangent scheme [27] is

the most commonly used method in the computer graphics community for this purpose.

However, it has been shown that the cotangent scheme does not converge in general [27], [28].

On the other hand, Belkin et al. [BELKIN08] have proposed a convergent scheme called the

mesh Laplace operator. The convergence of this operator does not require the triangles in

the mesh to be well-shaped like the ones generated via the Finite Element Mesh (FEM)

methods associated with the cotangent scheme. For this reason, we have used the mesh

Laplace operator to estimate the Laplace-Beltrami operator.

Given a mesh with n vertices, the mesh Laplace operator can be represented as L, a

sparse matrix of size n× n. Matrix L can be rewritten as L = A−1W where A is a positive

diagonal matrix. The elements ai,i of A represent the area associated with vertex i, whereas

W is a symmetric semi-definite matrix.The generalized eigenvalue problem W.φ = λ.A.φ has
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a full set of real eigenvalues and eigenvectors under these conditions. Having determined

the eigenvalues and eigenvectors for the aforementioned generalized eigenvalue problem, the

BDM between two points is computed followed by the computation of the BDE. The entire

BDE computation is implemented on a PC workstation with a 2.4 GHz CPU and 24 GB

RAM. The MATLAB mesh processing package [20] is used for visualization of all results.

3.5 Experimental Validation

Several experiments were performed to demonstrate the properties of the proposed BDE

shape signature. The experiments were carried out using 3D models from the SHREC 2010

benchmark dataset [7], Non-rigid World dataset [5] and the TOSCA benchmark dataset [6].

3.5.1 Uniqueness Property

As shown in Figure 3.3, we note the BDE signatures of distinct points on the surface of the

Cat model to demonstrate the uniqueness property of the BDE signature. It is particularly

interesting to note that the BDE signatures differ significantly at finer scales (smaller r

values). Also, the general shape of the BDE curve is a very interesting descriptor as it can

serve as a good predictor of the overall surface shape. The two rear legs of the Cat model

generate BDE signatures that are distinct from those of its front legs. It is also interesting

to note that, for points on the legs, the BDE signature exhibits its first big hump as the

expanding r-ring neighborhood (i.e., the biharmonic distance sphere) approaches the location

where the leg is joined to the body of the Cat model. In contrast, the BDE signature of the

point on the tail exhibits a completely different trend at finer and coarser scales.

45



Figure 3.3: Uniqueness of BDE signature for different points selected on the Cat model. The
surface points and their corresponding BDE signatures are color-coded.

Figure 3.4: Invariance of the multiscale BDE signature of the Human model under occlusion.

3.5.2 Robustness to Occlusion

We performed a study to test the ability of BDE to describe adequately partially occluded

surfaces. As shown in Figure 3.4, we note that the BDE signature is able to describe partially

occluded surfaces. A point on the tip of the right hand of the Human model is considered for

an experiment where the BDE signature is generated, first when the whole body is intact and

second, when the arm is separated from the rest of the body. The distances are normalized

to ensure a proper comparison between the two BDE signatures. It is interesting to note that

even when there is partial occlusion, the results are very similar until the scale parameter r

reaches the boundary of the region where the arm was originally joined to the body.
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Figure 3.5: Hit rate graph showing the percentage of correct correspondences found in a
subset of the k best matches (up to 1% of the total number of points) on (a) the entire
SHREC 2010 benchmark dataset and, (b) the TOSCA benchmark data set which focuses
primarily on isometric deformation, using the HKS, WKS and BDE signature.

3.5.3 Quantitative Analysis of Robustness

A comprehensive comparison of the proposed BDE descriptor to all surface feature descrip-

tors in the literature is beyond the scope of this chapter. However, in the interest of making a

quantitative assessment of the precision and robustness of the BDE descriptor, we compared

the BDE to both, the WKS and HKS, on a shape matching problem. We performed our

evaluation mainly on the SHREC 2010 benchmark dataset.

The feature points on the 3D shape surfaces are detected using the farthest point sampling
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scheme [16] in feature space, i.e., sequential detection of the most distinguished feature

points. Note that the basic idea underlying this feature detection technique is similar to

that described in [16] except that it is performed in feature space in a manner similar to

that described in [AUBRY11]. The feature points typically coincide with the characteristic

surface locations which are chosen as reference points. For each of these reference points, the

k best matches on the deformed shape are selected, where k varies from 1 to N/100 and N

is the number of vertices on the deformed mesh. The hit rate, i.e., the percentage of feature

points for which the correct corresponding point is among the k best matches, is plotted (on

the y-axis) as a function of the percentual scale 100× k/N (on the x-axis) which allows for

comparisons between meshes of different resolutions.

Experimental evaluation on the TOSCA [6] and SHREC 2010 [7] benchmark datasets

allows us to quantify the robustness of the proposed BDE descriptor using the hit rate as

a quality measure. The graph in Figure 3.5(a), shows the performance results on the entire

SHREC 2010 benchmark dataset which encompasses nine different classes of transformations,

i.e., isometry, topology, small and big holes, global and local scaling, noise, shot noise,

and sampling. The graph in Figure 3.5(b), on the other hand, shows the performance

results on the TOSCA [6] benchmark dataset which focuses primarily on cases exhibiting

isometric deformations. In both cases, the BDE signature is seen to exhibit a superior hit

rate compared to the HKS and WKS. Likewise, the graph in Figure 3.6 summarizes the

performance of the BDE signature for four different classes of deformation on the SHREC

2010 benchmark dataset. The BDE signature displays a high hit rate for all four classes of

deformation. The hit ratio can be seen to be ≥ 80% for when the ratio of best matches ≥ 0.2

over all four deformation classes. The results depicted in Figure 3.5(a), (b) and Figure 3.6

are based on computation of the BDE signature using simple averaging.
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Figure 3.6: Hit rate graph showing the percentage of correct correspondences found in a
subset of the k best matches (up to 1% of the total number of points) using the BDE signature
on the SHREC 2010 benchmark dataset under four different classes of deformation.

3.5.4 Quantitative Comparison of Averaging Schemes

A quantitative comparison of the two averaging schemes, i.e., simple averaging and Gaussian

averaging, used in the computation of the BDE descriptor was performed on the TOSCA

benchmark dataset in a manner similar to that described in [AUBRY11]. The quantitative

measurement procedure performed here is the same as the one described in Section 3.5.3.

The graph in Figure 3.7 compares the performance of the two averaging schemes on the

TOSCA [6] benchmark dataset. In this case, simple averaging is seen to exhibit a superior

hit rate compared to Gaussian averaging. Consequently, in the remainder of the chapter, all

experiments are performed using the simple averaging technique for BDE computation.
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Figure 3.7: Hit rate graph showing the percentage of correct correspondences found in a
subset of the k best matches (up to 1% of the total number of points) on the TOSCA bench-
mark data set using the simple and Gaussian averaging techniques for BDE computation.
The TOSCA benchmark data set focuses primarily on isometric deformation.

3.5.5 Performance Statistics

All of the experiments reported in this chapter were performed on an Intel Core
TM

3.4

GHz machine with 24 GB RAM. Table 5.4 reports the timing results for the proposed BDE

signature.

Table 3.1: Timing results (in seconds) for meshes of different sizes.
Number of Points Average Time (secs)

3000 9
24000 22
50000 39

3.5.6 Performance in Presence of Noise

It is critically important for a newly proposed shape signature to perform well in the presence

of varying levels of noise. We performed a quantitative evaluation of the proposed BDE

signature on the TOSCA dataset [6] under varying levels of additive white Gaussian noise.
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Figure 3.8: Robustness of the proposed BDE signature for varying levels of additive white
Gaussian noise.

Each vertex on model surface is randomly displaced along the local surface normal. The

displacement at each vertex is modeled by an independent and identically distributed (i.i.d.)

random variable drawn from a zero-mean Gaussian distribution with a given value of σ

(standard deviation). For each shape the feature points are chosen initially in the same

manner as described in Section 3.5.3. For each feature point, the L2 norm between the values

of the original BDE signature and the noisy BDE signature is computed and normalized

with respect to the original BDE signature value. The mean normalized error in the BDE

signature values is computed over all the feature points for varying σ values, in the range

[0, 1], of the white Gaussian noise as depicted in Figure 4.9. It is interesting to note that the

mean normalized error initially increases with increasing values of σ before asymptotically

approaching a value of ≈ 0.3 for values of σ > 0.3, thus depicting the robustness of proposed

BDE signature to additive white Gaussian noise.
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3.6 Applications

3.6.1 Key Components Detection

The BDE signature can be used to identify key components on a deformable 3D surface.

A key component is defined as a region containing several local discriminative features.

Key components are useful in the sense that they are repeatable and robust against several

transformations. Note that key components detection differs from mesh segmentation in

that the former computes a non-complete decomposition of a mesh based on local component

features [SIPIRAN12] whereas the latter aims at an exhaustive mesh partitioning. The idea

behind key components detection is to decompose the mesh into a set of key components,

which should be consistently detectable regardless of the transformation applied on the mesh.

Due to its high local discriminative ability, the key components are extracted at local

scales. In the case of the BDE descriptor, the key components can be determined robustly

using the BDE values at a local scale. In particular, we employ a k-means clustering based

approach with k = 2 at a smaller scale (i.e., normalized scale parameter r = 0.1) in this

set of experiments to cluster the surface points based on locally stable properties. The

choice of k = 2 for the k-means clustering procedure ensures that the result is similar to

that of an indicator function separating key components from non-key components whereas

values of k > 2 would result in distinct key components some of which are symmetric

under isometric deformation. The k-means clustering procedure results in a set of candidate

vertices, which are locally discriminative and consistent across shapes which have undergone

different isometric deformations as shown in Figure 3.9. Most importantly, these results

suggest the repeatability of the key components detection technique even when the shapes

have undergone isometric as well as non-isometric deformation, e.g. Male versus Female

models shown in Figure 3.9.
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Figure 3.9: Key components detection (marked in yellow) using the BDE signature for two
Human models Male (bottom row) and Female (top row) for different isometric deformations.

3.6.2 Sparse Corrrespondence Determination

A detailed treatment of the determination of complete or dense point-to-point correspon-

dence between two deformable 3D shapes is beyond the scope of this chapter. However,

we propose a means to determine the sparse point-to-point correspondence between two de-

formable 3D shapes using a recently developed spectral analysis technique [5]. The proposed

sparse correspondence determination technique is based on the spectral analysis of each of

the two deformable 3D shapes represented by a weighted shape graph G(V,E,W ). The

vertices V of the graph G denote the point geometric features of the shape. The edge set E

denotes the pair-wise relationships between each pair of vertices in the set V , making G a

complete graph. The weight wij ≥ 0 associated with an edge (vi, vj) ∈ E encodes the affinity

between the corresponding features represented by vertices vi and vj. The edge weights are

represented by an n× n affinity matrix W = [wij]i,j=1,2,...,n.

The above formulation is extended for a joint graph as follows: Let G1(V1, E1,W1) and

G2(V2, E2,W2) be the weighted graphs for shapes S1 and S2, respectively. The joint shape

graph G(V,E,W ) is defined such that V = V1∪V2 and E = E1∪E2∪(V1×V2) where V1×V2

53



Figure 3.10: Results of sparse point correspondence determination via joint spectral embed-
ding for three 3D deformable shape models: Centaur, Dog and Human.

is the set of edges connecting every pair of vertices in (V1, V2). The resulting joint affinity

matrix W is given by:

W =

 W1 C

CT W2


(n1+n2)×(n1+n2)

(3.5)

The affinity submatrices W1, W2 and C are defined as follows:

(Wi)x,y = exp(−(‖fi(x)− fi(y)‖)2) (3.6)

Cx,y = exp(−(‖fi(x)− fj(y)‖)2) (3.7)

where, fi(x) and fj(y) are the BDE signatures at points x and y on the two 3D shapes

computed across multiple values of the scale parameter r and ‖·‖ denotes the Euclidean or L2

norm. The joint spectral embedding of the BDE signatures ensures that geometrically similar

surface points on two 3D shapes will have similar feature vectors in the jointly embedded

space where the components of feature vectors represent the coefficients of the eigenvectors
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of the joint affinity matrix W . Computation of the simple L2 norm or Euclidean distance

between the feature vectors in the jointly embedded space can generate good point-to-point

correspondences across shapes as depicted in Figure 3.10.

3.7 Conclusions and Future Directions

A novel intrinsic geometric scale space signature, termed the Biharmonic Density Estimate

(BDE) signature, has been proposed for isometry-invariant shape description. The BDE

is shown to provide a formal means to study the geometric variability of shapes and to

have potentially significant applications in computer graphics and computer vision. The

applications of the BDE in the detection of key components on a deformable 3D surface

and determination of sparse point correspondences between two deformable 3D shapes has

also been demonstrated. In both of the aforementioned applications, it should be noted that

we do not perform a semantic check of whether a computed match is one of the symmetric

solutions, therefore the solution set obtained using the BDE descriptor will also contain

symmetrically equivalent correspondence matches. In future, we plan to explore applications

of the proposed multiscale BDE signature for large-scale content-based search and retrieval

in 3D shape databases, point registration as well as for structural analysis, including partial

and intrinsic symmetry detection and symmetrization.
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Chapter 4

Intrinsic Symmetry Detection and

Characterization

4.1 Introduction

Symmetry is ubiquitous in nature and also in artificial man-made objects. The detection

and characterization of shape symmetry has attracted much attention in recent times, espe-

cially within the computer graphics community [MITRA13]. Although most of the existing

literature has focused on the detection of extrinsic symmetries, a popular approach being

transformation space voting [MITRA06], there has been steadily growing interest in detec-

tion and characterization of intrinsic symmetries. Most recent efforts in intrinsic symmetry

detection have focused on detection of global symmetries [LIPMAN10a]; [OVSJANIKOV08].

Informally, symmetry can be considered as a distance preserving transformation. For a

symmetry transformation T , the distance between two points p and q on the surface is equal

to the distance between transformed points T (p) and T (q) on the surface. In the case of

extrinsic symmetry, the distance measure used is Euclidean, whereas in the case of intrinsic

symmetry, the distance measure used is intrinsic in nature such as, the geodesic distance
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Figure 4.1: Symmetry extraction in functional space. The top row depicts two significant
symmetry transformations along with a few representative point correspondences. The cor-
responding functional map matrices are shown in the bottom row.

measure or the biharmonic distance measure. It is generally recognized that detection of

overlapping intrinsic symmetry is a more challenging problem due to the significantly larger

search space involved in the detection of symmetric regions (when compared to global sym-

metry analysis) and in the determination of symmetry revealing transforms (when compared

to extrinsic symmetry detection). The importance of the overlapping intrinsic symmetry de-

tection and characterization problem is further underscored by the fact that it is more general

in nature, since the extrinsic symmetry detection problem can be considered a special case

of overlapping intrinsic symmetry detection.

We present a formal definition of overlapping intrinsic symmetry. An intrinsic symmetry

over a shape is a subregion with associated self-homeomorphisms that preserve all pairwise

60



intrinsic distances [MITRA13]. Complex shapes often exhibit multiple symmetries that over-

lap spatially and vary in visual appearance as depicted in Figure 4.1. Overlapping symmetry

analysis enables the construction of high-level representations that enhance the understand-

ing of the underlying shape and facilitate solutions to such problems as shape correspondence,

shape editing, and shape synthesis [WANG11]. However, analysis of overlapping symmetry

poses additional challenges as described below.

Existing approaches to intrinsic symmetry detection, including those based on region

growing [XU09], partial matching [RAVIV10], and symmetry correspondence [LIPMAN10a]

are unable to extract physically overlapping symmetries. Lipman et al. [LIPMAN10a] cluster

sample surface points from an input shape and use a symmetry correspondence matrix (SCM)

to identify intrinsic symmetry properties of groups of surface points. In their approach, each

SCM entry measures the extent of symmetry between two surface points based on some

measure of intrinsic geometric similarity between the local neighborhoods of the points. Xu

et al. [XU12] let surface point pairs vote for their partial intrinsic symmetry and perform

intrinsic symmetry grouping using a 2-stage spectral clustering procedure. However, their

approach lacks the ability to retrieve the final symmetry map which makes characterization

of the specific intrinsic symmetry a difficult problem.

The key idea behind the proposed scheme for intrinsic symmetry detection and charac-

terization is to approach the problem from a shape correspondence perspective and generate

the transformation map which can further be used to describe the symmetry space. To this

end, we perform two stages of processing where in the first stage, representative symmetric

point pairs are identified based on their local geometry and a global distance representation

and in the second stage the original transformation is retrieved as a map to facilitate further

characterization of the underlying symmetry. The detected intrinsic symmetries are quite

representative and the corresponding functional matrices exhibit a high degree of diagnon-

ality, as shown in Figure 4.1.

61



Figure 4.2: Overview of the proposed symmetry detection and characterization framework.

4.1.1 Overview

The input to the proposed symmetry detection and characterization algorithm is a 3D shape

that is approximated by a 2-manifold triangular mesh. The local intrinsic geometry is quan-

tified using the Wave Kernel Signature (WKS) [AUBRY11] whereas the global intrinsic geo-

metric distance measure chosen is the Biharmonic Distance Measure (BDM) [LIPMAN10b].

The proposed algorithm consists of a voting procedure performed in correspondence space

defined over a set of locally symmetric surface point pairs sampled from the input 3D shape,

followed by the generation of a functional map as depicted in Figure 4.2.

Correspondence Space Voting A fundamental question in symmetry detection is quan-

tifying the extent of symmetry between a pair of points. The primary challenge in identifying
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potentially symmetric point pairs is to come up with conditions strong enough to adequately

constrain the symmetry search space such that the symmetry detection procedure is compu-

tationally tractable. We rely on a local criterion, such as geometric similarity, and a global

criterion, such as the distance-based symmetry support received by a point pair {a, b}, to

detect and quantify the extent of symmetry between points a and b. We refer to a point pair

{a, b} which satisfies the local geometric similarity criterion as a good voter. The point pairs

within the population of good voters, that enjoy sufficiently strong global distance-based

symmetry support are deemed to be symmetric point pairs. The global symmetry support

for a point pair {a, b} is quantified by the number of other point pairs which potentially

share the intrinsic symmetry properties of {a, b}. The global symmetry support is computed

using a simple, distance-based symmetry criterion defined over two point pairs within the

population of good voters as shown in Figure 4.2.

The input to the correspondence space voting procedure comprises of point pairs that

can be considered as candidates for symmetry. In the initial step of correspondence space

voting procedure, we sample a set of locally symmetric surface point pairs from the input

3D shape based on the similarity of their WKS values. To estimate the symmetry support

received by a point pair, we perform a voting procedure by counting the number of good

voters which potentially share the same intrinsic symmetry as the source point pair. The

voting procedure ensures that we have a set of good point pair initializations from which we

can create an initial map of the symmetry transformation that can then be extrapolated to

other surface point pairs on the 3D shape.

Computation of the Functional Map A functional map provides an elegant represen-

tation of the maps between surfaces, allowing for efficient inference and manipulation. In

the functional map approach, the concept of a map is generalized to incorporate correspon-

dences between real valued functions rather than simply between surface points on the 3D
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shapes. Our choice of the multi-scale eigen-basis of the Laplace-Beltrami operator makes the

functional map representation both, very compact and yet informative. We show that the

proposed functional map formulation not only results in a compact description of the under-

lying map of the symmetry transformation, but also enables meaningful characterization of

the symmetry transformation.

The primary contributions of our chapter can be summarized as follows:

1. Exploiting the functional map representation in conjunction with the correspondence

space voting technique of Xu et al. [XU12]. The voting technique in Xu et al. [XU12]

is followed by a computationally complex optimization step comprising of a two-stage

clustering procedure for symmetry detection. The proposed technique, on the other

hand, is based on detection of a few initial symmetric candidates followed by a com-

putationally efficient generalization procedure for overall symmetry detection based on

the functional map representation and solving a system of linear equations.

2. Robust and meaningful characterization of the symmetry transformation via formu-

lation of a symmetry space which allows one to quantitatively distinguish between

instances of simple and complex intrinsic symmetry. To the best of our knowledge,

this quantitiative distinction has not been attempted in the published literature.

3. Enabling recovery of the symmetry groups via clustering on the functional maps.

4.2 Related Work

The research literature on symmetry detection has grown substantially in recent years as

shown in the recent comprehensive survey by Mitra et. al. [MITRA13]. In this chapter,

we do not attempt to provide an exhaustive exposition of the state of the art in symmetry

detection; rather we restrict our discussion to existing works that are most closely related to
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the proposed approach.

4.2.1 Symmetry detection in transformation space

Several recent approaches to detect approximate and partial extrinsic symmetries have fo-

cused on algorithms that are based on clustering of votes for symmetry detection in a param-

eterized transformation space [IMIYA99], [MITRA06], [YIP00], [27]]. For example, Mitra

et al. [MITRA06] generate votes in a transformation space to align pairs of similar points

and then cluster these votes in a space spanned by the parameters of the potential symme-

try transformations. Regardless of how good the shape descriptors are, the aforementioned

methods are not effective at finding correspondences between points in complex symmetry

orbits that are spread across multiple distinct clusters in the transformation space. Since the

dimensionality of the transformation space increases with the complexity of the symmetry,

the voting procedure in transformation space becomes increasing intractable when dealing

with complex symmetries.

4.2.2 Symmetry representation in transformation space

There exists a substantial body of published research literature that characterizes shape rep-

resentations based on the extent of symmetry displayed by an object with respect to multiple

transformations. Kazdhan et al. [KAZDHAN03] have proposed an extension of Zabrodsky’s

symmetry distance [ZABRODSKY95] in their formulation of characteristic functions, re-

sulting in a symmetry descriptor that measures the symmetries of an object with respect

to all planes and rotations through its center of mass. Podolak et al. [PODOLAK06] have

extended the symmetry descriptor to define a planar reflective symmetry transform (PRST)

that measures reflectional symmetries with respect to all planes in 3D space. Rustamov

et al. [RUSTAMOV08] have extended the PRST by incorporating more information in the
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symmetry transformations to obtain a family of symmetry transforms indexed by a single

parameter, namely the surface point-pair correlation values at multiple radii. Although the

above representations provide a measure of symmetry for a regularly sampled set of transfor-

mations within a group, they are practical only for transformation groups of low dimension-

ality (for example, rigid body transformations would require one to store a six-dimensional

matrix) and break down when faced with groups of higher dimensionality.

4.2.3 Discovery of repeating structures

There exists a class of techniques that exploits the redundancy in repeating structures to

robustly detect symmetries [BOKELOH09]; [LI06]; [LIU07]; [PAULY08]; [SHIKHARE01].

The transformation space voting method proposed by Mitra et al. [MITRA06] is extended

in [PAULY08] by fitting parameters of a transformation generator to optimally register

the clusters of votes in transformation space. Berner et al. [BERNER08] and Bokeloh et

al. [BOKELOH09] have taken a similar approach using subgraph matching of feature points

and feature lines, respectively, to establish potential correspondences between repeated struc-

tures. The subgraph matching procedure is followed by an Iterative Closest Point (ICP)

algorithm to simultaneously grow the corresponding regions and refine the matches over all

detected patterns. The schemes proposed by Berner et al. [BERNER08] and Bokeloh et

al. [BOKELOH09] allow the detection of repeated patterns even in noisy data [PAULY08],

but at the cost of requiring a-priori knowledge of the commutative group expected in the

data. Also, the non-linear local optimization procedure within the ICP algorithm could

cause it to get trapped in a local minimum if the initialization is not good enough.
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4.2.4 Eigen-analysis methods

Lipman et al. [LIPMAN10a] have proposed an eigen-analysis technique for symmetry detec-

tion that relies on spectral clustering. The eigenvectors, corresponding to the largest eigenval-

ues of their geometric similarity-based symmetry correspondence matrix (SCM), characterize

the symmetry-defining orbits, where each orbit includes all points that are symmetric with

one another. However, their work is not well suited for multi-scale partial symmetry de-

tection. First, expressing local point similarities as symmetry invariants is only appropriate

for global intrinsic symmetry detection. In the case of partial symmetry detection, it is not

always possible to reliably judge if two surface points are symmetric by comparing only their

point (i.e., local) signatures, especially when one point lies on the boundary of symmetric

regions. Moreover, their single-stage clustering procedure is unable to identify overlapping

symmetries.

Xu et al. [XU12] have extended the eigen-analysis approach of Lipman et al. [LIPMAN10a]

by incorporating the concept of global intrinsic distance-based symmetry support accompa-

nied by a 2-stage spectral clustering procedure to distinguish between scale determination

and symmetry detection. Although they showed some interesting results, the 2-stage spectral

clustering procedure caused their method to be extremely slow. Furthermore, the absence

of transformation map retrieval meant that further processing of the detected symmetries,

which are represented as point pairs, was extremely inefficient.

The proposed scheme is decoupled into two stages termed as Correspondence Space Vot-

ing (CSV) and Transformation Space Mapping (TSM). Although the CSV procedure is in-

spired by the work of Xu et al. [XU12], we have bypassed the two computationally inten-

sive procedures of spectral clustering and all-pairs geodesic distance computation in their

scheme [XU12] to improve significantly the running time of the proposed CSV procedure.

Moreover, our incorporation of the TSM procedure in symmetry detection is, to the best of

our knowledge, novel in that it not only provides a concise description of the underlying sym-
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metry transformation, but also enables formal characterization of the underlying symmetry

transformation.

4.3 Theoretical Framework

In this section, we present a formal description of the problem being addressed in this

chapter. In particular, we define the input to and output of the proposed algorithm. We

also define the type of intrinsic symmetries the proposed algorithm is designed to detect

and the formal characterization of these symmetries. There are two primary aspects to the

theoretical framework for the proposed algorithm, i.e., Correspondence Space Voting (CSV)

and Transformation Space Mapping (TSM) or Functional Map Retrieval (FMR). The terms

TSM and FMR are used interchangeably in this chapter. In the case of CSV, a joint criterion,

that combines local intrinsic surface geometry and global intrinsic distance-based symmetry,

is proposed and shown to result in a provably necessary condition for intrinsic symmetry.

In the case of TSM or FMR, a formal scheme is proposed for the characterization of the

complexity of the detected symmetries, and its effectiveness demonstrated.

We have restricted our study of intrinsic symmetry primarily to isometric involutions for

two reasons; first, the restriction results in a provably necessary condition for intrinsic sym-

metry which provides theoretical soundness and second, the proposed symmetry criterion

bounds the symmetry search space sufficiently, ensuring that the solution is computation-

ally tractable [XU12]. But, unlike [XU12], the computationally complex CSV procedure is

only an initialization step in the proposed method. Following the initial detection of good

symmetry correspondences using the CSV procedure, we proceed to retrieve the map of the

symmetry transformation by leveraging the functional map framework. The generalization

of the symmetry detection over the entire surface is performed by solving a system of linear

equations which not only returns the underlying map of the symmetry transformation, but
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also ensures the scalability of our method with respect to the number of surface points. The

intrinsic symmetry criterion ensures that the retrieved functional matrices exhibit a diago-

nality characteristic that can be quantified using a cost matrix specifically designed for this

purpose. The inner product of the functional matrix with the cost matrix is shown to result

in a quantitative measure of the complexity of the detected symmetry.

Before describing the proposed algorithm in detail, we summarize the previously devel-

oped concepts, tools and techniques that are used in the proposed algorithm.

4.3.1 Biharmonic Distance Measure

Measuring intrinsic distances between pairs of points on a 3D surface is a fundamental prob-

lem in computer graphics. The most important properties of an intrinsic distance are that

it is a metric, smooth, locally isotropic, globally shape-aware, isometry invariant, insensitive

to noise and small topology changes, parameter-free, and practical to compute on a discrete

mesh. But most existing intrinsic distance measures do not follow the above properties. The

Biharmonic Distance Measure (BDM) is a welcome exception amongst the intrinsic distance

measures encountered in the published literature since it satisfies all the desirable properties

mentioned above [LIPMAN10a].

The BDM is similar in form to the Diffusion Distance Measure (DDM) [LING06]. The

BDM kernel is based on the Green’s function of the biharmonic differential equation. In

the continuous case, the (squared) biharmonic distance between two points x and y can

be defined using the eigenvectors (φk) and eigenvalues (λk) of the Laplace- Beltrami opera-

tor [LIPMAN10a] as follows:

dM(x, y)2 =
∞∑
k=1

(φk(x)− φk(y))2

λ2k
(4.1)

The above definition of the BDM is slightly different from that of the DDM where the
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denominator in the case of the DDM is e2tλk . However, this subtle change ensures greater

control over the characterization of the global and local properties of the underlying manifold

in the case of the BDM. Consequently, the BDM is fundamentally different from the DDM

with significantly different properties.

The BDM, as expressed in equation (4.1), captures the rate of decay of the normalized

eigenvalues λk of the Laplace- Beltrami operator; if the decay is too slow, it produces a log-

arithmic singularity along the diagonal of the Green’s function [YEN07]. Alternatively, too

fast a decay basically ignores the eigenvectors associated with higher frequencies, resulting

in the BDM being global in nature (i.e., the local surface details are ignored). Lipman et

al. [LIPMAN10b], demonstrated that performing quadratic normalization provides a good

balance, ensuring that the decay is slow enough to capture the local surface properties around

the source point and yet rapid enough to encapsulate global shape information.

In particular, Lipman et al. [LIPMAN10b] have theoretically proved two important prop-

erties of the BDM, i.e., that it is (i) a metric, and (ii) smooth everywhere except at the source

point where it is continuous. The key observation is that for 3D surfaces, the eigenvalues λk,

k = 1, 2, . . ., of the Laplacian are an increasing function of k resulting in the continuity of

the BDM everywhere and also the smoothness of the BDM everywhere except at the source

point, where it has only a derivative discontinuity.

4.3.2 Wave Kernel Signature

The comprehensive analysis of shapes entails the formulation of a geometric feature descrip-

tor which characterizes each point on the object surface taking into account its relation to

the entire shape. The Wave Kernel Signature (WKS) of a surface point x, is a geometric fea-

ture descriptor which evaluates the probability of a quantum particle with a certain energy

distribution to be located at point x. The behavior of the quantum particle on the surface

is governed by the Schrodinger equation [SCHRODINGER26]. Assuming that the quantum
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particle has an initial energy distributed around some nominal energy with a probability

density function f(e), the solution of the Schrodinger equation can then be expressed in the

spectral domain as:

ψ(x, t) =
∑
k>=1

eiektf(ek)φk(x) (4.2)

Aubry et al. [AUBRY11] consider a family of log-normal energy distributions centered

around some mean log energy log e with variance σ2. This particular choice of distributions

is motivated by a perturbation analysis of the Laplacian spectrum [AUBRY11]. Having fixed

the family of energy distributions, each point x on the surface is associated with a WKS of the

form: p(x) = (pe1(x), . . . , pen(x))T where pei(x) is the probability of measuring a quantum

particle with the initial energy distribution ei(x) at point x. Aubry et al. [AUBRY11] use

logarithmic sampling to generate the values e1(x), . . . , en(x).

The WKS can be shown to exhibit a band-pass characteristic. This reduces the influence

of low frequencies and allows better separation of frequency bands across the descriptor

dimensions. As a result, the WKS descriptor exhibits superior feature localization compared

to the Heat Kernel Signature (HKS) [LITMAN13].

4.3.3 Functional Map

A functional map [OVSJANIKOV12] is a novel approach for inference and manipulation

of maps between shapes that tries to resolve the issues of correspondences in a fundamen-

tally different manner. Rather than plotting the corresponding points on the shapes, the

mappings between functions defined on the shapes are considered. This notion of corre-

spondence generalizes the standard point-to-point map since every point-wise correspon-

dence induces a mapping between function spaces, while the opposite, in general, is not

true [OVSJANIKOV12].

The functional map framework described above provides an elegant means, using a func-
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tional representation, for avoiding the direct representation of correspondences as mappings

between shapes. Ovsjanikov et al. [OVSJANIKOV12] have noted that when two shapes X

and Y are related by a bijective correspondence t : X → Y , then for any real function

f : X → R, one can construct a corresponding function g : Y → R as g : f ◦ t−1. In

other words, the correspondence t uniquely defines a mapping between the two function

spaces, i.e., F (X,R) → F (Y,R) , where F (X,R) denotes the space of real functions on

X. Equipping X and Y with harmonic bases, {φi}i≥1 and {ψj}j≥1, respectively, one can

represent a function f : X → R using the set of (generalized) Fourier coefficients {ai}i≥1

as f =
∑

i≥1 aiφi. Translating this representation into the other harmonic basis {ψj}j≥1,

one obtains a simple representation of the correspondence between the shapes given by

T (f) =
∑

i,j≥1 aicijψj where cij are Fourier coefficients of the basis functions of X expressed

in the basis of Y , defined as T (φi) =
∑

i,j≥1 cijψj. The correspondence t between the shapes

can thus be approximated using k basis functions and encoded using a k×k matrix C = (cij)

of these Fourier coefficients, referred to as the functional matrix. In this representation, the

computation of the shape correspondence t : X → Y is translated into a simpler task of

determining the functional matrix C from a set of correspondence constraints. The matrix

C has a diagonal structure if the harmonic bases {φi}i≥1 and {ψj}j≥1 are compatible.

Having discussed the previously developed concepts, tools and techniques, we describe

the proposed symmetry detection and characterization algorithm in detail.

4.3.4 Input to the Proposed Algorithm

The problem domain under consideration is a compact, connected 2-manifold, M , with or

without a boundary. The manifold M is a 3D shape, i.e., M → R3. Distances on the manifold

M are expressed in terms of an intrinsic distance measure. In particular, the BDM is used

on account of its ease of calculation and greater robustness to local surface perturbations

when compared to the geodesic distance measure [LIPMAN10b]. In the remainder of the
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chapter, we use the term intrinsic distance and biharmonic distance interchangeably.

4.3.5 Output of the Proposed Algorithm

Since a symmetry transformation is represented by a functional map in the proposed al-

gorithm, the output of the proposed algorithm consists of functional maps represented as

matrices. The output can be regarded as a complete description of all the overlapping

intrinsic symmetries represented in a compact and informative manner.

4.3.6 Definition of Intrinsic Symmetry

We assume that we are given a compact connected 2-manifold M without boundary. Fol-

lowing [RAVIV07] we deem manifold M to be intrinsically symmetric if there exists a home-

omorphism T : M →M on the manifold that preserves all intrinsic distances. That is,

dM(p, q) = dM(T (p), T (q))∀p, q ∈M (4.3)

where dM(p, q) is the intrinsic distance between two points on the manifold. In this case, we

call the mapping T an intrinsic symmetry.

4.3.7 Symmetry Criteria

We propose two simple criteria to test whether two surface point pairs {x, x′} and {y, y′}

on the manifold M potentially share the same intrinsic symmetry. The first criterion, which

is based on local intrinsic geometry, determines the symmetry potential of the two surface

point pairs by comparing their corresponding WKS values as follows:

WKS(x, t) = WKS(x′, t) and

WKS(y, t) = WKS(y′, t) ∀t ≥ 0 (4.4)
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where t is a scale parameter. Although local intrinsic geometric similarity is not a sufficient

criterion, it is a necessary one [OVSJANIKOV10] and when imposed serially along with the

next criterion, ensures a smaller search space. The second criterion is based on intrinsic

distance as follows:

dM(x, y) = dM(x′, y′) and

dM(x, y′) = dM(y, x′) (4.5)

This criterion is motivated by [XU12] and can be considered a theoretically sufficient con-

dition. The above two criteria are necessarily satisfied if the surface point pairs under

consideration correspond to the same intrinsic symmetry.

4.3.8 Correspondence Space Voting (CSV)

The first step in the proposed symmetry detection and characterization framework is the CSV

procedure. Although a voting procedure has been previously incorporated in an earlier sym-

metry detection technique, it was carried out primarily in transformation space [MITRA06].

The importance of the correspondence space for the detection of symmetry was explained

more recently by Lipman et al. [LIPMAN10a]. In our case, although the detected symmetry

is finally represented in functional space, it is critical to have good initialization to ensure

the success of the final map generation. We have designed and implemented a CSV algo-

rithm to facilitate good initial guesses. But, unlike [XU12], the computationally complex

global CSV procedure is performed in a reduced search space resulting from employing an

efficient sampling strategy and the local geometric similarity criterion (equation (4.4)). The

generalization of the symmetry detection over the entire shape is performed by solving a sys-

tem of linear equations in a computationally efficient manner. The proposed CSV algorithm

comprises of three stages described in the following subsections:

74



Figure 4.3: Sampling results on three different human shapes

Selection of Surface Points

A subset of points with adequate discriminative power needs to be selected prior to the

generation of surface point pairs to ensure the reduced space for voting. A subsetX consisting

of n sample points is chosen from the surface of the given input 3D shape using the farthest

point random sampling strategy [ELDAR97]. Although originally designed to operate on

geodesic distances generated using the Marching Cubes algorithm [LORENSEN87], in our

case we have employed the farthest point random sampling strategy in biharmonic distance

space. The results of the sampling procedure are depicted in Figure 4.3.

In our implementation of the farthest point random sampling strategy, a single point is

selected randomly at first and the remaining points are chosen iteratively from the remainder

set by selecting the farthest point in the biharmonic distance space at each iteration. This

strategy generates a set of points located mostly in the vicinity of the shape extrema which

can then be used in the subsequent surface point pair generation procedure.

Generation of Surface Point Pairs

From the chosen subset X consisting of n sample points, the surface point pairs are generated

by exploiting the similarity of their local intrinsic geometric structure. The similarity of

local intrinsic geometric structure of two surface points is determined by comparing their

corresponding WKS values.
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Although the WKS is invariant under isometric deformation, in most practical cases

where the underlying surface is represented by a discrete triangular mesh, it is not possible

to satisfy strictly the invariance criterion in equation (4.4). Consequently, we have considered

the 2-norm of the WKS (i.e., simply the squared Euclidean distance in the WKS space) and

chosen surface point pairs from the subset X which satisfy the WKS invariance criterion in

equation (4.4) to within a prespecified threshold TWKS instead of requiring strict equality.

The surface point pairs that satisfy the WKS invariance criterion in equation (4.4) are

considered for inclusion in the next step of global distance-based voting. This relaxation

of the WKS invariance criterion ensures that even cases of overlapping intrinsic symmetries

are considered in the voting procedure. We have coined the term good voters to denote the

subset of surface point pairs that satisfy the WKS invariance criterion in equation (4.4) to

within the pre-specified threshold.

Global Distance-based Voting

The global distance-based voting step in the proposed symmetry detection technique is

inspired by the work of Xu et. al. [XU12]. A subset of symmetric point pairs is extracted from

the set of good voters using the global distance-based voting procedure prior to functional

map generation. The goal of the voting procedure is to accumulate symmetry support for the

good voters and extract the symmetric point pairs based on the level of symmetry support

received.

A point pair in the set of good voters is deemed to be symmetric if it has a sufficiently

large global symmetry support, which in [XU12] is measured by the number of point pairs

that satisfy the intrinsic distance criterion in equation (4.5). Xu et al. [XU12] have presented

a voting technique based on two point pairs followed by spectral clustering on the symmetric

point pairs which enables one to distinguish whether a point pair supports one particular

symmetry or more than one type of symmetry. However, since we are not interested, at this
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stage, in making the above distinction between the point pairs, we have chosen to adopt a

straightforward approach of choosing a point pair and letting the set of good voters vote and

decide whether or not the particular point pair satisfies the intrinsic distance criterion in

equation (4.5). Another modification to the previous voting procedure of Xu et al. [XU12] is

our use of the biharmonic distance as the intrinsic distance instead of the geodesic distance.

This modification provides two advantages over the previous voting procedure. First, since

the computation of biharmonic distances between all surface point pairs is more efficient

than the computation of geodesic distances, the proposed voting procedure is much faster.

Second, biharmonic distances are less sensitive to noise and surface perturbations compared

to geodesic distances, making the proposed voting procedure more robust.

4.3.9 Transformation Space Mapping and Symmetry Extraction

Using Functional Maps

In the proposed symmetry extraction algorithm, instead of comparing two different shapes,

we propose to compare two symmetric regions within the same shape. In particular, based

on the previously detected set of symmetric point pairs, we leverage the functional map

representation for symmetry extraction. For each pair of symmetric points, we deem one

point as the source and the other as the destination and choose a local region around each

point. The ordering of the source and destination points within the pair is the same as the

one originally chosen during the voting procedure. The corresponding eigen-bases for the

points in the source and destination regions are computed. These eigen-bases are ordered

based on their similarity with each other and the final functional map for that particular

symmetry is extracted. The functional map representation ensures that (a) the problem of

symmetry extraction is tractable and, (b) the resulting symmetry can be represented, not

by a large matrix of point correspondences, but rather as a more compact functional map
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Figure 4.4: Limitation of the proposed symmetry detection algorithm.

which can be further manipulated for other applications as well.

4.3.10 Limitations

The proposed framework fails to detect intrinsic symmetry in cases where the second symme-

try criterion (in equation (4.5)) is not satisfied. For example, Figure 4.4, depicts two human

figures that constitute what may be perceived as a translational symmetry, although they

do not follow our basic input assumption of connectedness. The second symmetry criterion

(equation (4.5)) fails to hold in this situation. Generally speaking, the proposed algorithm is

not designed to detect all forms symmetry resulting from repeated patterns, especially if the

patterns are spatially disconnected. In contrast to the approach of Xu et al. [XU12], the use

of biharmonic distance instead of geodesic distance as the intrinsic distance measure ensures

that the proposed algorithm is capable of detecting intrinsic symmetry even in the presence

of small perturbations (such as small bumpy regions) on the 3D surface [LIPMAN10b].
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4.4 Symmetry Characterization using Functional Maps

In general, the characterization of a specific transformation based on its functional map is

a challenging task. However in our case, the proposed CSV framework ensures that the

point pairs used in the generation of the functional map are intrinsically symmetric to a

reasonable extent. This property of intrinsic symmetry ensures that the resulting functional

map is diagonal or close to diagonal [OVSJANIKOV12]. However, in reality, there are sev-

eral cases where the actual symmetry transformation deviates substantially from ε-isometric

deformation resulting in a densely populated functional matrix C. Note that an ε-isometric

deformation arises from discretization error (ε-error) in a perfectly isometric deformation in

the continuous case. In the context of the symmetry characterization problem, we assume

that the degree of off-diagonality of C corresponds to the complexity of the symmetry trans-

formation, i.e., more non-zero off-diagonal elements in C implies a more complex symmetry

transformation. The rationale behind the diagonality assumption is that the CSV-based

initialization procedure described in Section 4.3.8 ensures that the two input matrices (rep-

resenting the Laplace Beltrami eigenfunctions) to the linear equation solver used in the

Transformation Space Mapping (TSM) are reasonably similar resulting a diagonal (or close

to diagonal) Functional Map matrix C.

The diagonality property of the functional matrix C was first exploited successfully in an

intrinsic correspondence framework that used a sparse modeling technique [POKRASS13].

Pokrass et al. [POKRASS13] introduced a weight matrix W of the same dimensions as C

where the weight values are assigned using an inverted Gaussian model. In the inverted

Gaussian model, zero weights are assigned to the diagonal elements whereas the off-diagonal

weight values are an increasing function of the distance of the off-diagonal elements from the

principal diagonal of the matrix W :

wi,j = 1− exp(−d2i,j) (4.6)
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Figure 4.5: Symmetry characterization based on functional maps, in particular, the complex-
ity of the symmetry transformation is characterized by the weight matrix W and represented
in the increasing order of the value of the inner product of W and C.

where di,j is the distance of the (i, j)th element of W from the matrix diagonal.

The complexity of the symmetry transformation is captured by the inner product of

C and W given by
∑

i

∑
j wi,jci,j =

∑
i

∑
jmi,j. Since the off-diagonal elements of C are

emphasized and the diagonal elements of C are de-emphasized, the inner product can be

regarded as a measure of the diagonality of the matrix C. The inner product allows for

the successful formulation of a 1D metric symmetry space, wherein each symmetry trans-

formation is represented as a point in the symmetry space with a value given by the inner

product of the matrix C and weight matrix W . The Euclidean distance between the points

in the 1D symmetry space represents the complexity distance between the corresponding

symmetry transformations as depicted in Figure 4.5. In the symmetry space, any perfectly

isometric transformation would be mapped onto the origin, whereas more complex symmetry

transformations would map onto points farther away from the origin. The symmetry space

is a metric space because it possesses all the four primary properties of a distance metric.

For two points X and Y in the symmetry space, the distance d(X, Y ) from X to Y always

follows:

1. Non-negative definiteness: d(X, Y ) ≥ 0;
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2. Symmetry: d(X, Y ) = d(Y,X);

3. Identity of indiscernibles and indiscernability of identicals: d(X, Y ) = 0 if and only if

X = Y . Also note that all perfectly isometric deformations map onto the origin of the

1D symmetry space; and

4. Triangle inequality: d(X,Z) ≤ d(X, Y ) + d(Y, Z). Note that although the symmetry

transform is a matrix C, we have essentially computed a 1D measure of its diagonality

(via the inner product of C and W ) to simplify subsequent symmetry analysis. The

triangle inequality can be seen to trivially hold in the 1D symmetry space.

It is also possible to cluster the points in the 1D symmetry space to identify intrinsic

symmetries which are potentially similar in nature as shown in the Experimental Results

section to follow.

4.5 Experimental Results

In this section, we present and discuss the results obtained by the proposed intrinsic sym-

metry detection algorithm on various 3D shapes. We also provide comparisons of our results

with those obtained from the most closely related approaches described in [LIPMAN10a]

and [XU12]. We also shown some applications where the detected symmetries can be fur-

ther analyzed for symmetry characterization and clustering, potentially revealing greater

semantic information about the underlying 3D shape. Most of the 3D shape models used in

our experiments are from the Non-rigid World dataset [BRONSTEIN07] unless mentioned

otherwise.
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4.5.1 Preprocessing

Several discrete schemes have been proposed in recent years to approximate the Laplace-

Beltrami operator on triangular meshes. Among these, the one most widely used for com-

puting the discrete Laplace operator is the cotangent scheme (COT), originally proposed by

Pinkall and Polthier [PINKALL93]. Belkin et al [BELKIN08] proposed a discrete scheme

based on the heat equation, which has been proven to possess the point-wise convergence

property for arbitrary meshes. Although it is well known that no discrete Laplace operator

can share all of the properties of its continuous counterpart, in our experiments the aforemen-

tioned discrete schemes were observed to produce eigenfunctions that approximately preserve

the convergence property of the continuous Laplace operator for a reasonably well sampled

triangular mesh. In all of the experiments described below, we have used the cotangent

scheme [PINKALL93] for the computation of the discrete Laplace-Beltrami operator.

4.5.2 Symmetry Detection

The results of the proposed symmetry detection algorithm are depicted in Figures 4.1, 4.6,

4.7 and 4.11. Several important properties of the proposed algorithm are highlighted in these

results.

General Symmetry Detection

The ability of the proposed algorithm to identify multiple intrinsic symmetries is evident

from the results shown in Figures 4.6 and 4.11. The extracted symmetries are seen to

cover the global symmetry of the underlying 3D shape which has undergone approximate

isometric deformations. Additionally, the proposed algorithm is also observed to be capable

of detecting symmetry transformations that cover individual components of a 3D object that

possess various forms of self-symmetry.
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Figure 4.6: Examples of overlapping symmetry detection for the Horse shape model.

Overlapping Symmetry Detection

One particularly important aspect of the proposed algorithm is its ability to detect instances

of overlapping symmetry. An instance of overlapping symmetry is deemed to occur when

a specific region on the surface of the 3D shape is simultaneously subjected to more than

one symmetry transformation and, as a result, is symmetric to more than one region on the

3D shape surface. For example, Figure 4.6 shows some examples of overlapping symmetry

between legs of the Horse shape model successfully detected by the proposed technique.

Three different combinations of symmetry transformations between the four legs of the Horse

model (out of a total of six possibilities) are depicted in Figure 4.6.

Noise

Although the CSV procedure is stochastic in nature, the proposed biharmonic distance-based

voting scheme ensures its robustness to noise. In this experiment, each vertex on the input

model surface is randomly displaced along the local surface normal where the displacement

is modeled by an independent and identically distributed (iid) random variable drawn from a

zero-mean Gaussian distribution with a given value of σ (standard deviation). In particular,

Figure 4.7 demonstrates the robustness of the proposed symmetry detection technique to

different levels of synthetic Gaussian noise (characterized by the standard deviation σ) added
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Figure 4.7: Robustness of symmetry detection for three different levels of synthetic white
Gaussian noise added to the Human shape model.

to the Human shape model. Note that the symmetries are consistently detected even at

higher noise levels as depicted in Figure 4.7. The details on the generation of the synthetic

noisy models are given in Section 4.5.5.

4.5.3 Performance Statistics

All of the experiments reported in this chapter were performed on an Intel Core
TM

3.4 GHz

machine with 24 GB RAM. For all the example models, the number of sample points were in

the range [20, 100]. Table 4.1 reports the timing results for the various steps in the proposed

symmetry detection algorithm. In particular, unlike [XU12], wherein the execution time for

the most time consuming step of all-pairs geodesic distance computation is not reported,

we also report the timing results for the equivalent step in our formulation i.e., the all-pairs
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Table 4.1: Timing results for the various steps in the proposed algorithm. Biharmonic: time
taken to compute the all-pairs biharmonic distance; FMap: time taken to computute the
functional maps; Extraction: time taken for symmetry extraction; Total: total execution
time. All the times are measured in seconds.
# Points Biharmonic FMap Extraction Total

3400 32 2 5 39
10000 41 3 7 51
50000 237 4 15 256

biharmonic distance computation. The most time consuming step in the proposed algorithm,

i.e., the all-pairs biharmonic distance computation, accounts for around 80% of the execution

time of the proposed algorithm. More importantly, bypassing the two-step spectral clustering

procedure described in [XU12] reduces significantly the computation time of the proposed

algorithm.

4.5.4 Comparisons

We have compared the proposed symmetry detection algorithm primarily with methods that

could be deemed sufficiently similar, such as ones described in [LIPMAN10a] and [XU12].

The symmetry detection technique of Xu et al. [XU12] can detect overlapping partial intrinsic

symmetries whereas that of Lipman et al. [LIPMAN10a] is designed to deal with partial

extrinsic symmetries. However, if the symmetric sub-shapes do not undergo significant

pose variations, the global alignment component of [LIPMAN10a] may allow it to detect

certain partial intrinsic symmetries as well. Though both methods [LIPMAN10a]; [XU12]

are capable of detecting instances of partial intrinsic symmetry, neither is able to characterize

the underlying symmetry.

In contrast, the proposed algorithm, not only detects overlapping intrinsic symmetries,

but it also has the ability to characterize and cluster the detected symmetries in symme-
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Figure 4.8: The proposed CSV procedure ensures detection of instances of global overlapping
intrinsic symmetry (a), (b). In contrast, the symmetry-factored embedding (SFE) technique
of Lipman et al. [LIPMAN10a] primarily detects instances of global intrinsic non-overlapping
symmetry but fails to detect instances of overlapping symmetry (c).

try space. Since their entire formulation is based solely on global intrinsic distance-based

voting followed by a computationally complex two-stage spectral clustering procedure, the

technique of Xu et al. [XU12] suffers from the shortcoming of not being scalable in real

situations. The proposed algorithm, on the other hand, interpolates the functional map of

symmetry transformations from the chosen point pair, to the remaining point pairs, i.e., once

a representative point pair within a transformation is identified using the voting procedure,

the remaining correspondences are obtained by solving a system of linear equations using the

functional map formulation. Although the proposed procedure produces instances of sym-

metry detection that are qualitatively similar to those in [XU12], its superior scalability is

evident even from the timing results reported in Table 4.1 on relatively smaller-size meshes.

Moreover, the procedure of Xu et al. [XU12] is unable to produce the underlying maps,

thereby circumventing the ultimate goal of characterizing and understanding the intrinsic

symmetry.

The symmetry-factored embedding (SFE) technique of Lipman et al. [LIPMAN10a],

though designed primarily for extrinsic symmetry detection, in simpler cases, is able to
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detect intrinsic symmetries as well. However, it fails completely in detecting cases of over-

lapping intrinsic symmetries resulting in poor symmetry-based segmentation. In contrast,

the proposed CSV procedure ensures the detection of instances of overlapping intrinsic sym-

metry as shown in Figure 4.8.

4.5.5 Performance in Presence of Noise

It is critically important for a newly proposed symmetry detection technique to perform

well in the presence of varying levels of noise. We performed a quantitative evaluation of

the proposed technique on the TOSCA dataset [12] under varying levels of additive white

Gaussian noise. Each vertex on model surface is randomly displaced along the local surface

normal where the displacement is modeled by an independent and identically distributed

(iid) random variable drawn from a zero-mean Gaussian distribution with a given value of σ

(standard deviation). For each pair of symmetric point correspondences chosen at the end of

CSV, the L2 norm between the values of the original functional map and the noisy functional

map is computed and normalized with respect to the original functional map. The mean

normalized error in the functional map is computed over all the point correspondences for

varying σ values (in the range [0, 1]) of the white Gaussian noise as depicted in Figure 4.9.

It is interesting to note that the mean normalized error initially increases with increasing

values of σ before settling upon a value of ≈ 0.0007 for values of σ > 0.4, thus depicting the

robustness of proposed technique to additive white Gaussian noise.

4.5.6 Quantitative Evaluation

In this section, we present quantitative evaluation of the results obtained by the proposed

approach. In order to evaluate the proposed algorithm, we used the SHREC 2010 feature

detection and description benchmark [BRONSTEIN10]. This dataset comprises of three
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Figure 4.9: Robustness of the proposed technique for varying levels of additive white Gaus-
sian noise.

baseline shapes (i.e., null shapes) and a set of shapes obtained by applying a set of transfor-

mations on the null shapes. Shapes have approximately 10,000 to 50,000 vertices and their

surfaces are represented by triangular meshes. We have specifically considered shapes which

have undergone changes characterized by isometry, topology, micro-holes, scale and noise.

The quantitative evaluation is along the lines proposed by Sipiran and Bustos [SIPIRAN12]

and its goal is to determine whether the extracted symmetric components are consistent be-

tween a null shape and the transformed shape. Given a null shape X and its transformed

shape Y , the extracted symmetric components are represented as X1, . . . , Xn and Y1, . . . , Ym,

respectively. Using the ground-truth data, we compute for each component Yj ∈ Y the cor-

responding component in X which is denoted as X ′j. The component repeatability between

X and Y is defined as :

R(X, Y ) =
m∑
j=1

max
1≤i≤n

O(Xi, X
′
j) (4.7)

where, the overlap O(Xi, X
′
j) between two extracted symmetric components Xi and X ′j is

88



defined as:

O(Xi, X
′
j) =

A(Xi ∩X ′j)
A(Xi ∪X ′j)

(4.8)

where A(X) is the surface area of component X.

In addition, it is possible to define the repeatability in overlap O as the percentage of

symmetric components in the entire collection Y1, . . . , Ym that have an overlap greater than

O with their corresponding components in the null shape [SIPIRAN12]. Note that totally

coincident components yield a repeatability value of 1. A plot of repeatability versus overlap

can be used to depict the resilience of the symmetry extraction algorithm to various trans-

formations of the null shapes. A resilient symmetry extraction algorithm would be expected

to exhibit high values of repeatability (close to 1) for a wide range of overlap values. In

our quantitative evaluation, a total 50 sample points were generated using the farthest point

random sampling strategy for each of the null shapes and transformed shapes. Figure 4.10

shows the plot of repeatability versus overlap for various transformations such as isometry,

changes in topology, introduction of micro-holes, addition of noise and changes in scale. As

can be observed in Figure 4.10, the proposed symmetry extraction algorithm maintains a

high overall repeatability O (≥ 80%) at overlap values ≤ 0.75 for all transformations ex-

cept for changes in topology. The reason for lower repeatability over the range of overlap

values in case of topological changes, is that topological changes have the potential to alter

significantly the intrinsic distance (i.e., the geodesic distance and the biharmonic distance)

measurements.

4.5.7 Symmetry Characterization

The diagonality property of the functional map could be used to characterize the underlying

symmetry transformation and classify it as a simple transformation or as one that is more

complex in nature. Our assumption is that, greater the complexity of symmetry transfor-
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Figure 4.10: Plot of overlap vs. repeatability for the proposed symmetry detection technique
on the SHREC 2010 benchmark dataset.

mation, greater the deviation of the shape deformation from intrinsic isometry, resulting

in a deformation characterized by a functional matrix C with higher off-diagonal element

values which results in a higher value for the inner product of the functional matrix C and

weight matrix W . The resulting characterization of the isometric deformation is depicted in

Figure 4.5.

4.5.8 Symmetry Group Retrieval

As discussed in [XU12], symmetry has a group structure. Consequently, the retrieval of sym-

metry transformation can be cast as a clustering problem from an algorithmic perspective.

We exploit the functional maps generated previously to cluster the detected instances of

symmetry in transformation space and retrieve the symmetry groups. The CSV procedure

is known to inherently possess the symmetric flip problem where the directions denoting the

correspondence between the points in a point pair could be reversed. This problem is re-
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Figure 4.11: Clustering of the functional maps with representative correspondences resulting
in three symmetry groups.

solved via adjusting the relative positions of source and destination points within each point

pair by finding the minimum distance between the source and destination points in the bi-

harmonic distance space. This ensures that the functional maps generated from potentially

similar transformations will have similar structure since the symmetry flip problem between

the maps is resolved. In particular, we have used a simple k-means clustering algorithm to

cluster the functional maps based on their symmetry groups as depicted in Figure 4.11.

4.6 Conclusion and Future Directions

We have presented an algorithm for detection and characterization of intrinsic symmetry

in 3D shapes. While the results obtained are encouraging, we regard our work as an initial

attempt towards the larger goal of achieving complete understanding of and a verifiable solu-

tion to the general problem of symmetry detection and characterization. We have identified

some limitations of our approach and we hope to address these in our future work.

To the best of our knowledge, this is one of the first attempts to formalize the symmetry

analysis problem not only as one of symmetry detection, but as one that can be extended to

include symmetry characterization and symmetry clustering in the transformation space. In
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particular, the introduction of the functional map formalism in symmetry detection enables

us to come up with a novel representation of the symmetry transformation as a map. In

future, we aim to formulate operations, such as addition and subtraction, on these generated

maps that would potentially provide a deeper and more comprehensive understanding of

intrinsic symmetry in general.

The incorporation of Transformation Space Mapping in symmetry characterization is a

novel idea and its full potential can only be realized after more extensive experimentation.

In particular, we plan to study the possibility of map based exploration of similar symmetry

transformations across shapes in the near future. Another important direction that can be

considered is the possibility of incorporating this technique in Computer-Aided Geometric

Design (CAGD) for urban architecture. In urban architecture, symmetric repetition of the

same pattern is a common phenomenon. During the design phase, if the basic pattern is

stored explicitly only once and the symmetric repetitions are saved as functional maps, the

resulting reduction in space- and time-complexity of the design problem would be significant.
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Chapter 5

A 3D BoF Descriptor for Analysis of

the Left Ventricular endocardial

Surface Morphology

5.1 Introduction

Since Coronary Artery Disease (CAD) is a leading cause of morbidity and mortality world-

wide [7], techniques that increase the effectiveness and/or lower the costs of diagnostic or

prognostic procedures associated with CAD are expected to have a significant clinical impact.

CAD is caused by atherosclerosis or accumulation of lipoprotein plaque in the coronary ar-

teries that supply blood to the myocardium or cardiac muscle tissue. Atherosclerotic plaques

lead to the progressive narrowing or stenosis of the coronary arteries, resulting in reduced

blood flow and consequently, reduced oxygen supply to the myocardium, a condition termed

as myocardial ischemia. If untreated, myocardial ischemia may lead to irreversible necrosis of

the myocardium wherein the healthy myocardium is increasingly replaced by scar tissue, thus

compromising the cardiac function and resulting in congestive cardiac failure. Some plaques

98



Figure 5.1: Left ventricular trabeculae carneae (indicated by the red arrow) and papillary
muscles (indicated by the yellow arrow) can be clearly seen in the raw CTCA images (a)
acquired using a 320-MDCT scanner and in the reconstructed triangular mesh (b).

that are deemed vulnerable may suddenly rupture resulting in coronary artery occlusion and

cardiac arrest, potentially leading to sudden death.

X-Ray Coronary Angiography (XRA) is an invasive technique that is a clinically ac-

cepted standard for assessment of vascular morphology and the extent of vessel stenosis due

to artherosclerotic plaque deposition. However, a comprehensive assessment of CAD ne-

cessitates a study of both, vascular morphology and cardiovascular function. Conventional

cardiovascular functional assessment is performed via a stress-induced perfusion test that

uses Magnetic Resonance (MR) or radionuclide Myocardial Perfusion Imaging (MPI). Since

vascular morphology and cardiovascular function are imaged using separate modalities, the

time and cost associated with a comprehensive assessment of CAD and the potential health

risk to the patient associated with higher radiation doses are all significantly increased.

Computed Tomography Coronary Angiography (CTCA) is a non-invasive imaging tech-

nique that allows for robust quantification of vascular morphology and has the potential

for characterizing the atherosclerotic plaque composition [20]. When performed using a

320-Multirow-Detector Computed Tomography (MDCT) scanner, a CTCA scan can be per-

formed within a single heart beat, yielding images with an isotropic spatial resolution of 0.5
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mm in a volumetric fashion. The resulting images, in addition to providing vascular mor-

phology information, are capable of providing significant details about the left ventricular

(LV) endocardial surface structure. The CTCA images, backed by anatomical studies, have

revealed that, instead of a simple and smooth surface, the LV endocardial surface is composed

of a complex structure of trabeculae carneae, which are small muscular columns that arise

naturally from the inner surface of the ventricles (Figure 6.1). Also revealed in the CTCA

images are the papillary muscles which are attached to the cusps of the atrioventricular (i.e.,

the mitral) valves (Figure 6.1).

Alterations in the LV trabeculation structure have been clinically observed to closely as-

sociate with some cardiovascular diseases, such as myocardial noncompaction disease [1] and

hypertrophy [7]. However, due to the limitations in the spatial resolution of conventional in

vivo imaging techniques, very few research studies have been undertaken to formally investi-

gate the LV trabeculation structure at a detailed level, and quantify the relationships between

structural changes in LV trabeculation, changes in cardiovascular function and clinically ob-

served cardiovascular pathologies. If the analysis of the LV endocardial surface structure can

be shown to provide significant insights into vascular morphology, cardiovascular function

and the progression of CAD then it has the potential to provide significant additional or

supplementary diagnostic value to the results of MPI, CTCA and XRA. In some cases, it

could potentially reduce the need for invasive and/or stress-based testing procedures that

are expensive, time consuming and pose a greater health risk to the patient, thus making

CTCA imaging using MDCT scanners, a potential one-stop-shop technique for assessment

of both, vascular morphology and cardiovascular function.

The sub-endocardial layer of the myocardium is the first and the most susceptible cardiac

region in the development of CAD on account of its inherently higher oxygen consumption

requirement and the restricted collateral blood flow resulting in reduced oxygen delivery dur-

ing the progression of CAD. The presence of intermediate to severe CAD in patients is often
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Figure 5.2: Illustration of the sequence of steps in the morphological analysis of the LV
endocardial surface: (a) accurate mesh segmentation followed by (b) generation of a 17-
segment LV surface model with demarcation of coronary arterial territories (red: LAD,
green: LCX, blue: RCA), (c) feature vector generation and, (d, e) final generation of the
BoF histogram via vector quantization (k-means clustering).

101



clinically suggestive of varying degrees of myocardial ischemia in the corresponding regions

of the myocardium. Furthermore, the affected ischemic myocardium loses contractibility and

has a tendency to get stiffer and be pushed outward by the high LV blood pressure. These

myocardial changes are reflected in the LV endocardial surface morphology, in that the struc-

ture of the trabeculae and the papillary muscles on the LV endocardial surface are clinically

observed to be substantially altered [19]. This clinically hypothesized association between

the LV endocardial surface morphology and the incidence and severity of CAD constitutes

the central thesis of this chapter.

The objective of this chapter is to formally establish the clinically observed relationship

between the incidence and severity of CAD, as quantified by the extent and location(s) of

coronary arterial stenosis, and the structural alterations in the LV endocardial surface as ob-

served in high-resolution MDCT images. The LV endocardial surface structure, specifically

the structure of the LV endocardial trabeculae and papillary muscles, is formally charac-

terized using 3D morphological features obtained via 3D shape analysis algorithms. To the

best of our knowledge, this research is amongst the first to formally characterize the LV

endocardial surface structure and quantify the clinically observed association between the

alterations in the LV endocardial surface structure and the extent and location(s) of coro-

nary arterial stenosis. The research described in this chapter could potentially add significant

value to the accuracy of diagnosis and effective management of CAD. It constitutes a first

step towards formal investigation, quantification and verification of the clinically observed

association between the LV endocardial surface morphology, cardiovascular function and

vascular morphology which, in the long term, would aid in comprehensive assessment and

understanding of the physiological mechanisms underlying the development and progression

of CAD.
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5.2 Related Work

Our preliminary work [19] demonstrated the potential diagnostic value of characterization of

the LV endocardial surface structure in assessing the incidence of CAD. Although it produced

some significant and encouraging results, our preliminary work did exhibit shortcomings

that stemmed primarily from the selection of shape descriptors used to characterize the

LV endocardial surface. The two shape descriptors that were employed were based on the

implicit assumption of rigidity of the LV endocardial surface as observed in the MDCT

images. Consequently, these shape descriptors were observed to have significant limitations

in terms of their classification accuracy [19]. Although the MDCT image data were collected

at a relatively steady phase of 75% in the R-R cardiac cycle, the continuous LV motion and

the human error involved in the data collection, tested severely the limits of the rigidity

assumption. It was clear that a more robust shape descriptor was needed to characterize the

LV endocardial surface, i.e., one that is invariant to isometric global shape deformation [15,

28].

Isometry-invariant shape descriptors have been the topic of recent research, especially

in content-based retrieval in shape databases [22], shape symmetry detection [18], dense

surface correspondence determination [28] and surface registration [23]. However, their use

in the characterization of the LV endocardial surface has not been explored in the research

literature. In this chapter we show that the incorporation of isometry-invariant features in

the LV endocardial surface descriptor enables more accurate and robust characterization of

the underlying LV endocardial surface.

Deriving a feature-based representation of the contents of an image generally entails two

stages of processing, feature detection and feature description [22]. The goal of feature detec-

tion is to localize relatively stable points or regions within an image that possess significant

information and can be repeatedly and reliably detected in transformed versions of the im-
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age. Different approaches are employed for feature detection based on the intrinsic nature

of the features, i.e., point-based or region-based, and the desired scale of abstraction for the

features.

Region-based feature detection techniques typically rely on segmentation of the cardiac

images using shape priors [6, 24]. The high-dimensional shape prior is projected into a low-

dimensional subspace using dimensionality reduction techniques, e.g., variants of Principal

Component Analysis (PCA), to constrain the shape variation. The detected features are

tracked in a cardiac image sequence using a Kalman filter [6] or particle filter [24] whereas the

shape prior is adapted using a learning algorithm such as AdaBoost [24]. Other region-based

feature detection techniques for cardiac images include model-based deformable templates [5],

Markov random fields [16], optical flow techniques [12] and combinations of the above [2].

The goal of the feature description stage is to arrive at a representation of the local image

information in the neighborhood of the detected feature. In order to achieve a parsimonious

representation, a feature vocabulary consisting of visual words is constructed by performing

vector quantization in the feature descriptor space using a clustering technique such as the

k-means clustering algorithm. After having performed vector quantization, the individual

feature descriptors are replaced by indices in the vocabulary of visual words. The aggregation

of feature descriptors to describe the overall shape is achieved by generating a frequency

histogram of the visual words in the vocabulary, termed as a Bag-of-Features (BoF).

One of the prominent implementations of the BoF concept is Video Google, a web-based

application designed by Sivic and Zisserman [26, 27] for object-based search in large image

and video collections. Likewise, two shapes are compared using their respective visual word

frequency histograms or BoF representations. This reduces the shape similarity problem

to the problem of frequency histogram comparison. Shape Google, a technique for shape-

based search in large image collections developed by Ovsjanikov et. al. [22] and, the shape

comparison approach proposed by Toldo et. al. [29] are amongst the prominent works on
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BoF-based shape description and shape comparison, and the work described in this chapter

is influenced by both of these works [22, 29].

As an extension to the general BoF approach, we propose a novel BoF-based shape

analysis approach designed specifically for cardiac image analysis, and for medical image

analysis in general. The proposed BoF-based shape analysis approach is designed to quantify

the relationship between the incidence, severity and localization of CAD and the structural

alterations in the LV endocardial surface. While several works have proposed feature-based

approaches for characterization of rigid 3D shapes, very few are capable of dealing with

non-rigid 3D shape deformations [17]. To the best of our knowledge, this is one of the first

works that uses a BoF-based shape analysis approach for comparison of non-rigid deformable

3D shapes in the context of cardiovascular imaging in particular, and medical imaging in

general.

In this chapter, a BoF-based approach is proposed to encapsulate the local and global

geometry, local surface orientation and global contextual information for the LV endocardial

surface. The proposed approach is shown to result in a robust feature vector for the purpose

of morphological analysis of the LV endocardial surface. As shown in the experimental

results, the proposed approach results in successful localization of coronary arterial stenosis

which serves to strengthen the clinically observed relationship between the incidence and

severity of CAD and morphological alterations in the LV endocardial surface. The sequence

of steps in the proposed approach for morphological analysis of the LV endocardial surface

is depicted in Figure 5.2.

The remainder of the chapter is organized as follows: In Section 5.3, the main contri-

butions of the chapter are outlined; in Section 6.3, the proposed LV surface segmentation

and LV shape analysis procedures are detailed; and in Section 5.5, experimental results are

presented. Finally, in Section 5.6, the chapter is concluded with a brief discussion of the

proposed approach and an outline of directions for future work.
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5.3 Contributions of the chapter

The chapter makes two principal contributions as described below:

1. The Bag-of-Features (BoF) framework for non-rigid shape analysis is adapted for the

purpose of cardiac shape analysis which is an important problem in cardiac imaging

in particular and medical imaging in general. It is also important to note that the

proposed approach is sufficiently general to be applicable to other problems in medical

imaging such as 3D shape analysis of the human brain and 3D shape-based search and

retrieval in large medical databases.

2. The chapter proposes a geometric and machine learning-based model of the relationship

between localized changes in the LV endocardial surface morphology and the incidence

and extent of stenosis in specific coronary arteries. This constitutes an important

initial step towards clinical understanding of the complex relationship between coronary

arterial stenosis and its effect on the morphology of the LV endocardial surface. To

the best of our knowledge, this chapter represents one of the first attempts to model

this complex clinical relationship in a mathematically structured manner.

5.4 MDCT Image Segmentation and LV Shape Anal-

ysis

5.4.1 LV endocardial surface segmentation and meshing

The trabeculae carneae along the LV endocardial surface can be broadly classified into three

different morphological types: (a) those that lie along the entire length of the LV wall forming

prominent ridges; (b) those that are fixed at their extremities but free in the middle; and

(c) those that connect the roots of the papillary muscles to the ventricular wall. These
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different trabeculae morphologies contribute to the complexity of the LV endocardial surface

topology [14].

A 3D level set approach is employed to segment the LV endocardial surface while adapting

to the topological changes caused by the complex trabeculation structure [10]. A median

filter-based denoising procedure is employed on the 3D MDCT data prior to segmentation

in order to suppress noise while retaining the edges in the MDCT images. Unless mentioned

otherwise, the size of the median filter is empirically set to 7× 7 based on the MDCT data

set. A level set-based segmentation procedure without reinitialization, as proposed by Li et

al. [10], is applied to the median-filtered 3D image data set followed by the Marching Cubes

procedure [11] to generate the surface meshes. The surface meshes are subsequently denoised

via a mean face normal filtering procedure proposed by Zhang and Hamza [31] to obtain the

smooth shape of the LV myocardial surface.

5.4.2 Data preparation

The standardized myocardial segmentation model proposed by the American Heart Asso-

ciation (AHA) is adopted to enable accurate segmentation, understanding and localization

of cardiac anatomy and pathology [14]. The AHA-approved 17-segment cardiac model [4]

is adapted to divide the left ventricle into 17 segments for more accurately localized shape

analysis (Figure 5.3). The long axis of the left ventricle is first computed to divide the LV

endocardial surface into 4 main segments along the longitudinal orientation termed as the

apex, apical, mid-cavity and basal. Further division of the LV endocardial surface along the

short axis view is tackled by exploiting knowledge of the cardiac anatomy. Three landmark

points are considered across the septum to perform the division process. This results in the

division of the apical segment into 4 segments and the mid-cavity and basal segments each

into 6 segments whereas the apex segment remains undivided. At the end of the segmen-

tation process, the LV endocardial surface is divided into 17 segments in conformity to the
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Figure 5.3: Bull’s eye view of the 17-segment AHA model. Each LV segment is color coded to
denote the territory of the major coronary artery it falls under, i.e., Left Anterior Descending
(LAD): red; Right Coronary Artery (RCA): blue; and Left Circumflex Artery (LCX): green.

AHA model as shown in Figure 5.3.

The ground truth data for our experimental validation is obtained via an XRA procedure

performed on the same subjects. XRA is the clinical standard for the diagnosis of coronary

artery stenosis. Note that XRA is an invasive imaging modality distinct from non-invasive

MDCT. In particular, the XRA procedure results in the percent diameter stenosis (%DS)

data for each major coronary artery.

5.4.3 LV endocardial surface descriptors based on the rigidity as-

sumption

In our preliminary work [19], we considered two primary shape descriptors to characterize the

LV endocardial surface morphology, i.e., the D2 shape descriptor, a global shape descriptor

proposed by Osada et al. [21] and the shape index, a local shape descriptor first introduced

by Koenderink [9] and subsequently modified by Zaharia and Preteux [30]. Both descriptors
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make an implicit assumption of rigidity of the endocardial surface and are invariant to scale

and 3D rigid body transformation (i.e., rotation and translation) in Euclidean space.

The D2 shape descriptor is a global shape signature of a 3D object and is represented

by a probability distribution function. The probability distribution function is obtained via

sampling of a pre-specified local shape function which measures a basic geometric property

of the underlying 3D shape. In the case of the D2 shape descriptor, the shape function is

the distance between two randomly sampled vertices on the mesh-based representation of

the 3D LV surface. Osada et al. [21] have shown that the simple D2 shape descriptor, when

modeled as a probability distribution function over the entire 3D object surface, can serve

as an effective object signature for a variety of applications such as 3D shape-based retrieval

from a 3D object database.

The shape index, in contrast, describes the local shape of the 3D surface mesh based

on the values of the principal surface curvatures computed within a local neighborhood of

a given 3D surface point. The shape index is particularly effective in describing the local

extrinsic geometry of the surface. The shape index Ip of a surface point p is a function of

the two principal surface curvatures κ1(p) and κ2(p) associated with point p and is defined

as follows:

Ip =
1

2
− 1

π
arctan

(
κ1(p) + κ2(p)

κ1(p)− κ2(p)

)
(5.1)

where, κ1(p) > κ2(p).

The value of the shape index lies within the interval [0, 1] and enables surface-based

representation of basic elementary shapes such as convex, concave, rut, ridge and saddle [30].

Since the global structure and the detailed local structure of the LV endocardial surface are

both potentially clinically relevant and since there have been no previous studies detailing

which of the shape properties (local or global) convey more valuable clinical information, we
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considered both local and global shape descriptors in our preliminary work [19]. However,

the results of our preliminary work showed the shape index to be more effective than the

D2 shape descriptor for classification of the sample LV endocardial surface data into normal

and diseased classes.

5.4.4 LV endocardial surface descriptors based on non-rigid de-

formation

BoF-based approaches for shape representation typically consist of two steps, i.e., feature de-

tection and feature description. For representation of object shapes encountered in common

imagery, the feature detectors and feature descriptors are typically designed to be invari-

ant under affine transformation to take into account the different possible viewpoints under

which a 3D object may appear in an image. For non-rigid characterization of the LV en-

docardial surface, the type of invariance required is different from the one required when

dealing with object shapes in common images since the number of surface transformations

in the case of the latter is much larger, including bending, shearing, changes in pose and

changes in connectivity. In our case, the LV endocardial surface deformation can be con-

strained to lie within a pre-specified range since all the CTCA images are acquired at a

relatively steady phase (75%) within the R-R cardiac cycle. The aforementioned steady

phase assumption allows the LV surface deformation to be approximated by an isometric

deformation. Consequently, the LV endocardial surface descriptors need to be robust enough

to capture the important characteristics of the underlying shape while exhibiting invariance

to isometric deformation. Since the LV endocardial surface is typically less rich in terms

of features than common images, the task of detecting a large number of stable, repeatable

and isometric deformation-invariant feature points is significantly harder. In this work, the

features selected for description of the LV endocardial surface are inspired by the work of
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Toldo et. al. [29].

Feature detection

Although the feature detection step is not mandatory for BoF-based shape description, it

can improve computational efficiency in practice. In our case, the feature detection strategy

comprises of dense random sampling. We consider as feature points, 500 randomly sampled

surface points from each of the 17 LV endocardial surface segments. The underlying moti-

vation is to ensure that the sampling is as dense as possible so that the entire spectrum of

interesting points on the LV endocardial surface is considered for further analysis. In sit-

uations where availability of computational power is not a constraint, the feature selection

step can be ignored and all the points on the surface can be considered for the subsequent

feature description step.

Feature description

The feature descriptors are designed to ensure that both the local and global geometric

properties of the surface are represented in sufficient detail. Inspired by the work of Toldo

et. al. [29], four surface descriptors are designed to represent each sampled surface point.

The first three descriptors represent the local geometry of the surface around a specific point

whereas the fourth is a contextual descriptor which encapsulates the global properties of a

specific point with respect to other points on the surface. The descriptors are detailed below:

Shape Index (Ip) The shape index Ip of a surface point p, is computed using equation

(5.1) as previously described. The shape index is particularly important for its ability to

quantitatively characterize the local shape of a surface.

Curvedness (Cp) The curvedness descriptor represents the degree of local curvature of a

surface. Normalized curvedness also encapsulates the rate of change of local surface curva-
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Figure 5.4: Illustration of the relationship between the (a) shape index Ip and (b) curvedness
Cp surface descriptors for a sample LV endocardial surface.

ture: a value close to 1 implies a very gentle change, whereas a value close to 0 implies a

very sharp change. Generally, points on a smooth spherical object have small curvedness

values. The curvedness Cp at a surface point p, as proposed by Koenderink [9], is defined

as a function of the two principal surface curvatures κ1(p) and κ2(p) associated with surface

point p as follows:

Cp =

√
(κ1(p))

2 + (κ2(p))
2

2
(5.2)

where, κ1(p) > κ2(p). The relationship between the two surface descriptors, i.e., the shape

index Ip and the curvedness Cp for a typical LV endocardial surface is depicted in Figure 5.4.

Like the shape index Ip, the value of curvedness Cp is also invariant to scale and 3D rigid-body

transformation (i.e., translation and rotation) in Euclidean space.

Normal Orientation (θp) It has been clinically observed that the incidence of myocar-

dial infarction and myocardial ischemia, can cause changes in the 3D orientation of the LV
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trabeculation structure due to the build up of scar tissue. Consequently, the local 3D orien-

tation of the LV endocardial surface is incorporated within the feature vector. The normal

orientation θp at surface point p is defined as the angle between the unit normal vector at

surface point p and the XZ-plane.

Geodesic Contextual Descriptor (GCDf1
p ) The Geodesic Contextual Descriptor (GCD)

is intended to provide a means for describing the overall shape and measuring shape similarity

based on point correspondences. Contextual information is used to describe a specific surface

point p with respect to the 3D shape as a whole. The geodesic contextual descriptor for a

surface point p encapsulates the distribution of relative positions of other points on the

same surface with respect to p, thus summarizing global shape in an informative and, most

importantly, in an isometric deformation-invariant manner.

Since BoF-based methods typically employ a frequency distribution histogram, there is

inherent loss of contextual information. However, semantically distinct results can be disam-

biguated only via incorporation of contextual information. Since it is difficult to incorporate

contextual information within a frequency distribution histogram, it needs to be incorpo-

rated within the feature vector. The geodesic contextual descriptor, denoted by GCDf1
p , is an

isometric deformation-invariant contextual descriptor that encapsulates the relative position

of a surface point p in relation to the other points on the surface segment. It is charac-

terized by a f1-bin histogram which is generated by computing the normalized geodesic

distance between the surface point p and other sampled points on the surface segment. The

geodesic contextual descriptor GCDf1
p is invariant to scale, 3D rigid body transformation

and isometric deformation.

Wave Kernel Signature-based Descriptor (WKSf2p ) The comprehensive analysis of

shapes entails the formulation of a geometric feature descriptor which characterizes each

point on the object surface while taking into account its relation to the entire shape. To
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determine the Wave Kernel Signature (WKS) of a surface point x, one evaluates the proba-

bility of a quantum particle with a certain energy distribution to be located at point x. The

behavior of the quantum particle on the surface is governed by the Schrodinger equation [25].

Assuming that the quantum particle has an initial energy distributed around some nominal

energy with a probability density function f(e), the solution of the Schrodinger equation can

then be expressed in the spectral domain as:

ψ(x, t) =
∑
k≥1

exp(iekt)f(ek)φk(x) (5.3)

Aubry et al. [3] considered a family of log-normal energy distributions centered around a

mean log energy log e with variance σ2. This particular choice of distributions is motivated

by a perturbation analysis of the Laplacian spectrum [3]. Having fixed the family of energy

distributions, each point x on the surface is associated with a WKS of the form: p(x) =

(pe1(x), . . . , pen(x))T where pei(x) is the probability of measuring a quantum particle with

the initial energy distribution ei(x) at point x. Aubry et al. [3] use logarithmic sampling to

generate the values e1(x), . . . , en(x).

Since the WKS is derived from the Laplace-Beltrami operator, it is inherently invariant

under isometric deformation. Additionally, the WKS exhibits a band-pass characteristic.

This reduces the influence of low frequencies and allows for better separation of frequency

bands across the descriptor dimensions. Since the WKS is a multi-scale signature we con-

sidered the WKS at f2 different values of scale for each point. The WKS-based descriptor

at point p is formally denoted as WKSf2p .

The feature detection and feature description procedures described above result in a N -

tuple feature vector for each surface point p denoted by Fp = (Ip, Cp, θp, GCD
f1
p ,WKSf2p ) as

depicted in Figure 5.2, where N = f1 + f2 + 3.
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Figure 5.5: Concept visualization for the BoF histogram generation procedure. The fre-
quency distribution histogram of the sampled visual words is illustrated for a sample LV
endocardial surface.

Construction of visual vocabularies

The feature vectors Fp at each surface point are clustered in order to obtain the visual

words. Assuming that the local descriptors are computed for a set of stable surface points,

the feature vector space is quantized to obtain a compact representation for the vocabulary

of visual words, in a manner similar to the Shape Google approach [22]. A vocabulary of

visual words is defined as a set of representative vectors in the descriptor space or feature

space, obtained by means of unsupervised learning, i.e., vector quantization via k-means

clustering in our case. More formally, a vocabulary of visual words is defined as a collection

V = {v1, . . . , vk} where vi is the centroid of the ith cluster and the clusters represent the

visual words. We employed an adaptive k-means clustering algorithm for generating the

final histogram. Figure 5.5 depicts the frequency distribution histogram of the sampled

visual words for a sample LV endocardial surface.
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5.5 Experimental Results

5.5.1 Experimental setup

The proposed methods for segmentation, meshing and endocardial surface shape description

were tested on 32 MDCT data sets consisting of 16 data sets from cardiac patients and 16

data sets from normal subjects. The incidence of single- or multi-vessel obstructive CAD was

found in the three major coronary arteries, i.e., the Left Anterior Descending Artery (LAD),

Left Circumflex Artery (LCX) and Right Coronary Artery (RCA) using XRA, and further

confirmed by Myocardial Perfusion Imaging (MPI) and Fractional Flow Reserve (FFR) tests

performed on the patients. A detailed description of the ground truth data generated via

the XRA procedure for all 32 subjects is shown in Table 5.1. The individual territories for

each of the three major coronary arteries are depicted in Figure 5.3 in conformity to the

AHA convention.

Table 5.1: Ground Truth Data generated for all the 32 subjects via the XRA procedure.
LAD: Left Anterior Descending Artery, LCX: Left Circumflex Artery, RCA: Right Coronary
Artery. The columns corresponding to LAD, LCX and RCA denote the locations and extent
of stenoses in the corresponding coronary arteries; Prox: proximal, Mid: mid portion, Dis:
distal, Dx: diagonal branches, PDA: Posterior Descending Coronary Artery, Ostium: Origin
of the coronary artery just above the aortic valve, Normal: unconstricted coronary artery.

Case Disease LAD LCX RCA

01 - 16 Normal
17 Diseased Mid: 60% D1:50% D2 prox:80% D2 dis:99% Normal Prox 70-75%
18 Diseased Mid: 30-40% 40% towards the origin of the PDA Prox:40% Mid:60-70%
19 Diseased Mid: 70% Prox: 40-50% Mid: 30-40%
20 Diseased Mid: 95% Prox: 80% Ostium: 90% Prox: 20%
21 Diseased Prox: 40% Prox: 75% Prox: 30% Dis: 40% PDA: 20-30%
22 Diseased Mid: 70% Normal Normal
23 Diseased Normal Prox: 90% Borderline
24 Diseased Normal 80% Normal
25 Diseased 90% 30% Normal
26 Diseased 60-70% 40-50% 80%
27 Diseased 80% Normal Normal
28 Diseased Normal Normal 90-95%
29 Diseased 90% 90% 40%
30 Diseased 70% 50-60% 40%
31 Diseased 95% Normal Normal
32 Diseased 20% 80% 40-50%
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The cardiac patients and normal subjects were subject to a contrast-enhanced CTCA

scan on a 320-MDCT scanner using a standard protocol with electrocardiogram (ECG)

gating. The resulting images were reconstructed at a relatively steady state of 75% in

the R-R cardiac cycle to ensure minimal ventricular motion. Although the above protocol

is designed to ensure that the endocardial surfaces are reconstructed at a relatively fixed

cardiac dilation stage and that the subsequent shape analysis is minimally affected by cardiac

motion, it still results in the presence of motion artifacts in the acquired images due to various

factors such as the high velocity of the ventricular motion and irregular ECG. However, the

assumption of isometric deformation enables us to better account for these motion artifacts.

The segmentation technique described in Section 5.4.1 was used to generate topologically

correct and geometrically accurate data for subsequent analysis.

The experimental results are detailed for three different scenarios. In the first scenario,

the problem is modeled as one of global classification wherein the shape index (Ip) histogram,

the rigid-body shape descriptor (Ip, Cp, θp) histogram, the combined rigid-body and isometric

deformation-invariant shape descriptor (Ip, Cp, θp, GCD
f1
p ,WKSf2p ) histogram and the BoF

histogram are each used to classify the entire LV endocardial surface into one of two classes,

i.e., normal and diseased. In the second scenario, the BoF-based approach is used to model

the problem as one of localized classification where each LV segment is labeled as normal

or diseased based on the extent of diameter stenosis (DS) in the major coronary arteries

supplying blood to the LV segment under consideration. The LV segment is considered

normal if the percent DS (%DS) value of the corresponding major coronary artery is less

than 70% and diseased if it is ≥ 70%. In the third scenario, the BoF-based approach is

used to model the problem as one of multivariate regression where the exact %DS values of

each of the major coronary arteries are treated as the labels based on which the correlation

coefficients for each of the LV segments are computed.
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5.5.2 Segmentation results

The results of the LV endocardial surface segmentation have already been proven to be

reasonably accurate in our preliminary study [19]. The spatial distribution of the trabec-

ulation was observed by clinicians to vary with the location within the left ventricle; thus

providing the rationale for using the standard 17-segment AHA model to perform localized

shape analysis. Furthermore, the proposed segmentation approach has already shown a vi-

sually observable distinction in trabeculation between normal and diseased hearts, yielding

a classification accuracy greater than 80% with simple rigid-body surface descriptors and

a nearest-neighbor classifier [19]. Our previous work has demonstrated the accuracy of the

proposed segmentation method as well as its applicability for subsequent quantitative shape

analysis [19]. In this particular experiment, we varied the size of median filter kernel and

considered three different sizes, i.e., 5 × 5, 7 × 7 and 9 × 9 to determine the effect of the

median filter size on the final surface mesh.

Table 5.2: Quantitative evaluation of the segmentation framework: Average volume overlap
of the segmented region with respect to the ground truth for different size of the median
filter kernel.

Median Filter Kernel Size 5× 5 7× 7 9× 9

Average Volume Overlap 0.796 0.925 0.831

In order to optimize the filter kernel and validate the segmentation method, an in vitro

experiment was conducted to study the correlation between the segmentation accuracy and

the image noise level. An excised porcine heart was put in a plastic container and immersed in

the CT contrast solution. The air in the ventricle was carefully squeezed out and completely

removed. The porcine heart was scanned with different levels of tube current to emulate the

different radiation exposure conditions that result in CT images of varying quality.

The detailed CT imaging parameters include: volumetric acquisition; tube voltage: 120

kVp; tube current: 50-550 mA; and reconstruction slice thickness: 0.5 mm. The CT images
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were acquired with 550 mA tube current, which is the highest possible tube current setting

available on the CT scanner, and used as the ground truth. Compared to the human chest

in clinical studies, the very small volume of the excised porcine heart and the highest pos-

sible tube current setting ensured adequate image quality for the purpose of ground truth

validation.

The in vitro images of the porcine heart acquired for varying tube current values in the

range 50 mA - 400 mA were used for validation of the segmentation procedure, since the

image noise levels were observed to be in a range similar to that of clinical in vivo CT images.

Quantitative evaluation of the segmentation procedure was performed by tuning the median

filter kernel size for the CT images of the porcine heart. For each tube current setting,

median filtering was performed for three different kernel sizes, i.e., 5 × 5, 7 × 7 and 9 × 9.

The volume overlap VO between the segmented volume SV and the volume generated by the

ground truth segmentation SG was computed as:

VO =
(SV ∩ SG)

(SV ∪ SG)
(5.4)

The average VO results over all tube current setting values for varying values of the

median filter kernel size are reported in Table 5.2. Based on the results in Table 5.2, for all

subsequent experiments, the median filter kernel size was fixed at 7×7 since it was observed

to provide a good balance between smoothness and preservation of geometric details of the

LV endocardial surface.

5.5.3 Parameter Estimation

The main three parameters need to be chosen for our method are f1 (number of bins in the

GCD histogram), f2 (number of discrete scales of the WKS-based descriptor) and k (number

of clusters in the k-means clustering algorithm). We computed the mean classification ac-
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curacy using an artificial neural network (ANN), employing a multilayer perceptron (MLP)

architecture with a single hidden layer and a learning rate of 0.3, over all the 17 LV segments

across all 32 subjects for different combinations of values for the parameters f1, f2 and k and

reported the results in Table 6.1. The mean classification accuracy denotes the fraction of

LV segments across all 32 subjects that are correctly classified as normal or diseased. Since

the combination of parameter values f1 = 10, f2 = 10 and k = 20 was observed to yield

the best classification accuracy, we used this set of parameter values for all the experiments

reported in the remainder of the chapter. Thus, the N -tuple feature vector described earlier

is essentially a 23-tuple feature vector in all of our experiments.

Table 5.3: Parameter tuning for maximizing the mean classification accuracy over all the
17-segments across 32 subjects.

GCD (f1) WKS (f2) k Mean Classification Accuracy

10 10 10 0.51
10 10 20 0.57
10 20 10 0.51
10 20 20 0.49
20 10 10 0.49
20 10 20 0.53
20 20 10 0.48
20 20 20 0.54

5.5.4 Global classification results

As the first part of global classification experiment, we tested a series of classifiers using weka

[8] with several combinations of respective parameters. These classifiers include decision

trees, random forest, linear SVMs, SVMs with radial basis function kernel and Artificial

Neural Networks.

The experiment suggested that the artificial neural network (ANN), employing a multi-

layer perceptron (MLP) architecture with a single hidden layer and a learning rate of 0.3 was
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doing the best classification, and was used as a result, for the purpose of global classification

in a manner similar to that described in [20]. The ANN-based classification procedure was

carried out within a strictly leave-one-out setting. The Shape Index, Curvedness, Normal

Orientation (Ip, Cp, θp)-based histogram was observed not to result in any improvement in

classification over the Shape Index Ip-based histogram (Tables 5.4 and 5.5).

Table 5.4: Confusion matrix to illustrate the classification accuracy of the Shape Index
Ip-based histogram.

Classified Diseased Classified Normal

Actual Diseased 13 3
Actual Normal 3 13

Table 5.5: Confusion matrix to illustrate the classification accuracy of the Shape Index,
Curvedness, Normal Orientation (Ip, Cp, θp)-based histogram.

Classified Diseased Classified Normal

Actual Diseased 13 3
Actual Normal 3 13

In the case of the (Ip, Cp, θp, GCD
10
p ,WKS10

p )-based histogram, 27 out of 32 samples

were classified correctly resulting in an overall accuracy of 84.37%. Table 5.6 shows the

confusion matrix for the diagnosis accuracy. The false alarm rate was observed to be 18.75%

whereas the miss rate was observed to be 12.5%. Thus, the incorporation of the 10-bin

Geodesic Context Descriptor GCD10
p and 10-scale Wave Kernel Signature WKS10

p in the

feature vector was observed to improve the overall classification accuracy on account of its

invariance to isometric deformation.

To demonstrate the superiority of the BoF-based description, the binary classification

experiment described above was repeated for the BoF frequency histogram. In this experi-

ment, 29 out of 32 samples were classified correctly resulting in an overall accuracy of 90.62%.

Table 5.7 shows the confusion matrix for the diagnosis accuracy. The false alarm rate was
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Table 5.6: Confusion matrix to illustrate the classification accuracy of the 23-tuple feature
vector (Ip, Cp, θp, GCD

10
p ,WKS10

p )-based histogram.

Classified Diseased Classified Normal

Actual Diseased 14 2
Actual Normal 3 13

observed to be 6.25% whereas the miss rate was observed to be 12.5%.

Table 5.7: Confusion matrix to illustrate the classification accuracy of the BoF histogram.
Classified Diseased Classified Normal

Actual Diseased 14 2
Actual Normal 1 15

5.5.5 Localized classification results

A series of experiments was performed to demonstrate the effectiveness and limitations of the

non-rigid shape descriptor Fp = (Ip, Cp, θp, GCD
10
p ,WKS10

p ). In this series of experiments,

a coronary artery was considered as diseased or stenotic if the extent of stenosis was 70% or

greater. The LV myocardial segments were labeled as diseased if they belonged to the stenotic

artery’s territory in conformity to the AHA convention. The available %DS data were used

for determining whether a coronary artery is normal or diseased. The 20-bin BoF frequency

histograms (Section 5.5.3) resulting from the vector quantization procedure (Section 5.4.4),

for a particular LV segment from all the LV datasets across the 32 subjects, were used as

the inputs to the MLP ANN with same configuration parameters as the one described in

Section 5.5.4. Figure 5.6 illustrates the discriminative power of the BoF frequency histograms

in being able to distinguish between normal and diseased subjects. The output of the MLP

ANN is the classification of a particular LV segment as normal or diseased.
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Figure 5.6: Illustration of a sample BoF frequency histogram which demonstrates its dis-
criminative power. The normal subjects (blue) exhibit a frequency histogram pattern that
is very distinct from that of the diseased subjects (green). A particular region of the BoF
frequency histogram is shown here to depict the difference between diseased subjects and
normal subjects in this particular region. This, in turn, is reflected in the higher classification
accuracy for the BoF histogram.

The success rate for detection of stenosis for a specific coronary artery is tabulated in

Table 5.8 and also depicted in Figure 5.7. The classification results depict a clinically ob-

served relationship between the coronary arterial stenosis and the affected segment in the

17-segment AHA model. The lower classification accuracy in the basal area (segments 1-6)

can be explained by the clinical observation that several instances of coronary arterial steno-

sis encountered in this study are located in the mid to distal portion of the coronary arteries

that only affect the mid-cavity (segments 7-12) and apical (segments 13-16) portions of the

LV endocardial surface. Furthermore, another probable reason for the lower classification

rate in the basal area is that the apical and mid-cavity segments exhibit greater endocardial

trabeculation structure than the basal segments, which translates to more reliable endocar-

dial surface morphology information that can be used for the purpose of classification in the

case of the apical and mid-cavity segments.
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Figure 5.7: Illustration of the classification accuracy for detection of coronary arterial stenosis
based on the change of surface morphology in the 17 LV segments in the AHA model. Higher
gray values denotes higher classification accuracy and vice versa. The numerical label for
each LV segment is color coded to denote the territory of the major coronary artery it falls
under: LAD: red; RCA: blue; and LCX: green.

5.5.6 Non-rigid shape descriptor-based localized multivariate re-

gression results

In this experiment, the classification problem of Section 5.5.5 was recast as a multivariate

linear regression problem wherein the exact %DS data was considered as the ground truth.

The regression procedure was carried out within a strictly leave-one-out setting. Multivariate

linear regression attempts to fit a linear model to multiple independent (or explanatory)

variables x1, x2, . . . xn, to obtain an estimate for a single dependent (or response) variable y

as shown below:

y = β0 + β1x1 + β2x2 . . .+ βnxn + ε (5.5)

where the βi’s are the model coefficients and ε is the fitting error. In our case, the dependent

variable y denotes the exact %DS value and the independent variables xi, i = 1, . . . , n = 20
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Table 5.8: Classification accuracy, Pearson’s correlation coefficient (PCC) and coefficient of
determination R2 for multivariate regression on a per AHA-defined LV segment basis.

Coronary Artery Segment Number Classification Accuracy PCC R2

LAD

1 0.41 0.32 0.1
2 0.38 0.27 0.07
7 0.51 0.76 0.57
8 0.65 0.55 0.3
13 0.74 0.62 0.38
14 0.68 0.64 0.4
17 0.53 0.42 0.17

RCA

3 0.49 0.29 0.08
4 0.35 0.25 0.06
9 0.69 0.61 0.37
10 0.68 0.63 0.39
15 0.72 0.72 0.51

LCX

5 0.27 0.31 0.09
6 0.33 0.29 0.08
11 0.77 0.74 0.54
12 0.75 0.77 0.59
16 0.71 0.59 0.35

denote the components of the 20-tuple BoF histogram feature vector generated via the vector

quantization procedure described in Section 5.4.4.

During the training process, the exact %DS data for a major coronary artery (LAD,

LCX and RCA) and the 20-tuple BoF histogram feature vectors corresponding to the AHA-

defined LV segments that comprise the territory of that coronary artery are fed as inputs

to the multivariate linear regression procedure. The multivariate linear regression procedure

determines the model coefficients, i.e., βi’s, that minimize the mean squared error given

by 1
m

Σm
k=1ε

2
m where m is the number of exact %DS value points associated with the major

coronary artery (equation (5.5)).

During the testing procedure, the estimated %DS value, yest, for the major coronary is
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Figure 5.8: Illustration of the correlation coefficient for detection of coronary arterial stenosis
based on the change in surface morphology in the 17 LV segments in the AHA model. For
each coronary arterial territory a separate color is used to denote the correlation coefficient
value, e.g., LAD: red; RCA: blue; and LCX: green. The numerical label for each LV segment
is color coded to denote the territory of the major coronary artery it falls under: LAD:
yellow; RCA: magenta; and LCX: black.

computed using the 20-tuple BoF histogram feature vector (x1, x2, . . . , x20) and the coeffi-

cients (β0, β1, . . . , β20) as follows:

yest = β0 + β1x1 + β2x2 . . .+ βnxn (5.6)

The Pearson’s correlation coefficient (PCC) and the coefficient of determination (R2) between

the estimated outcome yest of equation (5.6) and the exact %DS data y (i.e., the ground truth)

are computed.

The values of the PCC and R2 for changes in the LV morphology (as characterized by

the 20-tuple BoF histogram feature vectors) with respect to the %DS values in a localized

LV segment are tabulated in Table 5.8 and depicted in Figure 5.8. The regression results

are seen to depict an intriguing and clinically observed relationship between the extent of
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coronary arterial stenosis and the affected LV segment in the 17-segment AHA model. The

lower PCC and R2 values in the basal area (segments 1-6) compared to those in the mid-

cavity (segments 7-12) and apical portions (segments 13-16) of the LV endocardial surface

could be explained in a manner similar to that described in Section 5.5.5.

5.5.7 Non-rigid shape descriptor-based coronary arterial territory-

wise classification and multivariate regression results

The relatively low values of the classification accuracy and correlation coefficients resulting

from the proposed BoF-based approach might stem from the use of the LV territories de-

fined on the basis of the current AHA convention. However, the AHA convention may not

accurately reflect the true anatomy in individual patient cases. Consequently, we repeated

the experiments described in Sections 5.5.5 and 5.5.6, where instead of focusing on the indi-

vidual AHA-defined segments that comprise the LV territory of each major coronary artery,

we considered the entire LV territory of each major coronary artery in our analysis. Thus,

instead of the 17-segment AHA LV model we considered a 3-supersegment LV model where

the supersegments comprise the territories of the major coronary arteries LAD, LCX and

RCA. The procedures for feature detection, feature selection, classification and regression are

the exactly same, except that the shape being considered is not that of one specific segment

within the 17-segment AHA LV model but the aggregate shape of all segments comprising

the territory of a specific coronary artery, i.e., LAD, LCX or RCA. Since the size of the

coronary arterial territory is significantly larger that that of a typical AHA-defined segment,

the number of randomly sampled points per coronary arterial territory is 2000 instead of

500 per AHA-defined segment. The results in Table 5.9 show significantly higher values for

the classification accuracy and regression correlation coefficient when considered on the basis

of each coronary arterial territory compared to the results in Table 5.8 which are on a per
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AHA-defined LV segment basis.

Table 5.9: Classification accuracy, Pearson’s correlation coefficient (PCC) and coefficient of
determination R2 for multivariate regression when considered on the basis of each coronary
arterial territory.

LAD LCX RCA

Classification Accuracy 0.88 0.91 0.92
PCC 0.85 0.90 0.89
R2 0.72 0.81 0.79

5.6 Conclusions and Future Work

To the best of our knowledge, this chapter is one of the earliest works that studies the

relationship between coronary artery stenosis and the morphological alterations in the LV

endocardial surface using high-resolution MDCT data, and demonstrates its potential pre-

dictive value for the diagnosis of the incidence and severity of CAD. One limitation of our

work is the use of the LV territories defined on the basis of the current American Heart

Association (AHA) convention. However, the AHA convention may not accurately reflect

the true anatomy in individual patient cases which in turn can be an explanation for the low

classification accuracy in the localized classification results (Section 5.5.5).

Our investigation also sheds new light on the localization of LV regions that are the most

affected by coronary arterial stenosis, a phenomenon which is yet to be fully explained. The

association between the morphological features of the LV endocardial surface and cardio-

vascular function will be explored in our future work. In particular, we aim to investigate

the correlation between the LV endocardial surface morphology and the results of Myocar-

dial Perfusion Imaging (MPI) and Fractional Flow Reserve (FFR) tests in addition to the

coronary arterial stenosis results obtained via X-Ray Coronary Angiography (XRA).
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Chapter 6

Partial Shape Matching Using Graph

Embedding and Its Application to

Content-based Image Retrieval

6.1 Introduction

In spite of extensive research on shape matching over the years, obtaining a reliable and accu-

rate correspondence between shapes in images that exhibit considerable variation in viewing

conditions has proven to be an extremely difficult problem. In this chapter, we propose a

multicriteria optimization-based technique for matching partially visible shapes in images

with significant variation in viewing conditions. Classical approaches that attempt to solve

the partial shape matching problem can be broadly categorized as global or local based on

the granularity of the image features used. Most global shape matching techniques are seen

to lack the ability to handle strong articulation, deformation or occlusion of objects (or their

parts) whereas local feature-based matching are observed to fare poorly in the face of signif-

icant variations in illumination, scale, orientation and viewpoint. In this chapter, we focus
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Figure 6.1: Partial shape matching over real world images. The result of the proposed
technique is indicated by the red rectangle. Feature points are denoted using yellow circles
whereas the feature point correspondences in the partial matches are shown using green lines.

on the problem of partial shape matching in images where the shapes of the objects exhibit

significant variation on account of variations in viewing conditions. Given a set of features

extracted from the images under consideration, our goal is to obtain accurate and optimal

region-based correspondences for partial shape matching. Formal characterization of the

partial shape matching problem is of particular importance because of its wide applicability

in several computer vision problems such as structure-from-motion, object localization, fine-

grained object categorization, shape-based image retrieval and image registration, to name

a few.

Conventional global shape matching techniques compare two shapes by defining a global

matching cost function which is then optimized to determine the best match. The shape
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context technique proposed by Belongie et al. [9] has proven to be a popular method for global

shape matching. It casts the shape matching problem as one of correspondence determination

by computing a distance measure between the two shapes under consideration. However,

the inability of global shape matching techniques to handle shape deformation arising from

strong articulation or occlusion of objects (or their parts) has motivated the design of local

shape matching techniques. Chen et al. [14] have addressed the shape deformation problem

in their formulation of a local shape matching method but fail to provide a strong global

description for accurate shape alignment. Ma and Latecki [30] have proposed a contour-

based shape matching technique for real world images where the extent of shape articulation

observed in the images is limited. Consequently, their technique is unable to handle the

matching of highly articulated object shapes. Furthermore, their matching technique calls

for prior knowledge of the underlying shape, severely limiting its scalability to real-world

problems. Also, it must be noted that in most existing shape matching techniques, the

underlying shape under consideration is often that of a very distinct object in an image

captured in a highly controlled environment; an assumption that may not hold in many real

world images.

In the proposed technique, we do not rely completely on either local shape matching

methods based on local feature correspondences [14], [30] or on global shape matching tech-

niques based on optimization of a global cost function [9]. Instead, we propose to use a

multicriteria optimization technique for matching of persistent image features that encode

the appearance similarity of objects or regions in a robust manner. As shown in this chapter,

accurate partial shape matches in images that exhibit significant variations in imaging and

viewing parameters can be obtained via optimization of a suitably defined distance measure

between jointly embedded local feature vectors coupled with a strong global regularization

constraint. In the proposed partial shape matching technique, we have investigated mean

pixel intensity as the regularization criteria. The proposed technique is shown to not only
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retrieve the area-wise partial similarity matching between the shapes, but also provide pixel-

level correspondences between the shapes under consideration.

The primary motivation for the proposed framework comes from the recent work on the

use of the eigenspectra of SIFT features [29] of the joint image graph as descriptors of image

structure [5]. In particular, we propose the use of geometric blur (GB) features [11] as an

alternative to SIFT features for generating the joint image graph. The inherent ability of GB

features to focus on feature points on the dominant objects within the image has prompted

their use, instead of SIFT features, for determining the partial geometric similarities between

objects. The proposed partial shape matching technique has the potential to positively im-

pact several complex computer vision applications. In particular we present the application

of the proposed partial shape matching technique to a complex problem in computer vision,

namely, content-based image retrieval (CBIR).

6.1.1 Content-based image retrieval (CBIR)

The field of CBIR is facing new challenges due to the rapid growth of image data available

on the web, thanks to photo sharing sites such as Flickr and Picasa. Whereas traditional

audiovisual archives come with carefully curated metadata, allowing easy access based on

a predefined thesaurus, user-generated images are hardly annotated, except for a very few,

and often with not very informative tags. The same holds for many older image archives

that only recently have been digitized. This calls for methods that can analyze the images

directly rather than relying on metadata.

In this chapter we formulate a CBIR scheme, based on the proposed partial shape match-

ing technique, that can analyze the structure of the geometric shapes in the images and match

them in a concise and meaningful manner directly, rather than relying on metadata. Con-

ventional CBIR techniques are often confounded when the object of interest in the image

is captured from different viewpoints or under different imaging conditions (e.g., different
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lighting conditions).

Existing CBIR techniques can be broadly classified into two categories based on their

degree of robustness to variations in viewpoint and imaging conditions. The first category is

based on the frequency distribution of image features and commonly termed as bag-of-visual-

words (BOVW)-based CBIR techniques [27]. BOVW-based techniques have been reported to

yield good results under minimal variations in viewing conditions using the query-by-visual-

example paradigm [49]. The second category of CBIR techniques focuses on invariant object

and image descriptors to render the retrieval results robust to variations in imaging and

viewing parameters. Affine-invariant representations [2], domain adaptation techniques [36],

query expansion [16, 18] and multiple queries [21] have been proposed to enhance the ro-

bustness of CBIR. Even so, extreme variations in imaging and viewing conditions and cases

of object deformation have been found to be a hindrance in the retrieval process.

In contrast to existing techniques, we pose CBIR as a problem in rich feature selection in

order to enhance its accuracy and robustness. The proposed partial shape matching method

is shown to be effective in tackling extreme variations in viewing conditions during the

similarity-based retrieval process. The incorporation of the proposed partial shape matching

method within a CBIR scheme entails the design of a training procedure based on selection

of a rich feature set from training image pairs instead of a single training image instance.

The training procedure adds two important characteristics to our CBIR framework. First,

only features that are relevant to the object are selected; irrelevant features, such as those

that describe the background, are ignored. Second, only features that are consistent across

significantly different visual appearances and viewing conditions are selected. This results in

a feature set that is both robust to variations in object appearance and viewing conditions

and potentially most consistently descriptive of that particular object. The feature set thus

obtained is further processed using a BOVW generation procedure followed by a discrimina-

tive binary coding (DBC) [37] procedure resulting in a compact binary code representation.
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The Hamming distance between the binary codes of the query image and retrieved image

is considered as the measure of (dis)similarity between the two and a k-nearest-neighbor

(k-NN) search is used to determine the label of the query image.

6.1.2 Contributions of the chapter

The primary contributions of this chapter are as follows:

1. The formulation of a novel multicriteria optimization framework to address the inher-

ently difficult problem of partial shape matching across images where the variations in

imaging and viewing parameters are truly challenging.

2. The introduction of a new benchmark dataset wherein the variability ranges over sev-

eral imaging and viewing parameters such as illumination (day versus night), viewpoint,

age of structures (historic versus new), presence of occlusion and partially constructed

structures, and inclusion of sketches and/or paintings of objects along with their cap-

tured images.

3. The application of the proposed partial shape matching framework to a challenging

computer vision problem, i.e., content-based image retrieval.

6.2 Related Work

Shape matching techniques can be broadly categorized as global or local depending on the

granularity of the features employed. Global shape matching techniques can be further cat-

egorized as contour-based and region-based methods. Contour-based methods exploit pri-

marily the boundary information for matching the underlying shapes. One of the pioneering

works in this area includes the shape context method proposed by Belongie et al. [9, 10]. For

every sample point on the shape contour, the shape context method captures the spatial
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distribution of all the other sample points relative to it. A distance measure is computed be-

tween the shapes under consideration and the shape matching problem is modeled as one of

determining the optimal correspondence between the shapes. Shotton et al. [46] and Opelt

et al. [35] use the chamfer distance measure to match fragments learned from codebooks

to edge images. Zhu et al. [50] formulate the shape matching problem as a set matching

problem. Ravishankar et al. [38] approximate the outer contours of objects by decomposing

them into segments at points of high curvature which are then matched using a dynamic

programming procedure. Bai et al. [4] use the shape skeleton to capture the primary struc-

tural information about the object followed by an oriented chamfer matching procedure [35]

to match the object model parts to images. Other works in contour-based shape matching

include the triangle area representation proposed by Alajlan et al. [1], and segment-based

shape matching methods such as the shape tree method proposed by Falzenszwalb et al. [19]

and the hierarchical procrustes matching procedure proposed by McNeill et al. [32].

Region-based approaches derive the shape descriptors using pixel-level information within

a shape region. Some of the well known region-based shape matching methods are based on

the computation of invariant moments such as the Zernike moments [25]. Other approaches

such as the skeleton-based shape descriptors [42, 44] have proven better at capturing the

articulation of shapes than conventional contour-based methods.

Although global shape matching methods, such as contour-based methods, are capable

of capturing the global shape of the object, they are unable to handle strong articulations

in the object shapes. Likewise, region-based methods, though reliable for complex shapes,

rely primarily on global shape characteristics that exclude many important shape details.

Consequently, these methods have less discriminative power when the intra-class feature

variation is high. Skeleton-based global shape matching methods [42, 44] are able to handle

limited shape articulation but, in the absence of region-based descriptors, their performance

deteriorates significantly when confronted with complex shapes. As opposed to global shape
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descriptors, local shape descriptors, such as the one proposed by Chen et al. [14], provide

an accurate measure of local similarity, but fail to provide a strong global description for

accurate shape alignment.

The proposed multicriteria optimization framework addresses primarily the problem of

partial shape matching in real world images with extreme variations in viewing and imaging

conditions. In addition to matching partially visible shapes, the proposed framework also

improves the quality of feature point correspondences. Although several invariant feature-

based matching techniques have been proposed for improving feature point correspondences,

obtaining accurate, reliable and robust point correspondences is a challenging task using only

local feature descriptors. One of the initial works in this area is the rotationally invariant

descriptor proposed by Schmid and Mohr [41] which is constructed around a Harris corner

detector using a set of Gaussian derivatives. Lowe [29] has extended this approach by

incorporating scale invariance within the rotationally invariant descriptor.

In the context of determining feature point correspondences, Shi and Tomasi [45] have

suggested that interest points should be located such that the solutions for the positions,

orientations and scale of the matching feature points are stable. Patch matching techniques,

such as the one proposed by Barnes et al. [6], perform well by determining the approximate

nearest neighboring patches based on random sampling. However, extreme variations in

viewing conditions encountered in real-world images render the patch matching technique

infeasible. Other patch matching techniques include the multi-view matching method pro-

posed by Brown et al. [13], wherein the matched oriented patches are observed to suffer from

the same problem. A possible means to improve the feature correspondence is to incorporate

mid-level cues such as the local shape of the region. Since the proposed multicriteria opti-

mization framework optimizes the joint spectral embedding of features coupled with mean

pixel intensity-based regularization, it restricts the features to a shape or region within the

image resulting in improved correspondences between feature points.
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Several methods for large-scale CBIR starting with a single query image have been pro-

posed in the research literature [17, 31, 34]. These methods almost invariably comprise of

the following components: bag-of-visual-words (BOVW) creation, indexing, query expansion

and geometric verification. In query expansion (QE) [2, 16, 18, 21], the original query image

is replaced with a more representative set of images that is constructed using the top-ranked

retrieved images. This, in effect, turns the single-query retrieval problem into one of multiple-

query retrieval. Geometric verification is typically used to improve the results by re-ranking

the top-k retrieved images. The re-ranking step is linear in k, and therefore needs to be

implemented efficiently, e.g. by using the LO-RANSAC procedure [17]. In addition, several

improvements have been proposed in the research literature to the relatively standard CBIR

components mentioned above. For instance, Zhang et al. [48] propose the use of geometry

preserving visual phrases in their CBIR scheme. Although their method captures geometric

information at the level of feature construction level, it is sensitive to local deformations as

the structures it discovers are inherently rigid.

6.3 Theoretical Derivation

6.3.1 Partial Shape Matching

We first define the class of objects we are interested in comparing across image pairs. The

proposed technique focuses on image pairs containing a single dominant object where the

dominant object is either completely or partially visible. We denote the images constituting

the image pair under consideration as X and Y . We assume that the images X and Y

can each be decomposed into subparts, where the subparts are modeled as subsets X ′ ⊂ X

and Y ′ ⊂ Y respectively. We establish the equivalence relation (denoted by ∼) between the

two subparts X ′ and Y ′ (instead of exact similarity which implies X ′ = Y ′) under certain

conditions. From now on, with a little abuse of notation, we will use the terms similarity
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and equivalence interchangeably.

The degree of dissimilarity between subparts X ′ and Y ′ can be expressed by a non-

negative function d : Σ′X × Σ′Y → R+, where Σ defines the geometry of the subpart. We

design the first term of the objective function in the proposed multicriteria optimization

framework as a dissimilarity measure between feature pixels at a local geometric level. The

second term in the objective function is a regularization term comprising of an intensity-based

similarity measure which encapsulates the global structure of the shape. For a feature point

x ∈ X, region-wise matching can be achieved using the proposed multicriteria optimization

framework as follows:

min
X′,Y ′;ϕ:X′→Y ′

[{∫
X′×Y ′

d(x, ϕ(x))

}
+ r(X ′, Y ′)

]
(6.1)

Joint Geometric Embedding

The spectral analysis of the contents of an image is typically performed on a weighted image

graphG(V,E,W ) [3]. The vertices of the graph V denote the pixel-level features of the image.

The edge set E denotes the pair-wise relationships between every pair of vertices in the set

V , making G a complete graph. The weight wij ≥ 0 associated with an edge (vi, vj) ∈ E

encodes the affinity between the corresponding pixel-level features represented by vertices vi

and vj. The edge weights are represented by an n× n affinity matrix W = [wij]i,j=1,2,...,n.

The above formulation is extended for a joint graph as follows: Let G1(V1, E1,W1) and

G2(V2, E2,W2) be the image graphs for images I1 and I2, respectively. The joint image graph

G(V,E,W ) is defined such that V = V1 ∪ V2 and E = E1 ∪ E2 ∪ (V1 × V2) where V1 × V2

is the set of edges connecting every pair of vertices in (V1, V2). The resulting affinity matrix

W is given by:
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Figure 6.2: Partial shape matching in real world images under varying conditions. The
green rectangle shows the ground truth partial match whereas the results of using (a) SIFT
features, (b) GB features and (c) the proposed method are denoted using the red rectangle.

W =

 W1 C

CT W2


(n1+n2)×(n1+n2)

(6.2)

where the affinity sub-matrices W1, W2 and C are defined as follows:

(Wi)x,y = exp(−(‖fi(x)− fi(y)‖)2 (6.3)

Cx,y = exp(−(‖fi(x)− fj(y)‖)2 (6.4)

where, fi(x) and fi(y) are pixel-level features at locations x and y respectively in image Ii

and ‖.‖ is the Euclidean norm or distance measure.
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We consider geometric blur (GB) [11] as the feature descriptor of choice since our primary

objective is to focus on the geometric structure of the dominant object within the image. GB

features yield image descriptors that are robust to small transformations. GB averages the

underlying signal over small transformations and then samples the signal at fixed locations

to construct the desired robust descriptor. For oriented images, the edge response has been

shown to be a good underlying signal. In practice, the averaging of transformations can be

modeled by convolving the signal with a kernel that weighs the contribution of neighboring

signals at a given point or pixel location. Gaussian kernels where the support (σ) increases

linearly with the distance from the origin are commonly used for this purpose [11].

We compute the joint geometric embedding distance (JGED) between two feature points

x and y in two different images (comprising the image pair) using the first m non-trivial

eigenvectors (φk) of the joint graph as follows:

d2JGED(x, y) =
m∑
k=1

(φk(x)− φk(y))2 (6.5)

Computation of dJGED in the embedding space ensures that the resulting distances are more

robust to the variations in imaging and viewing parameters commonly encountered in real-

world images than the feature distances computed in the GB space. This joint geometric

embedding distance is the first term of the proposed multicriteria optimization framework

(eq. (6.1)).

6.3.2 Regularization

The quality of the match between subparts X ′ and Y ′ in the image pair under consideration

can be measured using an appropriately defined region-based irregularity function r(X ′, Y ′).

Minimization of the region-based irregularity term ensures a sufficiently high-quality match

between the two regions instead of just the feature points, i.e., r(X ′, Y ′) serves as a regu-
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Figure 6.3: The differences in object appearances in a CBIR system.

larization term in the multicriteria optimization framework (eq. (6.1)). In particular, we

compute the difference in values of mean pixel intensity of the regions X ′ and Y ′ to regularize

the quality of match between the corresponding subparts in the image pair.

6.4 Content-based Image Retrieval

Content-based image retrieval (CBIR) techniques directly analyze the contents of a query

image and return images with similar content from an image database. A typical CBIR

system comprises of (a) efficient retrieval of images from the image database/archive that

are similar to a query image using an inverted file system or an index structure based on

an R/R*-tree [8, 24] and (b) generation of a ranked list of the retrieved images, with im-

ages ranked based on their similarity to the given query image. However, since an object in
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Figure 6.4: An outline of the proposed procedure for Content-based Image Retrieval.

an image may be captured from different viewpoints or under different viewing conditions

(Figure 6.3), the quality of retrieval is very sensitive to the query image. The dependence

of the retrieval quality on the query image has been alleviated by developing more robust

image representations that are invariant to changes in viewing conditions. Affine invari-

ant representations [2], domain adaptation techniques [36], and techniques such as query

expansion [16, 18] and multiple queries [21] have been used with reasonable success. How-

ever, extreme changes in viewing conditions still pose a significant challenge to most CBIR

systems.

The proposed partial shape matching technique, on the other hand, is shown to be capable

of detecting similar shapes between images that vary significantly in terms of illumination,
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viewpoint, age of structures, presence of occlusion and partially constructed structures, and

inclusion of sketches and/or paintings of objects along with their captured images. It is a

fair observation that the proposed partial shape matching framework is able to find stable

geometric features across images in the face of highly varying imaging and viewing conditions.

The proposed CBIR framework is designed to leverage the proposed partial shape matching

technique to discover and extract consistent features across extreme variations in imaging

and viewing conditions to ensure more robust and accurate representation and retrieval of

images from the image archive/database containing the object of interest captured in the

query image.

6.4.1 Offline Training

The robust and consistent features for representation of an object in an image are learned

using an offline training procedure on the archived images. For each class of images containing

a single specific dominant object of interest, a set of image pairs is randomly generated. For

each pair of images, the proposed partial shape matching procedure is performed to localize

the dominant object in the images and establish the feature point correspondences between

the object instances. The feature point correspondences thus obtained are used to determine

the consistent features across the varying imaging and viewing conditions represented by the

image pair. The extraction of consistent features from image pairs that exhibit good shape

correspondence for a specific dominant object, enables the generation of a rich feature set

for shape description that could used for the purpose of retrieval. The feature extraction

phase is followed by a bag-of-visual-words (BOVW) technique to generate the frequency

histograms of the consistent spatial features. These consistent features for each image class

are learned during the offline training process resulting in a feature-level description for the

corresponding object class, as depicted in Figure 6.4.
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Discriminative Binary Code Generation

For representation and rapid matching of features during online retrieval, the discriminative

binary code (DBC) developed by Rastegari et al. [37] is employed. The main purpose of

the DBC is to represent features in a reduced binary space which retains some similarity to

the original real-valued feature space. The goal here is to learn the binary codes for each

instance in the training set such that:

1. The resulting DBCs can be reliably predicted from the visual data and,

2. Representation of each image with its learned DBC enables rapid and accurate dis-

crimination of the image.

The proposed CBIR system comprises of two stages similar to the ones described in [37]:

(a) learning the DBC for each feature instance and, (b) performing search or classification in

the space of DBCs. The DBC learning procedure is based on the joint optimization of two

criteria outlined in [37]: the resulting binary code should be (a) maximally discriminative

and, (b) maximally predictive of the visual data (i.e., the underlying features). The above

two criteria impose conflicting constraints, for example, assigning a unique code to examples

within the same category would result in the most discriminative codes but ones that would

be extremely hard to predict from visual data. The most predictable codes on the other

hand, may contain very little information about the underlying categories resulting in poor

discrimination. The DBC generation procedure in [37] provides a trade-off between the

discriminative and predictive capabilities of the resulting codes.

Following [37], a code is deemed discriminative if the coded instances of different cat-

egories are distant from one another whereas those belonging to the same category are

proximal based on some distance measure. However, these discriminative constraints are not

encoded as hard constraints; rather a DBC is assigned to each feature instance or image in

a way that the resulting DBCs have enough discriminative power and yet can be reliably
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predicted from images. Such a code allows for simple, efficient and accurate classification

using a Support Vector Machine (SVM) and retrieval using k-NN search technique. Each

bit of the DBC can be visualized as a hyperplane that separates feature instances or images

that have a value 0 versus the ones that have a value 1. Each bit of the DBC is generated

by checking which side of a hyperplane a feature instance or image lies on [37].

6.4.2 Online Testing

During the testing phase, each query image is processed using the GB feature extraction and

BOVW generation procedures. The BOVW representation is further processed using the

DBC generation procedure resulting in a DBC representation for each query image. During

the retrieval process, a k-NN search is performed using the Hamming distance between the

DBC representation of the query image and the DBC representations of the images in the

image database/archive and the mode of k-NN is considered as the retrieval result.

6.5 Experimental Results

We designed a set of experiments to evaluate the proposed partial shape matching technique.

We evaluated the performance of the proposed technique using two different metrics. The

first metric evaluates the repeatability of the proposed technique for different image pairs

whereas the second metric compares the reliability of the proposed technique with that of

scale invariant feature transform (SIFT) [11], geometric blur (GB) [11], speeded up robust

features (SURF) [7], features from accelerated segment test (FAST) [39] and oriented FAST

and oriented BRIEF (ORB) [40] features on a partial shape matching benchmark designed by

us. Since certain correspondence determination techniques [30] require the contour model to

be known a priori, it was not feasible to evaluate and compare the results of these techniques

using our benchmark dataset since it includes wide variations in viewing conditions.
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For the purpose of evaluation, we collected a set of image pairs with a single dominant

object that is either completely or partially visible. These images focus on architectural scenes

and, in some cases, musical instruments, which we believe will prove extremely challenging for

current feature matching methods. The image pairs exhibit an array of dramatic variations

in object appearances, arising due to variations in illumination, age of the objects and

rendering styles (paintings, drawings, sketches etc.), occlusion, presence of structures still

under construction, to name a few. None of the image pairs are pre-aligned, thus ensuring

that factors such as geometry and appearance variations play an important role in the

matching process. In total, we gathered 40 image pairs (http://cobweb.cs.uga.edu/~csc/

Supplimentary.rar), all of which are the result of Google Image Search. For each image

pair we manually annotated a bounding box around the dominant object (denoted by X ′g

and Y ′g ) in each of the images for use in computing the ground truth matches. Examples of

ground truth matches between the image pairs are shown in Figure 6.1 and Figure 6.2.

6.5.1 Evaluation of the Matching Procedure

For objective evaluation of the performance of the proposed technique, we computed a rele-

vance score R for each image pair as follows:

R =
TP

TP + TN + FP
(6.6)

where,

TP = (X ′ ∩X ′g) ∪ (Y ′ ∩ Y ′g ) (6.7)

TN = (X ′g − (X ′ ∩X ′g)) ∪ (Y ′g − (Y ′ ∩ Y ′g )) (6.8)
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FP = (X ′ − (X ′ ∩X ′g)) ∪ (Y ′ − (Y ′ ∩ Y ′g )) (6.9)

The mean relevance score (MRS) and the false positive rate (FPR) values were considered

as the metric for performance evaluation of all image pairs in the benchmark.

6.5.2 Parameter Selection

The two main parameters that need to be chosen for the proposed geometric embedding

method are nGB (number of GB feature points) and φ (the number of top eigenvectors). We

computed the MRS and FPR values over all the image pairs for different combinations of

values for the parameters n1 and φ. The results are reported in Table 6.1.

Since the combination of parameter values nGB = 300, φ = 20 and mean intensity-based

regularization was observed to yield the best classification accuracy, we used this set of

parameter values for all the experiments reported in the remainder of the chapter unless

mentioned otherwise.

6.5.3 Repeatability of the Matching Procedure

The random initialization step in the procedure for extraction of the geometric blur feature

points necessitates an evaluation of repeatability of the proposed partial shape matching

technique on our benchmark dataset. For each image pair, a repeatability score R1 was

computed as follows:

R1 =
(X ′ ∩X ′g) ∪ (Y ′ ∩ Y ′g )

X ′ ∪ Y ′
(6.10)

We ran the proposed partial shape matching procedure 50 times for each image pair.

The value of the repeatability score R1 was computed for each run for each image pair and

plotted in Fig. 6.5. It is important to note that in the case of the first outlier, i.e., the Empire
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Table 6.1: Parameter tuning for maximizing the MSR and minimizing the FPR across 40
image pairs with mean intensity-based regularization.

nGB φ MRS FPR

100 5 0.71 0.27
100 10 0.72 0.26
100 20 0.76 0.22
100 30 0.76 0.22
200 5 0.75 0.23
200 10 0.77 0.21
200 20 0.79 0.19
200 30 0.8 0.18
300 5 0.74 0.24
300 10 0.78 0.2
300 20 0.82 0.17
300 30 0.81 0.18

State Building, the scarcity of prominent features in the left image resulted in a very low

repeatability score; whereas in the case of the second outlier, i.e., the Sphinx, the GB features

considered the people occluding the Sphinx in the right image to constitute the dominant

object, resulting in low repeatability score. The average repeatability score over the entire

dataset (excluding the two outliers mentioned above) was observed to be 0.8255 which is

quite high and shows the effectiveness of the proposed partial shape matching procedure.

6.5.4 Comparison

We evaluated the results of the proposed partial matching technique and compared them with

those obtained using standard features like SIFT [29], geometric blur (GB) [11], speeded up

robust features (SURF) [7], features from accelerated segment test (FAST) [39] and oriented

FAST and oriented BRIEF (ORB) [40] in isolation. In the case of most image pairs, using

the aforementioned standard features in isolation failed to localize the partial shape of the

152



Figure 6.5: Repeatability score R1 for all the image pairs after 50 runs per image pair. Two
instances of image pairs with high repeatability scores (green) and two instances of outliers
(red) are also shown.

Table 6.2: Comparison of the mean relevance score (MRS - higher is better) and false
positive rate (FPR - lower is better) for standard feature-based techniques and the proposed
technique.

SIFT [29] GB [11] ORB [40] SURF [7] FAST [39] Proposed
MRS 0.49 0.36 0.63 0.59 0.40 0.82
FPR 0.48 0.61 0.34 0.37 0.54 0.17

object. The quantitative evaluation is summarized in Table 6.2. It is particularly important

to note that the proposed technique, on average, performed significantly better than the

techniques that use standard feature-based techniques in isolation. In almost all cases, the

standard feature-based matching techniques were observed to regard the entire image as a

partial match, thus rendering them ineffective in solving the partial shape matching problem.

6.5.5 Content-based Image Retrieval Results

Datasets

We tested the proposed CBIR method on the Caltech256 dataset [22]. This dataset has

a large number of categories (256) containing significant intra-class variations. Category
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retrieval in the case of the Caltech256 dataset is a challenging task since the number of

categories is much higher than typical number of experiments and also the intra-class varia-

tions are much higher than those encountered in typical datasets. There are around 30,000

images in the Caltech256 dataset spread over 256 categories with 120 images per category

on average.

Evaluation Procedure

To evaluate the proposed CBIR technique we performed a series of extensive evaluations and

comparisons. For our method, we varied the following settings: the length of binary codes

b ∈ 32, 64, 128, 256, 512 and the number of training examples per category in the range [5, 50].

In the interest with methods in the literature we compared the mean retrieval precision of

the proposed method with that of the Locality Sensitive Hashing (LSH) technique as a

standard baseline, with the supervised version of Iterative Quantization (ITQ) [23] as the

best supervised method and Spectral Hashing (SpH) [47] as the state-of-the-art unsupervised

method for producing binary codes. Varying k = [1 : 5 : 100] for the k-NN search we

computed a set of precision values. The mean precision value was obtained by taking the

average of these precision values. The retrieval performance was measured by plotting the

mean retrieval precision versus the number of training images. Our experimental evaluations

in Figure 6.6 demonstrate that our method consistently outperforms state-of-the-art methods

under all the combinations of above settings.

6.6 Conclusions and Future Work

In this chapter, we presented a novel multicriteria optimization framework for partial shape

matching in general real-world images. The proposed framework makes two primary contri-

butions: First, a multicriteria optimization technique for partial shape matching suitable for
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Figure 6.6: Our method produces state-of-the-art results on the Caltech256 dataset. This
figure compares the performance in terms of retrieval precision versus the number of training
examples per category on the Caltech256 dataset of (a) the proposed technique with (b) the
supervised version of Iterative Quantization (ITQ) [23] and (c) Spectral Hashing (SpH) [47].

matching images under dramatically different imaging and viewing conditions is proposed

and successfully applied to a difficult problem in computer vision, i.e. Content-based Image

Retrieval (CBIR). Second, a novel benchmark is presented here, containing image pairs of

ground truth partial matches where the underlying variability includes several factors such

as illumination, viewpoint, age of structures, occlusion, structures under partial construction

and inclusion of paintings and sketches of objects. Performing the region-wise optimization

rather than finding point correspondences is the main reason behind the success of our al-

gorithm and the results on state-of-the art benchmark datasets for the CBIR application

bolster our claims. In future, we plan to extend the proposed framework by incorporating

2.5D data into the framework and considering more complex computer vision problems such

as structure-from-motion.
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Chapter 7

Discussion and Conclusions

In this final chapter, we first summarize what the dissertation has achieved thus far. The

second section highlights the general contribution of the dissertation towards the area of

computer vision and graphics as well as the interdisciplinary area of medical image analysis.

In the third and final section, the scope and directions for future research are presented. It

is important to note that, as each chapter contains its individual contributions and future

directions, in this chapter we only state the major future research directions.

7.1 Summary

The primary goal of the dissertation was to understand shapes from a geometric perspec-

tive and determine computational geometric invariants for the deformations the shape has

undergone. Moreover, the focus of the dissertation was to develop mid-level and high-level

understanding of shape analysis to enable direct applicability of the theoretical insights to

practical applications. As a result, this dissertation provided some important theoretical

insights in to the field of shape analysis as well as some initial directions towards applying

these insights to address some real world applications.
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In particular, the four main theoretical developments presented in this dissertation are

Geodesic Field Estimate, Biharmonic Density Estimate, Intrinsic Symmetry Detection and

Partial Shape Matching. Moreover, we have proposed a 3D Bag-of-Features (BoF) model for

quantifying the endocardial structure of the left ventricle, a Geodesic Context Histogram-

based descriptor based on the GFE for analyzing cortical folding patterns in the human brain

and an efficient Content-based Image Retrieval technique using partial shape matching to

enhance the applicability of theoretical knowledge to practical problems.

Chapter 2 introduced the Geodesic Field Estimate (GFE), a GPU-optimized version of

all pairs shortest path determination algorithm and the Geodesic Context Descriptor (based

on GFE) which in turn is used to quantify the regularity of the cortical surface of the human

brain. Biharmonic Density Estimate, another novel low-level descriptor was introduced in

Chapter 3. In Chapter 4, we developed a framework for detecting and characterizing intrinsic

symmetry over 3D shapes. Chapter 5 introduced a 3D BoF technique for quantifying the left

ventricular endocardial morphology whereas Chapter 6 developed a partial shape matching

technique which in turn is applied to the Content Based Image Retrieval task.

7.2 General Contributions

As mentioned earlier, this dissertation provides a deep theoretical and practical understand-

ing of shape analysis in particular and computer vision and graphics in general. The general

theoretical contributions which we believe can have a lasting impact are listed below:

1. Introduction of the GFE, an intrinsic geometric surface signature based on the GFE,

termed as the GFE contextual histogram (GCH), as well as the design and implemen-

tation of a parallel version of the all pairs geodesic path determination algorithm, a key

element in the GFE computation, using GPUs to ensure that the GFE computation is

indeed scalable for large datasets.
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2. Introduction of the BDE that results in the formulation of a multiscale 3D shape

signature as a distance density function, that can effectively capture both, global shape

and local surface detail, depending on the scale parameter value. Moreover, the BDE

is one of the first works where the intrinsic geometric scale space parameter can be

directly related to the neighborhood size r which is both, intuitive and easy to relate

to the perceivable 3D surface geometry.

3. Robust and meaningful characterization of the symmetry transformation via formu-

lation of a symmetry space which allows one to quantitatively distinguish between

instances of simple and complex intrinsic symmetry. To the best of our knowledge,

this quantitative distinction has not been attempted in the published literature.

4. The formulation of a novel multicriteria optimization framework to address the hitherto

unsolved problem of partial shape matching across images where the variations in

imaging and viewing parameters are truly challenging.

5. The adaptation of the 3D Bag-of-Features (BoF) framework for non-rigid shape analysis

for the purpose of cardiac shape analysis which is an important problem in cardiac

imaging in particular and medical imaging in general.

6. The formulation of the partial shape matching framework for solving the challenging

computer vision problem of content-based image retrieval.

7. The characterization of geometric regularity and variability of the highly irregular

cortical surface folding patterns in the human brain at the DICCCOL sites using GCH.
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7.3 Future Research

We have successfully developed two intrinsic geometric features, which can successfully de-

scribe a shape and its deformations. But, considering that the BDE is solely dependent on

the modal analysis of the Laplace-Beltrami operator, one possible future theoretical direction

can be to focus on modal analysis of other operators which have the potential to be invariant

under a more complex deformations than just intrinsic isometry.

From the intrinsic symmetry detection perspective, since the proposed technique is

equipped with functional maps, in future it will be possible to formulate operations, such as

addition and subtraction, on the generated functional maps that could potentially provide a

deeper and more comprehensive understanding of intrinsic symmetry in general. One major

challenge towards quantifying the endocardial surface structure using the 3D BoF is that, it

is not possible to substantially localize certain endocardial surface changes. Since the BoF

histogram practically removes all the spatial information. As a result, it would be clinically

more meaningful to devise methods in future that can successfully localize problem areas on

the LV endocardial suraface.

Finally, the partial shape matching framework has potential applications in many high-

level computer vision problems. We have only applied the technique to deal with Content

Based Image Retrieval thus far. But, in future, we plan to extend this method towards solving

problems such as Fine-Grained Recognition, Structure from Motion and wide-baseline 2D-2D

or 3D-2D registration of urban scenes.

165


	Introduction
	Motivation
	Contributions of the Dissertation
	Organization

	Geodesic Field Estimate and Analysis of Cortical Surface Folding patterns
	Introduction
	Related Work
	Theoretical Derivation of the GFE
	Algorithm Description and Implementation
	Data Preparation
	Experimental Results
	Conclusions and Future Directions

	Biharmonic Density Estimate
	Introduction
	Related Work
	Theoretical Derivation
	Implementation
	Experimental Validation
	Applications
	Conclusions and Future Directions

	Intrinsic Symmetry Detection and Characterization
	Introduction
	Related Work
	Theoretical Framework
	Symmetry Characterization using Functional Maps
	Experimental Results
	Conclusion and Future Directions

	A 3D BoF Descriptor for Analysis of the Left Ventricular endocardial Surface Morphology
	Introduction
	Related Work
	Contributions of the chapter
	MDCT Image Segmentation and LV Shape Analysis
	Experimental Results
	Conclusions and Future Work

	Partial Shape Matching Using Graph Embedding and Its Application to Content-based Image Retrieval
	Introduction
	Related Work
	Theoretical Derivation
	Content-based Image Retrieval
	Experimental Results
	Conclusions and Future Work

	Discussion and Conclusions
	Summary
	General Contributions
	Future Research




